
Departament d'Enginyeria

i Ciència dels Computadors

Flexible techniques for heterogeneous

XML data retrieval

Ph. D. Thesis

Presented by Ismael Sanz

Supervised by Dr. Rafael Berlanga Llavori and Dr. Marco Mesiti

Castelló, October 2007

Departament d’Enginyeria

i Ciència dels Computadors

Técnicas flexibles para la recuperación de
datos XML heterogéneos

Ismael Sanz Blasco

Trabajo realizado bajo la dirección
del Dr. Rafael Berlanga Llavori y el Dr. Marco Mesiti

presentado en la Universitat Jaume I
para optar al grado de Doctor por la Universitat Jaume I

Castelló, Octubre de 2007

Als meus pares i al meu germà.

A Lledó.

Resumen extendido

Introducción

XML [Bray et al., 2006] se ha convertido en el estándar de hecho para representar una gran
cantidad de información en todos los ámbitos. Esto ha motivado una intensa actividad
investigadora, cuyo primer resultado práctico es que la mayor parte de sistemas de gestión
de bases de datos actuales han ya incorporado facilidades para almacenar y consultar
nativamente información en formato XML.

Tras la aparición de XML se desarrolló la distinción entre aplicaciones de XML que se
han venido en llamar “centradas en los datos”, en contraposición a los XML “centrados en
los documentos”. Los primeros se caracterizadas por (a) tener una estructura relativamente
homogénea y (b) un contenido textual fuertemente tipado; la gran mayoŕıa de estándares
de comercio electrónico caen en esta categoŕıa. En cambio, los segundos se caracterizan
por incluir contenido mixto, como se denomina a las estructuras muy variables t́ıpicas de
los documentos predominantemente textuales; el ejemplo paradigmático de aplicación
XML centrada en los documentos es el lenguaje XHTML, utilizado para codificar las
páginas web [W3C HTML Working Group, 2002].

Los estándares existentes para la gestión de información XML en bases de datos, y
en particular los lenguajes XPath [Clark and DeRose, 1999] y XQuery [Boag et al.,
2007], asumen que las colecciones sobre las que trabajan es “centradas en los datos”,
y los mecanismos que ofrecen están fuertemente orientados al recorrido de estructuras
jerárquicas regulares. Un conjunto completamente distinto de técnicas se emplean para
el manejo de de información textual, ejemplificado en los resultados presentados en las
conferencias INEX (INitiative for the Evaluation of XML Retrieval). Como ejemplo
h́ıbrido cabe mencionar el sistema TeXQuery de [Amer-Yahia et al., 2004], una extensión
de XQuery con primitivas de recuperación de la información.

Sin embargo, las aplicaciones caracterizadas como “centradas en datos” y “centradas en
documentos” no representan más que una parte de las colecciones XML existentes. La
adopción de XML como lenguaje para la representación y el intercambio de información
por parte de diversas comunidades — bioinformática, patrimonio cultural, ontoloǵıas,
sistemas de información geográfica y muchas otras — ha motivado la aparición de
aplicaciones importantes para las que las técnicas desarrolladas hasta ahora no son
eficaces, ya que ni se puede explotar una estructura relativamente regular ni la información
puramente textual es predominante. Por ejemplo, en bioinformática hay una enorme
cantidad de información etiquetada en XML, que abarca desde información molecular

i

Resumen extendido

a ontoloǵıas que describen los conceptos del dominio, pasando por el contenido de
art́ıculos técnicos. Según [MacMullen and Denn, 2005] muchas aplicaciones dependen de
la utilización integrada de esas fuentes, pero en ese contexto las técnicas generales no
son de aplicación directa, lo que motiva enormes esfuerzos en la creación de aplicaciones
ad-hoc.

Esta tesis propone técnicas que permiten consultar colecciones XML que presentan un
grado muy alto de heterogeneidad. Estas colecciones no pueden ser tratadas directamente
con XPath y XQuery — ni tampoco con TeXQuery y técnicas similares — ya que
no presentan heterogeneidad sólo a nivel textual, sino en todos los niveles posibles
de granularidad que están presentes en cualquier colección de XML: texto, elementos,
trayectorias, subárboles y documentos. Un objetivo adicional es que las técnicas propuestas
sean flexibles, en el sentido de que sean lo suficientemente adaptables para minimizar el
esfuerzo dedicado a desarrollar técnicas ad-hoc para cada caso en concreto.

Un punto crucial es que las técnicas desarrolladas deben permitir consultas aproximadas.
Las caracteŕısticas de las colecciones descritas impiden, como hemos visto, que se puedan
utilizar técnicas de consulta “exactas”, y es necesario desarrollar funciones de similaridad
que permitan valorar la calidad de los resultados obtenidos por una consulta. A la hora
de resolver un problema concreto que usa colecciones heterogéneas, la elección de una
mediad de similaridad apropiada es un problema primario, y de hecho en la literatura hay
descritas una gran cantidad de medidas sobre colecciones XML adaptadas al tratamiento
de problemas concretos, junto con técnicas de consultas adaptadas exclusivamente para
cada medida en particular. Sin embargo, muy pocas de esas aproximaciones se puede
generalizar a problemas distintos, con lo que caemos una vez más en el problema de las
soluciones ad-hoc. En consecuencia, en esta tesis también se desarrolla un modelo genérico
de medidas de similaridad para XML, que permite utilizar las técnicas de consulta
desarrolladas independientemente de la medida que se desee utilizar para resolver cada
problema concreto.

Este último punto es particularmente importante si se tiene en cuenta que, incluso
dentro de un mismo proyecto, a menudo diferentes usuarios requieren diferentes medidas
de similaridad. Por ejemplo, un biólogo puede necesitar recuperar protéınas basándose
en una comparación con una secuencia de aminoácidos, mientras que otro puede buscar
“ant́ıgeno de la malaria” dentro de las descripciones textuales de la colección, y un tercero
puede querer combinar ambos tipos de consulta. Esto nos lleva al concepto de sistema
orientado a la multi-similaridad propuesto por [Adalı et al., 1998], que permite a sus
usuarios elegir dinámicamente qué concepto de similaridad es el más apropiado en cada
momento.

La solución propuesta en esta tesis para estos problemas está basada en la búsqueda
de fragmentos. Los fragmentos son una manera concisa de expresar los requisitos de
información del usuario que hace una consulta; consisten en una serie de elementos
(etiquetas, atributos, texto, . . .) con estructura. En su forma más simple se pueden
considerar como patrones en forma de subárbol que se desea encontrar en la base de

ii

Metodoloǵıa

datos, pero con una semántica muy flexible que, en gran parte, está determinada por la
medida de similaridad que se utilice. Por ejemplo, se tendrá en cuenta si para calcular el
resultado de la medida es relevante mantener el orden de padres e hijos o si no lo es, si
se desea utilizar o no un tesauro para relajar el significado, o si al evaluación de algún
componente del fragmento requiere utilizar alguna función espećıfica. Potencialmente,
cada medida impone restricciones diferentes, lo que hace necesario un modelo de medidas
que permita procesarlas de forma coherente.

A continuación, trataremos la extensión de los algoritmos de consulta para soportar
consultas de tipo top-k, que devuelven sólo los k resultados más relevantes. Este es
un problema complejo ya que, definido genéricamente, el problema de recuperación de
fragmentos se puede reducir a un problema de búsqueda no ordenada en árboles, que
es NP -completo [Kilpeläinen, 1992]. La definición de fragmento introduce restricciones
diseñadas para reducir la complejidad de los algoritmos a un coste lineal, pero al tratar
grandes colecciones incluso este resultado puede ser problemático. Un segundo problema
es que los principales algoritmos para hacer consultas top-k sobre XML están basados
en el algoritmo propuesto por [Fagin et al., 2003], y por tanto requieren que la medida
a tratar sea monótona, lo que no es deseable en nuestro contexto ya que perdeŕıamos
mucha flexibilidad. Hemos superado este problema usado técnicas basadas en las de
[Xin et al., 2007] y que hasta ahora no se hab́ıan utilizado en el contexto de XML,
consiguiendo significativas mejoras en la velocidad de consulta (entre el 250 % y el 350 %
en los experimentos realizados).

Finalmente, presentaremos dos extensiones orientadas al postprocesamiento de la
información obtenida mediante las técnicas de consulta que acabamos de esbozar. En
primer lugar, trataremos la aplicación del modelo genérico de similaridad en algoritmos
de agrupamiento, que aplicaremos para facilitar la interpretación de los resultados de
las consultas aproximadas, que pueden llegar ser muy complejos. En segundo lugar,
estudiaremos cómo modificar una implementación estándar de XQuery para que permita
integrar las técnicas desarrolladas en la tesis en sistemas de bases de datos existentes.

La tesis se completa con una revisión de trabajos relevantes, y en particular de
aproximaciones basadas en similaridad para XML; la descripción de un prototipo que
implementa las técnicas descritas; y la presentación de varias ĺıneas de investigación que
pueden continuar el trabajo desarrollado aqúı.

Metodoloǵıa

Esta tesis está basada fundamentalmente en técnicas de procesamiento flexible de consultas
para XML. En todos los algoritmos propuestos se realiza un estudio de su corrección
y eficiencia, bien anaĺıtico o bien emṕırico, según sea más apropiado en cada caso. Los
experimentos están basados en una combinación de colecciones reales y sintéticas.

El requisito fundamental del modelo flexible de medidas de similitud es la capacidad

iii

Resumen extendido

de obtener medidas adaptadas a cada aplicación en particular mediante la combinación
de medidas genéricas más sencillas, para lo que nos hemos basado en el patrón de diseño
composite, un resultado básico en ingenieŕıa del software orientado a objetos [Gamma
et al., 1995]. La metainformación necesaria para describir las medidas está codificada
usando lógicas descriptivas [Baader et al., 2003].

Aportaciones

� En esta tesis se define un marco general, basado en el concepto de nivel de granula-
ridad, que permite clasificar las aplicaciones de XML basadas en similaridad. Este
marco nos lleva a la definición de un concepto formal de heterogeneidad, basado
en consideraciones de Teoŕıa de la Información, para colecciones de documentos
XML. Esto nos permite comparar y clasificar colecciones diversas según su grado
de variabilidad.

� También se define un modelo general para la definición de medidas de similari-
dad basado en la composición de funciones básicas predefinidas. El modelo está
orientado a sistemas basados en multi-similaridad, permitiendo crear o adaptar
rápidamente medidas a aplicaciones espećıficas. La descripción de medidas aśı
obtenidas mediante metainformación definida mediante lógica descriptiva facilita
enormemente la creación de herramientas de apoyo para el desarrollo de medidas, y
en particular el desarrollo colaborativo.

� La contribución central de la tesis son los algoritmos para la consulta flexible de
colecciones XML definidos a través de fragmentos. Estos algoritmos, y las técnicas
asociadas, permiten trabajar con colecciones que, pero su gran heterogeneidad,
están fuera del alcance de las aproximaciones existentes, como XQuery, TeXQuery,
y los diversos sistemas académicos para la recuperación aproximada de XML.

� A continuación se propone una versión top-k de los algoritmos anteriores. La
principal novedad con respecto a los algoritmos existentes consiste en que, por
primera vez, se hace posible utilizar medidas de similitud no monótonas en el
contexto de XML.

� Para facilitar la aplicabilidad práctica de las técnicas arriba descritas, se proponen
métodos para facilitar su incorporación de en sistemas de procesamiento XQuery:
una especificación funcional que permite incorporar la nueva funcionalidad sin efec-
tuar modificaciones en el lenguaje base, y un algoritmo de agrupamiento orientado
al postprocesamiento de conjuntos de resultados particularmente complejos.

� Todas estas técnicas se han implementado en ArHeX, un conjunto de herramientas
que ilustra la aplicación de la técnicas presentadas en esta tesis a la ingenieŕıa de
sistemas orientados a la multi-similaridad.

iv

Trabajo futuro

Trabajo futuro

La integración de las técnicas aqúı presentadas en un sistema XML es una ĺınea de
investigación en la que se plantean varios problemas abiertos. Podemos citar los tres más
obvios: la integración de los algoritmos aqúı presentados como una opción más disponible
para el optimizador, que podŕıa acometerse siguiendo una aproximación similar a la
de [Michiels et al., 2007]; la integración con las extensiones propuestas por TeXQuery,
que proporcionan una manera natural de tratar consultas aproximadas y top-k, si bien
orientadas a la recuperación de la información; y la posibilidad de extender las capacidades
de XQuery para definir funciones, de tal manera que permiten definir nativamente medidas
ajustadas al modelo propuesto en la tesis.

Otra contribución que abre posibilidades es la definición de un modelo formal para
la heterogeneidad de las colecciones XML. En principio, esto hace posible definir téc-
nicas (semi-)automáticas para determinar automáticamente qué medidas pueden ser
más apropiadas para tratar colección, dados unos requisitos y la caracterización de la
heterogeneidad de la colección obtenida automáticamente, en la ĺınea de [Bernstein et al.,
2005]. Esta aproximación podŕıa facilitar enormemente el diseño de aplicaciones basadas
en multi-similaridad.

El trabajo en el desarrollo de los prototipos ha mostrado que la capacidad de visualizar
una colección XML heterogénea de manera global, dando la capacidad de determinar
de un vistazo las distintas regiones de la colección en función de su caracteŕısticas,
resultaŕıa extremadamente útil. Una aproximación que parece capaz de proporcionar una
condensación de la información de esa magnitud puede ser el paradigma de pixelización
[Lévy, 2007], posiblemente combinado con técnicas más convencionales.

v

Abstract

The progressive adoption of XML by new communities of users has motivated the
appearance of applications that require the management of large and complex collections,
which present a large amount of heterogeneity. Some relevant examples are present
in the fields of bioinformatics, cultural heritage, ontology management and geographic
information systems, where heterogeneity is not only reflected in the textual content of
documents, but also in the presence of rich structures which cannot be properly accounted
for using fixed schema definitions. Current approaches for dealing with heterogeneous
XML data are, however, mainly focused at the content level, whereas at the structural
level only a limited amount of heterogeneity is tolerated; for instance, weakening the
parent-child relationship between nodes into the ancestor-descendant relationship.

The main objective of this thesis is devising new approaches for querying heterogeneous
XML collections. This general objective has several implications: First, a collection
can present different levels of heterogeneity in different granularity levels; this fact has
a significant impact in the selection of specific approaches for handling, indexing and
querying the collection. Therefore, several metrics are proposed for evaluating the level of
heterogeneity at different levels, based on information-theoretical considerations. These
metrics can be employed for characterizing collections, and clustering together those
collections which present similar characteristics.

Second, the high structural variability implies that query techniques based on exact
tree matching, such as the standard XPath and XQuery languages, are not suitable for
heterogeneous XML collections. As a consequence, approximate querying techniques
based on similarity measures must be adopted. Within the thesis, we present a formal
framework for the creation of similarity measures which is based on a study of the literature
that shows that most approaches for approximate XML retrieval (i) are highly tailored to
very specific problems and (ii) use similarity measures for ranking that can be expressed
as ad-hoc combinations of a set of “basic” measures. Some examples of these widely used
measures are tf × idf for textual information and several variations of edit distances.
Our approach wraps these basic measures into generic, parametrizable components that
can be combined into complex measures by exploiting the composite pattern, commonly
used in Software Engineering. This approach also allows us to integrate seamlessly highly
specific measures, such as protein-oriented matching functions.

Finally, these measures are employed for the approximate retrieval of data in a context
of highly structural heterogeneity, using a new approach based on the concepts of pattern
and fragment. In our context, a pattern is a concise representations of the information

vii

Abstract

needs of a user, and a fragment is a match of a pattern found in the database. A pattern
consists of a set of tree-structured elements — basically an XML subtree that is intended
to be found in the database, but with a flexible semantics that is strongly dependent on
a particular similarity measure. For example, depending on a particular measure, the
particular hierarchy of elements, or the ordering of siblings, may or may not be deemed
to be relevant when searching for occurrences in the database.

Fragment matching, as a query primitive, can deal with a much higher degree of
flexibility than existing approaches. In this thesis we provide exhaustive and top-k query
algorithms. In the latter case, we adopt an approach that does not require the similarity
measure to be monotonic, as all previous XML top-k algorithms (usually based on Fagin’s
algorithm) do. We also presents two extensions which are important in practical settings:
a specification for the integration of the aforementioned techniques into XQuery, and a
clustering algorithm that is useful to manage complex result sets.

All of the algorithms have been implemented as part of ArHeX, a toolkit for the
development of multi-similarity XML applications, which supports fragment-based queries
through an extension of the XQuery language, and includes graphical tools for designing
similarity measures and querying collections. We have used ArHeX to demonstrate the
effectiveness of our approach using both synthetic and real data sets, in the context of a
biomedical research project.

Keywords XML, heterogeneous data management, approximate query processing, sim-
ilarity measures, ranked query results, top-k queries with non-monotonic functions,
multi-similarity, clustering.

viii

Acknowledgments

Many people have contributed to this thesis, and they have done it in many different
ways. It is impossible in this brief note to show the extent of my gratitude to all of them.

First of all, I would like to thank my supervisors, Rafael Berlanga and Marco Mesiti.
Without their support and advice, this work would have been impossible.

Rafa has been guiding me since the days in which, as an undergraduate at Universitat
Jaume I, I approached him looking for a degree project in data management. When
I came back to UJI after a hiatus of several years, and became a member of the
Temporal Knowledge Bases Group (TKBG) and the Department of Computer Science
and Engineering (DICC), his encouragement made me feel that I had never been away.
I am grateful for his support and for the high standards he sets for himself and his
collaborators. I feel lucky to belong to the group of wonderful people that is TKBG, and
to enjoy the friendship of my current and former teammates: Maŕıa José, Lola, Juanma,
Ernesto, Victoria, Jordi, Roxana, Aurora and Henry. Some of them are now working
with our industrial partner, Maat-GKnowledge, which also was my direct employer for a
while. I appreciate their support and their willingness to do research. I am also thankful
to the people of DICC for providing the framework for carrying on my research work.

I met Marco on a brief three-month stay at the Università degli Studi di Genova
under a postgraduate Erasmus grant, which resulted in a fruitful collaboration and,
more importantly, an enduring friendship. Most of the joint work with Marco, Giovanna
Guerrini and Rafa, including many hours of discussions, has become a crucial part of this
thesis. A big thanks to Marco and Giovanna, and all the great people I met in Genoa:
Giorgio Delzanno (and little Alice), Barbara Catania, Anna Maddalena, Davide Ancona
and everyone at DISI.

I cannot overstate how important as a formative experience was my three-year stay at
the Vrije Universiteit Brussel from 1998 to 2001, at Prof. Robert Meersman’s STARLab.
I am proud of having met Miro Casanova, Mustafa Jarrar, Olga de Troyer, Peter Stuer,
Robert, Sven Casteleyn, and many other great people. What I learned from them has
been invaluable for me.

I would also like to thank all of the friends that set an example for me, or had a word of
encouragement, or just been there when I needed them: Toni Morales, Gabriel Recatalá,
Gus Casañ and Raül Maŕın, who are now colleagues at UJI; Micky González, Alex Ribes,
Marisol Garćıa and Raül Romero, who pursued careers far away; Pilar, Paco, Marifé. . .
An exceedingly long list of people should be included here, but it is impossible to do so.
Thanks to you all.

ix

Acknowledgments

Finally, I would also like to thank Alberto Abelló, Torben Bach Pedersen, Rafael
Corchuelo, Michael Gould and Paolo Perlasca for accepting to be part of the evaluation
process of this thesis, be it as external reviewers or as members of the jury.

Last, but not least, I want to thank Lledó for her patience and understanding, and also
for being an example to me: her amazing ability to combine work ethic and joy of life
has inspired and energized me to go through with this thesis. I’m happy to know that,
just a few days after the public defense of this work, we will become husband and wife.

x

Contents

Resumen extendido i
Introducción . i
Metodoloǵıa . iii
Aportaciones . iv
Trabajo futuro . v

Abstract vii

Acknowledgments ix

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Preliminaries . 1
1.2 Motivation and objectives . 2
1.3 Contributions . 4
1.4 Organization . 5

2 Background: Exact and Approximate Management of XML Data 7
2.1 Introduction to XML data management 7

2.1.1 Semi-structured data management 7
2.1.2 XML, XPath and XQuery . 9

2.2 Indexing and processing techniques for XML databases 11
2.2.1 Techniques based on graph traversal 11
2.2.2 Techniques based on node labeling schemes 12

2.3 Approximate retrieval in XML databases 14
2.3.1 Survey of approximate techniques 14
2.3.2 Similarity measures for XML data 17

2.3.2.1 Granularity . 18
2.3.2.2 Tree-based approaches . 19

xi

Contents

2.3.2.3 Vector-based approaches 25
2.3.2.4 Other approaches . 30

2.4 Characterization of heterogeneity . 32
2.4.1 Heterogeneity as diversity . 32
2.4.2 Entropy-based characterization of heterogeneous collections 34
2.4.3 Characterization of retrieval approaches with respect to heterogeneity 41

2.5 Concluding remarks . 42

3 A multi-similarity framework for XML 43
3.1 Introduction and related work . 43
3.2 Measure components . 44

3.2.1 A Formal Specification of Similarity Measures 44
3.2.2 Composition of measures . 45

3.3 DL-based measure metadata . 46
3.4 Re-usability of existing approaches . 49
3.5 Summary . 53

4 A Flexible pattern-based querying model for semistructured data 55
4.1 Introduction . 55
4.2 Pattern, target, fragment, and region trees 57

4.2.1 Trees . 57
4.2.2 Pattern and target trees . 58
4.2.3 Fragment and region trees . 60
4.2.4 Mapping between a pattern and a region 63
4.2.5 Similarity between matching vertices 65

4.2.5.1 Match-based similarity 65
4.2.5.2 Level-based similarity . 66
4.2.5.3 Distance-based similarity 66

4.2.6 Label similarity . 67
4.3 Construction of fragments and regions . 68

4.3.1 Inverted index and pattern index 68
4.3.2 Algorithms for the construction of fragments 70
4.3.3 Algorithm for the construction of regions 74

4.4 Experimental evaluation . 76
4.4.1 Performance evaluation . 76
4.4.2 Effect of structural distortions . 77
4.4.3 Retrieval in highly heterogeneous collections 78

4.5 Concluding remarks . 82

5 Extensions 85
5.1 Integration into XQuery . 85

xii

Contents

5.1.1 Requirements . 85
5.1.2 Functional vs. keyword approach 86
5.1.3 Specification . 86
5.1.4 Discussion . 89

5.2 Top-k processing . 89
5.2.1 Problem statement . 91
5.2.2 Finding roots . 92
5.2.3 State generation . 94
5.2.4 State scoring . 95
5.2.5 Putting it all together . 97
5.2.6 Experimental evaluation . 99
5.2.7 Discussion . 100

5.3 Clustering . 100
5.3.1 Algorithm . 101
5.3.2 Experimental evaluation . 103
5.3.3 Discussion . 105

5.4 Concluding remarks . 105

6 Prototype 107
6.1 ArHeX tools . 107

6.1.1 Architecture and Back-end . 107
6.2 Scenario: Application to a biomedical research project 108

6.2.1 Measure Editor . 110
6.2.2 Query tool . 111

6.3 Concluding remarks . 114

7 Conclusions 117
7.1 Summary of results . 117
7.2 Future work . 118
7.3 Derived publications . 119

Bibliography 121

xiii

List of Figures

2.1 An example OEM database . 8
2.2 An example DataGuide . 9
2.3 T-Index compared to DataGuide . 13
2.4 A comparison of labeling schemes from [Christophides et al., 2004]. 15
2.5 Sample XML documents containing recipes 18
2.6 Levels of granularity in XML documents 19
2.7 Mapping between two trees . 21
2.8 ContainedIn relationship . 23
2.9 (a) The structure of a document, (b) its s-graph, (c) its structural summary 24
2.10 Two simple s-graphs . 24
2.11 A 3-dimensional Boolean matrix . 28
2.12 (a)A tree document, (b)its full binary tree, and (c) the binary branch vector 29
2.13 Radial plots comparing the heterogeneity of the dblp and CompuScience2

collection using five entropy-based variables 38
2.14 Clustering collections by heterogeneity characteristics 39
2.15 Regression tree for membership in collection clusters 40
2.16 Clustering collections by heterogeneity characteristics, including two highly

heterogeneous collections. 41

3.1 Simplified UML model describing the application of the Composite pattern
to the creation of complex measures . 45

3.2 Component structure of a similarity measure 47
3.3 OWL representation of component RegionEvaluator 50
3.4 A similarity measure combining components extracted from XXL and

XIRQL . 52
3.5 The Protégé view of the XXL textual similarity function 53
3.6 OWL description of the XXL text evaluator component, which depends

on an external ontology for operation . 54

4.1 (a) Pre/Post order rank, a matching fragment with a different order (b),
missing levels (c), and missing elements (d) 59

4.2 A target . 60
4.3 (a) Fragments, and (b) generated region 62
4.4 Covered subtrees in a target . 63

xv

List of Figures

4.5 Mapping between the pattern and different regions 64
4.6 Identification of different mappings from the same region and pattern . . 65
4.7 Distance of a vertex in a region R . 67
4.8 Semantic inverted index: (a) inverted index and (b) name-similarity table 69
4.9 Pattern index (a) with label equality, (b) applying ontology-based function,

and (c) applying all the criteria . 70
4.10 Situations that can arise in the creation of a fragment 72
4.11 Construction of fragments and regions . 74
4.12 Characteristics of Dataset 1 and 2, and retrieval performance 77
4.13 Change in similarity with the addition and removal of nodes in regions . . 78
4.14 (a) Generator for database pattern 3 (b) Generator for query 4, associated

with pattern 3 . 81
4.15 Precision, recall and F1 for measure distance, using strict and partial label

matching . 83
4.16 Results for the ASSAM datasets . 84

5.1 XQuery Declarations of the proposed fragment-oriented functions 88
5.2 An annotated partially built mapping from a pattern (left) into a target

(right) . 95
5.3 A partially built mapping from a pattern (left) into a target (right), which

has not been still visited completely . 97
5.4 Performance improvement using the top-k algorithm with distance-based

similarity . 99
5.5 Progressive creation of clusters, using βsim = βrep = 0.4 104
5.6 Number of representatives . 104
5.7 Quality of clusters (F1measure) for a range of values of βsim 105

6.1 ArHeX Architecture . 108
6.2 Granularity levels in a disease model . 110
6.3 Creation of IDKMs in HeC . 111
6.4 Main screen of the measure editor . 112
6.5 Component tailoring . 112
6.6 Editing a “tie” component . 113
6.7 Creating a new measure from scratch . 113
6.8 Screenshot of the GUI prototype showing the top results in some collections,

using a variation of the match-based similarity and a flexible label-matching
function . 114

6.9 Screenshot of the GUI prototype showing some results of a query over
a set of heterogeneous biomedical-related collections, using level-based
similarity and a flexible label-matching function 115

6.10 XQuery support . 116

xvi

List of Tables

2.1 XPath axes . 10
2.2 Heterogeneity degree in XML approximate querying 16
2.3 Tree Edit Distance algorithms . 22
2.4 Collections in the University of Washington XML Data Repository 37
2.5 INEX 2005 Heterogeneous track collections 38
2.6 A comparison of collections used in in the literature 42

3.1 Potentially reusable components in existing approximate XML techniques 52

4.1 Notations . 58
4.2 (a) Similarity of matching vertices (b) Evaluation of mappings and simi-

larity of a pattern with regions . 66
4.3 Constructors for pattern generators . 79
4.4 Database and query patterns used in experiments 81

xvii

List of Algorithms

1 CreateFragments . 71
2 CreateListOfFragments . 73
3 CreateListOfRegions . 75

4 Näıve top-k . 90
5 Index-merge top-k . 91
6 nextCandidate . 93
7 findRoots . 93
8 nextCandidateChildren . 96
9 Fragment-based top-k . 98
10 Clustering routine . 102

xix

Chapter 1

Introduction

1.1 Preliminaries

Almost ten years after XML was standardized [Bray et al., 1998], the amount of infor-
mation represented using it has grown dramatically, as it has been adopted by many
communities as a natural way to encode and share content. As a consequence, the
need for storing and querying large XML collections have grown in importance, and
all major database management systems already support it natively. Unfortunately,
supporting data management systems was not one of the design goals of XML: it was
originally intended as a streamlined version of SGML [ISO 8879:1986, 1986], a hierarchical
document markup language standardized by ISO that was deemed too complex for the
requirements of the Web. Most XML-related terminology is derived directly from its
SGML roots. XML documents consist of nested elements, which may possibly include
attributes (name-value pairs). Elements may be empty, include some textual content
(PCDATA, from “parsed character data”) or contain nested elements.

The intended primary application of XML was to become the successor of HTML
[W3C HTML Working Group, 2002], which used to be an application of SGML itself, as
the language of choice for encoding documents available on the web. Very little input was
provided by the database community. As a consequence, the original XML specification
missed several crucial features that were required in order to create an efficient database
system which could be compared to any relational DBMS. In particular, there was no
suitable schema language, and no query language other than a programmatic interface,
the DOM standard [Hors et al., 2004].

The original schema language for XML was the Document Type Definition, directly
inherited from SGML. It included facilities for defining the hierarchical structure of
elements in XML documents using a regular expression-like syntax, but did not contain a
type system that could express constrains such as “the contents of the currency element
must be real numbers”. The content of elements could only be defined as PCDATA. This
limitation was overcome by the specification of XML Schema [Fallside and Walmsley,
2004], which defined a proper type system for XML and made DTDs a relic. Still, the
resulting data model presents some difficulties. Two are particularly relevant: (i) the
tolerance of optional elements, or the fact that elements and whole structures may occur

1

Chapter 1 Introduction

an undetermined number of times, or completely absent and (ii) its hierarchical nature,
which introduces a data model based on trees instead of tuples, thus making many
natural operations on XML documents far more computationally costly than its relational
analogues.

The development of XML query languages has required a large, and still ongoing,
research effort. The first standard was XPath [Clark and DeRose, 1999], which provided
a simple language for navigating XML documents using 14 “axes” (ancestor, descendant,
...) and returning the corresponding nodes. Even this simple language required new
developments in indexing techniques for tree-like data in order to efficiently support all
14 axes, and the development of new join algorithms. This work provided a foundation
for XQuery [Boag et al., 2007], the standard XML Query language, which builds a rich,
Turing-complete functional language on top of XPath. It is an extraordinarily expressive
and powerful query language, but it is also notoriously difficult to parse and optimize.

In the management of XML collections, a distinction was very soon established between
“data-centric” and “document-centric” XML collections. The former are characterized by
having a relatively homogeneous structure and strongly typed textual content, which
makes them suitable for processing using XPath and XQuery; for instance, the great
majority of standards for electronic commerce fall in this category. Instead, the latter
are characterized by being predominantly textual documents, with some markup. These
collections require a set of completely different techniques, adapted from plain text
Information Retrieval to include some structural constraints, as exemplified in the results
presented in the INEX (INitiative for the Evaluation of XML retrieval) series of conferences
[Kazai et al., 2003]

1.2 Motivation and objectives

Thus, research in XML has focused around two poles, which are analogous to the
distinction between data management and Information Retrieval systems. However, the
applications typically characterized as data- and document-centric do not represent more
than a part of existing XML collections. The adoption of XML as a language for the
representation and exchange of information by diverse communities — bioinformatics,
cultural heritage, ontologies, GIS and many others — has motivated the appearance of
important applications for which the techniques developed until now are not effective,
since there is neither a relatively regular structure that can be exploited, nor is the purely
textual information predominant. We will term these collections highly heterogeneous.
For example, in bioinformatics there is an enormous amount of information labeled in
XML, ranging from molecular information to ontologies that describe the concepts of
the domain, and the contents of technical articles. Many applications depend on the
integrated use of those sources, but in that context the currently available techniques are
not directly applicable. This causes enormous efforts in the creation of ad-hoc approaches

2

1.2 Motivation and objectives

for each particular application.
The main reason for the inadequacy of current techniques is the lack of support for

heterogeneity at the structural level: techniques developed for data-oriented collections
support rich XML structures, but do not tolerate a high level of variation in them;
conversely, techniques techniques developed for document-oriented collections are very
good at processing complex textual content, but are limited in their support for complex
structural information. This thesis is concerned with collections of XML documents with
rich and complex structures, which are not well supported by either data- or document-
oriented XML processing techniques because their heterogeneity is present at many
different levels of granularity : text, elements, paths, subtrees and entire documents.

This scenario implies the need for approximate retrieval techniques that are tolerant of
significant variability in document structures. In most cases there will be no exact answer
to a given query, but a set of approximate results ranked according to a similarity function.
A crucial issue is that a single notion of similarity that works “best” in any situation does
not exist. Different users in different contexts may require different similarity functions;
for instance, a biologist may wish to retrieve proteins based on a comparison with a
given amino acid sequence, while another one may issue a query asking for “malaria
antigen” in the associated textual description, and a third user may combine both kinds of
queries. This leads to the notion of multi-similarity systems [Adalı et al., 1998], which are
designed to support multiple notions of similarity simultaneously. These systems require
the possibility to combine different similarity measures depending on the characteristics
of the data that need to be handled.

The first step required to achieve this objective is the definition of a multi-similarity
framework for defining flexible XML measures. We present a literature study that shows
that many existing similarity-oriented approaches for XML depend on combinations of
common functions that operate at different granularity levels. For instance, a given
approach may consist of a Tree Edit Distance for computing structural similarity, which
in turns relies on a tf × idf -based term similarity function for matching element tags. We
propose to integrate these measures into a common framework that allows the definition of
new, complex measures by composition of predefined functions. An important advantage
of this approach is that it simplifies the integration of external, domain-specific functions
such as a protein similarity measure.

The second step is to define a query model for highly heterogeneous XML collections.
Our approach is based on using XML subtree patterns as flexible models for the infor-
mation needs of the users. These patterns are matched to the particular fragments in
the collection that maximize the similarity according to a given measure. The method
presented has two main advantages: first, it is able to match subtrees with very high
structural diversity, in which even the parent/child relation between nodes (which most
other approaches depend on) is not maintained; and second, it is independent of any
particular XML similarity measure.

Our fragment-based similarity algorithm is presented in two flavors: an exhaustive

3

Chapter 1 Introduction

version which uses a tailored indexing structure to return all matches, and a top-k
version. The latter is based on an index-merge framework [Xin et al., 2007], which is
able to support non-monotonic measures; this is a significant advantage over existing
top-k approaches for querying XML, which are based on techniques that can only handle
monotonic measures. In contrast, our method is able to work with a much broader class
of functions, which is an especially desirable property when combined with a flexible
multi-similarity framework.

This thesis also develops auxiliary techniques that are important in order to be able
to integrate the fragment-based similarity approach into practical XML management
systems. At the query language level, we provide a specification for the integration of
the techniques outlined above into standard XQuery, which has been implemented into
an experimental prototype. At the query post-processing level, it is often the case when
dealing with highly heterogeneous collections that result sets can be quite complex; a
clustering algorithm adapted for these cases is presented.

Finally, all of these techniques have been implemented as part of ArHeX, a toolkit for
the creation of multi-similarity systems. The main user-level elements of ArHeX are a
graphical tool for the creation and management of component-based similarity measures,
and a query tool that supports fragment-based queries, including the XQuery extensions
described above. The implementation is supported by a measure metadata repository
and Berkeley DB-based ondexing facilities.

1.3 Contributions

In summary, the main contributions of this thesis are the following:

� This thesis includes a review of the literature on approximate XML processing, which
serves to motivate the need for new approaches for handling highly heterogeneous
XML collections. In addition, we present a method to quantitatively characterize
the heterogeneity of XML collections at several granularity levels.

� Multi-similarity systems require the ability to choose between a set of similarity
measures, to tailor existing measures, and to create new ones on the fly. We present
a new framework for similarity measures for XML that addresses these requirements:
it is compositional in nature, allowing the integration of new similarity measures
into existing systems and providing means to describe and parametrize the measures
at any level. We propose a Description Logic-based formalism to describe these
measures, which is significantly richer than existing approaches.

� We introduce fragment-based queries, a flexible query model that serves as a
primitive for querying large-scale, highly heterogeneous XML databases. We show
how fragment-based queries, as a query primitive, can deal with a much higher
degree of flexibility than existing approaches.

4

1.4 Organization

� We present a top-k adaptation of the fragment-based query approach, which offers
a significant performance improvement with respect to the exhaustive algorithm. A
major advantage with respect to the existing ranking algorithms for XML is that it
supports non-monotonic similarity measures; to the best of our knowledge, it is the
first top-k XML approach that does so. Supporting a broad class of functions is
particularly important given the flexibility provided by our framework for similarity
measures.

� We produce a specification for the incorporation of similarity-based techniques into
standard XQuery implementations based on a functional interface. This is a first
step towards the deep integration of structural similarity-based approaches into
XQuery systems.

� In our context, query result sets may be significantly heterogeneous themselves,
which may be difficult to interpret. To mitigate this problem, we introduce a
representative-based clustering algorithm that is useful for organizing such result
sets.

� We present ArHeX, a toolkit that illustrates the application of the approaches
presented in this thesis to the support of the engineering of multi-similarity systems.

1.4 Organization

This section describes the organization of the remainder of the thesis. A brief summary
of each chapter is shown below.

Chapter 2. Background: Exact and Approximate Management of XML Data

This chapter briefly introduces the main XML-oriented data processing techniques. Then,
it focuses on describing the state of the art in similarity-based XML applications by
introducing the main approaches to compute similarity between XML documents. A
classification that organizes these disparate approaches into a coherent framework is
proposed. Finally, a precise characterization of “highly heterogeneous” XML collections
using information-theoretic criteria is introduced.

Chapter 3. A multi-similarity framework for XML

A key observation presented in the previous chapter is that most of the XML similarity
measures presented in the literature can be expressed as combinations of predefined,
generic measures that operate at diverse granularity levels. For instance, tf × idf can
be used for weighting textual items, and the tree edit distance can be used to compare
structures. In this chapter we present a framework for the definition of generic XML

5

Chapter 1 Introduction

similarity measures, based on (i) an adaptation of the composite pattern, used in software
engineering for creating complex object out of reusable components and (ii) metadata
facilities based on Description Logic, which are useful for the organization of diverse
measures in a multi-similarity system.

Chapter 4. A flexible fragment-based querying model for XML

This chapter presents fragment-based queries, a flexible primitive for approximate XML
retrieval. The approach relies on the identification of the fragments of documents that
are similar to a given pattern, which serves as an abstract representation of a user request,
whose precise semantics is dependent of the particular similarity measure that must be
applied for ranking. For example, depending on a particular measure, the particular
hierarchy of elements, or the ordering of siblings, may or may not be deemed to be
relevant when searching for occurrences in the database. This chapter introduces the
fragment matching algorithms and its associated techniques, and presents an extensive
experimental evaluation.

Chapter 5. Extensions

This chapter presents several refinements of fragment-based querying which are important
for its practical usage. First of all, the chapter presents a specification detailing how
fragment-based algorithms can be incorporated into an XQuery implementation. Then, it
introduces a ranked top-k version of the fragment-based querying algorithm. In contrast
with previously existing approaches, this algorithm does not require the similarity measure
to be monotonic; this makes it usable with the generic measures introduced in chapter 3.
Experimental results show a significant performance improvement with respect to the
exhaustive algorithm presented in Chapter 4. The final contribution is an adaptation of a
representative-based clustering algorithm adapted to XML collections; in particular, it is
useful to organize the results of some flexible queries on highly heterogeneous collections,
which can return apparently very disparate result sets.

Chapter 6. Prototype

The algorithms outlined in this thesis have been implemented as part of ArHeX, a toolkit
for the engineering of multi-similarity XML systems. This chapter presents in detail a
graphical query system and a component-based measure designer, in the context of a
biomedical research project.

Chapter 7. Conclusions

The last chapter addresses conclusions and future work. A list of papers published as the
result of this thesis work is included.

6

Chapter 2

Background: Exact and Approximate
Management of XML Data

This chapter presents introductory material that provides context for the contributions
of this thesis. Section 2.1 surveys the basic developments that underlie semi-structured
and XML data management. Section 2.2 describes techniques commonly used in XML
databases for indexing data. Section 2.3 presents approximate approaches used in XML
databases, and in particular in surveys the similarity measures described in the literature.
Finally, section 2.4 discuses the concept of heterogeneity in the context of XML databases,
and proposes formal criteria to characterize the heterogeneity of XML collections.

2.1 Introduction to XML data management

This section introduces the basic concepts regarding the management of XML data. First,
Section 2.1 provides a historical introduction to the main concepts in the field. Then,
Section 2.1.2 focuses on XPath and XQuery, the standard languages for querying XML.

2.1.1 Semi-structured data management

XML data management systems are rooted in “web data”-oriented systems that appeared
in the mid-90s [Abiteboul et al., 1999]. These systems are characterized by being tailored
to “semi-structured” data [Abiteboul, 1997], defined by [Quass et al., 1997] as “data
that has no absolute schema fixed in advance, and whose structure may be irregular or
incomplete”. The name was chosen to contrast both “structured” (i.e. relational and
object-oriented) and “unstructured” (textual Information Retrieval) systems.

Semi-structured systems were built around a new data model representing data as
labeled directed graphs, in which the nodes where labeled with meaningful descriptions
of their content. The canonical semi-structured data model is OEM [Papakonstantinou
et al., 1995], the object exchange model, in which objects were 4-tuples with the following
fields:

< label, type, value, oid >

7

Chapter 2 Background: Exact and Approximate Management of XML Data

employee employee

name office phone name office

o1

o2 o3

“Juanma Pérez” “TI2244DD” 8368 “Enesto Jiménez” “TI2226DD”

Figure 2.1: An example OEM database

where label is a string describing what this object represents, type is the data type of
the value (lists and sets were allowed, in addition to atomic types), value is the value of
the object and oid is an object identifier, or Λ (NULL).

The oid field was used to link objects together, forming directed graphs. For example,
figure 2.1 shows a database with two objects; one of them (o2) is:

< employee, set, {o4, o5, o6}, o2 >

< name, string, “Juanma P érez′′, o4 >

< office, string, “TI2424DD′′, o5 >

< phone, int, 8368, o6 >

Research into semistructured data produced experimental systems such as Lore
[McHugh et al., 1997], which included a path-oriented query language (Lorel) on top
of an algebraic optimization system. From the beginning it was recognize that path
expressions, similar in principle to those in the object-oriented query language OQL,
were an important primitive. A very simple Lorel query that incorporates two path
expressions is:

select employee . o f f i c e
where employee . name = ‘ ‘ Ernesto Jiménez ’ ’

In Lorel, OQL path expressions were augmented with new wildcards, in order to enable
queries when the schema is not entirely known.

In order to speed up path traversals, a new type of index was devised: the DataGuide.
Given an OEM database, a DataGuide provides a structural summary of the data stored
in the database, computed using an algorithm that relies on the conversion between a
non-deterministic finite automata into a deterministic one. It essentially generates a
schema for the database, annotated with some extra information useful for optimization.
Figure 2.2 shows a DataGuide which summarizes the OEM database in Figure 2.1. A
slightly more complex example can be found in Figure 2.3.

8

2.1 Introduction to XML data management

employee

name office phone

Figure 2.2: An example DataGuide

2.1.2 XML, XPath and XQuery

The road towards the standardization of XML in 1998 had progressed very much in
parallel with these developments. Thus, “when XML came along, the similarity between
OEM and XML was striking, and exciting” [Widom, 1999]. For example, the previous
OEM object can be trivially transformed into XML:

<employee>
<name>Juanma Pérez</name>
<o f f i c e>TI2424DD</ o f f i c e>
<phone>8368</phone>
</employee>

Nevertheless, some significant differences exist:

� XML nodes (elements) can have attributes, which are name-value pairs.

� Although in theory the XML data model is a directed graph like OEM, in practice
this is seldom used; for all practical purposes, XML documents are trees.

A number of query languages for XML soon emerged, such as YaTL [Christophides
et al., 2000], XQL [Robie et al., 1988] and XML-QL [Deutsch et al., 1999]; Lorel itself
was quickly adapted to work with XML. A comparison of these early languages can be
found in [Fernández et al., 1999] and [Bonifati and Ceri, 2000].

In parallel, the World Wide Web Consortium released the specification of the XPath
language, in order to address parts of XML documents – a requirement that had arisen
during the development of several new XML-based specifications. Basically, XPath is
based on path expressions with wildcards. Consider the following XPath expressions,
that return the name of an employee in the XML version of our example database:

/ employee/name
/*/name

9

Chapter 2 Background: Exact and Approximate Management of XML Data

Axis name Action
ancestor Selects all ancestors (parent, grandparent, etc.) of the context node

ancestor-or-self Selects all ancestors (parent, grandparent, etc.) of the context node
and the context node itself

attribute Selects all attributes of the context node
child Selects all children of the context node

descendant Selects all descendants (children, grandchildren, etc.) of the context
node

descendant-or-self Selects all descendants (children, grandchildren, etc.) of the context
node and the current node itself

following Selects everything in the document after the closing tag of the
context node

following-sibling Selects all siblings after the context node
namespace Selects all namespace nodes of the context node

parent Selects the parent of the context node
preceding Selects everything in the document that is before the start tag of

the context node
preceding-sibling Selects all siblings before the context node

self Selects the context node

Table 2.1: XPath axes

Path expressions are lists of “location steps” that traverse a document along an axis;
in the previous example, the child axis is traversed. The axes are defined with respect to
a given node, named the context node. There are 14 axes defined in the standard, shown
in Table 2.1.

It is also possible to restrict the returned nodes using predicates:

/ employee [name= ‘ ‘Juanma Pérez ’ ’] / phone

Structural conditions can be specified within a predicate. This feature turns path
expressions into subtree patterns, named twigs. Solving XPath queries with twigs requires
a join operation between the results of two (or more) different path expressions.

XPath compatibility was one of the requirements for a standard XML query language.
The final specification, XQuery [Boag et al., 2007], is based on a hybrid language, Quilt,
described by [Chamberlin et al., 2000] in this way :

Our strategy in designing the language has been to borrow features from
several other languages that seem to have strengths in specific areas. From
XPath and XQL we take a syntax for navigating in hierarchical documents.
From XML-QL we take the notion of binding variables and then using the
bound variables to create new structures. From SQL we take the idea of a
series of clauses based on keywords that provide a pattern for restructuring
data (the SELECT-FROM-WHERE pattern in SQL). From OQL we take

10

2.2 Indexing and processing techniques for XML databases

the notion of a functional language composed of several different kinds of
expressions that can be nested with full generality. We have also been
influenced by reading about other XML query languages such as Lorel and
YaTL. We decided to name our language Quilt because of its heritage as a
patchwork of features from other languages, and also because of its goal of
assembling information from multiple diverse sources.

XQuery has become a successful recommendation, being incorporated into mainstream
XML-capable DBMSs, including Oracle, DB2 and SQL Server.

2.2 Indexing and processing techniques for XML databases

XML indexes can be broadly classified in two families: content indexes, which speed
up queries referring to the textual content of documents, and structural indexes which
efficiently resolve location steps in path expressions. Few differences can be identified
between the requirements of content indexes with respect to those found in Information
Retrieval [Baeza-Yates and Ribeiro-Neto, 1999]; usually inverted lists are used, stored in a
B+-tree. In contrast, new XML-specific approaches have been developed for XML-specific
structural indexes, which we will describe in this section.

The main requirement for a structural index for XML is to support all XPath axes. It
should be remarked, however, that the most important axes by far are the ancestor/de-
scendant axes. The key primitives that must be supported are:

� Find all descendants of a node,

� Find all ancestors of a node,

� Find all leaves of a document,

� Find the preceding nodes,

� Find the nca (nearest common ancestor) of two nodes.

Many indexing method that support these primitives have been proposed in the literature.
They can be classified in two families: those approaches that are based on summarizing
the structure of documents using some graph traversal technique, and those based on
encoding nodes using a labeling scheme. The following sections present both paradigms.

2.2.1 Techniques based on graph traversal

A number of proposed indexes are based on graph traversal : they rely on a graph traversal
of the database for storing a summary of its structures. The DataGuide is the classic
example, and many refinements on its ideas have been developed. A particularly relevant

11

Chapter 2 Background: Exact and Approximate Management of XML Data

concept is bisimulation, that is an equivalence relation between state transition systems,
associating systems which behave in the same way in the sense that one system simulates
the other and vice-versa. There are many variations of this concept; for instance, [Kaushik
et al., 2002] use the following definition:

Definition 1 (bisimulation) A symmetric, binary relation ≈ on a graph G is called a
bisimulation if, for any two data nodes u and v with u ≈ v, we have that (a) u and v
have the same label, (b) if parent(u) is the parent of u and parent(v) is a parent of v,
then parent(u) ≈ parent(v). Two nodes u and v in G are said to be bisimilar, denoted
by u ≈b v , if there is some bisimulation ≈ such that u ≈ v. 2

T-Index [Milo and Suciu, 1999] index a sequence of path expressions defined by a template.
They define templates with the forms

T1x1T2x2 . . . Tnxn

where Ti can be either a regular path expression or one of the placeholders P and
F . A query is obtained by replacing P with a regular path expression, and F with a

formula (a predicate, in XPath nomenclature). The paper focuses on the special cases
t1 = P x and ; the sequences produced are named 1- and 2-indexes respectively.

Instead of producing a deterministic finite automata like in the DataGuide approach,
the T-index finds a bisimulation . Note, however, that for tree-shaped data the 1-index
and the DataGuide are completely equivalent. Figure 2.3 shows an example extracted
from [Milo and Suciu, 1999].

APEX [Chung et al., 2002] is an “adaptive path index for XML data”. It performs a
summarization of the most frequent paths in the query workload

Other indexing techniques, more oriented towards twig query processing, include the
F&B index [Kaushik et al., 2002], ViST [Wang et al., 2003] and PRIX [Rao and Moon,
2004]. More complete surveys can be found in [Catania and Maddalena, 2002, Wong
et al., 2006].

2.2.2 Techniques based on node labeling schemes

The alternative to graph traversal techniques are labeling schemes, which assign to each
node in the XML tree one or more numeric identifiers, which allows the computation of
relationships between nodes using simple arithmetic operations.

Following [Christophides et al., 2004], we will consider three families of labeling schemes:
bit-vector, prefix and interval schemes. Figure 2.4 shows a simple example comparing
several approaches from all three families.

12

2.2 Indexing and processing techniques for XML databases

t t t t t

a b a c a d a a b

1

2 3 4 5 6

7 8 9 10 11 12 13

(a) Sample database

t

a b a c d

1

2 3 4 5 6

7 13 8 10 12 9 11

(b) 1-index

t

a b c d

1

2 3 4 5 6

7 8 10 12 13 7 13 9 11

(c) DataGuide

t a b a c d

a b a c d

(d) 2-index

Figure 2.3: T-Index compared to DataGuide

13

Chapter 2 Background: Exact and Approximate Management of XML Data

Bit-vector schemes In the bit-vector schemes representation, node labels are bit
strings that encode structural information. The most basic case was proposed by
[Wirth, 1988], whose algorithm encodes, in linear time, every node u using the function
l(u) = {b1, . . . , bk}, bi = 1 if the i-th node is either u or an ancestor of u. Using this
scheme, simple binary and and or operations suffice to check in constant time (given a
pre-fixed k) if a node is an ancestor of another, and can also obtain the nearest common
ancestor of two nodes. Many variations exist that produce more compact labels, typically
having a complexity of O(log n) [Kaplan et al., 2002]. Unfortunately, the more compact
variations are only capable of solving ancestor/descendant/sibling queries in O(n).

Prefix schemes Prefix schemes encode the parent of an node as part of the label. The
best know prefix scheme is Dewey’s Decimal Coding System (DDC), commonly used in
public libraries [Dewey, 2003]. In Dewey, the label of a node u is l(v)l(u), where l(v) is
the label of its parent and l(u) ∈ {0, . . . , 9}. Checking if a node is an ancestor of another
one is reduced to a simple check for a common prefix, as well as obtaining the nearest
common ancestor. Dewey’s approach can be easily generalized to nodes with more than
10 children. As in the previous family, there are many variations, involving more compact
labels (but at a higher cost).

Interval schemes In interval schemes, each node is assigned a [start, end] interval that
encodes useful structural information. Dietz [Dietz and Sleator, 1987] proposes using
l(v) = [pre(v), post(v)], where pre(v) and post(v) are the preorder and postorder numbers
of v. Using this scheme, u is a descendant of v if pre(v) < pre(u) and post(v) > post(u).
This scheme can be easily adapted to XML adding a third number that represents the
levelof the node in the document, which allows direct parent/child and leaf queries. For
efficient sibling queries, the parent preorder number is added to the encoding instead of
the level.

Many variations exist. [Agrawal et al., 1989] uses, instead of preorder and postorder
numbers, [index(v), post(v)], where index(v) is the lowest postorder number of u’s
descendants. Meanwhile, [Li and Moon, 2001] uses [pre(v), size(v)], where size(v) is the
size of the subtree rooted at v. All of these schemas are essentially equivalent for trees
(but not when adapted for DAGs).

2.3 Approximate retrieval in XML databases

2.3.1 Survey of approximate techniques

An early approach for XML approximate retrieval is ELIXIR [Chinenyanga and Kushm-
erick, 2002] that allows approximate matching in data content (tree leaves), and ranks
the results according to the matching degree, disregarding structure in the evaluation.

14

2.3 Approximate retrieval in XML databases

Resource
00000001 (Wirth)

1 (Dewey)
[1,8] (Dietz)

[1,8] (Argawal et al.)
[1,8] (Li and Moon)

Artist
00000011

11
[2,3]
[1,3]
[2,3]

Museum
00000101

12
[5,4]
[4,4]
[5,1]

Artifact
00001001

13
[6,7]
[5,7]
[6,3]

Painter
00010011

111
[3,1]
[1,1]
[3,1]

Sculptor
00100011

112
[4,2]
[2,2]
[4,1]

Painting
01001001

131
[7,5]
[5,5]
[7,1]

Sculpture
01001001

132
[8,6]
[6,6]
[8,1]

Figure 2.4: A comparison of labeling schemes from [Christophides et al., 2004].

No structural heterogeneity is considered, and vocabulary heterogeneity is allowed only
for data content elements, not for tags.

More sophisticated approaches, like XIRQL [Fuhr and Großjohann, 2001] and XXL
[Theobald and Weikum, 2002], accept approximate matching at nodes and then dis-
cuss how to combine weights depending on the structure. Vocabulary heterogeneity
is supported for content and element tags, but no structural heterogeneity is allowed:
conditions on document structure are interpreted as filters, thus they need to be exactly
satisfied. XXL supports a similarity operator and, to use this operator, the user should
be aware of the occurrence of similar keywords or element tags.

In the approach proposed by Damiani and Tanca [Damiani and Tanca, 2000] both XML
documents and queries are modeled as graphs labeled with fuzzy weights capturing the
information relative relevance. They propose to employ both structure related weighting
(weight on an edge) and tag related weighting (weight on a node). Some criteria for
weighting are proposed such as the weight decreases as moving far away from the root,
the weight depends on the dimension of the subtree. Shortcut edges are considered, thus
allowing the insertion of nodes, which weight is function of weights of edges. The match
score is a normalized sum of weight of edges.

In the tree relaxation approach [Amer-Yahia et al., 2002] exact and relaxed weights are
associated with query nodes and edges. The score of a match is computed as the sum
of the corresponding weights, and the relaxed weight is function of the transformations
applied to the tree. The considered transformations are: relax node, replacing the node
content with a more general concept; delete node, making a leaf node optional by removing

15

Chapter 2 Background: Exact and Approximate Management of XML Data

Vocabulary hetero-
geneity

Structural heterogeneity Ranking

ELIXIR on content – structure independent
XIRQL on content – structure dependent
XXL on content and tag – structure dependent
[Damiani and Tanca, 2000] on content and tag node insertion structure dependent
[Amer-Yahia et al., 2002] on content and tag delete node, relax edge,

promote node
structure dependent

approXQL on content and tag node insertion, node dele-
tion

structure dependent

[Amer-Yahia et al., 2005] on content and tag edge generalization, leaf
deletion, subtree promo-
tion

structure dependent

Table 2.2: Heterogeneity degree in XML approximate querying

the node and the edge linking it to its parent; relax edge, transforming a parent/child
relationship to an ancestor/descendant relationship; promote node, moving up in the tree
structure a node (and the corresponding subtree).

The approXQL [Schlieder, 2001] approach can also handle partial structural matchings.
All the paths in the query are however required to occur in the document. The allowed
edit operations on the document tree are delete node, insert intermediate node, relabel
node. The score of match is function of the number of transformations, each one of which
is assigned with a user-specified cost.

Amer-Yahia et al. in [Amer-Yahia et al., 2005] account for both vocabulary and
structural heterogeneity and propose scoring methods that are inspired by tf ∗ idf and
rank query answers on both structure and content. Specifically, twig scoring accounts
for all structural and content conditions in the query. Path scoring, by contrast, is an
approximation of twig scoring that loosens the correlations between query nodes when
computing scores. The key idea in path scoring is to decompose the twig query into
paths, independently compute the score of each path, and then combine these scores.

The main differences among the considered approaches are summarized in Table 2.2.
Note how approaches to XML approximate queries have progressively shifted to higher
degrees of heterogeneity, and to cope also with structural heterogeneity. We remark that
all the considered approaches enforce at least the ancestor-descendant relationship in
pattern retrieval.

Tree Embedding and Top-k Processing A different perspective from which approaches
to XML approximate querying started, is that of looking for approximate structural
matches, allowing the structure of the document and query trees to partially match.
[Kilpeläinen, 1992] discusses ten different variations of the tree inclusion problem, that is,
the problem of locating instances of a query tree Q in a target tree T . He orders these
different problems, ranging from unordered tree inclusion to ordered subtrees, highlighting
the inclusion relationships among them. Moreover, he gives a general schema of solution,

16

2.3 Approximate retrieval in XML databases

and instantiates it for each problem, discussing the resulting complexities. His goal,
however, is not to measure the distance, nor to rank results. All the instances of the
pattern in the data tree are returned.

Another approach aimed at identifying the matches but that does not rank them, is
by [Kanza and Sagiv, 2001]. They advocate the need of more flexible query evaluation
mechanisms in the context of semi-structured data, where both queries and data are
modeled as graphs. They propose mapping query paths to data paths, so long as the data
path includes all the labels of the query path; the inclusion needs not to be contiguous or
in the same order.

Sub-optimal approaches for ranked tree-matching have been proposed for dealing with
the NP complexity of the tree inclusion problems widely discussed and analyzed in
[Kilpeläinen, 1992]. In these approaches, instead of generating all (exponentially many)
candidate sub-trees, the algorithms return a ranked list of “good enough” matches. For
example, in [Schlieder and Naumann, 2000] a dynamic programming algorithm for ranking
query results according to a cost function is proposed. In [Amer-Yahia et al., 2002] a data
pruning algorithm is presented where intermediate query results are filtered dynamically
during evaluation process. ATreeGrep [Shasha et al., 2002], instead, uses as basis an exact
matching algorithm, but allowing a fixed number of “differences” in the result. [Marian
et al., 2005] proposes an adaptive query processing algorithm to evaluate approximate
matches where approximation is defined by relaxing XPath axes. In adaptive query
processing, different plans are permitted for different partial matches, taking the top-k
nature of the problem into account.

2.3.2 Similarity measures for XML data

In addition to the general approaches just described, a number of XML-specific similarity
measures have been proposed. In most cases, these measures reflect the fact that XML
documents are hierarchical in nature and can be viewed as compositions of simpler
constituents, including elements, attributes, links, and plain text. The hierarchy of
composition is quite rich: attributes and texts are contained in elements, and elements
themselves are organized in higher-order structures such as paths and subtrees. We will
refer to each level in the compositional structure of an XML document as a granularity
level. Section 2.3.2.1 introduces the levels which are used in the literature; they are
useful in analyzing the diverse XML similarity measures that have been proposed in the
literature.

The rest of the section surveys a number of XML similarity measures. Most fall into two
categories: tree-based and vector-based approaches. Tree-based approaches exploit the tree
structure of XML, applying graph-theoretic techniques to devise similarity functions. In
contrast, vector-based approaches adapt models commonly used in Information Retrieval,
consisting in defining measures over vector-based representations of XML documents.

Sections 2.3.2.2 and 2.3.2.3 surveys tree-based and vector-based measures respectively.

17

Chapter 2 Background: Exact and Approximate Management of XML Data

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<r e c ip e s >
<summary> Some r e c i p e s o f my GranMa </summary>
<r e c i p e num=”1”>
<t i t l e >Pizza Margherita </ t i t l e >
<preparat ion>
<i ng r ed i en t s >
<i n g r ed i en t name=”Tomato”

amount=”1” uni t=”Kg”/>
<i n g r ed i en t name=”Mozzare l la ”

amount=”3” uni t=”p i e c e s ”/>
. . .

</ing r ed i en t s >
<step> Preheat oven to 180 degrees C</step>
. . .

<step >... </ step>
</preparat ion>
<co s t amount=”5” uni t=”euro”/>
<note>Chunk Tomato in
l i t t l e p i ece s , . . . </ note>
</rec ipe >
. . .

</r e c ipe s >

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<c o l l e c t i o n >
<de s c r i p t i on > Some r e c i p e s o f Aunt Carol
</de s c r i p t i on >
<r ec ipe >
<name>Pizza Margherita </name>
<i n g r ed i en t name=”Tomato” qty=”1.5”/>
<i n g r ed i en t name=”Mozzare l la ” qty=”2”/>
. . .

<preparat ion>
<step> Preheat oven to 180 degrees C</step>
<step >... </ step>
. . .

</preparat ion>
<comment>
Chunk Tomato in l i t t l e p i ece s , . . .
</comment>
<nu t r i t i o n c a l o r i e s =”500”

f a t =”20” pro t e in =”18”/>
</rec ipe >
. . .

</c o l l e c t i o n >

Figure 2.5: Sample XML documents containing recipes

Section 2.3.2.4 describes other approaches that do not fit neatly into the previous
categories. All of the the examples in these sections are based on the documents shown
in Figure 2.5.

2.3.2.1 Granularity

[Guerrini et al., 2006] presents a study of the XML granularity levels that occur in the
literature regarding similarity-oriented XML techniques. These are:

� the whole XML document,

� subtrees (i.e., portions of documents),

� paths,

� elements,

� links,

� attributes,

� textual content (of attributes and data content elements).

The relationships between the granularity levels are depicted in Figure 2.6 through
arrows. An arrow from a granularity level A to a granularity level B means that a
similarity measure at level A can be formulated in terms of objects at granularity B.
Similarity measures for XML are usually defined according to these natural relations of
composition. For instance, a measure for complete XML documents can be defined by

18

2.3 Approximate retrieval in XML databases

Complete XML Document

Element

Link

Attribute

Textual Content

Subtree Path

Figure 2.6: Levels of granularity in XML documents

evaluating the similarity of paths, which in turn requires some criterion to compare the
elements contained in the path. In addition to composition, other relationships among
elements/documents that can be exploited for measuring structural similarity include:

� parent-children relationship, that is the relationship between each element and its
direct subelements/attributes;

� ancestor-descendant relationship, that is the relationship between each element and
its direct and indirect subelements/attributes;

� order relationship among siblings;

� link relationship among documents/elements.

2.3.2.2 Tree-based approaches

In this section we deal with approaches for measuring the similarity between XML
documents that rely on a tree representations of the documents. We first discuss the
document representation as trees, the basics of measures for evaluating tree similarity,
and then approaches specifically tailored to XML.

Tree Similarity Measures The problem of computing the distance between two trees,
also known as tree editing problem, is the generalization of the problem of computing the
distance between two strings [Wagner and M.J.Fisher, 1974] to labeled trees. The editing
operations available in the tree editing problem are changing (i.e., relabeling), deleting,
and inserting a node. To each of these operations a cost is assigned, that can depend on
the labels of the involved nodes. The problem is to find a sequence of such operations

19

Chapter 2 Background: Exact and Approximate Management of XML Data

transforming a tree T1 into a tree T2 with minimum cost. The distance between T1 and
T2 is then defined to be the cost of such a sequence.

The best known and reference approach to compute edit distance for ordered trees is
[Zhang et al., 1989]. They consider three kinds of operations for ordered labeled trees.
Relabeling a node n means changing the label on n. Deleting a node n means making the
children of n become the children of the parent of n and then removing n. Inserting n as
the child of m will make n the parent of a consecutive subsequence of the current children
of m. Let Σ be the node label set and let λ be a unique symbol not in Σ, denoting the
null symbol. An edit operation is represented as a→ b, where a is either λ or the label
of a node in T1 and b is either λ or the label of a node in T2. An operation of the form
λ→ b is an insertion, an operation of the form a→ λ is a deletion. Finally, an operation
of the form a→ b, with a, b 6= λ is a relabeling. Each edit operation a→ b is assigned a
cost, that is, a nonnegative real number γ(a→ b) by a cost function γ. Function γ is a
distance metric, that is:

γ(a→ b) ≥ 0
γ(a→ a) = 0
γ(a→ b) = γ(b→ a)
γ(a→ c) ≤ γ(a→ b) + γ(b→ c)

Function γ is extended to a sequence of edit operation S = s1, . . . , sk s.t.. γ(S) =∑k
i=1 γ(si).
The edit distance between the two trees T1 and T2 is defined as the minimum cost edit

operation sequence that transforms T1 to T2, that is:
D(T1, T2) = minS{γ(S)|S is an edit operations sequence taking T1 to T2}.
The edit operations give rise to a mapping which is a graphical specification of

which edit operations apply to each node in the two trees. Figure 2.7 is an example
of mapping showing a way to transform T1 to T2. It corresponds to the edit sequence
name→ λ; calories→ at;λ→ preparation.The figure also shows a left-to-right postorder
of nodes which is commonly used to identify nodes in a tree.

Definition 2 (Tree mapping) For a tree T , let t[i] represent the i-the node of T . A
mapping (or matching) from T1 to T2 is a triple (M,T1, T2)where M is a set of pairs of
integers (i, j) such that:

1 ≤ i ≤ |T1|, 1 ≤ j ≤ |T2|;
for any pair (i1, j1)and (i2, j2)in M :

� i1 = i2: ⇐⇒ j1 = j2(one-to-one),

� t1[i1]is to the left of t1[i2] iff t2[j1]is to the left of t2[j2] (sibling order preserved),

20

2.3 Approximate retrieval in XML databases

Figure 2.7: Mapping between two trees

� t1[i1]is an ancestor of t1[i2] iff t2[j1] is an ancestor of t2[j2] (ancestor order preserved).

2

The mapping graphically depicted in Figure 2.7 consists of the pairs (7, 7), (4, 3), (1, 1),
(2, 2), (6, 6), and (5, 5). Let M be a mapping from T1 to T2, the cost of M is defined as:

γ(M) =
∑

(i,j)∈M

γ(t1[i]→ t2[j])+
∑

{i|¬∃js.t.(i,j)∈M}

γ(t1[i]→ λ)+
∑

{i|¬∃js.t.(i,j)∈M}

γ(λ→ t2[j])

There is a straightforward relationship between a mapping and a sequence of edit
operations. Specifically, nodes in T1 not appearing in M correspond to deletions; nodes in
T2 not appearing in Mcorrespond to insertions; nodes that participate to M correspond
to relabellings if the two labels are different, to null edits otherwise.

Different approaches [Selkow, 1977, Chawathe et al., 1996, Chawathe, 1999] to determine
tree edit distance have been proposed as well. They rely on similar tree edit operations
with minor variations. Table 2.3 [Dalamagas et al., 2006] summarizes the main differences
among the approaches. The corresponding algorithms are all based on similar dynamic
programming techniques. The [Chawathe, 1999] algorithm is based on the same edit
operations (i.e., insertion and deletion at leaf nodes and relabeling at any nodes) considered
by [Selkow, 1977] but it significantly improves the complexity by reducing the number of
recurrences needed, through the use of edit graphs.

XML Specific Approaches The basic ideas discussed above for measuring the distance
among two trees have been specialized to the XML context by the following approaches.

[Nierman and Jagadish, 2002] introduce an approach to measure the structural similarity
specifically tailored for XML documents with the aim of clustering together documents
presumably generated from the same DTD. Since the focus is strictly on structural

21

Chapter 2 Background: Exact and Approximate Management of XML Data

Edit operations Complexity

[Selkow, 1977] insert node*,
delete node*,
relabel node

4min(N ·M)M ,N numbers of
nodes of the trees

[Zhang et al., 1989] insert node,
delete node,
relabel node

O(M ·N · b · d)M,N numbers
of nodes of the trees, b, d

depths of the trees
[Chawathe et al., 1996] insert node*,

delete node*,
relabel node,
move subtree

O(N ·D)N numbers of nodes
of both trees, D number of

misaligned nodes

[Chawathe, 1999] insert node*,
delete node*,
relabel node

O(M ·N)M,N dimension of
the matrix that represents the

edit graph

Table 2.3: Tree Edit Distance algorithms. Operations marked with an asterisk are
restricted to leaves.

similarity, the actual values of document elements and attributes are not represented
in their tree representations (i.e., leaf nodes of the general representation are omitted
from the tree). They suggest to measure the distance between two ordered labeled trees
relying on a notion of tree edit distance. However, two XML documents produced from
the same DTD may have very different sizes due to optional and repeatable elements.
Any edit distance that permits changes to only one node at a time will necessarily find a
large distance between such a pair of documents, and consequently will not recognize
that these documents should be clustered together as being derived by the same DTD.

Thus, they develop an edit distance metric that is more indicative of this notion of
structural similarity. Specifically, in addition to insert, delete, and relabel operations of
[Zhang et al., 1989], they also introduce the insert subtree and delete subtree editing
operations, allowing the cutting and pasting of whole sections of a document. Specifically,
operation insertTreeT (A, i) adds A as a child of T at position i + 1 and operation
deleteTreeT (Ti) deletes Ti as the i-th child of T . They impose however the restriction
that the use of the insertTree and deleteTree operations is limited to when the subtree
that is being inserted (or deleted) is shared between the source and the destination tree.
Without this restriction, one could delete the entire source tree in one step and insert
the entire destination tree in a second step, thus making completely useless insert and
delete operations. The subtree A being inserted/deleted is thus required to be contained
in the source/destination tree T , that is, all its nodes must occur in T , with the same
parent/child relationships and the same sibling order; additional siblings may occur in
T (to handle the presence of optional elements), as graphically shown in Figure 2.8. A

22

2.3 Approximate retrieval in XML databases

Figure 2.8: ContainedIn relationship

second restriction imposes that a tree that has been inserted via the insertTree operation
cannot subsequently have additional nodes inserted, and, analogously, a tree that have
been deleted via the deleteTree operation cannot previously had had nodes deleted. This
restriction provides an efficient means for computing the costs of inserting and deleting the
subtrees found in the destination and source trees, respectively. The resulting algorithm
is a simple bottom up algorithm obtained as an extension of Zhang and Shasha’s basic
algorithm, with the difference that any subtree Ti has a graft cost which is the minimum
among the cost of a single insertTree (if allowable) and of any sequence of insert and
(allowable) insertTree operations, and similarly any subtree has a prune cost.

[Lian et al., 2004] propose a similarity measure for XML documents which, though
based on a tree representation of documents, is not based on the tree edit distance.
Given a document D they introduce the concept of structure graph (or s-graph) of D,
sg(D) = (N,E), as a direct graph such that N is the set of all elements and attributes
in the documents of D and (a, b) ∈ E if and only if a is in the parent-child relationship
with b. The notion of structure graph is very similar to that of DataGuide presented
in Section 2.1. Figure 2.9(b) shows the s-graph of the document in Figure 2.9(a). The
similarity between two documents D1 and D2is then defined as

Sim(D1,D2) =
|sg(D1) ∩ sg(D2)|

max{|sg(D1)|, |sg(D2)|}

where |sg(D1)| is the cardinality of edges in sg(D1) and |sg(D1) ∩ sg(D2)| is the set
of common edges between sg(D1) and sg(D2). Relying on this metric, if the number of
common parent-child relationships between D1 and D2 is large, the similarity between
the s-graphs will be high, and vice-versa. Since the definition of s-graph can be easily
applied to set of documents, the comparison of a document with respect to a cluster can
be easily accomplished by means of their corresponding s-graphs. However, as outlined
by [Costa et al., 2004], a main problem with this approach relies on the loose-grained
similarity which occurs. Indeed, two documents can share the same s-graph, and still
have significant structural differences. Thus, the approach fails in dealing with application
domains, such as wrapper generation, requiring finer structural dissimilarities. Moreover,

23

Chapter 2 Background: Exact and Approximate Management of XML Data

(a) (b) (c)

Figure 2.9: (a) The structure of a document, (b) its s-graph, (c) its structural summary

Figure 2.10: Two simple s-graphs

the similarity between the two s-graphs in Figure 2.10 is zero according to their definition.
Thus the measure lacks to consider similar documents that do not share common edges
even if they have some elements with the same labels.

[Dalamagas et al., 2006] presents an approach for measuring the similarity between
XML documents modeled as rooted ordered labeled trees. The motivating idea is the
same of [Nierman and Jagadish, 2002], that is, that XML documents tend to have many
repeated elements and thus they can be large and deeply nested and even if generated
from the same DTD can have quite different size and structure. Starting from this idea,
the approach of [Dalamagas et al., 2006] is based on extracting structural summaries
from documents by nesting and repetition reductions. Nesting reduction consists in
eliminating non-leaf nodes whose label is the same of the one of its ancestor. By contrast,
repetition reduction consists in eliminating, in a pre-order tree traversal, nodes whose
path (starting from the root down to the node itself) has already been traversed. Figure
2.9(c) shows the structural summary of the document structure in Figure 2.9(a). The
similarity between two XML documents is then the tree edit distance computed through
an extension of the basic [Chawathe, 1999]. They claim, indeed, that using insertions
and deletions only at leaves fits better in the XML context.

24

2.3 Approximate retrieval in XML databases

2.3.2.3 Vector-based approaches

In this section we deal with approaches for measuring the similarity that rely on a vector
representations of documents. We first discuss the possible document representations as
vectors, the different measures that can be exploited for evaluating vector similarity and
then present some approaches specifically tailored to XML.

Document Representation Vector-based techniques represent objects as vectors in an
abstract n-dimensional feature space. Let O = (o1, . . . , om) be a collection of m objects;
in our context, these can be whole XML documents, but also paths, individual elements,
text, or any other component of a document. Each object is described in terms of a set
of features F = (F1, . . . , Fn), where each feature Fi, i ∈ [1, n], has an associated domain
Di which defines its permissible values. For instance, the level of an element is a feature
whose domain is the positive integers (0 for the root, 1 for first-level elements, and so
on). Feature domains can be either quantitative (continuous or discrete) or qualitative
(nominal or ordinal). An object o ∈ O is described as a tuple (F1(o), . . . , Fn(o)), where
each Fi(o) ∈ Di.

Consider for instance the two documents in Figure 2.5; we can represent them taking
the elements as the objects to be the compared. The simplest possible feature is just
the label of the document element, whose domain is a string according to the standard
XML rules; in this case the roots of both documents are just described as the tuples
(recipes) and (collections) respectively. Of course, other features are usually considered,
possibly of different structural granularities. A typical example is the path to the root;
for example, consider the leftmost ingredient element in each document. Both can be
represented using the label and the path as features:
Fingredient1 = (‘ingredient′, ‘/recipes/recipe/preparation/ingredients′)
Fingredient2 = (‘ingredient′, ‘/collection/recipe′)
Some authors suggest restricting the length of the paths to avoid a combinatorial

explosion. For example, [Theobald and Weikum, 2002] use paths of length 2.
Another important feature of elements is the k-neighborhood, that is, the set of elements

within distance k of the element. For example, consider the 1-neighborhood (that is,
parent and children) of the ingredient elements:
Fingredient1 = (‘ingredient′, ‘ingredients′, ‘name′, ‘amount′, ‘unit′)
Fingredient2 = (‘ingredient′, ‘recipe, ‘name′, ‘qty′)
Many variations are possible; for example, one of the components of the Cupid system

by [Madhavan et al., 2001] uses as features the label, the vicinity (parent and immediate
siblings), and the textual contents of leaf elements.

Vector-based Similarity Measures Once the features have been selected, the next step
is to define functions to compare them. Given a domain Di a comparison criterion for
values in Di is defined as a function Ci : Di ×Di → Gi, where Giis a totally ordered set,

25

Chapter 2 Background: Exact and Approximate Management of XML Data

typically the real numbers. The following property must hold: Ci(fi, fi) = maxy∈G{y},
that is, when comparing a value with itself the comparison function yields the maximum
possible result. The simplest example of a comparison criterion is strict equality:

Ci(fi, fj) =

{
1 if fi = fj

0 otherwise

A similarity function as S : (D1, . . . , Dn) × (D1, . . . , Dn) → L, where L is a totally
ordered set, can now be defined, that compares two objects represented as feature vectors
and returns a value that corresponds to their similarity. An example of a similarity
function is the weighted sum, which associates a weight wi (such that wi ∈ [0, 1],∑n

i=1wi = 1) to each feature:

S(o, o′) =
1
n

∑
wiCi(fi(o), f i(o′))

If feature vectors are real vectors, metric distances induced by norms are typically used.
The best-known examples are the L1(Manhattan) and L2(Euclidean) distances. Other
measures have been proposed based on the geometric and probabilistic models.

The most popular geometric approach to distance is the vector space model used in
Information Retrieval [Salton, 1983]. Originally it was intended to be used to compare
the similarity among the textual content of two documents, but for the XML case it has
been adapted for structural features as well.

The similarity in vector space models is determined by using associative coefficients
based on the inner product of the document vectors, where feature overlap indicates
similarity. The inner product is usually normalized, since, in practice, not all features
are equally relevant when assessing similarity. Intuitively, a feature is more relevant
to a document if it appears more frequently in it than in the rest of documents. This
is captured by tf × idf weighting. Let tfi,j be the number of occurrences of feature i
in document j, dfithe number of documents containing i, and N the total number of
documents. The tf × idf weight of feature i in document j is:

wi,j = tfi,j log
N

dfi

The most popular similarity measure is the cosine coefficient, which corresponds to the
angle between the vectors. Other measures are the Dice and Jaccard coefficients

cos(u, v) =
uv
|u||v|

Dice(u, v) =
2uv
|u|2|v|2

26

2.3 Approximate retrieval in XML databases

Jac(u, v) =
uv

|u|2|v|2 − uv

Another vector-based approach considers the objects as probability mass distributions.
This requires some appropriate restrictions on the values of the feature vectors (f1, . . . fn);
namely, all values must be nonnegative reals, and

∑n
i=1 fi = 1 . Intuitively, the value of

fi is the probability that the feature Fi is assigned to the object. In principle, correlation
statistics can be used to compare distributions. The most popular are Pearson’s and
Spearman’s correlation coefficients and Kendall’s τ [Sheskin, 2003]. In addition, some
information-theoretic distances have been widely applied in the probabilistic framework,
especially the relative entropy, also called the Kullback-Leibler divergence.

KL(pk||qk) =
∑

pk log2

pk
qk

where pk and qk are the probability functions of two discrete distributions. Another
measure of similarity is the mutual information.

I(X;Y) =
∑
x∈X

∑
y∈Y

P (x, y) log2

P (x, y)
P (x)P (y)

where P (x, y) is the joint probability density function of x and y (i.e., P (x, y) =
Pr[X = x, Y = y]), and P (x) and P (y)are the probability density functions of x and y
alone.

An important use of information-theoretical measures is to restrict the features and
objects to be included in similarity computations, by considering only the most informative.
For example, [Theobald and Weikum, 2002] use the Kullback-Leibler divergence to cut
down the number of elements to be compared in an XML classification system.

XML Specific Approaches Standard vector based approaches previously presented
can easily be applied to XML documents whenever clustering is performed on a single
granularity (e.g., clustering based on contents, on elements, or on paths). Specifically
tailored approaches have been developed for XML documents that take more than one
granularity along with their relationships into account. In these cases, given C the number
of granularities, documents are represented through a C-dimensional matrix M in an
Euclidean space based on one of two models, Boolean and weighted. With the Boolean
model, M(g1, . . . , gC) = 1 if the feature corresponding to the matrix intersection among
granularities g1, . . . , gC exists, M(g1, . . . , gC) = 0 otherwise. With the weighted model,
M(g1, . . . , gC) is the frequency of the feature corresponding to the matrix intersection
among granularities. Figure 2.11 displays a 3-dimensional Boolean matrix on granularities
(document, path, term) stating the presence (or absence) of a term wj in the element
reached by a path Pj in a document Dm. As suggested by [Liu et al., 2004], once the

27

Chapter 2 Background: Exact and Approximate Management of XML Data

Figure 2.11: A 3-dimensional Boolean matrix

documents have been represented in the Euclidean space, standard approaches can be
applied for measuring their similarity and create clusters. The big issue that should be
faced is that the matrix can be sparse. Therefore, approaches for reducing the matrix
dimension should be investigated along with the possibility to obtain approximate results.

According to our classification, [Yoon et al., 2001] propose a Boolean model with
granularities (document, path, term) in which the path is a root-to-leaf path. A document
is defined as a set of (p, v) pairs, where p denotes a root-to leaf path (named ePath)
and v denotes a word or a content for an ePath. A collection of XML documents is
represented through a 3-dimensional matrix, named BitCube, BC(d, p, v), whereD denotes
a document, p denotes an ePath, v denotes word or content for p, and BC(D, p, v) = 1 or
0 depending on the presence or absence of v in the ePath p in D. The distance between
two documents is defined through the Hamming Distance as

Sim(D1, D2) = |xor(BC(D1), BC(D2))|

where, xor is a bit-wise exclusive or operator applied on the representations of the two
documents in the BitCube.

According to our classification, [Yang et al., 2005] exploit a weighted model with
granularities (document, element, term). They employ the Structured Link Vector
Model (SLVM) to represent XML documents. In the model of SLVM, each document,
Dx in a document collection C, is represented as a matrix dx ∈ Rn×m, such that,
dx =< dx(1), . . . , dx(n) >

T and dx(i) =< dx(i,1), . . . , dx(i,m) >, where m is the number
of elements, dx(i,1) ∈ Rm is a feature vector related to the term wi for all subelements,
dx(i,j)is a feature related to the term wi and specific to the element ej , given as dx(i,j) =
TF (wi, docx.ej) · IDF (wi) and TF (wi, docx.ej) is the frequency of the term wi in the
element ej of the document Dx, IDF (wi) is the inverse document frequency of wi based

28

2.3 Approximate retrieval in XML databases

(a) (b) (c)

Figure 2.12: (a)A tree document, (b)its full binary tree, and (c) the binary branch vector

on C (each dx(i,j) is then normalized by
∑

i dx(i,j)). The similarity measure between two
documents Dx and Dy is then simply defined as

Sim(Dx, Dy) = cos(dx, dy) = dx · dy =
n∑
i=

dx(i)dy(i)

Where ·indicates the vector dot product, and dx, dy are the normalized document
feature vectors of Dx and Dy. A more sophisticated similarity measure is also presented
by introducing a kernel matrix

Sim(Dx, Dy) =
n∑
i=1

dTx �Me � dy(i)

where Me is a m×m kernel matrix which captures both the similarity between pairs
of elements as well as the contribution of a pair to the overall similarity. An entry in
Me being small means that the two elements should be semantically unrelated and some
words appearing in the two elements should not contribute to the overall similarity and
vice versa. An interactive estimation procedure has been proposed for learning a kernel
matrix which captures both the element similarity and the element relative importance.

[Yang et al., 2005] propose an approach for determining a degree of similarity between
a pair of documents that it is easier to compute with respect to tree edit distance and
forms a lower bound for the tree edit distance. Their approach thus allows to filter out
very dissimilar documents and computes the tree edit distance only with a restricted
number of documents. Starting from a tree representation of XML documents (as the one
in Figure 2.12(a)), they represent them as standard full binary trees (Figure 2.12(b)). A
full binary tree is a binary tree in which each node has exactly zero or two children (the
first child represents the parent-child relationship, whereas the second child represents
the sibling relationship).Whenever one of the children is missing, it is substituted with ε.

29

Chapter 2 Background: Exact and Approximate Management of XML Data

The binary branch of the full binary tree (i.e. all nodes with their direct children) are
then represented in a binary branch vector, BRV (D) = (b1, . . . , bΓ), in which bi represents
the number of occurrences of the i-th binary branch in the tree, Γ is the size of the binary
branch space of the data set. The binary branch vector for the document in Figure 9(a)
is shown in Figure 2.12(c). The binary branch distance between XML documents D1

and D2, such that BRV (D1) = (b1, . . . , bΓ), and BRV (D2) = (b′1, . . . , b′Γ), is computed
though the Manhattan distance:

BDist(D1, D2) = ||BRV (D1)−BRV (D2)||1 =
Γ∑
i=1

|bi − b′i|

In this approach the authors consider three granularities (element, element, element)
that are bound by the parent-child and the sibling relationships. Then thanks to the
transformation of the document tree structure in a full binary tree structure, they are
able to use a 1-dimensional vector for the representation of a document.

2.3.2.4 Other approaches

We now present some approaches for evaluating similarity that do not fit in the vector-
based or tree-based representation of documents.

Time series based approach. [Flesca et al., 2002] represent the structure of an XML
document as a time series in which each occurrence of a tag corresponds to a given
impulse. Thus, they take into account the order in which tags appear in the documents.
They interpret an XML document as a discrete-time signal in which numeric values
summarize some relevant features of the elements enclosed within the document. If,
for instance, one simply indent all tags in a given document according to their nesting
level, the sequence of indentation marks, as they appear within the document rotated
by 90 degrees, can be looked at as a time series, whose shape roughly describe the
document structure. These time-series data are then analyzed through their Discrete
Fourier Transform (DFT), leading to abstract from structural details which should not
affect the similarity estimation (such as different number of occurrences of an element or
small shift in its position). More precisely, during a preorder visit of the XML document
tree, as soon as a node is visited an impulse is emitted containing the information relevant
to the tag. Thus: (1) each element is encoded as a real value; (2) the substructures in
the documents are encoded using different signal shapes; (3) context information can be
used to encode both basic elements and substructures, so that the analysis can be tuned
to handle in a different way mismatches occurring at different hierarchical levels.

Once having represented each document as a signal, document shapes are analyzed
through DFT. Some useful properties of this transform, namely, the concentration of
the energy into few frequency coefficients, its invariance of the amplitude under shifts,

30

2.3 Approximate retrieval in XML databases

allow to reveal much about the distribution and relevance of signal frequencies without
the need of resorting to edit distance based algorithms, and, thus, more efficiently. As
the encoding guarantees that each relevant subsequence is associated with a group
of frequency components, the comparison of their magnitudes allows the detection of
similarities and differences between documents. With variable-length sequences, however,
the computation of the DFT should be forced on M fixed frequencies, where M is at least
as large as the document sizes, otherwise the frequency coefficients may not correspond.
To avoid increasing the complexity of the overall approach, the missing coefficients are
interpolated starting from the available ones. The distance between documents D1 and
D2 is then defined as:

Dist(D1, D2) =

M/2∑
k=1

(|[DFT≈(enc(D1))](k)| − |[DFT≈(enc(D1))](k)|)2

1/2

where enc is the document encoding function, DFT≈ denotes the interpolation of DFT
to the frequencies appearing in both D1 and D2, and M is the total number of points
appearing in the interpolation. Comparing two documents using this technique costs
O(n log n), where n = max(|D1|, |D2|) is the maximum number of tags in the documents.
The authors claim their approach is practically effective as those based on tree edit
distance.

Link-based similarity. Similarity among documents can be measured relying on the
links. Links can be specified at element granularity through ID/IDREF(S) attributes,
or at document granularity through XLink specifications. To the best of our knowledge
no link-based similarity measures have been specified tailored for XML documents at
element granularity. At this granularity a measure should also consider the structure and
content of the linked elements in order to be effective.

The problem of computing link-based similarity at document granularity has been
investigated both for clustering together similar XML documents [Catania and Maddalena,
2002] and for XML document visualization as a graph partitioning problem . An XML
document can be connected to other documents by means of XLink specifications both
internal or externals. A weight can be associated with the link depending on a variety
of factors (e.g., the type of link, the frequency it is used, its semantics). The similarity
between two documents can be expressed in terms the weight of the minimum path
between two nodes. Given a connection graph G = (V,E) where each v in V represents
an XML document, and each (v1, v2, w) is a direct w-weighted edge in E, [Catania and
Maddalena, 2002] specifies the similarity between documents D1 and D2 as

Sim(D1, D2) =

{
1− 1

2cost(minP ath(D1,D2))+cost(minP ath(D2,D1)) if existPath(Di, Dj) = true, i, j ∈ 1, 2

0 otherwise

31

Chapter 2 Background: Exact and Approximate Management of XML Data

Where, e = minPath(v1, v2) is the minimal path e from v1 to v2, cost(e) is the sum of
the weights on the edge in e, existPath(v1, v2) = true if a path exists from v1 to v2. A
key feature of their approach is assigning a different weight to edges depending on the
type of links (simple/extended, on load/on demand).

2.4 Characterization of heterogeneity

The objective of this section is to provide a precise characterization of what heterogeneity
means in the context of XML collections. Such a characterization will allow us to compare
collections in order to find out not only which collection is “more heterogeneous” than
another one, but also to determine clusters of collections which are “heterogeneous in a
similar way”, and can be processed using similar techniques.

Unfortunately, while the concept of heterogeneity is used pervasively in the literature, it
is seldom defined; an usual approach is to define an homogeneous collection as “collection
that follows a single DTD or XML schema” [Theobald and Weikum, 2002]; unfortunately,
this definition is not useful for our purposes, since DTDs (and XML Schema) allow for a
large deal of diversity.

In addition, the term “heterogeneity” is used to refer to many different aspects of XML
collections. Usually, these aspects are broadly classified into structural heterogeneity
and semantic heterogeneity, a distinction inherited from the data integration literature.
As an example of an XML collection with some structural heterogeneity, consider an
XML-based bibliographic database, where entries for different types of publication (a
book, an article, and so on) have a slightly different structure. In contrast, semantic
heterogeneity is used to refer to cases where vocabulary is not strictly controlled, or
natural language ambiguity is an issue. But such broad distinctions are difficult to
substantiate. For instance, variations in tag names may be considered both structural
(since the structure of two documents using different tag sets will necessarily be different)
and semantic (since the difference may be treated as a vocabulary discrepancy).

In this chapter we will contribute quantitative criteria that can be used independently
of a-priori classifications, and apply them to the study of XML collections. Section 2.4.1
formalizes the concept of heterogeneity in terms of population diversity. Section 2.4.2
applies these ideas to XML collections, in order to find a classification of collections in
terms of their characteristics of heterogeneity. Finally, Section 2.4.3 reviews a series of
approaches found in the literature in terms of the classification defined in the previous
section.

2.4.1 Heterogeneity as diversity

We propose relating the ill-defined concept of heterogeneity to the idea of diversity, which
is fundamental in the statistical study of populations (in a very broad sense) and has

32

2.4 Characterization of heterogeneity

been studied extensively. The classic definition of diversity is discussed by [Teachman,
1980]:

We define population diversity to be the distribution of population elements
(which are not limited to humans or the characteristics of humans) along
a continuum of homogeneity to heterogeneity with respect to one or more
variables.

The meaning of this definition is better explained by considering the properties that any
measure of diversity should have. Assuming that N “population elements” are divided
into I categories, and the proportion of elements falling into the i-th category is pi with∑

i pi = 1:

� If any pi = 1, i.e., if all events fall into one category, the measure should take a
value of zero, indicating no variation.

� If all pi = 1/I, i.e., if population elements are equally distributed among all
categories, the measure should reach its theoretical maximum. Additionally, it
would be desirable to normalize such a measure so that it equals 1 in this case.

� Postulating the existence of I + 1, I + 2 and so forth, additional categories to
which no population members belong should leave the measures unaffected. In
other words, given two populations with elements evenly distributed across all
categories, the population with the greater number of categories should have the
higher diversity. Conversely, combining two or more categories should not increase
the measured diversity.

At least two measures of qualitatively variation possess these properties: Simpson’s D
[Simpson, 1949] and Shannon’s Entropy [Shannon, 1948].

Simpson’s D Simpson’s D is defined as

D = 1−
∑

p2
i

and can be normalized as

Dz = 1−
∑
p2
i

1− 1
I

Simpson’s D has been used extensively in the social sciences literature. One particularly
interesting property is its interpretability: D is the probability that two population
elements picked randomly from a population come from the same category.

33

Chapter 2 Background: Exact and Approximate Management of XML Data

Shannon’s Entropy The information (or Shannon) entropy of a discrete random vari-
able X that can take on possible values x1...xn is

H(X) = E(I(X)) =
n∑
i=1

p(xi) log2 (1/p(xi))

= −
n∑
i=1

p(xi) log2 p(xi)

where I(X) is the information content or self-information of X, which is itself a random
variable; and p(xi) = Pr(X = xi) is the probability mass function of X.

Information entropy quantifies the amount of information contained in a random
variable; alternatively, it is a measure of the average information content we are missing
when we do not know the value of the random variable.

It can be shown using the Jensen’s inequality that

H(X) = E

[
log2

(
1

p(X)

)]
≤ − log2 (E [p(X)]) ≤ log2 n

We can use this formula to obtain a normalized version of entropy, H0, whose values
always lies between 0 and 1:

H0(X) =
H(X)
log2 n

Choosing a measure of diversity Many other measures of diversity have been proposed;
for instance, Shannon’s entropy is just one of a number of entropy indexes [Salicrú
et al., 2005]. The choice of a particular measure depends largely of the application,
but some comparative studies have been produced. We follow [Mcdonald and Dimmick,
2003], who study 13 measures of diversity in three different categories (probability-based,
logarithm-based and rank-based), concluding that (i) overall, Shannon’s Entropy and
Simpson’s D are indeed superior to other alternatives found in the literature, and (ii)
there is a high correlation between different measures1.

Given these results we will focus on entropy, since it has been much more widely used
and studied in our community. Nevertheless, the techniques that we will present in the
following sections are largely independent of a particular choice of diversity measure.

2.4.2 Entropy-based characterization of heterogeneous collections

In order to use the entropy measure on XML collections, we need to define which are the
population elements of interest, and which categories will be used to measure diversity.
Let us consider a simple example: the entropy of an XML collection based on the

1[Mcdonald and Dimmick, 2003] reports some advantages of entropy when sample sizes are small, but
this is not particularly relevant in our context.

34

2.4 Characterization of heterogeneity

distribution of paths in the documents. Let pathSet(C) be the set of all unique paths in
collection C and docSet(C) the set of documents in C. We define:

� The “population elements” are the individual paths in pathSet(C)

� For each path π ∈ pathSet(C), let docs(π) the set of documents in which π occurs.
Thus, the “categories” will be the set D =

⋃
docs(πi) for all πi ∈ pathSet(C) .

Let’s see how entropy-based diversity is related to our intuitive concept of heterogeneity
by studying the two extreme cases:

� In the most “homogeneous” case all documents are identical (ignoring ordering),
and therefore paths appear in all documents.

� In the most “heterogeneous” case no document shares a path with any other
documents, so every path appears in just one document.

In the first case, all paths belong to the same category, and therefore the entropy is 0.
In the second case, the probability that one path belongs in a given category is exactly
1/|D|, and therefore the entropy is maximal.

Different measures of entropy can be obtained in a similar way, by studying the
probability of containment of one kind of objects (such as paths as in the previous
example) into objects of a coarser granularity (such as documents). To be able to to this,
we need to introduce a suitable definition of the granularities in an XML collection

Granularities in a collection Consider the granularity levels discussed in section 2.3.2.1.
Let DOC be a set of XML documents, and G = {DOC, ELEMENT, ATTRIBUTE, PATH, REGION,
CONTENT, LINK} the granularity levels at which documents in DOC can be compared.
Given a granularity level γ ∈ G, a mapping function mγ can be defined for extracting
from a collection S ⊆ DOC the portions of documents at that granularity level. For
example, the mapping functions mELEMENT and mPATH applied on a collection S ⊆ DOC
return the set of elements (denoted mELEMENT(S)) and paths (denoted mPATH(S)) occurring
in S, respectively. A partial order relation ≺G between granularity levels of G can be
defined, representing the containment relationship between granularity levels; it can
be read as “is lower-level than”. For instance, ELEMENT ≺G PATH because the paths in
mPATH(S) are defined in terms of elements in mELEMENT(S).

This granularity framework allows us to define a family of basic entropy measures of a
collection, which we can derive directly from the ≺G binary relation between granularity
levels. Namely, each pair of granularity levels related by ≺G induces a potentially useful
entropy measure for an XML collection. Some examples are the probability of occurrence
of a word within an element or a document; or the probability that an attribute will
occur in a subtree.

35

Chapter 2 Background: Exact and Approximate Management of XML Data

Applications The entropy-based measures provide us with a method to characterize
and compare collections of XML documents. As an example, we will study a set of
rather diverse publicly available XML collections from the University of Washington
XML Data Repository 2 and the INEX 2005 Heterogeneous track, most of which are
used for experimentation in the literature. Tables 2.4 and 2.5 provide a description of
the collections involved in each of these sources.

The first application of entropy-based characterization is comparing the heterogeneity.
For instance, consider the following entropy-based variables:

1. path: diversity of paths in the collection

2. tag: diversity of tags in the collection

3. word: diversity of words in the collection

4. attr: diversity of attributes in the collection

5. attrword: diversity of words in the attributes in the collection

We have avoided defining more specific categories, since many of these collection consist
of just a single large XML document. Thus, these variables are broadly applicable to
many collections. Figure 2.13 shows the values of the entropy of these variables in two
bibliographic collections, displayed as radial plots. This allows us to easily compare the
different characteristics of the collections: in this case, both collections display similar
textual complexity (in both cases, textual content consists mainly of author names,
article titles and abstracts), but one collection shows more structural diversity (tag
and path variables), and the attribute-related characteristics are completely different.
This information can be useful in selecting indexing and processing techniques for the
collections.

We can generalize this approach and cluster all collections into groups that share similar
characteristics of heterogeneity. For this example, we will limit ourselves to the path,
and word variables, since many collections have no information encoded in attributes3.
Considering the values of the variables as vectors of characteristics, we used a PAM
(partitioning around medoids) algorithm to find the clustering show in in Figure 2.14.
The number of clusters (4) was estimated using the silhouette width criterion [Rousseeuw,
1987].

The groupings in Figure 2.14 can be interpreted as follows:

� Cluster 1 contains collection with relatively low structural and high textual hetero-
geneity. Most collections in this cluster consist of relational data converted into

2http://www.cs.washington.edu/research/xmldatasets/
3Variable tag is not included, since an information-theoretic analysis shows that it is redundant when

variable path is also considered.

36

2.4 Characterization of heterogeneity

Name Description Size
Protein Sequence
Database (psd7003)

Integrated collection of functionally annotated
protein sequences.

683 MB

SwissProt SWISS-PROT is a curated protein sequence
database which strives to provide a high level of
annotations (such as the description of the
function of a protein, its domains structure,
post-translational modifications, variants, etc.), a
minimal level of redundancy and high level of
integration with other databases.

109 MB

Auction Data
(321gone, ebay, ubid,
yahoo)

Auction data converted to XML from web sources. 23 KB

DBLP Computer
Science Bibliography
(dblp)

The DBLP server provides bibliographic
information on major computer science journals
and proceedings. DBLP stands for Digital
Bibliography Library Project.

127 MB

University Courses
(reed, uwm, wsu)

Course data derived from university websites. 277 KB

NASA Data sets converted from legacy flat-file format
into XML and made available to the public.

23 MB

SIGMOD Record Index of articles from SIGMOD Record 467 KB
TPC-H Relational
Database
Benchmark (part,
lineitem, partsupp,
supplier, orders,
nation, region,
customer)

TPC-H Benchmark, 10 MB version, in XML form. 603 KB

Treebank English sentences, tagged with parts of speech.
The text nodes have been encrypted because they
are copyrighted text from the Wall Street Journal.
Nevertheless, the deep recursive structure of this
data makes it an interesting case for experiments.

82 MB

Mondial World geographic database integrated from the
CIA World Factbook, the International Atlas, and
the TERRA database among other sources.

1 MB

Table 2.4: Collections in the University of Washington XML Data Repository. The
short names between parenthesis are used to refer to the collections in the
experiments of this section.

37

Chapter 2 Background: Exact and Approximate Management of XML Data

Name Size
Berkeley2 5 MB
bibdbpub2 579 KB
CompuScience2 80 MB
dblp2 18 MB
hcibib2 8 MB
qmuldcsdbpub2 241 KB
SIGMOD Record 80 KB
zdnet-xml 39 MB

Table 2.5: INEX 2005 Heterogeneous track collections. All of these collection consist of
bibliographic data.

(a) DBLP Collection (b) The Collection of Computer Science Bibli-
ographies collection

Figure 2.13: Radial plots comparing the heterogeneity of the dblp and CompuScience2
collection using five entropy-based variables

38

2.4 Characterization of heterogeneity

Figure 2.14: Clustering collections by heterogeneity characteristics

39

Chapter 2 Background: Exact and Approximate Management of XML Data

Figure 2.15: Regression tree for membership in collection clusters

XML; in these collections we find very little structural variation, and all information
is effectively encoded in the textual content.

� Cluster 2 contains collection with relatively low structural and textual heterogeneity.

� Cluster 3 contains collection with relatively high structural and low textual hetero-
geneity.

� Cluster 4 contains collection with relatively high structural and textual heterogene-
ity.

These results are summarized by the regression tree displayed in Figure 2.15.
The collections presented so far represent the “mainstream” in XML data management,

since most refinements to existing techniques are tested using these collections, or
collections with similar characteristics, as we shall show in Section 2.4.3. But there are
other applications which require handling XML collections, in which standard XML
techniques are not considered to be applicable because the data are too complex or too
heterogeneous. As an example, we will consider two more collections: the Assam data
set4, which consists of a set of conceptual description of Web Services, and a collection
of documents encoded in LandXML5, a standard in Geographical Information Systems
applications.

4http://moguntia.ucd.ie/repository/datasets/ http://moguntia.ucd.ie/repository/datasets/
5http://www.landxml.org/ http://www.landxml.org/

40

2.4 Characterization of heterogeneity

Figure 2.16: Clustering collections by heterogeneity characteristics, including two highly
heterogeneous collections.

Figure 2.16 shows how the addition of these two new collections leave the original
categories unchanged (except for some minor adjustments in boundary cases), but reveals
a large space of highly heterogeneous collections which is not covered by traditional XML
techniques.

2.4.3 Characterization of retrieval approaches with respect to heterogeneity

We will finish our discussion by characterizing a number of relevant approaches found
in the literature, including some that explicitly address “heterogeneous” data, including
text-oriented (XRank [Guo et al., 2003]), probabilistic (TopX [Theobald, 2006] and
XXL [Theobald and Weikum, 2002]) and relaxation-based ([Amer-Yahia et al., 2002],
[Amer-Yahia et al., 2005]). Table 2.6 describes the collections used by the authors to
showcase their approaches.

The table shows that all of the collections used belong in clusters 2 and 3, and only
[Amer-Yahia et al., 2005] deals with a more challenging collection in cluster 4.

41

Chapter 2 Background: Exact and Approximate Management of XML Data

Approach Collections used Other collections
XRank DBLP, XMark
TopX INEX IMDB,TREC Terabyte
XXL SIGMOD Religious books, Shakespeare

plays, synthetic bibliographies
[Amer-Yahia et al., 2002] DBLP
[Amer-Yahia et al., 2005] Treebank

Table 2.6: A comparison of collections used in in the literature

2.5 Concluding remarks

This chapter has presented the basic results needed to put the contributions of this thesis
into context. After presenting an introduction to the main developments in the area, a
survey of the literature provides support for one key observation: many approximate
approaches reuse a small set of basic similarity measures, with the necessary tailoring to
the problem at hand. Finally, we have presented a formal characterization of heterogeneity
based on information-theoretic considerations, which is broadly useful to many different
XML applications.

42

Chapter 3

A multi-similarity framework for XML

This chapter presents a framework to create flexible similarity measures for XML by
combining existing general-purpose similarity functions. First, Section 3.1 introduces our
approach and describes related work. Section 3.2 presents the basic concepts necessary
for the combination of independent measures, by applying the composition design pattern.
Then, Section 3.3 develops a method to describe measure metadata using Description
Logic; this allows applications to generate, store and process measure metadata using
standard OWL-based tools, which provide many useful primitives, in particular the
possibility to verify the consistency of a complex measure. Finally, Section 3.4 revisits
the main XML similarity-based techniques, and determines which approaches can be
readily adapted into generic components that can be integrated into a multi-similarity
application.

3.1 Introduction and related work

Section 2.3 has shown that a wide variety of similarity measures, both general purpose
and specifically tailored, has been proposed for XML [Guerrini et al., 2006]. Each measure
produces good results when the collections present specific characteristics and are hardly
reusable in other collections. General purpose measures include metric functions such
as the Manhattan or Euclidean distances; IR-like matching coefficients such as the
cosine with tf × idf weighting; entropy-based measures such as the Kullback-Leibler
divergence; and structure-oriented techniques such as variants of the Tree Edit Distance
algorithm [Selkow, 1977].

These similarity measures are usually obtained through the composition of several
“atomic” measures at a given granularity level of the XML hierarchy. For instance, a
measure for complete XML documents is defined in terms of paths similarity, which
in turn requires some criterion to compare the elements in the path. The granularity
levels introduced in Section 2.4.2 that can be considered are: the whole XML document,
subtrees (i.e., regions of documents), paths, elements, links, attributes and textual content
(of attributes and data content elements).

This indicates that it is possible to build frameworks for the implementation of complex
XML similarity measures, based on a library of basic component functions (implementing

43

Chapter 3 A multi-similarity framework for XML

the atomic measures). This does not exclude the employment of ad-hoc measures, if
necessary. For example, the designer of a similarity-based application in the domain
of genetics may need to combine a generic text-oriented function that matches protein
names with a highly specialized function that matches amino acid sequences.

Several works have presented approaches to treat diverse similarity measures in a
generic, reusable way. The work that introduced the concept of multi-similarity, [Adalı
et al., 1998], uses the concept of similarity abstraction, which encapsulates the notion of an
arbitrary similarity function which can be manipulated independently of the underlying
implementation. Ontology alignment systems such as OLA [Euzenat et al., 2005] and
COMA [Do and Rahm, 2002] support the combination of different measures. COMA++
, the successor system to COMA, is of particular interest, since it includes the notion of
combining measures at different granularity levels. A downside of these approaches is that
they are focused on the integration of small-scale schemas (SQL, XSD) and OWL-encoded
ontologies which can be manipulated using memory-based algorithms, and are therefore
not suitable for use in large-scale XML collections.

A crucial feature in any system that supports true multi-similarity is that it should be
possible to add new measures dynamically into the system. This requires the existence
of a metadata repository, which keeps information about the existing measures and its
characteristics. In this respect, OLA uses a hard coded set of measures, while COMA
includes a RDBMS-based onternal store. As an extension of this concept, we propose
coding the relevant metadata using a Description Logic, which can be encoded using the
standard OWL language. The main advantage of this approach is the availability of tools
for metadata management, whose features include facilities for creating semantically rich
descriptions which can be processed, and checked for consistency, using reasoners.

3.2 Measure components

This section defines a formal framework for the definition and composition of similarity
measures, relying on the granularity levels of XML documents. and then specified software
components implementing such functions that can be combined to obtain new measures
specific for a given context.

3.2.1 A Formal Specification of Similarity Measures

Consider the granularity levels in an XML collection, as defined in Section 2.4.2. A
similarity measure at a given granularity level γ can be defined as a function fγ :
mγ(S) ×mγ(S) → [0, 1]. Moreover, it can be expressed in terms of other lower level
similarity functions. For example, if we denote elements by en and paths by pm, then an
instance of similarity function for paths expressed in terms of a similarity function for
elements is

44

3.2 Measure components

fPATH(p1,p2) =

∑
i,j
fELEMENT(ei, ej)

|p1||p2|
where in the simplest case fELEMENT(ei, ej) = 1 if ei = ej and 0 otherwise, and |p| denotes
the length of path p.

3.2.2 Composition of measures

The basic unit of composition is the measure component. A measure component is an
implementation of a similarity function at a given granularity level. It can depend
on one or more lower-level components, but it is irrelevant which concrete lower-level
component is used, as long as it belongs to the right granularity level. This capability of
creating complex measures by combining simpler parts which are measures themselves is
analogous to the Composite pattern commonly used in Software Engineering [Gamma
et al., 1995]; the general model for measure composition can be illustrated by the UML
diagram in Fig. 3.1. In addition, every component can be parametrized; for instance, a
component that computes similarity at the textual level may allow the user to choose
whether common words (“stop words”) must be considered.

Figure 3.1: Simplified UML model describing the application of the Composite pattern
to the creation of complex measures: A MeasureComponent ’s requirements
are fulfilled by other MeasureComponents, creating the provides/requires
hierarchy.

Using this framework, a large number of functions with different requirements can be
defined for each granularity level. In order to characterize them, the partial ordering
of levels ≺G is extended into a provides/requires hierarchy typically used in software

45

Chapter 3 A multi-similarity framework for XML

component engineering [Plašil and Visnovsky, 2002]. Each measure component is thus
tagged with two extra properties, whose values are chosen from a predefined set of
features: the provides property indicates the granularity level at which the function
operates (e.g., all node-level functions provide the feature nodeMatch), while the requires
property indicates the features that must be provided by the lower-level functions on
which the function relies.

For instance, let CPATH be a component that implements the fPATH function defined
above. Then, provides(CPATH) = {pathMatch} and requires(CPATH) = {elementMatch}.
For the component to be usable, another component that provides elementMatch must
be available.

The provides/requires hierarchy separates the representation of the components from
the actual similarity function implemented. This allows us to implement components
for generic operations (usually called “tie components” [Plašil and Visnovsky, 2002]) by
computing an aggregated value out of the results of other components. For instance,
consider the “weighted sum” tie component CWSUM, that can be defined for a set of
n components {C1, . . . , Cn} at the same granularity level γ and a set of n weights
{w1 . . . wn|wi ∈ R}:

parameters(CWSUM) = {{C1 . . . Cn}, {w1 . . . wn}}
provides(CWSUM) =

⋂
i provides(Ci)

requires(CWSUM) =
⋃
i requires(Ci)

fCWSUM : G×G→ [0, 1]

fCWSUM(o1,, o2) =
∑
i

wi × fCi(o1, o2)

Fig. 3.2 shows an instantiation of a multilevel similarity measure that uses WeightedSum,
the implementation of CWSUM. It combines components at the node, label, and text
granularity levels. Note how the components at the node similarity level are computed
using a weighted sum. Edge labels represent the requires/provides hierarchy.

3.3 DL-based measure metadata

We have just shown how to create components that can be glued together to form flexible
similarity measures. However, the data engineer needs to answer higher-level questions.
For instance: given a particular component, which other components are available to
fulfill its requirements? Or, is this component sound (i.e. all of its requirements are
correctly fulfilled)? This is particularly important in collaborative methodologies, in
which sharing components among independently-working engineers is crucial.

Our approach consists in encapsulating all of the required consistency rules in a
declarative formalism, using a suitable Description Logic (DL) [Baader et al., 2003]. DLs

46

3.3 DL-based measure metadata

Figure 3.2: Component structure of a similarity measure

define concepts as sets of individuals, and roles as binary relationships between concepts.
New concepts can be defined by enumeration of individuals, or using a series of primitives,
which vary depending of the expressivity of the particular logic being used. The most
basic primitives are concept conjunction (u), concept disjunction (t), and complement of
a concept (¬).

For example, consider the concepts Female, Person and Woman, and the roles hasChild
and hasFemaleRelative1. We can create a new concept Male as “persons that are not
female”:

Male ≡ Person u ¬Female

This new concept can be used in new definitions, for instance in “individuals that are
either female or male”:

Male t Female

Another important feature are role restrictions, which include existential and universal
quantifications and cardinality restrictions. For example, the “individuals that have a

1Following [Baader et al., 2003], DL formulas are rendered using a Sans Serif font. Concepts are shown in
UpperCamelCase and roles are shown in lowerCamelCase, and names of individuals are all uppercase.

47

Chapter 3 A multi-similarity framework for XML

female child” are described by the expression ∃hasChild.Female, while the “individuals
all of whose children are female” by the concept expression ∀hasChild.Female. In both
cases, the second argument of the role is called the role filler. Cardinality restrictions are
expressed by ≤,≥and = primitives; for example, the “individuals having at least three
children and at most two female relatives” are described as:

(> 3hasChild) u (≤ 2hasFemaleRelative)

Description Logics are specially well suited for the modeling of metadata, and have the
advantage that they support a variety of reasoning tasks (subsumption, instance checking,
relation checking, concept consistency and knowledge base consistency) which can be
exploited in our context to automate many of the tasks that must be performed by the
data engineer when designing a multi-similarity system. In addition, sufficiently expressive
DLs provide “inverse functional” roles, which are exactly equivalent to candidate keys in a
database [De Giacomo and Lenzerini, 1994]. This is useful to support the semi-automatic
specification of indexes as a combination of index components.

In the remainder of this section we develop a mapping of the concepts we have just
described to standard Description Logic notation. This will provide us with a formal
framework for the representation and manipulation of metadata about measures.

The first thing that is needed is a vocabulary for translating the composition pattern.
We introduce the generic transitive role hasPart and its inverse isPartOf ≡ hasPart−. This
partOf/isPartOf pair of roles suffices for a simple description of composite concepts. The
most basic possible definition of a composite is :

∃hasPart.Composite u ∀hasPart.Composite

which corresponds to the set of concepts as the set of individuals having at least one
filler of the role partOf belonging to the concept Composite.

By refining this definition we can obtain a description of a generic component:

Component ≡ ∃hasPart.Component

u ∀hasPart.Component

u= 1hasGranularity.GranularityLevel

u ∀hasGranularity.GranularityLevel

u ∃provides.Requirement

u ∃requires.Requirement

which introduces the concept of a GranularityLevel, of which a Component must
have exactly one. For the purposes of measure description, we can define it as a simple
enumeration of individuals:

48

3.4 Re-usability of existing approaches

GranularityLevel ≡ {DOCUMENT,REGION,PATH,

ELEMENT, LINK,ATTRIBUTE,TEXT}

though, if necessary, this definition can be easily modified to model the relations
between granularity levels which are depicted in Figure 2.6.

The provides/requires hierarchy is defined analogously, using the roles provides and
requires and the concept Requirement.

Example 1 The RegionEvaluator component depicted in Figure 3.2 can be described as:

RegionEvaluator ≡ Component

u ∃hasPart.(Component u hasGranularity.ELEMENT)
u ∀hasGranularity.REGION

u ∃provides.RegionMatchRequirement

u ∃requires.NodeMatchRequirement

u = 1hasCoefficient.SimCoefficient

where the concept SimCoefficient represents the set of available similarity coefficients,
e.g.

SimCoefficient ≡ {JACCARD,DICE,OVERLAP}

and RegionMatchRequirement and NodeMatchRequirement are specializations of Requirement2.
An equivalent (and far more verbose) representation of this definition in the OWL

markup language is depicted in Figure 3.3. ©

The availability of representations in the standard OWL language makes it possible to
take advantage of existing tools, including editors, reasoners and libraries. This greatly
facilitates the integration of DL-based description in real applications.

3.4 Re-usability of existing approaches

Most of the similarity-based techniques for XML described in the previous chapter
incorporate different measures for different similarity levels, and in some cases they allow
some flexibility in the selection of a particular measure at a particular granularity level.
However, instead of the modular approach presented in this paper, they are conceived

2Ideally, the provides/requires hierarchy should be inferred from hasPart/isPartOf relationships. Un-
fortunately, due to some limitations in the handling of rules as provided by currently available DL
management tools it is more convenient to just assert the values into the A-Box.

49

Chapter 3 A multi-similarity framework for XML

<owl : Class rd f : ID=”RegionEvaluator”>
<r d f s : subClassOf rd f : r e s ou r c e=”#Component”/>
<r d f s : subClassOf>

<owl : Re s t r i c t i on>
<owl : onProperty rd f : r e s ou r c e=”#hasPart”/>
<owl : someValuesFrom>

<owl : Class>
<owl : i n t e r s e c t i o n O f rd f : parseType=”C o l l e c t i o n ”>

<owl : Class rd f : about=”#Component”/>
<owl : Re s t r i c t i on>

<owl : onProperty rd f : r e s ou r c e=”#hasGranular i ty ”/>
<owl : hasValue rd f : r e s ou r c e=”#Element”/>

</owl : Re s t r i c t i on>
</owl : i n t e r s e c t i o n O f>

</owl : Class>
</owl : someValuesFrom>

</owl : Re s t r i c t i on>
</r d f s : subClassOf>
<r d f s : subClassOf>

<owl : Re s t r i c t i on>
<owl : onProperty rd f : r e s ou r c e=”#hasGranular i ty ”/>
<owl : hasValue rd f : r e s ou r c e=”#Region”/>

</owl : Re s t r i c t i on>
</r d f s : subClassOf>
<r d f s : subClassOf>

<owl : Re s t r i c t i on>
<owl : onProperty rd f : r e s ou r c e=”#prov ides ”/>
<owl : someValuesFrom rd f : r e s ou r c e=”#RegionMatchRequirement”/>

</owl : Re s t r i c t i on>
</r d f s : subClassOf>
<r d f s : subClassOf>

<owl : Re s t r i c t i on>
<owl : onProperty rd f : r e s ou r c e=”#r e q u i r e s ”/>
<owl : someValuesFrom rd f : r e s ou r c e=”#NodeMatchRequirement”/>

</owl : Re s t r i c t i on>
</r d f s : subClassOf>
<r d f s : subClassOf>

<owl : Class>
<owl : i n t e r s e c t i o n O f rd f : parseType=”C o l l e c t i o n ”>

<owl : Re s t r i c t i on>
<owl : onProperty rd f : r e s ou r c e=”#h a s C o e f f i c i e n t ”/>
<owl : c a r d i n a l i t y rd f : datatype=”&xsd ; i n t ”>1</owl : c a r d i n a l i t y>

</owl : Re s t r i c t i on>
<owl : Re s t r i c t i on>

<owl : onProperty rd f : r e s ou r c e=”#h a s C o e f f i c i e n t ”/>
<owl : al lValuesFrom rd f : r e s ou r c e=”#S imCoe f f i c i en t ”/>

</owl : Re s t r i c t i on>
</owl : i n t e r s e c t i o n O f>

</owl : Class>
</r d f s : subClassOf>

</owl : Class>

Figure 3.3: OWL representation of component RegionEvaluator

50

3.4 Re-usability of existing approaches

as complex monolithic functions. In most cases, however, these flexible parts can be
easily refactored and converted into reusable compositional measures. Conversely, these
approaches would be enriched by allowing the rich parametrization permitted by the
model presented in this chapter.

In this section we revisit the approximate XML approaches described in Section 2.3.1,
analyzing which parts in each technique are amenable to being transformed into generic
components and reused in different contexts.

First of all, ELIXIR [Chinenyanga and Kushmerick, 2002] is based on a textual measure
based on tf × ifd. It is worthy to note that this measure is literally plugged into the
system, as it is implemented by an external systems (WHIRL [Cohen, 1998]). In contrast,
XIRQL [Fuhr and Großjohann, 2001] makes a provision for flexible, user-defined concepts
of similarity at the textual level:

For each data type, there is a special operator symbol. This enables users to
use string equality even on date values, if desired. It also obviates the need
for type inference, which would open a can of worms. One operator, c, has
already been presented which implements a ‘contains’ operation for natural
language text. As another example, for person names, a useful operator would
be $sounds_like$.

XXL [Theobald and Weikum, 2002] proposes an ontology-based similarity measure for
terms and element names, which uses semantic relations (hypernymy, homonymy. and so
on). It also provides a node similarity measure based on structural relations. [Damiani
and Tanca, 2000] rely on “fuzzy weights” to express the relative importance of tags and
subtrees, ans make a provision for “user-defined query semantics”. Finally, [Amer-Yahia
et al., 2005] defines tf×idf -based measures for elements, paths and twigs (XML subtrees).

The only approaches that present difficulties in refactoring are [Amer-Yahia et al.,
2002] and [Schlieder, 2001]. Nevertheless, these approaches can be incorporated into our
framework as monolithic components at the subtree level.

All of these potentially reusable components have been described using the base
concepts techniques presented in the previous section, forming a common component
model. The components that have been incorporated are summarized in Table 3.1.

Example 2 Figure 3.4 shows the structure of a measure that reuses the XXL ontology-
based measure for matching nodes, modified to use XIRQL’s contains operation for
textual content matching. ©

As mentioned above, the possibility to encode the component model using a standard
language (OWL) makes it possible to benefit from existing tools. Figure 3.5 shows the
OWL description of the components used to create the measure in the previous example,

51

Chapter 3 A multi-similarity framework for XML

Subtree Path Element Tag Text
ELIXIR X
XIRQL X
XXL X X

[Damiani and Tanca, 2000] X X
[Amer-Yahia et al., 2005] X X X

Table 3.1: Potentially reusable components in existing approximate XML techniques

Figure 3.4: A similarity measure combining components extracted from XXL and XIRQL

52

3.5 Summary

Figure 3.5: The Protégé view of the XXL textual similarity function. This model also
includes the relevant XIRQL components required for the creation of the
measure in Example 2

loaded into the Protégé editor3, which is OWL-aware. Figure 3.6 shows the underlying
OWL code.

The most important benefit of OWL encoding, however, is the possibility to check the
consistency of measure models using DL reasoners. For concrete applications, standard off-
the-self editors such as Protégé are too generic, and specialized tools are more convenient
for particular applications. Chapter (6) presents a measure editor which is tailored to
the editing of measure component in a multi-similarity context.

3.5 Summary

This chapter presents a model for highly customizable measures, suitable for use in
multi-similarity applications. The model is based on the composition of basic components.
A method to describe the measures using Description Logics is also presented, which
provides several advantages due the ability to reuse OWL-based standard and tools; in
particular, a standard machine-readable representation format, and the ability to use
reasoners to check the consistency of a measure. Finally, existing XML similarity-oriented
techniques are analyzed, in order to check which ones can be exploited to form generic,
reusable measure components.

3http://protege.stanford.edu/

53

Chapter 3 A multi-similarity framework for XML

<owl : Class rd f : ID=”XXL TextEvaluator”>
<r d f s : subClassOf>
<owl : Re s t r i c t i on>
<owl : c a r d i n a l i t y rd f : datatype=”http ://www. w3 . org /2001/XMLSchema#i n t ”
>1</owl : c a r d i n a l i t y>
<owl : onProperty>
<owl : Funct iona lProperty rd f : ID=”useOntology”/>

</owl : onProperty>
</owl : Re s t r i c t i on>

</r d f s : subClassOf>
<r d f s : subClassOf>
<owl : Re s t r i c t i on>
<owl : onProperty>
<owl : Funct iona lProperty rd f : about=”#useOntology”/>

</owl : onProperty>
<owl : al lValuesFrom>
<owl : Class rd f : ID=”ExternalOntology”/>

</owl : al lValuesFrom>
</owl : Re s t r i c t i on>

</r d f s : subClassOf>
<r d f s : subClassOf rd f : r e s ou r c e =”http :// krono . act . u j i . e s /ns/ measures . owl#TextEvaluator”/>

</owl : Class>

Figure 3.6: OWL description of the XXL text evaluator component, which depends on
an external ontology for operation

54

Chapter 4

A Flexible pattern-based querying model for
semistructured data

This chapter introduces a set of techniques for approximate querying of XML data.
Section 4.1 motivates the chosen approach. Section 4.2 formally introduces the notion of
pattern, target, fragments and region the approach relies on. Section 4.3 discusses how to
efficiently identify fragments and regions, and Section 4.4 presents experimental results.

4.1 Introduction

Interoperability among systems is commonly achieved through the interchange of XML
documents, that can represent a great variety of information resources: semi-structured
data, database schemas, concept taxonomies, ontologies, etc. Most XML document collec-
tions are highly heterogeneous from several viewpoints. The first level of heterogeneity is
tag heterogeneity : vocabulary discrepancies may occur in the element tags. Two elements
representing the same information can be labeled by tags that are stems (e.g., author
and authors), that are one substring of the other (e.g., authors and co-authors), or
that are similar according to a given thesaurus (e.g., author and writer). The second
level of heterogeneity is structural heterogeneity that results in documents with different
hierarchical structures. Structural heterogeneity can be produced by the different schemas
(i.e., DTDs or XML Schemas) behind the XML documents. Moreover, as schemas can
also include optional, alternative, and complex components, structural heterogeneity can
appear even for a single schema collection. In a structurally heterogeneous collection,
a parent-children relationship (e.g., the address element child of the person element)
can be relaxed into an ancestor-descendant relationship (e.g., the address element is a
descendant of the person element) but it can also be inverted (e.g., the person element
is a child/descendant of the address element) or the two elements can appear as siblings,
or even combined in a single tag (person_address).

One of the most useful operation on XML documents is pattern-based retrieval: given
a user-provided pattern all its occurrences in the collection must be retrieved (subtree
identification) [Kilpeläinen, 1992]. Document heterogeneity poses several challenges
to this retrieval. In the case of heterogeneous XML collections, indeed, this retrieval

55

Chapter 4 A Flexible pattern-based querying model for semistructured data

must also be approximate, that is, document subtrees that best fit the user requests
must be detected. The hierarchical structures of XML documents in the collection,
indeed, may only partially conform to the hierarchical structure of the pattern. For these
reasons, a user query could be answered by a set of subtrees presenting slight variations
in their labels as well as in their structures. Existing approaches to approximate query
answering for XML documents [Amer-Yahia et al., 2002, 2005, Marian et al., 2005,
Schlieder, 2002] adapt query evaluation techniques to accommodate non-exact matching
and top-k processing, by weakening some constraints in the user query. The approach
most often adopted in literature is weakening the parent-children relationship to the
ancestor-descendant relationship.

The techniques presented in this chapter stress the tag and structural heterogeneity
of XML document collections. This can lead to search a very large amount of highly
heterogeneous documents (the target). In this context, we propose an approach for
identifying the portions of documents that are similar to a given pattern. A pattern is
an abstract representation of a user request. Documents in the target collection may
exhibit weak similarity to the pattern. Thus, with respect to the mentioned proposals,
we take the reverse approach: rather than weakening strict structure-based retrieval, we
completely disregard structure in the beginning. We thus develop a two-phase approach
where, in the first phase, structural constraints expressed by the pattern are not taken
into account in identifying the portions of the target in which the nodes of the pattern
appear. The structural similarity between the pattern and the identified portions of the
target is evaluated as a second step, allowing to rank the identified portions and producing
the result. In this second phase, different similarity measures can be considered, thus
accounting for different degrees of document heterogeneity, depending on the application
domain and on the heterogeneity degree of the target collection.

The proposed approach is thus highly flexible. The problem is however how to perform
the first step efficiently, that is, how to efficiently identify fragments, i.e., portions of
the target containing labels similar to those of the pattern, without relying on strict
structural constraints. Our approach employs ad-hoc data structures: a semantic inverted
index of the target and a pattern index extracted from the inverted index on the basis of
the pattern labels. Through the semantic inverted index, nodes in the target with labels
similar to those of the pattern are identified and organized in the levels in which they
appear in the target. Fragments are generated by considering the ancestor-descendant
relationship among such vertices. Moreover, identified fragments are combined in regions,
allowing for the occurrence of nodes with labels not appearing in the pattern, if the region
exhibits a higher structural similarity with the pattern than the fragments it is originated
from. Finally, some heuristics are employed to avoid considering all the possible ways
of merging fragments into regions and for the efficient computation of similarity, thus
making our approach more efficient without losing precision.

In this chapter, we formally define the notions of fragments and regions and propose
the algorithms allowing their identification, relying on our pattern index structure. The

56

4.2 Pattern, target, fragment, and region trees

use of different structural similarity functions taking different structural constraints
(e.g., ancestor-descendant and sibling order) into account is discussed. The practical
applicability of the approach is finally demonstrated, both in terms of quality of the
obtained results and in terms of space and time efficiency, through a comprehensive
experimental evaluation. The contribution of the chapter can thus be summarized as
follows: (i) specification of an approach for the efficient identification of regions by specif-
ically tailored indexing structures; (ii) characterization of different similarity measures
between a pattern and regions in a collection of heterogeneous tree structured data; (iii)
characterization and experimental analysis of the different degrees of heterogeneity in
XML document collections; (iv) thorough experimental validation of the approach.

4.2 Pattern, target, fragment, and region trees

In our approach, both patterns and targets are represented as trees. Thus, fragments and
regions are (sub)trees as well. In this section, we introduce these notions. First of all,
however, we introduce some basic notions and some useful notations on trees, together
with some functions for handling element tag similarity.

4.2.1 Trees

The notation used throughout this paper to represent trees is fairly standard. A tree
is a structure T = (V,E), where V is a finite set of vertices, E is a binary relation on
V that satisfies the following conditions: (i) the root (denoted root(T)) has no parent;
(ii) every node of the tree except the root has exactly one parent; (iii) all nodes are
reachable via edges from the root, that is, (root(T), v) ∈ E∗ for all nodes in V (E∗ is the
Klein closure of E). If (u, v) ∈ E, we say that (u, v) is an edge and that u is the parent
of v (denoted P(v)). A labeled tree is a tree with which a node labeling function label
is associated. Given a tree T = (V,E), Table 4.1 reports functions and symbols used
throughout the paper. In the following, when using the notations, the tree T will not be
explicitly reported whenever it is clear from the context. Otherwise, it will be marked as
subscript of the function.

Node order is determined by a pre-order traversal of the document tree [Grust, 2002].
In a pre-order traversal, a tree node v is visited and assigned its pre-order rank pre(v)
before its children are recursively traversed from left to right. A post-order traversal
is the dual of the pre-order traversal: a node v is visited and assigned its post-order
rank post(v) after all its children have been traversed from right to left. The level of
a node v in the tree is defined, as usual, by stating that the level of the root is 1,
and that the level of any other node is the successor of the level of its parent. The
position of a node v among its siblings is defined as the left-to-right position at which v
appears among the nodes whose parent is the parent of v. Each node v is coupled with a
quadruple (pre(v), post(v), level(v), pos(v)) as shown in Figure 4.2.1 (pre(v) is used as

57

Chapter 4 A Flexible pattern-based querying model for semistructured data

Symbol Meaning

root(T) root of T
V(T) set of vertices of T (i.e., V)
|V |,|T | cardinality of V(T)
label(v),label(V) label associated with a node v and the nodes in V
P(v) parent of vertex v
pre(v) pre-order traversal rank of v
post(v) post-order traversal rank of v
level(v) level in which v appears in T
level(T) depth of T
pos(v) left-to-right position at which v appears among its siblings
desc(v) set of descendant of v (desc(v) = {u|(v, u) ∈ E∗})
nca(v, u) nearest common ancestor of v and u
d(v) distance of node v from the root
dmax maximal distance from the root (dmax = maxv∈V(T)d(v))

Table 4.1: Notations

node identifier). For the sake of clarity, in the following graphics we omit the quadruples
when they are not relevant for the discussion.

Pre- and post-ranking can also be used to efficiently characterize the descendants u of v.
A node u is a descendant of v, v ∈ desc(u), iff pre(v) < pre(u)∧post(u) < post(v). There
are some other useful properties that are trivially computed using these numbers. If,
given two nodes, one is neither an ascendant nor a descendant of the other, then they are
either left- or right-relatives. A node v is a left-relative of a node u if pre(v) < pre(u) and
post(v) < post(u). The definition of right-relative is analogous. Given a tree T = (V,E)
and two nodes u, v ∈ V , the nearest common ancestor of u and v, nca(u, v), is the common
ancestor of u and v such that any other common ancestor of u and v is an ancestor of
nca(u, v). Note that nca(u, v) = nca(v, u), and nca(u, v) = v if u is a descendant of v.
The distance d(v) of a node v from the root, which coincides with its pre-order rank,
amounts to the number of nodes traversed in moving from the root to the node in the
pre-order traversal. The maximal distance dmax corresponds to the number of nodes in
the tree, i.e., |T |. dmax also corresponds to the post-order rank of the root.

Example 3 Referring to the tree in Figure 4.2.1, node (2, 2, 2, 1) is a descendant of node
(1, 3, 1, 1), whereas it is a left-relative of node (3, 1, 2, 2). The distance of node (3, 1, 2, 2)
from the root is 3, and dmax is 3 as well. ©

4.2.2 Pattern and target trees

A pattern is a labeled tree. The pattern is a tree representation of the user interest
and can correspond to a collection of navigational expressions on the target tree (e.g.,
XPath or XQuery expressions in XML documents) or simply to a set of labels for which

58

4.2 Pattern, target, fragment, and region trees

article

title conference

(1,3,1,1)

(2,2,2,1) (3,1,2,2)

(a)

papertitle

conference

(b)

article

title

conference

(c)

article-title

conference

(d)

Figure 4.1: (a) Pre/Post order rank, a matching fragment with a different order (b),
missing levels (c), and missing elements (d)

a “preference” is specified on the hierarchical or sibling order in which such labels should
occur in the target. Labels in the pattern should be semantically distinct each other in
order to avoid that two pattern labels can match the same element in the collection.

Example 4 Consider the pattern in Figure 4.2.1. Intuitively, the pattern expresses
an interest in document portions related to articles, their titles, and the conferences
where they are presented. Possible matches for this pattern are reported in Figure
4.1(b,c,d). The matching tree in Figure 4.2.1 contains similar labels but at different
positions, whereas the one in Figure 4.2.1 contains similar labels but at different levels.
Finally, the matching tree in Figure 4.2.1 misses an element and the two elements appear
at different levels. ©

The target is a set of heterogeneous documents in a source. The target is conveniently
represented as a tree with a dummy root labeled db and whose subelements are the
documents of the source. This representation relies on the common model adopted by
native XML databases (e.g., eXist [Meier, 2002], Apache Xindice) and simplifies the
adopted notations. An example of target is shown in Figure 4.2. Note that the dummy
root has pre-order rank 0 and is at level 0 in the tree.

Definition 3 (Target). Let {T1, . . . , Tn} be a collection of trees, where Ti = (Vi, Ei),
1 ≤ i ≤ n. A target is a tree T = (V,E) such that:

� V = ∪ni=1Vi ∪ {r}, and r 6∈ ∪ni=1Vi,

� E = ∪ni=1Ei ∪ {(r, root(Ti)), 1 ≤ i ≤ n},

� label(r) = db.

2

59

Chapter 4 A Flexible pattern-based querying model for semistructured data

 db
[0,17,0,1]

 article
 [1,16,1,1]

 title
[2,15,2,1]

 authors
[3,14,2,2]

 editor
[6,11,2,3]

 name
[5,12,3,2]

 name
[4,13,3,1]

 name
[8,9,2,1]

 invited
[9,8,2,2]

 conference
 [7,10,1,2]

 writer
[13,4,1,3]

 name
[14,3,2,1]

 article-title
 [15,2,2,2]

article-conference
 [16,1,2,3]

 title
[11,6,4,1]

 author
[12,5,4,2]

 paper
[10,7,3,1]

Figure 4.2: A target

4.2.3 Fragment and region trees

The basic building blocks of our approach are fragments. Given a pattern P and a target
T , a fragment is a subtree of T , belonging to a single document of the target, in which
only nodes with labels similar to those in P are considered. Two vertices u, v belong to a
fragment for a pattern iff their labels as well as the label of their nearest common ancestor
similarly belong to the labels in the pattern. Edges in the fragment either correspond
to a direct edge in the target (parent-children relationship) or to a path in the target
(ancestor-descendant relationship). Several edges in the target, indeed, can be collapsed
in a single edge in the fragment by “skipping” nodes that are not included in the fragment
since their labels do not similarly belong to those in the pattern.

Definition 4 (Fragment). A fragment F of a target T = (VT , ET) for a pattern P is a
subtree (VF , EF) of T for which the following properties hold:

� VF is the maximal subset of VT such that root(T) 6∈ VF and ∀u, v ∈ VF , label(u), label(v),
and label(nca(u, v)) ∝ label(V(P));

� for each v ∈ VF , nca(root(F), v) = root(F);

� EF = {(u, v) | u, v ∈ VF ∧ (u, v) ∈ E∗T ∧ (6 ∃w ∈ VF , w 6= u, v s.t. ((u,w) ∈
E∗T ∧ (w, v) ∈ E∗T))}.

2

Example 5 Consider the pattern in Figure 4.2.1 and the target in Figure 4.2. By
considering all the label similarity functions introduced in Section 4.2.6, the corresponding

60

4.2 Pattern, target, fragment, and region trees

four fragments are shown in Figure 4.3(a). The first fragment contains nodes whose
labels are exactly the same appearing in the pattern. By contrast, the others require
to exploit the substring and ontology-based functions. For instance, the second tree
contains paper as node label, and paper 'St

o
article. Similarly, the third and fourth

trees contain node labels that are similar, exploiting the substring function Stss to labels
title and conference in the pattern, respectively. The second tree provides an example
of fragment in which a node of the original tree (i.e., node (9, 8, 2, 2) labeled by invited)
is not included. ©

Starting from fragments, regions are introduced as a combination of fragments rooted at
the nearest common ancestor in the target. Two fragments can be merged in a region
only if they belong to the same document. In other words, the common root of the two
fragments is not the db node of the target.

Example 6 Consider the tree T rooted at node n (13, 4, 1, 3) in Figure 4.2. It has two
subtrees (the ones containing elements article-title and article-conference) that
are fragments with respect to the pattern in Figure 4.2.1. Though n is not (part of)
a fragment, the subtree consisting of n and its fragment subtrees could have a higher
similarity with the pattern tree in Figure 4.2.1 than its subtrees separately. Therefore,
combining fragments into regions may lead to subtrees with higher similarities. ©

A region can be a single fragment or it can be obtained by merging different fragments in
a single subtree whose root is the nearest common ancestor of the fragments. Thus, while
all fragment node labels similarly belong to labels in the pattern, a region can contain
labels not similarly belonging to pattern labels.

Definition 5 (Regions). Let FP (T) be the set of fragments identified between a pattern
P and a target T . The corresponding set of regions RP (T) is inductively defined as
follows.

� FP (T) ⊆ RP (T);

� For each F = (VF , EF) ∈ FP (T) and for each R = (VR, ER) ∈ RP (T) s.t.
label(nca(root(F), root(R))) 6= db, S = (VS , ES) ∈ RP (T); where:

– root(S) = nca(root(F), root(R)),

– VS = VF ∪ VR ∪ {s},

– ES = EF ∪ ER ∪ {(s, root(F)), (s, root(R))}.

2

61

Chapter 4 A Flexible pattern-based querying model for semistructured data

article-conference
 [16,1,2,3]

article-title
[15,2,2,2]

 title
[11,6,4,1]

 paper
[10,7,3,1]

conference
 [7,10,1,2]

 article
 [1,16,1,1]

 title
[2,15,2,1]

article-title
[15,2,2,2]

article-conference
 [16,1,2,3]

 writer
[13,4,1,3]

Figure 4.3: (a) Fragments, and (b) generated region

Example 7 The fragments in Figure 4.3(a) are also regions as well as the region reported
in Figure 4.3(b) obtained by merging the third and fourth fragments in Figure 4.3(a).
Note that the region root label (i.e., writer) does not similarly belong to labels in the
pattern. ©

This definition of regions results in identifying as regions all possible combinations of
fragments in a document of the target. This number can be exponential in the number
of fragments. In Section 4.3.3 the locality principle, exploited to reduce the number of
regions to consider, will be discussed.

The notions of level of a node and distance between two nodes, when applied to regions,
refer to the corresponding notions in the original target tree. More specifically, they refer
to the target subtree whose root is the region root and whose leaves are the region leaves.
We will refer to this tree as the target subtree covered by the region. This subtree, as
already discussed, may contain additional internal nodes that are not included in the
region since their labels do not appear in the pattern. Specifically, internal nodes are
included in the covered subtree if they are either in the path from the region root to
some region node or if they are internal sibling of two nodes in the covered tree (i.e.,
right-sibling of one of them and left-sibling of the other).

Definition 6 (Covered Subtree). Let T be a target and R be a region on it. The subtree
of T covered by R, denoted as C(R), is the subtree of T such as:

� VC(R) ⊆ VT is inductively defined as follows:

– VR ⊆ VC(R);

– ∀v ∈ VT such that ∃u,w ∈ VC(R) and (u, v), (v, w) ∈ VT , v ∈ VC(R);

– ∀v ∈ VT such that ∃u,w, f ∈ VC(R) and (f, u), (f, v), (f, w) ∈ VT , u is a
left-sibling of v, and w is a right-sibling of v, v ∈ VC(R);

� EC(R) = {(u, v)|(u, v) ∈ ET s.t.u, v ∈ VC(R)}.

2

62

4.2 Pattern, target, fragment, and region trees

(a) (b) (c)

Figure 4.4: Covered subtrees in a target

Example 8 Consider region R2 of Figure 4.5. The depth of the region level(R2) = 4
though the region includes only three nodes. Similarly, the level of the paper labeled
node is 3. The distance of the paper labeled node is 4, which is also the maximal distance
in the region. ©

Figure 4.4 presents different parts of a target where black nodes identify region nodes
and gray nodes together with black nodes form the covered subtree.

In this section we present the foundation of our two-phase approach to identify regions
similar to a pattern in a target. We first identify the possible matches between the vertices
in the pattern and the vertices in the region having similar labels, without exploiting
the hierarchical structure of the tree. Then, the hierarchical structure can be taken into
account to select, among the possible matches, those that are structurally more similar.
Specifically, in this section, after having introduced the definition of mapping, we propose
three different similarity measures. Two of them are structural similarity measures, in
that they take the tree structure into account to tune the similarity degree obtained by
tag matches.

4.2.4 Mapping between a pattern and a region

A mapping between a pattern and a region is a relationship among their elements that
takes the tags used in the documents into account. Our definition differs from the
definition of mapping proposed by other authors ([Nierman and Jagadish, 2002, Buneman
et al., 1997]). Since our focus is on heterogeneous structured data, we do not take the
hierarchical organization of the pattern and the region into account in the definition of
the mapping. We only require that the element labels are similar.

Definition 7 (Mapping M). Let P be a pattern and R be a region subtree of a target
T . A mapping M is a partial injective function between the vertices of P and those of R
such that ∀xp ∈ V(P),M(xp) 6=⊥⇒ label(xp) ' label(M(xp)). 2

63

Chapter 4 A Flexible pattern-based querying model for semistructured data

 article
[1,16,1,1]

 title
[2,15,2,1]

article-title
[15,2,2,2]

article-conference
 [16,1,2,3]

 writer
[13,4,1,3]

article

title conference

conference
 [7,10,1,2]

 paper
[10,7,3,1]

 title
[11,6,4,1]

R1

R2
R3

Figure 4.5: Mapping between the pattern and different regions

Example 9 Figure 4.5 reports the pattern P of Figure 4.2 in the center and three target
regions, R1, R2, R3. Dashed lines represent a mapping among the vertices of the pattern
and those of each region. ©

Several mappings can be established between a pattern and a region. The best one will be
selected by means of a similarity measure that evaluates the degree of similarity between
the two structures relying on the degree of similarity of their matching vertices.

Example 10 Figure 4.6 reports how different mappings can be established between the
region R in Figure 4.3(b) and the pattern P in Figure 4.2.1. ©

Given a similarity measure, like the ones discussed in the next section, assessing the
similarity between vertices, a mapping can be evaluated as follows.

Definition 8 (Evaluation of a Mapping M). Let M be a mapping between a pattern P
and a region R, and let Sim be a vertex similarity function. The evaluation of M is:

Eval(M) =

∑
xp∈V(P)s.t.M(xp)6=⊥ Sim(xp,M(xp))

|V(P)|
2

The similarity between a pattern and a region is then defined as the maximal evaluation
among the mappings that can be determined between the pattern and the region.

Definition 9 (Similarity between a Pattern and a Region). LetM be the set of mappings
between a pattern P and a region R. The similarity between R and P is defined as:

Sim(P,R) = maxM∈MEval(M)

2

64

4.2 Pattern, target, fragment, and region trees

article

title conference
article-title
[15,2,2,2]

article-conference
 [16,1,2,3]

 writer
[13,4,1,3]

article-title
[15,2,2,2]

article-conference
 [16,1,2,3]

 writer
[13,4,1,3]

article-title
[15,2,2,2]

article-conference
 [16,1,2,3]

 writer
[13,4,1,3]

Figure 4.6: Identification of different mappings from the same region and pattern

4.2.5 Similarity between matching vertices

We present three possible approaches for computing the similarity between a pair of
matching vertices. The first one assesses similarity only on the basis of label matching,
whereas the other two take the structure into account.

4.2.5.1 Match-based similarity

In the first approach, similarity only depends on node labels. Similarity is 1 if labels are
identical, whereas a pre-fixed penalty δ is applied if labels are similar. If they are not
similar, similarity is 0.

Definition 10 (Match-based Similarity). Let P be a pattern, R be a region in a target
T , xp a node of P , and xr = M(xp). Their similarity is computed as:

SimM (xp, xr) =

1 if label(xp)=label(xr)

1−δ if label(xp)'label(xr)

0 otherwise

2

Example 11 Let xp be the vertex tagged article in the pattern P in Figure 4.5 and
x1
r , x

2
r , x

3
r the corresponding vertices in the regions R1, R2, R3. Table 4.1(a) reports, in

the first column, the match-based similarity between xp and the corresponding vertices
in the three regions.
Table 4.1(b) reports, in the first column, the match-based evaluations of the mappings
between P and each of the regions (see Figure 4.5), computed according to Definition 8.
For regions R1 and R2, there is a single mapping (M1 and M2, respectively). For region
R3, by contrast, the three mappings M l

3, M r
3 , and M b

3 , appearing in the left, right, and
bottom, respectively, of Figure 4.6, are evaluated. The table also highlights, in bold, the
similarity of P with each of the regions, computed according to Definition 9. ©

65

Chapter 4 A Flexible pattern-based querying model for semistructured data

SimM SimL SimD

x1
r 1 1 1
x2
r 1− δ 1

2 − δ
1
2 − δ

x3
r 1− δ 1

2 − δ
1
3 − δ

SimM SimL SimD

M1
2
3

2
3

2
3

M2 1− δ
3

7
12 −

δ
3

1
2 −

δ
3

M b
3

2
3 · (1−δ)

1
2 −

2
3 · δ

1
2 −

2
3 · δ

M l
3

2
3 · (1−δ)

1
2 −

2
3 · δ

5
9 −

2
3 · δ

Mr
3

2
3 · (1−δ)

2
3 · (1−δ)

2
3 · (1−δ)

Table 4.2: (a) Similarity of matching vertices (b) Evaluation of mappings and similarity
of a pattern with regions

4.2.5.2 Level-based similarity

In the second approach, the match-based similarity is combined with the evaluation of
the level at which xp and M(xp) appear in the pattern and in the region. Whenever
they appear in the same level, their similarity is equal to the similarity computed by the
first approach. Otherwise, their similarity linearly decreases as the number of levels of
difference increases. We recall that levels in the region refer to the levels in the target
subtree covered by the region.

Definition 11 (Level-based similarity). Let P be a pattern, R be a region in a target T ,
xp a node of P , and xr = M(xp). Their similarity is computed as:

SimL(xp, xr) = SimM (xp, xr)−
|levelP (xp)− levelR(xr)|
max(level(P), level(R))

The similarity is 0 if the obtained value is below 0. 2

Example 12 The second columns of Tables 4.1(a) and 4.1(b) report the level-based
similarities. ©

4.2.5.3 Distance-based similarity

Since two nodes can be in the same level, but not in the same position, a third approach
is introduced. The similarity is computed by taking the distance of nodes xp and M(xp)
with respect to their roots into account. Thus, in this case, the similarity is the highest
only when the two nodes are in the same position in the pattern and in the region. We
recall that distances in the region refer to the distances in the target subtree covered by
the region computed through the recursive function dR in Figure 4.7. Given a region
R, v1, ..., vn are the vertices of R ordered according to their pre-order rank in the target
T . In the figure we report the computation of the distance for the root of R (v1) and
for a generic vertex of R that is not the root. Note that, dmaxR = dR(vn). Given two

66

4.2 Pattern, target, fragment, and region trees

dR(v1) = 1

dR(vi) = dR(vi−1) +

 level(vi)− level(vi−1) vi ∈ desc(vi−1)
pos(vi)− pos(vi−1) vi sibling of vi−1

pos(avi)− pos(avi−1) + level(vi)− level(avi) otherwise

Figure 4.7: Distance of a vertex in a region R

adjacent vertices vi−1 and vi that are not siblings, avi−1 and avi denote their common
sibling ancestors. We remark that the last two expressions for computing the distance of
a generic vi in R includes the two previous cases in the definition of dR. However, for the
sake of clarity we have pointed out these two particular cases.

Definition 12 (Distance-based Similarity). Let P be a pattern, R be a region in a target
T , xp a node of P , and xr = M(xp). Their similarity is computed as:

SimD(xp, xr) = SimM (xp, xr)−
|dP (xp)− dR(xr)|
max(dmaxP , dmaxR)

The similarity is 0 if the obtained value is below 0. 2

Example 13 The third columns of Tables 4.1(a) and 4.1(b) report the distance-based
similarities. ©

4.2.6 Label similarity

Labels can be similar or dissimilar depending on the adopted criteria of comparison
specified by means of functions. In this chapter, the following similarity functions have
been considered, even if other ones can be easily integrated:

� Case insensitive similarity function Stci. Two tags are similar if their differences
depend only on the case (e.g., author and Author are similar).

� Stemming function Stst. Two tags are similar if one is a stem of the other (e.g.,
author and authors are similar).

� Edit distance function Sted. Two tags are similar if their edit distance is less than a
prefixed threshold (e.g., author and auth are similar).

� Substring function Stss. Two tags are similar if the first one is contained in the
second one (e.g., author and conference-author are similar).

� Ontology-based function Sto. Two tags are similar if they are synonym relying on a
given Thesaurus (e.g., author and writer are similar).

67

Chapter 4 A Flexible pattern-based querying model for semistructured data

Relying on these similarity functions, the notions of similarity between two tags or
between a tag and a set of tags are defined as follows.

Definition 13 (Similarity and Similarly Belonging). Let S be a set of label similarity
functions. Let l1, l2 be two labels, l1 is similar to l2 according to S (denoted as l1 'S l2)
if and only if l1 = l2 or l1 is similar to l2 according to a function in S. Let then l be a
label and L be a set of labels, l similarly belongs to L according to S (denoted as l ∝S L)
if and only if ∃n ∈ L s.t. l 'S n. 2

4.3 Construction of fragments and regions

The focus of this section is on the data structures and algorithms for the efficient
identification of fragments and regions in the target. As specified in Definition 4, each
fragment is a set of nodes bound by the ancestor-descendant relationship in the target.
A general purpose indexing structure along with an indexing structure depending on the
pattern P are employed for improving the performances of our approach. Fragments
are merged into regions, as specified in Definition 5, only when the similarity between
P and the generated region is greater than the similarity between P and each single
fragment. Thus, regions in the target are single fragments or combinations of regions
with fragments. Target subtrees covered by a region should be evaluated only accessing
nodes in the regions and information contained in the auxiliary indexing structures.

In the remainder of the section, we first present the indexing structures. Then, we
discuss the algorithms for the construction of a list of fragments and we present the
algorithm for the creation of regions starting from such a list.

4.3.1 Inverted index and pattern index

Directly evaluating the pattern on the target is inefficient and introduce scalability
issues in the approach, due to the tag and structural heterogeneity of the collection.
For these reasons, an inverted index is proposed. This index is independent from the
retrieval pattern and is composed by a traditional inverted index coupled with a table,
name-similarity table, that specifies relationships among tags in the collection relying on
the semantic functions discussed in Section 4.2.

This index allows us to easily identify in the collection nodes with similar tags according
to different criteria. Since the number of labels that normally occur in a target is sensibly
smaller than the number of elements, the size of the name-similarity table is often
contained and it can also fit in main memory. This last claim has been proved (check
details in Section 4.4) by considering many collections of XML documents gathered from
the Web.

The inverted index is built as follows. Starting from the labels of a target, a traditional
inverted index is created, that is, each distinct label l occurring in the target is associated

68

4.3 Construction of fragments and regions

1,16,1,1

4,13,3,1

15,2,2,2

10,7,3,1

16,1,2,3

5,12,2,2

12,5,2,2

3,14,2,2

13,4,1,3

7,10,1,2

14,3,2,18,9,2,1

6,11,2,3

9,8,2,2

article

author

article-title

paper

name

conference

invited

editor

article-conference

authors

writer

title

Sed
t

Sss
t

So
tt

Sci

1

2

1

2

2

1

1

1

2

2

3

3

1

1

(a) (b)

11,6,4,12,15,2,1

article
article-title

tag

article-conference

article-title

author

paper
name

conference

invited

editor

authors

writer
title

article-conference

t
Sst

1

1

Figure 4.8: Semantic inverted index: (a) inverted index and (b) name-similarity table

with the list of vertices labeled by l, ordered according to the pre-order rank. For each
vertex v ∈ V(T) the 5-tuple (pre(v), post(v), level(v), pos(v),P(v)) is maintained. Then,
tags in the collection are grouped according to each of the tag-based similarity functions
presented in Section 4.2 and each group is progressively numbered. Each tag is finally
associated with the list of the group identifiers it belongs to. Figure 4.8(b) reports this
association by means of a table. For example, author and authors belong to the same
class according to function Sted, whereas author, authors, and writer belong to the
same class according to function Sto. In this way, when nodes tagged l should be retrieved
in the target, the rows in the name-similarity table corresponding to l are extracted,
and then, according to one or more similarity measures, all the similar tags are easily
identified. In the case l does not belong to the name-similarity table, one of the tag-based
similarity functions can be applied to identify a similar tag in the table.

Given a pattern P , for every node v in P , all the occurrences of nodes u in the target
tree such that label(v) 'S label(u) are retrieved from the inverted index according to
the functions in S, and organized level by level in a pattern index. The pattern index
therefore depends on the pattern that should be evaluated on the target. The number of
levels in the index depends on the levels in T at which vertices occur with labels similar
to those in the pattern. For each level, vertices are ordered according to the pre-order
rank.

Depending on the label similarity functions in S, different pattern indexes can be

69

Chapter 4 A Flexible pattern-based querying model for semistructured data

1,16,1,1 7,10,1,2

2,15,2,1

1

2

3 11,6,4,1

1,16,1,1

15,2,2,2 16,1,2,3

7,10,1,2

10,7,3,1

11,6,4,1

1

2

3

4

2,15,2,1

1,16,1,1 7,10,1,2

10,7,3,1

11,6,4,1

1

2

3

4

2,15,2,1

Figure 4.9: Pattern index (a) with label equality, (b) applying ontology-based function,
and (c) applying all the criteria

generated. Figure 4.9(a) shows the pattern index obtained by identifying nodes identical
to those of the pattern, Figure 4.9(b) reports the pattern index obtained by applying
the ontology-based function Sto, and, finally, Figure 4.9(c) the pattern index in which all
the criteria have been exploited. All the pattern indexes are obtained starting from the
pattern in Figure 4.2.1 evaluated on the inverted index in Figure 4.8 corresponding to
the target in Figure 4.2.

The following proposition states the number of operations for the construction of a
pattern index starting from the inverted index and a pattern.

Proposition 1 Let K be the number of distinct labels in a inverted index SII and M
the maximal number of nodes in an entry of SII. The number of operations for the
construction of the pattern index for a pattern P is O(|P | ·K ·M). 4

4.3.2 Algorithms for the construction of fragments

Once the pattern index is generated, the fragments are generated through the recursive
Algorithm 1: CreateFragments and Algorithm 2: CreateListOfFragments. The main
advantage of these algorithms is the identification of the fragments through a single visit
of the pattern index so that the complexity of fragments construction is kept linear.

To simplify the presentation of the algorithm we assume that, once a node in the
pattern index is visited and inserted in a fragment, it is removed from the pattern index.
In the algorithms, given a pattern index PI, size(PI) denotes the number of levels, PI(l)
denotes the list of nodes at level l (1 ≤ l ≤ size(PI)), and head(PI(l)) denotes the first
node in the list PI(l).

Algorithm CreateFragments is invoked relying on the level and the pre-order rank
of the roots of the fragments to be generated. Given a fragment F , CreateFragments
identifies all the nodes of F appearing in the pattern index and generates a tree on such
nodes according to Definition 4. Moreover, the recursive calls of this function also return
the fragments whose roots appear in a lower level and precede the root of F .

Relying on the assumption that, when a fragment is generated, it is removed from PI,
the PI on which CreateFragments is invoked for a fragment F does not contain all the

70

4.3 Construction of fragments and regions

Algorithm 1 CreateFragments
Require: PI, F, v, level
{PI: pattern index
F : current fragment
v: vertex in current fragment
level: a level in the pattern index}

1: SF = ∅
2: if level ≤ size(PI) ∧ head(PI(level)) is not null then
3: while head(PI(level)) precedes root(F) do
4: Create a new fragment F ′ = (V ′F , ∅) such that V ′F = {head(PI(level))}
5: SF = SF ∪ {F ′}∪ createFragment(PI, F ′, head(PI(level)), level + 1)
6: remove head(PI(level))
7: end while
8: while head(PI(level)) descendent of root(F)) do
9: Insert head(PI(level)) in the vertex of F

10: if head(PI(level)) precedes v then
11: Insert (root(F), head(PI(level))) in the edges of F
12: else
13: Insert (v, head(PI(level))) in the edges of F
14: end if
15: SF = SF∪ createFragment(PI, F, head(PI(level)), level + 1)
16: remove head(PI(level))
17: end while
18: SF = SF∪ createFragment(PI, F, v, level + 1)
19: end if
Ensure: return SF

71

Chapter 4 A Flexible pattern-based querying model for semistructured data

F

v

level lt u w x

s
z

y

F’
n

Figure 4.10: Situations that can arise in the creation of a fragment

nodes belonging to fragments whose roots are at a level k such that k < level(root(F)).
After the invocation of CreateFragments on F , PI will not contain all the nodes of F
along with the nodes of the fragments whose roots precede root(F) at a level h such that
(h > l).

Algorithm CreateFragments takes as input the pattern index PI, the current fragment
F , a node v in F (initially the root of F , then an internal node for which we are looking
for direct descendants), and the level l in PI where we are looking for descendants of F .
Its behavior relies on the following proposition.

Proposition 2 Let CreateFragments be invoked for a fragment F on a level l of a
pattern index PI and a leaf node v of F located at a level m in PI(m < l). The following
properties hold:

1. If head(PI(l)) is a left relative of root(F), head(PI(l)) is the root of a new fragment.

2. If head(PI(l)) is a descendant of root(F), but not of v, head(PI(l)) belongs to F
and is a descendant of root(F).

3. If head(PI(l)) is a descendant of v in F , head(PI(l)) belongs to F and is a
descendant of v.

4. If head(PI(l)) is a right relative of root(F), no elements of F can be identified at
this level.

4

The cases described by Proposition 2 can occur in each invocation of Algorithm
CreateFragments and handled as follows. We refer to Figure 4.10 for a better under-
standing of the behavior of the algorithm. If head(PI(l)) = t is left relative of root(F)

72

4.3 Construction of fragments and regions

(case (1) of Proposition 2), t is the root of another fragment. Indeed, all the fragments
F o such that root(F o) precedes root(F) at a level k (k < l) could contain t have been
removed from PI. Therefore, a new fragment F ′ is created and Algorithm CreateFrag-
ments is invoked for this fragment and its root at level l + 1. If head(PI(l)) = u belongs
to the descendants of root(F), but it is not a descendant of v (case (2) of Proposition 2),
u is left relative of all internal nodes of F . Therefore, u is inserted as child of root(F)
and Algorithm CreateFragments is invoked on F and u to identify possible descendants
of u in F at level l+ 1. If head(PI(l)) = w (the behavior is the same for node x) belongs
to the descendants of v (case (3) of Proposition 2), w is associated as a child of v and
Algorithm CreateFragments is invoked on F and w to identify possible descendants of w
in F at level l+1 (as shown in Figure 4.10 node z will be identified). If head(PI(l)) = n
is right relative of F (case (4) of Proposition 2), nor n nor the nodes that could follow n
at level l can belong to F . Algorithm CreateFragments is thus invoked recursively on
F , the same v and level l + 1 in order to identify further descendants of v that do not
stay at level l. Through this call, nodes y and s will be identified if v is their immediate
ancestor in F .

Starting from the root of a fragment F , Algorithm CreateFragments is recursively
invoked on the levels of the pattern index between the level of root(F) and size(PI).
Therefore, we are guaranteed that if a level contains a node of F , it is detected and
inserted in the correct position in the hierarchical structure of F .

Algorithm CreateListOfFragments generates fragments starting from the first level
of PI and moving downwards to its last level. In the first level, all the nodes are roots of
fragments. Therefore, Algorithm CreateFragments is invoked on each of the fragments
of the first level. Once all the fragments of the first level have been identified, the
algorithm proceeds with the nodes of PI still belonging to the remaining levels (if they
are not empty). Algorithm CreateListOfFragments ends when it reaches the last level
of PI and all the nodes have been removed from PI.

Algorithm 2 CreateListOfFragments
Require: PI
{PI: pattern index}

1: SF = ∅
2: for level = 1 to size(PI) do
3: while head(PI(level)) is not null do
4: Create a new fragment F = (VF , ∅) such that VF = {head(PI(level))}
5: SF = SF ∪ {F}∪ createFragment(PI, F, head(PI(level)), level + 1)
6: remove head(PI(level))
7: end while
8: end for

Ensure: return SF

73

Chapter 4 A Flexible pattern-based querying model for semistructured data

15,2,2,2 16,1,2,31,16,1,1

2,15,2,1

7,10,1,2

10,7,3,1

11,6,4,1

(F1)

13,4,1,3

15,2,2,2 16,1,2,3

(F2) (F3) (F4) (R)

Figure 4.11: Construction of fragments and regions

Proposition 3 Let PI be the pattern index for a pattern P . Algorithm CreateListOf-
Fragments correctly identifies all fragments in PI. 4

The algorithm visits each vertex in the pattern index only once by removing in each level
the vertices already included in a fragment. Its complexity is thus linear in the number
of vertices in the pattern index.

Proposition 4 Let PI be a pattern index. The number of operations performed by
Algorithm 2: CreateListOfFragments is O(N), where N is the number of nodes in PI.

4

Figure 4.11 illustrates fragments F1, . . . , F4 obtained from the pattern index of Figure
4.9(c).

4.3.3 Algorithm for the construction of regions

Two fragments should be merged in a single region when, relying on the adopted similarity
function, the similarity of the pattern with the region is higher than the similarity with
the individual fragments.

Whenever a document in the target is quite big and the number of fragments is high,
the regions that should be checked can grow exponentially. To avoid such a situation we
exploit the following locality principle: merging fragments together or merging fragments
to regions makes sense only when the fragments/regions are close. Indeed, as the size of
a region tends to be equal to the size of the document, the similarity decreases.

In order to meet such locality principle regions are obtained by merging adjacent
fragments. Operatively, two adjacent fragments can be merged when their common
ancestor v is not the root of the target. If it is not the root of the target, their common
ancestor v becomes the root of the region and the roots of the fragments become the
direct children of v. We remark that the common ancestor of two fragments can be easily
obtained by traversing the P link included in the nodes of the pattern index.

Combining the locality principle and the approach for merging together two adjacent
fragments, Algorithm 3: CreateListOfRegions is obtained. The algorithm works on the

74

4.3 Construction of fragments and regions

list of fragments SF obtained from Algorithm CreateListOfFragments that is ordered
according to the pre-order rank of the roots of the fragments it contains. Once a possible
region Ri is obtained, by merging two adjacent fragments SF (i − 1) and SF (i), the
similarity Sim(P,Ri) is compared with the maximal value between Sim(P, SF (i− 1))
and Sim(P, SF (i)). If Sim(P,Ri) is the highest, SF (i− 1) is removed from the list and
SF (i) substituted with Ri. Otherwise, SF (i− 1) is kept alone and we try to merge SF (i)
with its right adjacent fragment. The process ends when all the fragments in the list
have been checked.

Algorithm 3 CreateListOfRegions
Require: SF , P
{SF : list of fragments
P : Pattern}

1: for i = 2 to size(SF) do
2: Try to generate region Ri by merging SF (i− 1) and SF (i)
3: if Ri has been generated then
4: if Sim(P,Ri) ≥ max{Sim(P, SF (i− 1)),Sim(P, SF (i))} then
5: Remove SF (i− 1)
6: Substitute SF (i) with Ri
7: end if
8: end if
9: end for

Ensure: return SF

Example 14 Considering the running example we try to generate regions starting from
the fragments in Figure 4.11. Since the common ancestor between F1 and F2 is the root
of the target, the two fragments cannot be merged. Same behavior for fragments F2 and
F3. Since the common ancestor between F3 and F4 is a node in the same document,
region R in Figure 4.11 is generated. Since the similarity of P with R is higher than its
similarity with F3 and F4, R is kept and F3, F4 removed. At the end of the process we
have regions {F1, F2, R}. ©

A key point of our approach is the efficient computation of the similarity between a
pattern P and fragment F or a region R. An array indexed on the labels of P is employed
to keep the best evaluation of similarity between a node in P and all the nodes in F/R
with a similar label. The evaluation in the array are finally added to obtain the similarity
between P and F/R. The number of operations is O(|P |). Since the similarity between
P and F can be computed during the construction of a fragment, its complexity in this
phase is constant. Things are different for the similarity between P and R, where R is
the combination of two fragments. In this case, the evaluations of two arrays should be
compared and thus the number of operations is effectively O(|P |).

75

Chapter 4 A Flexible pattern-based querying model for semistructured data

Proposition 5 Let SF be the list of fragments extracted for a pattern P from a pattern
index PI. The creation of regions from SF requires O(N · |P |) operations, where N is
the number of nodes in PI. 4

We wish to remark that the construction of regions is quite fast because the target should
not be explicitly accessed. All the required information are contained in the inverted
indexes. Moreover, thanks to our locality principle the number of regions to check is
proportional to the number of fragments. Finally, the regions obtained through our
process do not present all the vertices occurring in the target but only those necessary
for the computation of similarity. The evaluation of vertices appearing in the region but
not in the pattern is computed through the pre/post order rank of each node.

Example 15 Consider the region R2 in Figure 4.5 and the corresponding representation
F2 in Figure 4.11. Vertex invited is not explicitly present in R. However, its lack can be
taken into account by considering the levels of vertex conference and vertex paper. ©

The following proposition summarizes the complexity of the algorithm for the creations
of regions starting from a pattern.

Proposition 6 Let P be a pattern, K the number of distinct label in the inverted index
SII, and M the maximal size of an entry in SII. Moreover, let N be the number of
nodes in the pattern index PI. The number of operations for the creation of regions
starting from a pattern is O(max{(|P | ·K ·M), (N · |P |)}). 4

4.4 Experimental evaluation

We have used this system to experimentally evaluate, both on real and synthetic data,
the following aspects of our approach:

1. Reasonable performance with large collections.

2. Handling of severe structural distortions.

3. Retrieval effectiveness in highly heterogeneous collections.

In the remainder of the section we report our results along these aspects.

4.4.1 Performance evaluation

The performance of the system has been tested using two large synthetic datasets, with
associated test patterns. Dataset 1 is designed to contain just a few matching results,
embedded in a large number of don’t-care nodes (around 7500 relevant elements out of

76

4.4 Experimental evaluation

1 2 3 4 5 6 7 8 9 10

Subcollection

E
le

m
en

ts

0e
+

00
4e

+
06

8e
+

06

1 2 3 4 5

Subcollection

E
le

m
en

ts

0e
+

00
2e

+
05

4e
+

05

0 2000 4000 6000

0.
2

0.
4

0.
6

0.
8

1.
0

Nodes in result set

Q
ue

ry
 ti

m
e

(s
)

0 50000 150000 250000

0
10

20
30

40
50

60

Nodes in result set

Q
ue

ry
 ti

m
e(

s)

Figure 4.12: (a) Total number of elements in each subcollection extracted from dataset 1
(b) Total number of elements (��) and number of relevant elements (��) in
each subcollection extracted from synthetic dataset 2 (c) Execution time in
dataset 1 (d) Execution time in dataset 2

107 elements). In contrast, dataset 2 has a high proportion of relevant elements (3× 105

out of 5× 105). In order to obtain results for a range of dataset sizes, smaller collections
have been obtained by sampling each dataset. The characteristics of all datasets are
summarized in Figures 4.12(a) and 4.12(b). Results in Fig.s 4.12(c) and 4.12(d) show
that the retrieval performance is linearly dependent on the size of the result set.

4.4.2 Effect of structural distortions

The second aspect we have evaluated is the effect of structural variations in fragments.
In order to test this, we have generated another synthetic dataset, in which we have
embedded potential matches of a test pattern containing 15 elements with the following

77

Chapter 4 A Flexible pattern-based querying model for semistructured data

2 4 6 8 10

0.
6

0.
8

1.
0

1.
2

1.
4

Nodes added

A
ve

ra
ge

 s
im

ila
rit

y

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

Nodes removed

A
ve

ra
ge

 s
im

ila
rit

y

20 40 60 80 100

0.
6

0.
8

1.
0

1.
2

1.
4

Odds of a change in parent/child node ordering

A
ve

ra
ge

 s
im

ila
rit

y

20 40 60 80 100

0.
6

0.
8

1.
0

1.
2

1.
4

Odds of a change in sibling node ordering

A
ve

ra
ge

 s
im

ila
rit

y

Figure 4.13: Change in similarity with the addition and removal of nodes in regions

kinds of controlled distortions: (1) addition of n random nodes; (2) deletion of n random
nodes; (3) switching the order of nodes in the same level, with a given probability; (4)
switching parent and child nodes, with a given probability.

Results in Fig. 4.13 show that the system is able to find all relevant fragments despite
the introduced distortions. Predictably, only the removal of relevant nodes in the target
has an effect in the average relevance of results. Adding nodes, switching nodes in the
same level, and interchanging parent and child nodes have no effects on the retrieval rate.

4.4.3 Retrieval in highly heterogeneous collections

In our third set of experiments we analyze the retrieval effectiveness in the context of
highly heterogeneous collections. Our goal is to evaluate the effectiveness of our approach
according to different parameters, such as the size of the data collection, its degree of
vocabulary and structural heterogeneity, and its degree of conformance to the query.

78

4.4 Experimental evaluation

Constructor Pattern Examples Generated XML

a:genPattern <a:genPattern a:id=’1’>

<address/>

</a:genPattern>

<address/>

sequence <t1><a:sequence>

<a/>

</a:sequence></t1>

<t1>

<a/>

</t1>

xor <t1 a:xor=’yes’>

<a/>

</t1>

a) <t1><a/></t1>

b) <t1></t1>

combi <a:combi>

<a/>

</a:combi>

a) <a_b/>

b) <a/>

c)

if-ancestor <a:if-ancestor a:name=’t1’>

<tag2/>

</a:if-ancestor>

<t1>...

<tag2/>...</t1>

types <person a:types=’user,client’/> a) <user>

b) <person>

c) <client>

dmin, dmax a) <t1><t2 a:dmin=’0’ a:dmax=’0’/></t1>

b) <t1><t2 a:dmin=’2’ a:dmax=’2’/></t1>

a) <t1_t2>

b) <t1_t2>

<t1><kjkkij><t2/>

</kjkkij></t1>

</t1_t2>

a:subPattern <t1><a:subPattern a:id=’1’/></t1> <t1><address/></t1>

Table 4.3: Constructors for pattern generators

We experimented on a set of document collections patterned after the highly heteroge-
neous ASSAM1 dataset. While the information content of the generated collections is the
same of that of the real ASSAM, the new collections are bigger and present different levels
of heterogeneity and conformance to the queries. The generation is based on empirical
estimations of the relative probabilities of ASSAM’s main topics and entities. Since the
queries present a tree structure as well, pattern generators have been employed for the
automatic construction of synthetic queries. The use of a probabilistic approach for the
generation of queries simulates the users’ uncertainty about the structure of the target
collection in query formulation.

To obtain quality measures such as precision and recall we need relevance assessments.
These are manually evaluated on the original ASSAM collection. In the generated
collections, query identifiers are linked to the pattern used for the generation of the
collection, thus specifying which generated subtrees constitute a correct answer for the
query. This allows us to build collections of arbitrary size while being able to assess the
relevance of each query answer.

In what follows, we first describe the generation of documents and queries and then
present the experimental results on the original collection and on the generated ones.

1http://moguntia.ucd.ie/repository/datasets/

79

Chapter 4 A Flexible pattern-based querying model for semistructured data

Generation of documents and queries. To generate suitable test collections and queries
we have built a new system whose generation model significantly expands ToXgene [Bar-
bosa et al., 2002] facilities, that only provides limited support for “random structures”,
for the specification of heterogeneous contents.

Our collection generator provides a set of XML pattern constructors, which encapsulate
different templates for generating XML structures. A generator pattern is itself an XML
document, whose nodes represent both pattern constructors and the tags to be generated.
In general, the ancestor/descendant relationships between these tags will be preserved
in the generated documents. Each node in a generator pattern may have associated a
probability indicating the likelihood of finding the sub-tree it represents in the generated
documents (if omitted, the probability is taken to be 1.0). Thus, if node u is a child of
node v, then P (u|v) = P (u) · P (v|v′), where v′ is the parent of v. If u is the pattern root
node, then P (u) is the probability of the whole pattern. This simple model supports
a wide variety of possible heterogeneous structures; Table 4.3 shows the main pattern
constructors available.

Table 4.4 shows the summary of the generation patterns used in our experiments.
They mainly reflect the features of the ASSAM dataset. As this dataset is mainly
a semi-structured representation of a set of web services, their structures are quite
heterogeneous and tag names also present many variations. In this collection, tag names
are usually phrases that combine in some way the key concepts of the web service. This
feature has been simulated using the a:combi pattern constructor, estimating n-gram
probabilities from ASSAM data. This has been simulated by introducing subpatterns
with the constructor a:subPattern. In Table 4.4 the last column indicates the used
subpatterns in each generator pattern. Two sample generators models are shown in
Fig. 4.14.

Results on the generated documents and queries. The generated queries were eval-
uated against a generated collection of 50000 documents, with a total of one million
nodes and around five thousand unique labels (around 500 times larger than the original
ASSAM). Given the characteristics of the collection, we selected the following parameters
for the experiments:

� We compared the performance of strict label matching with a partial matching
function adapted to the characteristics of the collection as described above. The
resulting partial matching function combines most of the similarity functions
described in Section 4.2.6.

� We used the structural distance similarity measure described in Section 4.2.5, with
δ = 0.1; the results obtained with the level measure were similar for this particular
collection.

80

4.4 Experimental evaluation

Pattern ID Tags Depth Uses

Database Patterns
Weather Info BD-1 31 4 Address
Postal Address BD-2 14 4 -
Stock Quotes BD-3 16 4 -
Bank Info BD-4 9 8 Address, Stock
Credit Card BD-5 8 3 Bank Info
Personal Data BD-6 19 8 Address, Bank Info

Query Patterns
Weather Q-1 12 3 -
ZIP Codes Q-2 3 1 -
PostBox Q-3 3 1 -
Quotes Q-4 5 2 -
Bank Code Q-5 3 1 -
ATM Location Q-6 3 2 Address
Contact Person Q-7 5 2 -
Employee Salary Q-8 3 2 -
Credit Card Q-9 3 2 -
User account Q-10 4 2 -

Table 4.4: Database and query patterns used in experiments

a.genPattern
id=3

name=stock

Stock
a:query=4

Quotes
a:query=4
a:dmax=0

0.7

Name

0.6

Number

0.2

Quote
a:query=4
xor=yes

0.8

Market_Capitalization

0.2

Amount_Stocks

0.2

Change

0.6

a.combi

Weekly
a:query=4

0.3

Day
a:query=4
a:dmax=0

0.4

Current
a:query=4

0.3

Range

0.7

Low
a:dmin=0

High
a:dmin=0

Low
a:dmin=0

High
a:dmin=0

Open Close

Percentage
dmax=0

0.9

Ticker
a:query=4

0.7

Symbol
a:query=4

0.8

(a)

a.genPattern
id=3

name=QueryStock

a.query
id=4

Stock

Ticker_Symbol Quote

a.xor

Weekly

0.2

Day

0.3

Current

0.5

(b)

Figure 4.14: (a) Generator for database pattern 3 (b) Generator for query 4, associated
with pattern 3

81

Chapter 4 A Flexible pattern-based querying model for semistructured data

Fig. 4.15 shows the precision, recall and F1-measure, as well as the precision@10, recall@10
and F1@10 (i.e. the values express the 10 highest-ranked results). The results under
these experimental conditions can be summarized as follows:

� Setting the cutoff at 10 produces much better results than considering all the results.
There is an exception for query 3; a closer analysis of this particular case shows that
query 3 contains very ambiguous tags, producing a large set of irrelevant results
despite the use of tag similarity functions.

� As expected, the results obtained using strict label matching produce a better
precision than those obtained using partial label matching, while partial matching
produces better recall. Overall, the F1 measure is generally better for strict matching
on all the results, but the combination of 10-highest ranked and partial matching is
the best combination.

Results on the original ASSAM collection. Analogous queries were evaluated against
the original ASSAM collection, and the relevance of the results checked by hand. A
summary of the results is shown in Table 4.16. The first column indicates the query
number, and the second column indicates the similarity threshold used for the answer set
(we used an explicit cutoff percentage MinSim instead of selecting the k highest results
due to the relatively small size of the collection). The results are closely related to those
obtained in our more general experimental setting, including the low F1 for query Q3.

4.5 Concluding remarks

This chapter has developed an approach for the identification of subtrees similar to a
given pattern in a collection of highly heterogeneous semi-structured documents. In this
context, the hierarchical structure of the pattern cannot be employed for the identification
of the target subtrees but only for their ranking. The approach supports the flexible
similarity measures described in the previous chapter, and uses specific indexing structures
to improve the performance of the retrieval.

82

4.5 Concluding remarks

1 2 3 4 5 6 7 8 9 10

Precision (distance−strict)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

1 2 3 4 5 6 7 8 9 10

Precision (distance−partial)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

1 2 3 4 5 6 7 8 9 10

Recall (distance−strict)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

1 2 3 4 5 6 7 8 9 10

Recall (distance−partial)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(d)

1 2 3 4 5 6 7 8 9 10

F1−measure (distance−strict)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e)

1 2 3 4 5 6 7 8 9 10

F1−measure (distance−partial)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f)

Figure 4.15: Precision, recall and F1 for measure distance, using strict and partial label
matching. For each of the 10 queries, the darker bars (��) are computed
using only the highest-ranked 10 results, the lighter bars (��) consider all
the returned matches.

83

Chapter 4 A Flexible pattern-based querying model for semistructured data

Query MinSim Prec. Recall F1

Q1 (Weather) 0.2 1 0.75 0.86
Q3 (Addresses) 0.15 0.29 0.7 0.41
Q4 (Bank data) 0.2 1 0.8 0.89

Figure 4.16: Results for the ASSAM datasets

84

Chapter 5

Extensions

The algorithms presented in the previous chapter serve as a foundation for approximate
querying of XML with flexible similarity measures. This chapter presents contribu-
tions that provide refinements which are important in practice. Section 5.1 discusses
the integration of fragment-based queries into XQuery, and provides a function-based
specification for the incorporation of the new techniques presented in this thesis into
existing XQuery engines. Then, Section 5.2 presents a top-k version of the algorithms
which is experimentally shown to provide an important performance boost without
loss of generality. In contrast to existing algorithms, this approach does not require
the similarity measures to be monotone. Finally, Section 5.3 presents an incremental,
representative-based clustering algorithm suited to organize collections of heterogeneous
fragments into coherent groups.

5.1 Integration into XQuery

To be useful in practice, the algorithms presented in chapter 4 must be incorporated into
an XML processing framework. This means that they should be part of the repertoire of
an XQuery processing technique. In addition, XQuery can be extremely useful as a tool
for post-processing the fragments and regions retrieved using approximate techniques.

Example 16 Consider a fragment search over a database consisting of multiple docu-
ments. A data analyst may wish to view the results grouped by document, returning
only the most relevant fragment in each document and sorting by the average score of all
matches in each document. These data aggregation operations can be easily expressed
using XQuery conditions over the resulting fragments.

©

5.1.1 Requirements

This section presents the design requirements for an extension of XQuery that can support
fragment-based approximate structural querying:

85

Chapter 5 Extensions

1. The changes should not require major syntactic changes to be implemented into an
existing XQuery engine. There is a consensus that XQuery parsers are complex
enough already.

2. The changes should be a proper extension of XQuery; that is, they should not
change the standard “exact” query behavior. That is, approximate query semantics
must be explicitly requested.

3. It should be possible to specify which similarity measure to use on a case-per-case
basis, or even to combine several distinct similarity measures in the same expression.

4. XQuery compositionality must be preserved: that is, all standard operations that
are possible on XPath expressions should also be possible on retrieved fragments.

5. It should be possible to retrieve fragment-specific information about the retrieved
fragments (the docId, and so on).

6. Useful operations for fragments and regions, such as finding the nearest common
ancestor of two fragments, should be available.

5.1.2 Functional vs. keyword approach

There are essentially two approaches to address the requirements proposed in the previous
section: either to extend the language with new keywords or to specify a library of
functions. The main advantage of introducing new keywords is that it clearly points
out that the underlying semantics is changed, together with the optimizer. In contrast,
using functions may indicate “externally defined” operations without effective access to
the optimizer. Of course, this is not necessarily the case, since the XQuery specification
defines several fundamental primitives using functions; in particular, the simplified XQuery
Core sublanguage, into which XQuery implementations typically translate queries for
optimization, uses functions rather that keywords extensively[Fankhauser, 2001].

As a consequence, and especially with regard to the first requirement outlined above,
we define a library of functions. Syntactic sugar can always be added afterwards.

5.1.3 Specification

To be able to define the necessary functions, we need to define first the appropriate types.
These are:

Namespace declarations We will assume that all definitions are enclosed in the ahx
namespace, declared as follows:

declare namespace ahx = "http://krono.act.uji.es/arhex/ns";

86

5.1 Integration into XQuery

Type definitions In order to represent types and fragments in XQuery we will assume
that the following types are defined:

� ahx:measure represents a similarity measure. Note that it is possible to serialize
instances of our measure model as XML, which opens the possibility of introspection:
defining and managing measures using XQuery itself.

� ahx:fragment represents a fragment. For all purposes it should be considered
equivalent to xs:anyType, since in general fragments do no conform to an schema.

Function definitions Figure 5.1 lists the XQuery signatures of a a set of functions that
correspond to the requirements outlined above. Their informal semantics is as follows:

� ahx:load_measure obtains an instance of ahx:measure from an external source.

� ahx:fragments returns a list of fragments that correspond to a pattern using a
given measure.

Example 17 The following query performs the approximate query:
let $pattern := <writer>

<article-title/><article-conference/>

</writer>

let $measure := ahx:load_measure(’distance.measure’)

return ahx:fragments($pattern, $measure)

©

The following functions access information about the retrieved fragment:

� ahx:score returns the score of a fragment.

� ahx:docid returns the document id of the fragment.

� ahx:docname returns the document name of the fragment.

Example 18 The following query returns fragments with a score greater than 0.5,
ordered by score

let $pattern := <writer>

<article-title/><article-conference/>

</writer>

let $measure := ahx:load_measure(’distance.measure’)

for $fragment in ahx:fragments($pattern, $measure)

where ahx:score($fragment) > 0.5

order by ahx:score($fragment) descending

return $fragment

©

87

Chapter 5 Extensions

declare function ahx:load_measure($source as xs:string) as ahx:measure external;

declare function ahx:fragments($pattern as xs:string, $measure as ahx:measure) external;

declare function ahx:score($fragment as ahx:fragment) as xs:float external;

declare function ahx:all_nodes($fragment as ahx:fragment) as ahx:fragment external;

declare function ahx:subtree($fragment as ahx:fragment) as ahx:fragment external;

declare function ahx:docid($fragment as ahx:fragment) as xs:integer external;

declare function ahx:docname($fragment as ahx:fragment) as xs:string external;

declare function ahx:nca($fragments as ahx:fragment+) as ahx:fragment external;

Figure 5.1: XQuery Declarations of the proposed fragment-oriented functions

Example 19 The following query returns the list of document names that are present
in the query results.

let $pattern := <writer>

<article-title/><article-conference/>

</writer>

let $measure := ahx:load_measure(’distance.measure’)

for $d in distinct-values(for $x in ahx:fragments($pattern, $measure) return ahx:docid($x))

return ahx:docname($d)

©

Finally, the following functions provide useful operations on fragments:

� ahx:all_nodes returns a copy of a fragment that includes all don’t-care nodes.

� ahx:subtree returns a copy of a fragment that includes all nodes under the fragment
root.

� ahx:nca returns the nearest common ancestor of a list of fragments

Example 20 The following query returns the minimal complete subtree that contains
all fragments in the result, for each document occurring in the results of the approximate
query.

let $pattern := <writer>

<article-title/><article-conference/>

</writer>

let $measure := ahx:load_measure(’distance.measure’)

let $fragments = ahx:fragments($pattern, $measure)

for $d in distinct-values(for $x in $fragments return ahx:docid($x))

return ahx:subtree(ahx:nca(for $f in $fragments where ahx:docid($f) = $d return $f))

©

88

5.2 Top-k processing

5.1.4 Discussion

A proof-of-concept implementation of the previous functions have been produced, and it
has been incorporated into the prototype presented in Chapter 6. The prototype uses
the IBM XQuery Normalizer and Static Analyzer1 for parsing and translation into (an
early version of) XQuery Core. A simple non-optimizing query engine processor is used
to execute the queries on top of B+-tree indexes.

This prototype demonstrates the feasibility of including approximate query facilities in a
standard XQuery implementation at a lexical level. The incorporation of an approximate
pattern operator in a standard algebraic optimization framework is an open problem,
but some research has been done in the incorporation of exact pattern-oriented operators
in practical algebras. In particular, [Michiels et al., 2007] proposes extending the Galax
[Fernández et al., 2003] algebra with a TupleTreePattern operator, which abstracts
the processing of a complete twig pattern, instead of dividing it up into a series of steps. In
principle, it should be possible to encapsulate the region-oriented algorithms presented in
the previous chapter using an approximate version of the TupleTreePattern operator.

Our experimentation with the prototype in practical settings has shown that most
useful queries include some grouping. XQuery does not include an explicit group-by
operator, and grouping is done using a standard idiom which is illustrated in the previous
examples. This makes it difficult to exploit group-by based optimizations. In this respect,
the incorporation of an approximate variant of the approaches presented by [Beyer et al.,
2005] and [Gokhale et al., 2007] could provide performance benefits.

In addition, approximate queries may involve measures that return highly heterogeneous
result sets, thus making it difficult to apply standard grouping techniques, In these cases,
more sophisticated techniques such as clustering may be necessary to postprocess the
results. An algorithm suited for its incorporation in this context is described in Section 5.3.

5.2 Top-k processing

Using similarity functions naturally leads itself to top-k processing, which allows the
retrieval of only the best results. In this section we address the problem of efficiently
evaluating top-k fragment pattern queries with ad-hoc ranking functions. For instance,
consider the following query:

let $fragment := <writer>
<article-title/><article-conference/>
</writer>
let $measure := ahx:load_measure(’distance.measure’)
for $fragment at $rank in ahx:fragments($fragment, $measure):
where $rank <= 10

1http://www.alphaworks.ibm.com/tech/xqnsta

89

Chapter 5 Extensions

return $fragment

A brute-force strategy for solving this query is to generate all results, sort them by
score and return the k results with the highest score. A slight refinement, presented in
algorithm 4, saves space by using a heap to keep only the best k results found so far. We
will use this algorithm as a baseline to compare against more elaborate implementations.

Algorithm 4 Näıve top-k
Require: p: pattern, m: measure, k: integer
heap← ∅ {empty heap with capacity k}
for each f = generateNextResult(pattern) do
fragment.score = m(p, f)
heap.insert(f) {use score as value}

end for
return All fragments in the heap

The general problem of top-k ranging is based on the concept of finding an aggregate
score based on an aggregation of scores at a lower granularity level; in a relational
context, this usually means computing the total score based on the value of several
attributes in a table. The best-known algorithm for top-k processing in general is Fagin’s
threshold algorithm [Fagin et al., 2003], also called a sort-merge approach since it is
based on scanning the lists of pre-sorted attributes and merging them into a total score
until in can be guaranteed that the top k objects have been found. Unfortunately, this
approach requires the aggregation function to be monotonic, which is too restrictive for
our componentized measure framework. As an alternative, [Xin et al., 2007] propose a
progressive index-merge approach (also in the relational context), in which a progressive
search is performed over a space of joint states composed by multiple attributes. This
removes the requirement for monotonicity.

Example 21 Many useful variations of the simple sum aggregation function are non-
monotonic. Consider a tie component C with an associated similarity function fC ,
which takes as arguments two other components C1and C2 at a lower granularity level,
with associated similarity functions fC1and fC2 respectively. In this case, the following
similarity functions are all non-monotonic:

� A function that subtracts the score of the second component function: fC(o1, o2) =
max{fC1(o1,o2)− fC2(o1, o2), 0}.

� A function that penalizes the deviation of a similarity score from 0.5: fC(o1, o2) =
max{fC1(o1,o2)− |fC2(o1, o2)− 0.5|, 0}.

©

90

5.2 Top-k processing

Note that searching over the solution space will potentially generate all solutions; in the
worst case, this is equivalent to the näıve algorithm. This approach can be improved
by cutting off the search with appropriate criteria which guarantee that, once a certain
state is reached, further searches will never yield results in the top-k. This means that
we need to be able to know, at least, what is the maximum possible value that can be
achieved by the similarity function, given a partial instantiation of a pattern.

5.2.1 Problem statement

In our case, the space of solutions is the space of fragments and their mappings to the
target, as defined in Definition 7. As a consequence, the search process needs to construct
fragments progressively, together with their relevant mappings.

Algorithm 5 Index-merge top-k
Require: p: pattern
topkHeap← ∅
sHeap← findRoots()
while sHeap 6= ∅ do
S ← top entry from sHeap
if S is a leaf state then

Build the solution and update topkHeap
else

Find the next children of the node
Generate the new states and insert them into sHeap

end if
end while
return the top k solutions in topkHeap

Algorithm 5 is based on the index-merge approach. It works by progressively matching
nodes in the pattern to nodes in the target in a way that maximizes the value of the
similarity function. It maintains two heaps: one for the complete top-k mappings found so
far (which we name the states of the search) and another one for the candidate mappings
which are still being build. For each state, the algorithm evaluates the maximum value
that can be achieved, given the available information. Those states that cannot reach the
current minimum threshold to enter the top-k are pruned, while the rest will be expanded.
Once the state cannon be further expanded it is called a leaf state, and contains a compete
result (i.e. mapping). The state heap guarantees that the most promising candidate
mapping (the one with the highest possible final score) will be visited first. Note that
the top-k algorithm is designed to search the database for promising candidates in a
(roughly) breadth-first way, analogous to the order in which the pattern index is visited
by CreateFragment algorithm.

91

Chapter 5 Extensions

In order to adapt the general index-merge algorithm to our XML context, the following
questions must be answered:

1. Which are the initial nodes for the computation?

2. How to generate new states?

3. How to create a function that returns the highest possible final score?

The following subsections address each of these points.

5.2.2 Finding roots

Since the solution we seek is a set of fragments and mappings, the obvious candidates
for initial states are the set of root nodes. In order to characterize this set, consider the
structure of the Pattern Index discussed in Section 4.3. The pattern index is organized
by level, and the CreateFragment algorithm exploits this fact to guarantee that the
fragment roots are always identified before all the successors. More precisely:

Definition 14 (roots of a pattern index) Let PI be a pattern index. The roots of the
pattern index PI, denoted by roots(PI), are the nodes n ∈ PI such that there is not
any other node n′ ∈ roots(PI) that is an ancestor of n. 2

From this definition and the Definition 4 of fragment, the next result follows immediately:

Proposition 7 Let PI be a pattern index. Let LF be the list of fragments created by
algorithm 1 using PI as input, and let roots(LF) be the set of roots of all fragments in
LF . Then:

roots(LF) = roots(PI)

4

As a consequence, it suffices to find the set of roots of the pattern index in order to find
the possible roots of all solutions. Obviously, it is not practical to actually build the
pattern index in order to extract the roots. Instead, we can exploit the fact that different
roots are, by definition, in different subtrees, to find a way to progressively construct
patterns without actually building the pattern index. This is expressed in the following
proposition:

Proposition 8 Let PI be a pattern index and r1, r2 ∈ roots(PI). Then,

pre(r1) < post(r2)→ pre(r2) > post(r1)

4

92

5.2 Top-k processing

This results allows us to “jump” in the index to the next candidate root without having to
iterate through all the nodes in the subtree of the previous candidate root. We define the
algorithm defines an iterator [Garcia-Molina et al., 2000]. An iterator is an abstraction
of operations over indexes in which the results are returned one at a time to the caller
(using the yield statement) instead of as a complete set, which is often impractical in
database implementations as it requires materialization2. The caller access a iterator
using two methods: the next() method retrieves the following value, and the skip(k)
method jumps to the object whose key is at least k (this assumes that the iterator returns
ordered values).

The following algorithm, nextCandidate, takes as inn put an iterator over nodes in a
subtree, ordered by pre, and uses the next and skip methods to define a new iterator
that returns the roots in the sense of Proposition 8.

Algorithm 6 nextCandidate
Require: nodeIterator

while nodeIterator not empty do
node← nodeIterator.next()
yield node
nodeIterator.skip(node.post+ 1)

end while

Algorithm nextCandidate is the key step in determining the set of all candidate roots,
which will determine the initial states. The complete procedure is outlined in Algorithm 7.

Algorithm 7 findRoots
Require: iterators
heap←empty heap
for it ∈ iterators do
heap.insert(it.next())

end for
while heap is not empty do
node← heap.pop()
yield node
val← it.nextCandidate()
if if val exists then
heap.push(val)

end if
end while

2A well-known application of the iterator technique is the cursor.

93

Chapter 5 Extensions

The algorithm itself takes as an input a set iterators, whose elements iterate over the
list of vertices labeled by each label l in the pattern, ordered according to the pre-order
rank. The heap is used to keep the roots in pre order.

Proposition 9 The set of nodes returned by Algorithm 7 is the same as root(PI) for
a pattern index PI built using the same set of iterators. 4

Sketch Proof of Proposition 1 The results follows from the observation that Algo-
rithm findRoots traverses the tree in the same order as algorithm CreateFragments. 3

5.2.3 State generation

We can refine the definition of partially-built mapping by noting that, in our progressive
search-based framework, the still unmapped nodes in a a partially built mapping may be
put in two categories: either an unmapped node in the fragment may have a successor in
the pattern that has not been reached yet, or we can guarantee that such a node does
not exist. We will denote each of these possibilities by using the special nodes, denoted
as V? and V⊥respectively.

Definition 15 (Annotated partially built mapping) An annotated partially built mapping
is a mapping that allows in its range the special nodes V? and V⊥. More precisely, let P
be a pattern with vertex set V(P), and R be a region subtree of a target T with vertex
set V(R). An annotated partially built mapping is a partial injective function between
V(P) and V(R) ∪ {V⊥, V?}, with the same properties as the M mappings specified in
Definition 7. 2

Example 22 Figure 5.2 shows an annotated partially built mapping that includes a
node c that may be still found in the target, and a node e that definitely does not occur.

©

This allows us to define the states that will encapsulate information about the partially
built mappings as we progressively search the database.

Definition 16 (Search state) Given a target T =< VT , ET >, a search state S is a tuple
S =< P,m, root(S) >, where:

1. P =< VP , EP , root(S) > is a pattern

2. root(S) ∈ VT

3. m is mapping function defined as follows:

94

5.2 Top-k processing

V⊥V?a

bc e

a

bd

Figure 5.2: An annotated partially built mapping from a pattern (left) into a target
(right)

� m : VP → 2VT∪{V⊥,V?}; that is, it maps the set of vertices of the pattern to as
set of vertices in the target, including the special nodes V⊥ and V?

� ∀v ∈ VP ,m(v) = {v1, . . . , vk|∀vilabel(v) ' label(vi)∧∀ ¯vi : root(S) is an ancestor of vi}

4. m(v) = V⊥if there is no node in VT that can be mapped to node v in VP .

5. m(v) = V? if there no node in VT has been yet found to map to node v in the
pattern, but it is possible that such a node exists.

2

Given the previous definitions, we can define both the initial states and a procedure to
obtain new states progressively. The initial states are just the states that contain just a
root node obtained using Algorithm 7. Then, Algorithm 8, can be used to obtains the
nodes that can be attached to an existing state to derive a new one, by doing a search of
the immediate successors of the leaf nodes in an existing state.

The pruning of states is driven by the transformation of V? nodes into V⊥nodes. This
is performed by the application of Algorithm nextCandidate, which can determine when
no more children exist.

5.2.4 State scoring

We can assign a score to a state S using a slightly modified version of a similarity
evaluation function for fragments:

Definition 17 (Maximum evaluation fmax of a partially-built mapping) Let f : M →
[0, 1] be an arbitrary evaluation function on mappings. A function fmax : M → [0, 1],
is a maximum evaluation function for a partially-built mapping if, for each mapping
involving V? and V⊥, it returns the maximum potential value of the similarity that can

95

Chapter 5 Extensions

Algorithm 8 nextCandidateChildren
Require: state
leafLabels←labels found in the leaf nodes of state
children← ∅
iterators← ∅
for each label in leafLabels do
iterators[label]←iterator for label positioned at the first successor of the correspond-
ing leaf node in the state

end for
for each first node in iterators do
noChildren← true
val← i.next()
while val exists do
children[node].append(val)
val← val.nextCandidate()

end while
if noChildren then
children[node]← V⊥

end if
end for
return children

96

5.2 Top-k processing

a

bc

a

b d

Figure 5.3: A partially built mapping from a pattern (left) into a target (right), which
has not been still visited completely

be attained by f once V? nodes are replaced by actual nodes in the target and taking
into account that nodes mapped to V⊥ will certainly not be found.

Maximum evaluation functions will usually be based on“maximum”versions of similarity
functions. 2

Example 23 The following is the “maximum” version of the match similarity function
10:

MaxSimM (xp, xr) =

1 if label(xp)=label(xr) or xr = V?

1−δ if label(xp)'label(xr)

0 otherwise
©

Example 24 Consider the partially-built mapping shown in Figure 5.3, and assume that
nothing is known about the portion of the target that still has not been visited, (except
that it is not empty). If the evaluation function f is based on the match similarity
function, then fmax(pattern, fragment) = 1, because the missing node may still be
found, which would make the value of f equal to 1. In contrast, with the level-based
similarity measure, fmax(pattern, fragment) < 1, as there will be at least a difference of
one level between the position of the missing node in the target and the node.

The availability of a function that finds an upper bound to the maximum possible
value of the evaluation of a partially-build mapping allows us to cut the computation
once it is known that completing a mapping will never attain a similarity level big enough
to make it into the top-k fragments. ©

5.2.5 Putting it all together

Algorithm 9 combines all of the results presented in the previous sections.
First, findRoots is used to obtain the initial states. Then, for any given state, some

nodes will be mapped and some will not. The following cases are possible:

97

Chapter 5 Extensions

Algorithm 9 Fragment-based top-k
Require: index, k, fragment, fpartial, f
topkHeap←empty heap
sHeap←empty heap
iterators← getIterators(fragment)
labelIds← getLabelIds(fragment)
for each node in findRoots(iterators) do
state← new state based on the nodes in fragment with root node
sHeap.append(state)

end for
while sHeap is not empty do
state← sHeap.pop()
leaves← state.getLeaves()
children← nextCandidateChildren(mapping)
hasChildren← False
for each parentNode in children do

for each child ch of parentNode do
hasChildren← True
state.add(ch)

end for
end for
if hasChildren then
sHeap.append(state)

else
topkHeap.append(state)

end if
end while
return fragments corresponding to the top k states in topkHeap

98

5.2 Top-k processing

1 2 3 4 5 6 7 8 9 10

Top−k speedup for k = 10

Query #

S
pe

ed
up

 (
%

)

0
10

0
20

0
30

0
40

0

1 2 3 4 5 6 7 8 9 10

Top−k speedup for k = 50

Query #

S
pe

ed
up

 (
%

)

0
10

0
20

0
30

0
40

0

1 2 3 4 5 6 7 8 9 10

Top−k speedup for k = 100

Query #

S
pe

ed
up

 (
%

)

0
10

0
20

0
30

0
40

0

Figure 5.4: Performance improvement using the top-k algorithm with distance-based
similarity

� For each node with an assigned match

– No other matching node is present in the children set. In this case, nothing
happens.

– One or more matching nodes is present in the children set. In this case, the
state is duplicated and the new state is added to the state heap.

� For each node without an assigned match

– No other matching node is present in the children set. In this case, nothing
happens.

– One matching node is present in the children set. In this case, the state is
updated with the new match.

– More than one matching nodes is present in the children set. In this case, new
states are created as necessary and added to the state heap.

The computation stops when no more states can be generated whose score is potentially
larger than that of the top-k leaf states found so far.

5.2.6 Experimental evaluation

In order to compare the performance of the top-k algorithm with respect to the exhaustive
approach, we used exactly the same experimental settings as in Section 4.4, changing only
the query processing algorithm. Figure 5.4 shows performance improvements between
around 150% and 350%, independently of the size of k (for k = 10, 50 and 100).

99

Chapter 5 Extensions

5.2.7 Discussion

The experimental results show that the top-k algorithm provides a significant performance
improvement over the exhaustive version presented in the previous chapter. In addition,
since it is based on an index-merge algorithmic framework, it supports non-monotonic
similarity functions, and therefore can accommodate flexible, complex measures such as
those allowed by the multi-similarity framework presented in Chapter 3.

5.3 Clustering

The algorithms presented in the preceding section and the previous chapter may return,
when used with a loose similarity measure, results of high structural complexity. This
motivates the need for grouping the results, already mentioned in section 5.1.4. For cases
in which the grouping mechanisms including within XQuery are not enough, some form
of clustering of the results is usually required.

In this section we propose a clustering algorithm suited to the following requirements:

� It should have direct support for flexible XML similarity measures.

� It should be incremental, in order to be used on line as part of the presentation of
query results.

� Able to produce a description of the obtained classes which is meaningful for end
users.

Many clustering algorithms that can be adapted to this scenario exist; some good surveys
are [Jain et al., 1999, Xu and Wunsch, 2005]. The most stringent requirement is the last
one, which forces us to choose a representative-based approach; that is, an algorithm
that describes the resulting classes using members of the classes themselves; in our case,
document fragments which can be presented to the user. In contrast, a centroid or other
abstract representation of a class is difficult to define in the context of XML documents,
although some approaches have studied the midpoint of a set of document schemas
[Abelló et al., 2005]

To describe the clustering routine, the following definitions are needed:

Definition 18 (document class) Each document class C is a set of documents whose
structural similarities with respect to the class representatives are greater than a given
threshold βsim. The class to which a document d belongs is denoted with class(d). 2

Definition 19 (class representative) The class representatives, denoted repSet(C), are
themselves documents of the class C. The similarity between two representatives of the
class must not be greater than a given threshold βrep(βrep ≥ βsim). 2

100

5.3 Clustering

In this way, each class will represent a set of common structural properties, which are
established by the intersection of all its representatives, as well as a set of structural
particularities, which are stated by its representatives. Consequently, the threshold βsim
determines the degree of optionality of the associated class schema, whereas the number
of representatives determines the degree of heterogeneity of the class schema. This is
captured by the following proposition, which follows immediately from the definitions
above:

Proposition 10 Let {d1 . . . , dn, } a set of XML documents, m a similarity measure and
C,C ′ document classes. The following invariants must hold:

1. ∀di ∈ C,∃dr ∈ repSet(C) : m(di, dr) ≥ βsim

2. ∀di ∈ C,∀C ′ : C ′ 6= C,∀d′r ∈ repSet(C ′) : m(di, d′r) < βsim

3. ∀dr, d′r ∈ repSet(C) : dr 6= d′r =⇒ m(dr, d′r) ≤ βrep

4

5.3.1 Algorithm

The proposed clustering routine (Algorithm 10) uses an inverted file over the represen-
tatives of the classes in order to efficiently calculate the structural similarity of each
incoming document. Each entry of the inverted file represents a path element, and its
associated value is the list of representatives having that path element.

The algorithm updates the inverted file and the set of current document classes
according to the structure of each new incoming document. It takes into consideration
the following situations:

� When the similarity between the new document and several representatives of
different classes is greater than the given threshold βsim, all the involved classes
must be joined into one single class. The variable New is used for this purpose,
which incrementally aggregates the involved classes (lines 3– 16). Additionally,
a representative set must be revised for the resulted class (lines 11–15 and lines
21–23).

� When the similarity between the new document and all the current representatives
is not greater than the given threshold βsim, the document belongs to a new class,
whose representative is the new document itself.

� The representative set of a class must be updated in the following two cases: when
the new document structurally subsumes some of its current representatives, and
when the similarity between the new document and all the class representatives is
not greater than the threshold βrep. In the first case, the new document replaces all

101

Chapter 5 Extensions

Algorithm 10 Clustering routine
Require: dnew, βsim, βrep, m, InvertedF ile, Classes
{dnew: new incoming document;
βsim: similarity threshold for documents;
βrep: similarity threshold for representatives;
m: similarity function;
InvertedF ile: inverted file for document class representatives;
Classes: set of currently detected classes;}

1: Select from the InvertedF ile the representatives whose similarity with dnew is greater
than βsim, and put them into the set Docs

2: New← ∅
3: for all d ∈ Docs do
4: if New = ∅ then
5: New ← class(d) ∪ {dnew}
6: New.repSet← repSet(class(d))
7: else
8: New ← New ∪ class(d)
9: New.repSet← New.repSet ∪ repSet(class(d))

10: end if
11: if ∃d′ ∈ repSet(New) such that dnew subsumes d′ then
12: Remove all the representatives of New subsumed by dnew
13: Add dnewto the set of representatives of New
14: end if
15: Remove the class class(d) from Classes, and all its representatives from the

InvertedF ile.
16: end for
17: if New = ∅ then
18: Add to Classes the new class {dnew}
19: Update the inverted file with dnenew
20: else
21: if @d′ ∈ repSet(new)such that docSim(d′, dnew) > βrep then
22: Add dnew to the list of representatives of New
23: end if
24: Add to Classes the updated class New
25: Add the representative set of New to InvertedF ile
26: end if

102

5.3 Clustering

the representatives that are subsumed by it. In the second case, the new document
becomes a new representative of the class.

The following propositions establish the correctness and complexity of the clustering
algorithm.

Proposition 11 (Correctness) Algorithm 10 maintains the invariants described in Propo-
sition 10. 4

Sketch Proof of Proposition 2 Each of the invariants can be independently shown
to be kept by the algorithm:

1. The set Docs is initialized with the representatives whose similarity with the new
document is greater than βsim. It the set is empty, then the new document does
not affect this invariant. If it is not empty, the classes are fused, which generates a
new class set which keeps the invariant.

2. The construction of the New class in lines 1–15 set guarantees that each new
document is added to a class in a way that keeps this invariant.

3. This invariant is guaranteed by the condition in lines 20–22.

3

Proposition 12 (Complexity) Let D = {d1, . . . , dn} a set of XML documents. Algo-
rithm 10 has a worst case complexity of O(|D|2) 4

Sketch Proof of Proposition 3 The clustering routine is executed |D| times, once for
each document in D. The algorithm needs to check all representatives; in the worst case,
the number of representatives is also |D|, hence the quadratic complexity. 3

5.3.2 Experimental evaluation

In order to check the effectiveness, of the approach, the algorithm has been tested using
the highly heterogeneous ASSAM collection described in Section 4.4.3, which consists of
116 documents. Figure 5.5 demonstrates the progressive creation of new clusters (22 in
total) for parameters βsim = βrep = 0.4, using a generic path-based document similarity
measure [Sanz et al., 2003].

Since the complexity of the algorithm effectively depends on the number of repre-
sentatives, a desirable property of the algorithm is that this number is kept as low as
possible. Figure 5.6 shows that, except for extreme values of βsimand βrep,the number of
representatives stays remarkably constant.

103

Chapter 5 Extensions

Figure 5.5: Progressive creation of clusters, using βsim = βrep = 0.4

Figure 5.6: Number of representatives

104

5.4 Concluding remarks

Figure 5.7: Quality of clusters (F1measure) for a range of values of βsim

Finally, we evaluated the quality of the resulting clusters using the F1-measure, taking
as reference a hand-made classification of all documents in the collection. Figure 5.7
shows the results for a range of values of βsim . The results are consistently good for
values of βsim > 0.3, with a peak in quality at about 0.4. This indicates that, for a given
collection, it may be necessary to perform a preliminary study to determine appropriate
values of βsim and βrep, much like many partitional clustering algorithms require the a
priori determination of its parameters, usually the number of desired classes.

5.3.3 Discussion

We have described a clustering algorithm that is appropriate for on-line clustering of
complex XML result sets, and therefore is it useful as a component in the multi-similarity
querying of collections. The experimental evaluation shows good results for a number of
desirable properties. The algorithm is unsupervised, except for the initial determination of
two similarity parameters. We do not think, however, that this is an important limitation,
since the intended use of this algorithm is as part of interactive query tools, and the
parameters can be simply adjusted by immediate user feedback.

5.4 Concluding remarks

The techniques developed in this chapter are designed to improve the applicability of the
basic techniques presented in the previous chapter.

Integration into XQuery is achieved using a function-based specification that demands
minimal changes on the lexical front-end of an existing XQuery-capable system. A proof-
of-concept implementation on a non-optimizing backend has been produced; integration

105

Chapter 5 Extensions

with the optimizer is a more challenging research question, but recent advances in
pattern-oriented optimization should be directly applicable to solve the problem.

The approximate techniques naturally lead to a top-k version of the algorithms. To
the best of our knowledge, the techniques presented in this chapter include the first
such algorithms for XML that can support non-monotone similarity measures. While
there exists a lot of room for optimization (for instance, much more aggressive pruning
can be applied if it is known a priori that the similarity measure is in fact monotone),
the baseline provides a significant performance boost over the “exact” version of the
algorithms.

Finally, a clustering algorithm is presented that can be used for grouping together
the results of especially complex queries. Throughout this chapter, the importance of
grouping for XML data in contexts where heterogeneity is significant has been pointed
out. This has been often neglected, as exemplified by the fact that XQuery does not
even include a grouping operation, and relies on an idiomatic approaches that makes
optimization of grouping very difficult. As the complexity of available XML data keeps
increasing, this is a problem that will be growing in importance, and only recently have
researchers begun to tackle it.

106

Chapter 6

Prototype

The techniques presented in the previous chapters have been implemented as part of
ArHeX, an experimental toolkit for flexible XML information processing. The prototype is
organized as a set of tools, designed to help a data engineer deal with highly heterogeneous
collections.

As a case study, we present its application in the context of a biomedical research
project, in which it is useful for the exploration of a large collection of biomedical resources
with respect to some disease model. Section 6.1 briefly explain the common ArHeX
back-end, and the present the two main user-level components of the framework: the
measure editor (Section 6.2.1) and the query tool (Section 6.2.2). Finally, section 6.2
discusses the application of these tools in the context of a biomedical research project.

6.1 ArHeX tools

6.1.1 Architecture and Back-end

Figure 6.1 presents a high-level view of the ArHeX architecture. Its components are
organized in three levels: The user interface level provides graphical tools for the end
user. These tools are based on the components of the query level, which contains the
core components which implement the algorithms presented in the preceding chapters.
At the lowest level, the storage manager provides basic facilities. Each of these levels
contains several components; the most important of these are presented next.

User Interface level The User Interface level contains two end-user applications:

� The Measure Editor allows the creation and editing of tailored similarity measures,
using the available components.

� The Query tool is an interface to the diverse query APIs available, allowing users to
search for fragments in an XML collection either directly or via the XQuery engine

In addition to these GUI applications, several APIs for embedding the ArHeX capabilities
in other applications are also available.

107

Chapter 6 Prototype

Figure 6.1: ArHeX Architecture

Query level The query level contains the core functionality of the toolkit; in particular,
it implements the measure management and the query algorithms presented in this thesis.
The main components are:

� The Measure Manager controls the available measures. It provides information
about the available components and measures in the system, and makes sure that
any new measure is indeed valid.

� The Fragment Retrieval component implements query algorithms on XML fragments

� The XQuery engine provides an XQuery interface over the fragment retrieval, and
implements a subset of the standard XQuery facilities such as traditional XPath
matching.

Storage level At the lowest level, the system needs to provide support for storing the
XML collections and the associated metadata. This requires a series of generic facilities,
such as B-trees, and concurrency control. We have used the open source Oracle Berkeley
DB, which provides “a transactional storage engine for un-typed data in basic key/value
data structures”.

6.2 Scenario: Application to a biomedical research project

To show the application of the ArHeX toolkit in a realistic setting, we will present a
scenario based on a real biomedical research project, Health-e-Child (IST 027749) [Freund
et al., 2006]. Its aims are:

108

6.2 Scenario: Application to a biomedical research project

The Health-e-Child project aims at developing an integrated health care
platform for European paediatrics, providing seamless integration of tra-
ditional and emerging sources of biomedical information. The long-term
goal of the project is to provide uninhibited access to universal biomedical
knowledge repositories for personalized and preventive health care, large-scale
information-based biomedical research and training, and informed policy
making.

More specifically:

� To gain a comprehensive view of a child’s health by vertically integrating biomedical
data, information, and knowledge, that spans the entire spectrum from genetic to
clinical to epidemiological;

� To develop a biomedical information platform, supported by sophisticated and
robust search, optimization, and matching techniques for heterogeneous information,
empowered by the Grid;

� To build enabling tools and services on top of the Health-e-Child platform, that
will lead to innovative and better health care solutions in Europe:

– Integrated disease models exploiting all available information levels;

– Database-guided biomedical decision support systems provisioning novel clini-
cal practices and personalized health care for children;

– Large-scale, cross-modality, and longitudinal information fusion and data
mining for biomedical knowledge discovery.

Health-e-Child is a large project, so we will focus on a particular area: the creation of
disease models, which require a complex integration of biomedical data, information, and
knowledge, which integrates information from multiple abstraction layers. For instance,
the description of a disease at the individual, tissue and molecular levels is completely
different; but in an integrated model, the correspondences that can be found between
phenomena at all these levels is crucial. For each particular disease model that must be
created, one of the required tasks is to find out relevant portions of publicly-available
biomedical information repositories which are relevant for the given disease, and should
be eventually merged or aligned in the final model. The result is an Integrated Disease
Knowledge Model (IDKM), which specifies the concepts of particular diseases, taking
into account all the biomedical abstraction layers. Patient-centric information collected
in the hospitals will be semantically annotated in terms of a particular IDKM. Figure 6.2
depicts the information contained in a set of four large publicly available biomedical
ontologies, showing the relevant abstraction layers.

109

Chapter 6 Prototype

Figure 6.2: Granularity levels in a disease model

This search of relevant sources within large independent sources is not trivial. Firstly,
many information repositories in Biomedicine do not cover the requirements of specific
applications completely. Moreover, the concepts contained can involve different abstrac-
tion levels (e.g. molecular, organ, disease, etc.) that can be in the same or in different
domain ontologies. Secondly, independent sources are normally rather large, resulting in
two main effects: users find them hard to use for annotating and querying information
sources and only a subset of those are used by system applications. Finally, in current
integration approaches, it is necessary to manually map the existing data sources to
domain concepts, which implies a bottleneck in large distributed scenarios.

As an example, we will show how to use the ArHeX toolkit to retrieve ontology fragments
in order to guide the building of the IDKMs. Thus, starting from a collection of ontologies
and a knowledge pattern, users can query the knowledge and progressively construct the
required IDKM. Figure 6.3 shows how this task fits in the overall methodology [Jiménez
et al., 2006]. Section 6.2.1 shows the usage of the Measure Editor, and Section 6.2.2
presents the use of the Query Tool in order to query the aforementioned repositories.

6.2.1 Measure Editor

The queries require appropriate similarity measures, which are built using the measure
editor, which supports the creation and tailoring of flexible similarity measures that
conform to the model presented in Chapter 3. Figure 6.4 shows the main screen of the
measure editor. The left pane presents a list of the already-defined measures, while

110

6.2 Scenario: Application to a biomedical research project

Figure 6.3: Creation of IDKMs in HeC

the right pane presents the top-level metadata annotations that describe the selected
measure. In particular, the selected “root component” indicates that the actual measure
is an instance of the RegionEvaluator component, which operates at the region similarity
level. Note also that the measure requires the underlying index to support strict label
matching.

Each component can be individually tailored. Figure 6.5 shows the options available
for tailoring a particular component. Note that the user interface forms presented to the
user are dynamically generated according to the metadata of each component.

The tool supports the graphical creation of complex components. Figure 6.6 shows a
“tie” component that implements a weighted sum at an arbitrary granularity level (in
this case, at the node level). Note the tree structure of the measure, as displayed in the
left pane.

It is indeed possible to define new measures from scratch. In this case, the tool guides
the process by exploiting metadata to ensure that the new measure is correctly defined.
Figure 6.7 shows how the tool indicates which components are possible, according to the
provides/requires hierarchy, at a given point.

6.2.2 Query tool

The query tool is based on an Oracle Berkeley DB-based back-end. It is being used for the
exploration of heterogeneous sources in biomedical information integration projects. An

111

Chapter 6 Prototype

Figure 6.4: Main screen of the measure editor

Figure 6.5: Component tailoring

112

6.2 Scenario: Application to a biomedical research project

Figure 6.6: Editing a “tie” component

Figure 6.7: Creating a new measure from scratch

113

Chapter 6 Prototype

Figure 6.8: Screenshot of the GUI prototype showing the top results in some collections,
using a variation of the match-based similarity and a flexible label-matching
function

example of this functionality is shown in two screenshots: Figure 6.8 shows the combined
results for a query and Figure 6.9 shows the top results found in different collections. The
figure highlights the richness and heterogeneity of the retrieved structures. This allows
the data engineer to study the available collections as a whole, progressively refining the
targets and the measures. Note that the system allows tailoring the similarity measure
on-the-fly; this case uses a domain-specific label-matching function (see Section 4.2.6).
In addition to the purely graphical query, it also supports XQuery expressions with the
approximate extensions presented in the previous chapter. Figure 6.10 shows a simple
query used to group the results by document.

6.3 Concluding remarks

The tools presented in this chapter have been used as a reference implementation to
validate the algorithms presented in this thesis, and are also useful as a proof of concept
for multi-similarity based XML applications. By themselves, they provide a useful toolkit
to the data engineer that needs to develop XML applications using highly tailored and

114

6.3 Concluding remarks

Figure 6.9: Screenshot of the GUI prototype showing some results of a query over a set
of heterogeneous biomedical-related collections, using level-based similarity
and a flexible label-matching function

flexible similarity measures. In this context, they use in a biomedical research project
has been presented as an example.

115

Chapter 6 Prototype

Figure 6.10: XQuery support

116

Chapter 7

Conclusions

This last chapter presents the main results of the thesis and outlines possible future
research lines. It also includes a listing of the publications produced as a result of the
work leading to this thesis.

7.1 Summary of results

The core of this thesis is a new model for highly flexible queries over highly heterogeneous
XML collections. Such collections have grown in importance as XML has been adopted
by new communities that require the treatment of large and complex collections. In
many cases, this data does not fit into the traditional categories of “data-centric” and
“document-centric” collections; instead, they present significat heterogeneity at many
different levels. In particular, their structural heterogeneity makes standard XQuery
processing techniques unsuitable.

This motivates a need for highly flexible techniques, that can be applied to collections
where not even the stability of parent/child relationship (which is fundamental in XPath
and XQuery) can be taken for granted. These techniques are intrinsically approximate,
which leads to two additional problems: the definition of similarity measures suitable for
XML and the implementation of top-k query processing.

This thesis proposes generic, widely applicable solutions to the issues just outlined,
which we review presently. First of all, the thesis proposes formal, quantifiable criteria
for defining when a collection is heterogeneous. The current literature does not propose
such criteria, and describing a collection as “heterogeneous” is generally meant in the
limited sense of “collected from several different sources”. In this thesis we outline an
information-theoretic approach, based on techniques which are well established in other
fields but had not been applied to data characterization before.

The thesis also proposes a new, flexible model for XML similarity measures, based
on two design goals: the concept of multi-similarity, that allows systems that can
support many different similarity measures on demand; and the observation that most
XML similarity measures are based on a relatively small set of basic measures that are
combined and tailored to the problem at hand. As a consequence, our model is based on
the composition pattern, which allows the creation of new and sophisticated measures by

117

Chapter 7 Conclusions

combining and tailoring smaller building blocks. A method for describing the available
measures using a Description Logic-based formalism is also presented.

The core contribution of this thesis is an approach for identifying approximate answers
to queries on highly heterogenous XML collections, which allow for processing highly
complex and heterogeneous data. The approach is based on the concept of searching for
fragments in the database based on user-specified patterns. Patterns are instances of
tree-like structures that represent complex information needs of users. The necessary
algorithms are presented, as well as a set of indexing techniques that allow the efficient
computation of fragment sets.

The approximate nature of fragment-oriented techniques implies the need for a top-
k version of the algorithms. Most existing top-k algorithms for XML are based on
approaches that only support monotonic similarity measures, which is a strong limitation.
In particular, the flexibility of our measure model, in which non-monotonic measures
arise very naturally, makes it imperative to address this problem. The thesis presents an
approach based on the work of [Xin et al., 2007] in the relational context. The resulting
set of techniques represents, to the best of our knowledge, the first general-purpose top-k
algorithm for XML which can support non-monotonic measures. We also present an
experimental evaluation that shows significant performance gains (between 250% and
350% in our test data set) with respect to the non-top-k version of the algorithm.

The practical applicability of our approach makes it necessary to integrate the algo-
rithms into XQuery-based query processing systems. The thesis presents an external
function-based approach for the integration of the algorithms into the language, and
outlines the issues that need to be solved in order to integrate the algorithms at the
optimizer level. Also for practical reasons, we introduce a representative-based, incre-
mental clustering algorithm for XML that supports flexible similarity measures. This
algorithm is particularly well suited for grouping highly complex query results sets in
order to facilitate its analysis.

Finally, the proposed techniques have been implemented and tested in ArHeX , which
represents the core of a multi-similarity XML application development toolkit. The
development of the prototype has allowed us to recognize many practical issues that arise
in systems like ours, opening the way for future enhancements.

7.2 Future work

A number of directions for further research have been pointed out throughout the thesis,
which we summarize here.

The integration of the techniques presented here in an XQuery system presents several
open problems. The three more obvious are (i) the integration of approximate algorithms
as one more option available to the optimizer; the work of [Michiels et al., 2007] may
provide a suitable foundation; (ii) integration with proposed extensions of XQuery, in

118

7.3 Derived publications

particular TEXQuery [Amer-Yahia et al., 2004], which provides a natural way to express
approximate and top-k queries, although oriented to Information Retrieval; and (iii)
the possibility of extending the XQuery facilities to define functions, in order to allow
the native definition of similarity functions that conform to the model proposed in the
thesis. As a first step, the incorporation of the top-k query processing algorithms into
an existing, optimizing XQuery implementation such as Galax would provide important
insights over the problems involved.

Another contribution that opens new possibilities is the definition of a formal model
for the heterogeneity of XML collections. In principle, this makes it possible to define
(semi-)automatic techniques to determine automatically what measures can be more
appropriate to treat a given collection, in a way analogous to the techniques used by
[Bernstein et al., 2005] for combining ontology matching techniques. This approach could
simplify the design of multi-similarity applications.

Finally, the work in the development of the prototype has shown that the capability to
visualize a heterogeneous XML collection, showing at a glance its regions with distinct
characteristics of heterogeneity, would be extremely useful. There is a range of data
analysis and visualization techniques that could be applied to the problem.

7.3 Derived publications

This section enumerates the publications that produced this thesis. For each paper we
point out the chapters of the thesis that mainly influenced it.

� Ismael Sanz, Marco Mesiti, Giovanna Guerrini and Rafael Berlanga. Approximate
Subtree Identification in Heterogeneous XML Documents Collections Database and
XML Technologies: Third International XML Database Symposium, XSym 2005.
Co-located with VLDB 2005, LNCS 3671

� Ismael Sanz, Marco Mesiti, Giovanna Guerrini and Rafael Berlanga. Highly het-
erogeneous XML collections: How to retrieve precise results? 7th Intl. Conf. on
Flexible Query answering Systems (FQAS 2006), LNCS 4027

These two papers provide the foundations of the approximate querying
techniques presented in Chapter 4.

� Ismael Sanz, Marco Mesiti, Giovanna Guerrini and Rafael Berlanga: Fragment-based
Approximate Retrieval in Highly Heterogeneous XML Collections. Accepted for
publication in Data & Knowledge Engineering (June 2007)

This article is a significantly extended version of the two previous papers
above.

119

Chapter 7 Conclusions

� Ismael Sanz, Marco Mesiti, Giovanna Guerrini and Rafael Berlanga. ArHeX: An
Approximate Retrieval System for Highly Heterogeneous XML Document Collections.
Demo in EDBT 2006: 10th International Conference on Extending Database
Technology, LNCS 3896, 1186–1189

This paper documents a demonstration of an early version of the prototype
presented in chapter 6.

� Ismael Sanz, Juan Manuel Pérez, Rafael Berlanga, and Maŕıa José Aramburu. XML
Schemata Inference and Evolution. In 14th International Conference on Database
and Expert Systems Applications, DEXA 2003. LNCS 2736.

� Ismael Navas-Delgado, Ismael Sanz, José Francisco Aldana-Montes and Rafael
Berlanga: Automatic Generation of Semantic Fields for Resource Discovery in the
Semantic Web. In 16th International Conference on Database and Expert Systems
Applications, DEXA 2005. LNCS 3588.

These papers present the clustering algorithm from section 5.3, and apply
it two different contexts: XML schema inference and ontology matching.

� Ismael Sanz, Rafael Berlanga, Marco Mesiti and Giovanna Guerrini: Flexible
Composition of Indexes and Similarity Measures in XML. First International
Workshop on Ranking in Databases, DBRank 2007. In ICDE 2007 Workshop
Proceedings, ISBN 1-4244-0832-6

This paper presents the foundation of the measures model presented in
chapter 3.

� Guerrini, G.; Mesiti, M. & Sanz, I. An Overview of Similarity Measures for Clus-
tering XML Documents. In Vakali, A. & Pallis, G. (ed.) Web Data Management
Practices: Emerging Techniques and Technologies, Idea Group, 2006, pages 56–78

This book chapter surveys the state of the art in XML similarity mea-
sures. The focus is on clustering, but the framework presented is generic and
applicable in different contexts. This publication is the basis for section 2.3.

� Ernesto Jiménez, Rafael Berlanga, Ismael Sanz, Richard McClatchey, Roxana
Danger, David Manset, Jordi Paraire and Alfonso Rios: The Management and
Integration of Biomedical Knowledge: Application in the Health-e-Child Project
(Position Paper). In OnToContent’06, 1st International Workshop on Ontology
content and evaluation in Enterprise. October 2006. LNCS 4278.

This paper presents an application of the techniques presented in this thesis
in a biomedical research project, which is used as an application scenario in
Chapter 6.

120

Bibliography

Alberto Abelló, Xavier de Palol, and Mohand-Said Hacid. On the midpoint of a set of
XML documents. In 16th International Conference on Database and Expert Systems
Applications, DEXA 2005, number 3588 in LNCS, pages 441–450, 2005. doi: 10.1007/
11546924 43.

Serge Abiteboul. Querying semi-structured data. In ICDT ’97, 6th International
Conference on Database Theory, volume 1186 of LNCS, pages 1–18, 1997.

Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

S. Adalı, P. Bonatti, M. L. Sapino, and V. S. Subrahmanian. A multi-similarity algebra.
In SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD international conference on
Management of data, pages 402–413, New York, NY, USA, 1998. ACM Press. ISBN
0-89791-995-5. doi: 10.1145/276304.276340.

Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient management of
transitive relationships in large data and knowledge bases. In James Clifford, Bruce G.
Lindsay, and David Maier, editors, Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, Portland, Oregon, May 31 - June 2, 1989, pages
253–262. ACM Press, 1989.

S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: a full-text search
extension to XQuery. In WWW ’04: Proceedings of the 13th international conference
on World Wide Web, pages 583–594, New York, NY, USA, 2004. ACM Press. ISBN
1-58113-844-X. doi: 10.1145/988672.988751.

Sihem Amer-Yahia, SungRan Cho, and Divesh Srivastava. Tree pattern relaxation. In
Extending Database Technology, pages 496–513, 2002.

Sihem Amer-Yahia, Nick Koudas, Amélie Marian, Divesh Srivastava, and David Toman.
Structure and content scoring for XML. In VLDB ’05: Proceedings of the 31st
international conference on Very Large Data Bases, pages 361–372. VLDB Endowment,
2005.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook. Cambridge Unviersity Press,
2003.

121

Bibliography

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley-Longman, 1999.

Denilson Barbosa, Alberto O. Mendelzon, John Keenleyside, and Kelly A. Lyons. ToXgene:
An extensible template-based data generator for XML. In SIGMOD Conference, 2002.

A. Bernstein, E. Kaufmann, C. Bürki, and M. Klein. How similar is it? Towards person-
alized similarity measures in ontologies. In 7. Internationale Tagung Wirtschaftsinfor-
matik, 2005.

Kevin Beyer, Don Chambérlin, Latha S. Colby, Fatma Özcan, Hamid Pirahesh, and
Yu Xu. Extending XQuery for analytics. In SIGMOD’05: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages 503–514, 2005.

Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie,
and Jérôme Siméon. XQuery 1.0: An XML Query Language, 2007. URL http:
//www.w3.org/TR/xquery/. W3C Recommendation, 23 January 2007.

Angela Bonifati and Stefano Ceri. Comparative analysis of five XML query languages.
SIGMOD Record, 29(1):68–79, 2000.

Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0, 1998. URL http://www.w3.org/TR/1998/REC-xml-19980210. W3C
Recommendation, 10 February 1998.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, and
John Cowan. Extensible Markup Language (XML) 1.1 (Second Edition), 2006. URL
http://www.w3.org/TR/2006/REC-xml11-20060816/. W3C Recommendation, 16
August 2006.

Peter Buneman, Susan B. Davidson, Mary F. Fernandez, and Dan Suciu. Adding structure
to unstructured data. In Foto N. Afrati and Phokion Kolaitis, editors, Database Theory—
ICDT’97, 6th International Conference, volume 1186, pages 336–350, Delphi, Greece,
8–10 1997. Springer.

Barbara Catania and Anna Maddalena. A clustering approach for XML linked documents.
In DEXA ’02: Proceedings of the 13th International Workshop on Database and Expert
Systems Applications, pages 121–128, Washington, DC, USA, 2002. IEEE Computer
Society. ISBN 0-7695-1668-8.

Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML query language
for heterogeneous data sources. In Proceedings of WebDB 2000 Conference, 2000.

S. Chawathe, A. Rajaraman, H. Garćıa-Molina, and J. Widom. Change detection in hier-
archically structured information. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 493–504, 1996.

122

Bibliography

Sudarshan S. Chawathe. Comparing hierarchical data in external memory. In Proceedings
of the Twenty-fifth International Conference on Very Large Data Bases, pages 90–101,
Edinburgh, Scotland, U.K., 1999.

Taurai Tapiwa Chinenyanga and Nicholas Kushmerick. An expressive and efficient
language for xml information retrieval. Journal of the American Society for Information
Science and Technology, 53(6):438–453, 2002. ISSN 1532-2882. doi: http://dx.doi.org/
10.1002/asi.10057.

V. Christophides, G. Karvounarakis, D. Plexousakis, Michel Scholl, and Sotirios Tour-
tounis. Optimizing taxonomic semantic web queries using labeling schemes. Web
Semantics: Science, Services and Agents on the World Wide Web, 1(2):207–228,
February 2004. doi: 10.1016/j.websem.2003.11.001.

Vassilis Christophides, Sophie Cluet, and Jérôme Siméon. On wrapping query languages
and efficient XML integration. In SIGMOD’2000, 2000.

Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: an adaptive path index for
XML data. In Proceedings of the 2002 ACM SIGMOD international conference on
Management of data, pages 121–132. ACM Press, 2002. ISBN 1-58113-497-5. doi:
10.1145/564691.564706.

James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0, 1999. URL
http://www.w3.org/TR/xpath. W3C Recommendation, 16 November 1999.

William W. Cohen. Integration of heterogeneous databases without common domains
using queries based on textual similarity. In SIGMOD ’98: Proceedings of the 1998
ACM SIGMOD international conference on Management of data, pages 201–212, New
York, NY, USA, 1998. ACM Press. ISBN 0-89791-995-5. doi: 10.1145/276304.276323.

Gianni Costa, Giuseppe Manco, Riccardo Ortale, and Andrea Tagarelli. A tree-based
approach to clustering XML documents by structure. In PKDD ’04: Proceedings of
the 8th European Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 137–148, New York, NY, USA, 2004. Springer-Verlag New York, Inc.
ISBN 3-540-23108-0.

Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, and Timos Sellis. A methodology
for clustering XML documents by structure. Information Systems, 31(3):187–228, 2006.
doi: 10.1016/j.is.2004.11.009.

Ernesto Damiani and Letizia Tanca. Blind queries to xml data. In 11th International
Conference on Database and Expert Systems Applications, DEXA 2000, 2000.

123

Bibliography

Giuseppe De Giacomo and Maurizio Lenzerini. Description logics with inverse roles,
functional restrictions, and n-ary relations. In Proceedings of the Fourth European
Workshop on Logics in Artificial Intelligence (JELIA’94), volume 838 of LNCS, pages
332–346. Springer-Verlag, 1994.

A. Deutsch, M. Fernández, D. Florescu, A. Levy, and D. Suciu. A query language for
XML. In International World Wide Web Conference, 1999.

Melvil Dewey. Dewey decimal classification and relative index. OCLC Online Computer
Library Center, 22nd ed edition, 2003.

P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In STOC
’87: Proceedings of the nineteenth annual ACM conference on Theory of computing,
pages 365–372, New York, NY, USA, 1987. ACM Press. ISBN 0-89791-221-7. doi:
10.1145/28395.28434.

Hong Hai Do and Erhard Rahm. COMA - a system for flexible combination of schema
matching approaches. In Proc. 28th Intl. Conference on Very Large Databases (VLDB),
2002.

Jérôme Euzenat, Philippe Guégan, and Petko Valtchev. OLA in the OAEI 2005 alignment
contest. In Integrating Ontologies, 2005.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. J. Computer and System Sciences, 66:614–656, 2003.

David C. Fallside and Priscilla Walmsley. Xml schema part 0: Primer second edition, 2004.
URL http://www.w3.org/TR/xmlschema-0/. W3C Recommendation, 28 October
2004.

Peter Fankhauser. XQuery formal semantics: State and challenges. SIGMOD Record, 30
(3):14–19, 2001.

Mary Fernández, Jérôme Siméon, and Philip Wadler. XML query languages: Experiences
and exemplars. Communication to the XML Query W3C Working Group, September
1999.

Mary F. Fernández, Jérôme Siméon, Byron Choi, Amélie Marian, and Gargi Sur. Imple-
menting XQuery 1.0: The Galax experience. In 29th Intl. Conference on Very Large
Data Bases, VLDB 2003, pages 1077–1080, 2003.

S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese. Detecting structural
similarities between XML documents. In Proceedings of the Int. Workshop on The
Web and Databases (WebDB 2002), 2002.

124

Bibliography

Joerg Freund, Dorin Comaniciu, Yannis Ioannis, Peiya Liu, Richard McClatchey, Edwin
Morley-Fletcher, Xavier Pennec, and Giacomo Pongiglione. Health-e-child: An inte-
grated biomedical platform for grid-based paediatric applications. In 4th International
HealthGrid conference, volume 120 of Studies in Health Technology and Informatics,
2006.

N. Fuhr and K. Großjohann. XIRQL: A query language for information retrieval in XML
documents. In Proceedings of the 24th Annual International Conference on Research
and development in Information Retrieval, pages 172–180, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer D. Widom. Database System
Implementation. Prentice Hall, 2000.

C. Gokhale, Nitin Gupta, P. Kumar, Laks V. S. Lakshmanan, R. Ng, and B. A. Prakash.
Complex group-by queries for XML. In ICDE 2007, pages 646–655, 2007.

Torsten Grust. Accelerating XPath location steps. In SIGMOD ’02: Proceedings of the
2002 ACM SIGMOD international conference on Management of data, pages 109–120,
New York, NY, USA, 2002. ACM Press. ISBN 1-58113-497-5. doi: 10.1145/564691.
564705.

Giovanna Guerrini, Marco Mesiti, and Ismael Sanz. An overview of similarity measures
for clustering XML documents. In Athena Vakali and George Pallis, editors, Web
Data Management Practices: Emerging Techniques and Technologies, pages 56–78.
Idea Group, 2006.

Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. XRANK: Ranked
keyword search over XML documents. In SIGMOD’03, 2003.

Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie,
Mike Champion, and Steve Byrne. Document Object Model (DOM) Level 3 core
specification, 2004. W3C Recommendation 07 April 2004.

ISO 8879:1986. Information Processing – Text and Office Systems – Standard Generalized
Markup Language (SGML), 1986.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3):264–323, 1999.

Ernesto Jiménez, Rafael Berlanga, Ismael Sanz, Richard McClatchey, Roxana Danger,
David Manset, Jordi Paraire, and Alfonso Ŕıos. The management and integration of
biomedical knowledge: Application in the Health-e-Child project (position paper). In

125

Bibliography

OnToContent’06, 1st International Workshop on Ontology content and evaluation in
Enterprise. LNCS 4278., 2006.

Yaron Kanza and Yehoshua Sagiv. Flexible queries over semistructured data. In PODS
’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 40–51, New York, NY, USA, 2001. ACM Press.
ISBN 1-58113-361-8. doi: 10.1145/375551.375558.

H. Kaplan, T. Milo, and R. Shabo. A comparison of labeling schemes for ancestor queries.
In 13th SIAM Symposium on Discrete Algorithms, SODA’02, 2002.

Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, and Henry F Korth. Covering
indexes for branching path queries. In SIGMOD ’02: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data, pages 133–144, New York,
NY, USA, 2002. ACM Press. ISBN 1-58113-497-5. doi: http://doi.acm.org/10.1145/
564691.564707.

Gabriella Kazai, Norbert Gövert, Mounia Lalmas, and Norbert Fuhr. The INEX evaluation
initiative. In Norbert Fuhr, Hans-Jörg Schek, Gerhard Weikum, Fausto Rabitti, Ralf
Schenkel, Norbert Gövert, and Torsten Grabs, editors, Intelligent Search on XML
Data: Applications, Languages, Models, Implementations, and Benchmarks, volume
2818 of LNCS, pages 279–293, 2003.

Pekka Kilpeläinen. Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, Dept. of Computer Science, University of Helsinki, 1992.

Pierre P. Lévy. Pixelization paradigm: Outline of a formal approach. In Pixelization
Paradigm, volume 4370 of LNCS, 2007.

Quanzhong Li and Bongki Moon. Indexing and querying xml data for regular path
expressions. In VLDB ’01: Proceedings of the 27th International Conference on Very
Large Data Bases, pages 361–370, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-804-4.

Wang Lian, David Wai lok Cheung, Nikos Mamoulis, and Siu-Ming Yiu. An efficient and
scalable algorithm for clustering XML documents by structure. IEEE Transactions on
Knowledge and Data Engineering, 16(1):82–96, 2004. ISSN 1041-4347. doi: 10.1109/
TKDE.2004.1264824.

Shaorong Liu, Qinghua Zou, and Wesley W. Chu. Configurable indexing and ranking
for XML information retrieval. In Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in information retrieval, SIGIR’04,
pages 88–95, 2004.

126

Bibliography

W. John MacMullen and Sheila O. Denn. Information problems in molecular biology
and bioinformatics. Journal of the American Society for Information Science and
Technology, 56(5):447–456, 2005. doi: 10.1002/asi.20134.

Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching
with Cupid. In The VLDB Journal, pages 49–58, 2001.

Amélie Marian, Sihem Amer-Yahia, Nick Koudas, and Divesh Srivastava. Adaptive
processing of top-k queries in XML. In ICDE ’05: Proceedings of the 21st International
Conference on Data Engineering (ICDE’05), pages 162–173, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2285-8. doi: 10.1109/ICDE.2005.18.

Daniel G. Mcdonald and John Dimmick. The Conceptualization and Measurement of Di-
versity. Communication Research, 30(1):60–79, 2003. doi: 10.1177/0093650202239026.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database
management system for semistructured data. SIGMOD Record, 26(3):54–66, September
1997.

Wolfgang Meier. eXist: An open source native XML database. In Web, Web-Services,
and Database Systems. NODe, 2002, volume 2593 of LNCS, 2002.

Philippe Michiels, George A. Mihaila, and Jérôme Siméon. Put a tree pattern in your
algebra. In ICDE’07, 2007.

Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings of the
7th International Conference on Database Theory (ICDT), pages 277–295, 1999.

Andrew Nierman and H. V. Jagadish. Evaluating structural similarity in XML documents.
In Proceedings of the Fifth International Workshop on the Web and Databases (WebDB
2002), Madison, Wisconsin, USA, June 2002.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across hetero-
geneous information sources. In Proceedings of the Eleventh International Conference
on Data Engineering, pages 251–260, 1995.

Frantǐsek Plašil and Stanislav Visnovsky. Behavior protocols for software components.
IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002. ISSN 0098-5589. doi: 10.1109/TSE.
2002.1049404.

D. Quass, A. Rajaraman, J.D. Ullman, J. Widom, and Y. Sagiv. Querying semistructured
heterogeneous information. Journal of Systems Integration, 7(3/4):381–407, 1997.

Praveen Rao and Bongki Moon. PRIX: Indexing and querying XML using Prüfer
sequences. In ICDE’04: Proceedings of the 20th International Conference on Data

127

Bibliography

Engineering, page 288, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2065-0.

J. Robie, J. Lapp, and D. Schach. XML query language (XQL), 1988. URL http:
//www.w3.org/TandS/QL/QL98/pp/xql.html. September 1998.

P.J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational Applications in Math, 20:53–65, 1987.

M. Salicrú, S. Vives, and J. Oca na. Testing the homogeneity of diversity measures: a
general framework. Journal of Statistical Planning and Inference, 132:117–129, 2005.

Gerard Salton. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

Ismael Sanz, Juan Manuel Pérez, Rafael Berlanga, and Maŕıa José Aramburu. XML
schemata inference and evolution. In Database and Expert Systems Applications, 14th
International Conference, DEXA 2003, pages 109–118, 2003.

Torsten Schlieder. Similarity search in XML data using cost-based query transformations.
In Proceedings of SIGMOD WebDB Workshop, 2001.

Torsten Schlieder. Schema-driven evaluation of approximate tree-pattern queries. In
EDBT ’02: Proceedings of the 8th International Conference on Extending Database
Technology, pages 514–532, London, UK, 2002. Springer-Verlag. ISBN 3-540-43324-4.

Torsten Schlieder and Felix Naumann. Approximate tree embedding for querying XML
data. In ACM SIGIR Workshop On XML and Information Retrieval, 2000.

S. M. Selkow. The tree-to-tree editing problem. Information Processing Letters, 6:184–186,
December 1977.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 1948.

Dennis Shasha, Jason T. L. Wang, Huiyuan Shan, and Kaizhong Zhang. ATreeGrep:
Approximate searching in unordered trees. In 14th International Conference on
Scientific and Statistical Database Management (SSDBM’02), pages 89–98, 2002.

David Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Chap-
man & Hall/CRC, 2003.

Edward H. Simpson. Measurement of diversity. Nature, 163:688, 1949.

Jay D. Teachman. Analysis of Population Diversity: Measures of Qualitative Variation.
Sociological Methods Research, 8(3):341–362, 1980. doi: 10.1177/004912418000800305.

128

Bibliography

Anja Theobald and Gerhard Weikum. The index-based XXL search engine for querying
XML data with relevance ranking. In EDBT ’02: Proceedings of the 8th International
Conference on Extending Database Technology, pages 477–495, London, UK, 2002.
Springer-Verlag. ISBN 3-540-43324-4.

Martin Theobald. TopX - Efficient & Versatile Top-k Query Processing for Text, Struc-
tured, and Semistructured Data. PhD thesis, Universität des Saarlandes, 2006.

W3C HTML Working Group. XHTML� 1.0, The Extensible HyperText Markup Language
(Second Edition), 2002. URL http://www.w3.org/TR/xhtml1. W3C Recommendation,
26 January 2000, revised 1 August 2002.

R.A. Wagner and M.J.Fisher. The string to string correction problem. Journal of the
ACM, 21(1):168–173, 1974.

Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. ViST: A dynamic index
method for querying XML data by tree structures. In SIGMOD, 2003.

Jennifer Widom. Data management for XML: Research directions. IEEE Data Engineering
Bulletin, 22(3):44–52, 1999.

N. Wirth. Type extensions. ACM Trans. Program. Lang. Syst., 10(2):204–214, 1988.
ISSN 0164-0925. doi: 10.1145/42190.46167.

Kam-Fai Wong, Jeffrey Xu Yu, and Nan Tang. Answering XML queries using path-based
indexes: A survey. World Wide Web, 9(3):277–299, October 2006. doi: 10.1007/
s11280-006-8557-z.

Dong Xin, Jiawei Han, and Kevin Chen-Chuan Chang. Progressive and selective merge:
Computing top-k with ad-hoc ranking functions. In SIGMOD’07, 2007.

Rui Xu and II Wunsch, D. Survey of clustering algorithms. IEEE Transactions on Neural
Networks, 16(3):645–678, 2005.

Rui Yang, Panos Kalnis, and Anthony K. H. Tung. Similarity evaluation on tree-structured
data. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference
on Management of data, pages 754–765, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-060-4. doi: 10.1145/1066157.1066243.

Jong P. Yoon, Vijay Raghavan, and Venu Chakilam. Bitmap indexing-based clustering and
retrieval of XML documents. In ACM SIGIR’01 Workshop on Mathematical/Formal
Methods in IR, 2001.

K. Zhang, R. Stgatman, and D. Shasha. Simple fast algorithm for the editing distance
between trees and related problems. SIAM Journal on Computing, 18(6):245–1262,
1989.

129

Colophon

This thesis was edited using LYX 1.5 and TEXnicCenter, and typeset using the MiKTEX
2.5 distribution of LATEX 2ε. The document class is scrrprt, the KOMA-Script version
of the traditional report class. The additional packages are pretty standard, except
maybe for microtype, which subtly enhances the overall look of the document using
“micro-typographic” techniques which I certainly cannot claim to understand. The BibTEX
bibliography was maintained using JabRef 2.1, and was typeset in the natbib author-year
style.

Raw experimental results where turned into graphs using the R 2.4 statistical software.
Additional illustrations where created using the GraphViz suite, and either used directly
as EPS files or transformed into LATEX-readable pgf/TikZ pictures using dot2tex.
Figures 3.1, 3.2 and 6.1 were produced using Microsoft® Visio® 2003. All screenshots
were captured and converted using GIMP and ImageMagick®.

