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Chapter 1

Dynamics of solitary

semiconductor lasers

1.1 Historic overview and types of semiconductor

lasers

The importance of semiconductor lasers in present industrial applications is the re-

sult of a very active field of research in the previous century. Theories developed in

first half of the century settled the bases to describe the interaction between radia-

tion and matter. For instance, Planck (see e.g. Kuhn, 1978) described in 1900 the

spectrum of the electromagnetic radiation emitted by a black body, and Einstein

in 1917 (Hawks and Latimer, 1995) proposed the existence of stimulated emission,

through the interpretation of Lenard’s experiment on the photoelectric effect. Nev-

ertheless, the experimental implementation of the stimulated emission to obtain light
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amplification did not materialize until decades later. A first stage of development

started with Gordon, Zeiger, and Townes (1954), who showed that the electro-

magnetic radiation could be amplified in the microwave range using the concept of

stimulated emission, leading to the maser (microwave amplification by stimulated

emission of radiation). First steps towards the extension of the concept to optical

frequencies were made by Dicke (1958), and Proktov (1958). Schawlow and Townes

(1958) settled the theoretical mechanism to pump an optical resonator, using an

excited gas enclosed into a Fabry-Perot interferometer as an amplification system.

The laser (light amplification by stimulated emission of radiation) was finally ob-

tained by Maiman (1960), with a ruby laser showing pulsed operation. Javan et al

(1961) subsequently built the first He-Ne gas laser.

In 1960 Agrain suggested that the radiative combination of electrons and holes

in a semiconductor material could give rise to a maser in the infrared frequencies

(see Russell (1987)). Dumke (1962) pointed to GaAs (which has direct bandgaps) as

amplifying medium. Experimental investigations published simultaneously by Nathan

et al (1962) in IBM, Hall et al (1962) in General Electric, and Quist et al (1962) from

MIT Lincoln Laboratories showed laser amplification in GaAs diodes. The electron-

hole recombination in the depletion region of the p-n junction produced the optical

gain, and the polished facets perpendicular to the junction plane provided optical

feedback, by forming a resonant cavity.

Kroemer (1963) and Alferov and Kazarinov (1963) suggested that semiconductor

lasers could be improved (increasing the carrier lifetime) if a semiconductor ma-

terial was clamped between two layers of semiconductors with a wider bandgap.

This was the first theoretical proposal of heterostructure lasers, with two different
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semiconductor materials, in contrast with homostructure lasers, which have a single

semiconductor. In these early years it was difficult to match the lattice constants

of the two semiconductor materials to build a heterostructure. In 1969 a semicon-

ductor pulsed laser that could work at room temperature was built. Until 1970

it was not possible to have heterostructure lasers operating continuously at room

temperature (Hayashi et al, 1970).

Later, in 1971, the first gain-guided structure was manufactured, and during the

following years index-guided structures were developed, where a lateral confinement

was forced by an index difference on both sides of the stripe.

In 1975 it was possible to build a laser with emission wavelength of 1.1 µm, in

1977 the wavelength reached 1.3 µm and in 1979, 1.5 µm. More recent advances

include quantum well, distributed feedback, and vertical-cavity surface emitting

lasers, which we will explain in the next section.

The simplest semiconductor laser consists of a semiconductor p-n junction, as

showed in Fig. 1.1, operated in forward bias (a positive voltage is applied to the p

side of the junction with respect to the n side). Energy bands are continuous across

the junction, because the semiconductors on the two sides have the same bandgap.

The current applied in the p-n material produces the injection of electrons from

the conduction band of the n-type material to the p-type material, while holes are

injected in the opposite direction.

When an electron and a hole are in the same region, they can recombine, giving rise

to spontaneous emission, which is necessary to initiate the stimulated emission. The

key of lasing is the transition of an electron from an occupied state at a high energy

level to an empty state at a lower energy, due to the stimulated emission process.
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junction

laser output

claved facets

Figure 1.1: Schematic semiconductor laser diode. Lasing occurs in the plane of the
junction.

The cleaved facets of the device act as mirrors, reflecting photons back into the laser

cavity where they interact with excited electrons. The cavity is designed to resonate

at a frequency corresponding to the energy of stimulated emission, amplifying the

photons that propagate at the same direction. Lasing occurs when the amplification

or gain is higher than the losses inside the cavity. This occurs at a given threshold

value of the pump current, and emission occurs in the plane of the junction.

Figure 1.2 shows the most common types of semiconductor lasers:

• Homostructure: it consists in a p-n union, with cleaved facets. There is no

defined region in which the recombination can take place, and carriers can

diffuse before recombination occurs. As a result, the threshold current is very

high.

• Heterostructure: reduces considerably the threshold current. The active re-

gion (where the recombination processes take place) is sandwiched between

two oppositely doped semiconductors with higher bandgap and lower refrac-

tive index compared with the active layer. This difference in the bandgap
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Figure 1.2: Schematic heterostructure (left) and homostructure (right) semiconductor
lasers. In heterostructure lasers, a layer of low bandgap material (white) is sandwiched
between two high bandgap layers (grey). Homostructure lasers consist in a p-n union of
same type of semiconductor materials.

confines the electron and holes to the active layer, where they can recombine

to produce the optical gain. At the same time the difference in the refractive

index transforms the active region in a waveguide.

There are several different heterostructures, but the two basic ones are the single-

heterostructure and the double-heterostructure, depending on whether the active

region is surrounded by one or two cladding layers of higher bandgap. Because

of the index steps on both sides of the active layer, the wave guide in the double

heterostructure geometry is much more effective than in the single one. The active

layer in a double heterostructure laser (DH) is typically between 100-300 nm.

When the active region of a DH is thin enough (< 50 nm), the structure becomes

a quantum well (QW). In quantum well lasers the vertical variation of the electron’s

wavefunction, and thus its energy, is quantized (Liu, 2005). The conduction and

valence bands are divided in subbands corresponding to the quantized levels. A

higher number of electrons can occupy these subbands, which implies that for a
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given injection current, the gain is much higher than in the QW lasers because it

is easier to reach the transparency (minimum number of carriers to have gain or

amplification equal to the losses inside the cavity, Sec. A.2.3 of Appendix A). This

leads to low threshold currents and allow higher modulation speed.

The energy distribution of the electrons in the QW structures is narrower than

that in the standard double herostructures. Therefore, the optical gain concentrates

on a certain energy (wavelength). As a result, quantum well lasers have a narrower

laser linewidth.

Semiconductor lasers can also be classified according to the direction of emission

with respect to the junction. The optical field in a semiconductor laser can propagate

either horizontally or vertically with respect to the junction, and can thus be emitted

parallel or perpendicular to the junction. We can thus classify semiconductor lasers

into edge-emitting if the light is emitted through the side surfaces perpendicular to

the junction plane, or surface-emitting laser diodes, if the light is emitted through

a surface parallel to the junction interface.

Edge-emitting laser diodes can be classified according to their geometry in:

metal contact
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Figure 1.3: Broad area edge-emitting laser (adapted from Liu (2005)).

• Broad-area geometry. These lasers do not have a particular restriction in the
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propagation or guiding of the optical wave (in the direction parallel to the

junction). This leads to multiple transverse modes in the emission profile.
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Figure 1.4: Stripe edge-emitting laser (adapted from Liu (2005)).

• Stripe-geometry. Almost all laser diodes have a stripe geometry. It restricts

the carriers and the optical field in a confinement area parallel to the junction.

Due to the different vertical and lateral guiding structure, the emission profile

is strongly asymmetric, with different vertical and lateral divergence angles.

The width of the stripe is still much larger that the thickness of the active

layer, and the output light of the laser has the perpendicular divergence angle

higher than the parallel one, resulting in a beam with an stronger elliptic

section (Fig. 1.4). This restriction can allow transverse single mode operation

along the junction plane.

Stripe-geometry lasers can be classified depending on the way of confinement of

the propagating wave into (Agrawal and Dutta, 1986):

• Gain-guided: the current injection is restricted over a narrow region along

the junction plane. A stripe of concentrated carriers forms the active layer

along the longitudinal direction, which results in a stimulated amplification
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of the optical field along it. The lateral variation of the optical gain restricts

the propagation to the stripe. An undesirable characteristic of these type of

lasers is the antiguidance effect. In semiconductor lasers an increase in the

carrier density produces a decrease in the refraction index (see Sec. A.4 in

Appendix A), which spreads the optical field laterally instead of confining it.

It is necessary a very narrow stripe to compensate the spread of the gain.

• Index-guided: the active region is buried into higher-bandgap layers. The re-

fraction index step is larger than the carrier-induced effects along the junction

plane, producing a very low antiguidance effect. As a result, the lasing char-

acteristics of these lasers are determined by the rectangular waveguide that

confines the mode inside the buried active region. Due to this confinement the

size of the emitting profile and its divergence are smaller.

Depending on the type of cavity, there are three different kinds of edge-emitting

semiconductor lasers (Fig. 1.5):

• FP: Fabry-Perot lasers with a resonant cavity formed by cleaved end facets.

• DBR: distributed Bragg reflector lasers, with Bragg reflectors as end mirrors.

• DFB: distributed feedback lasers, which use a grating as a feedback mecha-

nism.

The small dimensions of semiconductor lasers, the high efficiency in converting

electrical current into coherent light, the very small power supply requirements,

and the effective cost production, make them attractive devices for industrial ap-

plications. Examples of technical applications are CD/DVD storage, laser printing,
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dFigure 1.5: Basic cavity structures for edge-emitting laser diodes. Left: Fabry-Perot laser

diode (FP), right: distributed Bragg reflector semiconductor laser (DBR), and bottom:
distributed feedback semiconductor laser (DFB).

scanning, surgery, or material processing. Fiber-optics telecommunications is also a

very important application of semiconductor lasers.

There are many differences between semiconductor lasers (SL) and other kinds

of lasers. SL have a high gain, generated by the population inversion between the

conduction and valence bands, the shape of the beam section is elliptical, and its

divergence tends to be large. The gain spectrum is large (many THz). The short

cavity (several hundreds of µm) means that the longitudinal mode spacing is much

larger than that of a conventional solid state laser (on the order of GHz). The typical

reflectivities of the cleaved facets (around 30%) are sufficient for lasing action, due

to the very high gain of the material. These devices also react easily to external

perturbations as optical feedback or optical injection, which produce changes in
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the dynamics of the output power, linewidth, and stability. Semiconductor lasers

evolve on fast time scales, the parameters of the device are well known, and are

experimentally well controllable. All these characteristics make semiconductor lasers

interesting devices to study nonlinear dynamical effects.

1.2 Rate equations

To understand the basic semiconductor laser dynamics, it is necessary to obtain time-

dependent equations for the evolution of the field amplitude and carrier density. We

summarize in this subsection the mathematical derivation of a rate equation model

for a semiconductor laser.

There are two different ways to describe the dynamics of semiconductor lasers:

deriving the rate equations directly from the Maxwell equations, or introducing

a field equation approach inside the gain medium expression to derive the rate

equations.

In the first case, from the Maxwell equations describing the electromagnetic field

in a medium, it is possible to arrive with some approximations, to the semiclassical

Maxwell-Bloch equations. This leads to three differential equations: for the opti-

cal field, the material polarization, and the population inversion (see Heil (2001)

and Dellunde (1996) for a detailed derivation). For semiconductor lasers (class B

lasers, whose polarization decay rate is much higher than the decay rates of the

population inversion and optical field), one can apply the adiabatic elimination of

the polarization, which finally leads to two rate equations describing the variation

of the electrical field and the population inversion.
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In the second case, introducing a field equation approach inside of the gain medium

it is possible to derive the rate equation model (Petermann, 1988). First, it is neces-

sary to derive the gain condition of the material to reach stationary laser oscillation,

and then the differential equations for the dynamical variables of the semiconductor

laser.

In our case, we will use this second method to derive the rate equations model.

We consider a Fabry-Perot cavity laser as described in Fig. 1.6. A plane wave inside

the cavity has the stationary-wave expression:

E(z, t) = E0e
iωte−ikz = E(z)eiωt , (1.1)

where E0 is the amplitude, ω the frequency of a longitudinal mode, and k the wave

vector.

Ef(z)

Eb(z)

z=0

r1 r2

z=L

un
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Figure 1.6: Schematic semiconductor laser cavity. z: facets, ri: reflectivities of the
cleaved facets, Ef (z) and Eb(z): forward and backward traveling complex electrical field,
respectively.

This wave will be amplified in both directions (forward, Ef and backward, Eb),
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because of the reflection at the cleaved facets at z = 0 and z = L (although we

consider the mirror losses uniformly distributed).

Considering the amplification of the material, g, together with the absorption,

αabs, the power of the forward (backward) wave into the material is:

Pf (z) = Pf0e
gz−αabsz , (1.2)

where Pf0 (Pb0) is the power amplitude at the front (rear) facet.

The field amplitude and the optical power are related by: P (z) ∼ |E0|2. Using

Eqs. (1.1) and (1.2), and Ef0 =
√

Pf0, the expressions of the forward and backward

fields take the form:

Ef (z) = Ef0e
[−i ω

c
nz+ 1

2
(gz−αabsz)]

Eb(z) = Eb0e
[−i ω

c
n(L−z)+ 1

2
(g(L−z)−αabs(L−z))] , (1.3)

where Ef0 and Eb0 are the amplitudes at the facets, κ = ω
c
n is the real part of the

wavevector, αabs the absorption coefficient due to the losses inside the cavity, and

n(N) is the refractive index, with N the carrier density.

Applying the continuity condition in the reflection at the cleaved facets we arrive

to a relation between the forward and backward waves in the material :

Ef (0) = r1Eb(0)

Eb(0) = r2Ef (L) , (1.4)

where r1 =
√

R1 and r2 =
√

R2 are the reflectivities of the cleaved facets.
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The amplitudes of the forward Ef (z) and backward Eb(z) fields are related to

each other:

Ef0 = r1Eb(0)

Eb0 = r2Ef (L) , (1.5)

Introducing Eqs. (1.3) into Eqs. (1.5) we arrive to the condition for the stationary

laser oscillation:

r1r2e
[−i2ω

c
nL+(gL−αabsL)] = 1 (1.6)

The real and imaginary parts of this equation give two different conditions, one

referring to the amplitude and the other one corresponding to the phase.

With the phase condition [taking the imaginary part of Eq. (1.6)], we can calculate

the different mode frequencies that can be sustained inside the cavity:

ωth =
mcπ

Ln
, (1.7)

where c is the speed of light, L the cavity lenght, n the refractive index, and m is

an integer that accounts for the mode number.

For evaluating the spacing between adjacent frequency emission modes, ∆ν =

νm−νm+1, one must take into account the dispersion of the refractive index, so that

an effective group index

n = n + ω
dn

dω
, (1.8)
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must be introduced, yielding:

∆ν =
c

2Ln
(1.9)

Since the group velocity of the optical wave is given by vg = c/n, the spacing

between adjacent modes corresponds to the inverse of the round trip time delay of

the laser cavity:

∆ν =
c

2Ln
=

1

τL

(1.10)

The amplitude condition of Eq. (1.6), leads to an expression of the gain needed

to reach the lasing threshold:

gth = αabs +
1

2L
ln

[
1

R1R2

]
, (1.11)

where we have not considered the spontaneous emission in the material: the real

gain is slightly smaller than this defined gth.

After deriving the gain condition of the material to reach stationary laser oscilla-

tion, we will find a time-dependent equation for the evolution of the variables of a

semiconductor laser. By defining the round trip gain, which is the gain experienced

by the traveling wave during one round trip inside the cavity, we proceed to get the

rate equation which describes the dynamical evolution of the photon number inside

the cavity.

The gain in the laser medium for each round trip inside the laser cavity (the

round-trip gain), taking into account the reflections at both mirrors (r1 and r2), the

phase accumulation, the gain, and absorption effects after propagation a distance



1.2. Rate equations 15

2L is:

G = r1r2e
[−i2nω

c
L+(gL−αabsL)] (1.12)

This quantity depends directly on the optical frequency and indirectly on the

carrier number through the refractive index. The field inside the cavity oscillates

with a frequency around ωth, which is the lasing frequency at threshold, and the

carrier density value is around its value at threshold.

The resonance frequencies of the cavity [Eq. (1.7)] must be integer multiples of π
L
,

but at the same time, they depend on the optical frequency and carrier number at

threshold, through the refractive index n(ωth, Nth). We therefore expand the term

nω
c

in terms of the optical angular frequency ωth and the carrier threshold Nth:

nω

c
' nthωth

c
+

1

c

∂ (nω)

∂ω

∣∣∣
Nth

(ω − ωth) +
1

c

∂ (nω)

∂N

∣∣∣
Nth

(N −Nth) =

=
nthωth

c
+

n

c
(ω − ωth) +

ωth

c

∂n

∂N

∣∣∣
Nth

(N −Nth) , (1.13)

where we considered the effective refractive index n and that the optical frequency

at threshold does not change with population inversion variations
(

∂ω
∂N

∣∣∣
Nth

' 0
)
.

We now introduce Eq. (1.13) in the roundtrip gain G expression given by Eq. (1.12),

and split the roundtrip gain into a frequency independent (G1) and a frequency de-

pendent (G2) term:

G = G1 ·G2 , (1.14)

where,

G1 = r1r2e
(g−αs)Le(−iφG) , (1.15)
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with,

φG =
2ωthL

c

∂n

∂N

∣∣∣
Nth

(N −Nth) , (1.16)

and,

G2 = e
−i

h
2nthωthL

c
+ 2nL

c
(ω−ωth)

i
(1.17)

From the possible emission frequencies derived from Eq. (1.7) we can see that the

first term of the exponential in Eq. (1.17) is a multiple of 2π. The second term can

also be simplified by taking into account Eq. (1.10) and G2 can be rewritted as:

G2 = e−i[τL(ω−ωth)] (1.18)

Once we have found a general expression for the round trip gain, we analyze the

dynamics of the laser emission. Since the field essentially oscillates at ωth, it is useful

to introduce the complex time-dependent electric field:

ε(t) = E(t)eiωtht (1.19)

where E(t) is the slowly varying envelope of the electric field propagating in the

positive direction inside the Fabry-Perot cavity.

The round trip gain is applied on each round trip to the light that travels inside

the cavity, yielding an expression:

ε(t) = Gεf (t)

ε(t) = G1e
iτLωthe−iτLωεf (t) (1.20)
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The term e−iτLω can be considered as an operator in the frequency domain and to

be expressed as e−τL
d
dt in the time domain, producing a time shift1 of (−τL) in the

electric field:

ε(t) = G1e
iτLωthεf (t− τL) (1.21)

Introducing Eq. (1.19) in the above expression, and ignoring the subindex for the

forward traveling wave2 we arrive to an expression for the slowly varying field after

one round trip:

E(t)eiωtht = G1e
iτLωthE(t− τL)eiωth(t−τL)

E(t) = G1E(t− τL) (1.22)

According to the small variation of the electric field envelope E(t) during one cavity

roundtrip, we can make the following approximation:

E(t) ' E(t− τL) + τL
dE(t)

dt
(1.23)

So that:

−τL
dE(t)

dt
= E(t− τL)− E(t) , (1.24)

and introducing Eq. (1.22) in the above equation, we obtain:

dE(t)

dt
=

1

τL

[
1− 1

G1

]
E(t) , (1.25)

1We can express: e−τL
d
dt ε(t) ' ε(t)− τL

dε(t)
dt ' ε(t− τL)

2The boundary condition of the cavity is satisfied: after a round trip the amplitude of the field
at z = 0, E(t), has to coincide with the previous field E(t− τL)
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where taking into account the expression (1.6) for lasing condition, we can consider

G1 lower than the unity. Therefore, we can expand the expression of G1 [Eq. (1.15)]:

1

G1

= exp[− ln(
√

R1R2)−(g−αs)L+iφG] '

' 1 +
1

2
ln(

1

R1R2

)− gL + αsL + i
2ωthL

c

∂n

∂N

∣∣∣
Nth

(N −Nth) , (1.26)

and substituting Eq. (1.11) in this expansion:

1

G1

= 1− (g − gth)L + i
2ωthL

c

∂n

∂N

∣∣∣
Nth

(N −Nth) (1.27)

The gain g in last equation is carrier dependent and it can be linearized around

its threshold value gth, leading to:

g(N) = gth +
∂g

∂N

∣∣∣
Nth

(N −Nth) , (1.28)

Using Eq. (1.10), Eq. (1.27) and Eq. (1.28), we can rewrite Eq. (1.25) as:

dE(t)

dt
=

[
c

2n

∂g

∂N

∣∣∣
Nth

(N −Nth)− i
ωth

n

∂n

∂N

∣∣∣
Nth

(N −Nth)

]
E(t) (1.29)

The change of the refractive index caused by an excitation of a medium is related

to the change of the absorption through the Kramers-Kronig relation (Yariv, 1989).

The way on which changes in the carrier density alter the refractive index and the

absorption of the active layer, is characterized by the linewidth enhancement factor
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or α factor3. The linewidth enhancement factor is also referred as the amplitude-

phase coupling coefficient (Masoller, 1997) and Equation (1.29) can be expressed

as:
dE(t)

dt
=

1 + iα

2

[
vg

∂g

∂N

∣∣∣
Nth

(N −Nth)
]
E(t) , (1.30)

We now define the optical gain per unit time as:

G(N) = vgg(N) = vggth + vg
∂g

∂N

∣∣∣
Nth

(N −Nth) (1.31)

The photon lifetime (τs) inside the cavity can be considered as the inverse of the

total loss rate of the photons γ (see Sec. A.2.2 of Appendix A), which is related with

the gain threshold [Eq. (1.11)] by:

γ =
1

τs

=
c

n

[
αabs +

1

2L
ln(

1

R1R2

)
]

= vggth (1.32)

We can express the second term in the right of Eq. (1.31) as:

vg
∂g

∂N

∣∣∣
Nth

(N −Nth) = G(N)− γ (1.33)

Finally, the field equation takes the form:

dE(t)

dt
=

(1 + iα)

2

[
G(N)− γ

]
E(t) , (1.34)

where γ is the inverse of the photon lifetime and G(N) is the optical gain. This

expression of the gain has to be completed, to take into account that it depends

3We can express: ∂n/∂N
∂n′′/∂N = −2ω

c
∂n/∂N
∂g/∂N , with n and n” the real and imaginary parts of the

refractive index [see Sec. A.4 in App. A for details].
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nonlinearly on the population inversion and the optical power (P = |E|2).

It is more useful to express the gain as a function of the population inversion at

transparency (N0), rather than as a function of the population inversion at threshold

(Nth), because N0 is a parameter of the semiconductor device. At transparency, the

loss in the laser medium balances the gain, and the gain must exceed this value to

allow for laser emission. Taking into account the density at transparency we can

define the gain at threshold as an expansion around the transparency:

gth '
∂g

∂N

∣∣∣
N0

(Nth −N0) (1.35)

Then, from Eq. (1.31), the optical gain per unit time can be defined as:

G(N) = vgg(N) = gN(N −N0) , (1.36)

with

gN = vg
∂g

∂N

∣∣∣
N0

' vg
∂g

∂N

∣∣∣
Nth

, (1.37)

being the differential gain.

This linear dependence is not accomplished for high optical powers, due to the

spatial hole burning and the carrier heating effects. The spatial hole burning ac-

counts for the fact that the optical field is not uniform in all the active region (the

standing wave inside the cavity forms an interference pattern), and the recombi-

nation is higher where the optical field is maximum. If the carrier diffusion is not

sufficiently fast to supply these zones with more carriers, this effect will lead to a

saturation of the gain coefficient. This can lead to an emission in various frequencies,
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because the lasing mode experiences stronger gain saturation than the non-lasing

modes. The other contribution to the saturation of the gain consists on the carrier

heating effects. This occurs when the electrons of the conduction band are excited

to higher energies. This fact hinders the recombination with the holes of the valence

band, leading to a saturation of the gain. These two processes lead to a nonlinear

gain of the form:

G(N, |E|2) =
gN(N −N0)

1 + s |E|2
, (1.38)

which accounts for the dependence of the gain with the carrier density and the

amplitude of the field. gN is the differential gain, N0 is the carrier density at trans-

parency, s is the saturation coefficient, and |E|2 is the output power of the field, or

the number of photons inside the cavity.

The dependence of the gain on the population inversion requires the derivation of

a differential equation for the carrier density, to have a complete description of the

dynamics of a semiconductor laser.

We start with the equation of charge neutrality in the material (Yamada, 1983):

∂N

∂t
= D∇2N +

I

e
− N

τs

−Rst(N, |E|2) , (1.39)

The first term of the right side corresponds to the carrier diffusion, where D is the

diffusion coefficient. The second term accounts for the generation of electron-hole

pairs, which is due to the pumping, being I the injected current and e the elementary

charge. The third and last term are related with the loss of carriers. We use several

assumptions in order to arrive to a governing equation for the carrier density:

• We neglect the carrier diffusion, because this kind of lasers have a very small
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dimension of the active layer compared to the diffusion length (D∇2N ' 0).

• We consider the carrier decrease due to spontaneous emission, non-radiative

transitions
(

N
τs

)
and stimulated emission processes

(
Rst(N, |E|2)

)
. Recom-

bination processes such as spontaneous emission and non radiative recombi-

nations (see Sec. A.2.1 of Appendix A) are related to the carrier lifetime,

and the stimulated emission is directly related to the emitted field through

Rst(N, |E|2) = G |E|2.

• We consider the carrier lifetime as constant above threshold, because the car-

rier number is clamped to its value at threshold.

• We do not consider inhomogeneities due to the fast carrier diffusion, so that

N is space independent. This allows us to replace the partial derivative (∂N
∂t

)

by a total one.

With the points considered above the equation for the population inversion reads:

dN

dt
= C − γeN −G(N, |E|2) |E|2 (1.40)

where C = I/e is the pump current and γe is the inverse lifetime of the carriers

γe = 1/τe (Sec. A.2.1 of Appendix A).

Because it is necessary to consider spontaneous emission processes that initiate the

lasing emission, a real semiconductor laser must be described with differential equa-

tions that include a noise term. We add an additional term in the field equation that

accounts for the independent events of creation of spontaneous emission photons.

It is proportional to a complex Gaussian noise ζ(t), with zero mean (〈ζ(t)〉 = 0),
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and correlation 〈ζ(t)ζ∗(t′)〉 = 2δ(t − t′). The noise term has to be proportional to

the population inversion, also, to account for the amount of spontaneously emitted

photons.

The final rate equations that describe the dynamics of a semiconductor laser,

governing the electric field and the carrier density number are:

dE(t)

dt
=

(1 + iα)

2

[
G(N, |E|2)− γ

]
E(t) +

√
2βNζ(t) (1.41)

dN

dt
= C − γeN −G(N, |E|2) |E|2 , (1.42)

where β is the noise strength.

It is also possible to express these equations as the variation of the photon number

and its phase, instead of the slowly varying field, in order to account for the evolution

of the dynamics of the laser output power. Defining E(t) =
√

P (t)eiφ(t), where

P (t) = |E(t)|2 is the photon number, and φ the phase of the field, the rate equations

can be expressed as:

dP (t)

dt
= [G(N, P )− γ] P (t) (1.43)

dφ(t)

dt
=

α

2

[
G(N, P )− γ

]
(1.44)

dN

dt
= C − γeN −G(N, P )P , (1.45)

where the nonlinear gain is now expressed as:

G(N, P ) =
gN(N −N0)

1 + sP
(1.46)
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In spite of having three degrees of freedom, as shown explicitly here, the system

cannot show chaos, due to the fact that the phase φ is not affecting the other two

degrees of freedom.

The steady-state solutions of this reformulated system of equations are obtained

setting the dP (t)/dt, dφ(t)/dt, and dN(t)/dt values to zero at Eq. (1.43), Eq. (1.44),

and Eq. (1.45) respectively. With this we obtain a solution for the number of

photons, Ps, the difference of the optical frequency respect to the stationary value,

∆ω = ω − ωs, and the density of carriers, Ns (see Buldú (2003) for a detailed

calculation). There are two situations to take into account:

• Below threshold: the laser emission is zero and the density of carriers increases

linearly with the pump current (Ns = C/γe).

• Above threshold: the photon emission is proportional to the distance of the

pump current level from its threshold value. The carrier density is clamped

to its threshold value, and the instantaneous frequency is clamped to the

stationary value (∆ω = 0).

In the boundary between both it is possible to derive an expression for the inversion

population at threshold. The expression of the stationary solution for the number

of photons [taking dP/dt = 0 in Eq. (1.43) and introducing Eq. (1.46)] is:

Ps =
gN(N −N0)− γ

s
(1.47)

Taking Ps = 0 in last equation it is possible to express the population inversion at

threshold as:

Nth = N0 −
γ

gN

(1.48)
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Through the study of the stability of the steady-state solutions with a linear

stability analysis it is possible to obtain, for the solutions above threshold, an oscil-

latory approach to equilibrium as a response to a small perturbation. This defines

the relaxation oscillations (RO), which are common in any class-B laser (Weiss

and Vilaseca, 1991). The relaxation oscillations can be explained if we introduce

a step input through the pump current. The carrier density reaches the threshold

and emits light. The population inversion decreases, due to the light emission and

as consequence, the output power decreases until the population inversion recov-

ers. This produces relaxation oscillations between the field and the carrier density.

These oscillations characterize the speed of reaction of the laser to external modu-

lations of the pumping. The relaxation oscillation frequency sets the upper limit of

the dynamics, and goes from 1 to 10 GHz typically. The two-dimensional system

of Eqs. (1.41) and (1.42) allows only periodic solutions and not chaotic behavior,

but the enhancement of the relaxation oscillations in semiconductor lasers through

external perturbations such as optical feedback or optical injection causes strong

instabilities. The damping rate of these oscillations affects the characteristics of the

dynamical response to these external perturbations.

1.3 Optical feedback

As shown above, the dynamics of semiconductor lasers is described by two cou-

pled first-order differential equations, which implies that these lasers cannot become

chaotic by themselves. However, in the presence of external influences, the dynami-

cal dimension is increased up to three or more, and then these lasers can experience

chaotic behavior. In particular, relaxation oscillations of a semiconductor laser can
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be destabilized by optical feedback, which introduces a delayed perturbation into

the system. The optical feedback consists in the re-introduction of part of the laser’s

own emitted radiation through a mirror placed in front of its output facet. Due to

the low reflectivities of the laser facets in semiconductor lasers, these devices are

strongly affected by external optical feedback.

Early studies showed that the output intensity of the laser can be stabilized by

optical feedback (Paoli et al, 1975; Hirota and Suematsu, 1979). In the 1970s, re-

searchers began to study in detail the dynamical aspects of these instabilities (Risch

and Voumard, 1977). The nonlinear dynamics of the semiconductor lasers began

to generate interest and the addition of external cavities to semiconductor lasers

showed a rich variety of instabilities (Bogatov et al, 1975; Broom et al, 1970; Ed-

monds and Smith, 1970). In particular, a chaotic state of operation was seen to be

easily caused by minor amounts optical feedback.

Based on the model of Lang and Kobayashi (1980) of semiconductor lasers with

optical feedback, many manifestations of the different regimes of chaotic operation

produced by optical feedback have been reported. From the point of view of nonlin-

ear dynamics, semiconductor lasers are highly controllable nonlinear systems, and

the sizable feedback sensitivity is very critical for technical applications. In many

laser devices such as CD or DVD players, the undesirable feedback effects from

external system components might destabilize the laser. Therefore, the very rich

chaotic behavior and the large number of instabilities of this type of lasers have

been subject to extensive investigations.
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1.3.1 Modelling semiconductor lasers with optical feedback

A combination of high gain, strong coupling of the re-injected light, and weakly

damped relaxation oscillations makes semiconductor lasers very sensitive to external

perturbations. The high asymmetry of the gain profile coming from a positive value

of the α-parameter (Sec. A.4 of Appendix A), is a very important factor in the

emergence of instabilities arising from optical feedback (Dente et al, 1988; Sacher

et al, 1992; Masoller, 1997; Ryan et al, 1994). On the other hand, the spectral

linewidth of the laser is reduced considerably through optical feedback from its

solitary value, for steady-state conditions.

Increasing the feedback strength the laser also leads to instabilities, including

different types of chaotic behavior, and losses of coherence. The latter occurs, for

instance, in the coherence collapse regime, where the laser spectrum spreads over

the range of GHz. When the feedback strength is further increased, the spectral

linewidth becomes very narrow again and the laser stabilizes to a single mode oscil-

lation (Ohtsubo, 2002).

To derive a rate equation model to describe a semiconductor laser with optical

feedback, we proceed as in the case of a single semiconductor laser (Sec. 1.2). We

place a mirror in front of a Fabry-Perot semiconductor laser, which re-introduces

part of the output light into the laser (Fig. 1.7). We consider an ordinary mirror

(not diffraction grating or phase-conjugate) and place it at a distance within the

coherence length of the laser.

The distance between the laser and the mirror, Lext, determines the roundtrip

time of the external cavity, i.e. the time needed by the light to go to the mirror,

reflect on it and come back again to the laser, calculated as τf = 2Lext/c. This
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external cavity imposes boundary conditions to the emitted light of the laser, due

to the reflection in the mirror (with reflectivity rext).

Eb(Z)

Ef(Z)

Z=LZ=0Z=-Lext

r1 r2rext r1'

LLext

un
lic
en
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d

Figure 1.7: Schematic Fabry-Perot laser cavity with optical feedback. z = 0 and z =
L: facets, r1 and r2: internal reflectivities of the cleaved facets, r′1: external reflectivity
at the front facet, rext: reflectivity of the mirror, L: cavity laser length, Lext: external
cavity length, Ef (z) and Eb(z): forward and backward traveling amplitude of the complex
electrical field.

We now make some assumptions:

• The feedback strength is weak and we consider only one reflection in the mirror.

The external reflectivity is less than a few percents of the output intensity

amplitude.

• The external cavity is a long cavity. The round trip frequency of the laser

light in the external cavity (νec = c/2Lext) is much lower than the relaxation

oscillation frequency νRO. This corresponds to cavity lengths of the order of

1 meter.

• The laser emission, and therefore the re-injected field, are considered mono-
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mode.

• The carrier density is not affected directly by the optical feedback. The rate

equation that accounts for the carrier density variations, does not change from

the solitary laser equations.

• As in the solitary laser case, in previous section, the amplitude reflectivities

for the front and the back facets of the laser cavity are the same (r1 = r2).

• The output field oscillates at a frequency ω0 ' ωth, as for the solitary case,

and we consider the slow varying amplitude of the field in the rate equations

(Sec. 1.2).

With these assumptions the rate equations for the amplitude of the complex field

and the carrier density read (Lang and Kobayashi, 1980):

dE(t)

dt
=

(1 + iα)

2

[
G(N, |E|2)− γ

]
E(t) +

+κfE(t− τf )e
−iω0τf +

√
2βNζ(t) (1.49)

dN

dt
= C − γeN −G(N, |E|2) |E|2 , (1.50)

where κfE(t − τf )e
−iω0τf is the feedback term, ω0τf the feedback phase, ω0 is the

optical frequency emission of the solitary laser, and E(t− τf ) the optical field that

left the laser cavity a time τf before. The feedback strength κf is defined as:

κf =
(1− r2

1)

τL

rext

r1

, (1.51)

where τL is the internal cavity round trip time, rext the mirror reflectivity, and r1

the internal facet reflectivity. Experimentally, the feedback strength is calculated by
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the reduction of the threshold current observed in the P-I curve (see Sigg (1993)).

As in the estimation of the threshold current for a solitary semiconductor laser (see

Sec. A.3.1 of Appendix A), the threshold current for a semiconductor laser with

optical feedback is determined through the P-I curve. The percentage of the light

reinjected into the laser is estimated through the solitary threshold current reduction

as:

% reduction =
Ith − If

th

Ith

, (1.52)

where Ith is the solitary laser threshold current and If
th is the threshold current of

the laser with optical feedback.

There are several papers deriving the steady state solutions of Eq. (1.49) and

Eq. (1.50) and their stability (Petermann, 1995; Tromborg et al, 1984, 1987; Sano,

1994). In this introduction we only explain the method to arrive at the expression

of the solutions of a semiconductor laser with optical feedback.

Splitting the field equation (1.49) into the variation of the photon number and its

phase, as for the solitary laser case [Eqs. (1.43)-(1.45)], and after introducing the

ansatz for stationary solutions P (t) = Ps, N(t) = Ns and φ(t) = (ωs − ωth)t in the

resulting equations, one finds (Mørk et al, 1992; Sano, 1994):

Ps =
C − γeNs

gN(Ns −N0)
(1.53)

∆N = Ns −Nth = −2
κf

gN

cos(ωsτf ) (1.54)

∆ωτf = (ωs − ω0)τf = κfτf

√
1 + α2 sin(ωsτf + arctan α) (1.55)

To see the evolution of the laser dynamics we look at the phase space of the

system. When plotting ∆N versus ∆ωτf , Eq. (1.54) versus Eq. (1.55), we obtain
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an ellipse. This ellipse contains the possible solutions in the phase space defined by

these two variables, and takes the form:

[
(ωsτf − ωthτf ) +

αgNτf

2
(Ns −Nth)

]2

+
[gNτf

2
(Ns −Nth)

]2

= κ2
f (1.56)

Through a linear stability analysis of the solutions it is possible to know that the

lower half of the ellipse is formed by fixed points that are either stable or unstable via

a Hopf bifurcation (external modes, due constructive interference between external

and internal fields) and the upper half are unstable saddle solutions (antimodes, due

to destructive interferences) (Sano, 1994). At least one mode, called the Maximum

Gain Mode (MGM), is stable and corresponds to the regime of operation where the

carrier density is minimum and the output power is maximum. This value can be

obtained from Eq. (1.55), for ωsτf = 0 mod 2π when ωthτ = κfα/τ mod 2π.

Figure 1.8 represents the solutions of the laser equations with optical feedback.

Empty points are stable or Hopf unstable solutions and full circles are unstable

saddle points.
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Figure 1.8: Fixed points for the
rate equation model of a semicon-
ductor laser with optical feedback.
Solutions on the upper branch (filled
circles) are unstable saddle anti-
modes and on the lower branch are
the external cavity modes (empty
circles). The maximum gain mode
is the filled square and the stable
emission without feedback is the grey
circle in the center of the ellipse.
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The MGM is always located at the left corner of the ellipse and is represented by

a black box in the figure. The solution corresponding to the stable laser emission

without feedback is located at the center of the ellipse (grey point). It is possible to

have more than one stable MGM point (Levine et al, 1995; Masoller and Abraham,

1998) for decreasing values of α, which stresses the importance of this parameter in

the stability of the system with feedback. The number of solutions, which increases

or decreases in pairs, changes with the values of the parameters (κf , α, τf , and

ω0τf ).

1.3.2 Regimes of optical feedback

The different regimes displayed by a semiconductor laser due to its sensitivity to

external optical feedback can be classified in several different ways. If we take into

account the reflectivity of the mirror (Tkach and Chraplyvy, 1986; Mørk et al, 1992),

the feedback effects can be divided into five regimes:

• Regime I: lowest levels of feedback. Narrowing or broadening of the emission

line is observed, depending on the phase difference between the emitted and

the returning light. The spectral width is wider when the two are out of phase.

• Regime II: small levels of feedback. A splitting of the emission line appears,

arising from rapid mode hopping.

• Regime III: very narrow region around small levels of feedback. The mode

hopping is suppressed and the laser oscillates with a narrow linewidth.

• Regime IV: moderate feedback levels. The relaxation oscillations become un-

damped and the linewidth is broadened. In this regime the laser shows chaotic
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behavior.

• Regime V: strong feedback regime. The internal and external cavities are like

a single cavity and the laser oscillates with a single longitudinal mode.

In this Thesis we are mainly interested in regime IV, with moderate feedback lev-

els, in which the laser shows chaos and can be described by the Lang and Kobayashi

model. In this region, another classification can be made. The dynamics of the

chaotic behavior of a semiconductor laser subject to optical feedback has been clas-

sified by Besnard et al (1993) [see also (Heil et al, 1998, 1999)], who distinguished

three domains of the output intensity behavior depending on the pump current:

stationary regime, low-frequency-fluctuation regime (LFF) and coherence-collapse

regime (CC).

The coherence-collapse regime appears for moderate to high feedback level with

pump currents far above the threshold value. The relaxation oscillations are ex-

cited due to the feedback and the spectral linewidth of the laser emission increases

up to several GHz. The phase-space trajectory in this regime is completely disor-

dered (Mulet and Mirasso, 1999).

The low-frequency-fluctuation regime appears when the laser operates at pump

currents close to the threshold and the feedback level is low or moderate. It consists

in sudden power dropouts, followed by a gradual power recovery. These dropouts

are irregular in time and their frequency ranges from MHz to hundreds of MHz,

i.e. smaller than the relaxation oscillation frequency. Due to this the dropouts are

called low frequency fluctuations (LFF). This signal is in fact the envelope of a

fast pulsing dynamics that is frequently masked by experimental limitations caused

by the limited bandwidth of the monitoring devices (Fig. 1.9). The real dynamics
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Figure 1.9: LFF dynamics for filtered (top) and unfiltered (bottom) signals.

is on the order of ps, as predicted theoretically van Tartwijk et al (1995a), and

experimentally observed using a streak camera by Fischer et al (1996).

In multimode lasers, the fast scale dynamics of LFF does not change apprecia-

bly, ruling out that the multimode operation is fundamental for the LFF occur-

rence (Sukow et al, 1999). In the slow dynamics of the LFF regime, the mean time

period between dropouts depends on the parameters of the system. The mean time

period increases for low pump current, it increases with the feedback strength κf ,

and decreases for increasing values of α. Finally, the larger the feedback time τf ,

the larger the mean time period, but this dependence is less drastic than the pump

current or the feedback strength effects. It is also known (Heil et al, 1999), that the

distribution function of the time interval between dropouts decays exponentially,

and that a certain refractory time exists between subsequent dropouts (see next

subsection).
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The dynamical nature of the LFF regime has been explained in several different

ways. Henry and Kazarinov (1986) explained the phenomena as an escape from a

potential well due to noise. Mørk et al (1988) introduced a model in which the

dropouts correspond to a noise-induced switching between a high and a lower power

state. The suppression of the noise does not eliminate the LFF and suggested that

they were produced by a chaotic attractor. Some years later, Sano (1994) proposed

a deterministic model in which the LFF are explained in the phase space defined by

ωτ and N . The optical feedback causes a decrease in the population inversion, and

the laser drifts from the stable emission point towards the maximum gain mode.

The proximity between modes and antimodes increases near the MGM and a

collision (crisis) between the trajectory and an antimode becomes likely. When the

trajectory approaches the stable manifold of the saddle (antimode), it moves to the

unstable manifold and the system initiates a dropout in power, during which the

laser turns off and the population inversion increases to the threshold value (because

during the dropout the carriers are not depleted) until the system reaches its solitary

state. This process is repeated again on each dropout, with the crisis occurring at

different points on each trajectory towards the MGM, so that the dropouts occur at

irregular times.

1.3.3 Excitability in semiconductor lasers

Excitability properties in semiconductor lasers with optical feedback have been

shown experimentally (Giudici et al, 1997) and numerically (Mulet and Mirasso,

1999; Eguia, 1998; Eguia and Mindlin, 1999). To consider a system as excitable,

some features must be observed:
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• In the absence of external perturbations the system is in an equilibrium state.

• Above a certain threshold, perturbations produce a transient excursion away

from the equilibrium, leading to a pulse.

• The amplitude of the pulses is approximately independent of the amplitude of

the perturbation.

• After the perturbation the system returns to the equilibrium state and is not

able to react to another perturbation during a certain refractory time.

In a semiconductor laser with optical feedback, when the pump current is close

to its threshold value with a constant output intensity, it is possible to generate

dropouts perturbing the pumping current with an external electrical signal. The

amplitude of these dropouts is independent of the amplitude of the perturbation.

Several experiments (Heil et al, 1999) and numerical works (Mulet and Mirasso,

1999) showed that the distribution function of the mean time period of the dropouts

reveals the existence of a refractory time during which the next dropout can not

occur. This refractory time decreases as the pump current is increased.

In this framework, it is possible to control the low frequency fluctuations by ap-

plying an harmonic signal into the pump current of a semiconductor laser. In the

low-frequency-fluctuation regime, when we induce a semiconductor laser with exter-

nal cavity to drop with a certain time period, we entrain the laser. A first study of

the effect of external modulation in a semiconductor laser with optical feedback was

made by Takiguchi et al (1998). They introduced a sinusoidal signal into the pump

current and observed the effect of the external frequency on the dropout events. As

expected, not all modulation frequencies affected the laser in the same way. Their
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work shows that only a range of frequencies above and below that corresponding to

the external cavity frequency affects the system. Modulation at the external cavity

frequency did not affect the dropouts.

Later, Sukow and Gauthier (2000) made a more specific study of entrainment

in semiconductor lasers subject to optical feedback. They were able to make an

hypoThesis about the frequencies that entrain the laser. The effect of the modulation

is noticeable when the frequency equals the frequency difference between modes and

antimodes. The periodic modulation changes the external cavity solutions of the

system, impressing side bands on each cavity mode and antimode frequency. A

resonance occurs when the modulation frequency is equal to the mode-antimode

frequency difference.

A laser with optical feedback, due to the positive value of the linewidth enhance-

ment factor (see Sec. A.4 of Appendix A), experiences a drift towards longer wave-

lengths (van Tartwijk and Lenstra, 1998). Keeping in mind the elliptic represen-

tation of the solutions of the Lang and Kobayashi equations shown in Fig. 1.8 of

Sec. 1.3.1, each dropout is associated with a mode-antimode collision (Sano, 1994).

This collision occurs between different mode-antimode pairs, and the travel time of

the trajectory in phase space is different for each dropout. In this sense, we have

a dynamic threshold to produce the dropout events. When the pump current is

modulated with a periodic signal, it is possible to make the laser follow the peri-

odicity of the introduced modulation. An optimal amplitude of the periodic signal

exists, for which the laser is entrained. For higher amplitudes, the system loses its

intrinsic dynamics and for lower amplitudes, it does not react to the introduced

signal. Buldú et al (2004) made a numerical study of the influence of the cavity
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length on the entrainment in semiconductor lasers with optical feedback, showing

how the optimal amplitude for the entrainment decreases for decreasing feedback

time. There are several studies in how the coupling enhances the entrainment of

the system. One experimental work from Buldú et al (2002,b) shows that in two

bidirectionally coupled lasers coupling increases the entrainment of the system.

It has also been observed that the output pulses can be made more regular by

means of the introduction of external noise. When an external noise is introduced in

the pump current of the laser with feedback, an increase of regularity in the dropout

events occurs for an optimal amplitude of the noise (Giacomelli et al, 2000; Buldú

et al, 2001), which is a clear evidence of coherence resonance (CR) in the system.

Experimentally, the laser is biased very close to threshold, so that the system is stable

in the absence of external noise. Then, the external noise is added into the dc pump

current level, which produces dropouts at irregular times. These dropouts become

more regular and frequent as the amplitude of the noise is increased. For large

noise amplitudes, the pulses become irregular again. This shows that an optimal

amplitude of the noise guarantees a coherent output (Lindner et al, 2004).

A general explanation from the point of view of excitable systems is that every

time that the external perturbation crosses a threshold value, a pulse is produced.

The total time between pulses, tp, can be decomposed into two independent time

intervals: the activation time, ta, which is the time that the system needs to react to

the perturbation, and the excursion time, te, which corresponds to the time needed

by the system to return to the initial stable state (observed by Palenzuela et al

(2001) in a Chua circuit).
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When the perturbation process is related to a random source, such as a noise,

ta becomes a random variable. The mean value of the activation time depends on

the intensity of the external noise (Hänggi et al, 1990). An increase of the noise

amplitude will decrease the activation time. Taking into account that the excursion

time te depends on the parameters of the system, an increase of the amplitude of

the noise is translated into a decrease of the time between pulses tp (see Pikovsky

and Kurths (1997)).

For low values of the noise amplitude, the time between pulses is dominated by the

activation time (because ta has a high increase for a low values of noise amplitude

and we can consider the mean time of te as constant). When the noise intensity is

large, the activation time is small and the system exhibits a pulse shortly after the

system returns from an excursion. For intermediate values of noise, if the excursion

time is high enough and the threshold of excitation is small, it causes a maximum

regularity of the time between output pulses (Palenzuela et al, 2001).

The coherence resonance phenomenon in semiconductor lasers with optical feed-

back can be explained in a similar manner. If we take into account the ellipse with

the solutions (Fig. 1.8), an external perturbation can take the system away from the

stable emission and after a collision with an antimode produces a dropout event.

For small intensities of the external noise, the excursion time te of the system to

undergo a dropout is basically independent of noise, and has the role of a refractory

time during which no dropouts can be induced. As noise intensity increases, the es-

cape events become more frequent, reducing the mean time period of the dropouts.

When the dropout separation is of the order of te, for an optimal amount of noise,

a regularity of the mean time period between dropouts occurs. For higher values of
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the noise amplitude, it produces escapes before the build-up process of the dropout

is finished (i.e. before the stable mode is reached), producing an irregularity of the

pulses (Buldú et al, 2001).

If semiconductor lasers with optical feedback are capable of presenting excitable

characteristics such as the coherence resonance phenomenon, it is reasonable to think

that stochastic resonance (SR) could also be observed. Stochastic resonance is the

enhancement of a system’s response to an external harmonic driving for an optimal

noise level (Gammaitoni et al, 1998). For a certain range of noise amplitudes, when

the system is driven by a weak periodic signal, it responds to the introduced signal.

In fact, the system is helped by noise to follow the frequency of the periodic signal in

a resonance-like behavior. When the noise amplitude is not high enough to produce

any effect at the system output, or when it is too high that it overtakes the dynamics

of the system, no regularity or entrainment will be observed. Only for intermediate

noise values its effect will be sufficient to help the system to follow the weak periodic

driving without having a strongly noisy output. Numerical evidence of stochastic

resonance in lasers has been shown by Buldú et al (2002a). They modulated the

laser with a weak external signal while it was operating in the LFF regime, and

the addition of the right amount of external noise was seen to help the intensity

dropouts to follow the modulation signal by jumping to the sideband impressed by

the external modulation, for the correct amount of external noise amplitude (Marino

et al, 2002).



Chapter 2

Dynamics of coupled

semiconductor lasers

Nonlinear systems are classified in two groups, depending on the predictability of

their behavior. One group includes systems whose dynamics can be predicted from

their initial conditions, including systems with stationary or periodic behaviors. A

second group includes systems that are highly sensitive to perturbations in their

initial conditions, and whose behavior appears to be random. The latter look like

very complex and disordered systems, which can only be described with statistical

methods. However, some of these systems can be deterministic, meaning that their

future dynamics are fully defined by their initial conditions (assuming they are

known with infinite precision), with no random elements involved. This behavior is

known as deterministic chaos.

In the decade of the 1980’s, investigations were centered in the study of the chaotic

behavior of lasers, and in discovering the different routes to chaos in this kind of sys-
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tems. In the 1990’s investigations were focused in the control of this chaotic behavior

and in the synchronization of chaotic systems. The understanding of synchroniza-

tion as an adjustment of the rhythms of oscillating systems due to a weak interaction

was well known from the initial observation of Huygens in 1673 Pikovsky et al (2003)

in two pendulum clocks. Considerations in chaotic systems, however, started with

works on chaotic circuits (Pecora and Carroll, 1990; Cuomo and Oppenheim, 1993).

As mentioned above the trajectory of a chaotic system is very sensitive to small

perturbations of its initial conditions. This means that if we take two close, but

different, points in phase space and follow their evolution, both trajectories start-

ing from these points eventually diverge. Two identical systems (with the same

chaotic attractor), that start at very similar initial conditions, will follow trajec-

tories diverging exponentially with time. Even so, coupled chaotic systems can

exhibit synchronized behavior. Synchronizing two chaotic systems requires forcing

the trajectories to follow the same path of the attractor at the same time.

An early study of chaos synchronization was carried out by Pecora and Carroll

(1990). Later, Pecora et al (1997) reported a detailed method to produce chaos

synchronization (for a detailed discussion see Uchida et al (2005)) in two identical

Lorenz chaotic systems. A chaotic signal was transmitted from the drive to the

response system completely replacing the corresponding variable in the latter. This

leads to synchronized behavior. The stability of this situation was studied taking

into account that synchronization occurs when the difference between the variables

of each system tends to zero for time tending to infinite. Yamada and Fujisaka

(1983, 1984) analyzed synchronization phenomena in chaotic systems with the use
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of conditional Lyapunov exponents1.

A variety of synchronization phenomena has been discovered in various areas of sci-

ence: in physics (Sugawara et al, 1994; Roy and Thornburg, 1994), chemistry (Coff-

man et al, 1986), biology (Strogatz and Stewart, 1993) and physiology (Schäfer et al,

1999; Glass, 2001; Garćıa-Ojalvo et al, 2004).

There are several ways to characterize the different types of synchronization be-

havior of chaotic systems. Comparing their output, synchronized behavior can be

classified as:

• Identical or complete synchronization: two coupled systems [x1(t), x2(t)] have

an identical output [x1(t) = x2(t)].

• Generalized synchronization: the outputs of the two systems are functionally

related [x1(t) = F (x2(t))].

In systems that interact with a time delay, such as semiconductor lasers, a lag

synchronization appears. The outputs of both systems can be equal after an ap-

propriate shift in time. More generally, lag synchronization takes the form: x1(t) =

F [x2(t − τ)], where τ is the time needed for the interaction to affect the second

system, and depends on the time lag or delay between the signals. We will refer

to achronal or lag synchronization when we detect a delay or lag between the syn-

chronized signals. We will talk about zero-lag or synchronous synchronization when

there is a coincidence without delay in the signals of the lasers.

1Using the eigenvalues (Lyapunov exponents) of the Jacobian matrix (the matrix of partial
derivatives of the right hand side of the response system) is possible to obtain a minimal condition
to have stability in the system: negative Lyapunov exponents leads to synchronized solution.
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2.1 Coupled lasers

The first theoretical prediction of synchronization of chaotic lasers was made by Win-

ful and Rahman (1990). They studied an array of semiconductor lasers coupled by

lateral overlap of their output fields, observing that for certain coupling values these

outputs can be synchronized. Some years later, experimental synchronization in

two solid state lasers was carried out (Roy and Thornburg, 1994). The lasers were

drawn to chaos using periodic modulation of their pump currents, and by means

of mutual coupling they showed synchronization behavior. Sugawara et al (1994)

obtained, nearly at the same time, synchronization in unidirectionally coupled CO2

lasers. This was possible by means of the modulation of a saturable absorber in

the cavity of one laser by the chaotic output of the other laser. Synchronization

of fiber lasers was carried out by van Wiggeren and Roy (1998), while Goedgebuer

et al (1998) synchronized chaotic wavelengths of semiconductor lasers. Previous

numerical works showed synchronization of solid-state lasers Colet and Roy (1994)

and in semiconductor lasers, in which two lasers were driven to chaos by optical

feedback, and the output field of one of the lasers was injected into the other one

(unidirectional coupling) (Mirasso et al, 1996). Another numerical study in the syn-

chronization of semiconductor lasers was made by Annovazzi-Lodi et al (1996). In

that work, chaos was due to the external injection from the other laser. A work

from Takiguchi et al (1999) showed the first experimental evidence of synchroniza-

tion in the case of two unidirectional coupled lasers in the LFF regime. In that

work a chaotic signal from a semiconductor laser with optical feedback (driver or

transmitter laser) was injected into another semiconductor laser without feedback

(receiver laser). Simultaneously, another experimental work from Sivaprakasam and
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Shore (1999) showed the synchronization of two unidirectionally coupled semicon-

ductor lasers, both of them with feedback, in a slower time scale. In the following

year, Fischer et al (2000) reported an unidirectional scheme for synchronization,

with feedback only in the master laser, at fast time scales. And at the same year,

experimental synchronization of chaotic mode hopping induced by feedback in two

unidirectionally coupled DBR tunable lasers was reported by Liu and Davis (2000).

There are several ways to synchronize two semiconductor lasers. The simpler way

is to optically inject the output field of one of the lasers with feedback into the

other one (unidirectional coupling in open loop configuration), taking advantage of

the open front facet of this type of lasers. One of the lasers acts as the driving

or transmitter laser and the other one as the receiver laser. In this scheme, there

is an extra injected power into the receiver. To compensate it, and so recover the

symmetry of the system, it is useful to add feedback in the other laser (unidirectional

coupling in closed loop configuration). As we defined in Sec. 1.3.1, the feedback

time is the time needed by the light to go to the mirror and return to the laser.

When we consider two coupled lasers, the coupling time is defined as the time to

travel between both systems. The relations between the feedback and coupling

strengths, and the feedback and coupling times, determine the time lag between the

synchronized signals.

If the optical output field of each of the two lasers is injected into the other one

(mutual or bidirectional coupling), we can have a symmetrical configuration that

also leads to a synchronized behavior. In the absence of feedbacks the delay time

between the synchronized signals corresponds to the coupling time.

The differences between the unidirectionally and bidirectionally configuration are
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not only in the delay time between the synchronized output signals, as we will discuss

in the following sections.

2.1.1 Unidirectional injection

In the case of unidirectionally coupled lasers there are two commonly considered

configurations. Figure 2.1 (left) shows an open loop configuration, and Fig. 2.1

(right) a closed loop configuration. The former is called open loop because only

the transmitter laser has optical feedback (which can show independent chaotic

dynamics), and the latter closed loop because both lasers are subject to optical

feedback (they can show chaotic dynamics independently, without coupling).
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Figure 2.1: Unidirectionally coupled lasers in open loop (left) and closed loop (right)
configuration. LD: laser diodes, M: mirrors, and BS: beamsplitters.

From the rate equation model of Lang and Kobayashi describing semiconductor

lasers with optical feedback, one can derive the model equations to describe two

unidirectionally coupled lasers, each one with feedback, adding a new term to take

into account the injected field coming from the transmitter laser (in this case the

first laser) (Masoller, 2001):

dEj

dt
=

(1 + iαj)

2

[
Gj − γj

]
Ej + κj,jEj(t− τj,j)e

−iωjτj,j

+ δj2κ3−j,je
i(∆ωt−ω3−jτ3−j,j)E3−j(t− τ3−j,j) +

√
2βNjξj(t) (2.1)
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dNj

dt
= Cj − γejNj −Gj |Ej|2 (2.2)

The subindex j = 1, 2 denotes lasers LD1 and LD2, respectively, and the subindex

3 − j represents the injecting laser. The Kronecker delta, δj2 ensures that the uni-

directional coupling term exists in only the LD2 field equation. Ej represents the

corresponding optical field and Nj the carrier number. ω1,2 are the free-running op-

tical frequencies of the two lasers, which sometimes for simplicity will be considered

to be the same, so that frequently we consider the detuning zero, ∆ω = ω2−ω1 = 0.

The optical intensity (or number of photons inside the cavity) is given by P1,2(t) =

|E1,2(t)|2.

The feedback term in the field equation is κj,jEj(t − τj,j)e
−iωjτj,j , where κj,j are

the feedback strengths, which are directly related to the threshold reduction due to

the reinjected light. The feedback field corresponds to the emitted for each laser

at a time τj,j before, thus τj,j defines the feedback time of each laser. To simplify

the notation, we define when possible κj,j = κf , and τj,j = τf . For the closed loop

configuration both feedback terms appear, and for the open loop one of them is

eliminated (κ2,2 = 0).

The coupling term δj2κ3−j,je
i(∆ωt−ω3−jτ3−j,j)E3−j(t− τ3−j,j) which only appears in

the field equation of the second laser, accounts for the injected field coming from the

first laser. κ3−j,j is the coupling strength that is directly related with the threshold

reduction due to injection of the laser. The expression of the injected field takes into

account the time needed by the light to travel from first laser to the second, τ3−j,j.

Usually, when we use one single path to inject the light coming from one laser to

the other, we simplify the coupling notations as: κ3−j,j = κc and τ3−j,j = τc.
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As we mentioned before, synchronization in semiconductor lasers usually shows a

lag between both signals P2(t) = P1(t −∆τ), due to the finite time needed by the

light to travel to the receiver laser. We will discuss in more detail which value cor-

responds to ∆τ depending on the type of synchronization and the relation between

the feedback and coupling times, and their respective strengths.

In closed loop configuration, when κ1,1 = κ2,2 = κf , and τ1,1 = τ2,2 = τc (τf = τc),

the intensity of the receiver usually synchronizes with the driver with a lag cor-

responding to the coupling time, in a leader-laggard configuration, in which the

receiver follows the dynamics of the transmitter: P2(t) = P1(t − ∆τ), ∆τ = τc.

However, when κ1,1 = κ2,2 +κc, the two lasers receive the same amount of light, and

the receiver synchronizes with the driver as: P2(t) = P1(t−∆τ), where ∆τ = τc−τf .

This situation is called anticipated synchronization when τf > τc, i.e. when the feed-

back time is larger than the coupling time, and the receiver anticipates the transmit-

ter (Locquet et al, 2001, 2002,a). When τf < τc, i.e. if the coupling time is larger

than the feedback time, the receiver lags the dynamics of the transmitter (Tang

and Liu, 2003). In this behavior it is possible to observe zero-lag or isochronal

synchronization when τc = τf (Gross et al, 2006).

In the case of anticipated synchronization, it is possible for the receiver to be

influenced by the transmitter before the transmitter is affected by its own feedback,

and the receiver advances the dynamics of the transmitter. This type of synchro-

nization was first predicted theoretically by Voss (2000), numerically reported in

semiconductor lasers by Masoller (2001), and observed experimentally in unidirec-

tionally coupled lasers by Liu et al (2002). A similar type of synchronization has

been observed in different experimental configurations by Sivaprakasam et al (2001),
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and Tang and Liu (2003) (see Calvo et al (2004) for detailed discussion).

The stability of the synchronized solutions depends on the parameters of the

system (see Locquet et al (2002,a); Vicente et al (2002) for details). A broad ex-

perimental study of the general behavior of this system was made by Peil et al

(2002).

The open loop configuration is less sensitive to parameter mismatch between the

lasers than the closed loop configuration (Locquet et al, 2002). In the open loop

case the system can show good synchronization for both τf = τc and τc 6= τf . For

τf = τc, the outputs show a leader-laggard configuration: P2(t) = P1(t−∆τ), where

∆τ = τc. For τc 6= τf a good synchronization arises in two different cases: for κc > κf

and for κc = κf . When the coupling strength is higher than the feedback strength

the signals synchronize with a ∆τ = τc. When the coupling and feedback strengths

coincide an anticipated or retarded synchronization appears. The lag in this case

is ∆τ = τc − τf , and is anticipated or retarded depending on whether τc > τf or

τc < τf (see Appendix B).

Recently, in unidirectionally coupled lasers in open loop configuration, another

synchronization phenomenon was observed. Buldú et al (2006) observed experimen-

tally and numerically spontaneous synchronization events between the lasers, in an

episodic synchronization regime. When the output light of a laser driven to the

low-frequency-fluctuation regime (due to optical feedback) is injected into a second

laser that is detuned with respect to the first, episodic synchronization appears.

The periods of synchrony correspond to the recovering of the dropout event. When

the output intensity of the laser is traveling towards the maximum gain mode the

synchronization of the system is lost, and recovered again when the driving laser
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switches off.

2.1.2 Bidirectional injection

Synchronization phenomena in mutually (or bidirectionally) coupled semiconduc-

tor lasers has also been widely studied. Periodic oscillations in mutually coupled

semiconductor lasers were first observed by Hohl et al (1997), and two years later

a quasiperiodic synchronization was observed in the same system by the same

group (Hohl et al, 1999). Later, Heil et al (2001), observed experimentally syn-

chronization in two single mode semiconductor lasers mutually coupled face to face

in the low frequency fluctuation regime. In that case, the output light of one of

the lasers was injected into the second laser and vice-versa. In this mutual cou-

pling scheme, both lasers showed low frequency fluctuations due only to the mutual

perturbation.

Figure 2.2 shows the schematic setup of a face-to-face coupling configuration. In

this case a chaotic behavior is displayed in both output intensities due only to the

mutual interaction, and the addition of external mirrors is not necessary to drive the

LD1 LD2
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Figure 2.2: Bidirectionally coupled lasers.

lasers to chaos. In this configuration, synchronization in a leader-laggard behavior

was observed with a time lag between both signals equal to τc, corresponding to



2.1. Coupled lasers 51

the flight time between the lasers. Heil et al (2001) showed that if the lasers have

the same optical frequencies, a spontaneous switching of the role of leader occurs

between both lasers. When one of the lasers is detuned to a higher optical frequency,

this laser becomes the leader of the dynamics. The zero-lag solution in this system

is not stable. In the classification made above, the synchronization is always a lag

synchronization, in the sense that we have a time shift (∆τ = τc) between the signals

corresponding to the coupling time.

Recently, the zero lag state has been experimentally (Klein et al, 2006) and nu-

merically (Vicente et al, 2007) reported for mutually coupled lasers. To stabilize this

isochronal solution it is necessary to subject each laser to optical feedback. Klein

et al (2006) and Vicente et al (2007) show that for symmetric values of strengths and

equal delay times it is possible to observe a stable zero lag solution in the system.

Further investigations of variations of this configuration have been made in the last

decade. The leader-laggard relation in mutually coupled lasers with one feedback

was also studied by Sivaprakasam et al (2001, 2002). Rees et al (2003) studied the role

of the detuning in the choice of the leader. In that case they used the terminology

“anticipated synchronization” to refer to common lag synchronization, with a change

of the leader of the dynamics, due to the fact that the time shift between the signals

was in all cases equal to τc. Other experimental studies of bidirectionally coupled

lasers with one feedback were made by Mart́ınez-Avila et al (2007) and González

et al (2007).

A model that represents two semiconductor lasers bidirectionally coupled each

one with feedback is a modification of the Lang and Kobayashi equations (Mulet
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et al, 2002):

dEj

dt
=

(1 + iαj)

2

[
Gj − γj

]
Ej + κj,jEj(t− τj,j)e

−iωjτj,j

+ κ3−j,je
i(∆ωt−ω3−jτ3−j,j)E3−j(t− τ3−j,j) +

√
2βNjξj(t) (2.3)

dNj

dt
= Cj − γejNj −Gj |Ej|2 (2.4)

The model is the same as in the previous section, but now the injection term

appears in both field equations. To model two bidirectionally coupled lasers coupled

face-to-face without feedbacks we must take κj,j = 0. As in the previous equations,

the coupling strength κ3−j,j leads to a threshold reduction due to injection from the

other laser. In this Thesis we will find situations in which we separate the paths of

the light in both directions, and we will control the amount of light along each path.

In this situation the coupling strengths in both directions can be different, as well

as the coupling times. When we consider a unique path for both directions, as in

the general case described in Fig. 2.2, we will use a simplified notation, as explained

above for the unidirectional configuration: κ1,2 = κ2,1 = κc and τ1,2 = τ2,1 = τc.

2.2 Chaotic communications

The possibility of synchronizing chaotic systems suggests that these systems might

be useful for communication purposes. In particular the broadband spectral behavior

of chaotic systems makes this approach useful for encryption. The basic idea of using

chaotic signals as carriers for message transmission was introduced by Pecora and

Carroll (1990, 1991). A message was added to one of the chaotic variables of the
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driver, and the resulting signal was transmitted to the receiver together with another

signal to drive the synchronization of the receiver system. It was possible to recover

the message by the subtraction of the synchronized signals at the receiver. In an

experimental work reported by Cuomo and Oppenheim (1993), and Cuomo et al

(1993) in electronic circuits, the transmission was easily carried out. They showed

that the receiver can synchronize with the transmitter even with an added message

in the driven signal. The message can be recovered by the subtraction of both signals

(the transmitted and the receiver signals), due to the fact that only the chaotic part

of the transmitted signal is synchronized with the receiver signal. The privacy in

the transmission depends on the dimensionality of the chaotic attractor, and its

efficiency requires having matching parameters of the systems that allow a stable

and reliable synchronization.

A first optical system for chaotic communications was suggested by Colet and Roy

(1994) using solid state lasers. High dimensional chaotic systems, such as semicon-

ductor and fiber lasers, seemed more suitable to encrypt messages, and a couple of

years later Mirasso et al (1996), and Annovazzi-Lodi et al (1996) showed in numeri-

cal studies that semiconductor lasers were good optical systems for high speed data

transfer. Later, message transmission and its posterior recovery was experimentally

reported with two coupled doped fiber ring lasers by van Wiggeren and Roy (1998).

Nearly at the same time, the first experimental observation of data transmission with

semiconductor lasers was made by Goedgebuer et al (1998). That work used the

synchronization of two semiconductor lasers with electro-optical feedback, with the

aim of transmitting a message taking advantage of the high-dimensional wavelength

chaos generated. Much experimental research was performed in the following years

in the synchronization of semiconductor lasers and the detection of subnanosecond
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synchronization in the low-frequency-fluctuation and coherence collapse regimes.

With this aim, Fischer et al (2000) introduced a periodic signal through the trans-

mitter’s pump current, observing a sharp peak in the RF spectrum corresponding

to the signal frequency. The RF spectrum of the receiver was almost identical to the

transmitter, with the difference that the sharp peak observed at transmitter spec-

trum was considerably suppressed at the receiver, denoting synchronization with the

chaotic output and filtering of the periodic signal. This filtering process is necessary

to recover a message by subtracting the receiver output (chaos) to the injected signal

from the transmitter (message+chaos). These experimental results are evidence of

the capability of these systems to encode/decode a message through their output

intensity.

There are several characteristics that a chaotic system has to accomplish to per-

form a reliable communication system, which make semiconductor lasers good can-

didates for secure chaos communications (Peil, 2006):

• From the performance point of view: sufficient bandwidth, high maximum car-

rier frequency, and good controllability of the key parameters of the dynamics

(the internal parameters of the lasers in our case).

• From the privacy point of view: high information entropy, and rapidly de-

creasing auto-correlation of the dynamics (high dimensional chaos)

• Robust synchronization against small perturbations.

• Well defined relation between transmitter and receiver, to be able to recon-

struct the message after the transmission.
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• Short period of time needed by the system to get synchronized. Also the

possible periods of synchronization loss must be short, in order to minimize

the message loss.

• An effective masking method and encryption/decryption rates to make Gbit/s

rate transmission possible.

There are four general ways to mask the message in chaotic communication sys-

tems.

• The chaos masking method (CM) (Cuomo and Oppenheim, 1993; Uchida et al,

2003a), consists in the addition of the message to the chaotic carrier signal.

• Chaos modulation keying (CMK) consists in modulating the carrier signal by

the message. It is not only an addition of the message, but a modulation of the

signal, for example adding the message to the pump current of a semiconductor

laser (Mirasso et al, 1996; Annovazzi-Lodi et al, 1996).

• Chaos shift keying (CSK) consists in the introduction of the message by switch-

ing one of the parameters responsible of the dynamics of the system to generate

a data bit (Mirasso, 2002; White and Moloney, 1999). ON/OFF shift keying

(OOSK) consists, in particular, in a switch between synchronized and desyn-

chronized states (Heil et al, 2002). The message is transmitted only at the

synchronized times that correspond to one of the two bit rates, being desyn-

chronized in the other bit (Rogister et al, 2001; Mirasso, 2000).

These encoding/decoding methods have been applied to different optical systems.

For example, chaotic masking and chaotic modulation have been experimentally
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implemented in fiber laser systems (van Wiggeren and Roy, 1998a, 1999), and all

of them have been also experimentally demonstrated in semiconductor laser sys-

tems (Liu et al, 2002a).

Further numerical (Sánchez-Diaz et al, 1999; Rogister et al, 2001; Liu et al, 2002a;

Mirasso, 2002; Li et al, 2008) and experimental (Sivaprakasam and Shore, 1999a;

Uchida et al, 2001; Heil et al, 2002) works, applied the synchronization and the chaos

pass filtering phenomenon of semiconductor lasers to develop different techniques of

encrypted data transmission. An experimental work in secure communications was

reported by Argyris et al (2005) in which a 1Gb/s message was transmitted through

a commercial optical communication system based on semiconductor lasers, from

two points separated 120 km in the metropolitan area of Athens.



Part II

RESULTS





Chapter 3

Route to chaos via

quasiperiodicity in two mutually

coupled lasers

Synchronization phenomena are often described in terms of entrainment or locking

of frequencies. If two nonidentical oscillators having their own frequencies are cou-

pled together, they may start to oscillate with a common frequency. The injection

of an optical field into a laser diode can be viewed as a mechanism for coupling two

oscillators, where one oscillator corresponds to the laser that produces the injection

field and the other one is the injected laser. Whether they synchronize or not de-

pends on the coupling strength and the frequency detuning (the difference between

the optical frequencies of the lasers). The coupling can also be mutual between both

units, although its strength need not be identical in the two directions of the inter-

action. In the symmetrical case, both units perturb the state of each other through
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a purely bidirectional coupling (Mulet et al, 2002; Heil et al, 2001). Synchronization

between the subsystems is achieved by adjusting the optical frequencies of the lasers.

The laser with higher frequency acts as the leader of the dynamics as discussed in

Sec. 2.1.2. When the lasers operate with the same optical frequency (which is ac-

complished by tuning the temperature and pump currents), a random change in

the leader and laggard role appears. To better understand the emergence of this

symmetry breaking in the system, we studied the transition from unidirectional to

bidirectional injection in two coupled semiconductor lasers. Specifically, we vary in

a controlled way the directionality of the coupling, ranging from pure unidirectional

injection of the light emitted by one laser into the other one, to quasi-bidirectional

coupling. This allows us to see the transition from stable unidirectional injection

to chaotic synchronization with a leader in the dynamics, and how this chaotic lag

synchronization arises in the system.

3.1 Experimental setup

We consider first the unidirectional case. At very low injection levels the receiver is

stable, with an optical power close to that of the solitary laser. If we increase the

pump current or the coupling, we can see the transition from stable to oscillatory

output. This oscillation becomes more and more unstable if we increase the coupling

or, as in our case, by adding another external perturbation. When we depart from

the unidirectional coupling state by gradually increasing the injected light coming

from the reverse path, chaos arises in the system, with a clear symmetry breaking

introduced by the time delay of the coupling paths.
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Figure 3.1: Experimental setup. LD: laser diodes, BS: beamsplitters, OI: optical isola-
tors, and M mirrors. The mutual coupling consists of two separate paths.

Our experimental setup, shown in Fig. 3.1, consists of two parameter-matched

AlGaInP index-guided and multi-quantum well semiconductor lasers (Sharp GHO

6510B2A), coupled by mutual optical injection through two independent unidirec-

tional paths. Both lasers operate with a nominal wavelength λn = 654 nm. The

temperature and pump currents of the lasers are controlled with an accuracy of

±0.001oC and ±0.01 mA, respectively, and are adjusted such that the optical fre-

quencies of LD1 and LD2 (in isolation) are as similar as possible to each other. For

temperatures TLD1 = 18.238oC and TLD2 = 26.021oC, the threshold currents of the

solitary lasers are, respectively, Ith
LD1 = 30.48 mA and Ith

LD2 = 30.79 mA. Optical iso-

lators (Electro-Optics Technology, Inc.), labeled OI in Fig. 3.1, are placed in the two

injection paths in order to have unidirectional coupling in each path. The amount of

light injected into LD1 is controlled by a variable neutral density filter. The delays

associated to the two coupling paths are τ1,2 = 3 ns (LD1 to LD2) and τ2,1 = 5 ns
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(LD2 to LD1). The laser outputs are sent simultaneously to a 4 GHz oscilloscope

(Tektronix CSA7404), to an optical spectrum analyzer (Ando AQ6317B) and to a

RF spectrum analyzer (Anritsu MS2667C).

A good characterization of the lasers spectra is very important before starting a

synchronization experiment to know the rate of change of their wavelengths with

temperature, and the hops of their modes (see Sec. A.2.4 of Appendix A). We find

a rate of change of 0.065 nm/oC for LD1 and 0.047 nm/oC for LD2. We change the

temperatures until the wavelengths of the lasers are as similar as possible. With this

choice of temperatures (TLD1 = 18.238oC and TLD2 = 26.021oC), we inject the light

of LD1 into LD2. Then, we optimize the alignment of the lasers by maximizing the

increase of LD2 output power near its threshold, due the injection of LD1 (measuring

the increase in the output power with a PM30-122B-Thorlabs power meter in the

detection path). Finally, we change slightly the pump currents to obtain the optimal

locking of the injected laser, by matching their optical spectra. These measures place

the LD1 and LD2 currents at 28% and 13.2% above their respective threshold values.

Figures 3.2(a) and (b) show the optical spectra of the solitary lasers, with a highest

peak at 655.1 nm for LD1 and 654.5 nm for LD2. For the indicated values of pump

current and temperatures, we obtain the locking of LD2 spectrum with the light

coming from LD1 as shown in Fig. 3.2(c).

After the optimization of the unidirectional coupling between the two lasers, we

increase the injected light in the opposite direction, from LD2 to LD1. Figure 3.3

shows the RF spectra for increasing back-injection light. Figure 3.3(a) displays

the RF spectrum for LD2 after unidirectional injection from LD1. A wide peak is

observed corresponding to the combination of the relaxation oscillations (RO) of
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Figure 3.2: (a) Optical spectrum of LD1, (b) optical spectrum of LD2, and (c) optical
spectrum of LD2 injected by LD1.

LD1 with thosse of LD2. The resulting combined peak appears about 2.5 GHz,

and only arises when the RO frequency of the injection laser is near or identical to

that of the injected one. Thus, as a consequence of the optical spectrum matching,

we have an enhancement of the RO frequency peak of the injected laser. From

this unidirectional situation we increase the light injected back in LD1 from LD2,

approaching the situation of mutual coupling. When the injection received by LD1

has a relative power of 0.10% with respect to the other direction, a combined peak

of the two RO frequencies appears, at the same place than that of unidirectional

situation [Fig. 3.3(b)]. For higher values of the back-injection we observe a transition
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Figure 3.3: Power RF spectra for increasing back-injection: (a) pure unidirectional cou-
pling (RF spectrum for LD2), (b) strongly asymmetric coupling, and (c) weakly asymmetric
(almost bidirectional) coupling. In (b, c) the top (bottom) trace corresponds to LD1 (LD2).
The spectra are vertical displaced for clarity

to a broad-band chaotic power spectrum [Fig. 3.3(c)]. The transition takes place at a

relative power of the LD2 to LD1 coupling equal to 9.54% with respect to the direct

path. In that case, the power spectra of the two lasers exhibit peaks separated at

distances of ∼ 120 MHz. This frequency corresponds to the sum of the two external

cavities (8 ns) involved in the system.

Corresponding with this qualitative change in the power spectra, a transition to

chaos can be observed in the output intensities of the two lasers. At Fig. 3.4 (left)

we can see the output intensities corresponding to the injected powers considered

above, LD1 at top and LD2 at bottom. The corresponding cross-correlation function

at Fig. 3.4 (right) shows the characteristics of the transition to a chaotic output.

Figures 3.4(a,b) plot the output intensities of the two lasers and the respective cross-

correlation function for purely unidirectional injection, which has its highest peak

at −τ1,2 (note that the horizontal scale is in units of τ1,2). Figure 3.4(d) displays

the cross-correlation function of the output intensities of LD1 and LD2 with higher

mutual coupling [shown in Fig. 3.4(c)], and reveals a quasi-periodic state for this
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Figure 3.4: Output intensities of LD1 (top) and LD2 (bottom) for different values of back
injection from LD2 (left column), and respective cross-correlation function. For changing
relative powers in LD2 to LD1 direction: (a,b) 0%, (c,d) 0.10%, and (e,f) 9.54%.

very high asymmetry in the couplings. The highest peak appears at −τ1,2, but

several higher harmonics occur at intervals τ1,2 + τ2,1. Quasi-periodicity is revealed

by growing peaks at those intervals in the cross-correlation function. The chaotic

dynamics typical of symmetric coupling is observed in the weakly assymmetric cou-

pling case [9.54% in Fig. 3.4(e)], and is characterized by a quick decrease to zero

of the cross-correlation function away from its maximum, as shown in Fig. 3.4(f).

The difference in the rates at which the envelope of the cross-correlation peak decay

characterizes the transition from a quasi-periodic to a chaotic behavior.

These results show that the symmetry-breaking behavior underlying the leader-

laggard dynamics (Heil et al, 2001) emerges from a quasi-periodic state that later

transforms int a chaotic state with a well defined leader in the dynamics. The
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quasi-periodic state is characterized by out-of-phase synchronized outputs, with a

cross-correlation function exhibiting a clear maximum at −τ1,2 and secondary peaks

at a distance equal to the sum of the external cavities, while in the chaotic case the

secondary peaks suffer a loss of correlation.

3.2 Numerical results

In order to examine in a controlled way the route to chaos presented above, we

now turn to numerical modeling of the system. Our model is based on the Lang-

Kobayashi description of a single semiconductor laser with optical feedback (Lang

and Kobayashi, 1980), generalized to account for bidirectional coupling (Mulet et al,

2002), and explained at Sec. 2.1.2 of the Introduction. To consider two bidirec-

tionally coupled lasers without feedback we must take κj,j = 0 in the model from

Eq. (2.3).

We have chosen values of the parameters that reproduce the experimental condi-

tions. In particular the coupling times are τ1,2 = 3 ns and τ2,1 = 5 ns, and pump

currents are chosen to be ILD1 = 1.2 × Ith
LD1 and ILD2 = 1.1 × Ith

LD2. We take a

value α = 3, and the individual wavelengths are λ1 = 655.1 nm and λ1 = 654.5 nm.

Other parameters are given in Table A.1 of Appendix A. To establish a value for

the detuning, we have to take into account that the lasers express several modes,

and that the two coupled modes can be different from the maximum gain modes

of each solitary laser. If we observe the experimental optical spectra of the solitary

lasers, and the optical spectrum of the injected locked laser (see Fig. 3.2), the excited

mode of the injected laser is a lateral mode of the solitary laser. We thus measure
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the detuning as the frequency difference between the corresponding modes, which is

approximately 2 GHz. With this consideration in mind, we can use the single-mode

model for the simulations, obtaining results very similar to the experiment.

Following the same protocol as in the experiment, we start from unidirectionally

coupled lasers, and perturbing this situation with injected light coming from the

other path, we study the transition to chaos in our system.

To determine the value of the fixed κ1,2, we first study the behavior of a unidi-

rectionally injected semiconductor laser, when the injection level is slowly increased

from zero. Figure 3.5 shows the output intensity of LD2 for increasing strength

(κ1,2) of the light injected from LD1 (for κ2,1=0). At very low injection levels there

is a steady state, with an optical power close to that of the solitary laser [Fig. 3.5(a)].
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Figure 3.5: Output intensity of
LD2 for different values of injection
from LD1 (intensities are shifted
vertically for clarity). From top
to bottom the different values of
κ1,2: (a) 0 ns−1, (b) 0.5 ns−1, (c)
1 ns−1, (d) 2 ns−1, (e) 4 ns−1, (f)
5 ns−1, (g) 10 ns−1, (h) 15 ns−1,
(i) 20 ns−1, (j) 25 ns−1, and (k)
40 ns−1.
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For increasing values of κ1,2 we can see how the output intensity of LD1 destabilizes

LD2. For higher values of injection [Fig. 3.5(b) and (c)] a quasiperiodic state arises.

Then a periodic behavior appears for increasing injection level [Fig. 3.5(f)] that is

destabilized for higher values of κ1,2, leading to chaotic behavior [Fig. 3.5(i)]. Fi-

nally for stronger injection levels a steady state appears again [Fig. 3.5(j) and (k)]

(see Annovazzi-Lodi et al (1994) for more details).

In the simulations below we will consider a fixed value for the injection from

LD1 to LD2 corresponding to the situation from Fig. 3.5(j) with κ1,2= 25 ns−1, for

which the lasers show stable output behavior. Once we establish the value for κ1,2,

and with the pump currents and other parameters from Table A.1 of Appendix A,

we calculate the relaxation oscillation frequencies of the lasers from the numerical

optical spectrum, obtained from a standard Fourier transform of the optical field.

The optical spectrum shows side peaks, which are associated with the relaxation

oscillations of the laser. Vahala et al (1983) observed that the sidebands around

the central frequency of the optical spectrum of a single mode semiconductor laser

are due to the presence of relaxation oscillations, which results from the interplay

between the intracavity optical intensity and the population inversion (Henning

and Collins, 1983; Petermann, 1988). The coupling between the amplitude and

phase fluctuations of the electric field, described by the α parameter, leads to an

asymmetry between the sidebands, such that the low frequency sideband is higher

than the high frequency one. When the laser is optically injected these sidebands

are enhanced and their asymmetry grows. The injection changes the frequencies of

those side peaks that are related to a competition between the relaxation oscillations

of the laser and the external cavity resonances (see Homar et al (1993) for a detailed

discussion).
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From the experimental measurements it is possible to see a combination peak

of the relaxation oscillation frequencies of both lasers due to the injection from

LD1 to LD2 [∼2.5 GHz in Fig. 3.3(a)]. This experimental value can be used to

validate the parameter values used in our simulations. Figure 3.6 represents the two

side peaks corresponding to the relaxation oscillation (RO) frequencies of our two

lasers. With our parameters, the values of the RO frequencies of the isolated lasers
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Figure 3.6: Numerical optical spectrum for the solitary LD1 (a) and LD2 (b) lasers, and
for LD2 injected by LD1 (c).

are f1 ' 3 GHz and f2 ' 2 GHz [Fig. 3.6(a,b)]. When LD2 is injected by LD1

[Fig. 3.6(c)] its relaxation oscillations are enhanced and two strong asymmetrical

side peaks appear at the optical spectrum. Due to the injection, the peaks of LD2

are displaced to higher frequencies, and occur at approximately f1.

To compare with the experimental results of Fig. 3.2 we generate the output

intensities for both lasers for a fixed value of κ1,2 =25 ns−1 and for increasing κ2,1.

We start with a stable state and we destabilize LD1 with a small perturbation coming

from LD2. Figure 3.7 plots the output intensities in the left column (top for LD1,

bottom for LD2) and the respective cross-correlation functions in the right column,

for increasing values of κ2,1. Figure 3.7(a,b) corresponds to the case of unidirectional
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Figure 3.7: Numerical output intensities of LD1 (top) and LD2 (bottom) for different
values of injection from LD2 (left column), and respective cross-correlation function. For
κ1,2=25 ns−1 and (a)(b) κ2,1=0 ns−1, (c)(d) κ2,1=1.3 ns−1, and (e)(f) κ2,1=10 ns−1.

coupling. In the corresponding cross-correlation function, a peak at lag time equal

to −τ1,2 = −3 ns appears, corresponding to the flight time of the light from LD1

to LD2. As we increase κ2,1, keeping κ1,2 constant, a quasi-periodic state arises in

Fig. 3.7(c,d), with κ2,1 = 1.3 ns−1. The corresponding cross-correlation function in

(d) shows again a maximum peak at −τ1,2 = −3 ns, and secondary harmonics at a

distance τ2,1 + τ2,1 = 8 ns. The decreasing behavior of the cross-correlation would

not correspond to an ideal quasiperiodic state, but the introduction of internal white

noise moves the cross-correlation function away from the ideal situation. For larger

injection, κ2,1 = 10 ns−1, a fully developed chaotic state appears with a cross-

correlation revealing the typical lag time between both signals at a distance −τ1,2

[Fig. 3.7(e,f)].



Chapter 4

Controlling the leader-laggard

dynamics in delay-synchronized

lasers

The collective dynamics of networks is usually studied under the assumption that

coupling between the network elements is instantaneous. But in networks of dynam-

ical elements (Boccaletti et al, 2006), coupling signals take a finite time to travel

from one node to another. When this coupling time is comparable to, or longer

than, the characteristic time of the network elements, simultaneous synchronization

of the dynamics (Boccaletti et al, 2002) is usually not possible [except in particular

network architectures, see e.g. Sivaprakasam et al (2003); Fischer et al (2006); Lee

et al (2006)], and lag synchronization arises (Rosenblum et al, 1997; Shahverdiev

et al, 2002). In that situation, even if the network elements synchronize their dy-

namics, a lag time appears. This means that, in a given pair of elements, one of
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them leads the dynamics and the other one lags behind (see Chapter 2).

Under these conditions, it is important to determine which elements are leading

the dynamics and which ones are lagging behind. An important factor is whether

the links between the elements are directed (unidirectional) or not (bidirectional).

In the case of two oscillators coupled via a directed link, the element “emitting”

the coupling signal is usually the leader [with the exception of certain coupling

setups including delayed feedback loops, leading to anticipated synchronization, as

explained at Sec. 2.1.1 of Introduction, (Voss, 2000; Masoller, 2001; Ciszak et al,

2003)]. If the link is undirected, any of the two elements can lead the dynamics

depending on the asymmetries between them; if the elements are similar enough,

the roles of leader and laggard switch randomly in time (Heil et al, 2001).

As we have seen in the Introduction of this Thesis, when the output of a semicon-

ductor laser with feedback, operating in the LFF regime, is introduced into a second

laser, power dropouts are also induced in the latter, provided the two lasers are sim-

ilar enough in their physical properties. The dropouts are synchronized between the

two lasers and, in general, the emitter laser leads the dynamics (i.e. the dropouts

occur earlier) with a time lag equal to the coupling time. This synchronization state

is, nevertheless much less common and more difficult to reach than the usual lag

synchronization state (Locquet et al, 2002,a) discussed here. We note, however, that

if the coupling and feedback strengths are tuned such that the total injection (feed-

back + coupling) is equal for the two lasers, and if the feedback time is larger than

the coupling delay, the receiver laser can anticipate the emitter (Masoller, 2001).

Interestingly, a similar dynamics is observed in the case of two bidirectionally cou-

pled lasers, even in the absence of an external mirror: coupling destabilizes the lasers
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and produces a low-frequency dynamics consisting of synchronized dropouts (Heil

et al, 2001).

In this chapter, we examine the transition between the two coupling schemes

described above. Specifically, we vary in a controlled way the directionality of the

coupling, ranging from pure unidirectional injection of the light emitted by one laser

(which has an external mirror) into the other one (which does not have a mirror), to

symmetrical bidirectional coupling by common light injection. To that end, we vary

the amount of light being injected from the solitary laser back into the laser with

external mirror. As we will see below, this allows us to control which laser leads the

dynamics. Numerical simulations also indicate that the dynamical behavior can be

qualitatively different between these two coupling setups.

4.1 Alternating the leader and laggard roles

We have an asymmetrical system consisting in two bidirectionally coupled lasers,

one of them with feedback. One of the lasers thus receives two different injections,

one from its own light and another coming from the other laser. With the aim of

understanding how the coupling affects the choice of the leader, we start studying a

unidirectional coupling configuration in which the laser with feedback transmits its

dynamics to the solitary one. In this synchronized situation, in which the solitary

laser locks its optical frequency to the transmitted one, we increase the back injec-

tion. As the bidirectional coupling increases, the leader role switches between the

lasers due to the decrease of the optical frequency of the laser with feedback.
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4.1.1 Experimental setup

Our experimental setup, shown in Fig. 4.1, consists of two parameter-matched Al-

GaInP index guided and multi-quantum well semiconductor lasers (Sharp GHO 6510B2A),

coupled by mutual optical injection through two independent unidirectional paths.

One of the lasers (LD1) is subject to optical feedback from an external mirror (M).

Figure 4.1: Experimental arrangement of two semiconductor lasers coupled via two inde-
pendent unidirectional paths. Laser LD1 receives optical feedback from mirror M. BS, beam
splitters; F1 (fixed at 44% transmittivity) and F2 (variable), neutral density filters; M1
and M2, mirrors; OI, optical isolators; PD1 and PD2, photodiodes; L1 and L2, collimation
lenses to send the light to the optical spectrum analyzer; A, amplifiers.

Both lasers operate with a nominal wavelength of λn = 654 nm. The temperature

and pump current of the lasers are controlled with an accuracy of ±0.01oC and

±0.1 mA, respectively. The laser outputs are split in order to simultaneously record

the intensity and the optical spectra. For each laser, half of the light is collimated
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and directly sent to an optical spectrum analyzer (Anritsu MS9710C) and the other

is monitored by a fast photodetector of 1 GHz bandwidth (Thorlabs DET210). This

received intensity is sent simultaneously via an amplifier (2 GHz bandwidth, Femto

high-speed amplifier) to a 1 GHz oscilloscope (Agilent DS06104A), and to a RF

spectrum analyzer (Anritsu MS2651B). We note that the 1 GHz bandwidth of the

detectors smoothes out most of the fast pulsing dynamics, resulting in the measure-

ment of only the slower dropout envelopes, which are used as low-frequency markers

of the dynamics.

Optical isolators (Electro-Optics Technology, Inc.), labeled OI in Fig. 4.1, are

placed in the two injection paths in order to have unidirectional coupling in each

path. The amount of light injected into each laser is controlled by two neutral

density filters (F1 and F2). For temperatures TLD1 = 21.03oC and TLD2 = 20.34oC,

the threshold currents of the solitary lasers are, respectively, Ith
LD1 = 31.80 mA and

Ith
LD2 = 32.55 mA.

The temperatures and pump currents are adjusted such that the optical frequen-

cies of LD1 (with its feedback) and LD2 (in isolation) are as similar as possible to

each other. With TLD1 = 21.03oC and TLD2 = 20.34oC we adjust their intensities at

ILD1=33.51 mA and ILD2=33.28 mA. The two coupling paths are L12 = L21=1.02 m,

corresponding to coupling times τ1,2 = τ2,1 = τc = 3.4 ns. The external mirror M,

that provides feedback to LD1, is also positioned in such way that the feedback time

τf is equal to the coupling time, τc. The reduction of the threshold current of LD1

due to its feedback is 3.5%. When both lasers are turned on, their threshold cur-

rents are also decreased due to the injection. In the absence of the filters F1 and F2

(maximum mutual injection), the threshold reduction of LD1 is 2.6% with respect
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to its threshold with feedback, and the reduction of LD2 is 2.1% with respect to

its free-running threshold. Departing from this common injection, we place a fixed

neutral density filter F1 (44% transmittivity) in the LD1 to LD2 injection path. A

second variable neutral density filter F2 controls the relative injection between the

two lasers.

4.1.2 Results

In the absence of injection in any of the two coupling paths, laser LD2 is stable

while laser LD1 (the one with optical feedback) operates in the LFF regime, and

thus undergoes power dropouts at irregular times. When a sufficient amount of light

from LD1 is injected into LD2 (in an unidirectional configuration), the second laser

exhibits power dropouts as well, following those of LD1 with a natural time lag

equal to the coupling time τc. This behavior is shown in Fig. 4.2(a). The time lag

can be determined by comparing the times at which synchronized power dropouts

occur in the two lasers. A histogram of the time differences between synchronized

power dropouts corresponding to this regime is shown in Fig. 4.2(b). The lag is

calculated as the difference between the dropout time in LD1 and the one in LD2,

therefore a negative value corresponds to an advance of LD1 over LD2, as expected

and evident in Fig. 4.2(a). Intuitively, this lag is produced by the time needed by

the light of one laser to affect the dynamics of the other one. The histogram of time

differences was computed for ∼1000 synchronized dropouts. We note that another

synchronized state is possible in this setup, in which the lasers are synchronized at

zero-lag (provided the feedback and coupling times are equal) (Uchida et al, 2005),

but this requires a very careful tuning to make the coupling and feedback strengths
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Figure 4.2: Experimental output intensities (left column) and the corresponding his-
togram of time differences between synchronized dropouts in the two lasers (right column)
for increasing transmittance of filter F2: (a,b) 0%, (c,d) 40%, (e,f) 63%, (g,h) 100%. The
time traces have been shifted vertically for clarity.

equal, and extremely similar lasers (Locquet et al, 2002); we have not considered

that regime here.

We now allow for the light emitted from LD2 to reach LD1 and, varying the

transmittivity of filter F2, control the strength of that coupling, which we will call

backward coupling, while keeping the amount of light injected from LD1 into LD2

constant. Figure 4.2 shows that for transmittivities up to 40% (plots c,d) the sit-

uation does not change much with respect to the purely unidirectional case (LD1

leads the dynamics with a time ∼ τc), even though a substantial amount of light

from LD2 is already entering LD1. At a transmittivity of around 60%, however

[Fig. 4.2(e,f)] laser LD2 begins to have a noticeable influence and takes over the
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leader role frequently. The situation resembles that of two mutually coupled lasers

without mirrors and with equal frequencies (Heil et al, 2001), even though the sys-

tem in that case is perfectly symmetrical and the present one is not, since here one

of the lasers (LD1) is subject to feedback and the other one is not. Finally, if we

keep increasing the amount of light being coupled back from LD2 into LD1 until the

coupling is purely bidirectional [Fig. 4.2(g,h)], laser LD2 takes over the leader role

permanently, and its dropouts precede almost always those of LD1, again a time

∼ τc.

Although there seem to be no differences between the histograms of the purely

unidirectional case and low backward coupling (the distribution of time differences

between dropouts are equal), differences exists in the output intensities and the

optical spectra. Figure 4.3 shows the change in the experimental optical spectra

of LD1 and LD2 for different transmittivity of the neutral density filter F2. Spec-

tra (a) correspond to Fig. 4.2(a,b), and spectra (b) correspond to Fig. 4.2(c,d).

Initially, unidirectional coupling leads to an increase in the wavelength of LD2 due

to the injection and a substantial overlap in the spectra is observed. As we in-

crease the backward coupling strength, the influence of LD1 on LD2 decreases, and

finally the latter no longer shifts its intrinsic wavelength due to LD1 [Fig. 4.3(b)].

The wavelength shift between Fig. 4.3(a) (0% transmittivity) and Fig. 4.3(b) (40%

transmittivity) is 0.2 nm. This is the limit in our system beyond which the role of

leader changes. The laser with a positive drift in wavelength respect to its solitary

value is the laggard of the dynamics (Mart́ınez-Avila et al, 2007).
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4.1.3 Numerical simulations

As mentioned above, the dynamical behavior shown in Fig. 4.2 is the envelope of a

much faster underlying dynamics (Fischer et al, 1996), which cannot be detected by

our bandwidth-limited monitoring equipment. In order to determine whether the

leader-laggard dynamics described above also holds at these higher frequencies, we

resort to numerical simulations of the system.

We take the Lang-Kobayashi description of a single semiconductor laser with

optical feedback (Lang and Kobayashi, 1980), generalized to account for bidirec-

tional coupling (Mulet et al, 2002), and described in Eqs. (2.3) and (2.4) of the

Introduction. To take into account that the optical feedback is only present in

LD1 we must add in the feedback term of the field equation a Kronecker delta as:

δj1κj,jEj(t− τj,j)e
−iωjτj,j .
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We have chosen typical values of the parameters to reproduce the experimental

conditions. We have chosen the pump currents to be ILD1 = 1.03× Ith
LD1 and ILD2 =

1.03 × Ith
LD2. The coupling times are τ1,2 = τ2,1 = τc = 3.4 ns, and equal to the

feedback time τf . The linewidth enhancement factor is α = 4.0 and the spontaneous

emission rates are βj = 0.5 × 10−9 ps−1 for both lasers. Other parameters are

given in Table A.1 of Appendix A. For this parameter set, the laser with feedback

operates in the LFF regime, and we begin with this case in order to compare with

the experimental results given above.

Mimicking the experimental procedure described above, we now introduce differ-

ent values of κ2,1 for constant values of κ1,2 and κf . Figure 4.4 shows the output

intensities of each laser and the corresponding histograms of the time difference be-

tween dropouts for increasing values of the backward coupling strength κ2,1. The

numerically computed time series have been filtered (with a low-pass 4th-order But-

terworth filter and a frequency cutoff of 100 MHz) in order to reproduce the limited

bandwidth of our experimental equipment.

In the case of purely unidirectional coupling, i.e. when no light from LD2 is

injected back into LD1 [Fig. 4.4(a,b)], LD1 leads the dynamics with a time lag equal

to the coupling time τc. The inset of (a) displays a detail of 100 ns of the time series,

that clearly shows the leadership of LD1. For increasing coupling from LD2 to LD1,

a transition occurs, and at a critical value of that coupling a symmetric situation

arises, where the leader and laggard roles alternate randomly in time [Fig. 4.4(e,f)].

Beyond that critical point LD2 dominates the dynamics. In particular, when the

amount of light injected from LD2 to LD1 is higher than in the opposite direction

[Fig. 4.4(g,h)], LD2 clearly leads the dynamics, again with a time lag equal to the
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Figure 4.4: Numerical output intensities (left column) and the corresponding histogram
of time differences (right column) for increasing strengths of the injection received by LD1
from LD2, κ2,1. The forward coupling strength from LD1 to LD2, is fixed to κ1,2 = 80 ns−1,
and the feedback strength to κf = 10 ns−1. The values of κ2,1 are: (a,b) 0 ns−1, (c,d)
70 ns−1, (e,f) 75 ns−1, and (g,h) 90 ns−1. Other parameters are given in Table A.1 of
Appendix A.

coupling time τc. These results are in agreement with the experimental observations

shown in Fig. 4.2.

In order to quantify the synchronization level and time lag between the intensity

signals for fast time scales (i.e. without filtering), we calculate the cross-correlation

function between the two time series (Buldú et al, 2005):

C(∆t) =
〈(P1(t)− 〈P1〉)(P2(t + ∆t)− 〈P2〉)〉√
〈(P1(t)− 〈P1〉)2〉〈(P2(t)− 〈P2〉)2〉

, (4.1)

where the angular brackets denote temporal averages. According to this definition
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a maximum correlation at a positive time lag ∆t indicates that LD2 is leading the

synchronized dynamics with that time lag, and vice versa (see Appendix B).

Figure 4.5 represents the unfiltered time series of the lasers in the LFF regime

(left column), with its corresponding cross-correlation function (right column) for

two limit cases. In the unidirectional case [Fig. 4.5(a,b)], the fast dynamics is syn-

chronized, and the cross correlation function shows that laser LD1 leads the dynam-

ics, as expected from the results given above. In the presence of sufficiently large
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Figure 4.5: Time series (a,c) and cross-correlation functions (b,d) for κ1,2 = 80 ns−1

and κf = 10 ns−1 for: (a,b) κ2,1 = 0 ns−1 and (c,d) κ2,1 = 90 ns−1. Black boxes denote
the same dynamical instant in both time series.

injection from LD2 back into LD1 [Fig. 4.5(c,d)], the leader and laggard roles switch

and now LD2 is the leader. This behavior coincides with the dynamics of the signal

envelopes (Fig. 4.2).

When the leader role alternates between the two lasers, the change reveals itself

also in the fast dynamics. Figures 4.6(a) and (b) show a detail of LD1 and LD2
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leading the dynamics respectively. Plot (c) represents the cross-correlation function

for this intermediate state, showing two equally high peaks at ±τc. The switch of

the leader is produced when the lasers turn off during the dropout events.
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Figure 4.6: Unfiltered time series (left plots) for LD1 (top traces) and LD2 (bottom
traces) and the correspondent cross-correlation function (right plot) for κ1,2 = 80 ns−1,
κ2,1 = 70 ns−1 and κf = 10 ns−1. Plots (a) and (b) show a stretch of time series in which
LD1 and LD2 lead the dynamics, respectively. Black boxes denote the same dynamical
instant in both time series.

We have seen so far that our model reproduces satisfactorily the experimental

observations, and shows that the leader-laggard dynamics holds at smaller time

scales. We now turn our attention to other dynamical regimes exhibited by this

system. When the pump current is higher than the ones considered previously, it is

known that the lasers exhibit a fully chaotic dynamics, a regime known as coherence

collapse (Mirasso, 2000; Heil et al, 1998).

We have examined whether the leader-laggard dynamics is maintained in that
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regime, and if the roles can be made to switch by controlling the directionality of

the coupling, as in the LFF case. Figure 4.7 compares the time traces and the

corresponding cross-correlation functions in the two limiting cases of unidirectional

and bidirectional coupling. The data show that the leader and laggard roles are

reversed, as in the previous case.
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Figure 4.7: Numerical output intensities of the lasers in the coherence collapse regime
(left column) and the corresponding cross-correlation functions (right column) for κ1,2 =
80 ns−1 and κf = 10 ns−1 and two different backward coupling. In (a, b) κ2,1 = 0 ns−1

and in (c, d) κ2,1 = 90 ns−1. Other parameters are listed in Table A.1 of Appendix A
except ILDj = 1.2× Ithj, α = 5, and βj = 2× 10−9 ps−1.

With the aim of determining the boundaries of the dynamical behavior described

above, we have also examined numerically, in a systematic way, whether a change in

the coupling strength produces a variation in the type of dynamics exhibited by the

coupled system. Our results indicate that, without varying other parameters, even
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under large variations in the coupling from LD2 into LD1, κ2,1, the system does

not change its dynamical behavior. Only when the feedback strength κf varies, the

dynamics of the lasers are modified.

Figure 4.8 shows the consequences of varying the feedback strength, when the

coupling strengths in the two directions are non-zero. Starting from a synchronized
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Figure 4.8: Numerically determined laser output intensities for fixed values of coupling,
κ2,1 = 15 ns−1 and κ1,2 = 25 ns−1, and different amounts of feedback on LD1. The
time traces of LD1 have been shifted vertically upwards for clarity. (a) κf = 15 ns−1,
(b) κf = 20 ns−1, (c) κf = 30 ns−1, (d) κf = 35 ns−1, (e) κf = 40 ns−1, and (f)
κf = 45 ns−1.

dropout regime, for fixed values of κ2,1 = 15 ns−1 and κ1,2 = 25 ns−1, and for

increasing values of the amount of feedback acting upon LD1, the figure shows a

substantial change in the dynamics of LD2, while LD1 remains in the LFF regime,

without loss of synchronization. Specifically, for large feedback strengths, laser LD2

undergoes power jump-ups synchronized with the dropouts of LD1, which have
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been recently associated with a mechanism of episodic synchronization (Buldú et al,

2006). In this case the detuning induced in the receiving laser was the responsible

for the occurrence of these jump-ups. The jump-ups are mediated by the frequency

shift due to the feedback. For most of the time in the LFF regime, the dynamical

trajectories of the lasers separate from each other and only coincide during these

jump-ups, leading to an episodic synchronization.

4.2 Message transmission capabilities

Many studies have examined the viability of message transmission between two cou-

pled chaotic lasers. Most of them have been devoted to unidirectional transmission

schemes (Uchida et al, 2005; Argyris et al, 2005), but the possibility of transmit-

ting information bidirectionally through the same channel is beginning to attract

attention (Vicente et al, 2007). This type of communication obviously requires bidi-

rectional coupling between the lasers, and therefore it is natural to ask whether the

relatively simple setup considered in this chapter, namely two semiconductors lasers

coupled face-to-face, is useful for bidirectional communications. Chaotic communi-

cations rely in what is known as chaos-pass filtering (Fischer et al, 2000). Through

this mechanism, a message inserted into a chaotic carrier can be decoded by a re-

ceiver laser (which must be parameter-matched to the emitter) that filters out the

message from the carrier. When synchronization between the lasers occurs with a

time lag, as in the case presented in this chapter, it is known that only the laggard

laser can act as a chaos-pass filter (Heil et al, 2001). This seems to prevent the

use of the setup discussed here as a bidirectional communication system. However,

we have shown above that we can control which laser leads the dynamics by acting
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upon the coupling architecture of the system. One could thus envision a protocol

that would allow one to switch the leader and laggard roles so that the laser required

to act as emitter at any given time is made to lead the dynamics during that time.

4.2.1 Experimental results

Figure 4.9 shows the experimental setup used to investigate this issue by introducing

the message, first in LD1 and then in LD2, in order to check experimentally that

switching the leader and laggard roles of the lasers produces also a switching of their

chaos-pass filtering characteristics.

Figure 4.9: Experimental arrangement of
message introduction in two semiconductor
lasers coupled via two independent unidirec-
tional paths. Laser LD1 receives optical feed-
back from mirror M. BS, beam splitters; F1
(fixed at 44% transmittivity) and F2 (vari-
able), neutral density filters; M1 and M2,
mirrors; OI, optical isolators; PD1 and PD2,
photodiodes.

Departing from a chaotic state of laser LD1 (due to its feedback) we synchro-

nize the two lasers without the neutral density filters F1 and F2. With TLD1 =

20.48oC and TLD2 = 21.08oC we adjust their intensities at ILD1=33.02 mA and

ILD2=33.35 mA, to have the optical spectra of LD1 (with its feedback) as similar
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as possible to that of LD2. It is necessary to have very similar optical frequencies

to minimize the coupling strength to reach synchronization when we increase the

backward injection. If coupling is too large, one laser would force too much the other

one, destroying the filtering capability of the receiver. In that case only a passive

amplification of the transmitted signal takes place.

After that, we place a filter F1 in the LD1 to LD2 path, to control the leadership

of the dynamics through the neutral density filter F2, as in the previous experiment.

We made a first rough approximation to limit the range of values for the introduced

frequency (by modulating the pump current of the laser), looking to the RF spectra

for the two lasers. It is necessary to introduce a frequency that can be detected at

the RF-spectrum of the transmitter. If we consider a frequency smaller than that

of the average LFF frequency the filtering process does not work. If it is similar to

the average LFF frequency, a high amplitude is necessary to see the message in the

transmitter, and consequently the filtering does not work in the receiver. Therefore,

appropriate frequencies are those slightly higher than the average LFF frequency.

For the unidirectional case, in which no backward injection from LD2 is received by

LD1, we apply a 46-MHz modulation (with a waveform generator, Agilent 33250A),

with 10mV of amplitude, to the pump current of the emitter laser LD1. The chaotic

signal of LD2 synchronizes with the chaotic part of the signal transmitted from LD1

and its periodic part is suppressed (i.e. filtered) by the receiver. Figure 4.10 (a),

top trace, shows the chaos-pass filtering in the RF spectrum of LD2. A clear peak

appears at the RF-spectrum of LD1 at the introduced frequency, which is filtered

out in the spectrum of the receiver laser, LD2 [Fig. 4.10 (a), bottom trace]. The

amplitude of the introduced signal is such that it is not observed in the output

intensity of the transmitter laser [Fig. 4.10(b)].
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Figure 4.10: Experimental analysis of the chaos-pass filtering capabilities of the system
for unidirectional (a,b) and bidirectional (c,d) coupling. (a,c) RF power spectra, (b,d)
corresponding time series. The traces of LD1 have been shifted vertically for clarity in
all plots. The vertical arrows in (a,c) indicate the input modulation in each case. The
transmittivity of filter F2 in (c,d) is 63%. Other parameters are those of Sec. 5.1.1.

When the backward injection received by LD1 is increased, and LD2 leads the

dynamics, we modulate the pump current of LD2 and the filtering characteristics

reappear in LD1 RF-spectrum [Fig. 4.10(c,d)]. We have to note that it was less

difficult to ”hide” the introduced signal in this last case. The amplitude of the

introduced signal was 10 mV but it was possible to reach 20 mV and still have a

correct mask in the time series and a good filtering from LD1.

Applying the modulation in the opposite direction, i.e. on the laggard, the mod-

ulation peak is maintained in the leader (Heil et al, 2001), i.e. chaos filtering does

not occur.
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4.2.2 Numerical simulations

The previous results constitute further experimental confirmation of the leader-

laggard switch, and hint at the possibility that this system can be used for bidi-

rectional communication by controlling the backward coupling strength κ2,1. We

have explored this possibility numerically, by introducing a binary message into the

pump current of the lasers. Following the situation of Fig. 4.10, we first transmitted

the message from LD1 to LD2, under conditions where LD1 is the leader, and then

transmission was realized from LD2 to LD1, varying the amount of coupling κ2,1

in order to make LD2 the leader. The message is decoded by subtracting the light

emitted by the two lasers, taking into account the delay between the signals. The

bit message is introduced with an amplitude equal to 3% of the pumping current,

and the subtracted signal is filtered with a 4th-order Butterworth low-pass filter and

400 MHz of cut-off.

Figure 4.11 compares the two situations of the experiment. Figure 4.11 (left) shows

the time traces of emitter and receiver, and the message extraction is shown in the

right panels, for the cases where the message is introduced in LD1 and recovered

by LD2 [Fig. 4.11(a,b), LD1 is the leader], and the message is encoded by LD2 and

recovered by LD1 [Fig. 4.11(c,d), LD2 is the leader]. In the left plots, the upper time

trace (shifted vertically for convenience) represents LD1 and the lower time trace

corresponds to LD2. In the right plots, the upper trace is the input message and

the lower trace is the recovered message. The results show that message recovery is

better in the unidirectional than in the bidirectional case.

The differences in the effectivity of message recovery indicate that the synchroniza-

tion quality is not the same in the two regimes considered. Since the cross-correlation
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Figure 4.11: In (a,b) the message is encoded by LD1 with κ1,2 = 80 ns−1 and κ2,1 =
0 ns−1, and in (c,d) the message is encoded by LD2 with κ2,1 = 90 ns−1 and κ1,2 = 80 ns−1.
The feedback strength is κf = 30 ns−1, other parameters as in Sec. 4.1.

function (shown in Fig. 4.7 above to be relatively high) is only an averaged quan-

tity, it does not provide information on potential dynamical deviations from perfect

synchronization. In order to quantify such deviations, we computed the sliding

correlation coefficient, defined as the maximum of the cross-correlation function,

computed with temporal averages over a moving time window of width 3.4 ns (see

Appendix B).

Figure 4.12 compares this sliding correlation coefficient with the standard cross-

correlation function for the two conditions considered in Fig. 4.11.

The figure shows that even though in the unidirectional case the synchronization

is only instantaneously lost during the dropouts, thus it is possible to recover the

message. In the bidirectional situation, synchronization loss is widespread, which

leads to a poor message recovery when the direction of information transmission is
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Figure 4.12: Cross-correlation (left) and sliding-correlation (right) functions for κf =
30 ns−1 and different coupling strengths. (a,b) κ2,1 = 0 ns−1 and κ1,2 = 80 ns−1; (c,d)
κ2,1 = 90 ns−1 and κ1,2 = 80 ns−1.

from LD2 to LD1.



Chapter 5

Processing distributed inputs in

coupled lasers

Many information-processing systems, such as the brain or telecommunication net-

works, are composed of multiple dynamical elements coupled to each other, which

receive multiple signals of different frequencies at diverse input locations. It is

therefore a matter of interest to determine the effects that the coupling between

the dynamical nodes of a processing network has on the integration of distributed

signals.

In the phenomenon of ghost resonance (GR), an excitable system subject to two

different periodic signals exhibits a resonance at a frequency not present in the input

driving (Chialvo et al, 2002). This phenomenon, invoked to explain the missing

fundamental illusion arising in the perception of complex sounds (Chialvo, 2003), has

been shown to be produced by the interplay between noise and periodic forcing in a

non-dynamical threshold device (Chialvo et al, 2002), but it can also be caused by the
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application of periodic perturbations to a chaotic system. The latter effect has been

experimentally observed in a semiconductor laser with optical feedback operating

in the low-frequency fluctuation regime (Buldú et al, 2003) and in the polarization

response of VCSEL’s (van der Sande et al, 2005). In those cases, the interplay

between the external modulation and the complex dynamical threshold of the system

shows a response similar to the effect of a combined periodic-noisy external signal

on a simpler excitable system with a well defined excitation threshold (Chialvo et al,

2002).

Here we introduce two different periodical signals, modulating each of the laser’s

pump currents, and we study the response of two coupled lasers to this distributed

signal. In this chapter, we compare experimentally the relatively simple case of dis-

tributed signal processing by two mutually coupled excitable elements, specifically

two semiconductor lasers in two different cases: when the excitable dynamics is in-

duced by coupling, and when the lasers are independently excitable systems. The

first case are two semiconductor lasers coupled face-to-face. The second case con-

sists in two semiconductor lasers mutually coupled but with optical feedback in each

one. This second architecture is common in neuronal systems. Sensory neurons, for

instance, do not usually operate in isolation (Keener and Snyder, 1998) and recent

studies in neuronal systems, both theoretical (Balenzuela and Garćıa-Ojalvo, 2005)

and experimental (Manjarrez et al, 2006), show that coupling is able to mediate

the processing of distributed inputs in networks of neurons (which possess indepen-

dent dynamics even in the absence of coupling). We study both situations using

semiconductor laser as highly controllable excitable systems.
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5.1 Mutually coupled semiconductor lasers with-

out feedback

As we explain in the Introduction, in two lasers mutually coupled through their

respective optical fields in a bidirectionally face-to-face configuration, the dynamics

is only produced by the coupling. Each laser is stable in absence of the mutual optical

injection. This coupled system has been shown to have a pulsated output (Heil et al,

2001), similar to that observed in a single semiconductor laser with optical feedback

in the low-frequency fluctuation regime. In that case, previous experimental studies

have shown that the response of the system to a periodic forcing of the pump current

is strongly enhanced by the coupling (Buldú et al, 2002). We will show that coupling

induces entrainment to a frequency not present at the input of any of the two lasers.

The introduced signals are processed by the total system as a whole.

5.1.1 Experimental arrangement

Our experimental system consists of two AlGaInP index-guided and multi-quantum

well semiconductor lasers (Roithner RLT6305MG), LD1 and LD2 in what follows,

mutually injected as shown in Fig. 5.1. Both lasers have a nominal wavelength of

λn = 635 nm.

The temperature and pump current of the lasers are controlled with an accuracy

of ±0.01 oC and ±0.1 mA, respectively. For temperatures TLD1 = 19.80 oC and

TLD2 = 17.98 oC, their threshold currents (in isolation) are respectively I th
LD1 =

18.3 mA and I th
LD2 = 18.0 mA. The operating currents are set to ILD1 = 18.9 mA

and ILD2 = 19.4 mA. To quantify the effect of the facet of the opposite laser as a
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dFigure 5.1: Schematic setup: LD1 and LD2 are the laser diodes; TC and IC are the tem-

perature and current controllers, respectively; f1 and f2 are the frequencies of the external
periodic signals; BS are beamsplitters; PD1 and PD2 are photodetectors.

source of external optical feedback, we estimated the threshold reduction of each

laser when the opposite laser is turned off, obtaining a reduction of 3.79% for LD1

and 1.20% for LD2. When both lasers are turned on, the threshold current also

decreases, but due to the interaction between the fields the threshold reduction is

in that case 4.50% for LD1 and 5.70% for LD2. Two beamsplitters in the coupling

branch allowed the detection of the laser outputs by fast photodetectors of 1 GHz

bandwidth (Thorlabs DET210). The received signal is sent to a 5 GS/s acquisition

card (Gage 85G). The external periodic signals are introduced by modulating the

pump current of the lasers with two Agilent 33250A signal generators.

In the conditions of our particular experiment, the lasers remain stable in the

absence of external perturbations (Chialvo et al, 2002), but when external sinusoidal

signals are introduced through their pump currents, synchronized intensity dropouts

appear. The dropouts are synchronized with a time delay τc = 3.43 ns between the

lasers (time that the light takes to travel the distance between them). In other

words, the dropouts of one laser advance those of the other a time interval τc. In
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the absence of frequency difference between the lasers, they randomly alternate the

leading role in the dynamics as we saw in the previous chapter. To avoid this effect,

which makes difficult to estimate the correlation between both output intensities, a

slight frequency detuning is introduced by tuning the operating temperatures, since

the laser with higher optical frequency is known to lead the dynamics (Heil et al,

2001).

5.1.2 Signal processing mediated by coupling

We applied two distributed inputs, in the form of pump current modulations of

different frequencies to each laser (f1 in LD1, and f2 in LD2). The external modula-

tions were introduced in the pump current of the lasers with two function generators

(Agilent 33250A).

First we choose two harmonics of a common fundamental frequency f0, defined

by f1 = kf0 and f2 = (k + 1)f0 with k > 1.

The behavior of the system for k = 2 and f0 = 5 MHz is shown in Fig. 5.2 for

increasing amplitudes of the modulation, chosen equal for both signals.

The figure shows the time trace of the intensity of LD1 on the left, and the prob-

ability distribution function (PDF, which associates a probability to each value of a

discrete random variable) of the interval between dropouts on the right (the results

are basically identical for LD2, since both lasers are synchronized). The PDF is

computed from a collection of 1000 dropouts in each case. For a small modulation

amplitude (top row in Fig. 5.2) the dropouts occur infrequently at different periods.

As the amplitude grows (middle row), most inter-pulse intervals occur at a definite

period corresponding to the fundamental frequency f0 = 5 MHz (T0 = 200 ns),
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Figure 5.2: Output intensity of LD1 (left column) and the corresponding probability
distribution functions of the time difference between dropouts (right column) for increasing
values of the modulation amplitude (A1 for LD1 and A2 for LD2): (a,d) A1 = A2 =
0.191 mA , (b,e)A1 = A2 = 0.409 mA and (c,f) A1 = A2 = 0.575 mA.

which is not present in either of the input signals. For larger amplitudes (bottom

row), the input signals take over and dropouts begin to occur at the (larger) input

frequencies, reducing the response of the system at the missing fundamental fre-

quency. Therefore, a resonant behavior is observed with respect to the modulation

strength: for an intermediate modulation amplitude, the system optimally processes

the distributed inputs.

In order to ensure that a resonance occurs at fr = 5 MHz, we statistically analyze

the output times series for different modulation amplitudes, evaluating the average

and the relative standard deviation of the inter-dropout intervals at each amplitude.

Figure 5.3 shows that the standard deviation is minimal for an average inter-dropout
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frequency (i.e. the inverse of the mean interval between dropouts) equal to fr =

5 MHz, which indicates that the periodicity is maximal at that output frequency.

5.1.3 Inharmonic response

The results shown above do not correspond to a trivial resonance at the frequency

difference f2 − f1. To demonstrate this, we introduce a frequency shift, ∆f , in the

input frequencies:

f1 = kf0 + ∆f , f2 = (k + 1)f0 + ∆f (5.1)

Such detuning renders the two input frequencies incommensurate and no longer

harmonics of f0.

We kept the modulation amplitudes constant at A1 = A2 = 0.409 mA, and varied

the frequency of laser LD1 from 2f0 = 10 MHz to 3f0 = 15 MHz in steps of 0.5 MHz,

while changing at the same time the frequency of laser LD2 from 3f0 = 15 MHz to
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4f0 = 20 MHz, keeping f2 = f1 + f0.

Figure 5.4 shows that in this case the response frequency, defined as the inverse of

the interval between two consecutive dropouts, increases linearly with the detuning,
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Figure 5.4: Experimental PDFs of the response frequency fr (the inverse of the dropout
interval) for increasing values of f1 (and therefore ∆f). The dashed lines correspond to
the theoretical resonance frequencies given by Eq. (5.2).

even though the difference between the input frequencies remains equal to f0. The

maxima of the response frequency distribution obey the following simple relation,

fr = f0 +
∆f

k + 1/2
, (5.2)

which was obtained by Chialvo et al (2002) from a straightforward analysis of the

maxima of the linear superposition of two sinusoidal functions with frequencies given

by Eq. (5.1).
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5.1.4 Comparison with numerical simulations

The experimental results described above can be numerically reproduced by means

of the system of delay-coupled rate equations described at Sec. 2.1.2 of the Intro-

duction, taking the feedback term as zero (κj,j = 0). As we explained before, the

common light path for both directions of coupling allows us to use the simplified

notation κ12 = κ21 = κc.

In the simulations that follow we have set α = 3.0, β = 0.5 × 10−9 ps−1, and

κc = 30 ns−1. The rest of the laser parameters have been chosen to reproduce the

experimental conditions, including the threshold currents I th
LD−1 = 18.30 mA and

I th
LD−2 = 18.02 mA, and the coupling time τc = 3.43 ns. The rest of parameter

values are displayed in Table A.1 of Appendix A. The pump currents take the form

I1,2 = IDC1,DC2[1 + A1,2 sin(2πf1,2t)], where IDC1,DC2 are the DC pump currents,

A1,2 the modulation amplitudes and f1,2 their corresponding frequencies, chosen

again following Eq. (5.1). The DC levels are chosen to be IDC1 = 1.032× I th
LD1 and

IDC2 = 1.076× I th
LD2.

In order to reproduce the experimental results presented in Fig. 5.2 for the case

∆f = 0, we fix the input frequencies to f1 = 10 MHz and f2 = 15 MHz, increasing

the amplitude of both modulations simultaneously. The results can be seen in

Fig. 5.5, where the ghost resonance at the frequency fr = 5 MHz is observed for

intermediate values of the modulation amplitudes (note the qualitative resemblance

with Fig. 5.2). Finally we analyze the effect on fr of a detuning ∆f introduced in

both modulation frequencies, following Eq. (5.1). Increasing ∆f from 0 MHz up

to 5 MHz in steps of 0.001 MHz, we compute the response frequencies (i.e. the

inverse of the time interval between consecutive dropouts) of 25 dropouts for each
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Figure 5.5: Numerically computed output intensity of LD1 (left column) and the
corresponding probability distribution functions of the inter-dropout intervals (right col-
umn) for increasing values of the modulation amplitude: (a,d) A1 = A2 = 0.013 , (b,e)
A1 = A2 = 0.020, and (c,f) A1 = A2 = 0.045.

∆f . Figure 5.6 shows the response frequency fres as a function of f1, and also

the comparison with the theoretical predictions of Eq. (5.2) (dashed lines). We

can observe how, as f1 increases, the maximum response frequencies (resonance

frequencies) jump between values of fr to a value of fr corresponding to higher

k parameters. This is in agreement with the experimental PDFs represented in

Fig. 5.4, where the PDF maxima jump from the k = 2 to k = 3 line when f1 is

increased. This dependence of fr with ∆f indicates that the ghost resonance is a

nontrivial resonance.
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Figure 5.6: Numerically determined response dropouts frequency fr as a function of f1.
Dashed lines correspond to theoretical predictions given by Eq. (5.2) for k = 2 . . . 4.

5.2 Mutually coupled semiconductor lasers with

optical feedback

We now consider two mutually coupled semiconductor lasers each one with optical

feedback. In this case the lasers have independent dynamics even in the absence

of coupling. As explained at Sec. 1.3.3 of the Introduction a laser with optical

feedback, in the low-frequency-fluctuation regime, has been shown to have excitable

properties (Giudici et al, 1997; Mulet and Mirasso, 1999), responding with intensity

dropouts to pump perturbations only when the perturbation amplitude surpasses

a certain threshold. Nevertheless, and due to the complexity of this particular

system (Sano, 1994; van Tartwijk et al, 1995), such excitation threshold is not a
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well defined constant value. In any case, in this second configuration we have two

independently excitable units (two semiconductor lasers with optical feedback), that

are mutually coupled through their output fields. We will show how the coupling

between these two independent units also induces entrainment to a frequency not

present at the input of any of the two lasers.

5.2.1 Experimental setup

Our experimental setup is represented in Fig. 5.7. Two semiconductor lasers, LD1

and LD2, are mutually injected and subject to their own optical feedback from the

external mirrors M. The coupling between the lasers can be controlled through a

neutral density filter (NDF). The two AlGaInP index-guided and multi-quantum

f1

LD1 LD2

IC

TC

IC

TC

M M

F

BSBS

PD2 PD1

NDF

F

f2

u
n
lic
e
n
s
e
dFigure 5.7: Schematic setup. LD1 and LD2: laser diodes, TC and IC: temperature and

current controllers, F1,F2: frequencies of the external signals, BS: beamsplitters, PD1 and
PD2: photodetectors, M: mirrors, F: feedback filters, NDF: coupling filter.

well semiconductor lasers (Roithner RLT6505MG) operate at a nominal wavelength

λ = 650 nm. Their temperature and pump current are controlled with an accuracy

of±0.01oC and±0.1 mA, respectively. At temperatures TLD1 = 18.68 oC and TLD2 =
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18.26oC, the threshold currents of the lasers (in isolation) are, respectively, Ith
LD1 =

17.1 mA and Ith
LD2 = 16.6 mA. The operating currents are set to ILD1 = 17.9 mA

and ILD2 = 18.1 mA. The relative pump currents, with respect to the threshold,

are slightly different for both lasers, but this small asymmetry does not have an

important influence in the results that follow. Antireflection-coated objectives are

used to collimate the light emitted by the two lasers. The external mirrors M are

placed 51 cm away from each laser, introducing a feedback delay time τf equal to

the coupling time τc = 3.4 ns. Filters F in front of each mirror diminish the quantity

of reinjected light.

We position the external mirrors for optimum alignment, minimizing the laser’s

current threshold in the presence of optical feedback. This reduction is of 3.3% for

LD1 and 2.4% for LD2. To quantify the effect of the opposite laser as a source of

additional feedback we estimate the threshold reduction when the opposite laser is

turned off, obtaining a reduction of 1.2% for LD1 and 1.1% for LD2 with respect to

the thresholds in isolation. When both lasers are turned on, the threshold reductions

are 4.8% for LD1 and 4.2% for LD2. The laser outputs are monitored by two

fast photodetectors PD1 and PD2 of 1 GHz bandwidth (Thorlabs DET210). The

received signal is sent to a 5 GS/s acquisition card (Gage 85G), and to an spectrum

analyzer (Anritsu MS2650B) via two amplifiers (2 GHz bandwidth, Femto high-

speed amplifier).

5.2.2 Dynamics in the absence of coupling

As mentioned above, in isolation and for moderate feedback strengths, semiconduc-

tor lasers with optical feedback are known to have excitable properties, whereby
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small perturbations in the pump current produce large and brief dropouts in the

emitted intensity (Giudici et al, 1997; Mulet and Mirasso, 1999). An example of

the dynamics of the two lasers in the absence of coupling is shown in Fig. 5.8(a).

The plots show that the lasers undergo power dropouts at irregular times, driven

by the underlying complex dynamics of the delayed system (Sano, 1994), which can
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Figure 5.8: Output intensity of LD1 (top traces) and LD2 (bottom traces) without (a)
and with (b) coupling. In (a) the output intensities are independent; in (b), the lasers are
synchronized.

be considered effectively as a noise source. Note that the 1 GHz bandwidth of the

detectors smoothes out the fast pulsing dynamics (Fischer et al, 1996), resulting in

a measurement of only the slower dropout envelope, which is the signal used in this

study. When we start coupling the lasers by increasing the transmittivity of the

neutral density filter, correlations between the power dropouts arise, until for the

maximum coupling strength attainable in our experimental setup (when the NDF
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is removed) the lasers are fully synchronized [Fig. 5.8(b)]. In the results that follow,

the lasers will be located in this regime. Synchronized dynamics in this experimental

setup has been previously reported by Klein et al (2006).

5.2.3 Signal processing mediated by coupling.

As we have seen, an isolated laser with feedback undergoes pulsed dynamics in the

form of an irregular train of power dropouts. Applying a harmonic modulation to the

laser’s pump current allows to control this irregular behavior, leading to a periodic

train of dropouts at the frequency of the input signal (Sukow and Gauthier, 2000).

This effect is most pronounced when the modulation frequencies are on the order

of tens of MHz, even though the typical characteristic frequencies of the laser are

higher (the relaxation oscillation frequency without feedback is of the order of tens

of GHz, and the frequency difference of the external cavity modes are of the order of

hundreds of MHz). As we explained at the Introduction an external periodic signal

can enhance the probability of produce a dropout event when the external frequency

is equal to the mode-antimode difference frequency [see Sukow and Gauthier (2000)

and Sano (1994) for details].

With two lasers individually entrained at the input frequencies f1 and f2, we

remove the coupling filter NDF and observe how the ghost resonance frequency arises

in the synchronized dynamics of the system. To that end we gradually increase the

amplitude of the input signals and calculate the probability density function (PDF)

of the inter-dropout time interval of the output intensity series.

Figure 5.9 shows the output intensity of LD1 (a-c) and their corresponding prob-

ability distribution function of the time interval between consecutive dropouts (d-f)
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for increasing values of the modulation amplitude (which is the same for both sinu-

soidal signals). The dynamics of LD2, not shown, is identical to that of LD1, since

the two lasers are synchronized. The results of Fig. 5.9 show that for low values of

the modulation amplitude [Fig. 5.9(a,d)] the output intensity exhibits dropouts, but
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Figure 5.9: Experimental output intensity of LD1 (left column) and the corresponding
probability distribution functions of the time intervals between consecutive dropouts (right
column) for increasing values of the modulation amplitude: (a,d) A1 = A2 = 0.285 mA;
(b,e) A1 = A2 = 0.643 mA; (c,f) A1 = A2 = 0.750 mA. The input frequencies are
f1 = 10 MHz and f2 = 15 MHz, corresponding to inter-pulse periods T1 = 100 ns and
T2 = 66.7 ns. The ghost frequency is f0 = 5 MHz, corresponding to a period T0 = 200 ns.

they are not distributed regularly; the corresponding PDF of the inter-dropout in-

tervals exhibits several peaks. For intermediate values of the modulation amplitude

[Fig. 5.9(b,e)], the system shows a well-defined resonance at the ghost frequency,

characterized by a single sharp peak of the PDF at the interval Tr = 200 ns.
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When the modulation amplitude is further increased [Fig. 5.9(c,f)], the peak at

the ghost resonance period diminishes and the system shows intensity dropouts at

the input frequencies f1 and f2. As in the experiment of the previous section the

system optimally processes the distributed inputs, for an intermediate modulation

amplitude. In that case, the resonance arose exclusively from the interplay between

the direct electrical modulation of the pump current and the indirect optical driving

coming from the other laser. On the other hand, the ghost resonance arises from the

combination of the entrainments of the individual lasers to their respective input

frequencies.

In the experimental conditions used, the lasers are detuned such that one of them

consistently leads the dynamics, with a time lag equal to the coupling time (Heil

et al, 2001). The behavior of the system does not change if the input modula-

tions are switched between the leader and laggard lasers. It is remarkable that the

distributed signals are processed irrespective of this underlying asymmetry in the

coupled dynamics.

The subharmonic resonance presented above can also be observed at the level

of the RF-spectrum of the lasers’ outputs, as shown in Fig. 5.10. Peaks of the

three frequencies involved, the two (higher) input frequencies f1 = 10 MHz and

f2 = 15 MHz and the fundamental frequency f0 = 5 MHz, are clearly observed in

the spectrum. The height of the peaks at f1 and f2 increases monotonically with

the modulation amplitude (from top to bottom), while the peak at f0 is highest at

an intermediate amplitude, which is a clear indicator of a resonance occurring at

the missing fundamental frequency (Chialvo, 2003).
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Figure 5.10: Experimental RF-spectrum of the output intensity of LD1 for increasing
values of the modulation amplitude (from top to bottom).

5.2.4 Inharmonic response

To demonstrate that the previous results do not correspond to a trivial resonance

at the difference between f1 and f2, we introduce a frequency detuning ∆f in both

input frequencies, as in previous section. The prediction of Eq. (5.2) indicates again

that in this case the resonance frequency increases linearly with the detuning, even

though the difference between the input frequencies is still f0. Experimentally,

the detuning is increased from 0.5 MHz to 5 MHz in steps of 0.5 MHz, while the

modulation amplitudes are kept constant at A1 = A2 = 0.464 mA.

Figure 5.11 shows the resulting probability density function or PDF for increasing

values of ∆f , and the theoretical resonance frequencies predicted by Eq. (5.2), in

dashed lines. The PDFs are plotted vertically versus the response frequency fr (i.e.
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Figure 5.11: Experimental distribution of response frequencies fr (vertically) versus
the input frequency f1 (and therefore ∆f). The dashed lines correspond to the theoretical
resonance frequencies given by Eq. (A.5).

inverse of the dropout interval), and they are lined up horizontally with respect to

the frequency f1 at which they were obtained. We can observe how the maxima of

the experimental PDF, which corresponds to the resonance frequency fr, shifts with

∆f according to the theoretical prediction of Eq. (5.2), therefore demonstrating the

existence of a nontrivial ghost resonance.

5.2.5 Numerical simulations

We modeled the phenomena described above with the rate equations given at Sec. 2.1.2.

The difference in that model is the addition of a term that accounts for the feedback

on each laser:

κj,je
−iωjτj,jEj(t− τj,j). The feedback term of the field equation is described by two
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parameters: the feedback strength κj,j and the external round-trip time τj,j, which

are also assumed equal for the two lasers, and we will use from now one the simplified

notation: κ1,1 = κ2,2 = κf , and τ1,1 = τ2,2 = τf .

We chose parameter values that reproduce the experimental conditions. In par-

ticular, the pump currents are I1,2 = IDC
1,2 [1 + A1,2 sin (2πf1,2t)], where IDC

1,2 are the

DC pump currents, A1,2 are the modulation amplitudes and f1,2 their correspond-

ing frequencies, chosen again following Eq. (5.1). The DC levels are taken to be

IDC
1 = 1.058× Ith

LD1, I
DC
2 = 1.076× Ith

LD2.

Figure 5.12 shows the results obtained numerically in the harmonic (∆f = 0)

case, with f1 = 10 MHz and f2 = 15 MHz. For low amplitudes the dropouts

are not entrained, while for intermediate amplitudes the response at the missing

fundamental frequency increases. For even higher modulation amplitudes, the peak

at f0 diminishes again.
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Figure 5.12: Numeri-
cal output intensity of LD1
(left column) and the cor-
responding probability dis-
tribution functions (right
column) for increasing val-
ues of the modulation am-
plitude: (a,d) A1 = A2 =
0.004, (b,e) A1 = A2 =
0.006 and (c,f) A1 = A2 =
0.008. The parameters are
the same as in the Fig. 5.5
except: κc = 20 ns−1, κf =
10 ns−1, and τc = τf =
3.43 ns.
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To emphasize the fact that the response at the missing fundamental frequency

is mediated by coupling, we compare in Fig. 5.13 the response of the system with

and without coupling. With coupling both lasers are synchronized (panel (a), only

one of the lasers is shown), and the system responds at the fundamental period

(200 ns). On the other hand, when the lasers are isolated from each other (middle
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Figure 5.13: Response of the cou-
pled lasers to the complex harmonic
signal (a) compared with the individ-
ual responses in the absence of cou-
pling (b,c). Parameters are those of
Fig. 5.12(b,e), with κc = 0 in panels
(b) and (c).

and bottom rows) only the corresponding periods of the individual modulations

(100 ns and 66.6 ns) are detected. In that case, the external driving leads to a

strong periodic component in the laser output, as shown in panels (b) and (c) of

Fig. 5.13, which is strongly reduced in the coupled case [Fig. 5.13(a)].

5.2.6 Influence of coupling and feedback strengths

The fact that the lasers have excitable dynamics, even in the absence of coupling

(see Sec. 5.2.2), allows us to study the effect of coupling on the signal processing
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efficiency. To that end, we fix the amplitude of the input modulation to its optimal

level, as obtained above, and maintain a constant level of feedback as well. The

response of the system for increasing levels of coupling is shown numerically in

Fig. 5.14.
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Figure 5.14: Output intensities and probability distribution function of the time interval
between dropouts for increasing coupling strengths: (a,e) κc = 0 ns−1, (b,f) κc = 10 ns−1,
(c,g) κc = 20 ns−1, (d,h) κc = 40 ns−1. In panels (a,e) the results corresponding to both
lasers are shown; the results for laser 1 (up) have been shifted vertically for clarity. In pan-
els (b-d, f-h) only the output of only one laser is shown, since the lasers are synchronized.
Other parameters are those of Fig. 5.12.

In the absence of coupling the lasers exhibit independent dynamics, each respond-

ing to its own input frequency [Fig. 5.14(a)]. As the coupling is increased a response

at the ghost frequency (corresponding again to a 200 ns interval between dropouts)
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appears, becoming optimal for an intermediate coupling level [Fig. 5.14(c)].

Two features stand out from the results shown in Fig. 5.14. First, synchronization

of the lasers is not sufficient to produce a response at the ghost frequency. This is

shown, for instance, in Fig. 5.14(b,f), where coupling is strong enough to synchronize

the lasers’ outputs (and thus only one time trace is shown in the figure), but is

not strong enough to produce a ghost response. Second, for very strong coupling

the ghost response disappears again [Fig. 5.14(d,h)], because the two lasers behave

essentially as a single unit subject to two input modulations (Buldú et al, 2003), and

the system parameters have been chosen in such a way that the ghost response is not

present for a single laser. This leads to a non-monotonic behavior of the system’s

response with respect to coupling strength, and a need to optimize that parameter

in order to observe the phenomenon.

We also analyzed numerically the influence of the feedback strength on the system

response, for a coupling strength fixed to the optimal level determined in the previous

paragraphs. As shown in Fig. 5.15, the feedback strength also needs to be optimized

in order to obtain a response of the system at the ghost frequency. For low feedback

levels [Fig. 5.15(a,d)], both lasers respond preferentially to the two input frequencies.

It is worth noting that the lasers have already synchronized their dynamics at this

point, but nevertheless they cannot process the input signals adequately. As the

feedback level increases (identically for the two lasers), a joint response arises at the

ghost frequency (corresponding again to a time interval between dropouts of 200 ns).

The response is lost once more at high feedback levels, revealing another resonant

response of the system, this time with respect to the feedback strength. This non-

monotonic behavior is due to the fact that the feedback strength affects the response
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Figure 5.15: Out-
put intensities and prob-
ability distribution func-
tion of time interval be-
tween dropouts for increas-
ing feedback levels: (a,d)
κf = 5 ns−1, (b,e) κf =
10 ns−1, (c,f) κf =
30 ns−1. The lasers are
synchronized, so only one
time trace is shown. The
coupling strength is κc =
20 ns−1. Other parameters
are those of Fig. 5.12.

of each laser to the external modulation (Sukow and Gauthier, 2000), in such a way

that tuning the feedback level varies the sensibility of each laser to a given input

frequency range. A ghost response can only arise when the feedback levels are tuned

such that the two lasers respond preferentially to the ghost frequency.



Chapter 6

Noise-induced zero-lag

synchronization in mutually

coupled lasers

Over the last decades, much attention has been paid in the field of the stochas-

tic processes, to the question of how the noise can lead to order (Horsthemke and

Lefever, 1984; Garćıa-Ojalvo and Sancho, 1999; Lindner et al, 2004). In a seminal

work, Bryant and Segundo (1976) showed that the introduction of white noise in a

neuron model produced an invariance in the firing times. In that study, repeating

stimulations of the neuron with the same segment of Gaussian-white noise current

was seen to elicit a reproducible inter-spike time response. Another study of the re-

liability of spike generation in neocortical neurons of rats was made by Mainen and

Sejnowski (1995). They showed that for constant stimuli the spike trains were im-

precise, whereas the introduction of fluctuations in the stimuli, resembling synaptic
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activity, produced spike trains with reproducible timing. In lasers, a good example

of the regularity introduced by noise was given by Uchida et al (2004), which showed

the reproducibility of a laser’s response to a noisy drive signal. Specifically, a noisy

signal was sent repeatedly to a Nd:YAG microchip laser and after a transient, the

system was capable to produce identical response outputs. For small amplitude of

the added noise, the outputs are not identical because the internal-noise-driven re-

laxation oscillations are dominant in the laser output. There is an optimal amplitude

of the noise for which the consecutive outputs are identical, because the simulta-

neous noise-driven signal overcomes the internal noise. For higher amplitudes the

outputs lose the ability of produce identical responses.

Another consequence of the introduction of an adequate amplitude of noise is the

synchronization of coupled systems. This topic has been studied by Maritan and Ba-

navar (1994), and Toral et al (2001) in theoretical works on chaotic systems, Neiman

et al (1999) in FitzHugh-Nagumo-type neurons, Sánchez et al (1997) in chaotic cir-

cuits and Zhou and Kurths (2002) in chaotic oscillators. The common feature in all

these works is that when a certain amount of noise is introduced in coupled systems,

the independent copies are driven to collapse onto the same trajectory.

As we explained in Sec. 2.1.2 of Chapter 2, the isochronal or zero lag synchronous

state (without delay) of two mutually coupled semiconductor lasers is unstable. In

any case, there are several methods to obtain zero-lag synchronization in coupled

lasers. Recently, zero-lag synchronization was found in two mutually delay-coupled

semiconductor lasers, adding to each laser self-feedback matched to the coupling

delay time (Klein et al, 2006). Fischer et al achieved isochronous synchronization

between two delay-coupled semiconductor lasers by relaying the dynamics via a third
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mediator laser (Fischer et al, 2006) or a mirror (Vicente et al, 2007). Roy et al made

a numerical study to achieve stable isochronal synchrony between two mutually

delay-coupled oscillators through the use of a third dynamical system (Zhou and

Roy, 2007). Here we study the possibility of achieving the isochronal solution in

a symmetrical bidirectionally coupled semiconductor laser system, by applying a

common source of external noise to the pump current of both lasers. Departing

from the synchronized state of two mutually coupled lasers, with a well defined

leader-laggard configuration, we introduce the same noise in the two lasers’ pump

currents. For large enough noise intensity, the system reaches a common output

without lag between them, stabilizing the isochronal solution.

6.1 Experimental configuration

Our experimental setup consists of two parameter-matched AlGaInP index-guided

and multi-quantum well semiconductor lasers (Sharp GHO6510B2A) mutually cou-

pled in a symmetrical way (Fig. 6.1). Both lasers operate in a nominal wavelength

LD1

D2 D1

BSBS
LD2

   Noise!

Generator

I.C. I.C.

T.C.T.C.

u
n
lic
e
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e
d

Figure 6.1: Experimental setup. LD: laser diodes, BS: beamsplitters, D: detectors, and
I.C, T.C: current and temperature controllers.
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λn = 654 nm. The temperature and pump current of the lasers are controlled with

an accuracy of ±0.001oC and ±0.01 mA, respectively, and are adjusted such that the

optical frequencies of LD1 and LD2 (in isolation) are as similar as possible to each

other. For temperatures TLD1 = 21.961oC and TLD2 = 25.840oC, the threshold cur-

rents of the solitary lasers are, respectively, Ith
LD1 = 31.32 mA and Ith

LD2 = 30.79 mA.

The coupling path is τ1,2 = τ2,1 = τc = 3 ns. The laser outputs are sent simulta-

neously to a 4 GHz oscilloscope (Tektronix CSA7404), and to an optical spectrum

analyzer (Ando AQ6317B). We add external noise simultaneously to the pump cur-

rents of both lasers, with a variable intensity from −140 dBm/Hz to −110 dBm/Hz.

The frequency bandwidth of the noise ranges from 50 to 400 MHz.

Symmetric mutual coupling was ensured by the injection of a well-controlled

amount of the light emitted by each laser into the other. First we adjust the

temperatures of the lasers to approach as much as possible their optical spectra

[Fig. 6.2(a) and (b)], in order to optimize the mutual injection. With these values

of temperature we optimize the pump currents and the bidirectional alignment by

looking for the maximum enhancement of the output power for mutual injection

when the lasers are near threshold. When each laser is near its own threshold, we

observe an enhancement of 60% with respect to the solitary output power when the

mutual injection takes place. We fix the pump currents to I1 = 1.05Ith1 for LD1 and

I1 = 1.02Ith2 for LD2, where Ith1 and Ith2 are their respective solitary thresholds.

Figure 6.2(c,d) shows the optical spectra in the presence of mutual coupling for LD1

and LD2. Both spectra have a strongly multimode behavior, typical of working close

to threshold. In this condition, the lasers operate in the LFF regime. The reason

to work on this regime is the easy observation and measurement of the isochrony
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Figure 6.2: Optical spectra for the solitary lasers: (a) LD1, (b) LD2, and (c,d) after
mutual coupling for each laser respectively (in absence of external noise).

during the experiments.

With the system symmetrically injected, we introduce the same noise source si-

multaneously to the pump current of the two lasers through the internal bias-T of

the laser mounts. The noise is superimposed to the DC operating level set by the

current controller. The mount has a low frequency cut-off around 200 KHz and a

nominal high frequency cutoff at 500 MHz. From 500 MHz to 1 GHz the mount

does not have a flat response in frequency. The response depends on the operation

point and has a wavy profile. The specifications of the noise generator give a band-

width of 400 MHz, but when we increase the amplitude of the noise it is possible to

have an increased frequency range. We introduce the noise simultaneously to each

mount and vary the amplitude of the noise from −140 dBm/Hz to −110 dBm/Hz,

changing the amplitude in steps of −10 dBm/Hz. Figure 6.3 displays the output
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intensities and the corresponding cross correlation functions for different values of
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Figure 6.3: Experimental output intensities and corresponding cross correlation functions
for different values of injected noise level: (a,b) 0 dBm/Hz, (c,d) −140 dBm/Hz, (e,f)
−130 dBm/Hz, (g,h) −120 dBm/Hz, (i,j) −110 dBm/Hz.

the noise level. The output intensities are displaced vertically for clarity, with the

top trace representing the output of LD1 and the bottom trace representing LD2.

In Fig. 6.3(a) to (i) we can observe how the noise affects the synchronization level

in the output intensities of the lasers. Without noise [Fig. 6.3(a,b)] LFF dynamics

can be observed in the output intensities, and the correspondent cross-correlation

function shows a maximum at τc = −3 ns. The LFF dynamics starts to disappear

in Fig. 6.3(g), but the cross-correlation still shows a maximum peak at τc. Finally

for a noise level of −110 dBm/Hz [Fig. 6.3(j)] a correlation peak arises at zero lag.

In this case, the cross-correlation of the signals shows a broadening of its maximum
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peak due to the loss of fast dynamics in the output intensities (see Sec. 6.2). These

results show that noise induces zero-lag synchronization in mutually coupled lasers.

6.2 Numerical simulations

In order to establish the nature of the broadening of the maximum correlation peak

in the regime of noise-induced zero-lag synchronization [Fig. 6.3(i,j)], we perform a

numerical modeling of the system. Our model is based on the Lang-Kobayashi de-

scription of a single semiconductor laser with optical feedback (Lang and Kobayashi,

1980), generalized to account for bidirectional coupling between two lasers (Mulet

et al, 2002), as explained in Sec. 2.1.2. We take the feedback strengths as 0 to

model two bidirectionally coupled lasers without feedback. We can simplify the

notation because, in this case, we consider the coupling strength equal in both di-

rections κ1,2 = κ2,1 = κc, and we have a unique optical path in the setup, so that

τ1,2 = τ2,1 = τc.

External noise, represented by the term ξ(t), is added to the first term of the

carrier density equation [Eq. (2.4)] as: Cj[1 + ξ(t)] which is taken to be a time-

correlated noise of the Ornstein-Uhlenbeck type, Gaussianly distributed with zero

mean and correlation:

〈ξ(t)ξ(t′)〉 =
D

tc
e−(t−t′)/tc (6.1)

with D being the strength of the noise and tc its correlation time. The variance of

the noise is given by D/tc, and hence we will measure its amplitude as:

σ =
√

D/tc (6.2)
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We set α = 3.5, τc = 3 ns, ∆ω12 = −2.8 GHz, and tc = 800 ps. The rest of the

parameter values are given in Table A.1 of Appendix A. The correlation time of the

noise is fixed to the frequency cut-off of the laser mount (500 MHz). White noise is

not a good assumption in this case. The reason is that the carrier dynamics can not

follow the fast frequencies of the external noise, and the noise intensity of a white

noise needs to be very large in order to have some influence (Toral et al, 2001).

The effect of the external noise in the system can be understood by examining

the mechanism of the power dropouts in the LFF regime, in the framework of the

Lang-Kobayashi model. In this context, a fluctuation can take the system away

from the basin of attraction of the stable fixed point and produce a dropout event.

In the case of mutual coupling this occurs at different times for each laser, due to

the time needed by the light to travel between them. The result is a synchronized

state with two output intensities whose dropout events are displaced a time equal

to τc in a leader-laggard dynamics.

The experiments described above show that common external noise stabilizes the

isochronal synchronized state. As in the experiments, we chose mutual symmetrical

coupling, and with a fixed noise correlation time, we vary the intensity of the added

noise. In Fig. 6.4, left column, we show the numerical output intensities filtered at

1.5 GHz, with a low pass 4th order Butterworth filter, to simulate the experimental

conditions. As in the experimental results, the output intensities are shifted verti-

cally for clarity. The top traces show the output intensities for LD1 and the bottom

traces those of LD2. Figure 6.4 (right) shows the corresponding cross-correlation

function of this filtered series for different strengths of the noise. In Fig. 6.4(a,b) the

synchronized system shows a correlation peak at τc = 3 ns in the absence of noise,
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Figure 6.4: Numerical output intensities and corresponding cross correlation functions
for increasing values of the external-noise strength D: (a,b) 0 ps, (c,d) 1 ps, (e,f) 4 ps,
and (g,h) 8 ps.

with output intensities in LFF regime. As we increase the amplitude of the noise

in Fig. 6.4(c,d) the dynamics changes but the cross correlation does not change the

location of the peak. Only with an amplitude of 4 ps in Fig. 6.4(e,f), we can observe

the appearance of a peak at 0 ns in the cross-correlation function, which becomes

maximum at 8 ps [Fig. 6.4(g,h)].

To estimate the approximate value of the noise correlation time, we consider first

the maximum value of the bandwidth specified by the datasheet of the laser mount

(500 MHz). As we explained before, this value is higher than the specifications of

the noise generator (note that there is an increase in the frequency cut-off of the

noise generator due to the change of amplitude of the noise). For an Ornstein-
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Uhlenbeck noise the correlation time is the inverse of the frequency cut-off. This

value corresponds to an approximate correlation time of 2 ns. With that correlation

time value fixed, we vary the noise strength to find the optimal amplitude of the

noise (σ = 0.1). For this value we observe a peak of the cross-correlation showing

the zero lag solution, but the shape is broader (with respect to the background)

than the one observed experimentally. Once we find the value of the amplitude, we

can vary the correlation time until the cross-correlation function matches the one

obtained experimentally.

Figure 6.5 shows these results, plotting in the top trace the cross-correlation

function observed experimentally. The bottom trace shows the calculated cross-

correlation function for the maximum bandwidth of the mount (500 MHz according

to the datasheet).
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Figure 6.5: Cross-correlation
functions corresponding to experi-
mental data (top), and numerical
observations with tc = 0.8 ns (cen-
ter), and tc = 2 ns (bottom).
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Taking this value for an ideal Lorenzian transform function we estimated the noise

parameters as: σ = 0.1, tc = 2000 ps, and D = 20 ps [Fig. 6.5 (bottom)]. Finally, the

middle trace of Fig. 6.5 shows the cross-correlation that matches the experimental

data (and corresponds to noise parameters σ = 0.1, tc = 800 ps, and D = 8 ps).

The optimal value of the correlation time corresponds to a 1.25 GHz of bandwidth,

and thus we use this value (tc = 800 ps) for the calculations.

We now inspect in detail the output intensities of Fig. 6.4(h), for which we ob-

tain the drift to zero lag in the cross-correlation peak. To that end we generate

numerically the filtered and unfiltered signals for the corresponding values of the

noise amplitude (σ = 0.1, tc = 800 ps, and D = 8 ps). Figure 6.6(a) represents the

filtered signals and Fig. 6.6(b) shows the unfiltered signals.
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Figure 6.6: (a) Numerical filtered and (b) unfiltered output intensities for both lasers for
D = 8 ps and tc = 800 ps. The insets shows a detail of the series.
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The figure shows that although the filtered time series exhibits synchronization

at zero lag (see inset), isochrony is absent in the unfiltered time series.

This difference is clear if we represent the cross-correlation functions for both kind

of signals, filtered (Fig. 6.7, top traces) and unfiltered (Fig. 6.7, bottom traces),

changing the noise strength, but keeping constant the correlation time. For low

noise levels (D = 0 ps and D = 1 ps) the cross-correlation for unfiltered signals

shows a peak at τc, as the filtered one [Fig. 6.7(a,b)], denoting the existence of

a well-defined leader in the dynamics. As we increase the noise level [Fig. 6.7(c),
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Figure 6.7: Cross-correlation
functions corresponding to output
numerical intensities with different
noise strengths D, for filtered (top)
and unfiltered (bottom) signals. (a)
0 ps (b) 1 ps (c) 4 ps, and (d) 8 ps
(tc=800 ps).

D = 4 ps] differences between the two cross-correlation functions become stronger.

The one corresponding to filtered signals shows a growing peak at 0 ns, denoting

the emergence of the isochronal solution, but the cross-correlation corresponding to
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unfiltered signals does not show this peak [Fig. 6.7(d), D = 8 ps].

The difference between both types of correlations shows that the noise acts only in

the slow dynamics of the system for these values of the parameters. The correlation

time of the noise plays an important role on the dynamics of chaotic lasers (Buldú

et al, 2001). If we ignore bandwidth limitations in our experimental system, we

can simulate the output intensities for different noise correlation times and compare

the cross-correlation functions for filtered and unfiltered signals, to find a value

that shows isochrony for both kinds of signals. Figure 6.8 displays both cross-

correlation functions for changing correlation times at constant amplitude of the
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Figure 6.8: Cross-correlations functions for filtered (top) and unfiltered (bottom) signals
for D = 8 ps for different values of noise correlation time: (a) tc = 800 ps, (b) tc = 100 ps,
(c) tc = 10 ps, and (d) tc = 0.01 ps.

introduced noise. The top traces show the cross-correlation function for filtered
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signals, and the bottom traces the corresponding function for the unfiltered signals.

Figure 6.8(a) shows again the results for tc = 800 ps, for which there is a large

difference between the filtered and unfiltered cross-correlation, but with a good

match with the experimental results. Figure 6.8(b) represents the cross-correlation

function for tc = 100 ps. For even smaller tc, [Fig. 6.8(c)], both cross-correlation

functions have some similarities, but it is in Fig. 6.8(d), with tc = 0.01 ps, i.e.

an almost white noise, that both cross-correlations show the same behavior. This

confirms that the non-zero correlation time of the noise is the cause of the differences

between both types of cross-correlations. For high correlation time of the noise, the

system only reacts to the fluctuations in its slow dynamics, whereas in the limit

of very low noise correlation time both dynamics can respond, for the same noise

strength.



Chapter 7

Synchronization via clustering in a

small delay-coupled laser network

It is important to understand how a system of coupled oscillators synchronizes when

the delays in the interactions are different for the different oscillators. Non-uniform,

distributed time delays arise naturally in coupled systems, and several authors have

reported that they can have a stabilizing effect (Atay, 2003; Huber and Tsimring,

2005; Eurich et al, 2005; Masoller and Marti, 2005). Here we study the influence of

non-uniform coupling strengths and non-uniform delay times on the onset of synchro-

nization in an experimental system consisting of three semiconductor lasers mutually

coupled through an external mirror. Our results show that synchronization arises

via the formation of two-laser clusters. This observation is in good agreement with

a simple theoretical model. Clustering has been studied theoretically (Nakamura

et al, 1994; Manrubia and Mikhailov, 1999; Park et al, 1999) and experimentally

(Wang et al, 2000; Otsuka et al, 2003; Tanguy et al, 2006) in large ensembles of
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coupled oscillators. Recently, Rogister and Roy (Rogister and Roy, 2007) studied a

square array of lasers (50 × 50) with homogeneous local coupling, finding that the

synchronization of the lasers of the array resulted in localized excitations, wandering

along well-defined trajectories. The experimental system presented here could allow

for a systematic analysis of the emergence of such behavior in a simpler small array.

7.1 Experimental setup

A schematic diagram of the experimental setup is displayed in Fig. 7.1. Three semi-

conductor lasers (LD1, LD2, and LD3, AlGaInP index-guided and multi-quantum

well devices, Sharp GHO65010B2A) are mutually coupled through their lasing fields

via an external mirror (M), which supplies optical feedback to each laser.

The lasers have a nominal wavelength of 654 nm when operating in isolation.

The temperature and pump current of the lasers are controlled with an accuracy

of ±0.01oC and ±0.1 mA, respectively. At temperatures TLD1 = 19.76oC, TLD2 =

18.53oC, and TLD3 = 18.32oC, the threshold currents of the lasers (when isolated)

are Ith
LD1 = 31.96 mA, Ith

LD2 = 29.87 mA, and Ith
LD3 = 31.10 mA. The operating

currents are set to ILD1 = 32.77 mA, ILD2 = 30.00 mA, and ILD3 = 32.10 mA. The

operating conditions are slightly different because the temperature and the injection

currents of the lasers are adjusted to match their optical frequencies as closely as

possible, in order to have the strongest mutual optical coupling.

The detection of the laser outputs is achieved by fast photodetectors of 1 GHz

bandwidth (Thorlabs DET210).The received signal is sent simultaneously to a 1 GHz

oscilloscope (DS06104A Agilent), and to an spectrum analyzer (Anritsu MS2651B)
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Figure 7.1: Left, scheme of the network studied. Note the different length and weight
of the links. Right, experimental setup: LD, laser diodes; BS, beamsplitters; M, mirror;
NDF, neutral density filter; PD, photodetectors.

via two amplifiers (2 GHz, Femto high-speed amplifier). We note that the two

input channels of the oscilloscope allow the detection of only two laser outputs

simultaneously.

We study how the synchronization is lost as coupling through the neutral density

filter (NDF) decreases. In order to characterize the system, we first examine the

individual dynamics of each laser. In a second part we study the effect of a the

decrease of the injection in each pair of mutually coupled lasers. Finally, we study

how the synchronization is lost in the total array.

Three beam splitters with 50% transmittance (BS1, BS2 and BS3) couple the

lasers to each other through the common reflected light of the external mirror. This

external mirror also supplies the feedback of each laser. Figure 7.2 shows the detail

of the feedback path of the light for each laser diode. The feedback conditions are

different, due to the heterogeneous geometry of the setup. It can be noticed that the
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light fed back into laser LD1 passes only one beam-splitter (BS1), while the light
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Figure 7.2: Detailed feedback path for: LD1, left, LD2, center, and LD3, right.

fed back into laser LD2 (LD3) passes two (three) beam splitters.

The feedback delay times are different for each laser as well, and we note that the

laser with the strongest feedback is LD1 while the laser with larger feedback time is

LD3. In this geometrical arrangement the feedback delay times are τ1,1 = 5.43 ns,

τ2,2 = 4.8 ns, and τ3,3 = 7.3 ns.

To quantify the effect of feedback in each laser due to the interaction between the

fields, we calculate the threshold reduction for each one, in the absence of NDF and

coupling. The reduction is 4.90% for LD1, 4.5% for LD2 and 3.90% for LD3. Each

laser operates, in the absence of coupling with the other two, in the low-frequency

fluctuation (LFF) regime, induced by its own optical feedback from the external

mirror. The laser intensities and the RF spectra are displayed in Fig. 7.3. The mean

time interval between dropouts is approximately TLD1 ∼ 170 ns, TLD2 ∼ 65 ns and

TLD3 ∼ 85 ns for LD1, LD2 and LD3 respectively. The frequency of the dropouts is

different for each laser, because their operating and feedback conditions vary among

the three lasers.

If we consider the laser diodes coupled by pairs in the setup of Fig 7.1, blocking

in each case the third laser, we have two bidirectionally coupled lasers, both with
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Figure 7.3: LFF dynamics in the absence of coupling: LD1 (a,b), LD2 (c,d) and LD3
(e,f). Left column: experimentally observed intensities; right column: experimental RF-
spectra. The insets display the low-frequency peak.

feedback. Figure 7.4 shows how the mirror provides mutual coupling between two

of the lasers. We take LD1 coupled with LD2 to explain how the light coming from

each laser is divided by the two beamsplitters. One part of the light emitted by

LD1 is fed back again to the laser and another part is injected to LD2 through the

LD1

LD2

BS1 BS2

PD1 PD2

M

u
n
lic
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d

Figure 7.4: Detailed path of the light in the mutual injection of two of the lasers of the
array.
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reflection in the mirror, and vice-versa. It can be noticed that the delay times for

the feedback are different in both lasers, whereas the flight times between the two

lasers are equal. The flight times (coupling times) between the laser pairs are: τ1,2

= 5.06 ns, τ1,3 = 6.4 ns, and τ2,3 = 6.03 ns.

Blocking the light coming from one of the three lasers of the array, we can consider

the other two lasers mutually coupled as in Fig. 7.4, and observe the mutual coupling

between only those two lasers. To quantify the effect of the mutual coupling in each

laser pair, we calculate the threshold reduction for each one, in the absence of NDF,

due to injection of the light coming from the other laser and its own feedback. For

the pair corresponding to LD1 mutually coupled with LD2, both with feedbacks, we

have a threshold reduction of 3.5% for LD1 and a 3.8% for LD2. For the LD1-LD3

pair we have a threshold reduction of 3.1% for LD1 and a 3.3% for LD3. And finally,

for the LD2-LD3 pair we have a reduction of 2.8% for LD2 and a 3% for LD3.

Decreasing the total injected light coming from the mirror, we observe a loss

of synchronization. Synchronous behavior will be defined in terms of the mutual

occurrence of power dropouts, which act as low-frequency markers of the lasers’

dynamics.

Figure 7.5 compares the dynamics of each pair of mutually coupled lasers. The

left column of each plot represents the output intensities for a decreasing amount of

total injected light (from top to bottom), and the right column shows the respective

histograms of inter-dropout intervals. The top left plot represents LD1 and LD2

under mutual coupling, the top right represents LD1 and LD3, and the bottom plot

shows the dynamics of LD2 and LD3. In all cases both lasers have optical feedback.

From the synchronized state of each of the laser pairs, represented at the first row of
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Figure 7.5: Output intensities for lasers mutually coupled in pairs (left panels), and
inter-dropout time interval histograms (right panels), for decreasing values of total light
injection (transmittivity of NDF). Signals have been displaced vertically for clarity. Values
in each plot: (a) 100%, (b) 70%, (c) 63%, and (d) 50% of transmittivity.

each plot, we decrease the injected light by changing the transmittivity of the neutral

density filter. It is clearly shown that LD1 and LD2 lose their synchronization when

we decrease the total injected light at 50% of its initial level. If we compare the

loss of synchronization of LD1-LD2 pair with the LD1-LD3 pair, in the latter we do

not observe any loss of synchronization for these values of decreasing transmittivity

(Fig. 7.5 top right). The same situation is observed when we consider the LD2-LD3

pair: the decrease of the total injected light does not destroy the synchronization of
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that laser pair. In all three cases a decrease in the injected light produces a decrease

in the mean time period of the dropouts, due to the reduction of the coupling and

feedback strengths. These results show that the LD1-LD2 synchronized state is less

strong than the other two pairs, when we consider each pair separately.

When a third laser is added to the system, we have three globally coupled semi-

conductor lasers with feedback. We now examine how synchronization is lost in this

system as the optical coupling between the lasers decreases. When the three lasers

are coupled, the threshold current of each one is decreased due to the injection light

of the other two by 3% for LD1, 3.90% for LD2 and 3.70% for LD3.

The coupling strength is controlled by the neutral density filter located in front

of the mirror. In the absence of the NFD the system is synchronized, and all

three lasers adjust their dynamics to drop out together [Fig. 7.6, left plot]. When

we decrease the transmitted light through the neutral density filter, a clustering

dynamics arises, in which only two of the lasers synchronize their dropouts, while

the third laser drops independently of the other two [Fig. 7.6, right plot]. It has to

be reminded that the output intensity of the three lasers must be recorded in pairs

due to constraints in the number of simultaneous channels of the oscilloscope. The

left columns of the two plots in Fig. 7.6 show the output intensities for each pair of

lasers and the right columns show the corresponding detailed RF spectrum at low

frequencies, which reveals the mean period of the dropout events. When the filter

absorbs 40% of the incident light [Fig. 7.6, right plot], the coupling is weaker and

a clustering state arises: LD1 and LD3, synchronize their dropouts (second row),

while laser LD2 drops independently of the other two (first and third row).



7.1. Experimental setup 139

0

1

2

0

1

2

0 500 1000
0

1

2

0.025

10-2

100

0.025

10-2

100

0.025 0.05

10-2

100

LD1

LD2
LD1

LD3
LD3

LD2

in
te

ns
ity

 (a
rb

. u
ni

ts)

time (ns)

po
w

er
 sp

ec
tru

m
 (a

rb
. u

ni
ts)

frequency (GHz)

0

1

2

0

1

2

0 500 1000
0

1

2

10
-2

10
0

10
-2

10
0

0.025 0.05

10
-2

10
0

LD1

LD2

LD1

LD3

LD2

LD3in
te

n
si

ty
 (

ar
b

. 
u

n
it

s)

time (ns)

p
o

w
er

 s
p

ec
tr

u
m

 (
ar

b
. 

u
n

it
s)

frequency (GHz)

Figure 7.6: Dynamics in the synchronized (left plot) and clustering (right plot) regimes.
In each plot the left column shows the experimentally observed intensities; and the right
column shows a detail of the corresponding power spectrum for LD1 and LD2 (top), LD1
and LD3 (center) and LD2 and LD3 (bottom). The different laser pairs are not monitored
simultaneously.

Figure 7.7 provides insight into how synchronization develops in the frequency do-

main, by depicting the RF-spectra of the synchronization (left column) and clustered

states (right column). The synchronized lasers show a substantial overlap in the

whole RF-frequency spectrum, not only at low frequencies (inset). In Fig. 7.7(a,c,e)

one can see the coincidence of almost all the higher harmonic peaks of the spectrum.

Figure 7.7(b,d,f) represents the clustered state for lower coupling. Figure 7.7(d)

shows the locking of almost all frequency peaks in their spectra, specially the low-

est frequency peak corresponding to the low-frequency fluctuations (figure inset).

Clearly, the clustered pair is formed by LD1 and LD3. This contrasts with what

happens with LD2 [Fig. 7.7(b,f)], where the overlapping is very poor, particularly
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Figure 7.7: Experimental RF-spectra in the synchronized state (left column) and in the
clustered state (right column). (a,b) LD1 and LD2; (c,d) LD1 and LD3; (e,f) LD2 and
LD3. The insets display the low-frequency peak.

at the LFF peak (inset).

The choice of lasers integrating the cluster depends on the coupling strengths in

the network. In another experiment (with different working temperatures and in-

tensities), with the same setup (same distances) but with an additional fixed neutral

density filter (NDF2: 70% of transmittivity) located between LD1 and BS1, dimin-

ishing the injection and feedback strengths of LD1, the cluster was formed by LD1

and LD2.

With this new setup (Fig. 7.8) we proceed in the same way as in the last ex-

periment. Under temperatures of TLD1 = 19.76oC, TLD2 = 18.29oC, and TLD3 =



7.1. Experimental setup 141

M
NDF

NDF2

BS1 BS2 BS3

PD1 PD2 PD3

LD1

LD2 LD3

u
n
lic
e
n
s
e
d

Figure 7.8: Experimental setup with different strengths. LD: laser diodes; PD: photo-
diodes; BS: beamsplitters; M: mirror; NDF: variable neutral density filter; NDF2: fixed
neutral density filter (70% transmittivity)

18.17oC, the threshold currents of the solitary lasers are respectively, I th
LD1 = 31.7

mA, I th
LD2 = 28.79 mA, and I th

LD3 = 31.25 mA. The operating currents are set to

ILD1 = 32.81 mA, ILD2 = 30.23 mA, and ILD3 = 32.08 mA. The threshold reduction

for each one, in absence of NDF (due to the feedback) are 1.6% for LD1, 3.40% for

LD2 and 2.7% for LD3.

The output intensities of the lasers have similar average period with TLD2 ∼57 ns

and TLD3 ∼64 ns, and now the average period of LD1 is TLD1 ∼37 ns (in the previous

experiment the higher similarity was also between LD2 and LD3).

Considering the lasers coupled by pairs (blocking the third laser), we decrease the

total injected light with the NDF placed in front of the mirror. The LD1-LD3 pair

is in this case the pair that loses synchronization first.

Figure 7.9 displays the output intensities for mutually coupled lasers in pairs when

the total light injection decreases (varying the transmittivity of NDF). The top left
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Figure 7.9: Output intensities for lasers mutually coupled in pairs for decreasing values
of total light injection (transmittivity of NDF). Signals have been displaced vertically for
clarity. Values in each plot: (a) 100%, (b) 70%, (c) 63%, and (d) 50% of transmittivity.

panel shows the intensity behavior of the LD1-LD2 pair. The mutual injection is

sufficiently strong to maintain the synchronization until the total injected light de-

creases a 50% [Fig. 7.9, top left, panel (d)]. The top right plot shows the intensity

behavior for LD1-LD3 pair when the transmittivity of NDF decreases. The syn-

chronized behavior is maintained only at Fig. 7.9, top right, panels (a,b), and it
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is lost when the transmittivity of the NDF is reduced below the 63% of the total

injected light. Finally, the bottom plot shows the respective output intensities for

LD2 and LD3. Although this pair of lasers seems not to have as strong synchro-

nization behavior as LD1 and LD2 pair (it starts to lose synchronization in panel

(c)), the synchronization is completely lost at Fig. 7.9, bottom, panel (d), for 50%

of decreased transmittivity.

When we couple the lasers with 100% of light injection, the threshold current of

each laser is decreased due to the light injected from the other two by 1.2% for LD1,

2.8% for LD2 and 2% for LD3. It is evident from the threshold reduction that LD2

is more affected than the other two. Figure 7.10(left) shows the dynamics in this

case: clearly, the low frequency peaks in the different lasers occur simultaneously,

and the output intensities are synchronized.

When we decrease the amount of coupling, the lasers that remain synchronized

(making a cluster) are LD1 and LD2, as we can see in Fig. 7.10(right).

The fact that in the two experiments described above the geometry of the setup

was the same (the lasers were placed at the same distances) and the their internal

parameters did not change (the same lasers were used) shows that the choice of the

lasers forming the cluster has a high dependence on the coupling strengths which

vary experimentally depending on the alignment between the lasers.
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Figure 7.10: Dynamics in the synchronized (left plot) and clustering (right plot) states.
On each figure in the left column shows experimentally observed intensities; and the right
column shows a detail of the corresponding power spectrum for LD1 and LD2 (top), LD1
and LD3 (center) and LD2 and LD3 (bottom). The different laser pairs are not monitored
simultaneously.

7.2 Numerical simulations

In order to establish what is the effect of coupling on the choice of lasers in a cluster,

we have performed simulations based on a model that takes into account the effects

of optical feedback and mutual optical injection (Garćıa-Ojalvo et al, 1999; Kozyreff

et al, 2000). Extensive simulations unveil a rich variety of dynamical regimes and

demonstrate that the clustered and the synchronized behaviors also occur when

there are parameter mismatches between the lasers. For the sake of simplicity, we

describe the dynamics of the array assuming that the laser parameters are identical.

The equations for the slowly-varying complex amplitude, Ei, and the carrier density,
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Ni, in the i−th laser read:

Ėi = iωiEi + γ(1 + iα)(Ni − 1)Ei +
√

Dξi(t)

+
3∑

j=1

κi,jEj(t− τi,j) exp (−iω0τi,j), (7.1)

Ṅi = γe(I −Ni −Ni|Ei|2), (7.2)

where ωi is the solitary frequency (that is, in the absence of feedback or coupling)

of the i−th laser, relative to a common reference frequency, ω0. α is the linewidth

enhancement factor, k is the cavity loss coefficient, γe is the carrier decay rate, κi,j

is the coupling coefficient between lasers LDi and LDj (κi,i being the self-feedback

coefficient), I is the pump parameter (the threshold being Ith = 1 in the absence of

feedback and coupling), D is the spontaneous emission strength and ξi are uncorre-

lated Gaussian white noises with zero mean.

The pump parameter and the delay times are comparable to those used in the

experiments: I = 1.037, τ1,1 = 5.3 ns, τ2,2= 4.3 ns, and τ3,3= 7.1 ns, τ1,2 = 4.8 ns,

τ1,3= 6.2 ns, and τ2,3 = 5.7 ns. The internal laser parameters are γ = 250 ns−1,

α = 4, γe = 0.6 ns−1, D = 10−5 ns−1, and ω0 = 2πc/λ0, where c is the speed of light

in vacuum and λ0 = 654 nm.

In the simulations we observe that a cluster usually develops before the three lasers

synchronize, with the feedback strengths, the coupling strengths, and the relative

detunings among the lasers determining which lasers integrate the cluster.

Figure 7.11 compares the experimental spectrum obtained in Fig. 7.3, with the

numerical RF spectrum of each laser with its own feedback. The feedback coefficients

κi,i used in the simulations take into account the fact that laser LD1 (LD3) has the
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strongest (weakest) feedback.
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Figure 7.11: RF spectrum for each laser with feedback experimentally (top) and numer-
ically (bottom) obtained.

Figure 7.12 shows the output intensities and the power spectrum for the syn-

chronized state (left plot) and the clustered state (right plot). Figure 7.12(a,b)

corresponds to LD1, (c,d) to LD2 and (e,f) to LD3. Figure 7.12(g) represents the

displaced output intensities for the three lasers simultaneously, LD1 at top, LD3 at

center and LD2 at bottom, shifted vertically for clarity. The intensities were filtered

to simulate the bandwidth of the detectors, and normalized such that the amplitude

of the dropouts of laser LD1 is 1. The coupling parameters (which are considered

symmetric, κi,j = κj,i) take into account that lasers LD1-LD2 (LD2-LD3) have the

strongest (weakest) coupling. It is worth noticing that in the experiment, different

alignment quality can make the coupling strengths not only quite arbitrary but also

asymmetric.
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Figure 7.12: Dynamics in the synchronized state (left) and in the clustering state (right).
Each figure shows the output intensity at left and RF-spectrum at right for LD1 (a,b),
LD2 (c,d), and LD3 (e,f). Panels (g) show the time traces of all three lasers. From top
to bottom: LD1, LD2, LD3.

For the choice of lasers integrating the cluster, two mechanisms seem to be relevant

and compete. On the one hand, the lasers that have more similar optical injection

(feedback and coupling) tend to cluster. In the absence of detunings, it is observed

that as the coupling increases, LD2 and LD3, or LD1 and LD2, cluster before all

three lasers synchronize (results not shown). On the other hand, if one of the lasers

is weakly coupled to the other two, or if two lasers are more strongly coupled, often

the strongly coupled lasers are the ones forming the cluster.

In the simulations, coupling among the lasers was adjusted by variations of the

frequency detunings and the coupling coefficients, the latter depending on the optical

alignment. As an example, Fig. 7.12 (right) displays a cluster formed by LD1 and
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LD3, which arises when LD3 has negative detuning with respect to LD1. A simple

interpretation of the observed cluster is the following: the external optical injection

(feedback + coupling) modifies the lasers’ optical frequencies, and roughly speaking,

the frequencies shift towards negative values, with the shifts being proportional to

the total injection strengths. Since LD1 is the laser that has stronger injection, its

frequency shift is the strongest. Moreover, the beam splitters along the injection

path decreases the mutual influence between LD2 and LD3, that is, their mutual

coupling does not change too much their optical frequencies. The cluster is formed

by LD1, which has higher relative coupling, and the laser with less change in its

frequency after the coupling. Although LD2 and LD3 had similar outputs after

coupling, when they were coupled together with LD1 the amount of received light

their optical frequencies changed in a different manner. LD3 receives less injected

light than LD2 and as consequence the optical frequency of LD3 changed less than

that of LD2. Thus after coupling LD2 needs more injection strength to belong to

the synchronized system. When the total injected light is decreased the first laser

that loses the synchronization is in this case LD2.

In the intensity power spectra we can observe the synchronization mechanism in

the frequency domain. Without mutual coupling (Fig. 7.11), the spectrum of each

laser consists of a dominant peak at a low frequency (the inverse of this frequency

is the average dropout period), and harmonics separated by the external cavity

frequency, 1/τi,i. Since the average dropout period is different for the different

lasers, the main peaks are at different frequencies. Moreover, since the delay times

τi,i are also different, the harmonic peaks are located at different frequencies. When

the lasers are coupled the spectra of the lasers synchronize at both low and high

frequencies [Fig. 7.12 left, (b,d,f)]. For weaker feedback and coupling, the numerical
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spectra show that the frequencies begin to adjust both in the low and high frequency

ranges: some harmonics begin to disappear, while others “move” such that they

overlap [Fig. 7.12 right, (b,d,f)]. The same process of frequency selection, where

some peaks vanish and others “move” (in a sort of frequency pulling phenomenon

occurring in the RF spectrum), is observed experimentally (Fig. 7.7).
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Chapter 8

Summary, conclusions and future

work

In this Thesis we have presented the results of a set of experimental investigations of

the dynamics of delay-coupled semiconductor lasers. The characterization of these

systems includes topics such as the processing of information by coupled lasers, the

choice of a leader in their lag-synchronized dynamics, or how chaos arises in two

coupled semiconductor lasers.

8.1 Summary and conclusions

We summarize all the results and conclusions presented in this Thesis as follows:

• The transition to chaos of a semiconductor laser through a quasiperiodic state

was reported in the past adding an optical feedback (Mørk et al, 1990) or
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through mutual coupling (Hohl et al, 1999). In Chapter 3 we studied the

quasiperiodic route to chaos of two semiconductor lasers mutually coupled

through two independent unidirectional paths. The transition from unidirec-

tional to bidirectional coupling was implemented by increasing the coupling

strength of one of the paths, while keeping the other constant. We have seen

how the transition from stable unidirectional injection to chaos arises through

a quasiperiodic state.

Adjusting the currents and temperatures of the lasers in a unidirectional con-

figuration, we maximize the injection by choosing optical frequencies suffi-

ciently close to each other. In this regime, the output intensity of the receiver

laser is forced to oscillate at the relaxation oscillation frequency of the driver,

with a delay time (τ1,2) introduced by the interaction. When the back injection

is slightly increased, the external modes of the other cavity are excited and

the laser output becomes quasiperiodic. This quasiperiodic behavior is pro-

duced by a competition between the external compound-cavity modes and the

relaxation oscillation frequencies of both lasers. When the mutual coupling is

sufficiently high the chaotic behavior appears.

• We have examined in Chapter 4 how a system of two coupled chaotic oscilla-

tors behaves under conditions of lag synchronization. Our experimental setup

consists on two semiconductor lasers coupled via mutual injection of their

emitted fields, and allows for the control of the coupling directionality. Our

results show that the laser leading the dynamics changes depending on the

coupling scenario. When one of the lasers has autonomous chaotic dynamics,

in the form of irregularly spaced sudden power dropouts (low-frequency fluc-
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tuations), and this dynamics is injected into a solitary laser (which is stable

in the absence of injection), the injecting laser obviously leads the dynamics.

Such role, however, can be transferred to the other laser by converting the cou-

pling from unidirectional to bidirectional. The transition occurs via a state

in which the two lasers alternate randomly the leader and laggard roles. This

type of behavior is not only restricted to the low-frequency dynamics that we

have studied experimentally, but also to fully developed chaotic dynamics (co-

herence collapse) that occurs for higher pump currents, as shown by numerical

simulations. Our model also shows that the type of dynamics can be changed

in a continuous way by acting upon the optical feedback strength affecting the

laser with independent dynamics.

We have discussed the potential of this system for bidirectional chaotic com-

munications. Our experimental results show that whenever one of the lasers

leads the dynamics, the other laser (the laggard) is able to operate as a chaos-

pass filter. However, we have not been able to send information bidirectionally

in an effective way. Numerical simulations show that, even though the max-

imum cross-correlation is similar in both the unidirectional and bidirectional

cases, sudden synchronization losses in the latter situation prevent the system

from being used as a reliable setup for bidirectional chaotic communications.

• When two coupled nonlinear systems are perturbed by two independent peri-

odical signals, it is possible to observe a resonance at their outputs at a third

frequency not present in the input, what is known as a ghost resonance.

In Chapter 5 we have given experimental and numerical evidence of the exis-

tence of such a ghost resonance in two mutually coupled semiconductor lasers.
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The resonance is not trivial, since it persists in the case of incommensurate

input frequencies, showing a behavior that agrees with theoretical predictions.

Similar results have been obtained in simpler theoretical models (Chialvo et al,

2002) and in single semiconductor lasers with optical feedback (Buldú et al,

2003), but to our knowledge this was the first experimental observation in

coupled systems.

In the second part of the chapter, we have shown experimentally that coupling

between two excitable systems, specifically two semiconductor lasers with op-

tical feedback, is able to mediate the processing of distributed inputs, applied

in the form of pump current modulations of different frequencies. For large

enough coupling strengths, the laser outputs have the form of synchronized

trains of power dropouts which become entrained to a frequency that is not

present in the input signals. When these signals are harmonics of a miss-

ing fundamental, as in the previous case, the response occurs at precisely the

fundamental frequency. On the other hand, in the case where the two in-

put frequencies are equally shifted from these harmonics, the system responds

following a linear law, which arises from analyzing the linear summation of

the two input modulations (Chialvo et al, 2002). The superposition law holds

even though the two signals acting upon a given laser are clearly different, one

of them being electrical (through direct pump current modulation) and the

other optical (through injection from the other laser). This type of response

to complex input signals has been reported in the human brain with psy-

chophysical experiments (Schouten et al, 1962) and magnetoencephalographic

recordings (Pantev et al, 1996), which highlights the importance of understand-

ing the integration of distributed inputs by networks of information processing
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elements.

• In Chapter 6 we have experimentally and numerically shown that the intro-

duction of a global noise can stabilize the isochronal solution in two mutually

coupled semiconductor lasers.

Departing from a low frequency regime, in the synchronized state of the sys-

tem with a well defined leader of the dynamics, we simultaneously added the

same amount of colored noise to the pump current of the two lasers. For low

amplitude, the noise is not capable of affecting the dynamics of the system,

but for higher values of the amplitude the laser outputs synchronize without

delay.

A more detailed study showed that there is a threshold in the noise correlation

time above which the fast dynamics of the system is not affected. The envelope

of the dynamics (the dropout events) is affected by the colored noise for large

enough noise intensity, but a cross-correlation study of the numerical output

intensities shows a threshold in the correlation time above which the fast dy-

namics cannot synchronize with zero lag. For noise correlation times smaller

than that threshold, and eventually in the white noise limit, the isochronal

solution of the total dynamics of the system is stabilized.

• In Chapter 7 we have experimentally studied the route towards synchronization

in a small network of three semiconductor lasers coupled with distributed delay

times. Our results show that clusters emerge generically as the system goes

towards synchronization for increasing coupling strength. A detailed study of

the coupling between each pair of lasers showed that the cluster in the three

laser system was formed by the pair of lasers with highest mutual coupling.
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The lasers which have most affinity (least detuning, highest parameter mis-

match, and as a consequence highest coupling) will maintain the synchronized

behavior for decreased injected light, whereas the third laser needs more cou-

pling to belong to the synchronized system. The overlap of some of the peaks

in the RF spectrum in the clustering state, denotes that it is an intermediate

stage before a complete loss of synchronization.

The experimental observations are satisfactorily reproduced by a rate equation

model of the Lang-Kobayashi type. The model is valid for a laser emitting

in a single longitudinal mode. The lasers in the experiments emit multiple

longitudinal modes, and yet the agreement between the experiment and the

model predictions is surprisingly good. This can be explained as due to the

out of phase dynamics of the longitudinal modes. Because of the competition

for the common carrier reservoir, the longitudinal modes oscillate in antiphase,

such that the total output (that is, the sum of the modal intensities) is similar

to that of a single-mode laser. The numerical simulations performed in this

experiment helped us to understand which is the determining factor for the

choice of lasers forming the cluster. We showed that the coupling determines

which laser enters the cluster and which one loses the synchronization first.

8.2 Discussion and future work

The way to couple two lasers allows different working protocols, but in this Thesis

we used the following steps:

First we changed the temperatures until the wavelengths of the lasers were as
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similar as possible. With the temperatures fixed, the lasers were mutually (or unidi-

rectionally) injected. Then, the alignment of the lasers was mechanically optimized

(using the translation stage) by maximizing the increase of the receiver laser output

power near its threshold, due the injection of transmitter laser. This increase can

be measured introducing a power meter in the detection path. Finally, the pump

currents were slightly changed to obtain the optimal locking of the injected laser,

by matching their optical spectra.

Based upon the experience obtained from performing the experiments, the fol-

lowing recommendations are made for improving the design of future experimental

designs:

• A fiber implementation of the couplings and feedbacks would be desirable in

order to work with more stable and controllable experimental setups. A fiber

pigtailed laser and all-fiber detections would be a good improvement for future

studies.

• To study the lasers in depth, a future step would be to have a systematic

experimental knowledge of the change in optical spectrum induced by the

coupling. An in situ measurement of the absolute change in wavelength can be

done with a fiber ring resonator (with much more resolution than conventional

optical spectrum analyzers).

• An improvement of the modulation introduced into the pumping current of

the lasers would consist on using a Bias-T of high bandwidth (1 GHz or more).

The real bandwidth and behavior of the laser mounting tee is not well known

and introduces a high uncertainty when used as modulation source. The pos-
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sibility of studying optoelectronic feedback and coupling was impossible with

the bandwidth exhibited by the mounting.

There are many open problems that require further study. One such problem is to

provide a mathematical description of the real multimode behavior of these kind of

lasers. The mono-mode approximation works for almost all the situations addressed

in this Thesis, but a study in depth requires a multimode extension of the model.

Another problem that needs additional study is the relationship between the nu-

merical value of the coupling and feedback strengths with its experimental value.

For the moment we use comparative measures of the numerical and experimental

value of the strength. We compare the relative level of coupling in the two coupling

directions, or in the unidirectional scheme looking at the behavior of the output

intensities. In our work we paid particular attention to the control of the mutually

coupled systems, particularly referred to the prediction of the leader role and the

emergence of chaotic synchronization. In these cases we check the output intensity

characteristics using cross-correlation functions or using their Fourier transform (RF

spectrum analyzer) and compared with the numerically calculated ones to infer the

coupling or the feedback strengths.
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Appendix A

Semiconductor parameters

A.1 Semiconductor basics

Along this Thesis diverse parameters of the semiconductor material were used. A

detailed understanding of the equations used in numerical simulations demands a

knowledge of semiconductor materials. We first explain, in a very general way, the

semiconductor physics and the different parameters that have dynamical relevance

on the rate equations used in this Thesis.

In a semiconductor material, the allowed states of the electrons form continuous

energy bands. The probability that an electronic state of energy ε can be occupied

by an electron is given by the Fermi-Dirac distribution (Liu, 2005):

f(ε) =
1

1 + e(ε−εF )/kBT
, (A.1)

where εF is the Fermi level, the energy value for which the occupancy level is 1/2
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(for an energy ε = εF half of the states with this energy are occupied). kB is the

Bolzmann constant and T is the absolute temperature. In semiconductors, the Fermi

energy is located between the valence band, which is completely occupied at T=0,

and the conduction band, which is completely empty.

In a semiconductor material electronic transitions occur between the conduction

and valence energy bands, in particular transitions leading to photon emission. In

fact, the transitions that generate laser emission occur between lower energy levels

of the conduction band and higher energy levels from the valence band. A semicon-

ductor for which the minimum of the conduction band (the conduction-band edge

εc) and the maximum of the valence band (valence-band edge, εv) do not occur at

the same momentum value (
−→
k ), such as Si, is called an indirect-gap semiconductor.

These semiconductors cannot be used for light generation since the emitted pho-

tons would not be able to take away the extra momentum generated by the transi-

tion. Typical components of laser diodes such as GaAs have a direct bandgap. The

bandgap is the difference between εc and εv (<4eV for a typical semiconductor) and

normally decreases with temperature.

The most important semiconductor components for laser diodes are combinations

from group III elements (Al, Ga, In) with group V elements (N, P, As, Sb). A

compound of two, three or four elements forms a binary, ternary or quaternary

alloy, respectively. Examples of binary compounds are GaAs, InP, AlAs and InSb.

Ternary compounds are, for instance, AlxGa1−xAs and GaAs1−xPx. A quaternary

example is In1−xGaxAs1−yPy. A compound with small bandgap tends to be a direct-

gap material, whereas one with a large bandgap tends to be an indirect-gap material.

When two crystals have the same structure and the same mesh constant they
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are called lattice-matched. It is possible to construct a laser diode with arbitrarily

thick layers of lattice-matched materials. For example in AlxGa1−xAs/GaAs struc-

tures, the ternary compound AlxGa1−xAs is closely lattice-matched to GaAs, and in

In1−xGaxAsyP1−y/InP, the correspondent quaternary compound is lattice-matched

to InP. Some of our semiconductor laser diodes are AlGaInP structures grown in a

GaAs substrate (Fig. A.1)

n- GaAs (subst.)

Au-Cr

p-GaAs

p-GaInP

n-GaAs

p-(Al0.5Ga0.5)InP(clad.)

GaInP

n-GaInP
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un
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Figure A.1: Schematic structure of a typical AlGaInP laser.

The AlGaInP system offers a wide variety of energy gaps in the III-V alloys. It

is a good system for fabricating light-emitting and laser diodes in the region below

700 nm. They have a very low threshold current (from 17 to 40 mA) and relatively

high output power (10 mW).

When a semiconductor material is externally excited with a forward voltage bias

during a period of time, the material can reach a quasi-equilibrium state in which

electrons and holes are not characterized by a common Fermi level but characterized

by two separate quasi-Fermi levels. The probability of occupancy in the conduction
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and the valence bands are described by two separate Fermi-Dirac distributions:

fc(ε) =
1

1 + e(ε−εFc)/kBT
(A.2)

fv(ε) =
1

1 + e(ε−εFv)/kBT
, (A.3)

for the conduction and the valence bands respectively. εFc and εFv are the quasi-

Fermi levels for the conduction and valence bands.

A.2 Parameters of numerical simulations.

Throughout this Thesis the numerical simulation model is based on the equations

from Lang and Kobayashi (1980):

dE

dt
=

(1 + iα)

2
[G− γ] E + κfe

−iωτf E(t− τf )

+
√

2βN ξ(t) (A.4)

dN

dt
= C − γeN −G|E|2 , (A.5)

that describe the optical field amplitude [E(t)] and the population inversion [N(t)]

in a semiconductor laser with optical feedback. As we explain at the Introduction

of this Thesis, optical feedback is possible due to the low reflectivity at the front

facet of the laser. When we place a mirror in front of the laser we can re-introduce

the outgoing light again into the laser cavity.

Along this Thesis we used an easy-to-use population inversion equation. To make

a better comparison between numerical and experimental results we introduced the
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bias current, Cb = Ib/Ith, the ratio between the pump and the threshold currents.

The first term of Eq. (A.5) results on:

C =
I

e
= Cb

Ith

e
= CbCth , (A.6)

where Cth = Ith

e
is the pump current at threshold. Taking in mind the inversion

population expression at threshold (Nth = Cth/γe, derived from the steady state

solutions showed at the end of Sec. 1.2 in Chap. 1), we can express Eq. (A.5):

dN

dt
= γeNthCb − γeN −G|E|2, (A.7)

The rate equations used in all the numerical simulations of this Thesis are:

dE

dt
=

(1 + iα)

2
[G− γ] E + κfe

−iωτf E(t− τf )

+
√

2βN ξ(t) (A.8)

dN

dt
= γeNthCb − γeN −G|E|2 , (A.9)

with G = gN (N−N0)
1+s|E|2 , in which we take s = 0 because we work near threshold values,

and Nth = γ
gN

+ N0 [Eq. (1.48) of Chap. 1].

There are some fixed parameters in these rate equations taken into account in all

the simulations:

• γe: carrier inverse lifetime.

• γ: photon inverse lifetime.

• N0: number of carriers at transparency.
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• gN : differential gain coefficient.

• α: linewidth enhancement factor.

As far as possible we used experimentally measured parameters, but in many

cases we take typical parameter values for the semiconductor lasers used in our

experiments.

Table A.1 displays typical parameter values used along the Thesis for AlGaInP

laser diodes of λ=635 nm, or λ=650 nm.

Symbol Parameter Value

γe Inverse carrier lifetime 6.89×10−4 ps−1

γ Inverse photon lifetime 0.250-0.480 ps−1

N0 Carrier number at transparency 1.25× 108

gN Differential gain parameter 1.2− 1.5× 10−8 ps−1

α Linewidth enhancement factor 3− 4

Table A.1: Laser parameters in the low frequency fluctuation regime (Sec. 1.3.2). Other
parameters that do not depend intrinsically of the material are: bias current Cb, noise
amplitude β ∼ 0.5×10−9 ps−1, feedback time τf , and feedback strength κf . In the coherence
collapse regime (Sec. 1.3.2) parameters are the same except the bias current, that is Cb >
1.9

A.2.1 Carrier recombination

When a semiconductor material is forward-biased (an external voltage is applied),

electron and holes diffuse across the p-n junction (Sec. 1.1). In a narrow region, elec-

trons and holes are present simultaneously and can recombine. There are three cate-

gories of recombination processes, which can be radiative or non-radiative: Shockley-

Read recombination processes (radiative or non-radiative), bimolecular recombina-
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tion processes (radiative), and Auger recombination processes (non-radiative) (Liu,

2005):

• Shockley-Read recombination: this process involves only one carrier at a time.

It consists in the capture of one carrier, an electron or a hole, by a recombi-

nation center (impurity). The net recombination rate is expressed as:

Ae∆n = Ah∆p (A.10)

where Ae and Ah are the Shockley-Read coefficients, and ∆n and ∆p are the

excess of electrons n − n0 and holes p − p0, from the equilibrium n0 and p0

values, respectively. The Shockley-Read recombination process can be either

radiative or nonradiative, depending on the type of recombination centers

involved in the process.

• Bimolecular recombination: involves an electron and a hole at the same time.

There are two types:

– Band-to band, between an electron in the conduction band and a hole in

the valence band.

– Exciton recombination, which is a recombination of an electron and a

hole to form an exciton. This exciton can be bounded, localized at an

impurity, or it can be a free exciton traveling around the semiconductor.

The bimolecular recombination processes have the same contribution to the

rate of electron recombination than to the rate of hole recombination. This
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rate is proportional to the carrier densities and can be expressed as:

Bnp , (A.11)

where B is the bimolecular recombination coefficient, and n and p are the

electron and hole concentrations respectively. The bimolecular recombination

is a radiative process.

• Auger recombination: the energy produced by a band-to-band recombination

of an electron and a hole is taken by a third carrier and transformed to kinetic

energy. This is then converted to thermal energy when the carrier is relaxed

toward the band edge.

The Auger process is non-radiative and is a three-body process. It can involve

two electrons and a hole, in which case the rate is:

Cen
2p , (A.12)

or two holes and one electron, with a rate:

Chp
2n , (A.13)

where Ce and Ch are the Auger coefficients for electrons and holes, and n and

p are the respective carrier densities.

These processes also can happen in the inverse direction, generating in this case free

electrons and holes at rates G0
e and G0

h, respectively. Taking into account the three
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types of processes, the net recombination rate is:

Re = Aen + Bnp + Cen
2p + Chnp2 −G0

e

Rh = Ahp + Bnp + Cen
2p + Chnp2 −G0

h (A.14)

Due to the fact that electrons and holes always recombine by pairs, we can write:

R = Re = Rh

Where Re is the net recombination rate for electrons and Rh for holes. When a

semiconductor is in thermal equilibrium, the generation rate for electrons and holes

is the same and R = 0.

The inverse processes of free electrons and holes generation G0
e and G0

h are:

G0
e = Aen0 + Bn0p0 + Cen

2
0p0 + Chn0p

2
0

G0
h = Ahp0 + Bn0p0 + Cen

2
0p0 + Chn0p

2
0 (A.15)

where n0 and p0 are the carrier densities (for electrons and holes, respectively) at

thermal equilibrium.

The recombination coefficients depend on the carrier concentrations and there are

several order of magnitudes of difference between them. Generally A is the largest

and C the smallest. At lower carrier concentrations the Shockley-Read processes (A)

are important, whereas Auger processes (C) are only important at very high carrier

concentrations. Between both limits, bimolecular processes are the important. In

general, the B coefficients of direct-gap semiconductors (such as GaAs or InP) are
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much larger than those of indirect gap materials such as Si and Ge.

When the concentrations of electrons and holes are higher than their respective

equilibrium concentrations, the excess of carriers will relax toward their respective

thermal equilibrium values, through recombination processes. The relaxation time

constant for excess electrons is the electron lifetime, and for holes the hole lifetime.

If the concentration of electrons and holes are very large compared to the density

of the recombination centers, we can consider that the excess of minority carriers is

equal to the excess of majority carriers (∆n = ∆p = N , where N is defined as the

density of excess carriers). Assuming that the free electrons and the free holes have

the same lifetime, the spontaneous carrier recombination lifetime can be written as:

τs =
N

R
(A.16)

The total recombination rate can be expressed in the form:

R = Rrad + Rnrad (A.17)

The spontaneous carrier recombination lifetime obeys:

1

τs

=
1

τrad

+
1

τnrad

(A.18)

And the spontaneous carrier recombination rate is defined as:

γe =
1

τs

, (A.19)
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which doesn’t take into account the contributions from the stimulated recombination

process.

Assuming that the radiative recombination rate is almost entirely contributed

by bimolecular recombination, in thermal equilibrium bimolecular recombination

is balanced by bimolecular thermal generation [Eq.( A.15)], which is the same for

electron and holes (G0
e = G0

h = G0). Out of equilibrium, with electron-hole pairs

excess, we can write the net radiative recombination rate as:

Rrad = Bnp−G0 = Bnp−Bn0p0 , (A.20)

where G0 = Bn0p0 because in thermal equilibrium Rrad = 0, when n = n0 and

p = p0.

Whit the excess of carriers defined as N = n − n0 = p − p0 the radiative carrier

lifetime is given as:

τrad =
N

Rrad

=
1

B(N + n0 + p0)
(A.21)

In the limit of low excess of carriers (N << n0, p0):

τrad ≈
1

B(n0 + p0)
(A.22)

And in the opposite limit (N >> n0, p0):

τrad ≈
1

BN
(A.23)
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There is a carrier density dependence of the carrier lifetime. Due to the fact that

we normally work not very far from threshold, we made an estimation around the

threshold value of the carrier density. Taking into account that in a semiconductor

laser the carrier density value at threshold (minimum carrier density for lasing con-

dition) is higher than the respective carrier densities at thermal equilibrium, we use

Eq. (A.23) to calculate an estimated value of the carrier lifetime, for carrier density

value at threshold (N = Nth >> n0, p0).

Finally, due to the assumption of N = n − n0 = p − p0, we can consider Ae =

Ah = A, and taking into account that the Auger processes are not very important,

due to the large band-gap of the alloys used to build a laser diode (C ≈ 0), the total

spontaneous recombination carrier lifetime reads:

γe =
1

τs

= A + BN (A.24)

From experimental works by Strauss et al (1994), the estimated value for the

recombination coefficients values for AlGaInP laser are B = 1.0 10−10 cm3 s−1 and

A = 2.2 107 s−1. Estimating the carrier density at threshold as ∼ 6 1024 m−3 (Crow

and Abram, 1997), the carrier lifetime value considered in the simulations of this

Thesis is γe ∼ 7 108 s−1=7 10−4 ps−1.

A.2.2 Cavity decay rate

The cavity or photon decay rate (γ) is defined as the inverse of the photon lifetime.

It is separated into two terms, one describing the internal losses, and the second de-

scribing the number of photons that leave the cavity through its mirrors (Petermann,
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1988):

γ =
1

τ
=

c

n

[
αi +

1

2L
ln

(
1

R1R2

)]
, (A.25)

where αi are the internal losses, R1 and R2 are the reflectivities of the laser facets,

and L the cavity length.

We can assume: R1 = R2 = R, where R is the reflectivity of the laser/air interface:

R =

(
n2 − n1

n2 + n1

)2

For AlGaInP lasers, n2 = 3.4 and n1 = 1, and hence R ∼ 0.3. Finally, taking

standard values for these lasers, αi ∼ 20 cm−1 (typical αi values range from 10 to

20 cm−1), and L ∼ 450 µm (see section A.2.4) we obtain γ ∼ 0.450 ps−1.

A.2.3 Population inversion

The optical gain contributed by direct band-to-band transitions from a conduction-

band state with energy ε2 to a valence-band state with energy ε1 in a semiconductor

is proportional to the density of states. The probability of transition from the higher

energy level ε2, to the low energy level ε1: fc(ε2)− fv(ε1).

The optical gain is positive only if the occupation probability in the conduction

band, fc(ε2), is higher than the occupation probability in the valence band, fv(ε1).

This condition leads to an inversion of population in the semiconductor that it is

achieved only for strong carrier injection into the active layer, yielding a shift of the

quasi-Fermi levels [Eqs. (A.2) and (A.3)] into the conduction or valence bands, due

to the voltage bias applied. Using the quasi-Fermi occupation probability for the
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conduction and the valence bands defined in Eqs. (A.2) and (A.3) for a transition

hν = ε2 − ε1 (Liu, 2005), we obtain:

fc(ε2)− fv(ε1) = fc(ε2)[1− fv(ε1)]

[
1− e

(hν−∆εF )

kBT

]
, (A.26)

where ∆εF = εFC − εFV .

The term fc(ε2)[1−fv(ε1)] is the probability of transition from an occupied higher

state with energy ε2 to an empty state of energy ε1, and by definition it has a

value ranging from 0 to 1. The sign of the gain is only determined by the sign of

the quantity (hν −∆εF ). The condition for a positive gain at any given frequency

occurs when the distance between the quasi Fermi levels is larger than the photon

energy, and that is larger than the band-gap energy (∆εF = εFc − εFv > hν > εg =

εc − εv). The minimum value of the carrier density that fulfills the condition above

(determined by ∆εF = εg, εFc − εc = εFv − εv) is the transparency carrier density

Ntr.

It is possible to estimate this value considering that, when a semiconductor is

pumped to have a positive gain, electron and hole concentrations are higher than that

at the thermal equilibrium (n > n0 and p > p0, therefore ∆n ≈ n and ∆p ≈ p). We

can approximate: n ≈ p ≈ N , where n and p are the electron and hole concentrations

respectively and N is the excess carrier density.

The electron and hole concentrations are defined as:

n =

∫ ∞

εc

ρc(ε)f(ε) dε (A.27)
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p =

∫ εv

−∞
ρv(ε) [1− f(ε)] dε , (A.28)

where ρc(ε)dε and ρv(ε)dε are the number of states per cm3 in the energy range dε for

the conduction and valence bands respectively, and f(ε) and [1− f(ε)] are the Fermi

distributions describing the probability that a state is filled or empty, respectively.

The electron and hole concentrations considered above can be expressed, taking

into account the effective densities of states in the conduction [Nc(T )] and valence

[Nv(T )] bands, as:

n = Nc
2√
π

F1/2(ξc) (A.29)

p = Nv
2√
π

F1/2(ξv) , (A.30)

where:

Nc(T ) = 2

(
2πm∗

ekBT

h2

)3/2

(A.31)

Nv(T ) = 2

(
2πm∗

hkBT

h2

)3/2

, (A.32)

with m∗
e and m∗

h the effective masses for electrons and holes, and ξc = (εFc − εc) /kBT

and ξv = (εv − εFv) /kBT giving the Fermi-Dirac integrals as:

F1/2(ξc) =

∫ ∞

0

ξ1/2

1 + e(ξ−ξc)
dξ (A.33)

F1/2(ξv) =

∫ ∞

0

ξ1/2

1 + e(ξ−ξv)
dξ , (A.34)

where ξ = (ε − εc)/kBT is defined for electron density calculations and ξ = (ε −

εv)/kBT for hole density calculations.

Considering the inversion condition, that leads to the carrier density at trans-
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parency (εFc − εc = εFv − εv), we can define a value for ξtr ( for which ξc = −ξv),

and Ntr can be derived from the relation:

Ntr = NcF1/2(ξtr) = NvF1/2(−ξtr) (A.35)

The values for a GaInP semiconductor material (active region for our AlGaInP

laser) are m∗
e = 0.088m0 and m∗

h = 0.7m0 (m0 electron mass)1. This leads to the

following equality:

F1/2(ξtr) = 22.43F1/2(−ξtr) (A.36)

We scanned the value of ξtr to calculate the Fermi-Dirac integral of order 1/2, and

we found that the value that matches last equation is ξtr ≈ 2.

This leads to the carrier density value at transparency:

Ntr = 2

(
2πm∗

ekBT

h2

)3/2

F1/2(ξtr) = 1.8× 1024m−3 ,

using the fact that F1/2(2) ≈ 2.8.

The number of carriers at transparency is the transparency density multiplied by

a standard volume of the active region (V≈ 100µm3), resulting in an adimensional

value of N0 = 1.8 × 108. Along this Thesis the value chosen for the numerical

simulations was N0 = 1.25× 108.

1Semiconductor constants can be find in: http://www.ioffe.ru/SVA/NSM/
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A.2.4 Cavity length

An estimate of the cavity length of a laser can be obtained directly from the laser

spectrum. The longitudinal-mode cavity resonances occur at wavelengths:

mλm = 2nL (A.37)

where L is the cavity length, λm are the different wavelength modes, n is the refrac-

tive index, and m an integer. The value of the wavelength change between adjacent

modes (∆m = 1) is given by:

∆λ =
λ2

2nL
(A.38)

And the expression for the cavity length is:

L =
λ2

2n∆λ
(A.39)

For the AlGaInP laser, we experimentally have measured a cavity length of L ∼

450µm.

It is important to characterize the optical spectrum of a semiconductor laser,

due to the substantial variations of the center wavelength with temperature and

pump current changes. A change in the temperature of a Fabry-Perot laser causes

a refractive index change of the laser material and this causes a shift of the modes

sustained by the cavity (Chien, 1993). Another consequence of a change in temper-

ature is a shift of the maximum gain of the laser material which originates a change

of the emission wavelength: for increasing temperatures a reduction of the bandgap

is produced, resulting in a shift of the gain towards longer wavelengths (Nakamura
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et al, 1978). Since the change of the wavelength of the cavity modes and the change

of the center wavelength of the optical gain are not synchronous, frequent mode-

hops and regions with multimode emission appear. Due to the fact that changes in

laser current cause a change of the temperature within the active region of the laser

diode (Ito and Kimura, 1980), an increase of the injection current above threshold

shows a similar behavior as an increase of the temperature of the laser mount, but

the wavelength is coarsely tuned with the temperature and finely tuned with the

injection current of the diode.

If we represent the maximum wavelength versus the temperature we can see how

the laser diode jumps between discrete wavelength values (Kasukawa et al, 1990).

Figure A.2 represents the change of the wavelength of the maximum mode for a given

pump current, for different temperature values. Several regions with approximately

the same slope (each one belonging to one longitudinal mode) are separated by hops

of the emitted wavelength which can be to the nearest mode or to a mode relatively

far from the original one. A measure of the rate of change of the wavelength with

temperature give us important information to delimit the region of the wavelength

plateaus.

A.2.5 Gain coefficient

One of the more important parameters to characterize semiconductor lasers is the

gain coefficient. In the simulations along the Thesis we used a typical value for

a quantum well semiconductor laser, but there are several ways to measure this

parameter. In quantum well lasers the gain material per unit length is related to
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Figure A.2: Temperature dependence of wavelength of AlgaInP laser diode with 450 µm
cavity, for Ipump = 38.01 mA, resulting in a rate of change in wavelength of 0.047nm/oC.

the carrier number (Liu, 2005):

g = g0 ln

(
N

Ntr

)
, (A.40)

where g0 = ∂g
∂N

∣∣∣
Ntr

Ntr is the gain coefficient, with ∂g
∂N

∣∣∣
Ntr

the differential gain at the

transparency carrier density. Taking into account the proportional relation between

the carrier number and the pump current below threshold (N = Iτs/ed), the gain

material per unit length is defined as:

g = g0 ln

(
I

I0

)
, (A.41)

where I0 is the transparency pump current, or the pump current for which the net

gain equals the losses in the laser cavity.
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A quick way to estimate the optical gain of a semiconductor laser is based on

the Fourier transform of the subthreshold optical spectrum (Hofstetter and Thorn-

tom, 1998). This function exhibits a central peak surrounded by higher harmon-

ics symmetrically arranged to the center. The position of these peaks is given by

d = ±nL/π, where L is the cavity length and d is the optical path length inside

the cavity (due to the emission condition of the cavity). The height of these peaks

decreases exponentially when the order of the harmonic increases. In a logarith-

mic scale, there is a constant ratio between the height of the adjacent peaks in the

Fourier transform of the subthreshold spectrum. This ratio is called the harmonic

amplitude ratio (HAR, or r), and depends on the difference between the mirror loses

and the cavity gain (β = g − αi):

r = R · e−βL , (A.42)

where R is the power reflectivity of the laser mirrors and L stands for the cavity

length.

A Fourier transform of the laser spectrum for several values of the pump current

below threshold, gives a number of harmonic amplitude ratios, r (see Fig. A.3).

For known R and L values, it is possible to calculate the different loss/gain values

for each pumping current. Then, we represent the calculated values of β versus the

current values, and fitting with the material gain curve [Eq. (A.41)] we obtain:

β = g0 log

(
I

I0

)
− αi , (A.43)

where g0 is the gain coefficient, I0 is the current at transparency, I is the pump
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limited sharp peaks (!"!0.1 Å), we cannot characterize
cavities with Q factors beyond 10 for this particular wave-
length. This explains the deviation of the experimental data
from the calculation when coming close to threshold. For
this particular device, the threshold current was roughly at
150 mA. The injection current at which the gain in the laser
cavity equals the cavity propagation loss is the transparency
current and this point could be easily detected at 135 mA. It
is characterized by g!# in Eq. $6% or k!0 in Eq. $5%.

The HAR, r , in Fig. 2 is related to K , the cavity propa-
gation loss/gain, via r!R"exp(#KL). For the investigated
injection current levels $120, 130, 140, and 150 mA%, we
determined HAR values of 0.20, 0.26, 0.35, and 0.56, and
corresponding loss/gain values of #9.7, #3.9, 2.7, and
13.1 cm#1, respectively. Since, with our current experimen-
tal setup, the HAR can be determined within $5% only, our
present measurements are limited to this precision. These
values are represented by dots in Fig. 4. The dashed line is a
fit of the curve K(I)!g0"log(I/I0)##0 through these points.
The values we obtained when performing this fit were #0
!10 cm#1, I0!120 mA, and g0!200 cm

#1. The consis-

tency of our cavity loss result with values obtained by other
methods10,11 is somewhat surprising given the lateral multi-
mode behavior of our device. However, it shows that the
cavity properties of the different filaments of a broad area
laser resonator are sufficiently coherent that a well-defined,
although broadened, series of harmonic peaks becomes ap-
parent in the Fourier transform.

In conclusion, we have shown a new powerful method
with which the optical gain of a laser cavity can be deter-
mined easily. The method is based on Fourier analysis of
subthreshold laser spectra and measurement of the HAR in
these Fourier transforms. The transparency current level can
be determined as well as the total internal loss. Because of its
easy implementation, this method might become useful for
practical applications such as characterization and improve-
ments of laser facet coatings or FP étalons.

The authors would like to thank Michael Kneissl for
performing the spectral measurements on these samples,
Decai Sun for processing assistance, and Fred Endicott for
help in setting up the experiment.
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FIG. 2. Fourier transforms of experimental laser spectra at injection current
levels of 120, 130, and 140 mA.

FIG. 3. Fourier transforms of simulated laser spectra. The cavity propaga-
tion loss/gain values have been chosen to match these data to the corre-
sponding experimental data of Fig. 2.

FIG. 4. Cavity propagation loss/gain vs injection current for a 450 &m long
red broad area laser. The fitted line assumes a logarithmic gain/current be-
havior.
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Figure A.3: Fourier
transforms of experimental
laser spectra at pump cur-
rent levels of 120, 130, and
140 mA, for a laser with
approximately 150 mA of
threshold [from Hofstetter
and Thorntom (1998a)].

current and αi is the internal loss. We can obtain the g0 and I0 values, assuming a

value for αi.

Once g0 is known, it is possible estimate the renormalized differential gain co-

efficient used in our simulations, which is related with the nonlinear laser gain

[G(N, |E|2)] by Eq. (1.38).

Taking g0 = 200 cm−1 from Hofstetter and Thorntom (1998), for instance, and

the calculated value of Ntr = 1.8 1024 m−3 in section A.2.3, we have ∂g
∂N

∣∣∣
Ntr

'

1.1× 10−20m2 and using Eq. (1.37) the differential gain is:

gN =
cgN

n
' 1× 10−24ρm3ps−1

As we explained in Sec. A.2.3, in our model we use an adimensional value for the

number of carriers at transparency (N0), leading to a renormalization of the differ-
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ential gain parameter used in the simulations. Assuming an approximate volume

of the active region Vactive = 100µ m3 = 1 × 10−16 m3, we consider a value of the

differential gain coefficient equal to gN ' 1× 10−8ps−1.

A.3 Light-current characteristics

One of the most important characteristics of a laser diode is the amount of light

that it emits for a given pump current. The measurement of the light output of a

laser diode as a function of the pump current results in the L-I curve, such as the

one shown in Fig. A.4. As the injected current is increased, the laser first shows
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Figure A.4: Light current characteristic for a solitary laser. Branch (a) and (b) display
spontaneous and stimulated emission of the laser diode.

spontaneous emission and the output power increases very slowly with the pumping

current [Fig. A.4 (a)]. At a threshold current (Ith), the device begins to emit stimu-
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lated radiation and the output power increases quickly (and approximately linearly)

with the input current [Fig. A.4 (b)].

A.3.1 Threshold current

The first parameter that we can extract from the L-I curve is the value of the

threshold current. The threshold current generally depends on the semiconductor

material and on the laser structure. It can be measured by the intersection of the

extrapolated spontaneous and laser emission lines, in the L-I curve (in Fig. A.4, (a)

and (b) dashed lines). However, the threshold current depends considerably on the

size and the cross-sectional area of the laser device. Hence, it is more appropriate

to refer to threshold current density (Jth) rather than to threshold current (Ith).

Threshold current density is determined by dividing the experimentally obtained

threshold current by the cross sectional area of the laser.

A.3.2 External differential quantum efficiency

It is desirable to generate the most possible quantity of emitted light with the

minimum pump current. The external differential laser efficiency, ηd, is a direct

measure of ability of the laser to convert the injected current into emitted light, and

it is defined as:

ηd =
∆P/∆I

hc/qλ
(A.44)

where ∆P/∆I is the slope of the L-I curve, h is the Planck’s constant, λ is the

wavelength and q is the elementary electric charge.

For the L-I curve of Fig. A.4, with a λ = 655.1 nm, and a slope of 0.21 mW/mA,
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we have ηd = 22%.

A.3.3 Internal quantum efficiency

The internal quantum efficiency (ηi) is a measure of the efficiency of a laser in

converting electron-hole pairs into photons within the laser diode structure. This

parameter is independent of the geometry of the device, and thus it is adequate to

compare different lasers. The expression that relates the external quantum efficiency

(experimentally determined by Eq. (A.44)) and the internal quantum efficiency of a

laser is given by (Petermann, 1988):

1

ηd

=
1

ηi

[
1 +

2αi

ln(1/R1R2)
L

]
(A.45)

where αi accounts for the internal loss, R1 and R2 are the reflectivities at the rear

and front respectively laser/air interfaces and L is the cavity length.

Thus, plotting the inverse of the external differential quantum efficiency versus

the cavity length, for different lasers of a same wafer semiconductor material, it

would be possible to determine the ηi value from the vertical axis intercept point of

the linear fit line.

As we mentioned above, internal quantum efficiency is a direct indication of the

efficiency of a laser in converting electro-hole pairs (injected current) into photons

(light) within the laser diode structure (Mobarman, Appl. Not. Newport, 2007).

Not all the photons that are generated find their way out of the device; some of them

are re-absorbed due to various internal loss mechanisms. As a result, the internal

loss αi, makes the external quantum differential efficiency smaller than the internal
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quantum efficiency. Thus the value of αi corresponds to the loss of the optical wave

propagating through the laser diode cavity. Its value is determined experimentally

by measuring the slope of the linear fit of the above expression Eq. (A.45).

A.3.4 Characteristic temperature

The characteristic temperature (T0) of the laser diode is a measure of the temper-

ature sensitivity of the laser. For high values of T0, the laser has high threshold

current and a weak dependence of ηd with the temperature, and thus it is thermally

more stable. The threshold current of a semiconductor laser depends on temperature

through:

Ith = Ice
(T/T0) , (A.46)

which describes the empiric exponential increase of the threshold intensity with the

temperature, with Ic a constant, and T0 the characteristic temperature.

Figure A.5 shows the different light-current characteristic curves for a laser diode

operating at various temperatures.

After taking the logarithm of Eq. (A.46) and differentiating both sides, we can

obtain the value of T0:

∆ ln(Ith) =
1

T0

∆T (A.47)

T0 =
∆T

∆ ln(Ith)
(A.48)

The slope of the fitting values of the increasing temperature versus the natural

logarithm of the threshold currents (i.e. obtained by Fig. A.5) gives the characteristic
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5

the quality of various semiconductor wafers from which
different lasers diodes are fabricated. Jo could be thought
of as the threshold current density of a theoretical laser
which has an infinitely long optical cavity with no loss of
optical wave at its mirror facets.

Characteristic Temperature: 
In most applications the ability of the laser diode to per-
form well at elevated temperatures is of great interest.
This is specially of concern in the case of high-power laser
diodes where the amount of heat generated causes the
device temperature to rise significantly. As a result it is 
of utmost importance for the semiconductor crystal to be
robust enough so as not to degrade due to device opera-
tion at high temperatures. The characteristic temperature
of the laser diode, which is commonly referred to as To
(pronounced T-zero) is a measure of the temperature sen-
sitivity of the device. Higher values of To imply that the
threshold current density and the external differential
quantum efficiency of the device increase less rapidly 
with increasing temperatures. This translates into the
laser being more thermally stable. In order to measure
the characteristic temperature of a laser diode it is neces-
sary to experimentally measure the L.I. curve of a laser at
various temperatures. The results are then tabulated and
the To determined. Typically people perform these mea-
surements at temperatures ranging from 15 degrees
Celsius up to about 80 degrees Celsius, and at 5 or 10
degree increments. (Note that operating a laser that is
not hermetically sealed, at temperatures significantly
cooler than the room temperature, will result in water
condensation on the device. This will cause damage to
the laser diode due to electrical shorts.) Conventional
AlGaAs lasers usually have To values above 120 degrees. 

From these experimentally measured L.I. curves the char-
acteristic temperature of the device is determined by
plotting the Jth data points (or the Ith points) versus the
temperature on a logarithmic scale and then measuring
the slope of the linear fit line as shown in Figures 8, 9,
10, and 11. 

Figure 8.  Light versus current characteristic curves for a laser diode operating
at various temperatures. 
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Figure 9. Tabulated threshold current Ith, and threshold current density 
Jth values determined for the L.I. curves at different temperatures. The last 
column lists the natural logarithm (ln) values of Jth.
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Figure 10. Equations outlining the process of finding the characteristic temper-
ature. The 1st equation indicates that Jth increases exponentially with T. 
To and Jo (not to be confused with transparency current density parameter) are
the two constants. Taking the natural logarithm of both sides and rearranging
the terms result in the 2nd and 3rd equations. Taking the derivative of both
sides of the 3rd equation (with the derivative of ln(Jo) being zero) and 
rearranging the terms result in the 5th equation from which To can be 
determined. Note that ! is an indication of change.

Jth = Jo exp[T/To]

ln             =
Jth
Jo

T

To

ln(Jth) - ln(Jo) =
T

To

! ln(Jth) =
1

To
!T

 =
!T

To
! ln(Jth)

Figure 11. Graph showing the variations of the threshold current density Jth
with increasing temperature. The inverse of the slope of the linear fit to this set of
data points is the characteristic temperature To value. Instead of plotting the Jth
points one can alternatively use Ith, data points, the outcome will be the same.
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Figure A.5: Light-current characteristic curves for a laser diode operating in different
temperatures (from Mobarman, Appl. Not. Newport (2007)).

temperature of the laser. Typical characteristic temperatures T0 for AlGaInP multi-

quantum-well lasers range from 100 to 140 K.

A.4 Linewidth enhancement factor

As we introduced in Sec. 1.2, the degree to which changes in the carrier density alter

the refractive index and the absorption of the active layer (related with the imaginary

part of the refractive index) is characterized by the linewidth enhancement factor α.

In other words, the α factor relates the change with the population inversion (N)

of the real (n) and imaginary (n′′) parts of the refraction index (Henry, 1982):

α =
∂n/∂N

∂n′′/∂N
(A.49)
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The variations of the imaginary part of the refractive index can be related with

gain variations due to changes in the carrier density through the condition for laser

emission [Eq. (1.6)] as:
∂n′′

∂N
= − c

2ω

∂g

∂N
, (A.50)

where ∂n′′/∂N and ∂g/∂N are the rate of change of the imaginary part of the

refraction index and the gain induced by the population inversion, respectively, ω is

the emission optical frequency and c the speed of light.

Using Eq. (A.50) the α parameter can quantify the dependence of the gain and

refractive index on the population inversion:

α = −ω

c

∂n/∂N

∂g/∂N
(A.51)

The relation between gain and index variations is shown in Fig. A.6, which rep-

resents the gain curves versus frequency (top) and the refractive index versus fre-

quency (bottom) for two kinds of lasers: two-level lasers (left) and semiconductor

lasers (right). In two-level lasers, e.g. gas lasers, the gain curve is always symmetric

respect to the frequency [Fig. A.6(a)]. Accordingly, the change in the refractive

index, n, crosses the zero line exactly at the gain peak. This situation remains

unchanged for varying N [Fig. A.6(c)]. Thus, α is always zero in two-level lasers.

As we can see in Fig. A.6(b), in semiconductor lasers the gain curve is asymmetric.

This is due to the fact that the semiconductor material only absorbs photons above

its band-gap (Lasher and Stern, 1964; Henry et al, 1981). Consequently, n is differ-

ent from zero in the vicinity of the gain maximum, but is strongly dependent on N .

Any change of N results in a change of n, and the linewidth enhancement factor is
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Figure A.6: Gain curve and refractive index change for a two-level atomic laser (a, c)
and for a typical bulk semiconductor laser (b, d); N1 > N2 > N3 denote different levels of
population inversion. Dotted lines mark the emission wavelength (adapted from Wieczorek
et al (2005)).

always nonzero.

The α factor is one of the fundamental parameters of semiconductor lasers. It

is responsible for the enhancement of the laser linewidth, and affects the frequency

chirp, the modulation response, the injection-locking range, and the effect of optical

feedback. If we observe Fig. A.6(d), the refraction index decreases when the pop-

ulation inversion increases at the emission wavelength. The velocity group has to

increase to compensate the decrease of the refractive index, and as a consequence the

frequency decreases. Due to this, when we have a coherent injection (which causes

a decrease of population inversion), the positive value of α results in a frequency

downshift. An optimum injection from a transmitter to a receiver laser occurs when

the optical frequencies of the two lasers are nearly equal (Sec. 2.1.1). Then the

receiver and transmitter optical spectra coincide, and the oscillation frequency of
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the receiver is locked to that of the transmitter laser. When the injected frequency

is detuned towards higher frequencies from the optimum, the receiver laser output

power decreases. The carrier density increases and the refractive index in the active

region decreases, which accompany the output decrease. It causes an upshift of the

receiver optical frequency, resulting in a partial compensation of the detuning. In

contrast, as the injected light frequency is detuned towards the low frequency side,

the population inversion increase amplifies the detuning, and the locking between

the outputs decrease. Because of this, the laser can achieve locking for negative

detuning at a much smaller injected light than for positive detuning (Lang, 1982).

From a dynamical point of view, it is usually said that α couples the intensity

variations of the light inside the laser to its phase variations. It is due to the fact

that any change on N is reflected in a change of n, which changes the phase of the

lasing mode (Masoller, 1997).

There are many reported techniques to measure the value of α. For instance, it

is possible to determine α through a measure of the optical spectrum below thresh-

old for different values of the pump current. The α value is then given by the

expression (Henning and Collins, 1983):

α =
2π

δλ

dλi

d{ln
[√

ri − 1/
√

ri + 1
]
}

, (A.52)

where δλ is the longitudinal mode spacing, dλi is the increase of wavelength of a

mode between two different pump currents, and ri is :

ri =
Pi + Pi+1

2Vi

, (A.53)
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where Pi and Pi+1 are the optical power of two consecutive modes, and Vi is the

optical power of the valley between them. With this technique it is possible to

approximate the α parameter value inside a range that for our lasers lies between 3

and 4.5.
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Statistical tools

B.1 Correlations

Correlation is a measure of how related two quantities are. A high correlation

means that there is high resemblance between the two data sets being compared.

To compare a set of data with itself we use the auto-correlation function. To compare

two different data sets we compute the cross-correlation function. When applied to

analyze the output intensity of the lasers, these tools reveal useful information about

the characteristics of the system, such as the time scales of the dynamics.

In order to calculate the cross-correlation function of two time series P1(t) and

P2(t), we calculate the covariance (or how much two variables vary togetther) of both

series shifted over all the possible values of ∆t (lag or delay time), and normalize it

to unity:

Γcorr(4t) =
〈(P1(t)− 〈P1〉)(P2(t +4t)− 〈P2〉)〉√
〈(P1(t)− 〈P1〉)2〉〈(P2(t)− 〈P2〉)2〉

(B.1)
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In the case of only one time series P (t), the auto-correlation function is defined

as:

Γauto(4t) =
〈(P (t)− 〈P 〉)(P (t +4t)− 〈P 〉)〉

〈(P (t)− 〈P 〉)2〉
(B.2)

Here the angle brackets indicate time averaging.

B.1.1 Autocorrelation function

With the auto-correlation function one can determine how quickly a signal changes

with respect to time, and whether the process repeats itself in a periodic way. To

illustrate the characteristics of the auto-correlation function we study the dynamics

of typical semiconductor laser configurations.

Figure B.1 shows the auto-correlation function of the numerical time series of
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Figure B.1: Auto-correlation function for a laser with optical feedback (τf = 3 ns) in the
low frequency fluctuation regime.
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Figure B.2: Detail of the auto-correlation function for a laser with optical feedback
(τf = 3 ns): (a) low frequency fluctuation regime, and (b) coherence collapse regime.

the light intensity emitted by a laser with optical feedback in the low-frequency-

fluctuation regime (typical parameters are in Table A.1 of Sec. A.2). The envelope

of this function exhibits a maximum at zero (equal to one due to the normalization)

and a secondary maximum at a time that corresponds to the mean frequency of

the intensity dropouts. A more detailed observation of the auto-correlation function

denotes a high correlation for time intervals corresponding to the delay time (τf )

and multiples of it [Fig. B.2(a)]. Between these secondary peaks, a relatively strong

modulation exists, which is absent in the coherence collapse regime [Fig. B.2(b),

typical parameters in Table A.1 of Appendix A]. The latter is due to the high

irregularity of the coherence collapse regime.

The envelope also decreases much faster in this regime, due to the higher irreg-

ularity. The high auto-correlation value at τf is an evidence of the existence of

memory due to the delay.
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B.1.2 Cross-correlation function

When comparing two different signals with the cross-correlation function, one can

observe how similar the signals are. When the signals are similar in shape and

unshifted with respect to each other, the maximum correlation value occurs at a

zero delay time. If one signal is shifted with respect to the other and the signals

are periodic, the cross-correlation function takes negative and positive values for the

out-of-phase and in-phase coincidences, respectively. In the chaotic case the cross-

correlation takes mostly zero values, and it is only high (and positive) for specific

values of the shift.

With the cross-correlation function we can observe differences at the output in-

tensities when we change the architecture of the system that are not evident at

first sight. The mean feature revealed by the analysis of the cross-correlation func-

tion is how the lasers synchronize their output intensities. The highest peak of the

cross-correlation function indicates three things: (i) the degree of synchronization,

(ii) which laser leads the dynamics, and (iii) the delay between the signals. The

height of the maximum peak reveals the degree of synchronization. The location

of the peak with respect to zero (at the left or the right), indicates which laser is

the leader, and its value reveals the delay between the signals. The fall-off of the

envelope is faster or slower depending on the robustness of the synchronization: if

the cross-correlation peaks decrease very fast, the series are correlated during only

a few roundtrips of the light, and therefore the states of the initial dynamics are

weakly correlated after a small time.

The directionality of the coupling between the lasers is also reflected on the cross-

correlation function. The relationship between feedbacks and coupling strengths
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have high influence in the location of the highest peak. The phase differences of the

external cavities are also very important. The position of the peaks and the distance

between them will be determined by the feedbacks and coupling times.

There is a large difference between cross-correlation functions depending on the

relation between feedback and coupling strengths, even for the same architecture.

To see this effect, we now consider the same feedback and coupling time (τc =

τf ) in three numerical simulated cases: unidirectionally coupled lasers with only

feedback in the master laser, bidirectionally coupled lasers without feedback, and

bidirectionally coupled lasers with feedback in each laser. Figure B.3 shows the
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Figure B.3: Cross-correlation function for unidirectionally coupled lasers with feedback
in the emitting laser, in the low frequency fluctuation regime with τf = τc = 3 ns: (a)
different coupling and feedback strengths κc = 80 ns−1, κf = 30 ns−1 and (b) same
coupling and feedback strengths κc = κf = 80 ns−1.

calculated cross-correlation function for unidirectionally coupled lasers with only

feedback in the master laser. The cross-correlation function shows multiple peaks

separated a distance equal to τf , with a maximum peak value whose location depends

on the relation between the coupling and feedback strengths. Note that here τc = τf .
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It is possible to distinguish which cavity time affects the distance between peaks

calculating the cross-correlation function for the same architecture with different

cavity lengths.

Considering higher strength for the coupling than for the feedback, the cross-

correlation function shows a highest peak to the left at the coupling time (−τc),

which indicates that the laser with independent dynamics is the leader [Fig. B.3(a)].

We have a transmission of information from the leader (transmitter) to the laggard

(receiver). The leader has the independent dynamics (due to the feedback) and the

laggard synchronizes its output to the signal of the leader, with a delay time equal

to the time needed by the light to travel between the lasers (Tang and Liu, 2003).

Figure B.3(b), shows the cross-correlation function when we consider the same

amount of coupling and feedback strengths. The highest peak occurs at zero lag,

τc − τf , which corresponds to zero lag for equal feedback and coupling times. In

this case the information is transferred instantaneously to the receiver laser (the

one without independent dynamics). That is, both signals are synchronized without

delay because the light spends the same time to return from the mirror than in

traveling to the other laser [see Gross et al (2006)].

Figure B.4 represents the cross-correlation for bidirectionally coupled lasers with-

out feedback. We name κ1,2 and κ2,1 the two different coupling strengths in each

direction. In bidirectionally coupled lasers without feedback, no single laser has

independent dynamics, and the chaotic dynamics is induced by the coupling. The

cross-correlation function shows multiple peaks separated a distance equal to 2τc.

This can be explained if we take in mind that the signal of one laser synchronizes the

other laser whose signal, in turn, is injected into the first one with a delay 2τc after
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Figure B.4: Cross-correlation function for bidirectionally coupled lasers without feedbacks
in the low frequency fluctuations regime with τf = τc = 3 ns: (a) asymmetrical coupling
κ1,2 = 80 ns−1, κ2,1 = 30 ns−1 and (b) symmetrical coupling κ1,2 = κ2,1 = 80 ns−1.

the emission of the original signal (Heil et al, 2001). Figure B.4(a) shows the highest

peak at −τc for the asymmetrical situation (κ1,2 > κ2,1), with a clear leader in the

dynamics of the system. In plot B.4(b) we can see the cross-correlation function for

symmetrical coupling strengths (κ1,2 = κ2,1). In this case two symmetrical peaks

appear at ±τc, showing an alternation of the leader role between both lasers.

This changes in the presence of feedback for each laser. Figure B.5 plots the

cross-correlation function for bidirectionally coupled lasers in a symmetrical way

(κ1,2 = κ2,1 = κc) with the same amount of feedback in each one (κ1,1 = κ2,2 = κf ).

The cross-correlation function shows multiple peaks separated a distance equal to

τc = τf (which in the case of different coupling and feedback times corresponds to

the minimum of the two quantities), and highest peaks depending on the relation

between the coupling and feedback strengths. Figure B.5(a), for κc > κf , shows two

highest peaks at ±τc due to the fact that the coupling is stronger than the feedback.
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Figure B.5: Cross-correlation function for bidirectionally coupled lasers with the same
amount of feedback in each laser in the low frequency fluctuations regime with τf = τc =
3 ns: (a) different coupling and feedback strengths κc = 80 ns−1, κf = 8 ns−1 and (b)
same coupling and feedback strengths κc = 80 ns−1, κf = 80 ns−1.

Figure B.5(b) plots the cross-correlation for κc = κf , showing the zero-lag solution of

the system (synchronization without delay). The time needed by the light to affect

individually each laser (τf ) is the same that it needs to travel to the other laser (τc).

An instantaneous synchronization occurs in this case due to the symmetry of the

system (Gross et al, 2006).

B.2 Sliding-correlation function

The cross-correlation function is a time-averaged quantity. The expected value of the

correlation for any pair of values must be computed by averaging P1(t)−P2(t+∆t)

over the whole duration of the process, where ∆t is the lag or delay time between

the signals. Sometimes this averaging process hides information. When we need

to estimate the time-varying correlation between signals, we calculate the sliding
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cross-correlation function. To that end, we divide the signal into sliding windows

of a size such that the correlation can be considered stationary on the time scale

of the window’s width. Then the cross-correlation is computed as a function of the

lag within each window, which slides along the time axis to obtain correlations for

different time values.

In Fig. B.6 we show the sliding cross-correlation function of numerical simulated

series for two different situations: unidirectionally coupled lasers with feedback in

one laser [Fig. B.6(a,b)], and bidirectionally coupled lasers [Fig. B.6(c,d)]. In the
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Figure B.6: Numerical output intensities and sliding cross-correlation function for two
unidirectionally coupled lasers with feedback in the emitting laser (a,b), and bidirectionally
coupled lasers without feedback (c,d).

unidirectional case, synchronization is lost during the dropout event, just after the

fall of the leader towards zero intensity. The output intensities of both lasers are

correlated for a while, but synchronization is lost during short periods of time, which

is impossible to detect in the cross-correlation function. If we know the delay time
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between both signals (due to a previous calculation of the cross-correlation) we

can shift the signals to coincide and calculate the cross-correlation function in an

adequate time window. Then we can shift this window along the time axis to see

the evolution in time of the cross-correlation function.

Loss of synchronization for bidirectional coupling is revealed by the drop to zero of

the sliding correlation, not only during the dropout as in the unidirectional coupling

case, but also at intermediate times. The change of the leader in bidirectional

coupling produces synchronization loss between the dropouts, as well as during the

dropouts themselves.

In summary, the study of the temporal evolution of the cross-correlation func-

tion gives more information than provided by the simple evaluation of the cross-

correlation function.
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Numerical techniques

C.1 Integration of deterministic delay-differential

equations

Delay differential equations (DDE) can be classified in different ways, depending on

the type of delay (constant, variable, or state dependent), or the number of delays

(finite number for discrete DDEs, or a continuum number of delays for distributed

DDEs). We consider the case of multiple constant delays:

ẏ(t) = f [t, y(t), y(t− τ1), ....y(t− τn)] (C.1)

y(t) = φ(t) t ∈ [−τmax, 0]

where the delays are τi > 0.

We can solve a system of finite dimension if we have the initial conditions of the
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state variables. For a DDE system, at every temporal step we need the past history

of the variables between −τmax and 0, where τmax is the maximum value of the delay

of the system (Bellen and Zennaro, 2003).

Let us consider, without loss of generality, the case of a single delay:

ẏ(t) = f [t, y(t), y(t− τ)] (C.2)

y(t) = φ(t) t ∈ [−τ, 0]

The initial way to work with this type of equations is the same as for ordinary

differential equations (ODEs), but for t < 0 the variable is an arbitrary initial

function, and for t > 0 the solution is determined by the differential equation.

ODE solvers consider the first derivative as continuous: any discontinuity would be

propagated and enhanced in each time step. The discontinuity at t = 0 in Eq. (C.2)

forces us to vary the way of solve the problem in the case of DDE’s.

The way to face up to the problem is dividing the total simulation time into time

intervals of length τ and solving each time interval with an ODE solver. This leads

to an approximation to the solution of the DDE in that interval, which can be used

to find an approximate solution on the next time interval.

Figure C.1 displays a scheme of the time divisions used to integrate Eq. (C.2).

The major time divisions into intervals of length τ are denoted by 1τ, 2τ...., etc.

The integration of each interval of length τ requires a division into n subintervals of

length h, which is the integration time step of the algorithm. These divisions can

be expressed as:

ti = t0 + ih for i = 0 to n ,
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for each interval time of length τ . As the first initial condition we define a vector of
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Figure C.1: Division of total time into time intervals of length τ . Each interval is
divided in n steps of length h, to apply the ODE algorithm. The initial condition for
the first interval τ is defined as zero value, and each subsequent interval τ uses the value
integrated at the previous interval.

dimension n = τ/h, which will be used to find the approximate solution of the first

time interval 1τ . Then we fill the first 1τ vector with these values, and use them

as initial condition to integrate the next time interval 2τ , and so on until the last τ

interval.

The numerical algorithm used to integrate the τ intervals is very similar to the ones

used to integrate ODEs, but introducing this delayed function into the algorithm.

Using the differential equation (C.2), we can determine the instantaneous rate of

change of y at time t0:

ẏ(t0) = f (t0, y(t0), y(t0 − τ)) = f (t0, y0, yτ0) (C.3)
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It is expected that the rate of change of the function remains near of f(t0, y0, yτ0)

for t close to t0. Then we can approximate the function defined in the first time

interval 1τ , y1, for each small step h as:

t1 = t0 + h

y1 = y0 + f(t0, y0, yτ0)(t1 − t0) = y0 + hf(t0, y0, yτ0) (C.4)

and for a t close to ti we can approximate the rate of change of the function for the

next step τ to:

yi+1 = yi + hf (ti, yi, yiτ ) (C.5)

where yi = y(ti) is the function evaluated a time step h before and yiτ = y(ti− τ) is

the function evaluated a time step h before but from the previous τ division. That

is the Euler’s method, where h is the step size.

An improved variation of the Euler’s method consists in approximating the func-

tion by the average of the values at ti and ti+1 to find the rate of change of the

function. This results in:

k = yi + hf(ti, yi, yiτ )

yi+1 = yi +
h

2
[f (ti, yi, yiτ ) + f (ti+1, k, yi+1,τ )] (C.6)

This is called the improved Euler algorithm or the Heun method. Heun’s method

is based on the evaluation of an approximation of f(ti+1, k, yi+1,τ ) by replacing the

value of k with an estimate derived from the original Euler method, with the result-

ing above iteration scheme. In evaluating the mean value over one step h, the error
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will be of order h2.

C.2 Integration of the noise term

In our case, we have to implement the integration of a multiplicative noise in a delay

differential equation (San Miguel and Toral, 2000). We have a system of the form:

ẏ(t) = f [t, y(t), y(t− τ)] + g[t, y(t)]ζ(t) (C.7)

y(t) = φ(t) t ∈ [−τ, 0] ,

where ζ(t) is a Gaussian white noise with zero mean [〈ζ(t)〉 = 0], and correlation

〈ζ(t)ζ∗(t′)〉 = 2δ(t− t′).

In our system, the noise term is not directly affected by the delay. That is g[t, y(t)]

does not depend on y(t − τ), and therefore we can consider the integration of the

noise as an added term in the algorithm of the delay differential equation. Then we

can apply the approximated algorithm:

k = yi + hf(ti, yi, yiτ ) + h1/2u(t)g(ti, yi)

l = yi + hf(ti, yi)

yi+1 = yi +
h

2
[f(ti, yi, yiτ ) + f(ti+1, k)] +

h1/2u(t)

2
[g (ti, yi) + g (ti+1, l)] (C.8)

which is known as the stochastic Heun method. The advantage of the stochastic

Heun method is that it treats better the deterministic part, and avoids some insta-

bilities of the Euler’s method.
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Garćıa-Ojalvo, 2006, Zero-lag long-range synchronization via dynamical relaying,

Phys. Rev. Lett. 97, 123902.

Fujiwara, M., K. Kubota, and R. Lang, 1981, Low-frequency intensity fluctuation in

laser diodes with external optical feedback, Appl. Phys. Lett. 38, 217.

Gammaitoni, L., E. Menichella-Saetta, S. Santuchi, F. Marchesoni, and C. Presilla,

1989, Periodically time-modulated bistable systems: stochastic resonance, Phys.

Rev. A 40, 2114.

Gammaitoni, L., P. Hänggi, P. Jung, and F. Marchesoni, 1998, Stochastic resonance,

Rev. Mod. Phys. 70, 223.



214 BIBLIOGRAPHY
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González, C. M., M. C. Torrent, and J. Garćıa-Ojalvo, 2007, Controlling the leadder-

laggard dynamics in delay-synchronized lasers, Chaos 17, 033122.
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Wille, H. Erzgraber, M. Peil, W. Elsässer, and I. Fischer, 2005, Synchronization



234 BIBLIOGRAPHY

of delay-coupled oscillators: a study of semiconductor lasers, Phys. Rev. Lett. 94,

163901.

Yamada, M., 1983, Transverse and longitudinal mode control in semiconductor in-

jection lasers, IEEE J. Quantum Electron. 19, 1365.

Yamada, M. and H. Fujisaka, 1983, Stability theory of synchronized motion in

coupled-oscillator systems. II, Prog. Theor. Phys. 70, 1240.

Yamada, M. and H. Fujisaka, 1984, Stability theory of synchronized motion in

coupled-oscillator systems. III, Prog. Theor. Phys. 72, 885.

Yanchuk, S., 2005, Discretization of frequenies in delay coupled oscillators, Phys.

Rev. E 72, 036205.

Yariv, A., 1989, Quantum Electronics, John Wiley & Sons, New York.

Yeung, M. K. S. and S. H. Strogratz, 1999, The delay in Kuramoto model of coupled

oscillators, Phys. Rev. Lett. 82, 648.

Zhou, C. and J. Kurths, 2002, Noise induced phase synchronization and synchro-

nization transitions in chaotic oscillators, Phys. Rev. Lett. 88, 230602.

Zhou, B. B. and R. Roy, 2007, Isochronal synchrony and bidirectional communica-

tions with delay-coupled oscillators, Phys. Rev. E 75, 026205.



Publications 235

LIST OF PUBLICATIONS

• “Coupling-mediated ghost resonance in mutually injected lasers”, J. M. Buldú,
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