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Abstract

The huge number of transistors that are currently offered in a single die has
made major microprocessor vendors shift towards multi-core architectures in
which several processor cores are integrated on a single chip. Although most
current chip multiprocessors (CMPs) have a relatively small number of cores (2
to 8), in the near future chips with tens of cores, also known as many-core CMPs,
will become more popular.

Since most many-core CMPs are expected to use the hardware-managed
coherent caches model for the on-chip memory, the cache coherence protocol
will be a key component for achieving good performance in these architec-
tures. Nowadays, directory-based protocols constitute the best alternative to
keep cache coherence in large-scale systems. Nevertheless, directory-based pro-
tocols have two important issues that prevent them from achieving better scala-
bility: the directory memory overhead and the long cache miss latencies.

The memory overhead of a directory protocol mainly comes from the struc-
tures required to keep the coherence (or directory) information. Depending on
how this information is organized, its memory overhead could be prohibitive for
many-core CMPs. The long L2 miss latencies are a consequence of the access to
the directory information (the indirection problem), and its distributed nature.
The access to the directory information is necessary before performing coher-
ence actions in directory-based protocols. On the other hand, since both data
and directory caches are commonly distributed across the chip (non-uniform
cache architecture or NUCA), and wire delays of many-core CMPs will cause
cross-chip communications of the order of tens of cycles, the access latency to
these structures will be dominated by the wire delay to reach each particular
cache bank rather than the time spent accessing the bank itself.

Our efforts in this thesis have focused on these key issues. First, we present a
scalable distributed directory organization that copes with the memory overhead of
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directory-based protocols. In this directory organization, the memory required
to keep all the necessary coherence information does not increase with the num-
ber of cores, up to a certain number, which corresponds with the number of
sets of the private caches. In this way, our organization requires less area than
a traditional directory to keep the same information and, therefore, similar per-
formance is obtained. Besides, this organization allows the implementation of
an implicit replacements mechanism which is able to remove coherence messages
caused by replacements. Hence, this mechanism reduces the total network traf-
fic generated by the coherence protocol which finally translates into savings in
terms of power consumption.

Second, we propose a new family of cache coherence protocols called direct

coherence protocols. These protocols are aimed at avoiding the indirection prob-
lem of traditional directory-based protocols, but without relying on broadcasting
requests. The key property of these protocols is the assignment of the task of
keeping cache coherence to the cache that provides the data block in a cache
miss, instead of to the home cache, as happens in directory-based protocols. In-
direction is avoided by directly sending requests to that cache. This indirection
avoidance reduces the average cache miss latency and, consequently, the appli-
cations’ execution time. Since requests are only sent to just one destination, the
network traffic is kept low. Additionally, we also analyze the use of compressed
sharing codes to reduce the memory overhead in direct coherence protocols.

Finally, we develop a novel mapping policy managed by the OS that reduces
the long access latency to a NUCA cache. We name this policy as distance-aware
round-robin and it tries to map memory pages to the local NUCA bank of the
first core that requests a block belonging to that page. In this way, the average
access latency to a NUCA cache is reduced. Furthermore, the proposed policy
also introduces an upper bound on the deviation of the distribution of memory
pages among cache banks, which lessens the number of off-chip accesses. In
this way, we reduce the average cache access latency and the number of off-chip
accesses, which translates into improvements in applications’ execution time.
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Chapter 0
Resumen

0.1 Introducción

Los continuos avances en la escala de integración permiten reducir cada vez más
el tamaño de los transistores y, por tanto, cada vez podemos encontrar chips con
un mayor número de transistores disponibles. Los fabricantes de chips han
decidido dedicar estos transistores a aumentar el número de procesadores en
lugar de a incrementar el rendimiento de un único procesador, tarea mucho más
laboriosa y con menores beneficios en términos de rendimiento, dando lugar a
los multiprocesadores en un único chip o CMPs (Chip-multiprocessors) [91]. Los
CMPs tienen importantes ventajas sobre los procesadores superescalares. Por
ejemplo, tienen un poder computacional agregado mucho mayor y consumen
menos energía que un único procesador mucho más complejo.

Muchos CMPs actuales, como el IBM Power6 [63] o el Sun UltraSPARC T2
[104], tienen un número de procesadores relativamente pequeño (entre 2 y 8),
cada uno de ellos con al menos un nivel de caches privadas. Estos procesadores
se comunican entre sí a través de una red de interconexión ordenada (habitual-
mente, un bus o un crossbar) que se encuentra dentro del chip. Sin embargo, estas
redes de interconexión ordenadas tienen problemas de escalabilidad cuando el
número de procesadores que tienen que soportar es relativamente alto. Estos
problemas se deben principalmente al área que necesitan para ser implemen-
tadas y a su elevado consumo de energía [59]. Además, según la Ley de Moore
[83], todavía válida, cabe esperar que el número de procesadores integrados en
un mismo chip se doble cada 18 meses [22], por lo que estas redes de interco-
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nexión no serán adecuadas para futuros CMPs. Para solucionar estos proble-
mas de escalabilidad surgen los tiled CMPs, CMPs que se construyen en base
a replicar bloques idénticos o casi idénticos a lo largo y ancho del chip, conec-
tándolos mediante una red de interconexión escalable y punto a punto. Estos
bloques de construcción poseen su propio procesador, jerarquía de memoria e
interfaz de red. De este modo, se consigue un coste de fabricación menor, ya que
su diseño, más sencillo, consiste en replicar un mismo patrón sucesivas veces.

Por otro lado, la mayoría de los CMPs actuales siguen un modelo de progra-
mación de memoria compartida. Este modelo proporciona una programación
más amigable para el usuario que el modelo de paso de mensajes, pero requiere
un soporte eficiente para la coherencia de las caches. Aunque en las últimas dé-
cadas se le ha prestado mucha atención a los protocolos de coherencia de caches
en el ámbito de los multiprocesadores tradicionales, los parámetros tecnológi-
cos y nuevas restricciones de los CMPs implican la necesidad de buscar nuevas
soluciones al problema de la coherencia de caches [22].

Los multiprocesadores que emplean redes de interconexión punto a punto,
como los tiled CMPs, suelen implementar un protocolo de coherencia de caches
basado en directorio. Desafortunadamente, estos protocolos tienen dos proble-
mas fundamentales que limitan su escalabilidad: La alta latencia de los fallos de
cache debido a la indirección al nodo home y la elevada sobrecarga de memoria
necesaria para mantener la información de coherencia.

• La indirección se produce por la necesidad de obtener la información de di-
rectorio antes de realizar las acciones de coherencia correspondientes. Esta
información se encuentra habitualmente en el nodo home de cada bloque.
De este modo, ante un fallo de cache se accede, en primer lugar, al nodo
home. Una vez que se obtiene la información de directorio, se reenvían
las peticiones a los destinatarios correspondientes, los cuales responden al
nodo que generó el fallo de cache. De este modo, muchos fallos de cache
necesitan tres saltos en el camino crítico.

• La memoria necesaria para mantener la información de coherencia puede
llegar a requerir un área desmesurada cuando el número de nodos del sis-
tema aumenta considerablemente [15]. Esto ocurre especialmente cuando
se usa un vector de bits para mantener la información acerca de los com-
partidores de cada bloque de memoria.

Aunque existen soluciones para mantener la coherencia de las caches que
evitan la indirección y tratan de reducir la sobrecarga de memoria, como por
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ejemplo Token-CMP [78], estas soluciones están basadas en difusión total (broad-
cast), es decir, en inundar la red de interconexión con mensajes de coherencia,
lo cual eleva la contención y, lo que es más importante, el consumo de energía
de la red, el cual puede llegar a alcanzar en algunos casos el 50% del consumo
total del chip [71, 116]. En esta tesis se trata tanto el problema de la indirec-
ción como el de la sobrecarga de memoria, pero además, teniendo en cuenta al
mismo tiempo, el consumo de la red de interconexión.

Por último, existe otra restricción que puede afectar a la escalabilidad de los
futuros CMPs. El retardo que introduce la red de interconexión al enviar un
mensaje de un extremo del chip a otro, puede alcanzar las decenas de ciclos
[49, 10]. Este retardo provoca que el acceso a una cache lógicamente compartida
pero físicamente distribuida dependa en gran medida de la distancia entre el
procesador que quiere acceder al dato y el banco de la cache donde esté alma-
cenado dicho dato. Es lo que comúnmente se conoce como caches de acceso no
uniforme (NUCA, o Non-Uniform Cache Architecture [57]). Por tanto, esta tesis
también aborda el problema de la alta latencia de acceso a caches NUCA.

0.1.1 Contribuciones de la tesis

Las principales contribuciones de esta tesis son las siguientes:

• Organización de directorio escalable. Esta organización está basada en du-
plicar en el directorio los tags de los bloques almacenados en las caches
privadas. Además, mediante el uso de un particular intercalado de los
bloques de memoria en los diferentes bancos que componen el directorio,
se obtiene una organización en la que el tamaño de cada banco de direc-
torio no depende del número de nodos o tiles del sistema. Esta propiedad
se cumple siempre y cuando el número de nodos del sistema sea menor o
igual al número de conjuntos de las caches privadas.

• Protocolo de directorio con reemplazos implícitos. Este protocolo permite elim-
inar todo el tráfico generado por los reemplazos de bloques en las caches
privadas, lo cual se traduce en una reducción del consumo de la red de
interconexión. La idea consiste en solapar los mensajes generados por los
reemplazos con los mensajes generados por las peticiones que causan di-
chos reemplazos. Este mecanismo requiere una organización de directorio
similar a la descrita en el punto anterior, particularmente, el mismo inter-
calado de directorio.

33



0. Resumen

• Protocolos de coherencia directa. Esta familia de protocolos evita el problema
de la indirección en los protocolos de directorio, pero sin inundar la red
con peticiones, tal y como ocurre en los protocolos basados en broadcast. La
principal propiedad de los protocolos de coherencia directa es que tanto
el manejo de la información de los compartidores de cada bloque como el
mantenimiento de la coherencia de caches, la realiza el nodo propietario,
es decir, el nodo que provee el bloque ante un fallo de cache. La indirección
se evita enviando las peticiones directamente al nodo propietario, de ahí
el nombre de coherencia directa.

• Política de mapeo de caches sensible a la distancia y a la tasa de fallos. Esta
política intenta mapear páginas de memoria a los bancos de cache
pertenecientes al nodo que más veces accede a dichas páginas, con el fin
de reducir la latencia de acceso a los bloques contenidos en dicha página.
Adicionalmente, esta política introduce una cota superior para diferenciar
entre el número de páginas mapeadas a cada banco, con el objetivo de dis-
tribuir uniformemente las páginas entre los bancos de cache, y así reducir
la tasa de fallos de dicha cache.

Todas las contribuciones que aparecen en la presente tesis han sido publi-
cadas o están siendo consideradas para su publicación en conferencias interna-
cionales [95, 96, 97, 98, 99, 100], revistas [102] o capítulos de libro [101].

0.2 Entorno de evaluación

A la hora de llevar a cabo la evaluación de las propuestas presentadas en esta
tesis, hemos decidido hacer uso del simulador GEMS 1.3 [77]. GEMS es un
simulador que extiende a Virtutech Simics [72] y modela de forma lo suficien-
temente detallada el sistema de memoria, así como una amplia gama de pro-
tocolos de coherencia de caches. Además, para modelar con más precisión el
comportamiento de la red de interconexión hemos reemplazado el simulador
de red que proporciona GEMS 1.3 por SiCoSys [94], un simulador de red más
detallado, el cual hemos modificado para dar soporte al envío de mensajes mul-

ticast. Asimismo, hemos hecho uso de la herramienta CACTI [115] con el fin
de precisar las latencias de acceso a las caches y de medir el área requerida por
dichas estructuras. Para ello, hemos asumido que el tamaño de las direcciones
físicas es de 40 bits y que usamos una tecnología de proceso de 45nm.

34



Entorno de evaluación
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Figura 0.1: Organización de un tile y un tiled CMP de 4×4 celdas.

El sistema simulado en esta tesis es un tiled CMP de 16 nodos (o 32, en
algunos casos) como el de la Figura 0.1. Cada tile contiene un procesador, o
core, una cache de primer nivel privada para datos y otra para instrucciones,
un banco o porción de la cache de segundo nivel compartida y una interfaz de
red, o router, que conecta todos los nodos mediante una red de interconexión
con topología de malla de dos dimensiones. El resto de parámetros del sistema
simulado se pueden ver en la Tabla 0.2.

Todas las propuestas presentadas en esta tesis han sido implementadas uti-
lizando para ello el simulador GEMS. Estas propuestas han sido chequeadas
exhaustivamente para comprobar la ausencia de condiciones de carrera que
pudieran provocar cualquier incoherencia, con el fin de validar su correcto fun-
cionamiento.

Las diez aplicaciones científicas usadas en las simulaciones para evaluar las
propuestas presentadas en esta tesis poseen una amplia variedad de patrones
de computación y comunicación. Las aplicaciones junto con sus tamaños de en-
trada son las siguientes. Barnes (8192 cuerpos, 4 pasos), FFT (64K complejos),
Ocean (océano de 130x130), Radix (512K claves, 1024 de radio), Raytrace (teapot),
Volrend (head) y Water-NSQ (512 moléculas, 4 pasos) provienen del conjunto
de aplicaciones SPLASH-2 [118]. Unstructured (Mesh.2K, 5 pasos) es una apli-
cación que modela el movimiento de fluidos [86]. MPGdec (525_tens_040.m2v) y
MPGenc (salida deMPGdec) son aplicaciones multimedia que han sido obtenidas
del conjunto de benchmarks ALPBench [66].

Aparte de estas aplicaciones paralelas, las cuales simulamos en un CMP con
16 nodos, también hemos simulado cargas multiprogramadas para un CMP con
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Tabla 0.1: Parámetros del sistema simulado.

Parámetros de memoria (GEMS)

Frecuencia del procesador 3GHz
Jerarquía de cache No inclusiva
Tamaño de bloque 64 bytes
Cache L1 de datos e instrucciones 128KB, 4 vías
Tiempo de acceso a la L1 1 (tag) + 2 (datos) ciclos
Cache L2 compartida 1MB/celda, 8 vías
Tiempo de acceso a la L2 2 (tag) + 4 (datos) ciclos
Tiempo de acceso al directorio 2 ciclos
Tiempo de acceso a memoria 300 ciclos
Tamaño de página 4KB

Parámetros de red (SiCoSys)

Frecuencia de red 1.5GHz
Topología Malla de 2 dimensiones
Técnica de switching Wormhole
Technique enrutamiento X-Y determinista
Tamaño de los mensajes de control 1 flit
Tamaño de los mensajes de datos 4 flits
Tiempo de enrutamiento 1 ciclo
Tiempo de switch 1 ciclo
Latencia del enlace (un salto) 2 ciclos
Ancho de banda del enlace 1 flit/ciclo

32 nodos. En concreto, hemos creado cuatro cargas multiprogramadas. Radix4

ejecuta cuatro instancias de Radix con 8 hilos cada una. Similarmente, Ocean4

ejecuta cuatro instancias de Ocean. Mix4 y Mix8 simulan instancias de Ocean,
Raytrace,Unstructured yWater-Nsq, con 8 y 4 hilos, respectivamente. Mix8 ejecuta
dos instancias de cada aplicación.

Finalmente, para obtener mayor precisión en los resultados, hemos realizado
diversas pruebas para cada configuración y aplicación evaluada, las cuales in-
sertan perturbaciones aleatorias en los accesos a memoria [12]. De este modo,
los resultados presentados corresponden a la media de los valores obtenidos.
Además, los resultados presentados en esta tesis corresponden a la fase paralela
de las aplicaciones.
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0.3 Una organización de directorio escalable

Como hemos apuntado en la Sección 0.1, los protocolos de coherencia de cache
basados en directorio añaden a la implementación final del sistema una sobre-
carga de memoria extra. Esta sobrecarga es debida al mantenimiento de la in-
formación acerca de los compartidores de cada bloque de memoria, es decir, la
información de coherencia o información de directorio. Cuando esta informa-
ción se organiza como un vector de bits, en el que cada bit indica la presencia
o ausencia de un bloque de memoria en una determinada cache, la cantidad
de memoria requerida por el directorio aumenta linealmente conforme aumenta
el número de nodos. Es por ello por lo que numerosos autores han intentado
reducir dicha sobrecarga de memoria a través de códigos de compartición com-
primidos [1, 8, 26, 44, 85]. Sin embargo, estos códigos no logran una escalabili-
dad completa y a menudo introducen mensajes de coherencia extra que reper-
cuten negativamente tanto en el rendimiento como en el consumo de energía
del sistema.

En esta tesis proponemos una nueva organización de directorio que lo dota
de escalabilidad [99], es decir, mantiene constante la memoria añadida a cada
nodo para mantener la información de directorio, hasta un cierto número de
procesadores. Además, esta organización almacena información precisa acerca
de los compartidores. El tamaño de cada banco de directorio en la organización
propuesta es c× (lt + 2), donde c es el número de entradas de las caches privadas
y lt es el tamaño de la etiqueta, o tag, almacenado en la cache de directorio. Esta
propuesta se detalla en la Sección 0.3.1.

Adicionalmente, partiendo de la organización de directorio diseñada, hemos
propuesto un mecanismo de reemplazos implícitos [99]. Este mecanismo, que
se describe en la Sección 0.3.2, permite eliminar la totalidad de los mensajes de
coherencia causados por los reemplazos en las caches privadas, debido a que
estos mensajes se manejan de forma implítita junto con el mensaje de petición
que provoca cada reemplazo.

Los resultados, presentados en la Sección 0.3.3, muestran que la sobrecarga
de área requerida por la organización de directorio escalable es de tan sólo 0.53%
comparado con el área requerida por las caches de datos. Por otro lado, el
mecanismo de reemplazos implícitos logra eliminar el 13% de los mensajes ge-
nerados por un protocolo de directorio cuando los bloques en estado compartido
no informan del reemplazo al directorio y es capaz de reducirlos hasta un 33%,
de media, cuando se informa al directorio acerca de estos reemplazos.
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Figura 0.2: Granularidad del intercalado de directorio y efecto que causa en
el tamaño mínimo necesario para almacenar toda la información de las caches
privadas.

0.3.1 Directorio escalable

Esta sección describe un protocolo de directorio distribuido en el que cada banco
de directorio tiene un tamaño fijo, que es independiente del número de nodos
del sistema. Para ello, prestamos especial atención al intercalado del directo-
rio, es decir, a qué banco de directorio mapea cada bloque de memoria. Al
nodo donde se encuentra ese banco o cache de directorio se le denomina nodo
home de dicho bloque. Normalmente, este mapeo se realiza tomando los log2n

(ln) bits menos significativos de la dirección del bloque (sin contar con el des-
plazamiento, u offset, del bloque), donde n representa el número de nodos del
sistema. Como muestra la Figura 0.2, dependiendo de la posición de los bits
que se elijan para definir el nodo home de cada bloque, el número mínimo de
entradas requerido por el directorio puede variar. De hecho, si se toman los
bits más significativos de la dirección de memoria, se puede dar el caso de que
todos los bloque almacenados en cache mapeen a un mismo home, por lo que
se requeriría un número de entradas para el directorio de n× c, y por tanto, el
tamaño de dicho directorio dependería linealmente del número de nodos.

En cambio, si los bits tomados para asignar el nodo home están dentro de
los bit usados para indexar las caches privadas ls, nos aseguramos de que los
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Figura 0.3: Mapeo entre entradas de cache y directorio.

bloques almacenados en las caches se distribuyan uniformemente entre los dife-
rentes nodos home. De este modo, el número máximo de entradas requerido por
cada banco de directorio sería c, valor que no depende del número de nodos,
sino tan sólo del número de entradas de las caches privadas.

Por otro lado, para mantener constante su tamaño total necesitamos que, no
sólo el número, sino también el tamaño de las entradas, sea independiente del
número de nodos. Esto se consigue mediante el uso de tags duplicados, que
han sido empleados en CMPs como el Piranha [16] o el Sun UltraSPARC T2
[111]. Estos tags duplicados mantienen en el directorio una copia de los tags

almacenados en las caches privadas.
Una vez acotado el tamaño del directorio debemos buscar una función que

mapee bloques a entradas de directorio, de tal forma que se cumplan las si-
guientes premisas:

1. Un bloque de memoria siempre debe tener su tag duplicado en el mismo
banco de directorio, independientemente de la cache privada donde esté
almacenado. Esta premisa asegura encontrar toda la información relativa
a un mismo bloque en un único nodo.

2. La función debe ser inyectiva, es decir uno a uno. Esta premisa garantiza
la escalabilidad en el número de entradas del directorio.

La Figura 0.3 muestra esta función. Los nodos home vienen definidos por un
subconjunto de bits ln de entre los usados para indicar el conjunto, o set, de la
cache privada ls donde el bloque debe ser almacenado. El conjunto donde se
almacenará el tag duplicado dentro de ese banco de directorio viene dado por la
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unión de los restante bits del campo ls y el identificador del nodo que mantiene
su copia en la cache privada. Estos últimos bits serán posteriormente usados
para identificar los compartidores del bloque. Ya que los ln bits deben ser un
subconjunto de los ls bits (ln ⊆ lS), este directorio mantiene su escalabilidad
siempre y cuando se cumpla la regla:

num_nodos ≤ num_conjuntos_en_caches_privadas.

0.3.2 Reemplazos implícitos

En esta sección se describe el mecanismo de reemplazos implícitos, que consiste
en manejar los reemplazos de forma implícita, uniendo los mensajes generados
por ellos con los generados por las peticiones que provocan dichos reempla-
zos. La organización de directorio presentada anteriormente, asegura que ante
el reemplazo de un bloque de una cache privada, se cumplan las dos caracterís-
ticas descritas a continuación, las cuales permiten implementar el mecanismo de
reemplazos implícitos:

1. El bloque reemplazado y el bloque que causa su reemplazo siempre ma-
pean al mismo banco de directorio. Esto se debe al intercalado utilizado,
que toma los bits para definir el nodo home dentro del subconjunto de los
bits usados para seleccionar el conjunto donde se almacena el bloque en
las caches privadas.

2. Cada entrada de las caches privadas tiene asociada una única entrada en
el directorio (una única vía también), y viceversa. De este modo cuando la
petición que genera el reemplazo llega al directorio, este conoce tanto la di-
rección del dato solicitado como la del reemplazado. Por tanto, no es nece-
sario indicar ambas direcciones en el mensaje, sino solamente la del bloque
solicitado y el número de la vía donde estaba el bloque reemplazado, por
lo que el tamaño de los mensajes no se incrementa considerablemente.

La Figura 0.4 muestra el mecanismo de reemplazos implícitos comparándolo
con el mecanismo de reemplazos tradicional. Normalmente, cuando se produce
un fallo de cache, previamente se debe reemplazar otro bloque almacenado en el
mismo conjunto con el fin de dejar espacio para el nuevo bloque. Los reemplazos
se suelen hacer en tres fases para evitar condiciones de carrera difíciles de tratar.
Primero, la cache pide permiso de reemplazo al nodo home (1 Put). Cuando el
nodo home confirma el reemplazo (2 Ack), el bloque es enviado al siguiente nivel
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Figura 0.4: Diferencias entre los reemplazos tradicionales e implícitos.

de cache (3 WrB). Por otro lado, las peticiones de bloque que fallan en cache
solicitan el bloque al nodo home (1 Get). Esta solicitud es reenviada al nodo
propietario (2 Fwd), el cual envía los datos al peticionario (3 Data). Una vez
resuelto el fallo, se envía un mensaje (4 Unbl) al nodo home indicándole que ya
puede procesar otras peticiones para ese bloque.

Mediante el mecanismo de reemplazos implícitos se solapan estos mensajes,
tal y como se muestra en la Figura 0.4(b). Ante un fallo, se almacena tanto la di-
rección del bloque reemplazado como la del solicitado en el MSHR (Miss Status

Hold Register o registro de fallos pendientes), y se envía la petición (1 Get/Put)
al nodo home. Del mismo modo, el nodo home almacena ambas direcciones (la
del reemplazo la obtiene del directorio) en su MSHR y reenvía al propietario
del bloque solicitado la petición (2 Fwd/Ack). Cuando el causante del fallo recibe
el mensaje con los datos y la confirmación del reemplazo (3 Data/Ack) ambas
entradas del MSHR se liberan y se procede al reemplazo del bloque, a la vez
que se desbloquea el nodo home (4 Unbl/WrB). Finalmente, el nodo home libera
análogamente ambas entradas de su MSHR.

0.3.3 Resultados

En esta sección mostramos los resultados obtenidos para las dos propuestas
presentadas previamente. En primer lugar veremos como la organización de
directorio escalable es capaz de reducir la sobrecarga de memoria del protocolo
de coherencia. Después, mostraremos las reducciones en el número de mensajes
de coherencia obtenidas por el mecanismo de reemplazos implícitos.

41



0. Resumen

2 4 8 16 32 64 128 256

Nodos

0.2

2.0

20.0

200.0

S
ob

re
ca

rg
a 

de
 m

em
or

ia
 (

%
)

FullMap-Inclusive
FullMap
CoarseVector (K=4)
LimitedPointers (P=2)
DupTag

Figura 0.5: Sobrecarga del área de directorio en mm2 en función del número de
nodos.

0.3.3.1 Sobrecarga de memoria

La Figura 0.5 compara diversas organizaciones de directorio. En particular,
muestra la sobrecarga que introduce el área requerida por la información de
directorio comparada con el área requerida por las caches de datos. Esta sobre-
carga se muestra en función del número de nodos del sistema, desde 2 hasta 256
nodos.

Las organizaciones representadas en la gráfica son: FullMap-Inclusive, donde
la información de directorio está incluida en los tags de la cache L2; FullMap,
que usa una cache de directorio con el mismo número de entradas que la cache
L1 y con un vector de bits, o full-map, en cada entrada; CoarseVector (K=4), que
usa la cache de directorio anterior comprimiendo el código de compartición
usando un bit para representar cuatro nodos [44]; Limited pointers (P=2), que
comprime el código de compartición usando dos punteros para los dos primeros
compartidores [26]; y DupTag, que es la organización propuesta en esta sección.

Podemos ver que las organizaciones que usan un código de compartición
full-map no escalan con el número de nodos del sistema. Las otras propuestas
que usan códigos de compartición comprimidos, tampoco escalan completa-
mente, y como veremos en la siguiente sección introducen tráfico extra en la red
debido a que almacenan información imprecisa. Por último, nuestra propuesta,
no sólo almacena información precisa sino que también escala perfectamente
hasta 256 nodos. La sobrecarga de esta organización es de 0.53% para todas las
configuraciones mostradas.
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0.3.3.2 Tráfico de red

La Figura 0.6 muestra la variación en el número de mensajes generados por
el protocolo de coherencia, normalizado respecto a un protocolo de directo-
rio que usa caches de directorio ilimitadas con un código de compartición full-

map (Unlimited-FullMap). Además mostramos resultados para Unlimited-CV-4 y
Unlimited-LP-2 que representan protocolos con caches de directorio ilimitadas
y con códigos de compartición comprimidos (coarse vector [44] y limited point-

ers [26], respectivamente). Por último, mostramos resultados para protocolos
que usan nuestra organización de directorio escalable, usando reemplazos tradi-
cionales tanto de bloques compartidos como modificados (DupTag-Base), ha-
ciendo implícitos los reemplazos compartidos (DupTag-ImplicitSh), y realizando
todos los reemplazos de forma implícita (DupTag-ImplicitAll).

En primer lugar podemos observar que el uso de códigos de compartición
comprimidos incrementa el tráfico en la red, debido a un aumento en el número
de invalidaciones enviadas por cada fallo. Por otro lado, el uso de tags du-
plicados requiere la notificación de reemplazos en estado compartido, lo que
incrementa el tráfico debido a los reemplazos. Los reemplazos implícitos eli-
minan completamente este tráfico, reduciendo así el tráfico de red en un 13%
comparado con un protocolo que no informa de los reemplazos de bloques en
estado compartido y hasta un 33% cuando sí se informa de estos reemplazos.

43



0. Resumen

0.4 Protocolos de coherencia directa

Otro problema importante de los protocolos de directorio es la indirección en
el acceso al nodo home. El acceso al nodo home para obtener la información
de directorio causa elevadas latencias en los fallos de cache, degradando el
rendimiento final del sistema. Por otro lado, existen otros protocolos que elimi-
nan esta indirección, como por ejemplo Token-CMP, pero que a cambio generan
una cantidad de tráfico muy importante, especialmente cuando el número de
nodos del sistema es elevado.

Esta tesis presenta los protocolos de coherencia directa, una nueva familia de
protocolos de coherencia de cache que eliminan la indirección para la mayoría de
los fallos de cache, tal y como ocurre con Token-CMP, pero enviando la petición
a un único destinatario, como hacen los protocolos de directorio. En particular,
proponemos y evaluamos un protocolo basado en el concepto de coherencia
directa para tiled CMPs que llamamos DiCo-CMP.

Los protocolos de coherencia directa, explicados en la Sección 0.4.1, asignan
la tarea de almacenar la información de directorio y de ordenar las peticiones de
los diferentes procesadores sobre un mismo bloque de memoria a la cache que
provee el bloque en cada fallo. El nodo que contiene esa cache se llama nodo
owner o propietario. La indirección se evita enviando la petición de fallo de
cache directamente al nodo propietario, de ahí el nombre de coherencia directa.
De este modo, la coherencia directa reduce la latencia de los fallos de cache
respecto a un protocolo de directorio, ya que envía la petición directamente al
nodo que debe proveer el dato, a la vez que reduce el tráfico en la red respecto
a Token-CMP, puesto que la petición es enviada a un único destinatario.

Además, dado que la organización de directorio escalable propuesta en la
sección anterior no puede ser utilizada para organizar el código de comparti-
ción en los protocolos de coherencia directa, hemos estudiado el uso de diversos
códigos comprimidos para estos protocolos (Sección 0.4.2), con el fin de reducir
no sólo la indirección y el tráfico en la red, sino también la sobrecarga de memo-
ria requerida por estos protocolos.

Los resultados, presentados en la Sección 0.4.3, muestran que DiCo-CMP

reduce el tiempo de ejecución de las aplicaciones en un 9% (media de todas las
aplicaciones) comparado con un protocolo de directorio, y un 8% comparado
con Token-CMP. Además, reduce el tráfico en la red de interconexión, y por
tanto el consumo de energía, hasta en un 37% comparado con Token-CMP.

Por otro lado, el uso de códigos de compartición comprimidos junto con los
protocolos de coherencia directa ofrecen un buen compromiso entre tráfico de
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Figura 0.7: Cómo se resuelven los fallos de transferencia de cache a cache en un
protocolo de directorio y en un protocolo de coherencia directa. R=Requester o
peticionario; H=Home; D=Directorio; O=Owner o propietario.

red y área requerida, sin degradar sustancialmente el tiempo de ejecución. En
particular, un código de compartición basado en árboles binarios [1] (DiCo-BT)
obtiene importantes reducciones en la sobrecarga de memoria respecto a DiCo-

CMP, reduciendo además su orden de crecimiento de O(n) aO(log2n), a cambio
de incrementar ligeramente el tráfico en la red en un 9%.

0.4.1 La coherencia directa

En los protocolos de directorio, la coherencia de cache es mantenida por el nodo
home y todos los fallos de cache son enviados a dicho nodo, el cual debe redirigir
la petición al nodo propietario. Esto introduce el problema de la indirección,
que provoca fallos de cache con mayor latencia. En contrapartida, la coherencia
directa almacena la información de coherencia en el nodo propietario de cada
bloque y asigna la tarea de mantener la coherencia a dicho nodo. De este modo
la indirección se puede evitar si el nodo que comete el fallo envía la petición
directamente al propietario del bloque en lugar de al nodo home.

Las figuras 0.7 y 0.8 comparan cómo se resuelven dos tipos distintos de fallos
de cache tanto en un protocolo de directorio como en los protocolos de coheren-
cia directa, indicado los números el orden en el que se generan los mensajes.
En estas figuras se pueden apreciar las principales ventajas de los protocolos de
coherencia directa sobre los protocolos de directorio, que son las siguientes.

• Consiguen que un mayor número de fallos se resuelvan en solamente dos
saltos, en lugar de en tres (el mensaje Unbl, que aparece en los protocolos
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Figura 0.8: Cómo se resuelven los fallos por actualización (upgrades) en un pro-
tocolo de directorio y en un protocolo de coherencia directa. O=Owner o propie-
tario; H=Home; D=Directorio; S=Sharers o compartidores.

de directorio, se encuentra fuera del camíno crítico del fallo), reduciendo
así su latencia.

• Eliminan los mensajes de comunicación entre el nodo propietario y el nodo
home ya que el mantenimiento de la coherencia de caches y el envío de los
datos se realizan ahora en un único nodo.

• Reducen el tiempo de espera de las otras peticiones al mismo bloque, como
consecuencia de eliminar el tiempo que se pierde en la comunicación entre
el nodo propietario y el nodo home. Aunque este tiempo se encuentra
fuera del camino crítico del fallo, sí que afecta a los siguientes fallos sobre
el mismo bloque.

Para implementar los protocolos de coherencia directa se requieren una serie
de cambios en la organización de los nodos del sistema. En primer lugar, toda
cache que pueda ser propietaria de un bloque debe ser capaz de almacenar el
código de compartición de dicho bloque. Por tanto, es necesario ampliar la parte
de las etiquetas (tags) de las caches de primer nivel con un nuevo campo para al-
macenar los compartidores (las caches de segundo nivel ya incluyen este campo
en un protocolo de directorio). En cambio, la coherencia directa no necesita
almacenar esta información en la estructura de directorio del nodo home.

Al contrario que en un protocolo de directorio, en la coherencia directa el
nodo que mantiene la coherencia no es fijo ya que los fallos de escritura pueden
provocar que el nodo propietario cambie. Se necesita, por tanto, un mecanismo
para poder identificar al nodo propietario en cualquier momento. Para ello, es
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necesario añadir dos estructuras que almacenan información que identifica al
nodo propietario (log2n bits), como se puede apreciar en la parte derecha de la
Figura 0.9:

• Cache de coherencia de primer nivel (L1C$): Esta cache almacena información
sobre los nodos propietarios de un conjunto de bloques y es accedida por
el procesador que genera la petición al producirse un fallo de cache. Si la
información sobre el propietario del bloque solicitado está almacenada en
la cache, se enviará la petición directamente a dicho nodo. Esta cache se
puede actualizar de diversas maneras dependiendo del tráfico de red que
se desee generar, tal y como se explicará más adelante.

• Cache de coherencia de segundo nivel (L2C$): Esta cache es necesaria debido a
que el nodo encargado de mantener la coherencia puede cambiar durante
la ejecución de las aplicaciones. En esta cache se almacena la identidad ac-
tual del nodo propietario para todos los bloques almacenados en cualquier
cache privada. La información almacenada debe ser actualizada en cada
cambio de propietario mediante mensajes de control.

0.4.1.1 Evitando la inanición

En los protocolos basados en directorio se consigue evitar la inanición encolando
las peticiones en el nodo encargado de ordenarlas (el nodo home) y procesán-

47



0. Resumen

dolas en orden FIFO (first in, first out). Sin embargo en los protocolos de co-
herencia directa el nodo que ordena las peticiones es el nodo propietario, el
cual puede cambiar ante una petición de escritura. Debido a esta situación, una
petición puede tardar algún tiempo en encontrar el nodo propietario, incluso
aunque la petición la envíe el nodo home. Además, una vez encontrado el pro-
pietario este puede moverse a otro nodo debido a una petición anterior, y por
tanto sería necesario tener que encontrarlo de nuevo. Esto puede provocar inani-
ción, es decir que unas peticiones se resuelvan rápidamente mientras que otras
permanezcan buscando al propietario mucho más tiempo.

Para solucionar este problema proponemos detectar y evitar la inanición de
un modo muy simple. Cada vez que una petición llega al nodo home se incre-
menta un contador incluido en el mensaje. Cuando este contador alcanza un
cierto umbral, se marca la petición como en estado de inanición y se procede a
procesarla lo antes posible. Siempre que se detecte una petición en estado de
inanición se impide que el propietario del bloque solicitado por dicha petición
cambie de un nodo a otro. De esta manera se garantiza que el nodo home sea
capaz de encontrar el propietario y resolver el fallo.

0.4.1.2 Actualizando la cache de coherencia de primer nivel

Como comentábamos, los protocolos de coherencia directa usan la cache de co-
herencia de primer nivel (L1C$) para evitar la indirección al nodo home. Esta
cache almacena infomación imprecisa acerca del nodo propietario de un con-
junto de bloques y puede ser actualizada de diversas maneras.

Una primera política consitiría en almacenar la identidad del último proce-
sador que invalidó o proporcionó cada bloque. Este procesador será el propie-
tario mientras otro no solicite permiso de escritura para ese bloque o sea reem-
plazado por otro bloque. A esta política la hemos llamado Base y no introduce
tráfico extra en la red de interconexión.

Otra política alternativa, que incrementa el tráfico en la red mediante el uso
de mensajes de control extra, consistiría en enviar hints o pistas a modo de
mensajes de control informando del cambio de propietario a un conjunto de
compartidores frecuentes, por ejemplo, los procesadores que han solicitado el
bloque con anterioridad o han fallado en la predicción. A esta política la hemos
llamado Hints. Particularmente, hemos implementado dos políticas de hints. La
primera de ellas, Hints-FS (Frequent Sharers), añade un código de compartición
junto al que ya acarrea el protocolo, el cual almacena la identidad de todos los
procesadores que han solicitado cada bloque. De este modo, ante un cambio de
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propietario, se envían mensajes de hint a todos estos nodos informando acerca
del cambio. Como esta propuesta requiere una cantidad de memoria extra con-
siderable (la adición de un nuevo código de compartición), hemos propuesto
un mecanismo de hints basado en address signatures [25, 121] (Hints-AS). Cada
signature almacena las direcciones de los bloques para las cuales se ha predicho
incorrectamente el nodo propietario. Cuando estos bloques cambian de propie-
tario se envían hints a todos los núcleos del sistema. Este mecanismo mantiene
información menos precisa que el anterior y, por consiguiente, genera un poco
más de tráfico a cambio de reducir significativamente el área requerida.

0.4.2 Reducción de la sobrecarga de memoria

Como hemos comentado en la sección anterior, DiCo-CMP necesita dos estruc-
turas que mantienen información acerca de propietario de cada bloque. Puesto
que cada entrada de estas estructuras almacena solamente el tag y un puntero
al propietario (log2n bits), tienen un orden de crecimiento bajo –O(log2n)–. El
problema aparece con el código de compartición añadido a cada entrada de
las caches de datos. Si este código es un full-map, el protocolo dejaría de ser
escalable en cuanto al área necesaria para implementarlo. Es por ello que pro-
ponemos el uso de códigos de compartición comprimidos en DiCo-CMP.

En concreto, hemos evaluado DiCo-CMP con los códigos de compartición
mostrados en la Tabla 0.2, en la que se presentan, además, el número de bits
requeridos por cada campo de la información de coherencia del protocolo y
el orden de crecimiento total en cuanto al área. Como todos los protocolos
de coherencia directa precisan de las caches de coherencia, el menor orden de
crecimiento será O(log2n).

Tabla 0.2: Bits requeridos para almacenar la información de coherencia.

Protocolo
Código de
Compartición

Bits cache L1 Bits L1C$
Orden

y cache L2 y L2C$

DiCo-FM Full-map n log2n O(n)
DiCo-CV-K Coarse vector n

K log2n O(n)
DiCo-LP-P Limited pointers 1+ P× log2n log2n O(log2n)
DiCo-BT Binary Tree ⌈log2(1+ log2n)⌉ log2n O(log2n)
DiCo-NoSC Ninguno 0 log2n O(log2n)
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DiCo-FM implementa un código de compartición preciso (full-map). DiCo-CV-

K reduce el tamaño del código de compartición usando un coarse vector [44], en
el que cada bit representa un grupo de K nodos, en lugar de sólo uno. Aunque
reduce el tamaño, su orden de crecimiento sigue siendo O(n). Concretamente
usamos un valor de K igual a 2. DiCo-LP-P usa un esquema de punteros limita-
dos (limited pointer [26]), en el que se almacenan un número limitado de punteros
que representan a los primeros compartidores. Cuando el número de compar-
tidores es mayor que el número de punteros se envían las invalidaciones a todos
los nodos del sistema. Este esquema crece en orden O(log2n). Concretamente
usamos un valor de P igual a 1. DiCo-BT usa un código de compartición basado
en un árbol binario, o binary tree [1], en el que los nodos son conceptualmente
agrupados de manera recursiva en grupos de dos elementos, formando así un
árbol binario. La información que se almacena en el código de compartición
consiste en el menor nivel del árbol que abarca todos los compartidores. Este
código de compartición requiere sólo 3 bits en un CMP de 16 nodos. Por último,
DiCo-NoSC (no sharing code) no emplea ningún código de compartición y por
tanto envía las invalidaciones a todos los nodos del sistema ante un fallo de es-
critura para un bloque con más de un compartidor. Aunque es el esquema que
más tráfico genera, tiene la ventaja de que no requiere modificar la estructura
de las caches de datos.

0.4.3 Resultados

En esta sección comparamos DiCo-CMP con otros protocolos existentes tanto en
la literatura como en los multiprocesadores comerciales: Hammer [92], Directorio

[38] y Token [78]. Sus características, junto con las de los protocolos de coherencia
directa (DiCo), están resumidas en la Tabla 0.3. En particular, en esta sección
mostramos los resultados para la implementación de DiCo-CMP que usa un
mecanismo de hints por medio de address signatures y que emplea los diferentes
tipos de códigos de compartición presentados en la sección anterior.

En primer lugar mostramos resultados referentes a la sobrecarga de memo-
ria, después las reducciones en el tráfico de red y, por último, el impacto final
en el tiempo de ejecución de las aplicaciones.

0.4.3.1 Sobrecarga de memoria

La Figura 0.10 muestra la sobrecarga de memoria de los protocolos evaluados.
Esta sobrecarga se muestra variando el número de nodos del sistema desde 2
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Tabla 0.3: Resumen de los protocolos evaluados.

Broadcast Indirección

Hammer Sí Sí
Token Sí No
Directorio No Sí
DiCo No No

2 4 8 16 32 64 128 256 512 1024

Nodos

0.0

2.0
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10.0

12.0

14.0
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Hammer
Directory
Token
DiCo-FM

DiCo-CV-2
DiCo-LP-1
DiCo-BT
DiCo-NoSC

Figura 0.10: Sobrecarga del área de directorio en mm2 en función del número de
nodos.

hasta 1024. Hammer es el protocolo que menos sobrecarga tiene, ya que no
mantiene ninguna información acerca de los compartidores. El protocolo de
directorio (Directory) almacena la información tanto en los tags de la cache L2
como en las caches de directorio. Como consideramos un código full-map para
este protocolo, se requieren n bits por entrada y, por tanto, su tamaño crece
linealmente con el número de nodos. Token mantiene el conteo de los tokens
que posee cada bloque junto con dicho bloque. Por tanto añade a las caches
L1 y L2 un nuevo campo de ⌈log2(n + 1)⌉ bits para contar tanto los non-owner

tokens como el owner token. En este protocolo, el área requerida escala de forma
aceptable.

Aunque vemos que DiCo-CMP es el protocolo que más sobrecarga intro-
duce cuando usa un código de compartición full-map (DiCo-FM), si se consideran
otros códigos de compartición comprimidos, esta sobrecarga se puede reducir
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Figura 0.11: Tráfico de red normalizado.

de forma significativa. Así, vemos que DiCo-CV-2 requiere menos área, pero
es todavía poco escalable. En cambio, DiCo-LP-1, que añade sólo un puntero a
cada entrada de cache, tiene mejor escalabilidad. DiCo-BT reduce más el área
requerida, por debajo incluso de las necesidades de Token. Por último, DiCo-

NoSC, que no necesita modificaciones en las caches, obtiene resultados similares
a Hammer.

0.4.3.2 Tráfico de red

La Figura 0.11 compara el tráfico de red generado por todos los protocolos eva-
luados. Cada barra muestra el número de bytes transmitidos por cada switch de
la red de interconexión, normalizado respecto al protocolo Hammer.

Como cabía esperar, Hammer es el protocolo que más tráfico genera, ya que
no almacena ninguna información acerca de los compartidores y, por consi-
guiente, necesita inundar la red con invalidaciones o peticiones de bloque ante
la mayoría de los fallos de cache. Además, todas estas peticiones requieren una
respuesta, que es enviada por cada nodo de manera independiente. Directory

reduce considerablemente el tráfico inyectado por el protocolo de coherencia,
ya que mantiene información precisa acerca de los compartidores. Token genera
más tráfico que Directory, pero menos que Hammer, ya que los nodos que no
poseen ningún token no tienen que responder a los mensajes de petición. DiCo-

FM incrementa el número de mensajes comparado con Directory debido al envío
de hints para mejorar las predicciones del nodo propietario y, así, el tiempo de
ejecución final de las aplicaciones.
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Figura 0.12: Tiempo de ejecución normalizado.

En general podemos ver que al usar un código de compartición más com-
primido, el número de mensajes inyectados en la red se va aumentando. Así,
DiCo-LP-1, DiCo-BT y DiCo-NoSC incrementan el tráfico en un 5%, 9% y 19%
comparado con DiCo-FM, respectivamente. Incluso DiCo-NoSC, que no nece-
sita modificaciones en la estructura de las caches de datos, obtiene un tráfico
aceptable, reduciendo los números obtenidos por Token en un 25%.

0.4.3.3 Tiempo de ejecución

La Figura 0.12 muestra los resultados en tiempo de ejecución para las aplica-
ciones evaluadas en esta tesis. Estos resultados han sido normalizados respecto
a los obtenidos por el protocolo Hammer.

Podemos observar queDirectorymejora el rendimiento deHammer para todas
las aplicaciones, debido a las reducciones en tráfico y en latencia, ya que hay
que esperar un menor número de confirmaciones. Token mejora ligeramente los
números obtenidos por Directory (1%), ya que evita la indirección, pero a su vez
incrementa el tráfico en la red, lo que puede incrementar su congestión.

Finalmente, los protocolos de coherencia directa obtienen mejoras significa-
tivas en tiempo de ejecución. DiCo-FM mejora en un 17%, 9% y 8% los tiempos
obtenidos por Hammer, Directory y Token, respectivamente. Por otro lado, el uso
de códigos de compartición comprimidos no incrementa considerablemente el
tiempo de ejecución de la mayoría de las aplicaciones. En particular, DiCo-NoSC,
que es el protocolo de coherencia directa que peor tiempo de ejecución obtiene,
sólo empeora respecto a DiCo-FM en un 2% de media.
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0. Resumen

0.5 Política de mapeo de caches sensible a la
distancia y a la tasa de fallos

Otro problema de aparece en los tiled CMPs de gran escala es la alta latencia de
acceso al nivel de cache compartida, en nuestro caso, la cache L2. Dado que en
un tiled CMP esta cache se encuentra físicamente distribuida entre los diferentes
nodos del sistema (cache NUCA), su tiempo de acceso dependerá de lo cerca
que se encuentre el nodo home del procesador que solicita el bloque de datos.

Cuando se usa una política de mapeo de caches en las que los bits menos
significativos de la dirección del bloque (sin contar el offset de bloque) definen el
nodo home de dicho bloque, los bloques se reparten entre los diferentes bancos
de cache de un modo cíclico round-robin, tal y como se lleva a cabo tanto en
CMPs actuales [63, 104] como en la literatura reciente [52, 123]. Esta distribu-
ción de bloques no se preocupa en absoluto de la distancia entre los bancos de
cache donde se mapean los bloques y los procesadores que más frecuentemente
acceden a ellos.

Otra forma de distribuir los bloques en las caches, propuesta por Cho y
otros [34], consiste en definir el nodo home usando bits más significativos de
la dirección del bloque, en concreto, un subconjunto de los bits que definen el
número de página física. De este modo, cuando el sistema operativo realiza
la traducción de página virtual a física, se puede elegir un número de página
física tal que el mapeo de dicha página corresponda al mismo nodo que solicitó
por primera vez el bloque. A esta política se le llama first-touch. La mejor
granularidad para esta política es la de página, ya que es la más fina de las que
posibilita esta política. Por tanto, se deben coger para la elección del nodo home

los bits menos significativos sin contar con el offset de página. El problema de
esta política consiste en que si la carga de trabajo de cada procesador no está bien
balanceada, habrá unos bancos de cache con muchas más páginas que otros, con
lo que se limitaría la capacidad total de la cache compartida y se incrementaría
la tasa de fallos de dicha cache, que normalmente es la última en la jerarquía de
memoria del chip y cause accesos costosos. Esto ocurre muy a menudo en los
servidores que ejecutan varias instancias de aplicaciones, con requerimientos
de memoria completamente distintos, en un mismo CMP. Por tanto, también
evaluaremos este tipo de situaciones mediante cargas multiprogramadas.

Como solución a este problema proponemos una política de mapeo de
caches, controlada por el sistema operativo, que sea sensible a la distancia y a
la tasa de fallos. Esta política, llamada DARR (distance-aware round-robin), es ex-
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plicada en la Sección 0.5.1. DARR intenta mapear páginas a los bancos de cache
que son locales al procesador que realiza la primera petición para un bloque de
esa página, pero a la vez intenta balancear la distribución de las páginas en los
diferentes bancos de cache. De este modo se reduce la latencia de acceso a la
cache sin incrementar excesivamente la tasa de fallos.

Sin embargo, las políticas manejadas por el sistema operativo que tienen en
cuenta esta distancia pueden incrementar la tasa de fallos de las caches privadas
si no se tiene cuidado. Esto ocurre cuando los bits que definen el nodo home son
los mismos que definen el conjunto de las caches privadas donde se almacena
cada bloque, tal y como se explica en el Sección 0.5.2. Para solucionar este
problema es necesario cambiar los bits usados para indexar las caches privadas,
evitando usar los mismos bits que identifican al nodo home.

Los resultados mostrados en la Sección 0.5.3 indican que mediante la combi-
nación de estas dos técnicas se pueden obtener mejoras en tiempo de ejecución
de un 5% para aplicaciones paralelas y de un 14% para cargas multiprogramadas
respecto a un política round-robin, reduciendo el tráfico en la red en un 31% con
aplicaciones paralelas y un 68% usando cargas multiprogramadas. Comparado
con una política first-touch se obtienen mejoras de un 2% para aplicaciones pa-
ralelas y de un 7% para cargas multiprogramadas, incrementando ligeramente
el tráfico en la red.

0.5.1 Mapeo sensible a la distancia y a la tasa de fallos

El algoritmo de mapeo que proponemos reduce la distancia media de acceso a
la cache L2 sin incrementar considerablemente su tasa de fallos. Además, otra
ventaja importante de este mecanismo es que no necesita ningún hardware extra
para ser implementado.

El encargado de manejar este mecanismo de mapeo es el sistema operativo.
Ante un fallo de página, el sistema operativo necesita asignar una dirección
física a la página accedida. Nuestro algoritmo elige una dirección física de tal
modo que mapee al banco de cache local al procesador que está accediendo al
bloque que provocó el fallo de página, tal y como se realizaría en una política
first-touch. El sistema operativo posee un contador para cada banco de cache que
le informa del número de páginas mapeadas a cada una de ellas. Al mapear una
nueva página a un banco de cache, su contador se incrementa.

Para garantizar la distribución uniforme de páginas a bancos de cache, se
define un umbral que limita la máxima diferencia de número de páginas ma-
peadas entre dos bancos cualquiera. Cuando un banco alcanza este umbral, ya
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1.P0 → 0x00

1 1

0 0

2.P1 → 0x01

1 1

0 0
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2 1

1 0

5.P0 → 0x03

1 0

0 0

6.P3 → 0x04

2 0

0 0

7.P0 → 0x05

Figura 0.13: Ejemplo de la política de mapeo propuesta.

no puede alojar más páginas y tiene que delegar el mapeo a un banco vecino,
es decir, a un banco que está a un salto según la topología de la red de interco-
nexión. Si los bancos vecinos también han alcanzado el valor umbral, la página
se intentará mapear a un banco que esté a dos saltos, y así sucesivamente hasta
encontrar un banco que pueda alojar la página. Cuando el contador de todos los
bancos es mayor que cero, se decrementan en una unidad todos los contadores,
con el fin de que nunca lleguen todos los bancos al umbral. Este umbral de-
fine el comportamiento del algoritmo. Si es muy bajo, su comportamiento será
similar a una política round-robin. Si por el contrario es muy alto, el algoritmo
funcionará de manera similar a una política first-touch.

La Figura 0.13 muestra, de izquierda a derecha, el comportamiento de este
algoritmo para un tiled CMP de 2×2 nodos con un valor umbral de dos. En
primer lugar, el procesador P0 accede a un bloque de la página 0x00, la cual no
se encuentra en memoria y provoca un fallo de página (1). El sistema operativo
elige una dirección física para esta página que mapee al banco perteneciente al
nodo 0. Además, el contador de este nodo se incrementa. Después, el proce-
sador P1 accede a la página 0x01 y se realiza una operación análoga a la anterior
(2). Cuando el procesador P1 accede a la página 0x00 no se realiza ninguna ac-
ción ya que no se produce un fallo de página (3). Posteriormente, el procesador
P0 accede a una nueva página, que se almacena en el banco 0, el cual alcanza el
valor umbral (4). Cuando este procesador vuelve a acceder a otra página, esta
deberá mapear a otro banco vecino, en este caso el local a P2 ya que posee el
valor más bajo (5). Más tarde, el procesador P3 accede a una página nueva, que
puede mapear a su banco local. Como ahora todos los valores son mayores que
cero, se decrementan todos en una unidad (6). De esta manera el procesador P0
puede volver a alojar una nueva página en su banco local (7).
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Figura 0.14: Cambios en los bits de indexación de las caches (O.P.=Offset de
página, O.B.=Offset de bloque).

0.5.2 Cambio en los bits de indexación de las caches

Como comentábamos, las políticas que son manejadas por el sistema operativo
de la forma propuesta por Cho y otros [34] que además son sensibles a la distan-
cia pueden tener un efecto negativo en la tasa de fallos de las caches privadas.
La Figura 0.14(a) muestra tanto el indexado usado por las caches privadas (la
cache L1 en nuestro caso) como por la compartida (la cache L2). Decíamos que
es importante usar la menor granularidad de intercalado posible, con el fin de
obtener una mayor reducción en la distancia media de acceso a los bancos de
la cache L2. Además, los bits usados para indexar las caches privadas suelen
ser los menos significativos, como se muestra en la Figura 0.14(a). Cuando estos
bits se sobreponen, se puede provocar un incremento de la tasa de fallos de las
caches L1, debido al siguiente motivo.

En la Figura 0.14(b) se puede apreciar que una política sensible a la distancia
intenta mapear los bloques pedidos por el procesador Po al banco 0, cambiando
estos bits al elegir la dirección física. De este modo, la mayoría de los bloques
accedidos por este procesador van a tener esos bits a 0, y por tanto caerán todos
en los mismos conjuntos de la cache, provocando así un incremento de los fallos
por conflicto.
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0. Resumen

Este problema se acentúa más cuanto más agresiva es la política en términos
de reducción de distancia. Por tanto, proponemos evitar estos bits y usar los si-
guientes menos significativos, como se muestra en la Figura 0.14(c). Este cambio
mejora la utilización de las caches L1 y, por consiguiente, la tasa de aciertos y
el tiempo de ejecución de las aplicaciones. Por esta razón, en la evaluación de
nuestra política de mapeo y de la first-touch usamos este mecanismo de indexado
para las caches L1.

0.5.3 Resultados

Debido a que en los servidores de aplicaciones es muy frecuente encontrar des-
balanceo en el conjunto de trabajo de los procesadores y el mecanismo pro-
puesto intenta realizar un balanceo adecuado de la memoria usada por el sis-
tema, añadimos a la evaluación de esta tesis cargas multiprogramadas, las cuales
evaluamos teniendo en cuenta un CMP con 32 nodos.

En primer lugar mostramos el tiempo de ejecución de las aplicaciones para
las dos políticas base explicadas anteriormente (round-robin y first-touch) y nues-
tra propuesta con diferentes valores para el umbral (entre 20 y 210). Del mismo
modo, mostramos las diferencias de tráfico de red para todas estas políticas.

0.5.3.1 Tiempo de ejecución

La Figura 0.15 muestra los resultados en tiempo de ejecución normalizados
con respecto a la política round-robin. La política first-touch mejora los tiempos
obtenidos por round-robin para aplicaciones con homogeneidad en el conjunto
de trabajo accedido por los diferentes procesadores que forman el sistema, como
es el caso de Barnes, FFT, Ocean, Water-Nsq, Ocean4 y Radix4. Por el contrario,
cuando esta distribución es heterogénea, como sucede en Radix, Raytrace, Mix4 y
Mix8, la política first-touch sufre un degradación en el rendimiento debido a un
aumento en la tasa de fallos de la cache L2. Podemos ver que nuestra propuesta
(DARR) obtiene un rendimiento óptimo para valores del umbral entre 64 y 256.

De este modo se obtienen mejoras de un 5% de media para las aplica-
ciones paralelas y un 14% para las cargas multiprogramadas comparado con
una política round-robin. Si nos comparamos con la política first-touch obtene-
mos un 2% de mejora para las aplicaciones paralelas y un 7% para las cargas
multiprogramadas.
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Figura 0.15: Tiempo de ejecución normalizado.

0.5.3.2 Tráfico de red

La Figura 0.16 compara el tráfico de red para las políticas evaluadas en esta
sección. Los resultados están normalizados con respecto a la política round-robin,
que es la que más tráfico genera, ya que no tiene en cuenta la distancia. Por
otro lado, podemos apreciar que el tráfico puede ser tremendamente reducido
cuando se implementa una política first-touch. Estas reducciones son de un 34%
considerando aplicaciones paralelas y hasta 79% para cargas multiprogramadas,
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Figura 0.16: Tráfico de red normalizado.

ya que la mayoría de los bloques sólo son accedidos por una pequeña región del
chip.

La política que proponemos (DARR) reduce el tráfico respecto a round-robin

en todos los casos, hasta para un valor umbral de 1. Al aumentar este valor
las reducciones se acentúan aún más. Podemos observar que para un valor
umbral de 256, que obtiene un buen rendimiento en tiempo de ejecución, el
tráfico generado se reduce un 31% para aplicaciones paralelas y un 68% para
cargas multiprogramadas comparado con una política round-robin. Obviamente
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la política first-touch reduce el tráfico respecto a nuestra política, pero a cambio
de incrementar la tasa de fallos de la cache L2.

0.6 Conclusiones y vías futuras

Las arquitecturas tiled CMP han surgido recientemente como una alternativa
escalable a los CMPs con un reducido número de nodos y probablemente los fu-
turos CMPs tengan este diseño. Por otro lado, el mantenimiento de la coherencia
de cache en los CMPs actuales se realiza usando técnicas similares a las usadas
en los multiprocesadores tradicionales. Sin embargo, las nuevas restricciones de
área y consumo de los CMPs demandan soluciones innovadoras para problema
de la coherencia.

En esta tesis hemos presentado diversas propuestas que se centran en mejo-
rar el rendimiento y escalabilidad de los futuros CMPs a través de la opti-
mización de los diferentes mecanismos que afectan a la coherencia de las caches.
En particular, hemos propuesto una organización de directorio distribuido es-
calable, un mecanismo de reemplazos que reduce el número de mensajes de
coherencia emitidos por el protocolo, una nueva familia de protocolos de co-
herencia que evitan la indirección al nodo home a la vez que generan poco trá-
fico de red, y una política de mapeo para caches NUCA, lógicamente compartida
pero físicamente distribuida, que mejora su latencia de acceso sin incrementar la
tasa de fallos. Todas estas propuestas mejoran sensiblemente las prestaciones de
los CMPs, ya sea en términos de tiempo de ejecución, tráfico de red o área de-
mandada por el protocolo de coherencia, que constituyen las restricciones más
destacadas que impondrán los futuros CMPs.

Pero el trabajo de esta tesis no acaba aquí, ya que deja abiertas numerosas
vías futuras en el ámbito de la coherencia de caches. Por ejemplo, sería intere-
sante el estudio de los protocolos coherencia directa con redes de interconexión
heterogéneas [32], ya que la política de hints incrementa el tráfico en la red
con mensajes que están fuera del camino crítico del fallo. Por otro lado, la opti-
mización de los protocolos de coherencia directa para servidores de aplicaciones
podría traer importantes beneficios ya que la información de directorio de cada
bloque siempre estaría en la región abarcada por la aplicación que accede al
bloque, en contra de lo que ocurre en un protocolo de directorio. Finalmente,
el estudio de los bits más convenientes para seleccionar el conjunto donde se
almacena un bloque en cache podría suponer mejoras en su tasa de aciertos.
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Chapter 1

Introduction and Motivation

Computers have evolved rapidly in the last decades. Advancements in semicon-
ductor manufacturing technologies, which allow for increased clock rates and
larger number of transistors in a single chip, have contributed to a great extent
to this evolution. Gordon E. Moore stated in 1965 that the number of transistors
per silicon area doubled every eighteen months due to the transistors getting
smaller every successive process technology [83]. This prediction, commonly
referred to as Moore’s Law, is still regarded as true.

Performance improvements in microprocessors have been partly caused by
the increase of the frequency at which the processor works. However, manu-
facturers also have to organize the growing number of transistors in an efficient
way to improve even more computers performance. In the past, hardware op-
timizations focused on increasing the amount of work performed in each cycle,
e.g., by executing multiple instructions simultaneously (instruction-level paral-
lelism or ILP). These optimizations led to deeply pipelined, highly speculative,
out-of-order processors with large on-chip cache hierarchies.

However, these optimizations made processors more complex up to the point
that obtaining slightly performance improvements requires an important num-
ber of extra transistors. Empirically, performance improvements have been close
to the square root of the number of required transistors [47]. Differently, both
area requirements and power consumption grow linearly with the number of
transistors. Since the existing techniques for achieving more ILP cannot obtain
significant performance improvements and physical constrains make increasing
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the frequency impractical, it seems that the end of the road for uniprocessor
microarchitectures is arriving [10].

Nowadays, billions of transistors are available in a single chip [81], and the
most efficient way of organizing this vast number of transistors is to integrate
multiple processing cores in the same chip. These multi-core or chip multipro-
cessors (CMPs) [91] try to improve system performance by exploiting thread-
level parallelism (TLP) while avoiding the technology issues of complex mono-
lithic processors by implementing multiple simpler processing cores. CMPs
have important advantages over very wide-issue out-of-order superscalar pro-
cessors. In particular, they provide higher aggregate computational power, mul-
tiple clock domains, better power efficiency, and simpler design. Additionally,
the use of simpler cores reduces the cost of design and verification in terms of
time and money. On the other hand, most contemporary CMPs are implemented
based on the well-known shared-memory model which is expected to be main-
tained in the future [65]. Recent examples of these CMPs are, among others,
the 2-core IBM POWER6 [63] and the 8-core Sun UltraSPARC T2 [104]. These
current CMPs have a relatively small number of cores (2 to 8), every one with at
least one level of private cache. These cores are typically connected through an
on-chip shared network (e.g., a bus or a crossbar).

Now that Moore’s Law will make it possible to double the number of pro-
cessing cores per chip every 18 months [22], CMP architectures that integrate
tens of cores (usually known as many-core CMPs) are expected for the near fu-
ture. In fact, Intel recently unveiled the 80-core Polaris prototype [15]. In these
many-core CMPs, elements that could compromise system scalability are unde-
sirable. One of such elements is the interconnection network. As stated in [59],
the area required by a shared interconnect as the number of cores grows has to
be increased to the point of becoming impractical. Hence, it is necessary to turn
to a scalable interconnection network.

Particularly, tiled CMP architectures [113, 123], which are designed as ar-
rays of identical or close-to-identical building blocks known as tiles, are the
scalable alternative to current small-scale CMP designs and will help in keep-
ing complexity manageable. In these architectures, each tile is comprised of a
processing core (or even several cores), one or several levels of caches, and a
network interface or router that connects all tiles through a tightly integrated
and lightweight point-to-point interconnection network (e.g., a two-dimensional
mesh). Differently from shared networks, point-to-point interconnects are suit-
able for many-core CMPs because their peak bandwidth and area overhead scale
with the number of cores. Figure 1.1 shows the organization of a tile (left) and
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Figure 1.1: Organization of a tile and a 4×4 tiled CMP.

a 16-tile CMP (right). Tiled CMPs can easily support families of products with
varying number of tiles, including the option of connecting multiple separately
tested and speed-binned dies within a single package. Therefore, it seems that
they will be the choice for future many-core CMPs.

This thesis assumes a tiled CMP model similar to the one depicted in Figure
1.1 both for explaining the proposed ideas and for evaluating them.

1.1 The cache coherence problem

Although CMP architectures are very suitable for throughput computing [29]
where several independent programs run in different cores, the success of CMPs
also relies on the ability of programmers and programs to extract thread-level
parallelism. Shared-memory multiprocessors are quite popular since the com-
munication among the different cores that conform the machine occurs implic-
itly as a result of conventional memory access instructions (i.e., loads and stores),
which makes them easier to program than message-passing multiprocessors. In
this way, all processing cores can read and write to the same shared address
space and they will eventually see changes done by other processors, according
to a particular memory consistency model [6].

Therefore, most CMP systems provide programmers with the intuitive
shared-memory programming model, which is very familiar to them. In fact,
most parallel software in the commercial market relies on this programming
model. Hence, we think that shared-memory multiprocessors will remain the
dominant architecture for a long time.
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Although processing cores logically access the same address space, CMPs
usually include one or several levels of caches which are private to each core.
On-chip cache hierarchies are crucial to avoid the increasing gap between pro-
cessor and memory speeds (the well-known memory wall problem [120]). Small
and, therefore, faster caches can capture the great majority of data accesses due
to the temporal and spatial locality of memory accesses exhibited by applica-
tions. The fast access to these caches reduces the average memory access latency.
Unfortunately, the implementation of the shared-memory programming model
is complicated by the existence of private caches.

Since processors store data in their private caches to take advantage of the
locality of memory accesses, several copies of those memory blocks are held in
different caches at the same time. Therefore, if a processing core modifies a data
block stored in its local private cache and the other cores do not notice it, they
could be accessing different values for the same data block, resulting in data in-
coherence. Caches are made transparent to software through a cache coherence
protocol. They ensure that writes to shared memory are eventually made visible
to all cores and also that writes to the same memory location appear to be seen
in the same order by all processors [41], even in presence of private caches. This
implies the exchange of data and access permissions among cores by means of
coherence messages that travel across the interconnection network. Supporting
cache coherence in hardware, however, requires important engineering efforts,
and performance of future parallel applications will depend upon the efficiency
of the protocol employed to keep cache coherence.

Although a great deal of attention was devoted to cache coherence protocols
in the last decades in the context of traditional shared-memory systems com-
prised of multiple single-core processors (e.g., cc-NUMA machines [38]), the
technological parameters and power constrains entailed by CMPs demand new
solutions to the cache coherence problem [22]. This thesis addresses among
other things possible solutions to this problem in this new context.

In general, there are several approaches to solve the cache coherence problem
in hardware. Snooping-based cache coherence protocols [38] typically rest on
one or several buses to broadcast coherence messages to all processing cores. In
this way, coherence messages go directly from the requesting cores to those ones
whose caches hold a copy of the corresponding memory block, which obtains
optimal cache miss latencies. Unfortunately, snooping-based protocols require
the total order property of the interconnection network to serialize requests from
different cores to the same memory block. Since point-to-point interconnects do
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not guarantee total order of messages, they are not suitable for implementing
snooping-based cache coherence protocols.

Some proposals have focused on using snooping-based protocols with un-
ordered networks. Martin et al. [76] present a technique that allows snooping-
based protocols to utilize unordered networks by adding logical timing to coher-
ence requests and reordering them at the destinations to establish a total order.
Later on, Martin et al. also propose TokenB coherence protocol [75] that avoids
the need of a totally ordered network by means of both token counting and
arbitration mechanisms. Although these proposals enable low-latency cache-to-
cache transfer misses, as snooping-based protocols, by using unordered inter-
connection networks, they also rely on broadcasting coherence actions, which
increases network traffic exponentially with the number of cores. This increase
in network traffic results in higher power consumption in the interconnection
network, which has been previously reported to constitute a significant fraction
(approaching 50% in some cases) of the overall chip power [71, 116]. Therefore,
the traffic requirements of broadcast-based protocols restricts their scalability,
and other solutions to the coherence problem are required for large-scale CMPs.

Directory-based cache coherence protocols [24, 38] have been typically em-
ployed in large-scale systems with point-to-point unordered networks (as tiled
CMPs are). In these protocols, each memory block is assigned to a home tile. The
home tile keeps the directory information (i.e., track of sharers) for its memory
blocks and acts as serialization point for the different requests issued by several
cores for the same block. When a cache miss takes place, the request is sent to
the corresponding home tile, which determines when the request must be pro-
cessed and, then, performs the coherence actions that are necessary to satisfy the
cache miss. These coherence actions mainly involves forwarding the request to
the cache that must provide the data block and sending invalidation messages
to all sharers in case of a write miss. Since the directory information is stored at
the home tile, invalidation messages are only sent to the tiles that must observe
them (i.e., the tiles sharing the requested block), thus reducing network traffic
compared to broadcast-based protocols.

Unfortunately, directory-based cache coherence protocols have two main is-
sues that limit their efficiency and scalability: the indirection of cache misses
and the directory memory overhead.

• The indirection problem is introduced by directory-based protocols be-
cause every cache miss must reach the home tile before any coherence
action can be performed. This indirection to the home tile adds unnec-
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essary hops into the critical path of the cache misses, finally resulting in
longer cache miss latencies compared to broadcast-based protocols, since
they directly send requests to sharers.

• The directory memory overhead required by directory-based protocols to
keep the track of sharers for each memory block could be intolerable for
large-scale configurations. The most common way of organizing the di-
rectory information is through a full-map or bit-vector sharing code (one
bit per core). In this case, the area requirements of the directory structure
grow linearly with the number of cores. For example, for a 64-byte (512
bits) block size, directory memory overhead for a system with 512 tiles is
100%, which is definitely prohibitive.

In this thesis we address these two problems separately. Particularly, we
design a novel family of cache coherence protocols aimed at avoiding the indi-
rection without relying on broadcasting requests. On the other hand, we study
how a directory organization based on duplicate tags can be fully scalable up to
a certain number of tiles.

1.2 Cache hierarchy organization

The increasing number of transistors per chip will be employed for allocating
more processing cores, as for example in the 8-core Sun UltraSPARC T2 [104],
but also for adding more cache storage, as happens, for example, in the dual-
core Intel Montecito [81] in which each core has its own 12MB L3 cache. Since
very large monolithic on-chip caches are not appropriate due to growing access
latency, power consumption, wire resistivity, thermal cooling, and reliability
considerations, caches designed for CMPs are typically partitioned into multiple
smaller banks.

On the other hand, an important decision when designing CMPs is how to
organize the multiple banks that comprises the last-level on-chip cache, since
cache misses at this level result in long-latency off-chip accesses. The two com-
mon ways of organizing this cache level, are private to the local core or shared

among all cores [68]. The private cache organization, implemented, for example,
in Intel Montecito [81] and AMD Opteron [56], has the advantage of offering a
fast access to the cache. However, it has two main drawbacks that lead to an
inefficient use of the aggregate cache capacity. First, local banks keep a copy of
the blocks requested by the corresponding core, potentially replicating blocks
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in multiple cache banks. Second, load balancing problems can appear when the
working set accessed by the cores is heterogeneously distributed among threads,
i.e., some banks may be over-utilized whilst others are under-utilized.

The shared cache organization logically manages all cache banks as a single
shared cache. This organization is implemented by several commercial CMPs,
such as IBM POWER6 [63], Sun UltraSPARC T2 [104] and Intel Merom [103].
The main perk of the shared design is that it achieves more efficient use of the
aggregate cache capacity (1) by storing only one copy of each block and (2) by
uniformly distributing data blocks across the different banks.

However, wire delay of future CMPs will cause cross-chip communications
to reach tens of cycles [49, 10]. Therefore, the access latency to a multibanked
shared cache will be dominated by the wire delay to reach each particular cache
bank rather than the time spent accessing the bank itself. In this way, the access
latency to the shared cache can be drastically different depending on the cache
bank where the requested block maps. The resulting cache design is what is
known as non-uniform cache architecture (NUCA) [57]. The main downside of
this organization is the long cache access latency (on average), since it depends
on the bank wherein the block is allocated, i.e., the home bank or tile for that
block. This thesis also addresses long NUCA latencies through a novel cache
mapping policy.

1.3 Thesis contributions

This thesis presents several contributions aimed at addressing the three main
constraints of cache coherence protocols for CMPs: area requirements, power
consumption and execution time. Particularly, we reduce area requirements by
minimizing the memory overhead of the directory structure in directory-based
protocols. Power consumption in the interconnection network is decreased ei-
ther by removing some coherence messages or by lowering the distance between
the source and the destination tiles. Finally, execution time is improved by re-
ducing the average cache miss latency. This reduction can be obtained by avoid-
ing the indirection of directory-based cache coherence protocols, by preventing
expensive off-chip accesses, or by reducing the average distance from the re-
questing core to the home tile.

The main contributions of this thesis are:

• A scalable distributed directory organization based on both managing the di-
rectory information as duplicate tags of the blocks stored in the private
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caches and using a particular interleaving for the mapping of memory
blocks to the different banks of the distributed shared cache. This direc-
tory organization can scale (i.e., its memory overhead does not increase
with the number of cores) up to a certain number of cores. The maximum
number of cores allowed depends on the number of sets of private caches.
When the number of cores is less or equal than the number of private
cache sets, the proposed organization requires a fixed size to store direc-
tory information, which is significantly smaller than the one required by a
full-map directory. Therefore, this proposal reduces the area requirements
of a directory-based protocol.

• An implicit replacements mechanism that allows the cache coherence pro-
tocol to remove all messages caused by replacements. This mechanism
requires a directory organization similar to the one previously mentioned.
The interleaving used by this directory organization forces that each cache
entry is associated to a particular directory entry. In this way, the request-
ing tile does not have to inform the directory about replacements because
the directory already knows which block is being replaced when the re-
quest for a new block arrives to it. Therefore, this proposal reduces the
total network traffic generated by the coherence protocol, which at the end
will result in savings in terms of power consumption.

• A new family of cache coherence protocols called direct coherence protocols
aimed at avoiding the indirection of traditional directory-based protocols,
but without relying on broadcasting requests. The key property of this
family of cache coherence protocols is that both the role of ordering re-
quests from different processors to the same memory block and the role
of storing the coherence information is moved from the home tile to the
tile that provides the data block in a cache miss, i.e., the owner tile. There-
fore, indirection is avoided by directly sending requests to the owner tile
instead of to the home one. Indirection avoidance reduces the number of
hops required to solve cache misses and, as a consequence, the average
cache miss latency. Moreover, we also study the traffic area trade-off of
direct coherence protocols by using compressed sharing codes instead of
full-map ones.

• A distance-aware round-robin mapping policy that tries to map memory
pages to the cache bank belonging to the core that most frequently ac-
cesses the blocks within that page. In this way, the average access latency
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to a NUCA cache is reduced. In addition, the proposed policy also in-
troduces an upper bound on the deviation of the distribution of memory
pages among cache banks, which lessens the number of off-chip accesses.
The mapping policy is managed by the OS and, therefore, it is performed
at the granularity of the page size. In this way, we reduce the average
cache miss latency and, consequently, applications’ execution time. Since
the distance between requesting cores and home tiles is reduced, an im-
portant fraction of network traffic is also saved.

• We have evaluated all the proposals presented in this thesis in a common
framework using full-system simulation. We have found that our propos-
als improve the performance of applications, reduce the network traffic or
save some extra storage required to keep coherence information.

All the contributions of this thesis have been published or are currently being
considered for publication in international peer reviewed conferences [95, 96, 97,
98, 99, 100], peer reviewed journals [102] or book chapters [101].

1.4 Thesis overview

The organization of the remainder of this thesis is as follows:

• Chapter 2 presents a background on cache hierarchy organizations and
cache coherence protocols for tiled CMPs. This chapter discusses several
choices when designing cache coherence protocols which we think that are
essential to ensure full understanding of the contents of this thesis.

• Chapter 3 describes the evaluation methodology employed throughout this
thesis. It discusses the tools, workloads and metrics used for the evaluation
of the proposed ideas.

• Chapter 4 faces the directory memory overhead problem. A scalable dis-
tributed directory organization for tiled CMPs is proposed. This chapter
also proposes the implicit replacements mechanism that allows the proto-
col to remove the coherence messages caused by evictions.

• Chapter 5 proposes direct coherence protocols, a family of cache coherence
protocols aimed at avoiding the indirection problem of directory-based
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protocols, but without relying on broadcast. We discuss the area require-
ments of direct coherence protocols, and some mechanisms that help to
avoid the indirection for a larger fraction of misses.

• Chapter 6 copes with the traffic-area trade-off in cache coherence protocols
by discussing and evaluating several implementations of direct coherence
protocols. These implementations differ in the amount of coherence in-
formation that they store. By using compressed sharing codes, the area
required by direct coherence protocols can be considerably reduced at the
cost of slightly increasing network traffic.

• Chapter 7 addresses the long cache access latencies to NUCA caches. Par-
ticularly, we propose an OS-managed mapping policy called distance-
aware round-robin mapping policy. Moreover, we show that the private
cache indexing commonly used in many-core architectures is not the most
appropriate for OS-managed distance-aware mapping policies, and we
propose to employ different bits for such indexing.

• Finally, Chapter 8 summarizes the main conclusions of the thesis and sug-
gests future directions to be explored.

Chapters 4, 5 and 7 also include descriptions of related works that can be
found in the literature on each one of the topics covered in this thesis.
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Chapter 2
Background

This chapter presents an overview of current cache coherence protocols and dis-
cuss several alternatives to design the cache hierarchy in tiled CMP architectures.
We explain the decisions taken for the base configuration used for the evaluation
of the ideas proposed in this thesis. Some of these aspects are further discussed
according to each one of the proposals and, therefore, it is fundamental to intro-
duce them previously.

Particularly, the chapter discusses the design choices that can be found in
the literature both for the organization of the last-level on-chip caches and for
the design of cache coherence protocols for tiled CMP architectures. Regarding
the cache hierarchy, we discuss the two main ways of organizing the last-level
on-chip cache, i.e., the private and the shared organizations. We also discuss the
inclusion properties between private and shared caches. With respect to cache
coherence protocols, we discuss several alternative protocols for the maintenance
of cache coherence and some variations for the design of these cache coherence
protocols.

First of all, we define the three main actors that take part in cache coherence
for a better understanding of the remaining document: requester, home and owner.

• Requester or requesting core. This is the core that accesses a block that
misses in its private cache and, as consequence, it generates a memory
request for that block. We also use the term requesting tile to refer to the
tile wherein that core is placed.
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• Home tile. Each memory block has a home tile. The home tile serializes
the requests for its memory blocks, and it also keeps cache coherence for
those blocks. Therefore, it stores the information necessary to keep cache
coherence.

• Owner tile or provider tile. It is the tile that holds the fresh copy of the
block, i.e., the tile that must provide a copy of the requested block in a
cache miss. We also name the cache that holds that copy as the owner
cache.

2.1 Private versus shared organization

As discussed in the introduction of this thesis, there are two major alternatives
for organizing the last-level on-chip cache in a tiled CMP [68]: the private orga-
nization and the shared organization. In this section we detail and analyze both
organizations for the L2 cache, which is the last-level on-chip cache for the CMP
organization considered in this thesis (see Figure 1.1).

The private organization is equivalent to simply shrinking a traditional
multi-chip multiprocessor (e.g., a cc-NUMA machine [62]) onto a single chip.
In this organization, the total L2 cache storage is partitioned into several banks
distributed among the processing cores. Each cache bank is private to a particu-
lar core. Therefore, each core can access its local L2 cache bank without going
across the on-chip interconnect and it attracts to its cache banks these memory
blocks that it requests. Blocks are stored in that cache as in a traditional one,
i.e., according to a set field (see Figure 2.1(a)). Cache coherence is maintained
at the L2 cache level and, consequently, upon an L2 cache miss, other private
L2 banks must be also consulted (depending on coherence information) to find
out if they have valid data or, otherwise, access off-chip. Some CMPs, as Intel
Montecito [81], AMD Opteron [56], or IBM POWER6 [63] organize the last-level
on-chip cache in this way.

On the other hand, in a shared organization, all the L2 cache banks are log-
ically shared among the processing cores, thus having the same address space.
Differently from the private configuration, in a distributed shared cache, blocks
can only be stored in a particular cache bank, i.e., the home bank. The home
bank of each block is commonly obtained from the address bits. Particularly, the
bits usually chosen for the mapping to a particular bank are the less significant
ones without considering the block offset [52, 104, 123]. Therefore, blocks are
stored in a distributed shared cache according to a set field and a home field
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Figure 2.1: Private and shared L2 cache organizations. Core 1 and Core 2 are
accessing the same memory block (Block i).

within the address of the block (see Figure 2.1(b)). Now, cache coherence is
maintained at the L1 cache level. This organization is implemented by several
CMPs, such as Piranha [16], Hydra [46], Sun UltraSPARC T2 [104] and Intel
Merom [103]. The latest developments of Intel and AMD also use the shared
organization for their last-level L3 caches (e.g., Intel Nehalem [53]).

Both organizations have perks and drawbacks. Specifically, the main advan-
tages usually claimed for the private cache organization are the following:

• Short L2 cache access latency: L2 cache hits usually take place in the local
cache bank of the requesting processor, thus reducing the latency in the
common case.

• Small amount of network traffic generated: Since the local L2 cache bank
can filter most of the memory requests, the number of coherence messages
injected into the interconnection network is limited.

However, this organization has some disadvantages with respect to the
shared organization. First, data blocks can get duplicated across the different
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L2 banks, which can lessen the on-chip storage utilization. Second, if the work-
ing set accessed by the different cores is not well-balanced, some caches can be
over-utilized whilst others can be under-utilized. This second factor can also
raise the number of off-chip accesses.

On the other hand, the shared organization makes better use of cache re-
sources. In this way, it achieves higher L2 cache hit rates and, therefore, it
reduces the number of costly off-chip accesses. This better cache utilization is
due to the following reasons:

• Single copy of blocks: A shared organization does not duplicate blocks in
the L2 cache because each block maps to a single cache bank.

• Workload balancing: Since the utilization of each cache bank does not
depend on the working set accessed by each core, but they are uniformly
distributed among cache banks in a round-robin fashion, the aggregate
cache capacity is augmented.

Unfortunately, the disadvantage of this organization is that although some
accesses to the L2 cache will be sent to the local cache bank, the rest will be
serviced by remote banks (L2 NUCA architecture), and this increases L2 cache
access latency. In addition, the access to a remote cache bank injects extra traffic
into the on-chip network.

We choose an L2 shared organization for the evaluation carried out in this
thesis because it achieves higher on-chip hit rate compared to the private config-
uration. Additionally, to make better use of the capacity of the on-chip caches,
we assume non-inclusive L1 and L2 caches. On the other hand, in this thesis
we address the long access latencies that NUCA caches introduce in some cases,
which makes this environment more appropriate for our work. However, our
ideas can also be employed with private L2 caches as we discuss in each chapter.
Particularly, a study about direct coherence protocols, presented in Chapter 5,
for cc-NUMA architectures with private L2 caches can be found in [97].

2.2 Cache coherence protocols

As discussed in the introduction of this thesis, allowing multiple processors that
access the same address space to store data in their private caches results in the
cache coherence problem. This problem is made transparent to software through
a cache coherence protocol implemented in hardware. There are two different
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policies that can be used to keep cache coherence, and based on them, we can
distinguish between invalidation- and update-based cache coherence protocols
[108, 109]. Upon a write request, invalidation-based protocols [43] require that
all sharers (except the requester) be invalidated. On the other hand, update-
based protocols [82] propagate the result of the write operation to all the shar-
ers. The main disadvantage of update-based protocols is the amount of network
traffic generated. Particularly, when a processing core writes a block multiple
times before another core reads the block, all updates must be notified, each
one in a different message. Although adaptive protocols can reduce this draw-
back [89], this is one of the main reasons why most recent systems implement
invalidation-based protocols and, therefore, this thesis only considers this kind
of cache coherence protocols.

Invalidation-based protocols must ensure the following invariant. At any
point in logical time, a cache block can be written by a single core or it can be
read by multiple cores. Therefore, if a processing core wants to modify a cache
block, this block has to be previously invalidated (revoking read permission)
from the other caches. Likewise, if a processing core wants to read a cache
block, write permission must be previously revoked if some cache had it.

When implementing a cache coherence protocol there are other important
design decisions that affect the final efficiency of the protocol. Next sections
discuss the choices that are more related to the research carried out in this thesis.

2.3 Design space for cache coherence protocols

There are several alternatives for designing cache coherence protocols depend-
ing on the states of the blocks stored in the private caches. These alternatives
have been commonly named according to the states that they employ: MOESI,
MOSI, MESI, MSI, etc. Each state represents different permissions for a block
stored in a private cache:

• M (Modified): A cache block in the modified state holds the only valid
copy of the data. The core holding this copy in its cache has read and write
permissions over the block. The other private caches cannot hold a copy
of this block. The copy in the shared L2 cache (if present) is stale. When
another core requests the block, the cache with the block in the modified
state must provide it.

77



2. Background

• O (Owned): A cache block in the owned state holds a valid copy of the
data but, in this case, another copies in shared state (not in the owned state)
can coexist. The core holding this copy in its cache have read permission
but cannot modify it. When this core tries to modify it, coherence actions
are required to invalidate the remaining copies. In this way, the owned
state is similar to the shared state. The difference lies in the fact that the
owned state is responsible for providing the copy of the block in a cache
miss, since the copy in the shared L2 cache (if present) is stale. Moreover,
evictions of blocks in owned state always entail writeback operations.

• E (Exclusive): A cache block in the exclusive state holds a valid copy of the
data. The other private caches cannot hold a copy of this block. The core
holding this copy in its cache can read and write it. The shared L2 cache
could also store a valid copy of the block.

• S (Shared): A cache block in the shared state holds the valid copy of the
data. Other cores may hold copies of the data in the shared state and one
of them in the owned state. If no private cache holds the block in the
owned state, the shared L2 cache has also a valid copy of the block and it
is responsible for providing it.

• I (Invalid): A cache block in the invalid state does not hold a valid copy of
the data. Valid copies of the data might be either in the shared L2 cache or
in another private cache.

Table 2.1: Properties of blocks according to their cache state.

Property

State Exclusiveness Ownership Validity

M
√ √ √

O χ
√ √

E
√

χ
√

S χ χ
√

I χ χ χ

Table 2.1 outlines the properties of memory blocks according to their state in
a private cache. Only the states M and E entail the exclusiveness of the block
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Figure 2.2: State transition diagram for a MSI protocol.

and, therefore, write permission. On the other hand, the states M and O imply
ownership of the block, i.e., a cache with a block in one of these states is the
owner cache for this block, and cache misses have to obtain the copy of the
requested block from this cache. Finally, all states except the I one indicate that
the copy of the block is valid, so the local core has at least read permission over
it.

The MSI states represent the minimum set that allows the cache coherence
protocol to ensure the invariant previously mentioned when write-back private
caches are used. Either a single processing core has read/write permissions for
the block, i.e., it caches the block in the state M, or multiple processing cores
have read permission for the block, i.e., they cache the block in the state S. Fig-
ure 2.2 shows the state transition diagram for a MSI cache coherence protocol.
Often, when a new block is stored in the cache, another block must be evicted
from the cache. Since evictions of blocks always result in the cache block tran-
sitioning to the I state we choose not to show these transitions in the diagram.
When a processing core needs read permission for a particular cache block (Rd)
it issues a GetS request if the it has not read permission for that block (Rd/GetS).
Otherwise, if the processing core has read permission for that block any request
is generated (Rd/-). On the other hand, when the processing core requires write
permission (Wr) it can send a GetX request. In the diagrams shown in Figures
2.2, 2.3 and 2.4, the normal arrows correspond to transitions caused by local re-
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Figure 2.3: State transition diagram for a MESI protocol.

quests while the dashed arrows represent transitions due to requests generated
by remote processing cores. Although the MSI protocol has a relatively sim-
ple design, it also introduces some inefficiencies that can be remedied with the
addition of the states E and O.

The exclusive or E state optimizes the MSI protocol for non-shared data.
Hence, it is essential to obtain good performance for sequential applications
running on a multiprocessor. Upon a read request, the requested block is stored
in cache in the exclusive state, instead of in the shared state. In this way, the
requesting processor obtains write permission for the block, and a subsequent
write request for this block will not fall into a cache miss (if no other processing
core requested the block). In this case, the block silently transition from the
exclusive state to the modified one. The main difference of the exclusive state
with respect to the modified one is that the block is clean and the shared cache
could store a valid copy of the block. In this way, when the block is in the
exclusive state it is not necessary to writeback the data block to the shared cache
neither in case of evictions nor in case of transitions to the shared state due to
read requests by other processing cores. Figure 2.3 shows the state transition
diagram for the MESI cache coherence protocol.

The owned state was introduced as an optimization of the MESI protocol
[112]. When a remote GetS is received by a core that caches the block in the
modified state, this state transitions to the owned one, instead of to the shared
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Figure 2.4: State transition diagram for a MOESI protocol.

one. The owned state is similar to the shared state with the difference that it
has a dirty copy of the block and, therefore, the shared cache does not need to
keep a coherent copy of the block. Thus, the addition of the owned state has the
following advantages.

• First, network traffic can be reduced by not requiring a processing core to
writeback the data block to the shared L2 cache when the block transitions
from the modified to the owned state on a read request. If another pro-
cessing core issues a write request for that block before it is evicted, the
writeback message is saved.

• Second, the shared L2 cache does not need to keep a copy for blocks in
the owned state, which can result in better utilization, thus reducing the
miss rate of the shared cache. Note that in CMPs with a shared cache
organization, the misses of the shared cache require off-chip accesses.

• Third, for some architectures cache misses can be solved more quickly by
providing data from private caches than from the shared cache. This is
mainly the case of the cc-NUMA machines [96, 102], where the shared
cache is represented by main memory, or CMPs with a private cache orga-
nization [27]. On the other hand, in CMPs with a shared cache organiza-
tion, the data block can be provided faster from the shared cache and, in
this case, this advantage can be dismissed.
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Figure 2.4 shows the state transition diagram for the MOESI cache coherence
protocol. The owned state also can be used without the exclusive state leading
to a MOSI protocol whose state transition diagram is not shown. All the cache
coherence protocols considered in this thesis assume MOESI states.

2.3.1 Optimization for migratory sharing

The MOESI protocol previously described is efficient for some sharing patterns,
but it is not optimized for the migratory-sharing pattern. According to Gupta
and Weber [117], the migratory-sharing pattern is followed by data structures
manipulated by only a single processing core at a time. Typically, such sharing
occurs when a data structure is modified within a critical section, e.g., protected
by locks.

Cache blocks that follow a migratory-sharing pattern are commonly read by
a processing core and subsequently written by the same core. Since the read
request for a modified or exclusive block does not give write permission in the
described MOESI protocol, two cache misses are involved in the migration of
the block. The first one obtains the data block and the second one invalidates
the other copy. Since both misses are sent to the cache associated with the core
that previously modified the block, the invalidation can be merged with the first
miss request. This optimization is called the migratory-sharing optimization
[36, 110], and it is implemented by all protocols evaluated in this thesis.

As commented, in the migratory-sharing optimization, a cache holding a
modified memory block invalidates its copy when responding for a migratory
read request, thus granting the requesting core read/write access to the block.
This optimization has been shown to improve substantially the performance of
many applications [36, 110].

2.4 Protocols for unordered networks

As introduced at the beginning of this document, traditional snooping-based
protocols require an ordered interconnect to keep cache coherence, but such
interconnects do not scale in terms of both area requirements and power con-
sumption. In this section, we describe three cache coherence protocols aimed at
being used over unordered networks that either can be found in the literature
or have been implemented in commercial systems: Hammer, Token and Direc-

tory. We explain their particular implementation for tiled CMP architectures.
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These protocols have been used as base protocols for the evaluation of the ideas
presented in this thesis.

In the protocols implemented and evaluated in this thesis, evictions of clean
blocks from private caches are performed without generating any coherence
action (except for a protocol evaluated in Chapter 4 where informing about these
replacements is necessary). This kind of evictions are commonly called silent

evictions. However, upon evictions of dirty blocks the cache coherence protocol
needs to perform a writeback of the evicted block to the shared cache. Both
Hammer and Directory perform these evictions in three phases, i.e., it is necessary
an acknowledgement from the home tile before the writeback message with a
copy of the evicted data block can be sent. These three-phase evictions allow
these protocols to avoid complex race conditions. However, Token evicts dirty
blocks just by sending one message along with the tokens and the data block
to the home tile of that block. Likewise, direct coherence protocols, presented
in Chapter 5, can perform replacements by sending a single message without
suffering complex race conditions.

2.4.1 Hammer protocol

Hammer [92] is the cache coherence protocol used by AMD in their Opteron sys-
tems [11]. Like snooping-based protocols, Hammer does not store any coherence
information about the blocks held in the private caches and, therefore, it relies
on broadcasting requests to all tiles to solve cache misses. Its key advantage with
respect to snooping-based protocols is that it targets systems that use unordered
point-to-point interconnection networks. In contrast, the ordering point in this
protocol is the home tile, a fact that introduces indirection on every cache miss.

We have implemented a version of the AMD’s Hammer protocol for tiled
CMPs. As an optimization, our implementation adds a small structure to each
home tile. This structure stores a copy of the tag for the blocks that are held in
the private L1 caches. In this way, cache miss latencies are reduced by avoid-
ing off-chip accesses when the block can be obtained on-chip. Moreover, the
additional structure has small size and it does not increase with the number of
cores.

On every cache miss, Hammer sends a request to the home tile. If the memory
block is present on-chip1, the request is forwarded to the rest of tiles to obtain
the requested block, and to eliminate potential copies of the block in case of a
write miss. Otherwise, the block is requested to the memory controller.

1This information is given by the structure that we add to each home tile.
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Figure 2.5: A cache-to-cache transfer miss in each one of the described protocols.

All tiles answer to the forwarded request by sending either an acknowledge-
ment or the data message to the requesting core. The requesting core needs
to wait until it receives the response from each other tile. When the requester
receives all the responses, it sends an unblock message to the home tile. This
message notifies the home tile about the fact that the miss has been satisfied.
In this way, if there is another request for the same block waiting at the home
tile, it can be processed. Although this unblock message can introduce more
contention at the home tile, it prevents the occurrence of race conditions. This
message is also used to prevent race conditions in directory-based protocols,
which are described later.

Figure 2.5(a) shows an example of how Hammer solves a cache-to-cache trans-
fer miss. The requesting core (R) sends a write request (1 GetX) to the home tile
(H). Then, invalidation messages (2 Inv) are sent to all other tiles. The tile with
the ownership of the block (M) responds with the data block (3 Data). The other
tiles that do not hold a copy of the block (I) respond with acknowledgement
messages (3 Ack). When the requester receives all the responses, it sends the
unblock message (4 Unbl) to the home tile. First, we can see that this protocol
requires three hops in the critical path before the requested data block is ob-
tained. Second, broadcasting invalidation messages increases considerably the
traffic injected into the interconnection network and, therefore, its power con-
sumption.

2.4.2 Token protocol

Token coherence [75] is a framework for designing coherence protocols whose
main asset is that it decouples the correctness substrate from several different
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performance policies. Token coherence protocols can avoid both the need of a
totally ordered network and the introduction of additional indirection caused
by the access to the home tile in the common case of cache-to-cache transfers.
Token coherence protocols keep cache coherence by assigning T tokens to every
memory block, where one of them is the owner token. Then, a processing core
can read a block only if it holds at least one token for that block and has valid
data. On the other hand, a processing core can write a block only if it holds all
T tokens for that block and has valid data. Token coherence avoids starvation
by issuing a persistent request when a core detects potential starvation.

In this thesis, we use Token-CMP [78] in our simulations. Token-CMP is a per-
formance policy aimed at achieving low-latency cache-to-cache transfer misses.
It targets CMP systems, and uses a distributed arbitration scheme for persis-
tent requests, which are issued after a single retry to optimize the access to
contended blocks.

Particularly, on every cache miss, the requesting core broadcasts requests
to all other tiles. In case of a write miss, they have to answer with all tokens
that they have. The data block is sent along with the owner token. When the
requester receives all tokens the block can be accessed. On the other hand, just
one token is required upon a read miss. The request is broadcast to all other
tiles, and only those that have more than one token (commonly the one that has
the owner token) answer with a token and a copy of the requested block.

Figure 2.5(b) shows an example of how Token solves a cache-to-cache transfer
miss. Requests are broadcast to all tiles (1 GetX). The only tile with tokens
for that block is M, which responds by sending the data and all the tokens
(2 Data). We can see that this protocol avoids indirection since only two hops
are introduced in the critical path of cache misses. However, as happens in
Hammer, this protocol also has the drawback of broadcasting requests to all tiles
on every cache miss, which results in high network traffic and, consequently,
power consumption at the interconnect.

2.4.3 Directory protocol

Directory-based coherence protocols [24] have been widely used in shared-
memory multiprocessors. Examples of traditional multiprocessors that use di-
rectory protocols are the Standford DASH [64] and FLASH [60] multiprocessors,
the SGI Origin 2000/3000 [62], and the AlphaServer GS320 [42]. Now, several
Chip Multiprocessors, as Piranha [16] or Sun UltraSPARC T2 [104], also use
directory protocols to keep cache coherence.
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As happens in Hammer, the serialization point of directory-based protocols
is also the home tile of each block. In contrast, they avoid broadcasting requests
by keeping information about the state of each block in the private caches. This
information is called directory information (hence the name of directory-based
protocols). In order to accelerate cache misses, this directory information is not
stored in main memory. Instead, it is usually stored on-chip at the home tile of
each block.

The directory-based protocol that we have implemented for CMPs is simi-
lar to the intra-chip coherence protocol used in Piranha. In particular, the di-
rectory information consists of a full-map (or bit-vector) sharing code, that is
employed for keeping track of the sharers. This sharing code allows the proto-
col to send invalidation messages just to the caches currently sharing the block,
thus removing unnecessary coherence messages. In directory-based protocols
that implement the O state (see Section 2.3), an owner field that identifies the
owner tile is also added to the directory information of each block. The owner
field allows the protocols to detect the tile that must provide the block in case of
several sharers. In this way, requests are only forwarded to that tile. The use of
directory information allows the protocol to reduce considerably network traffic
when compared to Hammer and Token.

On every cache miss in the implemented directory protocol, the core that
causes the miss sends the request only to the home tile, which is the serialization
point for all requests issued for the same block. Each home tile includes an
on-chip directory cache that stores the sharing and owner information for the
blocks that it manages. This cache is used for the blocks that do not hold a
copy in the shared cache. In addition, the tags’ part of the shared cache also
include a field for storing the sharing information for those blocks that have a
valid entry in that cache. Once the home tile decides to process the request, it
accesses to the directory information and it performs the appropriate coherence
actions. These coherence actions include forwarding the request to the owner
tile, and invalidating all copies of the block in case of write misses.

When a tile receives a forwarding request it provides the data to the requester
if it is already available or, in other case, the request must wait until the data
will be available. Like in Hammer, all tiles must respond to the invalidation
messages with an acknowledgement message to the requester. Since acknowl-
edgement messages are collected by the requester, it is necessary to inform the
requester about the number of acknowledgements that it has to receive before
accessing the requested data block. In the implementation that we use in this
thesis, this information is sent from the home tile, which knows the number of
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invalidation messages issued, to the requester along with the forwarding and
data messages. When the requester receives all acknowledgements and the data
block, it unblocks the home tile in order to allow it to process more requests for
that block.

Figure 2.5(c) shows an example of how Directory solves a cache-to-cache
transfer miss. The request is sent to the home tile, where the directory informa-
tion is stored (1 GetX). Then, the home tile forwards the request to the provider
of the block, which is obtained from the directory information (2 Fwd). When the
data sent by the provider arrives to the requester (3 Data), the miss is considered
solved and the home tile must be unblocked (4 Unbl). As we can see, although
this protocol introduces indirection to solve cache misses (three hops in the criti-
cal path of the miss), few coherence messages are required to solve them, which
finally translates into savings in network traffic and less power consumption.
This characteristic makes the directory protocol the most scalable alternative.

2.4.4 Summary

Table 2.2: Summary of cache coherence protocols.

Network Requests Indirection

Snooping Shared interconnect To all tiles No
Hammer Point-to-point To all tiles Yes
Token Point-to-point To all tiles No
Directory Point-to-point Only to necessary tiles Yes

Table 2.2 summarizes the cache coherence protocols previously described.
Traditional snooping-based protocols are not suitable for scalable point-to-point
networks. Hammer can work over scalable point-to-point networks at the cost of
broadcasting requests to all tiles and introducing indirection in the critical path
of cache misses. Token avoids the indirection but still sends requests to all tiles on
every cache miss, which impacts on network traffic and power consumption. In
contrast, Directory just send requests to the tiles that must receive them, but it in-
troduces indirection, which impacts on applications’ execution time. In Chapter
5, we present a new family of coherence protocols that avoids both broadcasting
requests to all tiles and the indirection to the home tile for most cache misses.

87



2. Background

R O

H

1
G
etX 2

F
w
d

3 Data

4
U
nbl

(a) Requester unblocks.

R O

H

1
G
etX 2

F
w
d

3 Data

3
U

nb
l

(b) Owner tile unblocks.

Figure 2.6: Management of unblock messages for cache-to-cache transfer misses.

2.5 Sending unblock messages

In the directory-based protocol previously described, cache misses finish with
the requesting tile sending an unblock message to the home tile once data and
acknowledgements have been obtained. This message allows the home tile to
process the subsequent requests for the same block. However, there is another
alternative in which the unblock message is sent from the tile that provides the
data block on a cache miss, i.e., the owner tile [93]. Next, we discuss the pros
and cons of each approach:

• Requester unblocks: In this case, the home tile is unblocked when the cache
miss is completely solved, as shown in Figure 2.6(a). The main advantage
of this approach is the avoidance of race conditions due to overlapping
requests. The drawback is that the home tile cannot solve other requests
for the same block for longer time, which increases the waiting time of
subsequent requests at the home tile. This increase in the waiting time
finally translates into longer cache miss latencies.

• Owner tile unblocks: In this case, the tile that provides the block unblocks
the home tile, as shown in Figure 2.6(b). The advantage of this approach
is a slight reduction in terms of waiting time at the home tile, which can
accelerate subsequent cache misses. Note that the waiting time at the home
tile will be reduced from three hops to two hops in the critical path, which
does not represent a significant improvement.

The issue of this implementation is that the home tile can be unblocked
before the data block arrives to the requester. Then, if there is a request
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waiting at the home tile, it will be forwarded to the new owner of the
block, i.e, the one waiting to receive the data block. Likewise, invalidation
messages can also be sent to the new owner of the block in case of write
misses. If either the request or the invalidation messages arrive before than
the data block of the previous cache miss a race condition occurs, and it
could be difficult to find out if the data is coming or it has been already
evicted and requested again.

These race conditions are solved in the following way. Forwarded mes-
sages are always sent to the tile that has (or will have) the ownership of
the requesting block. Since the evictions of owner blocks are performed in
three phases requiring the confirmation of the home tile, the eviction is not
acknowledged by the home tile when there is an ongoing request for that
block. Therefore, if the tile that receives the forwarded message is not the
owner one, the data message has not arrived yet and, then, the forwarded
request can wait until it arrives.

On the other hand, invalidation messages are sent to the sharers without
the ownership property, and these blocks are evicted without any con-
firmation from the home tile (silent evictions). If a new request for the
evicted block is immediately issued, the protocol is no longer able to know
whether the data message is coming or the data block has been previ-
ously evicted. If the protocol incorrectly assumes that the block has been
evicted and it acknowledges the invalidation, it will lead to an incoherence.
Therefore, the assumption taken is that the data message is coming. Then,
when a invalidation arrives and the block is not present in the cache, the
acknowledge is immediately performed, but the incoming block (if any)
will not be kept in cache. This approach can lead to unnecessary (or pre-
mature) invalidations. If the core requesting the block wants to access it
several times, this approach will increase the cache miss rate.

Due to the issues of the second approach and its slight advantage, the direc-
tory protocols evaluated in this thesis implement the first approach. However,
for direct coherence protocols, which are described in Chapter 5, the advantages
of the second approach become more acute. First, the waiting time is reduced
from two hops in the critical path to none. And second, the unblock message
can be removed, thus saving network traffic and power consumption. Therefore,
direct coherence protocols implement the second approach.
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Chapter 3

Evaluation Methodology

This chapter presents the experimental methodology used for all the evaluations
carried out in this thesis. Experiments have entailed running several representa-
tive workloads on a simulation platform.

We have selected for the evaluation process the full-system simulator Vir-
tutech Simics [72] extended with Multifacet GEMS 1.3 [77] from the University
of Wisconsin. GEMS provides a detailed memory system timing model which
accounts for all protocol messages and state transitions. However, the intercon-
nection network modeled in GEMS 1.3 is not very detailed. Since, in this thesis,
we compare broadcast-based protocols with directory-based ones it is very im-
portant to model precisely the interconnection network for obtaining more accu-
rate results. Therefore, we have replaced the original network simulator offered
by GEMS 1.3 with SiCoSys [94], a detailed interconnection network simulator.
SiCoSys allows to take into account most of the VLSI implementation details
with high precision but with much lower computational effort than hardware-
level simulators. Finally, we have also used the CACTI 5.3 tool [115] to measure
both the area and latencies of the different caches employed for the evaluated
protocols.

We have used several parallel benchmarks from different suites to feed our
simulator. These benchmarks cover a variety of computation and communica-
tion patterns. We have employed several scientific applications which are mainly
from the SPLASH-2 benchmark suite [118]. We also evaluate multimedia appli-
cations from the ALPBench suite [66]. Finally, we also have analyzed the behav-
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ior of some of our proposals using multi-programmed workloads, since tiled
CMPs will also be employed for throughput computing.

The rest of the chapter is structured as follows. Section 3.1 details the simula-
tion tools used for the performance evaluations carried out in this thesis. Section
3.2 describes the base system modeled by our simulator. Section 3.3 discusses
the metrics and methods employed for measuring our proposals. Finally, de-
scriptions of the benchmarks running on top of our simulation tool appear in
Section 3.4.

3.1 Simulation tools

In this section, we describe the simulation tools employed through this thesis.
We obtain the performance and network traffic of the workloads for each pro-
posal in this thesis by using the Simics-GEMS simulator extended with SiCoSys.
The area requirements of our proposals and the latencies of cache accesses used
in our simulations have been calculated using the CACTI tool.

3.1.1 Simics-GEMS

Simics [72] is a functional full-system simulator capable of simulating several
types of hardware including multiprocessor systems. Full-system simulation
enables us to evaluate our ideas running realistic workloads on top of actual
operating systems. In this way, we also simulate the behavior of the operating
system. Differently from trace-driven simulators, Simics allows dynamic change
of instructions to be executed depending on different input data.

GEMS (General Execution-driven Multiprocessor Simulator) [77] is a simula-
tion environment which extends Virtutech Simics. GEMS is comprised of a set of
modules implemented in C++ that plug into Simics and add timing abilities to
the simulator. GEMS provides several modules for modeling different aspects of
the architecture. For example, Ruby models memory hierarchies, Opal models
the timing of an out-of-order SPARC processor, and Tourmaline is a functional
transactional memory simulator. Since we assume simple in-order processing
cores we only use Ruby for the evaluations carried out in this thesis.

Ruby provides an event-driven framework to simulate a memory hierarchy
that is able to measure the effects of changes to the coherence protocols. Par-
ticularly, Ruby includes a domain-specific language to specify cache coherence
protocols called SLICC (Specification Language for Implementing Cache Coher-
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ence). SLICC allows us to easily develop different cache coherence protocols
and it has been used to implement the protocols evaluated in this thesis.

The memory model provided by Ruby is made of a number of components
that model the L1 caches, L2 caches, memory controllers and directory con-
trollers. These components model the timing by calculating the delay since a
request is received until a response is generated and injected into the network.
All the components are connected using a simple network model that calculates
the delay required to deliver a message from one component to another. Since
the interconnection network model provided by GEMS 1.3 is very idealized we
have replaced it with SiCoSys, a more detailed network simulator which is de-
scribed next.

3.1.2 SiCoSys

SiCoSys (Simulator of Communication Systems) [94] is a general-purpose inter-
connection network simulator for multiprocessor systems that allows to model
a wide variety of routers and network topologies in a precise way. SiCoSys is a
time-driven simulator developed in C++ having in mind modularity, versatility
and connectivity with other systems. The models used are intended to resemble
the hardware implementations in some aspects while keeping the complexity
as low as possible. In this way, the simulator mimics the hardware structure
of the routers instead of just implementing their functionality. Therefore, re-
sults are very close to those obtained by using hardware simulators but at lower
computational cost.

SiCoSys has a collection of hardware-inspired components like multiplexers,
buffers or crossbars. Routers can be built by connecting components to each
other, as they are in the hardware description. Then, the routers are connected
in a certain network fashion. All this is defined in SGML (Standard Generalized
Markup Language) which can be thought of as a superset of HTML. This allows
SiCoSys to handle hierarchical descriptions of routers easily while keeping high
readability of the configuration files.

SiCoSys also allows us to model different switching and routing techniques.
Since SiCoSys does not implement multicast routing, we have extended the sim-
ulator to provide multicast support. Multicast routing allows the interconnec-
tion network to send a message to a group of destinations simultaneously in an
efficient way. Messages are sent over each link of the network just once, creating
copies only when the links to the multiple destinations split. This technique
reduces the network traffic generated mainly by broadcast-based protocols but
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also by directory-based protocols when invalidation messages are sent to several
sharers.

3.1.3 CACTI

CACTI (Cache Access and Cycle Time Information) [115] provides an integrated
cache and memory access time, cycle time, area, leakage, and dynamic power
model. By integrating all these models together, users can have confidence that
trade-offs between time, power, and area are all based on the same assumptions
and, hence, are mutually consistent.

CACTI is continually being upgraded due to the incessant improvements
in semiconductor technologies. Particularly, we employ the version 5.3 for the
results presented in this thesis. We are mainly interested in getting the access
latencies and area requirements of both cache and directory structures that are
necessary for implementing our ideas. In this study, we assume that the length
of the physical address is 40 bits as, for example, in the Sun UltraSPARC T2
architecture [111]. This length is used to calculate the bits required to store the
tag field for each cache. Moreover, we also assume a 45nm process technology,
and the other parameters shown in the following section.

3.2 Simulated system

The simulated system is a tiled CMP organized as a 4×4 array of replicated tiles,
as shown in Figure 1.1. Exceptionally, when we evaluate multi-programmed
workloads we consider a 4×8 tiled CMP. Our tiled CMP is comprised of two
levels of cache on-chip. The first-level cache (L1) is split in both instruction
and data caches, and it is private to the local core. The second-level cache (L2) is
unified and logically shared among the different processing cores, but physically
distributed among them1. Therefore, some accesses to the shared cache will be
sent to the local slice whilst the rest will be serviced by remote slices (L2 NUCA
architecture described in Section 2.1). Moreover, the L1 and L2 caches are non-
inclusive to exploit the total cache capacity available on-chip. However, the
proposals presented in this thesis could also be employed with either inclusive or
exclusive cache policies. Finally, a distributed directory cache is also stored on-
chip when a directory-based protocol is implemented. Each tile includes a bank

1Alternatively, each L2 slice could have been treated as a private L2 cache for the local core.
In this case, cache coherence had to be maintained at the L2 cache level (instead of L1). In any
case, our proposals would be equally applicable to this configuration.
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of the directory cache to keep cache coherence for the blocks belonging to this
tile. In order to avoid inefficiencies of directory-based protocols as consequence
of replacements of directory entries, we assume an unlimited directory cache
when simulating the base directory protocol.

Table 3.1: System parameters.

Memory Parameters (GEMS)

Processor frequency 3GHz
Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 128KB, 4-way
L1 cache hit time 1 (tag) + 2 (data) cycles
Shared unified L2 cache 1MB/tile, 8-way
L2 cache hit time 2 (tag) + 4 (data) cycles
Directory cache hit time 2 cycles
Memory access time 300 cycles
Page size 4KB

Network Parameters (SiCoSys)

Network frequency 1.5GHz
Topology 2-dimensional mesh
Switching technique Wormhole
Routing technique Deterministic X-Y
Data and control message size 4 flits and 1 flit
Routing time 1 cycle
Switch time 1 cycle
Link latency (one hop) 2 cycles
Link bandwidth 1 flit/cycle

Since we consider tiled CMPs built from a relatively large number of cores
(16 or 32), each tile contains an in-order processor core, thus offering better
performance/Watt ratio than a small number of complex cores would obtain.
We also assume that the interconnection network provides multicast support
for all the experiments presented in this thesis. Table 3.1 shows the values of
the main parameters of the architectures evaluated in this thesis. As previously
mentioned, cache access latencies shown in this table have been calculated using
the CACTI 5.3 tool [115]. The parameters and characteristics that are specific for
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each proposal are later described in the corresponding chapter. Simulations have
been performed using the sequential consistency model [61].

3.3 Metrics and methods

We evaluate the proposals presented in this thesis in terms of performance, net-
work traffic and on-chip area required. For evaluating the performance, we
measure the total number of cycles employed for each application during its
parallel phase, i.e., the execution time of the parallel phase. Although the IPC
(instructions per cycle) constitutes a common metric for evaluating performance
improvements, it is not appropriate for multithreaded applications running on
multiprocessor systems [13]. This is due to the spinning performed during the
synchronization phase of the different threads. For example, a thread can be
repeatedly checking the value of a lock until it becomes available, which in-
creases the number of completed instructions (and maybe the IPC) but actually
the program is not making progress.

In order to better understand the reasons why our proposals reduce the ap-
plications’ execution time we also show the average latency of cache misses. Our
proposals obtain improvements in terms of execution time mainly due to reduc-
tions in the average cache miss latency. When calculating this average we do
not consider the overlapping of the cache misses, but it is calculated considering
each miss individually. Savings in latency are partially obtained by the reduction
in the number of hops. Depending on the context, we will talk about protocol
hops (for example, in Chapter 5) or network hops (for example, in Chapter 7).
Protocol hops are the number of coherence messages that are needed in the
critical path of a cache miss for solving it. On the other hand, network hops
represent the number of switches that a single coherence message must cross
from the source tile to the destination one. Therefore, we also present results in
terms of reductions in the number of hops.

We also measure the traffic injected in the interconnection network by the
cache coherence protocol. The results are shown either in terms of number of
messages or in terms of number of bytes transmitted through the interconnec-
tion network (the total number of bytes transmitted by all the switches of the
interconnect). For example, the scheme proposed in Chapter 7 does not reduce
the number of coherence messages, but it reduces the distance traveled by the
message and, therefore, the number of bytes transmitted and the power con-
sumption of the interconnection network. Savings in the number of coherence
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messages usually entail reductions in the number of bytes transmitted. For all
cache coherence protocols, we assume that control messages use 8 bytes while
72 bytes are employed for data messages.

Finally, we also evaluate the area required by our proposals. This area is
calculated both in terms of the number of bits and mm2. We employ the CACTI
3.5 tool to calculate the area required in terms of mm2 by the structures added in
our proposals. We employ these two metrics for the area overhead because we
consider both of them important. The advantage of the first one is that it does
not depend on the particular technology employed and, consequently, it is valid
for any configuration. On the other hand, although the second metric depends
on the technology assumed in this thesis, it offers more accurate results for our
particular configuration. Moreover, we study the scalability in terms of area
required by these structures by showing results with varying number of tiles.
The other metrics specific to each chapter will be discussed where appropriate.

We account for the variability in multithreaded workloads by doing multiple
simulation runs for each benchmark and each configuration, and injecting ran-
dom perturbations in memory systems timing for each run [12]. We execute the
same simulation several times using different random seeds and calculate the
95% confidence interval for our results, which is shown in our plots with error
bars. Each data point is the result of at least 5 simulations, or even more in the
case of applications that show more variability.

We have implemented the vast majority of the cache coherence protocols
evaluated in this thesis using the SLICC language included in GEMS. Other
protocols, like Token, are already provided by the simulator. All the implemented
protocols have been exhaustively checked using a tester program provided by
GEMS. The tester program stresses corner cases of cache coherence protocols to
raise any incoherence by issuing requests that simulate very contended accesses
to a few memory blocks.

All the experimental results reported in this thesis correspond to the parallel
phase of each program. We have created benchmark checkpoints in which each
application has been previously executed to ensure that memory is warmed
up and, hence, avoiding the effects of page faults. Then, we run each applica-
tion again up to the parallel phase, where each thread is bound to a particular
core. The application is then run with full detail during the initialization of each
thread before starting the actual measurements. In this way, we warm up caches
to avoid cold misses.
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3.4 Benchmarks

The applications the we use to evaluate the proposals presented in this thesis
cover a wide variety of computation and communication patterns. We simulate
both scientific and multimedia applications and we also feed our simulator with
multi-programmed workloads. In particular, Barnes, FFT, Ocean, Radix, Raytrace,
Volrend and Water-Nsq are scientific applications from the SPLASH-2 benchmark
suite [118]. Unstructured is a computational fluid dynamics application [86].
MPGdec andMPGenc are multimedia applications from the ALPBench suite [66].
And finally, Mix4, Mix8, Ocean4 and Radix4 constitute the multi-programmed
workloads employed in our simulations.

Table 3.2: Benchmarks and input sizes used in the simulations.

Category Benchmark Input Size

Scientific

Barnes 8192 bodies, 4 time steps
FFT 64K complex doubles
Ocean 130× 130 ocean
Radix 512K keys, 1024 radix
Raytrace Teapot
Volrend Head
Unstructured Mesh.2K, 5 time steps
Water-Nsq 512 molecules, 4 time steps

Multimedia
MPGdec 525_tens_040.m2v
MPGenc output of MPGdec

Multi-
programmed

Mix4
Ocean, Raytrace,

Unstructured and Water-Nsq

Mix8
Ocean×2, Raytrace×2,

Unstruct.×2 and Water-Nsq×2
Ocean4 Ocean×4
Radix4 Radix×4

Table 3.2 shows the input sizes for each application employed in this thesis.
Since full-system simulation incurs in slowdowns of several orders of magni-
tude, we are constrained to scaled down problem sizes for many scientific ap-
plications. For multimedia applications, the execution has been split into units
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of work that we call transactions, and we measure the execution of a certain
number of such transactions. Descriptions of each application are given in the
following sections.

3.4.1 Scientific workloads

3.4.1.1 Barnes

The Barnes application simulates the interaction of a system of bodies (galax-
ies or particles, for example) in three dimensions over a number of time steps,
using the Barnes-Hut hierarchical N-body method. Each body is modeled as a
point mass and exerts forces on all other bodies in the system. To speed up the
interbody force calculations, groups of bodies that are sufficiently far away are
abstracted as point masses. In order to facilitate this clustering, physical space
is divided recursively, forming an octree. The tree representation of space has to
be traversed once for each body and rebuilt after each time step to account for
the movement of bodies.

The main data structure in Barnes is the tree itself, which is implemented as
an array of bodies and an array of space cells that are linked together. Bodies
are assigned to processors at the beginning of each time step in a partitioning
phase. Each processor calculates the forces exerted on its own subset of bodies.
The bodies are then moved under the influence of those forces. Finally, the tree
is regenerated for the next time step. There are several barriers for separating
different phases of the computation and successive time steps. Some phases
require exclusive access to tree cells and a set of distributed locks is used for this
purpose. The communication patterns are dependent on the particle distribution
and are quite irregular. No attempt is made at intelligent distribution of body
data in main memory, since this is difficult at page granularity and not very
important to performance.

3.4.1.2 FFT

The FFT kernel is a complex one-dimensional version of the radix-
√
n six-step

FFT algorithm, which is optimized to minimize interprocessor communication.
The data set consists of the n complex data points to be transformed, and another
n complex data points referred to as the roots of unity. Both sets of data are
organized as

√
n×√

n matrices partitioned so that every processor is assigned a
contiguous set of rows which are allocated in its local memory. Synchronization
in this application is accomplished by using barriers.
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3.4.1.3 Ocean

The Ocean application studies large-scale ocean movements based on eddy and
boundary currents. The algorithm simulates a cuboidal basin using discretized
circulation model that takes into account wind stress from atmospheric effects
and the friction with ocean floor and walls. The algorithm performs the simula-
tion for many time steps until the eddies and mean ocean flow attain a mutual
balance. The work performed every time step essentially involves setting up and
solving a set of spatial partial differential equations. For this purpose, the algo-
rithm discretizes the continuous functions by second-order finite-differencing,
sets up the resulting difference equations on two-dimensional fixed-size grids
representing horizontal cross-sections of the ocean basin, and solves these equa-
tions using a red-back Gauss-Seidel multigrid equation solver. Each task per-
forms the computational steps on the section of the grids that it owns, regularly
communicating with other processes. Synchronization is performed by using
both locks and barriers.

3.4.1.4 Radix

The Radix program sorts a series of integers, called keys, using the popular radix
sorting method. The algorithm is iterative, performing one iteration for each
radix r digit of the keys. In each iteration, a processor passes over its assigned
keys and generates a local histogram. The local histograms are then accumu-
lated into a global histogram. Finally, each processor uses the global histogram
to permute its keys into a new array for the next iteration. This permutation
step requires all-to-all communication. The permutation is inherently a sender-
determined one, so keys are communicated through writes rather than reads.
Synchronization in this application is accomplished by using barriers.

3.4.1.5 Raytrace

This application renders a three-dimensional scene using ray tracing. A hier-
archical uniform grid is used to represent the scene, and early ray termination
is implemented. A ray is traced through each pixel in the image plane and it
produces other rays as it strikes the objects of the scene, resulting in a tree of
rays per pixel. The image is partitioned among processors in contiguous blocks
of pixel groups, and distributed task queues are used with task stealing. The
data accesses are highly unpredictable in this application. Synchronization in
Raytrace is done by using locks. This benchmark is characterised for having
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very short critical sections and very high contention. Barriers are not used for
the Raytrace application.

3.4.1.6 Unstructured

Unstructured is a computational fluid dynamics application that uses an unstruc-
tured mesh to model a physical structure, such as an airplane wing or body. The
mesh is represented by nodes, edges that connect two nodes, and faces that con-
nect three or four nodes. The mesh is static, so its connectivity does not change.
The mesh is partitioned spatially among different processors using a recursive
coordinate bisection partitioner. The computation contains a series of loops that
iterate over nodes, edges and faces. Most communication occurs along the edges
and faces of the mesh. Synchronization in this application is accomplished by
using barriers and an array of locks.

3.4.1.7 Volrend

The Volrend application renders a three-dimensional volume using a ray cast-
ing technique. The volume is represented as a cube of voxels (volume elements),
and an octree data structure is used to traverse the volume quickly. The program
renders several frames from changing viewpoints, and early ray termination is
implemented. A ray is shot through each pixel in every frame, but rays do not
reflect. Instead, rays are sampled along their linear paths using interpolation to
compute a color for the corresponding pixel. The partitioning and task queues
are similar to those in Raytrace. Data accesses are input-dependent and irreg-
ular, and no attempt is made at intelligent data distribution. Synchronization
in this application is mainly accomplished by using locks, but some barriers are
also included.

3.4.1.8 Water-Nsq

The Water-Nsq application performs an N-body molecular dynamics simulation
of the forces and potentials in a system of water molecules. It is used to predict
some of the physical properties of water in the liquid state.

Molecules are statically split among the processors and the main data struc-
ture in Water-Nsq is a large array of records that is used to store the state of
each molecule. At each time step, the processors calculate the interaction of the
atoms within each molecule and the interaction of the molecules with one an-
other. For each molecule, the owning processor calculates the interactions with
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only half of the molecules ahead of it in the array. Since the forces between the
molecules are symmetric, each pair-wise interaction between molecules is thus
considered only once. The state associated with the molecules is then updated.
Although some portions of the molecule state are modified at each interaction,
others are only changed between time steps. Most synchronization is done us-
ing barriers, although there are also several variables holding global properties
that are updated continuously and are protected using locks.

3.4.2 Multimedia workloads

3.4.2.1 MPGdec

The MPGdec benchmark is based on the MSSG MPEG-2 decoder. It decom-
presses a compressed MPEG-2 bit-stream. The original image is divided in
frames. Each frame is subdivided into 16×16 pixel macroblocks. Contiguous
rows of these macroblocks are called a slice. These macroblocks are then en-
coded independently. The main thread identifies a slice (contiguous rows of
blocks) in the input stream and assigns it to another thread for decoding. The
problem here is that the input stream is also variable length encoded. Thus, the
main thread has to at least partly decode the input stream, in order to identify
slices. This results in a staggered assignment of slices to threads and limits the
scalability of extracting parallelism.

We have divided this benchmark in transactions, where each transaction is
the decoding of one video frame. In Particular, the execution of a transaction
comprises four phases. First, it performs variable-length Huffman decoding.
Second, it inverse quantizes the resulting data. Third, the frequency-domain
data is transformed with IDCT (inverse discrete cosine transform) to obtain
spatial-domain data. Finally, the resulting blocks are motion-compensated to
produce the original pictures.

3.4.2.2 MPGenc

The MPGenc benchmark is based on the MSSG MPEG-2 encoder. It converts
video frames into a compressed bit-stream. The encoder uses in principle the
same data structures as the decoder. The encoding process is parallelized by
assigning different slices to each thread. However, since these slices can be
determined very easily in uncompressed data, the encoding process can be par-
allelised without much effort by assigning different slices to different threads.
The ALPBench version has been modified to use an intelligent three-step motion
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Figure 3.1: Multi-programmed workloads evaluated in this thesis.

search algorithm instead of the original exhaustive search algorithm and to use
a fast integer discrete cosine transform (DCT) butterfly algorithm instead of the
original floating point matrix based DCT. Also, the rate control logic has been
removed to avoid a serial bottleneck.

We have divided this benchmark in transactions, where each transaction is
the encoding of one video frame. Again, the execution of a transaction com-
prises several phases: motion estimation, form prediction, quantization, discrete
cosine transform (DCT), variable length coding (VLC), inverse quantization, and
inverse discrete cosine transform (IDCT).

3.4.3 Multi-programmed workloads

We also evaluate some of our proposals with multi-programmed workloads,
which consist of several program instances running at the same time using dif-
ferent subsets of the cores available on chip. Since it is expected that many-core
architectures will also be employed for throughput computing [29] and multi-
programmed workloads have different protocol requirements than parallel ap-

103



3. Evaluation Methodology

plications, they also constitute an interesting scenario for the evaluation carried
out in this thesis, particularly in Chapter 7.

We have simulated the configurations shown in Figure 3.1, where the threads
of each instance are bound to neighbouring cores. We classify workloads as
either homogeneous or heterogeneous. We have created two homogeneous and
two heterogeneous multi-programmed workloads. Ocean4 and Radix4 consist
of four instances of the Ocean and Radix applications, respectively, with eight
threads each one, representing homogeneous workloads. Mix4 and Mix8 run
Ocean, Raytrace (teapot), Water-Nsq (512 molecules, 4 time steps) and Unstruc-

tured. In Mix4 each application has eight threads. In Mix8 two instances of each
application are run with four threads each. These two workloads represent the
heterogeneous and more common workloads.
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Chapter 4
A Scalable Organization for

Distributed Directories

4.1 Introduction

In CMP architectures, the cache coherence protocol is a key component since it
can add requirements of area and power consumption to the final design and,
therefore, it could restrict severely its scalability. When the CMP is comprised
of a large number of cores, the best way of keeping cache coherence is by im-
plementing a directory-based protocol, since protocols based on broadcasting
requests are not power-efficient due to the tremendous number of messages that
they would generate, as discussed in Chapter 2.

Directory-based protocols reduce power consumption compared to
broadcast-based protocols because they keep track of the sharers of each block
in a directory structure. In a traditional directory organization, each directory
entry stores the sharers for each memory block through a simple full-map or bit-
vector sharing code, i.e., one bit per private cache. Since the area requirements
of this structure grow linearly with the number of cores in the CMP, many ap-
proaches aimed at improving its scalability have been proposed [1, 8, 26, 44, 85].
However, they do not bring perfect scalability and usually reduce the directory
memory overhead by compressing coherence information, which in turn results
in extra unnecessary coherence messages, wasted energy, and some performance
degradation. Another alternative to the full-map scheme that also keeps precise
sharing information is to have a directory structure that stores duplicate tags
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of the blocks held in the private caches. This scheme has been recently used
both in cc-NUMA machines as Everest [87] and in CMPs as Piranha [16] or Sun
UltraSPARC T2 [111].

In tiled CMPs, the directory structure is split into banks which are distributed
across the tiles. Each directory bank tracks a particular range of memory blocks.
Up to now, most tiled CMP proposals assume a straightforward implementation
for the directory structure based on the use of a full-map sharing code. As previ-
ously commented, this directory organization does not scale, since its size grows
linearly with the number of tiles of the system. Moreover, since the directory
must be stored on-chip to allow for short cache miss latencies and CMP designs
are constrained by area, the directory area should represent a small fraction of
the total chip.

In this chapter, we show that a directory organization based on duplicate
tags, which are distributed among the tiles of a tiled CMP by following a parti-
cular granularity of interleaving can scale up to a certain number of cores, while
still storing precise coherence information [99]. In particular, we show that the
size of each directory bank does not depend on the number of tiles. In the
proposed directory organization, each directory entry has associated a unique
entry of a private cache in the system. A directory entry stores the tag of the
block allocated in its corresponding entry of the private cache, a valid bit and
an ownership bit. If the ownership bit is enabled the cache is known to be the
owner of the block.

The size of each directory bank in the proposed organization is c× (lt + 2),
where c is the number of entries of the last-level private cache if the private
caches are inclusive or the aggregate number of entries of all private caches if
they are non-inclusive, and lt is the size of the tag field. To ensure that each direc-
tory entry is associated with just one entry of some private cache, and vice versa,
the directory interleaving must be defined by taking some bits of the memory
address that fulfill the following condition: bits_home ⊆ bits_private_cache_set,
i.e., the bits that define the home tile must be a subset of the bits used for index-
ing private caches. We also have measured the area overhead of the proposed
directory organization using the CACTI tool [115], obtaining an overhead of just
0.53% when compared to the on-chip data caches considered in this thesis.

In addition, this directory organization allows us to modify the coherence
protocol in order to remove extra messages caused by replacements. We have
named this technique as implicit replacements [99]. Since each cache entry is as-
sociated to a directory entry (the same way too in case of associative caches)
the requesting tile does not have to inform the directory about replacements,
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because the directory knows which block is being replaced when the request for
a new block arrives to it. We have found that this mechanism leads to average
reductions of 13% (up to 32%) compared to a non-scalable traditional directory-
based protocol that employs unlimited directory caches and informs the direc-
tory about replacements only in case of evictions of dirty blocks. Moreover,
compared to a directory organization based on duplicate tags that also needs
to inform the directory about evictions of clean blocks, the implicit replacement
mechanism saves 33% of coherence messages on average. These reductions in
network traffic are expected to result in significant savings in power consump-
tion.

On the other hand, designing large-scale CMPs is not straightforward, and
tiled CMPs are aimed at simplifying the development of these multiprocessors
by duplicating identical or close-to-identical building blocks. This allows proces-
sor vendors to support families of products with varying computational power,
and thus, cost. The proposed scalable distributed directory organization will
allow vendors to use the same building block for designing tiled CMPs with
different number of tiles.

The rest of the chapter is organized as follows. A background on directory
organizations for both cc-NUMA and CMP systems is given in Section 4.2. Sec-
tion 4.3 describes the scalable distributed directory organization. The implicit
replacements mechanism is presented in Section 4.4. Section 4.5 shows the area
requirements of the directory organization, the savings in network traffic ob-
tained with the implicit replacements mechanism, and the small variations in
applications’ execution time. Section 4.6 studies the limitations of the presented
directory organization and how to avoid them. And finally, Section 4.7 con-
cludes the chapter.

4.2 Background on directory organizations

Directory-based cache coherence protocols have been used for long in shared-
memory multiprocessors. These protocols introduce directory memory over-
head due to the need of keeping the sharing status of a memory block in a
directory structure. Traditionally, this structure has been associated with main
memory. Moreover, the straightforward way of tracking sharers of a block is by
using a full-map sharing code where each bit represents a core in the system
and a bit is set when its core holds a copy of the block. The size of this directory
structure does not scale with the number of cores in the system. In particular,

107



4. A Scalable Organization for Distributed Directories

Finding source of
directory information

(Directory information located
with memory module that is home
for that memory block.)

(Hierarchy of caches that
guarantee the inclusion property;
each parent keeps track of exactly
which of its inmediate children
has a copy of the block.)

(Caches holding a copy of the memory
block form a linked list; memory holds
pointer to head of linked list.)

Directory storage schemes

Flat Centralized

Hierarchical

Memory−based

Locating Copies

Cache−based

Figure 4.1: Alternatives for storing directory information.

its size is n×m, where m is the number of memory entries and n is the number
of cores in the system.

The directory information can represent an overhead in extra memory from
the 3% as, for example, in the SGI Altix 3000 [119] to 12% as happens in other
systems. However, this overhead could be much higher [5] depending on both
the sharing code and the number of cores that comprise the multiprocessor sys-
tem, which is definitely prohibitive.

In this chapter, we study a directory organization for tiled CMPs that ad-
dresses this problem. Next, we review the main alternatives for storing the di-
rectory information and some proposals aimed to reduce the directory memory
overhead. The following subsection discusses the different directory organiza-
tions implemented in current CMP proposals and architectures.

As shown in Figure 4.1, the three main alternatives for finding the source of
the directory information for a block are known as flat directory schemes, cen-
tralized directory schemes and hierarchical directory schemes [38]. Flat schemes
are more popular than the others and they can be classified into two categories:
memory-based schemes and cache-based schemes. Memory-based schemes store
the directory information about all cached copies at the home node of the block.
The conventional architecture which uses the full-map sharing code previously
described is memory based. In cache-based schemes (also known as chained
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directory schemes), such as the IEEE Standard Scalable Coherent Interface (SCI)
[45], the information about cached copies is not all contained at the home but
is distributed among the copies themselves. The home node contains only a
pointer to the first sharer in a distributed double linked-list organization with
forward and backward pointers. The locations of the copies are therefore deter-
mined by traversing the list via network transactions.

The most important advantage of cache-based directory schemes is their abil-
ity to significantly reduce directory memory overhead, since the number of for-
ward and backward pointers is proportional to the number of cache entries,
which is much smaller than the number of memory entries. Several improve-
ments have been proposed for chained directory protocols [28, 55, 88] and com-
mercial multiprocessors have been designed according to these schemes, such as
Sequent NUMA-Q [70], which has been designed for commercial workloads like
data bases or online transaction processing (OLTP), and Convex Exemplar [114]
multiprocessors, destined to scientific computing. Nevertheless, these schemes
increase the latency of coherence transactions as well as overload the coherence
controllers and lead to complex protocols implementations [38]. In addition,
they need larger cache states and extra bits for forward and backward point-
ers, which implies changing processor caches. These factors make more popular
memory-based schemes than cache-based ones.

On the other hand, the problem of the directory memory overhead in
memory-based schemes is usually managed from two orthogonal points of view:
reducing directory width and reducing directory height. The width of the di-
rectory structure is given by the directory entries and it mainly depends on the
number of bits used by the sharing code. The height of the directory structure
is given by the number of entries that comprise the directory.

A way to reduce the size of the directory entries is to use compressed shar-
ing codes instead of full-map. These sharing codes compress the full coherence
information in order to represent it using fewer number of bits than a full-map.
Compression introduces a loss of precision, i.e., when the coherence information
is reconstructed, sharers that do not cache the block can appear. For example,
coarse vector [44], which was employed in the SGI Origin 2000/3000 multipro-
cessor [62], is based on using each bit of the sharing code for a group of K

processors. A bit is set if at least one of the processors in the group holds the
memory block. Another compressed sharing code is tristate [8], also called su-
perset scheme, which stores a word of d digits where each digit takes one of
three values: 0, 1 and both, denoting all the sharers whose identifiers agree for
both values of both. Gray-tristate [85] improves tristate in some cases using Gray

109



4. A Scalable Organization for Distributed Directories

code to number the nodes. Finally, a codification based on the multi-layer clus-
tering concept was proposed in [1], and the most elaborated proposal is binary

tree with subtrees that uses two binary trees for including all sharers. One of the
trees is computed from the home node. For the other one a symmetric node is
employed..

Other authors propose to reduce the size of the directory entries by hav-
ing a limited number of pointers per entry, which are chosen for covering the
common case [26, 106]. The differences between these proposals are found in
how the overflow situations are handled, i.e., when the number of sharers of
the block exceeds the number of available pointers. The two main alternatives
are to broadcast invalidation messages or to eliminate one of the existing copies.
Examples of these proposals are FLASH [60] and Alewife [7].

More recently, the segment directory [35] has been proposed as an alterna-
tive to limited pointer schemes. This technique is a hybrid of the full-map and
limited pointers schemes. Each entry of a segment directory consist in a seg-
ment vector and a segment pointer. The segment vector is a K-bit segment of
a full-map vector whereas the segment pointer is a log2(N/K)-bit field keeping
the position of the segment vector within the full-map vector, aligned in K-bit
boundary. Using the bits of the directory structure in this way results in a re-
duction of the number of directory overflows suffered by the limited pointer
schemes.

On the other hand, other proposals try to reduce directory height, i.e., the
total number of directory entries that are available. A way to achieve this re-
duction can be by combining several entries into a single one (directory entry

combining) [105]. An alternative way is to organize the directory structure as a
cache (sparse directory) [90, 44], or even include this information in the tags of
private caches [95], thus reducing the height of the directory down to the height
of the private caches. These proposals are based on the observation that only
a small fraction of the memory blocks can be stored in the private caches at a
particular moment of time. Unfortunately, these techniques introduce directory
misses, i.e., the directory information for a memory block missing in cache is
not found. This situation can be managed by broadcasting invalidation mes-
sages to all processors, which can impact on coherence traffic and applications’
performance.

In general, all the described techniques result in extra coherence messages
being sent or in increased cache miss rates, reducing the directory memory
overhead at the expense of performance and/or power (as a consequence of
an increase in network traffic).
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The idea of having duplicate tags has also been used for distributed shared-
memory multiprocessors as, for example, in Everest [87]. In Everest, the direc-
tory structure or complete and concise remote (CCR) directory keeps the state
information (tag and state) of the memory blocks belonging to the local home
that are cached in the remote nodes. In this way, CCR directory contains the
same amount than memory as a sparse directory and keeps the same infor-
mation than a full-map directory. However, the number of entries in the CCR
directory grows linearly with the number of cores in the system.

On the other hand, other authors studied the directory interleaving to reduce
the size of a distributed directory that stores a linked list of pointers to the
sharers of each cache block [58]. An interleaving consisting in taking the less
significant bits of the memory address allows each directory bank to have the
same number of entries than the number of entries of the last-level private cache.
Unfortunately, the access to the full list of pointers requires extra latency, and
the size of the pointers is not completely scalable –O(log2n)–.

4.2.1 Directory organizations for CMPs

Some current small-scale CMPs keep cache coherence by implementing a
snooping-based protocol, such as the IBM POWER6 architecture [63]. How-
ever, this architecture also employs directory states to filter some unnecessary
coherence messages.

Other CMPs that implement a directory-based cache coherence protocol use
duplicate (or shadow) tags to keep the coherence information, such as the Pi-
ranha [16] or Sun UltraSPARC T2 [111] architectures. In this case, each directory
entry has fixed size and is comprised of a tag and a state field. The number of
directory entries required to keep track of all blocks stored in the private caches
corresponds to the sum of the entries of all private caches. In Piranha, this di-
rectory structure is centralized and, therefore, it increases with the number of
cores since each core includes a private cache. Moreover, all cache misses must
access this centralized directory structure, which would mean a significant bot-
tleneck for many-core CMPs. The Sun UltraSPARC T2 architecture distributes
the directory among the L2 cache banks leading to an organization similar to
the studied in this chapter, but this architecture still uses a non-scalable crossbar
as the interconnection network.

On the contrary, large-scale tiled CMPs require a distributed directory orga-
nization for scalability reasons. Essentially, each tile includes at least one level
of private cache and a slice of the total directory. Each memory block is mapped
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to a home tile which is responsible for keeping coherence information for that
block. The identity of the home tile of a block is commonly known from the
address bits (log2n bits, where n is the number of tiles). We consider that a scal-
able directory organization for these systems is achieved when the size of each
directory slice does not vary with the number of tiles. Obviously, the number
of directory slices increases proportionally with the number of tiles, but also the
number of data caches. Therefore, under this assumption the overhead intro-
duced by the directory information does not increase with respect to data as the
number of tiles grows.

The two most popular ways of organizing a distributed directory in tiled
CMPs are (1) the use of directory caches [80] or (2) the inclusion of a full-map
sharing code in the first level of shared caches [52]. The first technique can result
in a high directory miss rate (up to 70%, as recently reported in several stud-
ies [80, 54]). The second technique avoids directory misses by using the same
number of entries as the shared cache. However, this scheme can only be used
when the inclusion property between private and shared caches is enforced, i.e.,
the shared cache must allocate an entry for each block in a private cache. In
the other case, a directory cache is also needed for those blocks not allocated in
the shared cache, thus introducing scalability problems and the appearance of
directory misses.

Unfortunately, the inclusion property between private and shared caches
could also restrict system scalability. When the number of cores grows and,
therefore, the number of private caches, more pressure could be put over a par-
ticular slice of the shared cache, resulting in a larger amount of replacements.
Additionally, the inclusion property forces all copies of a block to be invali-
dated from the private caches when the block is replaced from the shared cache,
increasing the miss rate of private caches and, consequently, degrading perfor-
mance. On the other hand, the size of the directory entries either does not scale
with the number of cores (e.g., full-map) or does not keep precise sharing infor-
mation (e.g., coarse vector [44] or limited pointers [26]).

Recently, in [80] different directory organizations have been studied for tiled
CMPs which demonstrate that the organization for the directory is a crucial
aspect when designing large-scale CMPs.
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4.3 Scalable directory organization

In this section we show that a distributed directory organization based on du-
plicate tags can scale up to a certain number of cores depending on the system
parameters. Moreover, the described directory organization keeps precise infor-
mation about all blocks stored in private caches, i.e., directory misses only take
place when the block is not stored in any private cache and, therefore, no extra
coherence actions are needed as consequence of directory misses.

To guarantee the scalability of the directory it is necessary to keep fixed both
the size of each directory entry (directory width) and the number of entries per
slice (directory height). The use of duplicate tags as directory entries makes scal-
able the directory width, since each directory entry is comprised of a tag and
a state field. On the other hand, the total number of directory entries required
to track all blocks stored in the private caches should be the same as the num-
ber of entries of all private caches. This rule is always fulfilled for centralized
directories, but not when the directory is distributed.

As previously discussed, tiled CMPs split the directory structure into banks
which are distributed across the tiles. Each directory bank tracks a particular
range of memory blocks. If all blocks stored in the private caches map to the
same bank, the directory of this bank can overflow, thus requiring more entries
to keep all the directory information. In this case, the minimal number of entries
required to store all duplicate tags increases linearly with the number of tiles.

In the first subsection, we discuss how the granularity of the directory inter-
leaving can affect the maximum number of entries required by each directory
bank and, therefore, the scalability of the directory. Then, we define the condi-
tions that are necessary for the directory structure to scale with the number of
cores. We also describe the structure of the directory and how precise sharing
information can be obtained from it. Finally, we comment on the requirements
of a cache coherence protocol that implements this directory organization.

4.3.1 Granularity of directory interleaving

One important decision when designing the memory hierarchy of a tiled CMP
is the granularity of the directory interleaving. Each memory block must map to
a particular tile, which is the home tile for that block. This tile is responsible for
keeping cache coherence for that block and, therefore, must store the directory
information necessary to perform that task. On the other hand, if the tiled CMP
includes an on-chip cache which is logically shared by all cores (but obviously
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Figure 4.2: Granularity of directory interleaving and its effect on directory size.

distributed among the tiles), it is also necessary to define an interleaving for
that cache. Cache and directory interleavings may be different. However, this
decision incurs in extra coherence messages between the tile where the directory
information is stored and the tile where data can reside, thus making the cache
coherence protocol less efficient and more complex. Therefore, it is desirable
that both the shared cache and directory have the same interleaving.

The directory can be easily distributed among the tiles of the CMP by taking
log2n (ln) bits of the block address, where n is the number of tiles of the sys-
tem (physical address mapping). These bits denote the tile where the directory
information for each block can be found. The position of these bits defines the
granularity of the interleaving, and as shown in Figure 4.2, the number of entries
required by each directory bank to be able to keep the sharing information of all
cached blocks belonging to it.

In Figure 4.2, we can observe two alternative ways of distributing the blocks
among the tiles of the CMP and their consequences. Looking at the address of
a memory block we can distinguish three main fields from the point of view of
a private cache: the block offset (lb) which depends on the size of blocks stored
in cache, the cache set (ls) in which the block must be stored and the cache tag (lt)
used to identify a block stored in a cache.

If the ln bits chosen to define the home tile belong to the cache tag field, huge
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continuous memory regions map to the same tile (coarse-grained interleaving).
Under this assumption, all the blocks stored in the private caches could map to
the same directory bank. This situation is shown in Figure 4.2(a). Assuming
that the number of sets and the associativity of the private caches are s and
a, respectively, the number of entries required by each directory to keep the
information of the cached blocks mapped to it is n × s × a (or n × c, where c

is the number of entries of each last level private cache). In particular, each
directory must have s sets of n× a ways each.

Otherwise, if the ln bits belong to the cache set field, memory is split in a
great amount of small regions that map to different tiles in a round-robin fashion
(fine-grained interleaving), as shown in Figure 4.2(b). Under this assumption,
each entry of each L1 cache maps to only one entry of the directory. Therefore,
the number of entries required by each directory bank will be s× a. In particular,
each directory bank must have s/n sets of n× aways each one. The size required
by this structure is c, which scales with the number of tiles of the system. The
proposed directory organization uses an interleaving where the ln bits belong to
the cache set fields.

4.3.2 Conditions required for ensuring directory scalabil ity

A distributed directory organization with the same number of entries as the
private caches needs a function that maps private cache entries to directory
entries so that (1) a particular memory block always has its duplicate tag in the
same directory bank (the home one) regardless of the cache wherein the block is
stored and (2) the function is injective, i.e., one-to-one. The first rule guaranties
that sharing information for a particular block can always be found in its home
bank. The second one ensures that the number of directory entries corresponds
to the number of cache entries, thus achieving the scalability of the directory.

To describe the aforementioned function, let’s first consider systems with
just one level of direct mapped private caches. Each cache entry can be uniquely
defined by a tuple of (core, set) and, in the same way, each directory entry can
be defined by the tuple (home, set). Due to the first rule, the bits used to select
the home cannot be taken from the bits used to identify the core since, in that
case, a block can map to any tile depending on the cache where it is stored.
Therefore, the bits used to select the home must be a subset of the bits used
to select the cache set, i.e., bits_home ⊆ bits_private_cache_set. This mapping
rule guaranties a scalable distributed directory organization. However it also
has a restriction. More specifically, it can only be used when the number of
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Figure 4.3: Mapping between cache entries and directory entries.

sets of the private cache is greater or equal than the number of tiles of the
system (num_tiles ≤ num_private_cache_sets). Later on, this restriction will be
discussed more thoroughly.

When we consider associative caches, each cache entry can be defined by
the tuple (core, set,way), and each directory entry by the (home, set,way) one,
assuming that both structures have the same associativity. Again, due to the
first rule, the bits used to select the home cannot be taken neither from the bits
identifying the core nor from the bits identifying the way, so that the rule that
guaranties scalability is respected.

Finally, regarding private caches organized in several cache levels, if the
cache levels are inclusive the scalability is achieved in the same way as with
just the last (larger) cache level. However, when the inclusion policy is not en-
sured, each home tile should have as many directory banks as caches in the
private hierarchy, each one with the same number of entries as each cache. In
this case, the scalability can be achieved when the number of tiles is not greater
than the number of sets of the small cache in the hierarchy.

By using this mapping function we can see that the associativity required for
each directory bank is the same as the one used for the private caches. Therefore,
the associativity of the directory can be reduced from n× a, as discussed in the
previous section, to a by taking the number of the tile in which the block is
cached as part of the set bits. In this way, the number of sets grows from s/n
to s. In conclusion, each directory bank requires the same number of sets and
associativity as a private cache.

Figure 4.3 shows the mapping function for scalable distributed directory or-
ganizations. Home tiles are chosen by taking ln bits of the ones used to select
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the set in the private cache (e.g., the less significant ones). Moreover, the set in a
directory bank is obtained from both the remaining bits of the cache set and the
number of the tile where the block is stored. Likewise, ln bits of the directory
set are used to identify the tile that holds the copy in its private cache. Although
in the scheme the ln bits are the less significant ones of the set field, they can be
any set of bits of that field.

When the number of tiles n is greater than the number of sets of the L1 cache
s, the number of entries required by the directory is n × a, but this is not the
common case. In any case, the number of entries required by this directory
organization is max{s, n} × a, that is to say, the number of entries completely
scales for values of s greater than n.

4.3.3 Directory structure

In the previous sections we have described how the number of entries of the
directory can scale with the number of tiles. However, the size of the entries
commonly used to keep the directory information does not scale with the num-
ber of tiles (e.g., n for a full-map sharing code, or p× log2n when p pointers are
used to locate the cached copies). One way to keep constant the size of the di-
rectory entries is storing duplicate tags. Particularly, our proposal for a scalable
directory stores in each entry the tag of the block plus two extra bits. The first
bit is the valid or presence bit. If this bit is set the block is known to be stored in
the cache entry associated with this directory entry. Remember that each direc-
tory entry is associated with only one cache entry (injective function). This bit
is used to locate all the copies of the block on a write miss. The second bit is the
ownership bit and when it is set the cache entry is known to have the ownership
of the block. This bit is used to enable the implementation of a MOESI protocol,
and it identifies the cache that must provide the data block on a cache miss.

Since we only store the tag of the block and two more bits in each directory
entry, and the tag bits keep invariant with the number of tiles, the size of the
directory keeps constant as the number of cores of the CMP increases. The total
size of each directory bank is c× (lt + 2).

Considering the mapping function presented in the previous section, the
coherence information for a particular block can be obtained from the home
directory bank as shown in Figure 4.4. A block is stored in a particular private
cache whether there is a hit in the directory bank for the corresponding set and
the valid bit is enabled. The corresponding set is calculated by replacing the ln
bits that identify the home directory with the ln bits that identify the tile which

117



4. A Scalable Organization for Distributed Directories

l bl sl t

offsetcache setcache tag

l n

Set

  ...

00...00

00...01

00...10

11...11

OPTagl
n

l
n

l
n

l
s

l
s

l
s

l
s

l
n

−
Home directory bank

...111

...000

...001N accesses

Id tile

Figure 4.4: Finding coherence information (P=presence bit; O=ownership bit).

contains that cache. If the ownership bit is also enabled, that cache is the owner
of the block. Therefore, the identifier of the set for a block depends on the
cache where it is stored. By searching this information in the corresponding n

directory entries (one per each private cache) the complete directory information
is obtained. This search can be performed in parallel to accelerate the access to
the directory information.

Updating the directory information only requires to modify few bits. On a
write miss, invalidation messages are sent to the sharers and their correspond-
ing presence bits are disabled. The directory entry for the new owner of the
block is with the tag of the block and both the valid and the ownership bits are
enabled. Adding a new sharer only requires writing the tag of the block in the
corresponding directory entry and setting the valid bit.

4.3.4 Changes in the cache coherence protocol

The cache coherence protocol required by this directory organization is similar
to the required by a directory-based protocol that uses directory caches with a
non-scalable full-map sharing code in each entry. However, the use of a limited
number of duplicate tags requires some extra modifications.

As happens in Piranha [16] and Everest [87], replacements of shared blocks
must be notified to the home tile. These notifications are necessary to deallocate
an old directory entry, in order to allow the new block to use that entry. No-
tifications of these evictions make the cache coherence protocol more complex.
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Moreover, to avoid race conditions replacements are usually performed in three
phases, a fact that entails extra network traffic.

In systems with unordered networks, as tiled CMPs are, the request for a
block can reach the home tile before the replacement caused by that block. If
the directory set for that block has valid information in all the ways, the request
must wait until the replacement deallocates one of the entries. This can result in
extra cache miss latency. To avoid these issues and to remove the network traffic
generated by replacements, we propose the implicit replacements mechanism
described in the following section.

4.4 Implicit replacements

The proposed directory organization allows us to slightly modify the coher-
ence protocol in order to remove the messages caused by replacements. This
is achieved by performing the replacements in an implicit way along with the
requests which cause them. Note that we use as base protocol a directory proto-
col that unblocks the home tile from the requester (see Section 2.5 for a detailed
discussion of this issue). In this way, we can merge all messages generated by
evictions with messages generated by requests.

There are two main observations that allow our proposal for scalable direc-
tory organization to support implicit replacements. Firstly, since we employ the
bits used to select the set of private caches to associate cache entries to directory
entries we ensure that the evicted and the requested blocks map to the same
home tile and, therefore, to the same directory bank. Note that if a coarse-
grained interleaving was chosen, these blocks could map to different directory
banks (depending on the value of the tag). Secondly, each cache entry is as-
sociated with only one directory entry (the same way too), and vice versa. In
this way, both the directory and the requesting cache know the address of the
evicted block and it is not necessary to attach it to the request messages. There-
fore, the size of coherence messages does not change considerably. It is only
necessary the addition of a field informing about the way within the set where
the requested block is going to be stored (2 bits in our case), which is the same
way where its duplicate tag is stored in the directory.

In Figure 4.5(a), we can see how a replacement is usually performed. When a
block must be stored in cache and the corresponding set is full, the less recently
used block must be evicted (we assume a pseudo LRU eviction policy). In cur-
rent directory protocols evictions of shared blocks are usually performed trans-
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Figure 4.5: Differences between the proposed coherence protocol and a tradi-
tional coherence protocol.

parently without informing the directory. However, as previously discussed,
when the directory is organized with duplicate tags, replacements must be no-
tified even for blocks in shared state. Moreover, evictions of dirty blocks must
writeback data to the next cache level. For simplicity, these writebacks are per-
formed in a three-phase transaction as illustrated in Figure 4.5(a) (Replacement).
First, the cache asks the home tile permission to writeback the block (1 Put). Then
the home tile confirms the transaction ((2 Ack), and finally the block is sent to
the next cache level ((3 WrB). Figure 4.5(a) (Request) shows how a cache-to-cache
transfer miss is solved. We consider that the unblock message is sent by the re-
questing tile, as described in Section 2.5. Requests are sent to the home tile to
get the directory information (1 Get), and then are forwarded to the owner cache
(2 Fwd) where the data is provided (3 Data), or the data is directly provided from
the L2 cache in the home tile. Finally, the requesting cache informs the home
tile that another cache miss for this memory block can be processed (4 Unbl).

Figure 4.5(b) shows how implicit replacements are performed along with
the requests that cause them. On each cache miss an MSHR (Miss Status Hold
Register) entry is allocated with the information about the request. However,
in our proposal we also need to store the address of the evicted block (if any),
so that our MSHR has two address fields instead of one. If there is an evicted
block we also allocate a new entry for it in the MSHR indicating the state of that
block. Moreover, the way where the new block will be stored is specified in the
request message (1 Get/Put). When this message reaches the home tile, another
two MSHR entries must be allocated, as usual. One of the entries stores both
addresses. Note that storing the address of the evicted block can be replaced
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with a pointer to the MSHR entry where this address is stored, thus reducing its
size. The acknowledge of the replacement is forwarded along with the request
(2 Fwd/Ack). When the data arrives to the requesting cache (3 Data/Ack) both
MSHRs are deallocated and the writeback is performed along with the unblock
message (4 Unbl/WrB), thus allowing the directory to process the subsequent
requests for both blocks. Another advantage of this protocol is that it avoids
the race conditions caused by replacements that were discussed earlier, because
now the replacement is implicit into the request and, therefore, both messages
reach the home tile at the same time.

While the described mechanism is employed for evictions of dirty blocks,
evictions of shared blocks are avoided in an easier way since we know the way
within the cache set where the block is going to be stored. When the request ar-
rives to the home tile, the directory information for the new block will be stored
in the same way as in the cache. Therefore, the tag of the new block replaces
the tag of the evicted block, performing the notification without requiring extra
coherence messages.

4.5 Evaluation results and analysis

In this section, we analyze the area requirements of the proposed directory orga-
nization and the network traffic that can be saved with the implicit replacements
mechanism. We also show that the execution time obtained when an unlimited
directory cache is employed is comparable to the execution time reached with
the proposed directory organization. However, a slight performance degrada-
tion can appear when the implicit replacements mechanism is implemented.
Area requirements have been calculated using the CACTI tool, while both net-
work traffic and execution time have been measured using the GEMS simulator
enhanced with SiCoSys. The cache coherence protocols evaluated in this section
implement MOESI states and the unblock message is issued by the requesting
tile, as discussed in Section 2.5. However, this proposal can also be used with a
MESI protocol. As previously commented, since the unblock message is sent by
the requesting tile, the writeback message can be merged with the unblock one.

4.5.1 Directory memory overhead

In this section we study the directory memory overhead of our proposed orga-
nization compared to some of the schemes described in Section 4.2. Figure 4.6

121



4. A Scalable Organization for Distributed Directories

2 4 8 16 32 64 128 256

Number of cores

0.2

2.0

20.0

200.0

M
em

or
y 

O
ve

rh
ea

d 
(%

)

FullMap-Inclusive
FullMap
CoarseVector (K=4)
LimitedPointers (P=2)
DupTag

(a) Overhead in terms of bits.

2 4 8 16 32 64 128 256

Number of cores

0.2

2.0

20.0

200.0

A
re

a 
O

ve
rh

ea
d 

(%
)

FullMap-Inclusive
FullMap
CoarseVector (K=4)
LimitedPointers (P=2)
DupTag

(b) Overhead in terms of area (mm2).

Figure 4.6: Directory memory overhead as a function of the number of tiles.

shows this overhead as a function of the number of tiles in the system. The di-
rectory organizations shown in the graphs are FullMap-Inclusive, FullMap, Coar-
seVector (K=4), Limited pointers (P=2), and finally the organization presented in
this chapter (DupTag). The characteristics of all these schemes are described be-
low. The overhead of the directory structure has been calculated with respect to
both the L1 and the L2 caches taking into account the size of the tag field. Figure
4.6(a) shows the directory memory overhead in terms of number of bits added
by the coherence information (and the tags that the storage of the coherence in-
formation entails). Figure 4.6(b) shows the directory area overhead in terms of
mm2. For both graphs, we assume a tiled CMP with the parameters described
in Chapter 3.

FullMap-Inclusive is currently used in some proposed tiled CMPs in which
the L1 and the L2 are inclusive (the L2 contains all blocks held in the private L1
caches). The directory is stored in the tags’ part of the L2 caches, thus removing
the need of an extra directory cache. As discussed in Section 4.2.1, enforcing
the inclusion property between private and shared caches may not be scalable.
Moreover, the use of a full-map sharing code and the fact that it is introduced
one sharing code field per L2 cache entry makes the overhead of this scheme
increase linearly with the number of cores.

Another approach aimed at reducing the directory storage is to employ on-
chip directory caches. For this evaluation, we assume directory caches with the
same number of entries (same number of sets and associativity) as a private L1
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cache. Note that due to the limited number of entries used in each directory
cache, it could be needed to re-use an existing entry to store directory infor-
mation for a new block. This implies invalidating all copies of a block when
its directory information is evicted from the directory cache. However, this op-
tion can increase the miss rate of private caches. Another option is keeping an
off-chip directory with the evicted, but this scheme results in extra storage, or
broadcasting requests to all cores when a directory entry for a particular block
is not found in the directory cache, but this approach results in extra network
usage. As discussed in Section 4.3.1, for a fine-grained interleaving and an asso-
ciativity of a× n, all necessary directory information can be stored, but in this
case the associativity of the directory cache is also not scalable.

In any case, when these directory caches store a full-map sharing code
(FullMap case), the area overhead grows up to 20% for 256 tiles, which is pro-
hibitive. Compressed sharing codes can reduce this overhead by losing accuracy.
In CoarseVector (K=4) the sharing code is compressed by using one bit per each
group of four tiles. The bit is set if at least one of the four tiles holds a copy of the
block. Although the area of the directory structure is reduced, it still increases
with the number of tiles. In Limited pointers (P=2) only two pointers are used to
identify the caches that share each memory block. When the number of sharers
is greater than two, writes are performed by broadcasting invalidation messages
(a broadcast bit is also required per entry). The area required by this organiza-
tion is 2× log2n, which scales better than the former sharing codes. However,
differently from the proposed organization, compressed sharing codes fall into
extra coherence messages since they do not store precise information about all
the caches that hold the blocks.

Finally, we can see that by combining a fine-grained interleaving and dupli-
cate tags (DupTag case) we can achieve a completely scalable directory organiza-
tion which keeps on-chip all the information necessary to keep cache coherence
and, therefore, neither extra invalidation messages nor off-chip directory struc-
tures are required. The area overhead of this directory organization is 0.53%
when compared to the area taken by L1 and L2 caches.

4.5.2 Reductions in number of coherence messages

In this section, we evaluate the results in terms of number of messages gener-
ated by the cache coherence protocol. Figure 4.7 shows the number of coherence
messages generated by several directory organizations. This number has been
normalized with respect to a directory-based protocol that uses unlimited on-
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Figure 4.7: Reductions in number of coherence messages.

chip directory caches with a full-map sharing code (Unlimited-FullMap case).
Unlimited-CV-4 and Unlimited-LP-2 represent configurations with unlimited di-
rectory caches that store a coarse vector with groups of four tiles and a limited
pointer scheme with two pointers, respectively. Note that by simulating un-
limited directory caches we do not account for the extra invalidation messages
that are necessary when a directory entry has to be evicted. Finally, we show
the directory organization based on duplicate tags (DupTag-Base), and the op-
timizations entailed by the implicit replacement mechanism. DupTag-ImplicitSh

only removes evictions of shared blocks. In DupTag-ImplicitAll, all evictions are
performed along with request messages.

First, we can observe that the number of invalidation messages generated
by the protocols with compressed sharing codes is greater than the number
of invalidation messages generated by a protocol with a precise sharing code.
All DupTag configurations slightly reduce the number of invalidation messages
compared to Unlimited-FullMap. This is because replacements of shared blocks
are not notified for the Unlimited-FullMap scheme and, therefore, unnecessary
invalidation messages, which find the block evicted from cache, are issued for
some misses.

On the other hand, the implicit replacements mechanism removes the coher-
ence messages caused by evictions. In the three first configurations shown in
Figure 4.7, evictions of shared blocks are performed without informing the di-
rectory structure. However, as discussed in Section 4.3.4, an organization based
on duplicate tags requires informing the directory in case of these evictions,
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which increases network traffic. DupTag-ImplicitSh performs evictions of shared
blocks in an implicit way, which reduces significantly the traffic caused by re-
placements. DupTag-ImplicitAll is more aggressive and removes all replacement
messages by also merging evictions of private or owned blocks with the request
that causes the eviction.

In general, the directory organization based on duplicate tags is the one with
lowest invalidation messages and the implicit replacements mechanism is able to
remove the coherence messages caused by L1 replacements. Average reductions
of 13% and up to 32% for Radix are obtained compared to Unlimited-FullMap.
However, if we compare the implicit replacements mechanism with the DupTag-

Base configuration we can save 33% of coherence messages on average. More-
over, if we consider smaller caches, reductions in terms of network messages are
higher.

4.5.3 Impact on execution time

In this section we analyze the performance of the evaluated protocols. Although
our directory organization requires significantly less area than the other schemes
(even when they employ directory caches with the same size and associativ-
ity as the L1 caches), we consider the same access latency for all the directory
structures. Moreover, it is important to note that by simulating unlimited direc-
tory caches we do not account neither for the extra latency caused by directory
misses nor for the increase in cache miss rate caused by the invalidation mes-
sages issued when a directory entry has to be evicted from the directory cache.
Therefore, despite of the area requirements, our base configuration is an ideal
directory-based protocol.

In general, we can see in Figure 4.8 that all the protocols achieve similar
results under the described conditions. Particularly, DupTag-Base obtains the
same performance as Unlimited-FullMap, but the first one only requires a small
amount of area. When the implicit replacements mechanism is implemented,
the execution time slightly increases. The more aggressive is the mechanism,
the more execution time is degraded. However, for the most aggressive mech-
anism DupTag-ImplicitAll, the average performance degradation is just 2%. This
degradation comes mainly as consequence of the fact that replacements take
more time to be completed in the implicit replacements mechanism than in the
traditional replacements mechanism, thus blocking some entries at the home tile
for longer.
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Figure 4.8: Impact on execution time.

4.6 Managing scalability limits and locality issues

The directory organization presented in this chapter has two main limitations,
which are discussed in this section. First, the scalability is limited to configura-
tions for which the number of private cache sets is greater than the number of
tiles. Second, we assume that memory blocks are distributed among the tiles in
a round-robin fashion with a fine-grained interleaving. This distribution does
not consider the locality of the accesses to the shared cache, and may result in
longer latencies for L2 cache accesses.

4.6.1 Scalability limits

We first focus on the scalability limitations. When the number of cores grows
up to the point where there are more cores than cache sets, the number of sets
required by each directory bank to allow it to store all duplicate tags must be
equal to the number of cores, instead of the number of cache sets. More specif-
ically, the number of entries required by each directory bank is max(c, n × a),
where c is the number of entries of a private cache, n is the number of tiles in
the system, and a is the associativity of private caches.

Nowadays tiled CMPs could be designed with this scalable directory. One
example is the Tilera tile64 [19], which is a 64-tile CMP with 8KB direct mapped
L1 instruction and data caches and 64KB 2-way associative L2 caches per tile.
Both caches store blocks of 64 bytes. As we can see in Figure 4.9(a), cache
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(a) Tilera Tile64: 8KB direct mapped L1 cache
and 64KB 2-way associative L2 cache.
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Figure 4.9: Directory memory overhead for two different systems and several
configurations.

coherence could be kept by using this directory organization, while still being
scalable for up to 128 tiles if L2 caches are shared. If we consider private L2
caches (as Tilera tile64 does) the scalability limit is 512 tiles. Obviously, with
private L2 caches, the directory structure requires more area, since the amount of
blocks that can be allocated on private caches is higher. Considering the system
that we have simulated in this chapter (Figure 4.9(b)), the directory organization
can scale up to 512 tiles (or 2048 in case of implementing private L2 caches). The
PrivateL2-NI line in Figure 4.9(a) represents the scalability of the directory when
L1 and L2 private caches do not enforce inclusion.

Because it is expected that the number of tiles will increase while the size
of the L1 caches will keep more or less constant, this directory organization
could have only limited scalability. This may be partly remedied for future
systems if they include several levels of inclusive private caches. Fortunately,
it is expected that the next generation of commodity multiprocessors include
two or more levels of inclusive private caches on-chip and a shared last-level
on-chip cache, as happens in the new Intel Nehalem [53] and AMD Barcelona
CMP architectures. In this way, the number of sets of the last-level private cache
can increase as the integration scale becomes higher. As we discussed in Section
4.3, under this scenario the directory structure scales up to a number of tiles less
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or equal than the number of sets of the last level of private caches and, therefore,
it will be able to scale for a larger number of tiles.

4.6.2 Locality of the accesses to the shared cache

Regarding the locality problem, there are two main ways of reducing the latency
of the accesses to a shared L2 cache. One of them is to map memory regions
to the tile whose processor is more frequently requesting them (e.g., a first-
touch policy [34]). Another approach is to use the local L2 cache bank as a
victim cache, to avoid accessing the home tile for some L1 misses (i.e., victim
replication [123]).

A first-touch policy maps a memory page to a tile according to the first refer-
ence to that page. On a page fault, the OS looks for a free physical page address
that maps to the tile whose processor is requesting the block. Since address
translation is performed at page size granularity, the granularity of the inter-
leaving must be at least the size of a memory page. Under these assumptions,
the bits that identify the home tile cannot be the less significant ones, i.e., they
cannot be chosen from the page offset. As discussed in Section 4.3.1 a coarser
granularity for the interleaving restricts even more the scalability of the direc-
tory.

A solution to this scalability problem is to change the private cache indexing,
i.e., the address bits used to define the cache set. If these bits are chosen from the
bits that identify the home tile, the scalability will be the same as if block-grained
interleaving were used. Remember that the rule to achieve a scalable directory
is bits_home ⊆ bits_private_cache_set. Unfortunately, this private cache indexing
can increase the cache miss rate. This happens because the same bits used for
identifying the home tile are used for indexing the block in the private cache,
and we are trying to assign the same local home to the blocks requested by the
local cache (first touch policy). Therefore, there may be some sets that are almost
unused in the private cache, thus impacting in cache hit rate.

On the other hand, victim replication is an approach that improves locality
without changing the home directory, but instead, replicating blocks in the local
shared slice when they are evicted from a private cache. This approach allows
to use the described scalable directory organization. However, since a block can
be either in any private cache or in any slice of the shared cache, the number of
entries of each directory slice must be the same as the number of entries of the
private and shared caches, as previously described for a non-inclusive private
cache hierarchy (PrivateL2-NI label in Figure 4.9).
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4.7 Conclusions

In CMP architectures, the cache coherence protocol is a key component since
it can add requirements of area or power consumption to the final design and,
therefore, could restrict severely its scalability. Although directory-based cache
coherence protocols are the best choice when designing many-core CMPs, the
memory overhead introduced by the directory structure may not scale gracefully
with the number of cores, specially when the coherence information is kept by
using a full-map sharing code.

In this chapter, we show that a directory organization based on duplicate
tags, which are distributed among the tiles of a tiled CMP by following a parti-
cular granularity for the directory interleaving, can scale up to a certain number
of cores. The rule to achieve this scalability is bits_home ⊆ bits_private_cache_set.
Therefore, a directory can scale meanwhile the number of cores of the CMP is
less than the number of sets of the private L1 cache. Since the bits used to in-
dex private caches are commonly the less significant ones (without considering
the block offset), it is preferable for the interleaving to have block granularity in
order to achieve maximum scalability.

We show that, under these conditions, the size of each directory bank does
not depend on the number of tiles in the system. The total size of each directory
bank in the studied organization is c× (lt + 2), where c is the number of entries
of the private L1 cache and lt is the size of the tag field. We also have measured
the area overhead of the proposed directory organization with the CACTI tool
obtaining an overhead of just 0.53% with respect to the area taken by the on-
chip data caches. Moreover, since the structure of each directory bank does not
change with the number of tiles, the same building block could be used for
systems with different number of tiles, thus making easier the design of tiled
CMPs with varying number of tiles.

We have also redesigned the cache coherence protocol to take full advan-
tage of this directory organization. In particular, since each directory entry is
mapped to only one cache entry, we can perform the replacements in an implicit
way along with the requests which cause them, thus saving the network traf-
fic introduced by replacements. This technique called implicit replacements leads
to average reductions of 13% (up to 32%) compared to a traditional full-map
directory with unlimited caches. Moreover, compared to a directory organiza-
tion based on duplicate tags that needs to inform the directory about evictions
of shared blocks, the implicit replacements mechanism saves 33% of coherence
messages on average. These reductions in network traffic finally will result in
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significant savings in power consumption. We also have shown that the impact
in terms of execution time of the implicit replacement mechanism is negligible.

Finally, we also study the constrains of the proposed scalable directory orga-
nization and discuss how future chip multiprocessors can deal with them.
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Chapter 5
Direct Coherence Protocols

5.1 Introduction

Directory-based cache coherence protocols have been typically employed in
large-scale systems with point-to-point interconnection networks (as tiled CMPs
are). Since these interconnects do not guarantee the total order of the coherence
messages traveling across them, the home tile of each block is responsible for se-
rializing the different requests issued by several cores. The home tile also keeps
the directory information for the memory blocks that map to it. In this way,
when a cache miss takes place, the request is sent to the corresponding home
tile, which determines when the request must be processed and, then, performs
the coherence actions that are necessary to satisfy the cache miss. These coher-
ence actions mainly consist in forwarding the request to the cache that must
provide the data block, and sending invalidation messages in case of a write
miss.

Unfortunately, these protocols introduce indirection in the critical path of
cache misses, because every cache miss must reach the home tile before any
coherence action can be performed. This indirection in the access to the home
tile adds unnecessary hops into the critical path of the cache misses, finally
resulting in longer cache miss latencies compared to snooping-based protocols,
which directly send requests to sharers.

In addition, the number of cache misses suffering from indirection increases
with tiled CMPs that distribute memory blocks among home tiles through a
physical address mapping, as described in several proposals [52, 123] and CMP
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systems [63, 111]. In a physical address mapping, the home tile of a memory
block is calculated by taking log2n bits from the block address, where n is the
number of tiles in the system. Typically, these log2n bits are taken from the less
significant bits of the block address. Since this mapping distributes memory
blocks among tiles in a round-robin fashion without considering the cores re-
questing each block, the probability of accessing a remote home tile increases
and, as consequence, the number of misses with indirection.

As discussed in the introduction and background chapters of this thesis, an
alternative approach that avoids indirection is Token [78]. Token broadcasts re-
quests directly to all cores. In this way, caches can provide data when they
receive a request (no indirection occurs). Unfortunately, the use of broadcast in-
creases network traffic and, therefore, power consumption in the interconnection
network, which has been previously reported to constitute a significant fraction
(approaching 50% in some cases) of the overall chip power [71, 116].

Since directory protocols entail indirection, which increases cache miss la-
tency, and Token significantly increases network traffic, it is necessary to redesign
cache coherence protocols in order to obtain the best of both protocols and get
rid of their drawbacks. Figure 5.1 shows the trade-off between Token and direc-
tory protocols [74]. An ideal protocol for tiled CMPs would avoid the indirection
of the directory protocols without relying on broadcasting requests.

In this chapter, we present direct coherence protocols [97, 98], a family of
cache coherence protocols that meets the advantages of Token and directory pro-
tocols and avoids their problems. In direct coherence protocols, the task of
storing up-to-date sharing information and ensuring ordered accesses for every
memory block is assigned to one of the caches that shares the block, particularly
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the one that provides the block on a cache miss. As we discussed in Chapter
2, the cache that provides the copy of a block is the one that has the ownership
property over the requested block, i.e., the owner cache. Indirection is avoided
by directly sending the requests to the owner cache instead of to the home tile,
where coherence information resides in a directory protocol.

In this way, direct coherence protocols reduce the latency of cache misses
compared to a directory protocol by sending coherence messages directly from
the requesting caches to those that must observe them, as it would be done
in Token, and reduce network traffic compared to Token by sending just one
request message on every cache miss, which also translates into improvements
in execution time.

Although direct coherence protocols can obtain significant improvements
over a directory protocol for cc-NUMA architectures, as we showed in [97], in
this chapter we focus on their implementation for tiled CMPs with a shared
L2 cache level [98]. We call this implementation DiCo-CMP. In DiCo-CMP, the
identity of the owner caches is recorded in a small structure called L1 coherence

cache associated to every core. To achieve accurate owner predictions, this struc-
ture can be updated whenever the owner tile changes through control messages
called hints. Additionally, since the owner cache can change on write misses,
another structure called L2 coherence cache keeps up-to-date information about
the identity of the owner cache. This L2 coherence cache replaces the directory
cache required by directory protocols and is accessed each time a request fails
to locate the owner cache.

The evaluation carried out in this chapter shows that DiCo-CMP achieves
improvements in total execution time of 9% on average over a directory protocol
and of 8% on average over Token. Moreover, our proposal reduces network traffic
up to 37% on average compared to Token and, consequently, the total power
consumed in the interconnection network. Compared to a directory protocol,
our proposal obtains similar traffic requirements.

The rest of the chapter is organized as follows. In Section 5.2, we provide
a review of the related work and introduce the lightweight directory architec-
ture (an architecture for the directory that stores the directory information in the
private caches). Section 5.3 describes direct coherence protocols, the modifica-
tions required in the structure of the tiles of a tiled CMP, and the different ways
of updating the L1 coherence cache. Section 5.5 discusses the area and power
requirements of the different mechanisms used for updating the L1 coherence
cache in direct coherence protocols. Section 5.6 shows the performance results
obtained by our proposal. And finally, Section 5.7 concludes the chapter.
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5.2 Related work and background

In this chapter, we compare DiCo-CMP against two cache coherence protocols
aimed at being used in CMPs from both the embedded and the desktop do-
mains: Token and a directory protocol for CMPs. Both protocols have been
discussed in Chapter 2. First, this section comments on some of the works re-
lated to direct coherence protocols. Then, it describes the lightweight directory
architecture [95, 102], which is a proposal previously developed by us, as part of
the background for direct coherence protocols, since it also keeps the directory
information along with the blocks stored in the private caches.

In the shared-memory multiprocessors domain, Acacio et al. propose to avoid
the indirection for cache-to-cache transfer misses [2] and upgrade misses [3]
separately by predicting the current holders of every cache block. Predictions
must be verified by the corresponding directory controller, thus increasing the
complexity of the protocol on mis-predictions. Hossain et al. propose differ-
ent optimizations for each sharing pattern considering a chip multiprocessor
architecture [50]. Particularly, they accelerate the producer-consumer pattern by
converting 3-hop read misses into 2-hop read misses. Again, communication
between the cache providing the data block and the directory is necessary, thus
introducing more complexity in the protocol. In contrast, direct coherence is ap-
plicable to all types of misses (reads, writes and upgrades) and just the identity
of the owner tile is predicted. Moreover, the fact that the directory information
is stored along with the owner of the block simplifies the protocol. Finally, dif-
ferently from the techniques proposed by Acacio et al., we avoid predicting the
current holders of a block by storing the up-to-date directory information in the
owner tile.

Also in the context of shared-memory multiprocessors, Cheng et al. [31]
have proposed converting 3-hop read misses into 2-hop read misses for memory
blocks that exhibit the producer-consumer sharing pattern by using extra hard-
ware to detect when a block is being accessed according to this pattern. Now the
directory is delegated to the tile that updates the block in a producer-consumer
sharing pattern in order to reduce the complexity of the cache coherence pro-
tocol. Differently from this proposal, direct coherence protocols obtain 2-hop
misses for read, write and upgrade misses without taking into account sharing
patterns.

Enright et al. propose Virtual Tree Coherence (VTC) [54]. This mechanism
uses coarse-grain coherence tracking [23] and the sharers of a memory region are
connected by means of a virtual tree. Since the root of the virtual tree serves as
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the ordering point in place of the home tile, and the root tile is one of the sharers
of the region, the indirection can be avoided for some misses. In contrast, direct
coherence protocols keep the coherence information at block granularity and
the ordering point always has the valid copy of the block, which leads to less
network traffic and lower levels of indirection.

Huh et al. propose to allow replication in a NUCA cache to reduce the access
time to a shared multibanked cache [52]. In the same vein, Zhang et al. propose
victim replication [123], a technique that allows some blocks evicted from an
L1 cache to be stored in the local L2 bank. In this way, the next cache miss for
this block will find it at the local tile, thus reducing miss latency. More recently,
Beckmann et al. [17] present ASR (Adaptive Selective Replication) that replicates
cache blocks only when it is estimated that the benefits of replication (lower L2
hit latency) exceeds its costs (more L2 misses). In contrast, our protocol reduces
miss latencies by avoiding the access to the L2 cache when it is not necessary,
and no replication at the L2 cache is performed. These techniques could also be
implemented along with direct coherence protocols.

Chang and Sohi propose cooperative caching [27], a set of techniques that re-
duce the number of off-chip accesses in a CMP with a private cache organization
for the last-level caches (the L2 caches in this case). Differently from previous
works, they assume a private organization, in which blocks are inherently repli-
cated in the L2 caches allowing fast L2 accesses, and they try to remove copies
of replicated blocks in order to improve the L2 cache hit rate. Again, these tech-
niques can be implemented along with direct coherence protocols, since they
can be used for shared and private organizations.

Martin et al. present a technique that allows snooping-based protocols to
utilize unordered networks by adding logical timing to coherence requests and
reordering them on destiny to establish a total order [76]. Likewise, Agarwal et
al. propose In-Network Snoop Ordering (INSO) [9] to allow snooping over un-
ordered networks. Since direct coherence protocols do not rely on broadcasting
requests, they generate less traffic and, therefore, less power consumption when
compared to snooping-based protocols.

Martin et al. propose to use destination-set prediction to reduce the band-
width required by a snoopy protocol [74]. Differently from DiCo-CMP, this
proposal is based on a totally-ordered interconnect (a crossbar switch), which
does not scale with the number of cores. Destination-set prediction is also used
by Token-M in shared-memory multiprocessors with unordered networks [73].
However, on mis-predictions, requests are solved by resorting on broadcasting
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after a time-out period. Differently, in DiCo-CMP mis-predictions are re-sent
immediately to the owner cache, thus reducing latency and network traffic.

Some authors evaluated the use of hints with different objectives [20, 51].
In these works the authors try to keep updated directory information to find
out where a fresh copy of the block can be obtained in case of a read miss. In
contrast, we use the hints as a policy to update the location of the owner cache
which servers as ordering point and stores up-to-date directory information.
The use of signatures has been recently proposed for disambiguating addresses
across threads in transactional memory [25]. In contrast, we use signatures to
keep information that improves the efficiency of the hints mechanism.

Cheng et al. [32] adapt already existing coherence protocols for reducing en-
ergy consumption and execution time in CMPs with heterogeneous networks.
In particular, they assume a heterogeneous network comprised of several sets
of wires, each one with different latency, bandwidth, and energy characteristics,
and propose to send each coherence message through a particular set of wires
depending on its latency and bandwidth requirements. Our proposal is orthog-
onal to this work and the ideas presented by Cheng could also be applied to
DiCo-CMP.

Finally, the idea of storing the directory information along with the tag field
in the private cache was previously proposed by us in the lightweight directory
architecture [95, 102] in the context of cc-NUMA systems. Since the improve-
ments obtained by this proposal are not significant for CMPs with a shared
cache organization, we do not evaluate it in this thesis. However, next section
summarizes the concepts behind the lightweight directory architecture.

5.2.1 The lightweight directory architecture

Traditional cc-NUMA architectures store the directory information in main
memory. Since each cache miss requires the access to the directory information
in a directory protocol, this access incurs in long L2 miss latencies [4]. Directory
caches help to avoid memory accesses when the only valid copy of the requested
block holds in a private cache. If the requested block is shared by several cores,
the valid copy of the block is obtained from main memory. MOESI protocols
can avoid these expensive accesses but at the cost of increasing the number of
misses with indirection [96].

On the other hand, the amount of extra memory required for storing di-
rectory information (directory memory overhead) could become prohibitive for
a large-scale configuration of the multiprocessor if care is not taken [5]. Even
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when a directory cache is employed, a backup directory stored in main memory
is required to prevent unnecessary invalidations.

The lightweight directory architecture cope with the long cache miss latencies
and the directory memory overhead. Unlike conventional directories, which as-
sociate directory entries to memory blocks, this proposal moves directory infor-
mation to the cache level where the coherence of the memory block is managed
(the L2 cache in the cc-NUMA system that we consider). In this way, directory
information is removed from main memory, and it is only necessary to add a
sharing core and a state field to the private L2 caches. Since we assume that L1
and L2 caches are inclusive, the L1 caches do not have to be modified.

As in a conventional directory protocol, L2 cache misses are sent to the corre-
sponding home node which is in charge of satisfying the miss (for example, by
providing the memory block in case of a load miss). However, on the first refer-
ence to a memory block in the lightweight directory architecture, the home node
books an entry in the local L2 cache which is used to store directory information
for the block and occasionally the own block. Subsequent L2 cache misses to
the same block will find directory information and in some cases data in the L2
cache of the home node. Note that when both the directory information and the
data block are found in the home L2 cache, read misses are solved in just two
hops (without entailing indirection), instead of accessing main memory.

This proposal is motivated by the observation that only a small fraction of
the memory blocks are stored in the L2 caches at a particular time (temporal
locality), and that in most cases, when a request for a memory block from a
remote node arrives at the corresponding home node either the home node has
recently accessed the block and it resides in its L2 cache, or the home node will
request the block in a near future.

However, storing directory information in the L2 cache for each block re-
quested by any remote node could result in a significant increase in the number
of blocks being stored in the L2 cache of the corresponding home directory and,
consequently, in its total number of replacements. Fortunately, the observation
that motivates our proposal points out that it is not the common case, and the
improvements obtained for avoiding the memory accesses compensate the small
increase in L2 cache replacements [95].

This proposal, therefore, brings two important benefits. First of all, since
the total number of memory blocks is much larger than the total number of L2
cache entries, directory memory overhead is drastically reduced by a ratio of
1024 (or more) compared to conventional directory architectures. Second, since
directory entries are stored in the L2 cache of the home node, the time needed
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to access the directory is significantly reduced, which translates into important
reductions in the latency of L2 cache misses.

Next section provides more detail about the implementation of the
lightweight directory architecture for cc-NUMA machines. This architecture
constitutes a simple cache design that only adds two fields to the tags’ portion
of the L2 cache for storing directory information. In this way, this design does
not need extra hardware structures (in contrast with the inclusion of directory
caches) to avoid the accesses to main memory when only directory informa-
tion is needed. On the other hand, this design also ensures that an up-to-date
copy of data will always be in the cache of the home node for those blocks in
shared state, avoiding thus the long access to main memory to get the block in
these cases. Its main drawback is, however, that the total number of replace-
ments could increase for applications with low temporal locality in the accesses
to memory that several nodes are performing, but fortunately this is not the
common case.

5.2.1.1 Cache Design

Figure 5.2 shows the cache design assumed in the lightweight directory archi-
tecture. The cache is split into tags and data structures, as is commonly found
in current designs. The access to both structures is performed in parallel. Each
cache block contains four main fields in the tags’ portion: the tag itself, used to
identify the block, the cache state (L2), the directory state (Dir), and the sharing

code. The latter two fields are added by the lightweight directory architecture. If
the cache state is invalid the node does not keep an up-to-data copy of the cache
block. However, if any of the presence bits in the sharing code is set the entry
has valid directory information. The directory state field can take two values
(one bit):

• S (Shared): The memory block is shared by several cores, each one of them
with an up-to-date copy. When needed, the cache of the home node will
provide the block to the requester, since this cache has always a valid copy
even when the local processor has not referenced the block.

• P (Private): The memory block is in just one private cache and could have
been modified. The single valid copy of the block is held in the cache of the
home node when its cache state is modified or exclusive, or alternatively,
in one of the caches of the remote nodes. In the latter case, the cache state
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Figure 5.2: Cache design for the lightweight directory architecture. The grey
zone represents the overhead in cache memory introduced by the directory.

for the memory block in the home node is invalid, and the identity of the
owner cache is stored in the sharing code field.

Note that an additional directory state is implicit. The U state (Uncached)
takes place when the memory block is not held by any cache and its only copy
resides in main memory. This is the case of those memory blocks that have not
been accessed by any node yet, or those that were evicted from all the caches.

5.3 Direct coherence protocols

In this section, we describe direct coherence protocols and its implementation
for tiled CMPs in detail. First, we explain how direct coherence avoids indirec-
tion for most cache misses by changing the distribution of the roles involved in
cache coherence maintenance. We also study the changes in the structure of the
tiles necessary to implement DiCo-CMP. Then, we describe the cache coherence
protocol for tiled CMPs and, finally, we study how to avoid the starvation issues
that could arise in direct coherence protocols.

5.3.1 Direct coherence basis

As already discussed, directory protocols introduce indirection in the critical
path of cache misses. Figure 5.3(a) shows a cache miss suffering indirection in
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Figure 5.3: How cache-to-cache transfer misses are solved in directory and direct
coherence protocols. R=Requester; H=Home; D=Directory; O=Owner.

a directory protocol, a cache-to-cache transfer for a read miss. When a cache
miss takes place it is necessary to access the home tile to obtain the directory
information and serialize the requests before performing any coherence action
(1 GetS). In case of a cache-to-cache transfer miss, the request is subsequently
forwarded to the owner tile (2 Fwd), where the block is provided (3 Data). As
it can be observed, the miss is solved in three hops. Moreover, requests for the
same block cannot be processed by the directory until it receives the unblock
message (4 Unbl).

To avoid this indirection problem, we propose to directly send the request
to the provider of the block, i.e., the owner tile. This is the main motivation
behind direct coherence. To allow the owner tile to process the request, direct
coherence stores the sharing information along with the owner block, and it also
assigns the task of keeping cache coherence and ensuring ordered accesses for
every memory block to the tile that stores that block. As shown in Figure 5.3(b),
DiCo-CMP sends the request directly to the owner tile (1 GetS), instead of to
the home tile. In this way, data can be provided by the owner tile (2 Data), just
requiring two hops to solve the cache miss. As we can see, the unblock message
is not necessary in direct coherence protocols as discussed later at the end of
this section.

Therefore, direct coherence requires a re-distribution of the roles involved in
solving a cache miss. Next, we describe the tasks performed in cache coherence
protocols and the component responsible for each task in both directory and
direct coherence protocols, which are illustrated in Figure 5.4:

• Order requests: Cache coherence maintenance requires to serialize the re-
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Figure 5.4: Tasks performed in cache coherence protocols.

quests issued by different cores for the same block. In snooping-based
cache coherence protocols, the requests are ordered by the shared inter-
connection network (usually, a bus or a crossbar). However, since tiled
CMP architectures implement an unordered network, this serialization of
the requests must be carried out by another component. Directory proto-
cols assign this task to the home tile of each memory block. On the other
hand, this task is performed by the owner tile in direct coherence protocols.

• Keep coherence information: Coherence information is used to track blocks
stored in private caches. In protocols that include the O state, like MOESI
protocols, coherence information also identifies the owner tile. In par-
ticular, sharing information is used to invalidate all cached blocks on write
misses, while owner information is used to know the identity of the provider
of the block on every miss. Directory protocols store coherence informa-
tion at the home tile, where cache coherence is maintained. Instead, direct
coherence requires that sharing information be stored in the owner tile for
keeping coherence there, while owner information is stored in two differ-
ent components. First, the requesting cores need to know the tile cache to
send the requests to it. Processors can easily keep the identity of the owner
tile, e.g., by recording the last core that invalidated their copy. However,
this information can become stale and, therefore, it is only used for avoid-
ing indirection (dashed arrow in Figure 5.4). Then, the responsible for
tracking the up-to-date identity of the tile cache is the home tile which
must be notified on every ownership change.
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Figure 5.5: How upgrades are solved in directory and direct coherence protocols.
O=Owner; H=Home; D=Directory; S=Sharers.

• Provide the data block: If the valid copy of the block resides on chip, data is
always provided by the owner tile, since it always holds a valid copy. In a
MOESI protocol, the owner of a block is either a cache holding the block
in the exclusive or the modified state, the last cache that wrote the block
when there are multiple sharers, or the L2 cache slice inside the home tile
in case of the eviction of the owner block from some L1 cache. On the other
hand, in MESI protocols data is always provided by the home tile when it
is shared by several cores (state S).

• Provide off-chip storage: When the valid copy of a requested block is not
stored on chip, an off-chip access is required to obtain the block. Both in
directory and direct coherence protocols the home tile is responsible for
detecting that the owner copy of the block is not stored on chip. It is also
responsible for sending the off-chip request and receiving the data block.

Another example of the advantages of direct coherence is shown in Figure
5.5. This diagram represents an upgrade that takes place in a tile whose L1
cache holds the block in the owned state, which happens frequently in common
applications (e.g., for the producer-consumer pattern). In a directory protocol,
upgrades are solved by sending the request to the home tile (1 Upgr), which
replies with the number of acknowledgements that must be received before the
block can be modified1 (2 Ack), and sends invalidation messages to all sharers

1As described in Section 2.4, the directory protocol that we assume sends the number of
acknowledgement messages that are expected to be received by the requester along with the
forwarded and data messages. Obviously, this happens for all the cases except when the data
block is not requested since it is already stored in the L1 cache of the requesting core.
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(2 Inv). Sharers confirm their invalidation to the requester (3 Ack). Once all
the acknowledgements have been received by the requester, the block can be
modified and the directory is unblocked (4 Unbl). In contrast, in DiCo-CMP

only invalidation messages (1 Inv) and acknowledgements (2 Ack) are required
because the directory information is stored along with the data block, thereby
solving the miss with just two hops in the critical path.

Additionally, by keeping together the owner block and the directory infor-
mation, the control messages between them are not necessary, thus saving some
network traffic (two messages in Figure 5.3 and three in Figure 5.5). As pre-
viously commented, direct coherence does not need the unblock message re-
quired by directory protocols to serialize the requests. In directory protocols the
unblock message can be sent either by the owner or by the requesting tile (see
Section 2.5). Although in directory protocols this decision does not affect perfor-
mance significantly, in direct coherence protocols it is preferable to let the owner
tile send the unblock message. Since the owner tile and the ordering tile are the
same, this message is not necessary, thus saving coherence traffic. Moreover, it
also reduces the waiting time for the subsequent requests and, consequently, the
average miss latency. Note that, in direct coherence protocols, sending the un-
block message from the requester makes the owner wait for two hops (data and
unblock messages), while sending the message from the owner, i.e., not sending
any message, results in no waiting time at the owner tile. Finally, this also al-
lows the O&D tile to solve misses without using transient states, thus reducing
the number of states and making the implementation simpler than a directory
protocol.

5.3.2 Changes to the structure of the tiles of a CMP

The new distribution of roles that characterizes direct coherence protocols re-
quires some modifications in the structure of the tiles that build the CMP. Firstly,
the identity of the sharers for every block is stored in the corresponding owner
tile instead of the home one to allow caches to keep coherence for the memory
blocks that they hold in the owned state. Therefore, DiCo-CMP extends the tags’
part of the L1 caches with a sharing code field, e.g., a full-map (L2 caches al-
ready include this field in directory protocols). In this way, the design of the
caches in DiCo-CMP is similar to that previously described for the lightweight
directory architecture (see Figure 5.2). In contrast, DiCo-CMP does not need to
store a directory structure at the home tile, as happens in directory protocols.
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Figure 5.6: Modifications to the structure of a tile required by direct coherence
protocols.

Additionally, DiCo-CMP adds two extra hardware structures that are used to
record the identity of the owner tile of the memory blocks stored on chip:

• L1 coherence cache (L1C$): The pointers stored in this structure are used by
the requesting core to avoid indirection by directly sending local requests
to the corresponding owner tile. Therefore, this structure is located close
to each processor’s core. DiCo-CMP can update this information in several
ways based on network usage, as discussed later in Section 5.4.

• L2 coherence cache (L2C$): Since the owner tile can change on write misses,
this structure must track the owner tile for each block allocated in any L1
cache. This structure replaces the directory structure required by directory
protocols and it is accessed each time a request fails to locate the owner
tile. This information must be updated whenever the owner tile changes
through control messages. These messages must be processed by the L2C$
in the very same order in which they were generated in order to avoid any
incoherence when storing the identity of the owner tile, as described later
in Section 5.3.3.3.

Figure 5.6 shows a tile design for directory protocols and for direct coherence
protocols. A comparison among the extra storage and structures required by the
protocols evaluated in this chapter can be found in Section 5.5.
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In our particular implementation, the pointers used to avoid indirection are
only stored in the L1C$. On the other hand, the directory information stored
in the tags’ part of the L1 cache is only valid for blocks in the owned state. In
order to make better use of the cache storage, the pointers could be also stored
in the tags’ part of the L1 caches for blocks in the shared or the invalid state.
However, for the sake of clarity, the protocol implemented in this chapter does
not consider this improvement.

5.3.3 Description of the cache coherence protocol

5.3.3.1 Requesting processor

When a processor issues a request that misses in its private L1 cache, it sends
the request directly to the owner tile in order to avoid indirection. The identity
of the potential owner tile is obtained from the L1C$, which is accessed at the
time that the cache miss in detected. If there is a hit in the L1C$, the request is
sent to the obtained owner tile. Otherwise, the request is sent to the home tile,
where the L2C$ will be accessed to get the identity of the current owner tile.

5.3.3.2 Request received by a tile that is not the owner

When a request is received by a tile that is not the current owner of the block, it
simply re-sends the request. If the tile is not the home one, the request is re-sent
to it. Otherwise, if the request is received by the home tile and there is a hit in the
L2C$, the request is sent to the current owner tile. In absence of race conditions
the request will reach the owner tile. Finally, if there is a miss in the L2C$ and
the home tile is not the owner of the block, the request is solved by providing the
block from main memory, where, in this case, a fresh copy of the block resides.
This is because the L2C$ always keeps an entry for the blocks stored in the
private L1 caches. If the owner copy of the block is not present in either any L1
cache or in the L2 cache, it resides off-chip. After the off-chip access, the block
is allocated in the requesting L1 cache, which gets the ownership of the block,
but not in the L2 cache (as occurs in the directory protocol)2. In addition, it is
necessary to allocate a new entry in the L2C$ pointing to the current L1 owner
tile.

2As mentioned in Section 3.2, we assume that the L1 and the L2 cache are non-inclusive.
However, direct coherence protocols are equally applicable with other configurations for the L1
and L2 caches, obtaining similar results to those presented in this chapter.

145



5. Direct Coherence Protocols

5.3.3.3 Request received by the owner tile

Every time a request reaches the owner tile, it is necessary to check whether
this tile is currently processing a request from a different processor for the same
block (a previous write waiting for acknowledgements). In this case, the block
is in a busy or transient state, and the request must wait until all the acknowl-
edgements are received.

If the block is not in a transient state, the miss can be immediately solved.
If the owner is the L2 cache at the home tile all requests (reads and writes)
are solved by deallocating the block from the L2 cache and allocating it in the
private L1 cache of the requester. Again, the identity of the new owner tile must
be stored in the L2C$.

When the owner is an L1 cache, read misses are completed by sending a
copy of the block to the requester and adding it to the sharing code field kept
along with the block. Since our protocol is also optimized for the migratory-
sharing pattern, as all the protocols implemented in this thesis, read misses for
migratory blocks invalidate the copy in the owner tile and send the exclusive
data to the requesting processor.

For write misses, the owner tile sends invalidation messages to all the tiles
that hold a copy of the block in their L1 caches and, then, it sends the data block
to the requester. Acknowledgement messages are collected at the requesting
core. If the miss is an upgrade, it is necessary to check the sharing code field
kept along with the data block to know whether the requester still holds a copy
of the block (note that a previous write miss from a different processor could
have invalidated its copy and, in this case, the owner tile should also provide
a fresh copy of the block). As previously shown in Figure 5.5, upgrade misses
that take place in the owner tile just need to send invalidations and receive
acknowledgements (two hops in the critical path).

Finally, since the L2C$ must store up-to-date information regarding the
owner tile, every time that this tile changes, the old owner tile also sends a
control message to the L2C$ indicating the identity of the new owner tile. These
messages must be processed by the L2C$ in the very same order in which they
were generated. Otherwise, the L2C$ could fail to store the identity of the cur-
rent owner tile. Fortunately, there are several approaches to ensure this order.
In the implementation evaluated in this chapter, once the L2C$ processes the
message reporting an ownership change from the old owner tile, it sends a con-
firmation response to the new one. Until this confirmation message is received
by the new owner tile, it could access the data block (if already received), but
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Figure 5.7: Example of ownership change upon write misses. R=Requester;
O=Owner; S=Sharers; H=Home.

cannot give the ownership to another tile (the miss status hold register –MSHR–
allocated on the cache miss is still held). Since these two control messages are
not in the critical path of the cache miss, they do not introduce extra latency.

As an example, Figure 5.7 illustrates a write miss for a shared block. It as-
sumes that the requester has valid and correct information about the identity of
current owner tile in the L1C$ and, therefore, it directly sends the request to the
owner tile (1 GetX). Then the owner tile must perform the following tasks. First,
it sends the data block to the requester (2 Data). Second, it sends invalidation
messages to all the sharers (2 Inv), and it also invalidates its own copy. The in-
formation about the sharers is obtained from the sharing code stored along with
every owner block. Third, it sends the message informing about the ownership
change to the home tile (2 ChOwn). All tiles that receive an invalidation message
respond with an acknowledgement message to the requester once they have
invalidated their local copies (3 Ack). When the data and all the acknowledge-
ments arrive to the requesting processor the write operation can be performed.
However, if another write request arrives to the tile that previously suffered the
miss, it cannot be solved until the acknowledgement to the ownership change
issued by the home tile (3 AckCh) is received.

5.3.3.4 Replacements

In our particular implementation, when a block with the ownership property
is evicted from an L1 cache, it must be allocated at the L2 cache along with
the up-to-date directory information. Differently from directory and Hammer
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protocols and similarly to Token, replacements are performed by sending the
writeback message directly to the home tile (instead of requiring three-phase re-
placements). This operation can be easily performed in direct coherence proto-
cols because the tile where these blocks are stored is the responsible for keeping
cache coherence and, as consequence, no complex race conditions can appear.
When the writeback message reaches the home tile, the L2C$ deallocates its en-
try for this block because the owner tile is now the home one. On the other
hand, replacements for blocks in shared state are performed transparently, i.e.,
no coherence actions are needed.

Finally, no coherence actions must be performed in case of an L1C$ replace-
ment. However, when an L2C$ entry is evicted, the protocol should ask the
owner tile to invalidate all the copies from the private L1 caches. Luckily, as
happens to the directory cache in directory protocols, an L2C$ with the same
number of entries and associativity than the L1 cache is enough to completely
remove this kind of replacements, as previously explained in Chapter 4.

5.3.4 Preventing starvation

Directory protocols avoid starvation by enqueuing requests in FIFO order at
the directory buffers. Differently in DiCo-CMP, write misses can change the
tile that keeps coherence for a particular block and, therefore, some requests
can take some extra time until this tile is finally found. If a memory block is
repeatedly written by several processors, a request could take some time to find
the owner tile ready to process it, even when it is sent by the home tile. Hence,
some processors could be solving their requests while other requests are starved.
Figure 5.8 shows an example of a scenario in which starvation appears. R1 and
R2 tiles are issuing write requests repeatedly and, therefore, the owner tile is
continuously moving from R1 to R2 and vice versa. On every change of owner
the home tile is notified, and the requesting core is acknowledged. However, at
the same time, the home tile is trying to re-send the request issued by R3 tile to
the owner one, but the request is always returned to the home tile because the
write request issued by R1 or R2 arrives before to the owner tile.

DiCo-CMP detects and avoids starvation by using a simple mechanism. In
particular, each time that a request must be re-sent to the L2C$ in the home
tile, a counter into the request message is increased. The request is considered
starved when this counter reaches a certain value (e.g, three accesses to the L2C$
for the evaluation carried out in this thesis). When the L2C$ detects a starved
request, it re-sends the request to the owner tile, but it records the address of
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Figure 5.8: Example of a starvation scenario in direct coherence protocols.
Rx=Requester; H=Home. Continuous arrows represent cache misses that take
place in R1, dashed arrows represent misses in R2 and dotted arrows represent
misses in R3.

the block. If the starved request reaches the current owner tile, the miss is
solved, and the home tile is notified, ending the starvation situation. If the
starved request does not reach the owner tile is because the ownership property
is moving from a tile to another one. In this case, when the message informing
about the change of the ownership arrives to the home tile, it detects that the
block is suffering from starvation, and the acknowledgement message required
on every ownership change is not sent. This ensures that the owner tile does not
change until the starved request can complete.

5.4 Updating the L1 coherence cache

DiCo-CMP uses the L1C$ to avoid indirection by keeping pointers that identify
the owner tile of certain blocks. Several policies can be used to update the value
of these pointers. A first approach consists in recording the information about
the last core that invalidated or provided each block, i.e., the last core that wrote
the block. When a block is invalidated from an L1 cache, the L1C$ records the
identity of the processor causing the invalidation. In case of a read miss, the
identity of the provider of the block is also stored. Additionally, when an owner
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block is evicted from an L1 cache, some control messages are sent to the sharers
to inform about the new location of the owner tile, the home tile. We call this
policy the Base policy.

Unfortunately, in most cases this information is not enough to obtain accurate
owner predictions and it must be enhanced by sending some hints. Hints are
control messages that inform the L1C$ about ownership changes. Since sending
hints to all cores on each change is not efficient in terms of network traffic, it is
necessary to keep track of those cores that need to receive hints for each memory
block.

The first alternative proposed for sending hints is the frequent sharers mecha-
nism. This mechanism requires the addition of a new field to each cache entry.
This field keeps a bit-vector that identifies the requesting cores for each owner
block. When there is a cache-to-cache transfer of an owner block, hints are sent
to the frequent sharers of that block to update the L1C$s. Moreover, the frequent
sharers vector is also sent along with the data message. Since we choose not to
store the frequent sharer information at the L2 cache level in order to keep stor-
age requirements low, this field is reset whenever there is an L1 cache eviction
of an owner block. We call this policy Hints FS.

The frequent sharers mechanism is not very suitable for large-scale tiled CMPs
since the area required by the bit-vector does not scale with the number of cores.
Additionally, this mechanism does not filter hint messages for those blocks in
which the Base mechanism works well, thus consuming precious network band-
width and, therefore, energy.

Another more elaborate alternative that achieves better scalability in terms of
area requirements consists in using address signatures. We call this policy Hints

AS. Address signatures have been recently employed in transactional memory
systems for disambiguating address across threads [25, 121], and to allow to
encode a set of addresses into a register of fixed size, following the principles
of hash-encoding with allowable errors as described in [21]. The disadvantage
of address signatures is that false positives can happen. However, in the hints
mechanism this is not a correctness issue but maybe a performance issue. Par-
ticularly, it increases network traffic.

As shown in Figure 5.9, each home tile includes an address signature (L2
Signature) that encodes a certain set of addresses. In order to filter some use-
less hints we only store the addresses for those cache misses mis-predicting
the owner tile, i.e., the home tile receives a request from a core that is not the
requester one, as shown in Figure 5.9(a). In this way, when the home tile is
informed about the ownership change for a particular block, it checks the sig-

150



Updating the L1 coherence cache

Requester != Sender

Fwd

to owner

Fwd

2    bits

L2 Signature

2    bitsn0 n1

Decode Decode

Home
offset

Block
offset

Adress

n0 n1...

(a) Codifying the memory blocks that need hints into the signature.

Change_Owner

2    bits

L2 Signature

2    bitsn0 n1
=

Home
offset

Decode Decode

Block
offset

Hint

if equal
to all cores

Adress

n0 n1...

(b) Checking if a memory block needs hints.

Figure 5.9: Organization of the address signature mechanism proposed to send
hints.

151



5. Direct Coherence Protocols

nature to broadcast hints if the address is present, as illustrated in Figure 5.9(b).
Note that when invalidation messages are required it is not necessary to send
hints to the cores that receive them.

Since this scheme only uses one signature for all cores, and hints are broad-
cast to them, some cores will receive hints for blocks that they are not actually
requesting, thus overloading the L1C$. To avoid this effect, we add another ad-
dress signature (L1 Signature) to each core. On each cache miss, the address
of the block is stored in the signature. Then, when a hint is received, it is only
stored in the L1C$ if the address is found in the signature.

Particularly, addresses are encoded using a double-bit-select signature im-
plementation [121], as Figure 5.9 shows. The signature is divided into two sets.
The log2(b) − 1 less significant bits are decoded and ORed with the first set,
being b the size of the signature. The log2(b) − 1 subsequent less significant bits
are decoded and ORed with the second set. An address belongs to the signature
if the corresponding bit is present in both sets.

When we refer to the less significant bits we do not take into consideration
the block offset. For the L2 signature, we neither take the home offset, as illus-
trated in Figure 5.9. This offset comes from assigning an address to a home tile
according to the less significant bits (log2n).

5.5 Area and power considerations

In this section we compare the memory overhead and the extra structures
needed by the three protocols evaluated in this chapter: Token, Directory and
DiCo-CMP. Moreover, we discuss how frequently these structures are accessed
to demonstrate that direct coherence protocols will not have significant impact
on the power consumed by these structures and, therefore, significant reduc-
tions on total power consumption can be expected as a result of the important
savings in terms of network traffic that DiCo-CMP entails (see Section 5.6.3).

For the particular configuration employed along this thesis (a 4×4 tiled CMP
with 128KB L1 private caches), the number of bits required for storing a full-
map sharing code is 16 (2 bytes), whereas just log216 = 4 bits are needed for
storing a single pointer. Table 5.1 details the structures, the size, and the mem-
ory overhead respect to the size of the data caches required by Token, Directory

and the different implementations of DiCo-CMP evaluated in this chapter. For
both DiCo-Hints FS and DiCo-Hints AS the structures and overhead shown are
added to the DiCo-Base policy. Likewise, table 5.2 shows the area overhead in
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terms of mm2, which has been calculated using the CACTI tool with the pa-
rameters specified in Chapter 3. Now, we present all the structures needed by
each policy for DiCo-CMP. For these structures we do not show the number of
entries because is the same as in Table 5.1. Note that these tables concentrate
on the structures used for keeping coherence information and, therefore, does
not account for the extra structures required by Token and DiCo-CMP to avoid
starvation. Note that the large tables required by Token for keeping active per-
sistent requests can become an issue for large-scale CMPs due to their lack of
scalability in terms of area requirements [37].

Table 5.1: Memory overhead introduced by coherence information (per tile) in a
4x4 tiled CMP.

Structure Entry size Entries Total size Overhead

Data
L1 cache tag + 64 bytes 2K 134.25KB
L2 cache tag + 64 bytes 16K 1070KB

Token
L1$ tokens 5 bits 2K 1.25KB

0.93%
L2$ tokens 5 bits 16K 10KB

Directory
L2$ dir. inf. 2 bytes 16K 32KB

3.59%
Dir. cache tag + 2 bytes 2K 11.25KB

DiCo-Base

L1$ dir. inf. 2 bytes 2K 4KB

4.19%
L2$ dir. inf. 2 bytes 16K 32KB
L1C$ tag + 4 bits 2K 7.25KB
L2C$ tag + 4 bits 2K 7.25KB

DiCo-Hints FS L1$ freq. sh. 2 bytes 2K 4KB +0.34%

DiCo-Hints AS
L1 signature 128 bytes 1 0.125KB

+0.02%
L2 signature 128 bytes 1 0.125KB

Token needs to keep the token count for any block stored both in the L1 and
L2 caches. This information only requires ⌈log2(n + 1)⌉ bits (the owner-token
bit and the non-owner token count), where n is the number of processing cores.
These additional bits are stored in the tags’ part of both cache levels. The mem-
ory overhead of this protocol is 0.93% in terms of bits and 4.65% in terms of mm2

for a 16-tile CMP. As already commented, although Token needs extra hardware
to implement both the persistent requests and the timeout mechanisms we do
not consider this extra hardware in the overhead analysis.
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Table 5.2: Area overhead introduced by coherence information (per tile) in a 4x4
tiled CMP.

Structure Entry size Total area Overhead

Data
L1 cache tag + 64 bytes 1.15 mm2

L2 cache tag + 64 bytes 6.25 mm2

Token
L1 cache tag + 5 bits + 64 bytes 1.19 mm2

4.65%
L2 cache tag + 5 bits + 64 bytes 6.55 mm2

Directory
L1 cache tag + 64 bytes 1.15 mm2

16.12%L2 cache tag + 2 bytes + 64 bytes 7.36 mm2

Dir. cache tag + 2 bytes 0.08 mm2

DiCo-Base

L1 cache tag + 2 bytes + 64 bytes 1.28 mm2

18.11%
L2 cache tag + 2 bytes + 64 bytes 7.36 mm2

L1C$ tag + 4 bits 0.05 mm2

L2C$ tag + 4 bits 0.05 mm2

DiCo-Hints FS

L1 cache tag + 4 bytes + 64 bytes 1.43 mm2

20.04%
L2 cache tag + 2 bytes + 64 bytes 7.36 mm2

L1C$ tag + 4 bits 0.05 mm2

L2C$ tag + 4 bits 0.05 mm2

DiCo-Hints AS

L1 cache tag + 2 bytes + 64 bytes 1.28 mm2

18.14%

L2 cache tag + 2 bytes + 64 bytes 7.36 mm2

L1C$ tag + 4 bits 0.05 mm2

L2C$ tag + 4 bits 0.05 mm2

L1 signature 128 bytes 0.96 µm2

L2 signature 128 bytes 0.96 µm2

Directory protocols store the on-chip directory information either in the L2
tags when the L2 cache holds a copy of the block or in a distributed directory
cache when the block is stored in any of the L1 caches but not in the L2 cache.
In our implementation, the number of entries of a directory bank is the same as
the number of entries of an L1 cache, since this size is enough to always find
the directory information for on-chip misses, i.e., without incurring in directory
misses, as discussed in Chapter 4. The directory must be accessed on each cache
miss. The memory overhead of this protocol is 3.59%, while its area overhead is
16.12%.
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DiCo-CMP stores the directory information for blocks held in any L1 or L2
caches in the owner tile (L1 or L2). Moreover, it uses two structures that store
a pointer to the owner tile, the L1 and L2 coherence caches. The L1C$ is ac-
cessed only when it is known that there is a cache miss in order to keep power
consumption low. The L2C$ is necessary for locating the owner tile whenever
the information in the L1C$ is not correct. This structure is only accessed for
misses affected by indirection (about 22% of the cache misses as shown in Sec-
tion 5.6.1). The number of entries of the L1C$ is the same as an L1 cache. On
the other hand, as happens with the on-chip directory cache in the directory
protocol, the L2C$ does not require more entries than the number of entries of
the L1 caches. Differently from a directory cache, just one pointer is stored in
each entry. In this way, the L2C$ required by DiCo-CMP has smaller size than
the directory cache employed in the directory protocol. The L1C$ and the L2C$
used in the evaluation of this chapter have the same size. Therefore, the memory
overhead of the DiCo-Base protocol is 4.19%, while its area overhead is 18.11%.

The use of hints improves performance at the cost of increasing both storage
requirements and network traffic. In particular, the frequent sharers mechanism
requires to store the set of the frequent sharers in the tags’ part of the L1 cache
–O(n)– and, consequently, its memory overhead is the highest (memory over-
head of 4.53% and area overhead of 20.04%). On the other hand, the address

signature mechanism only uses two signatures per tile (e.g, 1024 bits, each one)
and, therefore, the storage required is reduced compared to the frequent sharers

mechanism (memory overhead of 3.21% and area overhead of 18.14%) and it also
scales with the number of cores. In general, we can see that direct coherence has
an overhead close to a directory protocol.

In all the configurations a full-map is used as the sharing code for the di-
rectory information in order to concentrate on the impact that our proposal has
on performance, avoiding any interference caused by the particularities of the
sharing code as, for example, the presence of unnecessary coherence messages.
However, next chapter studies the traffic-area trade-off of direct coherence pro-
tocols by employing compressed sharing codes.

5.6 Evaluation results and analysis

We have implemented all the policies described in Section 5.4 for direct coher-
ence protocols: Base, Hints FS and Hints AS. In addition, to find out the potential
of DiCo-CMP, we have implemented an Oracle policy in which the identity of
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the current owner tile is immediately known by the requester on every cache
miss. These implementations have been exhaustively checked using the tester
program provided by GEMS that checks all race conditions to raise any incoher-
ence.

We compare these implementations of DiCo-CMP with both the Token and
the directory protocols described in Section 2.4. First, we study to what extent
DiCo-CMP reduces indirection compared to a directory protocol. Then, we show
that the reduction in the number of misses affected by indirection impacts in the
cache miss latency. On the other hand, we also analyze the savings that DiCo-

CMP obtains in terms of traffic in the on-chip interconnection network compared
to Token. Then, we show the impact of these improvements on applications’
execution time. Finally, we analyze the traffic-indirection trade-off obtained by
all the different implementations of DiCo-CMP evaluated in this chapter.

5.6.1 Impact on the number of hops needed to solve cache
misses

In general, DiCo-CMP reduces the average number of hops needed to solve a
cache miss by avoiding the indirection introduced by the access to the home tile.
However, in DiCo-CMP, some misses can increase the number of hops compared
to a directory protocol due to owner mis-predictions. In order to study how
DiCo-CMP impacts on the number of hops needed to solve cache misses, we
classify each miss in one of the following categories:

• 2-hop misses: Misses belonging to this category does not suffer from indi-
rection since the number of hops in the critical path of the miss is two. In
directory protocols, misses fall into this category either when the home tile
of the requested block can provide the copy of the block or when the miss
takes place in the home tile, and in both cases it is not necessary to inval-
idate blocks from other tiles. Token solves all misses that do not require
persistent requests in two hops. Finally, DiCo-CMP solves cache misses us-
ing two hops either when the request is directly sent to the current owner
tile and invalidations are not required or when the miss takes place in the
tile where the owner block resides (upgrades).

In all protocols, when the miss takes place in the home tile and this tile
holds the owner block in the L2 cache, the miss is solved without gener-
ating network traffic (0-hop miss). These misses are also included in this
category because they do not introduce indirection.
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Figure 5.10: How each miss type is solved.

• 3-hop misses: A miss belongs to this category when three hops in the critical
path are necessary to solve it. This category represents the misses suffering
from indirection in directory protocols. In contrast, 3-hop misses never
take place in Token.

• +3-hop misses: We include in this category misses that need more than three
hops in the critical path to be solved. This type of misses only happens in
DiCo-CMP, when the identity of the owner tile is mis-predicted, or in Token,
when persistent requests are required to solve the miss. The directory
protocol evaluated in this thesis never requires more than three hops to
solve cache misses since the acknowledgements to invalidation messages
are collected by the requesting core, as described in Section 2.4.

• Memory misses: Misses that require off-chip accesses since the owner block
is not stored on chip fall into this category.

Figure 5.10 shows the percentage of cache misses that fall into each category.
As commented in the introduction of this chapter, in tiled CMP architectures
that implement a directory protocol it is not very frequent that the requester be
at the home tile of the block because the distribution of blocks among tiles is per-
formed in a round-robin fashion. However, the fact that sometimes a coherent
copy of the block is found in the L2 cache bank of the home tile, decreases the
number of misses with indirection. In this way, the first bar in Figure 5.10 shows
that most applications have an important fraction of misses suffering from in-
direction, like Barnes, MPGdec, MPGenc, Ocean, Raytrace, Unstructured, Volrend
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and Water-Nsq, while other applications have most of the misses solved in two
hops, like FFT and Radix. Obviously, DiCo-CMP will have more impact for the
applications that suffer more indirection, although this impact will also depend
on the cache miss rate of each application. We also can observe that Token solves
most of the misses (90%) needing just two hops (see second bar).

As shown in the third bar of Figure 5.10, DiCo-Base increases the percentage
of cache misses without indirection compared to a directory protocol (from 41%
to 66% on average). On the other hand, DiCo-Base solves 17% of cache misses
needing more than three hops. This fact is due to owner mis-predictions that
can arise for two reasons: (1) staled owner information was found in the L1C$
or (2) the owner tile is changing or busy due to race conditions and the request
is sent back to the home tile. The first case can be removed with a precise
hints mechanism, as clearly happens in Unstructured. In the second case, the
extra number of hops entailed by DiCo-CMP is equivalent to the cycles that the
requests wait at the home tile until they are processed in the base directory
protocol and, consequently, it does not suppose extra miss latency. This kind
of +3-hop misses mainly appears in applications with high levels of contention,
like MPGdec, MPGenc and Raytrace, and they also occur in Token as persistent
requests.

The two hints mechanisms implemented for DiCo-CMP, DiCo-Hints FS and
DiCo-Hints AS (fourth and fifth bars, respectively), increase the percentage of
misses solved in two hops with respect to DiCo-Base in 11% and 12% on average,
respectively. The main advantage of DiCo-Hints AS is its low storage overhead.
Although for some applications the use of hints slightly increases the percentage
of two-hop misses, for others, especially Unstructured, hints significantly help to
achieve accurate predictions. Hints are mainly useful for applications in which
the migratory-sharing pattern is common since writes (or migratory reads) for
blocks following this pattern do not send invalidations because the owner tile
has the only valid copy of the block. Therefore, inDiCo-Base, the cores requesting
migratory blocks do not update the pointer stored in their L1C$.

The DiCo-Oracle implementation (last bar) gives us the potential of DiCo-

CMP. The results in terms of indirection avoidance are similar to the ones ob-
tained by Token. In both cases, the misses falling into the +3-hop category are for
contended blocks that cannot be solved in two hops due to race conditions. Al-
though DiCo-Hints AS does not obtain the same percentage of 2-hop misses than
DiCo-Oracle (10% less on average), it has similar percentage of +3-hop misses,
which makes this solution perform close to the oracle case.
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Figure 5.11: Normalized L1 cache miss latency.

5.6.2 Impact on cache miss latencies

The avoidance of the indirection shown by DiCo-CMP reduces the average cache
miss latency. In addition, DiCo-CMP removes the transient states at the directory
by putting together the provider of the block and the directory information. This
fact reduces the time that the requests need to be waiting at the directory to be
processed, which results in even more latency reductions. Figure 5.11 shows L1
cache miss latency for the applications evaluated in this thesis normalized with
respect to Token. This figure does not consider the overlapping of the misses,
and latency is calculated considering each miss individually. Latency is broken
down into four segments to understand better in what way DiCo-CMP reduces
the cache miss latency:

• Finding: It is the time elapsed between the issue of a request missing in the
local cache and the arrival of the request to the serialization point, i.e., the
home tile for directory protocols and the owner tile for DiCo-CMP.

• Waiting: In directory protocols, it is the time spent waiting at the home tile,
because another request for the same block is being processed. In DiCo-

CMP, this segment represents the period elapsed between the first time
that the owner tile is found and the time when the owner tile processes
the request to solve the miss. In both cases this period finishes when the
directory information for the requested block is accessed.

• Memory: It is the time spent getting the data block from main memory
when the fresh copy of it is not stored on chip.
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• Solving: It is the time elapsed between the request leaves the serialization
point and the block is accessed by the requesting processor. This period
includes the need of forwarding the request in a directory protocol, and
the issue of data, invalidation and acknowledgement messages for both
directory and direct coherence protocols.

In general, we can see that all the polices implemented for DiCo-CMP reduce
the average cache miss latency compared to both a directory protocol and Token.
In particular DiCo-Hints AS obtains reductions of 14% on average over a direc-
tory protocol and 10% over Token. Moreover, its average latency is very close
to the one obtained for the oracle case, which obtains reductions of 16% over a
directory protocol.

Looking at the different segments into which cache miss latency is split, we
can observe that, in general, the finding time is shorter for the directory protocol.
This is because in a directory protocol this period always comprises a single
hop. However, DiCo-CMP can take several hops until the owner tile is found.
As we can see, the more accurate are the owner predictions, the shorter is this
segment. For example, Unstructured has a lot of mis-predictions (+3-hop misses)
when the base policy is considered, which doubles the finding time compared to
a directory protocol. Nevertheless, hints significantly help to reduce this extra
latency. Note that for some other applications the increase in the number of
+3-hop misses is due to race conditions, which do not increase the latency of
the cache misses. Finally, for other applications like FFT, Ocean, and Radix, the
finding time in the oracle case is a bit shorter than in a directory protocol. This is
because sometimes the owner tile is closer to the requesting core than the home
tile.

Regarding the waiting time, we can observe that only some applications
(MPGdec, MPGenc, Raytrace and Volrend) have requests waiting at the home tile
during a meaningful time. Since DiCo-CMP removes transient states at the direc-
tory, this waiting is shortened. This waiting time is usually caused by contended
locks and, therefore, reductions in these requests result in a faster acquisition of
locks and, finally, in reductions in the number of memory requests, as happens
in Raytrace.

The memory time does not vary significantly for the evaluated protocols
since they incur in the same number of off-chip accesses. However, the solv-
ing time is always reduced when DiCo-CMP is implemented because for most
misses it requires just one hop, in contrast to the two hops (forwarding and data)
needed for a directory protocol. This time is not affected by the policy employed
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Figure 5.12: Normalized network traffic.

because the policy only tries to find the owner tile as soon as possible, but the
response goes directly from the owner tile to the requesting one.

5.6.3 Impact on network traffic

Figure 5.12 compares the network traffic generated by the protocols considered
in this chapter. In particular, each bar plots the number of bytes transmitted
through the interconnection network (the total number of bytes transmitted by
all the switches of the interconnect) normalized with respect to Token. As we can
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see, the fact that Token needs to broadcast requests makes this protocol obtain
the highest traffic levels. Network traffic can be dramatically reduced when the
directory protocol is employed (46% on average). This is because requests are
sent to a single tile, the home one, which in turn sends coherence messages just
to the cores that must receive them.

Figure 5.12(a) shows the network traffic split into three types: data, con-
trol, and hint messages. Compared to the directory protocol, in some appli-
cations, mainly in Raytrace, the traffic generated by data messages is reduced
when DiCo-CMP is employed. This reduction is due to the decrease of cache
misses commented in the previous section. On the other hand, DiCo-CMP saves
a meaningful fraction of control messages when compared to the directory pro-
tocol. These savings are originated by the elimination of the control messages
between the home tile and the other tiles. This reduction allows DiCo-Base to
reduce network traffic by 13% compared to the directory protocol. In contrast,
DiCo-CMP introduces hint messages in some configurations in order to achieve
more accurate owner predictions. The hints that appear for DiCo-Base come as
consequence of evictions of owner blocks, as explained in Section 5.4. In gen-
eral, hints increase network traffic, especially in Unstructured in which they are
crucial to obtain good performance. However, this traffic is always lower than
the reached by Token because hints are only sent (if necessary) when the owner
cache changes. DiCo-Hints AS requires more traffic than DiCo-Hints FS at the
cost of reducing considerably the storage requirements for the hints mechanism.
In general, we can observe that DiCo-Hints AS reduces the traffic compared to
Token up to 37%.

Figure 5.12(b) shows the network traffic split into critical and non-critical
messages. This classification is important to know how each protocol could be
optimized under heterogeneous networks [32], in which non-critical messages
could be sent through low-power wires to save power consumption. In Token

all broadcast requests are considered critical because it is unknown which ones
are going to be actually in the critical path. Directory highly reduces the num-
ber of critical messages respect to Token. We can also observe that DiCo-CMP

reduces even more this kind of messages, because hints are out of the critical
path of the miss. Therefore, under heterogeneous networks, DiCo-CMP can save
more power consumption than the other protocols (mainly compared to Token),
and even other more aggressive hints policies could be implemented with small
overhead in terms of power.
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Figure 5.13: Normalized execution time.

5.6.4 Impact on execution time

The ability of avoiding indirection and the savings in network traffic compared
to Token that DiCo-CMP shows, translates into applications’ execution time. Fig-
ure 5.13 plots the execution times that are obtained for the applications evalu-
ated in this thesis. All the results have been normalized with respect to those
observed for the directory protocol.

In general, we can see from Figure 5.13 that Token slightly improves a direc-
tory protocol (1%). As already discussed, Token avoids indirection by broadcast-
ing requests to all caches and, consequently, the network contention can become
critical. For applications with few misses with indirection, like FFT and Radix,
Token does not have too much advantage with respect to a directory protocol.
On the other hand, for Raytrace the directory protocol outperforms Token. This
is caused as consequence of the high contention shown in this application which
makes Token issue a lot of persistent requests.

DiCo-CMP does not rely on broadcasting but requests are just sent to the
potential owner tile. It is clear that the performance achieved by DiCo-CMP will
depend on its ability to find the current owner tile. We observe improvements in
execution time for DiCo-Base of 6% compared to the directory protocol and 5%
compared to Token. In particular, Raytrace obtains important reductions in exe-
cution time for DiCo-CMP over directory and Token. This is because DiCo-CMP

reduces the waiting time at the directory, thus making faster the acquisitions
of locks and reducing the number of cache misses more than 50% compared to
directory and Token.

On the other hand, the use of hints increases the fraction of two-hop misses
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Figure 5.14: Trade-off between network traffic and indirection.

which translates into improvements in terms of execution time. Particularly,
DiCo-Hints AS obtains better performance than DiCo-Hints FS at the cost of gen-
erating more network traffic. DiCo-Hints FS reduces the execution time by 8%
compared to the directory protocol (7% compared to Token), while DiCo-Hints AS

improves the directory protocol by 9% (8% compared to Token). Looking back
at Figure 5.10, we can observe that these improvements are due to the fact that
DiCo-Hints AS obtains more accurate predictions than DiCo-Hints FS. Finally, we
can see that the DiCo-Hints AS policy potentially obtains the same results than
the unimplementable DiCo-oracle policy.

5.6.5 Trade-off between network traffic and indirection

As shown in the introduction of this chapter, direct coherence protocols try to
achieve a good trade-off between the small amount of network traffic required
by directory protocols and the indirection avoidance of token protocols. Figure
5.14 shows this trade-off for all the protocols evaluated in this chapter. The
results presented in this figure are the average of the ten applications evaluated.

As discussed, Directory introduces indirection in the critical path of cache
misses while Token is the protocol that generates higher levels of network traffic.
We can observe that all DiCo-CMP protocols achieve a good trade-off between
network traffic and indirection, since they remove the disadvantages of Token
and directory protocols. Particularly, DiCo-Base is the DiCo-CMP policy that
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less network traffic generates. On the other hand, DiCo-Hints AS is the one
that obtains better indirection avoidance. Looking at this figure we can see that
DiCo-Hints FS has a better trade-off than the other policies but, unfortunately,
it requires the addition of an extra full-map sharing codes to each cache entry,
which makes it less attractive thanDiCo-Hints AS. In the next chapter, we discuss
with more detail the traffic-area trade-off of direct coherence protocols. Finally,
DiCo-Oracle presents the best trade-off that can be achieved for direct coherence
protocols.

5.7 Conclusions

Directory protocols are the best alternative to design large-scale cache coherence
protocols for tiled CMPs. However, they introduce indirection in the critical
path of cache misses by having to access the home tile before any coherence
action can be performed. An alternative cache coherence protocol that avoids
this indirection problem is Token. However, Token relies on broadcasting requests
to all cores, which can lead to prohibitive power levels of traffic (and, therefore,
power consumption in the interconnection network) in large-scale tiled CMPs.

In this chapter, we present a family of cache coherence protocols called di-
rect coherence protocols. Direct coherence meets the advantages of directory
and token protocols and avoids their problems. In direct coherence, the task of
storing up-to-date sharing information and ensuring ordered accesses for every
memory block is assigned to the owner tile, instead of to the home one. This
protocols avoid the indirection that the access to the directory entails (in direc-
tory protocols) by directly sending the requests to the owner tile, thus reducing
the average latency of cache misses. Compared to Token, direct coherence proto-
cols reduces network traffic by sending coherence messages just to the tiles that
must receive them.

We implement DiCo-CMP, a cache coherence protocol for tiled CMP archi-
tectures based on the direct coherence concept. Since we realize that for some
applications the base DiCo-CMP protocol has difficulties to predict the identity
of the owner tile, we decide to enhance owner predictions by using two hints
mechanisms. The first one, called frequent sharers (FS), needs an extra full-map
sharing code per cache entry, which entails more area requirements. The second
one, called address signatures (AS), encodes the frequent sharers by using bloom
filters, thus requiring less area at the cost of increasing network traffic.

In this way, we show that DiCo-Hints AS, the best policy for DiCo-CMP in
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terms of performance, is able to reduce the indirection compared to a directory
protocol from 56% to 18% on average. Both this reduction in misses with indirec-
tion and the decrease in the waiting time for some applications that DiCo-CMP

achieves result in reductions of 14% in the average cache miss latencies. Finally,
the improvements obtained for the cache miss latencies along with a slight re-
duction in the number of cache misses lead to improvements of 9% on average
in execution time compared to the directory protocol. Moreover, DiCo-Hints AS

slightly increases traffic requirements compared to a directory protocol and it
considerably reduces traffic compared to Token (by 37%) and, consequently, the
total power consumed in the interconnection network is also reduced. Addi-
tionally, we show that the structures and complexity required by DiCo-CMP are
comparable to those used in a directory protocol, which confirms that the pro-
tocol proposed in this chapter is a viable alternative to current cache coherence
protocols for tiled CMPs.
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Chapter 6
Traffic-Area Trade-Off in Direct

Coherence Protocols

6.1 Introduction

In the previous chapter, we have proposed direct coherence protocols to cope
with the trade-off between network traffic and indirection in cache coherence
protocols for many-core CMPs. Although we have shown that direct coherence
protocols are able to obtain a good traffic-indirection trade-off, the implemen-
tations previously evaluated do not take care of the area overhead entailed by
the coherence information. In particular, we show that the area overhead re-
quired by the most efficient implementation of direct coherence (DiCo-Hints AS)
is similar to the area overhead introduced by traditional directory protocols. Un-
fortunately, this area overhead could become prohibitive for many-core CMPs
[15].

On the other hand, among the cache coherence protocols described in Section
2.4, the most efficient one in terms of area requirements is Hammer [92]. Hammer

avoids keeping coherence information at the cost of broadcasting requests to all
cores. Unfortunately, although it is very efficient in terms of area requirements,
it generates a prohibitive amount of network traffic, which translates into exces-
sive power consumption in the interconnection network and other structures as
private caches. Figure 6.1(a) shows the trade-off between Hammer and directory
protocols. Since neither the network traffic generated by Hammer nor the ex-
tra area required by directory protocols scale with the number of cores, a great
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Figure 6.1: Traffic-area trade-off in cache coherence protocols.

deal of attention was paid in the past to address this traffic-area trade-off in the
context of shared-memory multiprocessors [8, 26, 35, 44, 55].

Additionally, these traditional cache coherence protocols introduce the in-
direction problem addressed in the previous chapter. This problem appears
because in both Hammer and directory protocols, the ordering point for the re-
quests to the same memory block is the home tile, and all cache misses must
reach this ordering point before performing coherence actions. Token, described
in Section 2.4, and direct coherence protocols have been proposed to deal with
this indirection problem. We refer to these protocols as indirection-aware pro-
tocols. Particularly, they avoid the access to the home tile through alternative
serialization mechanisms. Token only cares about requests ordering in case of
race conditions. In those cases, a persistent requests mechanism is responsi-
ble for ordering all requests to the same memory block. In direct coherence
the ordering point for each block is its current owner tile. In this way, indirec-
tion is avoided by directly sending the requests to the corresponding owner tile.
Therefore, these indirection-aware protocols reduce the latency of cache misses
compared to both Hammer and directory protocols, which finally translates into
performance improvements. Although Token entails low memory overhead, it is
based on broadcasting requests to all tiles, which is clearly non-scalable. Oth-
erwise, direct coherence sends requests to just one tile, but the implementa-
tions presented in the previous chapter assume that a full-map sharing code is
added to each cache entry to keep track of the sharers, which does not scale
with the number of cores. Figure 6.1(b) shows the traffic-area trade-off for these
indirection-aware protocols.

The aim of this chapter is to address the traffic-area trade-off of indirection-

168



Introduction

aware protocols for tiled CMPs. Although this trade-off has been widely studied
for traditional protocols, in this chapter we consider protocols that try to avoid
indirection. Particularly, we perform this study by relaxing the accuracy of the
sharing codes used in direct coherence protocols.

As discussed in the previous chapter, the area overhead entailed by direct co-
herence protocols mainly comes as consequence of the sharing code field added
to each cache entry, and the L1 and L2 coherence caches. The area required by
the signatures used in DiCo-Hints AS can be considered negligible. The most
significant area requirements are introduced by the sharing information since a
non-scalable full-map sharing code is employed.

In Chapter 4, we have proposed a scalable directory organization for keeping
the sharing information in directory-based protocols. Unfortunately, this orga-
nization cannot be employed for the sharing information in direct coherence
protocols, since they store it in the owner tiles instead of in the home ones, and
the proposed scalable organization requires a specific directory interleaving for
the information stored in the home tile. Therefore, in this chapter we focus on
reducing the size of the sharing information through other techniques, e.g., the
utilization of compressed sharing codes.

We have implemented and evaluated several cache coherence protocols based
on the direct coherence concept which differ in the sharing code scheme em-
ployed. Particularly, DiCo-LP-1, which only stores the identity of one sharer
along with the data block, DiCo-BT, which codifies the directory information
just using three bits (in a system with 16 cores), and DiCo-NoSC, which does
not store any coherence information in the data caches, are the best alterna-
tives. DiCo-LP-1 presents a good traffic-area trade-off by requiring slightly more
area than Token, but the same order –O(log2n)–, and slightly increasing net-
work traffic compared to DiCo-CMP (5% on average). DiCo-BT, requires less
area overhead than Token and increases traffic requirements by 9% compared to
DiCo-CMP. DiCo-NoSC does not need to modify the structure of caches to add
any extra field and, therefore, introduces less area requirements than Token and
DiCo-BT, and similar to Hammer for a 16-tile configuration, but with the same or-
der as Token –O(log2n)–. However, it increases network traffic by 19% compared
to DiCo-CMP, but still reducing the traffic when compared to Token by 25%. Fi-
nally, DiCo-BT obtains similar execution time than DiCo-CMP, while DiCo-LP-1

increases execution time by 1% and DiCo-NoSC by 2% compared to DiCo-CMP,
due to the increase in network traffic. We believe that the best alternative for a
tiled CMP design will depend on its particular constraints.

The rest of the chapter is organized as follows. Section 6.2 gives a classifica-
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tion of the cache coherence protocols that could be used in CMP architectures.
The different implementations of direct coherence evaluated in this chapter are
described in Section 6.3. Section 6.4 shows the performance results and, finally,
Section 6.5 concludes the chapter.

6.2 Classification of cache coherence protocols

This section classifies the four cache coherence protocols considered along this
thesis as potential candidates to be employed in tiled CMPs (i.e., with unordered
networks). In particular, we classify these cache coherence protocols into tradi-

tional protocols, in which cache misses suffer from indirection, and indirection-

aware protocols, which try to avoid the indirection problem. For each type, we
also differentiate between area-demanding and traffic-intensive protocols.

6.2.1 Traditional protocols

In traditional protocols, the requests issued by several cores to the same block
are serialized through the home tile, which enforces cache coherence. There-
fore, all requests must be sent to the home tile before any coherence actions
can be performed. Then, the request is forwarded to the corresponding tiles ac-
cording to the coherence information (or it is broadcast if the protocol does not
maintain any coherence information). All processors that receive the forwarded
request answer by sending either an acknowledgement or a data message to the
requesting core. The requesting core accesses the block when it receives all the
acknowledgement and data messages. The access to the home tile introduces
indirection, which causes that cache misses are solved with three hops in the
critical path.

Examples of these traditional protocols are Hammer and directory protocols.
As commented in the introduction, Hammer has the drawback of generating a
considerable amount of network traffic. On the other hand, directory protocols
that use a precise sharing code to keep track of cached blocks introduce an area
overhead that does not scale properly with the number of cores.

6.2.2 Indirection-aware protocols

Recently, new cache coherence protocols have been proposed to avoid the indi-
rection problem of traditional protocols. For example, Token avoids indirection
by broadcasting requests to all tiles and maintains coherence through a token
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counting mechanism. Although the storage required to store the tokens of each
block is reasonable, network requirements are prohibitive for may-core CMPs.
On the other hand, the direct coherence protocols presented in the previous
chapter keep traffic low by sending requests to only one tile. However, coher-
ence information used in these implementations include a full-map sharing code
per cache entry, whose area do not scale with the number of cores.

6.2.3 Summary

Table 6.1: Summary of cache coherence protocols.

Traditional Indirection-aware

Traffic-intensive Hammer Token
Area-demanding Directory DiCo

Table 6.1 summarizes all cache coherence protocols considered in this the-
sis. Hammer and Token are based on broadcasting requests on every cache miss.
Therefore, although the storage required by these protocols to keep coherence is
small, they generate a prohibitive amount of network traffic. On the other hand,
directory and DiCo achieve more efficient utilization of the interconnection net-
work at the cost of increasing storage requirements compared with Hammer and
Token protocols.

6.3 Reducing memory overhead

DiCo-CMP needs two structures that keep the identity of the tile where the
owner copy of the block resides, the L1C$ and the L2C$. These two structures
do not compromise scalability because they have a small number of entries and
each one stores a tag and a pointer to the owner tile (log2n bits, where n is
the number of cores). The L2C$ is needed to solve cache misses in DiCo-CMP,
since it ensures that the tile that keeps coherence for each block can always be
found. On the other hand, the L1C$ is required to avoid indirection in cache
misses and, therefore, it is essential to obtain good performance. Moreover, the
L2C$ allows read misses to be solved by sending only one forwarding request
to the owner tile, since it stores the identity of the owner tile, which significantly
reduces network traffic when compared to broadcast-based protocols.
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Apart from these structures, DiCo-CMP also adds a full-map sharing code to
each data cache entry. The memory overhead introduced by this sharing code
could become prohibitive in many-core CMPs. In this section, we describe some
alternatives that differ in the sharing code scheme added to each entry of the
data caches. Since these alternatives always include the L1C$ and the L2C$,
they have area requirements of at least O(log2n). The particular compressed
sharing code employed impacts on the number of invalidations sent for write
misses. Next, we comment on the different implementations of direct coherence
protocols that we have evaluated.

DiCo-FM is the DiCo-CMP protocol described in the previous chapter and,
therefore, it adds a full-map sharing code to each data cache. Particularly, it
uses address signatures to keep the memory overhead introduced by the hints
mechanism as low as possible.

DiCo-CV-K reduces the size of the sharing code field by using a coarse vector

[44] instead of a full-map sharing code. In a coarse vector, each bit represents
a group of K tiles, instead of just one. A bit is set when at least one of the
tiles in the group holds the block in its private cache. Therefore, even when just
one of the tiles in the group requested a particular block, all tiles belonging to
that group will receive an invalidation message before the block can be written.
Particularly, we study a configuration that uses a coarse vector sharing code with
K = 2. In this case, 8 bits are needed for a 16-core configuration. Although this
sharing code reduces the memory required by the protocol, its size still increases
linearly with the number of cores.

DiCo-LP-P employs a limited pointer sharing code [26]. In this scheme, each
entry has a limited number of pointers for the first P sharers of the block. Actu-
ally, since DiCo-CMP always stores the information about the owner tile in the
L2C$, the first pointer is employed to store the identity of the second sharer of
the block. When the sharing degree of a block is greater than P+ 1, write misses
are solved by broadcasting invalidations to all tiles. Therefore, apart from the
pointers, it is necessary an extra bit indicating the overflow situation. However,
this situation is not very frequent since the sharing degree of the applications is
usually low [38]. In particular, we evaluate this protocol with a P value of 1. Un-
der this assumption, the number of bits needed to store the sharing information
considering 16 cores is 5.

DiCo-BT uses a sharing code based on a binary tree [1]. In this approach, tiles
are recursively grouped into clusters of two elements, thus leading to a binary
tree with the tiles located at the leaves. The information stored in the sharing
code is the smallest cluster that covers all the sharers. Since this scheme assumes
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that for each block the binary tree is computed from a particular leave (the one
representing the home tile), it is only necessary to store the number of the level
in the tree, i.e., 3 bits for a 16-core configuration.

Finally, DiCo-NoSC (no sharing code) does not maintain any coherence infor-
mation along with the owner block. In this way, this protocol does not need to
modify the structure of data caches to add any field. This lack of information im-
plies broadcasting invalidation messages to all tiles upon write misses, although
this is only necessary for blocks in shared state because the owner tile is always
known in DiCo-CMP. This scheme incurs in more network traffic compared to
the previous ones. However, it falls into less traffic than Hammer and Token.
This is because Hammer requires broadcasting requests on every cache miss, and
what is more expensive in a network with multicast support, every tile that re-
ceives the request answers with a control message. On the other hand, although
Token avoids these response messages, it also relies on broadcasting requests for
all cache misses.

Table 6.2: Bits required for storing coherence information.

Protocol Sharing Code
Bits L1 cache Bits L1C$

Order
and L2 cache and L2C$

DiCo-FM Full-map n log2n O(n)
DiCo-CV-K Coarse vector n

K log2n O(n)
DiCo-LP-P Limited pointers 1+ P× log2n log2n O(log2n)
DiCo-BT Binary Tree ⌈log2(1+ log2n)⌉ log2n O(log2n)
DiCo-NoSC None 0 log2n O(log2n)

Table 6.2 shows the bits required for storing coherence information in each
implementation, both for the coherence caches (L1C$ and L2C$) and for the
data caches (L1 and L2). Other compressed sharing codes, like tristate [8], gray-
tristate [85] or binary tree with subtrees [1] could also be implemented instead of
the shown in this table. However, for a 16-core tiled CMP, they incur in similar
overhead than DiCo-CV-2 (8, 8 and 7 bits respectively), that does not significantly
increases network traffic, as we will see in Section 6.4.2. For a greater number of
cores, these compressed sharing codes can be more appropriate.
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6.4 Evaluation results and analysis

In this section, we compare the different alternatives described in the previous
section with all the base protocols described in this thesis. First, we study the
area overhead of each protocol and the impact that the different sharing codes
have on network traffic. We also study the traffic-area trade-off for this protocols.
Then, we show the results in terms of applications’ execution time and, finally,
we perform an overall analysis of the evaluated protocols taking into account the
three main design goals for cache coherence protocols: performance, network
traffic, and area requirements.

6.4.1 Impact on area overhead

First, we compare the memory overhead introduced by the coherence informa-
tion for the cache coherence protocols evaluated in this chapter. Although some
protocols can entail extra overhead as a consequence of the additional mech-
anisms that they demand (e.g., timeouts for reissuing requests or large tables
for keeping active persistent requests in Token), we only consider the amount
of memory required to keep coherence information. Obviously, the extra tags
required to store this information (e.g., for the L1C$ and L2C$) are also consid-
ered in this study. Figure 6.2 shows the storage overhead introduced by these
protocols in terms of both number of bits and estimated area (calculated with
CACTI, as explained in Chapter 3). The overhead is plotted for varying number
of cores from 2 to 1024.

Although the original Hammer protocol does not require any coherence in-
formation, our optimized version for CMPs adds a new structure to the home
tile. This structure is a 512-set 4-way cache that contains a copy of the tags for
blocks stored in the L1 caches but not in the L2 cache. Remember that our pro-
tocols do not force inclusion between both cache levels. However, this structure
introduces a slight overhead which keeps constant with the number of cores.

Directory stores the directory information either in the L2 tags, when the
L2 cache holds a copy of the block, or in a distributed directory cache, when
the block is stored in any of the L1 caches but not in the L2 cache. Since the
information is stored using a full-map sharing code, the number of required bits
is n, and consequently the width of each directory entry grows linearly with the
number of cores.

Token keeps the token count for any block stored both in the L1 and L2 caches.
This information only requires ⌈log2(n + 1)⌉ bits for both the owner-token bit
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Figure 6.2: Overhead introduced by the cache coherence protocols.

and the non-owner token count. These additional bits are stored in the tags’ part
of both cache levels. In this way, Token has acceptable scalability in terms of area.
Note that we do not account for the size of the tables needed by the persistent
requests mechanism, which could restrict the scalability of token coherence in
some situations [37].

DiCo-CMP stores directory information along with each owner block held
in the L1 and L2 caches. Therefore, a full-map sharing code is added to the
tags’ part of each cache entry. Moreover, it uses two structures that store the
identity of the owner tile, the L1C$ and the L2C$. Each entry in these structures
contains a tag and an owner field, which requires log2n bits. Therefore, this is
the protocol that more area overhead entails.

In this chapter, we propose to reduce this overhead by introducing com-
pressed sharing codes in DiCo-CMP, also named in this chapter as DiCo-FM.
DiCo-CV-2 saves storage compared to DiCo-FM but it is still non-scalable. In
contrast, DiCo-LP-1, which only adds a pointer for the second sharer of the block
(the first one is given by the L2C$) has better scalability –O(log2n)–. DiCo-BT

reduces even more the area requirements compared to DiCo-LP-1, and it scales
better than Token. Finally, DiCo-NoSC, which does not require to modify data
caches to add coherence information, is the implementation of DiCo with less
overhead (although it still has order O(log2n) due to the need of the coherence
caches), at the cost of increasing network traffic. Finally, we can see that a small
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Figure 6.3: Normalized network traffic.

overhead in the number of required bits results in a significant overhead when
the area of the structures is considered.

6.4.2 Impact on network traffic

Figure 6.3 compares the network traffic generated by the protocols discussed
previously. Each bar plots the number of bytes transmitted through the inter-
connection network normalized with respect to Hammer.

As expected, Hammer introduces much more network traffic than the other
protocols due to the lack of coherence information, which implies broadcasting
requests to all cores and receiving the corresponding acknowledgements. Direc-

tory reduces considerably traffic by adding a full-map sharing code that filters
unnecessary invalidations. Token generates more network traffic than Directory,
because it relies on broadcasts, and less than Hammer, because it does not need
to receive acknowledgements from tiles without tokens (i.e., the tiles that do not
share the block). Finally, DiCo-FM slightly increases traffic requirements com-
pared to Directory. This increase is due to the issue of hints to achieve good
owner predictions.

In general, we can see that compressed sharing codes increase network traf-
fic compared to a full-map sharing code. However, the increase in traffic is
admissible. Particularly, the most scalable alternatives, DiCo-LP-1, DiCo-BT and
DiCo-NoSC, increase network traffic by 5%, 9% and 19% compared to DiCo-FM,
respectively. Even DiCo-NoSC, which does not have any sharing code, generates
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Figure 6.4: Traffic-area trade-off.

an acceptable amount of network traffic (25% less traffic than Token and 48% less
traffic than Hammer).

6.4.3 Trade-off between network traffic and area
requirements

Figure 6.4 shows the traffic-area trade-off for all the protocols evaluated in this
chapter. Results of network traffic represent the average of all applications. The
figure also differentiates between traditional and indirection-aware protocols.
We can see that, in general, the base protocols aimed to be used with tiled CMPs
do not have a good traffic-area trade-off: both Hammer and Token are constrained
by traffic whilst both Directory and DiCo-FM are constrained by area.

However, the use of different compressed sharing codes for DiCo-CMP can
lead to a good compromise between network traffic and area requirements. In
particular, DiCo-LP-1, DiCo-BT andDiCo-NoSC are very close to an ideal protocol
with the best of the base protocols, and also avoiding the indirection problem.
The difference is that DiCo-LP-1 is more efficient in terms of network traffic
whilst DiCo-NoSC is more efficient in terms of area requirements. Particularly,
DiCo-LP-1 requires slightly more area than Token, but the same order –O(log2n)–
, and slightly increases network traffic compared to DiCo-FM (9% on average).
DiCo-BT requires less area overhead than Token for the configuration used in
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Figure 6.5: Normalized execution time.

this study and it reduces considerably the network traffic by 30%. The main
advantage of DiCo-NoSC is that it does not need to modify the structure of the
caches to add any extra field and, therefore, it introduces less area requirements
than Token and similar requirements than Hammer, but with the same order than
Token –O(log2n)–. However, it increases network traffic by 19% compared to
DiCo-FM, but still reducing the traffic when compared to Token by 25%.

6.4.4 Impact on execution time

Figure 6.5 plots the average execution times for the applications evaluated in
this thesis normalized with respect to Hammer. Compared to Hammer, Direc-

tory improves performance for all applications as a consequence of an important
reduction in terms of network traffic. Moreover, on each miss Hammer must
wait for all the acknowledgement messages before the requested block can be
accessed. On the contrary, in Directory only write misses must wait for acknowl-
edgements.

On the other hand, indirection-aware protocols reduce average execution
time when compared to traditional protocols. Particularly, Token obtains aver-
age improvements of 11% compared to Hammer and 1% compared to Directory.
DiCo-FM improves the execution time by 17%, 9% and 8% compared to Hammer,
Directory and Token, respectively. On the other hand, when DiCo-CMP employs
compressed sharing codes, the execution time slightly increases. However, it
remains close to DiCo-FM. For DiCo-CV-2 and DiCo-LP-1 the increase in exe-
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cution time is negligible. DiCo-BT increases execution time by 1% and, finally,
DiCo-NoSC increases execution time by 2%.

6.4.5 Overall analysis

Figure 6.6 shows the trade-off among execution time, network traffic, and area
requirements for the base protocols evaluated in this chapter and DiCo-BT,
which constitutes a good alternative when these three metrics are considered. In
this way, this graph summarizes the evaluation carried out both in this chapter
and in the previous one. Results in terms of execution time and network traffic
represent the average of all applications, normalized with respect to Hammer.
Results in terms of area requirements correspond to the area in mm2 of each
protocol considering both the data caches and the extra structures required to
keep the coherence information.

We can see that, in general, the base protocols do not obtain good results for
all the metrics. In particular, Hammer has the highest traffic levels and execution
time, but it also has the lowest area requirements (7.4mm2). In contrast, Directory

reduces both execution time and network traffic compared to Hammer (by 10%
and 61%, respectively) at the cost of increasing area requirements (8.59mm2 for
a 16-tiled CMP, and O(n)). Although Token has acceptable area requirements
(7.68mm2 for a 16-tiled CMP) it is limited by traffic, requiring twice the traffic
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required by Directory. Finally, DiCo-FM, that reduces both execution time and
traffic requirements when compared to Token (by 9% and 36%, respectively), is
the one with the highest area requirements (8.74mm2 for a 16-tiled CMP, and
O(n)).

However, the use of different compressed sharing codes for DiCo-CMP can
lead to a good compromise between network traffic and area requirements, and
still guaranteeing low average execution time. In general, DiCo-LP-1, DiCo-BT

and DiCo-NoSC are very close to an ideal protocol with the best characteristics
of the base protocols, but for the sake of clarity, we only show the trade-off
for DiCo-BT. DiCo-BT requires less area (7.65mm2 for a 16-tiled CMP) than all
evaluated protocols except Hammer (and DiCo-NoSC), it also generates similar
network traffic than DiCo-FM and, finally, it has a low average execution time
(increasing just by 1% the best approach, DiCo-FM).

6.5 Conclusions

Two traditional protocols that can be used in tiled CMPs with unordered net-
works are Directory and Hammer. Directory commonly keeps track of the sharers
by means of a full-map sharing code that does not scale with the number of
cores. On the other hand, Hammer avoid this extra storage by broadcasting
requests, which is not power-efficient. Therefore, researchers put their effort
in addressing this trade-off. However, both protocols introduce the indirection
problem leading to inefficiencies in terms of performance.

Token has been recently proposed to cope with the indirection problem of tra-
ditional protocols. Although it can avoid indirection in most cases, this protocol
is also based on broadcasting requests for every cache miss, like Hammer. On the
other hand, in the previous chapter, we proposed direct coherence protocols to
address the trade-off between network traffic and indirection in cache coherence
protocols. Although we have shown that direct coherence protocols are able to
obtain a good traffic-indirection trade-off, the implementations evaluated in the
previous chapter do not take especial care of the area overhead entailed by the
coherence protocol. Since Token does not scale in terms of traffic requirements
and DiCo-CMP is not scalable in terms of area requirements, it is necessary to
design new cache coherence protocols with the advantages of the existing ones.

Particularly, this chapter addresses the traffic-area trade-off of indirection-
aware cache coherence protocols through several implementations of direct co-
herence protocols for tiled CMPs. We evaluate several cache coherence protocols
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that differ in the amount of coherence information that they store. DiCo-LP-1,
which only stores the identity of one sharer along with the data block, DiCo-BT,
which codifies the directory information just using three bits, and DiCo-NoSC,
which does not store any coherence information in the data caches, are the alter-
natives that achieve a better compromise between traffic and area. It is impor-
tant to note that DiCo-NoSC does not need to modify the structure of the caches
and, therefore, has less area requirements than Token and all the other imple-
mentations of direct coherence protocols, and similar requirements compared to
Hammer for the configurations evaluated. However, it increases network traffic
by 19% compared to DiCo-CMP, but still reducing the traffic when compared to
Token by 25%.

Finally, all these implementations obtain similar execution times when com-
pared to DiCo-CMP, being DiCo-NoSC the one that obtains the worse result, but
just by 2%. Note that DiCo-NoSC still improves execution time compared to
Token and Directory by 6% and 7%, respectively. Therefore, since some of the
evaluated alternatives avoid the indirection problem requiring both low area
and traffic requirements, we believe that they can be considered for being im-
plemented in future many-core tiled CMPs depending on the particular system
constraints.
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Chapter 7
A Distance-Aware Mapping Policy

for NUCA Caches

7.1 Introduction

In the previous chapters of this thesis, we have focused on cache coherence pro-
tocols for large-scale CMPs. For that study we have assumed a shared L2 cache
organization with a physical mapping of blocks to cache banks. In this chapter,
we discuss the perks and drawbacks of this organization, and we propose an
alternative mapping policy.

As discussed in the introduction of this thesis, an important decision when
designing tiled CMPs is how to organize the last-level on-chip cache, i.e., the
L2 cache in this thesis, since cache misses at this level result in long-latency off-
chip accesses. The two common ways of organizing this cache level are private

to the local core or shared among all cores. The private L2 cache organization,
ensures fast access to the L2 cache. However, it has two main drawbacks that
could lead to an inefficient use of the aggregate L2 cache capacity. First, local L2
banks keep a copy of the blocks requested by the corresponding core, potentially
replicating blocks in multiple L2 cache banks. Second, load balancing problems
appear when the working set accessed by all the cores is heterogeneous, i.e.,
some banks may be over-utilized while others are under-utilized. Since these
drawbacks can result in more off-chip accesses, which are very expensive, latest
commercial CMPs implement a shared cache organization [63, 104, 103, 53].

The shared L2 cache organization, also called non-uniform cache architecture
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(NUCA) [57], provides more efficient use of the L2 cache by storing only one
copy of each block and by distributing the copies across the different banks. The
main downside of this organization for many-core CMPs is the long L2 access
latency, since it depends on the bank wherein the block is allocated, i.e., the
home bank or home tile.

The most straightforward way of distributing blocks among the different
tiles is by using a physical mapping policy in which a set of bits in the block
address defines the home bank for every block. Some recent proposals [52, 123]
and commercial CMPs [63, 104] choose the less significant bits1 for selecting
the home bank. In this way, blocks are assigned to banks in a round-robin
fashion with block-size granularity. This random distribution of blocks does not
take into account the distance between the requesting core and the home bank
on a L1 cache miss. Moreover, the average distance between two tiles in the
system significantly increases with the size of the CMP, which can become a
performance problem for many-core CMPs.

On the other hand, page-size granularity seems to be a better choice than
block-size granularity for future tiled CMPs because (1) it is more appropriate
for new technologies aimed to reduce off-chip latencies, like 3D stacking mem-
ory architectures [69], and (2) it provides flexibility to the OS for implementing
more efficient mapping policies [34], such as first-touch, which has been widely
used in NUMA architectures to achieve better locality in the memory accesses.
The behavior of a first-touch policy is similar to that of a private cache organiza-
tion but without replication. One nice aspect of this policy is that it is dynamic
in the sense that pages are mapped to cache banks depending on the particu-
lar memory access pattern. However, this policy can increase off-chip accesses
when the working set of the application is not well-balanced among cores. Fig-
ure 7.1 shows the trade-off between a round-robin policy and first-touch policy in
NUCA caches. This chapter addresses this trade-off.

Additionally, many-core CMP architectures are very suitable for throughput
computing [29] and, therefore, they constitute a highly attractive choice for com-
mercial servers in which several programs are running at the same time using
different subsets of the cores available on chip. The use of these architectures as
commercial servers emphasize the need of efficient mapping policies because (1)
data is shared by cores that are placed in a small region of the chip, but with a
round-robin policy they could map to any bank in the chip, and (2) more work-

1In this chapter, when we refer to the less significant bits of an address we do not consider
the block offset.
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ing set imbalance can occur in these systems since the applications running on
them could have very different memory requirements.

In this chapter, we propose the distance-aware round-robin mapping policy,
an OS-managed policy which does not require extra hardware structures. This
policy tries to map the pages to the local bank of the first requesting core, like
a first-touch policy, but also introduces an upper bound on the deviation of the
distribution of memory pages among cache banks, which lessens the number of
off-chip accesses.

We also observe that OS-managed distance-aware mapping policies can hurt
the L1 cache hit rate in some cases. This happens when the same bits that
define the home bank are used for indexing the private L1 caches. In these
cases, some sets in the cache are overloaded while others remain almost unused.
This imbalance increases conflict misses. Hence, we propose to avoid the home
bank bits for indexing the L1 caches when distance-aware mapping policies are
employed.

Since the proposed mapping policy is particularly appropriate for systems
where several applications are running simultaneously, we have extended the
workloads used in this thesis to evaluate the proposal presented in this chapter
with four multi-programmed workloads, which have been already explained in
Chapter 3. Our proposal obtains average improvements of 5% for parallel appli-
cations and 14% for multi-programmed workloads over a round-robin policy. In
terms of network traffic, our proposal obtains average reductions of 31% for par-
allel applications and 68% for multi-programmed workloads. When compared
to a first-touch policy average improvements of 2% for parallel applications and
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7% for multi-programmed workloads are obtained, slightly increasing on-chip
network traffic.

The rest of the chapter is organized as follows. The related work and a
background on mapping policies for NUCA caches is given in Section 7.2. Sec-
tion 7.3 describes the distance-aware round-robin mapping policy. The impact
of distance-aware mapping policies on private cache miss rate is discussed in
Section 7.4. Section 7.5 shows the performance results. Finally, Section 7.6 con-
cludes the chapter.

7.2 Background and related work

This section present a background on mapping policies for NUCA caches. Then,
we comment on a review of the previous works which are related to the mapping
policy proposed in this chapter.

7.2.1 Background on mapping policies in NUCA caches

Non-uniform cache access (NUCA) caches [57] are a set of cache banks dis-
tributed across the chip and connected through a point-to-point network. Al-
though cache banks are physically distributed, they constitute a logically shared
cache (the L2 cache level in this thesis). Therefore, the mapping of memory
blocks to cache entries is not only defined by the cache set, but also by the cache
bank. The cache bank where a particular block maps is called the home bank for
that block.

Most CMP architectures that implement NUCA caches map memory blocks
to cache banks by taking some fixed bits of the physical address of the block
[63, 104]. This physical mapping spreads blocks uniformly among cache banks,
resulting in optimal utilization of the cache storage. Commonly, the bits taken
to select the cache bank for a particular block are the less significant ones, lead-
ing to a block-grained interleaving (Block diagram in Figure 7.2(a)). One of the
advantages of this interleaving is that it offers less contention at the home tile
by distributing contiguous memory blocks across different cache banks.

Another option is to use an interleaving with a granularity of at least the size
of a page (e.g., Page and L2 bank diagrams in Figure 7.2(a)). As shown in Figure
7.2(b), when a physical mapping policy is considered, the granularity of the
interleaving does not affect significantly the average distance to the home bank
(see the Round Robin bars). However, this interleaving becomes an important

186



Background and related work

Home
Bank

L2 Set

B.O.P.O.

L1 Set

B.O.

L1 Set

B.O.P.O.

L1 Set

L2 Set Home
Bank

L2 Set

Bank
Home

P.O.

L2 Set

L2 bank

Page

Block Virtual to Physical

Virtual to Physical

Virtual to Physical

(a) Different granularities of interleaving
(P.O.=Page offset, B.O.=Block offset).

Block Page L2 bank
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

A
ve

ra
ge

 h
om

e 
di

st
an

ce

Round Robin
First Touch

(b) Impact on average home distance for the
SPLASH-2 benchmark suite and 16 cores.
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decision when either 3D-stacked memory or OS-managed mapping techniques
are considered (as shown with the First Touch bars).

A 3D-stacked memory design can offer latency reductions for off-chip ac-
cesses when a coarse-grained interleaving (at least of page size) is employed. In
tiled CMPs with 3D stacking memory, each tile includes a memory controller
for the memory bank that it handles [69]. Low-latency, high-bandwidth and
very dense vertical links [39] interconnect the on-chip controller with the off-
chip memory. These vertical links provide fast access to main memory. On an
L2 cache miss, it is necessary to reach the memory controller of the memory
bank where the block is stored. If the memory controller is placed in a differ-
ent tile than the home L2 bank, a horizontal on-chip communication is entailed.
Since blocks in memory are handled at page-size granularity, it is not possible
to assign the same mapping for the L2 cache if a block-size granularity is con-
sidered. Differently, with a granularity of at least the size of a page the same
mapping can be assigned to both memories, thus avoiding the horizontal latency.

The other advantage of a coarse-grained interleaving is that it allows the
OS to manage the cache mapping without requiring extra hardware support
[34]. The OS maps a page to a particular bank the first time that the page is
referenced, i.e, a memory miss. At that moment, the OS assigns a physical
address to the virtual address of the page. Therefore, some bits in the address of
the page are going to change (Virtual to Physical field in figure 7.2(a)). Then, the
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OS can control the cache mapping by assigning to this page a physical address
that maps to the desired bank. For example, a first-touch policy can be easily
implemented by assigning an address that physically maps to the tile wherein
the core that is accessing the page resides. The OS only needs to keep in software
a list of available physical addresses for each memory bank. With a first-touch
mapping policy, finer granularity offers shorter average distance between the
missing L1 cache and the home L2 bank, as shown in Figure 7.2(b). Therefore, it
is preferable to use a grain size as fine as possible. Since block granularity is not
suitable for OS-managed mapping, the finest granularity possible is achieved by
taking the less significant bits of the Virtual to Physical field, i.e., a page-grained
interleaving.

The drawback of a first-touch policy is that applications with a working set
not balanced among cores do not make optimal use of the total L2 capacity.
This happens more frequently in commercial servers where different applica-
tions with different memory requirements run on the same system, or when
some applications are running in a set of cores while the other cores remain
idle. To avoid this situation, policies like cache pressure [34] can be implemented.
Cache pressure uses bloom filters to collect cache accesses in order to determine
the pressure of the different data mapping to cache banks. In this way, newly
accessed pages are not mapped to the most pressured caches. However, this
approach has several drawbacks, as we explain in the following section.

7.2.2 Related work

There are several ways of reducing cache access latency in NUCA caches. The
most relevant ways are data migration, data replication or to perform an intel-
ligent data mapping to cache banks. Next, we comment on the most important
works for these approaches.

Kim et al.[57] presented non-uniform cache access (NUCA) caches. They
studied both a static mapping of blocks to caches and a dynamic mapping based
on spread sets. In such dynamic mapping, a block can only be allocated in a par-
ticular bank set, but this bank set can be comprised of several cache banks that
act as ways of the bank set. In this way, a memory block can migrate from a
bank far from the processor to another bank closer if the block is expected to be
accessed frequently. Chishti et al. [33] achieved more flexibility than the original
dynamic NUCA approach by decoupling tag and data arrays, and by adding
some pointers from tags to data, and vice versa. The tag array is centralized
and accessed before the data array, which is logically organized as distance-
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groups. Again, memory blocks can reside in different banks within the same
bank set. Differently from the last two proposals, Beckmann et al. [18], con-
sidered block migration in multiprocessor systems. They proposed a new dis-
tribution of the components in the die, where the processing cores are placed
around the perimeter of a NUCA L2 cache. Migration is also performed among
cache banks belonging to the same bank set. The block search is performed
in two phases, both requiring broadcasting the requests. Unfortunately, these
proposals have two main drawbacks. First, there are data placement restrictions
because data can only be allocated in a particular bank set and, second, data
access requires checking multiple cache banks, which increases network traffic
and power consumption.

Zhang et al. [123] proposed victim replication, a technique that allows some
blocks evicted from an L1 cache to be stored in the local L2 bank. In this way,
the next cache miss for this block will find it at the local tile, thus reducing miss
latency. Therefore, all L1 cache misses must look for the block at the local L2
bank before the request is sent to the home bank. This scheme also has two
main drawbacks. First, replication reduces the total L2 cache capacity. Second,
forwarding and invalidation requests must also check the L2 tags in addition to
the L1 tags. Later on, in [122], they proposed victim migration as an optimiza-
tion that removes some blocks from the L2 home bank when they are frequently
requested by a remote core. Now, the drawback is that an extra structure is
required to keep the tags of migrated blocks. Moreover, in both proposals, write
misses are not accelerated because they have to access the home tile since coher-
ence information does not migrate along with the data blocks.

Differently from all the previous approaches, and closer to ours, Cho and
Jin [34] proposed using a page-size granularity (instead of block-size). In this
way, the OS can manage the mapping policy, e.g, a first-touch mapping policy
can be implemented. In order to deal with the unbalanced utilization of the
cache banks, they propose using bloom filters that collect cache access statis-
tics. If a cache bank is pressured, the neighbouring banks can be used to allocate
new pages. However, this proposal has several implementation issues which are
avoided in our proposed mapping policy. First, it requires extra hardware, (e.g.,
bloom filters that have to be reset after a timeout period). Second, an accurate
metric to decide whether a cache is pressured or not can be difficult to imple-
ment. In fact, they do not evaluate the cache pressure mechanism. Third, this
mechanism only considers neighbouring banks, i.e., banks at one-hop distance.
Finally, as far as we know, neither parallel nor multi-programmed workloads
have been evaluated using this technique. In contrast, in our proposal pages are
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distributed among all banks, if necessary, in an easy way and without requiring
any extra hardware. Moreover we present results for either parallel and multi-
programmed workloads. On the other hand, they do not care about the issue of
the private cache indexing since they use 16KB 4-way L1 caches, in which the
number of bits used to index them is smaller than the number of bits of the off-
set of the 8KB pages considered in that work, and they can use virtually indexed
L1 caches.

Lin et al. [67] applied Cho and Jin’s proposal to a real system. They studied
the dynamic migration of pages and the high overheads that it causes. Recently,
Awasthi et al. [14] and Chaudhuri [30] proposed several mechanisms for page
migration that reduce the overhead of migration at the cost of requiring extra
hardware structures. Unfortunately, since migration of pages entails an inherent
cost (e.g., flushing caches or TLBs), this mechanism cannot be performed fre-
quently. Although migration can be used along with our proposal, this chapter
focuses on the initial mapping of pages to cache banks. Finally, Awasthi et al. do
not consider the private cache indexing issue because they use small caches that
can be virtually indexed, and Chaudhuri do not take care about the indexing
bits despite one bit matches with the home offset bits.

7.3 Distance-aware round-robin mapping

In this chapter, we propose distance-aware round-robin mapping, a simple OS-
managed mapping policy for many-core CMPs that assigns memory pages to
NUCA cache banks. This policy minimizes the total number of off-chip accesses
as happens with a round-robin mapping, and reduces the access latency to a
NUCA cache (the L2 cache level) as a first-touch policy does. Moreover, this
policy addresses this trade-off without requiring any extra hardware support.

In the proposed mechanism, the OS starts assigning physical addresses to
the requested pages according to a first-touch policy, i.e, the physical address
chosen by the OS maps to the tile of the core that is requesting the page. The
OS stores a counter for each cache bank which is increased whenever a new
physical page is assigned to this bank. In this way, banks with more physical
pages assigned to them will have higher value for the counter.

To minimize the amount of off-chip accesses we define an upper bound on
the deviation of the distribution of pages among cache banks. This upper bound
can be controlled by the OS through a threshold value. In this way, in case that
the counter of the bank where a page should map following a first-touch policy
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Figure 7.3: Behavior of the distance-aware round-robin mapping policy.

has reached the threshold value, the page is assigned to another bank. The
algorithm starts checking the counters of the banks at one hop from the initial
placement. The bank with smaller value is chosen. Otherwise, if all banks at
one hop have reached the threshold value, then the banks at a distance of two
hops are checked. This algorithm iterates until a bank whose value is under the
threshold is found. The policy ensures that at least one of the banks has always
a value smaller than the threshold value by decreasing by one unit all counters
when all of them have values different than zero.

Figure 7.3 shows, from left to right, the behavior of this mapping policy for
a 2×2 tiled CMP with a threshold value of two. First, processor P0 accesses
a block within page 0x00 which faults in memory (1). Therefore, a physical
address that maps to the bank 0 is chosen for the address translation of the
page, and the value for the bank 0 is increased. Then, processor P1 perform
the same operation for page 0x01 (2). When processor P1 accesses page 0x00 no
action is required for our policy because there is a hit in the page table (3). The
next access of processor P0 is for a new page, which is also stored in bank 0,
which reaches the threshold value (4). Then, if processor P0 accesses a new page
again, this page must be allocated in another bank (5). The closer bank with
a smaller value is bank 2. Finally, when processor P3 accesses a new page, the
page is assigned to its local bank and all counters are decreased (6), allowing
bank 0 to map a new page again (7).

The threshold defines the behavior of our policy. A threshold value of zero
denotes a round-robin policy in which a uniform distribution of pages is guaran-
teed, while an unlimited threshold implies a first-touch policy. Therefore, with a
small threshold value, our policy reduces the number of off-chip accesses. Oth-
erwise, if the threshold value is high, our policy reduces the average latency of
the accesses to the NUCA cache. Note that the threshold value serves as a proxy
approximation for the cache pressure since the actual pressure does not directly
depend on the uniform distribution of pages, but on the utilization of blocks
within pages. However, pages are distributed among all the cache banks, thus
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Figure 7.4: Changes in the L1 cache indexing policy.

performing an efficient use of the shared cache. Although, the OS could choose
different thresholds depending on the workload, we have found that values be-
tween 64 and 256 work well for the workloads considered in this chapter.

7.4 First-touch mapping and private cache
indexing

In this section, we study how OS-managed mapping can hurt the hit rate of
private L1 caches, mainly when a first-touch policy is implemented. Figure
7.4(a) shows the cache mapping and indexing used in an OS-managed mapping
policy. As mentioned in Section 7.2.1, it is important to choose the smallest
granularity (the less significant bits of the virtual to physical field), to achieve
shorter average distance to the home bank. On the other hand, the bits used to
index the private caches, i.e, to select the set for a particular block, are commonly
the less significant bits of the block address. When the number of bits used to
index the L1 cache is greater than the number of bits of the page offset two main
issues appear. First, no virtual indexing can be used to accelerate the L1 cache
access [47]. Second, the L1 hit rate can be reduced as consequence of the changes
in the assignment of physical addresses.
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A first-touch mapping policy tries to map blocks frequently requested by a
processor to its closest (local) cache bank. This is carried out by the OS when it
assigns the physical address to the requested page (e.g., Figure 7.4(b) represents
a physical address that maps to the bank 0). Therefore, most of the blocks that
the processor’s private L1 cache holds have these bits with the same value. If
some of the bits used for selecting the home tile are also used for indexing
private L1 caches (Figure 7.4(b)), most of the blocks will map to a specific range
of the L1 cache sets, while other sets will remain under-utilized. This factor
increases the number of conflict misses in the L1 cache.

This problem also arise with the mapping policy proposed in this chapter.
The closer our policy is to a first-touch policy (high threshold value) the more
set imbalance will occur in private caches. Therefore, we propose to avoid the
bits used to define the home tile when indexing private caches, as shown in
Figure 7.4(c). This change allows for better utilization of the private L1 caches,
which in turn results in higher L1 cache hit rates, as we show in Section 7.5.1.

7.5 Evaluation results and analysis

For the evaluation of the approaches presented in this chapter, we have imple-
mented new cache mapping and indexing policies in GEMS. Particularly, we
have implemented the three OS-managed policies evaluated in this chapter. The
first one, named as RoundRobin, is an OS-managed policy that assigns physical
pages in a round-robin fashion to guarantee the uniform distribution of pages
among cache banks. Therefore, this policy does not take into consideration the
distance to the home bank. The second one, named as FirstTouch, maps mem-
ory pages to the local cache bank of the first processor that requested the page.
Although this policy is distance-aware, it is not concerned about the pressure
on some cache banks. Finally, we also implement the policy proposed in this
chapter. We simulate our proposal with threshold values ranging from 20 to 210.
We name our policy as DARR-T (from Distance-Aware Round-Robin), where T

is the threshold value employed by the OS. On the other hand, we have imple-
mented a cache indexing scheme that skips the bits employed for identifying the
home bank, as explained in Section 7.4. Moreover, we have simulated a 3D stack-
ing memory organization where the off-chip memory has the same interleaving
as the L2 cache (i.e., page-grained), thus avoiding the horizontal traffic that could
appear when off-chip accesses take place, as discussed in Section 7.2.1.

Apart from the evaluation of parallel applications, we also show results for
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multi-programmed workloads, since the proposal that we present in this chapter
is more appropriate for this context. These workloads are Ocean4, Radix4, Mix4,
and Mix8, and have been previously described in Chapter 3. We classify our
workloads as either homogeneous or heterogeneous. Homogeneous workloads dis-
tribute uniformly memory pages among cache banks when a first-touch policy
is employed. In contrast, in heterogeneous workloads a few banks allocate more
pages than the others considering a first-touch policy. Particularly, we have sim-
ulated two homogeneous (Ocean4 and Radix4) and two heterogeneous (Mix4 and
Mix8) workloads. The heterogeneous workloads represent the common scenario
in systems employed for throughput computing. For the evaluation of these
workloads we have employed the parameters described in Chapter 3. However,
since we have doubled the number of cores for simulating a 32-tile CMP, we have
also halved cache sizes in order to have the same aggregate capacity. Therefore,
we simulate 64KB 4-way associative L1 caches and 512KB 8-way associative L2
caches. However, the access latencies are kept unchanged.

On the other hand, we have also shrunk the simulation parameters for the
evaluation of the parallel applications, since, in general, the working set of the
scientific benchmarks is small. In particular, the size of the L1 cache is 32KB and
it is 2-way associative, while the size of each bank of the L2 cache is 128KB and
it is 4-way associative. Again, the access latencies are kept unchanged.

In order to show the homogeneity or heterogeneity of the working set for the
evaluated workloads, we have measured the number of pages that map to each
cache bank when a first-touch policy is employed. Figure 7.5 shows this distribu-
tion of pages for both parallel applications and multi-programmed workloads.
As already commented, both Ocean4 and Radix4 represent homogeneous work-
loads while both Mix4 and Mix8 are the heterogeneous ones. Regarding parallel
applications, we can see that Barnes, FFT, Ocean4, and Water-Nsq have a homo-
geneous distribution of pages among tiles with a first-touch policy. In contrast,
MPGdec, MPGenc, Radix, Raytrace, Unstructured, and Volrend distribute memory
pages in a heterogeneous way.

The rest of the section is organized as follows. First, we evaluate the impact
of the change in the bits used for indexing private L1 caches, as described in
Section 7.4. Then, to understand the improvements obtained by the distance-
aware round-robin mapping policy, we study both the average distance to the
home cache banks and the number of off-chip accesses, and how a good trade-
off in those metrics can reduce the applications execution time. Finally, we study
the network traffic required by our proposal since it has serious impact on the
energy consumed in the interconnection network as discussed along this thesis.
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Figure 7.5: Number of pages mapped to each cache bank in a first-touch policy.

7.5.1 Private cache indexing and miss rate

As discussed in Section 7.4, an OS-managed mapping policy that tries to reduce
the distance to the home bank can increase the miss rate of private L1 caches. In
this section, we study this issue and compare the traditional indexing method
with the proposed one. Figures 7.6 and 7.7 show the L1 miss rate for both
the parallel applications and multi-programmed workloads evaluated in this
chapter, and two indexing methods: the traditional method, that we call less
significant bits, and the proposed one, named as skip home bits. Moreover, the
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Figure 7.6: Impact of the changes in the indexing of the private L1 caches on
parallel applications.
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Figure 7.7: Impact of the changes in the indexing of the private L1 caches on
multi-programmed workloads.

miss rate is shown for a range of threshold values for our policy, from 0, i.e., a
round-robin (RR) policy, to unlimited threshold, i.e., a first-touch (FT) policy.

First, we can see that when the mapping policy tries to guarantee a uniform
distribution of pages (round-robin), the hit rate of the indexing scheme only
depends on the locality in the memory accesses of each workload. In this way,
some applications, such as MPGdec, MPGenc, Raytrace, and Unstructured, have
a better hit rate for the less significant bits indexing scheme when a round-robin
mapping is considered. The remaining applications have similar miss rate for
both indexing schemes.

However, when the distance-aware mechanism is more aggressive the less

significant bits indexing scheme has worse hit rate than the skip home bits indexing
scheme. In general, for all the workloads the trend of the less significant bits

indexing scheme is to increase the L1 cache miss rate when the mapping policy
transitions from a round-robin policy to a first-touch one. Differently, with the
skip home bits indexing scheme the miss rate not only do not increase, but also
can decrease, as significantly happens in MPGdec and Raytrace.

Therefore, for the rest of the evaluation we use the less significant bits indexing
scheme for the round-robin policies and the skip home bits indexing scheme for
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the first-touch and the proposed policy, which are the best schemes for each
configuration, on average.

7.5.2 Average distance to the home banks

Figure 7.8 plots the average distance in terms of network hops between the tile
where the miss takes place and the tile where the home L2 bank is placed. As
discussed, a round-robin policy does not care about this distance and, therefore,
the average distance for these policies matches up with the average number of
hops in a two-dimensional mesh, which can be calculated following the formula
(x+1)(x−1)

3x +
(y+1)(y−1)

3y , where x and y define the size of a x× y mesh. Therefore,
the average number of hops is 2.5 in a 4× 4 mesh and 3.875 in a 4× 8 mesh. On
the other hand, the first-touch policy is the one that requires less hops to solve a
miss (1.91 for parallel applications and 0.79 for multi-programmed workloads).
As can be observed, the results obtained by our policy always lie between those
of the round-robin and first-touch schemes.

Most parallel applications do not obtain representative reductions in the aver-
age distance, even when a first-touch policy is considered. For example, Barnes,
MPGdec, MPGenc, Radix, Raytrace, Unstructured and Volrend need more that two
hops to reach the home tile on average. This is because the blocks that fre-
quently cause a cache miss are widely shared by the cores in the system. Other
applications in which most of the misses are for blocks with a small number
of sharers, like FFT and Ocean, obtain significant reductions in the average dis-
tance with a first-touch policy. On the other hand, we can observe that the
multi-programmed workloads always achieve important reductions in the av-
erage distance. Even when all the applications running in the system are in-
stances of Radix, which does not offer reductions in the parallel case, as happens
in Radix4. This is because data is only shared in the region of the chip running
each instance.

Finally, it is important to note that a threshold value of one for our policy
reduces the average distance compared to round-robin (by 15% for parallel and
35% for multi-programmed workloads), and also guarantees a uniform distribu-
tion of pages. The higher threshold value is employed, the more reductions in
the average number of hops are achieved by our proposal.
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Figure 7.8: Average distance between requestor and home tile..

7.5.3 Number of off-chip accesses

The main issue of the first-touch policy is that it incurs in more off-chip ac-
cesses specially for workloads that have unbalanced working sets. Figure 7.9
shows the number of off-chip accesses for the policies evaluated in this chapter
normalized with respect to the first-touch policy. We can observe that for homo-
geneous workloads the difference in the number of off-chip accesses is minimal.
On the other hand, when the working set is not well balanced among the pro-
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Figure 7.9: Normalized number of off-chip accesses.

cessors, the first-touch policy severely increases the number of off-chip accesses.
This increment mainly happens in Unstructured (≈ ×3), Volrend (≈ ×2), Mix4

(≈ ×4) and Mix8 (≈ ×3). Note that servers usually run a heterogeneous set
of applications, like Mix4 and Mix8. Although, for example, Radix has also a
heterogeneous distribution of pages the first-touch policy does not significantly
increase the number of off-chip accesses compared to round-robin. This is be-
cause its working set is larger than the aggregate L2 cache and, therefore, even
when a round-robin policy is used, the number of off-chip misses is high.

200



Evaluation results and analysis

0.80 0.85 0.90 0.95 1.00

Normalized memory misses

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6

D
is

ta
nc

e 
to

 h
om

e 
(h

op
s) RoundRobin

FirstTouch

DARR-1

DARR-4

DARR-16

DARR-64

DARR-256

DARR-1024

(a) Parallel applications (16-tiled CMP).

0.60 0.70 0.80 0.90 1.00

Normalized memory misses

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
is

ta
nc

e 
to

 h
om

e 
(h

op
s)

RoundRobin

FirstTouch

DARR-1

DARR-4

DARR-16

DARR-64

DARR-256

DARR-1024

(b) Multi-programmed workloads (32-tiled
CMP).

Figure 7.10: Trade-off between distance to home and off-chip accesses.

Regarding the threshold value of our policy, we can observe that with a value
smaller than 256 the number of off-chip accesses is kept very close to the round-
robin policy. Finally, when the value is very high, the behavior is close to the
first-touch policy and the number of off-chip accesses becomes prohibitive.

7.5.4 Trade-off between distance to home and off-chip
accesses

In this section we summarize the average results plotted in the two previous
sections by showing how our distance-aware round-robin mapping policy can
achieve a good trade-off between distance to the home tile and the number of
off-chip accesses. Figure 7.10 plots this trade-off both for parallel applications
and for multi-programmed workloads.

As we can observe, when our policy uses a small threshold value its behavior
is close to a round-robin mapping policy. On the other hand, higher values lead
to a behavior close to a first-touch mapping policy. Values ranging between 64
and 256 achieve a good trade-off between a round-robin and a first-touch policy.
Although better trade-off is obtained for parallel applications, the advantages of
the first-touch policy for these workloads is smaller than for multi-programmed
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ones. Note that the average number of hops is just reduced by 25% (from 2.53
to 1.91) for parallel applications, while it is reduced by 80% (from 3.97 to 0.79)
for multi-programmed workloads. The reduction is less significant for parallel
applications due to the high sharing degree. Since all cores access most of the
blocks, it does not matter too much where they are mapped. Consequently,
greater improvements will be achieved for multi-programmed workloads. The
values for what the best trade-off is achieved (from 64 to 256), are a few times
greater that the number of memory pages that can fit in an L2 cache bank2.

7.5.5 Execution time

The results discussed in the previous subsections show that our distance-aware
round-robin mapping policy is able to achieve a good trade-off between short
distance to the home bank and balanced mapping of memory pages. This
achievement results in improvements in execution time as Figure 7.11 shows.

As we can observe, the first-touch policy achieves important improvements
compared to a round-robin policy when the working set accessed by the differ-
ent cores is homogeneous, as happens in Barnes, FFT, Ocean, Water-Nsq, Ocean4

and Radix4. In contrast, when the distribution of the pages accessed by each
core is heterogeneous, as occurs in Radix, Raytrace, Mix4 and Mix8, the first-
touch policy falls into more off-chip accesses, thus degrading performance. In
contrast, our proposal achieves the best of a round-robin policy and a first-touch
policy with a threshold value between 64 and 256. In this way, we obtain im-
provements of 5% on average for parallel applications and of 14% on average
for multi-programmed workloads compared to a round-robin policy with page-
sized granularity. When compared to a first-touch policy we obtain improve-
ments of 2% for parallel applications and 7% for multi-programmed workloads,
but additionally avoiding the performance degradation incurred by the first-
touch policy in some cases. As previously discussed, the results are better for
multi-programmed workloads because more reductions in term of average dis-
tance to the home tile can be expected, as consequence of the lack of sharing
among program instances.

7.5.6 Network traffic

Figure 7.12 compares the network traffic generated by the policies considered
in this chapter. In particular, each bar plots the number of bytes transmitted

2As described in Chapter 3, the page size is 4BK
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Figure 7.11: Normalized execution time.

through the interconnection network (the total number of bytes transmitted by
all the switches of the interconnect) normalized with respect to the RoundRobin

policy. We can see that the round-robin policy leads to the highest traffic levels
because the distance to the home bank is not taken into consideration.

On the other hand, network traffic can be tremendously reduced when a first-
touch policy is implemented. In parallel applications, network traffic is reduced
by 34% on average. For multi-programmed workloads the savings are greater
(79% on average), since most of the blocks are only accessed by cores placed
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Figure 7.12: Normalized network traffic.

in a small region of the chip. The distance-aware round-robin policy proposed
in this chapter obtains reductions in network traffic compared to the round-
robin policy, even when the threshold value is just one. When the threshold
value increases, the memory-demanding cores can allocate more pages in its
local bank and, therefore, less network traffic is generated. As discussed in the
previous subsection, a threshold value between 64 and 256 achieves an optimal
compromise between round-robin and first-touch. Now, we can see that with a
threshold of 256 the network traffic generated by our proposal is reduced by 31%
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for parallel applications and 68% for multi-programmed workloads. Obviously,
the first-touch policy introduces less traffic than our proposal (3% on average for
parallel applications and 34% on average for multi-programmed workloads), at
the cost of increasing the number of off-chip accesses.

7.6 Conclusions

In CMP architectures, memory blocks are commonly assigned to the banks of a
NUCA cache by following a physical mapping policy in which the home tile of a
block is given by a set of bits in the block address. This mapping assigns blocks
to cache banks in a round-robin fashion, thus neglecting the distance between
the requesting cores and the home NUCA bank for the requested blocks. This
issue impacts both cache access latency and the amount of on-chip network
traffic generated, and can become a performance problem for large-scale tiled
CMPs. On the other hand, first-touch mapping policies, which take into account
distance, can lead to an unbalanced utilization of cache banks, and consequently,
to an increased number of expensive off-chip accesses.

In this chapter, we propose the distance-aware round-robin mapping policy, an
OS-managed policy which addresses the trade-off between cache access latency
and number of off-chip accesses. Our policy tries to map the pages accessed by
a core to its closest (local) bank, like in a first-touch policy. However, we also
introduce an upper bound on the deviation of the distribution of memory pages
among cache banks, which lessens the number of off-chip accesses. This upper
bound can be controlled by a threshold. We have observed that our proposal
achieves a good compromise between a round-robin and a first-touch policy
with a threshold ranging between 64 and 256 .

We also show that the private cache indexing commonly used in CMP archi-
tectures is not the most appropriate for OS-managed distance-aware mapping
policies like a first-touch policy or our policy. When the bits used for selecting
the home bank are also used for indexing the private L1 cache, the miss rate of
private caches can increase significantly. Therefore, we propose to reduce the
miss rate by skipping these bits when private L1 caches are indexed.

Our proposal obtains average improvements of 5% for parallel applications
and of 14% for multi-programmed workloads compared to a round-robin policy
with page granularity (better improvements are obtained compared to a pol-
icy that uses block granularity). In terms of network traffic, our proposal ob-
tains average improvements of 31% for parallel applications and 68% for multi-
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programmed workloads. When compared to a first-touch policy we obtain aver-
age improvements of 2% for parallel applications and 7% for multi-programmed
workloads, slightly increasing on-chip network traffic. Finally, one of the main
assets of our proposal is its simplicity, because it does not require any extra hard-
ware structure, differently from other previously proposed mechanisms. This
characteristic makes our proposal easier to implement in current tiled CMPs
than the previous approaches.
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Chapter 8
Conclusions and Future Directions

8.1 Conclusions

Tiled CMP architectures (i.e., arrays of replicated tiles connected over a switched
direct network) have recently emerged as a scalable alternative to current small-
scale CMP designs, and will be probably the architecture of choice for future
many-core CMPs. On the other hand, although a great deal of attention was de-
voted to scalable cache coherence protocols in the last decades in the context of
shared-memory multiprocessors, the technological parameters and power con-
strains entailed by CMPs demand new solutions to the cache coherence problem.

Nowadays, directory-based protocols constitute the best alternative to keep
cache coherence in large-scale tiled CMPs, since they can work over unordered
interconnects and they can also scale up to a larger number of cores than the
solutions based on broadcast. Nevertheless, directory protocols have two im-
portant issues that prevent them from achieving better scalability: the directory
memory overhead and the indirection problem.

The memory overhead of a directory protocol mainly comes from the struc-
tures required to store the sharing (or directory) information. If this information
is kept by using a full-map sharing code, the total amount of memory that is
required increases linearly with the number of cores in the system, which is not
admissible for many-core CMPs.

The indirection problem appears as consequence of the access to the direc-
tory information, stored at the home tile of each block. Once the directory
information is accessed, the corresponding coherence actions can be performed.
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These actions usually imply forwarding requests to the tile that must provide
the data block, and invalidating all copies of the requested block in case of write
misses. Both actions entail two hops (request and response). Since a previous
hop is introduced by the access to the directory information, some misses are
solved requiring three hops in the critical path of the miss, which results in
long cache miss latencies and increases applications’ execution time compared
to broadcast-based protocols.

On the other hand, tiled CMPs that share the last-level on-chip cache incur in
long cache accesses. Since this cache is physically distributed among the tiles in
the CMP, the time needed to access a particular cache bank depends on the tile
wherein the bank resides (NUCA cache). Commodity systems that implement
a distributed shared cache usually map memory blocks to cache banks in a
round-robin fashion by using a physical mapping policy that takes some bits of
the block address. Unfortunately this policy does not care about the distance
between requesting cores and home cache banks which results in long cache
access latencies that hurt applications’ performance.

Our efforts in this thesis have focused on these three key issues. In particu-
lar, we have proposed, implemented and evaluated different techniques aimed
at reducing the memory overhead introduced by the cache coherence protocol,
the number of cache misses suffering from indirection, and the long cache access
latency that characterize NUCA caches. Additionally, in our proposals, we also
care about the amount of network traffic generated by the cache coherence pro-
tocol, since it is expected to have great impact on the total power consumption
of the CMP. Important conclusions can be extracted from the results that have
been obtained in this thesis, as we detail in the next paragraphs.

The first conclusion derived from this thesis is that a scalable organization
for a distributed directory can be achieved without hurting applications’ perfor-
mance. This scalable organization, that have been presented in Chapter 4, keeps
coherence information as duplicate tags and it uses a granularity of interleaving
such as the bits that specify the tile where a block maps (i.e., the home tile) must
be a subset of the bits used to index private caches, i.e., to map blocks to a parti-
cular set (bits_home ⊆ bits_private_cache_set). Since the bits commonly used to
index private caches are the less significant ones, we also use these bits for the
mapping to home tiles, leading to a block-grained interleaving.

The area employed by this scalable directory represents only 0.53% of the
area required for storing data blocks. Moreover, this percentage keeps constant
for systems where the number of sets in the private caches is greater or equal
than the number of tiles (num_tiles ≤ num_private_cache_sets). Since it seems
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that this rule will be fulfilled for next generation CMPs, the proposed scalable
directory organization could be used to avoid the memory overhead problem of
directory-based protocols.

The size in bits of each directory bank in this directory organization is c ×
(lt + 2), where c is the number of entries of the private cache and lt is the size
of the tag field. Since this size keeps unchanged meanwhile the previous rule is
fulfilled, the same building blocks or tiles could be used for CMP configurations
with different number of tiles, thus making easier the design of tiled CMPs.

Furthermore, the mapping employed for this directory organization ensures
that the requested blocks and their consequent replacements map to the same
home tile. This characteristic allows the cache coherence protocol to merge re-
placement with request messages, thus saving network traffic. Hence, we have
also presented a mechanism that removes all traffic due to L1 cache replace-
ments, which we call the implicit replacementsmechanism. We have implemented
and evaluated a cache coherence protocol that includes a scalable directory orga-
nization and performs replacements in a implicit way. We have shown through
our simulation tools that a significant fraction of network traffic can be saved.
Particularly, our protocol leads to average reductions of 13%, and up to 32%,
compared to a directory protocol with ideal directory caches, i.e., unlimited
caches with a full-map sharing code. If we consider a protocol where evictions
of clean blocks are not silent, as happens in some systems that maintain the di-
rectory information as duplicate tags, the implicit replacements mechanism can
save 33% of coherence messages on average. These reductions in network traffic
finally translate into significant savings in power consumption.

The second conclusion that can be extracted from this thesis is that it is possi-
ble to design a cache coherence protocol that avoids the indirection problem for
most cache misses without relying on broadcasting requests. Chapter 5 presents
this cache coherence protocol, which we name as direct coherence, and it also
offers a detailed description and evaluation of the proposed protocol.

Direct coherence protocols meet the advantages of both directory and token
protocols and avoid their problems. This is achieved by changing the tasks per-
formed for each component involved in a cache miss. In this way, the task of
storing the sharing information and ensuring ordered accesses for every mem-
ory block is assigned to the tile that provides the block on a cache miss, i.e.,
the owner tile in a MOESI protocol. In contrast, directory protocols assign this
task to the home tile. On the other hand, the task of keeping the identity of
the owner tile is assigned to the home tile, but also to the requesting tiles and,
in this way, indirection can be avoided by directly sending the requests to the
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owner tile instead of to the home one. Moreover, only one message is sent by the
requesting tile, differently from Token which broadcasts requests on every cache
miss.

Several implementations of this protocol for tiled CMPs have been explained
and evaluated in this chapter. These implementations differ in how requesting
tiles obtain the information about the identity of owner tiles. This information
can be decisive to obtain good owner predictions and, therefore, to successfully
avoid the indirection. In the first implementation, requesting tiles obtain this in-
formation from both invalidation and request messages. Since we find that this
information is not enough to obtain accurate owner predictions for some appli-
cations, we have designed a hints mechanism that sends extra control messages,
called hints, to inform about the identity of the owner tile on every ownership
change. We have proposed two techniques to implement the hints mechanism.
The first one, called frequent sharers, introduced more storage requirements since
it adds a bit-vector to each L1 cache entry, but slightly reduces the traffic gen-
erated by hint messages. The second one, named as address signatures, consider-
ably reduces the area required by the hints mechanism by using bloom filters,
but increases network traffic due to the appearance of false positives.

The results given by our simulation infrastructure have shown that the direct
coherence protocol that uses a hints mechanism based on address signatures
(DiCo-Hints AS) is the best option in terms of average execution time. While in a
directory protocol the average percentage of misses with indirection is 56%, this
percentage goes down up to 18% on average in DiCo-Hints AS. This reduction
in the percentage of cache misses suffering from indirection results in savings
of 14% in the average cache miss latency, which finally leads to 9% of improve-
ments in execution time, compared to a directory protocol. Although DiCo-Hints

AS slightly increases traffic requirements compared to a directory protocol, it
considerably reduces traffic compared to Token (37%) due to the lack of broad-
cast in direct coherence protocols. Therefore, the total power consumed by the
interconnection network is also reduced compared to Token. The reduction in
network traffic compared to Token also reduces the contention at the intercon-
nection network which accelerates cache misses, resulting in improvements of
8% in terms of execution time.

We also have studied the size and complexity of the structures required by di-
rect coherence protocols, which are comparable to those involved in a directory
protocol. However, both the directory and the direct coherence implementations
evaluated in that chapter track sharers by means of a full-map sharing code.
As previously discussed, a scalable directory organization can be achieved for
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directory protocols by following a particular interleaving. Unfortunately, this
organization is only applicable when the coherence information is stored at the
home tile, but it is not applicable to the sharing information stored along with
the owner block in direct coherence protocols.

Hence, we have discussed how to reduce the memory overhead of direct co-
herence protocols in Chapter 6. Particularly, we have addressed this problem
by using compressed sharing codes. Since compressed sharing codes introduce
extra messages into the interconnection network due to their loss of accuracy,
we care about finding a good trade-off between area requirements and network
traffic. The base direct coherence protocol that we have employed for this anal-
ysis is DiCo-Hints AS, which has been shown to perform better than the other
alternatives evaluated previously.

We have simulated several implementations of direct coherence protocols
with different compressed sharing codes: coarse vector, limited pointers, and bi-

nary tree. Additionally, we have also evaluated a direct coherence protocol that
does not store information about the sharers of each block. Although this last
alternative would fall into a significant increase in network traffic for directory
protocols (broadcast would be required for most cache misses), in direct coher-
ence protocols, the owner tile of each block is always known (at least by the
home tile), which avoids broadcasting requests both for read misses and write
misses with just one sharer. This characteristic allows direct coherence protocols
to have a good traffic-area trade-off without requiring the modification of data
caches.

The evaluation of the different alternatives shows that a good compromise
between network traffic and area requirements can be obtained by using direct
coherence protocols. Particularly, DiCo-LP-1, which is a direct coherence proto-
cols that only uses one limited pointer for the second sharer of a block (the first
one is always stored in the home tile), DiCo-BT, which codifies the directory in-
formation using just three bits that represent a level in a virtual binary tree, and
DiCo-NoSC, which does not store any coherence information in the data caches,
are the alternatives that achieve the best compromise between traffic and area.
The memory overhead required by these compressed sharing codes is less or
equal than O(log2n) and, therefore, the three implementations scale with order
O(log2n) due to the addition of the coherence caches (L1C$ and L2C$) in direct
coherence protocols. These memory requirements represent an admissible over-
head for many-core CMPs. The best alternative in terms of area requirements,
DiCo-NoSC, increases network traffic by 19% compared to a direct coherence
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protocol that keeps a full-map sharing code, but still reducing the traffic when
compared to Token by 25%, and also requiring less area overhead.

Finally, the use of compressed sharing codes does not impact too much on
execution time when compared to direct coherence protocols with a full-map
sharing code. This is due to the characteristic of always having a pointer identi-
fying the owner tile, which severely reduces the amount of traffic generated by
compressed sharing codes. In particular, DiCo-NoSC is the one that obtains the
greatest increase, but just by 2%. Note that DiCo-NoSC still improves execution
time compared to Token and Directory by 6% and 7%, respectively.

Therefore, since most of the alternatives evaluated avoid the indirection prob-
lem requiring both low area and traffic requirements, we believe that direct co-
herence protocols are a viable alternative to current cache coherence protocols
for future many-core tiled CMPs. Obviously, the use of each one of the alterna-
tives could depend on the particular system constraints.

The last conclusion that we can draw is that a good compromise between
average access latency and cache miss rate can be achieved for NUCA caches
without requiring any extra hardware. Basically, there are two main ways of
performing the mapping of memory blocks to cache banks in a NUCA cache.
The first one, is a physical mapping that obtains the home bank of a block by
looking up some bits of the block address. This policy distributes the blocks in a
round-robin fashion, thus guaranteeing an efficient utilization of the total NUCA
cache. However, it does not consider the distance between requesting and home
tiles, which results in long cache access latencies. The other policy is first-touch,
which can be easily implemented by the OS. In this policy, memory pages are
mapped to the cache bank of the first tile that requested a block belonging to
that page, which reduces the average access latency to a NUCA cache at the cost
of increasing its miss rate and, therefore, off-chip accesses, when the working set
of the application is not well-balanced among tiles. The compromise between
short access latency and low number of off-chip accesses has been discussed in
Chapter 7, where a new cache mapping policy called distance-aware round-robin

is presented and evaluated.
The distance-aware round-robin mapping policy is an OS-managed policy

that tries to map memory pages to the local NUCA bank of the first core that
requests a block belonging to that page, like in a first-touch policy, but also
introduces an upper bound on the deviation of the distribution of memory pages
among cache banks, which minimizes the number of off-chip accesses. This
upper bound is controlled by a threshold value. We have observed that for
a threshold value ranging between 64 and 256, our mapping policy achieves
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a good compromise between a round-robin and a first-touch mapping policy.
Furthermore, the distance-aware round-robin mapping policy does not require
any extra hardware, which makes its implementation straightforward.

Nevertheless, one potential issue of distance-aware mapping policies man-
aged by the OS, like first-touch and ours, is that the private cache miss rate can
be hurt if its indexing is not performed carefully. This happens when the same
bits that define the home bank are used for indexing the private caches. Due to
the OS virtual-to-physical translation, most of the blocks in the private caches
will have the same bits in the part of the address representing the home tile.
If these bits are also used for indexing the private caches, some sets could be
overloaded while others could remain almost unused. This imbalance increases
conflict misses and, therefore, we have proposed to skip these bits when private
caches are indexed in order to reduce their miss rates.

Compared to a round-robin policy with page granularity, which obtains bet-
ter results than a policy that uses block granularity, the distance-aware round-
robin mapping policy combined with the private indexing that skips the bits
used for defining the home tile obtains average improvements of 5% for the
parallel applications evaluated, and average improvements of 14% for the four
multi-programmed workloads that have been created to evaluate this policy. In
terms of network traffic, our proposal obtains average improvements of 31% for
parallel applications and 68% for multi-programmed workloads. When com-
pared to a first-touch policy we have obtained average improvements of 2% for
parallel applications and 7% for multi-programmed workloads, slightly increas-
ing on-chip network traffic. Finally, the results obtained by these approaches
and the fact that they do not require any extra hardware support, make this
policy a viable alternative for the efficient mapping of large-scale NUCA caches.

In summary, this thesis presents several techniques aimed at reducing the
high costs, in terms of both memory overhead, long cache miss latencies and
network traffic (and, consequently, power consumption), that can be entailed by
traditional cache coherence protocols and many-core CMP organizations.

8.2 Future directions

A natural extension of the work carried out in this thesis could be the combi-
nation of some of the proposals presented here to improve the efficiency of the
system. For example, direct coherence protocols could use a scalable directory
organization for the L2C$, since it is kept at the home tile. This would reduce
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the memory requirements of this structure from O(log2n) to O(cte). If we apply
this organization to DiCo-NoSC, which does not keep any sharing information
along with the data caches, the total memory overhead of this protocol will be
almost O(cte). The only structure whose area still increases as O(log2n) is the
L1C$. Although this structure needs few cache entries and it does not add too
much area overhead, it will be nice to redesign it in a way that its size does not
depend on the number of cores in order to achieve full scalability in terms of
area.

Another possible combination is the use of direct coherence protocols with a
distance-aware round-robin mapping policy. These two proposals can be com-
bined in a easy way. However, since direct coherence tries to avoid the accesses
to the home tile, the improvements obtained by the distance-aware round-robin
mapping policy would not be as significant as when a directory-based protocol
is considered.

The third combination could be the scalable directory organization with the
distance-aware round-robin mapping policy. However, these policies are not
compatible. This is due to the fact that a scalable directory is achieved when the
bits used to map the home tile are also used to index private caches. However,
we have also seen that in distance-aware OS-managed mapping policies, it is
preferable to avoid these bits for the private cache indexing. In this way, if we
decide to implement a scalable directory where the home tiles are chosen by
taking care about the distance of requesting tiles, we will incur in high private
cache miss rate, since just a few sets in the cache will be used. On the other
hand, if we skip these bits from the indexing function, directory scalability is
not possible. Therefore, solving this issue represents an interesting future way
of research.

On the other hand, direct coherence protocols offer lots of future research
lines. For example, it will be interesting to study the combination of direct
coherence and heterogeneous interconnection networks [32]. Note that direct
coherence increases the number of messages that are not in the critical path
of cache misses (e.g., the hint messages) compared with a directory protocol.
Since these messages could be sent using low-power wires without hurting per-
formance, direct coherence protocols would make more extensive use of these
wires than a directory protocol, thus resulting in lower power consumption.

Another research direction would consist in the study of direct coherence
protocols for throughput computing [29], where several program instances run
at the same time on the same chip. As we have shown in this thesis, in a direc-
tory protocol all misses must access the home tile, but this tile can be located in
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any part of the chip, and not only in the region where the application requesting
the block is running. This increases cache miss latencies and it also injects extra
traffic into regions where other applications are running, thus hurting their per-
formance [80]. However, the owner tile of a block will always be a tile placed in
the region were the application requesting the block is running and, therefore,
direct coherence protocols can reduce even more cache miss latencies, and they
also can avoid traffic interferences. Moreover, hint messages could be only sent
to a particular region, thus saving more network traffic.

Other options regarding the combination of direct coherence protocols with
other existing techniques and architectures are the study of direct coherence
protocols with interconnection networks with a ring topology [79], in the context
of hardware transactional memory [48, 84], and for developing fault tolerant
cache coherence protocols [40].

Regarding NUCA caches, another future way of research can be the study
of NUCA cache replacement policies. An efficient policy could avoid the evic-
tion of memory blocks used by the slower threads in parallel applications (the
ones reaching the barrier in last position) in order to accelerate them and, con-
sequently, the overall performance.

Finally, another interesting future work can be the study of the bits of the
block address used for indexing private caches. As we have seen, the election
of different bits impacts on the cache hit rate. We have found that the bits used
commonly for indexing caches (the less significant ones) are not the ones that
achieve the best hit rate for all applications. Even the bits that achieve the best
hit rate can change across the phases of the same application. Therefore, it will
be interesting to design an adaptive mechanism that can decide the group of bits
chosen for indexing caches on each program phase.
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Appendix A
Direct Coherence Protocol

Specification

This appendix shows a detailed specification of the implementation of direct
coherence protocols for tiled CMPs. Particularly, we show the specification of
the DiCo-Hints AS implementation. First, we describe the messages that travel
across the interconnection network to keep cache coherence in direct coherence
protocols. Table A.1 shows both these messages and a description of them. We
also show the type of each message, i.e., if it is a control message or if it also
includes a copy of the data block.

Table A.1: Coherence messages.

Message Type Description

GETS Control Cache miss. Processor asks for read permission
GETX Control Cache miss. Processor asks for write permission
INV Control Invalidation
CHANGE_OWNER Control Notification about change of ownership
ACK Control Acknowledgement of an invalidation
ACK_CHOWN Control Acknowledgement of change of owner
ACK_STARVED Control The pending starved request has been solved. It also

informs about change of ownership
DATA Data Data, sharers can exist
DATA_EXCLUSIVE Data Exclusive data, no other processor has a copy
WRITEBACK_DATA Data Replacement. Store the block in the next cache level
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Then, we describe the behavior of the cache coherence protocols by defining
three memory controllers: the L1 cache controller, the L2 cache controller and the
memory controller. These controllers are detailed using a table-based technique
[107], which provides clear and concise information about these controllers, but
also gives sufficient detail (all race conditions) about the implementation of the
protocol. This is also the technique used to define cache coherence protocols in
the SLICC language provided by the GEMS simulator.

Each memory controller is defined by four tables: states, events, actions and
transitions. The first table defines all the states of the controller, both base and
transient states, and it also gives a definition of each state. The second table
describes all the events that can take place in the controller. Events are triggered
as consequence of incoming processor or coherence messages. Coherence mes-
sages have been defined in Table A.1. On the other hand, processor messages
are shown in Table A.2.

Table A.2: Processor messages.

Message Description

Load Processor asks read permission for a data block
Ifetch Processor asks read permission for an instruction block
Store Processor asks write permission for a data block
Atomic Processor asks write permission for a data block to perform

an atomic read-modify-and-write operation

The third table corresponds to the actions carried out by the controller. Ac-
tions are encoded by using one or two characters and a short description of each
action is also shown in each table. Different actions are performed depending
on the transitions. These transitions are shown in the transitions table. This
table defines a transition for each state and event. In the first column, all possi-
ble states for the corresponding controller are listed. The first row includes all
possible events that cause the controller to take the actions and to potentially
change the state. The intersection between states and events shown all possible
state transitions. All actions performed in each transition are shown in order. At
the end off the list of actions the resulting state is shown (if the state changes).
The change of state is denoted with the symbol >. For example, h x > MM

means that after performing actions h and x the state will change to MM.
The tables describing the three controllers implemented for direct coherence

protocols are shown next. Tables A.3, A.4, A.5, and A.5 define the L1 cache
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controller. Tables A.7, A.8, A.9, and A.9 define the L2 cache controller. Finally,
Tables A.11, A.12, A.13, and A.13 define the memory controller.

Table A.3: L1 cache controller states.

State Description

B
a
se

I Invalid
S Shared
O Owned, another sharers exist
M Modified (dirty)
MM Modified (dirty and locally modified)

T
ra
n
si
e
n
t

IS Issued GetS
ISI Issued GetS, Block will not be stored in cache
IM Issued GetX
SM Issued GetX, we still have an old copy of the line
OM Issued GetX, received data
MW Modified (dirty)
MB Modified (dirty), blocked until ack_chown arrives
MMW Modified (dirty and locally modified)
MMB Modified (dirty and locally modified), blocked until ack_chown arrives

Table A.4: L1 cache controller events.

Event Description

Local
request

Load Load request from the local processor
Ifetch Instruction fetch request from the local processor
Store Store request from the local processor
L1_Replacement Replacement from L1 cache

Remote
request

Fwd_GETS Load request from another processor
Fwd_GETX Store request from another processor
Inv Invalidations from the owner tile
Change_Owner Notification of change of ownership

Response

Ack Received acknowledgement message
Data Received data message with read permission
Exclusive_Data Received data message with write permission
Ack_Chown Received Ack_Chown message

Trigger
All_Acks Received all required data and message acks
Ack_Chown_Received The Ack_Chown message has been previously received

Timeout Use_Timeout Lockout period ended
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Table A.5: L1 cache controller actions.

Action Description

a Issue a GETS message to the predicted owner tile
b Issue a GETX message to the predicted owner tile
c Forward request to the home tile
ds Send shared data to the requesting tile
dx Send exclusive data to the requesting tile with the number of ACKs

expected
e Send invalidations to sharers from the owner tile
f Send ACK to the requesting tile as response of an invalidation
g Send CHANGE_OWNER or ACK_STARVED (if the request was

starved) to the home tile
gg Send ACK_STARVED to home tile if the request was starved
h Notify processor that the access completed
i Allocate a new entry in the MSHR structure
ii Deallocate an entry from the MSHR structure
j Allocate a new entry in the L1 cache
jj Deallocate an entry from the L1 cache
kk Deallocate an entry from the L1C$ (if exist)
m Increase (Data) or decrease (ACK) the number of ACKs expected
n Set number of ACKs expected in the MSHR
o Trigger All_acks event if all ACKs have been received
p Schedule timeout of use meanwhile the block cannot be deallocated
pp Unset timeout of use
q Send a writeback message with the data block to the home tile
s Add a new sharer to the sharing code
t Clean all sharers from the sharing code
u Update L1C$ with information collected from the message received
v Set the MSHR as waiting an ACK_CHOWN
vo Trigger Ack_chown_received event if the ACK_CHOWN message has

been received
vv Unset the MSHR from waiting an ACK_CHOWN
w Write the data block to cache
x Pop message from queue
z Send the message to the back of the queue
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Table A.6: L1 cache controller transitions.

Event
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T
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n
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O
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kk >I

ds gg
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u e dx
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x vv x
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u e dx
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x vv x
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u e dx
g jj x >I

x vv x
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z z z c x c x f x
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ii x >S
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ii x >MW

z
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z z z c x c x f x x u h ii

jj x >S
w u v h p
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z

IM
z z z c x c x f x x m

o x
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z

SM
h x z z c x c x f x

>IM
x m

o x
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z
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h x z z z z x m

o x
vv x h ii p x

>MMW

MW
h x h x
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z z z x vv x pp vo
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h x h x
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z z z x vv x

>M
x
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MMW
h x h x z z z x vv x pp vo

>MMB
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h x h x z z z x vv x
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x
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Table A.7: L2 cache controller states.

State Description

Base
I Invalid
ILO Invalid, but L1 owner exists and L1 sharers can exist
O Owned, local sharers can exist

Transient
IG Blocked due to an off-chip access
OI Blocked, doing a writeback to memory, waiting acks from L1

caches

Starvation
ILOS Starvation. Invalid, but L1 owner exists and L1 sharers can exist
OS Starvation. Owned, L1 sharers cannot exist

Table A.8: L2 cache controller events.

Event Description

Request

L1_GETS Load request from an L1 cache
L1_GETX Store request from an L1 cache
L1_STARVED Starved request from an L1 cache
L1_WB_DATA Writeback from an L1 cache (contains data)
L1_Change_Owner L1 owner cache has changed
L1_AckSt A starved request has been solved
L2_Replacement Replacement from L2 cache

Response

Ack Received an invalidation acknowledgement from
an L1 cache

Data_Exclusive Received data from memory

Trigger All_Acks Received all required acknowledgements
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Table A.9: L2 cache controller actions.

Action Description

a Forward L1 cache request to memory
c Forward request to the owner tile, obtained from the L2C$
ds Send shared data to the requesting tile
dx Send exclusive data to the requesting tile with the number of ACKs expected
e Send invalidations to all sharers except to the requesting tile
f Store new owner identity in the L2C$
g Send Ack_Chown message to the new owner tile (if necessary)
h Send hints (CHANGE_OWNER message) to all cores (if necessary)
i Allocate a new entry in the MSHR structure
ii Deallocate an entry from the MSHR structure
j Allocate a new entry in the L2 cache
jj Deallocate an entry from the L2 cache
kk Deallocate an entry from the L2C$ (if exist)
m Decrease the number of ACKs expected
n Set number of ACKs expected in the MSHR
o Trigger All_acks event if all ACKs have been received
q Send a writeback message with the data block to memory
r Record requesting core in the MSHR structure
s Add a new sharer to the sharing code
w Write the data block to cache
x Pop message from queue
z Send the message to the back of the queue

Table A.10: L2 cache controller transitions.
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Table A.11: Memory controller states.

State Description

I Memory can store a staled copy of the block
M Memory stores a fresh copy of the block

Table A.12: Memory controller events.

Event Description

GETS Load request
GETX Store request
WB_DATA Update the data block

Table A.13: Memory controller actions.

Action Description

d Send data block to the home tile
w Update the data block in memory (if dirty)
x Pop message from queue
z Send the message to the back of the queue

Table A.14: Memory controller transitions.

Event

State G
E
T
S

G
E
T
X

W
B
_
D
A
T
A

I z z w x >M
M d x >I d x >I
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