
Universitat Autònoma de Barcelona

Departament d’Enginyeria de la Informació i de les Comunicacions

A Mobile Code-based Multi-Routing Protocol

Architecture for Delay and Disruption Tolerant

Networking

Carlos Borrego Iglesias

Bellaterra, January 2013

Advisor Dr. Sergi Robles

Universitat Autònoma de Barcelona

Departament d’Enginyeria de la Informació i de les Comunicacions

A Mobile Code-based Multi-Routing Protocol

Architecture for Delay and Disruption Tolerant

Networking

Carlos Borrego Iglesias

Bellaterra, January 2013

Advisor Dr. Sergi Robles

LATEXstyle:

http://abra.uab.es/∼cborrego/fancy-phd.sty

Front Cover Photography:

http://www.carlosborregoiglesias.com

Title Page Illustration:

http://www.arthursclipart.org

Printed in:

La casa de l’atzar

Creative Commons 2013 by Carlos Borrego Iglesias

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License.

http://www.creativecommons.org/licenses/by-nc-sa/3.0/

I certify that I have read this thesis entitled ”A Mobile Code-based

Multi-Routing Protocol Architecture for Delay and Disruption Tol-

erant Networking” and that in my opinion it is fully adequate, in

scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.

Bellaterra, January 2013

Dr. Sergi Robles

(Advisor)

Committee:

Dr. Joan Borrell

Dr. Josep Pegueroles

Dr. Cormac Sreenan

Dr. Jordi Herrera

Dr. Ricardo João Cruz Correia

Program: Doctor en Informàtica.

Department: Departament d’Enginyeria de la Informació i de les

Comunicacions.

A mis padres y a mi hermana

Abstract

I
N THIS THESIS, we include code in the messages to improve Delay and

Disruption Tolerant Networking (DTN) performance. Store-carry-and-

forward DTN protocols offer new possibilities in scenarios where there

are intermittent connectivity, asymmetric bandwidths, long and variable latency

and ambiguous mobility patterns. However, there are scenarios where current

DTN mechanisms are not efficient enough, for example when several applica-

tions need to coexist. In this study we present a general purpose architecture

for this type of scenarios based upon the idea of letting the application, by

means of its messages, decide the behavior of every intermediate node. The

keystone of this proposal is to carry the routing algorithm code along with ev-

ery single message. The resulting DTN can be used by different heterogeneous

applications simultaneously. This thesis uses three examples of three differ-

ent scenarios to show how our architecture can be used. Firstly, it presents

a general purpose, multi-application mobile node sensor network based on mo-

bile code. This intelligent system can work in DTN scenarios. Mobile nodes

host software mobile code with task missions and act as DTN routers following

the store-carry-and-forward model. Secondly, it introduces a new paradigm –

store-carry-process-and-forward – based on mobile code to improve the integra-

tion of wireless sensor networks and grid computing infrastructures. Thirdly,

it describes an emergency scenario in which different users such as policemen,

firemen, doctors, paramedics, engineers or rescue teams, among others, along

with portable devices such as smart phones or tablets, create the interconnected

network. Opportunistic contacts among the different users permit the different

applications to employ the network for very different purposes. Additionally,

the proposal is complemented by an integration based on code block bundle

extensions of the proposed architecture with the DTN Bundle Protocol. The

feasibility and usability of the different application proposals are proved and

evaluated by comparing its performance with state-of-the-art proposals.

ix

Acknowledgements

T
HIS THESIS would not have been the same without the valuable

help and support from a lot of people. First of all, I would like to

thank my family for their continuous support throughout my educa-

tion. Muchas, muchas gracias de corazón, familia. Thanks heaps to Gabriela

Ellena and Isabel Coderch for those first days of hilarious presentation rehearsals.

Those were the days! Thanks to Jordi Requena and Gonçalo Pinto for his contin-

uous interest. Thanks to Judy Kaufmann and Clara Juan for all your design tips.

Thanks to my university friends in Madrid for all these years of non-computer

science conversations.

I am very thankful to Simin Nadjm-Tehrani and the rest of the RSTLAB lab-

oratory at Linköping University for the warm welcome I received while staying

in Sweden during the summer of 2011. Grazie di cuore to Andrei Maslenikov,

my supervisor during my stay in Rome, for being such a generous and stimulat-

ing supervisor, freely permitting me to find my path. Gracias to Sergio Arévalo,

my final thesis supervisor at my home university which encouraged me to apply

to a CERN job. Merci bien to Christian Boissat at CERN for being such a

inspiring supervisor.

Gràcies to everybody in the dEIC department, specially to Jordi Cucurull

who during my first days of mobile agent research helped me a lot. Working

around such a talented group of people in such a pleasant atmosphere has been

very enriching. Thanks so much as well to Jordi Nadal, Arnau Bria and Esther

Acción from PIC, my first job in the Autonomous University of Barcelona.

I do not have enough words to express how thankful I am to Sergi Robles,

my thesis supervisor. My time spent while developing this thesis has always

been very gratifying. Thanks for all the never-ending conversations about gram-

mar, etymology, science, politics, philosophy and from time to time computer

networks. Thanks as well for giving me the opportunity of teaching in the dEIC

department. Now I know what it is to adore a job.

xi

My last and very special and warm thank you to Andreu Pacheco, my su-

pervisor while working for the IFAE institute. I would have never started my

thesis without his help. I really appreciate his support all these last three years.

His kindness has been an inspiration to me. The people that work with you are

very lucky.

This work has been partially supported by the Spanish Government research

projects FPA2010-21919-C03-02 from the Ministerio de Economı́a y Competi-

tividad and TIN2010-15764 from the Ministerio de Ciencia e Innovación. I am

very thankful to all these government institutions, but very concerned as well

for those who in a near future will not have the same economical support as me

for starting or finishing their research studies.

Carlos Borrego Iglesias

Barcelona, January 2013

Contents

Abstract ix

Acknowledgements xi

List of Figures xvii

List of Tables xviii

List of Algorithms xix

Part I Preliminaries 1

Chapter 1 Introduction 3

1.1 Objectives . 5

1.2 Contributions . 6

1.3 Document Layout . 7

1.4 List of Publications . 8

Chapter 2 State of the Art 11

2.1 Introduction to Intermittently Connected Networks 12

2.2 Routing in Intermittently Connected Networks 12

2.3 Delay and Disruption Tolerant Networking Architecture 16

2.4 The Bundle Protocol . 18

2.5 Mobile Code . 19

xiii

Part II Proposal 23

Chapter 3 DTN Architecture proposal 25

3.1 Motivation . 27

3.1.1 IP Multicast: a Case Example 28

3.2 Scenario Description . 29

3.3 Active Messages . 33

3.4 General Protocol Architecture . 35

3.5 General System Architecture . 36

3.6 Security Considerations . 39

Chapter 4 Architecture Reifications 43

4.1 A Mobile Agent-Based Architecture Reification 44

4.2 A Mobile Code Reification . 47

4.3 Bundle Code Blocks Reification 52

4.3.1 Common Extension Fields 54

4.3.2 Bundle Routing Code Block 56

4.3.3 Custodian Routing Block 58

4.3.4 RIT Update Code Block 59

4.3.5 Lifetime Control Code Block 59

4.3.6 Application Priority Code Block 60

4.3.7 Mobile Code Implementation Details 61

Part III Scenarios 63

Chapter 5 DTN Wireless Active Sensor Networks 65

5.1 Introduction . 66

5.2 State of the Art . 68

5.3 Proposal Description . 70

5.3.1 Architecture . 71

5.3.2 Primitive Services Types and Task Delegation 73

5.3.3 Dynamic Multi-Routing 74

5.3.4 Aggregation, Scheduling and Dropping 76

5.3.5 Application Influenced Movement Model 76

5.3.6 Active Messages: A Distributed Sensing

Infrastructure . 78

5.4 Results . 81

xiv

Chapter 6 DTN Active Sensor Grids 89

6.1 Introduction . 90

6.2 Background . 91

6.3 Integrating DTN WSN’s in Grid Using Mobile Code 93

6.3.1 Grid Job Management . 95

6.3.2 Store-Process-Carry-and-Forward Paradigm 98

6.3.3 Processing Models . 98

6.3.4 Storage . 101

6.3.5 The Routing Issue . 102

6.4 Implementation . 103

6.5 Ex: A Multi-Application Robot Sensor Network 104

Chapter 7 DTN Emergency Scenarios 111

7.1 Introduction . 112

7.2 State of the Art . 113

7.3 Disaster Recovery Scenarios . 116

7.3.1 Dynamic Routing and Routing Algorithm Deployment . . 116

7.3.2 Alleviate DTN Congestion 119

7.3.3 DTN Lifetime Control . 120

7.3.4 Dynamic Prioritised Scheduling 122

7.3.5 Results . 123

Part IV Conclusions and Future Lines 129

Chapter 8 Conclusions and Future Lines 131

8.1 Conclusions . 132

8.2 Heading Beyond . 135

8.3 Future Lines . 137

Part V Appendixes 139

Chapter A Simulations Benchmarks 141

A.1 Active Message Class . 142

A.2 Reports . 142

A.3 Routing Algorithm Parameters Optimization Model 145

xv

Part VI Bibliography 147

Bibliography 149

List of Figures

2.1 Intermittently connected networks routing paradigms 13

2.2 TCP/IP vs. DTN. 17

2.3 Bundle layer. 18

2.4 DTN Bundle Blocks. 19

2.5 Mobile Code Migration. 20

3.1 Active message fields. 34

3.2 Active Message forwarding . 34

3.3 General network DTN architecture. 36

3.4 System Architecture. 38

4.1 Mobile agent migration. 44

4.2 A mobile agent Java Jade-based architecture. 45

4.3 Routing Information Tree ontology structure. 46

4.4 JADE implementation. 47

4.5 Migration Levels. 52

4.6 DTN Bundle with code extension block fields detailed. 58

5.1 System Architecture for DTN mobile code-based WSN. 72

5.2 General Scenario. 73

5.3 Movement model. 78

5.4 Movement request protocol . 78

5.5 Dynamic routing versus traditional routing. 83

5.6 Rendez-vous time - Latency . 83

5.7 Rendez-vous time - Delivery ratio. 84

5.8 Max Area - Population . 84

5.9 Max distance - Efficiency . 85

5.10 Aggregation - Latency . 85

xvii

5.11 Aggregation - Delivery Ratio . 86

6.1 State of the art. 91

6.2 Coexistence of WSN and grid infrastructure 95

6.3 Grid layers . 96

6.4 Active message creation. 97

6.5 Processing models. 101

6.6 Dynamic Routing. 103

6.7 Computer Element Load. 107

6.8 Memory usage. 107

6.9 Sparse scenario with short jobs. 108

6.10 High node density scenario. 108

6.11 Dense scenario with long jobs. 109

7.1 Different users in an emergency scenario 117

7.2 Congestion control. 120

7.3 DTN Lifetime Control . 121

7.4 Latency time as a function of the bundle size 124

7.5 Bundle delivery ratio efficiency 125

7.6 Delivery ratio efficiency . 126

7.7 Latency efficiency . 127

7.8 Agent arrival efficiency . 128

7.9 Prioritised bundles efficiency . 128

8.1 The big picture . 132

A.1 The ONE dynamic routing, motion report and class caching . . . 143

A.2 Active message reification. 144

A.3 Motion report . 144

A.4 Report class for The ONE . 145

A.5 Replication and redundancy . 146

xviii

List of Tables

4.1 Blocks Code Type Codes. 54

8.1 Optimization techniques. 137

List of Algorithms

1 Application agent code. 48

2 Active message code. 49

3 Active message routing code. 49

4 Local platform code. 50

5 The mobile agent mobility manager code. 51

6 Bundle Agent Code. 57

7 Congestion Bundle Agent Code. 59

8 Bundle update extension code. 60

9 Lifetime Control Code . 60

10 Priority Bundle Agent Code. 61

11 Active Message Algorithm. 80

12 Data Message Algorithm. 81

13 Execution Environment Manager Algorithm. 81

14 Movement model code . 86

15 Execution environment code . 98

16 Routing code for the different messages. 100

17 Application active message code. 105

18 Active message Epidemic Routing Code example. 105

19 Local execution environment code 105

20 DTN Lifetime Control Code . 122

xix

Part I

Preliminaries

“In what could be seen as a paradox, latest research studies revolve around

poorly connected networks. These networks were already present when the

growth of the Internet was beginning to arise; however, the research-worthy

requirements for these networks were met once communication devices were

revolutionized.”

“Mobilis in mobili.”, Twenty Thousand Leagues Under the Sea

Jules Verne

“Although this may seem a paradox, all exact science is dominated by
the idea of approximation. When a man tells you that he knows the
exact truth about anything, you are safe in inferring that he is an
inexact man.”

Bertrand Russell

1
Introduction

W
E LIVE in interesting times, for the good and the bad. The Inter-

net has proven to be an infrastructure capable of interconnecting

different types of networks all along the globe. The aim for this

global network is to provide a large variety of applications worldwide.

While still in constant evolution, the almost newborn networks have thrillingly

changed the way we socialise and interact. Everyday living activities are more

and more related to network communications. The widespread of embedded net-

work devices such as mobile phones, tablets, laptops, etc. in conjunction with

the deployment of wireless networks such as Wi-Fi, GSM or Bluetooth, physi-

cally bring permanent network connection closer to scenarios where traditionally

it would have been very difficult to be deployed.

The majority of the available applications take for granted a permanent con-

nection among the different parties involved in the communication. Datagrams

traveling through these networks do not know in advance their path to the des-

tination, however, it is assumed that a continuous path from the source to the

destination will be found.

3

4 Chapter 1. Introduction

In the hyperconnectivity era, there is room for other types of person-to-

person, machine-to-machine and person-to-machine communications. Scenarios

which lack continuous network connectivity appear to be an interesting topic for

the research community. Terms like Delay and Disruption Tolerant Networking

(DTN), opportunistic networks, challenged networks, partitioned networks, etc.

arise in the research community for solving communication problems and offer

promising networks solutions for novel intermittently connected scenarios. The

result is the possibility of running applications in challenged scenarios where

under different circumstances using classical network protocols would have been

impossible.

In what could be seen as a paradox, the latest research studies revolve around

poorly connected networks. These networks were already present when the

growth of the Internet was beginning to arise; however, the research-worthy

requirements for these networks were met once communication devices were

revolutionised.

Among the different topics around these opportunistic networks, the most ef-

fortful and interesting one is routing. The routing problem is a matter of making

a decision with the challenge that useful information for making optimal deci-

sions may be not be available. New paradigms for making these decisions have

been proposed, and this thesis is one of them, but with a particular perspective.

One of the greatest lessons learned over these years in the study of how

to improve Delay and Disruption Tolerant Networks is that, unlike traditional

networks such as the Internet using protocols like TCP/IP, a unique solution to

cover all the possible scenarios and applications is unachievable. DTN scenarios

are far different from one another and depend on a wide range of different

characteristics which will described along this thesis.

Considering the evolution of other networks such as the Internet in which

different applications efficiently employ a network infrastructure, in this the-

sis we analyze the problem of application coexistence in Delay and Disruption

Tolerant Networking scenarios. We strongly believe in the benefits of taking

advantage of the different intermittently connected network devices belonging

to different applications in order to allow several applications to simultaneously

use the very same network. However, if several different applications coexist,

the best routing algorithm for them all is not a trivial matter. These and other

issues involved application coexistence have to be considered and can be very

hard to solve.

1.1. Objectives 5

Our proposal will always be introduced as a solution for certain DTN sce-

narios. Our goal for this study is far from a general solution to solve all DTN

problems, instead some very useful procedures and mechanisms for solving DTN

problems such as routing, multi application coexistence, context awareness, net-

work congestion, flow control, etc. are presented for different scenarios.

Having the opportunity to do research on this subject has been a gratifying

experience. My personal PhD path has been quite different from traditional

ones: I started once I had been working for some years abroad and I have been

combining my research with a job in a particle physics research institute. I

totally uphold this PhD route (a truer word was never uttered). The experience

has been very enriching and educative thus far but not without its challenges.

Unfortunately, not everything around developing a thesis is as fascinating as

the research itself. The acclaimed process of article evaluation or peer reviewing

in which qualified experts within a certain science field are involved may have

some drawbacks. I have been suffering from poor reviews from journals which

after almost one year of manuscript reviewing show that beyond not understand-

ing our proposals, give their absolute lack of knowledge away. Other proposals

for manuscript reviewing for improving reviewing time and accuracy reviewing

could be considered for the sake of research improvement. Some studies like

[105], bring under the spotlight the necessity of alternative mechanisms to the

peer-review. In a meaningless effort of doing one’s bit, I highly support a change

for manuscripts reviewing.

Fortunately, I have managed to publish some articles in international confer-

ences and international journals. Going through this process has been very hard

and has provided me with nothing but frustration. During these years I would

have preferred spending less time on futile details evolving journal publishing

and more time on my research itself. Another research paradigm is possible.

1.1 Objectives

The objective of this thesis is to provide different mechanisms to improve the

coexistence of several applications in Delay and Disruption Tolerant Network

scenarios. The keystone of these mechanisms is the possibility of carrying the

routing algorithm code along with the data messages themselves. This new

paradigm offers new possibilities to the applications employing the network.

Our aim has been to study the benefits of carrying such code and some other

6 Chapter 1. Introduction

codes which will be described in detail throughout this thesis. These benefits

have been achieved by using this mobile code in different network aspects such

as application data scheduling, lifetime control, network congestion, application

data aggregation, as well as to provide additional services such as message data

processing or message-based mobile node movement influence. Our purpose has

always been to supplement our proposal with real-case scenarios applications,

as well as to study its benefits in comparison with the state of the art methods.

Our aspiration has been as well to integrate our proposal with de facto DTN

standard models.

1.2 Contributions

The original contributions of this thesis are the following:

• A design of a generic architecture for opportunistic networks based on

mobile code.

• A design and implementation of the proposed architecture to improve

intermittently connected applications in emergency scenarios.

• A design and implementation of a general purpose, multi-application mo-

bile node sensor network based on mobile code.

• A design and implementation of a new paradigm – store-carry-process-

and-forward – based on mobile code to improve the integration of wireless

sensor networks and grid computing infrastructures.

• The implementation of a delay tolerant grid service, the computer element,

to give computing access to intermittently connected wireless sensor net-

works.

• An integration of the proposed paradigm in the DTNRG’s Bundle Proto-

col.

• A simulation environment to study the architecture proposal performance.

1.3. Document Layout 7

1.3 Document Layout

In the following paragraphs the outline of the parts and sections that form this

thesis is presented.

The thesis is divided in five parts. Each part starts with a quote from the

part itself. The first part, Preliminaries, includes the sections with preliminary

information to understand the rest of the document. This part contains this

introduction section and following, in Chapter 2, the state of the art, an intro-

duction to the main proposal around Delay and Disruption Tolerant Networks

and mobile code.

In the second part, Proposal, the core of the proposal is described: in Chapter

3 a novel context-aware and multi-routing protocol architecture for Delay and

Disruption Networks based on mobile code is presented. In Chapter 4, three

different ways of making this architecture concrete are explained. Firstly, in

Section 4.1, a mobile agent-based reification is presented. Secondly, in Section

4.2, a way of using mobile agents as data and code containers is presented.

Finally, in Section 4.3, a Bundle Protocol-based reification is described.

In the third part, Scenarios, three different scenarios in which the thesis

proposal can be employed are described. These three different scenarios are

implementations of the three different reifications from Chapter 4. In Chapter

5, a general purpose, multi-application mobile node sensor network based on

mobile code is presented. The principle of this proposal is using mobile code at

two levels: for the application and for the definition of the behavior in terms of

routing algorithms, movement policies and sensor retrieval preferences. The sys-

tem can adapt to the environment, dynamically optimizing routing algorithms

using local and global information and influencing node movement. In Chap-

ter 6, a new paradigm is proposed, the store-carry-process-and-forward, based

on mobile code to improve the integration of wireless sensor networks and grid

computing infrastructures. We describe the implementation of a delay tolerant

grid service, the computer element, to give computing access to an intermit-

tently connected wireless sensor network. The result is an intelligent system

which adapts dynamically to intermittent disconnections and improves multi-

application coexistence. In Chapter 7, a DTN disaster recovery application for

calamities such as terrorist attacks or meteorological catastrophes, is described.

In this scenario, doctors, nurses and rescue teams, among other users, form the

Delay and Disruption Tolerant Network.

The fourth part, Conclusions, presents the conclusions which have been

8 Chapter 1. Introduction

drawn and future lines for prospect ulterior studies. Finally, in part five, Bibli-

ography, the different article and book references are listed.

1.4 List of Publications

This thesis revolves around the concepts presented in the following publications

from international conferences and JCR journals:

• A store-carry-process-and-forward Paradigm for Intelligent Sensor Grids

C. Borrego, S. Robles, in Journal of Information Sciences, 2013 [11].

• Striving for Sensing: Taming your Mobile Code to Share a Robot Sen-

sor Network C. Borrego, S. Castillo, S. Robles, submitted to Journal of

Information Sciences.

• A Bundle Routing Mobile Code extension for Delay and Disruption Net-

working C. Borrego, S. Robles, submitted to IEEE Transactions on Mobile

Computing.

• Identity based Access Control for Pro-active Message’s DTN A. Sanchez-

Carmona, S. Robles, C. Borrego, submitted to Journal of Security and

Communication Networks.

• ATLAS Site Status Board. Automatic exclusion and a monitoring on AT-

LAS computing activities, C. Borrego et al. In Iberian Grid Infrastructure

Conference IBERGRID 2011, 2011 [13].

• Seguridad en la planificación de agentes móviles en redes DTN C. Bor-

rego, S. Robles, In Reunión Española sobre Criptoloǵıa y Seguridad de la

Información, RECSI 2010, 2010 [14].

• Mobile Agent Virtual Organisation to Improve Relative Information in

Grid Services C. Borrego, S. Robles. In Proceeding 3PGCIC ’10 Proceed-

ings of the 2010 International Conference on P2P, Parallel, Grid, Cloud

and Internet Computing, 2010 [15].

• Relative Information in Grid Information Service and Grid Monitoring

using Mobile Agents, C. Borrego, S. Robles, In International Conference

on Practical Applications of Agents and Multiagent Systems. Universidad

de Salamanca, 2009 [12].

1.4. List of Publications 9

• Distributed ATLAS computing activities X. Espinal, C. Borrego et al., In

IBERIA Proceedings of the 2nd Iberian Grid Infrastructure Conference,

pg. 19-30 Porto, Portugal, May 12-14, 2008 [40].

• File Transfer Service and CMS data transfer optimizations at PIC Tier-1

center, J. Flix, C. Borrego, et al., EGEE 2007 Conference, Budapest, 2007

[42].

• Control de acceso para mensajes proactivos en redes DTN A. Sánchez,

C. Borrego, S. Robles, J. Andújar, in Proceedings for the XII Reunión

Española sobre Criptoloǵıa y Seguridad de la Información (RECSI 2012),

2012 [81].

• Automating ATLAS Computing Operations using the Site Status Board J.

Andreeva, C. Borrego, et al. In Computing in High Energy and Nuclear

Physics 2012, New York, NY, USA, 21 - 25 May 2012 [4].

• Publicación de Información y Monitorización relativa usando Agentes Móviles

en la Computación Grid, Master Thesis Research Study, 2008 [10].

“If classical music is the state of the art then the arts are in a sad state.”

Frank Zappa

“You have to do research. You have to go on Amazon and read a really
long review written by an insane person... who’s been dead for months
because he shot his wife and then himself after explaining to you that
the remote is counter-intuitive. It’s got really small buttons on the
remote he said before he murder-suicided his whole family.”

Louie C.K.

2
State of the Art

T
HIS CHAPTER, describes different technologies, protocols and ar-

chitectures to understand the rest of the thesis. On one hand, the

main issues around Delay and Disruption Tolerant Networking will

be described in detail. This chapter is divided into five sections. The first

section introduces the concept of Delay and Disruption Tolerant Networking.

The second section explains the routing problem in these types of networks. In

the third section a description of the main architecture proposal for Delay and

Disruption Tolerant Networking (DTN) is presented. In the fourth section, the

bundle protocol is described. Finally, in the fifth section, a description of the

mobile code technology, the technology on which the architecture introduced in

this thesis is based, will be presented. During the chapters belonging to Part

III, the Scenarios part, supplementary state of the art proposals concerning the

different scenarios will be described.

11

12 Chapter 2. State of the Art

2.1 Introduction to Intermittently Connected

Networks

There are many projects involved with networks which are characterised by in-

termittent connectivity, asymmetric bandwidths, long and variable latency and

ambiguous mobility patterns. The reasons for this lack of end-to-end connec-

tivity may be due to several reasons such as restrictions on the use of devices,

zone security problems or scenarios including out of range zones. These net-

works are generally divided into regions depending on their characteristics. The

limits among these regions are defined by concepts like the delay between the

links, intermittent connectivity between source and destination, the asymmetry

in the speed of the connections, error rates, addressing, mechanisms of reliability,

quality of service and trust relationships.

In such networks, classical Internet protocols, such as TCP/IP, cannot be

directly employed due to data loss reasons, many TCP retransmissions which

usually end by closing the connections. Delay and Disruption Tolerant Network-

ing supports these communication delays by following the paradigm store-carry-

forward : messages are sent to intermediate nodes, also known as custodian

nodes, where they are kept and potentially stored for a long period of time.

In this section, on one hand, intermittently connected network routing algo-

rithms will be defined, explained and classified. On the other hand, one of the

architectures proposed for solving intermittent connected networking problems,

as representative for the current state of the art technology for this research

field, will be described. This proposal is the Delay Tolerant Network Research

group, which has defined an end-to-end protocol, abstract service description

for the exchange of what they call bundles [84] in Delay Tolerant Networking.

2.2 Routing in Intermittently Connected

Networks

This section introduces the problem of routing in Delay and Disruption Tolerant

Networking. By definition, in traditional networking, routing is a path decision

process. Traditional routers in networks like the Internet choose from differ-

ent routers to forward a unique copy of a datagram. In some scenarios, this

forwarding approach may differ. Routing protocols in intermittently connected

2.2. Routing in Intermittently Connected Networks 13

networks may replicate information for delivery ratio improvement purposes.

The routing algorithm needs to make decisions such as when to forward a mes-

sage, where to send it, which message to send, which message to delete or which

message to accept. Concerning the number of copies forwarded on each DTN

node, algorithms may be:

• Forwarding based: A single copy of the message is kept in the net-

work. Custodian nodes decide among the neighbours contacted the best

forwarder which will become the next custodian of the information.

• Replication based: Insert multiple copies of a message to increase the

likelihood of delivery. The algorithms must meet a compromise between

the resources used and the likelihood of delivery.

• Hybrid strategy: combines features of the algorithms based forwarding

and replication.

For example, in the Figures 2.1, a custodian node decides among three pos-

sibilities: forwarding to a given single node (Figure 2.1(a)), forwarding to a set

of nodes (Figure 2.1(b)), without discarding the option of keeping a copy of

the original message and finally, not forwarding the message by any means and

keeping the application information (Figure 2.1(c)).

(a) Epidemic routing. (b) Unicast routing. (c) No routing.

Figure 2.1: Intermittently connected networks routing paradigms: epidemic

routing, Unicast routing and no routing. Outer circles represent wireless range.

Intermittently connected networks can be subdivided into two types depend-

ing on the type of node availability: opportunistic contacts and scheduled

14 Chapter 2. State of the Art

contacts. Networks based on opportunistic contacts are those in which com-

munication is available only for periods which are not planned. Moreover, in

scheduled contact scenarios, communication nodes move following predictable

movements, which allow them to plan or schedule other nodes positions in ad-

vance for future communication purposes. For example, a bus in a region where

the Internet is not widely deployed may travel from one city to another transmit-

ting information upon arrival to the different cities following a given schedule

which a priori can be foreseen. To perform this type of communication, nodes

must be synchronised.

Based on the knowledge of the topology of the network routing protocols

may be identified as:

• Based on an oracle: A node or a set of nodes have a certain knowledge

of the network or its possible evolution. This knowledge includes metrics

such as contacts summary, traffic status or queuing status. In terms of

this knowledge the routes will be determined.

• Model-based: The routing algorithms use certain models to determine

the routes.

• Epidemic: Flooding the network to all nodes with the consequent disad-

vantage of a high use of the custodian storage resources.

• Based on estimation: Based on the calculation of path probabilities

to reach the destination. Messages are sent to those nodes which have a

higher probability to contact the destination node.

• Erasure Coding: These types of routing use coding theory to establish

the routes and in particular erasure codes.

• Based on node movement control: The routing algorithms are used

to control the physical movement of nodes.

• History-based: Data obtained from the past is employed to efficiently

route the information among the different custodian nodes.

• Movement-based: Information is routed taking into account the move-

ment of the neighbour custodian nodes.

2.2. Routing in Intermittently Connected Networks 15

• Beacon-less: The majority of the routing protocols decide among the dif-

ferent neighbour custodian nodes where to route their information. These

neighbours are discovered by means of regularly sending beacon messages

to the network. However, there a few routing algorithms which do not

send these messages in order to minimise the impact on the network.

• Topological: Routing protocols may employ information on the links,

such as next-hop, bandwidth, etc... to route information.

• Position-based: Position information such as GPS are taken into account

by routing algorithms. Parallel location services may be needed to be

deployed in the network to update node positions.

Additionally, routing protocols may be classified in terms of which resource

availabilities are studied. These resources include:

• Memory. Depending on the type of devices, memory resources can be

limited. Routing algorithms are studied precisely around this limitation.

Custodian buffer space management is a crucial topic in intermittently

connected networks.

• Processing. CPU limitation is a similar problem to memory manage-

ment, specially when custodian nodes are mobile devices.

• Network bandwidth. Network bandwidth, in conjunction with other

network variables such as the network range, defines the amount of in-

formation that is able to be transmitted when two of more nodes contact.

Since contact time windows may be small in DTN networks, the use of the

network bandwidth is a key issue in opportunistic networking. Network

bandwidth is a key issue which should be taken deeply into account when

defining a routing algorithm.

• Energy consumption. Routing algorithms need to consider energy con-

sumption as a limited resource, especially when dealing with mobile nodes

not connected to a power line.

16 Chapter 2. State of the Art

2.3 Delay and Disruption Tolerant Networking

Architecture

A research group created by the Internet Research Task Force, (IRTF) and Delay

Tolerant Networking Research Group (DTNRG) [107], is responsible for defining

an architecture for Delay and Disruption’s (DTN) RFCs 4838 [18]. DTNRG has

defined, among others, two types of protocols called Bundle Protocol [84] and

Licklider Transmission Protocol [20]. These protocols exceed the limitations

and potential problems of Internet protocols such as TCP/IP.

The Bundle Protocol is described in RFC 5050 [84] paying special attention

to describing the end-to-end protocol, the format of the blocks and summarise

the services to exchange messages in bundles. The Licklider Transmission Pro-

tocol (LTP) is described in RFC 5326 [20] and is designed to provide reliability

over links characterised by a long delay between the sending and confirmation

(Round Trip Time) as well as frequently interrupted connectivity.

The layered DTN architecture proposed by the DTNRG is based on the

Internet TCP/IP five layered architecture. Since DTN nodes must implement

the already mentioned store-carry-forward paradigm, an extra layer is added

to handle delays and disruption. This layer is localised as seen in Figure 2.2

between the application layer and the transport layer and it is patently called

the Bundle layer. This layer enables communication across multiple nodes and

regions.

The Bundle Layer stores and forwards bundles between nodes. It uses a

single protocol, the Bundle Protocol, for all network regions, that form a DTN.

Lower layers are chosen depending on the characteristics of each region. As in

the TCP/IP architecture, each layer adds a header for encapsulation purposes,

following the scheme in Figure 2.2.

Within a DTN, different devices can be present. A DTN node is an entity

implementing the bundle layer. A node can be a computer, router, gateway or

any combination of these which acts as source, destination or bundles forwarder.

• Host. Source or destination for bundles. They do not forward bundles,

unless they behave as routers or gateways as well.

• Routers. Forward bundles within a region. Routers that operate over

links with long delays need to keep bundles in a persistent storage until

they can be forwarded.

2.3. Delay and Disruption Tolerant Networking Architecture 17

Figure 2.2: Difference among the TCP/IP network architecture and the DTN

architecture.

• Gateways. Forward bundles from two or more DTN regions and may

optionally be a router or a host. Gateways necessarily require persistent

storage. Their main function is to substitute between low-level layer region

protocols which are connected.

In the Internet architecture, TCP provides reliability to end-to-end commu-

nications. In the case of DTN, the bundle layer delegates on the lower layer

protocols to ensure reliability in the communications. The bundle layer can be

seen as a surrogate for the end-to-end layer but just for the intermediate nodes.

The interface between the common Bundle Protocol and a specific inter network

protocol suite is defined as convergence layer adapter.

The bundle layer supports reliability between adjacent nodes. It is done

by the so-called custody transfers. When the bundle layer sends a bundle to

an adjacent node, it can be requested a custody transfer so if the destination

node accepts it, it will send a bundle acknowledgment. If this acknowledgment

is not received before a certain time expiration, the sender will retransmit the

bundle. The bundle will remain in the custody node until another node accepts

its custody or the bundle lifetime expires. This mechanism does not guarantee

18 Chapter 2. State of the Art

the end-to-end reliability and can only be done if the source of communications

requests the transfer custody.

Figure 2.3: A Bundle layer is defined between the application layer and the

different possible convergence layers.

2.4 The Bundle Protocol

In [84], the Bundle Protocol, a common protocol for nodes running on Delay

and Disruption Tolerant Networks (DTN) is proposed. The Bundle Protocol

defines a series of data blocks to route data from a source to a destination fol-

lowing the store-carry-and-forward paradigm: each node stores application data

and whenever the node contacts another node, it may forward the application

data. The bundle architecture behaves as an overlay network and additionally

a naming service is defined based on Endpoint Identifiers (EIDs). Besides the

source and destination endpoints of a bundle, EIDs are used to identify other

endpoints that are involved in the conveyance of a bundle.

In [89], an extension meta-data block that may be used with the Bundle

Protocol is defined. This block is designed to carry additional information that

DTN nodes can use to make processing decisions regarding bundles. In Figure

2.4, generic fields for this extension block are depicted.

Additionally, the Bundle Protocol contains two bits to define three different

types of priorities in its header. Using the previous extension meta-data block,

the extended class of service described in [19] enhances the Bundle Protocol in

order to allow the sender to specify additional different priorities among bundles.

2.5. Mobile Code 19

These priorities, both defined in [84] and [19] are equivalent to the ones defined

in the Differentiated Services field in the Internet Protocol Suite in which IP

datagrams are ordered in different classes of precedence. While this field could

force routers to act on datagrams, empirically, as described in [65], it is seldom

used and it does not guarantee the priority set.

Figure 2.4: DTN Bundle blocks with extension fields detailed.

2.5 Mobile Code

Mobile code is a piece of software transferred from one machine to another and

executed on the local destination machine. The basis of the proposed architec-

ture for Delay and Disruption Tolerant Networking in this thesis is mobile code.

In this thesis we will defend the fact that a possible way of facing the different

issues around Delay and Disruption Tolerant Networking is by using mobile code

to make, autonomously and in a context aware fashion, some of the decisions

regarding routing and movement determinations. Mobile code technology [47]

is a well-known procedure supporting precisely this.

In general terms, a mobile code is able to migrate from machine to machine

and occasionally continue their execution on the destination machine. The en-

tities on which mobile code run are generally called execution environments.

Among the different mobile code paradigms we can distinguish two types of

mobility:

20 Chapter 2. State of the Art

• Weak mobility is limited to the code and the data state which is actually

transferred. Before being forwarded the code updates its state so when

starting from scratch it may know which was the work already performed.

Most of execution environments such as Jade [6] and Agentscape [98], allow

code from foreign execution environments to be executed, without keeping

the state of this code. When arriving in the new execution environments,

the code would be restarted.

• Strong mobility allows code to be moved at a very low level, such as stack

pointers and instruction pointers to different execution environments. If

implemented, a maximum flexibility is obtained. The code starts a thread

and once it has the possibility to migrate, it suspends its code and continue

running it on the destination execution environment.

As described in [25], strong mobility code is not widely deployed. Few

implementations have been done and Java is no supporting it for the mo-

ment. Strong mobility implies almost no difference among execution en-

vironments. This option is more transparent and flexible, but it is very

difficult to implement.

Figure 2.5: A mobile code migrates from one execution environment to another

carrying its state, code and data.

There are not many publications on studies which use mobile code in the

context of DTN scenarios. In [64], the idea of using mobile code which would

act as wrappers on messages is sketched. This mobile code allows the mes-

sages to carry application information to a given destination while staying at

2.5. Mobile Code 21

intermediate nodes of the network when the migration, that is, travelling to an

available node, is not possible. Although they provide an interesting algorithmic

approach, they give neither details about an architecture nor an implementation.

Moreover, [39] presents an interesting modelling of the movement of active

messages carrying application data from fragmented wireless sensor networks.

Despite the extremely detailed model proposed, no implementation and no de-

scription on how to use it in a real case application is given.

Mobile agents, software entities whose code and data migrate from host to

host and resume their execution upon destination, are good candidates to imple-

ment a data-driven approach to DTN networks. Mobile agents need execution

environments for running, the platforms. Jade [6], Agentscape [98] and Mobile-

C [26] are popular examples of platforms supporting mobile agents. A platform

can be installed on every DTN node so mobile agents can travel from DTN node

to DTN node carrying their application data. However, these platforms cannot

be directly used for implementing DTNs.

Mobile agents are very useful when the studied scenario is geographically

distributed, the environment is dynamic and interaction among the scenario

software entities helps with problem solving. Mobile agents have the following

characteristics as described in [99]:

• Autonomy. The assumption that, although we generally intend agents

to act on our behalf, they nevertheless act without direct human or other

intervention and have some kind of control over their internal state.

• Reactive. Capable of maintaining an ongoing interaction with the envi-

ronment as well as to responding in a timely fashion to changes that may

occur in it.

• Pro-active. Capable of taking the initiative; not driven solely by events,

but capable of generating goals and acting rationally to achieve them.

• Goal-Oriented. An agent accepts high-level requests indicating what a

human wants and is responsible for deciding how and where to satisfy the

request.

• Collaborative. An agent does not blindly obey commands, but has the

ability to modify requests, ask clarification questions, or even refuse to

satisfy certain requests.

22 Chapter 2. State of the Art

• Mobile. An agent is able to transport itself from one machine to another

and across different system architectures and platforms.

• Adaptation. Agents may in some cases attempt to adapt themselves

to better suit their new or changing environment or to deal with new or

changing goals.

The key issue for using mobile agents among the different types of mobile

code is to profit from the interdependency, meaning how these mobile codes

autonomously behave. They are able to take decisions and reactively behave

in terms of the context environment on behalf of the represented application.

Cooperation among different agents belonging to the same application is also

possible.

Mobile agents structure include an application code, which defines the behav-

ior of the agent, the application data, which is the data carried by the software

mobile agent and its itinerary, the node list the software mobile agents needs to

visit. This list can be statically joined in the agent data or can be calculated by

its code on every migration process.

None of the proposals in the DTN state of the art published studies solve

the problem of the necessity of coexistence of different routing algorithms, as a

general purpose solution. Classical DTN solutions listed in this section do not

consider the strong dependency among routing algorithms and their applica-

tions. These strategies only take into account bundle layer information. Other

layers, like the application layer containing some precious information, are not

considered. Moreover, in these proposals, the criteria for bundle ordering or bun-

dle dropping concerning the different applications do not change in each node.

In the following chapters we will introduce a novel-general-purpose architecture

which will satisfy precisely these limitations.

Part II

Proposal

“Copy Routing code (CP) bit. If set, this field indicates that the content of

the code block data field should be copied to the absolute path indicated in

the RIT path field.”

“Wanderer, there is no road, the road is made by walking.”, Proverbios
y cantares. Campos de Castilla

Antonio Machado

“Packets cannot feel. They are created for the purpose of moving data
from one system to another. However, it is clear that in specific situa-
tions some measure of emotion can be inferred or added.”, RFC 5841

R. Hay and W. Turkal

3
DTN Architecture proposal

T
HE INTERNET is the evidence of how flexible and sturdy the TCP/IP

network architecture has proved to be to create a global network of

networks. Albeit there are many important issues about this archi-

tecture, there are also a good number or reasons to commend it. But there are

some networks for which the TCP/IP is not an option because of, among other

things, its relatively short timeouts or its routing algorithm. This is the case,

for instance, when several devices are able to communicate to each other only

once in a while, being unreachable most of the time. The nodes in these types of

networks could use their peers to asynchronously forward information for them

from node to node to any point of the network, even if this process took a long

time waiting for the opportunity of transmitting the information. This is not a

new idea at all, and there are many architectures in the literature providing sim-

ilar solutions, usually under the labels of Challenged Networks, Opportunistic

Networking or Delay and Disruption Tolerant Networking (DTN).

In these networks, a critical issue, if not the most important, to deal with

is routing. Because there is not a fixed topography of the network, the decision

making process to choose the next hop among the neighbours cannot rely on it.

25

26 Chapter 3. DTN Architecture proposal

Instead, routing has to be a dynamic function based on the local information

acquired by the router in the very moment of the routing process. Influenced

by the success of the Internet, full of general purpose mechanisms, one could

think that a holistic “one-fits-all” routing algorithm would be useful here and

establish a standard for opportunistic networks. Unfortunately, the approaches

trying to do that are bound to fail. Such a standard, should it be, would lead

to deadlocks similar to the ones faced in the current Internet (e.g. Multicast

routing) because not all the applications have the same requirements and not

all opportunistic networks are alike. Different applications may have different

goals when it comes to routing the information such as minimising the latency

time, minimising the variation in latency time, maximising the throughput, max-

imising the reliability or minimising the routing overhead. In fact, most of the

successful solutions for doing the routing in these opportunistic networks fit just

a particular scenario, normally consisting of a single application [30], and they

set the trend. Some of these works claim to provide a generic framework for

any type of scenario/application, but at the end of the day they fail to include

new routing policies once the network has been deployed. On the other hand,

it would be very convenient to let the applications decide the routing instead

of trying to design a common algorithm including the associated fundamental

properties for all scenarios and applications. This is definitely the way of opti-

mizing the performance of this type of networks: there is no better source for

routing information than the applications themselves.

In this chapter we introduce a general purpose architecture for DTN based

upon the idea of letting the application, by means of its messages, decide the

routing that will take place in every node. The keystone of this proposal is car-

rying the routing algorithm code along with every single message. The resulting

DTN can be used by different applications, even if they were not foreseen before

the deployment of the network. Thus, the DTN is no longer bound to specific

applications and becomes a real open general purpose heterogeneous network as

it has been on the Internet for connected networks. A network built following

this architecture is flexible, open, and application designers can make the most

appropriate use of it according to the specific requirements of the application. In

short, the evident dependence between an application and its routing protocol

is preserved while keeping other applications’ interests.

This chapter presents a general architecture for opportunistic networks based

on mobile code. A formal definition of all the actors involved in communication

networks is presented. A generalisation of these communications is described

3.1. Motivation 27

making our proposal a general case of communications information exchange.

Several DTN issues such as routing, DTN congestion and error handling are

discussed.

3.1 Motivation

We have seen in the previous chapter the existence of different applications

which run on scenarios where there are intermittent connectivity, asymmetric

bandwidths, long and variable latency or ambiguous mobility patterns. In these

scenarios, the network is created when mobile and/or static nodes holding wire-

less devices intermittently connect. These network limitations are due to issues

such as small wireless radio range, mobility of the nodes, energy constraints,

network attacks or noise. Classic network protocols, such as TCP/IP, as ex-

plained in previous sections, do not solve these challenging issues. For these

purposes, as described in Chapter 2, different proposals such as the Bundle Pro-

tocol [84] and Haggle [83] have been floated. These proposals evolve around the

store-carry-and-forward paradigm: intermediate mobile or static nodes accept

the custody application information until they are able to find new custodians

to forward this information.

For every different application which is intended to be run on a DTN sce-

nario, we get from the mentioned proposals, different interesting solutions which

include various ways of solving routing problems. These proposals include repli-

cation based protocols, such as epidemic and PRoPHET [30], forwarding-based

protocols, such as MEED [30] and LAROD [30] and a great many others as ex-

plained in Chapter 2. We belief that these proposals have been extremely useful

to understand the complexity of the problematic issues around DTN networks.

However, these different proposals are studied separately, defining a custom

DTN network for every different scenario.

We propose a step further in DTN networks. We belief in the necessity of

a common network in which different applications may coexist without leaving

behind their optimal routing algorithms. Traditional bundle-based proposals

[84] allow just one type of routing algorithms. When sharing a unique DTN

infrastructure among several applications, a unique routing algorithm must be

chosen. We belief this is not efficient and can be improved. Our proposal intends

to break this tightly coupled relationship among DTN infrastructures and the

applications.

28 Chapter 3. DTN Architecture proposal

Contrary to well-established protocols like TCP/IP, a unique routing algo-

rithm for many applications has proven to work efficiently, and the Internet is

the most compelling proof of it. However, there are different applications in

the context of DTN networks, which work optimally just when using different

routing algorithms. If we want to let these types of different applications share

a unique network infrastructure we need to propose a new paradigm. This

paradigm will be described in this chapter.

3.1.1 IP Multicast: a Case Example

Multicasting, in the context of TCP/IP networks and concretely in IPv4, is

the sending of information over a TCP/IP internet to multiple destinations

with a single datagram. Different applications such as software distribution,

multimedia streaming, mobile TV, radio broadcasting and new media services,

with different needs, take advantage of Multicast in order to spread application

data all around the Internet.

Datagrams sent to Multicast groups have as their destination IP addresses

an Internet address belonging to a special range of addresses called D type.

Internet hosts subscribe or unsubscribe dynamically to these Multicast groups

to receive or stop receiving application data from the application source.

It is the network infrastructure which is responsible of replicating the Mul-

ticast datagrams and intelligently routing these according to the topology of

receivers interested in that information, that is, Internet hosts who are sub-

scribed.

On one hand, hosts advertise to their local routers about their interest to

belong to a given Multicast group, establishing the Multicast group membership.

On the other hand, several different protocols have been defined to communi-

cate among local and remote Multicast routers in order to route Multicast traffic

from the Multicast source application to the many Multicast clients. Examples

on these protocols can be found in [79] and include protocols such as PIM Sparse

Mode, PIM Dense Mode, PIM source-specific Multicast and Bidirectional PIM.

These protocols are widely deployed all around the Internet.

Applications willing to use Multicast use the different network infrastruc-

tures using the very same protocols to route Multicast datagrams. Unfortu-

nately, no general purpose Multicast routing algorithm covering every router on

the Internet is available. This issue forces sender applications to choose from the

different protocols in terms of the better adjustment of their needs and access

3.2. Scenario Description 29

to the network infrastructure. For example, service providers offer multimedia

services to their clients using their network infrastructure which employ optimal

Multicast routing protocols chosen in terms of the type of multicasted applica-

tions, but do not work well for other types of applications. These networks

remain isolated for other applications willing to Multicast since different PIM

protocols do not understand each other.

The result, no global Multicast service is available on the Internet. Unfor-

tunately, Multicast is not the only domain in which the coexistence of differ-

ent protocols in not entirely solved. In the context of mobile ad-hoc networks

(MANETs), different routing protocols have been proposed, but when it comes

to support heterogeneous MANETs, no common routing paradigm copes with

all the desired requirements. Our proposal in this chapter intends to avoid

precisely these types of failures in Delay and Disruption Tolerant Networking

scenarios.

3.2 Scenario Description

DTN research, as described in Chapter 2, tries to provide solutions to problems

where network partitions are created due to intermittent connectivity by using

the already-described store-carry-and-forward switching. We propose in this

study an enhanced version of this paradigm based on mobile code. In this

section we firstly introduce the different actors and functions involved in DTN

scenarios. Following this, a six-phase general case of protocol is described.

Application list. We define applist as a non empty set {app1, app2, ..., appn}
as the list of n applications present in a network scenario. Applications

mainly create messages which are sent over the network from a source to

a destination.

Custodian List. Let {c1, c2, ...cc} be the list of c nodes capable of temporally

store application messages, carry them and routing them to some other

custodian nodes.

Application messages. Let {messappi,1,messappi,2, ...,messappi,m, } be the

list ofmmessages an application appi sends over the network. Letmessagesc,

be the list of messages a custodian node c has at a given time.

30 Chapter 3. DTN Architecture proposal

Custodian Routing Information Tree (RIT). For every custodian node cc,

routing information may be stored locally in the custodian nodes. A RIT

may be defined as a root node, RITroot or t + 1 number of RIT trees

{RITlocal, RITapp1
, RITapp2

, ..., RITappt
} where t is the number of the dif-

ferent applications present in the network. These trees contain other RIT

trees or values for routing purposes.

Custodian Buffer Space. The amount of space a custodian node ci has avail-

able for application messages and routing information is defined as buff(ci).

Custodian movement model. Custodian nodes followmovement modelsmcj

which affect important network parameters such as connection window

time and encounter statistical distribution.

Application Custodian Code. Let codeapp,cj be a application code an appli-

cation app intends to execute on a custodian node cj .

Neighbour List. We define neighbourList(cj, t), as the list of p neighbours

{n1, n2, ...np} a custodian node c has at a given time t.

Routing function. Given an application message messapp,i, belonging to ap-

plication app, a custodian node cj , and its local RIT tree RITcj , let

frouting(messapp,i, neighbourList(cj, t), RITcj) be the function which re-

turns a subset of the neighbours of the custodian node cj which should

custody the application message.

In general, network protocols follow three traditional independent phases:

Data creation phase, routing and delivery phase. Besides the above-mentioned

store-carry-and-forward paradigm, we define the following communication paradigm

phases:

Data creation phase. We define data creation for application app as a process

in which application app creates m application messages messapp,i, i in

[0..m]. Application messages may be created as the result of application

programs or application custodian codes (codeapp,cj). The format of data

messages will be described in Section 3.3.

Store phase. Messages are stored in a custodian node cj using the buff (cj).

Since this space is limited, the routing problem can be considered as an

optimal resource allocation challenge.

3.2. Scenario Description 31

(a) Application message creation

phase. In this phase, application app

creates messapp,i.

(b) Store phase. Message messapp,i is
stored at buffer(custodianc) in custodian
custodianc.

Carry phase. Messages are carried from one place to another. Messages per-

form active carries, that is, carrying application app information from

custodian node to custodian node in terms of the function

frouting(messapp,i, neighbourList(cj, t), RITcj). Instead, a custodian node

if in motion, performs a passive carry when moving. In this case, there

is no software entity performing the transport itself. Instead, there is a

physical movement of the custodian node m(cc) who performs the carry

action.

Process phase. A custodian node cj may execute codeappi,cj on behalf of the

application app. For these purposes, custodian need to have execution

environments. This phase is equivalent to the process phase in the store-

carry-process-and-forward paradigm that will be explained in Chapter 6.

Forwarding phase. Given custodian node cj and application information mes-

sage messapp,i belonging to application app. This phase is equivalent to

the forward phase in the already defined store-carry-and-forward paradigm.

Message messapp,i is propagated in the network following the following

expression. Note that if forwardToList= ∅ it means that the message is

discarded.

forwardToList= frouting(messappi
, neighbourList(cj, t), RITcj), where

forwardToList ⊆ neighbourList(cj, t) ∪ cj

Delivery phase. Once a message messappa,i has arrived to its destination it is

passed to the destination application and removed from the last custodian

32 Chapter 3. DTN Architecture proposal

buffer (buff (cdestination)). Other copies of message messappa,i may be

present in the network in other custodian nodes.

(c) Carry phase. The Message follows
the custodian movement(custodianc) move-
ment model.

(d) Process phase. The custodian node cj
executes local code codeappa,cj on behalf of
application appa.

(e) Routing phase. The message is repli-
cated following its routing algorithm, which
in this example returns node2.

(f) Delivery phase. Message messappa,i
is freed from last custodian buffer (buff (cj))
and delivered to the application layer on cus-
todian cj .

We propose the idea of creating a network to allow different applications

coexist without leaving behind their optimal routing algorithms. Our proposal

is leaving this routing decision to the very same application. This will let the

different applications determine which routing algorithm to apply in every DTN

hop. In order to achieve this flexibility two options must be studied.

Firstly, a deployment of all of the possible routing protocols

frouting(messappa,i, neighbourList(cj, t), RITcj) in the different DTN custodian

nodes ({c1, c2, ..., cm}). This option presents some immediate disadvantages.

Routing algorithm deployment is expensive in challenged networks and it is not

3.3. Active Messages 33

guaranteed that this deployment of all the necessary frouting functions from

the different applications will arrive at every custodian node. Furthermore,

newcomer applications will need to make additional routing deployments.

Secondly, we could let the very same application message mess carry along

with itself the routing algorithm frouting(messappa,i, neighbourList(cj, t),

RITcj) and/or the application custodian code, codeappa,cj . Theses algorithms

must be able to be run in any custodian node. Mobile code is a good candidate

to implement a data-driven approach to DTN networks.

In some scenarios with limited storage space having replicated the same

routing algorithm code on every message belonging to the same application,

could be inefficient. Every time the active message is forwarded, besides message

data, the routing code must be sent to the destination platform. These static

codes can be cached on the different node execution environments, using as

described in [33], a global cache service to efficiently deal with the distribution

of agent codes. Caching these codes improves and speeds up message forwarding.

3.3 Active Messages

Messages containing application data, routing algorithms frouting(messappa,i,

neighbourList(cj, t), RITcj) and application codes codeappa,cj are called active

messages. In Figure 3.1 the four fields that define an active message are depicted.

These fields are:

• Delivery Information. In this field the source and destination addresses,

active message creation timestamp, and static lifetime is defined.

• Application Code. The application code codeapp,cj creates and manip-

ulates application data. This data may be created beyond the source

custodian node. Data belonging to an active message is reviewed every

time the application code is executed on a custodian node.

• Routing Code. Routing algorithm code frouting(appa) chooses from

the available neighbours the list of the potential information custodian

nodes. The routing code will be responsible for defining the path the

application data will take.

• Data payload. Application data created by the source application.

34 Chapter 3. DTN Architecture proposal

We propose a simple paradigm, depicted in Figure 3.2, in which the appli-

cation information is carried by the active messages. Active messages can be

seen therefore as a transmission medium, i.e., each active message is functionally

analogous, conceptually speaking, to a carrier pigeon, as in [96]. DTN custodian

nodes must include an execution environment which implements the DTN layer

that handles delays and disruptions. The application code creates or modifies

application data which is encapsulated inside the active messages. Active mes-

sages stay in the custodian nodes which accept their custody, until they are able

to be forwarded to another one or they arrive at their destination node. Cus-

todian nodes may employ different convergence layers (as defined in Chapter

2), the interfaces between the common Bundle Protocol and the specific inter

network protocol suites.

Figure 3.1: Active message fields: control information, routing algorithm and

data payload.

Figure 3.2: Active Message forwarding. Custodian Node A forwards an active

message containing some data, its routing code and an application code to

Custodian Node B.

3.4. General Protocol Architecture 35

3.4 General Protocol Architecture

Layering protocols is an excellent way to simplify networking designs by the

means of separating the latter into functional layers, and defining protocols to

delegate each layer’s task. In the context of network architectures based on

layers, every layer receives from the previous layer its protocol data unit. From

the moment of this reception, this protocol data unit becomes the service data

unit of the new layer, which upon adding a header from the new layer, a protocol

data unit of the new layer is obtained. Each layer interacts, mainly with its

neighbouring layers, across the interfaces between them. This mechanism is

called encapsulation and guarantees the layer principle in which different layers

are independent from one another. Traditional de facto standard protocols like

TCP/IP break this layer principle for practical reasons, letting some information

from one layer be employed by its following layer.

On the other hand, most of the network architectures propose uniqueness

when it comes to choosing their different protocols implemented by the different

layers. Information travelling on networks defined by these architectures permits

different protocols on the different layers, but on every hop, these protocols are

limited to the ones chosen by the layer’s code. For example, in the context of

IP communications, we understand that a datagram is routed on the basis of

the information gathered from a certain internal router protocol, such as RIP

or OSPF, but we would not see it as feasible that the datagram could choose

among these two mechanisms in order to be routed.

Layered protocols do not only imply just a separation of responsibilities.

Layers are placed one after the other, and define in which order things should

be done. In TCP/IP for example, routing algorithms are executed before the

translation of logical addresses into physical addresses while sending a datagram.

We propose simple DTN architecture which is based on layers but in a very

particular way. This architecture is fully compatible with the DTN proposals de-

fined by the Delay-Tolerant Networking Architecture [18] as it will be described

in Chapter 4. A layer based model, according to the definition explained in

this section, implies delegation of tasks, encapsulation, uniqueness, and should

define a sequence of actions.

In Figure 3.3 our DTN architecture is depicted. An application layer repre-

sent the different application which may employ the network. The DTN layer

handles problems such as addressing, routing, reliability and custody transfer,

36 Chapter 3. DTN Architecture proposal

congestion and security in a very similar way as in the Delay-Tolerant Network-

ing Architecture with a subtle difference. The DTN layer may be different for

every application. Issues such as routing, reliability and custody transfer, con-

gestion and flow control, security may be treated differently depending on the

application.

Figure 3.3: General network DTN architecture. The different levels in the DTN

layer represents the possibility of employing different routing protocols and dif-

ferent DTN behaviors. The different convergence layers provide communication

among intermediate nodes when they meet in an opportunistic manner.

3.5 General System Architecture

In this section, the different system architecture elements are described.

• RIT Manager. Routing information is classified into ontologies, which

represent the different domains from the different applications which may

coexist in a network. The RIT manager is responsible for the access and

3.5. General System Architecture 37

storage of this information, which can be created when nodes meet and ex-

change application information, or with the output from active messages

execution codes. The very same active messages may classify, modify, ac-

cess or remove information from the Routing Information Tree contacting

the RIT manager. Local nodes limit, remove, order, index or purge the

content of the RIT depending on their resource constraints. In Chapter 4,

the RIT manager will be explained in detail.

• Local Routing Information Generator. Local routing information

may be created by the local nodes for future use of routing algorithms. Al-

gorithms like PRoPHET [30], need local routing information which should

be updated every certain time and every time a node is contacted. The in-

formation created by the Local Routing Information Generator, is stored

in the RIT following a certain and well defined order in order to allow

active messages to find the necessary information for its routing decisions.

In Chapter 4, the creation of this information will be explained.

• Network Abstraction. A module called Network Abstraction is defined

to permit local nodes interact with different heterogeneous networks. Basic

primitives, send, receive and neighbour discovery are available to the nodes.

The primitives send and receive allow transmitting and receiving bundles

of information among nodes which can be of three different types:

– Active messages. As introduced in Section 3.3, These are messages

containing application data. The content of these messages include

application data, application code and routing code.

– Beacon messages. Beacons are sent at certain intervals of time to

allow neighbours to be discovered. These messages contain a node

identification using Universal Resource Identifiers (URI’s) as defined

in [9]. Along with the node identifier, basic information that describes

the node may also be included in the beacon messages. Which infor-

mation from the different fields in the RIT should be announced is

not a trivial issue. In order to be flexible enough, we allow the very

same application messages flag the desired RIT fields among the RIT

application branch to be announced.

• Scheduling and Forwarding Manager. Two queues for incoming and

outgoing active messages are managed by the Scheduling and Forwarding

38 Chapter 3. DTN Architecture proposal

Manager. A prioritised scheduler manages which active messages should

be forwarded and accepted first and for discarding purposes. The way

these priorities are broadcasted will be discussed in Chapter 4. For or-

dering or discarding active messages, we will also consider information

from other layers, like the application layer. Other proposals for ordering

DTN just take into account information from the DTN layer. We believe

information from the DTN layer is important, but information from the

application layer is crucial to distinguish which are important messages

and which are not. More information on how messages are scheduled can

be found in Chapter 4.

Figure 3.4: The elements that form the DTN proposed system architecture.

• Pool of Forwarding Messages: Active messages are accepted by the

local nodes in the Pool of Forwarding Messages following the Delay and

Disruption paradigm store-carry-and-forward. Storage reserved for these

purposes is a key issue in opportunistic networks. Routing algorithms

must prevent from making epidemic decisions which may flood buffers

containing the pool of messages.

• Routing and Application Code Execution Environment: As al-

ready explained, active messages contain code for routing and application

3.6. Security Considerations 39

behavior purposes. In order to execute this code, an execution environ-

ment must be included on every DTN node of the network. In Chapter 4,

the code execution environment is explained in detail. Two examples of

execution environments to be used in DTN scenarios are presented.

3.6 Security Considerations

We are aware that security is a very important issue. While designing our

architecture security has been fully taken into account. Even if in this thesis is

not directly covered, in this section we want to enumerate the list of security

considerations which should be studied. These mechanisms must guarantee the

following properties:

Data confidentiality. The confidentiality of the data provided by the applica-

tion sources and sent to the destination nodes must be warrantied, other-

wise an attacker could perform some malevolent actions in order to eaves-

drop on this information.

Data authenticity. Authenticity is vital to avoid any sending or injection of

false information destined for a DTN node. It is also important to remark

that this authenticity should not be linked to the identity of the node that

generated the information.

Data integrity. The integrity is crucial to permit the detection of a state where

a compromised node has modified the data which comes from the applica-

tion sources, or the data which it forwards to another node in a routing

process.

Since the active messages are one of the pillars of our proposal, and since their

code can influence the movement and the behaviour of a node, it is important

to protect it to avoid undesirable circumstances. In this case, we consider the

following security properties as the most appropriate.

Code confidentiality. The confidentiality of the code is a desirable property

to avoid outside attacks, which can include eavesdropping on the radio

channel, the goal of which is to profile the kind of information that an

application is gathering, and the procedure used to obtain it. Although

this requirement can be desirable in some cases, this is not a mandatory

property and it depends on every particular application.

40 Chapter 3. DTN Architecture proposal

Code integrity. The authenticity of the code of an active message must be

warrantied in order to avoid an illegitimate active message code being

executed in a node. Otherwise, an insider or outside attack could inject a

malicious active message with the purpose of compromising the security

of the infrastructure.

Node identification. Since the custody of a message is delegated to DTN

nodes, the correct identification of a node is a very important issue. A

security mechanism should be defined to avoid an illegitimate DTN node

to impersonate a legitimate one.

Key management. In the case symmetric or asymmetric keys are employed

in the security mechanisms proposed in this section, a key management

protocols should be defined. Issues like revocations lists deployment are

complicate tasks in intermittently connected scenarios.

One of the most important aspects of our proposal is the use of the active

messages as a way of routing the code that must be used to take the measure-

ments. This can be done by using active messages and by sharing contextual

routing information between the nodes. Thus, it seems evident that security

must be present in the routing procedures. We impose the following minimum

requirements to guarantee the security of the routing:

Routing data authenticity. The authenticity of the contextual routing data

shared by nodes must be preserved in order to avoid that any outside

attacker injecting incorrect information. This property can also be seen

as a way to deter any potential outside attacker, since they cannot provide

this property. It is clear that this requirement does not allow us to detect

any malevolent data injected by an inside attacker.

Routing data integrity. Integrity must be preserved with the aim of avoiding

an attacker modifying the routing data, as this change is not detected by

its receiver. Again, this property cannot be preserved in the case of an

inside attack, but it is also one way to dissuade any potential outside

attackers.

Active messages forwarding non-repudiability. The non-repudiability prop-

erty in the process of an active message forwarding must be warrantied

from the source and the destination perspective. This is usually known

3.6. Security Considerations 41

as strong fairness, and allow us to detect when a compromised node has

completed a malicious action from the perspective of the routing of the

active messages. For this purpose, all the non-repudiability evidence must

be correlated to detect when an inside attack has performed a malicious

behaviour. This correlation must be done in places considered points of

trust.

“Most of life is offline, and I think it always will be; eating and aching
and sleeping and loving happen in the body. But it’s not impossible to
imagine losing my appetite for those things; they aren’t always easy,
and they take so much time. In twenty years I’d be interviewing air
and water and heat just to remember they mattered.”, It Chooses You

Miranda July

“Life is not like water. Things in life don’t necessarily flow over the
shortest possible route.”, 1Q84

Haruki Murakami

4
Architecture Reifications

F
OLLOWING THE ARCHITECTURE proposed in Chapter 3, in this

chapter the concept of active messages will be reified. The objective

of this chapter is to make the abstract concept of active message more

concrete in order to be able to implement it and apply it in concrete scenarios.

These concretizations are called all over the thesis reifications, which comes from

the Latin words res (thing) and facere (to make). In this chapter we propose

to treat the abstract Active Message as if it had concrete or material existence.

The first reification, described in Section 4.1, is based on mobile agents.

The Jade [6] architecture with a mobility add-on called IPMS is described in

[32] is presented. The different changes applied to this software to allow DTN

applications to use it will be described. Additionally, a dynamic prioritised

queue for messages will be described. In Chapter 5, an example of this reification

will be described.

The second reification is based on a multi agent platform, Mobile-C [26], and

will be described in Section 4.2. An example of this reification in the context of

Grid Computing [11, 46] will be described.

A third reification is presented in Section 4.3 based on the Bundle Protocol

43

44 Chapter 4. Architecture Reifications

[84]. In Chapter 7, an example of this reification is presented in the context of

emergency scenarios.

4.1 A Mobile Agent-Based Architecture Reifica-

tion

In this section a first implementation for the architecture proposed in Chapter

3 is described.

The first attempt for an implementation of the active messages and the ar-

chitecture presented in Chapter 3 was a mobile agent-based approach. Mobile

agents are software entities capable of migrating with their code, along with

their data and state, from machine to machine and resume their execution on

the destination machine. As described in Chapter 2, mobile agents are very

useful when the studied scenario is geographically distributed, the environment

is dynamic and interaction among the scenario software entities helps with prob-

lem solving. We propose letting the mobile agents carry the application data

and migrate from DTN node to DTN node until the final destination is reached.

The entities on which mobile agents run are usually called platforms, agencies or

sometimes just execution environments and should be installed on every DTN

node.

Figure 4.1: Mobile agent migration. A mobile agent migrates from one mobile

agent middleware with its state, code and data, to another mobile agent middle-

ware. FIPA-ACL messages are designed to contain all data necessary for agent

communication.

A Java implementation based on Jade [6] with a mobility add-on called IPMS

described in [32] was a first attempt to provide a real practice of the proposed

4.1. A Mobile Agent-Based Architecture Reification 45

DTN model. IPMS is a mobile agent environment which provides platform-to-

platform mobility for Jade agents. The benefit of using this environment is that

there is no centralised point which manages every agent migration. DTN nodes

must be independent enough to ensure flexibility; so this approach suits the

architecture introduced in Chapter 3 well.

Figure 4.2: A mobile agent Java Jade-based architecture. The IPMS service

allows the inter-mobility of mobile agents. The Agent Mobility Manage handles

mobile agent migrations.

The IPMS add-on manages a list of agents which are ready to migrate. This

list follows a FIFO criteria on agent releasing. We have modified the IPMS

add-on to include a priority value in the agent list. In order to achieve this, one

of the behaviours belonging to the agent in charge of the migrations is changed.

This priority can be either specified by the mobile agent or calculated by the

platform before the agent is pushed into the agent list. The agent’s variables

are the input data to calculate the agent’s priority plus the local context. The

algorithm can be updated instead by the agents themselves at any given point

and it can be different from one DTN node to another.

In every custodian node a structure is added to calculate agents priorities.

This structure is depicted in Figure 4.3. The reader can see this structure as a

routing information tree in which agents themselves are able to read and write

in order to keep it updated. The list of expressions to calculate the agent’s

priorities differs from application domain to application domain. As depicted

in Figure 4.3, we separate the different ontologies, that is, application domains,

46 Chapter 4. Architecture Reifications

Figure 4.3: Example of a Routing Information Tree ontology structure. The

information needed to make routing decisions is ordered in a tree-like structure.

Different applications read and write from different branches of the tree. Local

information is store as well under the local branch.

that can coexist. Expressions belonging to the emergency scenarios agents are

under a different branch from those belonging to air field scenarios. Agents

easily access this shared structure by following the ontology tree, in order to

retrieve the corresponding expression. As presented in Chapter 3, this structure

is called Routing Information Tree (RIT).

The agent mobility manager, that is, the agent which handles agents platform

migration and immigration (amm agent), creates the list of agents prepared to

migrate and their corresponding priority. These priorities are calculated using

the RIT structure and the mobile agent’s matching variables which can be part

of RIT expressions under their ontology. For example, in the case of emergency

scenarios proposed in this section, as seen in Figure 4.3, priorities from mobile

agents belonging to Emergency scenarios ontology are calculated in terms of the

victim state. Nevertheless, this function, as explained in Chapter 3, can vary

on time as it is updated by the mobile agents themselves.

The algorithm to describe how the application code behaves is described in

Algorithm 1. In Algorithm 2, the code executed by the amm agent is described.

In Chapter 5, an application example of this Active Message reification will

be explained in detail.

4.2. A Mobile Code Reification 47

Figure 4.4: JADE implementation. The classes which are modified in the IPM-

S/Jade platform mobile agent implementation are depicted. This includes a

RIT implementation and a prioritised scheduler.

4.2 Using Mobile Agents as Data and Code

Containers

In order to improve the performance of our proposal in certain scenarios, a

second implementation of the architecture proposed in Chapter 3 has been con-

ducted. For these purposes, a generic and multi-platform solution which pro-

vides with mobile code and data transport has been searched. Among the differ-

ent available mobile code execution environment solutions, we have decided to

use Mobile-C, a FIPA complaint multi-agent platform for mobile C/C++ codes.

The benefits in comparison to other mobile code execution environment plat-

forms like Jade (see Section 4.1) based on JDK1.4 are mainly achieved through

the reduction in memory consumption, moreover, in general terms, the impact

on system resources is very small.

48 Chapter 4. Architecture Reifications

Algorithm 1: Application agent code. This code needs to be included in the

mobile agent to perform the migration action.

Behaviour: AgentMigration

1: function action()

2: //Agent migrates to an available platform

3: myAgent.doMove(nextHopApplicationLayer);

4: end function

Mobile-C uses an embeddable C/C++ interpreter called Ch described in

[26], to support the execution of C/C++ mobile codes. This interpreter should

be included in every platform running on every DTN node. Besides, a library

is provided with an easy-to-program API which facilitates the development of

multi-agent systems making it very easy to interface with a large variety of

hardware devices.

Once application data is created, active messages travel from DTN node to

DTN node, carrying data heading the application data destination. Platforms

custody active messages until another DTN node becomes available for forward-

ing. The very same active message chooses its DTN node path when a new

platform becomes available by executing the MC AddActiveMessage() method,

as described in Algorithm 2.

The main difference between the previous reification based on mobile agents

and this one lies in the use of the mobile agents themselves. While the previous

approach the mobile agent may have different behaviours which implement the

different tasks an application delegates to the agent, in this new approach the

mobile agents are employed just as mobile and data containers. The function-

ality is reduced to specific functions which are launched by the local platform

code.

We have modified the Mobile-C platform code to allow having different well-

known methods which can be invoked for different purposes such as the routing

decision, task processing, etc. For example, in Algorithm 3 an epidemic version

of the route function is described. Additionally, this function is invoked by the

local platform to let the active message choose among the available platforms,

as seen in Algorithm 4.

In order to centralise the structure of Mobile-C and make it similar to the

one used in JADE, agencies can be started with or without the support to

4.2. A Mobile Code Reification 49

Algorithm 2: Active message code. Active message is prepared, started and

processed.

1: activemessage = MC ComposeActiveMessageFromFile(

2: ”activemessage1”, /* Name */

3: ”localhost:5050”, /* Home */

4: ”IEL”, /* Owner */

5: ”activemessagecode.c”, /* Filename */

6: NULL, /* NULL for no return */

7: ”nextHopApplicationLayer:5051”, /* Server */

8: 0); /* no persistence. */

9: /* Add the routing code to the active message */

10: MC ActiveMessageAddRoutingCodeFromFile(activemessage,

11: ”routing code.c”);

12: /* Add the active message to the platform to start it */

13: MC AddActiveMessage(platform, activemessage);

14: MC MainLoop(agency);

15: MC End(agency);

Algorithm 3: Active message routing code. Epidemic example. The message is

replicated on every neighbour node found.

Behaviour: neighbours

Output: ∅
1: function route()

2: for node in neighbours do

3: mc SetActiveMessageNextHop(mc current activemessage,

4: ”node:5050”);

5: end for

6: end function

Neighbour Discovery. The idea is to start one principal agency with support to

Neighbour Discovery and make use of the secondary agencies without support

to Neighbour Discovery only to launch the agents. Agent’s routing code should

be programmed in order to make first a jump to the principal agency, and

then, continue its routing (or execution) as normally. Enable or disable that

support to Neighbour Discovery involves using the enable discovery flag of the

50 Chapter 4. Architecture Reifications

Algorithm 4: Local platform code. The route function is called by the local

platform for every active message.

1: // During the creation of the migration message

2: if activemessage-> datastate->is routable == 1 then

3: destination=Ch CallFuncByName(

4: *activemessage->activemessage interp, ”route”, NULL);

5: end if

MCAgencyOptions t struct. By default, that flags has value 0 (disable).

The platform keeps the queue of the mobile agents which are waiting to mi-

grate. As seen in line 2 in Algorithm 5, the amm agent checks whether the first

agent in this list queue implements a concrete class called RoutableAgent. If it

does, this means that the platform is able to execute a given method called nex-

tHop, formally represented as frouting(messapp,i, neighbourList(cj, t), RITcj).

It receives as arguments the list of neighbours, its application layer next hop and

the shared infrastructure or Routing Information Tree and returns the platform

the mobile agent would like to migrate to. While executing this method the

agent is not woken up. A mobile agent could eventually return none, then as

seen in line 9, the mobile agent is punished as described before. However, not

all the scenarios are appropriate for punishing mobile agents. This decision will

depend on the different applications. By using a configurable punish criteria in

the platform code we help different application scenarios to coexist.

As seen in Figure 4.5, we have to differentiate among two different levels

while defining the nextHop. From the application layer point of view, there is

just a NextHop Application Layer, that is, the final destination for the mobile

agent. From the DTN/mobile agent layer point of view, there are several neigh-

bours running mobile agent platforms, which are not the final destination for the

application layer. The mobile agent nextHop method chooses among all of them

to define which will be its Neighbour Immediate Nexthop. This Neighbour Im-

mediate Nexthop is an agent platform in which the mobile agent will not execute

any code but its nextHop method, jumping from Neighbour Immediate Nexthop

to Neighbour Immediate Nexthop until it reaches its NextHop Application Layer.

In Chapter 6, an application example of this Active Message reification will

be explained in detail.

4.2. A Mobile Code Reification 51

Algorithm 5: The mobile agent mobility manager code. In this code the agents

are selected in terms of their priorities and forwarded in terms of their routing

codes.

Behaviour: AgentRouting

1: function action()

2: //See if agent implements the RoutableAgent agent

3: if firstagent implements RoutableAgent then

4: //amm selects best agent in terms of priority

5: nexthop = firstagent.nextHop(neighbours,

6: nextHopApplicationLayer,RIT);

7: else

8: if nextHopApplicationLayer in neighbours then

9: firstagent.doMove(nextHopApplicationLayer)

10: else

11: if nextHopApplicationLayer == none then

12: decrease priority(firstagent)

13: else

14: firstagent.doMove(neighbours.any())

15: end if

16: end if

17: end if

18: end function

52 Chapter 4. Architecture Reifications

Figure 4.5: A mobile agent differentiates among two migration levels: NextHop

Application Layer and Neighbour Immediate Nexthop.

4.3 Bundle Code Blocks Reification

In this section we integrate our DTN architecture proposal described in Chapter

3 with the DTNRG DTN architecture [18]. Various bundle extensions to allow

bundles to carry mobile code for routing improvement purposes are presented.

Our proposal is based on the novel idea of moving the routing algorithm from

the host to the bundle. We introduce five types of code blocks that may be

optionally included in a bundle.

For information storing purposes, a local custodian information structure in

which the following-described bundle codes may read from or write to is defined

for the common use of the extensions. This information is ordered following a

tree structure similar to the Standard Management Information Base (MIB) [71],

but in a more simple way. DTN information is written down under the ”/dtn/”

path and every node of the tree is separated by the ”/” symbol. For example in

”/dtn/local/position”, the current position of the custodian node may be found.

Relatives paths, such as ”./local/position” are also valid paths. Bundle routing

algorithms may use basic primitives such as get, put and search to access the

local information data structure.

Firstly, we propose a bundle extension to allow the bundle to carry the

routing code which selects among the local custodian node neighbours the ones

where the bundle should be forwarded to. This code will be referred to as

Bundle Routing Code. Traditional DTN implementations keep this code

4.3. Bundle Code Blocks Reification 53

local within the custodian node, as in the Bundle Protocol, or at least, allow

the DTN information to choose among a limited list of routing codes, as in

Haggle [83]. In our proposal, the bundle itself is able to carry its own routing

code, thus providing routing flexibility.

Secondly, some bundle routing codes need special code to be regularly exe-

cuted on every custodian node in order to create or update certain information

which will be used in the future by the very same bundle routing code. For

example, probabilistic routing algorithms like PRoPHET [30], execute code on

every custodian node in order to update the probability of finding a certain

custodian node every time this node is contacted. Besides, these probabilities

are automatically decreased based on a preset utility reduction method. This

code will be referenced to as Custodian Routing Code.

Additionally, bundles may leave information stored in the custodian node

RIT so future bundles belonging to the same application visiting the same cus-

todian nodes may employ this information for routing decision purposes. The

code which updates this guiding information, may travel with the bundle itself.

This allows the applications to have a general-purpose way of communicating

among the different bundles belonging to the same application. This code will

be referenced to as RIT Update Bundle Code.

Bundles may carry another code to update the way the bundles are priori-

tised. Bundle prioritization, besides being something innovative, is a very useful

way of avoiding important bundles from being blocked by other less important

bundles. This may be very useful when bundles belonging to an application

flow have different priorities. However, the criteria for bundle prioritization

could eventually change and using an extension which carries these criteria may

be very useful for that purpose. This code will be referred to in the following

sections as Priority Bundle Code.

Finally, a lifetime control code may be carried by the bundle in order to

improve congestion. Bundles, like IP datagrams, include a time-to-live field to

control the time at which the bundle’s payload will no longer be useful. In

the DTN architecture definition (see [18]), it is mentioned the necessity of a

way to express the useful lifetime of data to allow the network to better deliver

data in serving the needs of applications. Beyond IP’s time-to-live and DTN

bundle lifetime field, we propose using complex code expressions based on the

local context or application wills, to be carried by the bundle for the same

purposes. This code will be referred to as Bundle Lifetime Control Code

in the following sections.

54 Chapter 4. Architecture Reifications

BlockType Code

BundleRoutingBlock (BRCB) 0x10

CustodianRoutingBlock (CRCB) 0x11

BundleUpdateBlock (BUB) 0x12

BundleControlBlock (BCB) 0x13

ApplicationPriorityBlock (APB) 0x14

Table 4.1: Blocks Code Type Codes allocated in this proposal.

In the sections that follow, several bundle code extension blocks are defined

to allow bundles to carry the above-mentioned codes.

4.3.1 Common Extension Fields

Every bundle code extension has a group of common fields which will now be

described. This fields are depicted in Figure 4.6.

Block-type code (one byte) This proposal uses two code-points from the ex-

isting Bundle Block Types registry defined in [7]. Different code blocks will

have different block-type codes, starting from the first available according

to [7]. Our proposal allocates block type codepoints from 0x10 to 0x14.

Block processing control flags (non-fixed length field). Encoded in Self-

Delimiting Numeric Values (SDNV) format as defined in [84], this field

follows the bundle definition described in the Bundle Protocol. These bits

are defined as the following:

• Bit 0. The block must be replicated in every fragment. Fragments

will be treated the same way as the original bundle.

• Bit 1. Transmit status report if the block can’t be processed. Ap-

plications may be informed if the code blocks are not processed.

• Bit 2. Delete the bundle if the block cannot be processed. Code

block extensions are added to help the bundle to be routed. If the

code cannot be processed the bundle agent (an agent in charge of

handling the bundles) will delete this bundle if this bit is set.

• Bit 3. Last block. This bit is set if the extension block is the last

block of the bundle.

4.3. Bundle Code Blocks Reification 55

• Bit 4. Discard the block if it cannot be processed.

• Bit 5. The block was forwarded without being processed. The block

can be marked as not processed if the bundle agent is not able to

process it.

• Bit 6. The block contains an EID-reference field. The bundle exten-

sion may include a reference to an EID contained in the bundle main

block.

EID-references This optional composite field contains references to endpoint

identifiers (EIDs). The 6th bit from the block processing control flags, the

“Block contains an EID-reference field” should be set. If no EID-references

are present, this field should remain empty. EID-references allow blocked

code extensions to be ignored or employed only in certain custodian nodes.

Block data length Expressed in SDNV format as defined in the Bundle

Protocol for every block except the primary bundle block.

Code Block-type-specific data fields include:

Code type. Encoded in SDNV format, this field is used to describe the type

of code included in the extension. In this code we may differentiate among

the possible code types which include the different executable formats and

linkables executable formats, as well as the different bytecode and source

code for the different programming languages. An example of the code for

this field could be Java bytecode coded as 100.

Version. Encoded in SDNV format this field is used to describe the version

of the code in this field. Different code types may not be compatible with

different versions. An example for this field could be Java bytecode version

1.5 which could be coded as 101.

Control bits. Encoded in SDNV format, different bits are included for differ-

ent purposes. These bits have the following purposes:

• Compression algorithm (C). If code compression is used this bit

is set.

• Reference/Value bit (R/V). Routing algorithms may be a source

code for the code method (bit set to 0) or a reference to the routing

56 Chapter 4. Architecture Reifications

information tree (RIT) (bit set). The RIT path will be indicated in

the RIT path field.

• Copy Routing code bit(CP). If set, this field indicates that the

content of the code block data field should be copied to the absolute

path indicated in the RIT path field.

• Custodian bit(CT). If set, code will only be executed if the node be-

longs to any of the endpoint identifiers present in the EID-references

list.

• Reserved. Additional fields may be defined for future use.

RIT path. Encoded in SDNV format, this field is used to indicate a RIT path

for copying or routing purposes.

Code Block data. This variable length field includes the code itself rep-

resented in the code type format, compressed or not, with the version

represented in the version field. If the Reference/Value bit is set to 0, the

content is the code itself. Otherwise, it defines the path inside the RIT

where the code should be found.

4.3.2 Bundle Routing Code Block

The block-type code field value must be 0x10. This code will be executed by the

bundle manager in order to choose among the different routing possibilities. The

code takes as arguments the list of neighbours and a reference to the routing

information tree (RIT). The code returns a subset of this list containing the

custodian nodes where the bundle should be forwarded to, as defined in the

following expression and introduced in Section 5.3.1:

forwardToList= frouting(messapp,i, neighbourList(cj, t), ritcj), where

forwardToList ⊆ neighbourList(cj, t) ∪ cj

The bundle agent keeps the queue of the bundles waiting to be forwarded. As

seen in line 2 in Algorithm 6, the bundle agent checks whether the first bundle in

this queue includes the Routing Code Extension. If it does, this means that the

bundle agent is able to execute a given method called nextHop which receives

as arguments the list of the custodian node neighbours, the bundle destination

4.3. Bundle Code Blocks Reification 57

Algorithm 6: Bundle Agent Code. The Bundle Agent selects the most prioritised

bundle and forwards it in terms of its routing code. If the bundle routing

code does not select any of the available neighbours, the bundle is punished by

decreasing its priority.

Input: bundleList,neighbours,RIT

Output: ∅
1: function routeBundles()

2: //check if bundle has “routing flag” set

3: if firstBundle.hasRoutingExtension() then

4: nextHopList = firstaBundle.nextHopList(

5: neighbours,destination,info);

6: else

7: if nextHopList.intersection(neighbours)!=emptyset then

8: forward(firstBundle,

9: nextHopList.intersection(neighbours))

10: else

11: if nextHop == none then

12: decrease priority(firstBundle)

13: else

14: forward(firstBundle,neighbours.any())

15: end if

16: end if

17: end if

18: return ∅
19: end function

58 Chapter 4. Architecture Reifications

Figure 4.6: DTN Bundle with code extension block fields detailed. Metadata

block is divided in several fields.

and a way of accessing the RIT and then it returns a list of custodian nodes the

bundle would like be forwarded to.

A bundle routing code could eventually return none, and then as seen in

line 10, the bundle is punished by decreasing its priority. However, not all the

scenarios are appropriate for punishing bundles. This decision will depend on

the different applications. By using a configurable punish criteria in the bundle

agent, we allow different application scenarios to coexist.

4.3.3 Custodian Routing Block

The block-type code field value must be 0x11. Using this code block, application-

defined codes may be installed in the custodian node. Additionally, a special

field for this block must be defined:

• Periodicity field. Encoded in SDNV format, this field indicates the code

execution frequency. The format of this field is analogous to the UNIX

cron expression.

4.3. Bundle Code Blocks Reification 59

An example of this field could be “0/2 * * * *”. In this case the routing

code will be executed every 2 minutes.

4.3.4 RIT Update Code Block

The block-type code value must be 0x12. Bundles carry code which update

the routing information tree (RIT) for future bundle references. The code is

executed once in every custodian node and contains write access to the RIT as

outlined in Algorithm 7.

Algorithm 7: Congestion Bundle Agent Code. The update method retrieves a

leave value from the local RIT tree. If this value is in a given range it creates a

bundle with an update extension to inform outer DTN nodes about this fact.

Input: RIT,bundle

Output: ∅
1: function update

2: value=RIT.get(“./local/myapp/ttr/value”)

3: if value ≤ 20 then

4: code=CreateCodeExtension(

5: “./local/myapp/ttr/value”,value)

6: createInfoBundle(code)

7: end if

8: return ∅
9: end function

In Algorithm 7, the update extension code checks if locally the counter TTR

(Time to Return) is about to expire. In this case it creates a bundle with an

extension defined in Algorithm 8. This bundle informs the neighbours that the

user is about to return to some central point so other bundles from the same

application may use this information for routing purposes.

4.3.5 Lifetime Control Code Block

The block-type code value must be 0x13. The code to evaluate the bundle

expiration may be included using the lifetime control code block. The function

may return 0 and in this case the bundle will not be discarded. For any other

value, the bundle is discarded. Further actions, such as bundle-informing the

60 Chapter 4. Architecture Reifications

Algorithm 8: Bundle update extension code. An example of an update block

extension created to inform that node0 has a low ./nodes/node0/myapp/ttr

value.

Input: RIT,bundle

Output: ∅
1: function update

2: //RIT update:

3: RIT.put(”./nodes/node0/myapp/ttr/value”,18)

4: return ∅
5: end function

source custodian node, may be taken before discarding the bundle. An example

of this code could be the following:

Algorithm 9: Lifetime Control Code Example. The message reads from the RIT

to find out whether a given task is finished. If it is, the message is considered

to be expired.

Input: bundle

Output: Bundle expiration: 0/Reason

1: function Lifetime control

2: if get(”./application/task/number/done”) then

3: bundleInform(bundle,BUNDLEEXPIRATION)

4: return BUNDLEEXPIRATION

5: else

6: return 0

7: end if

8: end function

4.3.6 Application Priority Code Block

The block-type code value must be 0x14. In order to allow bundles to be pri-

oritised by using dynamic criteria, bundles may carry these criteria along with

the bundles themselves using the application priority code block. An example

of this code may be found in Algorithm 10.

4.3. Bundle Code Blocks Reification 61

Algorithm 10: Priority Bundle Agent Code.

Input: bundle

Output: Bundle priority: [MINPRIORITY,MAXPRIORITY]

1: function Priority

2: //Fetch state and compare it with

3: //application

4: state = 2

5: if state == get(”./application/app/

6: prioritisedstate/value”) then

7: return MINPRIORITY

8: else

9: return MAXPRIORITY

10: end if

11: end function

In line 4 of Algorithm 10, the hard-coded variable state is statically defined in

the code in the very same moment of the code creation in the source DTN node.

This way, the code does not need to access payload information. The state

is compared with another value obtained from the RIT to return the bundle

priority. In order to modify this criterium the bundles may modify the RIT by

using the RIT Update Code Block.

4.3.7 Mobile Code Implementation Details

In order to implement our proposal the JAVA-PI generic [106] implementation of

the Bundle Protocol is used. It follows the Bundle Protocol Specification Version

4, available in the form of an Internet Draft 1. The Bundle Protocol specification

suggests four examples of implementation architectures, out of which our BP-RI

implements a Bundle Protocol Application Server architecture.

Several changes have been performed to implement the bundle code exten-

sions described. On the one hand, we have integrated in this bundle implemen-

tation the routing information tree. Basic primitives such as get, put, search

and delete are available to bundle codes to access the Routing Information Tree

(RIT).

1http://tools.ietf.org/id/draft-irtf-dtnrg-bundle-spec-04.txt

62 Chapter 4. Architecture Reifications

The RIT is structured into the different application domains that can coexist.

For example, information belonging to the emergency applications are included

under a different branch from those belonging to air field scenarios. Bundle’s

codes may access this shared structure by following the RIT, in order to retrieve

the required information.

Additionally, a generic and multi-platform solution is required in order to

execute mobile code. Among the different available mobile code execution en-

vironment solutions, we have used a C/C++ interpreter called Ch [26]. This

interpreter supports the execution of C/C++ mobile code. This interpreter

should be included in every Bundle agent running on every DTN node.

The bundle java BR-PI implementation manages the list of bundles ready

to be forwarded. This list follows a FIFO model on bundle releasing. We

have modified this implementation to include an application-based prioritised

scheduler for ordering the custodied bundles and discarding the expired ones

according to their lifetime control code extension. Our modified bundle agent

periodically updates the bundles priorities and performs purge functions in terms

of the lifetime control code described in Section 7.3.3.

Finally, we have changed the mentioned implementation in order to allow

the expiration of bundles to be optionally handled by the lifetime control code

described in Section 7.3.3.

In Chapter 7, an application example of this Active Message reification in

the context of emergency scenarios will be explained in detail.

Part III

Scenarios

“Being practical, and considering other network evolutions such as the

Internet, it would be much more useful to take advantage of such a physical

infrastructure, which would allow several applications to simultaneously use

the mobile nodes and their sensors in their own way.”

“Lighter computers and lighter sensors would let you have more func-
tion in a given weight, which is very important if you are launching
things into space, and you have to pay by the pound to put things
there.”

Ralph Merkle

“I can tell from the tone of your voice, Dave, that you’re upset. Why
don’t you take a stress pill and get some rest.” 2001: A Space Odyssey

Stanley Kubrick and Arthur C. Clark

5
DTN Wireless Active Sensor Networks

F
OLLOWING THE architecture proposed in Chapter 3 and its mobile

agent-based reification presented in Section 4.1, this chapter presents a

general purpose, multi-application mobile node sensor network based

on mobile code. This intelligent system can work in delay and disruption tol-

erant (DTN) scenarios. Mobile nodes host software mobile code with task mis-

sions and act as DTN routers following the store-carry-and-forward paradigm.

Most similar proposals are unable to simultaneously run different applications,

with different routing algorithms, movement models, and information retrieval

strategies. The keystone of the approach in this study is using mobile code at

two levels: for the application, and for the definition of the behavior in terms

of routing algorithms, movement policies and sensor retrieval preferences. The

intelligence of the system lies in its ability to adapt to the environment, dy-

namically optimizing routing algorithms using local and global information and

influencing node movement. Simulations and an implementation of a real sce-

nario have been undertaken to prove the feasibility and usability of the system,

and to study its performance.

65

66 Chapter 5. DTN Wireless Active Sensor Networks

5.1 Introduction

Using a network of mobile nodes as a generalization of robots for sensing pur-

poses is not a new idea at all. Many proposals have been described or envisaged,

hitherto making use of a troop of mobile devices equipped with a bunch of sen-

sors. Some of them even use the very same mobile node network to transmit the

acquired samples to a data sink. And yet, most of these systems are oriented to

just one application, and all critical mechanisms, such as message routing or the

physical movement pattern, are fitted with the specific actions and main goals

of that particular application.

Being practical, and considering other network evolutions such as the In-

ternet, it would be much more useful to take advantage of such a physical

infrastructure, which would allow several applications to simultaneously use the

mobile nodes and their sensors in their own way. The benefits are clear: a

general-purpose sensor mobile node network is easier when reusable, and it al-

lows new applications to be implemented after the mobile node network has

been deployed. Unfortunately, turning such systems into general-purpose, mul-

tiple application is not very easy. If several different applications coexist, which

is the best message routing algorithm for them all? If mobile nodes can alter

their pathways to adapt to some applications’ requirements, what if there is a

handful of applications striving against each other to make the node move under

their command? These and other issues have to be considered when designing,

and can be very hard to solve.

In this chapter, we propose a general-purpose sensing mobile node network,

addressing the previously stated questions and many other issues surrounding

the coexistence of applications and the routing of information. The rationale

behind this proposal is to have mobile code at two different levels. Firstly, as the

user application itself, which can move from mobile device to mobile device as it

suits the application best in order to accomplish its goals. And secondly, at the

message level, allowing the very same message to make the routing decision by

itself, and independently from other messages’ routing policies. The resulting

system happens to be a particular case of Wireless Sensor Network (WSN), i.e., a

network of autonomous sensors aimed at monitoring physical or environmental

conditions that pass their data through the network to certain locations or

data sinks [2], working as a DTN (Delay and Disruption Tolerant Networking

[41]. In a DTN, data can be sent between any two nodes of the network, even

when middle nodes cannot have concomitant communications. This is possible

5.1. Introduction 67

by following an asynchronous store, carry and forward paradigm. There is a

wide variety of data that can be acquired by means of sensors, ranging from

temperature, humidity, or noise levels, for example, to other higher level data

such as object or human recognition, movement pattern detection, or plague

detection; the DTN approach only broadens the scenarios of this particular

WSN, allowing a myriad of applications.

One could wonder why a DTN-based network would be better in this case

than a more traditional Ad-hoc, or while we are at it, MANET, network. The

main reason for this is the required density of nodes. A DTN approach, for

example, does not need a figure of nodes directly proportional to the sensing

area to guarantee the operation of the system. Likewise, the sensing area can

be extended or shrunken depending solely on the running applications. On

the contrary, communication range and sensing area determine the minimum

number of nodes to be used in Ad-hoc networks. Once an Ad-hoc network has

been deployed, it is very difficult to extend the sensing area without adding new

nodes.

The architecture and operation of this network is presented within the chap-

ter, which also provides details on how some issues have been resolved. For

instance, how population growth is controlled when cloning is considered, how

dynamic multi-routing is achieved, or how mobile messages can influence node

movement respectfully and fairly to other messages. Security has been consid-

ered, as well, analyzing the threats and requirements, and giving mechanisms

to protect mobile nodes.

The results are significant, and the overall performance of the system has

been found very reasonable. A number of simulations have been done, from

which some interesting outcomes have been drawn, such as a significant im-

provement in terms of message delivery ratio and latency. Furthermore, a suc-

cessful proof of concept has been undertaken using real physical mobile nodes

to check the feasibility of the proposal. The network has good potential for use

in a variety of applications such as underwater environment sensing, unmanned

aerial vehicle networks, environment applications, disaster field on emergency

scenarios such as earthquakes recovery or terrorist attacks, mines seeking, ur-

ban search missions, community development, machine surveillance, accurate

agriculture, biological attack reconnaissance and many others.

The original contributions of this study are: a general-purpose multi-application

mobile node sensor network based on mobile code, a dynamic multi-routing

schema for allowing different routing algorithms for different applications and

68 Chapter 5. DTN Wireless Active Sensor Networks

an application influenced movement model for minimizing node stagnation and

maximizing segregation.

5.2 State of the Art

There is a wide range of literature concerning Wireless Sensor Networks (WSN)

[2]. The large amount of publications revolve around the different WSN’s issues,

such as fault tolerance [51], scalability [16], sensor placement [52], caching [37]

power consumption [74], data aggregation [58] and data gathering [77], among

others.

A WSN can be also seen as a collection of different sensor nodes which coex-

ist in scenarios in which intermittent connectivity, asymmetric bandwidths, long

and variable latency and ambiguous mobility patterns can be present. There

are two main projects which actively study these scenarios, so-called delay and

disruption tolerant networks (DTN) [41]. The first one is the Delay Tolerant Net-

work Research group [107], which has defined an end-to-end protocol, abstract

service description for the exchange of what they call bundles [84]. These bun-

dles carry application information from one DTN custodian node to another.

The second project is Haggle [83]. Haggle defines a one-way communication

architecture and its main purpose is to take advantage of brief connection op-

portunities. Both projects have a common aim: to propose solutions to scenar-

ios in which network availability is intermittent or suffers from long delays by

message-switching and opportunity-oriented behaviors.

Among all of the different DTN issues, routing [30] is probably the most

challenging one. In this paper, we focus on dynamic and adaptive approaches

for the routing problem. There are interesting proposals like [93] which include

routing schemes to allow dynamic policies to choose from different routing pos-

sibilities. Authors of that proposal state, in concordance with this paper, that

no unique routing solution can sufficiently cater to the different communication

requirements. However, that kind of proposal is neither generic nor flexible

enough to be considered for general-purpose. In the concrete case of [93], it

relies solely on a three bit header which defines the different flow requirements.

DTN data mules, mobile elements which collect information from the differ-

ent DTN nodes acting as routers, can be useful in the context of wireless sensor

networks by collecting data from the different sensors as in [88]. These DTN

data mules can be implemented with robots, mobile nodes which can be ground

5.2. State of the Art 69

or aerial vehicles. Robots can be used, as well, in the same scenarios to provide

additional connectivity for disconnected networks, as in [22], where a null-space

algorithm for controlling robot movement is proposed. In [95], robots are used

as routers to provide communication in a wireless mesh network. They present

a system design which allows robots to cooperate to improve network through-

put. Another good example in the very same context is [54]: three interesting

schemes are proposed to coordinate mobile robots for the concrete scenario of

emergency rescue missions.

Sensor nodes can belong to different disconnected networks. While the pre-

vious described proposals accept disruptions as an idiosyncrasy of the problem,

other studies like [3] and [61] propose different ways of linking the various ex-

isting partitioned sensor networks. Although these proposals may be useful in

some situations, they are mainly based on adding infrastructure elements to the

network. Unfortunately, this is not always feasible due to the complexity added

to the system, the economical cost of the solution, or the difficulty in finding

the best location for the links. Furthermore, these proposals fail when it comes

to considering networks of mobile elements, such as in the examples provided in

this paper.

One possible way of facing the different issues around wireless sensor net-

works is by using mobile code to make, autonomously and in a context aware

fashion, some of the decisions regarding sensing and movement determinations.

Mobile code [47] is a well-known technology supporting precisely this. Active

messages are able to migrate from machine to machine and continue their exe-

cution on the destination machine. The entities on which active messages run

are called execution environments. There are not many publications on stud-

ies which use mobile code in the context of DTN scenarios and wireless sensor

networks. In [64], as commented in Chapter 2, a proposal is introduced. The

authors sketch the idea of using mobile code which would act as wrappers on

messages. Although they provide an interesting algorithmic approach, they

give neither details about an architecture nor an implementation. Moreover,

[39] presents an interesting modeling of the movement of active messages car-

rying application data from fragmented wireless sensor networks. Despite the

extremely detailed model proposed, no implementation and no description on

how to use it in a real case application is given.

There are very few studies using mobile code in DTN scenarios. In [11], the

authors of this paper propose a new paradigm, store-carry-process-and-forward,

based on mobile code to improve the integration of wireless sensor networks

70 Chapter 5. DTN Wireless Active Sensor Networks

and grid computing infrastructures. They describe the implementation of a de-

lay tolerant grid service, the computer element, to give computing access to an

intermittently connected wireless sensor network. The result is an intelligent sys-

tem which takes the routing problem, adapts itself dynamically to intermittent

disconnections and improves the coexistence of multiple grid applications.

There are interesting publications like [73], which use active messages to

sense information in mobile wireless sensor networks in the context of surveil-

lance systems. Basic primitives for active messages missions are restricted to

combing instructions in specific areas, while other useful ones, such as search

missions, are not considered. Routing decisions for active message forwarding

are evaluated in terms of geographical information solely, while other useful

information such as congestion, aggregation, movement models, or code persua-

sion are not taken into account. Data messages remain with the active message

until it reaches a sink point, so there is no distinction between how the data

messages travel and how the active messages do, which may be inefficient in

some scenarios. As a result, active message missions are tightly coupled to mo-

bile nodes, and regions with high concentrations of nodes are created. In order

to avoid this, complex mechanisms must be implemented.

Even though there has been considerable ongoing work on WSN and DTN,

as it has just been shown in this section, there is not yet a mobile sensor network

flexible enough to fit any scenario, including those lacking continuous connec-

tivity, and allowing to sharing the network with other applications. The next

sections describe, discuss and reify precisely a system overcoming these limita-

tions.

5.3 Proposal Description

As seen in the previous section, there is a wide range of different proposals

to implement wireless sensor networks (WSN). Several issues must be taken

into account to provide a general-purpose, multi-application, mobile node based

WSN. These issues include sensor placement, sensor code deployment, sensing

actions, sensor updating, task scheduling, routing, routing algorithms deploy-

ment, defining movement models, speed control, obstacle avoidance algorithms,

energy saving strategies, data fusion/merging/overlap, data division, scheduling

and dropping and finally, data processing.

In our proposal to implement a WSN, active messages play an important

5.3. Proposal Description 71

role in developing these tasks. As described in Chapter 5.3.1, active messages

are messages which, besides data, also carry code. We describe in this section

the benefits of using active messages, which are executed on mobile nodes to

obtain a general-purpose wireless sensor network. In addition to an architectural

description, we explain interesting issues to be studied, as well as the limitations

of our proposal.

5.3.1 Architecture

In figure 5.1, the architecture of our proposal is depicted. On one hand, we use

mobile nodes which define a delay and tolerant network (DTN) by means of

exploiting mobile node opportunistic or scheduled contacts. Simultaneously, on

the other hand, this network is employed by active messages which are respon-

sible for sensoring tasks. Every mobile node carries a smart device which runs

an execution environment for running active messages.

Data obtained from sensing tasks may travel along with the active message as

part of its data until the active message reaches a sink node. However, as shown

in Figure 5.1, once data is created it can also become independent from the active

message that created it. Consequently, data delivery can be considered from

the traditional point of view already studied in the bibliography, as explained in

Section 5.2. It has one particularity, however: the communication paradigm in

this case follows a many to one, or many to few model where a small group of

sink nodes represent the destination nodes. In our scenario, the deployed mobile

nodes act as DTN routers, using algorithms which can be found locally in the

mobile node and follow mobility models, as explained in Section 5.3.5. Section

5.3.3 describes how these routing algorithms can be updated by the very same

active messages.

Figure 5.2 shows how the different actors involved in the proposal interact

with each other. In section 5.4, specific technical details will be described. These

actors are:

• Mobile nodes, robots in our proposal, carry smart devices which control

sensor devices. They are capable of staying in the sensed zone for a given

time and are able to come back to the charging stations when batteries

start to run out of power.

• Active messages are software entities responsible for sensing tasks. They

72 Chapter 5. DTN Wireless Active Sensor Networks

Figure 5.1: A System Architecture for DTN mobile code-based WSN.

are capable of migrating from mobile node to mobile node in order to fulfill

tasks requested by users.

• Execution environments. Active messages need execution environ-

ments for running, which themselves run on smart devices. They are

responsible for negotiating movement model changes as described in Sec-

tion 5.3.5.

• Code execution environment managers are software entities which

remain on the code execution environments. They behave as intermedi-

ary actors between hardware sensors and active messages. They are also

responsible for negotiating movement model changes.

• Data messages. Once sensing actions are performed, data is acquired.

This data has as a destination the sink nodes, responsible for the data

processing. Data messages do not travel inside active messages. They are

independent pieces of information that travel from mobile node to mobile

node having the sink nodes as destination.

5.3. Proposal Description 73

• Sink nodes are destination nodes for WSN. These nodes are normally

stationary and are plugged, connected and located outside the sensed zone.

Figure 5.2: General Scenario. Active messages travel from DTN node to DTN

node creating data messages which are sent to the Sink Nodes.

5.3.2 Primitive Services Types and Task Delegation

From the point of view of the user, we have identified three different potential

uses for employing the network. On one hand, the user would like to search for

a given pattern in a given zone in the studied area. On the other hand, the

user would also like to perform a sensor comb of a chosen area. Finally, the

user would like to arrive at a given point in the studied area and perform some

type of unique concrete sensing. We distinguish these three types of behaviors

because it will affect the way active messages will be created, how they will

migrate, how they will be reproduced and their communication.

Searching active messages are source-cloned when created. This is to say

that the number of copies of the message is decided before entering the affected

area. Source cloning minimises communication among mobile nodes and active

messages. Other proposals noted in Section 5.2 include active message migration

at any given point of the studied area. However, population control is a complex

issue for solving, due to its high communication requirements. Therefore, since

mobile nodes suffer from limited communication and energy constraints, we see

in source cloning a good solution for the population control problem.

74 Chapter 5. DTN Wireless Active Sensor Networks

A second service includes the types of tasks, the aim of which is to comb

a given area for different sensing purposes. In this case, the active message

must first approach the selected area. Once it has arrived at the selected area,

the active message can then clone itself into other active messages. Control of

the population is guaranteed, since clones cannot live outside the given area.

This is what we call floating cloning, following a similar idea in the context of

network-based social applications found in [72]. One delicate issue is that of the

size of the area, that it not be large, so as to prevent the appearance of highly

concentrated regions. This problem will be further discussed in Section 5.3.5

and simulated in Section 5.4.

Finally, we consider the situation in which an application wants to go to a

specific place and for concrete sensing. In this case, there is no need to do any

source cloning or floating cloning.

Applications, however, may want to define composite tasks containing dif-

ferent service types. For example, an application may want to define a search

behavior in which once the active message finds its target, it can comb the sur-

roundings for additional information. We distinguish then, among behaviors.

That is, which of the three different service types the active message is following

and also the tasks, the high-level instructions defined by the users.

5.3.3 Dynamic Multi-Routing

In our proposal we have to differentiate among two types of routing. On one

hand, active messages jump from node to node, in order to physically arrive at

different points of interest to perform their tasks. This action can be considered

a routing decision, in the sense that the active message makes a decision among

the potential neighbours, considering, as well, the possibility of staying in the

current node.

We see this routing as part of the active message model, that is, a complex

composite movement model made up of the list of all the n different mobile

nodes the active message migrates to, as described in:

movementagent = [mc0 , mc1 , ..., mcn]

On the other hand, sensor data retrieved by the active messages travels

heading towards the sink nodes by jumping from mobile to mobile node. In

scenarios in which different applications coexist, a single routing algorithm may

not be enough to handle all of the applications’ needs. This is why routing

5.3. Proposal Description 75

algorithms must take into account information from the application layer, as

well.

This leads us to the necessity of having different routing algorithms on the

mobile nodes for data routing purposes. Stored locally on the mobile nodes,

the routing algorithms are chosen depending on the application. Given an ap-

plication message mess, and application app, a local custodian node cj and its

Routing Information Tree (RITcj). This other routing can be expressed as:

forwardToList= flocalrouting(messappi
, neighbourList(cj, t), RITcj), where

forwardToList ⊆ neighbourList(cj, t) ∪ cj

That is, routing decisions are made, taking into account the list of the current

neighbours and the context information.

There are many proposals which define very efficient solutions for the routing

problem in DTN networks for very different DTN scenarios. However, not all

applications employing the same WSN need their data to be routed in the

same way. A single routing algorithm may not work for various applications.

The aim of our approach is not just to improve transmission time, but also

to provide a flexible and generic DTN network capable of handling different

routing behaviors. The routing algorithms are easily deployed on the different

mobile nodes by using the very same active message. Coexistence of different

applications willing to use different routing algorithms cannot be easily deployed

with other classic DTN proposals such as bundle protocol-based or Haggle-based

ones. In section 5.4, some results concerning the dynamic deployment of routing

algorithms are presented.

An illustrative example of the need for different routing algorithms in a sin-

gle DTN scenario may be found in emergency rescue coordination applications.

In disaster areas, different users such as policemen, firemen, doctors, nurses,

engineers or rescue teams, among others, along with portable devices such as

mobile phones or tablets, may share and use the interconnected network with

a mobile robot wireless sensor network. Different applications such as victim

location, notification applications, fire coordination and pollution measurement

or radiation location may need different ways of information routing, scheduling,

dropping or aggregating. For example, information that contains a notification

to a given user or mobile node may be optimally routed using a probabilistic

routing algorithm such as Prophet [30]. Alternately, routing decisions for infor-

mation resulting from sensor tasks may depend on the level of importance of

76 Chapter 5. DTN Wireless Active Sensor Networks

the information seen from the point of view of the application. If the informa-

tion is important an epidemic routing algorithm will be used. Instead, it can

be discarded if the information is obsoleted by some other present in the same

node.

5.3.4 Aggregation, Scheduling and Dropping

Previously, in this chapter, we have commented on the advantages of dynamic

multi-routing for both levels of routing presented: active message migration and

data routing. Traditional routing protocols follow address-centric protocols, in

which decisions are based on the destination address. However, other proposals

like [58], also consider the fact that data can be opportunistically aggregated and

consolidated at the routing nodes, reducing the impact on the network. Data-

centric routing protocols, that is, protocols which make decisions in terms of

possible future data aggregation or data consolidation, are being considered in

our proposal. In the same way, data routing could be influenced by future nodes

storage congestion and more concretely by potential scheduling or dropping

policies.

When facing a multi-application schema for a general-purpose wireless sensor

network, data aggregation is highly correlated with the different applications. It

is quite complex to provide a general solution for the aggregation problem for the

different routing algorithms of the various applications. The objective is to make

routing algorithms aware of potential future aggregation, dropping or scheduling

actions. Therefore, a combined approach of application-based and context aware

routing algorithms is crucial for these purposes. We are employing the dynamic

multi routing application explained in the previous section to include in the

different routing protocols ways of obtaining information about aggregation,

scheduling actions and dropping policies.

5.3.5 Application Influenced Movement Model

As introduced in Section 5.2, mobile nodes on a WSN may follow different

mobility models. There is a one-to-many relationship among a mobile node and

an active message; that is, active messages are allowed to congregate in a single

mobile node. In Section 5.2, we comment that other proposals like [73] suggest

that both actors should be tightly coupled in a one-to-one way. Applications

which work in concrete areas could create highly concentrated regions, which are

5.3. Proposal Description 77

difficult to recover. Our proposal contends that such movement model should

be as independent as possible from the rest of the mobile nodes, in order to

minimise energy consumption. From a global perspective, we intend to make

mobile nodes remain as widely spread out on the affected area as possible but

favouring the mobile node contacts. These constraints are affected by the active

messages and even by the application data which can subtly modify the mobile

node movement model for task accomplishment purposes.

This movement negotiation is handled by the code execution environment

managers. Active messages make movement requests to the code execution

environment managers, which in turn evaluate these requests in terms of the

positions postulated. A queue in which these requests are stored is defined

locally in the node. To accept the movement change and therefore introduce a

new point in the mobile node queue, the point requested must be inside a circle

radius of kd, where d is the distance from the current position of the mobile

node to the previously scheduled waypoint. The bigger the factor k is, the more

tolerant to mobility the mobile node will be. The mobile node will retrieve the

closest position value from this queue until this queue is empty and then proceed

with its movement model.

As an example, in figure 5.3, a code execution environment manager receives

a request from three active messages to temporarily modify its movement model.

On the lower part of the figure, we see how the movement model is modified by

the active messages.

In section 5.4, several tests are presented to understand the impact of move-

ment model tolerance.

In order to prevent a possible mobile node stagnation caused by queued

points which remain far from the mobile node, requests from the active messages

can be rejected. In figure 5.4, an active message performs a movement request,

for example, Point of Interest 3 in figure 5.3. The code execution environment

managers decide to accept it because it is inside the radius kd. Once the mobile

node has visited the other two points of interest, the queued Point of Interest

3 remains outside the new circle radius kd. The code execution environment

manager informs the active message that its request is rejected and the latter

migrates to another mobile node, as seen in Figure 5.4

78 Chapter 5. DTN Wireless Active Sensor Networks

Figure 5.3: Movement model. Active messages request the local node to accept

a movement change by suggesting one or more points of interest.

Figure 5.4: Movement request protocol. An active message requests a point of

interest while the local DTN node may or not accept this movement change.

5.3.6 Active Messages: A Distributed Sensing

Infrastructure

Our goal is to provide a general-purpose WSN, multi-application system. Differ-

ent applications are represented by distributed streams of active messages per-

forming different tasks in the studied zone. In this section, we enumerate these

5.3. Proposal Description 79

different tasks and analyze the benefits of using the active messages paradigm

in the context of WSNs.

Active messages carry the code responsible for managing the sensor retrieval

following users’ requests. Tasks may be divided in sub-tasks, which can be

delegated to other active messages (clones) outside or inside the code execution

environment, as seen in Section 5.3.2.

However, applications may at some point evolve in their needs. In a tra-

ditional WSN, this evolution means sophisticated deployment actions in order

to modify the way the information is gathered, which are not always easy to

achieve, as seen in Section 5.2. These adjustments may be caused by the ap-

plication’s need to retrieve information from additional sensors, discontinuing

some others not needed anymore by the application or even modifying sensor

retrieval a posteriori actions.

Active messages are an excellent option to solve these problems. Since the

sensor code is travelling with the very active message itself, it is guaranteed

that the way the information is gathered, plus a posteriori actions if needed,

will be the ones desired by the user. Updates on these codes are made auto-

matically if requested by the application, while visiting the sink nodes or while

opportunistically contacting other active messages in the studied area.

The application itself knows best how its data should be routed. As seen in

Section 5.3.3, information retrieved from the mobile sensors travels from mobile

node to mobile node in data messages, following a behavior pattern set by the

different routing algorithms installed locally on every mobile node. When a

new application is willing to use the sensor network, it is possible to include an

adhoc routing protocol for the application. Active messages carry new routing

algorithms to the different mobile nodes they visit so that future bundles of data

may use them. This deployment of routing algorithms may be seen as additional

tasks which the active message must accomplish.

Nodes when finding other mobile nodes exchange context information which

will be used by the different routing algorithms, for both active messages and

data messages. Willing-to-migrate active messages communicate with a code

execution environment manager to query for foreign context information in order

to make routing decisions.

In Algorithm 11, the behaviour of the active message is described. Firstly,

the active message completes its sensing or code updating tasks. Following, a

routing decision is made on the basis of an internal method called routing().

80 Chapter 5. DTN Wireless Active Sensor Networks

Finally, it collects the list of positions required by its tasks and proposes move-

ment changes. In Algorithm 12, the data message behavior is described. The

routing algorithm is fetched from the message itself and executed. In Algorithm

13, the Execution Environment Manager comportment is described. Context

information is exchanged with the contacted neighbours and movement model

requests are validated.

Algorithm 11: Active Message Algorithm.

1: // Task behavior

2: while task=activemessage.nextTasks() not null do

3: if task.isMsg then

4: //It is a sensing task

5: msg=sense(task)

6: send(msg)

7: else

8: //It is an code updating task

9: //Update local code indicated in task

10: updateCode(task)

11: end if

12: end while

13: // Forwarding behavior

14: neighbours=neighbourDiscovery()

15: if neighbours > 0 then

16: bestMobileNode=routing(neighbours)

17: if bestMobileNode not thisMobileNode then

18: msg.forward(bestMobileNode)

19: end if

20: end if

21: // Movement behavior

22: if positionList=getMovement(taskCollection)>0 then

23: sendPositions(positionList)

24: end if

25: receivereject(position)

5.4. Results 81

Algorithm 12: Data Message Algorithm.

1: if msg.dest == localNode then

2: process(msg)

3: else

4: if neighbours > 0 then

5: routing=getRoutingFromApp(msg)

6: bestMobileNode=routing(neighbours,context)

7: if bestMobileNode not thisMobileNode then

8: msg.forward(bestMobileNode)

9: end if

10: end if

11: end if

Algorithm 13: Execution Environment Manager Algorithm.

1: // Context behavior

2: if neighbours > 0 then

3: contextinforExchange()

4: end if

5: // Movement model behavior

6: if movementRequests()>0 then

7: accepted=getAccepted(criteria)

8: inform(accepted)

9: end if

5.4 Results

In order to prove that our proposal is feasible, useful and performs well in

comparison to others we have several simulations have been carried out to un-

derstand issues described in Section 5.3.

We have performed several simulations 1 using The ONE [55] simulator to

better understand several issues covered in the previous sections. In Appendix

1Simulations include 24 hour tests for 6 different applications running on a 5 km2 surface
with 50 nodes which create 20 KB. on average messages with different intervals from 1 second
to 100 seconds. Node buffer size varies from 1 Mb. to 20 Mb and the maximum node speed
is 10 m/s.

82 Chapter 5. DTN Wireless Active Sensor Networks

A, the classes needed to simulate active messages over mobile nodes in the con-

text of WSNs using The ONE simulator are described. This includes a class

caching for already visited routing algorithms for performance improvement, a

movement model which simulates robots moving on the studied area, additional

fields for messages description, such as the size of the active messages and pay-

load, the DynamicRouter class which handles different routing algorithms be-

haviors dynamically and a task class for the different services types described

in Section 5.3.

As commented in Section 5.3, data messages travel independently from the

mobile node where they were created to a sink node. We explain in the same

section, that these data messages are being routed using local algorithms de-

ployed by the very same active message. In Figure 5.5, the result of a modified

The ONE report2 which produces a Google’s motion chart3 is depicted. In the

figure we can see four different applications which have used our WSN. On one

hand, the applications with suffix bundle, their data messages are routed using

the traditional Bundle protocol [84] with a single routing protocol. On the other

hand, the applications with suffix dyn each employ a different protocol chosen

by the application itself. Our dynamic approach is significantly better in terms

of the number delivered (circle area), latency (x-axis) and delivery ratio (y-axis)

for the four applications.

We have pointed out in Section 5.3.5 how the very active message can influ-

ence this movement. The issue discussed here is which should be the movement

by default, without taking into account the active message. We have imple-

mented a model to simulate the mobile nodes’ movement. The aim of this

movement model is to keep all the mobile nodes in the area as segregated as

possible. Mobile node movement model is almost independent from other mobile

nodes. There is no geographical protocol involved which would increase the com-

munication among the nodes, and therefore it therefore wastes energy resources

needlessly. Instead, mobile nodes move following the classical Randomwaypoint,

with an important modification – if n mobile nodes congregate they stop to eas-

ily exchange their data. After a given time, which will be covered in this section,

nodes continue their movement in opposite directions, sharing the 2π possible

directions equitably, following the behavior described in Algorithm 14

The amount of time to stop when mobile nodes contact, that is, the rendez-

vous time, is an issue we have accurately studied. It is a good idea to let the

2http://deic.uab.es/∼cborrego/MessageStatsMotionChart.java.v1
3http://tinyurl.com/googlmotion

5.4. Results 83

Figure 5.5: Dynamic routing versus traditional routing. The number of delivered

messages is represented with the circle area. The latency time, expressed in

seconds is represented in the x-axis. The delivery ratio is expressed in [0-1]

values and represented in the y-axis.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25

La
te

nc
y

(s
ec

on
ds

)

Rendez−vous time (seconds)

Rendez−vous vs. Latency

R−v time vs. Latency

Figure 5.6: Latency time as a function of the Rendez-vous time.

84 Chapter 5. DTN Wireless Active Sensor Networks

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

D
el

iv
er

ed
 r

at
io

(%
)

Rendez−vous time (seconds)

Rendez−vous vs Delivery ratio

R−v. vs Del. Rat.

Figure 5.7: Delivery ratio as a function of the Rendez-vous time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 30 40 50 60 70 80 90

N
um

be
r

of
 a

ge
nt

s
cr

ea
te

d
(N

um
be

r)

Max Area (%total area)

Congr. vs Max. Area

Congr. vs Max. Area

Figure 5.8: Number of agents created as a function of the size of the population

control area.

5.4. Results 85

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6

T
as

k
ef

fic
ie

nc
y

(%
)

Acceptance distance (k)(factor)

Acceptance distance vs. Task Efficiency

Dist. acc. vs. Task Eff.

Figure 5.9: Task efficiency as a function of the acceptance distance (k factor).

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250

La
te

nc
y

(s
ec

on
ds

)

Number of mess./min.

Number of mess./min. vs Latency

Non−aggregated data
Aggregated data

Figure 5.10: Latency time as a function of the number of messages. Aggregated

data improves significantly the latency time.

86 Chapter 5. DTN Wireless Active Sensor Networks

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

D
el

iv
er

ed
 (

nu
m

be
r)

Number of mess./min.

Number of mess./min. vs Delivered Ratio

Aggregated data
Not aggregated data

Figure 5.11: Delivery ratio as a function of the number of messages. Aggregated

data improves significantly the delivery ratio.

Algorithm 14: Movement model code

1: ///Share 2π angle among the available neighbours

2: angle=getEquiteAngle(neighbours);

3: x = lastWaypoint(x) + maxdistance * cos(angle);

4: y = lastWaypoint(y) + maxdistance * sin(angle);

5.4. Results 87

mobile nodes exchange the information they need, however, long rendez-vous

times can lead to unwanted consequences. As seen in Figure 5.6 and Figure

5.7, several simulations in which different scenarios interrupted after 24 hours

of events time are studied. Rendez-vous time seems to be an improvement on

both delivery ratio and delivery latency. There is a point, however, at which it

is not worth finishing the communication with the contacted node, as seen in

both figures.

Aggregation is described in Section 5.3.4 as being very useful in Wireless

Sensor Networks. Policies for aggregating information are complex as described

in Section 5.3. However, if routing algorithms are deployed according to appli-

cations’ constraints, information needed to aggregate, drop and/or schedule can

be included inside these routing algorithms. Our proposal fits perfectly here

because of its dynamism. The more different applications we get on the same

scenario, the more useful our proposal is. In figures 5.10 and 5.11, we depict

a scenario in which different applications coexist. Local routing protocols con-

taining information about how to aggregate data messages are deployed by the

active messages. We study delivery ratio and delivery latency in terms of the

number of messages created by the active messages per minute. We compare

both alternatives, using aggregation and without using aggregation. The result

is a significantly improvement in terms of delivery ratio and delivery latency.

In section 5.3, we suggest a controlled cloning for task delegation, in which

population control is guaranteed, since clones do not live outside the given area.

The size of this area is extremely important as depicted in Figure 5.8. For a

scenario with an initial number of 40 active messages, 10 robots and 40 different

tasks, we can see that population grows linearly, however, at some point when

the area allowed arrives the 50%, the population starts growing exponentially,

making delivery ratio and delivery latency collapse.

Following the issues described in Section 5.2, in Section 5.3.5 we propose

limiting the acceptance area for movement changes in terms of a circle radius

of kd, where d is the distance from the mobile’s node current position to the

previously scheduled waypoint. In Figure 5.9, we evaluate the impact of k in

terms of task efficiency (% of successfully finished tasks). In this case, efficiency

improves linearly when k is increased, but because of the creation of highly

concentrated regions, large areas may reduce significantly efficiency tasks results.

“All the fingerprint paintings are done without a grid.”

Chuck Close

“Bicycling is a big part of the future. It has to be. There’s something
wrong with a society that drives a car to workout in a gym.”

Bill Nye, The Science Guy

6
DTN Active Sensor Grids

S
TORE-CARRY-and-forward Delay and Disruption Networking proto-

cols offer new possibilities in scenarios where there is intermittent con-

nectivity, asymmetric bandwidths, long and variable latency and am-

biguous mobility patterns. In this chapter a new paradigm – store-carry-process-

and-forward – based on the DTN architecture presented in Chapter 3 and its

mobile code-based reification described in Section 4.2, is proposed in order to

improve the integration of wireless sensor networks and grid computing infras-

tructures. It is described the implementation of a delay tolerant grid service,

the computer element, to give computing access to an intermittently connected

wireless sensor network. The result is an intelligent system which adapts dynami-

cally to intermittent disconnections and improves multi-application coexistence.

Finally, it is presented as an example a real case application which provides

general purpose grid access to a multi-application mobile robot node sensor

network.

89

90 Chapter 6. DTN Active Sensor Grids

6.1 Introduction

Grid computing [102, 46] has consolidated as a technology capable of solving

some of the most challenging scientific projects of our century. The needs of

these projects usually include complex computation of data obtained from dif-

ferent sources and stored in large storage resources. The main goal of grid

computing, precisely, is to share these resources among different institutes and

virtual organizations across high-speed networks and distribute and coordinate

its processing.

Wireless sensor networks (WSNs), on the other hand, is a technology that

can be very useful when it comes to acquiring and transporting data collected

in widely spaced areas. These networks consist of different nodes carrying differ-

ent sensors along with autonomous computational devices which transmit data

through the network to some specific locations or data sinks.

This Chapter analyzes how both technologies, grid computing and wireless

sensor networks, can be combined into an integrated WSNs and computer grid

infrastructure allowing new functionalities. The corner stone of this conjugation

is using delay and disruption tolerant networking (DTN) concepts [41] along

with mobile code to create an intelligent grid network capable of routing and

managing processes depending on the context. Some other recent proposals,

which will be further described in section 6.2, integrate WSNs and grid comput-

ing, as well. However, our proposal comes from the network perspective. We

consider WSNs nodes as intermittent connected nodes, containing asymmetric

bandwidths, long and variable latencies and ambiguous mobility patterns. This

new perspective contributes to the creation of a novel concept of intelligent grid

computing networks, going beyond the possibilities of the reviewed literature in

some current scenarios, and providing promising prospects for supporting future

grid services.

The routing decision making and execution policies travel with the messages,

instead of being static and exactly the same for all nodes. These policies, in

the shape of mobile code, can take into account the context of the nodes to

choose the behavior that fits best in each situation. All in all, the system acts

more like an ant colony, with differentiated autonomous parts acting locally but

with a cooperative aim, rather than a traditional and more inflexible system.

Thus, using mobile code makes the grid network an intelligent system, pliable

enough to adapt to new scenarios of grid computing. However, the proposed

system cannot be considered a silver bullet for all grid computing; in highly

6.2. Background 91

connected grids, with low latencies and where data does not need to be processed

before getting to the execution destination, mobile code would introduce an

unnecessary extra overhead and other unwanted side effects.

6.2 Background

There are several efforts already published on the integration of wireless sensor

networks and grid computing. Studies like [90] and [66] propose different ways

of extending the computing grid paradigm to allow the integration of wireless

sensor networks and grid computing infrastructures. This section analyzes the

state of the art of other technologies: mobile code and DTN protocols which

we believe can extend and improve this integration. In Figure 6.1, research

overlapping of the four technologies is depicted.

Figure 6.1: State of the art.

The widespread use of portable devices, generally equipped with wireless

enabled communications, GPS receiver, and touch screen, has remarkably im-

proved outdoor applications in a great variety of scenarios. Although the most

common network configuration is adhoc, or mobile adhoc (MANET), new com-

munication paradigms are emerging to fill the void for some specific settings.

92 Chapter 6. DTN Active Sensor Grids

This is the case of delay and disruption tolerant networking (DTN) [41], ex-

tremely useful when no concomitant network links connect source and ultimate

destination at transmission time.

Unfortunately, although DTN has strong foundations and many groups have

been working on its formalities for some years [107], [108], there is still a number

of issues to be solved. Several interesting proposals have been already proposed

and implemented which cover problems like routing [30], congestion [85], and

security [5].

Some of these topics need solutions quite different from the ones used nor-

mally in the Internet. The rationale for this is that the diverseness of applica-

tions running on such limited connected networks calls for a number of different

mechanisms to solve the specificities of each one. In opposition to what happens

in the Internet, no general purpose mechanisms exist satisfying the requirements

of all applications at once.

There are not many publications or studies which use mobile code in the

context of DTN scenarios. As introduced in Chapter 2, in [64] an idea is sketched,

but contains no architecture and no implementation is given.

On the other hand, there are few publications concerning grid computing and

DTN networks. In [62] an integration of disruption tolerant networking with

grid computing is presented. The article gives neither architecture proposal nor

implementation and therefore is extremely superficial. The scope of this study

is solely an interplanetary grid computing scenario.

Few articles propose using mobile code to solve grid computing problems. In

[59] an environment based on mobile code for the distributed solution of iterative

grid-based applications is presented. In [38], [29] and [91] three interesting grid

monitoring proposals based on mobile code are presented.

In [12] the author of this thesis and its supervisor present an infrastructure

based on mobile code to describe grid resources not only taking into account

the resources themselves, but also other resources of the same type, in order to

improve several grid services such as the information service and the monitoring

service. The term grid resource relative information is introduced: information

that is not only gathered from the very resource itself, but also taking into

account other resources of the same type. This concept can be applied both

to the grid information service and the monitoring service. They show that it

is feasible and useful to publish relative information and monitor grid services

using relative criteria. It is shown as well that relative information gives a more

complete view of grid services, and it helps the user to choose the best resources

6.3. Integrating DTN WSN’s in Grid Using Mobile Code 93

for their needs. Monitoring grid services with relative criteria is a good way

to find malfunctioning services. In order to flag a service as problematic the

proposal does not take into account just local sensors of the service but as well

sensors values extracted from the rest of the services of the same type. Mobile

agents are a very good option to use as an infrastructure to go through with these

implementations. This infrastructure proposed is more flexible than traditional

ones because of the sensors deployment. The update of the way local information

is extracted becomes a trivial matter while using mobile agents, even if there is

a large number of different services. There is an inconvenience though: every

grid node must have installed a mobile agent platform where the agents will

run.

There has been a considerable ongoing work on WSNs and grid computing

infrastructures integration. However, there is not yet a mobile sensor network

flexible enough to fit heterogeneous scenarios, including those lacking for con-

tinuous connectivity, and allowing to share the network with other grid appli-

cations. In this chapter we describe and discuss precisely a system surpassing

these limitations.

6.3 Integrating DTN WSNs in Grid Computer

Infrastructures Using Mobile Code

In this section we propose a way to integrate intermittently connected WSNs in

computer grid infrastructures. On one hand, the data acquired by the WSNs can

be processed and stored using traditional grid services inside connected regions.

On the other hand, and a more challenging option, sensors can be considered as

grid sources of data commanded by the very grid users themselves. We propose

the job behavior that evolves beyond the traditional read-process-and-storage

model – that is reading from a data source, processing and storing the result –

to a possibility of having a create-read-process-and-storage model, in which jobs

are able to create their input information.

For both ways of integration, there is a challenging issue which must be

solved. Data must arrive from the WSN to nodes connected to the grid, known

as sink nodes. However, connectivity among the nodes belonging to a WSN

can rarely be available, due to large latencies, high error rates or even very

small bandwidths. Examples of these scenarios include outer space sensors and

computer facilities, and isolated environment sensors.

94 Chapter 6. DTN Active Sensor Grids

Traditional grid scenarios use different types of data sources which include

large hadron colliders like the LHC [17], biomedical equipment or supplies for

studies like [94] or even simulated data obtained from the very same grid re-

sources in the context of the same domains. Most of them are constantly con-

nected to the Internet or have a straightforward way to store its data to grid

connected resources. Likewise, grid services are implemented based on networks

with a constant Internet connection and taking for granted continuous network

connection.

By considering WSNs a potential grid source of information, we analyze in

this study how to include WSNs in grid computing, taking into account that they

may be not fully permanently connected to the rest of the grid infrastructure.

The result is to obtain what we call a delay and disruption tolerant computer

grid source.

In Figure 6.2, we can see how grid infrastructures and WSNs technologies

may coexist. On the left-hand side of the figure, a WSN is depicted connected to

a grid infrastructure by a computing element, a door to the sensor network. This

sensor network is then seen as grid source becoming grid-wide available. The

WSN is composed by several sensors which, as a global network, are intermit-

tently connected to the Internet and among them could have a poor connection.

Some of these sensors may adopt ambiguous mobility patterns and therefore act

as DTN data mules [41], sensors in movement which gather information from

other sensors which act as opportunistic router nodes.

The traditional DTN scheme follows the well-known store-carry-and-forward

paradigm [41]. We introduce a new paradigm: the store-process-carry-and-

forward. We can benefit from the fact that in DTN the information can be

blocked waiting in some DTN node which temporarily is disconnected. This

waiting time can be extremely long and we can make good use of it. If the

application data contains information to be processed we could make the local

node process it while it waits for some other node to arrive.

Grid application information, that is, information created on behalf of a

user and retrieved from the sensors, is carried inside messages from the sensors

back to the computing element. Custodian nodes, that is, nodes which custody

application information until it can be forwarded to another node, handle delays

and disruptions. The application layer will create application data which will

be included in one DTN message. These messages will stay in a custodian node

6.3. Integrating DTN WSN’s in Grid Using Mobile Code 95

Figure 6.2: Coexistence of WSN and grid infrastructure. On the left hand side

of the figure an intermittently connected sensor grid is connected to a permanent

connected grid infrastructure.

until they are able to migrate to another one. Since delays in DTN networks can

be huge, messages containing application data may wait for long time. Once a

potential custodian node becomes available, the message will try to be forwarded

to the newcomer custodian node.

As seen in Figure 6.3, traditional grid layers – application layer, collective

layer, resource layer, connectivity layer and fabric layer – can be completed by

adding an execution environment layer. Mobile code can be seen an alternative

to the grid classic fabric layer. Its aim is to provide an interface to local resources,

the sensors. There is a subtle difference with traditional grid architectures. This

alternative to the fabric layer in this case is directly connected to the application

layer in order to allow applications direct access to the information retrieved by

the local sensors present in the nodes.

6.3.1 Grid Job Management

Information created in grid sources are processed using a computing infrastruc-

ture. Jobs input data in experiments like ATLAS [1] can reach to be tens of

thousands times bigger than the output. In scenarios in which we have the grid

96 Chapter 6. DTN Active Sensor Grids

Figure 6.3: Grid layers.

sources included, such as delay and disruption WSNs, we believe that comput-

ing locally may save loads of data transfer. This is specially interesting, since

these transfers are very expensive.

In the case in which WSNs are isolated, for example a sensor network in

deep space, bringing data outside the network in order to compute it can be

really expensive. Instead, we propose a model in which raw data, information

extracted directly from the grid sources, is kept and processed locally.

Traditional grid users define their jobs by specifying their executables, their

input data, their output data definition, requirements such as the site the user

wants to send the job to, and the virtual organisation. The computing element

receives the job specification along with the files the user has decided to send

to the site. This information is passed to the different job managers. A typical

job manager would receive a job request and would submit the job to a local

queuing system, such as pbs [48].

In our approach for sensor grid scenarios the job manager’s behaviour would

be different. We have defined and implemented a computer element job manager

which, instead of submitting a job to a queuing system, it will create an active

message and will launch it to the WSN. Active messages are messages capable

of performing processing on their own and consequently behave autonomously.

These messages will travel from node to node in order to accomplish their tasks.

6.3. Integrating DTN WSN’s in Grid Using Mobile Code 97

Creating this active message is quite a challenging issue. We need to clearly

specify its behavior in terms of routing decisions, sensor retrievement, data

management and task scheduling. The user, by means of the job description, can

explicitly specify theses issues, otherwise, the job manager will be responsible

for properly creating it.

Figure 6.4: Active message creation. The grid job manager creates an active

message from the grid job specification.

Looking closer at the intelligence of this message, from one hand we have

to differentiate between the application code, that is the behavior the active

message will require which defines the actions and tasks it will perform. These

tasks include, for example, searching and combing actions in the wireless sensor

network area and processing data. As a result, application data is created. From

the other hand, the active message will need to make routing decisions when-

ever finding different nodes on the networks. Traditionally, DTN approaches

leave routing decisions for DTN nodes. In our proposal, intelligence comes from

allowing routing code to travel with the very active message, allowing different

applications employing the same WSN to use different routing algorithms. Fi-

nally, both input and output may need to travel with the active message. This

mapping is represented in Figure 6.4.

98 Chapter 6. DTN Active Sensor Grids

Algorithm 15: Execution environment code.

1: for msg in getListMessages() do

2: //Fetch message code and input

3: code=msg.getAppCode()

4: input=msg.getInput()

5: execfork(code,input,out);

6: end for

6.3.2 Store-Process-Carry-and-Forward Paradigm

The active message implements the store-process-carry-and-forward paradigm:

• Once an active messages arrives to a node, it waits stored in a queue of

messages, until another node is available for forwarding.

• When the active message is waiting for a node to be forwarded, if the

input files of the grid job are available, process of data can be started.

• When the message is forwarded, it behaves like a data mule [41] making

an active carry, i.e. carrying information containing the grid job output.

Instead, a custodian node in motion, as it could be a robot, satellite or an

animal, performs a passive carry when moving. In this case, there is no

software entity performing the transport itself. Instead, there is a physical

movement of the custodian node who produces the carry action.

• The very active message contains internally a routing algorithm to decide

when and where to be forwarded. The routing algorithm is part of the

active message. This way we allow different applications using the same

infrastructure to behave differently when it comes to routing decisions,

contrary to classical networks such as TCP/IP, in which routing static

elements implement and perform the routing decisions.

6.3.3 Processing Models

Bringing back the concept of data processing while waiting to migrate, it could

happen that when the message is able to be forwarded from the current custo-

dian node, the code execution has not yet finished.

6.3. Integrating DTN WSN’s in Grid Using Mobile Code 99

We have three behavior possibilities here to define how to handle job man-

agement:

• Run & Go. When a new node is available for forwarding, jobs do not

abort their execution. Active messages try to be forwarded once the job

has finished, however, the new node still might not be available for forward-

ing. This option is used when node density is high. In Figures 6.5, a new

node appearance is represented by an arrow. In Figure 6.5(a) concretely,

a job finishes its execution and waits for next node to be forwarded.

• Abort & Go. Jobs could be aborted when a new custodian node appears

losing all the processed information. The active message could eventually

discard the computing effort already done, finding it more convenient to

be forwarded to a new node. This is represented in Figure 6.5(b). Jobs

will start again in the new custodian from scratch. This option is useful

when contacts are scarce and processing cost is low.

• Stop, Go & Resume. Jobs stop their execution when they are aware

of a new suitable custodian available, forwarding themselves to the new

custodian and resume their processing in the new node. As seen in Figure

6.5(c), job is stopped but resumed in the new node. This option includes

two possibilities which have been already described in Chapter 2.

– Weak mobility is limited to the code and the data state. When arriv-

ing in the new execution environments, the code would be restarted.

– Strong mobility allows code to be moved at a very low level, such as

stack pointers and instruction pointers to different execution environ-

ments.

The behavior of these different models is described in Algorithm 16. Job

management is done by delegating job execution to the execution environment

manager (EEM). Before the active message code is invoked, its job behaviour is

queried. This behaviour defines how an active message wants to proceed if the

message is ready to be forwarded but the processing is not finished yet. As seen

in Algorithm 15, the EEM is responsible for finding the application code present

in the active message and for executing it. This code represents the way the

active message will behave in terms of sensor retrieval and task accomplishment

in a custodian node.

100 Chapter 6. DTN Active Sensor Grids

Algorithm 16: Routing code for the different messages waiting for being for-

warded.

Input: listOfMessages,neighbours

Output: ∅
1: function routeMessages()

2: for msg in listOfMessages do

3: //Fetch message routing

4: routing=msg.getRouting()

5: //Perform routing decision

6: node=routing(neighbours)

7: if not node == getlocalnode() then

8: //Fetch message model

9: mode=msg.getModel()

10: if not mode == RUN AND GO then

11: if mode == ABORT AND GO then

12: cancel(job.getJob())

13: forward(msg,node)

14: else

15: if mode == STOP AND RESUME then

16: preparetoforward(job.getJob())

17: stop(job.getJob())

18: forward(msg,node)

19: end if

20: end if

21: end if

22: end if

23: end for

24: end function

6.3. Integrating DTN WSN’s in Grid Using Mobile Code 101

In this way, the EEM has control of all the computing running on the local

execution environment and can stop, suspend or prioritise any computation from

any active message. Jobs prioritization is not covered in this Chapter, but it is

an very interesting open issue.

(a) Run&Go (b) Abort&Go (c) Stop&Go

Figure 6.5: Processing models.

6.3.4 Storage

Storage service in grid computing is responsible for managing and holding data

generated by grid sources or computing jobs as well as to provide this data grid-

wide upon request. In our proposal, we have two options for creating the active

message concerning the storage of the information created and/or processed.

• Store the information in the disconnected region. This information will be

physically stored in one of the DTN nodes from the disconnected region.

The very active message will choose which would be the physical location

of the data, which could be any of the DTN nodes the active message will

visit, a subgroup of them or a given one.

102 Chapter 6. DTN Active Sensor Grids

• Store the raw data outside the disconnected region. Instead of leaving

the data inside the disconnected region, the data is routed to a DTN

gateway, a special node that belongs to both the disconnected region and

the connected region. Subsequently, the data is stored in a storage element

outside the disconnected region.

By any means, information needs to be forwarded from one node to another,

traveling all around the disconnected region. Thus, the storage problem becomes

a routing problem, hence, finding the appropriate DTN node to leave the data

once created. Many articles such as [30] and [103] cover the still open topic of

DTN routing.

In any case, the file, after being stored, needs to be catalogued so it can be

located it in the future. The active message will need to reach the connected

region in order to inform the file catalog about the information placement.

6.3.5 The Routing Issue

In our intelligent system, routing is the decision process in which the best path

inside a given network is calculated. In traditional networks, routing decisions

aim to minimise latency of message delivery and improve the delivery ratio,

without overlooking local and network resource consumption. In the proposed

scenario, routing is a very delicate issue. Once an active message arrives to the

WSN, latency time to arrive at its destination, plus delivery ratio is important.

However, maximizing task performance in our scenario could be more im-

portant than improving latency times or delivery ratio. This performance is

different from application to application and depends on several factors such as

processing time, network congestion, flow control, etc. Letting the very same

application perform the routing decision can improve task performance.

As an example, in Figure 6.6 an active message performs a combing task for

zone 1. This message must choose among two potential custodians, S2 and S3,

in order to be forwarded. Routing code for this active message chooses custo-

dian S2 to improve zone 1 combing task over choosing S3, even if this latter

seems to have a direct contact with its destination. The very active message

routing code prioritises task completion over delivery latency. Without an ap-

plication perspective, this decision would be very difficult to make by a local

routing algorithm running in a custodian node. This allows the applications to

intelligently employ the network in a very personal way.

6.4. Implementation 103

Figure 6.6: Dynamic Routing. An active message selects node S2 as its next

custodian node.

6.4 Implementation

The execution environments on which active messages run are called platforms.

We need to implement on every sensor grid node an execution environment

platform to let active messages carry grid level information to run on. In order

to implement active messages described in the previous sections, we need some

special platforms: besides being capable of executing code, platforms must allow

the code to be forwarded from one sensor node to another, stopping their code,

resuming its execution upon arrival and permit the ability of carrying their data

and state with them.

As introduced in Section 4.2, among the different available execution envi-

ronment platforms, we have decided to use Mobile-C [26], a FIPA complaint

platform for mobile C/C++ codes in networked intelligent mechatronic and em-

bedded systems. The benefits in comparison to other execution environments

like Jade based on Java are mainly achieved through the reduction in memory

consumption. Moreover, in general terms, the impact on system resources is

very small.

We have implemented a job manager 1 in the context of gLite grid mid-

dleware [60]. This job manager accepts traditional grid job requests and by

1Source code can be found at
http://ccd.uab.es/∼cborrego/active-sensor-grid-src-1.2.tar.gz

104 Chapter 6. DTN Active Sensor Grids

parsing jobs requirements, accordingly creates active messages. We are using

gLite’s grid job description language to allow the user – besides the traditional

InputSandbox and OutputSandbox – to specify the application code and the

routing code in the creation of the active message. One example is described

below.

JobType = "ActiveMessageJob";

ApplicationCode = "combing.cc";

RoutingCode = "myprophet.cc";

StdOutput = "output.txt";

StdError = "error.txt";

InputSandbox = {"combing.cc","myprophet.cc"};

OutputSandbox = {"output.txt","error.txt" };

Once active messages are created, they travel along with the grid’s input data

if any, from node to node, performing their tasks and retrieving information data.

Execution environments custody active messages until another node becomes

available for forwarding. The very same active message chooses its node path

by executing the Mobile-C MC AddAgent() method, as described in Algorithm

17. After which, it waits until a new node becomes available. Considering DTN

scenarios, the active message can stay in this state for a longtime. We want

to let active messages choose themselves their next hop, that is the routing

decision. This is done by modifying the Mobile-C code to allow having a well-

known method for these purposes. This method is described in Algorithm 18

and it is invoked by the local execution environment to let the active message

choose among the available nodes, as seen in Algorithm 19.

6.5 A Practical Example: a General Purpose

Grid Multi-Application Sensor Network

In this section we present as an example of our proposal, a way to include

a general purpose multi-application mobile node sensor network, like the one

described in Chapter 5, in an existing computer grid infrastructure.

We have implemented a computer element job manager which transparently

gives grid access to a robot wireless sensor network. This job manager creates an

active message for every grid job submitted. Users using gLite’s job description

language [60] choose among three different types of active message behavior

6.5. Ex: A Multi-Application Robot Sensor Network 105

Algorithm 17: Application active message code.

1: msg = MC ComposeAgentFromFile(

2: ”message”, /* Name */

3: ”localhost:5050”, /* Home */

4: ”IEL”, /* Owner */

5: ”messagecode.c”, /* Filename */

6: NULL, /* NULL for no return */

7: ”nextHopApplicationLayer:5051”, /* Server */

8: 0); /* no persistence. */

9: /* Add the routing code to the message */

10: MC AddProcessCodeFromFile(message, ”program code.c”);

11: /* Add the message to the execution environment to start it */

12: MC AddAgent(executionenv, msg);

13: MC MainLoop(executionenv);

14: MC End(executionenv);

Algorithm 18: Active message Epidemic Routing Code example.

Input: taskList

Output: ∅
1: function process()

2: for task in taskList do

3: task.process();

4: end for

5: end function

Algorithm 19: Local execution environment code

1: // (during the creation of the forwarding message)

2: if msg-→ datastate-→is processable == 1 then

3: done=Ch CallFuncByName(∗msg→msg interp, ”process”, NULL);

4: end if

106 Chapter 6. DTN Active Sensor Grids

which will be described in this section. From the user’s point of view, jobs are

identical to a conventional grid job, however, input files are specified as the

result of active message sensor tasks.

Concerning sensor tasks, on one hand, the user would like to search for a

given pattern on a given zone on the studied area. On the other hand, a user

would like to perform a sensor comb of a chosen area. Finally, the user would like

to arrive at a given point on the studied area and perform some type of unique

concrete sensing. We distinguish these three types of behaviors because they

will affect the way active messages will be created, how they will be forwarded

and their communication.

Physical tests have been performed using a conventional laptop running our

modified job manager over gLite’s grid middle-ware version 3.2 running Scientific

Linux 5. Five real hand made chassis robots containing a PIC16C5X micro-

controller, with a 4MHz processor and programmed using PBASIC. Robots

carry an old Dell Axim X3 PDA which comes with 64 MB of SDRAM, 64 MB

of ROM and an Intel XscaleTM processor running at up to 400 MHz. PDA

batteries, lasted 253 minutes, on average.

PDAs run Windows Mobile operating system as well as the Mobile-C [26]

mobile code execution environment. Some other published studies on intelligent

systems in the context of traffic management and health monitoring like [27]

and [28] efficiently use this technology. The benefits in comparison to other

mobile code environments are mainly achieved through the reduction in memory

consumption. Moreover, in general terms, the impact on system resources is very

small, allowing it to be run on very limited devices.

A group of several different applications employ the network for different

purposes. Robots in the tests followed a Randomwalk movement model. Sev-

eral active messages representing the applications jumped correctly from robot

to robot performing different sensor tasks. Wireless range was reduced to 15m

to assure intermittent node connection. The conducted tests have value in that

they helped us to obtain first impressions for network parameters such as connec-

tion window time, processing models’ performance, active messages forwarding

time, computer element load, job manager performance and movement model

efficiency for future improved tests and simulations.

In figures 6.9, 6.10 and 6.11 three different scenarios are depicted. Space

between bars represents elapsed time between messages forwarding. In Figure

6.9, a sparse scenario (less than 1 robot/m2) with short jobs (less than 1 hour

of total CPU usage) is depicted. Elapsed time is represented on the abscissa.

6.5. Ex: A Multi-Application Robot Sensor Network 107

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Lo
ad

Number of grid jobs/s

Computer Element Load

ActiveMessagesCE
gLiteCE

Figure 6.7: Computer element load a function of the number of jobs.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

M
em

or
y

us
ag

e

Number of grid jobs/s

Job manager memory usage

ActiveMessagesCE
gLiteCE

Figure 6.8: Memory usage as a function of the number of jobs.

On the ordinate accumulated data processed is represented. The three models

described in section 6.3.1 equally perform for this scenario. In Figure 6.10, a

scenario in which high node density (more than 1 robot/m2) is present shows how

Run&Go model performs almost as well as Stop&Go, while the model Abort&Go

108 Chapter 6. DTN Active Sensor Grids

 0

 50

 100

 150

 200

 250

 300

 350

0 20 50 80 110 140 170 200 250

D
at

a
pr

oc
es

se
d

Time

CPU time vs. waiting time

Run&Go
Abort&Go
Stop&Go

Figure 6.9: Sparse scenario with short jobs for the three different job manage-

ment models.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 10 40 50 80 110 120 140 150 180 200 210 250

D
at

a
P

ro
ce

ss
ed

Time

CPU time vs. waiting time

Run&Go
Abort&Go
Stop&Go

Figure 6.10: High node density scenario for the three different job management

models.

is very inefficient. Finally, in Figure 6.11, we see how a dense scenario performs

best when using the Stop&Go model.

6.5. Ex: A Multi-Application Robot Sensor Network 109

 0

 50

 100

 150

 200

0 10 70 90 100 110 120 150 170 180 250

D
at

a
pr

oc
es

se
d

Time

CPU time vs. waiting time

Run&Go
Abort&Go
Stop&Go

Figure 6.11: Dense scenario with long jobs for the three different job manage-

ment models.

In Figure 6.7 and 6.8, the CPU usage and memory usage of our job manager

in comparison with gLite’s computer element is depicted. For CPU usage, we

can see that similar values are obtained. Instead, for memory usage, there is a

significant difference. The reason is that gLite’s computer element runs a job

manager process for every job for real time management purposes, while our job

manager works asynchronously.

“Everybody’s worried about stopping terrorism. Well, there’s a really
easy way: stop participating in it.”

Noam Chomsky

“It’s hard to believe President George Bush gave a speech in New Or-
leans about disaster recovery and failed to mention the word farm or
the word rural.”

Jim Hightower

7
DTN Emergency Scenarios

B
ASED ON THE architecture proposed in Chapter 3 and its Bundle

Code Blocks reification presented in Section 4.3, this chapter will be

introducing code to improve Delay and Disruption Tolerant Network-

ing (DTN) performance in emergency scenarios.

Store-carry-and-forward DTN protocols offer new possibilities in scenarios

where there is intermittent connectivity, asymmetric bandwidths, long and vari-

able latency, and ambiguous mobility patterns. However, there are scenarios

where current DTN arrangements are not efficient enough, such as when sev-

eral applications need to coexist. In this chapter we present the application of

the bundle extensions presented in Section 4.3 to allow bundles to carry mobile

code and improve routing decisions. Our proposal stems from the idea of moving

the routing algorithm from the host to the bundle. Bundle code may provide

mechanisms to deal with congestion and lifetime control management. Addition-

ally, bundles can be scheduled using dynamic policies exchanged and carried by

other bundles for prioritization purposes to avoid important bundles from be-

ing blocked. A real case study based on an emergency scenario is presented in

this chapter to provide details of a real implementation. Several simulations are

111

112 Chapter 7. DTN Emergency Scenarios

presented to prove the feasibility and usability of the system and to analyze its

performance in comparison to state-of-the-art approaches.

7.1 Introduction

The widespread use of portable devices that are generally equipped with wireless-

enabled communications, GPS receivers and/or touch screens has remarkably

improved outdoor applications in a great variety of scenarios. Although the

most common network configuration is adhoc, or mobile adhoc (MANET), new

communication paradigms are emerging to fill the void for some specific settings.

This is the case of Delay and Disruption Tolerant Networking (DTN) [24], which

is extremely useful when no concomitant network links connect the source and

destination at transmission time. Emergency and disaster recovery systems are

an example of an application domain where having no network infrastructure

makes DTN significantly extend possible applications. Applications based on

DTN can coexist with other solutions in order to create network infrastructure

and restore network connectivity. Furthermore, the DTN approach provides

cheaper, easier and ready-to-use deployment solutions.

Although DTN has strong foundations such as the Bundle Protocol [84] and

many groups have been working on its formalities for some years [107, 108], there

are still a number of issues to be solved. Some of the most problematic issues

include routing, lifetime control and security, which need solutions quite different

from the ones normally used on the Internet. The rationale for this is that the

diversity of applications running on such a limited connected networks calls

for a number of different mechanisms to solve the specific problems presented

by each application. As opposed to what happens on the Internet, no general

purpose mechanisms exist which satisfy the requirements of all applications at

once. A possible way of facing this challenge is by adding code to every bundle

of information sent over the network to make (autonomously and in a context-

aware fashion) all the decisions regarding the transportation of that particular

piece of data. Mobile code [76] is a well-known technology designed for precisely

this.

Mobile code is a good candidate for implementing a data-driven approach

to DTN networks. This technology is able to migrate with their code and data

from host to host and continue their execution upon reaching its destination.

Mobile code needs execution environments to run, the execution environments.

7.2. State of the Art 113

Mobile-C [26], Jade [6] and Agentscape [98] are popular examples of platforms

supporting mobile code. However, these platforms cannot be directly used for

implementing DTN networks. To begin with, forwarding procedures have to be

redesigned for the decision-making on which next intermediate node, also known

as the custodian node, to be forwarded to. We propose leaving this decision to

the bundle itself.

We present in this Chapter an extension to the Bundle Protocol based on

mobile code to implement a heterogeneous data-driven DTN. While fully re-

specting the Delay-Tolerant Networking Architecture [18], the keystone of this

integration of technologies is to move the routing algorithm from the host to

the bundle. We will provide details on how this approach significantly improves

these networks. We propose a scheduling infrastructure which minimises delays

as well as improves reliability by prioritizing bundles carrying important appli-

cation data. We describe as well several mechanisms to solve specific issues with

DTN networks concerning routing, congestion, data aggregation, routing code

deployment and DTN lifetime control.

Emergency and disaster recovery scenarios are very convenient to demon-

strate the new possibilities of this combination of DTN concepts and mobile

code. This study uses the case of the Mobile Agent Electronic Triage Tag

(MAETT) [70], to illustrate how applications can profit from this new and im-

proved architecture. However, the results can be used in many other domains.

7.2 State of the Art

There are two main developing architecture paradigms related to networks which

are characterised by intermittent connectivity, asymmetric bandwidths, long and

variable latency and ambiguous mobility patterns. The most relevant to this

study is the Delay Tolerant Network Research group, as introduced in Chapter

2, which has defined an architecture [18] and an end-to-end protocol [84], an

abstract service description for the exchange of what they call bundles in Delay

and Disruption Tolerant Networking (DTN). These bundles carry application

information from one DTN custodian node to another.

The second project is Haggle [83]. Haggle is a one-way communication ar-

chitecture and its main purpose is to take advantage of brief connection oppor-

tunities. As in the Bundle Protocol, Haggle proposes solutions to scenarios in

114 Chapter 7. DTN Emergency Scenarios

which network availability is intermittent or suffers from long delays by message

switching and opportunity-oriented behaviors.

While these proposals accept disruptions as the idiosyncrasy of the problem,

other studies like [3] and [61] propose different ways of linking the various ex-

isting partitioned networks. Although these proposals may be useful in some

situations, they are essentially based on adding infrastructure elements to the

network. Unfortunately, this is not always feasible due to the complexity added

to the system, the economic cost of the solution or the difficulty of finding

the best location for the links. Furthermore, these proposals fail to consider

networks of mobile elements such as the examples provided in this chapter.

There are very few studies using mobile code in DTN scenarios. The author

of this thesis proposes a new paradigm in [11] called store-carry-process-and-

forward which uses mobile code to improve the integration of wireless sensor

networks and grid computing infrastructures. They describe the implementa-

tion of a delay tolerant grid service, the computer element, to give computing

access to an intermittently connected wireless sensor network. The result is an

intelligent system which takes the routing problem, adapts itself dynamically

to intermittent disconnections and improves the coexistence of multiple grid

applications.

Additionally, as commented in Chapter 2, in [64] a similar proposal is intro-

duced using message relay, but the authors use an algorithmic approach and

provide no details about the architecture nor the implementation. The idea

of using software mobile agents is in its infancy. In [39], an interesting model

is presented of the movement of mobile agents carrying application data from

fragmented wireless sensor networks. Despite the extremely detailed model pro-

posed, no implementation details are provided on its use in a real case scenario.

In addition, there are already published proposals expressing concern about

effective buffer management in DTN networks. Dimitriou et al. propose in [36]

a way to accelerate transmissions by saving the bundle information in memory.

In [49], Henriksson et al. propose a ranking scheme using different classical

caching models such as most recently seen and most frequently seen as a routing

strategy. Additionally, introducing queues in the bundle layer is not a new

concept. Lindgren et al. in [67] propose different strategies to drop bundles

in the case the bundle cache buffer becomes full. In [57], the authors propose

using information about encounters and locally collected statistics to derive an

optimal policy based on global knowledge about the network.

7.2. State of the Art 115

These strategies primarily address the bundle layer information. Other lay-

ers, like the application layer containing vital information, should also be con-

sidered. Moreover, in these proposals, the criteria for bundle ordering or bundle

dropping remain unchanged in each node and they do not provide any deploy-

ment mechanisms to dynamically update these criteria.

Information that is sent on DTN networks can travel from DTN node to

DTN node for a very long period of time until it reaches its final destination.

This time can be inadmissibly high for some applications. In the IP context,

different datagrams with different types of services are treated differently. The

consequences of prioritizing datagrams or not prioritizing them in the context

of IP networks are not as substantial as they could be in DTN networks. While

using IP’s Differentiated Services Field we can improve datagram deliveries.

Instead, in DTN networks, prioritizing DTN data units over others can be crucial

to achieve the desired service.

Alternatively, Seligman et al. in [85] propose a solution to handle storage

congestion. Instead of dropping bundles, they propose migrating storage data to

neighbours. Other studies like [35] and [21] attempt to solve the same problem

by proposing a hop-by-hop local-flow control mechanism. Both proposals only

take into account local information and fail to consider data from other DTN

nodes.

In relation to DTN status reports and custody signals, some efforts have

been made in the context of the Bundle Protocol. Unlike ICMP, where errors

and information messages are sent using IP datagrams to the source, in the

Bundle Protocol as described in the Delay-Tolerant networking architecture [18],

administrative records are sent to the report-to identifier for bundle status report,

and to the identifier of the current custodian for custody signals. The criteria

to send these reports and signals are static and cannot vary from application to

application and do not take into account the local context.

As described in this section, there has been a considerable effort on mobile

code and DTN infrastructure integration. However, there is not yet a standard

solution flexible enough to fit the various necessities. The sections that follow

will outline a novel approach to overcoming these limitations.

116 Chapter 7. DTN Emergency Scenarios

7.3 Disaster Recovery Scenarios

Disaster recoveries after emergencies, such as terrorist attacks or meteorological

calamities, are difficult to conduct. Connected areas may become precipitously

disconnected. Using DTN networks is an excellent way of rapidly deploying

communication networks. Other studies, like [69], already use DTN networks

to coordinate victims from emergency scenarios. In this section we will define a

scenario based on [69] to show the advantages of using code block extensions in

DTN networks.

Different users such as policemen, firemen, doctors, nurses, engineers and

rescue teams, among others, along with their portable devices such as mobile

phones or tablets, create the intermittently-connected network. Opportunistic

contacts among the different users permit the different applications to utilise

the network for very different purposes.

Rescue applications conducted by doctors, nurses and rescue teams classify

the different victims during an initial evaluation of their health condition, while

in the confines of the emergency area. Statuses attributed to victims are 0 for

deceased, 1 for seriously injured, 2 for injured and 3 for mildly injured. This

process is called triage. In Figure 7.1 this application is depicted.

To manage and organise injury statuses and locations we propose sending

bundles with the information of every victim that has been classified. The goal

of this application is to allow this information arrive as soon as possible at the

Emergency Coordination Center, hopping from device to device when a shorter

route is detected.

Other applications such as notification applications, wireless sensor appli-

cations, applications used for firefighting, pollution measurement or radiation

detection could employ the same network. The coexistence of these applications

is depicted in Figure 7.1. Coexistence of applications by allowing different users

to share a single network decreases cost and creates a favorable atmosphere for

node contacting. However, this coexistence of applications and having simulta-

neous users introduces some challenges that will be described in this section.

7.3.1 Dynamic Routing and Routing Algorithm

Deployment

In emergency scenarios different application may coexist. For example, data

from victim rescue application operations may share the network with wireless

7.3. Disaster Recovery Scenarios 117

Figure 7.1: Different users in an emergency scenario create a DTN network. A

sink node, the Emergency Coordination Center, collects the information from

the different victims. A critical are where high density of victims located on the

top-right part of the figure.

sensor data from firefighters or other emergencies response teams. Different

applications may need different types of routing algorithms. For example, infor-

mation that contains a notification to a given user or mobile node may be most

favorably routed using a probabilistic routing algorithm such as PRoPHET [30].

Alternately, routing decisions for information resulting from sensor tasks

may depend on the level of importance of the information seen from the point

of view of the application. If the information is important, an epidemic routing

algorithm will be used to improve the delivery performance. Instead, it can be

discarded if the information is made obsolete by other information present in

the same node.

The routing decision may travel with the bundles themselves instead of being

static and exactly the same for all nodes in the network, as we described in

Section 5.3. These policies, in the shape of mobile code, may consider the

local context to choose the behavior that fits best in each situation. Routing

118 Chapter 7. DTN Emergency Scenarios

algorithms are carried using the bundle routing code blocks described in the

previous section.

We may differentiate among three types of routing algorithm deployment in

emergency scenarios.

Firstly, the Bundle Routing Code (BRC) is the routing algorithm employed

by the bundles to choose where the bundle should be forwarded to. These

routing algorithms may travel along with the bundles themselves, as explained

in this section. However, we propose an alternative way of deploying this code

in case this paradigm cannot perform properly for a given application or a given

DTN scenario.

New applications arriving to the emergency zone may perform a routing al-

gorithm deployment before sending its data. After which, bundles may carry

Routing Code Blocks with references to already deployed routing algorithms,

setting the Reference/Value bit (see Section 4.3.1) and expressing the path to

the routing algorithm. During the deployment phase a broadcast bundle con-

taining a Routing Code Block with the routing algorithm is sent to the network.

Additionally, the ”Local copy” bit should be set to allow the routing algorithm

to be copied locally to the Routing Information Tree (RIT) in the appropriate

path indicated in the RIT path field.

Secondly, some routing algorithms need to periodically execute code on every

custodian node. For example, a notification application for users inside the

emergency area may employ a probabilistic routing algorithm such as PRoPHET

[30] to route its information. This kind of routing algorithms need to execute

a code on the custodian nodes to update delivery probabilities for every node

contacted as well as to decrease these probabilities if the nodes are not contacted.

These codes may be deployed by including a Custodian Routing block in a bundle.

In this bundle, the periodicity of the code should be indicated by using the

Periodicity field.

Thirdly, an application may install in the custodian nodes an aggregation

function for network traffic reduction and energy consumption saving purposes

using the Custodian Routing block. Data aggregation is an essential paradigm for

DTN emergency scenarios such as DTN wireless sensor networks that sense infor-

mation from the emergency area. The aim of this procedure is to merge the data

coming from different custodian nodes eliminating possible redundancy, improv-

ing DTN congestion by minimizing the number of transmissions and therefore

improving energy consumption. For example, different data belonging to an ap-

plication from a contamination sensor network placed all along the affected area

7.3. Disaster Recovery Scenarios 119

may be aggregated following different mathematical functions such as average,

summation, maximum, etc. These strategies are fully application dependant,

therefore a general solution for every application employing the network will

probably be inefficient.

Application routing algorithms may recognise in advance these advantages

and take them into account as an extra routing criteria. Address-centric routing

algorithm approaches, that is, finding the shortest path between the source and

the destination can be evolved or combined with a information-centric approach

in which data is consolidated by application-dependent redundant functions.

This paradigm shifts the focus from the traditional address-centric approaches

of networking (finding short routes between pairs of addressable end-nodes) to

a more information-centric approach (finding routes from multiple sources to a

single destination that allows in-network consolidation of redundant data).

For these purposes, bundles may choose to delay its routing for a period

of time in order to maximise application aggregation. Since data aggregation

cannot be performed among different applications, this aggregation delay is an

application related issue and may be calculated in the bundle routing code.

7.3.2 Alleviate DTN Congestion

In scenarios like disaster management, network congestion avoidance is a top

priority. We consider the routing problem to be an optimal resource allocation

challenge. We propose using the RIT update code block to allow the bundles

to inform local and outer custodian nodes about different application-related

issues.

Each time a user leaves the Emergency Coordination Center, they set a

timer indicating when they expect to return. This timer, called Time to Return

(TTR) by the authors of [70], automatically decreases its value as time goes

by. If a user detects another user with a smaller TTR it will try to forward

its information to this user and thus improve the expected time of arrival at

the Emergency Coordination Center. For example, in Figure 7.2, we see how

the sender application from the first custodian node chooses the lower custo-

dian node (doctor0) as its next-hop because it has been informed by another

bundle (Bundle2) about a low Time To Return to the Emergency Coordination

Center. Forwarding bundles to the upper custodian node (doctor2) could cause

congestion.

This is carried out by allowing the bundle agent to execute a concrete method

120 Chapter 7. DTN Emergency Scenarios

present in the code included in the bundle extension, (the RIT update code

extension), as explained in Section 4.3.4.

This information will be used by other bundles to update the information

on outside variables which may cause congestion, which could then be employed

by their routing algorithms. Congestion is highly correlated with routing al-

gorithms and the infrastructure proposed is an excellent way of informing the

different routing algorithms from outer platforms.

Figure 7.2: Bundle2 forwarded from doctor-0 node carries information about

doctor-0’s Time To Return (TTR). After reading this information, Bundle1

message on top chooses doctor-0 as its next custodian.

7.3.3 DTN Lifetime Control

In emergency scenarios, lifetime control may vary from application to applica-

tion. We propose a mechanism beyond the Bundle Lifetime field to indicate

when the bundle’s payload is no longer valid. This mechanism is code-based

and allows the application to control the bundle’s lifetime from an application

7.3. Disaster Recovery Scenarios 121

perspective. Using the lifetime code extension in conjunction with the RIT up-

date code extension, applications are allowed to cancel applications flows and

inform both the intermediate custodian nodes and the sender application.

Figure 7.3: Node node1 executes lifetime code extension for Bundle1, deletes it

and sends an information bundle with a RIT update code extension to cancel

the original bundle flow in the intermediate custodian nodes and the sender

custodian node.

In Figure 7.3 we see how an application sends a bundle containing some

application data. Once this bundle has arrived at the fourth custodian node

it executes a special code using the lifetime code extension to recognise that

the application information carried is no longer valid. This could be due to,

for example, some context change which could only be evaluated locally and

from the point of view of the application. In this case, the bundle generates a

control message using the RIT update code extension to the sender application

and while visiting every DTN node it will inform all of the bundles containing

application information from the same flow (if any). When the bundle arrives at

the source DTN node, it will definitely cancel the application flow. Since local

context information is different from one custodian node to another, we propose

a solution flexible enough to allow the middle DTN custodian nodes to cancel

an application flow, improving DTN congestion as bundles are cancelled.

122 Chapter 7. DTN Emergency Scenarios

Algorithm 20: DTN Lifetime Control Code

1: //Lifetime Control function:

2: function LifetimeControl

3: //Get deadline value from the RIT.

4: if sys.localtime > rit.get(”./application/deadline/value”) then

5: createResponseBundleFromBundle(this.bundle,DELETEBUNDLE)

6: return DELETEBUNDLE

7: end if

8: end function

7.3.4 Dynamic Prioritised Scheduling

Since delays in DTN networks can be very big, bundles containing application

data may pile up at the DTN layer. Once a potential custodian DTN node

becomes available to a given custodian node, the latter will try to forward some

of their bundles to the contacted custodian node. There is the possibility that

other bundles are intending to be forwarded to the same destination custodian

node at the same time. Policies like FIFO may not be enough for some DTN

scenarios. To regulate these situations, a prioritised scheduler inside the custo-

dian node is defined. This scheduler will decide bundle order forwarding and

discarding policies.

In the scenarios described, while two users inside the emergency area are

next to each other, bundles containing information about victims, for example,

may be forwarded to another custodian node. Usually, the time it takes to

forward this information is minimal due to the users being in motion. This is

why it is useful to first forward bundles containing victims with a given state

over others.

In the very same way, if the buffer intended for storing bundles gets full, there

must be a criterium for choosing which bundles should be discarded. Proposals

cited in Section 7.2 are static in the sense that all custodian nodes behave in the

same way. Our proposal provides criteria for dropping bundles in the case that

the buffer gets full, but with a valuable dissimilarity. We let bundles themselves

carry these criteria and update custodian nodes in order to permit application

dynamism when it comes to bundle prioritizing or dropping.

Our proposal consists of including bundle agents running on user’s devices,

7.3. Disaster Recovery Scenarios 123

a prioritised scheduler that orders bundles while taking into account the vic-

tim’s state. The prioritised scheduler must then differentiate among the varying

victim states.

It is necessary to consider that the criteria used to schedule bundles could

change at any given time. Let us consider the possibility of a bigger disaster

which could eventually collapse disaster recovery services. In this case, disaster

recovery coordinators could decide that the information on the casualties, that

is victims of level 0, are no longer important. Or, in a more pessimist scenario,

the coordinator could be forced to let victims of level 1 die. These criteria could

change dynamically within the time of the disaster.

By using the bundle priority extension block, described in Section 7.3.4, bun-

dles not only carry information about the victims, but also carry information

about the criteria to schedule themselves. If the bundle agent finds that the

criteria in a platform has been made obsolete by the one carried by the bundle

it will update itself in the Routing Information Tree (RIT).

Bundles belonging to different applications should not compete directly among

themselves. A round robin structure containing different queues for every ap-

plication is proposed. The platform will go around this structure obtaining the

first n elements of each queue, depending on the weight assigned to every appli-

cation. This weight is determined by how important the application is and is

controlled by the local bundle agent.

7.3.5 Results

In order to verify how useful our proposal is, we conducted several tests examin-

ing a concrete DTN scenario in which different users and different applications

coexist in a single emergency scenario. These applications are broadcast and

news messages, messages for coordinating doctors and information regarding

the location and statuses of victims.

We have modified TheOne [55] simulator to perform several simulations ca-

pable of dynamically employing different routing algorithms depending on the

context and the type of application1,2.

1Source code for routing algorithm can be found at
http://ccd.uab.es/∼cborrego/bundleCodeExtension/DynamicRouting.java

2Simulations in this section include 120 hour tests, on a 15 km2 area with 50 nodes. Message
interval creation from 1 minute to 250 minutes. Message size from 1Kb. to 50Kb.. Node buffer
size varies from 1 Mb. to 20 Mb and the maximum node speed is 8 m/s.

124 Chapter 7. DTN Emergency Scenarios

Users present in the affected area produce a common mobility pattern. When

users leave the Emergency Coordination Center (ECC), they set a timer indi-

cating when they expect to return (TTR). This timer automatically decreases

its value as time goes by. In this case, bundles carried by a DTN node which

detects another node with a smaller TTR, will forward them to another node

with a smaller TTR. This will improve the expected time of arrival to the Emer-

gency Coordination Center. Applications which do not belong to the medical

domain would not understand this field and therefore would not be taken into

account for routing decisions.

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 5 10 15 20 25 30 35 40 45 50

La
te

nc
y

(s
ec

on
ds

)

Data size (Kb.)

Latency

Dynamic
Prophet

TTR
Larod

Figure 7.4: Latency time as a function of the bundle size for three different

DTN routing algorithms and our dynamic proposal, that performs better inde-

pendently of the size of the bundle.

Information services offer the possibility of providing notifications, news and

alerts to nodes inside the affected area. These messages can be intended to

affect the nodes’ movement models, if for example, some emergency stuff needed

to return to the ECC because of some unexpected reason. Since the users

movement models present in the studied area are likely to be predictable, and

depend on node locations, we expect that the notifications and alerts can be

routed optimally using a probabilistic algorithm or a location-aware routing

7.3. Disaster Recovery Scenarios 125

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50

D
el

iv
er

y
ra

tio

Packet size (kb.)

Delivery ratio

Dynamic
Prophet

TTR
Larod

Figure 7.5: Bundle delivery ratio as a function of the bundle size for three

different DTN routing algorithms and our dynamic proposal, that performs

better independently of the size of the bundle.

protocol such as Larod [30], a DTN routing algorithm which combines beacon

less geographical routing with the store-carry-forward paradigm.

The first series of simulations dynamically employed different routing algo-

rithms for the four different applications enumerated before. Depending on

the application, a different routing algorithm is employed. For the medical ser-

vice concerning the data on those injured, a TTR-based routing algorithm3 was

used, while the notification application data used PRoPHET [30], a probabilistic

routing algorithm. Broadcast and news messages were routed using an epidemic

routing protocol [30]. News services may be routed as well using Larod4 routing

protocol if the news were addressed to a specific physical area, for example, an

area where a fire has occurred.

In Figure 7.4 the latency average, (the average time for data to arrive from

the source to the destination), is compared as a function of the size of the

messages. We can see that our proposal that uses the Bundle routing code block

3Source code can be found at http://ccd.uab.es/∼cborrego/dynamicrouting/TTRRouting.java
4Source code can be found at http://ccd.uab.es/∼cborrego/dynamicrouting/Larod.java

126 Chapter 7. DTN Emergency Scenarios

performed better than the ones based on a single routing scheme. In Figure

7.5, the delivered ratio, which is the percentage of messages arrived compared

to the ones sent was studied as a function of the size of the messages. Delivered

ratio obtained, performed best, independently from the size of the message, if

the dynamic routing protocol was used, over the rest of the simulations based

on TTR routing, probabilistic routing or location-aware routing protocols.

 60

 80

 100

 120

 140

 0 50 100 150 200 250

D
el

iv
er

ed
 (

nu
m

be
r)

Number of mess./min.

Number of mess./min. vs Delivered Ratio

Aggregated data
Not aggregated data

Figure 7.6: Delivery ratio studied as a function of the number of messages in

a scenario that uses the custodian block code extension to deploy aggregation

code versus another scenario which does not.

Additional simulations represent a hypothetical disaster area in which bun-

dles chose whether to be forwarded or not to the different available custodian

nodes in terms of the Time To Return(TTR). This information was propagated

using the update code bundle extension described in Section 4.3.4. In Figure

7.8, we analysed bundle arrival with two different alternatives. In a scenario in

which low TTR values were propagated using the update code bundle extension

a high bundle arrival efficiency was obtained while in another scenario where

this extension was not used, the arrival efficiency considerably worse.

Additionally, we compared three different scenarios in which application pri-

orities change at intervals of every one fifth of the simulation time. The first

7.3. Disaster Recovery Scenarios 127

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 0 50 100 150 200 250

La
te

nc
y

(n
um

be
r)

Number of mess./min.

Number of mess./min. vs Latency

Non Agregated data
Aggregated data

Figure 7.7: Latency studied as a function of the number of messages in a scenario

that uses the custodian block code extension to deploy aggregation code versus

another scenario which does not.

scenario did not consider bundle prioritization, the second scenario included a

traditional source bundle prioritization scheme using the bundle priority field

and the third one used the priority extension block, as described in Section 7.3.4.

In Figure 7.9 we can see that our proposal performed better than the schemes

with no prioritization and source-prioritization.

In figures 7.7 and 7.6, we depict a scenario in which local routing protocols

containing information about how to aggregate data messages are deployed by

the active messages. We analysed the delivery ratio and delivery latency in

terms of the number of messages created by the active messages per minute. We

compared both alternatives, using aggregation and without using aggregation.

As a result of this approach, the delivery ratio and the delivery latency was seen

to significantly improve.

128 Chapter 7. DTN Emergency Scenarios

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90

B
un

dl
es

 a
rr

iv
ed

 to
 d

es
tin

at
io

n

Number of bundles

Bundle arrival efficiency

Using update extension
No update extension

Figure 7.8: Agent arrival efficiency as a function of the number of messages.

The scenario which uses the update code bundle extension performs better than

another scenario which does not.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 50 100 150 200 250 300

S
ec

on
ds

 le
ss

 th
an

 th
e

av
er

ag
e

Number of bundles

Prioritized bundles over total mean

Dense scenario
Random scenario

High number of prioritized

Figure 7.9: Prioritised bundles over total mean as a function of the number

of messages. Dynamic prioritization performs better than the schemes with no

prioritization and source-prioritization.

Part IV

Conclusions and Future Lines

“Far from being a silver bullet for all sensing applications, there is still a lot

of work to do to improve this general purpose network.”

“Stupidity lies in wanting to draw conclusions.”

Gustave Flaubert

“Observation: I can’t see a thing
Conclusion: Dinosaurs.”, Cosmos

Carl Sagan

8
Conclusions and Future Lines

I
N CHAPTER 1, the objectives of this thesis were presented: the main

goal of this study was to provide different mechanisms to improve the

coexistence of several applications in Delay and Disruption Tolerant Net-

work (DTN) scenarios by means of carrying different codes along with the data

messages themselves. In this chapter, we discuss how we have fulfilled these

objectives and we present future lines of research in which we are already work-

ing on. In Section 8.1, we explain the evolution of the architecture proposal

in terms of the different data structure employed as well as a resume of the

different applications of the proposed architecture presented in this thesis. Fol-

lowing, in Section 8.2, there is a brief discussion on limitations of our proposal

and additional topics which still remain to be fully analyzed. Finally, in Section

8.3, future lines of study and research will be presented.

131

132 Chapter 8. Conclusions and Future Lines

Figure 8.1: The big picture: the architecture proposal, the different reifications

and their applications.

8.1 Conclusions

In Chapter 1, the objectives of this thesis were presented. The main goal of this

study was to provide different mechanisms to improve the coexistence of several

applications in Delay and Disruption Tolerant Network scenarios by means of

carrying different codes along with the data messages themselves. In this section,

we discuss how we have fulfilled this objective.

In Figure 8.1, a general diagram of the content of this thesis is presented.

Depicted in grey boxes, the different state-of-the-art technologies involved in

this study are diagrammed. On one hand, on the top right part of the figure,

the Delay and Disruption Tolerant architecture [18], its Bundle Protocol [84]

and the Bundle Extension [89] are depicted. In this document, information

8.1. Conclusions 133

about these protocols can be found in Section 2.3. Additionally, on the top left

part of the figure, mobile agents, a specific form of mobile code are diagrammed.

Two different types of mobile agents employed in this study are illustrated.

In Section 2.5, these technologies are explained. On the other hand, on the

bottom part of the figure, the Grid Computing Technology is pictured. Finally,

on the bottom left part of the figure, the wireless sensor networks technology is

depicted. In sections 6.2 and 5.2, the states of the art of Grid Computing and

WSN concerning DTN networks are discussed.

Depicted in brown, the active message paradigm explained in Chapter 3 is

diagrammed. Three different applications of this paradigm have been proposed

following the three different reifications of the proposed architecture described in

Section 5.3.1. The order in which the different reifications of our active message

concept described in Section 3.3, is the order in which these ones were proposed.

We do not discard proposing some others, as introduced in Chapter 1, however

a unique solution to cover all the possible scenarios and applications is not a

trivial issue.

In Chapter 5, a general-purpose sensing mobile node network that can run

several applications simultaneously in scenarios with limited connectivity has

been introduced. The proposal addresses a number of issues surrounding the

coexistence of applications, the routing of information, and the shared use of

the mobile node. The cornerstone of this proposal is mobile code, which works

at two different levels: on the one hand, as the user application, the program

with the sensing tasks; and on the other hand, at the message level, allowing

messages to make the routing decision by themselves independently from other

messages’ routing policies.

The initial challenge has not been easy to overcome. There has been many

issues to solve with no evident answers. However, in the end, the final network

achieves its goals fulfilling all the requirements thanks to a combination of inter-

related mechanisms. It is noteworthy that the dynamic multi-routing concept,

is based on having the routing algorithm in the active messages, instead of in

the mobile node. In this way, every application can use its own algorithm and

local context information, thus optimizing global routing. Also remarkable is

the mechanism allowing active messages to influence the mobile node movement,

fairly and respectfully to other messages.

Different experiments were carried out with different simulations to obtain

basic parameters such as active message’s migration time and signal range. It

was also useful for checking the feasibility of the proposal. The simulations have

134 Chapter 8. Conclusions and Future Lines

shown how the different strategies used significantly improve the delivery ratio

and delivery latency of messages.

The proposed network shows promises in a variety of scenarios, especially

where communication is not always possible, such as environmental sensing,

unmanned aerial vehicle networks, or machine surveillance and person seeking

in the aftermath of wars.

This first application, DTN Wireless Sensor Networks in the figure, uses mo-

bile agents to define the general purpose, multi-application mobile node sensor

network for intermittently connected networks. The data structure employed to

carry the application information is mobile code which is stored inside the code

variables. In general terms, it is mainly code travelling from node to node in

order to be executed, as depicted in the top-left green box.

On the other hand, we have also presented in this thesis an intelligent system

to transparently integrate intermittently connected wireless sensor networks to

computing grid infrastructures. We have presented a new paradigm called store-

carry-process-and-forward, which proposes a way of processing data while the

information is stored, waiting for the DTN information to be forwarded.

As a practical example of our proposal, we have introduced a computer el-

ement service which provides access to a general purpose sensing mobile node

network that can run several applications simultaneously in scenarios with lim-

ited connectivity. The proposal addresses a number of issues around the coex-

istence of grid applications, the routing of the information, and the shared use

of the mobile node. The cornerstone of this proposal are the active messages,

which work at two different levels: on the one hand, as the user application, the

program with the sensing tasks; and on the other hand, allowing messages to

make the routing decision by themselves and independently from other messages’

routing policies.

This second application of the active depicted as A STCPF (Store-carry-

process-and-forward paradigm for active Sensor Grids uses as well mobile agents

but in a more general way. The mobile code is not just an autonomous code

which migrates from node to node, as in the previous reification. This code,

instead, can be seen as a container for different codes such as routing codes

and processing codes, which are launched by the local execution environment.

As explained in Section 6.3.1, the code carried by the active messages may be

stopped and resumed in a new custodian node. Therefore, the data structure

carried by the custodian nodes is still a mobile code which carries the application

data but with a subtle difference: different code methods are launched by the

8.2. Heading Beyond 135

custodian node for every different functionality such as routing, application

process, prioritisation, etc.

Finally, we have presented a system based on the Bundle Protocol which

introduces the possibility to the bundles of executing code in the very custodian

nodes. We have defined several extensions for the Bundle Protocol to allow the

bundles to carry code to improve different DTN issues. Five types of code blocks

that may be optionally included in a bundle have been defined. Bundle code may

provide mechanisms to deal with congestion, and lifetime control management,

code deployment and data aggregation. Additionally, bundles can be scheduled

using dynamic policies exchanged and carried by other bundles for prioritization

purposes to avoid important bundles from being blocked. We have described the

feasibility, utility and usefulness of this proposal by applying it to a scenario of

disaster recovery systems as described in Section 7.3. We have also included in

Section 7.3.5 some feasibility performance studies for different DTN applications

which conclude that our proposal is valuable for some concrete scenarios.

This third application that follows the active message paradigm is depicted

in the top right hand side of Figure 8.1. It uses both the Bundle Protocol

described in Chapter 2 and the active message paradigm described in Chapter

3. In this case, the data structure that carries the application information is the

bundle, as defined in the Bundle Protocol [84]. These bundles may optionally

carry, using Bundle blocks described in [89], different function methods which

work the very same way as the methods in the previous application, but without

the need of using mobile agent infrastructure.

8.2 Heading Beyond

It is a fact that the complexity of the system as a whole has increased by moving

the routing code implementation from the host to the bundle itself. However, the

advantages of employing such a paradigm in some scenarios, such as disaster re-

covery systems, grid computing or wireless sensor networks, absolutely outweigh

the impediments related to a system with added complexity. The aim of our

approach is not only to improve transmission time, but to provide a flexible and

generic DTN infrastructure capable of handling different routing behaviors and

application necessities. The routing algorithms are easily deployed using the

very same bundles which carry the application data itself. Coexistence of dif-

ferent applications needing to use different routing algorithms can not be easily

136 Chapter 8. Conclusions and Future Lines

deployed with other classic DTN proposals. Our proposal overcomes obstacles

which would not be easily performed with traditional approaches.

However, using a flexible architecture has its drawbacks. Every DTN node

must include an executing environment, which in some scenarios might be too

expensive because of computation or energy consumption reasons. In addition,

there is an overhead of information transmitted since the active messages are

carrying their routing algorithm in addition to the application data itself. Nev-

ertheless, these static routing codes can be cached on the different execution

environments, to efficiently manage the distribution of agent codes. Caching

these active message codes improves and speeds up migrations.

We have not covered the problem of greediness when it comes to accept

or forward the active messages. In scenarios like the one proposed in Chapter

5, the robot network is shared by the different applications. Fairness while

balancing the use of the network resources from the different applications is easy

to control since there is just one type of custodian node. However, in scenarios

like the one described in Chapter 7, the different custodian nodes belong to

different applications which may not always have a common goal. Credit-based

mechanisms like the ones proposed in [104] should be analyzed to prevent greedy

applications from monopolizing the network resources.

As commented in Chapter 3, beacon messages are sent by DTN nodes at

certain intervals of time to allow neighbours to be discovered. In order to be

flexible enough, we allow the very same application messages flag in order to

be announced the desired RIT fields from the RIT application branch. In a

scenario with many applications, this may not scale properly. It is the node’s

responsibility to choose among the different RIT fields to be announced taking

into account variables such as average contact time, number of applications,

connection speed, etc.

Although security is an important issue, security measures are not directly

covered in this study. We have enumerated in Section 3.6 the security considera-

tions which should be taken into account in our proposal. These considerations

include: code confidentiality, authenticity and integrity, code confidentiality and

integrity, key management, routing data authenticity and integrity and message

forwarding non-repudiability. Our experience shows that these services can be

obtained by different means such as by securing the bundles themselves as in [45],

by using a PKI infrastructure, by using security tokens based on Identity Based

Cryptography as in [5] or by employing trust models as in [78]. Additionally,

the authors of this paper have previously published studies about access control

8.3. Future Lines 137

Paradigm Message Supervisor Adaptive Pre

Classic Application data Not needed No Not needed

Source Application data Not needed No Not needed

Optimization Optimal Parameter

Node Application data Not needed Yes Not needed

Optimization Optimal Parameter

Code

Application code

Switching Application data Needed Yes Not needed

Control Optimal Parameter

Code

Gain Application data Needed Yes Simul

Scheduling Optimal Parameter

Code

Table 8.1: Optimization techniques.

to routing information trees in the context of DTN networks. An example of

these studies can be found in [81].

8.3 Future Lines

Far from being a silver bullet for all sensing applications, there is still a lot of

work to do to improve this general purpose network. One of the areas in which

we are working is security. In the security section, basic requirements have been

described, as well as some well-known mechanisms like IBC. With the exception

of the non-repudiation requirement, the other ones have been addressed in the

implementation. However, this has not been taken into consideration in the

simulations. We especially plan to perform some research regarding the non-

repudiability requisite, since the current protocols seem to be unsuitable for

our scenario. Another projected line of research is the study of the effect of

having different routing algorithms in the same network on the global routing

performance, and how mobile nodes could participate in the routing process as

facilitators.

138 Chapter 8. Conclusions and Future Lines

Further, we have been able to gain significant experience in scheduling sys-

tems in order to prioritise important information. We believe that this schedul-

ing can be joined in the grid proposal, in order to improve services such as

computing and storage. In future work we wish to propose mechanisms to ex-

change bundle priorities among different agent platforms to accept or deny agent

immigration and to include a way to interrupt non-prioritised bundles in order

to allow prioritised ones to run.

Another very interesting topic which we are intended to study is how routing

application information from a given application may be employed by other

applications. Research lines such as trust models or fuzzy role-based access

control schemes may be very useful to apply. This issue has some security

consideration which should be taken into account.

When it comes to giving a general-purpose DTN solution for different applica-

tions with different routing needs, coexisting together, routing algorithms must

be dynamically deployed all over the DTN nodes. Internal optimal DTN routing

algorithms parameters or application creation network variables such as the num-

ber of copies of a message to be sent, may change in terms of the context, from

application to application, and from DTN node to DTN node. As a future line

of research we are willing to introduce several context-aware, application-based

dynamic configuration procedures to improve DTN routing protocols and appli-

cation creation decisions in order to dynamically obtain these internal optimal

DTN routing algorithms parameters or application creation network variables.

We intend to define a set of different procedures to optimise these routing

parameters. In Table 8.1, a summary of the different techniques willing to

be implemented is presented. We distinguish among source-based optimising

procedures from the ones on which the optimization is done on every DTN

node. Our intention is to implement different approaches that may carry just

the application data, optimal routing parameters or the optimization code itself.

A supervisor node could be useful to have global view of the network and in

an adaptive way calculate optimal network routing parameters. This supervisor

node could obtain routing and application creation optimal parameters from the

scenario variability, historical information, on the fly simulated data or context

information.

Part V

Appendixes

“Taking into account that our proposal is quiet specific, in order to simulate

scenarios implemented with our proposal several changes must be done to

the original The ONE simulator.”

“Animals can adapt to problems and make inventions, but often no
faster than natural selection can do its work. The world acts as its
own simulator in the case of natural selection.”

Vernor Vinge

“It (the computer) is a medium that can dynamically simulate the de-
tails of any other medium, including media that cannot exist physically.
It is not a tool, although it can act like many tools.”

Alan Kay

A
Simulations Benchmarks

S
IMULATIONS ARE AN excellent way of testing innovate proposals.

There are different simulators which represent DTN networks. Among

the available ones, the ONE [55], provides a way of generating node

movement using different movement models, defining routing messages between

nodes with various DTN routing algorithms and sender and receiver types and

visualizing both mobility and message passing in real time in its graphical user

interface. TheONE can import mobility data from real-world traces or other

mobility generators. It can also produce a variety of reports from node move-

ment to message passing and general statistics. The most interesting issue about

this simulator is that changes to its code are very easy to conduct. Taking into

account that our proposal is quiet specific, in order to simulate scenarios im-

plemented with our proposal several changes must be done to the original The

ONE simulator. In this section these changes are presented.

In Figure A.1, the classes needed to implement mobile agents in the ONE

simulator are depicted. This includes a class caching for already visited rout-

ing algorithms for performance improving, a movement model which simulates

doctors entering and exiting the disaster area, some fields added the messages

141

142 Appendix A. Simulations Benchmarks

description, such as the size of the agent and payload and the DynamicRouter

class which handles different routing algorithms behaviors dynamically.

A.1 Active Message Class

As described in Chapter 3, application data is carried by active messages, mes-

sages which, besides data, also carry code. These structures are not directly

provided by The ONE simulator. A class which handles precisely this has been

added to The ONE simulator. Application messages are carried by the active

messages which also contain the routing algorithms which will be employed on

every hop the bundle of information will perform. As seen in Figure A.2, three

different classes have been defined to distinguish among the three different reifi-

cations described in Chapter 4.

For performance purposes, and as described in [33], these static routing codes

have been cached on the different DTN node execution environments platforms,

to efficiently deal with the distribution of agent codes. Caching these mobile

agent codes improves and speeds up active message forwarding.

A.2 Reports

The ONE reports are very useful to understand the results of the simulations.

Unfortunately, the reports provided by The ONE official distribution are not

very useful when it comes to analysing the impact of dynamic routing on dif-

ferent applications. Since the ONE reports just give information about global

network performance, a first report which provides statistics such as message

creation, delivery ratio and latency time statistics for the different applications

in the scenario has been defined. Additionally, in Figure 5.5, the result of a mod-

ified the ONE report which produces a Google’s motion chart1 is depicted. In

the figure we can see four different applications which represent a DTN scenario.

The report creates a four dimension graphic in which delivery ratio, latency

time, number of delivered are analyzed as a function of the time for the differ-

ent applications. These reports have been extremely useful to understand how

the network evolves when introducing new elements such as DTN custodian

nodes or new applications with different routing needs. For example, in Figure

1http://tinyurl.com/googlmotion

A.2. Reports 143

Figure A.1: The ONE dynamic routing, motion report and class caching

144 Appendix A. Simulations Benchmarks

Figure A.2: The three different active message reifications are simulated.

Figure A.3: Motion report

A.3, the applications with bundle suffix, their data messages are routed using a

single routing protocol. Instead, the applications with dyn suffix each employ a

different protocol chosen by the application itself. The dynamic approach is sig-

nificantly better in terms of the number delivered (circle area), latency (x-axis)

and delivery ratio (y-axis) for the four applications.

A.3. Routing Algorithm Parameters Optimization Model 145

Figure A.4: Report class for The ONE

A.3 Routing Algorithm Parameters Optimiza-

tion Model

As introduced in Section 8.3, internal optimal DTN routing algorithms param-

eters or application creation network variables, may change in terms of the

context, from application to application, and from DTN node to DTN node. In

order to implement several context-aware, application-based dynamic configu-

ration procedures to improve DTN routing protocols and application creation

decisions, we need first to establish which are the routing parameters and appli-

cation creation network variables that will be modified.

Redundancy using codes like Reed-Solomon may be applied while sending

copies of application messages in opportunistic networks. When the contact

windows are very small, sending fractions of code-message-blocks may perform

better. A redundancy factor k is chosen in order to allow s sized messages

fragmentation into n, s/m sized blocks (k = n/m, k ≥ 1). Reconstruction is

performed at the destination node from any m different fragments. On the other

hand, each fragment can be originally replicated using a factor L, as described

in routing algorithms such as Spray and Wait [30]. In Figure A.5, message

redundancy and replication is depicted. The different fragments travel inde-

pendently from node to node heading to their destination where information is

146 Appendix A. Simulations Benchmarks

Figure A.5: Replication and redundancy

de-fragmented or eventually discarded. We have developed a The ONE exten-

sion which allows us to study the effect of modifying on the fly the variables

k, L, s factors to improve latency times and delivery ratio. In future research

studies the results will be presented.

Part VI

Bibliography

Bibliography

[1] G. Aad et. al. The ATLAS Experiment at the CERN Large Hadron Collider.

Journal of Instrumentation, Volume 3, August 2008.

[2] I.F. Akyildiz, Y. Sankarasubramaniam, E. Cayirci. Wireless sensor net-

works: a survey. Computer Networks Volume 38, Issue 4, 15 March 2002,

Pages 393-422, 2002.

[3] H. M. Almasaeid, A. E. Kamal. Data delivery in fragmented wireless sensor

networks using mobile agents. Proceedings of the 10th ACM Symposium on

Modeling, analysis, and simulation of wireless and mobile systems China,

Crete Island, Greece: ACM, 2007.

[4] J. Andreeva, C. Borrego, et al. Automating ATLAS Computing Opera-

tions using the Site Status Board. Computing in High Energy and Nuclear

Physics 2012, New York, NY, USA, 21 - 25 May, 2012.

[5] N. Asokan, K. Kostiainen, P. Ginzboorg, J. Ott, C. Luo. Applicability of

identity-based cryptography for disruption-tolerant networking. Workshop

on Mobile Opportunistic Networks, MobiOpp 2007, 2007.

[6] F. Bellifemine, G. Rimassa, A. Poggi. JADE - A FIPA-compliant Agent

Framework. Proceedings of the 4th International Conference and Exhibi-

tion on The Practical Application of Intelligent Agents and Multi-Agents,

London, 1999.

[7] M. Blanchet. Delay-Tolerant Networking Bundle Protocol IANA Registries.

RFC 6255, http://tools.ietf.org/html/rfc6255, May 2011.

[8] D. Boneh, M. Franklin. Identity-Based Encryption from the Weil Pairing.

SIAM J. Comput., Volume 32, Number 3, Pages 586-615, March 2003.

149

150 Bibliography

[9] T. Berners-Lee, R. Fielding, L. Masinter. RFC 3986. Uni-

form Resource Identifier (URI): Generic Syntax.. RFC 3986,

http://www.ietf.org/rfc/rfc3986.txt, January 2005.

[10] C. Borrego. Publicación de Información y Monitorización relativa usando

Agentes Móviles en la Computación Grid. Master Thesis Research Study,

DOI: 10.1109/TIT.2011.2119465, 2008.

[11] C. Borrego, S. Robles. A store-carry-process-and-forward Paradigm for

Intelligent Sensor Grids. Journal of Information Sciences, DOI information:

10.1016/j.ins.2012.08.016, 2013.

[12] C. Borrego, S. Robles. Relative Information in Grid Information Service

and Grid Monitoring Using Mobile Agents. 7th International Conference on

Practical Applications of Agents and Multi-Agent Systems PAAMS 2009,

2009.

[13] C. Borrego et al. for ATLAS collaboration. ATLAS Site Status Board. Auto-

matic exclusion and a monitoring on ATLAS computing activities. Iberian

Grid Infrastructure Conference IBERGRID 2011, 2011.

[14] C. Borrego, S. Robles. Seguridad en la planificación de agentes móviles

en redes DTN. Reunión Española sobre Criptoloǵıa y Seguridad de la

Información, RECSI 2010, 2010.

[15] C. Borrego, S. Robles. Mobile Agent Virtual Organisation to Improve Rel-

ative Information in Grid Services. Proceeding 3PGCIC ’10 Proceedings

of the 2010 International Conference on P2P, Parallel, Grid, Cloud and

Internet Computing, 2010.

[16] N. Bulusu, D. Estrin, L. Girod, J. Heidemann. Scalable coordination for

wireless sensor networks: self-configuring. International Symposium on

Communication Theory and Applications (ISCTA 2001), Ambleside, UK,

July 2001.

[17] G. Burdman, M. Perelstein, A. Pierce. Large Hadron Collider Tests of the

Little Higgs Model. Journals of Phys. Rev. Lett., Volume 90, Issue 24, 2003.

[18] S. Burleigh. Delay-Tolerant Networking Architecture. RFC 4838,

http://tools.ietf.org/html/rfc4838, April 2007.

Bibliography 151

[19] S. Burleigh. Bundle Protocol Extended Class Of Service (ECOS). Internet-

Draft, http://tools.ietf.org/html/draft-irtf-dtnrg-ecos-03, October 2010.

[20] S. Burleigh. Licklider Transmission Protocol - Specification. RFC 5326,

http://tools.ietf.org/html/rfc5326, September 2008.

[21] S. Burleigh, E. Jennings, J. Schoolcraft. Autonomous Congestion Control

in Delay-Tolerant Networks. American Institute of Aeronautics and Astro-

nautics, 2007.

[22] B. Burns, O. Brock, B.N. Levine. Autonomous enhancement of disruption

tolerant networks. International conference on Robotics and Automation,

ICRA 2006, 2006.

[23] Y.U. Cao, A.S. Fukunaga, A.B. Kahng. Cooperative Mobile Robotics: An-

tecedents and Directions. Journal of Autonomous Robots, Volume 4, Pages

226-234, 1997.

[24] V. Cahill, S. Farrell, J. Ott. Special issue of computer communications

on delay and disruption tolerant networking. Computer Communications

Volume 32, Issue 16, 15 October 2009, Pages 1685-1686, 2009.

[25] A. Carzaniga, G.P. Picco, G. Vigna. Is Code Still Moving Around? Looking

Back at a Decade of Code Mobility. Companion to the proceedings of the

29th International Conference on Software Engineering, 2007.

[26] B. Chen, H.H. Cheng, J. Palen. Mobile-C: a mobile agent platform for

mobile C-C++ agents. Software—Practice & Experience archive, Volume

36 Issue 15, December 2006.

[27] B. Chen, H.H. Cheng, J. Palen. Agent-Based Real-Time Computing and Its

Applications in Traffic Detection and Management Systems. ASME 2004

International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference (IDETC/CIE2004), 2004.

[28] B. Chen, W. Liu. Mobile Agent Computing Paradigm for Building a Flexible

Structural Health Monitoring Sensor Network. Computer-Aided Civil and

Infrastructure Engineering, Volume 25, Issue 7, Pages 504–516, October

2010.

152 Bibliography

[29] A. Chen, Y. Tang, Y. Liu, Y. Li. MAGMS: Mobile Agent-Based Grid

Monitoring System. Lecture Notes in Computer Science, ISSN 0302-9743,

2006.

[30] H. Che-Jung, L. Huey-Ing, S. Winston. Opportunistic routing - A review

and the challenges ahead. Computer Networks, Volume 55, Issue 15, Pages

3592-3603, DOI 10.1016/j.comnet.2011.06.021, 2011.

[31] J. Cucurull. Efficient Mobility and Interoperability of Software Agents.

Phdthesis, Universitat Autònoma de Barcelona, 2008.

[32] J. Cucurull, R. Mart́ı, G. Navarro-Arribas, S. Robles, J. Borrell. Agent

mobility architecture based on IEEE-FIPA standards. Computer Commu-

nications Volume 32, Issue 4, March 2009.

[33] J. Cucurull, G. Navarro-Arribas, R. Mart́ı, G. Navarro-Arribas, S. Robles,

J. Borrell. An efficient and secure agent code distribution service. Software:

Practice and Experience, Volume 40, Issue 4, Pages 363–386, April 2010.

[34] K Czajkowski, S Fitzgerald, I Foster, C Kesselman. Grid Information

Services for Distributed Resource Sharing. 10th IEEE International Sym-

posium on High Performance 2001, Pages 181-194, 2001.

[35] F. De Rango, M. Tropea; G. B. Laratta, S. Marano. Hop-by-Hop Local

Flow Control over InterPlaNetary Networks based on DTN. Architecture,¿

IEEE ICC 2008, Bejing, China, May 2008.

[36] S. Dimitriou, V. Tsaoussidis. Effective Buffer and Storage Management in

DTN Nodes. International Conference on Ultra Modern Telecommunica-

tions and Workshops, 2009.

[37] N. Dimokas, D. Katsaros, L. Tassiulas, Y. Manolopoulos. High performance,

low complexity cooperative caching for wireless sensor networks. Journal

Wireless Networks, Volume 17 Issue 3, April 2011.

[38] G. Dong, W. Tong. A Mobile Agent-based Grid Monitor Architecture. Com-

puter Systems and Applications, AICCSA’07. IEEE/ACS, 2007.

[39] L.L. Errol, X. Guoliang. Relay Node Placement in Wireless Sensor Net-

works. IEEE Transactions on Computers, Volume 56, Pages 134-138, 2007.

Bibliography 153

[40] X. Espinal, C. Borrego, et al. for ATLAS collaboration. Distributed AT-

LAS computing activities. IBERIA Proceedings of the 2nd Iberian Grid

Infrastructure Conference, Pages 19-30 Porto, Portugal, May 12-14, 2008.

[41] S. Farrell, V. Cahill. Delay-and Disruption-Tolerant Networking. Artech

House, Inc. Norwood, MA, USA, 2006.

[42] J. Flix, C. Borrego, et al. File Transfer Service and CMS data transfer

optimizations at PIC Tier-1 center. EGEE 2007 Conference, Budapest,

2007.

[43] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance

Computing Applications, Vol. 15, No. 3, Pages 200-222, 2001.

[44] G. Fox Dennis, D. Gannon , M. Thomas. A Summary of Grid Computing

Environments. Concurrency and Computation: Practice and Experience,

Special Issue Grid Computing Environments, Volume 14, Issue 13-15, Pages

1035–1044, December 2002.

[45] C. Garrigues, S. Robles, J. Borrell. Securing dynamic itineraries for mobile

agent applications. Journal of Network and Computer Applications, Volume

31, Issue 4, Pages 487-508, November 2008.

[46] W. Guiyi, L. Yun, V. Athanasios et al. PIVOT: An adaptive information

discovery framework for computational grids. Information Sciences. Volume

180 Issue 23, December 2010.

[47] B. Hashii, S. Malabarba, R. Pandey et al. Supporting reconfigurable security

policies for mobile programs. Computer Networks, Volume 33, Issue 1-6,

June 2000.

[48] R.L. Henderson. Job Scheduling Under the Portable Batch System. IPPS

’95 Proceedings of the Workshop on Job Scheduling Strategies for Parallel

Processing, 1995.

[49] D. Henriksson. A Caching-Based Approach to Routing in Delay-Tolerant

Networks. Proceedings of 16th International Conference on Computer Com-

munications and Networks, ICCCN 2007, 2007.

154 Bibliography

[50] F. Hess. Efficient Identity Based Signature Schemes Based on Pairings.

Revised Papers from the 9th Annual International Workshop on Selected

Areas in Cryptography, ser. SAC ’02. London, UK, Springer-Verlag, 2003.

[51] G. Hoblos, M. Staroswiecki. Optimal design of fault tolerant sensor net-

works. IEEE International Conference on Control Applications, Anchorage,

AK, September 2000, Pages 467–472, 2000.

[52] Z.P.D. Hossein, C. Schlegel, M.H. MacGregor. Distributed optimal dynamic

base station positioning in wireless sensor networks. Computer Networks,

Volume 56, Issue 1, January 2012.

[53] S. Jain, K. Fall, R. Patra. Routing in a delay tolerant network. Applications,

Technologies, Architectures, and Protocols for Computer Communication:

Proceedings of the 2004 conference on Applications, technologies, architec-

tures, and protocols for computer communications; 30 Aug.-03 Sept, 2004.

[54] J-R. Jiang, Y-L. Lai, F-C. Deng. Mobile Robot Coordination and navigation

with directional antennas in positionless Wireless Sensor Networks. Inter-

national Journal of Ad Hoc and Ubiquitous Computing, Volume 7, Number

4, 2011.

[55] A. Keränen, J. Ott, T. Kärkkäinen. The ONE simulator for DTN protocol

evaluation. Proceeding Simutools ’09 Proceedings of the 2nd International

Conference on Simulation Tools and Techniques, 2009.

[56] S. Kremer, O. Markowitch, J. Zhou. An Intensive Survey of Fair Non-

Repudiation Protocols. Computer Communications Volume 25, Issue 17,

2002.

[57] A. Krifa, C. Barakat, T. Spyropoulos. Message drop and scheduling in

DTNs: Theory and practice.. Technical report, HAL INRIA, 2010.

[58] L. Krishnamachari, D. Estrin, S. Wicker. The impact of data aggregation in

wireless sensor networks. Proceedings of the 22nd Distributed Computing

Systems Workshops International Conference, 2002.

[59] H. Kuang, L.F. Bic, M.B. Dillencourt. , Iterative grid-based computing

using mobile agents. 2002 International Conference on Parallel Processing

(ICPP’02), Pages 109-113, 2002.

Bibliography 155

[60] E. Laure, S.M. Fisher, A. Frohner, C. Grandi, P. Kunszt. Programming the

Grid with gLite. Computational Methods in Science and Technology, Pages

33-45, 2006.

[61] S. Lee, M. Younis. Optimized relay placement to federate segments in wire-

less sensor networks. IEEE Journal on Selected Areas in Communications,

Volume 28, Pages 742-752, June 2010.

[62] L. Lefävre, J.P. Gelas. Towards interplanetary Grids. In Workshop on

Next Generation Communication Infrastructure for Deep-Space Communi-

cations held in conjunction with the Second International Conference on

Space Mission Challenges for Information Technology (SMC-IT), Pasadena,

California, July 2006.

[63] J. Leitner. Multi-robot Cooperation in Space: A Survey. Proceeding AT-

EQUAL ’09 Proceedings of the 2009 Advanced Technologies for Enhanced

Quality of Life, 2009.

[64] Q. Li, D. Rus. Communication in disconnected ad hoc networks using

message relay. Journal of Parallel and Distributed Computing Volume 63,

Issue 1, Pages 75-86, January 2003.

[65] F. Li, N. Seddigh, B. Nandy, D. Matute. An Empirical Study of Today’s

Internet Traffic for Differentiated Services IP QoS. Proceedings of the Fifth

IEEE Symposium on Computers and Communications, 2000.

[66] H.B. Lim, Y.M. Teo, P. Mukherjee, V.T. Lam et al. Sensor Grid: Integra-

tion of Wireless Sensor Networks and the Grid. Proc. of the IEEE Conf.

on Local Computer Networks, 2005.

[67] A. Lindgren, K.S. Phanse. Evaluation of Queueing Policies and Forwarding

Strategies for Routing in Intermittently Connected Networks. First Inter-

national Conference on Communication System Software and Middleware,

2006.

[68] S.K. Madria, M. Mohania, S.S. Bhowmick et al. Mobile data and trans-

action management. Information Sciences, Volume 141, Issue 3-4, Pages

279-309, April 2002.

[69] R. Mart́ı, S. Robles, A. Mart́ın-Campillo, J. Cucurull. Providing early

resource allocation during emergencies: The mobile triage tag. Journal of

156 Bibliography

Network and Computer Applications Volume 32, Issue 6, Pages 1167-1182,

November 2009.

[70] A. Mart́ın-Campillo, C. Mart́ınez-Garćıa, J. Cucurull, R. Mart́ı, S. Robles,

J. Borrell. Mobile Agents in Healthcare, a Distributed Intelligence Approach.

Studies in Computational Intelligence, Volume 309/2010, 49-80, 2010.

[71] K. McCloghrie, D. Perkins, J. Schoenwaelder. Structure of

Management Information Version 2 (SMIv2). RFC 2578,

http://tools.ietf.org/html/rfc2578, April 1999.

[72] J. Ott, E. Hyytia, P. Lassila, T. Vaegs, J. Kangasharju. Floating content:

Information sharing in urban areas. IEEE International Conference on

Pervasive Computing and Communications (PerCom), 2011.

[73] E. Pignaton de Freitas. Cooperative Context-Aware Setup and Performance

of Surveillance Missions Using Static and Mobile Wireless Sensor Networks.

Halmstad University Dissertations, ISBN-978-91-87045-00-4, 2011.

[74] J. Polastre, J. Hill, D. Culler. Versatile low power media access for wireless

sensor networks. Proceeding SenSys ’04 Proceedings of the 2nd interna-

tional conference on Embedded networked sensor systems, 2004.

[75] I. Psaras, N. Wang, R. Tafazolli. Six years since first DTN papers. Is

there a clear target? 1st Extreme Workshop on Communication (Extreme-

Com2009), Laponia, Sweden, 2009.

[76] A. Puliafito, O. Tomarchio. Using mobile agents to implement flexible net-

work management strategies. Computer Communications, Volume 23, Issue

8, 1 April 2000, Pages 708-719, 2000.

[77] A. Ranganathan, K.A. Berman. Dynamic state-based routing for load bal-

ancing and efficient data gathering in wireless sensor networks. 2010 In-

ternational Symposium on Collaborative Technologies and Systems (CTS),

2010.

[78] S. Robles, J. Borrell, J. Bigham, L. Tokarchuk. Design of a trust model

for a secure multi-agent marketplace. Proceedings of the fifth international

conference on Autonomous agents, 2001.

Bibliography 157

[79] L.H. Sahasrabuddhe, B. Mukherjee. Multicast routing algorithms and pro-

tocols: a tutorial. Network, IEEE, Volume 14 , Issue 1, Pages 90-102, 2000.

[80] M. Saleem, G. Di Caro, M. Farooq, M. Muddassar. Swarm intelligence

based routing protocol for wireless sensor networks: Survey and future di-

rections. Information Sciences, Volume 181, Issue 20, Pages 4597-4624,

DOI: 10.1016/j.ins.2010.07.005, October 2011.

[81] A. Sánchez, C. Borrego, S. Robles, J. Andújar. Access control for pro-active

messages in DTN networks. Proceedings for the XII Reunión Española

sobre Criptoloǵıa y Seguridad de la Información, 2012.

[82] G. Sandulescu, S. Nadjm-Tehrani. Optimising Replication versus Redun-

dancy in Window-aware Opportunistic Routing. Proceedings of Interna-

tional Conference on Communication Theory, Reliability, and Quality of

Service, (part of NexCOMM 2010), IEEE, June 2010.

[83] J. Scott, P. Hui, J. Crowcroft, C. Diot. Haggle: A Networking Architecture

Designed around Mobile Users. Proceedings for the Third IFIP Wireless

on Demand Network Systems Conference, 2006.

[84] K. Scott, S. Burleigh. Bundle Protocol Specification. RFC 5050,

http://tools.ietf.org/html/rfc5050, November 2007.

[85] M. Seligman, K. Fall, P. Mundur. Storage routing for dtn congestion con-

trol. Wireless Communications & Mobile Computing, Volume 7, Issue 10,

December 2007.

[86] A. Seth, S. Keshav. Practical Security for Disconnected Nodes. Proceedings

of the 1st IEEE ICNP Workshop on Secure Network Protocols, 2005.

[87] T.K. Shih. Mobile agent evolution computing. Information Sciences, Volume

137, Issues 1–4, Pages 53–73, September 2001.

[88] R. Sugihara, R.K. Gupta. Optimal Speed Control of Mobile Node for Data

Collection in Sensor Networks. Sensor Networks, IEEE Transactions on

Mobile Computing, Volume 9, Number 1, Pages 127-139, January 2010.

[89] S. Symington. Delay-Tolerant Networking Metadata Extension Block. In-

ternet Research Task Force (IRTF), Request for Comments: 6258, The

MITRE Corporation, Category: Experimental, May 2011.

158 Bibliography

[90] C.K. Tham, R. Buyya. SensorGrid: Integrating sensor networks and grid

computing. Techical Report, National University of Singapore, 2003.

[91] O. Tomarchio. Active Monitoring In Grid Environments Using Mobile

Agent Technology. 2nd Workshop on Active Middleware Services (AMS’00)

in HPDC-9, 2000.

[92] S. Venugopal, R. Buyya, L. Winton. A Grid service broker for scheduling e-

Science applications on global data Grids. Concurrency and Computation:

Practice and Experience, Special Issue Middleware for Grid Computing,

Volume 18, Issue 6, Pages 685–699, May 2006.

[93] M. Venkataramana, M. Chatterjeea, K. Kwia. A dynamic reconfigurable

routing framework for wireless sensor networks. Ad Hoc Networks Volume

9, Issue 7, Pages 1270-1286, 2011.

[94] M. Vidal. A biological atlas of functional maps. Cell 2001, Volume 104,

Pages 333-339, 2001.

[95] M.A.M. Vieira, M.E. Taylor, P. Tandon, M. Jain, R. Govindan, G.S.

Sukhatme, M.Tambe. Mitigating multi-path fading in a mobile mesh net-

work. Ad Hoc Networks, DOI 10.1016/j.adhoc.2011.01.014, 2011.

[96] D. Waitzman. IP over Avian Carriers with Quality of Service.. RFC 2549,

https://tools.ietf.org/rfc/rfc2549.txt, April 1999.

[97] J. E. White. Mobile agents make a network an open platform for third-

partydevelopers. Computer 1994, Volume 27, Issue 11, Pages 89-90, ISSN

0018-9162, 1994.

[98] N.J.E. Wijngaards, B.J. Overeinder, M. van Steen. Supporting internet-

scale multi-agent systems. Data Knowledge Engineering Volume 41, Pages

229-245, 2002.

[99] M. Wooldridge, N.R. Jennings. Agent Theories, Architectures and Lan-

guages: A Survey. Wooldridge and Jennings Eds., Intelligent Agents,

Berlin:Springer-Verlag, 1-22, 1994.

[100] P. Yang, M. Chuah. Performance evaluations of data-centric information

retrieval schemes for DTNs. Computer Networks, Volume 53, Issue 4, Pages

541-555, DOI 10.1016/j.comnet.2008.09.023, 2009.

Bibliography 159

[101] Y. Zhang, W. Liu, Y. Fang, D. Wu. Secure Localization and Authentication

in Ultra-Wideband Sensor Networks. IEEE J. Selected Areas in Comm.,

Volume 24, Number 4, Pages 829-835, April 2006.

[102] S. Zhanfeng, L. Jiancheng, H. Guangyu et al. Distributed comput-

ing model for processing remotely sensed images based on grid comput-

ing. Information Sciences, Volume 177, Issue 2, Pages 504-518, DOI

10.1016/j.ins.2006.08.020, 2007.

[103] Z. Zhang. Routing in intermittently connected mobile ad hoc networks and

delay tolerant networks: overview and challenges. IEEE Communications

Surveys Tutorials (2006) Volume 8, Issue 1, Pages 24-37, 2006.

[104] H. Zhu, X. Lin, R. Lu, Y. Fan, X. Shen. SMART: A Secure Multilayer

Credit-Based Incentive Scheme for Delay-Tolerant Networks. IEEE Trans-

actions on Vehicular Technology, Volume 58 , Issue 8, 2009.

[105] N. Zimmerman, J. Ramos, R. Salguero-Gomez. The next generation of

peer reviewing. Frontiers in Ecology and the Environment, Volume 9, Issue

4, May 2011.

[106] Ohio University’s Off-World Communication Protocol re-

search group Java Bundle Protocol Implementation. [Online]

http://irg.cs.ohiou.edu/ocp/bundling.html - [last access: 3/1/2013].

[107] DTNRG: Delay Tolerant Networking Research Group. [Online]

http://www.dtnrg.org - [last access: 3/1/2013].

[108] Networking Laboratory, Helsinki University of Technology. [Online]

http://www.netlab.tkk.fi/engl.shtml - [last access: 3/1/2013].

[109] SENDA research group. [Online]. https://senda.uab.cat - [last access:

3/1/2013].

Thesis Hash:

Hash Signature:

Carlos Borrego Iglesias

Bellaterra, January 2013

160

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Part I Preliminaries
	Chapter Introduction
	Objectives
	Contributions
	Document Layout
	List of Publications

	Chapter State of the Art
	Introduction to Intermittently Connected Networks
	Routing in Intermittently Connected Networks
	Delay and Disruption Tolerant Networking Architecture
	The Bundle Protocol
	Mobile Code

	Part II Proposal
	Chapter DTN Architecture proposal
	Motivation
	IP Multicast: a Case Example

	Scenario Description
	Active Messages
	General Protocol Architecture
	General System Architecture
	Security Considerations

	Chapter Architecture Reifications
	A Mobile Agent-Based Architecture Reification
	A Mobile Code Reification
	Bundle Code Blocks Reification
	Common Extension Fields
	Bundle Routing Code Block
	Custodian Routing Block
	RIT Update Code Block
	Lifetime Control Code Block
	Application Priority Code Block
	Mobile Code Implementation Details

	Part III Scenarios
	Chapter DTN Wireless Active Sensor Networks
	Introduction
	State of the Art
	Proposal Description
	Architecture
	Primitive Services Types and Task Delegation
	Dynamic Multi-Routing
	Aggregation, Scheduling and Dropping
	Application Influenced Movement Model
	Active Messages: A Distributed Sensing Infrastructure

	Results

	Chapter DTN Active Sensor Grids
	Introduction
	Background
	Integrating DTN WSN's in Grid Using Mobile Code
	Grid Job Management
	Store-Process-Carry-and-Forward Paradigm
	Processing Models
	Storage
	The Routing Issue

	Implementation
	Ex: A Multi-Application Robot Sensor Network

	Chapter DTN Emergency Scenarios
	Introduction
	State of the Art
	Disaster Recovery Scenarios
	Dynamic Routing and Routing Algorithm Deployment
	Alleviate DTN Congestion
	DTN Lifetime Control
	Dynamic Prioritised Scheduling
	Results

	Part IV Conclusions and Future Lines
	Chapter Conclusions and Future Lines
	Conclusions
	Heading Beyond
	Future Lines

	Part V Appendixes
	Chapter Simulations Benchmarks
	Active Message Class
	Reports
	Routing Algorithm Parameters Optimization Model

	Part VI Bibliography
	Bibliography

