
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



Patent Value Models
Partial Least Squares Path Modelling

with Mode C and Few Indicators

Alba Mart́ınez Ruiz
Supervisor Dr. Tomás Aluja Banet

Department of Statistics and Operations Research
Technical University of Catalonia

Barcelona, Spain

A dissertation submitted in partial fulfillment of the requirements for the
Degree of Doctor by the Technical University of Catalonia

Technical and Computer Applications of Statistics, Operational Research
and Optimization Program

· December 2010 ·





Abstract

This thesis is two-fold. Firstly, investigating several model specifications, struc-
tural equation models of patent value are formulated. An initial definition is made
involving model specification supported by a strong theory. Variations were aimed
to study nonlinearities among constructs and the longitudinal nature of patent
value. Secondly, robustness of Partial Least Squares (PLS) Path Modelling for
estimating structural equation models is addressed and further developed. Three
situations are investigated: PLS with Mode C, the case of few indicators per con-
struct, and nonlinearities between constructs.

Keywords: Patent value, Partial Least Squares path modelling, structural equa-
tion models.
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New tools have appeared, new areas of application have been explored.

Ludovic Lebart

Principle 4: The researcher must be aware and beware of all assump-
tions underlying a method of analysis, the mathematical consequences
of these assumptions, and their relations to the hypotheses pursued,
data collected, and outcomes of statistical modelling in order to per-
form a meaningful analysis.

Keith F. Widaman
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Concepción (UCSC) and the Comisión Nacional de Investigación Cient́ıfica y Tec-
nológica (CONICYT), Chile. I am grateful for the support provided by these
institutions. Additionally, I have received funding from the program Ajut per Es-
tada de Curta Durada, of the Department of Statistics and Operations Research
(DEIO) at the UPC as well as from the program Financiamiento Especial de
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López, Nuncia Medina, Cristina Montañola, Sonia Navarro, Jordi Cortes, Fran-
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Chapter 1

Introduction

Abstract. This chapter presents an introduction to the thesis. The topics are

on the general research approach –including objectives and research scope– and

the document’s structure.

1.1 General Research Approach

Within the field of technology management and technological change, determi-

nants of patent value have aroused interest. Patents are an important intangible

asset for companies. In the 90‘s, intangible assets represented three-quarters of the

market value of the main companies of the world (Rivette & Kline, 1999). Intel-

lectual property management, which is closely related to technology management,

can help a company gain a competitive advantage, e.g. through technological

leadership or by helping to form an industry standard.

Estimating (“predicting”) patent value is a complicated issue. Patents can

represent legal instruments, technologies, intangible assets, innovations, barriers

to entry into a market, the main results of R&D activities, the driving force of

technological change, and so forth. Thus, the problem can be approached from dif-

ferent perspectives. Interpretation is also affected by the interests of different units

of companies, such as R&D, marketing or production units. Therefore, different

value definitions are possible. Some approaches have been proposed by the scien-

tific community, focusing on the private or social value of patents. For instance,

Lanjouw et al. (1998, p. 407) defined the private value of a patent in terms of “the

difference in the returns that would accrue to the innovation with and without

patent protection.” The magnitude of this difference would be crucial in applying

or renewing the protection. In this thesis, we do not seek to determine the value of

an individual patent or obtain a monetary value of the intangible assets. Rather,

here patent value deals with the technological usefulness of the inventions for de-

velopment of other inventions. Thus, we are interested in identifying and relating

1
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the variables that may determine the patent value in terms of technology.

Reitzig (2004a) has suggested modelling patent value as a construct, but little

progress has been made along these lines and, to the best of our knowledge, a

causal model with a latent variables approach for modelling patent value has not

been addressed before in the literature. Hence, this thesis project seeks to pro-

pose structural and measurement models for patent valuation. This is exploratory

and prediction-oriented research, where the prior theoretical knowledge is scarce.

Therefore, PLS Path Modelling is used to explore and estimate the proposed mod-

els. Unobservable variables are sought and identified through a comprehensive

literature review. Propositions are also made. Observable variables (or indicators)

are mainly built from data contained in patent documents. Given the specific char-

acteristics of patent indicators, such as high heterogeneity, asymmetry and large

variances, a multivariate normality distribution assumption is not recommended.

This also drives us to consider a component-based approach for structural equation

models (SEMs) so as to analyze and compare different representations looking for

the best patent value model. One of the main rewards of using a SEM approach

is that we can compare the performance [value] of different companies or specific

technological areas, and to systematize this comparison.

Structural equation models aim to explain relationships among different types

of variables. Those that are directly measurable in an individual or object, even

those that are unobservable, and represent an abstract conception of something.

For this purpose, two main approaches have been developed. In 1970, Karl

Jöreskog proposed the Linear Structural Relation Model (LISREL) procedure

based on analysis of covariance. Later, in 1979, Herman Wold introduced Par-

tial Least Squares (PLS) Path Modelling as an alternative to Jöreskog’s approach,

which makes strong assumptions about data distribution.

After having been forgotten for some years, in the middle eighties the PLS Path

Modelling procedure was rediscovered by researchers such as Wynne Chin, Michel

Tenenhaus and Vincenzo Esposito-Vinzi. Their contributions in conjunction with

the conferences on PLS and Related Methods have promoted theoretical and prac-

tical research in this area, also supported by the recent availability of software

including PLS procedures as a statistical solution. The main advances are related

to two active research fronts: PLS Path Modelling applications for multi-group

analysis –where several algorithms have been recently proposed; and PLS Path

Modelling applications for investigating nonlinearities in inner models. Mainly us-

ing Monte Carlo simulations, research has also been concerned with the behavior

of the PLS algorithm under certain specific conditions, such as multicollinearity,

skewed distributions of observed variables and misspecification of models. These

investigations have mostly studied SEMs with reflective outer models. Recently,

some debate has arisen about the distinction between reflective and formative mea-
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surement models. Interestingly, it has been noted how many measurement models

are theoretically far better supported by formative relationships, even though re-

flective outer models have been reported in the literature. According to the theory

developed by economist of technological change and statistical evidence (which we

provide below) in regards to patent value models, formative relationships suit-

ably represent the links between manifest variables and some constructs. In a

component-based approach, formative relationships are usually modeled with PLS

Path Modelling with Mode B, and Mode A is used if the SEM includes reflective

outer models. “The algorithm is called PLS Mode C if each of Modes A and B is

chosen at least once in the model” (Wold, 1982, p. 10). Nevertheless, robustness

and performance of PLS Path Modelling with Mode C has been studied little.

Thus, contributions of this thesis are also deeply concerned with this topic. Ad-

ditionally, nonlinear and interaction effects among formative constructs have not

been investigated before. Hence, a Two-Step PLS Path Modelling procedure is

implemented and guidelines are suggested in this regard. This procedure is also

applied to the investigation of nonlinearities among formative constructs of patent

value models.

In this thesis, contributions are made to the valuation of patents and to the

understanding of PLS Path Modelling. Consequently, two general aims are posed:

A To investigate causality relationships among variables that determine the

patent value, considering data contained in patent documents.

B To investigate the robustness and performance of PLS Path Modelling with

Mode C for estimating structural equation models with formative and reflec-

tive outer models.

For each general objective, the following specific goals are established:

A.1 To define a theoretical framework, primary contributions and advances in

the field of patent valuation.

A.2 To formulate a structural and measurement model for estimating the patent

value.

A.3 To estimate and to validate the proposed models using PLS Path Modelling

and validation techniques.

B.1 To define a theoretical framework, primary contributions and advances in

the field of PLS Path Modelling.

B.2 To determine the robustness and performance of PLS Path Modelling with

Mode C for estimating SEMs with formative constructs and reflective latent

variables.
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B.3 To determine the robustness and performance of a Two-Step PLS Path Mod-

elling with Mode C procedure for estimating nonlinear and interaction effects

in SEMs with formative and reflective outer models.

Finally, data quality and choice of manifest variables are key factors in SEM

research (Balachandra & Friar, 1997; Astebro, 2004). Consequently, data were

selected and retrieved from patent databases to have useful data to seed the mod-

els. Building our own database, patent indicators were computed. The analyzed

sample comprises a set of 2,901 patents in the renewable energy field.

1.2 Thesis Structure

This thesis is structured as follows:

- Chapter 2 gives an overview of the different approaches for patent value

from the perspective of technological change. Definitions related to patent

documents and patent indicators are provided.

- Chapter 3 reports on patent sample descriptions. We present criteria to re-

trieve data, the procedure for calculating patent indicators, and a statistical

data description.

- Chapter 4 provides an introduction to structural equation models including

origins, basic background and recent developments. In addition, it provides

guidelines for model specification and modelling process for structural equa-

tion models. Special emphasis is placed on determining the reflective or

formative nature of measurement models.

- Chapter 5 puts forward the main partial least squares algorithms: nonlin-

ear estimation by iterative partial least squares (NIPALS), PLS regression,

and PLS Path Modelling. We present two path modelling implementations:

Lohmöller and Wold’s procedures. Additionally, insights are given on proce-

dure sensitivity to starting weight values and weighting schemes; algorithm

properties, such as consistency and consistency at large; and convergence.

We briefly review some PLS Path Modelling extensions and relationships

with other procedures. The chapter ends by describing validation techniques.

- Chapter 6 provides evidence about the accuracy and precision of PLS Path

Modelling with Mode C to recover true values in SEMs with few indicators

per construct. Monte Carlo simulations and computational experiments are

carried out to study the performance of the algorithm.
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- Chapter 7 addresses the formulation and estimation of patent value models.

This entails the identification and definition of observable and unobservable

variables, the determination of blocks of manifest variables and structural

relationships, the specification of a first- and a second-order model of patent

value, and the models’ estimation by PLS Path Modelling.

- In Chapter 8, the evolution of patent value over time using longitudinal

structural equation models is investigated. Two set-ups are explored. The

first longitudinal model includes time-dependent manifest variables and the

second includes time-dependent unobservable variables. The structural equa-

tion models are estimated using PLS Path Modelling.

- In Chapter 9, there is a description of a Two-Step PLS Path Modelling

(TsPLS) with Mode C procedure to study nonlinear and interaction effects

among formative constructs. Monte Carlo simulations are performed to gen-

erate data and to determine the accuracy and precision of this approach

to recover true values. This chapter includes an application of the TsPLS

algorithm to patent value models.

- Finally, in Chapter 10, we provide a summary of conclusions, the author’s

contributions and future research.



Chapter 2

Patents as a Proxy for

Technology

Abstract. This chapter gives a background on patents as a proxy for technolo-

gies in their early stage of development. That is, when they are created and pro-

tected. We begin by specifying what constitutes a patent and a patent document.

A second goal is to define patent indicators and to describe their relationships with

some constructs studied in the field of technological change. Some approaches for

patents count and citations count as well as examples showing the role of patent

indicators are also addressed. We examine different patent value concepts and the

relationship between patent value, R&D and market value.

2.1 Introduction

We live in an era of rapid technological change. Every day new technologies

appear and change the lives of millions. It was during the 80s and 90s through

the globalization of markets, the arrival of information technologies, the Internet

boom, and the transformation of society into a culture based on knowledge, that

technologies took on a significant role. There is no doubt that technological devel-

opment has been the promoter of long-term economic growth and has increased

social welfare for years. Maybe, these are the main reasons why many researchers

have focused on the study of all aspects related to this development. Technologies

emerge, grow, mature and decline in direct relation to their environment. So, the

value of technologies throughout their life cycle is influenced by the social, cultural

and economic context in which they develop.

Studying the value of technologies is a complex issue, because research can

be approached from different perspectives depending on how the problem is ad-

dressed. From an economic standpoint, the scientific community has studied issues

related to innovation and its relationship to companies and countries. From a so-

6
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cial science perspective, the scientific community has investigated the development

of indicators through bibliometric studies and information retrieval techniques.

The scientific community which concerns itself with technology management has

emphasized technological forecasting, technology watch and data analysis to be

competitive. In this research we focus on some developments made by these sci-

entific communities; but our approach is mainly related to technological change

and the development of indicators. We are interested in investigating the value of

technologies in their early stages of development. That is, when they are newly

invented and protected.

Patents are the results of innovation processes in an institution or company,

and innovation processes are key to the economic growth and competitiveness of

a country. Almost all the results of the R&D efforts of companies and institutions

–those that are ultimately exploited– are protected by patents. But only some

of these patents are truly valuable. We distinguish two approaches in relation to

patent value. Firstly, patents can be valuable because they protect important tech-

nologies for the development of other technologies in the future; this is discussed in

purely technological terms. Secondly, patents can be valuable because they yield

substantial benefits to companies or society in general. We are interested in both

types of values, but in this research the first approach is addressed.

Furthermore, there are two important aspects that need to be mentioned in

relation to patents. (1) Patent documents are an important source of technologi-

cal information and its use has many advantages. There is much information in a

patent document, not only technical information, but also information about who,

when and where technology is produced. There is a significant flow of patents ev-

ery year and this information is available in databases. Even though there are still

some difficulties in processing these large volumes of information, it is presumed

to be consistent. Patent information has proved to be useful for selecting research

and development (R&D) portfolios, beginning R&D or engineering projects, de-

veloping new products and new markets, the acquisition of intellectual property

and the exploitation of intellectual assets, developing technological collaboration,

evaluating organizational competence, forecasting opportunities and threats, plan-

ning technological strategies and making technological roadmapping. (2) Patents

are related to a company’s intangible assets management, i.e. patents, trademarks

and copyrights. In the 90s, intangible assets represented three-quarters of the

market value of the main companies of the world (Rivette & Kline, 1999). Intel-

lectual property management, which is closely related to technology management,

can help a company gain a competitive advantage, e.g. through technological

leadership or by helping to form an industry standard (Reitzig, 2004b).

This chapter presents a background on patents because they are a proxy for new

technologies. Besides the definition of patent and patent indicators, the structure
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of patent documents and the main source of information, this section introduces

the relationship between patents and constructs, such as knowledge and value.

2.2 Defining a Patent Concept

A patent “is the right granted to an inventor by a state, or by a regional office

acting for several states, which allows the inventor to exclude anyone else from

commercially exploiting his invention for a limited period, generally 20 years”

(WIPO, n.d.). A patent may protect a product or a process that is a new way of

doing something. It is granted when the invention fulfils three basic requirements:

the invention is new (novelty), involves an inventive activity and it is useful for

industry. These conditions are called patentability conditions and they affect the

value of patents (Nordhaus, 1967; Green & Scotchmer, 1997).

To patent an invention, the inventor must comprehensively describe the in-

vention by delivering the technical details that must be known in order for it to

be replicated. This description should be compared to the existing technological

developments and it should provide details on the characteristics that are new in

order to prove the novelty of the invention. In a formal way, novelty describes

the technological distance between the patented invention and the previous state

of the art. By the same token, the invention must show an inventive step “that

could not be deduced by a person with average knowledge of the technical field”

(WIPO, n.d.). The U.S Patent and Trademark Office talks about non-obviousness.

It describes the technological distance between the invention patented and current

technology in terms of evidence. Lastly, the industrial applicability is related with

the utility of the invention. This must be of practical use or capable of some kind

of industrial application.

On the other hand, an invention must be patentable according to the appli-

cable law in the country where protection is sought. For example many countries

exclude from the patent right: scientific theories, mathematical methods, variety

of animals or plants, natural substances, methods for medical treatments and any

invention where –in order to prevent its commercial exploitation– it is necessary

to protect the public order, the moral or the public health. Generally, patents

are first applied for in a national patent office. However, patents can also be ap-

plied for in a regional office according to a special treaty1. Interested readers can

visit the website of the World Intellectual Property Organization (www.wipo.int),

1The main agreements are: the Patent Cooperation Treaty (1970), known as PCT; the Stras-
bourg Agreement Concerning the International Patent Classification (1971); the Microorganisms
for the Purposes of Patent Procedure (1977); the Paris Convention for the Protection of Industrial
Property (1883); the Berne Convention for the Protection of Literary and Artistic Works (1886);
and the Budapest Treaty on the International Recognition of the Deposit of Patent Law Treaty
(2000).
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Figure 2.1: Patent document of the United States Patent and Trademark Office (USPTO)

which offers a comprehensive and detailed overview about patents and intellectual

property.

2.2.1 Patent Document

A patent document is a legal document. Figures 2.1, 2.2 and 2.3 show the front

page of patent documents applied for in the United States Patent and Trademark

Office (USPTO), in the European Patent Office (EPO) and in the Spanish Patent

and Trade Mark Office (SPTO). Generally, patent documents contain standard in-

formation, although this can vary depending on whether the patent is published by

a national or regional office. All data in the patent document is identified accord-

ing to the Internationally Agreed Numbers for the Identification of (bibliographic)

Data, or INID codes. The best known are2:

- 11: Number of the patent.

- 12: Plain language designation of the kind of document, for instance Euro-

pean Patent Application.

- 19: WIPO Standard ST.3 code3, or other identification, of the office or

organization publishing the document.

2Source of information: http://www.wipo.int/standards/en/pdf/03-09-01.pdf.
3This is a recommended standard on two-letter codes for the representation of states, other

entities and intergovernmental organizations. See http://www.wipo.int/standards/en/pdf/03-03-
01.pdf.
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Figure 2.2: Patent document of the European Patent Office (EPO)

- 21: Number(s) assigned to the application(s).

- 22: Date(s) of filing the application(s).

- 30: Data relating to priority under the Paris Convention to the Agreement on

Trade-Related Aspects of Intellectual Property Rights (TRIPS Agreement).

- 43: Date of making available to the public by printing or similar process of

an unexamined patent document, on which no grant has taken place on or

before the said date.

- 45: Date of making available to the public by printing or similar process of a

patent document on which grant has taken place on or before the said date.

- 51: International Patent Classification (IPC) codes.

- 52: Domestic or national classification.

- 54: Title of the invention.

- 56: List of prior art documents, if separate from descriptive test.

- 57: Abstract or claim.

- 58: Field of search.
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Figure 2.3: Patent document of the Spanish Patent and Trade Mark Office (SPTO)

- 63: Number and filing date of the earlier application of which the present

patent document is a continuation.

- 71: Name(s) of applicant(s), for example in the European Patent Office.

- 72: Name(s) of inventor(s) if known to be such, for example in the European

Patent Office.

- 73: Name(s) of grantee(s), holder(s), assignee(s) or owner(s), for example in

the U.S.

- 74: Name(s) of attorney(s) or agent(s).

- 75: Name(s) of inventor(s) who is (are) also applicant(s) and grantee(s), for

example in the U.S.

- 84: Designated Contracting States under regional patent conventions.

2.2.2 Patent Databases

Today there are a number of databases that provide information about patents.

Usually each national patent office has a patent database freely available on the

Internet. The most extended databases are: the Patent Full-Text and Full-Page

Image Databases of the United States Patent and Trademark Office; esp@cenet, co-

ordinated by the European Patent Office; PatentScope administered by the WIPO;

and the Industrial Property Digital Library (IPDL) of the Japan Patent Office
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and the National Center for Industrial Information and Training. Among appli-

cations offered by companies, the most commonly used databases are: Derwent

World Patents Index (DWPI), Chemical Abstracts Plus (CAS) and Delphion. A

comparison among these databases and others can be found in González-Albo &

Zulueta (2007). Recently, Google implemented a service for reading the full text

and downloading U.S. patents and patent applications.

2.3 Conceptual Constructions and Patent Indicators

Patents have been used to answer many research questions. We are particularly

interested in studying the value of technologies when they are at an early stage of

development. So, patents are used as a proxy for new technologies.

The most general patent indicator is the number of patents per company or

country, per application or granted year. This indicator has been used by a number

of researchers to study technological change. Nevertheless, a simple patent count

has a temporal dimension and considers that all patents are equally important. To

resolve the latter problem, Trajtenberg (1990b) proposed a weighted patent count

based on citations received by patents and showed that this weighted indicator is

highly correlated with the social benefits of innovations. Regarding the temporal

dimension of patent count, Hall et al. (2001, 2005) called attention to the intrinsic

bias of the data due to its truncation problem (for both patent and citations count).

For instance, if we consider a sample of patents granted between 1991 and 1995,

it should be noted that the sample will include (a) patents applied for before 1991

and granted between 1991 and 1995, (b) patents applied for and granted between

1991 and 1995, and (c) patents applied for between 1991 and 1995, and not granted

before 1995. As expected, patents granted in the last years will account for fewer

citations because some of them will have been made outside of the study period.

Hence, Hall et al. have proposed a way to eliminate the truncation problem using

“the application-grant empirical distribution to compute weight factors” for simple

patent count.

Researchers have shown that data contained in patent documents, and those

linked to them, are useful for making inference in statistical models. Section 2.2

showed that patent documents have a standard structure and they are available

through a number of databases. Retrieving the right information, patent indica-

tors can be built to be used later in a model. Examples of patent indicators are:

the number of inventors, the number of applicants, the number of cited patents,

references or backward citations (some researchers have made the distinction be-

tween citations made to other patents or made to scientific papers), the number

of claims (dependent or independent), the number of international patent clas-

sification codes, type of priority (national or regional), the number of countries
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where the patent is protected and the number of designated states, the number of

citations received by patents or forward citations, the number of words describing

the state of the art, the number of words describing the technical problem, and

the number of references to the technical advantages of an invention.

The first to use the information contained in patent documents was Jacob

Schmooker in 19664. The researcher considered the number of applicants per in-

dustry in order to match technological subclasses with the standard industrial

classification (SIC) code of each company in the U.S.5. Later Williams Nordhaus

suggested that the characteristics of inventions should contribute to its economic

value. Examining the lifetime of patents, he concluded that value increases mono-

tonically over the life of patents (Nordhaus, 1967; Reitzig, 2003) and that if the

returns do not decrease over time, the optimal life of patents tends to be very large.

The most important run-of-the-mill inventions tend to have a shorter life. Nord-

haus presented some very interesting ideas as the concepts of drastic inventions,

global interdependence or global spillover, optimal breadth of a patent, competing

patents and inventing around patents.

From the work of these researchers, patent indicators have been widely used as

measurement variables. In many cases the problem of interest can be represented

by an idea, concept or construct. In what follows we provide a description of the

constructs and patent indicators found in the literature.

2.3.1 International Scope, Patenting Strategy and Family Size

An application is usually first filed in a local country, receiving a fil-

ing/application number and an application date. The latter is also called priority

date. Under the “Paris Convention priority right”, an applicant has a period of

12 months (priority period) from the priority date to protect its invention in other

countries. For each additional country in which the application is made, the appli-

cation will receive a national application number unique to that country. Family

size of a patent is the set/number of countries –designated states– where the pro-

tection is sought for the same invention. After the priority year it is still possible

to apply for a patent if the invention has not been made public. The prior art in

a patent document does not include patent applications pending in other offices

that have not been published.

Family size was first investigated by Grefermann et al. (1974) and Schmoch

4F. M. Scherer made an investigation a year earlier, but we do not have this paper: Firm
size, market structure, opportunity and the output of patented innovations, America Economic
Review, 1965, 55:1097-1125.

5The SIC code indicates the primary line of business filed by a company at the time of regis-
tration, www.osha.gov.
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et al. (1988)6, but it was introduced as a patent indicator by Putnam (1996)7.

The size of patent family has been related to the international scope of patent

protection. A larger number of countries would entail a broader international

scope. Thus, it seems reasonable to think that a company protects an invention

in many countries because it believes that the invention is, in some way, valuable.

The scope of protection is also related to the patenting strategy of the applicant

(Guellec & van Pottelsberghe, 2000; Harhoff & Reitzig, 2004; Reitzig, 2004a). That

is, where, how, and why an applicant protects an invention. For instance, the

patenting strategy of a company may be reflected in whether a patent is first filed

in a national patent office –giving priority to a local market– or in a regional office

–looking for a broader protection. Guellec & van Pottelsberghe (2000) –using a

probit model– attempted to determine the probability that a patent filed in the

EPO is granted. They showed that it is more likely that a patent is granted if

it is filed at the EPO via the Patent Cooperation Treaty (PCT) Chapter 2, or if

the applicants are from different countries. Gallini (2002) pointed out that the

patenting strategy is also associated with the company’s intention to hinder the

R&D of its competitors. This is what Reitzig (2003) calls “invent around.”

2.3.2 Patent Breadth and the Number of Claims

The number of claims has been presented as an indicator by Tong & Frame

(1994) and also used by other researchers, such as Lanjouw & Schankerman (2001)

and Reitzig (2004a). Claims are made in a special section in the patent document,

where the thing that is being protected is specified. The claims section consists of

a numbered list. This contains all those aspects that are protected by the patent;

thus, the claims reveal all the new technologies and knowledge. Therefore, the

number of claims is in fact the number of inventions protected (Tong & Frame,

1994, p. 134).

Tong & Frame (1994) found that the conclusions derived from simple patent

count may differ substantially from those obtained using the number of claims.

The number of claims is a better indicator of the technological inventiveness of a

country, and it is better correlated with other indicators of science and technology,

such as the cost in R&D or the number of scientists and engineers of a country.

On average there are countries that tend to specify their inventions in a larger

number of claims than others. For example, Japan favors a smaller number of

claims, unlike the U.S. that uses 35% more inventive units than Japan. There

6Grefermann et al. (1974) and Schmoch et al. (1988) are in German, they are cited by Reitzig
(2004a).

7Putnam’s work is a PhD thesis at Yale University. We could not access this information.
However, the work is cited given the fact that most of the authors attribute this researcher with
the introduction of family size as an indicator.
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are no formal reasons to explain this; but perhaps there are cultural reasons.

Although, some researchers have mentioned that it may be because it is cheaper

to include many claims in a single patent. This fact may also reflect an increase

in technological complexity, i.e. more complex systems require a larger number of

related patents. The number of claims by patent tends to increase over time.

Klemperer (1990) and Gilbert & Shapiro (1990) have introduced the concept

of patent breadth. Gilbert & Shapiro (1990, p. 6-7) give some definitions for

breadth. They identified the patent breadth with “the flow rate of profit available

to the patentee while the patent is in force” and also “as the ability of the patentee

to raise price.” For example, “a larger patent breadth in his model corresponds

to a larger region of the product space that is included in the patent grant.”

We interpret from these definitions that the breadth of a patent is the potential

of the patent to produce profits for a company –the company must be smart

enough to produce these profits. It is assumed that a wider breadth will produce

higher profits. So, the breadth concept is related to the exploitation of patent

rights and the new opportunities provided by these rights. This concept is closely

related to the technological scope in the sense that an invention may be useful in

several technological fields. From our point of view, there is a subtle difference

between both constructs. While technological scope refers only to the ability of

the invention to be useful in several technological areas, the breadth also deals

with the ability of the applicant to generate profits. The breadth may be reflected

in the way that inventive units are described. This sometimes has to do with the

ability of the agent who drafted the patent.

2.3.3 Technological Scope and the Number of IPC Codes

The WIPO manages four treaties that establish international classifications for

inventions: the Strasbourg Agreement regarding to International Patent Classifi-

cation (IPC), the Nice Agreement relating to International Classification of Goods

and Services for the Purposes of the Registration of Marks, the Locarno Agreement

concerning an International Classification for Industrial Designs, and the Vienna

Agreement establishing an International Classification of the Figurative Elements

of Marks8.

The IPC system establishes a common classification for patents. National or

regional patent offices are responsible for classifying an invention into a hierarchical

system of sections, classes, subclasses, and groups. The classification system is

comprised of eight sections with at least 70.000 branches, each with a particular

symbol. Currently, it is available the ninth edition of the IPC system. Table 2.1

shows the IPC sections. For example, section H is divided into six classes: H01

8See http://www.wipo.int/classifications/en/.
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Table 2.1: Sections of the International Patent Classification System

Section Description of Section

A Human necessities
B Performing operations; transporting
C Chemistry; metallurgy
D Textiles; paper
E Fixed constructions
F Mechanical engineering; lighting; heating; weapons; blasting
G Physics
H Electricity

(basic electric elements), H02 (generation, conversion or distribution of electric

power), H03 (basic electronic circuitry), H04 (electric communication techniques),

H05 (electric techniques not otherwise provided for) and H99 (subject matter not

otherwise provided for in this section). The class H02 includes subclasses and

groups. Table 2.2 shows an example of the class code H02. Here only three

subclasses are presented: H02B, H02G and H02H with their corresponding groups.

Even though countries have their own system for patent classification, the IPC

system is used in more than 100 countries. This system allows document retrieval

in the search for establishing the novelty of an invention or determining the state-

of-the-art technology in a specific field. The IPC system facilitates the search

for pertinent information. But it is important to define in a suitable fashion the

search terms and to determine the technical terms that are of interest. WIPO has

an official Catchword Index that contains key words for technical terms used in

patent documents. In addition, the TACSY system provides support for searching

through natural language processing.

On the other hand, technological scope or the level of technological protection

of patents has to do with the applicability of the invention in different technolog-

ical areas –for example as part of a product, or as a product itself in one or more

industries. Harhoff et al. (2003) have emphasized that this variable is not easy

“to operationalize and measure”, so researchers have followed Lerner’s approach

(Lerner, 1994), which estimated the technological scope using the number of dif-

ferent four-digit IPC codes. Other researchers have suggested that the number of

claims may also be a suitable indicator of technological scope.

2.3.4 Opposition and Indicators from Patent Text

Harhoff et al. (2003) introduced the outcome of opposition proceedings as a

patent value indicator. The researchers said that the opposition is “a kind of first-

instance challenge suit attacking the patent’s validity” (p. 1345) and patents that

survive this procedure are more valuable. In addition, Reitzig (2003) and Reitzig
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Table 2.2: Example of classes, subclasses and groups of section H

Class Code Description Subclass Code Description Group Code

H02 Generation, conversion
or distribution of elec-
tric power

H02B Boards, substations or
switching arrangements
for the supply or distri-
bution of electric power

H02B 1/01 ...

H02G Installation of electric
cables or lines, or of
combined optical and
electric cables or lines

H02H Emergency protective
circuit arrangements

(2004a) have studied almost all patent indicators that have been proposed in the

literature. However, to the best of our knowledge, in the area of technological

change, only Reitzig (2004a) has worked with indicators constructed from the

technical description, the claims, or the abstract of the patent9. For example, the

author used the number of words describing the state of the art and the number

of words describing the technical problem. The former variable was used as a

proxy for the novelty of the patents and the latter as an indicator of the degree

of inventive step. For the particular case of Reitzig, these variables were found to

be significantly correlated with the probability of an opposition when correcting

the variables for heteroscedasticity. The author infers that “the number of words

describing the technical problem mainly correlates with the potential profits from

protecting the invention” (p. 954). The number of inventors and applicants have

also been used as manifest variables for predicting the occurrence of an opposition.

2.3.5 Novelty and the Number of Inventors and Applicants

The novelty of patents is a difficult construct to model. As seen above, novelty

describes the technological distance between the patented invention and the pre-

vious state of the art. Some researchers have linked this variable to the number

of inventors and applicants, backward citations and number of claims (Reitzig,

2004a). A better indicator seems to be the number of words describing the state

of the art, a variable also used by Reitzig (2004a).

2.3.6 Renewal Process and Renewal Information

Renewal information of patents refers to information about the patent renewal

process. Renewing a patent, at the EPO for instance, is expensive. For this

9We know that computer science researchers have worked in the semantic processing of patent
texts. However, the aim has been primarily to improve information retrieval in the information
search process.
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reason, the fact that a company renews their patent right each year is indicative

of patent value. Information about the renewal process is not contained in the

patent document. Although these data are more difficult to retrieve, researchers

such as Pakes & Schankerman (1984), Pakes (1986), Schankerman & Pakes (1986),

Pakes et al. (1989), Lanjouw (1998) and Lanjouw et al. (1998) have used indicators

related to this process.

Pakes et al. (1989) studied the renewal process of patents because the patent

holders are willing to pay fees for renewal only if the value of having a patent

is greater than the cost of maintaining it. The hypothesis of Pakes et al. was

“observations on the proportion of patents renewed at different ages, along with

the relevant renewal fee schedules, will thus contain information on the distribution

over the life span of the patents” (p. 331). The aim was to identify the “stochastic

process generating the returns to patent protection” (p. 332).

2.3.7 Inventive Activity and Disclosure

Inventive activity is the technological distance between the protected invention

and existing technology in terms of obviousness. Green & Scotchmer (1997) have

studied this aspect of patents and have introduced the concept of technical non-

obviousness. The term “disclosure” was also presented by Green & Scotchmer

(1997), who mentioned that the technical information disclosed by the patent

provides a positive externality to competitors, a fact that applicants wish to avoid.

Reitzig (2004a) also related the number of words describing the technical problem

to the inventive step.

2.3.8 Constructs and Citations

There are a number of contributions that make use of citations as manifest

variables to study innovation (Trajtenberg, 1990b; Hall et al., 2001), spillovers

or knowledge diffusion (Jaffe et al., 1993; Caballero & Jaffe, 2002), patent and

market value (Hall et al., 2005) and so forth. Each of these concepts or constructs

is a complex multidimensional variable that can be approached from different

perspectives. In this section we attempt to give a brief but thorough overview of

citations and some of these constructs. In subsequent sections, we present in more

detail the relationship between citations and patent value; as well as between the

latter, R&D and market value.

Two types of citations can be distinguished: backward and forward citations.

Backward citations are the number of citations made by a patent (Carpenter et al.,

1981; Narin et al., 1997; Reitzig, 2004a). They can be made by applicants and

patent examiners (Jaffe et al., 1993; Jaffe & Trajtenberg, 1999) and may include

references to other patents and to scientific articles (Harhoff et al., 2003). Forward
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citations are the number of citations received by a patent (Trajtenberg, 1990b;

Albert et al., 1991; Harhoff et al., 1999; Lanjouw & Schankerman, 2001; Harhoff

et al., 2003; Harhoff & Reitzig, 2004; Hall et al., 2005). The number of citations

received by patent A can be computed accounting for all citations made by patents

granted after the granted date of patent A (Hall et al., 2001). Trajtenberg (1990b)

found that the distribution of citations depends on the patent’s age; that is, the

older patents will receive more citations than the new ones. Moreover, the re-

searcher showed that the smaller the difference between the cited and citing year

(the lag), the lower the effect of the citation lag distribution on citation counts.

Citations as measure of impact were introduced by the information scientist

Eugene Garfield for scientific articles and journals in 1955. Citations are a mea-

sure of impact or importance because it is assumed that if a scientific paper or

patent is cited, it is because this prior knowledge has been necessary to drive dis-

cussions –at least, on a given problem. Thus, this reflection enables us to propose

alternative ways to address a problem and find new solutions. It was Carpenter

et al. (1981) and Narin et al. (1997) who introduced the citations as indicators

in the patent field and Trajtenberg (1990b) in economic research10. Carpenter

et al. (1981) used the citations to examine whether the patents that protect the

most important technological advances receive more citations. The authors were

able to confirm this hypothesis and suggested citations as a suitable indicator

for technological policy analysis. In a similar type of investigation, Narin et al.

(1997) used backward citations to study the relationship between public science11

and industrial technology. Narin et al. (1997) analyzed what proportion of the

industrial patents cite scientific papers. These researchers coined the term “the

patent-to-science linkage” (p. 318) and showed that three quarters of the publi-

cations cited by U.S. patents were papers from public science, and moreover they

mostly correspond to results obtained in the country itself.

From an economic standpoint, Trajtenberg (1990b) linked patent count

weighted by citations to the value of innovations. We discuss Trajtenberg’s con-

tributions of 1990 in section 2.4. Additionally, Trajtenberg et al. (1997) have used

patent citations to study “basicness”12 and appropriability, comparing results of

universities and companies. As expected, universities have a lower measure of

appropriability than companies. These researchers also developed measures of im-

portance and generality of basic innovations. Generality is related to the utility

and impact of an invention. The impact is evident when the invention is cited

10Trajtenberg (1990b, p. 173) said that “up to now, though, virtually the only patent measures
used in economic research have been simple patent counts (henceforth SPC), that is, the number
of patents assigned over a certain period of time to firms, industries, countries, etc.”

11In this case, public science was represented by papers authored at academic, governmental
and other public institutions (Narin et al., 1997, p. 317).

12Basicness refers to the quality of basic research that can be carried out in universities.
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by patents that belong to different technological fields. This generality index is

proposed as follows: Generalityi = 1−
∑ni

j S2
ij where Sij represents the percent-

age of citations received by a patent i belonging to class j and nj is the number

of classes of patent i. This value will be high if the patent is cited by patents

that belong to a broad range of technological fields and small if the citations are

concentrated in a few fields. Originality index can be understood in the same way,

but with citations made. Originality will be low if a patent cites patents which

belong to a small group of technological fields. This approach does not necessarily

work for all types of technologies. For example “if a nanotechnology patent is

invented based on conventional miniaturization technologies, the patent will refer

to a non-nanotechnology patent and eventually have a high score in the originality

indicator” (Igami & Okazaki, 2007, p. 27). In general, these measures are biased

and depend on the technological classification system that is used.

On the other hand, Jaffe et al. (1993) compared the geographical origins of

the citing and cited patents to study how knowledge flows occur. Understanding

location as geography, institutional and technology space and how this interacts

with time, the researchers showed that patent citations are geographically located.

This means that “citations to domestic patents are more likely to be domestic, and

more likely to come from the same state.” Moreover, Jaffe & Trajtenberg (1999)

showed that the frequency of citations depends on: the grant year of the cited

patent, the location of the cited inventor, the technological field of the cited patent,

the grant year of the citing patent, and the location of the citing patent. Jaffe

& Trajtenberg (1999) studied what percentage of citations received by patents,

are citations made by the same applicant, i.e. correspond to self-citations. Self-

citations are more common in the U.S. than in other countries and occurr more

quickly. According to Jaffe et al. (1993), self-citations cannot be considered for

studying spillover effects; rather, self-citations are an indicator of the accumulation

of useful knowledge by companies and how they appropriate this knowledge. In

the words of Trajtenberg et al. (1997), “self-citations are an important indicator of

the cumulative nature of technology, and firms’ ability to appropriate the returns

to their inventions.” Moreover, Jaffe & Trajtenberg (1999, p. 119) remark that

“Putnam (1997) finds that the number of self-citations is a good predictor of firms’

decision to pay renewal fees for patents that would otherwise expire.” Jaffe &

Trajtenberg (1999, p. 129-130) summarize their main results as follows: (1) patents

assigned to the same company are more likely to cite each other and come sooner

than other citations, (2) patents in the same patent class are approximately 100

times as likely to cite each other as patents from different patent classes, but there

is not a strong time pattern to this effect, (3) “citations within the same patent

class have a slight tendency to geographic localization, but, not surprisingly, much

less so than citations within the same organization”, (4) patents whose inventors
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reside in the same country are typically 30 to 80% more likely to cite each other

than inventors from other countries and these citations come sooner, (5) there are

clear country-specific citation tendencies; for instance, Japanese citations typically

come sooner than those of other countries. There does not appear to be much

interaction between the self-citation and technological proximity effects, and (6)

there is strong symmetry between citing and cited intensities. Jaffe & Trajtenberg

(1999) found that the probability –except for the U.S.– that a country cites to

another one after 20 years is higher than after the first year.

Other results of Jaffe & Trajtenberg (1999, p. 108-109) are: (1) the probability

that a given inventor will know of a given antecedent increases as the time lag

between them grows while the probability that the antecedent will actually be

helpful declines, on average; (2) patent citations are a proxy for a given bit of

knowledge that is useful in the development of a descendent bit; (3) the citation

frequency rises rapidly in the first few years after the cited patent; (4) a US-

invented patent is much more likely to be cited by a US-invented patent than it is

by a foreign-invented patent; (5) raw citation frequencies are afflicted by numerous

theoretical and actual biases that make their interpretation dangerous; (6) we

interpret the citation frequency as an estimate of a probability that a randomly

drawn patent in the citing group will cite a randomly drawn patent in the cited

group.

2.4 Patent Value

In recent years patent indicators have been used to study the economical value

of patents. Not all researchers have worked with all patent indicators to esti-

mate value. We can clearly distinguish two approaches. The first one focuses on

the relationship between citations, patent value and market value of companies

(Griliches, 1981; Griliches et al., 1988; Griliches, 1990; Trajtenberg, 1990b; Hall

et al., 2001; Hall & Ziedonis, 2001; Hall et al., 2005). The second one focuses on

the relationship between patent indicators and patent value (Harhoff et al., 1999,

2003; Reitzig, 2003; Harhoff & Reitzig, 2004; Reitzig, 2004a).

Patents are intellectual assets that do not necessarily have an immediate return.

A patent may protect a product that can be manufactured and sold. But a patent

may also protect technologies which, together with other technologies, enable the

manufacture of a final product. In both cases, obtaining an economic value from

patents may be extremely difficult. In studying patent value, different approaches

have been taken throughout the literature. Some studies focus on the private value

of a patent while others concentrate on the patent’s social value.
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2.4.1 Social Value of Innovations

Trajtenberg (1990b) studied the social value of innovations using as manifest

variables a patent count weighted by citations in a multinomial logit model. The

researcher defined the social value of innovations as follows:

By value I mean the social benefits generated by the innovation in

the form of the additional consumer surplus and the profits stemming

from the innovation. The “value”, “output”, and “magnitude” of in-

novations are taken to mean exactly the same thing (p. 173).

It is true that the innovation concept is wider and also involves the commer-

cialization process of a product. But innovations make reference to new products.

It is assumed that these new products have been protected by a patent(s). In his

book, Trajtenberg (1990a) refers to patents and innovations as interchangeable

concepts. The author said that the value of a patent comprises three aspects:

(a) The value of the property rights (VPR) conferred by the patent,

which is that fraction of the profits generated by the innovation exclu-

sively attributable to the extra monopoly power traceable to the legal

exclusion of potential competitors, (b) the private value of the innova-

tion/patent (PV), which is the present discounted value of the stream

of additional profits to the assignee, brought about by the innovation

disclosed in the patent –clearly, the private value of a patent is inclusive

of the value of the property rights, and may actually be much larger

than that– and (c) the social value of innovation/patent (SV), which

consists, as repeatedly stated, of the extra surplus the innovation gen-

erates in the form of incremental consumer surplus and profits. In sum

VPR ⊂ PV ⊂ SV; and recalling that 4W comprises as measured only

the incremental surplus, SV = 4W+(PV −V PR)+V PR, where4W
are gains from innovation (quoted almost verbatim from Trajtenberg

(1990a, p. 185)).

2.4.2 Private Value of Patents

Schankerman & Pakes (1986) and Lanjouw et al. (1998) have studied the pri-

vate value of patents. Schankerman & Pakes (1986) proposed a model of patent

renewal. The researchers assume that “since the renewal decision is based on the

value of patent protection to the patentee, our procedure directly estimates the

private value of the benefits derived from the patent laws” (p. 1052). On the other

hand, Lanjouw et al. (1998) defined the private value of a patent in terms of “the

difference in the returns that would accrue to the innovation with and without
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patent protection” (p. 407). The magnitude of this difference would be crucial in

applying or renewing the protection. In a parallel type of investigation, Harhoff

et al. (2003) have also focused on the private value of patents. The researchers

defined the value “as the price for which the original inventor would be willing to

sell the patent right” (p. 1344). Harhoff et al. (2003) said that the private value of

patent comprises two values: (a) the value of renewed patent protection, and (b)

the asset value of the patent right. “A third value concept could be considered as

well: the value of the patent right to a ‘stand alone’ inventor who compares her

profit in the case of technical leadership to the profit gained in some ex ante state

of the industry” (p. 1246). Using a probit model, Harhoff et al. (2003) consid-

ered patent indicators as manifest variables for modelling the patent value. These

researchers found that backward and forward citations are positively correlated

with the patent value, the number of four-digit IPC codes is not an informative

variable, and those patents with a larger family size and with opposition –or long

litigation processes– tend to be more valuable.

Reitzig (2003) also studied the variables that determine the economic value of

patents. The researcher found that for patents acting as bargaining chips, novelty

and inventive activity are the important variables related to value, and inventing

around and disclosure have less importance. Technical and marketing experts were

surveyed and asked about the determinants of patent value. According to them,

factors that determine patent value are: state of the art (existing technologies),

novelty, inventiveness, breadth, difficulty of inventing, disclosure and dependence

on complementary assets13. This author has made explicit the need to model the

patent value as a construct or latent variable, Schankerman & Pakes (1986) also

pointed out the unobservable nature of this variable.

Lanjouw & Schankerman (2004) used multiple indicators to estimate patent

value. Value or quality index is modeled as an unobservable construct by using

Factor Analysis. They use the term “quality to emphasize both the technological

and value dimensions of an innovation” (p. 443). Among others, they found that

patent quality “does not appear to have a strong impact on research productivity

at the firm level, however patent quality is strongly associated with variations

in market value firms.” They also remarked that the use of a composite index

reduces the variability in the unobservable construct, and that the latter is most

useful when “one averages –either the mean over time for a given firm or the mean

over firms for a given year.” The indicators used by the researchers were backward

citations, forward citations, patent family size and the number of claims14. Finally,

13We attempt to consider these variables as constructs in the proposed structural patent value
models. However, recall that in this research, the manifest variables are mainly obtained from
the patent documents. So, latent and manifest variables are subject to this constraint.

14In this paper, it is interesting to analyze the value of the obtained loadings in the relationships
of each indicator and the corresponding construct.
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Lanjouw & Schankerman (2004) recommended that: (1) family size should be

directly related to the expected (private) value of protecting an innovation and

this to the value of the innovation itself; (2) forward citations are most directly

related to technological importance, this is also true for backward citations; (3)

the number of claims is an indication that an innovation is broader and of greater

potential profitability (p. 448).

2.4.3 Intrinsic and Potential Value of Technology

Guellec & van Pottelsberghe (2000) presented a value scale proposing that tech-

nology increases its own value as it passes through different stages: from invention

to application, examination, publication and decision to grant, and finally to the

high value stage if the patent is granted. The distinction is made between the

intrinsic value of the patent simply for being granted (and thereby having proven

novelty, inventive activity and applicability) and the potential value of technology

(dependent on its potential for generating future returns). Even though Guellec

& van Pottelsberghe (2000) develop a theory that supports their value scale, the

researchers do not define exactly which value is meant when talking about patent

value.

On the other hand, Pakes et al. (1989) distinguished between two value con-

cepts: the value of the protection provided by patents and the value of the ideas

underlying the patents. They said that for example “renewal data allow us to con-

struct more accurate measures of the value of patented ideas than the measures

obtained from the patent count indexes currently in use” (p. 332).

It is well-known that many elements may affect the invention and the protection

process. Nevertheless, although the proposed models have proved useful, we believe

that many of the concepts presented here can be analyzed as latent variables or

constructs and can be related to in a structural model. What benefit is obtained

with a SEM approach? A multidimensional view of the analyzed problem.

2.5 Market Value, R&D, Patents and Citations

Some researchers have studied the relationship between patents and R&D

(Hausman et al., 1984; Hall et al., 1986; Trajtenberg, 1990b; Jaffe & Lerner, 2001),

and between these variables and market value (Griliches, 1981; Pakes, 1985, 1986;

Connolly & Hirschey, 1988; Griliches et al., 1988; Megna & Klock, 1993; Lerner,

1994; Hall et al., 2001; Hall & Ziedonis, 2001; Hall et al., 2005).

Griliches (1981) was the first to study the relationship between market value,

R&D and patents. Basing the research on a time-series cross-section analysis of

U.S. companies, Griliches (1981) found a significant relationship among the market
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value of a company, the book value of the R&D expenditures and the number of

patents. Later on, Pakes (1985) investigated the dynamic relationship between the

number of successful applications/innovations, R&D expenditures (measure of the

inventive activity of companies) and market value of companies (indicator of its

inventive output). The researcher posed a dynamic factor analysis and found that

“the events that lead the market to reevaluate the firm are indeed significantly

correlated with unpredictable changes in both the R&D and the patents of the

firm” (p. 406). This also happens vice-versa. Pakes (1985) also pointed out

that “there is a large variance to the increases in the value of the firm that are

associated with a given increase in its patents. This may reflect an extremely

dispersed distribution of the values of patented ideas” (p. 406-407). As expected,

the researcher reported that “most of the variance in the stock market rate of

return has little to do with the firm’s inventive endeavors, at least as measured

by its R&D input and its patent output” (p. 407). Pakes (1986) delved into

these subjects. Because patents are protecting new technologies, it is difficult for

a company to know at an early stage, whether this technology or innovation will

generate revenues in the future. Pakes (1986) proposed a model to estimate the

flow of future returns for an innovation.

Hall et al. (1986) analyzed the lag between patents and R&D expenditures on

companies from the U.S. in the manufacturing sector in the 70s. The underly-

ing issue in this research was that R&D expenditures are an investment in the

knowledge stock of a company. This knowledge reduces its value as time passes.

Using patent applications in a year t as a proxy of the acquired knowledge –and

therefore added to the existing stock in the company– the researchers studied the

relationship between R&D lag distribution and patents lag distribution. Some

of the main results are that the relationship between R&D and patents remains,

despite controlling for the effect of company size. They also remarked that the

almost constant nature of R&D expenditures over time makes it quite complicated

to use as input data in a model.

Presenting an extension of the works of Pakes (1985) and Pakes (1986), Con-

nolly & Hirschey (1988) developed a Bayesian approach to relate market value

and patents. Connolly & Hirschey (1988) found evidence to consider patents as

“economically relevant information” proving a significant effect of patents on mar-

ket value. Griliches et al. (1988) also analyzed the relationship between patents,

R&D and market value. As expected, they found that “changes in patenting rates

can account for only an infinitesimal fraction of the changes in the stock mar-

ket value of the firm, and hence provide essentially no additional information to

the estimation procedure.” Trajtenberg (1990b) showed that there is a strong

association between simple patent count and R&D expenditures, and that “R&D

explains a great deal of the cross-sectional variance in patenting but not much of
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the variation over time” (p. 183). Megna & Klock (1993) studied the relationship

between patents and Tobin’s q15. The researchers found that patents contribute

to the change of q but they do not fully explain the variation. Lerner (1994) found

that the patent scope –measured as the number of four-digit IPC codes– positively

affect the market value of companies. Finally, Hall et al. (2001, 2005) have inves-

tigated the trend in U.S. patenting activity over the last 30 years. The researchers

found that ratios of R&D to assets stock, patents to R&D and citations to patents,

significantly affect market value. However, R&D stock appears correlated with the

market value more than patent stock and more related to citation stock than to

patent stock.

15The ratio q is defined as “the market’s valuation of the financial claims on a firm to the cost
of replacing that firm’s assets” (Megna & Klock, 1993).



Chapter 3

Descriptive Analysis of the

Renewable Energy Sample

Abstract. The purpose of this chapter is to describe the patent sample used

in the thesis. The foci is on the criteria used to retrieve the data, how patent

indicators were computed and the statistical description of the data. The sample

includes 2,901 patents on renewable energy technologies, applied for and granted

in the United States. Data were retrieved from a specialized database in October,

2007.

3.1 Introduction

Patent data, as data, involve a multidimensional complexity. The diversity of

data contained in a patent documents allows the analysis under different perspec-

tives. Depending on the objective, they may provide insights into the technological

aspects of the protection, its geographic or temporal scope, about what kind of

applicant creates the inventions or knowledge, and so on. In addition, patent data

have an inherent legal nature, because inventions are protected according to the

procedures and laws of each country. More important, the complexity of analyzing

patent data lies in the meaning of the data and how this may be used to meet

certain targets.

Years ago it was difficult to access to patent documents, and much more to the

data contained in them in a simple way. To obtain useful results, researchers had to

spend many hours extracting, organizing and cleaning data. But the situation has

changed and advances in information technologies and the Internet have facilitated

the data cleaning and preprocessing; although, depending on where one retrieve

the data, is still a work-intensive task.

As this research attempts to propose and test a new patent value model, several

strategies were used in order to avoid bias in the patent sample used in the analy-

27
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sis. It is well known that there is a large variability in the value or importance of

technologies developed by companies. Likewise, a macro analysis by technological

area is desired. Because it is an interesting field for Chile, the sample considers

renewable energy patents. One might think that an easy way to identify inventions

protected by companies in this area is to look for a companies’ directory in the

renewable energy field and then look for their patents in a database. However,

many of the companies listed in directories under some criteria, such as market

capitalization, are not necessarily producers of technologies, and often they do not

appear in the patent databases. The energy field is particularly sensitive to this

problem, because there are a lot of companies whose business is the exploitation

of natural resources, or electric power generation, transmission and distribution.

Hence, to facilitate the analysis and interpretation of results, all inventions pro-

tected in the renewable energy field were retrieved, and later it was identified if

patents belong to a company, other institutions or individuals. In addition, it was

only considered patents applied for and granted in the U.S. –however, this does

not mean that patents owners are based on the U.S. or the priority country is the

U.S. To obtain a random sample of patents under the aforementioned conditions,

we arbitrarily chose four time-periods where patents were published. Since “when-

ever possible, the application data should be used as the relevant time placer for

patents” (Hall et al., 2001, p.10), we reorganized the data by application year and

the indicators were computed.

This approach has three implications. First, we obtained a homogenous sample

in terms of technology field and country. Second, it was found that there are com-

panies from different industries that are developing renewable energy technologies

and this heterogeneity could affect the results. Third, we are considering the re-

newable patent portfolio of companies, and not their complete patent portfolios.

Therefore, if an analysis by company is done, only a part of the relationships that

may exist between the studied variables is captured.

3.2 A Main Criterion to Retrieve the Data

Identification of renewable energy patents is not trivial. To the best of our

knowledge, there are few studies that have used patent data related to energies,

and they have used rather macro patent indicators, as the number of patent ap-

plications. None has considered a set of patent indicators as in this research.

However, Johnstone et al. (2007) studied the effect of the environmental policies

on technological innovation in renewable energies. In their work, they identified

the international patent classification (IPC) codes related to renewable energies

based on a set of keywords. These keywords were identified by the researchers

making an extensive literature review of technological developments in this field.
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The OECD Compendium of Patent Statistics (2007) also provides information re-

lating to the IPC codes on renewable energies, but they referenced the work of

Johnstone et al. (2007). So, in this research, the code list given by these authors

was used to identify the appropriate set of patents.

The IPC codes include the section, class, sub-classes, main groups and sub-

groups related to wind, solar, geothermal, wave-tide, biomass and waste energies.

Some examples are wind motors rotation axis substantially in wind direction (F03D

1/00-06), devices for producing mechanical power from solar energy (F03G 6/00-

08), devices for producing mechanical power from geothermal energy (F03G 4/00-

06), liquid carbonaceous fuels - organic compounds (C10L 1/14) and manufacture

of fuel cells - combined with treatment of residues (H01M 8/06). Table 3.1 shows

the technological field and the IPC codes compiled by Johnstone et al. (2007) in

its study.

To retrieve patents granted in the U.S., some commercial database were tested.

Finally, we used Delphion database, a product of Thomson Reuters, because of-

fers many advantages –advanced search options are available– and it is widely

recognized and used in patent search.

3.3 Comments about Delphion and Data Retrieval

Process

The Delphion database allows visitors to seek a set of patents in at least two

collections: granted or applied patents in the U.S. Data were retrieved by selecting

the “U.S. (Granted)” option. So, patents have been granted and therefore may

have been cited. Delphion database –in its advanced search– allows the patents’

search combining different options. The following criteria were introduced to re-

trieve data:

• Type of patents: granted in the U.S.

• IPC Code: according to Johnstone et al. (2007).

• Publication Year: 1990-1991, 1995-1996, 2000-2001 and 2005-2006.

It is important to recall that, until recently, U.S. patents were only published

after grant. This has changed since November 29, 20001. Nowadays, U.S. patent

applications are published 18 months after “the earliest effective filing date or

priority data claimed by an application.” According to the United States Patent

and Trademark Office, USPTO2, when the published patent is a granted patent,

1See http://www.uspto.gov/web/offices/pac/doc/general/index. html#pub.
2See http://www.uspto.gov/ web/offices/pac/mpep/documents /0900 901 05 b .htm.
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Table 3.1: Application fields and IPC codes on renewable energies

Field name IPC Codes Definition in IPC (8th edition)

Wind F03D 1/00-06 Wind motors with rotation axis substantially in wind direction
F03D 3/00-06 Wind motors with rotation axis substantially at right angle to wind direction
F03D 5/00-06 Other wind motors
F03D 7/00-06 Controlling wind motors
F03D 9/00-02 Adaptations of wind motors for special use
F03D 11/00-04 Details, component parts or accessories not provided for in, or of interest apart from,

the other group of this subclass
B60L 8/00 Electric propulsion with power supply from force of nature, e.g. sun, wind
B63H 13/00 Effecting propulsion by wind motors driving water-engaging propulsive elements

Solar F03G 6/00-08 Devices for producing mechanical power from solar energy
F24J 2/00-54 Use of solar heat, e.g. solar heat collectors
F25B 27/00 Machine plant or systems using particular sources of energy - sun
F26B 3/28 Drying solid materials or objects by processes involving the application of heat by

radiation, e.g. sun
H01L 31/042 Semiconductor devices sensitive to infrared radiation, including a panel or array

of photoelectric cells, e.g. solar cells
H02N 6/00 Generators in which light radiation is directly converted into electrical energy
E04D 13/18 Aspects of roofing for the collection of energy, i.e. solar panels
B60L 8/00 Electric propulsion with power supply from force of nature, e.g. sun, wind

Geothermal F24J 3/00-08 Other production or use of heat, not derived from combustion, using natural or
geothermal heat

F03G 4/00-06 Devices for producing mechanical power from geothermal energy
H02N 10/00 Electric motors using thermal effects

Wave/tide
F03B 13/12-24 Adaptations of machines or engines for special use, characterized by using wave

or tide energy
F03G 7/05 Mechanical-power producing mechanism, ocean thermal energy conversion
F03G 7/04 Mechanical-power producing mechanism, using pressure differentials or thermal

differences
F03B 7/00 Water wheels

Biomass C10L 5/42-44 Solid fuels based on materials of non-mineral origin, animal or vegetable
F02B 43/08 Engines operating on gaseous fuels from solid fuel, e.g. wood
C10L 1/14 Liquid carbonaceous fuels, organic compounds
B01J 41/16 Anion exchange, use of materials, cellulose or wood

Waste C10L 5/46-48 Solid fuels based on materials of non-material origin, refuse or waste
F25B 27/02 Machine plant or systems using particular sources of energy-waste
F02G 5/00-04 Hot gas or combustion, profiting from waste heat of exhaust gases
F23G 5/46 Incineration of waste, recuperation of heat
F01K 25/14 Plants or engines characterized by use of industrial or other waste gases
C10J 3/86 Prod. of combustible gases, combined with waste heat boilers
F23G 7/10 Incinerators or other apparatus consuming waste, field organic waste
H01M 8/06 Manufacture of fuel cells, combined with treatment of residues

the INID (Internationally agreed Numbers for the Identification of Data) code 45

(date of patent) refers to “date of making available to the public by printing or

similar process of a patent document on which grant has taken place on or before

the said date.” In this case, the patent document has a “B1 or B2” next to the

patent number3. On the other hand, when a published patent is an application,

the patent does not have the INID code 45, but the INID code 43 (publication

date), that refers to “date of making available to the public by printing or similar

process of an unexamined patent document, on which no grant has taken place

on or before the said date.” In this case the patent document has an “A1, A2

or A9” next to the publication number. The sample used in this research was

retrieved using the “U.S. granted” option in Delphion. So, the publication year of

3See http://www.uspto.gov/web/patents/authority/kindcode.htm.
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the patents corresponds to the granted year.

The following data were retrieved for each patent (the data mentioned below

were available for all US patents; otherwise, the procedure to recover the missing

data is specified):

• Original title of the patent.

• Maintenance status, that is the USPTO status regarding fee maintenance for

the patent (the options are R1: reinstated, E1: expired, CC: certificate of

correction issued, XT: term extended); there are missing values in this field

and it was not possible to recover the information from another source.

• Number of claims.

• Number of pages of the patent document.

• Publication number, date and country (in the sample the country is the

U.S.).

• Application number, date and country (in the sample the country is the

U.S.).

• Priority number, date and country.

• Field of search, that is, the US class codes that represent the fields (by U.S.

class) that were examined prior to the granting of the patent.

• Applicants’ name and country, patents have missing data in this field, some

data were recovered from the USPTO database.

• Inventors’ name and country.

• Number of backward U.S. references, that is, U.S. patents and applications

cited as references by this patent or application.

• Number of forward U.S. references, that is, U.S. patents or applications that

cite this patent as a reference; this field does not include the foreign patents

that have cited these patents.

• Foreign references, that is, the codes of non-US patents and application cited

as references by the patent.

• Other citations, that is, non-patent prior art that patents reference; these

data were not used in the analysis because it is textual information and is

still being structured; data are not available.
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• IPC codes; Delphion provides the following subfields: advanced and core

codes, according to IPC reform of January 2006 (IPC-R or IPC8), and IPC-

7 codes (codes before the reform). The IPC-7 data recovered from Delphion

database contain 584 missing values. So, in this research it was considered

the IPC-R data.

• Family information, that is, the set of patents filed with different patenting

authorities that refer to the same invention.

3.4 Characterizing Patents and Computing Patent In-

dicators

Table 3.2 presents the number of patents retrieved under the selected crite-

ria. We retrieved all available data under aforementioned conditions. The sample

contains a 39.86% of patents on solar technologies, a 30.34% on waste technolo-

gies, a 15.74% on wind technologies, a 5.52% on wave/tide technologies, a 5.4%

on geothermal technologies and a 3.14% on biomass technologies. A total of 3,349

patents were retrieved. If from this sample it is left out those patents that have a

missing value in the applicant field, a final sample of 2,901 patents is obtained.

The 2,901 patents belong to 1,581 applicants. These correspond in a 69% to

companies, 25% to individuals and 6% to universities, research centres or govern-

mental institutions. Table 3.3 shows the number of patents and the percentage

of patents by priority country. As can be seen, the vast majority of patents were

first applied for in the U.S., but there is also a significant number of patents that

were first filed in Japan, Germany, Great Britain and France. It is worth not-

ing that only 31 patents were first sought through the European Patent Office

(EPO) and 23 through the Patent Cooperation Treaty of the World International

Patent Office (WIPO). This result follows the same tendency that the number

of U.S. patents distributed by country of origin and by calendar year of grant.

That is, the countries that more patent in the U.S. are Japan, Germany, United

Kingdom, France, Canada, and so on. See the Patent Counts by Country/State

and Year, Utility Patents Reports 2008 available on http://www.uspto.gov/web/

offices/ac/ido/oeip/taf/ reports.htm#by geog; in this case the patent origin is de-

termined by the residence of the first-named inventor4.

As a random way to recover patents, data were retrieved using the publication

year. However, the series of grants tend to fluctuate more than the number of

patens applied for and it is recommended to use application date for the analy-

sis (Griliches, 1990; Hall et al., 2001). Likewise, it has been showed that patents

4Recall that according to the U.S. laws, in this country, it is the inventor who apply for a
patent.
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Table 3.2: Number of patents retrieved under the selected criteria

Year Wind Solar Geothermal Wave/tide Biomass Waste Total

1990 26 159 14 16 11 74 300
1991 27 138 23 16 6 54 264
1995 31 118 17 26 19 64 275
1996 39 154 14 23 12 60 302
2000 52 217 40 16 15 129 469
2001 60 211 24 33 16 172 516
2005 127 172 28 26 14 223 590
2006 165 166 21 29 12 240 633
Total 527 1335 181 185 105 1016 3349

statistics ordered by application year correlated better with economic indicators

(Paci et al., 2004, p. 27). So, data were reorganized by application year. Fig-

ure 8.2 shows the number of patents by priority, application and publication year.

Although the retrieved sample does not include the full set of patent applied for

by year on the renewable energy filed in the U.S., it is possible to observe as the

number of patents applied for has gradually increased over time. Three peaks are

clearly observed in the number of applications (1989 with 230, 1994 with 237 and

1999 with 358 applied for patents) and two periods of “drought” (1991-92 with 15

and 32 applied for patents and 1996 with 23 applied for patents). The “drought”

periods coincided with a general decrease in the total number of application in the

United States (see http://uspto.gov/go/taf/us stat.htm for the U.S. patent statis-

tics, calendar years 1963-2008). Recall that, in these years, there were economic

crisis. Especially between 1996 and 1998, the so-called Asian crisis. On the other

hand, the final decrease of the curves, number of patents by priority and applica-

tion year, it is because the patent sample was retrieved by publication year. So,

there are few patents applied for between 2004 and 2006 and granted in the U.S.

before 2006.

Contrary to expectations, in all the most productive years in terms of number

of patents, solar energy inventions have been more protected. One would expect

that the wind energy industry create and protect more inventions.

From the retrieved data, the following indicators were computed for the sub-

sequent analysis:

• The number of inventors, it was counted the number of names in inventors’

field.

• The number of applicants, it was counted the number of names in assignees’

field.
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Table 3.3: Number and percentage of patents by priority country

Priority Country Total % Priority Country Total %

United States 1705 58.77 Austria 9 0.31
Japan 566 19.51 Spain 9 0.31
Germany 233 8.03 Norway 9 0.31
Great Britain 58 2.00 South Africa 4 0.14
France 44 1.52 Belgium 3 0.10
EPO 31 1.07 Sri Lanka 3 0.10
Sweden 23 0.79 New Zealand 3 0.10
WIPO 23 0.79 Russian Federation 3 0.10
Korea 22 0.76 China 1 0.03
Denmark 20 0.69 Czechoslovakia 1 0.03
Australia 19 0.65 Greece 1 0.03
Canada 19 0.65 Ireland 1 0.03
Switzerland 18 0.62 Malaysia 1 0.03
Israel 16 0.55 Poland 1 0.03
Italy 15 0.52 Yugoslavia, Serbia 1 0.03

and Montenegro
Netherlands 15 0.52 Zimbabwe 1 0.03
Finland 12 0.41 Total 2901 100.00
Taiwan 11 0.38

• The number of cited patent, it was calculated as the number of backward

US references plus the number of foreign references.

• The number of claims, it is provided directly by Delphion.

• The number of IPC codes, it was counted the number of four-digit IPC codes

in the IPCs’ field.

• The number of U.S. forward citations, it is provided directly by Delphion.

• The patent family size, it was counted the number of countries in which

protection was sought.

• A set of dummy variables was computed from the priority country field to

indicate where patents were first filed; the variable was called “prior country.”

• A set of dummy variables indicating whether the patents were filed in other

countries besides the U.S.; this indicator was computed from the data con-

tained in the patent family field; the major producers or markets of renewable

energy were considered; the variable was called “PN country.”

• The time-lag of the patents, it was computed as the difference between the

granted and application years.
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Figure 3.1: Number of patents by priority, application and publication year

3.5 Statistical Description of the Sample

Table 3.4 shows the descriptive statistics for the patent indicators (manifest

variables) used in the analysis. The count data indicates that some variables are

very heterogeneous and asymmetric and they also exhibit large variances. This is

the case of the cited patents, the number of claims, the forward citations and the

size of the patent family. Positive values of skewness indicate positive/right skew.

Notice that the backward and forward citations and the family size have very sim-

ilar skewness index. Likewise, positive kurtosis indexes show distributions sharper

than normal peak. The histograms of each variables are shown in Figure 3.5,

they confirm the skewed nature of data. In this patent sample, the inventions

are created on average by two inventors (mean = 2.22, median =2) and the vast

majority have one applicant. The priority dummy variables more informative are

Prior JP and Prior DE; the same happens with PN JP and PN DE. On average,

the time-lag between application and granted years is 2.28 years.

Tables 3.6 and 3.7 show the Pearson and Spearman correlations, respectively

and significance (Bayer et al., 1990; Ahlgren et al., 2003). In general, correlations

are small and medium correlations5, but many of them are significant. This may

be expected because despite indicators for each patent come from a same patent

document, the variables are actually generated by very different phenomena. For

instance, the number of inventors who create an invention is not necessarily cor-

related with the number of countries where the invention sought to be protected.

The latter depends rather on the patenting strategy that may have the applicant

and the decision will probably not depend on the inventors.

5Cohen (1988) suggests that correlations of 0.1, 0.3, and 0.5 express small, medium and large
effect sizes, respectively.
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Table 3.4: Descriptive statistics for patent indicators
Variable Mean Median Minimum Maximum S.D. Skewness Kurtosis

N◦ inventors 2.22 2 1 14 1.58 1.76 4.23
N◦ applicants 1.05 1 1 9 0.29 12.85 260.81
N◦ cited patents 15.36 11 0 327 18.97 5.54 50.79
N◦ claims 17.03 14 1 279 15.08 4.29 43.65
N◦ IPC codes 6.29 5 1 48 4.52 2.09 7.71
N◦ forward citations 5.63 2 0 158 10.17 5.30 46.83
Family size 8.54 6 1 202 11.62 5.58 51.27
Prior US 0.59 1 0 1 0.49 -0.36 -1.87
Prior JP 0.20 0 0 1 0.40 1.54 0.37
Prior DE 0.08 0 0 1 0.27 3.09 7.55
Prior GB 0.02 0 0 1 0.14 6.86 45.12
Prior FR 0.02 0 0 1 0.12 7.94 61.05
Prior EP 0.01 0 0 1 0.10 9.52 88.75
Prior WO 0.01 0 0 1 0.09 11.10 121.35
Prior Nin 0.08 0 0 1 0.28 3.01 7.09
PN US 0.96 1 0 1 0.20 -4.68 19.87
PN JP 0.44 0 0 1 0.50 0.23 -1.95
PN DE 0.33 0 0 1 0.47 0.75 -1.44
PN GB 0.05 0 0 1 0.22 4.20 15.65
PN FR 0.03 0 0 1 0.18 5.22 25.30
PN EP 0.44 0 0 1 0.50 0.25 -1.94
PN WO 0.35 0 0 1 0.48 0.63 -1.60
PN Nin 0.01 0 0 1 0.09 10.86 116.09
Time lag 2.28 2 0 12 1.21 1.16 2.66

Some results are interesting. It is possible to differentiate between the cor-

relations (1) between the indicators, (2) between the indicators and the dummy

variables, and (3) the correlations between the dummy variables. The highest

correlation is between the family size and the number of IPC codes (rho= 0.27,

p-value < 0.01)6. This may mean that patents classified in a larger number of IPC

codes tend to be filed in more countries. It is worth noting that the correlation

between the number of claims and the number of cited patents is 0.20 (p-value <

0.01). This may mean that patents with more claims tend to refer more previous

U.S. and foreign references.

With regard to correlations between the dummy variables, it was found a signif-

icant negative correlation between the Prior U.S. and the family size (rho = -0.29,

p-value < 0.01). The first variable indicates if the patent has been first applied

for in the U.S. This seems to have a negative relationship with the patent family

size, i.e. the number of countries where the protection is sought. Moreover, it was

found a significant positive correlation between the Prior JP and the number of

inventors (rho=0.25, p-value < 0.01). Patents that have been first applied for in

Japan have a positive relationship with the number of inventors. Unlike the corre-

lation between the Prior U.S. and the number of inventors that is significant but

negative (rho=-0.15, p-value < 0.01). Likewise, and as expected, the correlations

6Spearman correlation
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between the Prior U.S. and Prior JP, and between Prior U.S. and Prior DE are

negative and significant (rho=-0.58 and rho=-0.35 respectively, p-value < 0.01).

The highest correlations are obtained between the family size and the PN EP

(rho=0.71, p-value < 0.01), PN JP and PN DE (rho=0.57, p-value < 0.01), PN

WO (rho=0.53, p-value < 0.01) and PN GB (rho=0.24, p-value < 0.01). Recall

that the variables PN-country indicates if the patents have been filed in other

countries besides in the U.S. (59% of the patents have been first applied for in

the U.S.). Moreover, positive and significant correlations were found between the

number of IPC codes and PN JP and PN EP (rho=0.25 and rho=0.19 respectively,

p-value < 0.01). There are significant medium correlations between the Prior U.S.

and PN JP, PN DE and PN EP, but all of them negative (rho=-0.35, rho=-0.30

and rho=-0.24 respectively, p-value < 0.01). On the contrary, there are significant

positive correlations between PN EP and PN DE (rho=0.47, p-value < 0.01), PN

EP and PN JP (rho=0.42, p-value < 0.01), PN EP and PN WO (rho=0.40, p-value

< 0.01), and PN FR and PN GB (rho=0.23, p-value < 0.01).

Finally, there is a significant negative correlation between the time-lag of the

patents and the citations received (rho=-0.35, p-value < 0.01). As expected, the

larger is the difference between the granted and application years, the smaller is

the number of citations received. On the contrary, significant positive correlations

were found between the time-lag and the number of IPC codes, and between the

time-lag and the number of cited patents (rho=0.22 and rho=0.19 respectively,

p-value < 0.01).

3.6 Patent Indicators by Application Year

Figure 3.2 presents the number of patents by application year and technological

field. The number of patents increases over time. The inventions related to solar

energy are the most important in quantity, then those related to waste and wind

energy. Figures 3.3 and 3.4 show the number of cited patents, the forward citations,

the mean citations made and received by application year. The number of cited

patents and the mean citations made by patent increase over time. The same

applies to the number of citations received but, as expected, the growth over time

is less strong. As in the case of the number of patents by application, priority

and publication year, the final decrease of the curves in the recent years is due to

patents applied for and granted in recent years have received few citations.
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Table 3.5: Histograms of patent indicators
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Figure 3.2: Number of patents by application year and technological field
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Figure 3.3: Number of cited patents and forward citations by application year
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Figure 3.4: Mean citations made and received by application year
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Figure 3.5: Mean citations made by application year and technological field
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Figure 3.6: Mean citations received by application year and technological field

Figure 3.5 presents the mean citations made by application year in the case

of solar, waste and wind technologies. All technology areas show an increase

in mean citations made over time. It is note worthy that although there is a

smaller number of patent in wind technologies in the sample, they has made, in

average, more citations than patents in solar technologies. This may mean that

wind technology companies have quickly appropriated new inventions. Figure 3.6

shows the mean citations received by application year and technological field. The

mean citations received appear to be very similar for solar and wind technologies.

However, striking the case of patent classified in IPC codes related to biomass and

waste energies. The behavior is clearly different from other areas between 1991

and 1997.

Figures 3.7 and 3.8 presents the mean time-lag distribution by application year

and by application year and technological field, respectively. As can be seen, the

elapsed time between the granted and application years gradually decreased until
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Figure 3.7: Mean time-lag distribution by application year
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Figure 3.8: Mean time-lag distribution by application year and technological field

1990. In this sample, the first protected inventions are related to solar energy (the

first patent was applied in 1978). In the mid-80s, inventions related to wind and

waste energy are protected.

The mean number of claims by application year and by application year and

technological field (Figures 3.9 and 3.10) seems to be stabilizing over the years.

Most patents have between 15 and 20 claims. The situation is completely different

for the mean number of IPC codes by application year, and by application year

and technological field (Figures 3.11 and 3.12). Clearly, as time passes, inventions

tend to be classified in more IPC codes. In particular, this happens especially

for inventions related at the same time to waste and biomass energies. Inventions

classified in IPC codes related to solar, waste and wind energy seem to aim at a

number of IPC codes (between 5 and 10). It is not the case of inventions classified

in IPC codes associated with wave/tide energies. These data features –the number

of claims seems to be a more stable indicator over time than the number of IPC
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Figure 3.9: Mean number of claims by application year
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Figure 3.10: Mean number of claims by application year and technological field

codes– may explain why the former shows to be less related to the technological

scope that the latter.

The mean family size by application year (Figures 3.13) did not show a ten-

dency to increase or decrease over time, it rather seems to converge to a value

between 5 and 10. Figure 3.14 presents the mean family size by application year

and technological field. Again the inventions classified at the same time in IPC

codes associated with the waste and biomass energies, show a mean family size

larger than the rest of the inventions.

3.7 Longitudinal Nature of Forward Citations

It is important to emphasize that some of the patent indicators described above

have a temporary nature. The number of inventors, applicants, cited patents,

claims and IPC codes are determined at the time of filing of the patent applica-
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Figure 3.11: Mean number of IPC codes by application year
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Figure 3.12: Mean number of IPC codes by application year and technological field

tion or during the patent examination process. One may assume that they are

determined at the instant zero. However, this does not apply to citations received.

The forward citations are received as time passes. Due to the temporary nature

of this indicator and since this feature may have important implications on the

results of the estimated models, it was retrieved the number of forward citations

by year for each patent applied for in 1989, 1990, 1991, 1995, 1996 and 2000. Data

were retrieved from USPTO database.

Figures 3.15, 3.16, 3.17 and 3.18 show the number of citations received by year,

the accumulated citations received by year, the mean citations received by year

and the mean accumulated citations received by year, respectively, for patents

applied for in 1989, 1990, 1991, 1995, 1996 and 2000. In all these figures, it is

observed an increase in the number of citations over time. In the figure 3.15, it is

possible appreciate that the number of citations reach a peak for then decrease.

For patents applied for in 1989, 1990 and 1991, probably this is because patents
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Figure 3.13: Mean family size by application year
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Figure 3.14: Mean family size by application year and technological field

are less cited in recent years. Perhaps inventions are less useful in technological

terms or knowledge begins to become obsolete –between 1990 and 2006, there is

a period of 16 years. However, for patents applied for in 2000, this decline in the

curve is mainly due to patents applied for and granted in recent years have not

received all the citations that probably they will receive.

Patents applied for in 1989 are the most cited. It is worth noting that patents

applied for in 1995 have received more citations than patents applied for in 1990

and 1991. This is clearly shown in figure 3.16. The patents less cited are those

applied for in 1991 and 1996. With regard to the mean citations received by

year, the patents applied for in 1995 are clearly more cited (Figure 3.17). Even

though the patents applied for in 2000 are recent, they have been rather cited. On

average, patents applied for in 1995 have more accumulated citations than the rest

of patents.
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Figure 3.15: Number of citations received by year, patents applied for in 1989, 1990, 1991,
1995, 1996 and 2000
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Figure 3.16: Accumulated citations received by year, patents applied for in 1989, 1990,
1991, 1995, 1996 and 2000
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Figure 3.17: Mean citations received by year, patents applied for in 1989, 1990, 1991,
1995, 1996 and 2000
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Figure 3.18: Mean accumulated citations received by year, patents applied for in 1989,
1990, 1991, 1995, 1996 and 2000



Chapter 4

Structural Equation Models

Abstract. This chapter presents an overview of structural models with latent

variables. Emphasizing a component-based approach, two approaches are de-

scribed –covariance-based and partial least square path modelling– in terms of

major scientific contributions in these subjects. In addition, this chapter provides

guidelines for model specification and modelling process for structural equation

models. Special emphasis is placed on determining the reflective or formative

nature of measurement models.

4.1 Introduction

A variable is a characteristic measured or observed when an experiment is

carried out or an observation is made (Upton, 2006). Observed characteristics

are useful in describing the behavior of an interesting phenomena. What factors

influence the behavior of people? How do societies change? What determines eco-

nomic growth? How does public spending affect innovation? To study countries’

economy, it is possible to use different measures such as income per capita, gross

internal product or inflation index. These variables may be described and alto-

gether give a sign of how good or bad the economy of a region is. Technological

performance of a country can be studied by observing the evolution of its R&D

investment, its number of scientific publications or its stock of patents. Analysis

of these variables may provide insight into the reasons for a given change enabling

better decision making.

Understanding how variables are related and how the strength of the relation-

ships are among them, it is the foci of this thesis. Usually, real phenomena deal

with complex variables. They represent a concept, an idea or a construct, and

can only be indirectly estimated through other observed variables or measures.

Nowadays, with the advent of this new era of technological development, there are

a variety of “technologies” to describe a set of variables. Contributions come from

49
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different disciplines, ranging from the classical Bayesian theory –largely developed

by statisticians– to the development of algorithms, where computer science com-

munity have contributed significantly.

From a social science standpoint, structural equation modelling (SEM) tech-

niques are used to represent and describe relationships between constructs, and

between constructs and observed variables. Structural equation models are a fam-

ily of methods that deal with dependency relationships among variables studying

their variance and covariance. They are called a second generation of multivari-

ate analysis (Fornell, 1985). The first generation is mainly composed by Multi-

ple Regression, Principal Components Analysis, Factor Analysis and Discriminant

Analysis (Chin & Newsted, 1999). The advantage of the second generation tools

is the flexibility to work with theory and data, providing the following key benefits

(Bagozzi, 1980; Batista & Coenders, 2000; Wheaton et al., 1977). From a theory

and data perspectives:

- To approach the whole phenomenon and a more complete representation of

a complex theory.

- To elucidate the theory due to the need for a clear definition of the constructs

and their relationships.

- Assumption, constructs and hypothetical relationships are explicit.

- Causal relationships among constructs can be interpreted directly.

- SEMs provide a formal framework for building and testing theories and mea-

sures.

SEMs allow the definition of a large number of endogenous and exogenous vari-

ables, to simplify the multivariate matrixes and work with constructs estimated by

indicators and then to assess the quality of this measurement. From a researcher’s

perspective, these techniques allow researchers to use their own discretion and

knowledge specifying a model.

There are two main streams of research regarding SEM. The covariance- and

the component-based approaches. Factorial Analysis and Linear Structural Rela-

tion Model (LISREL) are the most well-known covariance-based techniques. These

and other models of covariance analysis involve procedures of parameters’ estima-

tion that seek to estimate the value of the variables and the strength of the de-

pendency relationships among them, as well as to reproduce as nearly as possible

the observed covariance matrix. Recently, soft modelling and component-based

techniques, as Partial Least Squares (PLS) Path Modelling, have been increas-

ingly used by researchers and practitioners. PLS aims the minimization of error
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in all endogenous constructs or equivalently the maximization of explained vari-

ance. Generally, researchers are familiar with Linear Structural Relation Model

and apply it successfully. It is not so with PLS Path Modelling. But, in recent

years, PLS Path Modelling has spread explosively and has blossomed a variety of

approaches and applications coming from different disciplines.

Emphasizing a component-based approach, this chapter presents an overview

of the main methods and algorithms for structural equation modelling from both

component- and covariance-based approaches. A brief historical perspective, main

contributions and advances are introduced.

4.2 Background

From a statistical theory and application perspectives1, two main knowledge

areas have generated synergies and made outstanding contributions to the devel-

opment of structural models: psychometrics/psychology and econometrics.

4.2.1 Psychometrics and Factorial Analysis

The British psychologist Charles Spearman studied how to measure and objec-

tively determine the –underlying and unobserved– human intelligence. Spearman

(1904, 1927) found a general factor “g” of intelligence accounting for observed

correlations between individual differences (observed variables). The one-factor

model was presented in 1904. Since then, this method has become a widely used

technique and the baseline of the covariance-based procedures. Factor analysis

(FA) was disseminated in the U.S. by the mathematician Karl Holzinger and the

psychologist Louis Leon Thurstone, but Truman Kelly and Thurstone (1931)2

transformed Spearman’s one Factor Analysis into Multi-Factor Analysis in the

thirties and forties. Multiple common factors jointly account for intercorrelations

between variables (or test scores).

At that time, estimation of factors models was frequently made by means of “a

modified version of Principal Components [also called Principal Factor Method]

and the Centroid Method” (Cudeck et al., 2001, p. 34). Both procedures involve

the computation of communalities, that is, that portion of the variance of the ith

1According to Bagozzi (1980), from a philosophical approach firsts in studying causal relations
were David Hume, Immanuel Kant and John Stuart Mill. They defined the main characteristics
of these relations: (a) their contiguity in time and place, (b) their temporal priority of cause and
effect and (c) their constant conjunction. This paper does not seek to discuss the philosophical
aspects of causation. Those researchers interested may consult the works of Bagozzi (1980), Pearl
(2000), Woodward (2003) and references therein.

2Thurstone also contributed with the generalization of Spearman’s tetrad analysis to the rank
of the correlation matrix as the basis for determining the number of common factors. Another
important contribution was made by Ledyard Tucker who proposed the Three-Mode Factor Anal-
ysis. The interested reader may review Cudeck & MacCallum (2007) for historical details.
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variable contributed by the common factors. Common factors and communalities

are obtained after model estimation, however. Jöreskog solved this problem in

his PhD dissertation proposing a new method for extracting factors based on

maximum likelihood estimation (see section 4.2.4).

4.2.2 Econometrics and Principal Components

Principal Components were introduced by the British statistician Karl Pearson

in 1901 in order to factor a matrix of observable variables from a data reduction

perspective3. Later on, it was the American economist Harold Hotelling (1933)

who fully completed the formulation of Principal Component Analysis (PCA) as

a method for the Factor Analysis of a correlation matrix. The main difference

between PCA and FA is that the former does not include unobserved phenom-

ena (or measurement errors). Instead, linear combinations of observed variables

are formed. Hotelling (1936) also introduced the Canonical Correlation Analysis

(CCA).

Econometricians have taken correlation and regression analysis from Pearson’s

work and the t-test and maximum likelihood estimation from Ronald Fisher’s con-

tributions4. Economical phenomena are determined by the relationship between a

large number of economic variables. These relationships may be described by sin-

gle equation models or a set of equations that must be estimated at the same time.

Simultaneous equation models cannot be estimated using ordinary least squares

method, because the assumption of zero covariance between disturbance terms

and independent variables is not satisfied. Econometricians have intensively inves-

tigated to solve this issue. Among other contributions, the Norwegian economist

Trygve Haavelmo clearly distinguished identification problems from estimation

problems by the presence of simultaneous equations (Morgan, 1990), proposed a

probabilistic approach to econometrics, and recommended maximum likelihood as

a method of estimation (Haavelmo, 1947; Markus & Converse, 1979). In a par-

allel type of investigation –and in opposition to Haavelmo’s ideas– the Swedish

statistician and econometrician Herman Wold determined the conditions under

which OLS estimates of simultaneous equation systems are consistent, and pro-

posed an alternative approach for recursive models with observed and unobserved

variables (see section 4.2.5). PLS Path Modelling has its origins in econometrics.

As Areskoug (1982) remarked:

The concept of latent variables in the PLS framework emerged from the

estimation of reformulated interdependent systems [Mosback and Wold

3Both Pearson and Spearman were pupils of Francis Galton in his Anthropometric Laboratory
in London; for more about Pearson, Spearman and the Anthropometric Laboratory, see Cudeck
et al. (2001). There are a number of articles published by Galton in www.galton.com.

4See Morgan (1990) for a review of the origins and the evolution of econometrics.
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Table 4.1: Comparison of Principal Component Analysis and Factorial Analysis

Principal Component Analysis Factor Analysis

Karl Pearson (1901) Charles Spearman (1904)
Natural scientific school Social science school
No measurement errors Measurement errors
No unobservable variables Unobservable variables
To explain both common and unique
variance of variables

To explain common variance of vari-
ables

To maximize the total variance of man-
ifest variables

To explain off-diagonal correlations
among manifest variables

Loadings tend to be larger Loadings tend to be closer to popu-
lation parameters (Cudeck & MacCal-
lum, 2007)

Smaller standard errors for loadings Larger standard errors for loadings
(Ogasawara, 2003)

Component scores are unique Component scores are not unique
No indeterminacy problems Indeterminacy problems (Steiger, 1979,

1996)
Less computer intensive More computer intensive (Velicer and

Jackson, 1990)

(1980)], where endogenous variables as regressors were substituted by

their systematic parts obtained from other relations. Specifying esti-

mated latent variables as systematic parts of OLS regressions, allows

estimation to stay in the structural form of the model and avoids some

of the identification problems connected with the reduced form. The

reason for this is that less assumptions about the residuals need be

made. Leaving the residual structure within blocks unspecified actu-

ally yields an unidentified model (p. 100).

Both Factor Analysis and Principal Component Analysis share striking similar-

ities, since both techniques try to approximate the covariance between variables,

although conceptually they are based on different models (see Table 4.1). The

former looks for explain the common variance among manifest variables, whereas

the latter seeks to maximize the total variance in a reduced-dimensional space.

Another important contribution for the development of structural equation

models was made by the American geneticist and biometrician Sewall Wright

(1918). The researcher defined three basic components of SEMs: (1) the path

diagram, (2) the equations relating correlations or covariances to parameters and

(2) the decomposition effects. These elements are the baseline in the modelling

process allowing the expression of the covariances or correlations among variables
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Figure 4.1: Path model with structural and measurement models. Industrialization inten-
sity and export quality are modeled as determinant of industrial competitiveness. Their
relationships are described by the structural model. Each latent variable is linked with
measurement variables, emphasizing the factorial perspective.

as function of model parameters (Bollen, 1989). Path analysis and paths models

are terms coined by psychometricians and econometricians, respectively, to refer

structural equations models. SEMs formalize relations among latent and manifest

variables, combining an econometric approach focused on prediction and a psycho-

metric perspective focused on knowing the relationships among latent variables.

Figure 4.1 shows an example of a path model with latent and manifest variables.

Latent variables and their relationships are described by a structural model, while

relationships between latent and manifest variables by measurement models.

4.2.3 Exploratory and Confirmatory Approaches

Both, Principal Components and Factorial Analysis are closely related to ex-

ploratory (theory building) and confirmatory (theory testing) perspectives. In this

section, we tackle these two approaches from the point of view of the French, Anglo-

Saxon and Dutch schools. French school is based on data analysis, Anglo-Saxon

school is based on modelling, and Dutch school is placed on a middle point between

the first two approaches. PLS procedures –with nordic roots– have brought the

French school to the Anglo-Saxon school, integrating modelling into Exploratory

Data Analysis. This is one of its great merits.

The English term Data Analysis includes both Exploratory Data Analysis and

Confirmatory Data Analysis. This convention and the term “data analysis” were

formalized by John Tukey in 1977: “Exploratory Data Analysis” to analyze data in

order to formulate hypothesis to test, and “Confirmatory Data Analysis” focused

on statistical hypothesis testing5.

5Tukey’s data analysis was mainly concerned with small samples and few variables (Gower,
2008).
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From a exploratory perspective, a body of methods have been developed to

explore and describe data in geometric/multidimensional spaces (orthogonal pro-

jections). Visual representations make it easier to understand data and their re-

lationships. These exploratory multivariate data analysis techniques are based

on singular value decomposition. They include Principal Component Analysis,

Factor Analysis, Simple and Multiple Correspondence Analysis, Multiway Arrays

and Generalized Canonical Correlation Analysis6. Some of these techniques are

rooted in an exploratory approach, but contributions have been also made from a

confirmatory data analysis framework.

Although Tukey coined the term, the French’s school of “Analyse des Données”

pioneered in the exploratory approach. The school was born in the 60s and 70s,

mostly around developments of Jean Paul Benzécri, who introduced Correspon-

dence Analysis and Taxonomy/Cluster Analysis (1969). French researchers ex-

ploited computational advances of those years and focused on the analysis of large

data matrices, “letting data speak for themselves.” Falguerolles (2008, p. 2) men-

tioned four elements that characterize the data analysis “á la francaise”:

1. A firm belief in multidimensional descriptions.

2. A search for latent variables giving sense to the observed data and allowing

dimension reduction.

3. A conviction that proper graphical representations best convey the structure

of either the original data or the results of their analyzes.

4. A manifest (and possibly overplayed) claim from their authors to avoid any

modelling driven by probabilistic considerations.

Formalizing a definition, exploratory analysis aims “to establish relationships

between variables without giving more importance to any particular variable. It

is to this family of methods that this issue is dedicated. Traditionally, in this

phase of the study, the conclusions only concern the data that is analyzed and

they are not inferred to a larger population. The exploratory analysis essen-

tially reposes on graphical representations and on multidimensional description

techniques” (Lebart, 2008, p. 3). PLS Path Modelling procedure tap into an

exploratory approach.

French approach to data analysis contrast with the Anglo-Saxon school7 which

emphasizes confirmatory analysis and inferential. In a confirmatory approach,

hypotheses are first formulated and they are validated/invalidated on the basis

6See the paper of Lebart (2008) for historical details. Only Single and Multiple Correspondence
Analysis are rooted in the classical French school of the 70s.

7Anglo-Saxon school is mainly composed by scientist from the U.S. and England.
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of statistical tests or probabilistic models. Some researchers from this school are

Charles Spearman, Karl Pearson and Harold Hotelling.

A middle approach8 is followed by the Dutch school of exploratory multidimen-

sional data analysis, where scientists as Gerard Heymans, John van der Geer9 and

Jan de Leeuw –the latter led the Albert Gifi research group on data theory at the

University of Leiden– have made important contributions to psychometrics, non

linear multivariate analysis and correspondence analysis. They remark that there

is not clear cut distinction between exploratory and confirmatory approaches. So,

they focused on “building bridges between methods of l’analyse des données and

statistical modelling methods” (Falguerolles, 2008). These researchers extended

the French school, enriching the analysis including statistical modelling.

4.2.4 Covariance-based Approaches

As Bollen (1989) remind us, the works of the Royal Society of Edinburgh10

(1940), Anderson & Rubin (1956) and Jöreskog (1969) helped lay the foundations

for hypothesis testing in modern Factor Analysis. These three researchers incor-

porated almost simultaneously path diagram and path analysis in a structural

modelling framework. However, the Swedish mathematician and statistician Karl

Jöreskog has done one of the most important contributions to the development

to structural modelling. Jöreskog first introduced the Confirmatory Factor Anal-

ysis in 1969 doing a psychometric application, and in 1970, a general method for

Analysis of Covariance Structures (ACOVS) based on maximum likelihood esti-

mation (Jöreskog, 1969, 1970). Jöreskog (1973), Keesling (1972, in Bollen 1989)

and Wiley (1973) rose what is now known as structural equation modelling (SEM)

or JKW models (Bollen, 1989). This technique rests on the assumption that the

covariance matrix may be expressed in terms of a set of known parameters that

are estimated using maximum likelihood. The goal is to minimize the difference

between the sample covariance and the estimated covariance matrix making use

of certain parameters (i.e.,
∑
−
∑

(Θ)). Thus, the process attempts to fit factor

models to data. Among other reasons, this procedure has been widely used due to

Jöreskog, together with Dag Sörbom, developed the LISREL computer program to

implement it11. Nowadays, the name LISREL is sometimes used interchangeably

to refer to the software or the statistical method.

Other researchers such as the sociologist Otis D. Duncan (1957), the psychol-

8Falguerolles (2008, p. 25) talked about “the between introduction of probabilistic models” in
l’analyse des données.

9John van der Geer and Gerard Heymans –the latter from Groningen University– initiated the
multidimensional approach to multivariate data in the Netherlands. See Heiser (2008).

10The Royal Society of Edinburgh is Scotland’s National Academy of Science & Letters.
11Availability of a number of software such as LISREL, EQS, AMOS, SEPath, CALIS, RA-

MONA and LISCOMP, have facilitated the use of covariance-based techniques.
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ogist Peter Bentler (1980; 1990; 1996), and the economists Arthur S. Goldberger

(1973) and Dennis J. Aigner (1977) have extended these techniques in their own

disciplines. In 1972, together with Goldberger, Jöreskog formalized the use of Gen-

eralized Least Squares (GLS) as an alternative to maximum likelihood (Jöreskog

& Goldberger, 1972; Browne, 1977). Jöreskog and Goldberger also proposed pro-

cedures for Multiple Indicators and Multiple Causes of a single latent variable,

the so-called MIMIC models (Jöreskog & Goldberger, 1975). Other important

contributions are made by Browne (1984) who proposed estimations that assume

arbitrary distributions, Bentler (1983) that suggested estimators that treat higher-

order product moments of latent variables, and Muthén (1984) that generalized

these models to ordinal or limited observed variables12.

4.2.5 Component-based Approaches

In the early 60s and 70s, the Swedish statistician and econometrician Herman

Wold wrote extensively on operative aspects of econometrics, sociological models

and causal flows with latent variables. Among others, Wold proposed in 1973

the algorithm Nonlinear Estimation by Iterative Partial Least Squares (NIPALS)

(Wold, 1973a,b, 1974, 1975). NIPALS was originally presented by Wold in 1966

for Principal Component Analysis with the name Nonlinear Estimation by Itera-

tive Least Squares (NILES). The algorithm shows how principal components are

extracted or how a matrix is factorized from a series of simple regressions by least

squares. Hence, that using this technique, consistent estimators of parameters of

a set of equations are found. This algorithm is the precursor of the PLS Path

Modelling algorithm. Though the PLS design was completed in 1977 (Wold, 1982,

p. 35), it was presented in 1979 in the article Partial Least Square Path Modelling

with Latent Variables (Gerlach et al., 1979). Herman Wold (1980) preferred the

“soft modelling” for econometric modelling because this approach considers few

cases and assumptions about data distribution, in contrast to LISREL, which as-

sumes that data are multivariate normal distributed and where large sample sizes

are required for their application (“hard modelling”). PLS Path Modelling has a

partial nature because only a part of the model is involved at each iteration step

of the algorithm.

Several methods and approaches have been proposed to the eaves of the PLS

approach. Svante Wold, Harald Martens and Herman Wold proposed a particu-

lar case of PLS Path Modelling, the PLS Regression (Wold et al., 1983; Martens

et al., 1983; Wold et al., 2001). Extensively used in Chemometrics, PLS Regres-

12A summary of developments to the 80s can be found in Jöreskog & Sörbom (1982) and Bollen
(1989). Both the covariance- and component-based perspectives are presented in the book System
under Indirect Observation published jointly by Jöreskog & Wold (1982b). Recent approaches
and further historical details can be found in Cudeck et al. (2001).
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sion offers an alternative to Multiple Regression when independent variables are

multicollinear. Recently, there has been a rapid progress in the development of

PLS-based algorithms. Chemometrics and computer science scientific communi-

ties have made contributions to modelling nonlinearities between response and

predictors; linear inner relationships have been replaced with quadratic polyno-

mials (Wold et al., 1989; Baffi et al., 1999b), smooth bivariate spline functions

(Frank, 1990; Wold, 1992), sigmoidal neural network functions (Qin & McAvoy,

1992; Baffi et al., 1999a), kernel functions (Lindgren et al., 1993; Rosipal & Trejo,

2001), radial basis functions (Wilson et al., 1997), and feedforward neural net-

works (Malthouse et al., 1997). After Rosipal & Trejo (2001) introduced the use

of a kernel function, other researchers have proposed algorithms with classification

purposes, such as PLS Logistic Regression and PLS Generalized Linear Regres-

sion (Bastien et al., 2005), PLS for Discrimination (Pérez-Enciso & Tenenhaus,

2003; Barker & Rayens, 2003), Kernel PLS for Discrimination (Rosipal, 2003) and

Kernel Logistic PLS (Tenenhaus et al., 2007).

On the other hand, Jan-Bernd Lohmöller was one of the first researchers to

work in the computational aspects (LVPLS 1.8), and theoretical developments

of PLS Path Modelling (Lohmöller, 1989). Lohmöller proposed a matrix-based

version of the algorithm13 making easier its computational implementation (see

section 5.3 for details on this). More recently, Wynne W. Chin has introduced a

software with graphical interfaces (PLS Graph 3.0), improved the validation tech-

niques, and extended the method in the information systems field (Chin, 1995;

Chin & Marcolin, 1995; Chin, 1998a; Chin & Newsted, 1999; Chin et al., 2003).

Michel Tenenhaus has related PLS Path Modelling to Multi-Block Analysis and

has stressed that the procedure is an alternative to handle missing values (Tenen-

haus, 1998; Pagés & Tenenhaus, 2001; Tenenhaus et al., 2005, 2007; Tenenhaus

& Hanafi, 2010). Esposito-Vinzi has shown that both, PLS Regression and PLS

Path Modelling, can be combined at technical levels (Esposito Vinzi & Lauro,

2005; Esposito Vinzi, 2007). Additionally, since 1999, Tenenhaus and Esposito-

Vinzi have led the International Conference on Partial Least Square and Related

Methods, the main international forum of PLS research, innovations and practical

applications.

In the recent past, PLS Path Modelling scientific community has mainly fo-

cused on developing algorithms for multi-group analysis. Different approaches have

been addressed, as permutation procedures (Chin, 2003; Henseler & Fassott, 2007;

Chin & Dibbern, 2010), the segmentation tree algorithm PATHMOX (Sánchez &

Aluja, 2006; Aluja & Sánchez, 2007; Sánchez & Aluja, 2007), the PLS typological

path modelling routine PLS-TPM (Esposito Vinzi et al., 2005, 2007; Squillacciotti,

13This procedure is described in Tenenhaus et al. (2005).
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2005, 2007, 2010), the response-based units segmentation routine REBUS-PLS

(Trinchera et al., 2006; Trinchera, 2007; Esposito Vinzi et al., 2008), the fuzzy

PLS Path Modelling for latent class detection FPLS-LCD (Palumbo et al., 2008),

the PLS genetic algorithm segmentation PLS-GAS (Ringle & Schlittgen, 2007)

and the finite mixture-PLS (FIMIX-PLS) procedure (Hahn et al., 2002; Ringle

et al., 2005a, 2010). See Sarstedt (2008) for a non-technical comparison and a

methodological taxonomy of these approaches.

Other lines of research have also been undertaken. Investigations have been

concerned with convergence and consistency of the PLS Path Modelling algo-

rithm (Hui & Wold, 1982; Dijkstra, 1983; Mathes, 1993; Schneeweiss, 1993; Hanafi

& Qannari, 2005; Krämer, 2006; Hanafi, 2007; Henseler, 2009; Dijkstra, 2010),

PLS Regression and PLS Path Modelling relationship (Esposito Vinzi et al., 2005;

Tenenhaus & Esposito Vinzi, 2005; Esposito Vinzi, 2007), the algorithm perfor-

mance against multicollinearity, skewed distributions for observed variables and

misspecification of structural models (Westlund et al., 2001, 2008; Marcoulides &

Saunders, 2006; Marcoulides et al., 2009), the reflective versus formative specifi-

cation of the measurement models (Chin & Gopal, 1995; Diamantopoulos & Win-

klhofer, 2001; Rossiter, 2002; Jarvis et al., 2003; Diamantopoulos, 2006; Petter

et al., 2007; Diamantopoulos et al., 2008), the algorithm performance with for-

mative outer models and the tetrad analysis approach (Cassel et al., 1999, 2000;

Bucic & Gudergan, 2004; Ringle et al., 2007; Westlund et al., 2008; Gudergan et al.,

2008; Ringle et al., 2009; Vilares et al., 2010), the analysis of interaction and non-

linear effects among constructs with PLS Path Modelling Mode A (Chin et al.,

2003; Henseler & Fassott, 2005; Goodhue et al., 2006, 2007; Henseler et al., 2007;

Qureshi & Compeau, 2009; Henseler & Fassott, 2010; Henseler & Chin, 2010), the

robustness of the algorithm compared with covariance-based models (Fornell &

Bookstein, 1982; Schneeweiss, 1991; Hsu et al., 2006; Ringle et al., 2007; Almeida

et al., 2007; Ringle et al., 2009), the modelling of hierarchical constructs (Wetzels

et al., 2009), and the non-supervised model building with PLS Path Modelling

(Marcoulides, 2003; Jakobowicz & Derquenne, 2007).

On the other hand, though PLS Path Modelling has its origins in econometrics,

since the algorithm was proposed, has been extensively used in the social sciences.

Investigations by Bagozzi (1980), Fornell & Larcker (1981), Bookstein (1982), For-

nell & Bookstein (1982), Fornell (1992), and Fornell & Cha (1994) helped to spread

the structural models in marketing, where PLS Path Modelling has been widely

used (see the recent article of Henseler et al. (2009) on PLS Path Modelling appli-

cations in international marketing and references therein). Additionally, the pro-

cedure has been applied in a number of disciplines such as strategic management

(Cool et al., 1989; Hulland, 1999), information systems (Barclay et al., 1995; Good-

hue et al., 2006), e-business and finances (Serrano-Cinca et al., 2007; Sohn et al.,
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2007), industrial management (Hadaya & Cassivi, 2007), and group and organiza-

tion management (Bucic & Gudergan, 2004; Sosik et al., 2009). The availability of

software, such as XLSTAT-PLSPM, LVPLS developed by Lohmöller, PLS-Graph

3.0 developed by Wynne W. Chin, PLSPM in R-Project by Gastón Sanchez and

SmartPLS (Ringle et al., 2005b) have facilitated the use of this approach14. It

is worth mention, that LVPLS, PLS-Graph and SmartPLS have implemented the

Lohmöller procedure of the PLS Path Modelling algorithm.

This updated review of the literature shows that today PLS techniques have

taken root in various knowledge fields. However, there is little research reporting

(1) the robustness and performance of PLS Path Modelling with Mode C and

few indicators per construct, and (2) the robustness and performance of a Two-

Step PLS Path Modelling approach for estimating nonlinearities among formative

constructs. It is in these aspects where this work is aimed to make contributions.

4.3 Conventional Rules for SEMs

Models describe relationships between variables; these may represent general

concepts that cannot be directly observed. Thus, they are named constructs,

factors, latent variables, unobserved or unmeasured variables. Examples of latent

variables are intelligence, human development or the value of something. An struc-

tural model describes relationships between latent variables. Unmeasured variables

can be estimated indirectly through other variables known as measurement, man-

ifest or observed variables, and also as indicators. Measurement models describe

relationships between latent and measurement variables. A path diagram consists

of a visual representation of latent and manifest variables and their relationships,

which facilitates the understanding of a phenomenon and model parameters spec-

ification (Jöreskog & Wold, 1982a; Batista & Coenders, 2000). A set of circles,

squares and arrows are used to display concepts, indicators and relationships, re-

spectively (Figure 4.2). Hence, in these diagrams it is also possible to observe

the dependency or causality relationships that govern the modeled phenomenon.

From a PLS-based approach, conventions are as follows (see Figure 4.3):

- Latent variables (LVs), constructs, unobserved or unmeasured variables are

represented by circles; they may contain a disturbance term.

- Manifest variables (MVs), observed or measured variables are represented

by squares; they may contain random or systematic measurement error.

- Causal relationships among variables are indicated by unidirectional arrows

14See Temme & Kreis (2005) for a comparison of PLS software to that date (LVPLS 1.8,
PLS-GUI 2.0.0, PLS-Graph 3.00, SPAD-PLS, SmartPLS 1.0).
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Figure 4.2: Path diagram, visual representation of variables and their relationships.

(recursive relationship) from latent to manifest variables in the case of reflec-

tive models, and from manifest to latent variables in the case of formative

models.

- Endogenous latent variables are affected by a random disturbance term that

is included in the diagram as an additional arrow pointing to the endogenous

variable.

4.4 Modelling Process

Modelling process comprises conceptual and methodological considerations

(Wheaton et al., 1977; Wold, 1980; Bagozzi, 1984; Bollen, 1989; Hulland, 1999).

Researchers begin the process of defining a theoretical model, identifying the con-

cepts that best represent the phenomenon under study, and specifying whether

these concepts can be represented by latent variables to be estimated by means of

manifest variables. Indicators are related to latent variables forming or reflecting

the constructs; variables and relationships are represented graphically by a path

diagram.

Implicitly, conceptual modelling stage leads to the definition of the dimen-

sionality problem by taking into account the differences between constructs and

measures and the causality relationships among variables. Wold (1985, p. 582) em-

phasizes that “using prior knowledge and intuition the investigator is free to specify

the LVs, to design the inner relations, and to compile a selection of indicators for

each LV.” The path model “is usually tentative since the model construction is an

evolutionary process. The empirical content of the model is extracted from the

data, and the model is improved by interactions through the estimation between

the model and the data and the reactions of the researcher” (Wold, 1980, p. 70).

Wheaton et al. (1977) highlights the importance of doing a good model specifica-
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Figure 4.3: Graphical conventions of path models

tion, considering all latent and measurement variables that may explain a event

because this influences the model’s estimation results. From a methodological

standpoint, the modelling process aims:

1. To determine the model and relationships between observed and unobserved

variables.

2. To interpret the path coefficients.

3. To assess the reliability and validity of measures.

4. To select a plausible final model.

On the other hand, some strategies are given by Chin & Newsted (1999, p. 337)

and Wold (1980, 1982) to decide if PLS Path Modelling is a suitable procedure for

estimating a structural equation model. They are summarized as follows:

- To determine the modelling orientation: prediction versus parameter esti-

mation15.

- To determine the prior knowledge about a phenomenon, if it is relatively new

or changing and if the theoretical model or measures are not well formed.

- To determine the complexity of the model, the numbers of indicators and/or

latent variables.

15A covariance-based approach should be preferred if the objective is to estimate the population
parameters.
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- To determine data conditions relating to normal distribution, independence,

and/or sample size.

To specify a model, a first attempt to define latent and manifest variables may

be done through an extensively review of the literature on the phenomenon being

studied. In addition, relationships in each measurement model must be deter-

mined. Traditionally, reflective relationships have been preferred by researchers.

Especially important for the development of this thesis is the distinction between

reflective and formative measurement models. Hence, a literature review on these

topics is presented in what follows.

4.5 Reflective versus Formative Constructs

The distinction between reflective and formative measurement models for struc-

tural equation models (SEM) is an issue that has been addressed by several scien-

tific communities. Major contributions have been made by researchers from statis-

tics (Cohen et al., 1990), psychology and sociology (Bollen & Ting, 1993, 2000),

information science (Chin & Newsted, 1999; Petter et al., 2007), and business and

marketing research (Fornell & Bookstein, 1982; Diamantopoulos & Winklhofer,

2001; Jarvis et al., 2003; Bucic & Gudergan, 2004; Gudergan, 2005). In general,

the literature is diverse and contributions come from researchers using covariance-

and component-based approaches. We are interested in both perspectives, but

the emphasis is placed on Partial Least Squares (PLS) Path Modelling. Although

the literature review does not seek to be exhaustive, we attempt to present the

main contributions that have been made and which are related to formative outer

models.

Depending on its nature, manifest variables have been referred to as effects

or reflective indicators, or causes or formative indicators. We prefer to refer to

reflective and formative measurement models or reflective and formative relation-

ships or constructs, thus emphasizing the link between observed and unobserved

variables. Wold’s basic design usually refers to Mode A and Mode B, or simple

and multiple regressions (Wold, 1985). Although formative measurement models

were first discussed by Curtis & Jackson (1962) and Blalock (1964), and a num-

ber of variables can be modeled in a better way through formative relationships

(Hulland, 1999), measurement variables have been traditionally modeled in a re-

flective mode. Several authors have reviewed the scientific literature investigating

the advisability of this practice. They have found that a number of articles in-

deed misspecified formative constructs and this has had an impact on the quality

of results and conclusions that can be inferred from the estimated models. So,

roadmaps based on decision rules or statistical procedures have been provided for
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some authors for proper definition of formative constructs.

4.5.1 Some Definitions

Reflective relationships seek to represent variances and covariances between

the manifest variables that are generated or caused by a latent variable. So, ob-

served variables are treated as an effect of unobserved variables (Cohen et al.,

1990; Bollen & Lennox, 1991). In a reflective measurement model, the manifest

variables are measured with error (Figure 4.4(a)). Alternatively, formative rela-

tionships are used to minimize residuals in the structural relationship (Fornell &

Bookstein, 1982), and here, manifest variables are treated as forming the unob-

served variables (see Table 4.2 for a comparison of the differences between the

reflective and formative outer models). MacCallun & Browne (1993) said that

observed variables in a formative model are exogenous measured variables. In a

formative outer model the manifest variables are presumed to be error-free and the

unobserved variable is estimated as a linear combination of the manifest variables

plus a disturbance term, so they are not true latent variables (Figure 4.4(b)). As in

this case all variables forming the construct should be considered, the disturbance

term represents all those non-modeled causes (Diamantopoulos, 2006).

Traditionally, the relationships between manifest and latent variables have been

assumed to be reflective. There may be some reasons for this. (1) A theoretical def-

inition of the model may impose the reflective relationships between the variables.

That is, past empirical evidence drives the researchers to define the manifest vari-

ables as a reflection of the latent variables and not vice-versa. Additionally, (2) the

classical test theory, which includes factorial analysis and maximum likelihood co-

variance structure analysis, estimates the models assuming that the variances and

covariances between the manifest variables are caused by an underlying construct.

Fornell & Bookstein (1982) and Chin (1998b) pointed out that modelling forma-

tive modes using a covariance-based approach may lead to identification problems

and Heywood cases. So, researchers may tend to define outer models as reflective.

There are many relationships that may be modeled as formative instead of

reflective. This is for instance, the relationship between education, occupational

prestige and income as indicators of socioeconomic status (SES); or job, divorce,

recent accident and death in the family for the latent variable life stress (Cohen

et al., 1990; Chin & Newsted, 1999). In these examples, the observed variables

trigger the socioeconomic status or the life stress of a person and not vice-versa.

This may have something to do with the temporary situation or the order in which

events occur. In a formative relationship, one might think that the observed vari-

ables are generated first and that from these variables the construct is generated

at a later stage. In the SES example, education, prestige and income are variables
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(a) Reflective model (b) Formative model

Figure 4.4: Reflective and formative measurement models (focus on component-based
approach)

that are developed from a certain moment in time and over time, and then they

could generate the socioeconomic status of a person16. This is similar to what

Bollen & Ting (2000) refer to when they talk about “causal priority” between an

indicator and a latent variable or the “surplus meaning” of Jarvis et al. (2003).

To model a relationship as reflective when indeed it is formative has several con-

sequences. An incorrect definition of the relationships between variables leads to

a misspecification of the model, and thus to an inaccurate interpretation of the re-

sults17. There are studies that have provided criteria to determine whether a mea-

surement model is reflective or formative, both in a covariance- and component-

based approach. Several authors have focused on decision rules (Cohen et al.,

1990; Chin & Newsted, 1999; Diamantopoulos & Winklhofer, 2001; Jarvis et al.,

2003; MacKenzie et al., 2005; Petter et al., 2007) and others have proposed statis-

tical procedures (Bollen & Ting, 1993, 1998, 2000; Gudergan et al., 2008). Some

of the presented procedures can be targeted to meet the needs of a particular

area, since many of them have been conceived within psychological, sociological,

and information systems, as well as within the marketing and business scientific

communities.

4.5.2 Decision Rules Criteria

Interestingly, the fundamental contributions to distinguish between reflective

and formative measurement models were made several decades ago. Fornell &

Bookstein (1982), Cohen et al. (1990), Bollen & Lennox (1991), and McDonald

(1996) have provided the basic guidelines to ensure a proper definition of the nature

of a measurement model, and their results have encouraged the development of new

16See Cohen et al. (1990) for a discussion of the reflective or formative nature of SES.
17See the literature review for marketing research at Jarvis et al. (2003), for information system

research at Petter et al. (2007), and a summary at Diamantopoulos et al. (2008).
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Table 4.2: Comparison of reflective and formative measurement models

Reflective outer model Formative outer model

The observed variables are treated as
an effect of the unobserved variables

Observed variables are treated as form-
ing the latent variable

Latent variables cause a change in the
manifest variables

Observed variables cause a change in
the latent variable

Latent variable is first revealed in time Observed variables are first revealed in
time

It seeks to represent variances and co-
variances between the observed vari-
ables that are generated or caused by a
latent variable

Observed variables are used to mini-
mize residuals in the structural rela-
tionships

It is possible to say something about
the validity of the block of variables

It is not possible to say something
about the validity of the block of vari-
ables (Bollen & Lennox, 1991)

contributions18. Moreover, these authors discuss how several common practices

may influence the parameters estimation. The theoretical and empirical guidelines

to distinguish between a reflective and a formative outer model, and thus make

an adequate model specification, can be summarized in five points, as follows (see

also Table 4.3).

(1) Strong theory and the goals that are pursued

All researchers agree with the importance of a strong theory in the model spec-

ification (Fornell & Bookstein, 1982; Cohen et al., 1990; Bollen & Lennox, 1991).

The theory and the previous knowledge of a phenomenon under study should help

to clarify the generative nature of the construct (Cohen et al., 1990). Considering

an approach to index construction from a marketing perspective, Diamantopoulos

& Winklhofer (2001) recommend specifying the content domain that the construct

attempts to capture, and to examine the causal priority between observed and un-

observed variables. When a formative relationship is considered, manifest variables

must cover the entire scope of construct. Jarvis et al. (2003) suggest analyzing

the nomological net of the manifest variables that is to determine whether the ob-

served variable shares the same backward and forward variables. Moreover, Jarvis

18See the studies of Diamantopoulos & Winklhofer (2001), Jarvis et al. (2003), Bucic & Gud-
ergan (2004), Petter et al. (2007), Gudergan et al. (2008), and Marcoulides et al. (2009).
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et al. (2003) and Diamantopoulos (2006) pointed out that constructs have a sur-

plus meaning that also have to be considered. That is because a latent variable

in a reflective mode exists previously and independently of its manifest variables.

In contrast, a construct in a formative mode does not exist without its observed

variables and in this case, the surplus meaning is associated with the disturbance

term.

(2) Correlations among manifest variables

The most important condition for reflective outer models is that all manifest

variables that are considered for measuring a construct have to explain it (internal

consistency). Correlation between manifest variables depends on the magnitude of

correlations between manifest variables and the latent variable that they measure

(reliability, Bollen & Lennox (1991)). So, this means that observed variables have

to be positively and highly correlated with one another. On the other hand, in a

formative outer model, manifest variables do not have to be especially correlated

(Fornell & Bookstein, 1982). If a construct changes, the observed variables that

are related do not have to change simultaneously and the model does not need to

explain variance and covariances between observed variables. In a formative mode,

there is not a procedure to assess the consistency and reliability of the block of

manifest variables.

(3) Within-construct correlations versus between-construct correlations

When the model is being specified, a common practice among researchers is

to test the within-constructs and between-constructs correlations. The applied

condition is that the former should be greater than the latter. This is usually tested

by means of a cross-validation technique (Cudeck & Browne, 1983). However,

Bollen & Lennox (1991) show that this may lead to an incorrect indicator selection

for reflective and formative outer models, because this rule may have exceptions.

The researchers clearly demonstrated this showing that in some cases when the

correlation between two latent variables is greater than zero, the between-construct

exceeds the within-construct correlations.

(4) Sample size and multicollinearity

It is well known that sample size and indicator multicollinearity affects the

stability of indicator coefficients (Fornell & Bookstein, 1982). Recall that multi-

collinearity is a frequent problem in multiple regressions. If X is the data matrix,

parameter inversion of the regression matrix requires the inversion of X’X. If one

of the explanatory variables is exactly a linear combination (collinear with the

rest) or is highly correlated with the other, the matrix will have a range smaller
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Table 4.3: Criteria for correlations and interchangeability of manifest variables in reflective
and formative outer models

Criteria Reflective outer model Formative outer model

Correlations Positively and highly corre-
lated (unidimensionality)

High, moderate or low corre-
lations

Difficult to separate the im-
pact of manifest variables on
latent variables

Positive, negative or no cor-
relations

Multicollinearity affects the
stability of indicator coeffi-
cients

Interchangeability They are interchangeable Not to be interchangeable

Low effect if omitting an in-
dicator

Serious effects if omitting an
indicator

than k+1 (number of parameters), X’X will be singular and the equation system

that determines the parameters will not have a unique solution. The consequences

of this situation are widely known; the regression coefficients are unstable and

may not be significant. So, the regression equation is difficult to interpret due to

the erratic signs of regression coefficients (Tenenhaus, 1998). Fornell & Bookstein

(1982) and Diamantopoulos & Winklhofer (2001) recommend that when observed

variables are collinear, “one might estimate mode B but use loadings, rather than

regression weights, for interpretation” (Fornell & Bookstein, 1982, p. 442). How-

ever, PLS Regression may be applied in case of multicollinearity.

(5) Interchangeability

Interchangeability refers to whether or not the manifest variables share the

same concept (Diamantopoulos & Winklhofer, 2001; Jarvis et al., 2003). All man-

ifest variables in a reflective model explain the same construct. So, removing an

indicator from the block of variables should not have a significant effect on the

construct. The situation is completely different when considering formative outer

models. The indicators do not have to be interchangeable or share the same con-

cept. That is what Bollen & Lennox (1991) called “sampling facets of a construct”;

in other words manifest variables of a formative block of variables should represent

all the aspects that form the concept. These authors also point out that “omitting

an indicator is omitting a part of the construct . . . With causal indicators we need
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a census of indicators, not a sample. That is, all indicators that form the latent

variable should be included” (p. 308).

4.5.3 Statistical Procedures

The tetrad analysis approach

The term “tetrad” was introduced by Spearman (1904, 1927). He noted that

when it is possible to find a common factor to explain a set of manifest variables,

certain pairs of product covariances between manifest variables are zero. He called

the analysis of this phenomenon “exploratory tetrad analysis.” Much later, Bollen

& Ting (1993, 1998, 2000) introduced the “confirmatory tetrad analysis” (CTA) in

structural equation models to differentiate reflective from formative measurement

models. If a, b, c and d are a set of four manifest variables, three tetrads can

be computed as τabcd = σabσcd − σacσbd, τacdb = σacσdb − σadσcb, and τadcb =

σadσcb − σabσdb, where σ denotes population covariance. Bollen & Ting (1993,

p. 148) said that “the structure of each model often implies population tetrads

that should be zero [vanishing tetrad]. . . Significant nonzero tetrads for the model

implied vanishing tetrads cast doubt on the appropriateness of the model.” The

steps suggested by Bollen & Ting (2000, p. 5) to perform a tetrad test are: (1)

specify the most plausible models of the relations between indicators and latent

variables, (2) identify the model-implied vanishing tetrads for each model, (3)

eliminate redundant vanishing tetrads, and (4) perform a simultaneous vanishing

tetrad test.

From a PLS perspective, the first person to turn his attention to tetrad analy-

sis was Chin (1998b) who recommended examining the TETRAD II methodology

developed by Scheiness et al. (1994). These researchers used tetrad analysis to

develop an algorithm that, given data, automatically identify causal relationship

discovering causal patterns. The approach is completely exploratory and in those

years “the IS field was still in the formative stages” (Chin, 1998b, p. xii). How-

ever, Bucic & Gudergan (2004), Gudergan (2005) and Gudergan et al. (2008) were

the first in using the confirmatory tetrad analysis (CTA) as a test to distinguish

between a reflective and formative measurement model in a component-based ap-

proach. CTA-PLS procedure is similar to that followed by Bollen & Ting (1993)

and tetrads should not vanish in formative outer models. Additionally, two im-

portant issues are pointed out by Gudergan et al. (2008); first “neither CTA-SEM

nor CTA-PLS are applicable for correlations or covariances close to zero in the

measurement model” (p. 1243), and second when an outer model has less than

four observed variables, this procedure requires adding manifest variables from

other measurement models.



Chapter 5

Partial Least Squares

Approaches

Abstract. This chapter presents the partial least squares (PLS) approach for

modelling latent variables. The Wold’s basic design and Lohmöller’s implementa-

tion are examined in detail. Recent advances about the sensitivity of the algorithm

to starting values, weighting schemes, and consistency are discussed. Convergence

and validation techniques are examined as well. We begin by introducing the

nonlinear estimation by iterative PLS and the PLS regression algorithms.

5.1 Nonlinear Estimation by Iterative Partial Least

Squares

PLS Path Modelling has its origins in the Nonlinear Estimation by Iterative

Partial Least Squares (NIPALS) algorithm (Wold, 1973a). In an iterative process,

this algorithm takes principal components out computing simple regressions by

least squares. Let X = xji be a matrix of observations on p predictor variables

of rank a. Variables, X1, X2, ..., Xp, are centered. NIPALS algorithm may be for-

malized as follows (Tenenhaus, 1998):

Step 1: X0 = X

Step 2: For h = 1, 2, ..., a:

Step 2.1: th = first column of Xh−1

Step 2.2: To repeat until convergence of ph

Step 2.2.1: ph = X ′h−1th/t
′
hth

Step 2.2.2: To standardize ph to 1

Step 2.2.3: th = Xh−1ph/p
′
hph

Step 2.3: Xh = Xh−1 − thp′h

70
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NIPALS leads to principal component analysis when examining a matrix with

no missing data. Otherwise, th component’s and ph vector’s estimates describe the

data matrix X, estimating missing values.

5.2 Partial Least Squares Regression

Multicollinearity is a frequent problem in multiple regressions. If X is a ma-

trix of observations on p explanatory variables, inversion of regression parameters

requires the inversion of the matrix X ′X. If one of the regressors is a linear combi-

nation of the others, that is collinear with the rest, the matrix rank will be smaller

than the number of parameters (k + 1), X ′X will be singular and the equations

determining the parameters will not have a unique solution (Peña, 1998). But,

short of this extreme case, multicollinearity occurs when some or all independent

variables are highly correlated to each other. Consequences are known, unstable

and non-significant regression coefficients, and difficulty in interpreting the regres-

sion equation due to erratic signs of regression coefficients (Tenenhaus, 1998). In

addition, multiple regression can use many factors. But if the number is too large

–for example larger than the number of observations– the model perfectly will fit

the sample, but it will fail in predicting new data, overfitting them (Valencia &

Dı́az-Llanos, 2003).

PLS regression is an alternative to multiple regression when predictors are

collinear. It is an iterative algorithm that computes regressions by least squares

to extract a series of orthogonal components. These components aims to explain

the independent variables at the same time being related to the response vari-

ables. In each successive step, residuals are minimized until the algorithm reaches

convergence. Let X = x1, x2, ..., xp be a matrix of observations on p explanatory

variables of rank a and Y = y1, y2, ..., yq a matrix of observations on q response

variables. The classic PLS regression algorithm can be expressed as follows (Tenen-

haus, 1998):

Step 1: X0 = X;Y0 = Y

Step 2: For h = 1, 2, ..., a:

Step 2.1: uh = first column of Yh−1

Step 2.2: To repeat until convergence of wh

Step 2.2.1: wh = X ′h−1uh/u
′
huh

Step 2.2.2: To standardize wh to 1

Step 2.2.3: th = Xh−1wh/w
′
hwh

Step 2.2.4: ch = Y ′h−1th/t
′
hth

Step 2.2.5: uh = Yh−1ch/c
′
hch
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(a) First component (b) Second component

Figure 5.1: Geometrical representation of components extraction by PLS regression

Step 2.3: ph = X ′h−1th/t
′
hth

Step 2.4: Xh = Xh−1 − thp′h
Step 2.5: Yh = Yh−1 − thc′h

This algorithm delivers five data matrices, (1) the matrix Whn with the re-

gression coefficients of X on components u, (2) the matrix Ch with the regression

coefficients of Y on components t, (3) the matrix Ph with the regression coefficients

of X on components t, (4) the matrix Th with the PLS components th, and (5)

the matrix Uh with the PLS components uh.

Figures 5.1(a) and 5.1(b) show a geometrical representation of the algorithm

when two explanatory variables are taken into account. The first component t1 is

computed as a linear combination of the independent variables, w11x1 +w12x2, or

what is the same thing, as the orthogonal projection of the response variable y1 in

the plane formed by the predictors, x1 and x2. So, the dependent variable may be

estimated as a function of this component plus a residual, y = c1w11x1+c1w12x2+

y11. Then, the residual, y11, is orthogonally projected into the space formed by

the residuals (x11 and x12) from the regressions of each independent variable, x1

and x2, on the first component t1. Thus, the second component t2 is found. This

procedure is repeated until convergence; hence, the residuals are minimized. If the

first two components are taken into account (H = 2), the regression equation of

yk on the components t1, t2 is written as:

yk ≈ c1kt1 + c2kt2 (5.1)

Components th may be expressed in terms of variables xk:

th = w∗h1x1 + w∗h2x2 (5.2)

Finally, PLS regression computed from two components is formalized as follow:
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yk ≈ c1k(w∗11x1 + w∗12x2) + c2k(w
∗
21x1 + w∗22x2) (5.3)

yk ≈ (c1kw
∗
11 + c2kw

∗
21)x1 + (c1kw

∗
12 + c2kw

∗
22)x2 (5.4)

yk ≈ bk1x1 + bk2x2 (5.5)

5.3 PLS Path Modelling Design

PLS Path Modelling –in contrast to PLS regression– works with unobserved

variables. It is a soft modelling technique and a data analytic tool for estimating

structural equations models and building a sequence of latent variables. There are

two main implementations of the algorithm as proposed by Wold (1982, 1985) and

Lohmöller (1989). This section mainly refers to the basic design of the algorithm

as introduced by Herman Wold in 1985, and put forward by Lohmöller (1989)

and Tenenhaus et al. (2005). Recall that Wold’s procedure was presented in 1985

for a particular case of six blocks of variables and only for the centroid weighting

scheme. Hence, Lohmöller’s procedure and some extensions, as proposed by Hanafi

(2007), are also reviewed.

5.3.1 Structural or Inner Model

The structural model or inner model, also called inner relations and substantive

theory, describes relationships among latent variables by means of multiple regres-

sions, that is through linear functions. Usually, structural model specification is

supported by theory. PLS Path Modelling explores if variables and relationships

are hold up or whether other theory-based specifications, that may be proposed,

help better explain a particular phenomenon. Equation 5.6 describes relation-

ships among latent variables. ξi and ξj are the exogenous and endogenous latent

variables, respectively, and βji are the parameters that measure the relationship

among constructs. They are called path coefficients. The condition imposed by

Herman Wold is predictor specification, E(ξj/ξi) =
∑

i βjiξi, that is, there is no

linear relationship between predictor and residual. This condition implies that

E(νj/∀ξi) = 0, and cov(νj , ξi) = 0.

ξj = βj0 +
∑
i

βjiξi + νj (5.6)

5.3.2 Measurement or Outer Model

Measurement or outer models, also called outer relations, may be modeled

in two different ways. Relationships between manifest and latent variables may
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be reflective or formative depending on whether the indicators are reflecting or

forming the construct, respectively1. Normally, PLS Path Modelling considers the

relationships between manifest and latent variables as follows.

Reflective outer models. Manifest variables revealing or reflecting the effect

of a construct are modeled as indicators of it in a reflective measurement model.

Each manifest variable xjh is related by simple ordinary least squares regression

with the underlying construct ξj (Equation 5.7).

xjh = λjh0 + λjhξj + εjh (5.7)

The parameters λh are called loadings and determine the extent to which each

indicator reflects a construct; ξj is a common factor with mean m, standard de-

viation one and indirectly observable by the manifest variables. The condition

imposed by Herman Wold is predictor specification, E(xh/ξ) = λh0 + λhξ. This

condition implies that εh has zero mean, and it is uncorrelated with ξj . Moreover,

the basic design of Herman Wold assumes that the covariance matrices of all εj

are diagonal (Dijkstra, 1983).

As in a reflective model, where all the indicators of the block of variables

reflect the same construct, there should be high collinearity among these variables.

That is, the blocks of variables must be one-dimensional. Three methods are

commonly used to check this constraint: principal component analysis, the classical

Cronbach’s alpha and the Dillon-Goldstein’s ρ.

Formative outer models. Here, the latent variable is formed by a set of man-

ifest variables as a linear function of them plus a residual (Equation 5.8).

ξj =
∑
h

πjhxjh + δj (5.8)

The parameters πh are called weights and determine the extent to which each

indicator contribute to the formation of the constructs. Each block of manifest

variables may be multidimensional, and multicollinearity among indicators is not

a necessary constraint. The condition imposed by Herman Wold is predictor spec-

ification E(ξ/X1, ..., Xpj) =
∑

h πhxh. This condition implies that the residual δ

has zero mean, and it is uncorrelated with the manifest variables xh. Since each

latent variable is formed by a linear combination of the manifest variables, the

sign of each weight πh should be the same sign as the correlation between xh and

ξ (Tenenhaus et al., 2005).

1See Chapter 4 for a detailed discussion about reflective and formative nature of measurement
models
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5.3.3 PLS Path Modelling Algorithm

The PLS Path Modelling algorithm is structured in three stages (Wold, 1980,

1982, 1985). The first stage computes the case values of the latent variables, the

second stage focuses on the inner and outer relationships, and in the third stage,

location parameters of the latent variables, λjh0 and βj0, are estimated. Only the

first stage is iterative. The Wold’s procedure algorithm is as follows.

The first stage. The algorithm starts choosing an arbitrary weight vector –

outer weights– to first relate each latent variable with their own manifest variables.

Usually this vector is a vector of ones. Each standardized latent variable Yj –zero

mean, unit variance– is computed as an exact linear combination of their own

centered manifest variables:

Yj =
∑

wjhxjh (5.9)

where wjh are called the outer weights.

An auxiliary latent variable2 Zj is introduced as a counterpart to the variable

Yj . Each Zj is computed as a weighting sum of the latent variables which is related

to:

Zj ∝
∑

ejiYi (5.10)

where eji are called the inner weights. There are three different weighting schemes

that may be used to compute eji: the centroid, the factorial and the path weighting

schemes. The first one was introduced by Wold, and the last two by Lohmöller

(1989).

The simplest scheme is the centroid scheme where the eji are equal to the signs

of the correlations between Yj and the Yi’s. This scheme is suitable when “the

latent variable correlation matrix is singular because the weights are based only

on the bivariate correlations among component scores” (Chin & Newsted, 1999, p.

317 ), and it is not suitable when latent variable correlations are close to zero. The

inner weights are equal to the correlation between Yj and Yi when the factorial

scheme is considered. According to Lohmöller (1989), factor scheme “maximizes

the variance of the principal component of the latent variables when the number

of latent variables goes to infinity” (Chin & Newsted, 1999, p. 309). The inner

weights in a path weighting scheme are (a) equal to the regression coefficients

of Yi in the multiple regression of Yj on all the Yi related to the predecessor of

Yj , or (b) are equal to the correlation between the successor of Yi and Yj . “This

scheme attempts to produce a component that ideally can both be predicted and

at the same time be a good predictor for subsequent dependent variables” (Chin

& Newsted, 1999, p. 318). Taking into account the directionality of the model,

2Also called environmental variables for some researchers (Schneeweiss, 1993)
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this scheme can be used when the underlying theory is important to the model3.

Recent contributions have shown that there are no significant differences between

the estimates obtained with PLS Path Modelling and the three weighting schemes

(Tenenhaus et al., 2005).

Once the auxiliary latent variables are estimated, the weights wjh are recom-

puted. Recall that, in the iterative process, these weights are used to estimate

all latent variable scores as a linear combination of their own indicators. The

procedure considers two ways to recompute the outer weights depending on the

reflective or formative nature of the outer models: Mode A and Mode B. Usu-

ally, Mode A is considered for recomputing the outer weights when outer models

are reflective, and Mode B is considered for recomputing the outer weights when

outer models are formative. In addition, “the algorithm is called PLS Mode C if

each of Modes A and B is chosen at least once in the model” (Wold, 1982, p. 10).

Only Mode B is scale invariant, that is, linear transformations of the indicators

do not affect the latent variable scores. The attributes of the modes A and B are

combined in Mode C. Considering two constructs with their respective blocks of

variables, Mode C yields a type of the MIMIC model (Dijkstra, 2010).

Dijkstra (2010, p. 32-33) pointed out that: mode A and principal components

share a lack of scale-invariance, they are both sensitive to linear scale transforma-

tion. According to McDonald (1996), Mode A corresponds to maximization of the

sum of absolute values of the covariances of the proxies, where the sum excludes

the terms corresponding to latent variables which are not directly related. For

Mode A: ŵi ∝
∑

j∈Ci
signijSijŵj and ŵi

′Siiŵi = 1. Mode B is scale-invariant, in

the sense that linear scale transformations of the indicators leave η̂i and η̄i undis-

turbed. Mode B is a genuine generalization of canonical variables: it is equivalent

to the maximization of the sum of absolute values of the correlations between the

proxies. For Mode B: ŵi ∝ S−1ii
∑

j∈Ci
signijSijŵj and ŵi

′Siiŵi = 1.

In the algorithm, for Mode A, the wjh is the regression coefficient of Zj in the

simple regression of xjh on the inner estimation of Zj :

wjh = cov(xjh, Zj) (5.11)

For Mode B, the vector wj of weights wjh is the vector of the regression coeffi-

cient in the multiple regression of Zj on the manifest variables (xjh− x̃jh) related

to the same latent variable Zj :

wj = (X ′jXj)
−1X ′jZj (5.12)

3See three different inside approximation situations in the path weighting scheme in Chin &
Newsted (1999, p. 318).
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The first stage is iterated until convergence.

The second stage. Once the algorithm converges, the latent variable scores

estimated in stage 1 are used to estimate the inner and outer relationships by

ordinary least squares regression without location parameters. If reflective blocks

of variables are modeled, simple regression is used to estimate loadings (Equa-

tion 5.7). If formative blocks of variables are modeled, weights are estimated by

ordinary multiple regression (Equation 5.8).

The third stage. The third stage focus on estimation of the location parame-

ters, and the values of πjh0 and βj0 (Equation 5.6).

5.3.4 Lohmöller’s Implementation

There are two implementations for iteration step of the PLS Path Modelling

algorithm, the Wold’s and the Lohmöller’s procedures. The main difference be-

tween them is how they use the information. While the Wold’s procedure uses

the latest available information at each iteration –of this and previous iteration–

the Lohmöller’s algorithm only uses the information of the previous iteration.

Lohmöller’s procedure is commonly implemented in popular software as it is based

on matrix algebra (Lohmöller, 1989; Tenenhaus et al., 2005; Hanafi, 2007).

Let J denotes a set of latent variables, each related to a block of manifest

variables Xj . Let C = [cjl] be a binary matrix indicating which latent variables

are linked by specifying that:

cjl =

{
1, if the latent variable j is related to l or viceversa;

0, otherwise.
(5.13)

Considering the centroid weighting scheme, denoting R = [rjl] the correlation

matrix between latent variables, and Θ = [θjl] the matrix with the signs of the

correlations between latent variables, the Lohmöller’s algorithm can be written as

follows:

Step 1: Choose J arbitrary initial vectors w
(0)
j , j = 0, 1, 2, ..., J

To repeat until convergence, s = 0, 1, 2, ...

Step 2: External estimation

Step 2.1: To normalize w
(s)
j so that V (Y

(s)
j ) = 1

Step 2.2: Y
(s)
j = Xjw

(s)
j

Step 3: Internal estimation

Step 3.1: r
(s)
jl = r(Y

(s)
j , Y

(s)
l )

Step 3.2: θ
(s)
jl = sign(r

(s)
jl )
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Step 3.3: Z
(s)
j =

∑
cjlθ

(s)
jl Y

(s)
l

Step 4: Updating wj

w
(s+1)
j = X ′jZ

(s)
j (Mode A)

w
(s+1)
j = (X ′jXj)

−1X ′jZ
(s)
j (Mode B)

It is worth noting that, the environmental variable Z
(s)
j –in step 3.3– is com-

puted as a linear combination of latent variables computed in the iteration s. The

way of calculating the auxiliary variable is the key difference in the Lohmöller’s

and Wold’s implementations.

5.3.5 Wold’s Implementation

Here, it is presented the Wold’s algorithm as further extended by Hanafi

(2007)4. That is, for (a) any number of blocks and (b) any conceptual design.

Some modifications are made in order to clarify the presentation. If J denotes a

set of latent variables, let C = [cjl] be a binary matrix that indicate which latent

variables are linked by specifying that:

cjl =

{
1, if the latent variable j is related to l or viceversa;

0, otherwise.
(5.14)

Considering the centroid weighting scheme, denoting R = [r(Yj , Yl)] the corre-

lation matrix between latent variables, and Θ = [θjl] the matrix with the signs of

the correlations between latent variables, the Wold’s algorithm can be written as

follows:

Step 1: Choose J arbitrary initial vectors w
(0)
j , j = 0, 1, 2, ..., J

To repeat until convergence, s = 0, 1, 2, ...

Step 2: External estimation

Step 2.1: To normalize w
(s)
j so that V (Y

(s)
j ) = 1

Step 2.2: Y
(s)
j = Xjw

(s)
j

Step 3: Internal estimation

Step 3.1: if j < l, r
(s)
jl = r(Y

(s)
j , Y

(s)
l )

Step 3.1: if j > l, r
(s)
jl = r(Y

(s)
j , Y

(s+1)
l )

Step 3.2: θ
(s)
jl = sign(r

(s)
jl )

Step 3.3: Z
(s)
j =

∑
j<l cjlθ

(s)
jl Y

(s)
l +

∑
j>l cjlθ

(s)
jl Y

(s+1)
l

Step 4: Updating wj

w
(s+1)
j = X ′jZ

(s)
j (Mode A)

w
(s+1)
j = (X ′jXj)

−1X ′jZ
(s)
j (Mode B)

4Recall that Wold (1985)’s implementation was presented for only 6 constructs.
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5.4 Starting Values of Weight Vectors

The PLS Path Modelling algorithm requires an arbitrary vector of weights to

initialize the iterative procedure. Some researchers have been concerned about

whether different initial vectors generate different estimates for a model. Wold

(1982, p. 13) and Wold (1985, p. 585) recommend to use the first indicator

of each block of variables for initializing of outer estimates of latent variables.

For each outer model, this is equivalent to consider a weights’ vector where the

first weight is equal to 1, and the others are equal to zero. Lohmöller (1989)

suggests to take all the weights equal to 1, but the last one equals −1. The

researcher argues that this should prevent against possible negative estimates of the

outer weights. Tenenhaus et al. (2005) argue that Lohmöller’s choice entails sign

problems in cross validation, so it should not be the standard choice to initialize

the algorithm. On the contrary, Tenenhaus et al. (2005) recommend to choose

initial weights as the sign of the correlations between manifest and latent variable,

wjh = sign(cor(xjh, ξh)). Wold (1980, p. 58) also suggests to take an initial vector

of ones. This is a common practice among researchers. For instance, Henseler

(2009) thus initializes the algorithm, computing the outer estimates of the latent

variables as the sum of the indicators of each block, ξj =
∑

h xjh. According to

Temme & Kreis (2005) the initial values of weights have an impact in the sign of the

final estimates of loadings and path coefficients5. Henseler (2009) also agree that

the selection of the initial weight vector is an important aspect in the calculation

of the latent variable scores, especially for the algorithm convergence. The author

recommends that it “should be choose the average of the indicators as the standard

initialization of the latent variable score” (p. 11). These views are not shared by

Dijkstra (2010, p. 13), who reminds us that “PLS algorithms will converge for

every choice of starting values to unique fixed points” (see section 5.7 for details).

5.5 Weighting Schemes

As seen above, centroid weighting scheme was introduced by Wold in his origi-

nal design of the PLS Path Modelling algorithm, whereas factorial and path weight-

ing schemes were later proposed by Lohmöller (1989). According to Tenenhaus

et al. (2005), factorial and path weighting schemes do not significantly influence

the estimates. But, these researchers argue that these schemes are useful to relate

5These researchers also pointed out that the sign of weights/factor loadings and path coeffi-
cients can vary considerably across the different computational implementations of the algorithm,
LVPLS, PLS-GUI, PLS-Graph, SmartPLS.
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PLS Path Modelling to multi tables analysis methods. Ringle et al. (2009) compar-

ing the performance of the PLS Path Modelling algorithm with a covariance-based

approach, checked the differences between the estimates given by the algorithm if

different weighting schemes are used. They conclude that “on average, the alterna-

tive weighting schemes provide the same parameter estimates for the model under

investigation” (p. 18). This result was previously found by Noonan & Wold (1982).

Nevertheless, results should be interpreted with caution because some studies have

shown that the weighting scheme is an important factor for the algorithm conver-

gence. Henseler (2009) studied this latter topic assessing the PLS performance

under the different weighting schemes. Problems on the algorithm convergence

are reported when estimating a model with 2 reflective exogenous and 1 reflective

endogenous latent variables, with 6 specific data set. Henseler found that the PLS

Mode A algorithm may not converge if the factorial or path weighting schemes are

used. On the contrary, it has not been reported convergence problems when using

the centroid weighting scheme, which is recommended for all researchers.

5.6 Consistency and Consistency at Large

Consistency refers to sample size and consistency at large refers to the number

of observable variables per construct. According to Anderson & Gerbing (1988)

“PLS estimates will be asymptotically correct only under the joint conditions of

consistency (sample size become large) and consistency at large (the number of

indicators per latent variable becomes large)” (p. 412). In addition, and as stated

by Schneeweiss (1993, p. 301), “consistency at large is a property of the model

and not a property of an estimation method”6. This claim is very important

to understand the results of a number of simulations studies about PLS Path

Modelling robustness and performance. Studies from Hui & Wold (1982), Chin &

Newsted (1999), Cassel et al. (1999), Chin et al. (2003), and Westlund et al. (2008)

have confirmed that increasing the number of manifest variables per latent variable

increases the accuracy and precision of the PLS Mode A estimates7. However,

practical models or “real-world models” have to be able to involve an appropriate

number of manifest variables per latent variable. Some constructs are not reflected

in or not formed by a large number of variables, by the way. It is worth noting

that Anderson & Gerbing (1988, p. 416) pointed out that when two indicators per

latent variables are available, larger samples “may be needed to obtain a converged

and proper solutions” (p. 146).

6The same researcher pointed out that this concept should be distinguished “from the common
concept of consistency in estimation theory”(Schneeweiss, 1993, p. 301).

7Most of these simulations have been carried out with reflective measurement models.
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5.7 Optimization Problem and Convergence

Even though PLS Path Modelling belongs to the family of fixed-point methods8

(Wold, 1966; Lyttkens, 1973; Dijkstra, 1983, 2010), it is known that the algorithm

does not optimize any global function. Herman Wold himself clarified this issue.

Wold (1980, p. 66) notes that:

PLS procedure minimizes in its first stage each residual variance in

the weight relations that for the various blocks of the model are given

by [Mode A or Mode B]... Mode A uses simple OLS regressions to

minimize with respect to the parameters one by one, whereas Mode B

uses multiple OLS regression to minimize with regard to the parameters

jointly... PLS procedure remains partial in the sense that no total

residual variance or other overall criterion is set up for optimization.

In Bookstein (1982, p. 56)’s words “instead of a global optimization, the LVs

are jointly characterized using a complicated non-linear operator for which the

vector of all estimated item weights (outer relations) serves as fixed-point.”

On the other hand, it is a common belief among researchers that the PLS algo-

rithm always converge in practice. However, some convergence problems have been

recently reported (Henseler, 2009). It is somewhat surprising that the literature

on PLSPM convergence does not seem to be widespread, especially considering

the fact that besides the Wold’s works, other researchers as Bookstein (1982),

Areskoug (1982), Dijkstra (1983), Schneeweiss (1993), Mathes (1993), Hanafi &

Qannari (2005), Krämer (2006), Hanafi (2007), and Dijkstra (2010) have stud-

ied this issue. Early, Wold (1982, p. 24) stressed that “for one- and two-block

soft models the iterative stage of the PLS estimation is almost always convergent.

For multi-block soft models the convergence has not been proved.” Wold (1980,

p. 66) asserted that “for PLS models with three or more blocks, convergence of

the estimation procedure has never been a problem in applications to real-world

models and data.” Wold (1982, p. 24) goes on saying that “it seems that the

PLS algorithm will fail to converge only in the exceptional case when the largest

eigenvalues are equal or nearly equal.”

Krämer (2006) have studied the mathematical properties of PLS Path Mod-

elling. Extending the canonical correlation analysis to more than two blocks of

variables, the researcher posed the optimization problem as follow. Let Yj = Xjwj

be a set of latent variables such that Yj and Yl are maximally correlated if the

block of variables are linked. For J blocks of variables with pj indicators each, the

8That is because PLS Path Modelling algorithm found fixed-points (“the weight vector”) by
means an iterative sequence of regressions starting with an arbitrary choice of weights (Dijkstra,
1983, p. 78).
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optimization problem is:

arg maxw
∑

j,l:cjl 6=0 g(cov(Xjwj , Xlwl))

subject to 1
n ‖ Xjwj ‖= 1

(5.15)

where g(·) is the centroid, factorial or Horst schemes. Raising the Lagrangian

function and differentiating with respect to wj and the Lagrangian multiplier λi,

Krämer obtained the Lagrangian equations of the optimization problem 5.15:

Sg(w)w = ΛSDw

w′jSjjwj = 1
(5.16)

where S is the covariance matrix between block of manifest variables, SD

is the diagonal matrix of S, and Λ is a diagonal matrix of the form Λ =

diag[λ1Ip1 , . . . , λkIpJ ] ∈ Rp×p. Krämer poited out that “any solution of the equa-

tions 5.16 are called stationary points of the optimization problem 5.15. In gen-

eral, there is more than one stationary point. The stationary point w that is

solution of 5.15 is the one such that the corresponding multivariate eigenvalues

fulfill,
∑J

j=1 λj = max” (p. 7).

If the variance among latent variables instead of correlations is maximized, the

optimization problem is:

arg maxw
∑

j,l:cjl 6=0 g(cov(Xjwj , Xlwl))

subject to 1
n ‖ wj ‖= 1

(5.17)

and the Lagrangian equations of this optimization problem are:

Sg(w)w = Λw
1
nw
′
jwj = 1

(5.18)

Krämer (2006) proved that if a structural equation model have all block of vari-

ables modeled in Mode B, and if the PLS algorithm converges, the PLS estimates

are stationary points of the optimization problem 5.15. This is valid for the Wold’s

and Lohmöller’s procedure, and for the three analyzed weighting schemes. If in

a structural equation model, at least one block of variables is modeled as Mode

A, Krämer’s findings are quite the opposite. The researcher found that the PLS

estimates are not stationary points of a optimization problem, or what is the same,

that “equations that determine the solution of Mode A cannot be the Lagrangian

equations of any twice differentiable optimization problem.” Regarding to this

latter result for Mode A, Wold (1980) early mentioned that this is precisely one
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of the advantages of PLS Path Modelling. The researcher pointed out that “the

weight relations avoid the nonlinear side relations that would arise if the aggregate

relations were treated as side conditions and had to be taken into account through

Lagrange multipliers” (p. 66). In addition, Krämer (2006) showed that PLS Path

Modelling algorithm with Mode B not necessarily converge to the solution of 5.15,

that is an optimum solution, although Hanafi (2007) has proved that the PLS Path

Modelling algorithm with Mode B converges monotonically. Krämer (2006) con-

cluded that “PLS path algorithms in Mode A produce algebraic equations that are

not linked to any sufficiently smooth optimization problem. This marks a severe

setback in the search of a justification of Mode A in terms of optimality criteria”

(p. 17).

For PLS Path Modelling with Mode B, Mathes (1993) optimized the correlation

structure of PLS-mode-B latent variables for the following global criteria:

Theorem 1 The PLS estimation of Mode B with centroid weighting scheme is a

critical point of the function “sum of absolute correlations of the adjacent

latent variables in the structural system.”

Theorem 2 The PLS estimate of Mode B with correlation weighting scheme is a

critical point of the function “sum of squared correlations of adjacent latent

variables in the structural system.”

Table 5.1 shows a summary of the results of different researchers related to the

PLS Path Modelling convergence. Finally, as for PLS Path Modelling with Mode

A convergence is not assured, a new Mode A has been proposed by Tenenhaus

(2009) introducing a normalization on the weights. The optimization problem is:

arg maxw
∑

j<l:cjl 6=0 g(cov(Xjwj , Xlwl))

subject to ‖ wj ‖= 1

(5.19)

However, further research is needed to ensure the monotone convergence of the

new procedure.

5.8 PLS Path Modelling and Related Approaches

As seen above, PLS Path Modelling with Mode B is a generalization of Canoni-

cal Correlation Analysis (Horst, 1961) to more than two blocks of variables. Tenen-

haus et al. (2005) present a discussion about this and how the PLS Path Modelling

finds other methods, such as multiple factor analysis (Escofier & Pagés, 1994),

among others. Under certain conditions, the procedure also leads to the following

results.
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Table 5.1: Summary of results about the convergence of the PLS algorithm

Author Constraint Results

Chu & Watterson
(1993)

Path weighting scheme (or
Horst scheme)

Proving the convergence of
Lohmöller’s procedure with
Mode B

Krämer (2006) All block of variables modeled
as Mode B

PLS estimates are stationary
points of a optimization prob-
lem

Wold’s and Lohmöller’s pro-
cedure

Three weighting schemes

Krämer (2006) If at least one block of vari-
ables modeled as Mode A

PLS estimates are not station-
ary points of a optimization
problem

Hanafi (2007) All block of variables modeled
as Mode B

Proving the monotone con-
vergence of Wold’s procedure
with Mode B

The first principal component. One-block PLS Path Modelling with Mode

A is numerically equivalent to the first principal component (Wold, 1980, 1985).

The first canonical correlation. Two-block PLS Path Modelling with Mode

B gives the first canonical coefficient as the estimated correlation between the two

unobserved variables (Wold, 1980; Areskoug, 1982; Wold, 1985).

The first component of the inter-battery factor analysis. Two-block PLS

Path Modelling with Mode A finds the first component of the inter-battery factor

analysis between two sets of manifest variables (Tenenhaus et al., 2005).

The first component of the redundancy analysis. PLS Path Modelling

with Mode B for an exogenous construct and Mode A for an endogenous latent

variable gives the first component of the redundancy analysis of the path model.
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5.9 Validation Techniques

5.9.1 Assessment of Reflective Outer Models

Reliability and validity of reflective outer models must be assessed. According

to Tenenhaus et al. (2005), both criteria must consider three aspects, (1) con-

vergent validity of the measurement variables, (2) discriminant validity, and (3)

reliability of individual items.

Convergent validity. The internal consistency, unidimensionality or conver-

gent validity of reflective blocks of variables is related to the coherence between

constructs and their measurement variables. All indicators of a reflective block

of variables must reflect the same construct. Three indexes are often tested to

assess unidimensionality. (1) Principal component analysis (PCA) of the block of

variables; the rule of thumb is that the first eigenvalue of the correlation matrix

of the reflective outer model should be greater than 1, and the second one smaller

than 1. (2) Cronbach’s alpha index should be greater than 0.7. The alpha index

is defined as:

α =

∑
i 6=i′ cor(xi, xi′)

p+
∑

i 6=i′ cor(xi, xi′)
× p

p− 1
(5.20)

where xi and xi′ are indicators of a p-standardized block of variables (X). (3)

Dillon-Goldstein’s ρ (also called composite reliability) should be greater than 0.7.

The ρ index is defined as:

ρ =
(
∑p

i=1 cor(xi, t))
2

(
∑p

i=1 cor(xi, t))
2 +

∑p
i=1(1− cor2(xi, t))

(5.21)

where t is the first principal component of X. According to Chin (1998a, p.

320) “alpha tends to be a lower bound estimate of reliability whereas composite

reliability is a closer approximation under the assumption that the parameter

estimates are accurate.” Low internal consistency suggests a poorly defined model

or multidimensional constructs.

Reliability of individual items. Loadings indicate how well the indicators re-

flect the latent variable with which they are related. These parameters represent

the correlation between indicators and component scores. So, reliability is evalu-

ated examining loadings. A rule of thumb generally accepted is 0.7 or more. “This

implies that there are more shared variance between construct and variable than

error variance” (Hulland, 1999, p. 198). A low value of a loading factor suggests

that the indicator has little relation to the associated construct.
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Discriminant validity. Discriminant validity represents “the extent to which

measures of a given construct differ from measures of other constructs in the same

model” (Hulland, 1999, p. 199). For this, a construct should share more variance

with its indicators than with other constructs in a given model. This is measured

computing communality index for each reflective construct j:

Communalityj =
1

p

p∑
i=1

cor2(xi, Yj) (5.22)

where Yj is the construct estimated by p-manifest variables xi. The average com-

munality index is measured as:

Communality =
1∑J
j=1 pj

J∑
i=1

pj × communalityj (5.23)

Average Variance Extracted (AVE) suggested by Fornell & Larcker (1981) is

also used to measure the average variance shared between a construct and its

measures. That is, the percentage of variance that is captured by a construct in

relation to the variance due to random measurement error. This value should be

greater than the variance shared between construct and other constructs in the

model. A rule of thumb is to accept an AVE greater than 0.5. For a construct j,

the index is defined as:

AV Ej =

∑p
i=1 cor

2(xi, Yj)∑p
i=1 var(xi)

(5.24)

In addition, cross loadings may be calculated when two or more reflective

constructs are in the model. Cross loadings may be obtained by calculating the

correlations between latent variable component scores and indicators associated

with other reflective constructs. If a parameter has higher correlation with other

latent variable instead of the associated, it its position in the model should be

reconsidered.

5.9.2 Assessment of Formative Outer Models

In regard to formative blocks of variables, weights allow us to determine the

extent to which each indicator contributes to the formation of a construct. Recall

that in this case, unidimensionality is not a necessary condition. Additionally, mea-

sures to asses validity are not necessary valid for formative outer models (Bollen

& Lennox, 1991; Cohen et al., 1990; MacCallun & Browne, 1993). See Chapter

4 for a discussion about formative relationships and details about Confirmatory

Tetrad Analysis. Reliability of formative outer models may also be assessed by ex-

amining the correlations between the constructs and their corresponding manifest
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variables. As seen above, weight estimates and correlations should have the same

sign for the sake of interpretation.

5.9.3 Assessment of Structural Models

The inner model is assessed by examining path coefficients among constructs,

the R-square coefficient, and redundancy indexes for each endogenous construct j.

The value of path coefficients provide evidence about the strength of the association

among latent variables. R-square or multiple determination coefficient of each

endogenous constructs gives the overall fit of a model or the percentage of variance

explained by the exogenous constructs. This coefficient is sensible to model set up

and the election of the dependent variable. The effectiveness of R-square depends

on the quotient between the number of variables and the sample size. Assessing

changes in R-squares allows us to determine the effect size f2 of a exogenous

construct on an endogenous constructs (Chin, 1998a):

f2 =
R2
included −R2

excluded

1−R2
included

(5.25)

where R2
included and R2

excluded are the R-squares obtained for the endogenous con-

struct when exogenous construct is included and excluded of the estimated struc-

tural model. Size effects of 0.02, 0.15, and 0.35 indicate a small, medium, or large

effect at the structural level.

Redundancy index for an endogenous constructs is defined as:

Redundancyj = Communalityj ×R2
j (5.26)

Here, the index measures the portion of variance explained by the exogenous con-

structs but also considering the correlations between these constructs and their

corresponding manifest variables. The average redundancy index is measured as:

Redundancy =
1

J

J∑
j=1

Redundancyj (5.27)

An overall measure of goodness-of-fit of the models is given by the GoF index

(Tenenhaus et al., 2004). This is defined as the geometric mean of the average

communality and the average R2:

GoF =

√
communality ×R2 (5.28)
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5.9.4 Resampling Techniques

Resampling techniques are used to estimate the predictive power of the models

and significance of relationships. While cross-validation is used for prediction,

bootstrap or jackknife allows the assessment of the stability and significance of

model parameters.

Rooted in data mining procedures, cross-validation technique provides a way

to analyze how generalizable the results are to a new data set. Using different

partitions of the sample into a training data set and a test set, the former is used

to perform a statistical analysis, and the latter for validating it. Average results

are taken from replications to validate a model. Wold (1982, p. 30) proposed to

adapt the Stone-Geisser’s test –“a kind of cross-validated R-Square” (Tenenhaus

et al., 2005)– for proving the “predictive significance of principal components of

consecutive orders.” This approach follows a blindfolding procedure. That is, part

of the data and indicators are “blinded”, the model is estimated, and the obtained

parameters are used to predict the blinded “folds.” The procedure is repeated

until all folds have been blinded once. For each re-estimated prediction, the sum

of squares of prediction errors (SS) and the sum of square errors using the mean

prediction (SSM) are computed. Wold (1982) sum up by a test criterion Q2 as

follows:

Q2 = 1−
∑
SS∑
SSM

(5.29)

If Q2 > 0 the model has predictive relevance. Furthermore, discriminant validity

and redundancy indexes may also be computed by cross-validation (see Tenenhaus

et al. (2005)).

On the other hand, Bootstrap is a method proposed by Bradley Efron in 1979

to assess measures of accuracy to statistical estimator (Efron & Tibshirani, 1993).

Given an independent data set denoted by the vector x = (x1, x2, ..., xn), to es-

timate an statistic s(x), n random samples (bootstrap samples) are taken with

replacement from the original sample, x∗ = (x∗1, x
∗
2, ..., x

∗
n). A sufficiently large

number (for instance 1000) of independent bootstrap samples should be taken,

each of size n. The statistic for each bootstrap sample is evaluated, s(x∗b). The

bootstrap estimate of standard error is the standard deviation of the bootstrap

replications. So,

ŝeboot = {
B∑
b=1

[s(x∗b)− s(·)]2/(B − 1)}1/2 (5.30)

where s(·) =
∑B

b=1 s(x
∗b)/B. Standard errors are usually estimated by bootstrap-

ping. But, they may also be computed by Jackknife (Lebart, 1985). Unlike boot-

strap, jackknife leaves out one observation in each n random sample. Let the ith
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jackknife sample a data set with the ith observation removed. So, if θ̂(i) = s(x(i))

is the ith jackknife replication of θ̂, the jackknife estimate of standard error is

defined by,

ŝejack = [
(n− 1)

n

∑
(θ̂(i) − θ̂(·))2]1/2 (5.31)

where θ̂(·) =
∑n

i=1 θ̂(i)/n. The jackknife sample tends to be more similar to the

original data than the bootstrap sample. Jackknife is easier to compute than

bootstrap if n is less than 100 or 200 replicates. However, the former uses limited

information about the statistic, so it is less efficient than bootstrap. Jackknife is

a procedure that may be seen as an approximation to the bootstrap procedure.



Chapter 6

Monte Carlo Simulations and

Computational Experiments for

PLS Path Modelling with

Mode C

Abstract. Monte Carlo simulations and computational experiments were carried

out to study the performance of Partial Least Squares Path Modelling algorithm

with Mode C and few indicators per construct. The empirical results are in line

with the theoretical PLS framework. Outer relationships are overestimated and

inner relationships underestimated.

6.1 Introduction

Depending on its nature, manifest variables have been referred to either as ef-

fects (reflective) indicators or causes (formative) indicators. Wold’s basic design of

Partial Least Squares (PLS) Path Modelling usually refers to Mode A and Mode B,

or simple and multiple regressions (Wold, 1985), depending on the features of the

outer models. Reflective relationships seek to represent variances and covariances

between the manifest variables that are generated or caused by a latent variable.

So, observed variables are treated as an effect of unobserved variables (Cohen et al.,

1990; Bollen & Lennox, 1991). In a reflective measurement model, the manifest

variables are measured with error. Alternatively, formative relationships are used

to minimize residuals in the structural relationship (Fornell & Bookstein, 1982).

Here, manifest variables are treated as forming the unobserved variables, they are

presumed to be error–free, and the unobserved variable is estimated as a linear

combination of the manifest variables plus a disturbance term. As in this case all

90
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variables forming the construct should be considered, the disturbance term repre-

sents all those non-modeled causes (Diamantopoulos, 2006). Although formative

measurement models were first discussed by Curtis & Jackson (1962) and Blalock

(1964), and a number of variables can be modeled in a better way through forma-

tive relationships (Hulland, 1999), measurement variables have been traditionally

modeled in a reflective mode. Fornell & Bookstein (1982) and Chin (1998b) pointed

out that modelling formative modes using a covariance-based approach may lead

to identification problems and Heywood cases1. So, researchers may tend to define

outer models as reflective. However, a number of researchers have pointed out that

PLS Path Modelling overcomes the identification problems that arise when imple-

menting a covariance-based approach (Wold, 1980, 1985; Tenenhaus et al., 2005).

That is because a PLS Path Modelling algorithm consists of a series of ordinary

least squares (OLS) analysis. From a component-based approach, and “because

the off-diagonal elements are not among the unknown parameters of the model

and because the unobservables are explicitly estimated, there are no identification

problems for recursive PLS models” (Fornell & Bookstein, 1982, p. 443).

In Wold’s PLS approach (1985), a construct is completely determined by a

linear combination of its indicators. The procedure usually uses a Mode A or Mode

B to model a structural equation model (SEM). Mode A or simple regression if the

SEM includes reflective outer models. Mode B or multiple regression if formative

outer models are included. However, “the algorithm is called PLS Mode C if each

of Modes A and B is chosen at least once in the model” (Wold, 1982, p. 10).

To the best of our knowledge, there are only a small number of published articles

that examine the performance of PLS Path Modelling algorithm in the presence

of formative outer models, and they are not conclusive. Findings by Cassel et al.

(1999) and Ringle et al. (2009) are quite different. For instance, Cassel et al.

found that measurement relationships in formative outer models are overestimated,

while Ringle et al. found that these relationships are underestimated. Thus, this

paper aims to provide evidence regarding how well PLS Path Modelling performs

if formative exogenous outer models are modeled using PLS Mode B and reflective

endogenous latent variables are modeled using PLS Mode A. That is, PLS Path

Modelling with Mode C. This is also the set-up under which patent value models

are proposed.

On the other hand, the issue of few indicators per construct is a topic less

often addressed by the scientific community. Using simulations, some authors

have studied the performance of the partial least square procedure, including in

1A Heywood case in common factor analysis occurs when the minimum of the discrepancy
function is obtained with one or more negative values as estimates for the variables of the unique
variables. Heywood cases occur when too many factors are extracted, or the sample size is too
small.
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their analysis the case of two indicators per latent variable, but with reflective

outer models. The accepted general recommendation is to have at least three

or four manifest variables per latent variable, and the belief among researchers

is that with few indicators, the estimates are neither acceptable nor significant.

Recall the consistency at large property of the PLS Path Modelling algorithm,

“the larger the number of indicators in a block, the more the ‘essence’ of the

LV is confirmed by the data” (Chin & Newsted, 1999, p. 329). However, in

reality, there are proposed models that have used only one or two indicators in

some latent variables. See for instance the ECSI (European Customer Satisfaction

Index) model where the perceived value is related to two manifest variables and

the customer complaints are related to one indicator (Tenenhaus et al., 2005). In

addition, in the case of a formative measurement model, the manifest variables

should be a census of all variables that generate the latent variable (Bollen &

Lennox, 1991). So, what happens if the census consists of only two manifest

variables? Would the algorithm then be able to capture the relationship between

the variables? In a number of cases regarding technology change and technology

watch, for instance, two indicators per construct could be considered. So, we are

interested in knowing how reliable and robust the parameter estimates are when

few indicators per unobservable variable are considered.

6.2 PLS Path Modelling

The PLS Path Modelling procedure –presented by Gerlach, Kowalski, and

Wold in 1979– is a soft modelling technique and a data analytic tool for estimat-

ing structural equation models (SEM) and building a sequence of latent variables.

PLS Path Modelling first estimates the unobservable variables and then the param-

eters with an aim toward maximizing the total variance and minimizing residuals

of endogenous models regardless of the covariances among manifest variables. The

structural model or inner model describes relationships among constructs ξi by

means of multiple regressions (Equation 6.1). ξj and ξi are the endogenous and

exogenous latent variables, respectively, and βji are the path coefficients that mea-

sure the relationship among constructs. The condition imposed by Herman Wold

is predictor specification, E(ξj/ξi) =
∑

i βjiξi, that is, there is no linear relation-

ship between predictor and residual. This condition implies that E(νj/∀ξi) = 0,

and cov(νj , ξi) = 0.

ξj = βj0 +
∑
i

βjiξi + νj (6.1)

Manifest variables revealing or reflecting the effect of a construct are modeled
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as indicators of it in a reflective measurement model. Each manifest variable xjh is

related by simple ordinary least squares regression with the underlying construct

ξj (Equation 6.2). The loadings λh determine the extent to which each indicator

reflects a construct; ξj is a common factor with mean m, standard deviation one

and it is indirectly observable by the manifest variables. The condition imposed

by Herman Wold is predictor specification, E(xh/ξ) = λh0 + λhξ. This condition

implies that εh has zero mean, and it is uncorrelated with ξj . Moreover, the basic

design of Herman Wold assumes that the covariance matrices of all εj are diagonal.

As in a reflective model, where all the indicators of the block of variables reflect

the same construct, there should be high collinearity among these variables. That

is, the blocks of variables must be one-dimensional.

xjh = λjh0 + λjhξj + εjh (6.2)

The latent variable is formed by a set of manifest variables as a linear function

of them plus a residual in formative outer models (Equation 6.3). The weights

πh determine the extent to which each indicator contributes to the formation of

the constructs. Each block of manifest variables may be multidimensional, and

multicollinearity among indicators is not a necessary constraint. The condition

imposed by Herman Wold is predictor specification E(ξ/X1, ..., Xpj) =
∑

h πhxh.

This condition implies that the residual δ has a zero mean, and it is uncorrelated

with the manifest variables xh. Since each construct is formed by a linear com-

bination of the manifest variables, to facilitate interpretation of the estimates, it

is desirable that the sign of each weight πh is the same sign of the correlation

between xh and ξ (Tenenhaus et al., 2005).

ξj =
∑
h

πjhxjh + δj (6.3)

The PLS Path Modelling algorithm is structured in three stages (Wold, 1980,

1982, 1985). The first stage computes the case values of the latent variables; the

second stage focuses on the inner and outer relationships; and in the third stage,

location parameters of the latent variables, λjh0 and βj0, are estimated. Only the

first stage is iterative.
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6.3 Monte Carlo Simulations in a PLS Path Modelling

Context

To the best of our knowledge, there are only a small number of published

articles that examine the performance of PLS Path Modelling algorithm in the

presence of formative measurement models with the aim of studying (1) how well

the method recovers true population parameters, and (b) how the algorithm per-

forms against multicollinearity, skewed data and model misspecification. Cassel

et al. (1999), Cassel et al. (2000), Ringle et al. (2007), and Westlund et al. (2008)

performed simulation studies based on Monte Carlo data generation for a hypo-

thetical model. Recently, a working paper and a book chapter have been published

by Ringle et al. (2009) and by Vilares et al. (2010), respectively. Albeit some of

these studies have different objectives, we present here the main results.

Cassel et al. (1999) examined the behavior of a simplified version of the Swedish

Customer Satisfaction Index (SCSI) structural model in terms of the bias and stan-

dard deviations of the estimates. They studied the presence of three difficulties:

(1) skew distribution for observed variables, (2) multicollinearity within a block

of manifest variables and between latent variables, and (3) misspecification of the

structural model. This last condition refers to when the structural model is not

completely defined; that is, an important latent variable in terms of its regression

coefficients is not included in the model. The authors studied a model composed

of three formative exogenous constructs and one reflective endogenous latent vari-

able. The data for the observed variables were generated from a symmetric beta

distribution (6,6) and the model coefficients were assumed to be known. The er-

ror terms in the measurement models were generated from a continuous uniform

distribution, and the error in the structural model from a normal distribution (all

errors with mean zero and accounting for 30% of the variance of the variable).

They compared the estimates of the PLS algorithm for a basic model, with the

following cases: (a) a model with skewed manifest variables generated from beta

distributions; (b) a model with multicollinearity within a block of manifest vari-

ables and between latent variables; and (c) models where one of the constructs

(regressor) is omitted. When Cassel et al. (1999) report the results of their esti-

mates, they mention that “the basic model is specified without specification error

and correlation between the latent or manifest variables” (p. 442). The researchers

found that a PLS algorithm is quite robust in the presence of these conditions for

all sample sizes. They also reported that in the absence of specification error and

correlation, the determination coefficient for the structural model is below 50 per-

cent. So, in an ideal (and unrealistic) case, we would expect that the model fit the

data 50 percent at most (structural model). Additionally, there was a “substan-

tial” increase in the bias in the estimates only when the data analyzed is extremely



95 6.3 Monte Carlo Simulations in a PLS Path Modelling Context

skewed or when an important latent variable is omitted. The estimates of loadings

(underestimated), weights (overestimated) and path coefficients (underestimated)

are close to the true values in all scenarios studied (reported bias are between

20% and 50% depending on the estimated parameter). They confirmed that the

PLS algorithm does not depend on data distributional assumptions. The method

showed a better performance when a greater number of observed variables was

considered. The researchers concluded that “PLS estimators of the inner struc-

ture coefficients are inconsistent; they are only consistent at large, which means

that they are consistent with the increasing size of the blocks of manifest variables.

Hence, for finite sample sizes, biased PLS estimation must be expected, and the

question arises of in what may and to what extent this bias is affected by distribu-

tional properties” (p. 445). Nevertheless, although Cassel et al. (1999) said that

“biases can be expected to be reduced only when the number of explanatory vari-

ables in the corresponding sub-model is increased” (p. 443), they do not analyze

the effects of changing the number of manifest variables in each block. We address

this aspect in the Monte Carlo simulation performed below.

Table 6.1 shows a comparison between the studies by Cassel et al. (1999) and

Chin & Newsted (1999). Even though Chin & Newsted (1999) did not work with

formative relationships, their results are summarized in Table 6.1 because it pro-

vides a reference for how other researchers with similar objectives have performed

their simulations2.

Another study related to formative measurement models has been conducted by

Ringle et al. (2007, 2009)3. They analyzed the robustness properties of formative

indicators using an experimental setup that allowed the estimation of the model

through component- and covariance-based approaches. The set-up consisted of a

model with three formative exogenous constructs, each with five, three and five

indicators, and two reflective endogenous latent variables with three indicators

each. Unlike Cassel et al. (1999), Ringle et al. (2009) generated 1000 sets of

multivariate normal data from a correlation matrix (300 cases). Among others,

findings reported by Ringle et al. (2009) are: (1) centroid, factor and path schemes

provide the same results from PLS Path Modelling; (2) PLS Path Modelling has

a tendency to underestimate weights in the formative measurement models (for

both normal and non-normal scenarios); (3) PLS has a tendency to overestimate

loadings in reflective outer models; and (4) PLS underestimates inner relationships

2Chin & Newsted (1999) investigated the behavior of the PLS algorithm using reflective mea-
surement models, and compared the results of a partial least square simulation to the simple
path-analytic regression using a summation of the indicators. This research also examined how
well the PLS algorithm performs in recovering the true population parameters. Their research
found that partial least square always performed better than the simple summed regression ap-
proach.

3The first work was presented as a poster in the PLS’07 conference (Ås, Norway). The working
paper of 2009 seems to be a revised and extended version of this study.
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(path coefficients).

Study results by Cassel et al. (1999) and Ringle et al. (2009) are quite different.

Cassel et al. found that measurement relationships in formative blocks of variables

are overestimated, while Ringle et al. found that these relationships are underes-

timated. The opposite happens in the case of reflective outer models. Cassel et al.

found that reflective relationships are underestimated, contradicting the findings

of other researchers. Cassel et al. and Ringle et al. agree that estimates of struc-

tural relationships are underestimated. Although the models tested by Cassel et

al. and Ringle et al. are different, they are not so very different. Cassel et al.

considered a model with three formative exogenous constructs and one reflective

endogenous latent variable, while Ringle et al. considered a model with three for-

mative exogenous constructs and two reflective endogenous latent variables. The

main difference between the study of Ringle et al. (2009) and others lies in how

the data are generated. So, in this research we are interested in confirming part

of these results.

Along similar lines of research, Vilares et al. (2010) also performed a simulation

study to assess the effects of two assumptions, the symmetry of the distributions

and the reflective modelling of the indicators. They used the ECSI (European

Customer Satisfaction Index) model and compared, among others, (a) a model

“where all blocks are reflective and the measurement variables show a symmetric

distribution” (base model); and (b) the base model but with the exogenous latent

variable (image) in a formative outer model. One of the main results reported by

the authors is that the PLS approach was very robust under formative outer models

and skewed data, but unfortunately the authors did not report additional results

for formative estimates. It is worth noting, that Vilares et al. (2010) always found

an adequate PLS Path Modelling performance, even for loadings in the perceived

value measurement model. In this outer model, the block of variables included

only two manifest variables related to the construct in a reflective mode.

Westlund et al. (2001) also studied the robustness of the PLS Path Modelling

algorithm against the skewness of the observed variables, misspecification of the

model, and measurement errors. They studied the basic European Performance

Satisfaction Index (EPSI) model, and the data generation follows the procedure

implemented by Cassel et al. (1999). They found that “the introduction of mea-

surement errors in data does not add much to the estimated bias, aside from the

consequences already noticed due to misspecification problems, or problems due to

skew response distributions” (p. 879). The study of Westlund et al. was extended

in 2008 also through Monte Carlo simulations. The authors analyzed the robust-

ness of PLS estimates against multicollinearity in the data. So correlations are

introduced between manifest variables, and between exogenous latent variables.

Again the ECSI model is tested and authors conclude that PLS Path Modelling is
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Table 6.1: Comparison of results of previous studies
Model Simulation Sample size Latent Manifest Recovering True

conditions (n) variables variables population
parameters

Cassel, Hackl Sample size: 50, The biases of the If a latent The biases can be Basic Model:
and Westlund (1999). 200, 1000. estimates seem to variable with a expected to be PLS performs very

be unaffected by large regression reduced only when well, even in small
3 formative Indicator per the increasing coefficient is the number of samples.
exogenous and 1 latent variable: 3 sample size. omitted, the explanatory
reflective in formative remaining variables in the Bias in weights is
endogenous block of Increasing n coefficient corresponding < 10%.
latent variables. variables, 4 in lowered standard have a large submodel is

reflective block errors. upward bias. increased. Bias in loadings is
of variables. about 30%, PLS tends

In the presence of to underestimate the
True path skew data, the true loadings.
coefficients: 0.8, medium-sized
0.1, 0.1. weights showed The estimates of small

“an upward bias.” coefficients are close
True loadings: to the true values; large
1.1, 1, 0.9, 0.8. coefficients show a

downwards bias (20%).
True weights: 1/3.

500 replications.

Chin and Sample size: 20, Increasing n alone The number The number of PLS always performed
Newated (1999). 50, 100, 150 and does not provide of latent observed better than the

200 cases. better variables did variables has to summed regression
1 reflective approximation to not seem to increase together approach.
exogenous and Number of latent the population help the with n to improve
M reflective variables: 2, 4, 8, values. loading the approximation With greater number of
endogenous 12 and 16. estimates. to the population indicators (16 or more)
latent variables. Increasing n values. the PLS and

Indicators per lowered standard regression estimates
latent variable: errors. were essentially
4, 8, 12, 16 or 32. same.

True path Loadings of 0.2 was not
coefficients: 0.4. detected until n=150

and 200.
True loadings:
0.2, 0.6, 0.8. Loadings of 0.6 and 0.8

were detected with
100 replications. n=20.

Data were Minimum n for a
generated using medium effect size 0.4
PRELIS 2.14. is 53.

robust under the presence of multicollinearity. The case analyzed for these authors

is similar to that examined by Vilares et al. (2010).

6.4 Designing the Monte Carlo Simulation Study

A Monte Carlo simulation study was performed to address several issues (Pax-

ton et al., 2001; Gentle, 2003). The aims were:

1. To analyze the performance of PLS Path Modelling when considering for-

mative measurement models.

2. To analyze the performance of PLS Path Modelling when few indicators are
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considered per unobservable variable.

3. To analyze the performance of PLS Path Modelling when considering differ-

ent sample sizes.

Based on a patent value model (Mart́ınez-Ruiz & Aluja-Banet, 2009), the un-

derlying population model considered a simple structure with three formative ex-

ogenous constructs and one reflective endogenous latent variable (Figure 6.1). The

experimental design considered models with two, four, six and eight indicators per

construct, and four different sample sizes (50, 100, 250, 500) were studied. Five

hundred random data sets were generated for each of the 4×4 cells of the two-factor

design. PLS Path Modelling with centroid scheme –as described in Tenenhaus

et al. (2005)– was performed in R-project (R Development Core Team, 2007)4.

Five hundred replications (t) were made for each cell in the design. Results are

provided in terms of the:

- Mean value of the estimates.

- Mean standard deviation.

- Mean confidence intervals.

- Bias (accuracy, 1
t

∑t
i=1E[θi]− θ).

- Variance.

- Mean square error (precision, MSE= Bias2 + V ariance).

- Mean relative bias (MRB= 100 ∗ 1
t

∑t
i=1

θ−E[θi]
θ , Chin et al. (2003)).

6.4.1 Generating data

To generate data, we considered three different strategies with the aim of

having a baseline model and two other cases. The data were generated from a

component-based model (Schneeweiss, 1991; Chin & Newsted, 1999). Although it

is also possible to work with centered variables, we began generating standardized

manifest variables xjh for each formative outer model as independent normal data

(case A). We assumed that the covariances –in this case equal to the correlations–

among manifest variables are zero. This is quite consistent with the literature

review above, where manifest variables in a formative measurement model do not

have to have a special type of relationship and should rather represent different

4Results of the implemented algorithm were obtained with several data sets and contrasted
with those obtained using SmartPLS (Ringle et al., 2005b); we also replicated part of Ringle et
al.’s and Cassel et al.’s studies to ensure reliable outcomes.
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Figure 6.1: Structural and measurement models of the simulated setups; measurement
models consider two, four, six, and eight indicators per construct.

facets of a construct. Once the manifest variables were generated, we computed

the exogenous constructs ξj and the endogenous latent variable η, so that the

variance of the unobservable variables is one.

Case A considered that disturbance terms δ in the inner relationships and

errors εi in the outer relationships are zero. So, this baseline model allowed us

to observe how close the estimates of the true values in an ideal situation are.

Finally, standardized observed variables yi of reflective measurement models were

generated as independent normal data.

Case B followed the same procedure as in case A, except that the endogenous

latent variable was calculated as a linear combination of the exogenous constructs

plus a disturbance term. Disturbance terms were computed as random normal data

with a zero mean and the corresponding standard deviation. They were distributed

independently of unobservable variables. Errors of the reflective relationships were

computed as random normal data with a zero mean and the corresponding stan-

dard deviation; they were also uncorrelated with the latent variable.

The more general case C took into account the correlations between manifest

variables of the formative blocks of variables as well as the correlations between

exogenous constructs. It is worth noting that in all cases, the generated exogenous

constructs are not collinear.

Schneeweiss (1991) pointed out that “in a PLS model we only postulate which

block of variables should depend on which other block(s) of variables, and the

latent variables and their relations to each other are constructed by definition to

reflect these dependencies. The covariance structure of the manifest variables is

unrestricted” (p. 146). Nevertheless –and as Dijkstra (1983), Dijkstra (1992) and

Dijkstra (2010) have stressed– covariance structure of the variables “restricts the

feasible models” and this should also be considered in PLS path models.
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6.4.2 Setting the true population parameters

To set the true population parameters for the models, we took into account

different combinations of permissible values so as to see whether they are recovered

by the PLS Path Modelling algorithm. Moreover, the behavior of the algorithm

when there are few indicators per construct is of special interest. In social sciences,

particularly in the literature regarding technological change and technology watch,

the relationships between variables are often small or moderate5. So, we wish to

establish whether or not this method is able to recover this type of relationship.

Hence, the values of the coefficients were also set up in an attempt to get closer to

the obtained coefficients when estimating patent value models. Table 6.2 shows the

true population values of weights, path coefficients and loadings. We consider large

values for all the true loadings, at least 0.7 in the case of two manifest variables

per construct. This ensures the unidimensionality of the block of variables and it

satisfies the condition imposed by the PLS Path Modelling algorithm.

Table 6.2: Vectors of true population values for weights, path coefficients and loadings;
a model with three formative exogenous constructs and one reflective endogenous latent
variable; cases for two, four, six and eight indicators in each outer model.

MVs Coefficient Case A Case B Case C

2 Weights (0.8,0.6) (0.8,0.6) (0.8,0.5)
(0.4,0.917) (0.4,0.917) (0.4,0.8)
(0.1,0.995) (0.1,0.995) (0.1,0.9)

Path Coefficients (0.5,0.4,0.768) (0.5,0.4,0.6) (0.5,0.4,0.6)a

Loadings (0.7,0.8) (0.7,0.8) (0.7,0.8)

4 Weights (0.2,0.3,0.5,0.782) (0.2,0.3,0.5,0.782) (0.2,0.3,0.5,0.7)
(0.2,0.4,0.6,0.663) (0.2,0.4,0.6,0.663) (0.2,0.4,0.6,0.5)
(0.3,0.5,0.7,0.412) (0.3,0.5,0.7,0.412) (0.3,0.5,0.7,0.2)

Path Coefficients (0.5,0.4,0.768) (0.5,0.4,0.6) (0.5,0.4,0.6)a

Loadings (0.6,0.7,0.8,0.9) (0.6,0.7,0.8,0.9) (0.6,0.7,0.8,0.9)

6 Weights (0.5,0.3,0.4,0.3,0.6,0.224) (0.5,0.3,0.4,0.3,0.6,0.224) (0.5,0.3,0.4,0.3,0.5,0.1)
(0.2,0.4,0.6,0.4,0.2,0.490) (0.2,0.4,0.6,0.4,0.2,0.490) (0.2,0.4,0.6,0.4,0.2,0.3)
(0.3,0.7,0.2,0.3,0.4,0.361) (0.3,0.7,0.2,0.3,0.4,0.361) (0.3,0.6,0.2,0.3,0.4,0.2)

Path Coefficients (0.5,0.4,0.768) (0.5,0.4,0.6) (0.5,0.4,0.6)a

Loadings (0.6,0.7,0.8,0.9,0.6,0.7) (0.6,0.7,0.8,0.9,0.6,0.7) (0.6,0.7,0.8,0.9,0.6,0.7)

8 Weights (0.2,0.3,0.4,0.5,0.4,0.3,0.2,0.412) (0.2,0.3,0.4,0.5,0.4,0.3,0.2,0.412) (0.3,0.3,0.4,0.3,0.4,0.3,0.2,0.3)b

(0.3,0.3,0.4,0.4,0.2,0.3,0.5,0.346) (0.3,0.3,0.4,0.4,0.2,0.3,0.5,0.346) (0.3,0.3,0.4,0.4,0.2,0.3,0.4,0.2)b

(0.4,0.5,0.5,0.3,0.2,0.1,0.3,0.332) (0.4,0.5,0.5,0.3,0.2,0.1,0.3,0.332) (0.4,0.5,0.4,0.3,0.2,0.1,0.3,0.2)b

Path Coefficients (0.5,0.4,0.768) (0.5,0.4,0.6) (0.5,0.4,0.6)
Loadings (0.6,0.7,0.8,0.9,0.6,0.7,0.8,0.9) (0.6,0.7,0.8,0.9,0.6,0.7,0.8,0.9) (0.6,0.7,0.8,0.9,0.6,0.7,0.8,0.9)

a For N=50 the true path coefficient vector was (0.5,0.4,0.5).
b For N=50 and N=100 the true weight vectors were (0.3,0.1,0.4,0.3,0.4,0.3,0.2,0.2), (0.3,0.1,0.4,0.4,0.2,0.3,0.4,0.1), and

(0.2,0.4,0.4,0.3,0.2,0.1,0.3,0.2).

5Cohen (1988) suggest that correlations of 0.1, 0.3, and 0.5 express small, medium and large
effect sizes, respectively.
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6.5 Simulation Results

Figures 6.2 to 6.11 show the mean bias of the weights, path coefficients and

loadings when sample sizes and the number of indicators increases for cases A, B

and C. Figures 6.5 and 6.10 show the mean relative bias of a weight, loading and

path coefficient depending on the sample size and the number of indicators. In the

Appendix 6.7, Tables 6.3 to 6.44 show the mean estimates, standard deviation,

confidence intervals, bias, variance, mean square error (MSE) and mean relative

bias (MRB) for weights, path coefficients and loadings for the three analyzed cases.

6.5.1 Estimating Weights in Formative Outer Models

Figure 6.2 reports the mean bias of weight estimates for case-A models with

two, four, six and eight indicators when the sample size varies from 50 to 500 obser-

vations. The statistical assumptions considered for this case –that is, uncorrelated

variables and no disturbance terms nor errors– clearly show their influence on the

weight estimates, and the algorithm underestimates the true weights for all sample

sizes. This confirms that PLS estimates are biased. Increasing the sample size,

the bias decreases, and for N=500, PLS almost exactly recovers all the population

values (small, moderate and large values).
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Figure 6.2: Mean bias of weight estimates for baseline case A. Highlighting the influence
of the sample size and the number of indicators.
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Unlike case A, case B considers disturbance terms and errors, and observations

are generated as normal and independent data. This is a more realistic setting,

but correlations between manifest variables, and between latent variables are not

considered. Case B performs in a similar way to case A (see Figure 6.3). The

true weights are underestimated, and as expected, the biases are larger compared

to those obtained in case A. For four, six and eight indicators per construct, the

largest MRBs are 22%, 26% and 33% when N=50, respectively (see Tables 6.17

to 6.22). The MRB decreases with increasing sample size. Besides case-B assump-

tions, the more general case C takes into account the correlations between manifest

variables, and between latent variables. The empirical results are in line with the

theoretical PLS framework (Dijkstra, 2010), and the true weights are overesti-

mated by the PLS Path Modelling algorithm. Figure 6.4 clearly shows this and

also how the biases decrease with increasing sample size and number of indicators

for all analyzed cases. For case C, the largest MRBs are exhibited for models with

the smallest sample sizes (N=50). Figure 6.5(a) and Tables 6.31 to 6.17 report the

results.
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Figure 6.3: Mean bias of weight estimates for cases B. Highlighting the influence of the
sample size and the number of indicators.

Interestingly, for cases A and B, the PLS algorithm yields similarly when con-

sidering two, four, six or eight indicators per construct. Higher values of bias in
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models with only two manifest variables are not observed when compared to mod-

els with four, six or eight indicators per construct. Quite the contrary. For small

sample sizes (N=50), the bias proved to be slightly higher when four, six or eight

indicators were included in the formative models. However, for the more realistic

case C, the number of manifest variables helps to decrease the bias of the estimates.

This can be seen in Figure 6.5(a). In addition, the variability and MSE decrease

by increasing the sample size or increasing the number of manifest variables in all

the simulated cases (see Tables 6.3 to 6.8, 6.17 to 6.22, 6.31 to 6.36).

Simulations performed by Chin & Newsted (1999) for PLS models with reflec-

tive relationships showed that, by themselves, neither the number of indicators

nor the sample size substantively improve the quality of the estimates. Rather, it

is necessary to increase both factors at the same time for an improvement in the

quality of the estimates. Here, the simulations for PLS models with formative-

reflective blocks of variables render the same aforementioned result. So, PLS Path

Modelling is consistent and consistent at large. Nevertheless –and recalling that

PLS algorithm computes the latent variables as an exact linear combination of the

observed variables– the results suggest that in real-world applications with forma-

tive outer models, estimates will improve by increasing the sample size more than

increasing the number of observable variables, depending on the correlations be-

tween manifest variables. So, the researcher may suspect the type of relationship

that she expects to find.
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Figure 6.4: Mean bias of weight estimates for cases C. Highlighting the influence of the
sample size and the number of indicators.
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Figure 6.5: Mean relative bias of a weight and a loading, case C. Highlighting the influence
of the sample size and the number of indicators per construct.

6.5.2 Estimating Path Coefficients in Structural Models

Results for estimates of inner relationships are quite conclusive. For baseline

case A, the algorithm underestimates the true path coefficients in all the analyzed

cases (see Figure 6.6). This means that PLS Path Modelling estimates are biased

even though no disturbance terms and no errors are considered. As the sample

size increases, the estimates increasingly approach to true values and the biases

decrease. By introducing disturbance terms and errors, as in case B, as well as

correlations, as in case C, PLS Path Modelling also underestimates the structural

relationships.

Figures 6.7, 6.8 and 6.9 allow us to see how an increase in both the number

of manifest variables and the sample size reduces the bias of the estimates for

both cases B and C, for all assumed true values. The variability and the mean

square errors of the estimates also tend to decrease with increasing sample size. In

addition, by way of example, Figure 6.10 shows the mean relative bias of the path

coefficients whose true value are 0.5. Figure 6.10(a) reports the change in the MRB

when the sample size increases for models with two, four, six and eight manifest

variables in the measurement models. Case C is shown here. In accordance with

expectations, when the models consider only two indicators, the MRB is the largest

and proves to be quite the same when sample size increases. Its value ranges from

18% (N=50) to 15% (N=500). For models with four, six and eight indicators,

the MRB decreases when sample size increases. Figure 6.10(a) also shows that by

increasing the number of indicators per latent variable, it yields closer estimates

to the true values; but this factor tends to have less influence on the quality of the

estimates than the sample size does. Figure 6.10(b) compares the MRB of cases

A, B and C for models with four indicators per construct when the sample size

increases. As can be seen, the MRB does not exceed 20%. For case C, the mean

relative biases are about 15% and 10% for N=50 and N=500, respectively. As
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Figure 6.6: Mean bias of path coefficients for baseline case A. Highlighting the influence
of the sample size and the number of indicators.

expected, case A shows the lowest MRB. See Tables 6.9 to 6.12, 6.23 to 6.26, 6.37

to 6.40 for the full list of results.

Summing up, in all analyzed cases, the results obtained are better when each

outer model considers more manifest variables per construct. However, it is worth

noting that the estimates are shown to be of the same level of accuracy and pre-

cision when the measurement models include only two indicators per construct.

This suggests that PLS Path Modelling may be a robust alternative when esti-

mating structural equation models with formative relationships and few indicators

per construct.

6.5.3 Estimating Loadings in Reflective Outer Models

As can be seen in Figure 6.11, the estimates of loadings in all cases are very

close to the true values, regardless of the sample sizes and number of manifest

variables per construct. PLS Path Modelling overestimates the population values.

Moreover, according to the results, a higher number of manifest variables seems to

be more important than a higher sample size for decreasing the bias of the estimates

in reflective outer models. This is in contrast with the formative relationships and

coincides with the results found by other researchers (Chin & Newsted, 1999).
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Figure 6.7: Mean bias of path coefficients for cases B. Highlighting the influence of the
sample size and the number of indicators.

This is clearly seen in Figure 6.5(b) where the mean relative bias for a loading of

0.7 strongly decreases when the number of indicators increases. So, this confirms

that PLS estimates are “inconsistent” in a reflective setting (Hui & Wold, 1982,

p. 123); they are only consistent at large (Wold, 1982; Chin & Newsted, 1999).

6.6 Final Remarks

For the studied model, the findings suggest that PLS Path Modelling offers

a way to build “proper indices” for unobservable variables and to estimate the

relationships between them. The estimates are always biased. The procedure

shows a tendency to overestimate outer relationships and underestimate inner

relationships. It is worth noting, however, that the estimates are shown to be

robust when the measurement models include only two indicators per construct.

That is, the procedure is able to recover proper estimates of the true values. It

is true that when the number of observed variables and sample size increase, the

quality of the PLS Path Modelling estimates increases. But when few indicators

and a small sample size are considered, we can obtain estimates of the parameters,

at least for the simulated case. Vilares et al. (2010) have noted the same behavior
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Figure 6.8: Mean bias of path coefficients for cases C. Highlighting the influence of the
sample size and the number of indicators.

in a reflective blocks of variables with two indicators. Finally, we think that the

model simulated here represents a number of models that can be studied in real-

world applications: those in which formative exogenous outer models are modeled

using PLS Mode B and reflective endogenous latent variables are modeled using

PLS Mode A. That is, PLS Mode C, in terms of Wold’s approach.
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Figure 6.9: Mean bias of path coefficients. Highlighting the influence of the sample size
and the number of indicators.
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Figure 6.10: Mean relative bias of a path coefficient, true value equal to 0.5. Highlighting
the influence of the sample size and the number of indicators per construct.
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(d) Case B - Eight indicators
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Figure 6.11: Mean bias of loadings for cases B and C. Highlighting the influence of the
sample size and the number of indicators.
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6.7 Appendix: Tables

Table 6.3: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case A, models with two
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.800 0.787 0.158 0.772 0.803 -0.013 0.025 0.025 2
0.600 0.583 0.206 0.570 0.597 -0.017 0.043 0.043 3

2 0.400 0.381 0.303 0.350 0.409 -0.019 0.092 0.092 5
0.917 0.860 0.192 0.843 0.872 -0.056 0.037 0.040 6

3 0.100 0.107 0.119 0.094 0.116 0.007 0.014 0.014 -7
0.995 0.988 0.028 0.986 0.991 -0.007 0.001 0.001 1

100 1 0.800 0.800 0.116 0.788 0.810 0.000 0.013 0.013 0
0.600 0.579 0.148 0.567 0.591 -0.021 0.022 0.022 3

2 0.400 0.378 0.231 0.360 0.406 -0.022 0.053 0.054 5
0.917 0.892 0.107 0.881 0.900 -0.025 0.011 0.012 3

3 0.100 0.096 0.084 0.088 0.104 -0.004 0.007 0.007 4
0.995 0.992 0.016 0.991 0.993 -0.003 0.000 0.000 0

250 1 0.800 0.796 0.072 0.791 0.804 -0.004 0.005 0.005 0
0.600 0.594 0.094 0.587 0.603 -0.006 0.009 0.009 1

2 0.400 0.394 0.134 0.382 0.406 -0.006 0.018 0.018 2
0.917 0.908 0.064 0.903 0.914 -0.008 0.004 0.004 1

3 0.100 0.098 0.051 0.093 0.102 -0.002 0.003 0.003 2
0.995 0.994 0.009 0.994 0.995 -0.001 0.000 0.000 0

500 1 0.800 0.798 0.053 0.792 0.803 -0.002 0.003 0.003 0
0.600 0.598 0.066 0.592 0.604 -0.002 0.004 0.004 0

2 0.400 0.404 0.099 0.396 0.413 0.004 0.010 0.010 -1
0.917 0.910 0.046 0.906 0.913 -0.007 0.002 0.002 1

3 0.100 0.097 0.036 0.094 0.101 -0.003 0.001 0.001 3
0.995 0.995 0.006 0.994 0.995 0.000 0.000 0.000 0
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Table 6.4: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case A, models with
four indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.200 0.185 0.235 0.166 0.208 -0.015 0.055 0.056 7
0.300 0.288 0.215 0.267 0.312 -0.012 0.046 0.046 4
0.500 0.470 0.209 0.451 0.493 -0.030 0.044 0.045 6
0.787 0.729 0.177 0.712 0.744 -0.058 0.031 0.035 7

2 0.200 0.162 0.301 0.136 0.193 -0.038 0.091 0.092 19
0.400 0.359 0.275 0.335 0.382 -0.041 0.075 0.077 10
0.600 0.520 0.260 0.490 0.549 -0.080 0.068 0.074 13
0.663 0.565 0.261 0.545 0.589 -0.098 0.068 0.078 15

3 0.300 0.297 0.113 0.284 0.312 -0.003 0.013 0.013 1
0.500 0.489 0.112 0.479 0.502 -0.011 0.013 0.013 2
0.700 0.697 0.105 0.689 0.705 -0.003 0.011 0.011 0
0.412 0.412 0.114 0.401 0.424 -0.001 0.013 0.013 0

100 1 0.200 0.176 0.152 0.166 0.188 -0.024 0.023 0.024 12
0.300 0.287 0.166 0.271 0.304 -0.013 0.028 0.028 4
0.500 0.492 0.144 0.478 0.505 -0.008 0.021 0.021 2
0.787 0.754 0.118 0.744 0.764 -0.034 0.014 0.015 4

2 0.200 0.183 0.222 0.167 0.205 -0.017 0.049 0.050 8
0.400 0.370 0.213 0.348 0.392 -0.030 0.046 0.046 7
0.600 0.555 0.189 0.529 0.579 -0.045 0.036 0.038 7
0.663 0.616 0.168 0.602 0.631 -0.047 0.028 0.030 7

3 0.300 0.305 0.079 0.299 0.311 0.005 0.006 0.006 -2
0.500 0.498 0.080 0.489 0.507 -0.002 0.006 0.006 0
0.700 0.696 0.076 0.691 0.703 -0.004 0.006 0.006 1
0.412 0.407 0.081 0.402 0.414 -0.005 0.006 0.007 1

250 1 0.200 0.204 0.107 0.196 0.214 0.004 0.011 0.011 -2
0.300 0.297 0.107 0.286 0.307 -0.003 0.011 0.011 1
0.500 0.492 0.093 0.486 0.497 -0.008 0.009 0.009 2
0.787 0.772 0.072 0.766 0.781 -0.015 0.005 0.005 2

2 0.200 0.196 0.140 0.184 0.207 -0.004 0.020 0.020 2
0.400 0.381 0.131 0.368 0.395 -0.019 0.017 0.017 5
0.600 0.592 0.119 0.579 0.604 -0.008 0.014 0.014 1
0.663 0.642 0.118 0.630 0.654 -0.022 0.014 0.014 3

3 0.300 0.302 0.051 0.295 0.308 0.002 0.003 0.003 -1
0.500 0.498 0.050 0.494 0.502 -0.002 0.003 0.003 0
0.700 0.699 0.047 0.695 0.703 -0.001 0.002 0.002 0
0.412 0.416 0.051 0.411 0.420 0.003 0.003 0.003 -1

500 1 0.200 0.192 0.079 0.184 0.199 -0.008 0.006 0.006 4
0.300 0.297 0.075 0.291 0.304 -0.003 0.006 0.006 1
0.500 0.495 0.067 0.486 0.504 -0.005 0.005 0.005 1
0.787 0.782 0.049 0.778 0.786 -0.005 0.002 0.002 1

2 0.200 0.201 0.094 0.196 0.209 0.001 0.009 0.009 -1
0.400 0.392 0.093 0.383 0.400 -0.008 0.009 0.009 2
0.600 0.592 0.085 0.582 0.601 -0.008 0.007 0.007 1
0.663 0.653 0.080 0.647 0.661 -0.010 0.006 0.006 1

3 0.300 0.301 0.037 0.297 0.305 0.001 0.001 0.001 0
0.500 0.498 0.033 0.494 0.501 -0.002 0.001 0.001 0
0.700 0.697 0.032 0.694 0.701 -0.003 0.001 0.001 0
0.412 0.411 0.036 0.408 0.414 -0.001 0.001 0.001 0
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Table 6.5: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case A, models with six
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.500 0.432 0.218 0.415 0.447 -0.068 0.048 0.052 14
0.300 0.264 0.231 0.249 0.286 -0.036 0.053 0.055 12
0.400 0.361 0.217 0.342 0.383 -0.039 0.047 0.048 10
0.300 0.260 0.226 0.244 0.279 -0.040 0.051 0.053 13
0.600 0.514 0.205 0.496 0.530 -0.086 0.042 0.049 14
0.224 0.194 0.231 0.170 0.217 -0.029 0.053 0.054 13

2 0.200 0.150 0.278 0.127 0.176 -0.050 0.077 0.080 25
0.400 0.308 0.264 0.285 0.333 -0.092 0.070 0.078 23
0.600 0.486 0.259 0.470 0.511 -0.114 0.067 0.080 19
0.400 0.321 0.290 0.292 0.352 -0.079 0.084 0.090 20
0.200 0.169 0.273 0.149 0.190 -0.031 0.075 0.076 15
0.490 0.390 0.258 0.366 0.422 -0.100 0.066 0.076 20

3 0.300 0.284 0.114 0.272 0.295 -0.016 0.013 0.013 5
0.700 0.689 0.110 0.679 0.700 -0.011 0.012 0.012 2
0.200 0.193 0.124 0.177 0.209 -0.007 0.015 0.015 3
0.300 0.289 0.123 0.281 0.297 -0.011 0.015 0.015 4
0.400 0.384 0.120 0.373 0.397 -0.016 0.014 0.015 4
0.361 0.355 0.123 0.347 0.362 -0.005 0.015 0.015 1

100 1 0.500 0.464 0.146 0.454 0.478 -0.036 0.021 0.022 7
0.300 0.284 0.156 0.270 0.301 -0.016 0.024 0.025 5
0.400 0.369 0.158 0.362 0.377 -0.031 0.025 0.026 8
0.300 0.281 0.166 0.268 0.298 -0.019 0.028 0.028 6
0.600 0.563 0.141 0.549 0.583 -0.037 0.020 0.021 6
0.224 0.210 0.168 0.192 0.231 -0.014 0.028 0.028 6

2 0.200 0.182 0.214 0.161 0.204 -0.018 0.046 0.046 9
0.400 0.365 0.204 0.343 0.387 -0.035 0.042 0.043 9
0.600 0.548 0.181 0.537 0.560 -0.052 0.033 0.035 9
0.400 0.337 0.200 0.316 0.353 -0.063 0.040 0.044 16
0.200 0.173 0.201 0.155 0.191 -0.027 0.041 0.041 13
0.490 0.433 0.197 0.412 0.450 -0.057 0.039 0.042 12

3 0.300 0.298 0.076 0.292 0.305 -0.002 0.006 0.006 1
0.700 0.690 0.070 0.683 0.697 -0.010 0.005 0.005 1
0.200 0.195 0.082 0.187 0.203 -0.005 0.007 0.007 3
0.300 0.300 0.081 0.293 0.306 0.000 0.007 0.007 0
0.400 0.396 0.081 0.389 0.403 -0.004 0.007 0.007 1
0.361 0.363 0.082 0.357 0.369 0.003 0.007 0.007 -1
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Table 6.6: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case A, models with six
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

250 1 0.500 0.484 0.096 0.475 0.493 -0.016 0.009 0.009 3
0.300 0.291 0.103 0.279 0.302 -0.009 0.011 0.011 3
0.400 0.392 0.099 0.382 0.401 -0.008 0.010 0.010 2
0.300 0.290 0.107 0.280 0.302 -0.010 0.011 0.011 3
0.600 0.586 0.093 0.577 0.594 -0.014 0.009 0.009 2
0.224 0.214 0.106 0.205 0.223 -0.009 0.011 0.011 4

2 0.200 0.196 0.142 0.181 0.215 -0.004 0.020 0.020 2
0.400 0.378 0.127 0.369 0.387 -0.022 0.016 0.016 6
0.600 0.573 0.114 0.562 0.585 -0.027 0.013 0.014 5
0.400 0.380 0.136 0.370 0.392 -0.020 0.019 0.019 5
0.200 0.201 0.140 0.187 0.216 0.001 0.020 0.020 0
0.490 0.458 0.122 0.445 0.470 -0.032 0.015 0.016 7

3 0.300 0.298 0.053 0.292 0.303 -0.002 0.003 0.003 1
0.700 0.692 0.046 0.688 0.696 -0.008 0.002 0.002 1
0.200 0.202 0.051 0.197 0.208 0.002 0.003 0.003 -1
0.300 0.297 0.052 0.293 0.302 -0.003 0.003 0.003 1
0.400 0.403 0.047 0.399 0.407 0.003 0.002 0.002 -1
0.361 0.360 0.051 0.355 0.364 -0.001 0.003 0.003 0

500 1 0.500 0.495 0.070 0.490 0.500 -0.005 0.005 0.005 1
0.300 0.293 0.076 0.285 0.300 -0.007 0.006 0.006 2
0.400 0.389 0.074 0.383 0.397 -0.011 0.005 0.006 3
0.300 0.291 0.082 0.285 0.298 -0.009 0.007 0.007 3
0.600 0.595 0.069 0.589 0.600 -0.005 0.005 0.005 1
0.224 0.220 0.075 0.213 0.227 -0.004 0.006 0.006 2

2 0.200 0.201 0.100 0.193 0.208 0.001 0.010 0.010 0
0.400 0.379 0.098 0.367 0.391 -0.021 0.010 0.010 5
0.600 0.584 0.082 0.578 0.589 -0.016 0.007 0.007 3
0.400 0.391 0.095 0.382 0.403 -0.009 0.009 0.009 2
0.200 0.201 0.101 0.192 0.209 0.001 0.010 0.010 -1
0.490 0.480 0.093 0.472 0.488 -0.010 0.009 0.009 2

3 0.300 0.296 0.036 0.292 0.300 -0.004 0.001 0.001 1
0.700 0.698 0.033 0.696 0.701 -0.002 0.001 0.001 0
0.200 0.196 0.036 0.193 0.199 -0.004 0.001 0.001 2
0.300 0.298 0.038 0.294 0.302 -0.002 0.001 0.001 1
0.400 0.398 0.037 0.395 0.402 -0.002 0.001 0.001 0
0.361 0.359 0.038 0.356 0.363 -0.001 0.001 0.001 0
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Table 6.7: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case A, models with
eight indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.200 0.183 0.223 0.165 0.201 -0.017 0.050 0.050 9
0.300 0.248 0.226 0.225 0.268 -0.052 0.051 0.054 17
0.400 0.343 0.227 0.325 0.359 -0.057 0.052 0.055 14
0.500 0.424 0.207 0.410 0.441 -0.076 0.043 0.049 15
0.400 0.328 0.215 0.302 0.346 -0.072 0.046 0.052 18
0.300 0.264 0.217 0.248 0.279 -0.036 0.047 0.048 12
0.200 0.159 0.225 0.136 0.182 -0.041 0.050 0.052 21
0.412 0.333 0.217 0.313 0.354 -0.079 0.047 0.053 19

2 0.300 0.227 0.248 0.197 0.259 -0.073 0.061 0.067 24
0.300 0.226 0.266 0.200 0.247 -0.074 0.071 0.076 25
0.400 0.296 0.263 0.274 0.322 -0.104 0.069 0.080 26
0.400 0.309 0.256 0.285 0.331 -0.091 0.066 0.074 23
0.200 0.142 0.267 0.111 0.173 -0.058 0.071 0.075 29
0.300 0.225 0.245 0.202 0.253 -0.075 0.060 0.066 25
0.500 0.369 0.274 0.334 0.402 -0.131 0.075 0.092 26
0.346 0.267 0.258 0.242 0.297 -0.080 0.067 0.073 23

3 0.400 0.386 0.120 0.376 0.397 -0.014 0.014 0.015 3
0.500 0.488 0.117 0.479 0.499 -0.012 0.014 0.014 2
0.500 0.482 0.112 0.472 0.491 -0.018 0.013 0.013 4
0.300 0.289 0.123 0.276 0.301 -0.011 0.015 0.015 4
0.200 0.197 0.116 0.187 0.209 -0.003 0.014 0.014 2
0.100 0.097 0.119 0.089 0.106 -0.003 0.014 0.014 3
0.300 0.274 0.119 0.260 0.288 -0.026 0.014 0.015 9
0.332 0.324 0.120 0.314 0.333 -0.008 0.014 0.014 2

100 1 0.200 0.177 0.162 0.165 0.192 -0.023 0.026 0.027 11
0.300 0.282 0.156 0.268 0.294 -0.018 0.024 0.025 6
0.400 0.362 0.156 0.348 0.376 -0.038 0.024 0.026 10
0.500 0.462 0.150 0.450 0.476 -0.038 0.023 0.024 8
0.400 0.367 0.159 0.353 0.377 -0.033 0.025 0.026 8
0.300 0.269 0.160 0.251 0.284 -0.031 0.025 0.026 10
0.200 0.174 0.167 0.161 0.185 -0.026 0.028 0.029 13
0.412 0.376 0.150 0.361 0.389 -0.036 0.023 0.024 9

2 0.300 0.241 0.205 0.226 0.255 -0.059 0.042 0.046 20
0.300 0.252 0.203 0.229 0.278 -0.048 0.041 0.044 16
0.400 0.341 0.184 0.322 0.364 -0.059 0.034 0.037 15
0.400 0.345 0.191 0.329 0.360 -0.055 0.037 0.040 14
0.200 0.163 0.206 0.145 0.183 -0.037 0.042 0.044 18
0.300 0.265 0.207 0.243 0.289 -0.035 0.043 0.044 12
0.500 0.426 0.187 0.409 0.446 -0.074 0.035 0.040 15
0.346 0.289 0.199 0.273 0.306 -0.057 0.040 0.043 16

3 0.400 0.399 0.080 0.392 0.408 -0.001 0.006 0.006 0
0.500 0.496 0.080 0.488 0.505 -0.004 0.006 0.006 1
0.500 0.484 0.082 0.474 0.492 -0.016 0.007 0.007 3
0.300 0.299 0.083 0.290 0.305 -0.001 0.007 0.007 0
0.200 0.195 0.087 0.187 0.202 -0.005 0.008 0.008 2
0.100 0.095 0.082 0.087 0.104 -0.005 0.007 0.007 5
0.300 0.296 0.085 0.289 0.303 -0.004 0.007 0.007 1
0.332 0.329 0.086 0.320 0.337 -0.003 0.007 0.007 1
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Table 6.8: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case A, models with
eight indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

250 1 0.200 0.182 0.109 0.175 0.191 -0.018 0.012 0.012 9
0.300 0.287 0.110 0.276 0.299 -0.013 0.012 0.012 4
0.400 0.390 0.101 0.378 0.401 -0.010 0.010 0.010 3
0.500 0.475 0.097 0.466 0.484 -0.025 0.009 0.010 5
0.400 0.382 0.099 0.369 0.396 -0.018 0.010 0.010 4
0.300 0.283 0.103 0.275 0.293 -0.017 0.011 0.011 6
0.200 0.197 0.101 0.184 0.207 -0.003 0.010 0.010 2
0.412 0.401 0.101 0.393 0.410 -0.012 0.010 0.010 3

2 0.300 0.288 0.135 0.276 0.299 -0.012 0.018 0.018 4
0.300 0.282 0.135 0.268 0.295 -0.018 0.018 0.019 6
0.400 0.372 0.130 0.356 0.391 -0.028 0.017 0.018 7
0.400 0.370 0.125 0.358 0.384 -0.030 0.016 0.016 7
0.200 0.186 0.132 0.175 0.195 -0.014 0.017 0.018 7
0.300 0.287 0.131 0.278 0.295 -0.013 0.017 0.017 4
0.500 0.461 0.127 0.449 0.474 -0.039 0.016 0.018 8
0.346 0.321 0.127 0.312 0.329 -0.025 0.016 0.017 7

3 0.400 0.400 0.054 0.395 0.406 0.000 0.003 0.003 0
0.500 0.496 0.052 0.492 0.500 -0.004 0.003 0.003 1
0.500 0.496 0.053 0.491 0.501 -0.004 0.003 0.003 1
0.300 0.299 0.052 0.295 0.303 -0.001 0.003 0.003 0
0.200 0.196 0.054 0.193 0.200 -0.004 0.003 0.003 2
0.100 0.098 0.053 0.095 0.102 -0.002 0.003 0.003 2
0.300 0.298 0.052 0.294 0.301 -0.002 0.003 0.003 1
0.332 0.329 0.053 0.322 0.334 -0.003 0.003 0.003 1

500 1 0.200 0.193 0.078 0.186 0.200 -0.007 0.006 0.006 3
0.300 0.294 0.072 0.289 0.299 -0.006 0.005 0.005 2
0.400 0.394 0.075 0.387 0.401 -0.006 0.006 0.006 2
0.500 0.488 0.066 0.483 0.494 -0.012 0.004 0.004 2
0.400 0.393 0.074 0.387 0.399 -0.007 0.006 0.006 2
0.300 0.292 0.076 0.287 0.298 -0.008 0.006 0.006 3
0.200 0.189 0.074 0.182 0.197 -0.011 0.005 0.006 6
0.412 0.409 0.068 0.404 0.414 -0.003 0.005 0.005 1

2 0.300 0.287 0.094 0.278 0.296 -0.013 0.009 0.009 4
0.300 0.301 0.100 0.293 0.312 0.001 0.010 0.010 0
0.400 0.385 0.095 0.375 0.393 -0.015 0.009 0.009 4
0.400 0.387 0.097 0.380 0.396 -0.013 0.009 0.009 3
0.200 0.196 0.098 0.187 0.204 -0.004 0.010 0.010 2
0.300 0.286 0.097 0.275 0.296 -0.014 0.009 0.010 5
0.500 0.485 0.085 0.475 0.493 -0.015 0.007 0.007 3
0.346 0.330 0.094 0.323 0.338 -0.016 0.009 0.009 5

3 0.400 0.400 0.034 0.398 0.403 0.000 0.001 0.001 0
0.500 0.501 0.037 0.497 0.506 0.001 0.001 0.001 0
0.500 0.498 0.034 0.495 0.501 -0.002 0.001 0.001 0
0.300 0.300 0.039 0.297 0.303 0.000 0.002 0.002 0
0.200 0.199 0.037 0.194 0.202 -0.001 0.001 0.001 1
0.100 0.102 0.035 0.098 0.105 0.002 0.001 0.001 -2
0.300 0.299 0.037 0.296 0.302 -0.001 0.001 0.001 0
0.332 0.332 0.035 0.329 0.335 0.000 0.001 0.001 0
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Table 6.9: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case A, models with two indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.471 0.040 0.467 0.474 -0.029 0.002 0.002 6
0.400 0.365 0.053 0.361 0.370 -0.035 0.003 0.004 9
0.768 0.740 0.052 0.736 0.745 -0.028 0.003 0.003 4

100 0.500 0.483 0.027 0.480 0.486 -0.017 0.001 0.001 3
0.400 0.381 0.027 0.378 0.383 -0.019 0.001 0.001 5
0.768 0.752 0.038 0.749 0.755 -0.016 0.001 0.002 2

250 0.500 0.493 0.016 0.492 0.495 -0.007 0.000 0.000 1
0.400 0.393 0.014 0.392 0.394 -0.007 0.000 0.000 2
0.768 0.761 0.024 0.759 0.764 -0.007 0.001 0.001 1

500 0.500 0.497 0.012 0.496 0.497 -0.003 0.000 0.000 1
0.400 0.396 0.010 0.395 0.397 -0.004 0.000 0.000 1
0.768 0.765 0.018 0.763 0.766 -0.003 0.000 0.000 0

Table 6.10: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case A, models with four indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.420 0.051 0.415 0.425 -0.080 0.003 0.009 16
0.400 0.318 0.050 0.314 0.323 -0.082 0.002 0.009 20
0.768 0.690 0.044 0.686 0.693 -0.079 0.002 0.008 10

100 0.500 0.455 0.028 0.452 0.458 -0.045 0.001 0.003 9
0.400 0.353 0.030 0.350 0.355 -0.047 0.001 0.003 12
0.768 0.724 0.034 0.721 0.728 -0.044 0.001 0.003 6

250 0.500 0.480 0.018 0.479 0.482 -0.020 0.000 0.001 4
0.400 0.380 0.016 0.378 0.381 -0.020 0.000 0.001 5
0.768 0.748 0.025 0.746 0.750 -0.020 0.001 0.001 3

500 0.500 0.491 0.012 0.491 0.493 -0.009 0.000 0.000 2
0.400 0.390 0.010 0.390 0.391 -0.010 0.000 0.000 2
0.768 0.760 0.017 0.758 0.762 -0.008 0.000 0.000 1
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Table 6.11: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case A, models with six indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.389 0.049 0.384 0.393 -0.111 0.002 0.015 22
0.400 0.292 0.059 0.287 0.299 -0.108 0.004 0.015 27
0.768 0.657 0.045 0.653 0.660 -0.111 0.002 0.014 14

100 0.500 0.433 0.028 0.431 0.435 -0.067 0.001 0.005 13
0.400 0.334 0.032 0.331 0.337 -0.066 0.001 0.005 17
0.768 0.702 0.032 0.699 0.705 -0.066 0.001 0.005 9

250 0.500 0.469 0.017 0.468 0.471 -0.031 0.000 0.001 6
0.400 0.368 0.016 0.366 0.369 -0.032 0.000 0.001 8
0.768 0.735 0.023 0.733 0.738 -0.033 0.001 0.002 4

500 0.500 0.482 0.011 0.481 0.483 -0.018 0.000 0.000 4
0.400 0.382 0.011 0.381 0.382 -0.018 0.000 0.000 5
0.768 0.750 0.017 0.749 0.752 -0.018 0.000 0.001 2

Table 6.12: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case A, models with eight indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.369 0.048 0.365 0.373 -0.131 0.002 0.019 26
0.400 0.276 0.058 0.270 0.283 -0.124 0.003 0.019 31
0.768 0.638 0.043 0.634 0.641 -0.130 0.002 0.019 17

100 0.500 0.415 0.031 0.412 0.418 -0.085 0.001 0.008 17
0.400 0.315 0.033 0.312 0.318 -0.085 0.001 0.008 21
0.768 0.684 0.031 0.681 0.687 -0.084 0.001 0.008 11

250 0.500 0.459 0.017 0.458 0.461 -0.041 0.000 0.002 8
0.400 0.357 0.019 0.355 0.359 -0.043 0.000 0.002 11
0.768 0.727 0.022 0.725 0.730 -0.041 0.000 0.002 5

500 0.500 0.478 0.012 0.477 0.479 -0.022 0.000 0.001 4
0.400 0.376 0.011 0.375 0.377 -0.024 0.000 0.001 6
0.768 0.745 0.017 0.743 0.747 -0.023 0.000 0.001 3

Table 6.13: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case A, models
with two indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25

100 0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25

250 0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25

500 0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
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Table 6.14: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case A, models
with four indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 1.000 0.000 - - 0.400 0.000 0.160 -67
0.7 1.000 0.000 - - 0.300 0.000 0.090 -43
0.8 1.000 0.000 - - 0.200 0.000 0.040 -25
0.9 1.000 0.000 - - 0.100 0.000 0.010 -11

100 0.6 1.000 0.000 - - 0.400 0.000 0.160 -67
0.7 1.000 0.000 - - 0.300 0.000 0.090 -43
0.8 1.000 0.000 - - 0.200 0.000 0.040 -25
0.9 1.000 0.000 - - 0.100 0.000 0.010 -11

250 0.6 1.000 0.000 - - 0.400 0.000 0.160 -67
0.7 1.000 0.000 - - 0.300 0.000 0.090 -43
0.8 1.000 0.000 - - 0.200 0.000 0.040 -25
0.9 1.000 0.000 - - 0.100 0.000 0.010 -11

500 0.6 1.000 0.000 - - 0.400 0.000 0.160 -67
0.7 1.000 0.000 - - 0.300 0.000 0.090 -43
0.8 1.000 0.000 - - 0.200 0.000 0.040 -25
0.9 1.000 0.000 - - 0.100 0.000 0.010 -11
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Table 6.15: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case A, models
with six indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43

100 0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43

250 0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43

500 0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
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Table 6.16: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case A, models
with eight indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11

100 0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11

250 0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11

500 0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
0.600 1.000 0.000 - - 0.400 0.000 0.160 -67
0.700 1.000 0.000 - - 0.300 0.000 0.090 -43
0.800 1.000 0.000 - - 0.200 0.000 0.040 -25
0.900 1.000 0.000 - - 0.100 0.000 0.010 -11
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Table 6.17: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case B, models with two
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.800 0.760 0.203 0.744 0.773 -0.040 0.041 0.043 5
0.600 0.592 0.243 0.572 0.613 -0.008 0.059 0.059 1

2 0.400 0.378 0.356 0.348 0.405 -0.022 0.127 0.127 5
0.917 0.816 0.280 0.793 0.836 -0.101 0.078 0.088 11

3 0.100 0.121 0.249 0.099 0.143 0.021 0.062 0.063 -21
0.995 0.961 0.069 0.953 0.967 -0.034 0.005 0.006 3

100 1 0.800 0.774 0.144 0.759 0.790 -0.026 0.021 0.021 3
0.600 0.600 0.174 0.586 0.616 0.000 0.030 0.030 0

2 0.400 0.392 0.251 0.372 0.413 -0.008 0.063 0.063 2
0.917 0.875 0.132 0.866 0.882 -0.041 0.017 0.019 5

3 0.100 0.101 0.166 0.086 0.117 0.001 0.027 0.027 -1
0.995 0.981 0.033 0.978 0.983 -0.014 0.001 0.001 1

250 1 0.800 0.795 0.088 0.786 0.802 -0.005 0.008 0.008 1
0.600 0.592 0.114 0.584 0.603 -0.008 0.013 0.013 1

2 0.400 0.395 0.161 0.381 0.410 -0.005 0.026 0.026 1
0.917 0.900 0.078 0.893 0.908 -0.016 0.006 0.006 2

3 0.100 0.095 0.105 0.086 0.104 -0.005 0.011 0.011 5
0.995 0.989 0.018 0.987 0.991 -0.006 0.000 0.000 1

500 1 0.800 0.794 0.061 0.788 0.801 -0.006 0.004 0.004 1
0.600 0.601 0.078 0.597 0.608 0.001 0.006 0.006 0

2 0.400 0.390 0.116 0.380 0.401 -0.010 0.014 0.014 2
0.917 0.912 0.054 0.907 0.917 -0.005 0.003 0.003 1

3 0.100 0.100 0.075 0.095 0.106 0.000 0.006 0.006 0
0.995 0.992 0.010 0.991 0.993 -0.003 0.000 0.000 0
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Table 6.18: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case B, models with four
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.200 0.172 0.242 0.151 0.194 -0.028 0.059 0.059 14
0.300 0.260 0.266 0.231 0.294 -0.040 0.071 0.072 13
0.500 0.451 0.239 0.435 0.467 -0.049 0.057 0.059 10
0.787 0.720 0.192 0.707 0.733 -0.068 0.037 0.041 9

2 0.200 0.155 0.322 0.123 0.189 -0.045 0.104 0.106 22
0.400 0.340 0.302 0.306 0.370 -0.060 0.091 0.095 15
0.600 0.506 0.287 0.476 0.539 -0.094 0.082 0.091 16
0.663 0.551 0.267 0.524 0.573 -0.112 0.072 0.084 17

3 0.300 0.293 0.196 0.276 0.310 -0.007 0.039 0.039 2
0.500 0.460 0.202 0.443 0.477 -0.040 0.041 0.042 8
0.700 0.662 0.172 0.651 0.677 -0.038 0.030 0.031 5
0.412 0.389 0.197 0.378 0.401 -0.023 0.039 0.039 6

100 1 0.200 0.182 0.183 0.169 0.197 -0.018 0.033 0.034 9
0.300 0.295 0.185 0.277 0.312 -0.005 0.034 0.034 2
0.500 0.485 0.170 0.472 0.498 -0.015 0.029 0.029 3
0.787 0.731 0.137 0.716 0.747 -0.057 0.019 0.022 7

2 0.200 0.185 0.241 0.169 0.200 -0.015 0.058 0.058 8
0.400 0.364 0.226 0.338 0.392 -0.036 0.051 0.052 9
0.600 0.543 0.204 0.523 0.566 -0.057 0.042 0.045 10
0.663 0.614 0.186 0.595 0.634 -0.050 0.035 0.037 7

3 0.300 0.276 0.140 0.259 0.291 -0.024 0.020 0.020 8
0.500 0.495 0.133 0.485 0.506 -0.005 0.018 0.018 1
0.700 0.687 0.115 0.677 0.700 -0.013 0.013 0.014 2
0.412 0.389 0.140 0.377 0.399 -0.023 0.020 0.020 6

250 1 0.200 0.197 0.117 0.185 0.213 -0.003 0.014 0.014 1
0.300 0.288 0.115 0.276 0.299 -0.012 0.013 0.013 4
0.500 0.493 0.104 0.483 0.504 -0.007 0.011 0.011 1
0.787 0.770 0.081 0.763 0.777 -0.017 0.007 0.007 2

2 0.200 0.198 0.147 0.182 0.213 -0.002 0.022 0.022 1
0.400 0.392 0.141 0.378 0.404 -0.008 0.020 0.020 2
0.600 0.579 0.125 0.567 0.591 -0.021 0.016 0.016 4
0.663 0.638 0.124 0.629 0.648 -0.025 0.015 0.016 4

3 0.300 0.299 0.087 0.294 0.305 -0.001 0.008 0.008 0
0.500 0.492 0.082 0.488 0.499 -0.008 0.007 0.007 2
0.700 0.694 0.071 0.686 0.702 -0.006 0.005 0.005 1
0.412 0.403 0.090 0.397 0.409 -0.009 0.008 0.008 2

500 1 0.200 0.203 0.085 0.196 0.213 0.003 0.007 0.007 -1
0.300 0.291 0.083 0.284 0.297 -0.009 0.007 0.007 3
0.500 0.499 0.073 0.493 0.506 -0.001 0.005 0.005 0
0.787 0.776 0.055 0.771 0.780 -0.012 0.003 0.003 1

2 0.200 0.194 0.110 0.185 0.202 -0.006 0.012 0.012 3
0.400 0.404 0.102 0.397 0.414 0.004 0.010 0.010 -1
0.600 0.587 0.093 0.580 0.594 -0.013 0.009 0.009 2
0.663 0.648 0.086 0.641 0.655 -0.015 0.007 0.008 2

3 0.300 0.302 0.064 0.296 0.308 0.002 0.004 0.004 -1
0.500 0.494 0.056 0.489 0.499 -0.006 0.003 0.003 1
0.700 0.700 0.050 0.694 0.705 0.000 0.003 0.003 0
0.412 0.408 0.062 0.402 0.414 -0.004 0.004 0.004 1
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Table 6.19: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case B, models with six
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.500 0.435 0.213 0.416 0.450 -0.065 0.045 0.050 13
0.300 0.243 0.240 0.220 0.269 -0.057 0.057 0.061 19
0.400 0.317 0.250 0.294 0.337 -0.083 0.062 0.069 21
0.300 0.255 0.252 0.231 0.283 -0.045 0.064 0.066 15
0.600 0.521 0.224 0.504 0.538 -0.079 0.050 0.056 13
0.224 0.188 0.245 0.161 0.211 -0.035 0.060 0.061 16

2 0.200 0.171 0.285 0.151 0.198 -0.029 0.081 0.082 14
0.400 0.316 0.287 0.291 0.339 -0.084 0.083 0.090 21
0.600 0.445 0.280 0.411 0.479 -0.155 0.079 0.103 26
0.400 0.298 0.286 0.276 0.321 -0.102 0.082 0.092 26
0.200 0.158 0.301 0.140 0.176 -0.042 0.091 0.092 21
0.490 0.371 0.292 0.341 0.397 -0.119 0.085 0.100 24

3 0.300 0.270 0.191 0.246 0.291 -0.030 0.037 0.037 10
0.700 0.648 0.165 0.631 0.668 -0.052 0.027 0.030 7
0.200 0.162 0.201 0.146 0.183 -0.038 0.040 0.042 19
0.300 0.264 0.200 0.244 0.281 -0.036 0.040 0.041 12
0.400 0.355 0.189 0.337 0.380 -0.045 0.036 0.038 11
0.361 0.319 0.206 0.296 0.339 -0.042 0.043 0.044 12

100 1 0.500 0.459 0.160 0.447 0.473 -0.041 0.026 0.027 8
0.300 0.278 0.184 0.264 0.289 -0.022 0.034 0.034 7
0.400 0.368 0.176 0.351 0.388 -0.032 0.031 0.032 8
0.300 0.282 0.174 0.265 0.297 -0.018 0.030 0.030 6
0.600 0.549 0.155 0.531 0.566 -0.051 0.024 0.027 8
0.224 0.216 0.175 0.201 0.231 -0.007 0.030 0.031 3

2 0.200 0.166 0.224 0.149 0.185 -0.034 0.050 0.051 17
0.400 0.350 0.218 0.333 0.365 -0.050 0.047 0.050 12
0.600 0.531 0.191 0.512 0.550 -0.069 0.037 0.041 12
0.400 0.353 0.211 0.334 0.368 -0.047 0.044 0.047 12
0.200 0.196 0.217 0.176 0.219 -0.004 0.047 0.047 2
0.490 0.420 0.198 0.399 0.441 -0.070 0.039 0.044 14

3 0.300 0.283 0.128 0.273 0.295 -0.017 0.016 0.017 6
0.700 0.664 0.112 0.655 0.675 -0.036 0.012 0.014 5
0.200 0.181 0.141 0.168 0.198 -0.019 0.020 0.020 10
0.300 0.293 0.138 0.281 0.306 -0.007 0.019 0.019 2
0.400 0.373 0.133 0.363 0.386 -0.027 0.018 0.018 7
0.361 0.358 0.136 0.345 0.373 -0.003 0.018 0.018 1
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Table 6.20: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case B, models with six
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

250 1 0.500 0.477 0.103 0.469 0.487 -0.023 0.011 0.011 5
0.300 0.298 0.109 0.288 0.309 -0.002 0.012 0.012 1
0.400 0.387 0.113 0.375 0.401 -0.013 0.013 0.013 3
0.300 0.287 0.113 0.277 0.298 -0.013 0.013 0.013 4
0.600 0.586 0.095 0.578 0.597 -0.014 0.009 0.009 2
0.224 0.216 0.115 0.203 0.228 -0.007 0.013 0.013 3

2 0.200 0.194 0.151 0.179 0.210 -0.006 0.023 0.023 3
0.400 0.383 0.145 0.369 0.397 -0.017 0.021 0.021 4
0.600 0.555 0.127 0.544 0.569 -0.045 0.016 0.018 7
0.400 0.383 0.139 0.369 0.399 -0.017 0.019 0.019 4
0.200 0.191 0.148 0.180 0.208 -0.009 0.022 0.022 4
0.490 0.459 0.138 0.446 0.473 -0.031 0.019 0.020 6

3 0.300 0.296 0.087 0.289 0.305 -0.004 0.008 0.008 1
0.700 0.692 0.071 0.683 0.700 -0.008 0.005 0.005 1
0.200 0.188 0.090 0.182 0.194 -0.012 0.008 0.008 6
0.300 0.290 0.084 0.283 0.297 -0.010 0.007 0.007 3
0.400 0.390 0.090 0.381 0.399 -0.010 0.008 0.008 3
0.361 0.354 0.087 0.345 0.363 -0.007 0.008 0.008 2

500 1 0.500 0.493 0.071 0.486 0.500 -0.007 0.005 0.005 1
0.300 0.293 0.077 0.287 0.301 -0.007 0.006 0.006 2
0.400 0.398 0.077 0.391 0.406 -0.002 0.006 0.006 0
0.300 0.291 0.080 0.281 0.299 -0.009 0.006 0.006 3
0.600 0.595 0.069 0.591 0.600 -0.005 0.005 0.005 1
0.224 0.209 0.078 0.204 0.215 -0.015 0.006 0.006 7

2 0.200 0.191 0.105 0.184 0.198 -0.009 0.011 0.011 4
0.400 0.389 0.098 0.378 0.402 -0.011 0.010 0.010 3
0.600 0.587 0.085 0.580 0.595 -0.013 0.007 0.007 2
0.400 0.385 0.096 0.375 0.393 -0.015 0.009 0.009 4
0.200 0.189 0.105 0.181 0.195 -0.011 0.011 0.011 6
0.490 0.477 0.092 0.467 0.487 -0.013 0.009 0.009 3

3 0.300 0.300 0.063 0.295 0.306 0.000 0.004 0.004 0
0.700 0.696 0.047 0.692 0.701 -0.004 0.002 0.002 1
0.200 0.196 0.068 0.189 0.205 -0.004 0.005 0.005 2
0.300 0.301 0.062 0.295 0.307 0.001 0.004 0.004 0
0.400 0.391 0.062 0.385 0.395 -0.009 0.004 0.004 2
0.361 0.359 0.061 0.355 0.364 -0.002 0.004 0.004 0
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Table 6.21: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case B, models with eight
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.200 0.178 0.232 0.155 0.204 -0.022 0.054 0.054 11
0.300 0.245 0.227 0.227 0.267 -0.055 0.051 0.054 18
0.400 0.340 0.223 0.313 0.368 -0.060 0.050 0.054 15
0.500 0.413 0.222 0.397 0.435 -0.087 0.049 0.057 17
0.400 0.325 0.225 0.310 0.341 -0.075 0.051 0.056 19
0.300 0.254 0.234 0.235 0.274 -0.046 0.055 0.057 15
0.200 0.158 0.223 0.142 0.171 -0.042 0.050 0.051 21
0.412 0.327 0.222 0.313 0.341 -0.085 0.049 0.057 21

2 0.300 0.211 0.273 0.188 0.240 -0.089 0.075 0.082 30
0.300 0.219 0.283 0.197 0.242 -0.081 0.080 0.087 27
0.400 0.268 0.268 0.237 0.304 -0.132 0.072 0.089 33
0.400 0.286 0.269 0.254 0.312 -0.114 0.072 0.085 28
0.200 0.151 0.271 0.134 0.171 -0.049 0.074 0.076 24
0.300 0.228 0.267 0.196 0.254 -0.072 0.071 0.076 24
0.500 0.379 0.256 0.359 0.397 -0.121 0.065 0.080 24
0.346 0.234 0.274 0.202 0.262 -0.112 0.075 0.088 32

3 0.400 0.358 0.191 0.343 0.378 -0.042 0.036 0.038 11
0.500 0.420 0.182 0.400 0.439 -0.080 0.033 0.040 16
0.500 0.453 0.192 0.440 0.467 -0.047 0.037 0.039 9
0.300 0.262 0.203 0.239 0.286 -0.038 0.041 0.043 13
0.200 0.187 0.198 0.174 0.203 -0.013 0.039 0.039 6
0.100 0.087 0.197 0.065 0.107 -0.013 0.039 0.039 13
0.300 0.258 0.189 0.244 0.274 -0.042 0.036 0.037 14
0.332 0.295 0.198 0.277 0.316 -0.037 0.039 0.041 11

100 1 0.200 0.183 0.178 0.167 0.201 -0.017 0.032 0.032 9
0.300 0.259 0.171 0.245 0.274 -0.041 0.029 0.031 14
0.400 0.378 0.160 0.364 0.389 -0.022 0.026 0.026 5
0.500 0.440 0.157 0.423 0.458 -0.060 0.025 0.028 12
0.400 0.355 0.159 0.344 0.367 -0.045 0.025 0.027 11
0.300 0.269 0.173 0.253 0.284 -0.031 0.030 0.031 10
0.200 0.190 0.171 0.174 0.209 -0.010 0.029 0.029 5
0.412 0.367 0.161 0.353 0.383 -0.045 0.026 0.028 11

2 0.300 0.235 0.210 0.214 0.255 -0.065 0.044 0.048 22
0.300 0.253 0.203 0.237 0.270 -0.047 0.041 0.043 16
0.400 0.339 0.197 0.319 0.359 -0.061 0.039 0.043 15
0.400 0.345 0.199 0.329 0.359 -0.055 0.040 0.043 14
0.200 0.164 0.201 0.143 0.182 -0.036 0.040 0.042 18
0.300 0.261 0.208 0.236 0.281 -0.039 0.043 0.045 13
0.500 0.425 0.194 0.409 0.441 -0.075 0.038 0.043 15
0.346 0.289 0.213 0.264 0.306 -0.057 0.045 0.049 17

3 0.400 0.377 0.138 0.364 0.391 -0.023 0.019 0.020 6
0.500 0.465 0.130 0.456 0.473 -0.035 0.017 0.018 7
0.500 0.470 0.130 0.458 0.482 -0.030 0.017 0.018 6
0.300 0.284 0.143 0.272 0.296 -0.016 0.020 0.021 5
0.200 0.186 0.140 0.175 0.197 -0.014 0.020 0.020 7
0.100 0.092 0.136 0.079 0.106 -0.008 0.018 0.019 8
0.300 0.278 0.138 0.265 0.292 -0.022 0.019 0.019 7
0.332 0.315 0.142 0.300 0.331 -0.016 0.020 0.020 5
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Table 6.22: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case B, models with eight
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

250 1 0.200 0.189 0.117 0.176 0.198 -0.011 0.014 0.014 6
0.300 0.289 0.108 0.276 0.305 -0.011 0.012 0.012 4
0.400 0.379 0.103 0.370 0.389 -0.021 0.011 0.011 5
0.500 0.482 0.103 0.474 0.492 -0.018 0.011 0.011 4
0.400 0.388 0.104 0.380 0.396 -0.012 0.011 0.011 3
0.300 0.289 0.107 0.275 0.304 -0.011 0.012 0.012 4
0.200 0.185 0.109 0.175 0.194 -0.015 0.012 0.012 7
0.412 0.394 0.105 0.384 0.405 -0.019 0.011 0.011 4

2 0.300 0.285 0.142 0.273 0.299 -0.015 0.020 0.020 5
0.300 0.279 0.139 0.265 0.292 -0.021 0.019 0.020 7
0.400 0.363 0.127 0.355 0.373 -0.037 0.016 0.018 9
0.400 0.370 0.133 0.358 0.383 -0.030 0.018 0.019 7
0.200 0.188 0.141 0.171 0.207 -0.012 0.020 0.020 6
0.300 0.269 0.134 0.254 0.285 -0.031 0.018 0.019 10
0.500 0.470 0.130 0.455 0.485 -0.030 0.017 0.018 6
0.346 0.323 0.142 0.308 0.335 -0.023 0.020 0.021 7

3 0.400 0.393 0.086 0.384 0.402 -0.007 0.007 0.008 2
0.500 0.488 0.085 0.478 0.497 -0.012 0.007 0.007 2
0.500 0.484 0.083 0.472 0.493 -0.016 0.007 0.007 3
0.300 0.293 0.086 0.285 0.300 -0.007 0.007 0.007 2
0.200 0.195 0.090 0.187 0.205 -0.005 0.008 0.008 2
0.100 0.095 0.092 0.088 0.104 -0.005 0.008 0.008 5
0.300 0.291 0.085 0.282 0.299 -0.009 0.007 0.007 3
0.332 0.321 0.080 0.314 0.328 -0.011 0.006 0.007 3

500 1 0.200 0.196 0.079 0.187 0.206 -0.004 0.006 0.006 2
0.300 0.296 0.077 0.289 0.303 -0.004 0.006 0.006 1
0.400 0.390 0.075 0.382 0.398 -0.010 0.006 0.006 2
0.500 0.488 0.069 0.481 0.494 -0.012 0.005 0.005 2
0.400 0.384 0.076 0.376 0.392 -0.016 0.006 0.006 4
0.300 0.294 0.078 0.288 0.301 -0.006 0.006 0.006 2
0.200 0.206 0.082 0.197 0.214 0.006 0.007 0.007 -3
0.412 0.408 0.074 0.402 0.414 -0.005 0.005 0.005 1

2 0.300 0.295 0.104 0.288 0.303 -0.005 0.011 0.011 2
0.300 0.293 0.101 0.285 0.304 -0.007 0.010 0.010 2
0.400 0.385 0.094 0.376 0.395 -0.015 0.009 0.009 4
0.400 0.377 0.096 0.368 0.384 -0.023 0.009 0.010 6
0.200 0.193 0.107 0.181 0.205 -0.007 0.012 0.012 4
0.300 0.289 0.104 0.279 0.299 -0.011 0.011 0.011 4
0.500 0.482 0.093 0.474 0.490 -0.018 0.009 0.009 4
0.346 0.332 0.097 0.324 0.341 -0.014 0.009 0.010 4

3 0.400 0.399 0.058 0.394 0.405 -0.001 0.003 0.003 0
0.500 0.494 0.055 0.490 0.499 -0.006 0.003 0.003 1
0.500 0.493 0.056 0.487 0.498 -0.007 0.003 0.003 1
0.300 0.298 0.058 0.292 0.304 -0.002 0.003 0.003 1
0.200 0.202 0.062 0.196 0.209 0.002 0.004 0.004 -1
0.100 0.097 0.062 0.092 0.100 -0.003 0.004 0.004 3
0.300 0.293 0.060 0.288 0.298 -0.007 0.004 0.004 2
0.332 0.328 0.062 0.323 0.333 -0.003 0.004 0.004 1
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Table 6.23: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case B, models with two indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.414 0.091 0.409 0.420 -0.086 0.008 0.016 17
0.400 0.321 0.111 0.310 0.333 -0.079 0.012 0.019 20
0.600 0.501 0.084 0.492 0.509 -0.099 0.007 0.017 17

100 0.500 0.419 0.065 0.414 0.427 -0.081 0.004 0.011 16
0.400 0.338 0.070 0.330 0.345 -0.062 0.005 0.009 16
0.600 0.508 0.059 0.502 0.513 -0.092 0.003 0.012 15

250 0.500 0.425 0.038 0.422 0.429 -0.075 0.001 0.007 15
0.400 0.338 0.042 0.335 0.342 -0.062 0.002 0.006 15
0.600 0.508 0.037 0.506 0.509 -0.092 0.001 0.010 15

500 0.500 0.423 0.028 0.421 0.426 -0.077 0.001 0.007 15
0.400 0.341 0.028 0.339 0.344 -0.059 0.001 0.004 15
0.600 0.511 0.026 0.508 0.513 -0.089 0.001 0.009 15

Table 6.24: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case B, models with four indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.421 0.086 0.414 0.429 -0.079 0.007 0.014 16
0.400 0.328 0.091 0.318 0.337 -0.072 0.008 0.013 18
0.600 0.512 0.076 0.505 0.519 -0.088 0.006 0.014 15

100 0.500 0.435 0.055 0.431 0.442 -0.065 0.003 0.007 13
0.400 0.344 0.058 0.338 0.351 -0.056 0.003 0.006 14
0.600 0.535 0.054 0.531 0.539 -0.065 0.003 0.007 11

250 0.500 0.453 0.035 0.450 0.457 -0.047 0.001 0.003 9
0.400 0.364 0.037 0.360 0.366 -0.036 0.001 0.003 9
0.600 0.542 0.032 0.540 0.545 -0.058 0.001 0.004 10

500 0.500 0.460 0.024 0.458 0.462 -0.040 0.001 0.002 8
0.400 0.363 0.025 0.360 0.367 -0.037 0.001 0.002 9
0.600 0.550 0.023 0.548 0.552 -0.050 0.001 0.003 8
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Table 6.25: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case B, models with six indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.411 0.079 0.404 0.419 -0.089 0.006 0.014 18
0.400 0.323 0.094 0.309 0.336 -0.077 0.009 0.015 19
0.600 0.491 0.074 0.483 0.497 -0.109 0.005 0.017 18

100 0.500 0.429 0.054 0.425 0.434 -0.071 0.003 0.008 14
0.400 0.342 0.058 0.338 0.346 -0.058 0.003 0.007 15
0.600 0.524 0.053 0.518 0.530 -0.076 0.003 0.009 13

250 0.500 0.452 0.033 0.450 0.455 -0.048 0.001 0.003 10
0.400 0.360 0.035 0.356 0.365 -0.040 0.001 0.003 10
0.600 0.542 0.030 0.540 0.545 -0.058 0.001 0.004 10

500 0.500 0.459 0.023 0.456 0.461 -0.041 0.001 0.002 8
0.400 0.368 0.023 0.366 0.371 -0.032 0.001 0.002 8
0.600 0.552 0.022 0.550 0.554 -0.048 0.000 0.003 8

Table 6.26: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case B, models with eight indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.405 0.080 0.399 0.411 -0.095 0.006 0.015 19
0.400 0.315 0.089 0.308 0.321 -0.085 0.008 0.015 21
0.600 0.482 0.074 0.476 0.489 -0.118 0.005 0.019 20

100 0.500 0.425 0.049 0.420 0.430 -0.075 0.002 0.008 15
0.400 0.339 0.058 0.333 0.344 -0.061 0.003 0.007 15
0.600 0.521 0.049 0.515 0.525 -0.079 0.002 0.009 13

250 0.500 0.453 0.032 0.450 0.455 -0.047 0.001 0.003 9
0.400 0.358 0.036 0.354 0.361 -0.042 0.001 0.003 11
0.600 0.548 0.032 0.546 0.552 -0.052 0.001 0.004 9

500 0.500 0.466 0.024 0.464 0.469 -0.034 0.001 0.002 7
0.400 0.370 0.024 0.368 0.372 -0.030 0.001 0.001 7
0.600 0.563 0.020 0.561 0.565 -0.037 0.000 0.002 6

Table 6.27: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case B, models
with two indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.7 0.863 0.041 0.859 0.867 0.163 0.002 0.028 -23
0.8 0.897 0.026 0.895 0.899 0.097 0.001 0.010 -12

100 0.7 0.866 0.027 0.864 0.869 0.166 0.001 0.028 -24
0.8 0.900 0.016 0.898 0.901 0.100 0.000 0.010 -12

250 0.7 0.866 0.018 0.864 0.868 0.166 0.000 0.028 -24
0.8 0.899 0.010 0.899 0.900 0.099 0.000 0.010 -12

500 0.7 0.867 0.011 0.866 0.868 0.167 0.000 0.028 -24
0.8 0.899 0.007 0.898 0.900 0.099 0.000 0.010 -12



129 6.7 Appendix: Tables

Table 6.28: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case B, models
with four indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.712 0.080 0.702 0.722 0.112 0.006 0.019 -19
0.7 0.793 0.055 0.788 0.799 0.093 0.003 0.012 -13
0.8 0.858 0.035 0.856 0.860 0.058 0.001 0.005 -7
0.9 0.903 0.021 0.900 0.905 0.003 0.000 0.000 0

100 0.6 0.715 0.057 0.710 0.721 0.115 0.003 0.016 -19
0.7 0.793 0.038 0.790 0.796 0.093 0.001 0.010 -13
0.8 0.856 0.024 0.854 0.859 0.056 0.001 0.004 -7
0.9 0.903 0.014 0.902 0.904 0.003 0.000 0.000 0

250 0.6 0.708 0.035 0.705 0.711 0.108 0.001 0.013 -18
0.7 0.792 0.024 0.790 0.794 0.092 0.001 0.009 -13
0.8 0.860 0.015 0.859 0.861 0.060 0.000 0.004 -7
0.9 0.903 0.009 0.902 0.904 0.003 0.000 0.000 0

500 0.6 0.710 0.025 0.708 0.712 0.110 0.001 0.013 -18
0.7 0.795 0.017 0.793 0.796 0.095 0.000 0.009 -14
0.8 0.858 0.011 0.857 0.859 0.058 0.000 0.003 -7
0.9 0.903 0.006 0.903 0.904 0.003 0.000 0.000 0
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Table 6.29: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case B, models
with six indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.677 0.086 0.670 0.685 0.077 0.007 0.013 -13
0.7 0.764 0.059 0.757 0.772 0.064 0.003 0.008 -9
0.8 0.835 0.040 0.832 0.838 0.035 0.002 0.003 -4
0.9 0.895 0.022 0.893 0.897 -0.005 0.001 0.001 1
0.6 0.676 0.084 0.665 0.684 0.076 0.007 0.013 -13
0.7 0.763 0.059 0.759 0.767 0.063 0.003 0.007 -9

100 0.6 0.681 0.055 0.676 0.685 0.081 0.003 0.010 -13
0.7 0.763 0.043 0.759 0.766 0.063 0.002 0.006 -9
0.8 0.837 0.027 0.835 0.840 0.037 0.001 0.002 -5
0.9 0.895 0.016 0.893 0.897 -0.005 0.000 0.000 1
0.6 0.675 0.062 0.669 0.682 0.075 0.004 0.009 -13
0.7 0.761 0.039 0.757 0.765 0.061 0.002 0.005 -9

250 0.6 0.678 0.037 0.675 0.682 0.078 0.001 0.008 -13
0.7 0.764 0.025 0.762 0.766 0.064 0.001 0.005 -9
0.8 0.837 0.017 0.836 0.838 0.037 0.000 0.002 -5
0.9 0.895 0.010 0.894 0.896 -0.005 0.000 0.000 1
0.6 0.675 0.036 0.672 0.678 0.075 0.001 0.007 -13
0.7 0.762 0.025 0.759 0.764 0.062 0.001 0.004 -9

500 0.6 0.678 0.027 0.675 0.681 0.078 0.001 0.007 -13
0.7 0.763 0.017 0.761 0.765 0.063 0.000 0.004 -9
0.8 0.837 0.012 0.836 0.838 0.037 0.000 0.001 -5
0.9 0.895 0.007 0.895 0.896 -0.005 0.000 0.000 1
0.6 0.679 0.025 0.677 0.681 0.079 0.001 0.007 -13
0.7 0.762 0.019 0.761 0.764 0.062 0.000 0.004 -9
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Table 6.30: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case B, models
with eight indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.650 0.080 0.644 0.657 0.050 0.006 0.009 -8
0.7 0.745 0.062 0.740 0.750 0.045 0.004 0.006 -6
0.8 0.828 0.040 0.824 0.831 0.028 0.002 0.002 -4
0.9 0.900 0.022 0.899 0.903 0.000 0.000 0.000 0
0.6 0.664 0.079 0.658 0.670 0.064 0.006 0.010 -11
0.7 0.753 0.063 0.747 0.759 0.053 0.004 0.007 -8
0.8 0.831 0.038 0.828 0.834 0.031 0.001 0.002 -4
0.9 0.904 0.020 0.903 0.906 0.004 0.000 0.000 0

100 0.6 0.653 0.059 0.648 0.660 0.053 0.003 0.006 -9
0.7 0.745 0.044 0.740 0.750 0.045 0.002 0.004 -6
0.8 0.829 0.026 0.826 0.831 0.029 0.001 0.002 -4
0.9 0.900 0.016 0.898 0.902 0.000 0.000 0.000 0
0.6 0.656 0.059 0.649 0.661 0.056 0.004 0.007 -9
0.7 0.749 0.041 0.746 0.752 0.049 0.002 0.004 -7
0.8 0.830 0.026 0.828 0.832 0.030 0.001 0.002 -4
0.9 0.900 0.016 0.898 0.902 0.000 0.000 0.000 0

250 0.6 0.658 0.035 0.655 0.662 0.058 0.001 0.005 -10
0.7 0.747 0.027 0.745 0.750 0.047 0.001 0.003 -7
0.8 0.830 0.017 0.828 0.831 0.030 0.000 0.001 -4
0.9 0.901 0.009 0.900 0.902 0.001 0.000 0.000 0
0.6 0.657 0.037 0.654 0.660 0.057 0.001 0.005 -10
0.7 0.748 0.027 0.746 0.750 0.048 0.001 0.003 -7
0.8 0.828 0.018 0.827 0.830 0.028 0.000 0.001 -4
0.9 0.901 0.010 0.901 0.902 0.001 0.000 0.000 0

500 0.6 0.657 0.026 0.655 0.659 0.057 0.001 0.004 -9
0.7 0.748 0.018 0.747 0.750 0.048 0.000 0.003 -7
0.8 0.830 0.012 0.829 0.831 0.030 0.000 0.001 -4
0.9 0.901 0.007 0.900 0.902 0.001 0.000 0.000 0
0.6 0.657 0.025 0.654 0.659 0.057 0.001 0.004 -9
0.7 0.747 0.018 0.745 0.748 0.047 0.000 0.003 -7
0.8 0.830 0.012 0.829 0.830 0.030 0.000 0.001 -4
0.9 0.901 0.006 0.900 0.902 0.001 0.000 0.000 0
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Table 6.31: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case C, models with two
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.8 0.812 0.181 0.790 0.835 0.012 0.033 0.033 -2
0.5 0.511 0.264 0.491 0.529 0.011 0.070 0.070 -2

2 0.4 0.445 0.348 0.425 0.475 0.045 0.121 0.123 -11
0.8 0.798 0.252 0.771 0.818 -0.002 0.063 0.063 0

3 0.1 0.103 0.297 0.074 0.138 0.003 0.088 0.088 -3
0.9 0.946 0.103 0.936 0.952 0.046 0.011 0.013 -5

100 1 0.8 0.827 0.129 0.815 0.842 0.027 0.017 0.017 -3
0.5 0.521 0.192 0.505 0.535 0.021 0.037 0.037 -4

2 0.4 0.449 0.260 0.421 0.479 0.049 0.068 0.070 -12
0.8 0.837 0.178 0.821 0.851 0.037 0.032 0.033 -5

3 0.1 0.106 0.173 0.090 0.126 0.006 0.030 0.030 -6
0.9 0.980 0.035 0.975 0.983 0.080 0.001 0.008 -9

250 1 0.8 0.845 0.078 0.839 0.851 0.045 0.006 0.008 -6
0.5 0.518 0.116 0.509 0.529 0.018 0.013 0.014 -4

2 0.4 0.444 0.156 0.433 0.458 0.044 0.024 0.026 -11
0.8 0.879 0.086 0.869 0.888 0.079 0.007 0.014 -10

3 0.1 0.111 0.103 0.099 0.122 0.011 0.011 0.011 -11
0.9 0.989 0.016 0.987 0.990 0.089 0.000 0.008 -10

500 1 0.8 0.848 0.053 0.844 0.851 0.048 0.003 0.005 -6
0.5 0.525 0.081 0.515 0.534 0.025 0.007 0.007 -5

2 0.4 0.434 0.115 0.423 0.449 0.034 0.013 0.014 -9
0.8 0.892 0.057 0.886 0.897 0.092 0.003 0.012 -12

3 0.1 0.110 0.077 0.105 0.116 0.010 0.006 0.006 -10
0.9 0.991 0.011 0.990 0.992 0.091 0.000 0.008 -10
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Table 6.32: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case C, models with four
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.2 0.190 0.260 0.165 0.217 -0.010 0.068 0.068 5
0.3 0.301 0.246 0.276 0.323 0.001 0.061 0.061 0
0.5 0.480 0.232 0.447 0.512 -0.020 0.054 0.054 4
0.7 0.668 0.208 0.650 0.691 -0.032 0.043 0.045 5

2 0.2 0.187 0.313 0.156 0.216 -0.013 0.098 0.098 7
0.4 0.393 0.294 0.371 0.416 -0.007 0.086 0.086 2
0.6 0.533 0.295 0.509 0.561 -0.067 0.087 0.091 11
0.5 0.458 0.293 0.433 0.485 -0.042 0.086 0.088 8

3 0.3 0.286 0.265 0.267 0.309 -0.014 0.070 0.070 5
0.5 0.495 0.230 0.479 0.512 -0.005 0.053 0.053 1
0.7 0.666 0.207 0.648 0.682 -0.034 0.043 0.044 5
0.2 0.184 0.263 0.156 0.214 -0.016 0.069 0.069 8

100 1 0.2 0.231 0.198 0.216 0.244 0.031 0.039 0.040 -15
0.3 0.303 0.187 0.282 0.321 0.003 0.035 0.035 -1
0.5 0.511 0.160 0.494 0.528 0.011 0.026 0.026 -2
0.7 0.704 0.134 0.691 0.715 0.004 0.018 0.018 -1

2 0.2 0.207 0.228 0.185 0.227 0.007 0.052 0.052 -4
0.4 0.416 0.217 0.394 0.438 0.016 0.047 0.047 -4
0.6 0.610 0.187 0.590 0.634 0.010 0.035 0.035 -2
0.5 0.508 0.199 0.485 0.528 0.008 0.040 0.040 -2

3 0.3 0.309 0.142 0.294 0.326 0.009 0.020 0.020 -3
0.5 0.517 0.129 0.510 0.525 0.017 0.017 0.017 -3
0.7 0.727 0.109 0.716 0.738 0.027 0.012 0.013 -4
0.2 0.208 0.151 0.191 0.222 0.008 0.023 0.023 -4

250 1 0.2 0.218 0.114 0.209 0.226 0.018 0.013 0.013 -9
0.3 0.314 0.109 0.304 0.324 0.014 0.012 0.012 -5
0.5 0.528 0.105 0.519 0.538 0.028 0.011 0.012 -6
0.7 0.738 0.086 0.732 0.745 0.038 0.007 0.009 -5

2 0.2 0.218 0.152 0.200 0.233 0.018 0.023 0.023 -9
0.4 0.446 0.140 0.433 0.461 0.046 0.020 0.022 -11
0.6 0.635 0.121 0.622 0.650 0.035 0.015 0.016 -6
0.5 0.536 0.137 0.523 0.550 0.036 0.019 0.020 -7

3 0.3 0.312 0.093 0.303 0.322 0.012 0.009 0.009 -4
0.5 0.530 0.081 0.523 0.538 0.030 0.007 0.008 -6
0.7 0.745 0.068 0.740 0.751 0.045 0.005 0.007 -6
0.2 0.212 0.098 0.204 0.219 0.012 0.010 0.010 -6

500 1 0.2 0.216 0.083 0.209 0.222 0.016 0.007 0.007 -8
0.3 0.320 0.084 0.312 0.329 0.020 0.007 0.007 -7
0.5 0.533 0.073 0.526 0.539 0.033 0.005 0.006 -7
0.7 0.741 0.061 0.734 0.749 0.041 0.004 0.005 -6

2 0.2 0.223 0.111 0.214 0.234 0.023 0.012 0.013 -11
0.4 0.439 0.099 0.430 0.446 0.039 0.010 0.011 -10
0.6 0.653 0.083 0.645 0.659 0.053 0.007 0.010 -9
0.5 0.549 0.090 0.541 0.557 0.049 0.008 0.011 -10

3 0.3 0.324 0.067 0.316 0.330 0.024 0.005 0.005 -8
0.5 0.534 0.059 0.529 0.540 0.034 0.004 0.005 -7
0.7 0.744 0.047 0.739 0.748 0.044 0.002 0.004 -6
0.2 0.211 0.062 0.206 0.217 0.011 0.004 0.004 -6
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Table 6.33: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case C, models with six
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.500 0.461 0.227 0.438 0.483 -0.039 0.052 0.053 8
0.300 0.297 0.258 0.275 0.318 -0.003 0.067 0.067 1
0.400 0.366 0.219 0.345 0.389 -0.034 0.048 0.049 8
0.300 0.293 0.231 0.269 0.315 -0.007 0.054 0.054 2
0.500 0.461 0.235 0.438 0.486 -0.039 0.055 0.057 8
0.100 0.088 0.238 0.064 0.108 -0.012 0.056 0.057 12

2 0.200 0.158 0.283 0.138 0.186 -0.042 0.080 0.082 21
0.400 0.331 0.295 0.304 0.362 -0.069 0.087 0.092 17
0.600 0.504 0.265 0.480 0.530 -0.096 0.070 0.080 16
0.400 0.331 0.267 0.309 0.352 -0.069 0.071 0.076 17
0.200 0.159 0.301 0.133 0.182 -0.041 0.091 0.092 20
0.300 0.238 0.277 0.216 0.261 -0.062 0.077 0.081 21

3 0.300 0.268 0.237 0.244 0.290 -0.032 0.056 0.057 11
0.600 0.582 0.218 0.563 0.598 -0.018 0.048 0.048 3
0.200 0.174 0.248 0.152 0.202 -0.026 0.062 0.062 13
0.300 0.288 0.234 0.270 0.316 -0.012 0.055 0.055 4
0.400 0.390 0.237 0.372 0.407 -0.010 0.056 0.056 3
0.200 0.179 0.253 0.157 0.206 -0.021 0.064 0.065 10

100 1 0.500 0.498 0.155 0.484 0.512 -0.002 0.024 0.024 0
0.300 0.302 0.173 0.283 0.321 0.002 0.030 0.030 -1
0.400 0.396 0.170 0.379 0.413 -0.004 0.029 0.029 1
0.300 0.316 0.177 0.300 0.337 0.016 0.031 0.032 -5
0.500 0.505 0.160 0.491 0.525 0.005 0.025 0.025 -1
0.100 0.100 0.178 0.087 0.117 0.000 0.032 0.032 0

2 0.200 0.185 0.224 0.159 0.208 -0.015 0.050 0.050 7
0.400 0.359 0.218 0.338 0.379 -0.041 0.048 0.049 10
0.600 0.558 0.196 0.543 0.576 -0.042 0.038 0.040 7
0.400 0.380 0.222 0.363 0.395 -0.020 0.049 0.050 5
0.200 0.179 0.229 0.154 0.203 -0.021 0.053 0.053 11
0.300 0.296 0.206 0.278 0.319 -0.004 0.042 0.042 1

3 0.300 0.336 0.143 0.325 0.347 0.036 0.020 0.022 -12
0.600 0.642 0.119 0.628 0.654 0.042 0.014 0.016 -7
0.200 0.217 0.147 0.204 0.230 0.017 0.022 0.022 -9
0.300 0.329 0.144 0.315 0.342 0.029 0.021 0.021 -10
0.400 0.426 0.135 0.413 0.439 0.026 0.018 0.019 -7
0.200 0.209 0.148 0.197 0.221 0.009 0.022 0.022 -4



135 6.7 Appendix: Tables

Table 6.34: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case C, models with six
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

250 1 0.500 0.523 0.105 0.513 0.533 0.023 0.011 0.012 -5
0.300 0.325 0.113 0.315 0.338 0.025 0.013 0.013 -8
0.400 0.416 0.110 0.407 0.427 0.016 0.012 0.012 -4
0.300 0.318 0.109 0.306 0.333 0.018 0.012 0.012 -6
0.500 0.520 0.105 0.510 0.532 0.020 0.011 0.011 -4
0.100 0.106 0.118 0.093 0.121 0.006 0.014 0.014 -6

2 0.200 0.213 0.152 0.198 0.229 0.013 0.023 0.023 -7
0.400 0.410 0.141 0.397 0.422 0.010 0.020 0.020 -2
0.600 0.609 0.121 0.599 0.621 0.009 0.015 0.015 -1
0.400 0.415 0.139 0.403 0.427 0.015 0.019 0.020 -4
0.200 0.205 0.150 0.190 0.220 0.005 0.023 0.023 -2
0.300 0.307 0.146 0.292 0.324 0.007 0.021 0.021 -2

3 0.300 0.333 0.088 0.326 0.341 0.033 0.008 0.009 -11
0.600 0.665 0.074 0.659 0.674 0.065 0.006 0.010 -11
0.200 0.217 0.090 0.209 0.226 0.017 0.008 0.008 -9
0.300 0.342 0.084 0.331 0.350 0.042 0.007 0.009 -14
0.400 0.447 0.087 0.439 0.457 0.047 0.008 0.010 -12
0.200 0.219 0.088 0.213 0.226 0.019 0.008 0.008 -10

500 1 0.500 0.536 0.070 0.529 0.543 0.036 0.005 0.006 -7
0.300 0.319 0.080 0.312 0.325 0.019 0.006 0.007 -6
0.400 0.429 0.079 0.421 0.437 0.029 0.006 0.007 -7
0.300 0.322 0.079 0.316 0.328 0.022 0.006 0.007 -7
0.500 0.532 0.071 0.525 0.539 0.032 0.005 0.006 -6
0.100 0.108 0.083 0.102 0.116 0.008 0.007 0.007 -8

2 0.200 0.207 0.109 0.202 0.214 0.007 0.012 0.012 -3
0.400 0.431 0.101 0.422 0.441 0.031 0.010 0.011 -8
0.600 0.630 0.083 0.622 0.637 0.030 0.007 0.008 -5
0.400 0.422 0.096 0.413 0.430 0.022 0.009 0.010 -6
0.200 0.213 0.104 0.200 0.225 0.013 0.011 0.011 -6
0.300 0.311 0.102 0.299 0.321 0.011 0.010 0.011 -4

3 0.300 0.343 0.062 0.337 0.350 0.043 0.004 0.006 -14
0.600 0.672 0.050 0.667 0.676 0.072 0.002 0.008 -12
0.200 0.225 0.063 0.220 0.229 0.025 0.004 0.005 -12
0.300 0.338 0.063 0.333 0.342 0.038 0.004 0.005 -13
0.400 0.446 0.059 0.441 0.451 0.046 0.003 0.006 -12
0.200 0.221 0.059 0.216 0.227 0.021 0.003 0.004 -11
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Table 6.35: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case C, models with eight
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.300 0.291 0.225 0.271 0.309 -0.009 0.051 0.051 3
0.300 0.107 0.231 0.086 0.126 -0.193 0.053 0.091 64
0.400 0.397 0.212 0.374 0.416 -0.003 0.045 0.045 1
0.300 0.303 0.224 0.278 0.328 0.003 0.050 0.050 -1
0.400 0.389 0.221 0.372 0.406 -0.011 0.049 0.049 3
0.300 0.299 0.236 0.280 0.317 -0.001 0.056 0.056 0
0.200 0.189 0.228 0.161 0.217 -0.011 0.052 0.052 6
0.300 0.199 0.243 0.185 0.215 -0.101 0.059 0.069 34

2 0.300 0.275 0.268 0.256 0.295 -0.025 0.072 0.073 8
0.300 0.059 0.275 0.039 0.082 -0.241 0.075 0.134 80
0.400 0.330 0.267 0.304 0.351 -0.070 0.071 0.076 17
0.400 0.346 0.265 0.317 0.371 -0.054 0.070 0.073 14
0.200 0.155 0.274 0.128 0.183 -0.045 0.075 0.077 22
0.300 0.260 0.269 0.236 0.284 -0.040 0.073 0.074 13
0.400 0.341 0.276 0.324 0.359 -0.059 0.076 0.080 15
0.200 0.106 0.267 0.076 0.133 -0.094 0.071 0.080 47

3 0.400 0.187 0.232 0.170 0.205 -0.213 0.054 0.099 53
0.500 0.410 0.236 0.389 0.427 -0.090 0.056 0.064 18
0.400 0.416 0.220 0.393 0.440 0.016 0.048 0.049 -4
0.300 0.311 0.238 0.295 0.329 0.011 0.057 0.057 -4
0.200 0.197 0.234 0.178 0.219 -0.003 0.055 0.055 1
0.100 0.111 0.243 0.087 0.130 0.011 0.059 0.059 -11
0.300 0.305 0.230 0.280 0.331 0.005 0.053 0.053 -2
0.200 0.214 0.231 0.198 0.238 0.014 0.053 0.054 -7

100 1 0.300 0.325 0.169 0.312 0.337 0.025 0.029 0.029 -8
0.100 0.114 0.174 0.100 0.130 0.014 0.030 0.030 -14
0.400 0.425 0.159 0.410 0.438 0.025 0.025 0.026 -6
0.300 0.326 0.172 0.308 0.339 0.026 0.030 0.030 -9
0.400 0.440 0.168 0.424 0.454 0.040 0.028 0.030 -10
0.300 0.324 0.169 0.303 0.347 0.024 0.028 0.029 -8
0.200 0.223 0.172 0.211 0.240 0.023 0.030 0.030 -11
0.200 0.222 0.168 0.207 0.240 0.022 0.028 0.029 -11

2 0.300 0.279 0.205 0.261 0.303 -0.021 0.042 0.043 7
0.100 0.111 0.223 0.087 0.135 0.011 0.050 0.050 -11
0.400 0.394 0.198 0.378 0.413 -0.006 0.039 0.039 2
0.400 0.410 0.208 0.387 0.439 0.010 0.043 0.043 -3
0.200 0.194 0.214 0.178 0.209 -0.006 0.046 0.046 3
0.300 0.291 0.213 0.272 0.311 -0.009 0.046 0.046 3
0.400 0.390 0.204 0.371 0.413 -0.010 0.042 0.042 3
0.100 0.090 0.213 0.073 0.113 -0.010 0.046 0.046 10

3 0.200 0.224 0.138 0.213 0.236 0.024 0.019 0.020 -12
0.400 0.476 0.126 0.460 0.493 0.076 0.016 0.022 -19
0.400 0.479 0.132 0.467 0.494 0.079 0.017 0.024 -20
0.300 0.354 0.131 0.344 0.365 0.054 0.017 0.020 -18
0.200 0.235 0.135 0.223 0.249 0.035 0.018 0.020 -18
0.100 0.113 0.139 0.098 0.127 0.013 0.019 0.019 -13
0.300 0.359 0.130 0.350 0.368 0.059 0.017 0.020 -20
0.200 0.231 0.139 0.221 0.240 0.031 0.019 0.020 -15
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Table 6.36: True weights, mean weight estimates, standard deviations, confidence intervals,
biases, variances, mean square errors and mean relative biases for case C, models with eight
indicators per construct, 500 runs

N Block True Weight Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

250 1 0.300 0.317 0.110 0.307 0.328 0.017 0.012 0.012 -6
0.300 0.317 0.106 0.310 0.324 0.017 0.011 0.012 -6
0.400 0.422 0.108 0.414 0.431 0.022 0.012 0.012 -5
0.300 0.323 0.100 0.315 0.331 0.023 0.010 0.011 -8
0.400 0.430 0.106 0.419 0.442 0.030 0.011 0.012 -8
0.300 0.312 0.116 0.303 0.325 0.012 0.014 0.014 -4
0.200 0.217 0.105 0.207 0.229 0.017 0.011 0.011 -8
0.300 0.322 0.113 0.309 0.336 0.022 0.013 0.013 -7

2 0.300 0.304 0.142 0.296 0.314 0.004 0.020 0.020 -1
0.300 0.306 0.141 0.297 0.315 0.006 0.020 0.020 -2
0.400 0.404 0.137 0.394 0.416 0.004 0.019 0.019 -1
0.400 0.413 0.134 0.398 0.427 0.013 0.018 0.018 -3
0.200 0.205 0.143 0.193 0.219 0.005 0.021 0.021 -2
0.300 0.300 0.141 0.289 0.313 0.000 0.020 0.020 0
0.400 0.407 0.134 0.394 0.421 0.007 0.018 0.018 -2
0.200 0.192 0.145 0.179 0.205 -0.008 0.021 0.021 4

3 0.400 0.424 0.082 0.418 0.431 0.024 0.007 0.007 -6
0.500 0.534 0.079 0.526 0.542 0.034 0.006 0.007 -7
0.400 0.428 0.082 0.422 0.437 0.028 0.007 0.008 -7
0.300 0.320 0.082 0.313 0.328 0.020 0.007 0.007 -7
0.200 0.210 0.088 0.203 0.217 0.010 0.008 0.008 -5
0.100 0.108 0.092 0.099 0.118 0.008 0.008 0.009 -8
0.300 0.318 0.084 0.309 0.326 0.018 0.007 0.007 -6
0.200 0.215 0.099 0.205 0.225 0.015 0.010 0.010 -7

500 1 0.300 0.330 0.080 0.322 0.337 0.030 0.006 0.007 -10
0.300 0.329 0.078 0.323 0.337 0.029 0.006 0.007 -10
0.400 0.428 0.073 0.422 0.436 0.028 0.005 0.006 -7
0.300 0.329 0.074 0.323 0.336 0.029 0.006 0.006 -10
0.400 0.433 0.078 0.426 0.439 0.033 0.006 0.007 -8
0.300 0.324 0.085 0.317 0.333 0.024 0.007 0.008 -8
0.200 0.211 0.084 0.201 0.219 0.011 0.007 0.007 -5
0.300 0.327 0.079 0.318 0.334 0.027 0.006 0.007 -9

2 0.300 0.314 0.103 0.306 0.323 0.014 0.011 0.011 -5
0.300 0.314 0.101 0.306 0.321 0.014 0.010 0.010 -5
0.400 0.415 0.095 0.407 0.425 0.015 0.009 0.009 -4
0.400 0.424 0.097 0.415 0.432 0.024 0.009 0.010 -6
0.200 0.214 0.105 0.205 0.222 0.014 0.011 0.011 -7
0.300 0.327 0.102 0.316 0.338 0.027 0.010 0.011 -9
0.400 0.423 0.098 0.414 0.433 0.023 0.010 0.010 -6
0.200 0.210 0.102 0.200 0.219 0.010 0.010 0.011 -5

3 0.400 0.431 0.058 0.425 0.436 0.031 0.003 0.004 -8
0.500 0.544 0.057 0.538 0.551 0.044 0.003 0.005 -9
0.400 0.423 0.063 0.418 0.429 0.023 0.004 0.004 -6
0.300 0.326 0.063 0.318 0.333 0.026 0.004 0.005 -9
0.200 0.217 0.063 0.211 0.223 0.017 0.004 0.004 -8
0.100 0.103 0.064 0.098 0.109 0.003 0.004 0.004 -3
0.300 0.327 0.061 0.322 0.334 0.027 0.004 0.004 -9
0.200 0.214 0.062 0.208 0.220 0.014 0.004 0.004 -7



Chapter 6: Formative Constructs and Few Indicators 138

Table 6.37: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case C, models with two indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.421 0.095 0.412 0.428 -0.079 0.009 0.015 16
0.400 0.334 0.104 0.323 0.343 -0.066 0.011 0.015 17
0.500 0.412 0.096 0.402 0.421 -0.088 0.009 0.017 18

100 0.500 0.422 0.061 0.416 0.428 -0.078 0.004 0.010 16
0.400 0.336 0.068 0.330 0.342 -0.064 0.005 0.009 16
0.600 0.502 0.057 0.497 0.508 -0.098 0.003 0.013 16

250 0.500 0.421 0.040 0.418 0.424 -0.079 0.002 0.008 16
0.400 0.341 0.040 0.338 0.346 -0.059 0.002 0.005 15
0.600 0.510 0.034 0.507 0.513 -0.090 0.001 0.009 15

500 0.500 0.425 0.027 0.423 0.427 -0.075 0.001 0.006 15
0.400 0.340 0.028 0.337 0.342 -0.060 0.001 0.004 15
0.600 0.510 0.025 0.508 0.513 -0.090 0.001 0.009 15

Table 6.38: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case C, models with four indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.428 0.088 0.420 0.437 -0.072 0.008 0.013 14
0.400 0.333 0.115 0.322 0.342 -0.067 0.013 0.018 17
0.500 0.432 0.088 0.425 0.439 -0.068 0.008 0.012 14

100 0.500 0.438 0.055 0.434 0.443 -0.062 0.003 0.007 12
0.400 0.354 0.058 0.349 0.359 -0.046 0.003 0.005 12
0.600 0.526 0.050 0.521 0.532 -0.074 0.002 0.008 12

250 0.500 0.454 0.031 0.452 0.457 -0.046 0.001 0.003 9
0.400 0.362 0.034 0.359 0.365 -0.038 0.001 0.003 10
0.600 0.542 0.032 0.539 0.546 -0.058 0.001 0.004 10

500 0.500 0.457 0.024 0.455 0.459 -0.043 0.001 0.002 9
0.400 0.365 0.024 0.363 0.367 -0.035 0.001 0.002 9
0.600 0.552 0.021 0.550 0.554 -0.048 0.000 0.003 8
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Table 6.39: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case C, models with six indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.417 0.086 0.410 0.423 -0.083 0.007 0.014 17
0.400 0.333 0.100 0.324 0.343 -0.067 0.010 0.014 17
0.500 0.429 0.090 0.420 0.437 -0.071 0.008 0.013 14

100 0.500 0.433 0.057 0.428 0.438 -0.067 0.003 0.008 13
0.400 0.339 0.064 0.332 0.345 -0.061 0.004 0.008 15
0.600 0.520 0.052 0.515 0.523 -0.080 0.003 0.009 13

250 0.500 0.451 0.032 0.448 0.455 -0.049 0.001 0.003 10
0.400 0.358 0.036 0.354 0.362 -0.042 0.001 0.003 11
0.600 0.542 0.030 0.539 0.545 -0.058 0.001 0.004 10

500 0.500 0.458 0.022 0.456 0.461 -0.042 0.000 0.002 8
0.400 0.368 0.024 0.366 0.370 -0.032 0.001 0.002 8
0.600 0.552 0.022 0.550 0.555 -0.048 0.000 0.003 8

Table 6.40: True path coefficients, mean path coefficient estimates, standard deviations,
confidence intervals, biases, variances, mean square errors and mean relative biases for
case C, models with eight indicators per latent variable, 500 runs

N True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.500 0.421 0.086 0.415 0.427 -0.079 0.007 0.014 16
0.400 0.331 0.107 0.323 0.340 -0.069 0.011 0.016 17
0.500 0.411 0.085 0.402 0.419 -0.089 0.007 0.015 18

100 0.500 0.423 0.054 0.418 0.428 -0.077 0.003 0.009 15
0.400 0.328 0.060 0.323 0.333 -0.072 0.004 0.009 18
0.600 0.521 0.049 0.517 0.526 -0.079 0.002 0.009 13

250 0.500 0.454 0.033 0.451 0.457 -0.046 0.001 0.003 9
0.400 0.360 0.034 0.357 0.363 -0.040 0.001 0.003 10
0.600 0.546 0.030 0.543 0.549 -0.054 0.001 0.004 9

500 0.500 0.465 0.021 0.463 0.468 -0.035 0.000 0.002 7
0.400 0.372 0.024 0.369 0.374 -0.028 0.001 0.001 7
0.600 0.560 0.020 0.558 0.562 -0.040 0.000 0.002 7

Table 6.41: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case C, models
with two indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.7 0.866 0.042 0.860 0.871 0.166 0.002 0.029 -24
0.8 0.899 0.028 0.897 0.902 0.099 0.001 0.011 -12

100 0.7 0.866 0.027 0.864 0.869 0.166 0.001 0.028 -24
0.8 0.899 0.018 0.898 0.902 0.099 0.000 0.010 -12

250 0.7 0.865 0.017 0.864 0.867 0.165 0.000 0.028 -24
0.8 0.899 0.010 0.898 0.900 0.099 0.000 0.010 -12

500 0.7 0.866 0.012 0.864 0.867 0.166 0.000 0.028 -24
0.8 0.900 0.007 0.899 0.900 0.100 0.000 0.010 -12
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Table 6.42: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case C, models
with four indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.713 0.075 0.706 0.720 0.113 0.006 0.018 -19
0.7 0.792 0.055 0.787 0.795 0.092 0.003 0.011 -13
0.8 0.858 0.034 0.855 0.860 0.058 0.001 0.004 -7
0.9 0.901 0.022 0.899 0.904 0.001 0.000 0.001 0

100 0.6 0.714 0.057 0.710 0.718 0.114 0.003 0.016 -19
0.7 0.789 0.039 0.786 0.792 0.089 0.002 0.010 -13
0.8 0.857 0.025 0.855 0.859 0.057 0.001 0.004 -7
0.9 0.902 0.015 0.901 0.904 0.002 0.000 0.000 0

250 0.6 0.714 0.036 0.711 0.718 0.114 0.001 0.014 -19
0.7 0.793 0.023 0.791 0.796 0.093 0.001 0.009 -13
0.8 0.857 0.016 0.856 0.859 0.057 0.000 0.004 -7
0.9 0.903 0.009 0.902 0.904 0.003 0.000 0.000 0

500 0.6 0.711 0.024 0.708 0.712 0.111 0.001 0.013 -18
0.7 0.794 0.016 0.793 0.794 0.094 0.000 0.009 -13
0.8 0.857 0.011 0.856 0.858 0.057 0.000 0.003 -7
0.9 0.903 0.007 0.902 0.903 0.003 0.000 0.000 0
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Table 6.43: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case C, models
with six indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.680 0.087 0.670 0.689 0.080 0.007 0.014 -13
0.7 0.762 0.062 0.756 0.767 0.062 0.004 0.008 -9
0.8 0.835 0.039 0.831 0.839 0.035 0.001 0.003 -4
0.9 0.893 0.023 0.891 0.896 -0.007 0.001 0.001 1
0.6 0.673 0.087 0.665 0.682 0.073 0.008 0.013 -12
0.7 0.761 0.058 0.758 0.765 0.061 0.003 0.007 -9

100 0.6 0.671 0.063 0.663 0.677 0.071 0.004 0.009 -12
0.7 0.763 0.042 0.759 0.766 0.063 0.002 0.006 -9
0.8 0.836 0.028 0.833 0.838 0.036 0.001 0.002 -4
0.9 0.895 0.016 0.894 0.897 -0.005 0.000 0.000 1
0.6 0.678 0.056 0.673 0.684 0.078 0.003 0.009 -13
0.7 0.763 0.039 0.759 0.767 0.063 0.002 0.006 -9

250 0.6 0.675 0.033 0.672 0.679 0.075 0.001 0.007 -13
0.7 0.764 0.025 0.761 0.766 0.064 0.001 0.005 -9
0.8 0.835 0.017 0.834 0.837 0.035 0.000 0.002 -4
0.9 0.895 0.010 0.894 0.896 -0.005 0.000 0.000 1
0.6 0.674 0.035 0.671 0.677 0.074 0.001 0.007 -12
0.7 0.763 0.024 0.760 0.766 0.063 0.001 0.005 -9

500 0.6 0.678 0.025 0.675 0.680 0.078 0.001 0.007 -13
0.7 0.762 0.017 0.761 0.764 0.062 0.000 0.004 -9
0.8 0.836 0.012 0.835 0.837 0.036 0.000 0.001 -5
0.9 0.895 0.007 0.894 0.896 -0.005 0.000 0.000 1
0.6 0.678 0.024 0.675 0.680 0.078 0.001 0.007 -13
0.7 0.762 0.019 0.760 0.764 0.062 0.000 0.004 -9
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Table 6.44: True loadings, mean loading estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative biases for case C, models
with eight indicators per construct, 500 runs

N True Loading Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.660 0.083 0.652 0.667 0.060 0.007 0.010 -10
0.7 0.749 0.060 0.744 0.756 0.049 0.004 0.006 -7
0.8 0.830 0.038 0.825 0.833 0.030 0.001 0.002 -4
0.9 0.900 0.023 0.899 0.902 0.000 0.001 0.001 0
0.6 0.650 0.091 0.642 0.658 0.050 0.008 0.011 -8
0.7 0.749 0.062 0.745 0.753 0.049 0.004 0.006 -7
0.8 0.827 0.039 0.823 0.830 0.027 0.002 0.002 -3
0.9 0.902 0.021 0.901 0.904 0.002 0.000 0.000 0

100 0.6 0.658 0.059 0.652 0.665 0.058 0.003 0.007 -10
0.7 0.749 0.041 0.747 0.752 0.049 0.002 0.004 -7
0.8 0.829 0.028 0.827 0.831 0.029 0.001 0.002 -4
0.9 0.901 0.014 0.900 0.903 0.001 0.000 0.000 0
0.6 0.659 0.060 0.654 0.665 0.059 0.004 0.007 -10
0.7 0.746 0.043 0.742 0.751 0.046 0.002 0.004 -7
0.8 0.829 0.029 0.827 0.832 0.029 0.001 0.002 -4
0.9 0.901 0.015 0.900 0.902 0.001 0.000 0.000 0

250 0.6 0.655 0.036 0.651 0.659 0.055 0.001 0.004 -9
0.7 0.749 0.026 0.747 0.751 0.049 0.001 0.003 -7
0.8 0.831 0.018 0.829 0.832 0.031 0.000 0.001 -4
0.9 0.901 0.009 0.900 0.901 0.001 0.000 0.000 0
0.6 0.658 0.034 0.656 0.661 0.058 0.001 0.005 -10
0.7 0.747 0.028 0.745 0.750 0.047 0.001 0.003 -7
0.8 0.830 0.018 0.829 0.832 0.030 0.000 0.001 -4
0.9 0.901 0.010 0.900 0.902 0.001 0.000 0.000 0

500 0.6 0.657 0.026 0.655 0.659 0.057 0.001 0.004 -10
0.7 0.748 0.018 0.746 0.750 0.048 0.000 0.003 -7
0.8 0.830 0.012 0.828 0.831 0.030 0.000 0.001 -4
0.9 0.901 0.006 0.901 0.902 0.001 0.000 0.000 0
0.6 0.658 0.026 0.655 0.660 0.058 0.001 0.004 -10
0.7 0.748 0.018 0.747 0.750 0.048 0.000 0.003 -7
0.8 0.829 0.012 0.828 0.830 0.029 0.000 0.001 -4
0.9 0.901 0.007 0.901 0.902 0.001 0.000 0.000 0



Chapter 7

Toward the Definition of a

Structural Equation Model of

Patent Value

Abstract. This chapter aims to propose a structural equation model which re-

lates the variables that determine the patent value. Even though some patent

indicators have been directly used to infer the private or social value of innova-

tions, the results suggest that patent value is a more complex variable that may

be modeled as an endogenous unobservable variable in a first- and in a second-

order model, and which depends respectively on three and four constructs. Such

variables include the knowledge used by companies to create their inventions, the

technological scope of the inventions, the international scope of protection, and the

technological usefulness of the inventions. The model allows the conceptualization

of patent value into a potential and a recognized value of intangible assets, aiming

toward an index construction approach. Partial Least Squares (PLS) Path Mod-

elling is performed as an exploratory model-building procedure. We use a sample

of 2,901 patents granted in the United States in the field of renewable energy.

7.1 Introduction

Patents are one of the main sources of technological information. A patent is

an exclusive right granted to inventors by a state only when the invention fulfils

three basic requirements: the invention is new, it involves an inventive activity

and it is useful for industry. Until now research involving patent data has been

associated with the analysis of information contained in the patent document,

such as backward and forward citations or number of claims, and the relationship

between patents and research and development (R&D), innovation or economic
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growth. In recent years, patent indicators have been used to study the economical

value of patents. In most cases, analytical approaches have been based on standard

econometric analysis techniques such as probit or logit models, and survey analysis.

However, patent value may be seen as a complex construct depending on a variety

of elements. General and specific market conditions, countries’ legal frameworks,

geographic proximity or accumulated scientific and technological knowledge are

different dimensions that have shown to affect patent value.

This paper proposes that a holistic and multidimensional model may offer a ro-

bust understanding of the different variables that determine patent value. For the

moment, and considering patent document information, two path models are built

considering five dimensions represented by five constructs. They are: patent value,

technological usefulness of the invention, knowledge stock used by the company to

create the technology, technological scope of the invention, and international scope

of protection. The models are strongly based on the theory developed by the tech-

nological change scientific community and a thorough review of the literature on

patent valuation. Each construct is associated with a set of observable variables.

So, they can be estimated by these indicators. Manifest variables are mainly built

from information contained in patent documents. A set of patents granted in the

United States (U.S.) in the area of renewable energies was retrieved from Delphion

database. The proposed path models are replicable because they could be repeated

for different technological fields or countries. Moreover, the models may allow one

to distinguish between: (a) those variables related to patent value at the time of

application, i.e. those variables that could deliver a measure of potential value of

patents, and (b) those that determine the value after the patent’s application.

In the literature, research that addresses patent value using a structural equa-

tion model (SEM) approach is quite scarce. Moreover, rather traditional methods

based on multivariate normal distribution assumption have been implemented.

The advantage of SEM is flexibility in working with theory and data, approach-

ing the whole phenomenon, and a more complete representation of the complex

theory. Additionally, and contrary to a covariance-based approach such as the lin-

ear structural relation model (LISREL), PLS Path Modelling is theory-building-

oriented and causal-predictive-oriented. Therefore, the exploratory nature of this

procedure allows for the first formulation of a structural model of patent value.

Finally, the PLS Path Modelling algorithm is a powerful technique for the analysis

of skewed or long-tail data, such as patent data. Therefore, we also attempt to

show the benefits of PLS Path Modelling as a tool for exploration and prediction

of skewed data.

In this research, the models specification is made from a PLS perspective. So,

we are posing PLS models. Section 7.2 provides background on patent indica-

tors and constructs, and section 7.3 reviews the PLS Path Modelling procedure
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for hierarchical component models with repeated manifest variables and formative

constructs. Section 7.4 addresses the first- and second-order model formulation,

while also postulating on the indicators, latent variables (LVs) and causal relation-

ships among variables. In particular, formative and reflective relationships among

manifest and latent variables are justified. A description of patent data is given

in Section 7.5. Section 7.6 reports the results, and shows the performance and

effectiveness of PLS Path Modelling when working with patent data characterized

by long tails. Finally, section 7.7 gives final remarks and some directions for future

research.

7.2 Background

7.2.1 Patent Indicators and Constructs

Patent indicators have been used by scientific communities to study phenomena

such as technological change or the growth of science and technology. Forward ci-

tations, i.e. the number of times that each patent has been cited by another patent,

are the most widely used indicator to measure the value or importance of patents.

Nevertheless, other indicators have also been introduced as a measure of value,

such as family size, number of claims, number of international patent classification

(IPC) codes where the patent is classified, and backward citations. Here, family

size refers to the number of countries where a patent is sought for the same in-

vention (Lanjouw, 1998). As a general patenting strategy, companies protect their

inventions in their local countries first and then in other jurisdictions. Patents

with a large family size tend to be more valuable or important (Harhoff et al.,

2003), although Guellec et al. reported that this relationship might sometimes be

inaccurate and “may reflect a lack of maturity of the applicant” (Guellec & van

Pottelsberghe, 2000, p. 114). Even so, family size may be proposed as a proxy vari-

able for the international scope of patent rights, and as a measure of patent value.

The number of backward citations or references in a patent represents “all of the

important prior art upon which the issued patent improves” (Narin et al., 1997, p.

318), and allows one to demonstrate that the invention is genuinely new. Claims

are made in a special section in the patent document, where the thing that is being

protected is specified. The claims section consists of a numbered list. Therefore,

the number of claims is in fact the number of inventions protected (Tong & Frame,

1994, p. 134). Patents with a large number of claims have a higher likelihood of

being litigated, so they can be considered more valuable (Harhoff & Reitzig, 2004;

Lanjouw & Schankerman, 2001; Reitzig, 2004a). International patent classification

classes were introduced as a proxy variable for the scope of protection by Lerner

(1994). An invention with a larger technological scope should be more valuable
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due to its broader potential applications. The number of inventors and the number

of applicants have also been used as indicators of the patent value (Reitzig, 2004a).

Most patent indicators have been used to explain a conceptual variable or a

construct. The relationship between patent citations and patent value has been

deeply studied (Albert et al., 1991; Carpenter et al., 1981; Guellec & van Pottels-

berghe, 2000; Harhoff et al., 1999, 2003; Reitzig, 2003, 2004a; Trajtenberg, 1990b).

Carpenter et al. (1981), Albert et al. (1991) and Harhoff et al. (1999) have suc-

cessfully shown that those patents that are related to important technological

developments are most highly cited. Harhoff et al. (2003) was the first to use

backward and forward citations together as proxy variables for patent value, and

Trajtenberg (1990b) established the role of citations as an indicator of the value

of innovations. Patent citations and patent value have also been associated with

market value and/or the R&D expenditures of companies (Connolly & Hirschey,

1988; Griliches, 1981; Hall et al., 2005; Lerner, 1994). The relationship among

patent value and patenting strategy, technological diversity (through the IPC),

domestic and international R&D collaborations and/or co-applications (analyzing

the country of residence of the authors) and the mix of designated states for protec-

tion (through the family size), have been studied by Guellec & van Pottelsberghe

(2000). Reitzig (2003, 2004a) studied the factors that determine an individual

patent value. Analyzing the results of a questionnaire, he found that novelty

and inventive activity are the most important factors in patents that are used

as “bargaining chips.” Connolly & Hirschey (1988) showed that patent statistics

are significantly related to companies’ market value. In addition, Griliches (1981)

found a significant relation among companies’ market value, the book value of

R&D expenditures and the number of patents. He based his research on a time-

series cross-section analysis of United States firm data. Lerner (1994) reported

that patent scope has a significant impact on the valuation of firms, while Hall

et al. (2005) investigated the trend in US patenting activities over the last 30 years,

finding that the ratios of R&D to asset stock, patents to R&D, and citations to

patents significantly affect companies’ market value.

On the other hand, some of these indicators have been related to other con-

structs. The number of inventors and applicants, backward citations and the

number of claims have been related to patent novelty, i.e. the technological dis-

tance between a protected invention and prior art. A patent’s protection level or

its technological scope or breadth can be measured by the number of claims or

number of IPC classes into which the patent is classified (Lerner, 1994). Further-

more, patent stocks or knowledge stocks have been associated with the economic

growth of a country as well as the economical activity (Griliches, 1990), research

and development results (Lanjouw & Schankerman, 2004) and the value of in-

novation (Sherry & Teece, 2004) and technological performance (Tong & Frame,
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1994). In this last case, the researchers found that the number of claims is a better

indicator than the number of patents in the national technological capacity.

Finally, little research has reported on the structural relationship among latent

variables which influence patent value using a multidimensional approach. The re-

cent investigations of Harhoff et al. (2003); Harhoff & Reitzig (2004) and Reitzig

(2003, 2004a) used a large number of indicators of patent value aimed mainly at

estimating the probability of opposition to a patent. In most cases, analytical

approaches have been based on standard econometric analysis techniques (probit

or logit models) or survey analysis. One reason that could explain why a multi-

dimensional and structural approach has not been applied to technology/patent

valuation is that more general structural models are based on maximum likelihood

estimation and the multivariate normal distribution of data. Patent indicators

are very heterogeneous and asymmetric, and, in general, they exhibit a large vari-

ance and skew. Consequently, assuming that this type of data has a multivariate

normal distribution may lead to biased results. As seen below, PLS Path Mod-

elling overcomes this drawback because it is an iterative algorithm that makes

no assumptions about data distribution. Moreover, unlike other methods such as

probit or logit models, it allows researchers to depict the relationship among a set

of latent variables. Thus, we have the possibility of modelling the patent value as

an unobservable variable.

7.2.2 Patent Value

Patents are intellectual assets that do not necessarily have an immediate re-

turn. A patent may protect a product that can be manufactured and sold. But

a patent may also protect technologies which, together with other technologies,

enable the manufacture of a final product. In both cases, to obtain an economic

value from patents may be extremely difficult. In studying patent value, different

approaches have been taken throughout the literature. Some of the approaches

focus on the private value of a patent while others concentrate on a patent’s social

value. Lanjouw (1998, p. 407) defined the private value of a patent in terms of

“the difference in the returns that would accrue to the innovation with and without

patent protection.” The magnitude of this difference would be crucial in applying

or renewing the protection. Reitzig (2004a) also focused on the private value of

patents, and specifies the need to consider the patent value as a construct. Tech-

nical experts were surveyed and, according to them, the research showed that the

factors that determine patent value are: state of the art (existing technologies),

novelty, inventiveness, breadth, difficulty of inventing, disclosure and dependence
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on complementary assets1. Additionally, Trajtenberg (1990b) showed that patent

data was highly correlated with some indicators of the social benefits of innova-

tions. Guellec & van Pottelsberghe (2000) presented a value scale proposing that

technology increases its own value as it passes through different stages: from inven-

tion to application, examination, publication and decision to grant, and finally to

the high value stage if the patent is granted. The distinction is made between the

intrinsic value of the patent simply for being granted (and thereby having proven

novelty, inventive activity and applicability) and the potential value of technology

(dependent on its potential for generating future returns).

Some patent indicators have been used to directly infer the patent’s value, such

as forward citations or family size (see Table 7.1). Even though this may be useful

and may give an approximation of the patent value, many elements may affect the

invention and protection process. We consider some of these factors based on the

presented background, and represent their interactions proposing a multidimen-

sional analysis of the problem. It is worth noting that this research does not seek

to determine the value of an individual patent or to obtain a monetary value of

the assets. Rather, the patent value is proposed in terms of the technological use-

fulness of the inventions. This model, however, allows us to compare and rank the

value of company’s patent portfolios. We address the question of what variables

determine the patent value and how they relate to each other. These variables

are modeled as unobserved variables. So, they and their relationships set up a

structural equation model.

7.3 The PLS Path Modelling Approach for Model For-

mulation

PLS Path Modelling is a component-based procedure for estimating a sequence

of latent variables developed by the statistician and econometrician Herman Wold

(1980, 1982, 1985). During the last few years, it has proved to be useful for

estimating structural models, in marketing and information system research in

particular, and in the social sciences in general (Chin, 1998a; Esposito Vinzi, 2007;

Henseler et al., 2009; Hulland, 1999; Marcoulides, 2003; Tenenhaus et al., 2005).

Some of its features have encouraged its use, such as: (1) it is an iterative algorithm

that offers an explicit estimation of the latent variables, and their relationships,

(2) it works with few cases and makes no assumptions about data distribution -in

contrast with LISREL that makes strong assumptions about data distribution and

where hundreds of cases are necessary for its application, and (3) it overcomes the

1We attempt to consider these variables as constructs in the proposed structural model. How-
ever, recall that in this research, the manifest variables are mainly obtained from the patent
document. So, latent and manifest variables are subject to this constraint.
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Table 7.1: Brief summary of approaches used to study the patent value

Author Construct Indicators
Dependent

Method
variable

Trajtenberg (1990) Social value of Patent count Consumer Multinomial
innovations weighted by surplus logit model

citations

Guellec et al. (2000) Patent value, Number of IPC, Probability that Probit model
patenting strategy, family size, dummy a EPO patent
technological diversity, variables, etc. application is
R&D collaboration granted

Reitzig (2003) Patent value, novelty, - ‘present patent Survey,
inventive activity, value’ probit model
invent around,
disclosure

Harhoff et al. (2003) Private value of Survey of patent- Patent right as a Survey,
patents, value of holders, backward price to sell the probit model
renewed patent and forward citations, patent right
protection and asset family size, IPC,
value of patent right outcome of opposition

proceedings

Hall et al. (2005) Market value Patent citations, Tobin’s q Tobin’s Q
R&D expenditures, equation
total assets

identification problems when formative measurement models are included. Wold

(1985) emphasizes that “using prior knowledge and intuition the investigator is

free to specify the LVs, to design the inner relations, and to compile a selection of

indicators for each LV” [p. 582]. The path model “is usually tentative since the

model construction is an evolutionary process. The empirical content of the model

is extracted from the data, and the model is improved by interactions through the

estimation between the model and the data and the reactions of the researcher”

(Wold, 1980, p. 70).

In a PLS Path Modelling approach, the structural model or inner model –also

called the inner relations and substantive theory– depicts the relationship among

latent variables as multiple regressions (Equation 7.1). The arrangement of the

structural model is strongly supported by theory at the model specification stage.

So, PLS Path Modelling is used to explore if these relationships hold up or whether

other theory-based specifications, that may be proposed, help in providing a better

explanation for a particular phenomenon.

ξj = βj0 +
∑
i

βjiξi + νj (7.1)

ξj and ξi are the endogenous and exogenous latent variables, respectively. βji

are called path coefficients, and they measure the relationship among constructs.
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The condition imposed is E(ξj/ξi) =
∑

i βjiξi. There is no linear relationship

between predictor and residual, E(νj/∀ξi) = 0 and cov(νj , ξi) = 0.

The measurement model or outer model –also called the outer relations– de-

scribes the relationship between latent (ξi) and manifest (xih) variables in two

different ways: Mode A and Mode B. “Mode A is often used for an endogenous

LV and Mode B for an exogenous one. Mode A is appropriate for a block with a

reflective measurement model and Mode B for a formative one” (Tenenhaus et al.,

2005, p. 268). Reflective relationships seek to represent variance and covariances

between the manifest variables that are generated or caused by a latent variable.

So, observed variables are treated as an effect of unobserved variables (Bollen &

Lennox, 1991; Cohen et al., 1990). In a reflective measurement model, the mani-

fest variables are measured with error. Alternatively, formative relationships are

used to minimize residuals in the structural relationships (Fornell & Bookstein,

1982), and here, manifest variables are treated as forming the unobserved vari-

ables. MacCallun & Browne (1993) said that observed variables in a formative

model are exogenous measured variables. In a formative outer model the manifest

variables are presumed to be error-free and the unobserved variable is estimated

as a linear combination of the manifest variables plus a disturbance term, so they

are not true latent variables (as in the traditional factorial approach). As in this

case all variables forming the construct should be considered, the disturbance term

represents all those non-modeled causes.

In Mode A or in reflective relationships, manifest and latent variables rela-

tionships are described by ordinary least square regressions (Equation 7.2). The

parameters πh are called loadings. The condition imposed is E(xh/ξ) = πh0 +πhξ,

εh with zero mean and uncorrelated with ξ. Loadings indicate the extent to which

each indicator reflects the construct, and represent the correlation between indi-

cators and component scores.

xih = πih0 + πihξi + εih (7.2)

In Mode B or in formative relationships, unobserved variables are generated by

their own manifest variables as a linear function of them and a residual (Equation

7.3). The parameters wh are called weights, and allow us to determine the extent

to which each indicator contributes to the formation of the constructs. Each

block of manifest variables may be multidimensional. The condition imposed is

E(ξ/xh) =
∑

hwhxh. This implies that the residuals δi have zero mean and they

are uncorrelated with the manifest variables xi.

ξi =
∑
h

wihxih + δi (7.3)
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Wold’s basic-design of PLS Path Modelling (Wold, 1980, 1982, 1985) does not

consider higher-order latent variables. Therefore, in Wold’s algorithm each con-

struct must be related to a set of observed variables in order to be estimated.

However, Lohmöller (1989) proposed a procedure for the case of hierarchical con-

structs; that is to say, for cases where there is a construct that does not have a block

of measurement variables, or more simply: it is only related to other constructs.

In hierarchical component modelling, manifest variables of first-order latent vari-

ables are repeated for the second-order latent variable. So, a set of “auxiliary”

variables is introduced for estimation purposes. After that, the model is estimated

using PLS Path Modelling in the usual way. Hence, the specification of PLS has

an additional equation that Lohmöller (1989) called the cross-level relation (see

Equation 7.4). The condition imposed is E(ξjεjl) = 0. We are interested in this

type of model because, as seen below, the patent value construct may be modeled

as a second-order latent variable, i.e. the value can only be estimated through

linear relations with other latent variables.

yjl = πjl0 + πjlξj + εjl (7.4)

Reliability of reflective measurement models is evaluated by examining load-

ings. A rule of thumb generally accepted is 0.7 or more. This implies that “there

is more shared variance between construct and variable than error variance” (Hul-

land, 1999, p. 198). A low value in a loading factor suggests that the indicator

has little relation to the associated construct. All indicators of a block of variables

must reflect the same construct. Therefore, there should be high collinearity within

each block of variables. Thus, the internal consistency of a reflective measurement

model is related to the coherence between constructs and their measurement vari-

ables. The unidimensionality of the block of variables may be assessed by using

Cronbach’s alpha coefficient (should be > 0.7), and composite reliability (should

be > 0.7). According to Chin (1998a, p. 320) “alpha tends to be a lower bound

estimate of reliability whereas composite reliability is a closer approximation under

the assumption that the parameter estimates are accurate.”

To represent the extent to which measures of a given construct differ from

measures of other constructs (discriminant validity), the average variance extracted

(AVE) may be calculated. Therefore, as suggested by Fornell & Larcker (1981),

the percentage of variance captured by the construct in relation to the variance

due to random measurement error is computed (should be > 0.5). Likewise when

models have more than two reflective constructs, cross loadings may be obtained

by calculating the correlations between component scores and indicators associated

with other reflective constructs. If an indicator has higher correlation with another

latent variable instead of the associated latent variable, its position should be
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reconsidered in the model. Therefore, each indicator has to be more related to

its construct than another one in the same model. To assess the significance

of loadings, weights and path coefficients, standard errors and t-values may be

computed by bootstrapping (200 samples; t-value > 1.65 significant at the 0.05

level; t-value > 2 significant at the 0.01 level).

The inner model is assessed by examining the path coefficients among latent

variables. The value of path coefficients provides evidence regarding the strength

of the association among latent variables. Moreover, the coefficient of determina-

tion (R-square) of each endogenous variable gives the overall fit of the model or

the percentage of variance explained by the model. In this research, PLS Path

Modelling and bootstrapping were carried out in SmartPLS (Ringle et al., 2005b)

with a centroid weighting scheme.

7.3.1 A Brief Overview of Formative and Reflective Outer Models

The distinction between reflective and formative measurement models for struc-

tural equation models is an issue that has been addressed by several scientific

communities. Major contributions have been made by researchers from statistics

(Cohen et al., 1990), psychology and sociology (Bollen & Lennox, 1991; Bollen &

Ting, 2000), information science (Petter et al., 2007), and business and marketing

research (Diamantopoulos & Winklhofer, 2001; Fornell & Bookstein, 1982). There

are some decision rules criteria to determine if a relationship should be modeled

as formative or reflective (Mode B or Mode A in the Wold’s PLS approach). The

guidelines can be summarized in five points as follows (Cohen et al., 1990; Fornell

& Bookstein, 1982; McDonald, 1996). (1) The strong theory and the previous

knowledge of a phenomenon under study should help to clarify the generative

nature of the construct. When a formative relationship is considered, manifest

variables must cover the entire scope of construct. (2) Correlations among man-

ifest variables. In a reflective outer model, manifest variables have to be highly

correlated; in contrast this condition must not be applied in a formative outer

model. (3) Within-construct correlations versus between-construct correlations.

This is a common practice in the model specification stage by means of cross-

validation; the applied rule is that the former should be greater than the latter.

However, Bollen & Lennox (1991) show that this may lead to an incorrect indi-

cator selection for reflective and formative outer models, because this rule may

have exceptions. So, the condition must be applied with caution. (4) Sample size

and multicollinearity affect the stability of indicator coefficients, and they are a

frequent problem in multiple regressions. So, multicollinearity will influence the

quality of the estimates in formative relationships. (5) Interchangeability. This

concept refers to whether or not the manifest variables share the same concept
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(Diamantopoulos & Winklhofer, 2001; Jarvis et al., 2003). All manifest variables

in a reflective model explain the same construct. So, removing an indicator from

the block of variables should not have a significant effect on the construct. The

situation is completely different when considering formative outer models. The

indicators do not have to be interchangeable or share the same concept. That is

what Bollen & Lennox (1991) called “sampling facets of a construct”; in other

words manifest variables of a formative block of variables should represent all the

aspects that form the concept. Finally, Gudergan et al. (2008) recently proposed

a procedure based on tetrad analysis to distinguish between a reflective and for-

mative measurement model in a component-based approach. However, when an

outer model has less than four observed variables, this procedure requires adding

manifest variables from other outer models. Therefore, the discussion on the re-

flective and formative nature of the constructs studied here is based mainly on the

five rules presented previously.

7.4 Patent Value Models

Two models were tested. First of all, we are interested in knowing the rela-

tionships among patent indicators, patent value, and different constructs which

up to now have been studied and identified as patent value determinants2. In

previous research, these constructs have not been modeled as unobservable vari-

ables, such as in a structural equation model approach. So, the model formulation

began by defining the patent value as an endogenous latent variable, since it is

the primary variable to be estimated in the model. Summarizing the results of

previous researchers, three unobserved variables related to the dependent variable

were identified as exogenous: the knowledge stock of the patent, the technological

scope of the invention, and the international scope of the protection (see Fig-

ure 7.1). We took into account all of the measurement variables found in the state

of the art, and which can be computed from information contained in the patent

document. Nevertheless, indicators constructed from the patent text, such as from

the abstract or technical description, are excluded from this study.

The knowledge stock represents the base of knowledge that was used by the

applicant to create an invention. This would be the content domain. This existing

knowledge encourages the inventive activity and may come from within or outside

the company. We would like to find those indicators that are value determinants,

and that companies may use to make decisions. Since we are considering the

patent document as the main data source, the applicants and inventors –that have

contributed their knowledge to the creation of the invention– may be considered as

2It is worth noting that we are not interested in explaining the variance and covariance among
manifest variables as in a covariance-based approach, at least not at this stage.
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Figure 7.1: First-order model of patent value; patent value is an endogenous latent vari-
able; knowledge stock, technological scope, and international scope are formative exoge-
nous constructs.

forming this construct. The same applies to the backward citations. The previous

works, cited in the patent document, are the scientific and technical knowledge

units that must exist before the creation of an invention, and they may be used

as knowledge inputs within the invention process. Moreover, backward citations

represent the prior art, and demonstrate that the invention had not been protected

before. These three indicators have been related to the patent value for other

authors (see for instance Reitzig (2004a)). However, they still have not been used

to estimate an unobserved variable as they are in a structural equation model.

From a theoretical standpoint, the knowledge stock is an exogenous latent vari-

able, and affects the value of a patent. Keeping in mind the backward citations,

it seems reasonable to think that an invention that is protected in an area where

a lot of inventions are applied –hence with a large knowledge stock– will have less

value than a potential radical innovation or a breakthrough invention, and there-

fore having a smaller knowledge stock. The number of inventors and applicants

are revealed first in time, and cause a change on the knowledge stock, and not

vice-versa. Additionally, it is not difficult to see that there is no covariance among

backward citations, and the number of inventors and applicants. For instance, a

patent may contain a large number of references, but the invention may be created

only by one inventor or by one applicant. So, a reflective approach would fail to

meet the unidimensionality condition. For this construct, however, multicollinear-

ity would not be a problem. Hence, a formative mode is suitable for modelling the

relationship between the indicators and the knowledge stock.

The technological scope of the invention is related to the potential utility of an

invention in some technological fields. So, the manifest variables for this construct

are the number of four-digit IPC classes where the patent is classified, and the

number of claims of the patent. The IPC classes allow us to know the technical
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fields related to the invention, and therefore the number of potential application

fields. This does not mean that an invention ultimate use is restricted to a de-

termined area. A company may protect an invention for strategic purposes, for

example to prevent its being used by a competitor. Here, the underlying issue

is that the larger the number of classification codes, the larger the number of

potential application fields, and hence, the greater the technological scope of the

patent. On the other hand, and according to Tong & Frame (1994, p. 134), “each

claim represents a distinct inventive contribution, so patents are, in effect, bundles

of inventions.” Claims are a description of what the inventors actually claim to

have invented and describe the potential application of the invention. As seen in

the literature review, the number of claims should reflect the inventive activity

of the invention. So, under the assumption that a highly sophisticated invention

will require much inventiveness, the patent will also have a considerable amount of

claims. Thus, this variable will also give information about the technological scope

of the patents. It is arguable that this is not always so. Probably there are sophis-

ticated inventions that have not required a large number of claims to be protected.

But this may be unusual in the renewable energy field. As seen in Table 1 below,

the number of claims is a skewed variable (skewness = 4.29, kurtosis = 43.65), with

median 14. Following the rules presented before to distinguish between formative

and reflective outer models, in this case, the manifest variables are revealed first,

and cause a change in the technological scope of the inventions. When defining

the manifest variables determining the technological scope. Probably, inventors

have an idea of the applicability of the invention long before the time of protecting

it. But, it is the patent value, therefore the protected invention, that is being

analyzed here. So, a formative relationship is modeled between the indicators and

the constructs. Additionally, as with the knowledge stock, there is no collinearity

among manifest variables, and the block of variables is not one-dimensional.

The international scope refers to the geographic zones where the invention is

protected. Inventions are usually protected in the local country first and then in

others, as part of the companies’ patenting strategy. All the patents considered

in the sample are granted in the U.S. So, we defined two dummy variables that

consider whether the invention had been protected in Japan (priority JP) or in

Germany (priority DE) during the priority period. Japan and Germany are large

producers of renewable energy technologies. Hence, it is interesting to examine

whether these variables affect the patent value. Variables indicating whether in-

ventions have been protected through the European Patent Office (EPO) or by

the World Intellectual Property Organization (WIPO) have been excluded from

the analysis because they provide little information. This means that for the in-

ternational scope, not all the variables that could form the construct are being

considered. So, higher disturbance terms are expected in this case. The interna-
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tional scope is clearly caused by the manifest variables. Here, again there is no

collinearity among manifest variables, the block of variables is not one-dimensional.

Therefore, formative relationships are considered in this block of variables.

On the other hand, the importance of a patent for future technological devel-

opments will be reflected in the number of times that the patent is cited, since the

patent is useful for the development of other technologies (Guellec & van Pottels-

berghe, 2000), and in the patenting strategy pursued by the company over time.

The latter is measured by taking into account the size of the patent family or the

number of countries where the protection is sought. For the block of variables of

patent value, a reflective relationship is considered between manifest and latent

variables. As in this case all the indicators should explain the same construct

(aside from the variables that have traditionally been used to infer the patent

value), dummy variables are defined by considering whether the patent has been

protected in Japan (JP), Germany (DE) or through the European Patent Office

(EP). So, in this research, the first analyzed case is a first-order model composed

by four constructs: knowledge stock, technological scope, international scope, and

patent value (Figure 7.1).

It is worth noting that the first three constructs –knowledge stock, technolog-

ical scope, and international scope– give an “a priori” value of patents. Thus, the

intrinsic characteristics of the patent at the time of its application, along with the

patenting strategy of the company in the priority period, may give a preliminary

idea of patent value. In contrast, patent value estimated through forward citations

and family size gives an “a posteriori” value for patents. This value (recognized

value) is obtained over time and is given by others through the number of times

that the patent is cited and the number of countries where the protection is sought.

Estimating the patent value only through these manifest variables seems too am-

bitious. Rather, it is reasonable to think that the patent value is jointly given

by those variables that determine the “a priori” and the “a posteriori” patent

value. Using this approach, the influence of the “a posteriori” relative to the “a

priori” patent value may also be assessed. Hence, the indicators that were initially

related to the patent value are also associated with a fifth underlying latent vari-

able related to the potential usefulness of the patent. The more useful a patent

is, the more it is cited by others and the more important it is to the company’s

patenting strategy. We call this latent variable “technological usefulness.” From a

methodological standpoint, this means that the patent value is not directly related

to a block of observed variables. So, this construct is regarded as a second-order

latent variable that is influenced by all of the other constructs in a second-order

model. The proposed model is shown in Figure 7.2. We explore the veracity of

the assumptions with PLS Path Modelling.
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Figure 7.2: Hierarchical component model of patent value; patent value is an endoge-
nous second-order latent variable; technological usefulness is a reflective endogenous la-
tent variable; knowledge stock, technological scope, and international scope are formative
exogenous constructs.

7.5 Patent Data

Renewable energy patents include wind, solar, geothermal, wave / tide,

biomass, and waste energy. To select suitable patent data, we use the IPC classes

for renewable energies listed by Johnstone et al. (2007). The sample comprises a to-

tal of 2,901 patents (sample 1), published in 1990-1991, 1995-1996, 1999-2000 and

2005-2006, and granted in the U.S. (source: Delphion database). We retrieved

these data, and the indicators described above were computed. The number of

claims was collected manually for each patent.

Table 7.2 provides descriptive statistics for patent indicators. The results in-

dicate that some variables are very heterogeneous and asymmetric, and they also

exhibit large variance. So, normality is not a good assumption. Positive values of

skewness indicate positive/right skew (notice how the medians are always smaller

than the means). Likewise, positive kurtosis indexes show distributions that are

sharper than the normal peak.

Table 7.2: Descriptive statistics of patent data
Manifest

Mean
Standard

Minimum Mediam Maximum Skewness Kurtosis
Variable Deviation

Number of applicants 1.04 0.29 1 1 9 12.85 260.81
Number of inventors 2.21 1.58 1 2 14 1.76 4.23
Backward citations 15.36 18.97 0 11 327 5.54 50.79
Number of IPC 6.28 4.52 1 5 48 2.09 7.71
Number of claims 17.02 15.08 1 14 279 4.29 43.65
Priority JP 0.19 0.39 0 0 1 1.54 0.37
Priority DE 0.08 0.27 0 0 1 3.09 7.55
Forward citations 5.63 10.16 0 2 158 5.3 46.83
Family size 8.53 11.62 1 6 202 5.58 51.27
Dummy JP 0.44 0.49 0 0 1 0.23 -1.95
Dummy DE 0.32 0.46 0 0 1 0.75 -1.44
Dummy EP 0.43 0.49 0 0 1 0.25 -1.94
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Additionally, the priority countries of these patents are U.S. (59%), Japan

(19%), Germany (9%), Great Britain (2%), France (1%) and so on. Patents belong

to 1,581 applicants. Patents have been granted to companies (69%), individuals

(25%) and universities, research centers or governmental institutions (6%). Due to

the manner in which the sample was selected, the sample is homogenous in terms

of technological area and the country where the patents were granted. However,

the sample is heterogeneous in terms of the type of applicant or the industry in

which the companies are classified, and this heterogeneity could affect the results.

This also means that there are companies belonging to different industries that

are interested in developing renewable energy innovations. At any rate, it is worth

noting that at this stage, the patent value model is being tested in general at the

level of renewable energy technologies. We estimate the model using the total

sample (2,901 patents, sample 1). However, providing that time is an important

factor that may affect the findings, three additional samples were taken. Patent

indicator matrices were selected in the following application years: 1990-1991 (N

= 129, sample 2), 1995-1996 (N = 128, sample 3) and 1999-2000 (N = 536, sample

4). So, in order to analyze whether it is possible to find a pattern in the parameter

estimates, the proposed models were estimated with all data, and with time-period

data (notice that cases are different in each time-period).

7.6 Results

The internal consistency of reflective outer models, technological usefulness and

patent value was assessed by using Cronbach’s alpha and composite reliability.

For the first-order, the Cronbach’s alpha coefficients for patent value are 0.68,

0.79, 0.76 and 0.68 for samples 1, 2, 3 and 4, respectively. Moreover, composite

reliability coefficients are 0.77, 0.85, 0.84 and 0.79 for each sample, respectively.

So, the patent value is unidimensional. AVE scores are 0.48, 0.56, 0.54 and 0.48 for

patent value and for samples 1, 2, 3 and 4, respectively. So, the constructs capture

on average more than 50% of the variance in relation to the amount of variance

due to measurement error. In the second-order model, technological usefulness has

the same Cronbach’s alpha and composite reliability coefficients that patent value

has in the first-order model. Cronbach’s alpha coefficients for the patent value

are 0.59, 0.68, 0.7 and 0.58 for samples 1, 2, 3 and 4, respectively. Composite

reliability coefficients are 0.72, 0.76, 0.79 and 0.71 for each sample, respectively.

Therefore, both technological usefulness and patent value are unidimensional. The

technological usefulness captures on average a 54% of the variance in relation to

the amount of variance due to measurement error (see the AVE scores for patent

value in the first-order model). However, AVE scores for patent value (second-

order latent variable) are quite different, 0.24, 0.29, 0.3 and 0.22 for samples 1, 2,
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3 and 4, respectively. So, this block of variables is unidimensional, and the latent

variable captures on average a 26% of the variance in relation to the amount of

variance due to measurement error. This low percentage may be because reflective

and formative indicators have been repeated for the second-order latent variable.

Table 7.3 reports the cross loadings for the reflective block of variables in the

second-order model of patent value in the three analyzed time-periods. Forward

citations, family size and dummy variables JP, DE and EP are slightly more cor-

related in the three time-periods, with the technological usefulness of the patents

rather than the patent value itself. In regards to other indicators, quite the op-

posite happens: the correlation between indicators and patent value are always

higher than the correlation between indicators and technological usefulness. This

is adequate even though patent value indicators are used as auxiliary variables

in order to estimate the model. It is worth noting that cross loadings of some

variables are very similar over time, suggesting a pattern. This phenomenon is

interesting because it indicates that the number of inventors; the number of IPC

classes; dummy variables JP, DE and EP; forward citations and family size are

strongly and constantly correlated with the patent value and its technological

usefulness throughout time. This empirical evidence supports the relationships

between latent and manifest variables as proposed in the models.

Table 7.3: Cross loadings between indicators for reflective block of variables

Manifest Variable
1990-1991 1995-1996 1999-2000

Patent Technological Patent Technological Patent Technological
Value Usefulness Value Usefulness Value Usefulness

Number inventors 0.572 0.279 0.611 0.424 0.492 0.135
Backward citations 0.064 0.129 0.092 0.067 0.141 0.091
Number of IPC 0.587 0.387 0.465 0.357 0.495 0.228
Number of claims -0.074 -0.027 0.403 0.257 0.131 0.048
Dummy priority JP 0.527 0.258 0.391 0.253 0.414 0.162
Dummy priority DE 0.205 0.127 0.103 0.127 0.154 0.136
Forward citations 0.229 0.292 0.295 0.29 0.085 0.085
Family size 0.775 0.894 0.741 0.825 0.714 0.859
Dummy JP 0.816 0.836 0.818 0.833 0.727 0.774
Dummy DE 0.692 0.775 0.754 0.808 0.559 0.681
Dummy EP 0.666 0.818 0.739 0.799 0.658 0.809

Tables 7.4 and 7.5 present the standardized loadings and weights by PLS

estimation and t-values by bootstrapping for the first- and second-order models,

respectively. Loadings and weights reveal the strength of the relationship between

manifest and latent variables. The number of inventors, the number of IPC classes

and the dummy priority variables JP and DE are strongly and significantly related

to their constructs in all cases in the first- and in the second-order models. Some

authors (Cassel et al., 1999; Chin & Newsted, 1999; Vilares et al., 2010) have

studied the performance of the PLS Path Modelling algorithm using Monte Carlo
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simulations. Among others, the factors analyzed have been the sample size and

the number of manifest variables per latent variable. In general, researchers agree

and recommend having at least three indicators per construct. However, only

(Chin et al., 2003) considered in their study the case of two observed variables

per latent variables in their study of interaction effects with reflective outer mod-

els. However, as a result of their simulation study, Vilares et al. (2010, p. 13)

reported that “PLS always produces good estimates for perceived value loadings

[a latent variable with two indicators, the author]. This is an interesting result,

since PLS is presented as being ’consistent at large’ . . .” In the formative outer

models analyzed here, there are few indicators available per construct. However,

the magnitudes of the weights are large enough to infer that there may be a for-

mative relationship between indicators and constructs. Additionally, these results

suggest that the patent value and the technological usefulness are evident since

the patent is applied. Therefore, the value can be assessed at an early stage. The

number of claims shows a weaker association with the technological scope than

the number of IPC classes. Perhaps this indicator is more related to the “quality”

of the invention, not in the sense of how inventions have an impact on different

technological fields (scope) but rather on how important this impact is in a given

technological field. Regarding the international scope, this variable seems to be

formed by its indicators. The manifest variables are statistically significant in all

cases in the two analyzed models. So, this could mean that in the renewable en-

ergy field, besides protecting the invention in the U.S., it is important as a value

determinant for early protection of the inventions which originate in the other two

largest producers of these technologies: Japan and Germany.

On the other hand, patent value and technological usefulness are always

strongly and significantly reflected in their explanatory variables. Forward ci-

tations, patent family and dummy variables constantly reflect patent value in the

first-order model and technological usefulness in the second-order model. The for-

ward citations are not significant in the models evaluated in 1999-2000. But, this

may be due to the fact that in recent years patents have been cited less, and the

variable is less informative than in previous years. Moreover, loadings for the rela-

tionship between forward citations and technological usefulness are smaller than,

for instance, loadings for the relationship between family size and technological

usefulness. These results may mean that the longitudinal nature of this variable –

citations that are received throughout the time– is an important factor that should

be taken into account when considering this indicator in the models. The quality

of each outer model is measured through the communality index, i.e. the propor-

tion of variance in the measurement variables accounted for by the latent variable.

For the second-order model, communality indexes for patent value are 0.29, 0.30

and 0.22 for the 1990-1991, 1995-1996 and 1999-2000 models, respectively. There-
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fore, indicators have approximately 30% of the variance in common with its latent

variable. As seen above, this low percentage may be because reflective and for-

mative indicators have been repeated for the second-order latent variable. The

communality indexes for technological usefulness are 0.57, 0.55 and 0.49 for each

time-period, also giving evidence of an important percentage of shared variance.

Table 7.4: Standardized loadings and weights for outer models for the first-order model
of the patent value, t-values in parenthesis, ** at the 0.01 significance level, * at the 0.05
significance level

Construct Indicator Sample 1 1990-1991 1995-1996 1999-2000

Knowledge stock Backward citations 0.541* 0.420* 0.128 0.499*
(1.860) (1.688) (0.791) (1.670)

Number of inventors 0.807** 0.920** 0.988** 0.872**
(3.054) (4.937) (9.086) (2.794)

Technological scope Number of IPC 0.966** 0.997** 0.803** 0.985**
(5.935) (13.746) (5.455) (4.502)

Number of claims 0.176 -0.058 0.529 0.103**
(0.756) (0.364) (1.432) (0.354)

International scope Priority JP 0.802** 0.909** 0.904** 0.847**
(3.662) (5.492) (7.844) (3.630)

Priority DE 0.725** 0.512** 0.502** 0.660**
(2.814) (2.043) (2.479) (2.422)

Patent value Forward citations -0.108 0.274** 0.299* 0.096
(0.940) (2.041) (1.693) (0.524)

Family size 0.840** 0.893** 0.813** 0.845**
(9.464) (36.017) (15.126) (5.297)

Dummy JP 0.777** 0.843** 0.841** 0.802**
(6.593) (19.572) (21.277) (4.549)

Dummy DE 0.690** 0.777** 0.811** 0.671**
(5.530) (11.126) (18.389) (4.087)

Dummy EP 0.780** 0.808** 0.794** 0.786**
(7.921) (11.975) (12.513) (5.272)

Tables 7.6 and 7.7 show the findings for the inner relationships (standardized

beta coefficients, significance levels and coefficients of determination) for the first-

and second-order models respectively. Path coefficient of knowledge stock, tech-

nological scope and international scope as related to patent value are significant

at 0.01 levels in almost all cases. Therefore, the patent value may be formed by

constructs estimated from reliable patent indicators. The first-order model allows

us to obtain an estimate of the patent value “in time equal to zero.” As showed

in the second-order model, the knowledge stock, the technological scope and the

international scope are also related to technological usefulness. Moreover, tech-

nological usefulness and patent value are significantly related, indicating how the

former is an important variable in the prediction of the latter. The second-order

model allows us to obtain the patent value as the sum of the value in time equal

to zero, and the value given by others, that is the technological usefulness.

The determination coefficient for patent value is 0.9 in the second-order mod-
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Table 7.5: Standardized loadings and weights for outer models for the second-order model
of the patent value, t-values in parenthesis, ** at the 0.01 significance level, * at the 0.05
significance level

Construct Indicator Sample 1 1990-1991 1995-1996 1999-2000

Knowledge stock Backward citations 0.439 0.248 0.122 0.357
(1.619) (1.103) (0.991) (1.114)

Number of inventors 0.871** 0.976** 0.989** 0.938**
(3.828) (8.060) (24.728) (3.214)

Technological scope Number of IPC 0.952** 0.995** 0.761** 0.974**
(6.544) (18.078) (4.633) (4.140)

Number of claims 0.220 -0.078 0.584** 0.150
(1.028) (0.546) (3.139) (0.516)

International scope Priority JP 0.867** 0.931** 0.947** 0.915**
(4.090) (10.601) (7.863) (4.096)

Priority DE 0.639** 0.465** 0.401* 0.548*
(2.422) (2.709) (1.701) (1.943)

Technological Forward citations 0.762** 0.836** 0.834** 0.774**
usefulness (6.833) (22.739) (24.167) (5.177)

Family size 0.795** 0.818** 0.799** 0.809**
(10.667) (11.800) (18.126) (11.499)

Dummy JP 0.705** 0.775** 0.809** 0.681**
(7.983) (11.891) (18.318) (6.256)

Dummy DE -0.052 0.292** 0.290** 0.085
(0.488) (2.280) (2.190) (0.616)

Dummy EP 0.853** 0.894** 0.825** 0.859**
(13.577) (36.226) (21.104) (11.526)

Patent value Backward citations 0.232 0.064 0.092 0.141
(1.511) (0.564) (1.005) (0.735)

Number of inventors 0.476** 0.572** 0.611** 0.492**
(3.477) (5.964) (8.825) (3.016)

Number of IPC 0.549** 0.587** 0.465** 0.495**
(5.909) (7.837) (4.820) (3.420)

Number of claims 0.185 -0.074 0.403** 0.131
(1.296) (0.748) (3.193) (0.810)

Priority JP 0.387** 0.527** 0.391** 0.414**
(2.723) (5.466) (3.604) (2.461)

Priority DE 0.202** 0.205** 0.103 0.154
(5.318) (2.262) (1.269) (1.191)

Forward citations -0.085 0.229* 0.295** 0.085
(0.861) (1.944) (2.453) (0.659)

Family size 0.730** 0.775** 0.741** 0.714**
(8.250) (15.351) (11.612) (5.952)

Dummy JP 0.711** 0.816** 0.818** 0.727**
(6.083) (20.264) (18.295) (4.349)

Dummy DE 0.586** 0.692** 0.754** 0.559**
(5.318) (8.318) (11.977) (4.349)

Dummy EP 0.672** 0.666** 0.739** 0.658**
(7.196) (6.650) (13.752) (6.341)

els, i.e. the model fit the data in an acceptable way. This result is not surprising;

it confirms the aforementioned findings and indicates how the data is better ex-

plained by second-order models as compared with first-order models. However,

we must consider this result carefully, because the patent value is estimated con-
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Table 7.6: Standardized path coefficients for the first-order model of patent value, t-values
in parenthesis, ** at the 0.01 significance level, * at the 0.05 significance level

Latent Variable Sample 1 1990-1991 1995-1996 1999-2000

Knowledge stock to Patent 0.115 0.202* 0.306** 0.091
value (1.248) (1.987) (2.263) (1.040)

Technological scope to Patent 0.238** 0.314** 0.335** 0.200**
value (2.892) (4.221) (3.084) (2.278)

International scope to Patent 0.243** 0.154* 0.251** 0.220**
value (3.199) (1.998) (3.044) (2.420)

R2 of patent value 0.161 0.234 0.35 0.114

Table 7.7: Standardized path coefficients for the second-order model of patent value, t-
values in parenthesis, ** at the 0.01 significance level, * at the 0.05 significance level

Latent Variable Sample 1 1990-1991 1995-1996 1999-2000

Knowledge stock to Patent 0.280** 0.226** 0.229** 0.293**
value (9.979) (9.510) (12.349) (8.281)

Technological scope to Patent 0.278** 0.227** 0.226** 0.271**
value (8.811) (10.737) (8.870) (7.620)

International scope to Patent 0.212** 0.232** 0.166** 0.236**
value (5.505) (11.314) (7.659) (5.160)

Knowledge stock to Technological 0.104 0.180* 0.299** 0.072
usefulness (1.162) (1.752) (3.771) (0.783)

Technological scope to Technological 0.237** 0.315** 0.334** 0.207**
usefulness (2.686) (3.290) (3.387) (2.133)

International scope to Technological 0.225** 0.142 0.236** 0.200**
usefulness (2.486) (1.376) (3.042) (2.252)

Technological usefulness to Patent 0.683** 0.668** 0.697** 0.698**
value (14.511) (16.951) (20.558) (11.207)

R2 of patent value 0.998 0.998 0.999 0.997
R2 of usefulness 0.148 0.219 0.338 0.103

sidering all the measurement variables of the models. Another explanation for

this is that in the second-order models, the contribution of the recognized value of

patents (technological usefulness) is considered, and this would help fit the data
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better. Unlike patent value, technological usefulness has a moderate coefficient of

determination. Perhaps other indicators should help to better explain the model,

or again the longitudinal nature of the forward citations is an important factor

to be considered. However, we think that the results are acceptable, taking into

account the literature review and the goodness of fit obtained using other models

in the analysis of patent data. It is worth noting that the structural relationships

are significant.

7.7 Final Remarks

This research relates manifest variables that come from information contained

in the patent document with latent variables into a single replicable model. The

magnitude of this relationship and the importance of each construct are known,

including the influence of knowledge stock, the technological and international

scope in the value of the technology. In the first-order model, the variables that

most affect the patent value are the technological and the international scope. In

the second-order model, the technological usefulness is also important.

A distinction between two patent values can be made: an “a priori” and in-

trinsic value, which the patent has at the moment of its application (the potential

value of the patent); and an “a posteriori” value that the patent acquires over

time through the actions of a company or others (the value that is recognized).

The potential value depends on the characteristics of the patent at the time of

application -such as the patenting strategy of a company, the technological appli-

cability of the patents in different technological fields and the base of knowledge

that is necessary for the creation of a new invention. As time passes, the patent

potentiality is recognized and reflected in the number of times that it is cited and

in the number of countries where it is protected. This recognition is a reflection

of its technological usefulness. Even though companies can assess the importance

or impact of their inventions, these results and the procedure for obtaining them

are becoming a tool for improving the strategy of developing new products and

inventions, improving intellectual property policy and for comparing technologies

with other competitors. The stability of results over time augur that this may be

possible.

In order to assess companies’ patent portfolios using a model that can be

replicated, a follow-up to this research will study patent value evolution as well as

the market-patent relationship and its implications. Furthermore, there are other

indicators related to patent value that have been previously studied, but they

cannot be computed from the information contained in the patent documents,

such as the number of renewals and the number of opposition cases. Nevertheless,

these variables could be related to another latent variable in the model, or be



165 7.7 Final Remarks

a reflection of the technological usefulness of an invention. Finally, PLS Path

Modelling has proven to be a suitable approach for analyzing patent data.



Chapter 8

The Longitudinal Nature of

Patent Value and Technological

Usefulness: Exploring PLS

Structural Equation Models

Abstract. The purpose of this chapter is to investigate the evolution of patent

value and technological usefulness over time using longitudinal structural equation

models. The variables are modeled as endogenous unobservable variables which

depend on three exogenous constructs: the knowledge stock used by companies

to create their inventions, the technological scope of the inventions and the in-

ternational scope of protection. Two set-ups are explored. The first longitudinal

model includes time-dependent manifest variables and the second includes time-

dependent unobservable variables. The structural equation models are estimated

using Partial Least Squares Path Modelling. We showed that there is a trade-

off between the exogenous latent variables and technological usefulness over time.

This means that the former variables become less important and the latter more

important as time passes.

8.1 Introduction

In this paper we explore a predictive dynamic model that considers patent

value as an unobservable variable. The patent value model has been previously

presented as a first and a second-order structural equation model (Mart́ınez-Ruiz

& Aluja-Banet, 2008, 2009). The structural equation model (SEM) was based

on the theoretical background and an extensive review of the literature. The

patent value was modeled as an endogenous unobserved variable depending on

166
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the following four exogenous constructs: the knowledge stock used by a firm to

create the invention, the technological scope of protection, the international scope

of protection and the technological usefulness of the inventions. The latter is also

an endogenous latent variable depending on the first three exogenous constructs.

Each latent variable was estimated using a set of manifest variables or indicators

constructed mainly from the information contained in patent documents.

Now we introduce the dynamic aspects of the model, since patent value has

an intrinsic life cycle. This means that over time, the value first increases and

then reaches a stage where the size of the increments become smaller and smaller.

We attempt to capture this phenomenon and to estimate the evolution of the

value over time. We explored two models. The first one considers time-dependent

indicators for technological usefulness; this allows us to obtain a global estimation

of the patent value as a weighted sum of the manifest variables at different time

points. In the second model, technological usefulness is modeled as an unobservable

variable which changes over time (time-dependent latent variable); and each of

these constructs is estimated by a group of measured manifest variables within

the corresponding time period. Both models allow the analysis of loadings and

path coefficients over time, but the second also measures the changes of the lagged

endogenous latent variable. This approach has been followed by Jöreskog & Wold

(1982b) to model longitudinal data in structural equation models, and we use it

in a PLS Path Modelling framework.

8.2 Patent Value

Patents are intellectual assets that do not necessarily have an immediate re-

turn. A patent may protect a product that can be manufactured and sold. But

a patent may also protect technologies which, together with other technologies,

enable the manufacture of a final product. In both cases, obtaining an economic

value of patents may be extremely difficult. In studying patent value, different

approaches have been taken throughout the literature. Some of the approaches

focus on the private value of a patent while others concentrate on a patent’s social

value. Lanjouw et al. (1998, p. 407) defined the private value of a patent in terms

of “the difference in the returns that would accrue to the innovation with and

without patent protection.” The magnitude of this difference would be crucial in

applying or renewing the protection. Reitzig (2004a) also focused on the private

value of patents, and specifies the need to consider the patent value as a construct.

Technical experts were surveyed and, according to them, the research showed that

the factors that determine patent value are: state of the art (existing technologies),

novelty, inventiveness, breadth, difficulty of inventing, disclosure and dependence

on complementary assets. Additionally, Trajtenberg (1990b) showed that patent
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data was highly correlated with some indicators of the social benefits of innova-

tions. Guellec & van Pottelsberghe (2000) presented a value scale proposing that

technology increases its own value as it passes through different stages: from inven-

tion to application, examination, publication and decision to grant, and finally to

the high value stage if the patent is granted. The distinction is made between the

intrinsic value of the patent simply for being granted (and thereby having proven

novelty, inventive activity and applicability) and the potential value of technology

(dependent on its potential for generating future returns). On the other hand,

Lanjouw & Schankerman (2004) constructed an index for patent quality, empha-

sizing “both the technological and value dimensions of an innovation” (p. 443).

Using factorial analysis, the researchers model patent quality as an underlying

construct that explains a set of patent indicators (forward citations, backward ci-

tations, family size and number of claims). The latent variable is computed as a

“linear combination of the set of indicators, where weights depend on the factor

loadings” (p. 449). One of the main results of this research is that the use of a

latent variable model significantly reduces the variability of the construct.

Some patent indicators have been used to directly infer the patent’s value,

such as forward citations or family size. Even though this may be useful and

may give an approximation of the patent value, many elements may affect the

invention and protection process. We consider some of these factors based on the

background, and represent their interactions proposing a multidimensional analysis

of the problem. It is worth noting that this research does not seek to determine

the value of an individual patent or to obtain a monetary value of the assets.

Rather, the patent value is proposed in terms of the technological usefulness of

the inventions. This model, however, allows us to compare and rank the value

of a company’s patent portfolio. We addressed the question of what variables

determine the patent value and how they relate to each other. These variables

are modeled as unobserved variables. So, they and their relationships set up a

structural model. Little research has reported on the structural relationship among

latent variables which influence patent value using a multidimensional approach.

The recent investigations of Harhoff et al. (2003), Harhoff & Reitzig (2004), Reitzig

(2003), and Reitzig (2004a) used a large number of indicators of patent value which

were aimed mainly at estimating the probability of opposition to a patent. In most

cases, analytical approaches have been based on standard econometric analysis

techniques (probit or logit models) or survey analysis. One reason that could

explain why a multidimensional and structural approach has not been applied

to technology/patent value is that the more general structural models are based

on maximum likelihood estimation and the multivariate normal distribution of

data. Patent indicators are very heterogenous and asymmetric, and, in general,

they exhibit a large variance and skew. Consequently, assuming that this type of
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data has a multivariate normal distribution may lead to biased results. PLS Path

Modelling overcomes this drawback because it is an iterative algorithm that makes

no assumptions about data distribution.

8.3 Longitudinal Nature of Patent Indicators

A fundamental feature of longitudinal data is that the same measurement is ob-

tained on different occasions for the same individuals. So, the aim of a longitudinal

study is to assess the changes between occasions and explain these changes based

on theoretical grounds. It is important to emphasize that the patent indicators de-

scribed above have a temporary nature. The number of inventors, applicants, cited

patents, claims and IPC codes are determined at the time of the patent filing or

during the patent examination process. We may assume that they are determined

at the instant zero. However, this assumption is not valid for forward citations

and family size. Both, the family size and the forward citations, are variables with

a longitudinal character. Usually, the companies first protect their inventions in

their local countries and then in others within a period of time. So, the family

size is an indicator that may change over time. Harhoff et al. (2003, p. 1360) said

that this indicator “may be available around the time of application.”

In addition, it is known that the number of forward citations is an indicator

that may vary over time, since a patent may receive citations over a long period.

As a first attempt –and given the complexity of recovering some data– we retrieve

the number of yearly citations received for patents belonging to the sample. This

allows us to assess the implications on the results by considering the longitudinal

nature of the data in the estimated models. We are also aware that longitudinal

data have an intrinsic autoregressive nature. So, in this way, we also explore the

robustness of the proposed structural models.

8.4 Patent Value Models for Longitudinal Data

In order to model the patent value over time, we explore two longitudinal

models (see Figure 8.1). The first longitudinal model A (Figure 8.1(a)) considers

three exogenous constructs –knowledge stock (KS), technological scope (TS) and

international scope (IS)– at time point zero. The measurement variables of these

constructs are the indicators described in Chapter 71. The endogenous latent

variable, technological usefulness (USE), is measured by time-dependent manifest

variables. The indicators of this variable are the number of forward citations

1Number of inventors, number of applicants and backward citations for KS; the number of
claims and the number of IPC codes for TS; two dummy variables, priority JP and priority DE,
for IS.
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(a) Model A: Time-dependent man-
ifest variables

(b) Model B: Time-dependent latent
variables

Figure 8.1: Patent value structural models for longitudinal data. In model A, the forward
citations measured at different time points (FCti), the family size and the dummy variables
(JP, DE, EP) are manifest variables of the latent variable, technological usefulness. In
model B, technological usefulness is a time-dependent latent variable, each measured by
a set of indicators.

per year. So, by capturing the longitudinal nature of forward citations through an

unobservable variable, we “average” the contribution of the longitudinal indicators.

For USE, we also consider the previously defined dummy variables (JP, DE and

EPO). The patent value (PV) is modeled as an endogenous latent variable formed

by the weighted contribution of knowledge stock, technological scope, international

scope and the technological usefulness. Hence, this model gives an overall measure

of the patent value.

The second longitudinal model B (Figure 8.1(b)) considers: (1) the same afore-

mentioned exogenous constructs, (2) an auxiliary endogenous construct2 (USE-

INT) clustering the family size and the dummy variables JP, DE and EPO, and

(3) the technological usefulness (USE) as a set of time-dependent latent variables,

each one measured by blocks of observed variables at different time points. We

modeled seven different time periods: 1992-1993, 1994-1995, 1996-1997, 1998-1999,

2000-2001, 2002-2003, and 2004-2005. In model B, the patent value (PV) is also

formed by the weighted sum of all the constructs and latent variables, but now

the model allows for the analysis of changes in the technological usefulness over

different time periods.

2This latent variable groups the measures related to family size and the international protection
of patents. Initially, when the model did not consider variations in time, the variables were
considered as indicators of technological usefulness. However, it is now necessary to rethink this
formulation.
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Figure 8.2: Number of patents by priority, application and publication year

8.5 The Patent Sample

To estimate the proposed models, we retrieved a random sample of patent

data from the Delphion database (N=2,901). We established some criteria for

retrieving data. We used the International Patent Classification (IPC) codes for

renewable energies listed by Johnstone et al. (2007). Hence, patents are classified

in codes related to wind, solar, geothermal, wave/tide, biomass and waste energies.

All patents were granted in the U.S. and were published in 1990-1991, 1995-1996,

1999-2000, and 2005-2006. We chose these time periods arbitrarily. Since “when-

ever possible, the application date should be used as the relevant time placer for

patents” (Hall et al., 2001, p. 10), we reorganized the data by application year

and the indicators were computed. Figure 8.2 shows the number of patents by

priority, application and publication year. Additionally, the priority countries of

these patents are U.S. (59%), Japan (19%), Germany (9%), Great Britain (2%),

France (1%) and so on. Patents belong to 1,581 applicants. Patents have been

granted to companies (69%), individuals (25%) and universities, research centers

or governmental institutions (6%).

In order to analyze whether it is possible to find a pattern in the parameter

estimates, the proposed models were estimated with time-period data. We arbi-

trarily chose three patent indicator matrices: (1) a set of 359 patents applied for

in the years 1989-1990-1991 (sample 1), (2) a set of 129 patents applied for in

the years 1995-1996 (sample 2), and (3) a set of 179 patents applied for in 2000

(sample 3). Applicants of these patents are companies. According to the Delphion

database, these data sets represent 41.74%, 35.15%, and 51.29% of all patents

applied for in the U.S. in the field of renewable energy during the selected time

periods, respectively. However, we do not known this percentage in relation to
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Figure 8.3: Number of citations received by year, patents applied for in 1989, 1990, 1991,
1995, 1996 and 2000

patents applied for by companies. Due to the manner in which the sample was

selected, the sample is homogenous in terms of technological area and the country

where the patents were granted. However, the sample is heterogeneous in terms of

the type of industry in which the companies are classified, and this heterogeneity

could affect the results. This also means that there are companies belonging to

different industries that are interested in developing renewable energy innovations.

At any rate, it is worth noting that at this stage, the patent value model is being

tested in general at the level of renewable energy technologies.

Table 8.4 in section 8.9 provides descriptive statistics for patent indicators for

each patent data set. The results indicate that some variables are very heteroge-

neous and asymmetric, and they also exhibit large variance. So, normality is not a

recommended assumption. Positive values of skewness indicate positive/right skew

(notice how the medians are always smaller than the means). Likewise, positive

kurtosis indexes show distributions that are sharper than the normal peak.

All forward citations received by patents per year were retrieved from the

United States Patent and Trademark Office (USPTO) database from 1992 to 2005.

Figures 8.3 and 8.4 show the number of citations received by year and the accu-

mulated citations received by year, respectively, for patent applications in 1989,

1990, 1991, 1995, 1996, and 2000. These figures show an increase in the number of

citations over time. Figure 8.3 shows that the number of citations reaches a peak

then decreases. The patents applied for in 1989 are the most cited. The patents

less cited are those applied for in 1991 and 1996.
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Figure 8.4: Accumulated citations received by year, patents applied for in 1989, 1990,
1991, 1995, 1996 and 2000

8.6 PLS Path Modelling for Longitudinal Data

PLS Path Modelling is a component-based procedure for estimating a sequence

of latent variables developed by the statistician and econometrician Herman Wold.

During the last few years, it has proved to be useful for estimating structural mod-

els, in marketing and information systems research in particular, and in the social

sciences in general. Some of its features have encouraged its use, such as: (1) it

is an iterative algorithm that offers an explicit estimation of the latent variables

and their relationships, (2) it works with fewer cases and makes no assumptions

about data distribution, and (3) it overcomes the identification problems when

formative measurement models are included. Wold’s basic-design of PLS Path

Modelling does not consider higher-order latent variables. Therefore, in Wold’s

algorithm each construct must be related to a set of observed variables in order

to be estimated. However, Lohmöller (1989) proposed a procedure for the case of

hierarchical constructs; that is to say, for cases where there is a construct with no

block of manifest variables, or more simply: it is only related to other constructs.

In hierarchical component modelling, manifest variables of first-order latent vari-

ables are repeated for the second-order latent variable. So, a set of “auxiliary”

variables is introduced for estimation purposes. After that, the model is estimated

using PLS Path Modelling in the usual way.

Estimations of structural equation models with longitudinal data –a widespread

practice in econometrics– have traditionally been made with simultaneous equation

models (Kmenta, 1986; Aigner et al., 1987) and LISREL (Jöreskog & Wold, 1982a).

From the point of view of Partial Least Squares (PLS) Path Modelling (Wold,

1982), there are still few theoretical developments and applications. Jan Lohmöller

and Herman Wold (Lohmöller, 1989) were the first to address the issue in a PLS
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framework. The researchers proposed a procedure called Latent Variables Three-

mode Path Analysis (LVP3), which is based on three pivotal points: a three-way or

three-mode data set3, a three-mode factor model (FA3 model) as outer model, and

a three-mode path model as inner model. In LVP3, loadings and path matrices

are specified as Kronecker matrices, so the LVP algorithm includes additional

steps in the iterative stage to satisfy the implications of the Kronecker structures

(Lohmöller, 1989) and calculate these matrices. Lohmöller (1989) presented this

algorithm and warned that the convergence properties and the reliability of the

numerical results were still to be explored. The main advantage of the procedure

is that “the path model for the time points assumes a second-order autoregression

process, i.e. each time point t is regressed to the one directly preceding it, t − 1,

and to the time point before that t− 2” (Lohmöller, 1989, p. 236).

In a more traditional way, structural equation models with longitudinal data

consider the repetition of the structural and measurement models in each of the

years under study. Therefore, when the model is tested, the whole model is es-

timated at the same time. So, both background variables and initial measures,

as well as the final status are included in the model. Wold (1982) and Scepi &

Esposito Vinzi (2003) followed this approach, but the latter also introduced multi-

table analysis with an aim toward identifying temporal components in the data

structure. We addressed the more traditional approach in order to estimate the

longitudinal patent value models. As a PLS Path Modelling procedure is used,

the aforementioned autoregressive process is also implemented.

8.7 Results

Model assessment. We first assess the internal consistency of reflective outer

models by using Cronbach’s alpha coefficient (should be > 0.7). All reflective

measurement models are unidimensional. Cronbach’s alpha coefficients of techno-

logical usefulness are 0.91, 0.94 and 0.82 for models A with samples 1, 2, and 3,

respectively. Cronbach’s alpha coefficient for the auxiliary latent variable in model

B is 0.80 and Cronbach’s alpha range is from 0.94 to 0.99 for the different time

points of technological usefulness. We computed the average variance extracted

(AVE) to assess the extent to which measures of a given construct differ from

measures of other constructs (discriminant validity). As suggested by Fornell &

Larcker (1981), the percentage of variance captured by the construct in relation to

the variance due to random measurement errors should be greater than 0.5. The

AVE of technological usefulness is 0.58, 0.65, and 0.53 for samples 1, 2, and 3,

respectively, in models with time-dependent manifest variables. Thus, the latent

3This terminology was introduced by Tucker (1963, 1964).
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variable is capturing on average more than 50% of the variance in relation to the

amount of variance due to measurement error. For the model with time-dependent

latent variables, the AVE of technological usefulness ranges from 0.95 to 0.99 at

the different time points.

Tables 8.5 and 8.6 in section 8.9 report the cross loadings –or correlations

between manifest variables and constructs– for a reflective block of variables in

models A and B in the three analyzed time-periods. As shown, each observed

variable is correlated more with its corresponding construct. Thus, for instance,

in the longitudinal model with time-dependent latent variables, the family size

and the dummy variables JP and DE are more related with the auxiliary variable

USE-Int than with the technological usefulness in the different time-periods. This

empirical evidence supports the relationships between latent and manifest variables

as proposed in the models.

Loading estimates for reflective models A and B are reported in Tables 8.7

and 8.8 in section 8.9, respectively. Loadings indicate how much variance each

indicator shares with the latent variable (reliability). A rule of thumb generally

accepted is 0.7 or more (Hulland, 1999). A low value in a loading factor suggests

that the indicator has little relation to the associated construct. As shown in

the tables, all loading estimates are significant at the 0.01 level4. For models A,

the loadings of time-dependent manifest variables, that is, the forward citations

for the different time periods, range from 0.776 to 0.955. Thus, the technological

usefulness is reflected in reliable time-dependent indicators, and the latent vari-

able explains the correlations among the manifest variables. Although significant,

the loadings for the family size and the dummy variables (Germany and Japan)

are less than 0.7. This situation changes when the time-dependent latent variable

model is considered. For model B, loadings are always greater than 0.7. In this

case, the family size and the dummy variables (DE and JP) are reliable indicators

of the auxiliary latent variable USE-Int, and the construct explains the correlation

among the indicators. We have not given a definitive name to this latent variable.

“International patenting strategy” would describe the concept formed by the fam-

ily size and the dummy variables JP and DE. These indicators measure whether

the inventions have been protected internationally, particularly in the major coun-

tries which produce renewable energy technologies. Hence, these variables may

change over time. This is what makes the construct different in regards to an

international scope.

The reliability of formative outer models –knowledge stock, technological scope,

international scope– was assessed by examining weight estimates and the correla-

tions between the constructs and their corresponding manifest variables. Manifest

4The t-values were computed by bootstrapping with 200 bootstrap resamples; t-value > 1.65
significant at the 0.05 level; t-value > 2 significant at the 0.01 level.
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variables in formative measurement models do not have to be intercorrelated. In

fact, Pearson correlations between patent indicators are small and medium,5 rang-

ing from 0.04 to 0.256. However, the indicators should be correlated with the

constructs which are related, because the manifest variables are supposed to con-

tribute to the formation of the unobservable variable. Tables 8.5 and 8.6 show

the correlations between knowledge stock, technological scope and international

scope, along with their corresponding manifest variables (models A and B, and

samples 1, 2, and 3). Tables 8.7 and 8.8 in section 8.9 show the estimates for

outer relationships. For models A, of which there are three, the weight estimates

are in line with the correlations between constructs and indicators. For samples

1 and 2, there are medium and large correlations between the knowledge stock

and its indicators. The weight estimates are positive, and the number of inventors

indicates a significant relationship with the construct. The same happens with

the technological scope and international scope. For model A with sample 3, the

weight estimates are negative as well as the correlations between the constructs

and their corresponding indicators. Thus, weight estimates and correlations be-

tween each formative construct and its corresponding indicators vary in the same

way, validating the formative constructs. Negative correlations are attributed to

the fact that the sample corresponds to patents applied for in 2000. As discussed

below, forward citations influence the model estimates in a meaningful way. These

variables are less informative for sample 3, affecting the estimation of the unob-

servable variables for that year. The results for model B suggest that a model

with time-dependent latent variables may reveal significant relationships in the

formative outer models. The number of IPC codes, the number of claims, and

the dummy priority variables JP and DE are strongly and significantly related to

their constructs. The same was found in Mart́ınez-Ruiz & Aluja-Banet (2009).

The relationship between knowledge stock and the number of inventors is also

significant.

Since multicollinearity is a problem in multiple regression –and the basic design

of PLS Path Modelling uses multiple regression to estimate inner relationships–

we calculated the correlations between the estimated constructs and the variance

inflation factor7 so as to perform a collinearity diagnostic. The variance inflation

factors for the regression coefficients of the technological usefulness range from 5.18

to 89.88 from 1992-1993 to 2002-2003, respectively. Moreover, we calculated the

5Cohen (1988) suggests that correlations of 0.1, 0.3, and 0.5 express small, medium and large
effect sizes, respectively.

6Correlations between the number of inventors, backward citations, the number of IPC codes,
the number of claims, and the dummy variables.

7The square root of the variance inflation factor tells you how much large the standar error is,
compared with what it would be if that variable were uncorrelated with the other independent
variables in the equation. A common rule of thumb is that if VIP(regression coefficient) > 5 then
multicollinearity is high.
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mean communalities to test for the discriminant validity of unobservable variables.

Tables 8.9 and 8.10 in section 8.9 report the results. The mean communalities of

each construct are larger than the correlations between the construct and other

unobservable variables (models A and B, samples 1, 2, and 3). So, the constructs

share more variance with its block of indicators than with another construct repre-

senting a different block of manifest variables. In addition, there was no evidence

of collinearity between knowledge stock, technological scope, and international

scope, nor between these constructs and the auxiliary latent variable USE-Int and

technological usefulness. However, and as expected, technological usefulness for

the different time periods is highly correlated. Therefore, we estimated the in-

ner relationships by using multiple regression and PLS regression. The latter is

recommended to avoid multicollinearity problems among inputs.

Multiple regression to estimate structural relationships. Once the latent

variables were obtained with PLS Path Modelling, we estimated the structural

relationships by using multiple regression in the usual way. Tables 8.1 and 8.2 show

the standardized path coefficients of the longitudinal model with time-dependent

manifest variables for the three-analyzed samples, and with time-dependent latent

variables for sample 1, respectively. These tables also report the significance of

each estimate.

The relationships between patent value and the exogenous constructs are all

significant at the 0.01 level (models A and B, samples 1, 2, and 3). The magnitude

of the regression coefficients and the t statistic reveal the contribution of each

variable to the patent value. Path coefficients of model B show how technological

usefulness is reflected over time (β92−93 = 0.131 t − value = 23.16,...,β04−05 =

0.145 t − value = 19.73) while the regression coefficient in model A (βsample3 =

0.856, t− value = 18.53) is “averaging” the contribution of the change in forward

citation over time. In addition, when considering forward citations as longitudinal

manifest variables of technological usefulness, the regression coefficient between

technological scope and technological usefulness is 0.049 (t− value = 2.28, sample

1). However, this value changes when the technological usefulness is modeled as

a time-dependent latent variable. In model B, the regression coefficient between

technological scope and USE 92-93 is 0.210 (t−value = 2.08). This relationship is

smaller in subsequent years. So, this result suggests that the relative contribution

of the technological scope of protection –determined when the invention is classified

in some IPC codes and the number of claims– is larger in the first stage of the life

cycle of patents, and then it declines. The knowledge stock and the international

scope also appear to add more to the patent value in an early stage. The inner

relationship between the auxiliary latent variable USE-Int and the patent value is

also significant.
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Table 8.1: Standardized path coefficients of the A-structural model (longitudinal model
with time-dependent manifest variables) for samples 1, 2, and 3; t-values in parenthesis,
** at the 0.01 significance level, * at the 0.05 significance level.

Sample 1: 1989-1990-1991 Sample 2: 1995-1996 Sample 3: 2000

Construct
Technological Patent Technological Patent Technological Patent

Usefulness Value Usefulness Value Usefulness Value

Knowledge stock 0.140 0.146 0.239 0.121 0.193 0.192
(1.4605) (4.952**) (2.299**) (7.638**) (1.860*) (3.148**)

Technological scope 0.049 0.133 0.214 0.117 0.041 0.201
(2.283**) (4.944**) (2.721**) (7.494**) (0.554) (3.390**)

International scope 0.251 0.131 0.106 0.0779 0.169 0.166
(0.637) (4.267**) (0.908) (4.491**) (1.921*) (2.346**)

Technological usefulness 0.888 0.897 0.856
(26.851**) (52.024**) (18.538**)

Table 8.2: Standardized path coefficients of the B-structural model (longitudinal model
with time-dependent latent variables) for sample 1; t-values in parenthesis, ** at the 0.01
significance level, * at the 0.05 significance level.

Sample 1: 1989-1990-1991

Construct
USE-Int USE USE USE USE USE USE USE PV

92-93 94-95 96-97 98-99 00-01 02-03 04-05

Knowledge stock 0.095 0.111 0.050 0.001 -0.040 0.003 -0.002 -0.005 0.028
(1.110) (1.303) (1.348) (0.032) (1.328) (0.155) (0.151) (0.387) (3.710**)

Technological scope 0.186 0.210 0.022 0.054 -0.020 -0.029 -0.007 -0.011 0.034
(1.990*) (2.082**) (0.607) (1.396) (0.758) (1.289) (0.427) (0.737) (4.017**)

International scope 0.340 -0.022 -0.031 0.032 0.007 -0.018 -0.019 -0.019 0.018
(2.989**) (0.320) (1.071) (0.750) (0.189) (0.912) (1.147) (1.376) (2.390**)

Auxiliary construct USE-Int 0.069
(3.612**)

Technol. Usefulness 92-93 0.883 0.131
(35.097**) (23.167**)

Technol. Usefulness 94-95 0.911 0.146
(32.888**) (25.194**)

Technol. Usefulness 96-97 0.952 0.160
(51.654**) (21.377**)

Technol. Usefulness 98-99 0.968 0.154
(68.869**) (14.214**)

Technol. Usefulness 00-01 0.980 0.163
(93.416**) (14.649**)

Technol. Usefulness 02-03 0.985 0.154
(118.539**) (15.350**)

Technol. Usefulness 04-05 0.145
(19.738**)

These results are similar to those obtained in Mart́ınez-Ruiz & Aluja-Banet

(2009). However, the effects captured by the structural model are smaller, mainly

among the formative constructs and the technological usefulness. This may be due

to the fact that considering the longitudinal nature of forward citations helps to

reveal the relative weight that this variable has on the estimate of patent value.

Figure 8.5 shows the evolution of loadings, which describes the relationship be-

tween forward citations and patent value for model A and samples 1, 2 and 3. The

Figure clearly shows how the patent value increases, stabilizes and then decreases

over time. Figure 8.6 shows the evolution of the standardized path coefficient,

which describes the relationship between knowledge stock, technological scope and

international scope, and technological usefulness, as well as between the latter and
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Figure 8.5: Evolution of standardized loadings of the longitudinal model with time-
dependent manifest variables (model A) and samples 1, 2 and 3. The loadings describe
the relationships between forward citations and patent value.

the patent value for model B. The results suggest a trade-off between exogenous

constructs and technological usefulness. This means that the knowledge stock,

the technological scope and the international scope contribute more to the patent

value at time equal to zero while the technological usefulness determines the patent

value in subsequent time-periods.

Finally, the determination coefficients R2 for technological usefulness in models

A are 0.09, 0.15, and 0.06 with samples 1, 2, and 3, respectively. The R2 in model B

is close to 0.8 for technological usefulness and 0.17 for the auxiliary latent variable.

So, this suggests that the data is better explained by a longitudinal model with

time-dependent latent variables.

PLS regression to estimate structural relationships. Since there is multi-

collinearity between the technological usefulness for the different time-periods, we

also estimated the structural relationships by using PLS regression. The number

of significant components th were determined by leave-one-out cross validation.

The marginal contribution of each PLS component th to the predictive power of

the regression model was estimated using the Q2
h index and redundancies8.

8For each h-component, the Q2
h index is defined as Q2

h = 1 −∑q
k=1 PRESSkh/

∑q
k=1RSSk(h−1), where PRESS is the Predicted REsidual Sum of Squares,

and RSS is the Residual Sum of Squares of the latent variable Yk when the regression model
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Evolution of Standardized Path Coefficients (sample 1)
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Figure 8.6: Evolution of standardized path coefficients of the longitudinal model with
time-dependent latent variables (model B) and sample 1 (1989-1990-1991). The path
coefficients describe the relationships between knowledge stock, technological scope and
international scope, and the technological usefulness (USE), and between the latter and
the patent value.

The patent value was regressed on the knowledge stock, the technological scope,

the international scope, the technological usefulness for the different time periods

and the auxiliary variable USE-Int, a total of 11 regressors. By default, the PLS

regression holds as many components as there are independent variables in the

model. For patent value PLS regression, however, two components can predict

about 68% of the variation of the regressors (see Table 8.11 in section 8.9). Thus,

a two-component model would be sufficient to describe the patent value in terms of

the exogenous latent variables and constructs. Nonetheless, we report the results

for models with one, two, three and four components. Figures 8.7 shows the

correlations between latent variables and the first four PLS components. As shown

in Figure 8.7(a) for instance, the patent value, the technological usefulness for the

different time periods and the technological scope are highly correlated with the

first component whereas the international scope and the auxiliary latent variables

USE-int are correlated more with the second component. The knowledge stock

is estimated considering h − 1 components. The rule is to retain the h-component when
Q2

h ≥ 0.0975. The redundancy coefficient measures the amount of explained variance in the
indicators for the endogenous construct, explained by the set of manifest variables of the
exogenous constructs. It is defined as, Rd(Y, th) = 1

q

∑q
k=1 cor

2(yk, th), where q is the number of
endogenous variables.
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Table 8.3: PLS-regression coefficients for 1-component, 2-component and 3-component
models, and variable importance in the projection (VIP index) for model B and sample 1.

PLS Regression Variable Importance
Path Coefficients in the Projection (VIP)

Construct 1 Comp 2 comp. 3 Comp. 1 Comp 2 comp. 3 Comp.

Knowledge stock 0.029 0.033 0.027 0.241 0.241 0.242
Technological scope 0.044 0.040 0.034 0.364 0.364 0.364
International scope 0.007 0.023 0.020 0.059 0.084 0.085
Auxiliary latent variable USE-Int 0.040 0.062 0.067 0.324 0.335 0.336
Technological usefulness 92-93 0.133 0.132 0.132 1.092 1.092 1.092
Technological usefulness 94-95 0.147 0.145 0.145 1.201 1.200 1.200
Technological usefulness 96-97 0.157 0.156 0.156 1.283 1.282 1.282
Technological usefulness 98-99 0.159 0.159 0.159 1.302 1.301 1.301
Technological usefulness 00-01 0.157 0.157 0.158 1.288 1.287 1.287
Technological usefulness 02-03 0.154 0.153 0.154 1.257 1.256 1.256
Technological usefulness 04-05 0.149 0.148 0.148 1.219 1.219 1.219

and also the technological scope are correlated with the third component. The

forth component helps to explain the auxiliary latent variable USE-Int and the

international scope.

Table 8.3 shows the PLS-regression coefficients considering one, two and three

component models and the variable importance in the projection (VIP index)

for model B and sample 19. As shown, and according to the results of the 2-

components PLS model, the regression coefficients are very similar to those ob-

tained with multiple regression. However, the technological usefulness in the dif-

ferent time points is the variable that most contributes to the prediction of the

patent value.

8.8 Final Remarks

It seems reasonable to think that if a company has invested a lot of knowledge

in the creation of an invention, this invention will tend to have a larger value. In

the same way, a technology with multiple potential applications would be more

valuable than one that can only be applied in a more limited area. The same applies

for the international scope of protection. An invention with broader protection is

presumably more valuable than one without it. The estimation results of the

patent value models for longitudinal data suggest that the contribution of the

knowledge stock used by companies to create their inventions, the technological

scope of the inventions and the international scope of protection are variables that

9The VIP index reflects the influence of the explanatory variables in the h-component model.
For a jth independent variable, the V IPhj =

√
( p
Rd(Y ;t1,...,th)

∑h
l=1Rd(Y ; tl)w

2
lj). The contribu-

tion of variable j to the construction of the component tl is measured by the weights w2
lj . The

variables that have larger VIP (> 1) are more important for predicting the dependent variable.
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contribute little to the patent value when compared to the technological usefulness.

As expected, this is more evident in model B than in model A. Based on the PLS

regression findings, for the model with time-dependent manifest variables (model

A), about 56.97% of the patent value is explained by the technological usefulness

of patents and 43.03% by the other exogenous constructs (sample 1), whereas in

the model with time-dependent latent variables (model B), these percentages are

89.40% and 10.60%, respectively.

Forward citations are the most widely used measures for assessing the impor-

tance or value of patents. This variable can be used as an indicator for a construct

whose contribution to the patent value can be weighted –as was done in the case

of technological usefulness. However, the value provided by this indicator is a later

value or a posteriori value, which can be estimated once time has elapsed; and this

could be too late if technology decisions must be made immediately. The benefit of

using longitudinal models is that considering the time factor and the longitudinal

nature of forward citations help to reveal when each of the construct and latent

variables is important. Hence, exogenous constructs may be good indicators of

value in the first stage of the life cycle of patents.

From a statistical standpoint, there are some aspects that have to be consid-

ered. First, these models were estimated with small samples. PLS Path Modelling

is known for its ability to build a set of unobservable variables and estimate the

structural relationships between them when small samples are available (Chin &

Newsted, 1999; Tenenhaus & Hanafi, 2010). However, estimating the models with

a larger sample, or even considering the population, would help to confirm the ex-

ploratory results presented here. In addition, it is well known that for consistency

at large, PLS Path Modelling requires three or more indicators per construct –for

reflective outer models at least. Simulation studies support this claim (Chin &

Newsted, 1999). However, recent investigations have shown that the estimates of

formative relationships with few indicators are fairly robust. On the other hand,

considering longitudinal data requires caution when assessing results. As expected,

the forward citations per year are highly correlated indicators; that is, the value

of the variable at time ti will influence the value of the variable at time ti+1. This

may not affect the estimates of the relationship in the outer model –because these

models are modeled in a reflective mode– but this can affect the stability of the

estimates of the structural relationships. This problem is solved using PLS regres-

sion instead multiple regression in the second stage of the PLS Path Modelling

procedure.
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Figure 8.7: Correlations between latent variables and PLS components. The patent value
(PV) is regressed on the knowledge stock (KS), the technological scope (TS), the inter-
national scope (IS), the technological usefulness (USE) for the different time periods and
the auxiliary variable USE-Int (USE-Int).
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Table 8.5: Cross loadings of indicators for A-measurement models and samples 1, 2 and
3.

1989-1990-1991 1995-1996 2000
Indicator KS TS IS USE KS TS IS USE KS TS IS USE

Backward citations 0.277 0.107 -0.127 0.056 0.156 0.189 -0.088 0.044 -0.992 -0.162 0.048 -0.193
Number of inventors 0.932 0.088 0.364 0.142 0.992 0.283 0.133 0.316 -0.034 -0.210 0.031 0.009
Number of IPC codes 0.098 0.817 0.103 0.195 0.147 0.434 0.024 0.120 -0.178 -0.997 -0.111 -0.096
Number of claims 0.080 0.606 -0.154 0.159 0.278 0.936 -0.010 0.271 -0.168 -0.157 0.089 0.003
Priority JP 0.302 -0.008 0.994 0.048 0.181 0.038 0.772 0.091 0.139 -0.015 -0.055 -0.045
Priority DE 0.014 0.011 -0.013 0.002 -0.044 -0.049 0.574 0.094 0.023 -0.098 -0.978 -0.153
Family size 0.125 0.179 0.194 0.223 0.312 0.339 0.029 0.371 -0.241 -0.236 -0.089 -0.243
Dummy JP 0.252 0.186 0.365 0.316 0.401 0.241 0.370 0.462 -0.012 -0.147 -0.133 -0.198
Dummy DE 0.121 0.148 0.151 0.148 0.365 0.228 0.276 0.413 -0.112 -0.001 -0.297 -0.347
Forward citations 1992 0.130 0.217 0.030 0.755
Forward citations 1993 0.127 0.222 -0.004 0.831
Forward citations 1994 0.157 0.223 -0.011 0.866
Forward citations 1995 0.160 0.227 0.008 0.900
Forward citations 1996 0.178 0.257 0.030 0.931
Forward citations 1997 0.140 0.260 0.043 0.947 0.157 0.112 0.133 0.766
Forward citations 1998 0.116 0.232 0.025 0.958 0.175 0.180 0.084 0.855
Forward citations 1999 0.108 0.210 0.016 0.957 0.184 0.211 0.071 0.906
Forward citations 2000 0.098 0.187 0.010 0.954 0.191 0.213 0.079 0.936
Forward citations 2001 0.112 0.182 0.012 0.943 0.234 0.250 0.083 0.952 0.149 0.084 0.092 0.820
Forward citations 2002 0.097 0.171 -0.006 0.930 0.214 0.223 0.057 0.932 0.175 0.042 0.054 0.921
Forward citations 2003 0.094 0.172 -0.014 0.920 0.218 0.226 0.030 0.927 0.155 0.017 0.084 0.928
Forward citations 2004 0.084 0.158 -0.028 0.899 0.257 0.232 0.020 0.925 0.120 0.021 0.120 0.929
Forward citations 2005 0.079 0.157 -0.032 0.896 0.262 0.249 0.001 0.907 0.103 0.067 0.141 0.925
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Table 8.7: Standardized weights and loadings of the A-measurement models according to
the type of constructs and for samples 1, 2, and 3; t-values in parenthesis, ** at the 0.01
significance level, * at the 0.05 significance level.

Construct Indicator
Sample 1 Sample 2 Sample 3

1989-1990-1991 1995-1996 2000

Knowledge Backward citations 0.269 (0.914) 0.125 (0.639) -1.004 (3.225**)
stock Number of inventors 0.987 (4.225**) 0.988 (11.432**) -0.131 (0.402)

Technological Number of IPC 0.872 (3.427**) 0.353 (1.549) -0.991 (3.304**)
scope Number of claims 0.459 (1.563) 0.905 (6.145**) -0.081 (0.271)

International Priority JP 0.984 (4.170**) 0.821 (3.078**) -0.211 (0.682)
scope Priority DE 0.330 (1.098) 0.637 (2.164**) -1.011 (3.062**)

Technological Forward citations 1992 0.776 (10.285**)
usefulness Forward citations 1993 0.837 (15.605**)

Forward citations 1994 0.867 (21.051**)
Forward citations 1995 0.886 (25.339**)
Forward citations 1996 0.912 (56.225**)
Forward citations 1997 0.942 (73.476**) 0.766 (17.085**)
Forward citations 1998 0.954 (101.785**) 0.855 (26.683**)
Forward citations 1999 0.955 (96.355**) 0.906 (35.718**)
Forward citations 2000 0.954 (91.283**) 0.936 (53.855**)
Forward citations 2001 0.944 (80.711**) 0.952 (66.227**) 0.819 (16.468**)
Forward citations 2002 0.933 (66.253**) 0.932 (57.330**) 0.921 (23.904**)
Forward citations 2003 0.924 (58.308**) 0.927 (56.315**) 0.928 (22.558**)
Forward citations 2004 0.905 (41.677**) 0.925 (66.034**) 0.928 (21.922**)
Forward citations 2005 0.902 (40.289**) 0.907 (51.682**) 0.925 (22.181**)
Family size 0.355 (2.426**) 0.371 (4.065**) -0.243 (1.742*)
Dummy JP 0.439 (2.894**) 0.462 (4.634**) -0.198 (1.377)
Dummy DE 0.256 (1.929*) 0.413 (3.457**) -0.347 (2.455**)

Patent value Backward citations 0.046 (0.435) 0.076 (0.871) -0.381 (2.549**)
Number of inventors 0.361 (3.029**) 0.447 (4.299**) -0.029 (0.179)
Number of IPC 0.357 (2.377**) 0.183 (1.681) -0.333 (2.377**)
Number of claims 0.177 (1.496) 0.384 (5.268**) -0.070 (0.512)
Priority JP 0.259 (2.147**) 0.177 (1.783*) 0.018 (0.121)
Priority DE 0.045 (0.493) 0.106 (0.998) -0.317 (2.295**)
Forward citations 1992 0.763 (14.561**)
Forward citations 1993 0.829 (18.958**)
Forward citations 1994 0.859 (22.806**)
Forward citations 1995 0.891 (30.297**)
Forward citations 1996 0.923 (46.023**)
Forward citations 1997 0.935 (54.846**) 0.732 (13.267**)
Forward citations 1998 0.942 (63.915**) 0.818 (20.821**)
Forward citations 1999 0.940 (61.484**) 0.866 (25.174**)
Forward citations 2000 0.936 (55.249**) 0.896 (30.605**)
Forward citations 2001 0.928 (49.439**) 0.920 (40.372**) 0.770 (7.959**)
Forward citations 2002 0.914 (41.874**) 0.895 (36.354**) 0.845 (8.707**)
Forward citations 2003 0.905 (37.838**) 0.888 (35.426**) 0.848 (9.107**)
Forward citations 2004 0.884 (29.482**) 0.892 (41.528**) 0.849 (8.682**)
Forward citations 2005 0.880 (28.566**) 0.877 (36.892**) 0.856 (8.126**)
Family size 0.375 (2.526**) 0.406 (4.146**) -0.299 (1.950*)
Dummy JP 0.498 (2.926**) 0.519 (5.076**) -0.194 (1.177)
Dummy DE 0.277 (1.973*) 0.456 (3.655**) -0.354 (2.382**)
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Table 8.8: Standardized weights and loadings of the B-measurement models according to
the type of constructs and for sample 1; t-values in parenthesis, ** at the 0.01 significance
level, * at the 0.05 significance level.

Construct Indicator Sample 1: 1989-1990-1991

Knowledge stock Backward citations 0.427
(1.344)

Number of inventors 0.943
(3.411**)

Technological scope Number of IPC codes 0.763
(3.110**)

Number of claims 0.619
(2.172**)

International scope Priority JP 0.893
(3.107**)

Priority DE 0.570
(1.892*)

Usefulness Int. Family size 0.895
(5.129**)

Dummy JP 0.886
(4.382**)

Dummy DE 0.746
(2.606**)

Technological usefulness Forward citations 1992 0.974
1992-1993 (100.067**)

Forward citations 1993 0.976
(146.971**)

Technological usefulness Forward citations 1994 0.989
1994-1995 (275.169**)

Forward citations 1995 0.989
(301.685**)

Technological usefulness Forward citations 1996 0.988
1996-1997 (159.570**)

Forward citations 1997 0.987
(158.284**)

Technological usefulness Forward citations 1998 0.994
1998-1999 (447.793**)

Forward citations 1999 0.993
(437.170**)

Technological usefulness Forward citations 2000 0.996
2000-2001 (806.005**)

Forward citations 2001 0.996
(818.647**)

Technological usefulness Forward citations 2002 0.998
2002-2003 (1564.357**)

Forward citations 2003 0.998
(1559.498**)

Technological usefulness Forward citations 2004 1.000
2004-2005 (8624.720**)

Forward citations 2005 1.000
(8526.497**)
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191 8.9 Appendix: Tables

Table 8.11: Percentage of variation accounted for by partial least squares components, both
individual and cumulative, and Q2

h index. The patent value is regressed on the knowledge
stock, the technological scope, the international scope, the technological usefulness for the
different time periods and the auxiliary variable USE-Int.

Redundancy
Component Q2

h index Individual Cumulative

1 0.999 55.327 55.327
2 0.869 12.973 68.300
3 0.632 8.570 76.870
4 0.041 6.517 83.387



Chapter 9

Two-Step PLS Path Modelling

Mode C to Estimate Nonlinear

and Interaction Effects among

Formative Constructs: Monte

Carlo Simulations and Patent

Value Models

Abstract. A Two-Step PLS Path Modelling Mode C (TsPLS) procedure is

implemented to estimate nonlinear and interaction effects among formative con-

structs. A Monte Carlo simulation study is carried out in order to provide empirical

evidence of its performance. Findings suggest that the TsPLS procedure offers a

way to build “proper indices” for linear, nonlinear and interaction terms, all of

which are unobservable, and to estimate the relationships between them. Inner

linear, nonlinear and interaction effects are underestimated and outer relationships

overestimated. Accuracy and precision increase with increasing sample size and

number of observed variables per construct. In addition, a patent value model is

used to illustrate the procedure.

9.1 Introduction

Nonlinearities in structural equation models (SEMs) can be addressed in differ-

ent ways, either investigating nonlinear relationships between latent and manifest

variables or among latent variables. Even though there is a wide literature on non-

192
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linear covariance-based models1, little attention has been paid to Nonlinear PLS

Path Modelling. In the latter framework, most of the research has concentrated on

modelling the nonlinear relationship between manifest and latent variables, and

on studying the interaction effects among latent variables. Four procedures have

been proposed to estimate interaction effects among latent variables when reflec-

tive outer models are modeled with Mode A: the product indicator approach (Chin

et al., 2003), the two-stage approach (Henseler & Fassott, 2005; Henseler et al.,

2009), Wold’s approach (Wold, 1982), and the orthogonalizing approach (Little

et al., 2006). Nevertheless, these procedures cannot be used for estimating nonlin-

earities among formative constructs, “since formative indicators are not assumed

to reflect the same underlying construct (i.e., can be independent of one another

and measuring different factors), the product indicators between two sets of forma-

tive indicators will not necessarily tap into the same underlying interaction effect”

(Chin et al., 2003, p. 11, supplemental material).

The purpose of this chapter is two-fold. First, a Two-Step PLS Path Modelling

Mode C (TsPLS) procedure is implemented to estimate nonlinear and interaction

effects among formative constructs. Following Kenny and Judd’s approach, power

and cross-product terms of constructs are included in the structural relationships

among unobserved variables. Thus, if ξ1 and ξ2 are formative exogenous constructs

and η is a reflective endogenous latent variable, the following nonlinear and mod-

erating constructs are related to η: ξ21 , ξ22 , and ξ1ξ2. The procedure considers

the score estimation of linear constructs in the usual way (step one). Formative

constructs are computed using PLS Mode B and reflective latent variables using

PLS Mode A. This is called PLS Mode C in Wold’s approach (Wold, 1982, p.

10). When the convergence is reached, scores of nonlinear and interaction terms

are directly computed (step two). The dependent latent variable is regressed on

the linear, nonlinear and moderate latent terms. A Monte Carlo simulation study

is carried out in order to provide empirical evidence of the performance of the

algorithm. Results are provided in terms of mean value of the estimates, mean

standard deviations (dispersion), mean confidence intervals (reliability), biases (ac-

curacy), variances (variability), mean square errors (precision) and mean square

biases (accuracy).

The second purpose of this chapter is to study nonlinearities in a real case on

patent valuation. The structural equation model of patent value considers three

formative exogenous constructs: the knowledge stock used by the applicant to

create an invention, the technological scope of the invention, and the international

scope of protection (Mart́ınez-Ruiz & Aluja-Banet, 2009). These variables are

modeled as determinants of the patent value, which is defined as a reflective en-

1See, for instance, McDonald (1962); Busemeyer & Jones (1983); Kenny & Judd (1984); Bollen
(1995); Rizopoulos & Moustaki (2008) and references therein.
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dogenous latent variable. Manifest variables are built from information contained

in patent documents from a sample of patents granted in the U.S. in the renewable

energy field. In this research we are interested in knowing (1) if the knowledge

stock is moderating the relationship between the international scope and patent

value and (2) if there is a nonlinear effect of the international scope on patent

value.

In this chapter, we briefly examine the different approaches for modelling non-

linear and interaction effects considered in a PLS Path Modelling framework.

Then, we describe and report the TsPLS procedure and the Monte Carlo sim-

ulation study, respectively. Finally, we present a true case of patent valuation.

9.2 Background

Up to now and from a component-based approach, researchers have focused

mainly on studying interaction effects between unobservable variables and nonlin-

ear relationships between manifest and latent variables. Studies have only consid-

ered SEMs with reflective measurement models.

9.2.1 Nonlinear Relationships between Manifest and Latent Vari-

ables

Krämer (2005) studied the nonlinear relationship between manifest and latent

variables, and replaced the inner products in the outer estimation of formative

blocks of variables by kernel functions. Jakobowicz (2007), however, argues that

this approach has important shortcomings; among them, the difficult interpreta-

tion of the weights and the selection of the kernel function are the most important

failings. Jakobowicz & Saporta (2007) also examined the nonlinear relationships in

outer models. They based their analysis on the similarities between latent variable

scores and the first principal component. In order to maximize the explanatory

power of the first principal component in PLS Path Modelling in a reflective ap-

proach, they proposed transforming the observed variables with nonlinear principal

component analysis and monotic B-spline functions. Moreover, Jakobowicz (2007)

proposed transforming the inner model by monotic B-spline functions, estimating

the model parameters in two stages. Even though in this case the model relation-

ships can be interpreted, the transformation properties have yet to be studied.

9.2.2 Approaches to Interaction Effects

A moderator variable is “a qualitative or quantitative variable that affects

the direction and/or strength of the relation between an independent or predictor

variable and a dependent or criterion variable” (Baron & Kenny, 1986, p. 1174). In



195 9.2 Background

a SEM context, the idea is to study whether there is any unobserved variable that

has a nonlinear or interaction effect on a given endogenous latent variable. Four

approaches have been suggested to deal with this problem in a PLS framework:

Wold’s approach (Wold, 1982), the product indicator approach (Chin et al., 2003),

the two-stage approach (Henseler & Fassott, 2005; Henseler et al., 2009), and the

orthogonalizing approach (Little et al., 2006). Despite the fact that none of these

approaches can be used for formative outer models, to the best of our knowledge,

contributions on these topics are rather scarce. So, we give a brief overview of the

methods.

The product indicator approach. The product indicator procedure was in-

troduced by Busemeyer & Jones (1983) and Kenny & Judd (1984) in a covariance-

based framework, and by Chin et al. (2003) in PLS Mode A to estimate interaction

effects. Cross-product terms are introduced and modeled as unobserved variables.

Building a set of indicators for these terms, the entire structural model is estimated

in the usual manner. To do this, each indicator of the moderator construct should

be multiplied by each indicator of the predictor variable. The main drawback of

this procedure is that there is no criterion for determining the number of indicators

of the interaction term.

The two-step approach. The idea of a two-step procedure for SEM estima-

tion comes from the covariance-based scientific community (Anderson & Gerbing,

1988), and it has been suggested by Chin et al. (2003) for estimating SEMs with

formative constructs2. Henseler & Chin (2010) implemented the two-step approach

by running the PLS Path Modelling algorithm to compute latent variable scores

in the usual manner (step one). Once these are obtained, the interaction effects

are calculated (step two) and the dependent latent variable is regressed on single

and interaction effects –if a multiple linear regression procedure is followed. The

researchers implemented the procedure for SEMs with reflective outer models. The

main drawback of this procedure is that the interaction effects are not considered

in the computation of unobservable variable scores (limited-information approach).

Wold’s approach. The original solution of Herman Wold (1982) for estimating

interaction effects was presented for a model with two latent variables, and it

focused on modelling a nonlinear inner relationship through a quadratic term. In

his research, the nonlinear latent variable is calculated as the power term of the

construct within the PLS Path Modelling procedure, i.e. in the iterative stage. A

2Recall that in PLS Path Modelling, reflective and formative representations can be modeled.
In the iterative stage, Mode A is usually used to upgrade the weights vector in reflective outer
models; and Mode B in the case of formative outer models.
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generalization of Wold’s approach can be found in Henseler & Chin (2010). These

researchers call it “the hybrid approach” because it combines elements from the

product indicator and the two-step approaches. The key aspect of this procedure

is the non-standardization of nonlinear and moderating variables, which allow the

effects to be interpreted once they are calculated.

The orthogonal approach. This procedure3 has been suggested in a covariance-

based approach by Little et al. (2006). As the nonlinear terms are usually com-

puted directly from latent variable scores, it is necessary to address multicollinear-

ity among independent variables in the multiple regression of the endogenous on

the exogenous latent variables. The orthogonal approach was introduced to over-

come this drawback. Basically, the procedure consists of building indicators by

multiplying the manifest variables of predictor and moderator variables as in a

product indicator approach. The residuals from the regressions of these indicators

on the variables of the predictor and moderator variables are used as indicators

of the interaction term. Henseler et al. (2007) suggested that this approach is

easily transferable to PLS path modelling and Henseler & Chin (2010) finally

implemented the procedure.

9.2.3 Simulation studies

Simulation studies have been conducted to assess whether the PLS Path Mod-

elling algorithm can detect the presence of nonlinear or interaction effects. These

investigations have only worked with reflective measurement models, however.

Through an extensive Monte Carlo simulation study, Chin et al. (2003) have com-

pared the product indicator approach and the product of the sums approach. The

latter was suggested by Cohen & Cohen (1983) in a covariance-based specification

and considered by Chin et al. (2003) and Goodhue et al. (2007) in a PLS context.

As seen above, in a product indicator approach, a moderating latent variable is

created by considering all possible combinations obtained by multiplying the indi-

cators from predictor and moderator variables. In a product of the sums approach,

the interaction variable is calculated as the sum of the items of the first construct

multiplied by the sum of the items of the second construct. Thus, the variables

are aggregated in a single score (summed or averaged). In both approaches, the

dependent variable is regressed on the predictors, the moderator variable and the

interaction effect. Chin et al. (2003) showed that the product indicator approach

is superior to regression with a product of the sums approach. The interaction

path coefficient of product indicator approach “was larger and closer to the true

3This procedure is based on the so-called residual-centering approach that is widely used in
multiple regression when there is multicollinearity between interaction terms and first-order terms
(Lance, 1988).
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parameter value.” Goodhue et al. (2007) argued that this approach provides less

statistical power than the product of the sums approach, and this problem in-

creases with the number of indicators and with the sample size. They recommend

that “if having a sufficient sample size to achieve statistical significance for an

interaction path is a concern, regression or PLS with a product of sums approach

would be preferred to PLS with product indicator approach” (p. 213). The results

of these research efforts are not yet conclusive.

Recently, Henseler & Fassott (2005), Henseler et al. (2007), Henseler & Fassott

(2010) and Henseler & Chin (2010) have compared the performance of the four in-

teraction effects approaches described above for a PLS Path Modelling framework.

Henseler & Chin (2010) concluded that:

1. The two-step approach and Wold’s approach (or hybrid approach) place

more emphasis on controlling type II errors (statistical power), the two-step

approach being the recommended procedure for assessing the significance of

an interaction effect.

2. For medium and large sample sizes, the product indicator approach provides

the smaller biases.

3. For small sample sizes, the orthogonal approach allows for estimates closest

to the true values (lower bias).

4. The product indicator approach and the orthogonal approach are recom-

mended if the researcher is looking for small mean square errors (foci in

precision and prediction).

5. As the prediction is the main foci of the PLS Path Modelling procedure,

the orthogonal approach is strongly recommended for estimating interaction

effects given that it provides accurate estimates for interaction and direct

effects.

From another perspective, moderating effects have also been integrated in

component-based models by splitting up the data into groups according to a cate-

gorical variable, and estimating the model for each data group (Henseler & Fassott,

2005). The underlying idea is that the differences between estimates moderate the

relationships among the variables in the model. This approach has also been

followed in covariance-based specifications by Ping (1995). Qureshi & Compeau

(2009) focused on comparing covariance– and component–based SEM multigroup

analysis for checking the ability of the methods to detect between-group differ-

ences. The researchers found three important results, summarized as follows:
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1. The component-based approach outperforms the covariance-based approach

when the sample size is small, data are normally distributed, and the exoge-

nous variables are correlated.

2. The covariance-based approach performs similarly to the component-based

approach with large samples and normal data.

3. In the case of non-normal data, “neither technique could consistently detect

differences across the groups in two of the paths, suggesting that both tech-

niques struggle with the prediction of a highly skewed and kurtotic depen-

dent variable. Both techniques detected the differences in the other paths

consistently under conditions of non-normality, with the component-based

approach preferable at moderate effect sizes, particularly for smaller sam-

ples” (p. 197).

9.2.4 Formative Constructs

Recently there has been an increase in the use of formative outer models to

model manifest and latent relationships (see Chapter 6). However, empirical evi-

dence is still not conclusive enough to provide a roadmap to researchers for mod-

elling formative constructs, at least in a PLS approach. Simulation studies con-

sidering formative block of variables have been carried out, but they have focused

on investigating the PLS Path Modelling performance (Cassel et al., 1999); the

study of the effect of erroneously assuming a model as reflective when it is actually

formative (Jarvis et al., 2003; Petter et al., 2007; Vilares et al., 2010); the analysis

of the PLS Path Modelling behavior against asymmetric data (Vilares et al., 2010)

and multicollinearity (Westlund et al., 2008); and the comparison of the robustness

of the covariance- and component-based approaches (Ringle et al., 2009). So far,

there is no evidence or guidelines to assess how well the PLS algorithm detects the

presence or absence of nonlinear and/or interaction effects among formative con-

structs. So, using Monte Carlo simulations, this research is the first to investigate

the performance of a Two-Step PLS Path Modelling Mode C (TsPLS) procedure

for SEMs with reflective and formative measurement models.

Recall that formative outer models are used to minimize residuals in the rela-

tionships between latent and manifest variables. Manifest variables cause a change

in the latent variable and they should be a census of indicators, not a sample

(Bollen & Lennox, 1991). Additionally, a strong theory must support the deci-

sion to model a block of variables as formative (Fornell & Bookstein, 1982; Cohen

et al., 1990; Bollen & Lennox, 1991). Unlike the reflective measurement models,

the manifest variables forming a construct do not have to be especially correlated.

On the contrary, the multicollinearity affects the stability of the estimates.



199 9.3 Two-Step PLS Path Modelling Mode C (TsPLS)

Figure 9.1: Path diagram of a structural equation model with linear (ξ1, ξ2 and ξ3)
nonlinear (ξ22) and interaction (ξ1ξ3) effects.

9.3 Two-Step PLS Path Modelling Mode C (TsPLS)

For considering nonlinearities in a structural equation model, linear relation-

ships between latent variables are replaced by a linear polynomial model. So,

quadratic and cross-product terms of the constructs are introduced in the rela-

tionships between exogenous and endogenous unobservable variables. Thus, if ξ1,

ξ2, and ξ3 are exogenous constructs and η is an endogenous latent variable, the

following nonlinear and interaction constructs may be related to η: ξ22 and ξ1ξ3

(see Figure 9.1). Equation 9.1 describes the structural relationship between the

dependent latent variable and the linear and nonlinear unobservable terms:

η = βj0 +
∑
j

βjξj +
∑
j

αjξ
2
j +

∑
j

∑
i

γjiξjξi + ζ (9.1)

where ξj and η are the exogenous and endogenous unobservable variables respec-

tively, βj , αj , and γj are regression coefficients, and ζ is the residual term. This

relationship considers the main effects of unobservable variables, but also allowing

for nonlinear and interaction effects of exogenous constructs.

To compute nonlinear terms, a two-step score construction procedure was im-

plemented based on the Lohmöller specification for PLS Path Modelling. Unob-

servable variables are computed as usual in the iterative stage of the PLS algorithm

(step one). Mode A is used to update the outer weights in reflective outer mod-

els, and Mode B in formative outer models. Once the algorithm converges, the

quadratic and cross-product terms are directly computed from the value of the un-

observable variables (step two)4. Then, the endogenous latent variable is regressed

on the linear, nonlinear and moderate latent terms.

4Note that it is not explicitly considered a set of manifest variables to estimate nonlinear and
interaction terms.
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Figure 9.2: Structural and measurement models of the simulated setups; measurement
models consider two, four, six, and eight indicators per construct.

9.4 Designing the Monte Carlo Simulation Study

A simulation study was performed to address several issues (Paxton et al.,

2001; Gentle, 2003). The aims were:

1. To analyze the performance of the TsPLS procedure to recover true val-

ues for linear, nonlinear and interaction effects when considering formative

measurement models.

2. To analyze the performance of the TsPLS procedure when few indicators are

considered per unobserved variable.

3. To analyze the performance of the TsPLS procedure when considering dif-

ferent sample sizes.

Based on a patent value model (Mart́ınez-Ruiz & Aluja-Banet, 2009), the un-

derlying PLS population model considered a simple structure with three formative

exogenous constructs and one reflective endogenous latent variable (Figure 9.2).

The experimental design considered models with two, four, six and eight indicators

per construct, and four sample sizes (50, 100, 250, 500) were studied. Five hundred

random data sets were generated for each of the 4×4 cells of the two-factor design.

Five hundred replications (t) were made for each cell in the design. TsPLS algo-

rithm with centroid scheme was implemented in R-project (R Development Core

Team, 2007). To update the outer weights vectors, Mode A was used in reflective

outer models and Mode B in formative outer models. We arbitrarily investigated

the nonlinear effect of the second construct (ξ2), and the moderating effect of the

first construct (ξ1) on the third unobservable variable (ξ3). Results are provided

in terms of the:
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- Mean value of the estimates.

- Mean standard deviation (dispersion) and variance (variability).

- Mean confidence intervals (reliability).

- Bias (accuracy, 1
t

∑t
i=1E[θi] − θ) and mean relative bias (accuracy, MRB=

100 ∗ 1
t

∑t
i=1

θ−E[θi]
θ , Chin et al. (2003)).

- Mean square error (precision, MSE= Bias2 + V ariance).

9.4.1 Generating Data

Data were generated from a component-based model (Schneeweiss, 1991). For

each formative exogenous construct ξj , we began generating standardized manifest

variables xjh as independent normal data. This is quite consistent with the litera-

ture review above, where manifest variables in a formative measurement model do

not have to have a special type of relationship and should rather represent different

facets of a construct. Once the manifest variables were generated, we computed

the linear, nonlinear and interaction terms. The endogenous latent variable η was

calculated as a linear combination of the exogenous unobserved variables, and the

nonlinear and interaction terms. Disturbance terms were computed as random

normal data with a zero mean and the corresponding standard deviation. They

were distributed independently of unobservable variables. Standardized observed

variables yi of reflective outer models are generated in the usual way: by consider-

ing errors as random normal data with a zero mean, the corresponding standard

deviation and they were uncorrelated with the latent variable. The variables are

generated so that the variance of the errors and disturbance terms are positive.

It is worth noting that in all cases, the generated exogenous constructs are not

collinear.

9.4.2 Interpreting the Regression Coefficients: Some Comments

on Standardization

We follow the recommendation already made for multiple regression (Allison,

1977; Bohrnstedt & Marwell, 1978)5. Therefore, independent and dependent vari-

ables, which are both linear and unobservable, are standardized; nonlinear and

interaction latent terms are not standardized. If the regression coefficients are

significant, this procedure ensures the interpretability of the coefficients. Henseler

& Chin (2010) used this approach for estimating interaction effects in structural

equation models with reflective measurement models.

5Recall that in multiple regression, standardized coefficient of interaction effects are affected
by changes in the means of the variables or the correlations between predictor and moderator
variable (Allison, 1977).
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9.4.3 Setting True Population Parameters

To set the true population parameters for the PLS models, we took into ac-

count different combinations of values so as to show whether they are recovered

by the TsPLs procedure. In addition, we are especially interested in analyzing the

performance when there are few indicators per construct. In social sciences, partic-

ularly in literature regarding technological change and technology watch studies,

relationships among variables are often small or moderate6. Thus, we wish to

establish whether or not this method is able to recover this type of relationship.

Hence, the values of the coefficients were also set up in an attempt to get closer

to the obtained coefficients when estimating patent value models. Table 9.1 shows

the true population values of weights, loadings, linear, nonlinear and interaction

effects. We consider large values for all the true loadings, at least 0.7 in the case

of two manifest variables per latent variable. This ensures the unidimensionality

of the block of variables and it satisfies the condition imposed by the PLS Path

Modelling algorithm.

9.5 Simulation Results

Figures 9.3, 9.5, 9.7 and 9.10 show the mean bias of the weights, path coef-

ficients and loadings when sample sizes and the number of indicators increase.

Figures 9.4, 9.8 and 9.9 show the mean relative bias of weights, loadings and

path coefficients, depending on the sample size and the number of indicators. In

Appendix 9.8, Tables 9.4 to 9.17 show the mean estimates, standard deviation,

confidence interval, bias, variance, mean square error (MSE) and mean relative

bias (MRB) for weights, path coefficients and loadings for the analyzed cases.

9.5.1 Estimating Weights in Formative Outer Models

The TsPLS procedure yields are similar to the PLS basic design (see Ta-

bles 9.4, 9.5, 9.7 and 9.9). Figure 9.3 reports the mean bias of weight estimates for

models with two, four, six and eight indicators when the sample size varies from

50 to 500 observations. The procedure tends to overestimate the relationships in

formative outer models and results are consistent with the theoretical PLS frame-

work (Wold, 1982; Dijkstra, 2010). Increasing the sample size, the bias decreases,

and for N=500, the procedure almost exactly recovers all the true values (small,

moderate and large values). Biases also decrease with the increasing number of

indicators per construct. It is interesting to note the behavior of the algorithm for

outer models with two manifest variables. Data dispersion is clearly larger. For

6Cohen (1988) suggests that correlations of 0.1, 0.3, and 0.5 express small, medium and large
effect sizes, respectively.
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Table 9.1: True population values for weights, loadings, linear, nonlinear and interaction
effects; a model with three formative exogenous constructs and one reflective endogenous
variable; cases for two, four, six and eight indicators in each outer model.

Coefficient 2 MVs 4 MVs

Weights (0.8,0.5) (0.2,0.3,0.5,0.7)
(0.4,0.8) (0.2,0.4,0.6,0.5)
(0.1,0.9) (0.3,0.5,0.7,0.2)

Linear effects (0.5,0.4,0.3)a (0.5,0.4,0.3)b

Nonlinear effects 0.3 0.3
Interaction effects 0.3 0.3
Loadings (0.7,0.8) (0.6,0.7,0.8,0.9)

Coefficient 6 MVs 8 MVs

Weights (0.5,0.3,0.4,0.3,0.5,0.1) (0.3,0.3,0.4,0.3,0.4,0.3,0.2,0.3)
(0.2,0.4,0.6,0.4,0.2,0.3) (0.3,0.3,0.4,0.4,0.2,0.3,0.4,0.2)
(0.3,0.6,0.2,0.3,0.4,0.2) (0.4,0.5,0.4,0.3,0.2,0.1,0.3,0.2)

Linear effects (0.5,0.4,0.3)c (0.5,0.4,0.3)d

Nonlinear effects 0.3 0.3
Interaction effects 0.3 0.3
Loadings (0.6,0.7,0.8,0.9,0.6,0.7) (0.6,0.7,0.8,0.9,0.6,0.7,0.8,0.9)

a For N=50 the true vector was (0.3,0.2,0.3).
b For N=50 and N=100 the true vectors were (0.3,0.3,0.2) and (0.3,0.4,0.2),

respectively.
c For N=50 and N=100 the true vectors were (0.3,0.3,0.2) and (0.3,0.4,0.2),

respectively.
d For N=50 and N=100 the true vectors was (0.3,0.4,0.2).

models with four, six and eight indicators, the biases markedly decrease for sample

sizes larger than 250.

Figure 9.4(a) shows the mean relative bias for a weight of 0.5 (true value)

when increasing the sample size and the number of indicators. MRB substantially

decreases with increasing sample size. As in the simulated cases in Chapter 6,

estimates improve by increasing the sample size more than by increasing the num-

ber of observable variables. Tables 9.4 to 9.9 also show that the largest MRBs are

exhibited for models with the smallest sample sizes (N=50). For N=250 and two,

four, six and eight indicators per construct, the average MRBs are 8%, 3%, 3%

and 1%, respectively. In addition, variability and mean square errors decrease by

increasing the sample size or by increasing the number of manifest variables in all

the simulated cases.

9.5.2 Estimating Linear, Nonlinear and Interaction Effects

Figures 9.5, 9.6 and 9.7 show the mean bias of linear, nonlinear and interaction

effects for models with two, four, six and eight manifest variables per construct
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Figure 9.3: Mean bias of weight estimates. Highlighting the influence of the sample size
and the number of indicators.
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Figure 9.4: Mean relative bias of a weight and a loading. Highlighting the influence of the
sample size and the number of indicators per construct.

when the sample size varies from 50 to 500 observations. Tables 9.10 to 9.13 in

section 9.8 report the full list of results for inner relationships.

The TsPLS procedure clearly underestimates the linear, nonlinear and interac-

tion effects. This happens for all sample sizes and number of indicators considered.

Accuracy of estimates improves with increasing sample size and number of indica-

tors. It is worth mentioning that when formative measurement models with two
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Figure 9.5: Mean bias of linear effects. Highlighting the influence of the sample size and
the number of indicators.

indicators per construct are considered, the bias of estimates of linear effects is

less than 10% for all sample sizes. Figure 9.5 shows that biases decrease when

increasing the number of indicators. Figure 9.7 clearly shows that estimates of

nonlinear and interaction effects are more accurate when the sample size and the

number of indicators are increased. For small sample sizes, however, estimates are

more biased, regardless of the number of indicators considered in outer models.

Figures 9.8 and 9.9 report the mean relative bias for linear, nonlinear and

interaction effects. Figure 9.8 shows the remarkable influence of the number of

indicators per construct on the mean relative bias of linear effects, especially for

sample sizes 50 and 100. For instance, for N=100 the MRBs of linear effects

decrease an average 16.7% when the number of indicators varies from two to six in

formative outer models. As expected, accuracy is higher for linear effects than for

nonlinear and interaction effects (see Figure 9.9 and Tables 9.10 to 9.13). However,

MRBs decrease when increasing the sample size and the number of indicators per

construct. As for weights and linear effects, from N=250 on, the MRBs decrease

remarkably, reaching values close to 20% when the sample size is 500. Both factors,

sample size and number of indicators, improve accuracy and precision of linear,

nonlinear and interaction effect estimates.
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Figure 9.6: Average mean bias of linear effects. Highlighting the influence of the sample
size and the number of indicators per construct.
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Figure 9.7: Mean bias of nonlinear and interaction effects. Highlighting the influence of
the sample size and the number of indicators per construct.

9.5.3 Estimating Loadings in Reflective Outer Models

As can be seen in Figure 9.10, the estimates of loadings in all cases are very

close to the true values, regardless of the sample size and number of manifest

variables per construct. Mean biases are less than 20%. TsPLS procedure over-

estimates population values. Moreover, as in the case of the PLS Path Modelling

Mode C procedure, a higher number of manifest variables seems to be more impor-

tant than a higher sample size for decreasing the bias of the estimates in reflective

outer models. This is clearly seen in Figure 9.4(b) where the mean relative bias

for a loading of 0.7 strongly decreases when the number of indicators increases.

So, this suggests that TsPLS estimates are “inconsistent,” that they are only con-

sistent at large.

Summing up, for the proposed interactive models, the estimates of the effects

are quite consistent with previous results. In general, findings suggest that for-
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Figure 9.8: Mean relative bias of linear effects. Highlighting the influence of the sample
size and the number of indicators per construct.
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Figure 9.9: Mean relative bias of nonlinear and interaction effects. Highlighting the influ-
ence of the sample size and the number of indicators per construct.

mative and reflective relationships tend to be overestimated; the estimates are

more reliable when outer models include four or more indicators; and precision

increases remarkably from a sample size of 250. In addition, linear, nonlinear and

interaction effects tend to be underestimated.

9.6 A Case Study: Patent Value Models with Nonlin-

earities

A second-order model of patent value has been proposed (Mart́ınez-Ruiz &

Aluja-Banet, 2009). The structural model includes three formative exogenous con-

structs –the knowledge stock (KS) used by the applicant to create an invention,

the technological scope (TS) of the invention, and the international scope (IS) of

protection– and two reflective endogenous latent variables –the technological use-
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Figure 9.10: Mean bias of loadings. Highlighting the influence of the sample size and the
number of indicators.

fulness and the patent value7. To the best of our knowledge, there has been no

previous study of interaction or nonlinear effects between variables that determine

the patent value. Hence, we are interested in finding evidence for the existence

of nonlinearities in an exploratory way. Since PLS is more suited for analyzing

exploratory and causal-predictive models (Fornell & Bookstein, 1982), TsPLS is

used to investigate these issues. To do this, three models were examined: a linear

additive model (Figure 9.11(a)), an interactive model (Figure 9.11(c)) and a non-

linear model (Figure 9.11(d)). The linear additive model is the second-order model

of patent value. The interactive model –besides describing the linear relationships

between the constructs– draws the moderating effect of the knowledge stock on the

relationship between international scope and both patent value and technological

usefulness (see Figure 9.11(b)). In Figure 9.11(c), the interaction term is displayed

as KS×IS. The nonlinear model depicts the linear relationships and the nonlinear

effect of the international scope on both patent value and technological usefulness.

The nonlinear term is represented as IS2 in Figure 9.11(d).

Models are estimated using a patent sample as described in Chapter 7. In

7See Chapter 7 for patent value model specification.
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(a) Linear additive model (b) Moderating effect

(c) Interactive model (d) Nonlinear model

Figure 9.11: Linear additive model, moderating effects, interactive and nonlinear models
of patent value; patent value (PV) and technological usefulness (USE) are endogenous
latent variables; knowledge stock (KS), technological scope (TS), and international scope
(IS) are formative exogenous constructs.

order to analyze whether there is a pattern in the magnitude of the effects and

significance level of structural relationships, the models were estimated with three

data sets: patents applied for in 1990-1991 (N=129), in 1995-1996 (N=128) and

in 1999-2000 (N=536).

Table 9.2 shows the path coefficients obtained with the TsPLS procedure

for the linear, interactive and nonlinear models of patent value with the three

data sets. Table 9.3 shows the pattern of significance of the structural re-

lationships for the second-order models of patent value with and without lin-

earities. Recall that the TsPLS procedure yields standardized constructs and

–to ensure the interpretability of the results– unstandardized interaction and

nonlinear scores. Table 9.2 also shows the coefficient of multiple determina-

tion R2 for endogenous constructs as well as the effect size f2, F-values and

p-values of the interaction and nonlinear terms on endogenous constructs. R2

represents the amount of variance in the unobservable variables explained by

the predictors. The effect size f2 contrasts the difference of R2 for the inter-
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active/nonlinear models and the linear additive model. The effect size f2 is

computed as (R2
interactive model − R2

linear additive model)/(1 − R2
interactive model) where

R2
interactive model considers all predictors and R2

linear additive model excludes the in-

teraction term. Cohen (1988) suggests that f2 values of 0.02, 0.15 and 0.35 are

indicative of small, medium and large interaction effect sizes.

Table 9.2: Path coefficients for the linear, interactive and nonlinear models of patent value;
coefficient of multiple determination R2 for endogenous constructs, effect size f2, F-test
and p-values of interaction and nonlinear terms on endogenous constructs

Model
Endogenous Exogenous

1990-1991 1995-1996 1999-2000
Variable Variable

Linear Patent Knowledge stock 0.226 0.229 0.293
additive value Technological scope 0.227 0.227 0.272
model International scope 0.233 0.167 0.237

Technological usefulness 0.669 0.698 0.699
Technological Knowledge stock 0.180 0.299 0.073
usefulness Technological scope 0.316 0.334 0.207

International scope 0.143 0.236 0.201

R2 of patent value 0.998 0.999 0.998
R2 of usefulness 0.220 0.338 0.104

Interactive Patent Knowledge stock 0.223 0.227 0.289
model value Technological scope 0.227 0.227 0.273

International scope 0.228 0.165 0.234
Know.stock × Int.scope 0.008 0.007 0.013
Technological usefulness 0.669 0.698 0.701

Technological Knowledge stock 0.185 0.309 0.106
usefulness Technological scope 0.315 0.331 0.191

International scope 0.148 0.247 0.223
Know.stock × Int.scope -0.010 -0.045 -0.120

R2 of patent value 0.998 0.999 0.998
R2 of usefulness 0.220 0.341 0.120
Effect size f2 of interaction term on patent value 0.062 0.000 0.091
F of interaction term on patent value 7.743 0.000 48.215
p-value (0.006) (0.992) (0.000)
Effect size f2 of interaction term on usefulness 0.000 0.002 0.004
F of interaction term on usefulness 0.006 0.247 2.009
p-value (0.938) (0.620) (0.157)

Nonlinear Patent Knowledge stock 0.225 0.226 0.287
model value Technological scope 0.227 0.225 0.272

International scope 0.122 -0.175 -0.135
Int.Scope2 0.068 0.210 0.346
Technological usefulness 0.669 0.701 0.701

Technological Knowledge stock 0.181 0.307 0.082
usefulness Technological scope 0.315 0.336 0.205

International scope 0.281 1.381 0.787
Int.Scope2 -0.086 -0.707 -0.547

R2 of patent value 0.999 1.000 0.999
R2 of usefulness 0.220 0.345 0.107
Effect size f2 of nonlinear term on patent value 0.307 2.999 1.180
F of nonlinear term on patent value 38.121 368.852 626.792
p-value (0.000) (0.000) (0.000)
Effect size f2 of nonlinear term on usefulness 0.000 0.005 0.001
F of nonlinear term on usefulness 0.029 0.634 0.375
p-value (0.865) (0.427) (0.540)

Path coefficients and pattern of significance of the linear additive models are

the same as those presented in Chapter 7. Findings shows that the linear effects
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Table 9.3: Pattern of significance of the structural relationships for the second-order mod-
els of patent value; ***, **, * and “.” at the 0, 0.001, 0.01 and 0.05 significance level,
respectively

Model
Endogenous Exogenous

1990-1991 1995-1996 1999-2000
Variable Variable

Linear additive Patent Knowledge stock *** *** ***
model value Technological scope *** *** ***

International scope *** *** ***
Technological usefulness *** *** ***

Technological Knowledge stock * *** .
usefulness Technological scope *** *** ***

International scope - ** ***

Interactive Patent Knowledge stock *** *** ***
model value Technological scope *** *** ***

International scope *** *** ***
Know.stock × Int.scope ** ** **
Technological usefulness *** *** ***

Technological Knowledge stock * *** *
usefulness Technological scope *** *** ***

International scope - ** ***
Know.stock × Int.scope - - **

Nonlinear Patent Knowledge stock *** *** ***
model value Technological scope *** *** ***

International scope *** *** ***
Int.Scope2 *** *** ***
Technological usefulness *** *** ***

Technological Knowledge stock * *** .
usefulness Technological scope *** *** ***

International scope - - .
Int.Scope2 - - -

obtained with the different data sets are fairly stable, providing empirical evidence

for the consistency of the linear additive model. The value of R2 is 0.99 for patent

value in the three analyzed time periods, and 0.22, 0.33 and 0.10 for technological

usefulness in 1990-1991, 1995-1996 and 1999-2000, respectively. These values are

very similar to those obtained in the interactive and nonlinear model. This would

indicate at first glance that the moderate and nonlinear terms do not help much

to explain the dependent variables, even though there are significant relationships

between variables (Table 9.3). An extended discussion on the results for the linear

additive models can be found in Chapter 7.

As expected, the linear effects remain in the interactive model. The rela-

tionships are also significant. The moderating effects of knowledge stock on the

relationship between international scope and patent value are small, but signifi-

cant, for the three analyzed time-periods. For patents applied for in 1990-2000,

for instance, one standard deviation increase in knowledge stock will both impact

patent value by 0.234 and increase the impact of international scope to patent value
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from 0.289 to 0.302. The interaction term (knowledge stock× international scope)

has a small and significant effect size f2 on patent value in 1990-1991 (f2=0.06,

F=7.74, p-value=0.006) and in 2000-2001 (f2 = 0.09, F=48.21, p-value=0.00).

There is no evidence of an effect size f2 when estimating the model with data

from 1995-1996. There is no evidence of a significant effect size of the interaction

term on technological usefulness. Chin et al. (2003, p. 211) pointed out that “even

a small interaction effect can be meaningful under extreme moderating conditions,

if the resulting beta changes are meaningful, then it is important to take these

conditions into account.” So, findings would indicate that the effect of the inter-

national scope on the patent value is conditional on the value of the knowledge

stock. Recall that the knowledge stock represents the base of knowledge that was

used by the applicant to create an invention. It is formed by two manifest vari-

ables: number of inventors and number of backwards citations. It has been shown

that both variables are significantly related to the knowledge stock and that the

number of inventors contributes to the formation of the construct more than the

backward citations do (Mart́ınez-Ruiz & Aluja-Banet, 2009). On the other hand,

the international scope refers to the geographic zones where protection is sought in

the priority period. Recall that all patents have been granted in the U.S. So, in the

proposed models, international scope is formed by two dummy variables indicat-

ing whether the invention has been protected in the priority period in Germany

and Japan, two major technology-producing countries in the renewable energy

field. When a company has invested a large stock of knowledge in the creation

of a new technology, one can hypothesize that the invention will have a signif-

icant impact –and hence value– on the technological development of renewable

energies. Therefore, the company would tend to quickly protect the invention in

the major renewable energy producers. This may explain the moderating effect of

the knowledge stock on the relationship between international scope and patent

value. Another way to explain the effect is possible, if the variable number of

inventors is closely observed. For patents in renewable energy, the mean, median

and maximum value of the number of inventors is 2.22, 2 and 14, respectively. This

means that approximately 50% of patents have more than two inventors (with a

maximum of 14). Such inventors may work in different countries, which could

encourage the search for wider geographical protection.

Significant linear effects also tend to remain in the nonlinear models; but, as

expected, the relationship between international scope and patent value changes

in the three time periods. Surprisingly, in the nonlinear models, the nonlinear

term of the international scope has a large and significant effect on patent value in

1990-1991 (f2 = 0.30, F=30.12, p-value=0.00), 1995-1996 (f2 = 2.99, F=368.85,

p-value=0.00) and 2000-2001 (f2 = 1.18, F=626.79, p-value=0.00). There is no

evidence of a significant effect of the nonlinear term on technological usefulness.
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These empirical findings would confirm the importance of international scope as

a determinant variable of patent value. These results are in line with those of

Guellec & van Pottelsberghe (2000) who found a nonlinear relationship between

the grant rate of patent applications and the number of designated states (countries

where the invention is protected). It is worth noting that the samples used in this

investigation are much smaller than those used by Guellec & van Pottelsberghe

(2000) (N=22,911). This speaks well of the capabilities of the TsPLS procedure

for estimating these types of relationships with small samples (N from 100 to 500).

9.7 Final Remarks

For the studied models, findings suggest that the TsPLS procedure offers a

way to build “proper indices” for linear, nonlinear and interaction terms and to

estimate the relationships between them. The estimates are always biased. The

procedure shows a tendency to overestimate outer relationships and underestimate

inner relationships. With respect to the accuracy and precision of the estimates ac-

cording to the number of indicators and sample size, the results can be summarized

as follows: the empirical evidence suggests that (1) for reflective relationships, the

number of indicators (for instance, four or more) is a more important factor for

accuracy than the sample size; estimates with small sample sizes prove to have an

MRB that is less than 10%; (2) for formative relationships, the sample size (for

instance, N=250) is a more important factor for accuracy than the number of in-

dicators; estimates with a small number of indicators prove to have an MRB that

is less than 10%; for structural relationships –that is to say linear, nonlinear and

interaction effects– the number of indicators proved to be a more important factor

for accuracy and precision of the estimates. So, even though accurate estimates

can be obtained for formative exogenous relationships with few indicators per con-

struct, a higher number of observed variables is desirable for obtaining accurate

estimates of structural relationships.

On the other hand, the behavior of the Two-Step PLS Path Modelling Mode

C procedure is found to be similar to the approaches studied by Henseler & Chin

(2010) for structural models with reflective measurement models (PLS Path Mod-

elling Mode A), at least in regards to the estimates of inner relationships. See,

for instance, Figure 4 in the article by Henseler & Chin (2010, p. 98-100) and

compare it with Figure 9.6 in this chapter. Henseler & Chin (2010, p. 107) said

that “in our analysis, we focused on the interaction term alone, and did not in-

clude quadratic terms. Although quadratic terms have already been included in

PLS path models (cf. Pavlou & Gefen, 2005), it remains unclear for researchers

how this should be done.” In this research, we have included nonlinear effects in

the same way that interaction effects have been considered. That is, they have
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been calculated after obtaining linear scores and they are not standardized. Other

alternatives may be explored in future research, however. In addition, the Two-

Step PLS Path Modelling Mode C (TsPLS) procedure is a limited-information

approach since nonlinear and interaction effects are not taken into account when

calculating the linear terms. Therefore, comparing the results of this procedure

with those obtained using a Wold’s or hybrid approach should also be the foci of

future research.

In terms of patent value models, there are a number of model variations that

can be studied. For instance, the nonlinear effect of technological scope on the

patent value may also be addressed. For this reason, rather than trying to find a

significant effect, it seems advisable to look for a pattern of significant relation-

ships using several samples, especially given the longitudinal nature of the patent

value problem. A significant pattern provides strong evidence for the existence of

relationships between variables.
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9.8 Appendix: Tables

Table 9.4: True weights, mean weight estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and two indicators per latent variable, 500 runs

N Block True Weights Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.8 0.681 0.681 0.646 0.712 -0.119 0.464 0.478 15
0.5 0.476 0.476 0.438 0.508 -0.024 0.227 0.227 5

2 0.4 0.359 0.359 0.310 0.409 -0.041 0.129 0.131 10
0.8 0.648 0.648 0.602 0.692 -0.152 0.419 0.443 19

3 0.1 0.250 0.250 0.206 0.298 0.150 0.062 0.085 -150
0.9 0.738 0.738 0.688 0.779 -0.162 0.545 0.571 18

100 1 0.8 0.826 0.131 0.815 0.839 0.026 0.017 0.018 -3
0.5 0.522 0.193 0.500 0.540 0.022 0.037 0.038 -4

2 0.4 0.420 0.290 0.392 0.441 0.020 0.084 0.084 -5
0.8 0.849 0.181 0.831 0.867 0.049 0.033 0.035 -6

3 0.1 0.151 0.379 0.117 0.187 0.051 0.144 0.146 -51
0.9 0.863 0.307 0.832 0.884 -0.037 0.095 0.096 4

250 1 0.8 0.841 0.079 0.831 0.850 0.041 0.006 0.008 -5
0.5 0.523 0.120 0.510 0.533 0.023 0.014 0.015 -5

2 0.4 0.432 0.176 0.418 0.447 0.032 0.031 0.032 -8
0.8 0.882 0.091 0.875 0.890 0.082 0.008 0.015 -10

3 0.1 0.113 0.257 0.089 0.140 0.013 0.066 0.066 -13
0.9 0.958 0.060 0.952 0.963 0.058 0.004 0.007 -6

500 1 0.8 0.844 0.058 0.840 0.850 0.044 0.003 0.005 -6
0.5 0.527 0.087 0.522 0.532 0.027 0.008 0.008 -5

2 0.4 0.455 0.116 0.446 0.464 0.055 0.014 0.017 -14
0.8 0.883 0.060 0.875 0.891 0.083 0.004 0.011 -10

3 0.1 0.110 0.189 0.097 0.122 0.010 0.036 0.036 -10
0.9 0.976 0.033 0.972 0.978 0.076 0.001 0.007 -8
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Table 9.5: True weights, mean weight estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and four indicators per latent variable, 500 runs

N Block True Weights Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.2 0.173 0.390 0.130 0.215 -0.027 0.152 0.153 13
0.3 0.239 0.372 0.197 0.282 -0.061 0.139 0.142 20
0.5 0.390 0.366 0.355 0.420 -0.110 0.134 0.146 22
0.7 0.507 0.362 0.478 0.533 -0.193 0.131 0.168 28

2 0.2 0.168 0.382 0.144 0.196 -0.032 0.146 0.147 16
0.4 0.321 0.378 0.293 0.348 -0.079 0.143 0.149 20
0.6 0.460 0.363 0.424 0.490 -0.140 0.132 0.151 23
0.5 0.368 0.390 0.345 0.393 -0.132 0.152 0.170 26

3 0.3 0.232 0.403 0.198 0.258 -0.068 0.163 0.167 23
0.5 0.330 0.413 0.296 0.369 -0.170 0.171 0.200 34
0.7 0.379 0.453 0.341 0.417 -0.321 0.205 0.308 46
0.2 0.176 0.422 0.147 0.208 -0.024 0.178 0.179 12

100 1 0.2 0.205 0.244 0.181 0.232 0.005 0.060 0.060 -3
0.3 0.291 0.234 0.270 0.314 -0.009 0.055 0.055 3
0.5 0.496 0.225 0.471 0.520 -0.004 0.050 0.050 1
0.7 0.656 0.203 0.639 0.674 -0.044 0.041 0.043 6

2 0.2 0.199 0.318 0.183 0.221 -0.001 0.101 0.101 0
0.4 0.329 0.320 0.288 0.358 -0.071 0.102 0.107 18
0.6 0.528 0.308 0.508 0.546 -0.072 0.095 0.100 12
0.5 0.444 0.306 0.422 0.462 -0.056 0.094 0.097 11

3 0.3 0.186 0.370 0.150 0.225 -0.114 0.137 0.150 38
0.5 0.365 0.380 0.331 0.406 -0.135 0.144 0.163 27
0.7 0.483 0.386 0.457 0.511 -0.217 0.149 0.196 31
0.2 0.195 0.387 0.161 0.234 -0.005 0.150 0.150 3

250 1 0.2 0.201 0.125 0.189 0.214 0.001 0.016 0.016 -1
0.3 0.315 0.116 0.305 0.327 0.015 0.013 0.014 -5
0.5 0.523 0.100 0.516 0.531 0.023 0.010 0.010 -5
0.7 0.739 0.085 0.731 0.749 0.039 0.007 0.009 -6

2 0.2 0.208 0.169 0.190 0.227 0.008 0.029 0.029 -4
0.4 0.418 0.160 0.401 0.436 0.018 0.025 0.026 -5
0.6 0.641 0.128 0.631 0.651 0.041 0.016 0.018 -7
0.5 0.531 0.145 0.516 0.547 0.031 0.021 0.022 -6

3 0.3 0.295 0.205 0.279 0.314 -0.005 0.042 0.042 2
0.5 0.506 0.182 0.487 0.528 0.006 0.033 0.033 -1
0.7 0.689 0.157 0.675 0.703 -0.011 0.025 0.025 2
0.2 0.198 0.207 0.182 0.218 -0.002 0.043 0.043 1

500 1 0.2 0.214 0.087 0.206 0.225 0.014 0.007 0.008 -7
0.3 0.319 0.078 0.311 0.327 0.019 0.006 0.006 -6
0.5 0.525 0.077 0.516 0.533 0.025 0.006 0.006 -5
0.7 0.747 0.060 0.742 0.751 0.047 0.004 0.006 -7

2 0.2 0.213 0.112 0.202 0.222 0.013 0.013 0.013 -7
0.4 0.432 0.106 0.424 0.440 0.032 0.011 0.012 -8
0.6 0.657 0.092 0.650 0.669 0.057 0.008 0.012 -10
0.5 0.546 0.101 0.537 0.554 0.046 0.010 0.012 -9

3 0.3 0.316 0.151 0.302 0.329 0.016 0.023 0.023 -5
0.5 0.511 0.135 0.500 0.521 0.011 0.018 0.018 -2
0.7 0.719 0.108 0.707 0.733 0.019 0.012 0.012 -3
0.2 0.220 0.157 0.207 0.231 0.020 0.025 0.025 -10
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Table 9.6: True weights, mean weight estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and six indicators per latent variable, 500 runs

N Block True Weights Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.5 0.316 0.343 0.279 0.363 -0.184 0.118 0.152 37
0.3 0.214 0.337 0.174 0.261 -0.086 0.114 0.121 29
0.4 0.283 0.344 0.234 0.321 -0.117 0.118 0.132 29
0.3 0.200 0.336 0.168 0.237 -0.100 0.113 0.123 33
0.5 0.318 0.347 0.285 0.355 -0.182 0.120 0.153 36
0.1 0.101 0.339 0.069 0.133 0.001 0.115 0.115 -1

2 0.2 0.166 0.352 0.141 0.191 -0.034 0.124 0.125 17
0.4 0.262 0.344 0.219 0.297 -0.138 0.118 0.137 35
0.6 0.388 0.342 0.341 0.432 -0.212 0.117 0.162 35
0.4 0.266 0.332 0.235 0.293 -0.134 0.110 0.128 33
0.2 0.139 0.325 0.109 0.170 -0.061 0.106 0.109 30
0.3 0.223 0.341 0.199 0.252 -0.077 0.116 0.122 26

3 0.3 0.161 0.365 0.127 0.194 -0.139 0.133 0.153 46
0.6 0.273 0.406 0.234 0.314 -0.327 0.165 0.272 55
0.2 0.146 0.365 0.108 0.186 -0.054 0.133 0.136 27
0.3 0.193 0.374 0.147 0.227 -0.107 0.140 0.151 36
0.4 0.220 0.392 0.172 0.257 -0.180 0.154 0.186 45
0.2 0.144 0.364 0.110 0.188 -0.056 0.132 0.135 28

100 1 0.5 0.403 0.260 0.377 0.429 -0.097 0.068 0.077 19
0.3 0.264 0.287 0.240 0.287 -0.036 0.083 0.084 12
0.4 0.314 0.278 0.293 0.340 -0.086 0.077 0.085 22
0.3 0.251 0.278 0.229 0.270 -0.049 0.077 0.080 16
0.5 0.418 0.255 0.399 0.433 -0.082 0.065 0.072 16
0.1 0.096 0.298 0.072 0.125 -0.004 0.089 0.089 4

2 0.2 0.200 0.236 0.179 0.223 0.000 0.056 0.056 0
0.4 0.366 0.230 0.350 0.388 -0.034 0.053 0.054 8
0.6 0.547 0.202 0.526 0.563 -0.053 0.041 0.044 9
0.4 0.369 0.220 0.347 0.394 -0.031 0.048 0.049 8
0.2 0.194 0.240 0.180 0.213 -0.006 0.058 0.058 3
0.3 0.257 0.236 0.239 0.276 -0.043 0.055 0.057 14

3 0.3 0.218 0.326 0.185 0.242 -0.082 0.106 0.113 27
0.6 0.398 0.338 0.363 0.426 -0.202 0.114 0.155 34
0.2 0.130 0.338 0.107 0.155 -0.070 0.114 0.119 35
0.3 0.210 0.325 0.180 0.234 -0.090 0.106 0.114 30
0.4 0.267 0.350 0.235 0.300 -0.133 0.123 0.141 33
0.2 0.151 0.347 0.110 0.196 -0.049 0.120 0.123 25
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Table 9.7: True weights, mean weight estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and six indicators per latent variable, 500 runs

N Block True Weights Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

250 1 0.5 0.527 0.100 0.519 0.536 0.027 0.010 0.011 -5
0.3 0.307 0.115 0.298 0.318 0.007 0.013 0.013 -2
0.4 0.419 0.106 0.408 0.430 0.019 0.011 0.012 -5
0.3 0.314 0.116 0.306 0.324 0.014 0.014 0.014 -5
0.5 0.523 0.107 0.514 0.534 0.023 0.012 0.012 -5
0.1 0.107 0.128 0.095 0.121 0.007 0.016 0.016 -7

2 0.2 0.213 0.152 0.200 0.226 0.013 0.023 0.023 -7
0.4 0.398 0.141 0.390 0.406 -0.002 0.020 0.020 1
0.6 0.612 0.125 0.602 0.626 0.012 0.016 0.016 -2
0.4 0.418 0.146 0.407 0.430 0.018 0.021 0.022 -5
0.2 0.200 0.159 0.182 0.218 0.000 0.025 0.025 0
0.3 0.297 0.153 0.282 0.314 -0.003 0.023 0.023 1

3 0.3 0.305 0.198 0.282 0.329 0.005 0.039 0.039 -2
0.6 0.606 0.161 0.591 0.620 0.006 0.026 0.026 -1
0.2 0.208 0.205 0.189 0.227 0.008 0.042 0.042 -4
0.3 0.294 0.186 0.275 0.309 -0.006 0.035 0.035 2
0.4 0.397 0.195 0.384 0.407 -0.003 0.038 0.038 1
0.2 0.203 0.202 0.185 0.222 0.003 0.041 0.041 -1

500 1 0.5 0.537 0.075 0.532 0.543 0.037 0.006 0.007 -7
0.3 0.316 0.081 0.309 0.325 0.016 0.007 0.007 -5
0.4 0.429 0.078 0.422 0.435 0.029 0.006 0.007 -7
0.3 0.322 0.082 0.314 0.330 0.022 0.007 0.007 -7
0.5 0.529 0.075 0.522 0.535 0.029 0.006 0.007 -6
0.1 0.106 0.081 0.100 0.113 0.006 0.007 0.007 -6

2 0.2 0.207 0.115 0.198 0.214 0.007 0.013 0.013 -3
0.4 0.416 0.106 0.407 0.425 0.016 0.011 0.012 -4
0.6 0.630 0.092 0.621 0.637 0.030 0.009 0.009 -5
0.4 0.422 0.102 0.412 0.430 0.022 0.010 0.011 -5
0.2 0.208 0.112 0.199 0.215 0.008 0.013 0.013 -4
0.3 0.321 0.112 0.310 0.335 0.021 0.013 0.013 -7

3 0.3 0.326 0.152 0.314 0.337 0.026 0.023 0.024 -9
0.6 0.631 0.127 0.618 0.643 0.031 0.016 0.017 -5
0.2 0.207 0.152 0.195 0.224 0.007 0.023 0.023 -4
0.3 0.316 0.150 0.298 0.333 0.016 0.023 0.023 -5
0.4 0.429 0.143 0.413 0.443 0.029 0.020 0.021 -7
0.2 0.209 0.154 0.193 0.224 0.009 0.024 0.024 -5
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Table 9.8: True weights, mean weight estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and eight indicators per latent variable, 500 runs

N Block True Weights Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 1 0.3 0.187 0.308 0.164 0.212 -0.113 0.095 0.108 38
0.3 0.180 0.315 0.147 0.209 -0.120 0.099 0.114 40
0.4 0.274 0.317 0.251 0.298 -0.126 0.101 0.117 31
0.3 0.185 0.323 0.149 0.213 -0.115 0.104 0.117 38
0.4 0.252 0.320 0.227 0.279 -0.148 0.102 0.124 37
0.3 0.191 0.313 0.164 0.218 -0.109 0.098 0.110 36
0.2 0.147 0.317 0.112 0.175 -0.053 0.101 0.103 27
0.3 0.181 0.314 0.156 0.211 -0.119 0.098 0.113 40

2 0.3 0.245 0.280 0.226 0.271 -0.055 0.078 0.081 18
0.3 0.233 0.271 0.208 0.256 -0.067 0.074 0.078 22
0.4 0.299 0.274 0.274 0.322 -0.101 0.075 0.085 25
0.4 0.305 0.284 0.277 0.331 -0.095 0.081 0.090 24
0.2 0.137 0.271 0.107 0.165 -0.063 0.073 0.077 31
0.3 0.235 0.281 0.211 0.262 -0.065 0.079 0.083 22
0.4 0.307 0.270 0.271 0.339 -0.093 0.073 0.082 23
0.2 0.181 0.268 0.161 0.210 -0.019 0.072 0.072 10

3 0.4 0.180 0.358 0.131 0.221 -0.220 0.128 0.177 55
0.5 0.205 0.347 0.180 0.239 -0.295 0.120 0.207 59
0.4 0.161 0.344 0.134 0.189 -0.239 0.119 0.176 60
0.3 0.144 0.358 0.103 0.180 -0.156 0.128 0.152 52
0.2 0.147 0.351 0.111 0.187 -0.053 0.123 0.126 26
0.1 0.079 0.350 0.041 0.120 -0.021 0.123 0.123 21
0.3 0.158 0.352 0.131 0.182 -0.142 0.124 0.144 47
0.2 0.104 0.342 0.082 0.126 -0.096 0.117 0.126 48

100 1 0.3 0.226 0.262 0.203 0.252 -0.074 0.069 0.074 25
0.3 0.242 0.262 0.224 0.261 -0.058 0.068 0.072 19
0.4 0.312 0.277 0.285 0.335 -0.088 0.077 0.085 22
0.3 0.222 0.263 0.203 0.243 -0.078 0.069 0.075 26
0.4 0.314 0.241 0.290 0.340 -0.086 0.058 0.066 21
0.3 0.251 0.270 0.230 0.276 -0.049 0.073 0.075 16
0.2 0.184 0.264 0.160 0.210 -0.016 0.069 0.070 8
0.3 0.215 0.266 0.189 0.240 -0.085 0.071 0.078 28

2 0.3 0.247 0.219 0.231 0.272 -0.053 0.048 0.051 18
0.3 0.254 0.211 0.237 0.266 -0.046 0.045 0.047 15
0.4 0.371 0.213 0.354 0.388 -0.029 0.045 0.046 7
0.4 0.359 0.213 0.341 0.377 -0.041 0.045 0.047 10
0.2 0.182 0.213 0.158 0.207 -0.018 0.046 0.046 9
0.3 0.272 0.222 0.250 0.300 -0.028 0.049 0.050 9
0.4 0.364 0.214 0.341 0.388 -0.036 0.046 0.047 9
0.2 0.191 0.229 0.169 0.213 -0.009 0.052 0.052 4

3 0.4 0.248 0.300 0.227 0.272 -0.152 0.090 0.113 38
0.5 0.294 0.300 0.274 0.321 -0.206 0.090 0.133 41
0.4 0.254 0.304 0.221 0.296 -0.146 0.092 0.114 37
0.3 0.178 0.301 0.151 0.209 -0.122 0.090 0.105 41
0.2 0.122 0.292 0.098 0.139 -0.078 0.085 0.091 39
0.1 0.089 0.313 0.065 0.115 -0.011 0.098 0.098 11
0.3 0.175 0.306 0.155 0.201 -0.125 0.094 0.109 42
0.2 0.117 0.321 0.090 0.145 -0.083 0.103 0.110 42
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Table 9.9: True weights, mean weight estimates, standard deviations, confidence inter-
vals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and eight indicators per latent variable, 500 runs

N Block True Weights Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

250 1 0.3 0.324 0.118 0.315 0.335 0.024 0.014 0.015 -8
0.3 0.307 0.113 0.297 0.316 0.007 0.013 0.013 -2
0.4 0.431 0.111 0.416 0.442 0.031 0.012 0.013 -8
0.3 0.323 0.114 0.312 0.334 0.023 0.013 0.014 -8
0.4 0.416 0.115 0.406 0.427 0.016 0.013 0.014 -4
0.3 0.314 0.118 0.304 0.325 0.014 0.014 0.014 -5
0.2 0.214 0.123 0.205 0.224 0.014 0.015 0.015 -7
0.3 0.324 0.113 0.316 0.335 0.024 0.013 0.013 -8

2 0.3 0.302 0.152 0.288 0.316 0.002 0.023 0.023 -1
0.3 0.313 0.150 0.291 0.333 0.013 0.022 0.023 -4
0.4 0.395 0.136 0.385 0.407 -0.005 0.018 0.018 1
0.4 0.400 0.134 0.388 0.413 0.000 0.018 0.018 0
0.2 0.205 0.149 0.196 0.214 0.005 0.022 0.022 -3
0.3 0.300 0.156 0.286 0.313 0.000 0.024 0.024 0
0.4 0.400 0.143 0.386 0.416 0.000 0.020 0.020 0
0.2 0.210 0.149 0.198 0.222 0.010 0.022 0.022 -5

3 0.4 0.379 0.170 0.364 0.393 -0.021 0.029 0.029 5
0.5 0.475 0.166 0.461 0.490 -0.025 0.027 0.028 5
0.4 0.386 0.171 0.373 0.401 -0.014 0.029 0.030 4
0.3 0.284 0.189 0.269 0.299 -0.016 0.036 0.036 5
0.2 0.180 0.183 0.160 0.201 -0.020 0.033 0.034 10
0.1 0.074 0.192 0.059 0.093 -0.026 0.037 0.038 26
0.3 0.283 0.181 0.268 0.297 -0.017 0.033 0.033 6
0.2 0.189 0.182 0.172 0.204 -0.011 0.033 0.033 5

500 1 0.3 0.332 0.082 0.322 0.338 0.032 0.007 0.008 -11
0.3 0.319 0.084 0.314 0.325 0.019 0.007 0.007 -6
0.4 0.428 0.075 0.423 0.434 0.028 0.006 0.006 -7
0.3 0.325 0.077 0.318 0.330 0.025 0.006 0.006 -8
0.4 0.434 0.076 0.428 0.441 0.034 0.006 0.007 -8
0.3 0.330 0.082 0.322 0.338 0.030 0.007 0.008 -10
0.2 0.217 0.085 0.210 0.226 0.017 0.007 0.007 -9
0.3 0.327 0.086 0.318 0.337 0.027 0.007 0.008 -9

2 0.3 0.316 0.108 0.307 0.325 0.016 0.012 0.012 -5
0.3 0.313 0.108 0.303 0.327 0.013 0.012 0.012 -4
0.4 0.415 0.106 0.408 0.423 0.015 0.011 0.012 -4
0.4 0.425 0.097 0.416 0.433 0.025 0.009 0.010 -6
0.2 0.213 0.104 0.204 0.222 0.013 0.011 0.011 -7
0.3 0.314 0.105 0.301 0.328 0.014 0.011 0.011 -5
0.4 0.421 0.102 0.410 0.433 0.021 0.011 0.011 -5
0.2 0.212 0.101 0.203 0.222 0.012 0.010 0.010 -6

3 0.4 0.409 0.132 0.394 0.424 0.009 0.017 0.017 -2
0.5 0.510 0.131 0.502 0.519 0.010 0.017 0.017 -2
0.4 0.399 0.131 0.383 0.414 -0.001 0.017 0.017 0
0.3 0.298 0.137 0.282 0.309 -0.002 0.019 0.019 1
0.2 0.206 0.145 0.194 0.218 0.006 0.021 0.021 -3
0.1 0.103 0.146 0.084 0.122 0.003 0.021 0.021 -3
0.3 0.293 0.140 0.283 0.301 -0.007 0.020 0.020 2
0.2 0.199 0.139 0.186 0.213 -0.001 0.019 0.019 0
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Table 9.10: True path coefficients, mean estimates of linear, nonlinear and interaction
effects, standard deviations, confidence intervals, biases, variances, mean square errors
and mean relative bias (%) for models with two indicators per latent variable, 500 runs

N Effect True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 Linear (1) 0.3 0.252 0.252 0.233 0.269 -0.048 0.063 0.066 16
Linear (2) 0.2 0.159 0.159 0.145 0.175 -0.041 0.025 0.027 20
Linear (3) 0.3 0.231 0.231 0.216 0.247 -0.069 0.053 0.058 23
Nonlinear 0.3 0.129 0.129 0.114 0.141 -0.171 0.017 0.046 57
Interaction 0.3 0.140 0.140 0.128 0.154 -0.160 0.020 0.045 53

100 Linear (1) 0.5 0.413 0.071 0.406 0.421 -0.087 0.005 0.013 17
Linear (2) 0.4 0.310 0.081 0.303 0.320 -0.090 0.006 0.015 22
Linear (3) 0.3 0.224 0.102 0.218 0.231 -0.076 0.010 0.016 25
Nonlinear 0.3 0.178 0.065 0.172 0.185 -0.122 0.004 0.019 41
Interaction 0.3 0.189 0.101 0.180 0.195 -0.111 0.010 0.022 37

250 Linear (1) 0.5 0.414 0.044 0.410 0.419 -0.086 0.002 0.009 17
Linear (2) 0.4 0.308 0.047 0.305 0.312 -0.092 0.002 0.011 23
Linear (3) 0.3 0.235 0.044 0.231 0.240 -0.065 0.002 0.006 22
Nonlinear 0.3 0.199 0.037 0.195 0.203 -0.101 0.001 0.012 34
Interaction 0.3 0.215 0.046 0.213 0.218 -0.085 0.002 0.009 28

500 Linear (1) 0.5 0.413 0.030 0.410 0.416 -0.087 0.001 0.008 17
Linear (2) 0.4 0.315 0.033 0.313 0.318 -0.085 0.001 0.008 21
Linear (3) 0.3 0.236 0.032 0.233 0.238 -0.064 0.001 0.005 21
Nonlinear 0.3 0.205 0.024 0.203 0.208 -0.095 0.001 0.010 32
Interaction 0.3 0.218 0.033 0.216 0.221 -0.082 0.001 0.008 27

Table 9.11: True path coefficients, mean estimates of linear, nonlinear and interaction
effects, standard deviations, confidence intervals, biases, variances, mean square errors
and mean relative bias (%) for models with four indicators per latent variable, 500 runs

N Effect True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 Linear (1) 0.3 0.294 0.156 0.280 0.309 -0.006 0.024 0.024 2
Linear (2) 0.3 0.278 0.161 0.261 0.293 -0.022 0.026 0.026 7
Linear (3) 0.2 0.189 0.194 0.171 0.206 -0.011 0.038 0.038 6
Nonlinear 0.3 0.103 0.111 0.093 0.114 -0.197 0.012 0.051 66
Interaction 0.3 0.077 0.147 0.066 0.086 -0.223 0.022 0.071 74

100 Linear (1) 0.4 0.355 0.081 0.349 0.362 -0.045 0.007 0.009 11
Linear (2) 0.3 0.261 0.096 0.252 0.269 -0.039 0.009 0.011 13
Linear (3) 0.2 0.181 0.117 0.169 0.194 -0.019 0.014 0.014 9
Nonlinear 0.3 0.141 0.083 0.131 0.149 -0.159 0.007 0.032 53
Interaction 0.3 0.137 0.117 0.124 0.151 -0.163 0.014 0.040 54

250 Linear (1) 0.5 0.440 0.042 0.436 0.444 -0.060 0.002 0.005 12
Linear (2) 0.4 0.335 0.044 0.332 0.339 -0.065 0.002 0.006 16
Linear (3) 0.3 0.264 0.042 0.260 0.269 -0.036 0.002 0.003 12
Nonlinear 0.3 0.208 0.039 0.205 0.212 -0.092 0.001 0.010 31
Interaction 0.3 0.220 0.048 0.214 0.224 -0.080 0.002 0.009 27

500 Linear (1) 0.5 0.448 0.027 0.445 0.450 -0.052 0.001 0.003 10
Linear (2) 0.4 0.344 0.029 0.341 0.346 -0.056 0.001 0.004 14
Linear (3) 0.3 0.267 0.030 0.265 0.270 -0.033 0.001 0.002 11
Nonlinear 0.3 0.222 0.025 0.221 0.224 -0.078 0.001 0.007 26
Interaction 0.3 0.235 0.033 0.233 0.239 -0.065 0.001 0.005 22
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Table 9.12: True path coefficients, mean estimates of linear, nonlinear and interaction
effects, standard deviations, confidence intervals, biases, variances, mean square errors
and mean relative bias (%) for models with six indicators per latent variable, 500 runs

N Effect True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 Linear (1) 0.3 0.305 0.153 0.291 0.317 0.005 0.023 0.023 -2
Linear (2) 0.3 0.292 0.169 0.270 0.311 -0.008 0.029 0.029 3
Linear (3) 0.2 0.207 0.204 0.188 0.226 0.007 0.041 0.042 -4
Nonlinear 0.3 0.086 0.108 0.079 0.095 -0.214 0.012 0.058 71
Interaction 0.3 0.052 0.136 0.038 0.066 -0.248 0.018 0.080 83

100 Linear (1) 0.3 0.287 0.090 0.278 0.296 -0.013 0.008 0.008 4
Linear (2) 0.4 0.354 0.084 0.346 0.364 -0.046 0.007 0.009 11
Linear (3) 0.2 0.202 0.109 0.191 0.214 0.002 0.012 0.012 -1
Nonlinear 0.3 0.153 0.075 0.147 0.159 -0.147 0.006 0.027 49
Interaction 0.3 0.094 0.095 0.084 0.103 -0.206 0.009 0.051 69

250 Linear (1) 0.5 0.443 0.041 0.438 0.446 -0.057 0.002 0.005 11
Linear (2) 0.4 0.342 0.043 0.337 0.346 -0.058 0.002 0.005 15
Linear (3) 0.3 0.250 0.045 0.247 0.253 -0.050 0.002 0.005 17
Nonlinear 0.3 0.210 0.038 0.206 0.214 -0.090 0.001 0.010 30
Interaction 0.3 0.192 0.048 0.187 0.197 -0.108 0.002 0.014 36

500 Linear (1) 0.5 0.448 0.029 0.446 0.451 -0.052 0.001 0.004 10
Linear (2) 0.4 0.348 0.028 0.345 0.351 -0.052 0.001 0.003 13
Linear (3) 0.3 0.255 0.030 0.253 0.257 -0.045 0.001 0.003 15
Nonlinear 0.3 0.228 0.028 0.225 0.230 -0.072 0.001 0.006 24
Interaction 0.3 0.215 0.032 0.212 0.218 -0.085 0.001 0.008 28

Table 9.13: True path coefficients, mean estimates of linear, nonlinear and interaction
effects, standard deviations, confidence intervals, biases, variances, mean square errors
and mean relative bias (%) for models with eight indicators per latent variable, 500 runs

N Effect True Path Coefficients Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 Linear (1) 0.3 0.302 0.151 0.286 0.318 0.002 0.023 0.023 -1
Linear (2) 0.4 0.373 0.120 0.362 0.383 -0.027 0.014 0.015 7
Linear (3) 0.2 0.220 0.191 0.202 0.242 0.020 0.036 0.037 -10
Nonlinear 0.3 0.090 0.099 0.080 0.101 -0.210 0.010 0.054 70
Interaction 0.3 0.048 0.120 0.036 0.062 -0.252 0.014 0.078 84

100 Linear (1) 0.3 0.297 0.077 0.290 0.303 -0.003 0.006 0.006 1
Linear (2) 0.4 0.357 0.080 0.350 0.364 -0.043 0.006 0.008 11
Linear (3) 0.2 0.226 0.110 0.215 0.238 0.026 0.012 0.013 -13
Nonlinear 0.3 0.134 0.074 0.125 0.142 -0.166 0.005 0.033 55
Interaction 0.3 0.078 0.092 0.069 0.089 -0.222 0.009 0.058 74

250 Linear (1) 0.5 0.434 0.042 0.431 0.439 -0.066 0.002 0.006 13
Linear (2) 0.4 0.343 0.046 0.338 0.349 -0.057 0.002 0.005 14
Linear (3) 0.3 0.268 0.045 0.264 0.272 -0.032 0.002 0.003 11
Nonlinear 0.3 0.195 0.042 0.193 0.199 -0.105 0.002 0.013 35
Interaction 0.3 0.191 0.051 0.187 0.196 -0.109 0.003 0.015 36

500 Linear (1) 0.5 0.447 0.029 0.444 0.450 -0.053 0.001 0.004 11
Linear (2) 0.4 0.350 0.031 0.348 0.353 -0.050 0.001 0.003 12
Linear (3) 0.3 0.268 0.029 0.266 0.271 -0.032 0.001 0.002 11
Nonlinear 0.3 0.223 0.027 0.221 0.226 -0.077 0.001 0.007 26
Interaction 0.3 0.218 0.031 0.215 0.221 -0.082 0.001 0.008 27
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Table 9.14: True loadings, mean loadings estimates, standard deviations, confidence in-
tervals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and two indicators per latent variable, 500 runs

N True Loadings Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.7 0.857 0.857 0.850 0.865 0.157 0.735 0.760 -22
0.8 0.886 0.886 0.880 0.891 0.086 0.785 0.793 -11

100 0.7 0.857 0.039 0.855 0.860 0.157 0.002 0.026 -22
0.8 0.893 0.026 0.890 0.896 0.093 0.001 0.009 -12

250 0.7 0.857 0.023 0.854 0.859 0.157 0.001 0.025 -22
0.8 0.894 0.016 0.893 0.896 0.094 0.000 0.009 -12

500 0.7 0.859 0.016 0.857 0.860 0.159 0.000 0.025 -23
0.8 0.894 0.012 0.893 0.896 0.094 0.000 0.009 -12

Table 9.15: True loadings, mean loadings estimates, standard deviations, confidence in-
tervals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and four indicators per latent variable, 500 runs

N True Loadings Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.706 0.107 0.692 0.719 0.106 0.011 0.023 -18
0.7 0.784 0.075 0.777 0.791 0.084 0.006 0.013 -12
0.8 0.852 0.049 0.849 0.855 0.052 0.002 0.005 -6
0.9 0.913 0.026 0.910 0.915 0.013 0.001 0.001 -1

100 0.6 0.714 0.064 0.707 0.719 0.114 0.004 0.017 -19
0.7 0.791 0.046 0.787 0.794 0.091 0.002 0.010 -13
0.8 0.856 0.032 0.853 0.859 0.056 0.001 0.004 -7
0.9 0.919 0.016 0.917 0.920 0.019 0.000 0.001 -2

250 0.6 0.697 0.040 0.693 0.700 0.097 0.002 0.011 -16
0.7 0.783 0.026 0.781 0.785 0.083 0.001 0.008 -12
0.8 0.854 0.018 0.853 0.856 0.054 0.000 0.003 -7
0.9 0.918 0.008 0.917 0.919 0.018 0.000 0.000 -2

500 0.6 0.702 0.027 0.700 0.705 0.102 0.001 0.011 -17
0.7 0.786 0.019 0.784 0.788 0.086 0.000 0.008 -12
0.8 0.855 0.012 0.854 0.856 0.055 0.000 0.003 -7
0.9 0.919 0.006 0.919 0.920 0.019 0.000 0.000 -2
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Table 9.16: True loadings, mean loadings estimates, standard deviations, confidence in-
tervals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and six indicators per latent variable, 500 runs

N True Loadings Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.672 0.094 0.663 0.682 0.072 0.009 0.014 -12
0.7 0.756 0.066 0.752 0.761 0.056 0.004 0.007 -8
0.8 0.832 0.051 0.829 0.837 0.032 0.003 0.004 -4
0.9 0.919 0.022 0.916 0.921 0.019 0.001 0.001 -2
0.6 0.742 0.073 0.736 0.747 0.142 0.005 0.026 -24
0.7 0.821 0.050 0.816 0.825 0.121 0.002 0.017 -17

100 0.6 0.664 0.066 0.656 0.671 0.064 0.004 0.008 -11
0.7 0.755 0.051 0.750 0.759 0.055 0.003 0.006 -8
0.8 0.833 0.033 0.830 0.836 0.033 0.001 0.002 -4
0.9 0.920 0.016 0.919 0.922 0.020 0.000 0.001 -2
0.6 0.746 0.052 0.740 0.752 0.146 0.003 0.024 -24
0.7 0.826 0.033 0.823 0.828 0.126 0.001 0.017 -18

250 0.6 0.663 0.041 0.660 0.666 0.063 0.002 0.006 -10
0.7 0.754 0.028 0.752 0.757 0.054 0.001 0.004 -8
0.8 0.828 0.020 0.826 0.830 0.028 0.000 0.001 -3
0.9 0.920 0.009 0.919 0.921 0.020 0.000 0.000 -2
0.6 0.740 0.033 0.738 0.742 0.140 0.001 0.021 -23
0.7 0.820 0.020 0.818 0.821 0.120 0.000 0.015 -17

500 0.6 0.660 0.028 0.657 0.662 0.060 0.001 0.004 -10
0.7 0.751 0.021 0.749 0.753 0.051 0.000 0.003 -7
0.8 0.831 0.014 0.829 0.832 0.031 0.000 0.001 -4
0.9 0.920 0.006 0.920 0.921 0.020 0.000 0.000 -2
0.6 0.741 0.021 0.739 0.743 0.141 0.000 0.020 -23
0.7 0.822 0.015 0.821 0.823 0.122 0.000 0.015 -17
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Table 9.17: True loadings, mean loadings estimates, standard deviations, confidence in-
tervals, biases, variances, mean square errors and mean relative bias (%) for models with
nonlinearities and eight indicators per latent variable, 500 runs

N True Loadings Mean S.D. L.Bound U.Bound Bias Var MSE MRB (%)

50 0.6 0.639 0.103 0.628 0.649 0.039 0.011 0.012 -7
0.7 0.737 0.071 0.731 0.745 0.037 0.005 0.006 -5
0.8 0.821 0.049 0.816 0.825 0.021 0.002 0.003 -3
0.9 0.931 0.019 0.929 0.933 0.031 0.000 0.001 -3
0.6 0.729 0.069 0.724 0.733 0.129 0.005 0.021 -21
0.7 0.812 0.051 0.809 0.816 0.112 0.003 0.015 -16
0.8 0.879 0.033 0.876 0.881 0.079 0.001 0.007 -10
0.9 0.932 0.018 0.930 0.934 0.032 0.000 0.001 -4

100 0.6 0.643 0.066 0.638 0.646 0.043 0.004 0.006 -7
0.7 0.739 0.050 0.734 0.744 0.039 0.002 0.004 -6
0.8 0.823 0.034 0.821 0.825 0.023 0.001 0.002 -3
0.9 0.932 0.012 0.930 0.933 0.032 0.000 0.001 -4
0.6 0.726 0.050 0.721 0.730 0.126 0.003 0.018 -21
0.7 0.813 0.037 0.811 0.815 0.113 0.001 0.014 -16
0.8 0.880 0.023 0.878 0.882 0.080 0.001 0.007 -10
0.9 0.932 0.012 0.931 0.933 0.032 0.000 0.001 -4

250 0.6 0.639 0.043 0.634 0.642 0.039 0.002 0.003 -6
0.7 0.728 0.033 0.726 0.731 0.028 0.001 0.002 -4
0.8 0.819 0.020 0.817 0.820 0.019 0.000 0.001 -2
0.9 0.930 0.007 0.930 0.931 0.030 0.000 0.001 -3
0.6 0.722 0.030 0.719 0.725 0.122 0.001 0.016 -20
0.7 0.809 0.021 0.807 0.810 0.109 0.000 0.012 -16
0.8 0.879 0.013 0.878 0.880 0.079 0.000 0.006 -10
0.9 0.931 0.007 0.931 0.932 0.031 0.000 0.001 -3

500 0.6 0.638 0.030 0.636 0.641 0.038 0.001 0.002 -6
0.7 0.733 0.022 0.731 0.735 0.033 0.001 0.002 -5
0.8 0.820 0.014 0.819 0.821 0.020 0.000 0.001 -3
0.9 0.931 0.005 0.930 0.932 0.031 0.000 0.001 -3
0.6 0.721 0.024 0.719 0.724 0.121 0.001 0.015 -20
0.7 0.810 0.015 0.809 0.812 0.110 0.000 0.012 -16
0.8 0.878 0.009 0.877 0.879 0.078 0.000 0.006 -10
0.9 0.931 0.005 0.931 0.932 0.031 0.000 0.001 -3
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Table 9.18: True values, mean estimates, mean absolute deviations, biases, mean square
errors, and mean relative bias (%) for weights, path coefficients and loadings, Chin et al.s’
results (2003)

MVs per LV Sample Size Path Coefficient True Value Mean S.D. Bias MSE MRB (%)a

2 20 x− y 0.3 0.186 0.276 -0.114 0.089 38.00
z − y 0.5 0.330 0.286 -0.170 0.111 34.00

x ∗ z − y 0.3 0.162 0.352 -0.138 0.143 46.00
50 x− y 0.3 0.195 0.187 -0.105 0.046 35.00

z − y 0.5 0.326 0.218 -0.174 0.078 34.80
x ∗ z − y 0.3 0.172 0.236 -0.128 0.072 42.67

100 x− y 0.3 0.208 0.130 -0.092 0.025 30.67
z − y 0.5 0.326 0.195 -0.174 0.068 34.80

x ∗ z − y 0.3 0.169 0.181 -0.131 0.050 43.67
150 x− y 0.3 0.256 0.091 -0.044 0.010 14.67

z − y 0.5 0.382 0.143 -0.118 0.034 23.60
x ∗ z − y 0.3 0.256 0.12 -0.044 0.016 14.67

200 x− y 0.3 0.199 0.120 -0.101 0.025 33.67
z − y 0.5 0.328 0.183 -0.172 0.063 34.40

x ∗ z − y 0.3 0.176 0.143 -0.124 0.036 41.33
500 x− y 0.3 0.198 0.109 -0.102 0.022 34.00

z − y 0.5 0.328 0.176 -0.172 0.061 34.40
x ∗ z − y 0.3 0.165 0.142 -0.135 0.038 45.00

4 20 x− y 0.3 0.215 0.250 -0.085 0.063 28.33
z − y 0.5 0.334 0.264 -0.166 0.070 33.20

x ∗ z − y 0.3 0.250 0.370 -0.050 0.137 16.67
50 x− y 0.3 0.232 0.153 -0.068 0.023 22.67

z − y 0.5 0.386 0.159 -0.114 0.025 22.80
x ∗ z − y 0.3 0.274 0.186 -0.026 0.035 8.67

100 x− y 0.3 0.256 0.091 -0.044 0.008 14.67
z − y 0.5 0.382 0.143 -0.118 0.020 23.60

x ∗ z − y 0.3 0.256 0.120 -0.044 0.014 14.67
150 x− y 0.3 0.245 0.086 -0.055 0.007 18.33

z − y 0.5 0.397 0.122 -0.103 0.015 20.60
x ∗ z − y 0.3 0.242 0.1 -0.058 0.010 19.33

200 x− y 0.3 0.243 0.081 -0.057 0.007 19.00
z − y 0.5 0.397 0.118 -0.103 0.014 20.60

x ∗ z − y 0.3 0.242 0.082 -0.058 0.007 19.33
500 x− y 0.3 0.242 0.069 -0.058 0.005 19.33

z − y 0.5 0.396 0.11 -0.104 0.012 20.80
x ∗ z − y 0.3 0.222 0.087 -0.078 0.008 26.00

aData are reproduced from the Chin et al.s’ paper (2003, p. 204); bias, MSE and MRB are
computed based on reported results.



Chapter 10

Summary of Conclusions and

Future Research

10.1 Summary of conclusions and author’s contribu-

tions

Two general goals were raised in this thesis: First, to investigate causality

relationships among variables that determine the value of patents, by establishing

structural and measurement models for patent value; second, to investigate the

performance of PLS Path Modelling with Mode C in the context of patent value

models. In this thesis, each chapter is an independent study. While the first

chapters focus on giving a theoretical background on the several topics involved

in this research, Chapters 7, 8 and 9 focus on the first objective; and Chapters 6

and 9 on the second. Conclusions and author’s contributions can be summarized

as follows.

10.1.1 Patent Value

In an exploratory way, patent value models have been established and formu-

lated in increasing complexity. They have attempted to incorporate theoretical

complexities of technological change and patent data in a multidimensional ap-

proach toward the patent value problem. In what follows, we describe the chief

contributions to the field of Patent Value.

1. The following structural equations models were proposed (Chapter 7, 8

and 9):

• Patent value as a first-order model.

• Patent value as a second-order model.

• Patent value models with longitudinal latent variables.

227
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• Patent value models with longitudinal manifest variables.

• Patent value models including nonlinearities.

2. Patent value models include constructs and latent variables, each measured

by a set of indicators. Some of the variables were collected through an

extensive review of the literature and others were proposed, as in the case

of technological usefulness; relationships between unobserved variables and

each block of manifest variables are presented for consideration. In the first-

order model of patent value, constructs, indicators and relationships were

defined as follows:

• Knowledge stock represents the base of knowledge that was used by

the applicant to create an invention. This existing knowledge encour-

ages the inventive activity and may come from within or outside the

company. The number of applicants, the number of inventors and the

backward citations form this construct.

• Technological scope is related to the potential utility of an invention

in some technological fields. Manifest variables for this construct are

the number of IPC classes where the patent is classified, along with the

number of claims of the patents. A formative relationship is modeled

between indicators and construct.

• International scope refers to the geographic zones where the invention is

protected during the priority period. We defined two dummy variables

that consider whether the invention had been protected in Japan or in

Germany, two of the major producers of renewable energies. Formative

relationships are considered in this block of variables.

• Patent value will be reflected in the number of times that the patent is

cited and in the patenting strategy pursued by the company over time.

Mainly, the number of forward citations and the family size reflect this

construct.

The first-order model considers patent value as an endogenous latent variable

depending on the knowledge stock, technological scope and international

scope. The exogenous constructs give an a priori value of patents. Thus,

the intrinsic characteristics of the patents at the time of its application, along

with the patenting strategy of the company in the priority period, may give a

preliminary idea of patent value. In contrast, patent value estimated through

forward citations and family size gives an a posteriori value for patents.

This value is obtained over time and is given by others. Conceptualizing the

patent value as a potential and a recognized value of intangible assets is also

a contribution of this thesis.
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3. The second-order model considers that patent value is jointly given by those

variables that determine the a priori and a posteriori patent value. Hence,

the indicators that were initially related to the patent value are associated

with a fifth underlying latent variable related to the potential usefulness of

patents. We called this latent variable “technological usefulness.” In this

case, patent value is considered as a second-order latent variable that is

influenced by all of other constructs in a second-order model.

4. While exploring the first- and second-order models of patent value, a stable

pattern of path coefficients was found across samples in different time peri-

ods (Chapter 7). This provides evidence on the role of the knowledge stock,

technological scope and international scope as determinants of patent value

and technological usefulness. There are two particularly important variables:

the technological and the international scope. However, a strong relationship

was found between technological usefulness and patent value across sam-

ples. Thus, isolating the a priori (potential) and a posteriori components

can reveal the extent to which each contributes to the patent value. These

results were confirmed when the longitudinal models of patent value were es-

timated. It was shown that the potential value of patents is small compared

to the value that is given later –although maybe useful for detecting valuable

patents at an early stage. The stability of results when estimating the models

with different data sets provides evidence for the replicability of the models,

contributing to the systematization of intangible assets measurement.

5. The relationships that are found are reliable because samples are controlled

(Chapter 3). It is known that there are a number of factors that may affect

patent value. Among others, considerations must be made in relation to:

• The technological area where the patents are protected. We considered

the renewable energy technologies.

• The country where patents are applied for and granted. We considered

patents applied for and granted in the U.S.

• The type of patent applicant. We considered companies.

• Grant and application years. We organized the data by application

year.

There is an element which introduces heterogeneity in the patent samples.

Companies protecting renewable energy technologies belong to different in-

dustries. At least, this is true if we consider the Standard Industrial Classi-

fication (SIC) code of each company in the U.S. However, this seems to be
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a characteristic of this sector with which it has to deal. Other researchers

have encountered this same problem (Dechezleprêtre et al., 2009).

6. The estimation results of the patent value models with longitudinal data

suggest that the contribution of the knowledge stock used by companies to

create their inventions, the technological scope of the inventions and the

international scope of protection are variables that contribute little to the

patent value when compared to technological usefulness (Chapter 8). In

the first patent value model, technological usefulness is measured by time-

dependent manifest variables. Thus, we average the contribution of the

longitudinal indicators, and the patent value is modeled as an endogenous

latent variable formed by the weighted contribution of the predictors. Hence,

this model gives an overall measure of the patent value. To the best of our

knowledge, Lanjouw & Schankerman (2004) are the only researchers who

have used a similar approach. They remarked that the use of a composite

index for patent value reduces variability in the unobservable construct, and

that the latter is most useful when “one averages –either the mean over time

for a given firm or the mean over firms for a given year.”

In the second patent value model, technological usefulness is modeled as a

time-dependent latent variable. Patent value is also formed by the weighted

sum of all the constructs, but now the model allows for the analysis of changes

in the technological usefulness over different time periods. The estimates ob-

tained for loadings in the first model and path coefficients in the second allow

us to observe how the patent value increases, stabilizes and then decreases

over time. We provide empirical evidence for the importance of consider-

ing the longitudinal nature of the indicators in the patent value problem,

especially for forward citations, which are the most widely used indicator of

patent value.

7. We were successful in finding a pattern of interaction and nonlinear effects

between studied variables across different patent data sets. For interaction

effects, we have found a small and significant moderating effect of knowledge

stock on the relationship between international scope and patent value. Ex-

ploratory analysis shows that international scope has a nonlinear effect on

patent value. Thus, patents increase in value if applicants seek to protect

the invention in Japan or Germany. Recall that all patents are applied for

and granted in the U.S. However, we think that more research and evidence

is needed to interpret the results appropriately.

8. To introduce a multidimensional perspective of the patent valuation prob-

lem. To the best of our knowledge, the use of structural models with unob-
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served variables in the field of technological change has been scarce. This

research proposes that a holistic and multidimensional model may offer a

robust understanding of the different variables that determine patent value.

The models are strongly based on the theory developed by the technologi-

cal change scientific community and a thorough review of the literature on

patent valuation studies.

10.1.2 PLS Path Modelling

In this thesis, the performance of PLS Path Modelling was deeply studied

in the context of the proposed models. The procedure aims to compute latent

variable or construct scores specified in PLS-models or component-based models.

Herman Wold originally defined three modes for the PLS algorithm. So, three

PLS procedures may be identified:

• PLS Path Modelling Mode A for SEMs with reflective outer models.

• PLS Path Modelling Mode B for SEMs with formative outer models.

• PLS Path Modelling Mode C for SEMs with formative and reflective outer

models.

Our chief contributions to the field of Partial Least Squares Path Modelling

are comprised of:

1. Empirical evidence on the performance of PLS Path Modelling with Mode

C. Several empirical studies have been made previously regarding this issue.

However, results have been inconclusive. If properly implemented, PLS Path

Modelling can adequately capture some of the complex dynamic relationships

involved in models. As seen in Chapter 6, our research through a careful

simulation study shows that PLS Path Modelling with Mode C performs

according to the theoretical framework established for PLS procedures and

PLS-models (Wold, 1982; Krämer, 2006; Hanafi, 2007; Dijkstra, 2010). That

is:

• Inner relationships are underestimated.

• Outer relationships are overestimated in reflective outer models.

• Outer relationships are overestimated in formative outer models for N

greater than 100 if manifest variables are correlated.

• Outer relationships are underestimated in formative outer models if

manifest variables are uncorrelated.



Chapter 10: Summary of Conclusions and Future Research 232

• Outer relationships are underestimated in formative outer models if no

errors and disturbance terms are considered and manifest variables are

uncorrelated.

• As seen in Figure 6.5(b), by increasing the sample size, there is no

observation of a reduction in bias in estimates of outer relationships

estimated using Mode A. This is in line with the lack of monotone

convergence property of Mode A.

• Alternatively, the consistency of Mode B is shown. This is in line with

the monotone convergence property of Mode B.

2. Empirical evidence for the consistency at large of PLS Path Modelling with

Mode A (see Chapter 6, especially Figure 6.5(b)). Even though Mode A

lacks the monotone convergence property, the bias of the estimates of outer

relationships are closer and closer to zero when the number of indicators

per latent variable increases. Herman Wold calls this property “consistency

at large” (Wold, 1982) and suggests that PLS Path Modelling with Mode

A may be a robust alternative when estimating structural equation models

with reflective outer models.

3. Empirical evidence for formative outer models with few manifest variables.

The estimates obtained when considering two indicators per construct were

found to have a bias of less than 20%. A greater number of indicators,

however, contributes to the estimates of inner relationships that are less

biased.

4. In Chapter 6, a simulation study which considered three set-ups. Case A

considered that covariances among manifest variables, disturbance terms in

the inner relationships and errors in outer relationships are zero. Case B re-

laxes the assumption that disturbance terms and errors are zero, and case C

also relaxes the assumption that manifest variables are uncorrelated. Case

C is the most general case. All simulated cases considered that manifest

variables in formative outer models are a census of the variables that form

the constructs. Theory must support a proper definition of them. There-

fore, more research is needed to study the effects of measurement errors in

formative blocks of variables on minimization of residuals in the structural

relationships.

5. Empirical evidence on the performance of a Two-Step PLS Path Modelling

(TsPLS) with Mode C to estimate nonlinear and interaction effects among

formative constructs. Findings suggest that the TsPLS procedure offers a

way to build proper indices for linear, nonlinear and interaction terms and
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to estimate the relationships between them. The yield found for PLS Path

Modelling Mode C tends to remain in TsPLS. This procedure preserves the

aforementioned monotone convergence properties for the PLS basic design.

That is, TsPLS Mode A is consistent at large, TsPLS Mode B is consistent

and consistent at large.

10.2 Limitations of the Study and Future Research

The valuation of patents, and hence technology, is a fascinating subject that

continues to attract the attention of researchers, especially in these times of revo-

lutionary emergence in new technologies and breakthroughs in many fields. This

thesis is original in many ways. We have conducted an empirical study not car-

ried out before, we have applied a novel technique in an area now of particular

interest, we have provided knowledge in a novel way and, in particular, this has

been a multidisciplinary study. This research fills a gap in the literature on patent

value and PLS research, considering the former problem from a multidimensional

perspective, and clarifying critical aspects of the PLS procedures. However, there

are some issues that can be addressed in future research.

1. Patent value may be seen as a complex construct depending on a variety of

elements. Our intuition tells us that probably there are a number of other

factors that may be affecting patent value. General and specific market

conditions, countries’ legal frameworks, geographic proximity or accumulated

scientific and technological knowledge are different dimensions that may be

included in a structural equation model and further explored. Based on

patent indicators, the proposed models are a first attempt to define a SEM

for patent value.

2. The conclusions of this research are inferred from data sets. The sample

comprises a total of 2,901 patents granted in the U.S in the field of renewable

energy and published in 1990-1991, 1995-1996, 1999-2000 and 2005-2006.

Our research in progress involves the estimation of the models with the

population, that is with all patents granted in the field of renewable energy

in the U.S.. These renewable energy patents include wind, solar, geothermal,

wave/tide, biomass and waste energy.

3. The proposed models are based on the theory of technological change, data

obtained from patent documents and patent databases. Some research in the

field of technological change has involved validation of the model through a

survey of technical experts on intellectual property, for instance. Our re-

search suffers from this empirical validation and this is a compelling topic
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for future research. However, we were looking to measure patent value in

a way that is easily systematized, by taking advantage of information tech-

nologies available today.

4. In this research, attempts were made to relate patent value to the market

value of companies. Even though we obtained promising results, they have

not been included in this document. There are several reasons for this. One

of them is the patent that was applied for in the U.S. Patent and Trademark

Office. This is an issue for our research in progress.

PLS procedures are being increasingly used and –it is our impression that–

the complexity of the applications are ahead of theoretical developments. This

research generated useful preliminary findings. However, there are some questions

that remain open and can be further explored in future research.

1. Our knowledge of the procedures for estimating second-order or higher-order

models has to be expanded. The proposal made by Lohmöller to repeat the

manifest variables for the higher-order construct has proved to be useful

in estimating second-order models. However, this approach has an impor-

tant drawback. As estimated by repeating the observed variables of the outer

models, the coefficient of multiple determination R2 obtained for the endoge-

nous second-order construct is probably not a good indicator for assessing

either the model fit or the quality of the model. To resolve this issue, more

research is needed on:

• The definition of a criterion for selecting variables to be repeated for

the endogenous construct.

• The determination of an alternative way to estimate higher-order mod-

els.

• The development of an alternative index for assessing the overall fit of

model to data.

2. The estimation of longitudinal models in Chapter 8 has followed a traditional

approach and has been exploratory. In our view, PLS is a limited-information

approach for studying longitudinal problems, since the autoregressive nature

of longitudinal variables is not explicitly taken into account. Hence, the

procedure does not consider all available information in the data. Thus,

longitudinal PLS represents a wide field of research with many interesting

results and many unsolved problems.

3. TsPLS has proven to be useful for estimating nonlinear and interaction ef-

fects. Although Henseler & Chin (2010) found that Wold’s or hybrid ap-
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proach “does not excel in any of the examined categories i.e. parameter accu-

racy, statistical power, and prediction accuracy” when estimating SEMs with

reflective outer models, future research should consider comparing TsPLS

with Wold’s procedure, in view of the fact that both techniques can be used

to estimate nonlinearities in SEMs with formative outer models.

4. In this research, we limited simulation studies to normal independent data.

However, other conditions can be introduced and tested, such as: non-normal

variables, multicollinearity among indicators of formative measurement mod-

els and multicollinearity between constructs. These tasks remain outstanding

for PLS-models.
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Jöreskog, K. G., & Goldberger, A. S. 1975. Estimation of a model with multi-

ple indicators and multiple causes of a single latent variable. Journal of the

American Statistical Association, 70(351), 631–639.
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