
Programa de Doctorat en Computació
Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Efficient algorithms for the
realistic simulation of fluids

A Doctoral Thesis

by

Jesús Ojeda Contreras

Tesi presentada per obtenir el t́ıtol de Doctor per la
Universitat Politècnica de Catalunya

Advisor: Antonio Suśın Sánchez

Barcelona, March 2013

ii

Abstract

Nowadays there is great demand for realistic simulations in the computer
graphics field. Physically-based animations are commonly used, and one
of the more complex problems in this field is fluid simulation, more so if
real-time applications are the goal. Videogames, in particular, resort to
different techniques that, in order to represent fluids, just simulate the con-
sequence and not the cause, using procedural or parametric methods and
often discriminating the physical solution.

This need motivates the present thesis, the interactive simulation of free-
surface flows, usually liquids, which are the feature of interest in most com-
mon applications. Due to the complexity of fluid simulation, in order to
achieve real-time framerates, we have resorted to use the high parallelism
provided by actual consumer-level GPUs. The simulation algorithm, the
Lattice Boltzmann Method, has been chosen accordingly due to its effi-
ciency and the direct mapping to the hardware architecture because of its
local operations.

We have created two free-surface simulations in the GPU: one fully in
3D and another restricted only to the upper surface of a big bulk of fluid,
limiting the simulation domain to 2D. We have extended the latter to track
dry regions and is also coupled with obstacles in a geometry-independent
fashion. As it is restricted to 2D, the simulation loses some features due to
the impossibility of simulating vertical separation of the fluid. To account
for this we have coupled the surface simulation to a generic particle system
with breaking wave conditions; the simulations are totally independent and
only the coupling binds the LBM with the chosen particle system.

Furthermore, the visualization of both systems is also done in a real-
istic way within the interactive framerates; raycasting techniques are used
to provide the expected light-related effects as refractions, reflections and
caustics. Other techniques that improve the overall detail are also applied
as low-level detail ripples and surface foam.

iii

iv

Resum

Avui dia hi ha una gran demanda per les simulacions realistes en el camp de
la computació gràfica. Animacions amb base f́ısica s’utilitzen comunament,
i un dels problemes més complexos en aquest camp és la simulació de fluids,
tant més si aplicacions en temps real són l’objectiu. Els videojocs, en par-
ticular, recórren a diferents tècniques que, amb la finalitat de representar els
fluids, simplement simulen la conseqüència i no la causa, fent servir mètodes
procedurals o paramètrics i, sovint, discriminen la solució f́ısica.

Aquesta necessitat és la que motiva aquesta tesi, la simulació interactiva
dels fluids amb superf́ıcie lliure, en general ĺıquids, que són la caracteŕıstica
d’interès en la majoria de les aplicacions comunes. A causa de la com-
plexitat de la simulació de fluids, amb la finalitat d’aconseguir una taxa
de fotogrames en temps real, s’ha recorregut a utilitzar l’alt paral·lelisme
proporcionat per les GPUs de consum actuals. L’algorisme de simulació,
el Mètode Lattice Boltzmann (LBM), ha estat triat, per tant, per la seva
eficiència i l’assimilació gairebé directa a l’arquitectura de maquinari gràcies
a la natura local de les seves operacions.

Hem creat dos simulacions de superf́ıcie lliure a la GPU: una completa-
ment en 3D i una altra restringida només a la superf́ıcie superior d’un volum
gran de fluid, la qual cosa limita el domini de simulació a 2D. Hem estès
aquest últim model per tal de poder rastrejar regions seques, on el fluid no
ha arribat, i també l’hem acoblat amb els objectes dinàmics d’una manera
independent de la geometria. Com està restringit a 2D, la simulació perd
algunes caracteŕıstiques a causa de la impossibilitat de simular la separació
vertical del fluid. Per solventar aquesta limitació, s’ha acoblat la simu-
lació de superf́ıcie amb un sistema de part́ıcules genèric amb condicions de
detecció del trencament de les onades, aix́ı les simulacions són totalment in-
dependents i només l’acoblament uneix el LBM amb el sistema de part́ıcules
escollit.

A més, la visualització d’ambdós sistemes també es fa d’una manera
realista dins de les taxes de refresc interactives; s’empren tècniques de ray-
casting per tal de proporcionar els esperats efectes relacionats amb la llum
com refraccions, reflexions i càustiques. També s’han aplicat altres tècniques
que milloren el detall general com ones de detall de baix nivell i l’escuma de
la superf́ıcie.

v

vi

Acknowledgements

First, I would like to thank my advisor, Toni Suśın, for introducing me into
the fluid simulation world, allowing me to play and experiment with the
methods and for the helpful discussions in critical moments.

I want to thank all the members of the Moving Group, present and
past, for their comments and the shared seminar sessions, but specially
Pere Brunet, who agreed to supervise my master thesis, introducing me to
Computer Graphics.

My lab mates have also been very helpful, specially in making me pro-
crastinate, sometimes much needed, and amuse me in our lunch times. A
salute to you, kind ladies and gentlemen.

I would like to specially thank M.Àngels, for inspiring me into become a
fake doctor, for her valuable support, for listening to my random ramblings
and trying to help whenever I was stuck with some problem. Now it is your
turn.

Finally, I want to thank my family for their support throughout the time
this thesis has lasted. They had to endure the roller coaster of achievements
and disappointments as the fluid simulations evolved.

This work has been funded by a FI grant from the Generalitat de Catalunya.

vii

viii

Contents

1 Introduction 1

1.1 Objectives and Goals . 4

1.2 Thesis overview . 6

2 Simulation of Fluids 7

2.1 Navier-Stokes equations . 7

2.2 Smoothed Particle Hydrodynamics 9

2.3 Lattice Boltzmann Method 11

2.4 Present fluid simulation limits 12

3 Lattice Boltzmann Method 17

3.1 Evolution: how it became to existence 17

3.2 Algorithm skeleton . 18

3.2.1 Boundary conditions 20

3.3 Mathematical Derivation . 21

3.3.1 Boltzmann Equation 21

3.3.2 Lattice Boltzmann Equation 22

3.4 Parametrization . 25

3.5 Large Eddy Simulation & Improved Stability 26

3.6 LBM 3D with a Free-surface 27

3.6.1 D3Q19 model and modified equilibrium distribution
function . 29

3.6.2 LBM Volume of Fluid 30

3.7 Shallow Waters Simulation 35

3.7.1 D2Q9 model and equilibrium distribution function . . 36

3.7.2 Underlying terrain and other forces 37

3.7.3 Dry sections . 37

3.7.4 Dynamic Obstacles . 39

3.8 Hybrid LBMSW-Particle Model 42

3.8.1 Detection . 44

3.8.2 Generation . 44

3.8.3 Reintegration . 46

ix

x CONTENTS

4 CUDA Implementation 49
4.1 CUDA Architecture . 50

4.1.1 Programming Model 50
4.1.2 Hardware Implementation 51

4.2 LBM in CUDA . 52
4.2.1 LBM3D-VOF . 54
4.2.2 LBMSW . 56

4.3 Hybrid Particle-LBMSW . 58

5 Fluid visualization 63
5.1 Raycasting the LBM3D-VOF volume 63
5.2 Rendering of the LBMSW-Particle model 66

5.2.1 Lower scale detail . 67
5.2.2 Caustics . 70
5.2.3 Refraction and Reflection 72
5.2.4 Particle Rendering . 76
5.2.5 Surface Foam . 78

6 Results and discussion 81
6.1 LBM3D in CUDA . 82
6.2 LBM3D - Volume of Fluid . 85

6.2.1 Comparing approaches 87
6.2.2 Future work . 89

6.3 Hybrid Particle - LBMSW . 89
6.3.1 Comparing approaches 90
6.3.2 Future work . 94

6.4 Closure . 95

Bibliography 97

List of Figures

1.1 L4D2 and Portal 2 . 2

1.2 Skyrim . 2

1.3 Uncharted . 3

1.4 Borderlands 2 . 4

2.1 Staggered grid discretization. 8

2.2 Octree-based level-set fluid simulations from [LGF04]. 9

2.3 Kernel radius for the SPH. 10

2.4 Predictive-corrective SPH simulations from [SP09]. 11

2.5 Fluid control and adaptive grids for LBM free-surface simu-
lations from [Thü07]. 12

2.6 Comparison of methods. 14

2.7 Simulation and rendering pipeline. 15

3.1 The most popular LBM models used. 19

3.2 Stream and Collision steps for a fluid cell. 19

3.3 Simple boundaries for LBM simulations: no-slip and free-slip. 21

3.4 Kármán vortex street. 27

3.5 Classification of cells depending on the region they are on. . . 31

3.6 Steps done for an interface cell. 32

3.7 Drop and breaking dam examples. 34

3.8 Shallow water simulation with underlying terrain 36

3.9 Image stills from the shore breaking dam example. 38

3.10 Image stills from the breaking dam over noisy ground. 39

3.11 Sphere discretization for a boat model. 40

3.12 Buoyancy, Drag and Lift forces. 40

3.13 A buoy is being dragged by the fluid. 41

3.14 Wake waves generated by a boat. 43

3.15 Particle placement in the generation step. 45

3.16 Particles from a breaking dam. 46

3.17 Particle reintegration. 47

4.1 Grid of Blocks of Threads. 50

4.2 A-A memory access pattern. 53

xi

xii LIST OF FIGURES

4.3 A-B memory access pattern. 53
4.4 Class diagram of the simulation modules. 59

5.1 Raycasting scheme. 65
5.2 Falling drop. 66
5.3 Gradient noise applied to the LBMSW. 68
5.4 FFT ocean simulation applied to the LBMSW. 69
5.5 Multi-step caustics simulation. 71
5.6 Caustics below the fluid surface. 73
5.7 Refraction and reflection in multiple render passes. 75
5.8 Artifacts from the fluid’s triangular mesh. 76
5.9 Reflection and refraction on the fluid surface. 77
5.10 Particles rendered as Nailboards. 78
5.11 Foam generated and advected. 79

6.1 Lid-driven cavity . 83
6.2 Execution Time for 10000 iterations. CPU and GPU. 83
6.3 Execution Time for 10000 iterations. GPU only. 84
6.4 Drop and breaking dam examples. 86
6.5 Another breaking dam example. 91

List of Tables

4.1 Variables for the LBM-VOF. 54
4.2 Variables for the LBMSW. 57

5.1 Timings for the caustic and refraction/reflection algorithms . 73

6.1 GPU and CPU Specifications. 82
6.2 MLUPS by domain size and processing unit 84
6.3 Timings for various examples for the LBM3D-VOF. 85
6.4 LBM3D-VOF feature comparison 88
6.5 Timings for various examples for the Particle-LBMSW. . . . 90
6.6 Particle-LBMSW feature comparison 93

xiii

xiv LIST OF TABLES

List of Algorithms

4.1 High-level LBM-VOF algorithm. 55
4.2 High-level LBMSW algorithm. 56
4.3 High-level Hybrid Particle-LBMSW algorithm. 60

xv

xvi LIST OF ALGORITHMS

Chapter 1

Introduction

God help us; we’re in the hands
of engineers.

Dr. Ian Malcolm
Jurassic Park

As visualization of computer generated scenes is every day nearer to
full photo-realism, physically-based effects and animation related to natural
phenomena still remain a complex problem, more so in the real-time ap-
plications. One particular hard field within this physics-related category of
problems is the simulation of fluids.

Fluids are a very common feature of nature that takes part in every
day life and it is quite desirable to include them in our virtual worlds and
applications, being them off-line or real-time. As such, numerical simula-
tion of fluids has become an important tool, from industrial processes to
entertainment-oriented products as animation movies or videogames. While
applications with engineering purposes focus on the accuracy of the phys-
ical simulations, a more realistic and appealing appearance is desired for
computer generated animations.

In any case, we can distinguish between the simulation of single-phase
gases or liquids; the former expand to the full size of their container, thus
using the full simulation domain in a computational solution, the latter,
however, may just exist in a limited volume inside the simulation domain,
so it is required that the surface of the liquid is somehow tracked in order
to conserve mass. Of course, there are situations in which multiple different
fluids take part and interact between each other, that is known as multi-
phase simulations.

In the real-time domain, i.e., videogames basically, simplifications or even
tricks are used for the simulation of liquids; they can deceive the user into
believing that complex fluid systems are used. These fluid representations
aren’t usually based in physically-correct simulations due to the complexity

1

2 CHAPTER 1. INTRODUCTION

involved and the small timeframe physic computations are allowed to take
from the total time in a game loop.

We can find some examples of these kind of simplifications in quite re-
cent games like Left 4 Dead 2 (2009) and Portal 2 (2011), where the fluid
is simplified to a mesh and the textures associated (debris, normal map,
etc.) are advected using the technique from [MB96] from a Flow map, a
vector field computed off-line (see Figure 1.1) [Vla10]. The Elder Scrolls V:
Skyrim(2011) does a similar thing and adds some sprites to simulate mist
generated from waterfalls like in Figure 1.2. The Uncharted(2007-2011) se-
ries for the Playstation 3 system (depicted in Figure 1.3) use a handful of
techniques; from advecting normal and displacement maps like in the pre-
vious cases, to a variation of the simulation from [YHK07] and even using
pre-baked fluid simulation that animates a skeletal mesh with one joint per
vertex and additional particle systems for further details [GOH12, Coo12].

Figure 1.1: Left 4 Dead 2 (left) and Portal 2 (right), developed and pub-
lished by Valve Corporation.

Figure 1.2: The Elder Scrolls V: Skyrim, developed by Bethesda Game
Studios and published by Bethesda Softworks.

On the other hand, the most advanced games can even use full physical
simulations like the case of Borderlands 2 (2012) that can make use of the
Nvidia PhysX library in the PC version, if the hardware supports it. In
this case, however, only small fractions of fluids can be simulated due to
the requirements the particle system used to accomplish the effect has (see
Figure 1.4).

3

Figure 1.3: The Uncharted series, developed by Naughty Dog and published
by Sony Computer Entertainment.

The previous argument, the need for fluid simulations, liquids in their
majority, from a physically correct standpoint in real-time environments,
motivates the present work; this thesis focuses in the simulation of two-phase
problems, in which one phase is a liquid and the other is a gas, generally
handled with simplified treatments or just dismissed completely.

Generally, the simulation of fluids is based on the Navier-Stokes equa-
tions, a set of partial differential equations, which are difficult to solve due
to their non-linearity. This makes them hard to solve in real-time environ-
ments, where the simulation has to be stepped as well as visualized in just
milliseconds. For this reason, we decided early on to use the raw power and
heavy parallelization GPUs offer nowadays to make fluid simulations viable
on interactive applications executed in regular PCs, which restrict even more
the final performance.

Additionally, we have used an alternative formulation that approximates
the Navier-Stokes equations, the Lattice Boltzmann Method (LBM), which
is based on inter-molecular interactions. This approach is relatively novel
and is becoming increasingly popular due to its simple and efficient algo-
rithm.

4 CHAPTER 1. INTRODUCTION

Figure 1.4: Borderlands 2, developed by Gearbox Software and published
by 2K Games.

1.1 Objectives and Goals

The final goal of this thesis is to achieve real-time fluid simulations and
realistic visualization on commodity hardware, more specifically from free-
surface flows. In order to leverage the maximum performance from GPUs,
the best suited algorithm for this goal is the LBM, the local operations it
is based on make it easily parallelizable and map perfectly with the GPU
architecture.

The ideal situation is to achieve full 3D free-surface fluid simulation, al-
though it still imposes some constraints in interactive applications depending
on the size of the domain simulated, and bearing in mind that no obstacles
are introduced.

As the previous solution is quite heavy and not as efficient as we would
like, a different approach can be applied. Instead of simulate the whole bulk
of fluid, we can restrict ourselves to a surface simulation, represented as a
heightfield. This limits the spectrum of effects the fluid can provide, e.g.,
waves can’t break. The solution to this is achieved by coupling the surface
simulation with another, different system; in this case a particle system.
Breaking wave conditions are used to detect when and where to generate
particles that evolve independently and are finally reintegrated once they fall
to the surface fluid representation again. As the fluid is only represented by
a heightfield and a particle system, we have also to deal with dry regions,
zones inside the domain without fluid, akin to the free-surface of the 3D fluid
simulation. The surface algorithm is consequently modified to account for
this possibility. Additionally, two-way coupling of rigid bodies is introduced.
Objects can now react to the fluid, they drift, but can also interact with the

1.1. OBJECTIVES AND GOALS 5

fluid as they fall into or move around like a boat may do.

In every case, correspondent techniques for realistic visualization are de-
veloped. A raycasting algorithm is used for the 3D free-surface simulation,
allowing reflections and refractions. In the hybrid particle-surface simula-
tion, not only reflections and refractions are there, but also caustics as well
as further methods to improve the final look and feel of the fluid.

Contributions

To fulfill the prime goal of real-time fluid simulation and visualization, the
main contributions of this thesis can be summarized as:

1. A CUDA implementation of the LBM in 3D with the coupling of a free-
surface algorithm from [Thü07] with deterministic results, explained
in Sections 3.6 and 4.2.1.

2. The implementation of the Shallow waters LBM in CUDA, shown in
Sections 3.7 and 4.2.2.

3. A new method to track dry regions in the shallow waters simulation,
introduced in Section 3.7.3.

4. A geometry independent coupling of external rigid bodies to the shal-
low waters algorithm, exposed in Section 3.7.4.

5. Fluid feature-enhanced by coupling a generic particle system to the
shallow waters implementation. This method allows the use of any
particle system as long as it is also simulated in the GPU and enables
additional effects like the breaking of waves. This will be sorted out
in Sections 3.8 and 4.3.

6. An extension to screen-space for the caustics mapping technique from
[SKP07], shown in Section 5.2.2.

7. A screen-space technique to simulate refractions and reflections, based
in raycasting through depth-maps, presented in Section 5.2.3.

8. Texture-based techniques that improve the fluid surface detail. FFT
Ocean simulation, a modified version of Perlin noise and a foam ad-
vection scheme are used here. These techniques are explained in Sec-
tions 5.2.1 and 5.2.5.

Almost all these contributions have been published or are nearly ready
for submission. A prior result which lead to the first contribution was [OS09].
Contributions 2 to 5 are published in [OS13b, OS13a] and contributions 6
to 8 are included in [OS13c].

6 CHAPTER 1. INTRODUCTION

1.2 Thesis overview

From this point, we will firstly introduce the state of the art on fluid simu-
lation in Chapter 2.

Then, Chapter 3 will go deeper in the details of the LBM algorithm
in the various versions used throughout this work: from 3D free-surface
fluid simulation to an hybrid surface simulation coupled with obstacles and
particle systems.

The implementation of these algorithms in GPU will be discussed in
Chapter 4, making extensive use of CUDA.

As we want to simulate as well as visualize realistically the fluids, we
used a variety of algorithms to account for the different effects that can
arise from fluids; they are described in Chapter 5.

Finally, we will conclude this document with some results obtained, some
discussion about them as well as some ideas that could improve the present
techniques in the future in Chapter 6.

Chapter 2

Simulation of Fluids

Curioser and curioser.

Alice in Wonderland
Lewis Carroll

In this chapter we will give a brief overview of related work on fluid
simulations for computer animations; further references are provided in the
corresponding sections of each chapter. Here, we will review the major al-
ternatives for physically-based fluid simulation, from eulerian methods that
simulate the fluid in fixed points in space, i.e., inside a grid, like direct
discretizations of the Navier-Stokes equations, to lagrangian methods that
evaluate the fluid properties at points in space that are advected with the
own fluid, like particle systems, finally introducing and comparing the cho-
sen algorithm, the Lattice Boltzmann Method.

2.1 Navier-Stokes equations

The common ground on computational fluid dynamics are the Navier-Stokes
equations (NS), a reformulation of Newton’s Second Law that describe the
motion of fluid substances.

For incompressible and Newtonian fluids, those which have a constant
density ρ and dynamic viscosity µ, the NS equations are

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+ ν∇2u + g and (2.1)

∇ · u = 0, (2.2)

where the unknowns u and p are velocity and the pressure, respectively, ν
is the kinematic viscosity (ν = µ/ρ) and g represents external body forces
as gravity.

Equation 2.1 is known as the momentum equation and comprises the
terms for advection, pressure, diffusion and external forces, respectively.

7

8 CHAPTER 2. SIMULATION OF FLUIDS

Equation 2.2 receives the name of continuity equation and ensures the con-
servation of mass, that is, the incompressibility of the fluid.

With appropriate initial and boundary conditions, these equations can
be discretized, using finite differences and some grid representation like the
staggered grid depicted in Figure 2.1, and solved using numerical methods
such as Gauss-Seidel. An implementation of this kind of solution can be
found in, e.g., [GDN98, Suá06].

x

y
z

p u

v

w

Figure 2.1: Staggered grid discretization. Pressure p is evaluated at the
center of the cells, velocity u = (u, v, w) at the center of the faces.

From the visual standpoint, the most interesting feature of a fluid simula-
tion is its surface and among the first to perform physically-based animations
of free surfaces we find Foster and Metaxas [FM96, FM97a], which based
their implementation on the algorithm from [HW65]. They also simulated
gases with a similar discretization of the NS equations [FM97b]. However,
at the time, the simulations were quite limited in scale because of the algo-
rithms, as well as the computational resources, not being fully adequate.
A breakthrough came when Stam [Sta99] introduced a semi-Lagrangian
method; it achieved significant performance improvements, ensuring the
solver was unconditionally stable at larger time steps but with a higher
dissipation. This method has also been adapted to GPUs in, e.g., [Har04].

Some years later, the topic of free surface animations was brought back
to life in [FF01]. They used Stam’s technique and introduced the level-
sets from [OS88], already used in [FAMO99]. This work, in addition to
Stam’s, represent the base of the principal type of level-set based free surface
simulations. Several works have derived from them as, e.g., enhancing the
surface tracking of the level-set with additional particles [EFFM02], improve
the simulations with octrees for small scale details [LGF04] (see Figure 2.2)
or using tall cells under the surface of the fluid in order to reduce the number
of cells simulated in 3D [IGLF06, CM11].

Other methods to track the free surface have also been used. For exam-
ple, Sussman [Sus03] used a Volume of Fluid method [HN81] combined with
the level-set to achieve the smooth representation of the latter, but with
improved mass conservation provided by the former one. Zhu and Brid-
son [ZB05], on the other hand, animated sand as a fluid, using the Fluid-
Implicit-Particle method (FLIP) [BR86], which advects the fluid quantities

2.2. SMOOTHED PARTICLE HYDRODYNAMICS 9

Figure 2.2: Octree-based level-set fluid simulations from [LGF04].

on particles, in contrast to do it on a grid as the other methods, although
an auxiliary grid is still needed for the velocity field.

Alternatively, the Navier-Stokes equations have also been simplified to
simulate fluids as heightfields, i.e., [KM90] considered the fluid volume di-
vided in columns and assumed the fluid varied slowly. Later, [OH95] im-
proved Kass et al. work, modelling the flow between fluid columns with
virtual pipes, coupling objects as they impacted the surface of the fluid and
adding splashes. In [CLHM97], the authors used a finite difference approach
to solve the NS equations in 2D, with penalization instead of the continuity
equation.

The Shallow Waters framework (SW), a simplification of the NS equa-
tions assuming vertical pressure gradients are nearly hydrostatic, introduced
in [LvdP02] to computer graphics has seen several applied and derived works.
As an example, [TMFSG07] simulated breaking waves and [ATBG08] cre-
ated fluid characters, with inspiration from [Sta03] where flow was simulated
on surfaces of arbitrary topology. Quite related to our work, [CM10], using
an improved advection model from [SFK+08] on GPUs, couples the SW with
a particle system to cope with the limitations of a heightfield-based simula-
tion, e.g., waves that should break or discontinuities on the fluid level, like
in a waterfall.

2.2 Smoothed Particle Hydrodynamics

In contrast to the previous methods, where a grid is needed to evaluate the
fluid, we find the particle-based systems that can simulate fluids; the fluid
properties are interpolated among particles and mass is inherently conserved.

The more popular approach in this kind of methods, known as Smoothed
Particle Hydrodynamics (SPH), arose from the astrophysics field [GM77,
Luc77]. Its use has become quite common in the field of graphics as the
particle representation renders it as a high-detail method, although a great
count of particles is needed for nice results and the time step needed has to

10 CHAPTER 2. SIMULATION OF FLUIDS

remain low enough to ensure stability.
As the fluid is not continuous, to calculate the motion of each particle it

is used an interpolation technique based on kernel functions which are radius
limited. At location r, the scalar quantity A (ρ, for example) is interpolated
by a weighted sum of contributions from all particles:

A(r) =
∑
j

mj
Aj
ρj
W (r− rj , j), (2.3)

∇A(r) =
∑
j

mj
Aj
ρj
∇W (r− rj , j), (2.4)

∇2A(r) =
∑
j

mj
Aj
ρj
∇2W (r− rj , j), (2.5)

where j iterates over all particles, mj is the mass of particle j, rj its po-
sition, ρj the density and Aj the field quantity at rj . W is the smoothing
kernel with radius h and is the only one affected by the derivatives as shown
in Equations 2.4 and 2.5. The kernels describe the behaviour of the associ-
ated fluid characteristics to the particle at hand in its neighbourhood (see
Figure 2.3) and are defined so they solve the Navier-Stokes equations1.

hh

Figure 2.3: Only particles inside the kernel radius h will affect the com-
putations for the central black particle. The kernels are designed to fall off
with regards to the distance.

One problem, however, is that the SPH method simulates compressible
flows, although the more common implementation uses an Equation of State
to compute the pressure values in order to achieve near-incompressibility as
introduced in [DG96]. More efforts have been developed to achieve full
incompressibility as in, e.g., [SL03, HA07, SP09]; some results from the
latter are shown in Figure 2.4.

It was introduced to the graphics community with fire and gas simula-
tions in [SF95] and Müller et al. showed that interactive simulations were
also possible [MCG03], although the particle number influenced heavily on
the visual result.

1The smoothing kernels can be freely defined, independently for each scalar quantity.
As long as the kernel is even (W (r, h) = W (−r, h)) and normalized (

∫
W (rdr = 1), the

interpolation is of second order accuracy.

2.3. LATTICE BOLTZMANN METHOD 11

Figure 2.4: Predictive-corrective SPH simulations from [SP09].

The higher level of detail for smaller fluid features as splashes has also
made this method the preferred choice in hybrid algorithms, where the bulk
of a fluid is simulated with other, maybe grid-based, methods and the finer
detail is the responsibility of the SPH particles; for example, [LTKF08]
coupled the SPH with the Particle level-set.

Over time, as the GPUs have been improving and now provide general
computing with higher parallelism, the SPH method has also received GPU
implementations like those in [HKK07, GSSP10].

Additionally, similar to the NS case, the SPH has also been implemented
in order to solve the Shallow Waters equations, being [LH10, SBC+11] a
couple of examples of this subject.

An alternative method quite similar to SPH but fully incompressible
is the Moving-Particle Semi-Implicit [KO96, PTB+03]. Here, the particles
interact with each other as in the SPH but the pressure is computed differ-
ently; a Poisson equation is solved from the particle density values in order
to find the pressure and correct, therefore, the particle velocities.

2.3 Lattice Boltzmann Method

The last contestant in this comparative has reclaimed some interest in pre-
vious years, the Lattice Boltzmann Method (LBM), which is now used for
a variety of applications. An example of this could be the PowerFLOW
commercial package [Cor13], used in the automobile or aircraft industries.

This method is based in statistical physics and can solve the original
Navier-Stokes equations. It uses a grid for the simulation of the fluid and
discretizes the directions the fluid molecules can travel along. The LBM can
be summarized in one equation:

fi(x + ei∆t, t+ ∆t)− fi(x, t) = Ωi(f(x, t)), (2.6)

where i is the direction of the molecular travel, fi is the statistical distribu-
tion function for the i direction and Ω is the collision operator, which defines

12 CHAPTER 2. SIMULATION OF FLUIDS

how the molecules interact with each other for each lattice point. We will
expand on the mathematical details and general background in Chapter 3.

From Equation 2.6, it is easy to see that the computations needed are
totally local and, depending on the complexity of the chosen collision oper-
ator, they could potentially remain as simple arithmetic operations. These
arguments make the LBM an ideal method for parallel implementations, be-
ing the GPU ones that have arisen as, e.g., [LWK03, Tö10], more interesting
for our goals.

The LBM has also been coupled with multiple free surface algorithms,
being [GRZZ91, GS03, Thü07] a little example, shown in Figure 2.5 a sam-
ple of the latter, and even has been adapted to simulate Shallow Waters
problems like in [Sal99, Zho02].

Figure 2.5: Fluid control and adaptive grids for LBM free-surface simula-
tions from [Thü07].

In contrast to the other fluid simulation methodologies, the LBM is quite
efficient for its simple operations and that makes it ideal for parallelization,
the free surface algorithm which we have applied ensures mass conservation,
although there are restrictions for the time step and, overall, the LBM is a
quite consuming memory algorithm.

2.4 Present fluid simulation limits

As we have seen, fluid simulation is one of the classic problems, greatly
studied in the computational fluid dynamics field. For engineering purposes
the algorithm to use depends on the physical flow properties that have to
be computed. Furthermore, to acquire accurate results, it is prioritized a
correct physical simulation before the time needed for those computations.
Traditionally, the most used methods are the Navier-Stokes equations and
SPH model for aerodynamic applications.

In contrast, in the computer graphics field, as there is no actual flow
property to compute accurately, the priority is rooted on a consistent and
completely realistic visual result.

2.4. PRESENT FLUID SIMULATION LIMITS 13

In this field, full 3D fluid simulation were first seen in [FM96] using the
Navier-Stokes discretization which provided a rigid simulation inside a grid
of fixed domain size. In this direction, nowadays, a state of the art simu-
lation using a NS solver can be integrated with arbitrary sized time steps.
Additionally, if the commonly used level set approach is applied for tracking
the free surface, we can obtain a smooth surface representation, although by
itself is not mass conserving and other additional techniques, as auxiliary
particles, are needed to guarantee it. Unfortunately, the same algorithm
that allows arbitrary time steps [Sta99] also causes additional dissipation
which has to be dealt with if liquids are to be simulated. Other inconve-
nience for the NS solver include the need of a global pressure correction step
to achieve a divergence free velocity field.

In contrast, the SPH model introduced by [SF95, DG96] allows more
flexibility due to the nature of the particles, they conserve mass naturally
and allow for a simple tracking of the free surface of the fluid. Furthermore,
the use of particles as the conveyors of the fluid provides higher low-scale
details as splashes and spray, which has provided SPH great publicity in
film production using packages like RealFlow [Tec13]. On the bad side,
SPH doesn’t enforce incompressibility by itself, so additional efforts have to
be made at this respect. Additionally, greater simulation domains require
a very large number of particles which, in turn, make the method more
computationally expensive.

The LBM as a third counterpart for the simulation of fluids, has an
efficient algorithm which uses only arithmetic operations and is totally local,
providing it a head-start for a parallel implementation. Moreover, it can also
conserve mass when tracking free surfaces if an algorithm like the Volume
of Fluid implemented in this thesis is applied. As noted before, however, it
has an increased memory requirement and forces the use of small time steps
to ensure stability. It is worth mentioning that, for the same time step, a
single LBM step is usually significantly faster than the update step of a NS
solver.

Another thing that has an important role in the fluid simulations is the
coupling with external dynamic objects. In the case of SPH, the particles
can interact directly with other objects without additional restrictions, but
in the case of NS and LBM simulations, they both need ad hoc processes
that couple external simulations of dynamic objects to the fluid, which in
fact poses an additional drawback for their implementation.

The previous discussion is summarized in Figure 2.6.
Although all three techniques have received interactive implementations

like, e.g., [Har04, CM10] with an implementation of Stam’s work and a shal-
low water adaptation with particles similar to the present work, [MCG03,
HKK07] with an interactive implementation of SPH and a GPU one and
[Thü07] that provides interactive framerates with its basic free surface LBM,
none of them have been used in videogames, except maybe SPH (as seen

14 CHAPTER 2. SIMULATION OF FLUIDS

NS Level set

3 Large time steps

3 Smooth surface

3 Largely known in CG

7 Auxiliary Particles required

7 Pressure Correction Step

7 Ad hoc dynamic objects

SPH

3 No grid required

3 Mass conserving

3 Dynamic objects interaction

7 Compressibility

7 High number of particles

7 Smoothing of kernels

LBM VOF

3 Simple algorithm

3 Mass conserving

3 Totally local

7 Time step restriction

7 High memory usage

7 Ad hoc dynamic objects

Figure 2.6: Overview of the main advantages and drawbacks of the three
main fluid methods: NS, SPH and LBM. Images from [CM11, LTKF08,
Thü07], respectively.

in Figure 1.4) for very small domains and only using the latest hardware
available if only a single GPU is used2.

For this reason, the parallel nature of the LBM attracted us at the begin-
ning of this thesis. We implemented a full 3D simulation with this method
on a mid-level GPU at the time (see Sections 3.6.2 and 4.2.1) but, although
it was feasible with an appropriate visualization for small domains, it didn’t
meet our requirements for it to be fully applicable to real-time software with
commodity hardware. This setback made us realize that full simulations
were still unmanageable at the scale we wanted, so we opted for a 2.5D so-
lution: a shallow waters approach to the problem, where fluid is represented
by a heightfield; as the method was faster, it allowed to include dynamic
objects and particles to supply some of its deficiencies (see Sections 3.7, 3.8
and 4.3).

The previous discussion also showed us a different aspect from these
techniques: it is usually not discussed how the fluids are visualized because,
as it may be assumed from their computational requirements that they are
directed toward off-line rendering, then external visualization packages as,
e.g., PRMan[Pix13] or Povray[oVRPL13], are used. These packages are
intended for photorealistic results and may require from seconds to hours to
render just a frame, depending on the internal lighting algorithms used.

2The SPH is executed with the PhysX library only implemented in GPU for Nvidia
cards. If the user does not use one of this brand, the simulation runs in CPU with the
correspondent performance hit. Alternatively, a multi-GPU configuration may be used,
where a less powerful Nvidia GPU card would go to execute the physics simulation alone.

2.4. PRESENT FLUID SIMULATION LIMITS 15

Fluid Simulator

Render

Caustics

Refraction &
Reflection

Dynamic
Object

Simulator

Init Config

to Framebuffer

Figure 2.7: The final pipeline applicable to a receiving software with both
simulation and visualization of fluids in real-time. From an initial domain
configuration and a group of objects initialized in a dynamic object sim-
ulator, the fluid simulation can start providing the adequate data to the
visualization module, who also needs some data from the dynamic objects
(for correctly proceed with caustics, refractions and reflections), and the
result is finally provided to the framebuffer.

From this scenario, it is clear that, for real-time applications, an appro-
priate visualization must be created that runs as fast as can be but with
results as physically faithful to photorealism as possible. Then, for a final
software, it is desirable to view simulation and visualization as a whole, like
the pipeline shown in Figure 2.7. This lead us to use raymarching techniques
(see Sections 5.2.2 and 5.2.3) through the scene to reproduce the light ef-
fects as caustics, reflections and refractions, but restricting the amount of
information available to screen-space, as global illumination techniques are
prohibitive, given that everything, simulation and visualization, are exe-
cuted at the same time and must do so in just a fraction of a second for each
frame.

In general, although different implementations can make each method to
vary significantly, we can conclude that there is no silver bullet in the com-
putational fluid dynamics field and the best solution lies in the combination
of multiple simulation methods to obtain the best of them. In any case, the
Lattice Boltzmann Method is up to the challenge of simulating fluids with
realistic results and it is quickly making its entrance in the graphics field.

16 CHAPTER 2. SIMULATION OF FLUIDS

Chapter 3

Lattice Boltzmann Method

Back off, man. I’m a scientist.

Peter Venkman
The Ghostbusters

This chapter goes in depth with our chosen fluid model, the Lattice
Boltzmann Method (LBM). Firstly, we give a brief revision of its history and
explain its basic form. Then, a mathematical derivation from the Boltzmann
equation to the discretized Lattice Boltzmann equation is given. Next, the
needed parametrization and an improved stabilization through a turbulence
model are presented. We proceed to explain how a free-surface model can
be adapted to the LBM. From a complete 3D simulation, we step back to
a surface only representation, using an adapted LBM to solve the Shallow
Water equations (LBMSW) and expand on how to include dry sections and
dynamic rigid bodies. Finally, we present an hybrid model using this surface
simulation coupled with a particle system which allows to achieve results
that the LBMSW by itself can not reproduce.

3.1 Evolution: how it became to existence

Devised by Ludwig Boltzmann in 1872, the Boltzmann equation is part
of the classical statistical physics and describes the behaviour of a gas in
a microscopic scale through the interaction of particles. Although mainly
developed for ideal gases, in the limit of small mean free path between
molecular collisions, a gas may be considered as a continuum fluid.

The LBM evolved, however, from methods that simulated gases as the
interaction from particles, solely using boolean or integer operations inside
a lattice. These methods are closely related to the concept of Cellular Au-
tomata [Wol86]; great complex structures are created from a simple set of
local rules. [HdPP76] were the first to attempt to perform fluid simulations
with this approach. It was not until [FHP86, FDH+87] with their Lattice

17

18 CHAPTER 3. LATTICE BOLTZMANN METHOD

Gas Automata (LGA), though, that it was discovered that the isotropy of
the lattice vectors is crucial to perform a correct approximation of the NS
equations.

Replacing the operations of the LGA with the calculation of the time
evolution of a probability density distribution of particles led to the new
LBM [MZ88, HJ89]. A great advance was the inclusion of a simplified col-
lision operator by the name BGK for their creators [BGK54], which was
derived independently in [CCM92, QDL92].

Further improvements as a different collision operator of the form of a
multi-relaxation scheme [LL00, DGK+02], better boundary conditions [Zie93,
Sko93, NCGB95, IYO95, ZH97, MLS99, LCM+08] or local mesh refinement
and non-uniform grids [NS92, HLD96] have increased the popularity and use
of the LBM in the computational fluid dynamics area.

Although a general comparison between LB solvers and NS ones is dif-
ficult, [GKT+06] compared solvers of both types. Their conclusion is that
the computational efficiency of the LBM solver is quite competitive with
regard to a discretization of the corresponding problem with NS. For special
problems, each solver has its advantages and disadvantages; for example, the
LBM can handle problems with a wide range of Knudsen numbers, whereas
a solution with NS can not be applied.

Overall, LBM performs very well for complex geometries and, if the
simplified BGK operator is used, the computations needed are simple arith-
metic operations. This reasons motivated us to use LBM as the fluid model
to implement in the GPU to reach a high performance and achieve real-time
simulations.

3.2 Algorithm skeleton

The most basic incarnation of LBM is based on two simple steps executed
for all the cells in the lattice: stream and collision. The simulated micro-
scopic particles can only move in a restricted number of directions, which
is determined by the model used. As LBM is a statistical method, there
are no particles per se, but particle distribution functions (df s) which ac-
count for that microscopic movement. Figure 3.1 shows the most common
distribution models used throughout the literature.

As the most part of the formulas for the LBM only depend on the df s, we
will proceed with the general algorithm explanation without further detail
on the distribution models; they will be discussed in Sections 3.6.1 and 3.7.1
for the 3D and 2D case, respectively. We will, however, use images from the
D2Q9 model for clarity.

For each of the restricted directions or velocity vectors e0..n, a floating
point number f0..n is stored, representing the fraction of particles moving
along that direction. These are the already introduced distribution func-

3.2. ALGORITHM SKELETON 19

D2Q9 D3Q19

dfs of length 1 dfs of length
√

2dfs of length 0

Figure 3.1: The most popular LBM models used.

tions.

During the first part of the algorithm, the stream step, the df s move
along their velocity vector to the next cell, they are advected; as shown in
Figure 3.2. In terms of the df s, it can be formulated as

f ′i(x + ei∆t, t+ ∆t) = fi(x, t), (3.1)

where f ′i is the value of fi after streaming. ∆x is the lattice size and ∆t is
the time step, but if they are normalized (∆t/∆x = 1) the stream step can
be implemented as a simple copy operation, avoiding float point operations.

F F F

F F F

F F F

Stream df s
Compute ρ and
u. Collide df s.

Figure 3.2: Stream and Collision steps for a fluid cell.

The second part of the algorithm is the responsible of the behaviour of
the fluid. This part is the collision step, which is expressed as

fi(x, t) = f ′i(x, t) + Ωi(f(x, t)), (3.2)

where Ωi is the collision operator that represents the rate of change of fi
resulting from collision.

20 CHAPTER 3. LATTICE BOLTZMANN METHOD

Using the BGK collision operator, the incoming df s are weighted with
the so called equilibrium distribution functions, denoted here as feqi . Equa-
tion 3.2 can be rewritten as

fi(x, t) = (1− ω)f ′i(x, t) + ωfeqi , (3.3)

where ω is the relaxation parameter and is related to the kinematic viscosity
of the fluid. It can also be found in the literature as τ = 1/ω. How ω is
defined, as well as other proper details on the parametrization, will be given
in Section 3.4.

These equilibrium df s are obtained from a Taylor expansion of the
Maxwell-Boltzmann equilibrium distribution function and, in the limit of
low Mach numbers, take the form

feqi = ρwi

(
1 + 3ei · u +

9

2
(ei · u)2 − 3

2
u2

)
, (3.4)

where wi depends on the distribution model and ρ and u are the local
macroscopic density and velocity of the fluid. These macroscopic values are
computed by summation of all df s for each cell as

ρ =
∑

fi, (3.5)

ρu =
∑

eifi. (3.6)

The values obtained from Equation 3.3 are finally stored as the df s for
time t+ ∆t.

3.2.1 Boundary conditions

The fluid simulation can not be complete without proper boundary condi-
tions. Although there are various alternatives, [Zie93, IYO95, ZH97] among
others, there is a very commonly used one: the no-slip boundary condition
which provides normal and tangential velocities equal to 0. It is also known
as the bounce-back rule.

To ensure that no particle of fluid leaves the domain and no unknown
values are introduced, when a fluid cell should receive a df from a boundary
cell, that df is set as the inverted one from the own set of the fluid cell as
seen in Figure 3.3:

f ′i(x, t+ ∆t) = fĩ(x, t), (3.7)

where ĩ denotes the inverse direction of i, eĩ = −ei. The collision step
remains the same as for normal fluid cells.

The counterpart to the no-slip boundary condition is the free-slip bound-
ary, also in Figure 3.3. This one results in a normal velocity equal to 0, but
maintains the tangential velocity unchanged. In contrast to Equation 3.7

3.3. MATHEMATICAL DERIVATION 21

Fluid cell next to boundary

No-slip Free-slip

Figure 3.3: Simple boundaries for LBM simulations: no-slip and free-slip.

where the df s are reflected along normal and tangential direction, the free-
slip scheme only requires the reflection along the normal of the surface. This,
however, comes at a price: the computations are not local as the neighbour
cells will be required. Additionally, if the neighbouring cell is not a fluid
one, the free-slip handling will behave as in the no-slip case.

3.3 Mathematical Derivation

This section will give an overview of the Boltzmann equation. The derivation
of the Lattice Boltzmann equation will be also described later on.

3.3.1 Boltzmann Equation

Although LBM historically evolved from LGA, it was soon realized that it
was a special discretization of the Boltzmann equation

∂f

∂t
+ ξ · ∇f = Ω(f), (3.8)

where f ≡ f(x, ξ, t) gives the amount of particles moving with a given
microscopic velocity ξ through space and time. Ω is the collision operator
and models the interaction of these particles.

A simplified approximation that preserves the collision invariants and
tends towards a Maxwellian distribution is the BGK model [BGK54]:

ΩBGK = −ω(feq − f). (3.9)

Here, feq is the Maxwell-Boltzmann equilibrium distribution function

fMB ≡ ρ

(2πRT)D/2
exp

(
−(ξ − u)2

2RT

)
, (3.10)

where R is the ideal gas constant or Boltzmann constant, D is the dimension
of the space, and ρ, u and T are the macroscopic density, velocity and

22 CHAPTER 3. LATTICE BOLTZMANN METHOD

temperature, respectively. These macroscopic variables are computed from
the moments of the distribution function f :

ρ =

∫
fdξ, (3.11)

ρu =

∫
ξfdξ, (3.12)

ρε =
1

2

∫
(ξ − u)2fdξ, (3.13)

where ε = TD/2 and it is the internal energy.
It is possible to derive the Navier-Stokes equations from the Boltzmann

equation, through a multi-scale analysis called Chapman-Enskog. It splits
the Boltzmann equation according to a hierarchy of different scales for space
and time, for which the expansion1 parameter is the Knudsen number Kn =
λ/LC . This value is the ratio between the mean free path length λ and
the characteristic shortest scale of the macroscopic system that needs to be
considered, LC . The Knudsen number has to be much smaller than one, in
order to be able to treat the fluid as a continuous system. A full derivation
of the equations can be found in, e.g., [CD98, WG00].

3.3.2 Lattice Boltzmann Equation

We will present here the derivation of the lattice Boltzmann equation from
the continuous Boltzmann equation, which is based on [HL97b]. We will
follow their same nomenclature.

Starting with the BGK Boltzmann equation

∂f(t)

∂t
+ ξ · ∇f(t) = − 1

λ
(f(t)− g(t)), (3.14)

where f(t) ≡ f(x, ξ, t) is the single particle distribution function for position
x, time t and microscopic velocity ξ. λ is the relaxation time due to collision
and g is the Maxwell-Boltzmann distribution fMB from Equation 3.10. For
simplicity reasons, it will be also used f(t+ δt) ≡ f(x + ξδt, ξ, t+ δt) as an
abbreviation in the following equations.

Discretization of time

Equation 3.14 can be rewritten as an ordinary differential equation:

Df

Dt
+

1

λ
f =

1

λ
g, where

D

Dt
=

∂

∂t
+ ξ · ∇ (3.15)

is the time derivative along the characteristic velocity ξ. Equation 3.15 is
further integrated and simplified over a small time step δt and assuming g

1The expansion is usually truncated after terms of second order.

3.3. MATHEMATICAL DERIVATION 23

is smooth enough locally as

f(t+ δt)− f(t) = −δt
λ

(f(t)− g(t)), (3.16)

where δt/λ is the dimensionless relaxation time (in the units of δt) and is
better known as ω or 1/τ .

Although g is written as dependent on t, it only relies on the hydrody-
namic variables ρ, ξ and T . However, a momentum space discretization is
needed in order to allow them to be integrated from Equations 3.11, 3.12 and
3.13. We will introduce this additional discretization in the next sections.

Equilibrium distribution approximation

In the lattice Boltzmann equation, the Maxwell-Boltzmann equilibrium dis-
tribution from Equation 3.10 is used. It is Taylor expanded up to second
order achieving a valid approximation for low Mach numbers, resulting in

f (eq) =
ρ

(2πRT)D/2
exp

(
−ξ2

2RT

)(
1 +

ξ · u
RT

+
(ξ · u)2

2(RT)2
− u2

2RT

)
. (3.17)

What remains to be done is the discretization of momentum space or
the microscopic velocities, which we will explain below.

Phase space discretization

From the Boltzmann Equation (Equation 3.8), the moving microscopic par-
ticles can do so in an infinite number of directions or more precisely, with an
infinite number of microscopic velocities ξ. This is called the phase space or
momentum space. In order to be able to implement the Boltzmann Equation
the phase space should be discretized, restricting the directions the particles
can travel along. For simplicity and conciseness, we will only present the
D2Q9 model derivation from [HL97b].

There are two considerations to be made in the needed discretization.
On one hand, the discretization of momentum space is coupled to the con-
figuration space; a lattice structure is obtained. On the other hand, isotropy
has to be retained. This is the most important of the symmetries of Navier-
Stokes equations. The lattice should, then, be invariant to rotations of the
problem.

For the Lattice Boltzmann derivation, the moments are used directly as
constraints for the numerical integration method. For isothermal models, as
the one used here, only the first moment, the velocity is required. Calculat-
ing these moments for Equation 3.17 is equivalent to evaluate the following
integral:

I =

∫
ψ(ξ)f (eq)dξ, where ψ(ξ) = ξmx ξ

n
y . (3.18)

24 CHAPTER 3. LATTICE BOLTZMANN METHOD

Here, ψ is a polynomial of ξ: ξx and ξy are the x and y components of ξ.
This can be calculated numerically with a Gaussian-Hermite quadrature of
third-order

Im =

3∑
j=1

wj(ζj)
m. (3.19)

The three abscissas of the quadrature are

ζ1 = −
√

3/2, ζ2 = 0, ζ3 =
√

3/2, (3.20)

and the corresponding weights

w1 =
√
π/6, w2 = 2

√
π/3, w3 =

√
π/6. (3.21)

Then, the moment function of Equation 3.18 can be defined as

I =
ρ

π

3∑
i=1

3∑
j=1

wiwjψ(ζi,j)

(
1 +

ζi,j · u
RT

+
(ζi,j · u)2

2(RT)2
− u2

2RT

)
, (3.22)

where ζi,j =
√

2RT (ζi, ζj)
T . Here, we can already identify the equilibrium

distribution function

f
(eq)
i,j =

wiwj
π

ρ

(
1 +

ζi,j · u
RT

+
(ζi,j · u)2

2(RT)2
− u2

2RT

)
. (3.23)

We can get the final weights w from

wα =
wiwj
π

=


4/9, i = j = 2 α = 0
1/9, i = 2⊕ j = 2 α = 1..4
1/36, i 6= j 6= 2 α = 5..8

(3.24)

Similarly, and with the substitution of
√

2RT
√

3/2 =
√

3RT = c, we
can find the final discretized velocity vectors:

e0 = ζ2,2 = (0, 0)T c

e1..4 = ζ1,2, ζ2,1, ζ2,3, ζ3,2 = (±1, 0)T c, (0,±1)T c

e5..8 = ζ1,1, ζ1,3, ζ3,1, ζ3,3 = (±1,±1)T c. (3.25)

Equation 3.23 can be rewritten to its final form as the equilibrium dis-
tribution function for each of the 9 velocity vectors:

feqα = wαρ

(
1 +

3(eα · u)

c2
+

9(eα · u)2

2c4
− 3u2

2c2

)
. (3.26)

3.4. PARAMETRIZATION 25

Accordingly, the hydrodynamic moments from Equations 3.11, 3.12 and
3.13, on which depends the equilibrium distribution function2, can now be
evaluated as

ρ =
∑
α

fα, (3.27)

ρu =
∑
α

eαfα, (3.28)

ρε =
1

2

∑
α

(eα − u)2fα. (3.29)

It is worth noting that the discretized velocity vectors were given by the
chosen quadrature, as was the configuration of the lattice from these vectors.
Other models like the D3Q27 can be derived similarly although the same is
not possible for other more irregular models, as the common D3Q19. For
these models, the ansatz method must be used [WG00].

3.4 Parametrization

For the LBM to behave properly, we need to assign some of its values from
real-world units. The parameters needed are ∆x, ∆t and ω.

As stated earlier, we would like a normalization between ∆x and ∆t to
minimize floating point operations in the implementation, like the simplifi-
cation of the direct copy of dfs for the stream step. To achieve that, we will
use adimensional quantities.

Let ν∗ [m2/s], D∗ [m], g∗ [m/s2] and r be the real kinematic viscosity,
domain size3, gravitational force and desired resolution of the lattice4, re-
spectively. The cell size used by the LBM can be computed as ∆x∗ = D∗/r.

From the gravitational force we can now compute the dimensional time
step ∆t∗. We can, additionally, limit the compressibility due to that force
as in [Thü07],

∆t∗ =

√
gc∆x∗

|g∗|
, (3.30)

where gc is the maximum factor of compression caused by gravitational
acceleration. We have used a value of gc in the range of [0.001, 0.01] in our
tests.

With ∆x∗ and ∆t∗ we can now compute the adimensional gravitational

2As we are working with an isothermal model, the energy density ρε will not be needed.
3A characteristic length; the width of the simulation, for example.
4It should be the matching resolution to the length from the domain size variable; the

width of the lattice, for the same example.

26 CHAPTER 3. LATTICE BOLTZMANN METHOD

acceleration and kinematic viscosity as

g = g∗
∆t∗2

∆x∗
, (3.31)

ν = ν∗
∆t∗

∆x∗2
. (3.32)

Finally, the relaxation parameter ω is computed from the adimensional
viscosity as

ω =
2

6ν + 1
. (3.33)

The relaxation parameter will remain in the range (0, 2], where values near
0 will result in very viscous fluids and, conversely, values near 2 will result in
more turbulent flows. For values close to 2, however, the method can become
unstable, although the Smagorinsky stabilization in Section 3.5 improves the
situation.

The ∆x∗ and ∆t∗ values will be further needed in other sections like the
coupling with rigid body simulations (Section 3.7.4) and particle simulations
(Section 3.8), as well as for the render of the fluid (Section 5.2) as scaling
factors.

3.5 Large Eddy Simulation & Improved Stability

Turbulent flows, represented by high Reynolds numbers and caused by low
viscosities, introduce instabilities in the LBM as the ω relaxation parameter
approximates 2. In order for the LBM to be able to simulate these kind of
flows, the Smagorinsky sub-grid model [Sma63] was introduced and adapted
in [HSCD96]. Here, the Smagorinsky model will be used as in [LWK03,
Thü07, Zho04] for its stabilization properties.

This turbulence model adds the computation of the local stress tensor,
which is used to modify the relaxation parameter of each cell. This is possible
as each cell contains information about the derivatives of the hydrodynamic
variables in its dfs. For the calculation of the modified relaxation parameter,
the Smagorinsky constant C is used, which should be computed dynamically
per problem depending on the smallest resolved scales that contribute to
the Reynolds stresses, as shown in [GPMC91]. It is more usual, however, to
choose a fixed value for the Smagorinsky constant; we have used the value
0.04 for our testing.

This additional computation is easily integrated in the basic algorithm:
the modified relaxation parameter ω′ is calculated between the stream and
collision steps as follows:

1. Using Einstein summation convention, the non-equilibrium stress ten-
sor Πα,β is computed for each cell:

Πα,β =
∑
i

eiαeiβ (fi − feqi). (3.34)

3.6. LBM 3D WITH A FREE-SURFACE 27

2. Calculate the local stress tensor S as

S =

√
ν2 + 18C2

√
Πα,βΠα,β − ν

6C2
. (3.35)

3. Finally, the modified relaxation parameter that will be used in the
collision step is given by

ω′ =
2

6(ν + C2S) + 1
. (3.36)

This modification to the basic LBM algorithm ensures a local increment
to the viscosity depending on the size of the stress tensor calculated from
the non-equilibrium parts of the dfs of each cell. Doing so, instabilities due
to close values of ω to 2 are eliminated, as shown in Figure 3.4.

Figure 3.4: Kármán vortex street. 2D slice from the speeds of the velocity
field of a D3Q19 LBM simulation in a lattice of 256x64x64 with ω = 2. The
speeds are color-graded; blue is for the lower ones, going through green as
the red ones are the highest.

It is worth noting that for engineering purposes it is important to evalu-
ate the deviations on accuracy caused by this turbulence model. For graph-
ical uses like those intended in this thesis, however, they can be ignored, as
the primary focus is the stability of the simulation.

Another method that leads to the LBM stabilization is the multi-relaxation
time (MRT) [LL00, DGK+02]. It uses a different collision operator for
Equation 3.2 that relaxes the different hydrodynamic moments separately
and provides better accuracy than the BGK model. Furthermore, MRT
can be also combined with the Smagorinsky turbulence model as in, e.g.,
[KTL03]. However, as we want to maximize performance for our simula-
tions, we have chosen the simpler BGK collision operator that, combined
with the Smagorinsky turbulence model, is stable and accurate enough for
our simulations.

3.6 LBM 3D with a Free-surface

Free surface fluid simulations are still a great challenge to solve with good
performance. The added complexity is due to the incompressibility restric-
tion and the surface tracking required, as in a simulation of this type two

28 CHAPTER 3. LATTICE BOLTZMANN METHOD

fluids are used (liquid and gas), although usually only one is computed: the
liquid. In contrast to liquid simulations where the fluid occupies a finite
portion of the simulation domain, gas simulations don’t require this surface
tracking as they expand the whole domain of the simulation; to be able to
visualize them a tint is used, usually as the form of marker particles advected
with the fluid. Here, however, we are interested in the simulation of liquids,
thus, the boundary of the fluid phase has to be determined and updated in
correspondence to the simulation.

We limit the discussion of free surfaces to Eulerian simulations (e.g.
LBM), as Lagrangian ones (e.g. SPH) represent the fluid with primitives
as particles; the mass is conserved without further calculations and the free
surface is just determined by the external particles from the bulk of the
fluid.

There are three major algorithms for tracking the free surface of a fluid:

• Marker and Cell(MAC). Introduced by [HW65], it was brought to
light again by [FM96, FM97a] with a complete 3D formulation. It
is based on the introduction of massless particles which are advected
with the fluid’s velocity field. Then, the cells of the grid used for the
simulation can be categorized in three types:

– Empty: Cells that do not contain any particle at all.

– Interface: Cells containing at least one particle that are adjacent
to Empty cells.

– Fluid: Cells containing at least one particle and are not Interface
cells.

Although the particles do not represent any mass, extra care has to be
taken when an Empty cell changes to Interface, or vice versa, in order
for the incompressibility to be preserved. We suggest [GDN98, Suá06]
to the reader for detailed instructions on a complete NS solver using
this method.

• Level-set(LS). Although developed by [OS88], it was [FF01] who in-
troduced it as a method to track the surface of fluids. Level-sets are
functions one dimension higher than the one used in the problem. They
define closed curves or curved surfaces that are the interface between
spaces.

To update the level-set, denoted here by φ, the following equation has
to be solved:

∂φ

∂t
+ u · ∇φ = 0, (3.37)

where u is the velocity of the fluid. φ is implemented as the distance
to the surface of the fluid, thus, points inside the fluid will have a
positive value and points outside will have a negative value.

3.6. LBM 3D WITH A FREE-SURFACE 29

The Level-set method can suffer from mass loss and extra efforts have
to be made to maintain incompressibility. [FF01] already used an hy-
brid method with advected particles; the particles helped to refine the
surface when the curvature of the level-set was above a certain thresh-
old. Likely, [EFFM02] presented a different hybrid solution where
marker particles were introduced in the two sides of the level-set and
were advected seamlessly; if a particle was detected to have changed
sides, the level-set was reinitialized using the particle information.

• Volume of Fluid(VOF). Presented in [HN81], the VOF method
solves the same equation as the LS method. In this case, the property
advected is not the surface itself, but some variable ϕ that each cell
stores. This variable is the quantity of fluid that cell has at time t, in
the range [0, 1]. Cells with ϕ = 0 are Empty cells, cells with ϕ = 1 are
Fluid cells, and cells with 0 < ϕ < 1 are Interface cells. This makes it
differ from the LS method, as VOF is able to conserve the mass and
allows for easily traced changes on topology of the fluid, e.g., interfaces
can join or break apart without ambiguities.

This method has been used to achieve results of high quality; for ex-
ample, [Sus03] coupled it with the LS method and the result was later
used in [MMS04] to control and animate breaking waves. For more
details, [SZ99] gives a review of the VOF method.

We discarded the MAC method early on, as the marker particles could
potentially cluster or segregate, losing sampling of the fluid. To solve this,
the fluid is resampled each time step, creating or removing particles where
needed. This dynamic control on the number of particles involves an addi-
tional problem in a GPU implementation for real-time simulations.

Although there are some more alternatives for the free surface LBM
models, like [GRZZ91, GS03], [Thü07] presented a more simpler loosely
VOF-based model, in which the mass fluxes are easily computed from the
streaming dfs. [TR04] already compared this method with a LBM level-set
implementation; no clear winner arose, the level-set gave a smoother surface
but it suffered from mass loss, in contrast to the VOF-based algorithm.

As it wasn’t done before, we, therefore, chose to implement in CUDA
this VOF-based algorithm for its ease of integration with the LBM. It will
be explained here for completeness, but the implementation details will be
given in Section 4.2.1.

3.6.1 D3Q19 model and modified equilibrium distribution
function

For a full 3D simulation we have chosen to use the D3Q19 model (previously
shown in Figure 3.1). In contrast, the D3Q15 has a decreased stability due

30 CHAPTER 3. LATTICE BOLTZMANN METHOD

to the reduced discretization of the phase space, and the D3Q27, although
more complete, has no apparent advantages over the D3Q19 model but needs
more memory requirements.

The discretized velocities for this model are defined as:

e0 = (0, 0, 0)T ,

e1,2 = (±1, 0, 0)T ,

e3,4 = (0,±1, 0)T ,

e5,6 = (0, 0,±1)T ,

e7..10 = (±1,±1, 0)T ,

e11..14 = (0,±1,±1)T , and

e15..18 = (±1, 0,±1)T . (3.38)

Furthermore, we use the incompressible model from [HL97a], who intro-
duce a modified equilibrium distribution with regard to Equation 3.4

feqi = wi

(
ρ+ 3(ei · u)− 3

2
u2 +

9

2
(ei · u)2

)
, where wi =


1/3 i = 0,

1/18 i = 1..6,

1/26 i = 7..18.

(3.39)
The velocity computation is changed, besides, in contrast to Equation 3.6,

the normalization with the density is not needed,

u =
∑
i

eifi. (3.40)

Aside from these two changes, however, the stream and collision steps
for the LBM are the same as those described in Section 3.2. Next, we
will introduce the additions to the algorithm that allow for a free surface
simulation based on [Thü07].

3.6.2 LBM Volume of Fluid

In the simulation of free surfaces, we can distinguish two main regions:
empty space and fluid (or more precisely, liquid). This requires us to clas-
sify the LBM cells depending what region they belong to at a given time.
Therefore, we can classify the cells in three types: Empty, Fluid and Inter-
face. Empty cells will be those that do not contain fluid, Fluid cells will be
those completely filled and Interface cells, which are not completely filled,
will be the separation layer between Fluid and Empty cells. For Empty
cells, as for boundary ones, there will not be any computation. Fluid cells
only need the usual steps of the LBM algorithm: stream and collision. In-
terface cells, however, form a closed layer and are the ones carrying the
responsibility to track the surface of the fluid, as shown in Figure 3.5.

3.6. LBM 3D WITH A FREE-SURFACE 31

Empty

Fluid
F F F F F F F F

F F F I I I I I

F F I I E E E E

F F I E E E E E

F F I E E E E E

F F I E E E E E

F Fluid cell I Interface cell E Empty cell

Figure 3.5: Classification of cells depending on the region they are on.

The movement of the fluid surface is tracked by the computation of the
mass each cell contains. Two new properties are introduced for each cell:
the mass m of the cell and its fluid fraction ϕ, which has to be in the range
[0, 1] and is just the ratio between the mass m and the density ρ of the cell
(from Equation 3.5) as

ϕ =
m

ρ
. (3.41)

For each iteration, the additional operations needed for interface cells,
illustrated in Figure 3.6, proceed as follows:

1. Calculate the mass exchange. This is computed directly from the
values streamed between two adjacent cells for each direction of the
model, averaging with the fluid fraction of the cells:

∆mi(x, t+ ∆t) = mci

ϕ(x + ei∆t, t) + ϕ(x, t)

2
, (3.42)

where mci = (fĩ(x + ei∆t, t)− fi(x, t))

This equation is symmetric; the amount of fluid leaving one cell enters
the other one, and vice versa.

Now, the mass value is updated for the next time step:

m(x, t+ ∆t) = m(x, t) +
∑
i

∆mi(x, t+ ∆t). (3.43)

2. Stream step. Only dfs coming from Fluid and Interface cells are ac-
cepted, as the ones from Empty cells are invalid.

3. Reconstruct incoming dfs from Empty cells. Here a constant value
of atmospheric pressure, and therefore, a constant density ρA = 1 is
used, as it is also the reference value for the density of the fluid. It
is assumed that the viscosity of the fluid is lower than the one of the
gas5, while having a higher density. This implies that the gas follows

5Not simulated but represented as the Empty cells.

32 CHAPTER 3. LATTICE BOLTZMANN METHOD

F

F

F

I

I

I

E

E

I

Compute mass
exchange

Stream df s from
Fluid and In-
terface cells.

Reconstruct df s
from Empty cells.

n

Calculate sur-
face normal n

n

Reconstruct dfs
along normal.

Perform collision
and store df s.

Figure 3.6: Steps done for an interface cell.

the motion of the fluid at the interface. The required dfs are finally
computed as

f ′i(x, t+ ∆t) = feqi (ρA,u) + feq
ĩ

(ρA,u)− fĩ(x, t), (3.44)

where u is the velocity of the cell at position x and time t.

4. Compute the surface normal. For the next step the surface normal at
this Interface cell will be needed; it is computed using finite differences
from the fluid fraction:

n =
1

2

 ϕ(xi−1,j,k)− ϕ(xi+1,j,k)
ϕ(xi,j−1,k)− ϕ(xi,j+1,k)
ϕ(xi,j,k−1)− ϕ(xi,j,k+1)

 (3.45)

5. Reconstruct dfs along normal. To balance the forces on each side of
the fluid interface, the dfs coming from the direction of the surface
normal are also reconstructed. Equation 3.44 will be used for all the
dfs that hold

u · eĩ > 0. (3.46)

6. Collision step. Finally, with the full set of dfs, the collision step can
be executed. The fluid fraction ϕ is also updated according to Equa-
tion 3.41.

3.6. LBM 3D WITH A FREE-SURFACE 33

Additionally, after the iteration is over and all cells have been updated,
Interface cells that have filled or emptied during this time step have to be
reflagged, that is, changed their type, accordingly. The density calculated
during collision to check if the cells filled or emptied:

m(x, t+ ∆t) > (1 + ε)ρ(x, t+ ∆t)→ cell has filled,

m(x, t+ ∆t) < (0− ε)ρ(x, t+ ∆t)→ cell has emptied. (3.47)

An additional offset ε is used to prevent change of cells in subsequent time
steps.

These cells have to be converted. For filled cells, their neighbourhood of
Empty cells are converted to Interface. These neighbour cells are initialized
with the equilibrium dfs using the average ρavg and uavg from the surround
non-Empty cells. Any Interface cell around these new filled cells that is
marked for emptying has to be maintained for the boundary to remain valid
as a closed layer. The excess of mass mex = m − ρ of these filled cells has
to be distributed among the surrounding Interface cells, as it means that
the boundary moved beyond the actual cell. Finally, the cell is changed to
Fluid. The exceeding mass, however, is not distributed evenly; it is weighted
depending on the direction of the surface normal n:

m(x + ei∆t) = m(x + ei∆t) + (ηi/ηtotal) ·mex, (3.48)

where ηtotal is the sum of all weights ηi, which are computed as

ηi =

{
n · ei if n · ei > 0

0 otherwise
for filled cells, and

ηi =

{
−n · ei if n · ei < 0

0 otherwise
for emptied cells.

(3.49)

Likewise, the fluid neighbours of emptied cells have to be changed to
Interface. These emptied cells could have negative mass values, it should be
distributed as for the exceeding mass of filled cells. At last, the cell is also
changed to Empty.

As the mass of the adjacent cells change, their fluid fraction should be
updated accordingly. It should be noted that these computations must pro-
vide the same results independently of the order in which filled and emptied
cells (as well as their neighbourhood) are converted.

Figure 3.7 shows some screenshots from our CUDA implementation for
the Drop and Breaking Dam examples, with a low value for ω, thus, us-
ing higher viscosity. Other examples using the turbulence model from Sec-
tion 3.5, with a ω value of 2 and the OpenGL raycasting visualization from
Section 5.1 can be seen in Figures 5.2 and 6.4. The timings for these exam-
ples will be provided in Section 6.2.

34 CHAPTER 3. LATTICE BOLTZMANN METHOD

Figure 3.7: Image stills from the drop example (left column) and the break-
ing dam example (right column). A 323 grid is used in both examples. Blue
cells are full fluid ones, pink cells are Interface cells with a size proportional
to their fluid fraction and green points indicate boundary cells.

3.7. SHALLOW WATERS SIMULATION 35

3.7 Shallow Waters Simulation

The full simulation of a 3D fluid flow, although feasible as shown in the
previous scenes, is still a very heavy problem for real-time simulations. To
reduce complexity and assuming that the water depth is much smaller than
the horizontal scale, we can simplify the problem to the simulation of the
surface of the fluid by using the Shallow Waters Equations, as [KM90] pi-
oneered in the computer graphics field. Here, the surface is tracked as a
height field. This imposes some restrictions; the fluid can not break apart
vertically, e.g., we can’t simulate breaking waves or the pour of wine in a
glass. We will present, however, an hybrid approach to solve these types of
limitations in Section 3.8.

For now, we will introduce the simpler surface-only simulation based
on the Shallow Waters Equations, also known as St. Venant Equations.
These equations are derived from depth-integration of the original Navier-
Stokes Equations (2.1 and 2.2) and are usually used to simulate waves whose
wavelength is similar to the overall fluid depth with a wave propagation
speed constant for all amplitudes.

They can be written as in [Zho04]:

∂h

∂t
+
∂(huj)

∂xj
= 0, (3.50)

∂hui
∂t

+
∂(huiuj)

∂xj
+
g

2

∂h2

∂xi
= Fi, (3.51)

where i and j are Cartesian indices and Einstein summation convention is
used, h is the water depth, ui is the depth-averaged velocity component in
the i direction, t is the time and g is the vertical gravity. Fi are the external
forces in the i direction and, as pictured in Figure 3.8, can be defined as

Fi = −gh∂zb
∂xi
− τbi + τwi, with (3.52)

τbi = Cbui
√
ujuj , (3.53)

τwi = Cwuwi
√
uwjuwj , (3.54)

where zb is the bed elevation, τwi is the wind shear stress and τbi is the
bed shear stress. Cb and Cw are the bed friction coefficient and the wind
resistance coefficient, respectively. uwi is the component of the wind velocity
in the i direction. We also define the value η = h+ zb for further use.

Getting back to the LBM, we can apply it to the Shallow Waters (SW)
like in, e.g., [TSB07, Thü07, Tub10]. Derivations for the full LBMSW can
be found in, e.g., [Sal99, Del02, Zho02].

36 CHAPTER 3. LATTICE BOLTZMANN METHOD

h

zb
x

y

Figure 3.8: Sketch for the Shallow Water Simulation with arbitrary under-
lying terrain.

3.7.1 D2Q9 model and equilibrium distribution function

As the fluid simulation is only two-dimensional, the common D2Q9 model
from Figure 3.1 is used. Its discretized velocities are:

e0 = (0, 0)T ,

e1,2 = (±1, 0)T ,

e3,4 = (0,±1)T ,

e5..8 = (±1,±1)T . (3.55)

In the LBMSW, instead of computing fluid pressure (or density), a height
value is considered. Equations 3.5 and 3.6 should be rewritten as

h =
∑

fi, (3.56)

u =
1

h

∑
eifi. (3.57)

Likewise, the equilibrium distribution function is different:

feqi =


h− wih

(
15

6
gh− 3

2
u2

)
i = 0,

wih

(
3

2
gh+ 3(ei · u) +

9

2
(ei · u)2 − 3

2
u2

)
i = 1..8,

where wi =


4/9 i = 0,

1/9 i = 1..4,

1/36 i = 5..8.

(3.58)

The rest of the LBM algorithm remains exactly the same, stream and
collide; the same boundary conditions can be applied as well as the turbu-
lence model from Section 3.5.

3.7. SHALLOW WATERS SIMULATION 37

3.7.2 Underlying terrain and other forces

Forces from Equation 3.52 are also introduced into the LBMSW adding a
couple of terms to the LBM collision from Equation 3.3 as in [Zho11]

fi(x, t) = f ′i(x, t)− ω(f ′i(x, t)− f
eq
i)−Xi + Zi, (3.59)

in which, using h̄ = [h(x + ei∆t, t) + h(x, t)]/2,

Xi =

{
gh̄
2 [zb(x + ei∆t)− zb(x)], i = 1..4,

0, otherwise,
(3.60)

and

Zi =

{
0 i = 0,
Fα

6eiα
otherwise,

(3.61)

where Fα is the component of the external forces in the α direction from
Equations 3.53 and 3.54, as Xi already takes into account the bed elevation.
Other forces like those to take into account the Coriolis effect can be also
added, but we have dismissed them.

This approach, in contrast to the forcing terms used in, e.g., [TSB07,
GRGT10], allows us to preserve the simple arithmetic computations of the
LBM, avoiding first order derivatives for the underlying terrain but achieving
the same accuracy results.

3.7.3 Dry sections

The LBMSW described so far interacts with an arbitrary bed surface but is
limited to subcritical flows (slow moving deep water) as it has to fulfill the
following condition [Zho04]:

u · u
gh

< 1 (3.62)

In order to allow the dynamic drying and wetting of the bed topogra-
phy, we have to extend the LBMSW algorithm to account for these new dry
sections and how they behave with regard to the rest of the fluid. We do
this imposing a minimal height limit for the fluid cells, as a small thresh-
old parameter. Cells with a computed height below this threshold will be
converted to dry cells and be discarded in further computations. When the
fluid comes in again, due to the propagation step of the LBM, the cell will
come wet and usable in following steps.

To ensure that no wet cells are left behind, e.g., in a case of fluid de-
scending a slope, we enforce that this kind of cells, which already have a
low height, propagate their remainder fluid in the opposite direction of the
gradient of the underlying terrain as follows:

fi(x + ei∆t) = fi(x + ei∆t) + h(x) · (ηi/ηtotal), (3.63)

38 CHAPTER 3. LATTICE BOLTZMANN METHOD

where ηtotal is the sum of all weights ηi, which are computed as

ηi =


−(∇zb · ei) if − (∇zb · ei) > 0 and cell at

(x + ei) is a Fluid one,

0 otherwise,

(3.64)

However, for very small heights, this method can lead to numerical insta-
bilities when computing the macroscopic velocity in Equation 3.57. To avoid
such a situation, the correct solution to keep stability and physical validity
would be the reparametrization of the entire simulation as in [Thü07], re-
ducing the value of the time step of an iteration, thus increasing the number
of iterations needed.

In contrast to [GRGT10], who solved this problem using a modified
minmod flux limiter, we have resorted to a simpler approach. Based on the
restriction of Equation 3.62 we introduce an upper limit for that ratio as
a parameter λ ∈ [0, 1). For cells that have a ratio above λ, we rescale the
velocity so the subcritical flow condition is met and compute new dfs from
the equilibrium distribution function. We have used a λ = 0.95 for our tests.

Figure 3.9: Image stills from the shore breaking dam example.

Although not physically correct, this method ensures stability in a sim-
ilar fashion to the Smagorinsky’s change of local viscosity from Section 3.5,
dampening effectively local high velocities; as can be seen in Figures 3.9 and
3.10. Additionally, as the subcritical flow condition has to be guaranteed

3.7. SHALLOW WATERS SIMULATION 39

Figure 3.10: Image stills from the breaking dam over noisy ground.

for all the fluid, we can use this method to dampen high velocities in the
fluid caused by external forces, whatever the height of the cell.

3.7.4 Dynamic Obstacles

In this section we will describe how dynamic obstacles, more specifically
rigid bodies, may be introduced to LBMSW simulation. These solid objects
react to the fluid movement but also influence its behaviour. This means
that a two-way coupling between obstacles and fluid must be done.

When a rigid body is introduced in the fluid simulation, a compromise
between the complexity of the model and time needed for interation must
be taken. We decided to define a proxy object that simplifies geometry and
keeps body weight in order to preserve the dynamics. This proxy object will
be responsible for the interaction with the fluid and will provide the final
geometric transformation for the real model to be visualized.

To get a simple physical model, the proxy object we have defined is a
set of spheres with some associated properties. These properties are the
radius r, the position p = (px, py, pz)

T in object space and the normal
n = (nx, ny, nz)

T . During the simulation, the spheres will also carry a
velocity v = (vx, vy, vz)

T .

The model discretization into a set of spheres and their properties has
to be provided externally; we have created a basic application to allow the

40 CHAPTER 3. LATTICE BOLTZMANN METHOD

Figure 3.11: Sphere discretization example for a boat model done with our
basic editor application. The spheres are positioned and sized within the
model, their normal vectors represented by the black short lines.

positioning of an arbitrary number of spheres and their parametrization
inside an object. A basic example of this type of discretization is shown in
Figure 3.11.

It should be noted that, the more spheres and accurately positioned and
sized inside the model, the more precise and physically realistic will be its
behaviour. When a model is uniformly discretized with spheres of a radius
r lower than the ∆x from the fluid simulation, our results are comparable to
[CM10], where they use a tessellated mesh from the real model mesh, whose
triangles have sides with lengths lower than ∆x.

Fluid to Obstacle coupling

There are three major forces that define the movement of an obstacle due
to the action of the fluid, as seen in Figure 3.12: buoyancy, drag and lift.
The buoyancy force points upward and is proportional to the weight of
the displaced fluid. Drag force is a resistive force and is dependent on the
actual velocity of the obstacle with regard to the fluid. Finally, lift is a force
perpendicular to the oncoming flow direction, it contrasts with the drag
force as that one is parallel to the flow direction.

Fdrag

Flift

u

Fbuoy
n

Figure 3.12: Buoyancy, Drag and Lift forces of an object with velocity u
relative to the fluid.

3.7. SHALLOW WATERS SIMULATION 41

We follow the same strategy as [YHK07, CM10] for the computation of
these forces at the position of each sphere of the proxy object. The values for
the fluid’s level and velocity at different positions are bilinearly interpolated.
In the following, we assume that the simulation plane is xz.

The buoyancy force can be defined as −gρV , where V is the displaced
volume of fluid. For sphere i is defined by

f buoyi =

{
0 if Spi − Sri > ηp,

gρVsubŷ otherwise,
(3.65)

where ηp is the water level at the sphere position, Sri is the sphere radius,
Spi is the y coordinate of the location of the sphere and Vsub is the volume of

the submerged part of the sphere calculated as Vsub =
∫ top
−Sri

π(Sri
2 − x2)dx,

with top = (ηp − (Spi − Sri)). Finally, ŷ = (0, 1, 0)T .
The drag and lift forces are computed, as well, as

fdragi = −1

2
CDA2D‖urel‖urel, (3.66)

f lifti = −1

2
CLA2D‖urel‖

(
urel ×

Sni × urel
‖Sni × urel‖

)
, (3.67)

where CD and CL are the drag and lift coefficients, urel is the relative
velocity of the sphere with respect to the fluid, Sni is the normal defined for
the sphere and A2D is the area of the circle that cuts the sphere at water
level ηp.

Figure 3.13: A buoy is being dragged by the fluid.

Finally, the three forces are added to the ith sphere. The rigid body
simulator will take care of the evolution of the proxy model and will provide
the corresponding transform to use in the render phase, as shown by the
buoy example of Figure 3.13.

42 CHAPTER 3. LATTICE BOLTZMANN METHOD

Obstacle to Fluid coupling

In this case, it is the obstacle who modifies the behaviour of the fluid. In
order to do so, the fluid not only has to be displaced by the obstacle, but
has to be accelerated with the velocity of the obstacle.

The following computations are done per sphere, as previously. To
change the fluid correctly, we get the velocity of the obstacle for the ith
sphere as v and the difference between the submerged height of the sphere
and the fluid level as depth. We compute the following values

decay = exp(−depth), (3.68)

ho = decay ∗ Cdis ∗ depth, (3.69)

uo = decay ∗ Cadp ∗ v, (3.70)

where decay takes into account the depth the sphere is at and limits accord-
ingly the effect it has over the fluid surface, Cdis and Cadp are parameters
in the range [0, 1] that dampen the effect of the coupling as it can cause
instabilities in the LBM if depth is great or v exceeds the maximal wave
velocity.

Then, we input the resulting ho and uo from Equations 3.69 and 3.70 into
the LBM equilibrium distribution, Equation 3.58, updating the previous dfs
as

f0 = f0 − ho,

fi = fi + feqi (ho,uo) +
feq0 (ho,uo)

wo
,

where wo =

5 i = 1..4,

20 i = 5..8.
(3.71)

The values of wo are calculated from the original weights wi from Equa-
tion 3.58. With this computation we effectively push the volume of fluid
the obstacle displaces to the neighbour cells, taking into account in the pro-
cess the obstacle velocity. Additionally, to avoid high differences between
contiguous points of the fluid mesh, we distribute the ho and uo among the
nearest cells using linear interpolation.

For the present examples we have used Cdis = 0.8 and Cadp = 0.6. The
subcritical flow condition from Section 3.7.3 can also be used here to ensure
that no instabilities are introduced from high velocities. Figure 3.14 shows
the result of this coupling as some wake waves are generated by a boat.

3.8 Hybrid LBMSW-Particle Model

The model described so far can only simulate the surface of a fluid, it can not
detect and simulate high discontinuities on the surface, e.g, breaking waves

3.8. HYBRID LBMSW-PARTICLE MODEL 43

Figure 3.14: The boat responds to the fluid forces and introduces some new
fluid waves at its tail as a result of the coupling.

or multiple level simulations. To solve this limitation, we have coupled
the LBMSW with a particle system. When a breaking wave is detected,
fluid from the shallow waters simulation is turned into particles, which are
evolved independently until they fall back to the height field, when they are
reintegrated.

Although we have used a ballistic particle system, our implementation,
which will be explained thoroughly in Section 4.3, is generic, i.e., any type
of particle system can be applied with minimal changes. This makes it more
interesting for broad uses, as it can be coupled with more advanced particle
systems like, for example, Smoothed Particle Hydrodynamics.

In this same direction, [OH95] already extended the [KM90] model, gen-
erating particles from splashes when objects impacted the surface of the
fluid. Also, the coupling between mesh-based methods and particle meth-
ods provides the benefit of higher level of detail for lower scale phenomena
like splashes and spray, as in, e.g., [TFK+03, LTKF08].

However, the conditions for when to generate particles are still deli-
cate. Studies of breaking waves had been performed in 2D by [CKZL99]
and [MMS04] presented the treatment of breaking waves for full 3D Volume
of Fluid simulations. [TMFSG07] introduced simple parameter-based con-
ditions to generate new geometry patches for breaking waves, which where
later improved by [CM10]; although more memory was needed for the new
conditions, temporal coherence gave more robustness.

We have applied the detection conditions from [CM10] to the LBMSW
algorithm, but the generation and reintegration of particles have been fully
adapted with the LBM restrictions in mind. To be consistent, we use the
same parametrization as for the adimensional LBM, so ∆x and ∆t are con-
sidered to be equal to 1. It is clear that for render purposes, a redimension-
alization must be applied.

44 CHAPTER 3. LATTICE BOLTZMANN METHOD

3.8.1 Detection

Particles should only be created when the fluid solver, in the present case
the LBMSW, can not simulate certain effects, as breaking waves. From the
variables used in the fluid simulation we have to be able to detect when
these phenomena should occur.

A given cell (i, j) is considered to contain a breaking wave if it satisfies
these three conditions:

‖∇ηi,j‖ > αg, (3.72)

ηi,j − ηprevi,j > β, (3.73)

∇2ηi,j < γ, (3.74)

where ηprevi,j is the fluid height in the previous time step and α, β and γ
are parameters, which should be tailored per scene, and more specifically
by its scale. Equation 3.72 ensures the wave is steep enough to break.
Equation 3.73 requires that the cell is part of the front of the wave and it
is raising fast, introducing a comparison with the previous value of height.
Finally, Equation 3.74 makes sure particles are only generated near the top
of the wave.

As in [CM10], we compute ∇ηi,j using the maximum among the one-
sided derivatives

∇ηi,j =

[
max(|ηi+1,j−ηi,j |,|ηi,j−ηi−1,j |)

∆x
max(|ηi,j+1−ηi,j |,|ηi,j−ηi,j−1|)

∆x

]
. (3.75)

Similarly, ∇2ηi,j is computed using central differencing as

∇2ηi,j =
ηi+1,j + ηi−1,j + ηi,j+1 + ηi,j−1 − 4ηi,j

∆x2
. (3.76)

If all three conditions are met, the next step will generate and initialize
particles for the given cell. The total volume Vtotal the added particles
will subtract from the LBMSW is proportional to ‖∇ηi,j‖ − αg and can be
tweaked introducing a new parameter θ, as

Vtotal = θ(‖∇ηi,j‖ − αg), (3.77)

here θ just acts as a multiplier and enables a finer control on how much
fluid volume will be converted to particles from the excess generated with
Equation 3.72.

3.8.2 Generation

For each cell detected in the previous step, a number of particles will be
generated for the volume computed in Equation 3.77.

3.8. HYBRID LBMSW-PARTICLE MODEL 45

For a particle of radius r, its volume is Vp = 4
3πr

3. We can, however,
amplify it by modifying artificially the radius without repercussion to the
visual aspect, i.e., the radius of the visual representation may be different
from the simulated one. This allows to control the number of active particles;
the higher the radius, the less particles needed to supply the computed Vtotal.

x̂

ŷ

ẑ

ηi,j

∆x

∆x

− ∇ηi,j
‖∇ηi,j‖

Figure 3.15: Particle placement in the generation step. They are initialized
within the red rectangle.

The particles are positioned within a cell-centered rectangle of width
equal to the LBMSW cell width (∆x = 1) and height Vtotal as shown in
Figure 3.15. This rectangle is oriented with the opposite direction of the
gradient computed in Equation 3.75.

The particle velocities in the xz plane are defined by the wave speed as

in [TMFSG07] like vxz =
−∇ηi,j

√
gh

‖∇ηi,j‖ . The y component can be defined as

a fraction of the height differences from Equation 3.73 as λy(ηi,j − ηprevi,j).
We have used λy = 0.1 for the present examples with satisfactory results as
shown in Figure 3.16.

Furthermore, we lightly perturb the velocity of each particle and jitter
their initial positions between [−∆x

2 , ∆x
2] in the gradient direction. We also

move the particles a random little fraction of a time step in their final
velocity direction. These little perturbations add variation and result in less
uniform, more chaotic particle movement.

The total volume the particles supply must be subtracted from the
LBMSW, as well as the momentum they get. We can easily do this by
computing the equilibrium distribution function from Equation 3.58; us-
ing as input values Vtotal and the xz velocity components from the particle
velocities, prior to the perturbations we apply. These newly computed equi-
librium dfs will be subtracted from the cell’s original df set as

fi = fi − feqi

(
Vtotal
∆x2

,vxz

)
. (3.78)

From another point of view, particles are not restricted to be generated
only from the detected breaking waves of the previous step. We can generate
and initialize particles with other requirements in mind, like a faucet pouring
fluid into a basin or a heavy rain column, as demonstrated by Figure 3.17.

46 CHAPTER 3. LATTICE BOLTZMANN METHOD

Figure 3.16: Particles generated from the wave of a breaking dam over a
dry region.

3.8.3 Reintegration

The final step in the coupling of LBMSW and the particle system is the
reintegration of the particles when they hit the surface of the fluid, i.e.,
py ≤ ηi,j . The volume the particles carry, as well as their momentum, must
be absorbed by the cell they fall on.

As the LBMSW has no explicit method to input vertical velocities, we
introduce an interpolation for the absorption of the volume of the particle
among the cell’s dfs. This interpolation is based on the terminal speed the
particle could achieve. Assuming that particles are simulated as spheres as
we do, their terminal speed can be defined as

vT =

√
8rg

3CD
, (3.79)

where CD is the drag coefficient. We normalize the particle’s vertical speed
with vT and clamp the result to the range [0, 1], as χ = min(max(vy/vT , 0), 1).

Taking into account the previous consideration, we calculate feqχ0 as

feqχ0 = feq0

(
Vp

∆x2
,vxz

)
, (3.80)

3.8. HYBRID LBMSW-PARTICLE MODEL 47

Figure 3.17: Particles generated like a heavy rain column, integrated after-
wards to the bulk of the fluid. After a few seconds, the height of the surface
of the LBMSW is effectively raised.

and we can finally update the dfs of the cell using the following computations

f0 = f0 + (1− χ) · feqχ0 , (3.81)

fi = fi + feqi

(
Vp

∆x2
+ χ · feqχ0 ,vxz

)
. (3.82)

Similarly to the obstacle to fluid coupling from Section 3.7.4, using the
interpolation with the terminal speed, the added volume is pushed from the
cell’s center to its neighbours with more energy, the faster the particle drops.
Figure 3.17 shows how the water level is effectively raised from the dropped
particles.

48 CHAPTER 3. LATTICE BOLTZMANN METHOD

Chapter 4

CUDA Implementation

The computing scientist’s main
challenge is not to get confused
by the complexities of his own
making.

E. W. Dijkstra

Graphical Processor Units (GPU) have seen their computational power
dramatically increased in last years. Additionally, they are no more re-
stricted to use a fixed function pipeline; general programmability allows
the developer the use of advanced and different techniques for the graphics
visualization.

This general programmability has also enabled the use of GPUs as co-
processors. Their specialization for high data-parallel functions for, e.g.,
per-pixel operations, can be leveraged in other situations. Problems which
involve high parallel code sections can use GPUs, given a proper mapping of
the problem domain to the graphics API and shading language of choice, i.e.,
the problem must be reformulated to use textures as basic data containers
and execute multiple render passes on off-screen framebuffers. This use of
the GPUs for general computation is commonly referred as GPGPU.

Many libraries or frameworks have been created to simplify the access
to this functionality, like BrookGPU [Lab13], but the predominant ones
are Nvidia’s CUDA [Nvi13] and the open standard from Khronos Group,
OpenCL [Gro13].

Taking into account the locality of the operations of the LBM, we have
used Nvidia’s solution for the computation of the fluid and OpenGL for the
visualization as explained in Chapter 5 to reach real-time fluid simulations.

49

50 CHAPTER 4. CUDA IMPLEMENTATION

4.1 CUDA Architecture

CUDA was first released in November 2006, starting with the G80-based
family products. It is a general purpose computing architecture that pro-
vides the access to the scalability of parallelism inherent to GPUs with
minimal extensions to the C programming language, although wrappers for
other languages do exist.

Its strengths are based on three pillars: a hierarchy of threads, shared
memories and barrier synchronization. They guide the programmer to map
the problem in hand into coarse sub-problems suited for the parallel com-
putation in independent order by groups of threads. This decomposition is
beneficial as the CUDA programs can be executed by different number of
processors cores, scaling automatically to those available by the system.

4.1.1 Programming Model

CUDA functions, called kernels, are executed in parallel by a set number of
N threads. The number of needed threads is specified in the kernel launch,
as well as their configuration in a thread hierarchy.

This hierarchy of threads is provided by CUDA in order to group threads
by processor core. Threads are distributed in blocks, and blocks get dis-
tributed in grids. While blocks can be one, two or three-dimensional, grids
can only be two-dimensional. Their size, be them blocks or grids, is limited
by the hardware used. On the GPU we have used, a GTX280, the size of
a thread block is limited to 512 threads, as all threads are expected to be
resident on the same processor core and must share a limited memory and
register space on that core. Figure 4.1 shows an example of how threads are
distributed within this hierarchy.

Grid

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Block (1,1)

Thread (0,0) Thread (1,0) Thread (2,0)

Thread (0,1) Thread (1,1) Thread (2,1)

Thread (0,2) Thread (1,2) Thread (2,2)

Figure 4.1: Grid of Blocks of Threads.

Thread blocks are required to be executed independently, without any
special order. This requirement allows to schedule them across any number
of available cores. Threads within these blocks can use some limited shared
memory and synchronize their execution to coordinate memory accesses

4.1. CUDA ARCHITECTURE 51

through an intrinsic function that acts as a barrier. A fundamental key
to optimize execution is to maximize occupancy; the configuration of blocks
and grids should be done depending on the per-core resources a kernel needs,
as the registers and the shared memory are limited.

The memory the threads can access is also distributed in various spaces.
Each thread has private local memory, represented as registers (if available).
There is, also, a limited amount of shared memory per core that all threads
in a block can access; it is meant to be low-latency memory used for local
operations between threads in the block. The bulk of the memory, the global
memory, can be accessed by all threads and is persistent across kernel calls
by the same application.

Additionally, there are two more read-only memory spaces accessible by
all threads: constant and texture memory spaces. Texture memory pro-
vides different addressing modes and data filtering. These spaces are also
persistent, as the global memory.

How the memory is accessed is another important feature to keep in
mind when programming with CUDA. Each space has its own restrictions
and best practices, e.g., for global memory the common ground is to use data
types with appropriate size and alignments, as well as make the threads ac-
cess words in sequence to increase coalescing. These restrictions are also
dependent on the hardware used, classified by their Compute Capability.
[Nvi11] gives the detailed description of these limitations and how to maxi-
mize performance.

4.1.2 Hardware Implementation

From a hardware standpoint, thread blocks are enumerated and distributed
to available multiprocessors (or processor cores) when the kernels are exe-
cuted. The threads within a block are executed concurrently on one multi-
processor, and new blocks are launched when older ones terminate execution.

To manage that kind of simultaneous execution, multiprocessors are de-
signed to use the SIMT architecture; Single-Instruction, Multiple Thread.
A multiprocessor manages the threads from its assigned block and schedules
them for execution in groups of 32 parallel threads, called warps. Threads
composing a warp start simultaneously at the same program address and
execute one common instruction at a time. They, however, maintain their
own instruction address counter and register space so they can branch freely.
This branching behaviour comes at a cost; if some of the threads branch on
a data-dependent basis, the warp serially executes each branch path, thus,
full efficiency is only achieved when all threads in a warp execute the same
set of instructions, i.e., there is no divergence in the code execution. This
branch divergence is another key point to take into account when designing
algorithms for CUDA.

52 CHAPTER 4. CUDA IMPLEMENTATION

4.2 LBM in CUDA

In the Lattice Boltzmann Method, only the streaming step needs neighbour
data; the collision step is completely local. And even the streaming step can
be formulated with a pull strategy (instead of a push one) to minimize data
dependency; the cells gather the information needed from their neighbours
instead of pushing the data to them in order to make it available. These
features render the LBM a highly parallelizable algorithm.

Indeed, it has already been implemented in parallel architectures, e.g.,
[Thü07, Poh08, GRGT10], and even in GPUs like in [LWK03, WLMK04]. It
has also been ported to CUDA, where it gets quite a reduced computational
time in comparison to CPU implementations; [OS09, Tö10, OKTR11] give
details about how it can adapted to CUDA. In contrast to [OS09], where
a block size equal to the width of the simulation was used, we use here a
fixed block size of 128 threads to improve occupancy, independently of the
simulation domain size. To achieve maximum performance, however, this
block size should vary from kernel to kernel depending on their resource
demands (basically register and shared memory usage), as well as the GPU
at hand.

LBM is a memory consuming algorithm; for example, the D3Q19 model
needs 19 floating point values per cell only for the dfs. In order to reduce
the memory used by the algorithm, techniques like grid compression can
be used as in [PKW+03], although it can not be easily adapted to CUDA
for real-time simulations. In order to reduce memory consumption in a
GPU environment, [BMW+09] proposed an alternative implementation of
the streaming and collision steps with two different kernel functions, reduc-
ing the required memory to nearly a half. They refer to this memory layout
as an A-A memory access pattern; only one set of dfs is needed but how
they are accessed depends on the parity of the iteration and, thus, the kernel
used. Figure 4.2 shows how the two kernels access memory.

The most common approach that needs two sets of dfs is referred as
an A-B memory access pattern, shown in Figure 4.3. Only one kernel is
needed for the full simulation of the LBM and for a given iteration it reads
values from one of the df sets and writes to the other. The two sets are
swapped after the kernel is done in a ping-pong setting. We have favored
this methodology in the present work, as the additional tasks done per
iteration, both in the LBM3D-VOF and the LBMSW, would have imposed
us to double the number of kernels to accommodate to the varying directions
of the dfs in an A-A memory setting. The use of the A-A memory access
pattern in those cases would have also introduced race conditions as in the
non-deterministic LBM3D-VOF implementation of [Sch10].

4.2. LBM IN CUDA 53

Kernel AA:1 Stream - Collision - Stream

Kernel AA:2 Collision

Figure 4.2: A-A memory access pattern from [BMW+09]. After each colli-
sion step, the direction of the dfs is switched in place, taken into account in
the successive streaming steps. Only black dfs are accessed by the thread
of the present cell.

Figure 4.3: A-B memory access pattern. For each iteration, the thread
reads from the red df set and writes to the blue one. The two df sets are
swapped after the streaming and collision steps are done.

54 CHAPTER 4. CUDA IMPLEMENTATION

4.2.1 LBM3D-VOF

As we have seen, there are already implementations for the basic LBM algo-
rithm in CUDA that could be used. However, problems arise when extending
this basic algorithm implementation, as certain properties must be retained
like the mass conservation in a free surface simulation. These problems take
the form of race conditions resulting in, e.g., mass loss, and reduced perfor-
mance caused by non-coalesced accesses to memory or divergent code paths
in a warp.

The implementation of the full 3D free-surface LBM described in Sec-
tion 3.6.2 requires a set of variables described in Table 4.1. A high level
algorithm is shown in Algorithm 4.1.

density functions df 2 x 19 floats
macroscopic velocity 3 floats
macroscopic density 1 float
mass 1 float
fluid fraction ϕ 1 float
surface normal 3 floats
cell flag 1 char

Table 4.1: Values needed per cell for the LBM3D-VOF implementation.
The cell flag variable is used as a bit field to describe the type of the cell
(Fluid, Interface, Empty, etc.).

From the LBM parametrization, the time step of the simulation is quite
smaller compared with that of the frame render time; as much iterations of
the LBM algorithm should be done as needed to fill the frame time.

As CUDA can not ensure any specific order of execution of thread blocks
and it is clear they are not executed instantaneously for the whole domain,
we have to serialize the cell type changes of emptied or filled cells to ensure
no race conditions can affect the final result, i.e., we achieve deterministic re-
sults. In order to do so, we introduce a new temporal flag type tobeChanged
and change the filled and emptied cells conservatively, that is, emptied cells
that may be needed in the next iteration because they are in the neighbour-
hood of fluid cells are not converted, they remain as Interface. Additionally,
kernels targeted to a concrete set of cells provide an early exit condition for
those not to be changed.

The LBM basic simulation is executed in the LBM stream collision ker-
nel. It also provides the mass exchange tracking of Equation 3.42 as well as
the reconstruction of the needed incoming dfs of Equation 3.44.

The next kernel, preflag, checks the condition from Equation 3.47 for
Interface cells and adds, if needed, the tobeChanged flag, as well as the type
they should convert to. Therefore, if the cell has emptied it will be flagged as
Interface|tobeChanged|Empty, and if the cell has filled it will be flagged

4.2. LBM IN CUDA 55

Algorithm 4.1 High-level LBM-VOF algorithm.

∆t = frame time step (16ms)
∆t′ = LBM dimens iona l time step
foreach (frame) {

foreach (∆t) {
//CUDA k e r n e l s
LBM stream co l l i s ion () ;
p r e f l a g () ;
N H f i l l e d () ;
NH f i l l ed MassDi s t () ;
updMassFrac () ;
NH emptied () ;
NH emptied MassDist () ;
updMassFrac () ;
//
swap DFs () ;

}
//Render

}

as Interface|tobeChanged|Fluid.

First, we deal with the filled cells. NH filled updates the neighbourhood
of the filled cells; every cell being Empty or Interface to be emptied is re-
flagged as tobeChanged|Interface. Then, NH filled MassDist distributes
the excess of mass as in Equation 3.48 and re-flags the current filled cell
as Fluid. Finally, the updMassFrac initializes correctly the dfs and updates
the mass and fluid fraction of the new cells converted by NH filled and flags
them as Interface.

Afterwards, the same process is done for emptied cells. The main differ-
ence resides in that NH emptied updates the neighbourhood in an opposite
way: only Fluid cells are re-flagged to tobeChanged|Interface; there are no
remaining Interface cells to be filled. NH emptied MassDist also distributes
mass excess, but in this case is a negative one.

After all steps are done, swap DFs just swaps the pointers to memory
for the df sets, changing their role in the next iteration according the A-B
access pattern: the set which we have just written to will become the one
which we will read from, and vice versa.

Finally, after the needed iterations are done, the scene should be ren-
dered with appropriate techniques, as those used in this thesis, explained in
Section 5.1.

Although we get deterministic results and the race condition problems
are solved by serializing the filled/emptied cell conversion, there are other

56 CHAPTER 4. CUDA IMPLEMENTATION

Algorithm 4.2 High-level LBMSW algorithm.

∆t = frame time step (16ms)
∆t′ = LBM dimens iona l time step
foreach (frame) {

//CPU
Obstac leS imulat ion () ;
Obstac leFlu idCoupl ing () ;
//CUDA
for (i =0; i<∆t ; i+=∆t′) {

LBM stream co l l i s ion () ;
LBM applyForce () ;
upd Cel lTags pre () ;
upd Cel lTags Flu id () ;
upd CellTags Empty () ;

swap DFs () ;
}
//Render

}

problems which we haven’t been able to solve. The LBM is a memory
intensive algorithm, which impacts heavily in the performance, although we
have enforced the memory accesses are coalesced. Additionally, a lot of these
accesses are data dependent, e.g., the access to the next cell dfs’ depends on
the type of the cell, causing further problems: there may be code divergence
which forces the processor to serialize the execution of the threads for every
code branch.

[Thü07] also described the rare possibility of single Interface cells that
are left behind the free-surface layer; cells that could not be filled or emptied
and remain as artifacts. Albeit we have not encountered this issue in our
tests, we have added a condition in the LBM stream collision kernel for
Interface cells to take into account this problem. If such a cell is found we
treat it as if it was filled or emptied and proceed to change it accordingly;
the mass loss or increment should be unnoticeable for real-time simulations
as those cells should already be close to be filled or emptied.

4.2.2 LBMSW

Like the previous section, we present here the implementation of the LBMSW
algorithm from Section 3.7, summarized in Algorithm 4.2. We use the same
A-B memory access pattern, as well.

In this case, as there is not a free boundary to track and the simulation

4.2. LBM IN CUDA 57

is only two-dimensional, the number of needed variables is more reduced
as shown in Table 4.2. We can set an additional scalar field with the same
domain size as the simulation to account for the underlying bed elevation zb,
although as it is constant, it will be stored as a texture in CUDA memory.

density functions df 2 x 9 floats
macroscopic velocity 2 floats
macroscopic density 1 float
cell flag 1 char

Table 4.2: Values needed per cell for the LBMSW implementation. The
cell flag variable is used as a bit field to describe the type of the cell (Fluid,
Empty, etc.).

In each frame iteration, apart from the fluid itself, we have to simulate
also the coupled rigid bodies as explained in Section 3.7.4. The simulation
of the rigid bodies can be done with any standard package, as the Bullet
Physics Library [Sim13] which we have used here. The dynamic objects are
set up prior to the simulation with the proxy model previously explained
and their physical simulation is done entirely by the physics library. In our
case, this step is done in CPU inside the ObstacleSimulation function. The
coupling with the LBM is done in the function ObstacleFluidCoupling ; the
needed CUDA memory is mapped to the CPU memory space and modified
accordingly. Data must inevitably travel through the bus from CPU to GPU
space, being one of the current bottlenecks.

The stream and collision steps of the LBM are done, as before, in the
LBM stream collision kernel. But in this case, only the basic LBM algorithm
is executed, as no mass needs to be tracked or other operations have to be
performed at this stage.

In order to apply the force computations from Equation 3.59, the gra-
dient from the fluid height field must be computed, which in turn needs for
all the cells to have their height defined at time t. This forces us to serialize
this force computation in a separate kernel named LBM applyForce.

Afterwards, the upd CellTags * kernels are responsible of the dry-wet
region tracking and according cell conversion. Similarly to the VOF cell
conversion, we have to serialize the implementation in different kernels and
do this re-flag operation conservatively; we try to maintain the Fluid cells,
being them marked to be emptied or not, if they are likely to be needed
again in the next iteration. First, upd CellTags pre checks the height of
the cells against the threshold and pre-flags them with an additional type
if necessary: for Fluid cells above the threshold, their neighbourhood is
marked as tobeFluid, and the Fluid cells below the threshold are marked
as tobeEmpty. Next, upd CellTags Fluid re-flags the marked tobeFluid

cells to the final Fluid cell type. Lastly, upd CellTags Empty does the same

58 CHAPTER 4. CUDA IMPLEMENTATION

but with a difference: the tobeEmpty cells are re-flagged to Empty but their
excess of fluid, the threshold remaining, is distributed among the Fluid
neighbours taking into account the gradient of the underlying terrain as in
Equation 3.63.

Finally, the df sets are swapped with swap DFs as in the previous sec-
tion.

In order to render the scene with the common reflection and refraction
effects one would expect from a fluid, the normals of the surface should be
computed. They can easily be calculated using finite differences on η, being
η = h+zb. Additionally, as the render is done by OpenGL, the fluid heights
have to be available; this is done by having them mapped as a pixel buffer
object (PBO) used in the surface mesh rendering.

Similar problems to the LBM3D-VOF can be found in this implemen-
tation as those for divergent code, at least when not the whole domain is
Fluid, i.e., there are dry regions to track, which require data dependent code
execution and memory accesses. As the LBMSW is a two-dimensional sim-
ulation, the memory requirements are lower, only 9 floats per cell for the
dfs, but that is still higher than other more traditional methods as in, e.g.,
[CM10].

4.3 Hybrid Particle-LBMSW

To implement the hybrid particle-LBMSW algorithm from Section 3.8, we
have to extend the LBMSW CUDA implementation, as can be seen in Algo-
rithm 4.3 and modeled by the class diagram of Figure 4.4. There are basi-
cally two added code blocks: particle reintegration before the main LBMSW
code and particle detection and generation afterwards. Particle reintegra-
tion could, instead, be done as the last thing in the loop, but moving it
to the front allows us to render all newly generated particles. So we will
explain below the algorithm from detection to reintegration, following the
original supposed order in the particle simulation. The sort *, remove *
and prefix sum * functions are provided by the Thrust library [HB13] and
executed entirely in the GPU.

We have used a simple ballistic particle system, where position and ve-
locity are evolved in time without further constraints, i.e., there is no inter-
particle collision detection; however, other particle systems as a full CUDA
SPH implementation like [GSSP10] could be applied with minimal changes.
As there is no simple way to maintain a dynamic data structure for the
particles, i.e., particles should be created and destroyed on the fly; we have
resorted to a fixed number of particles from the beginning of the simulation.
In addition to the usual particle properties as position and velocity, we add
two more: a TTL (time-to-live) value and an active (ACTIVE/INACTIVE)
flag. The TTL variable allows us to track particles depending on the time

4.3. HYBRID PARTICLE-LBMSW 59

CPU GPU

DynamicObjectSys

DynamicObject

FluidSys

LBMSW

ParticleSys

Figure 4.4: Class diagram of the modules of the simulation. DynamicObj
represents the Proxy objects as defined in Section 3.7.4 which are man-
aged by the DynamicObjSys (using the Bullet library). LBMSW and Par-
ticleSys are the main modules that carry the fluid simulation behind the
FluidSys one, which encapsulates them. FluidSys is, then, the face between
the CUDA operations of LBMSW and ParticleSys and the CPU compu-
tations of the coupled dynamic objects represented by DynamicObjSys. In
practice, as LBMSW and ParticleSys are tightly coupled in code (by the gen-
eration and reintegration phases) they could be both assimilated by FluidSys
directly.

they have been alive in the simulation, prioritizing those that have existed
longer (lesser TTL) to be reused. The active flag, on the other hand, is used
to control the particles that can take mass from the fluid surface in their gen-
eration step; only INACTIVE particles can, ACTIVE particles won’t, e.g.,
dead particles (TTL has become 0) but not reintegrated remain ACTIVE
to not subtract more fluid next time they are initialized.

After the LBMSW core simulation, we compute the gradient and lapla-
cian of the surface height field in computeLBM GradLaplacian as in Equa-
tions 3.75 and 3.76. The values are stored for future use in the detection
step.

Prior to the particle simulation per se, the particles are sorted by their
TTL in ascending order. The particle simulation is advanced in stepPar-
ticles. For a ballistic particle system, the velocity and position of the par-
ticles are updated. The particles’ TTLs are also updated, subtracting the
current ∆t. Their status is also updated to ACTIVE. If a particle has died
(TTL ≤ 0) before being reintegrated, we let them be ACTIVE but out of
view. We can use this same behaviour for particles exiting the LBMSW
domain if it was integrated in a much larger fluid surface; only the LBMSW
is simulated and the rest is just a planar mesh. This ensures we don’t lose
mass because of dead particles not reintegrated in time. This step should

60 CHAPTER 4. CUDA IMPLEMENTATION

Algorithm 4.3 High-level Hybrid Particle-LBMSW algorithm.

∆t = frame time step (16ms)
∆t′ = LBM dimens iona l time step
foreach (frame) {

//CPU
Obstac leS imulat ion () ;
Obstac leFlu idCoupl ing () ;
//CUDA
ReintegratePar t s S1 () ;
s o r t t u p l e s () ;
remove nonValidTuples () ;
p r e f i x s u m t u p l e s () ;
Re integratePar t s S2 () ;

for (i =0; i<∆t ; i+=∆t′) {
LBM stream co l l i s ion () ;
LBM applyForce () ;
upd Cel lTags pre () ;
upd Cel lTags Flu id () ;
upd CellTags Empty () ;

swap DFs () ;
}
computeLBM GradLaplacian () ;

sort part i c l e sByTTL () ;
s t e p P a r t i c l e s () ;
detectBreakingWaveCel ls () ;
pre f ix sum NeededPartsPerCe l l () ;
i n i t P a r t i c l e s () ;

//Render
}

also be the one being replaced if a different particle system was used, only
the TTL and active flag should be maintained as in this case.

Afterwards, the possible breaking waves are detected in detectBreaking-
WaveCells by applying the conditions of Equations 3.72 to 3.74 using the
previously stored surface gradient and laplacian. Each cell will output the
needed particle count that it needs. Then, with a prefix sum operation we
can obtain an accumulated sum of the needed particles. We can use the
result of this accumulated sum as the index at the particle array for which

4.3. HYBRID PARTICLE-LBMSW 61

each cell will take their needed particle count. As particles have been sorted
by TTL, we ensure the particles first taken in this step are those who had
a lower TTL. Unfortunately, if more particles are needed than those with a
TTL = 0, the next with lower TTL will be taken. With a bad parametriza-
tion this can lead to artifacts, as disappearing particles from frame to frame
as they are needed. initParticles will, then, initialize the particles needed
for each cell as explained in Section 3.8.2, marking them as ACTIVE2. As
the reintegration only checks for ACTIVE particles, and the active flag is
always updated to ACTIVE in the stepParticles kernel, it is ensured that
they are alive at least for a frame. Their TTL is also set up as the maximum
allowed time to live for a particle, which is a user-defined parameter. For
particles that were previously marked as ACTIVE, i.e., those who were dead
before reintegration, no fluid will be subtracted from the LBMSW, ensur-
ing no mass loss; thus, only INACTIVE particles will take fluid from the
LBMSW. Needless to say, these steps for the detection and initialization of
particles can be changed or improved to take into account more situations
as those described in [CM10].

Finally, for ACTIVE particles that have fallen again in the fluid, that
is, their y coordinate is lower than the fluid height at the xz position, the
reintegration should be as easy as the explanation from Section 3.8.3 but, as
we can not be sure how many particles can fall in a cell at once, we should
use atomic operations in the update of the cell’s dfs. As our hardware, a
GTX280, does not support these operations for float variables, we had to
solve it from another perspective: ReintegrateParts S1 relates which parti-
cles have fallen in which cells and how many there are for each cell; from
the cell point of view, ReintegrateParts S2 will gather the fallen particles
and update the local dfs. In order to do so, for each particle, S1 will write
a tuple associating the cell id (the cell’s position in a linear memory array)
with the particle id, as well as the particle count for each cell (using integer
atomics). Particles not to be reintegrated are associated to a fake cell, in
this case we use the cell 0 that we ensure is a Boundary cell for all exam-
ples. Sorting the tuples by the cell id, removing those with the fake cell id
and doing a prefix sum on the particle-in-cell count will lead us to the cells
having the index where their particle count starts in the tuple array. S2
will, for each cell, take their counted fallen particles and reintegrate them,
marking them as INACTIVE with TTL = 0.

In order to reduce the number of arrays needed we have grouped the
particle data in two float4 arrays: particle position and TTL for the first
array, particle velocity and active flag for the second array. The reason
to do that is because they are used also by OpenGL in the render phase.
Then, the access to memory for each particle implies always the retrieval of
4 floats at once, being the size of each float 4 bytes, that is 16 bytes for each
access: the maximum word size in CUDA memory transactions. This fact
hits performance, even more in the sort operation where multiple accesses

62 CHAPTER 4. CUDA IMPLEMENTATION

are done1. A possible solution for this problem could be the separation of
the float4 arrays in multiple simple float arrays, so the accesses would also
require only the minimum word size for the memory transaction; this would
involve the addition of an id array used in the sorting operation and later
required for further accesses in the particle data arrays, apart from compli-
cating the data sharing with OpenGL. We instead have opted for the use
of the original float4 arrays plus the id array used in the sorting operation.
The id array allows for a faster sorting (smaller memory transactions), and
while we lose memory coalescing because particle data is accessed by an
indirection with this id array, the total time is reduced in comparison to the
float4 array solution by itself because of that lower time used in the sort
operation.

One key thing that penalizes the implementation is the hardware itself.
By not supporting float atomic operations, we had to implement the reinte-
gration of the particles in a multi-step fashion. The two additional kernels
plus the needed sorting of the tuples, removing and prefix sum operations
increase heavily the time needed for frame. Newer hardware will allow to
solve this problem, aside from increase overall performance due to a greater
number of processor cores and lower latency memory.

1In Section 6.3 we will show some results corroborating this statement.

Chapter 5

Fluid visualization

If real is what you can feel,
smell, taste and see, then ‘real’
is simply electrical signals
interpreted by your brain.

Morpheus
The Matrix

So far we have presented how the fluids are simulated and implemented
in CUDA. In this chapter, we will introduce how they are visualized.

For each of the models presented in this thesis, LBM3D-VOF and Particle-
LBMSW, we need two different rendering algorithms due to their different
nature. First, we will explain how the 3D fluid simulation is visualized
through volume raycasting, which allows for an easy integration of effects
such as reflection and refraction from an environment map, also included in
our implementation. Next, we will show the render process for the hybrid
particle-surface model, breaking it into the different aspects that contribute
to the final image; apart from the much needed reflection and refraction
solved with screen space techniques, this includes caustics, the inclusion
of lower scale detail through FFT fluid simulation, as well as the particle
rendering and the advection of surface foam.

Although we have used OpenGL plus its shading language, GLSL, in
their 3.3 version in core profile, the explanation will remain at a higher level
for an API independent understanding.

5.1 Raycasting the LBM3D-VOF volume

The full 3D simulation of the LBM-VOF algorithm results in a volumetric
model of the fluid fractions ϕ stored in a 3D floating-point texture.

The common slicing techniques first depicted by [HS89] with more mod-
ern implementations as, e.g., [IKLH04], are not advantageous in this case:

63

64 CHAPTER 5. FLUID VISUALIZATION

we require only the first1 intersection at a defined isovalue but they accu-
mulate the different slices in a back to front blending operation. Moreover,
the slices are created (or updated) dynamically as view-aligned planes.

As we are talking about the intersection at a defined isovalue, the iso-
surface, we could have used a mesh extracting algorithm as, e.g., marching
cubes [LC87, NY06], and use the final mesh with the typical rasterization of
the GPU. We discarded this kind of method because it required the dynamic
generation of geometry, although possible with actual GPUs, but which can
cause popping artifacts if there are no additional smoothing operations done.

Alternatively, due to GPU programmability, we can raycast the volume
[RGW+03, KW03], allowing us to find the required isovalue intersections.
Our implementation, summarized in Figure 5.1, requires multiple render
passes and is described for the first intersection as follows:

1. Render a proxy cube model, only back faces. This proxy cube repre-
sents where the 3D volume is located. For each fragment, the output
values will be the distance of each fragment to the camera. These
values can be stored in a single RGBA texture.

2. Render the front faces of the proxy cube model to the same previous
framebuffer using a subtraction operation. In this case the distance to
the camera of each fragment is needed but also the texture coordinates
in the 3D texture. The subtraction operation results in the maximum
distance each ray will have to traverse.

3. Render a screen-sized quadrilateral textured with the result of the pre-
vious step. With the texture coordinates and the maximum distance
for the ray we can proceed to the actual raycasting in search of the
intersection ray-volume. Using a combination of linear and binary
search as in [POC05, ABB+07] we can first get closer to the intersec-
tion and refine its location afterwards. Other techniques as the Secant
method [RSP07] or the Newton-Raphson method [SKP07] could be
used instead to achieve the same result. This step outputs a depth
map of the fluid and for fragments out of the 3D volume, the depth
will be set to the maximum value.

4. (Optionally) We can smooth the depth map for posterior usage ap-
plying a Gaussian blur. This step would account for the sharp jumps
between the isovalues at contiguous voxels. In our case, we have im-
plemented this filter as a separable binomial filter which requires two
passes; one for the horizontal direction and one for the vertical. To
avoid blurring on edges and keep them sharp we detect high jumps in

1Not only the first intersection should be required for a correct refraction implementa-
tion, but we will restrict ourselves to this case for simplicity.

5.1. RAYCASTING THE LBM3D-VOF VOLUME 65

Step 1

Step 2

-

Step 3

Step 4

Step 5

Step 6

Figure 5.1: Multiple render passes of our raycasting implementation. Steps
1 and 2 render a proxy model and use a subtraction operation on the result.
Step 3 raycasts the 3D texture from the previous result. Step 4 is a smooth-
ing step and is optional (denoted by a dashed line). In Step 5, normals are
computed in screen-space. Finally, the result is composed with the rest of
the scene in Step 6.

the depth map and restrict the application of the filter in those cases.

5. From the depth map obtained previously, we compute screen-space
normals at the surface of the fluid.

6. With depth and normals, the final scene is composed with the fluid.
Additional effects as reflection and refraction are applied using Schlick’s
approximation [Sch94] to Fresnel terms with environment maps, where
the view direction is modified (reflected/refracted along the fluid’s sur-
face normal) and used to look up at the environment map used.

66 CHAPTER 5. FLUID VISUALIZATION

The results of this volume raycasting implementation can be seen in
Figures 5.2 and 6.4.

Figure 5.2: A drop has fallen into an existing body of water creating a
splash. 643 grid resolution used.

As the volume is dynamic and we should maintain interactive rates, we
could not add typical optimizations of raycasting techniques as those de-
scribed in, e.g., [Lev90], but as the resolution of the fluid is quite lower than
the one of the screen, we could improve the performance of this algorithm
in a similar fashion to the checks for aliased edges of [Lot11]: the fluid is
rendered with a lower resolution up to Step 4 and applying a Sobel filter
(implemented as a separable filter) we find the edges of the fluid; these edges
will be rendered again at full viewport resolution to account for the alias,
and the final composition remains the same.

5.2 Rendering of the LBMSW-Particle model

In the surface-only simulation, whether only the LBMSW implementation
is used or the full hybrid method with particles, we render the fluid surface
as a triangle mesh where the height of the vertices is obtained from the
simulation. The particles are then rendered separately.

Here we will present, apart form the particle rendering per se, some
additional effects expected to be found in a fluid simulation which improve
the appeal of the overall simulation as caustics, reflection and refraction or
the advection of surface foam.

In some cases we will be referring to raycasting; in these situations we
only mean the raymarching, the combination of linear and binary search

5.2. RENDERING OF THE LBMSW-PARTICLE MODEL 67

through a texture, namely a depth map, to find some final position.

5.2.1 Lower scale detail

Although the LBMSW already provides appropriate normals (using finite
differences over the resulting height field), the resolution of the simulation
lattice imposes a limit on the detail that can be achieved.

To improve the situation, we can use some additional technique to in-
crease the detail although it won’t be physically correct. For example,
[CM10] use a normal mapped texture generated from the FFT ocean simu-
lation from [Tes01] and advect it with the velocity from the fluid simulation
as in [MB96]. In the same spirit of increasing the detail through normal
mapping, we have tried two alternatives: a gradient noise solution and the
full FFT ocean simulation. In both cases, a normal texture is obtained from
finite differences from the height fields obtained.

Gradient noise

Perlin noise [Per85, Per02] is probably the most famous noise algorithm.
It is an implementation of gradient noise, which consists in the creation of
a lattice of random gradients at integer locations, interpolated to obtain
values in between the lattices.

The gradients are precomputed in a table G and accessed with a hashed
value from the space location x = (i, j, k) applying successively a pseudo-
random permutation, stored also in a table P , with the different coordinates
combined. In CUDA, in order to reduce the number of accesses to memory,
we have changed how the gradient is computed: instead of having only one
permutation table and make multiple accesses to it with accumulated values
from the coordinates as grad = G[P [P [P [i] + j] + k]], we have created three
different pseudo-random permutation tables (one for each dimension) and
combine them with a XOR operation as grad = G[Px[i] ⊕ Py[j] ⊕ Pz[k]].
Except this unique change, the algorithm is the same as the last version of
Perlin noise [Per02], that is, the noise function computes the gradients grad
at the integer positions in space that surround the looked up point x (as the
vertices of a surrounding cube) and interpolates them properly.

Although we only need a 2D texture (we generate a normal texture from
a heightfield), we use the 3D version of the noise function. If we fix 2 of the
coordinates and move through the other one, as if a plane was slicing a 3D
volume, we get the illusion of animation, which is what we are aiming for
with this technique: to increase lower scale detail.

Now, it is not clear how we have to tune the noise function to obtain
a water-like noise; for example, applying a periodical function as cos cre-
ates banding (stripes) while applying the absolute value function abs makes
sharp edges (discontinuities). We have used a fractal sum, which is usually

68 CHAPTER 5. FLUID VISUALIZATION

employed to make cloud textures, and is defined as

Nf =
octaves∑
i=1

1

i
noise(ix), (5.1)

where octaves is the number of layers of noise combined in the operation at
different frequencies.

Furthermore, to be able to seamlessly repeat the texture, we wrap the
coordinates with a module operation, although this repetition is easily visible
afterwards, as shown in Figure 5.3.

Figure 5.3: Two octaves of gradient noise on the left, four octaves of gradient
noise on the right; applied to the LBMSW surface with normal mapping.

This solution has some problems: it is not clear which type of operation
over the noise function should give the adequate look and feel to the fluid
and the pattern repetitions are quite obvious. The resulting animation of
moving through one of the axes isn’t, neither, quite realistic.

FFT ocean simulation

To solve the problems from the previous approach we can use the simulation
of ocean water which is based on statistical methods [Tes01].

This technique is based in the computation of the Fourier amplitudes of
a wave field. These amplitudes can be produced as

h̃0(k) =
1√
2

(ξr + iξi)
√
Ph(k), (5.2)

where ξr and ξi are independent draws from a random number generator.
Ph(k) is the wave spectrum and several empirical models can be used. A
known model for wind-driven waves is the Phillips spectrum

Ph(k) = A
exp −1

(kL)2

k4
|k̂ · ŵ|2, (5.3)

5.2. RENDERING OF THE LBMSW-PARTICLE MODEL 69

where L is the largest possible wave, ŵ is the direction of the wind and A
is a numeric constant.

Given a dispersion relation ω(k) =
√
gk for deep waters, where g is

the gravitational constant and k is the magnitude of the wavevector, which
points in the direction of travel of the wave and is related to the length of
the wave; the Fourier amplitudes of the wave field at time t are

h̃(k, t) = h̃0(k) exp (iω(k)t) + h̃∗0(−k) exp (−iω(k)t), (5.4)

where h̃∗(k, t) = h̃(−k, t).
Finally, at discrete points x = (nLx/N,mLy/M), the wave height of the

fluid h(x, t) is obtained from the inverse FFT to get back to spatial domain

h(x, t) =
∑
k

h̃(k, t) exp (ik · x), (5.5)

where t is the time and k is the wave vector, a two dimensional vector with
components kx = 2πn/Lx and ky = 2πm/Ly, with n and m are integers in
the ranges [−N/2, N/2] and [−M/2,M/2], respectively.

With this newly generated height field we compute a normal texture
using finite differences and apply it to the LBMSW triangle mesh using
normal mapping as shown in Figure 5.4. Instead of advecting the texture
with the fluid as [CM10] do with the [MB96] technique, we compute the
FFT each frame and apply the normal map directly.

As the FFT is periodic by itself, we can repeat the texture multiple times
without noticeable seams nor repetitions but increasing frequency.

Figure 5.4: FFT ocean simulation applied to the LBMSW surface with
normal mapping. The right image is a close-up version of the left one with
a more zenital angle of view.

70 CHAPTER 5. FLUID VISUALIZATION

5.2.2 Caustics

Caustics are a very distinguishable effect from any refractive or reflective
object. They are generated from the concentration of photons in the same
spot in space, incrementing the intensity that location is lit.

The simulation of caustics is traditionally accomplished using techniques
of global illumination [PH10] like pathtracing [Kaj86], the metropolis light
transport method [VG97] or the more recent photon mapping [JCKS02], in
which a number of photons are traced through the scene and gathered in
their final positions to proceed with the pixel lighting. These techniques are
costly, as there needs to be a high count of traced rays or photons to achieve
soft caustics.

[Sta96] was the first to explore real-time caustics; although inaccurate,
they were visually compelling, using synthetic texture maps. Nevertheless,
to achieve physically realistic results, the more recent techniques are based
on raymarching techniques:

• Rendering from light, using caustic maps2 like, e.g., [SKALP05, WD06,
SKP07].

• Rendering from the inverse side, [GSC04, YK09]: from the caustics
receiver object (which they require to be planar as a simplification),
the ground surface, photons are tracked back to the light through a
limited area in the refractive surface, the fluid.

In order to provide higher realism, we have also added caustics to our
LBMSW fluid simulations. We have inspired in [SKP07] and extended their
work. They raycast a grid of photons, as points, through the scene in an
orthographic space defined at the light source, which also allows them to
easily add shadow mapping. They require the depth map used in the ray
cast phase to be continuous or, at least, with no great jumps. This technique,
however, has the limitations of image-based rendering, namely, the results
depend on the resolution of the textures used, although the resolution used
in the light space also limits where the photons can end.

Our contributions to their algorithm imply extending the raycast of pho-
tons out of the light space to screen space, splatting them oriented with the
surface of the receiving mesh. In contrast to [SKP07], we do not generate a
caustics map; the splats are blended with the scene, varying their intensity
depending on the orientation of the caustic generating fluid pixel (if it is fac-
ing the light source or not), as well as the distance the photon has travelled.
We also restrict our approach to refracted photons and ignore reflected ones.

Summarized in Figure 5.5, our algorithm is also composed with multiple
render passes and is described as follows:

2Similar to photon maps, but are used like shadow maps are: reprojected in camera
space in order to lit the visible pixels.

5.2. RENDERING OF THE LBMSW-PARTICLE MODEL 71

Step 1 Step 3Step 2

Step 4

Figure 5.5: Multi-step caustics simulation. Step 1 renders everything (stor-
ing color, depth and normals) except the fluid from light, as does Step 2
from camera. Step 3 renders the fluid surface and stores space position and
refracted vectors. Finally, Step 4 raytraces the photons as points using the
data from Step 3 and expands them as quads when they hit geometry from
Steps 1 and 2, blending them with the framebuffer contents.

1. Render the objects of the scene (excluding the fluid) from the camera
and store the depth and normal maps.

2. Render the objects of the scene (excluding the fluid) from light with
an orthographic projection and store the depth map.

3. Render the fluid from light with the same orthographic projection and
store the space positions and refracted directions at each pixel.

4. Render the grid of photons. The primitives used are points which will
be expanded to quadrilaterals when a final position is found.

This grid of vertices has the same resolution as the orthographic pro-
jection used previously. In a vertex shader, the vertices will be raycast
first in light space using the depth map from Step 2. If there is no

72 CHAPTER 5. FLUID VISUALIZATION

intersection found (the photon exited through a wall of the frustum),
the raycasting will be repeated in camera space. If there is not yet an
intersection, the point is discarded (rendered out of frustum). Oth-
erwise, if an intersection is found at light space, it is transformed to
camera space and checked if it is correct:

• If the point is occluded in camera space, it is discarded.

• If the point depth does not match between light and camera
space, the raycasting continues from the actual point position
in camera space.

• If the point is correct, that is, the depths match between light
and camera space, the point is final.

When a final point is found, from the previous condition or from the
camera raycasting, the normal is looked up in the normal map from
Step 1. In a geometry shader, the final points are expanded to quads
oriented with their associated normal. Finally, in a fragment shader,
the photons are textured with a Gaussian splat, and their intensity is
regulated depending on how they are facing the light and the distance
they have travelled through the fluid until finally hit the receiving
surface. At last, they are blended to the contents of the framebuffer.

As shown in Table 5.1 and concluded in [SKP07], the performance of
this algorithm depends primarily on the size of the grid of photons, but
also on the direction of the light, which can cause more photons to miss the
light space raycast and require the second camera space one, thus increasing
the number of computations and texture fetches needed to try to find a final
position for them. The fact that the raycast is done in the vertex shader also
impacts the final performance because of the increased penalty of texture
fetches in that shader stage.

With our double raycasting method, the photons are not limited to light
space only and are finally oriented with the surface they fall over. However,
as we directly blend the photons with the previous contents of the frame-
buffer, we do not have a correct radiance computation, but the results are
good enough for real-time fluid simulations as can be seen in Figure 5.6.
We have not included shadow mapping computations to keep the algorithm
simple enough but, as we have stored the depth map from light in Step 2,
it can be implemented as commented in [SKP07].

5.2.3 Refraction and Reflection

For the caustics, photons are refracted when they arrive to the fluid surface
and concentrate in a ground mesh below. From the physical sense of light,
some photons should bounce off the ground and travel to the camera point,

5.2. RENDERING OF THE LBMSW-PARTICLE MODEL 73

Viewport Caustics
Caustics

Refraction &
Size Resolution Reflection

5122

1282 1.0058 2.74639
2562 2.35144 2.79409
5122 7.92134 3.01034
10242 51.3408 3.17178

10242

1282 1.2585 5.79334
2562 3.33537 5.98238
5122 12.8643 6.21948
10242 70.9195 6.53224

Table 5.1: Averaged timings in milliseconds for frame for the caustics and
refraction/reflection algorithms. The Viewport column indicates the view-
port resolution. Similarly, the Caustics Resolution column indicates the size
of the viewport used for the orthographic camera, and thus, the number of
photons traced.

Figure 5.6: Caustics are projected onto the ground below the fluid surface.
Planar ground at the top left image, Noisy ground at the top right and same
ground with texture at the lower image.

74 CHAPTER 5. FLUID VISUALIZATION

crossing again the fluid surface and being refracted again. This is quite
complex, more so in a real-time domain as we are targeting.

As rasterization in GPUs output pixels in screen, the common strategy is
to render first the background geometry and storing the results to textures,
maybe creating environment maps, and then render the refractive/reflective
object using the previously created textures. In this direction, [Sou05] pre-
sented a simple method to simulate refraction, although not from a phys-
ically based standpoint. [SKALP05] relies only on environment maps as
distance impostors to achieve approximate refraction. Other more complete
techniques involve tracing rays through depth maps searching for intersec-
tions as, e.g., [Wym05, DW07, HQ07].

We approach the refraction and reflection view effects of the fluid in the
same spirit of [DW07], like a backwards raytracing implementation; rays are
cast through a depth map from each pixel of the camera viewport, being
refracted or reflected (or both) when they hit the fluid.

As with caustics, our algorithm is composed with multiple render passes,
summarized in Figure 5.7. It can be explained as follows:

1. Render the fluid mesh and store the depth buffer.

2. Render the objects of the scene (obstacles and ground) and compare
the depth with the stored in the previous pass. If the depth is greater,
store that fragment (color and depth) in one framebuffer (framebuffer
A), if it is lower, store it in another (framebuffer B). To accomplish
this we make use of multiple render targets. This pass can be thought
of as a stencil test.

3. Render the fluid again, using the previous step result. For each frag-
ment of the fluid two rays are cast: one for refraction (using results on
framebuffer A), one for reflection (using results on framebuffer B). As
the rays start from the camera, if the reflected/refracted rays should
come back, they are discarded. The results of both raycasts are com-
bined using Schlick’s approximation [Sch94] to Fresnel terms.

4. Finally, to avoid the repeated render of the other objects of the scene,
we use a screen-sized quadrilateral textured with the results of Step 2,
more specifically from the “over” framebuffer (objects nearer than the
fluid, framebuffer B). The textured quad is combined with the already
rendered fluid.

To reduce somewhat the obligation of the double raycasting, we compute
the Fresnel term from [Sch94] prior to the raycastings at Step 3 as

F = F0 + (1− F0)(1− θ)5, (5.6)

being θ half the angle between the ingoing and outgoing light directions and
F0 the known value of F when θ = 0, the reflectance at normal incidence.

5.2. RENDERING OF THE LBMSW-PARTICLE MODEL 75

Step 1

Step 2

“Below” FBO (A)

“Over” FBO (B)

Step 3

Step 4

Figure 5.7: Refraction and reflection in multiple render passes. Step 1 stores
the depth buffer from rendering only the fluid. In Step 2, objects above and
below the fluid get separated in two framebuffers, which are used in Step 3
to raycast reflections and refractions in the fluid. Finally, Step 4 composites
the stored “over” framebuffer from Step 2 into the scene to avoid rendering
the objects again.

As we use the value of F for a linear interpolation between the refracted
and reflected colors, we can impose a threshold ε were:

• If F < ε, only the refraction raycasting is done.

• If 1− F < ε, only the reflection raycasting is done.

• Otherwise, both raycastings are done.

Additionally, for zones where the height is quite low, i.e., cells where the
fluid has just entered using the dry-wet algorithm of Section 3.7.3, we get the
color from the direct view ray and interpolate from it to the final combined
color from the raycastings using the depth difference between the fluid and
the ground below. This alleviates the artifacts caused by the triangular
mesh used in the fluid rendering as shown in Figure 5.8.

76 CHAPTER 5. FLUID VISUALIZATION

Figure 5.8: Artifacts from the fluid’s triangular mesh on the left, allevi-
ated on the right interpolating the color value between the fluid’s color and
ground color depending on the view distance from surface to ground.

Everything is done in screen-space, so there may be zones where there
is not enough information, i.e., a ray should hit a point in space not visible;
in those cases we detect the jump in the depth map and make use of the
last pixel with information in the texture. Although this is an artifact,
combining the fluid with the animated lower scale detail techniques described
in Section 5.2.1, it remains greatly unnoticed.

The performance of this algorithm is quite variable, it depends on the
size of the viewport as well as the coverage of the fluid in screen: the more
visible pixels, the more rays are cast. For fair comparison, the results in
Table 5.1 were captured with the fluid covering the whole viewport, and
even in this case, the whole algorithm does not cost more than 10ms for
a reasonable sized viewport. Nonetheless, the results are quite convincing,
being a sample Figure 5.9.

5.2.4 Particle Rendering

For the hybrid Particle-LBMSW, we already have explained how the LBMSW
is rendered but a different technique should be applied to the particles.

There are various alternatives which have been extensively used to render
particle systems, like marching cubes [LC87] or metaballs [WH94, vKvdBT08],
although these methods are costly and, thus, not often used in real-time ap-
plications.

However, for interactive environments, particles have been traditionally
rendered using primitives as points, lines, or even making use of billboards.
Nowadays, as particle fluid simulations become more common in real-time
applications, new techniques have arisen to increase the appeal of their vi-

5.2. RENDERING OF THE LBMSW-PARTICLE MODEL 77

Figure 5.9: Reflection and refraction on the fluid surface. The FFT ocean
simulation is used to increase normal disturbance.

sualization. [MSD07] renders an SPH fluid simulation as a mesh in screen-
space, generating the surface only where it is visible using a marching squares
algorithm. [CM10] use for its particle rendering the algorithm devised in
[vdLGS09]; the particles are rendered as spheres and the depth buffer is
used to retrieve a screen-space surface using in the process some smooth-
ing methods to relax the surface of the fluid, computing afterwards normals
to the surface as a screen-space technique. To avoid complex geometry, the
spheres of [vdLGS09] are rendered as point sprites (or screen oriented quads)
with depth replacement, quite related to the Nailboards technique found in
[Sch97].

As we would like to maintain the crisp appearance from the particles, as
they are splashes and not a big body of fluid as in [vdLGS09], we have chosen
to use the depth replacement technique to render each particle but we also
provide a normal texture for them. The particles are sent to the pipeline as
points, which are then expanded to quadrilaterals in the geometry shader
and later textured in the fragment shader with the normal and depth maps.
We haven’t used the same refraction as for the LBMSW simulation because
its raycasting is quite costly, instead we have used the cheaper method from
[Sou05]: the final color is looked up in the framebuffer3 using an offset on
the refracted vector. The particles are finally blended with the framebuffer,
but updating accurately the depth buffer, too. Additionally, we take into
account the TTL (time-to-live) of the particles, fading them as their lifes
approach the end before being reintegrated.

In Figure 5.10 we can see the result. Still, at a very near sight of the
particles, it is obvious their spherical nature. This could be alleviated by
applying noise to the depth and normal maps we are using for them, which

3It has to be stored from the previous pass, so particles will be the last thing to render.

78 CHAPTER 5. FLUID VISUALIZATION

Figure 5.10: Particles are rendered as Nailboards. At a near point of view
(right) it is still clear the spherical nature of the particles.

would result in a noisier refraction.

5.2.5 Surface Foam

As a final effect to improve the render of the hybrid Particle-LBMSW is the
added surface foam generated from particles being reintegrated in the bulk
of fluid.

For this effect [CM10] generate diffuse disks oriented with the surface
fluid and advected by it. Although they don’t explicitly explain how foam
is simulated, this would require an additional number of particles dedicated
for the effect, or changing the type of actual particle in use, limiting the
global number of splash particles for the next frames, if they use a similar
implementation of particle integration as ours (Section 4.3).

In contrast, we have resorted to a simpler but effective representation:
using a float-point single component texture mapped to the whole fluid
surface, we detect where a particle falls and initialize that texel to the max-
imum time-to-live (TTL) time of the foam. This texture is advected using
the fluid’s velocity field, tracing the value back as in [Sta99]. Each frame,
the values of the texture are decreased ∆t until they hit 0. For the visual-
ization, we just apply the resulting texture to the LBMSW triangle mesh
at the same time the refraction and reflection are computed. Figure 5.11
shows the result.

Although the resulting effect is acceptable, this method has a constraint:
the texture resolution. Depending on the size of the particles to texel size
ratio, it could happen that not only one texel should be initialized when
a particle hits the fluid surface. It could also happen the inverse problem:
a texel could be too big in relation to a particle size. Although we are

5.2. RENDERING OF THE LBMSW-PARTICLE MODEL 79

Figure 5.11: Foam is generated at particle-surface points and advected in
successive frames using the fluid’s velocity.

using a fixed sized texture in this case, this problem could be solved using a
pyramidal texture approach; the particles initialize the correct level of the
pyramid, being the other levels initialized extrapolating from that one.

80 CHAPTER 5. FLUID VISUALIZATION

Chapter 6

Results and discussion

Now this is not the end. It is
not even the beginning of the
end. But it is, perhaps, the end
of the beginning.

Winston Churchill

Our initial objective was to achieve real-time fluid simulations and com-
plete realistic visualization. Although it was an ambitious goal, we have
succeeded on building some implementations based on the Lattice Boltz-
mann Method with correspondent visualizations done in not-so up-to-date
hardware which still achieves interactive framerates.

In this chapter, we will summarize all the work done in this thesis, in
addition to present the results obtained and discussion upon them. We will
also discuss the caveats and drawbacks worth to have in mind, as well as the
possible lines of research for future extensions to the present algorithms.

As the requirements for each implementation are somewhat different, we
have separated the discussion on various sections. First, we will introduce
the initial results for the LBM3D simulation which made us decide for the
LBM as a viable algorithm for GPU implementation; this was the first com-
parative of performance between a CPU and a CUDA implementation of the
LBM. We continue then with the free surface implementation using the Vol-
ume of Fluid extension to the LBM and finish with the hybrid method that
combines a surface fluid as LBMSW with particle simulation for breaking
waves.

In all the cases, the hardware has remained the same: an Ubuntu Linux
(versions ranging from 8.10 to 11.10) running on an Intel Core2Duo E8400
at 3Ghz with 4 Gb of RAM and a Nvidia GTX280 card. The version of
CUDA used has also varied through the duration of this thesis, from the 2.1
version to CUDA 4.1.

81

82 CHAPTER 6. RESULTS AND DISCUSSION

6.1 LBM3D in CUDA

The cellular automata approach of the LBM with its simple operations, using
the BGK collision operator, is quite appealing for a parallel implementation,
as the computations remain local to each cell.

For this reason, our first tests were directed to find how efficient a GPU
implementation of the Lattice Boltzmann Method was, compared to a CPU
version. For a fair comparison, we also implemented a parallel CPU version
using OpenMP [Boa13]. Although the CUDA implementation presented
in [OS09] was not the most optimized possible, it already shown a great
acceleration for the GPU version.

For that comparison we used the main hardware already presented and
a MacBook Pro which contained an Intel Core2Duo T9400 at 2.53Ghz with
4Gb of RAM and two Nvidia graphics cards, an integrated 9400M and a
dedicated 9600M GT. The whole specifications are shown in Table 6.1.

Main
RAM

Mem. Mem. Bus
Cores

Clock Clock Width
9400M 1.16Ghz 256Mb 1066Mhz 128-bit 16

9600M GT 1.5Ghz 512Mb 900Mhz 256-bit 64
GTX280 1.296Ghz 1Gb 1107Mhz 512-bit 240

C2D T9400 2.53Ghz 4Gb 1066Mhz 64-bit 2
C2D E8400 3.0Ghz 4Gb 1333Mhz 64-bit 2

Table 6.1: GPU and CPU Specifications.

Usually, the performance of the Lattice Boltzmann simulations are mea-
sured in updates per cell per second (Lattice node Updates Per Second,
LUPS) although nowadays, with the raw power of the computational units,
it has been conveniently replaced by millions of updates (MLUPS). For com-
parison purposes however, one has to be aware of the LBM DnQm model
used, as well as the precision used; although the metrics unit is the same, we
can’t compare a D3Q19 simple precision simulation with a D3Q27 double
precision one, as the latter has more memory constraints.

With a D3Q19 model, we used a common example for fluid simulations,
a lid-driven cavity; the whole domain is full of fluid and all walls are bound-
ary, one of them introduces some acceleration to the fluid. It is shown in
Figure 6.1.

For an execution of 10000 iterations, the time execution needed for each
implementation and hardware is shown in Figures 6.2 and 6.3. The second
Figure shows a GPU-only plot, as there is a great difference between the
CPU and GPU results that makes almost indistinguishable the GPU results.
From these timings we can compute the MLUPS for each processing unit,
as shown in Table 6.2. The same timing operation was done for 100000
iterations, but the resulting MLUPS were the same.

6.1. LBM3D IN CUDA 83

Figure 6.1: Lid-driven cavity velocity field. A 2D slice at the left, some
frames to the right.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140

Ti
m

e
 (

s)

Size of the simulation (side length)

Execution time for 10000 iterations

T9400
T9400+OpenMP

E8400
E8400+OpenMP

Nvidia 9400M
Nvidia 9600M GT

Nvidia GTX280

Figure 6.2: Execution times for 10000 iterations of the lid-driven cavity
example. CPU and GPU results.

From those results in which the GPU had an up to 44.9x acceleration
in comparison to the CPU parallel implementation, we decided to continue
research of an LBM implementation in GPU with as many features as pos-
sible, within the real-time simulation and visualization realm as the final
goal.

84 CHAPTER 6. RESULTS AND DISCUSSION

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

Ti
m

e
 (

s)

Size of the simulation (side length)

Execution time for 10000 iterations

Nvidia 9400M
Nvidia 9600M GT

Nvidia GTX280

Figure 6.3: Execution times for 10000 iterations of the lid-driven cavity ex-
ample. GPU only results. The 9400M GPU couldn’t fit the 1283 simulation
because of its memory requirements.

Domain MLUPS MLUPS
size with OpenMP

T9400 163 1.48104 2.95092
323 1.37848 2.79783
643 1.30438 2.48282
1283 1.27699 2.30586

E8400 163 3,96587 7.36984
323 3,68622 6.16978
643 3.46614 6.48213
1283 3.38778 5.78497

9400M 163 5.31683
323 9.97503
643 16.13213
1283 -

9600M GT 163 8.60882
323 19.69716
643 30.70407
1283 23.50601

GTX280 163 88.32154
323 209.18237
643 248.02634
1283 259.82635

Table 6.2: MLUPS classified by simulation domain size and processing unit.

6.2. LBM3D - VOLUME OF FLUID 85

6.2 LBM3D - Volume of Fluid

In order to have a complete 3D fluid simulator, we extended the simpler
LBM3D simulation with a free-surface algorithm. In fact, we pondered
various methods, but the most important ones were the level-set approach
and the volume-of-fluid method.

The level-set method has been heavily used, mainly for offline simula-
tions. It tracks a narrow band of cells where the surface is located but needs
to be reinitialized every some frames, and requires additional particles for a
precise tracking. In comparison, the volume-of-fluid method can be imple-
mented locally, which favors the GPU parallel architecture, and had already
been adapted to the LBM in [Thü07], so we decided to create what has been
its first CUDA implementation.

The algorithm has been presented in Section 3.6.2 and the CUDA im-
plementation is shown in Section 4.2.1. With the raycasting visualization
from Section 5.1 shown in Figure 6.4, we present some timings in Table 6.3.

LBM3D-VOF

Breaking Dam (32) 4.275
Drop (32) 5.471
Breaking Dam (64) 37.539
Drop (64) 26.142

Table 6.3: Timings for various examples in milliseconds per frame (∆t =
16ms). Examples marked with (32) were executed in a 323 grid while ex-
amples with (64) were executed in a 643 grid.

For small domains the simulations can be done at interactive rates, but
for greater ones it is evident that they can not achieve the same results. The
hardware imposes heavy constraints which explains the timings. Although
we improved the LBM implementation from [OS09] as explained in Sec-
tion 4.2, the full LBM3D-VOF algorithm requires a lot of memory accesses
which are the slowest operation in a CUDA application, although we ensure
those accesses are coalesced. Furthermore, these memory accesses are data-
dependent, they should be done (or not) according to certain conditions, e.g.,
if the next cell is empty or not, and this also introduces another problem:
code divergence. Inside a warp, the lower unit of execution, some threads
have to execute some code and others don’t, the execution is serialized for
each group of threads until the branching is done.

These limitations are inherent to the algorithm, but could be alleviated
with newer hardware, as newer Nvidia cards have more cores, greater mem-
ory frequency and more features, e.g., all global memory is cached.

86 CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.4: Image stills from the drop example in a 323 grid (left column)
and the breaking dam example in a 643 grid (right column).

6.2. LBM3D - VOLUME OF FLUID 87

6.2.1 Comparing approaches

To put things in perspective, we should compare this method and its re-
sults with previous approaches trying to simulate and visualize fluids as
physically-realistic as possible and in a real-time environment, preferably.

As the LBM3D-VOF simulates a full domain of liquid, it is fair to put it
against other methods that work in the same sense of a full 3D simulation.
We can see summarized the main differences in this comparison in Table 6.4.

Nowadays, a state of the art Navier-Stokes implementation uses the semi-
Lagrangian advection from [Sta99], which enables to make arbitrary-sized
time steps at the price of increased diffusion, an unwanted side-effect for
liquids. Moreover, the solution to the pressure requires heavy operations,
usually solved in an iterative manner. This is indeed how both [CLT08] and
[CM11] generally work. In comparison, the LBM has a fixed time step, but
its computational complexity is quite reduced because of the simpler arith-
metic operations required for the collision step. Its major drawback comes
from the VOF algorithm due to the free surface simulation; it requires sev-
eral operations to be serialized and has many data-dependent code branches,
which penalize severely its performance in the GPU, restricting the whole
size of the simulated domain. [CM11] works upon the basic Navier-Stokes
using additional tall cells for the underlying fluid; they allow to increase
dramatically the simulation domain size because of this multiresolution-like
approach at the expense of additional code complexity to deal with them.
These tall cells could be somehow adapted to the present LBM3D-VOF
solution, in order to allow for higher simulation domains.

An SPH approximation to the simulation of fluids clashes with the other
solutions, as the SPH does not require a grid; the fluid is actually carried
with the particles themselves. As the fluid is not restricted by a grid, the
particles can go wherever they need in the full scene; the problem here
comes from the required number of particles: for a similar result to the
grid-based solutions, a high particle count is required. Additionally, SPH
has an additional burden, so to say: its inherent computations require for
each particle to check out the neighbour particles in a specified radius. For
a GPU implementation, [GSSP10] propose the use of an auxiliary grid in
order to implement this neighbour search efficiently, although it requires
more memory than similar SPH CPU implementations and also needs of
additional operations as sorting arrays.

It is hard to directly compare particle simulations with grid-based ones;
particle simulations allow for sharper features as splashes because of its
own nature, these sharp features are usually lost or smoothed in the grid
simulations using the level set algorithm ([CLT08, CM11]). The Volume
of Fluid algorithm, however, ensures mass conservation and keeps these
sharp features, although makes them look more drop-like because of the
iso-surface render methods used (being them mesh-generating as marching

88 CHAPTER 6. RESULTS AND DISCUSSION

LBM3D-VOF [CLT08] [CM11] [GSSP10]

Domain size

Ü Ü Ü

Ü Ü Ü

Comp. complex.

Ü Ü
Ü Ü Ü Ü Ü Ü

Smooth surface 4 4 4 8
Sharp features 4 8 8 4

Add. data struct. No No Yes Yes
Complex render Rfl + Rfr Simple Rfr Add. maps Rfl + Rfr

Table 6.4: Feature comparison between the LBM3D-VOF model, Navier-
Stokes approximations ([CLT08, CM11]) and an SPH solution ([GSSP10]).
In the table, Comp. complex. stands for computational complexity and
Add. data struct. stands for additional data structures needed. In the
Complex render row, values containing Rfl mean that the render does re-
flection, Rfr goes for refraction and Add. maps for additional texture maps
to simulate alternative effects like foam advection.

cubes or direct raycasting). The same could be said in the other direction,
level set fluid simulations provide naturally a very smooth surface, which can
also be accomplished by the VOF algorithm. Particles in the other hand
require more elaborate techniques, e.g., [vdLGS09], to allow the same level
of smoothness.

As we want simulation and rendering at the same time, we should also
compare how complex the visualization is, the effects it provides that en-
hances the look and feel. The main effects one should expect from a fluid
are refractions and reflections, achieved easily with raycasting techniques
as the one implemented in the present work, or the raycasting of distance
fields used in [GSSP10]. In contrast, to provide faster results, although not
as physically realistic, it is common to use simplifications, as the simplified
refractions provided by [CLT08], which just use an arbitrary offset on the
refracted vector to look up the background. To further simplify the render,
these effects can be ignored altogether as in [CM11], although, in order to
improve the overall quality of the visualization, they apply additional tex-
ture maps to simulate foam and to provide higher detail of a lower scale as
well as use ballistic particles for aesthetic purposes.

A full numerical comparison is difficult because of the different hardware
used in these approaches, but, as seen in Table 6.4, from this comparison we
can conclude that the LBM3D-VOF is, maybe, the most balanced system for
small domains, which can be further improved to enable higher simulations.

6.3. HYBRID PARTICLE - LBMSW 89

6.2.2 Future work

In the future, it should be interesting to apply multi-resolution methods to
the LBM GPU simulation, which could enable for greater domains, as only
the surface cells should remain at a higher level of detail and inner fluid cells
could be simulated with more coarser levels as in the previously mentioned
tall cells approach from [CM11]. An alternative could be the coupling with
a Shallow Waters approach, requiring only a full 3D simulation for a given
region of interest. Furthermore, as the LBM is a memory expensive algo-
rithm it would also be important to achieve some method that reduced its
requirements as in [PKW+03], but in a GPU-friendly manner.

After an LBM implementation is efficient enough for average domain
sizes, it should be added the coupling of external obstacles, e.g., rigid bodies.
This would surely need some kind of object voxelization in realtime using
techniques like [ED06, ED08], for example. Moreover, to increase the level of
detail of the simulation, a coupling with a different fluid simulation method
like SPH would be a great extension as in [LTKF08].

It should be also interesting to improve the raycasting technique used in
the visualization to allow for multiple ray direction changes, thus empower-
ing multiple refractions and reflections.

6.3 Hybrid Particle - LBMSW

As the hardware limited our ability to develop a full 3D Lattice Boltzmann
simulation, we decided to simplify the problem: limiting the representation
of a bulk of fluid to just the surface as a heightfield and then coupling it
with additional methods to provide details lost in the simplification.

Evolving from the LBM implementation we already had, we created
a Shallow Waters version and coupled it with obstacles. Later we added
the particle simulation, generating particles with breaking wave conditions.
Some timings on the final implementation with the main hardware are pro-
vided in Table 6.5. Here the boat example refers to that visible in Fig-
ure 3.14, the buoy corresponds to Figure 3.13, drop is Figure 3.17, the wave
example is shown in Figures 5.10 and 5.11 and wavegr is visible in Fig-
ure 3.16.

In this case, the algorithm has some of the same problems as the LBM3D-
VOF: high memory requirements and code divergence. The memory require-
ments are still high, but the fact that the domain of the LBM is in 2D instead
of 3D allows us to simulate greater domains, although we require additional
memory for the particles. Code divergence still is a problem when dry re-
gions appear, which could be considered a similar case to the free-surface of
the LBM3D-VOF. Particle simulation also introduces new problems; as we
can not generate and destroy particles dynamically on the GPU, we have
to limit a certain number and use them on-demand, which can cause arti-

90 CHAPTER 6. RESULTS AND DISCUSSION

Total LBMSW Solids Psort PGen PSim PReint PReint s

CPU

boat 10.78 10.69 0.09 0.00 0.00 0.00 0.00 0.00
buoy 10.91 10.85 0.06 0.00 0.00 0.00 0.00 0.00
drop 32k 372.96 9.97 0.00 214.56 1.16 1.46 31.50 114.31
drop 128k 1635.36 9.75 0.00 1001.35 2.09 2.79 114.92 504.46
wave 32k 410.88 9.62 0.00 224.04 3.68 4.85 32.58 136.11
wave 128k 1694.87 9.62 0.00 1007.30 3.37 10.71 117.51 546.36

GPU

boat 0.82 0.35 0.47 0.00 0.00 0.00 0.00 0.00
buoy 0.87 0.35 0.52 0.00 0.00 0.00 0.00 0.00
drop 32k 14.30 0.35 0.00 7.03 0.45 0.10 1.24 5.13
drop 128k 23.50 0.34 0.00 10.71 0.41 0.14 1.75 10.15
wave 32k 15.28 0.36 0.00 7.26 0.99 0.12 1.32 5.23
wave 128k 25.71 0.36 0.00 11.21 1.42 0.32 2.01 10.39
wave 256k 34.39 0.37 0.00 16.45 1.18 0.54 2.55 13.30
wave 512k 54.84 0.36 0.00 27.76 1.04 0.81 2.97 21.90
wavegr 64k 18.79 0.39 0.00 9.48 1.18 0.18 1.64 5.92

Table 6.5: Timings per frame (∆t = 16ms) for various examples in millisec-
onds; the number in the name of the example indicates the total number of
particles used, where k = 210. LBMSW includes the LBM simulation, as
well as the dry-wet region tracking. Solids accounts for the 2-way coupling
of dynamic rigid bodies. PGen, PSim and PReint are the timings for the
generation and initialization, simulation and reintegration of the particles
respectively. We have extracted the timings for the sort operation from the
Thrust library in Psort and PReint s, as they do not depend directly on the
other steps but have a significant impact on the results, more heavily on the
CPU version. Psort is for the sorting of particles by their TTL. PReint s is
the sort of the (cell id, particle id) tuples.

facts if the simulation is not well parametrized. Also, as the GTX280 does
not have float atomic operations, the reintegration of the particles is more
costly than it will be on newer hardware. With the same lattice size for the
LBM, the timings only vary on the number of particles used, which could
also improve with newer hardware as more computational power would be
available. Still, the results are quite compelling (see Figure 6.5), enabling
full interactive fluid simulations depending on the particle count.

6.3.1 Comparing approaches

As we previously did with the LBM3D-VOF, here we should also provide
some context on the results of the Particle-LBMSW and how they fare with
regard to alternative methods used in interactive scenarios.

At this point, the techniques which we have to compare should be using a
heighfield representation of the fluid, as this condition itself restricts the type
of simulation, but also provides higher performance because of the reduced

6.3. HYBRID PARTICLE - LBMSW 91

Figure 6.5: Image stills from another breaking dam example: two perpen-
dicular columns of water break loose and generate expanding waves.

92 CHAPTER 6. RESULTS AND DISCUSSION

domain size as the simulation is done in a 2.5D fashion. This discussion is
summarized in Table 6.6.

We are mainly interested in physically-based simulations with visualiza-
tion in real-time, but [YHK07] has been successfully used in the Uncharted
3 videogame [GOH12], which relies in scenarios with great amounts of water
in a realistic fashion. This shows us that it is more important the plausi-
bility of a simulation rather than its physically accurate result, if it is as
efficient as the application requires. The counter argument against such a
procedural technique is that a lot of physical detail is lost, as horizontal flow,
the inability to treat properly if the fluid should break or the appropriate
consideration for the underlying terrain.

As shown, the physically-based simulations do not have those problems,
and can respond adequately to the underlying terrain, as well as break apart
(although [SBC+11] do not provide a solution for, e.g., breaking waves, they
mention that it should be studied in future work). For our Particle-LBMSW,
we have followed the approach from [CM10] for the breaking wave detection
and particle solution but, as they do not provide implementation details
about their particle system, we have engineered our own, explained in Sec-
tions 3.8 and 4.3, adapting them to the hardware we had available, which
has lower specifications than that used by the other approaches (except
[YHK07]). It should be noted that although [CM10] provide multiple con-
ditions for detecting when to generate particles and we have just used the
breaking waves ones, the other conditions should be easily ported between
methods. Moreover, we have shown that only the particle coupling (genera-
tion and reintegration phases) is to be adapted, leaving the particle system
to use as a decision for the user of this method: here we have used a sim-
ple ballistic particle system for demonstration purposes and because of the
hardware constraints, but a more sophisticated method as SPH could be
used as well.

It is worth mentioning that all the methods compared have dynamic
objects two-way coupling. Indeed, this should not come as a surprise be-
cause the three physically-based methods, Particle-LBMSW, [CM10] and
[SBC+11], use modified versions of the coupling introduced by [YHK07] due
to its simplicity.

In contrast to the particle density-based computations for the heightfield
from [SBC+11], the Particle-LBMSW remains intact as in the LBM3D-VOF,
where just the stream and collision steps of the basic LBM algorithm are
needed. This simplicity comes at a cost: for greater sized domains, the
time step has to be reduced, so more iterations have to be done in order to
solve a single frame. On the other hand, in order to speed up the solving
time for the simulation, [CM10] apply an explicit method (in contrast to the
previously used semi-Lagrangian one) that may lead to instabilities during
the simulation, which they handle specially.

Finally, not only the simulation has to be fast, we would like the vi-

6.3. HYBRID PARTICLE - LBMSW 93

Particle-LBMSW [CM10] [SBC+11] [YHK07]

Physically-based 4 4 4 8
May break apart? 4 4 8 8
Object coupling 4 4 4 4
Under. terrain 4 4 4 8
Comp. compl.

Ü

Ü

Ü Ü Ü

Domain size

Ü

Ü Ü Ü

Complex render
Rfl + Rfr Rfr

Rfl + Rfr
Rfl + Rfr

+ Caust + alt. + alt. + Caust

Table 6.6: Feature comparison between the Particle-LBMSW simulation,
a Navier-Stokes shallow water solution ([CM10]), an SPH approximation
([SBC+11]) and the Wave Particle method [YHK07]. In the table, Un-
der. terrain stands for supporting arbitrary underlying terrains and Comp.
compl. goes for computational complexity. For the Complex render row,
Rfl and Rfr mean the same as in Table 6.4, reflection and refraction, Caust
refers to caustics and alt. goes for alternative techniques that enhance the
overall visualization as the advection of foam textures.

sualization to be believable. For that, the common light effects should be
expected: refraction and reflection. Caustics are also a great addition to
the final result. Although not every method explains which of this effects
they implement, their images show some of them, so we can make educated
guesses about what techniques they are using. [YHK07] provides results us-
ing reflections, refractions and caustics. [SBC+11] also provide refractions
and reflections although the latter seems to be generated only using static
environment maps. [CM10] also use refraction and reflection which also
seems to rely on environment maps and not dynamically generated from
the scene, but they provide information about the use of an advected FFT
ocean-based normal map to improve the low-scale details, as well as using a
modification on the technique from [vdLGS09] for the rendering of the par-
ticles. It is hard to say whether the refractions are made using raycasting
techniques or not, as simplified versions using just offsets over the refracted
vectors result in plausible images. Our approach in this case provides both
reflections and refractions raycast through the depth map of the scene, at
the cost of reducing the available information to what is already visible in
screen space. We also provide caustics, as well as other techniques to enable
higher detail at the low scale like the FFT ocean-based normal map and the
foam advection. In our case, we have used a modification on the Nailboard
technique [Sch97], which is simpler than the one used by [CM10].

Overall, as seen in Table 6.6, although direct comparisons are hard to

94 CHAPTER 6. RESULTS AND DISCUSSION

establish, the main restriction on our approach is the time step required by
the LBMSW, as well as the constrained number of particles and how they
are generated/reintegrated due to the hardware used. These restrictions
should be loosened with newer GPUs and alleviated using multi-resolution
and level-of-detail techniques. Furthermore, we have provided a more com-
plete visualization module for this heightfield-based fluid simulation than
the other approaches presented.

6.3.2 Future work

In order to improve this algorithm, there are some ideas worth mentioning.
For example, it should be interesting to apply multi-resolution techniques,
if possible, for the LBM, enabling higher domain sizes. Particles would
also benefit from using Level-of-Detail techniques that allow to relax the
artifacts created from a bad parametrization, i.e., more particles required
than available; simply by clustering near particles would allow to reduce
the needed count. Alternatively, it also would be worth investing in some
technique that tries to prioritize the preservation of visible particles, i.e.,
those that fall in the actual view frustum.

With our hybrid algorithm, it is easy to change the ballistic particle
system used here for a different one as long as the main features are main-
tained (generation and reintegration); a more complete SPH simulation
would achieve scenes with more realistic physical results.

So far we have only implemented breaking wave conditions for the parti-
cle generation, so more particle generation conditions should be tested, like
those in [CM10]. Ideally, it should be researched for a generalized condi-
tion in which particles should be generated to supply the needed details and
effects the LBM simulation lacks.

For the visualization of the fluid, we have used FFT ocean simulation
to increase the visual detail although it is not coupled in any way with
the actual fluid simulation. It should be interesting to look for a tighter
interaction, or at least integrate it using the technique from [MB96].

We have also implemented reflections and refractions using screen-space
ray-marching techniques which limit the direction of the rays to what is di-
rectly visible from the camera. It would be worth to search how to allow the
full range of vector directions after they are refracted/reflected. Seamlessly,
caustics are also raycast from light and represented as single primitives which
are blended with the scene. As the number of photons is limited, there are
zones oversampled as well as other are undersampled, a hierarchical solu-
tion could solve the problem as shown in [Wym08, WN09]. It also would be
interesting to extend these caustics to volumetric ones as those in [LD11].

At this moment, we have only taken into account the visualization of the
surface of the fluid, in the future it should be also a key point to research
under water rendering as in, e.g., [GSMA08], in order to provide a full

6.4. CLOSURE 95

featured visualization.
For particle rendering we just used an adaptation of the Nailboard tech-

nique; particles where rendered as billboards with depth and normal re-
placement. They still look like little spheres so, to improve their look and
feel, some additional tweaking could be done as applying some noise to their
normals or deforming them in the direction they are moving to simulate
motion blur.

6.4 Closure

The central problem tackled by this thesis was the real-time simulation and
visualization of fluids. For that, the Lattice Boltzmann Method was used in
a GPU implementation in order to maximize the parallelization and achieve
the so desired interactive framerates.

For the hardware used and as we have seen, a full 3D LBM implemen-
tation is heavily accelerated using CUDA with respect to CPU, but the
inclusion of the free surface algorithm to provide rich graphical simulations
restricts its applicability to very low domain sizes. This is due the serializa-
tion needed for some of the computations that must be done. With newer
hardware however, several constraints of the current GPU will be lifted,
naturally improving the final performance.

This realization led us to simplify our approach to a Shallow Waters
simulation, which loses some of the physical benefits of the full 3D simulation
as the breaking waves, but allows for better framerates. To enrich the scenes
and allow direct user interaction, dynamic objects were coupled. Finally, to
recover some of the lost functionality by the Shallow Waters, particle systems
were coupled to supply breaking waves in this case, but open to implement
more effects where splashes should burst.

Realistic visualization of the fluid has also been in mind when imple-
menting the whole system and, as such, refractions, reflections and caustics
are implemented in screen space to provide fast algorithms, suitable for the
applications that can benefit from these techniques, namely, videogames and
interactive physical software.

Although our solution is also greatly dependent on the hardware used,
we have shown that the algorithms presented here are up to the challenge
for real-time simulations although, as always as it is, there is room for im-
provement.

We can conclude by saying that fluid simulation is still a heavy problem
that has a lot a possibilities for interactive applications, which makes it one
of the most active research fields with a huge range of applications for the
future.

96 CHAPTER 6. RESULTS AND DISCUSSION

Bibliography

[ABB+07] C. Andújar, J. Boo, P. Brunet, M. Fairén, I. Navazo,
P. Vázquez, and À. Vinacua. Omni-directional relief impos-
tors. Computer Graphics Forum, 26(3):553–560, 2007.

[ATBG08] Roland Angst, Nils Thuerey, Mario Botsch, and Markus Gross.
Robust and efficient wave simulations on deforming meshes.
Computer Graphics Forum, 27(7):1895–1900, 2008.

[BGK54] P.L. Bhatnagar, E.P. Gross, and M. Krook. A model for colli-
sion processes in gases. I. Small amplitude processes in charged
and neutral one-component systems. Physical Review, 94:511–
525, 1954.

[BMW+09] P. Bailey, J. Myre, S.D.C. Walsh, D.J. Lilja, and M.O. Saar.
Accelerating lattice boltzmann fluid flow simulations using
graphics processors. In International Conference on Parallel
Processing, pages 550 –557, 2009.

[Boa13] OpenMP Architecture Review Board. OpenMP.org. http:

//openmp.org/wp/, 2013. [Online as of February-2013].

[BR86] J U Brackbill and H M Ruppel. Flip: A method for adap-
tively zoned, particle-in-cell calculations of fluid flows in two
dimensions. J. Comput. Phys., 65(2):314–343, August 1986.

[CCM92] Hudong Chen, Shiyi Chen, and William H. Matthaeus. Re-
covery of the Navier-Stokes equations using a lattice-gas boltz-
mann method. Phys. Rev. A, 45:R5339–R5342, Apr 1992.

[CD98] Shiyi Chen and Gary D. Doolen. Lattice Boltzmann method
for fluid flows. Annual Review of Fluid Mechanics, 30(1):329–
364, 1998.

[CKZL99] Gang Chen, Christian Kharif, Stephane Zaleski, and Jie Li.
Two-dimensional navier–stokes simulation of breaking waves.
Physics of Fluids, 11(1):121–133, 1999.

97

http://openmp.org/wp/
http://openmp.org/wp/

98 BIBLIOGRAPHY

[CLHM97] Jim X. Chen, Niels da Vitoria Lobo, Charles E. Hughes, and
J. Michael Moshell. Real-time fluid simulation in a dynamic
virtual environment. IEEE Comput. Graph. Appl., 17(3):52–
61, May 1997.

[CLT08] Keenan Crane, Ignacio Llamas, and Sarah Tariq. Real-time
simulation and rendering of 3d fluids. In GPU Gems 3, pages
633–675. Addison-Wesley, 2008.

[CM10] Nuttapong Chentanez and Matthias Müller. Real-time sim-
ulation of large bodies of water with small scale details. In
Proc. ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (SCA), pages 197–206, 2010.

[CM11] Nuttapong Chentanez and Matthias Müller. Real-time eule-
rian water simulation using a restricted tall cell grid. In ACM
SIGGRAPH 2011 papers, SIGGRAPH ’11, pages 82:1–82:10,
New York, NY, USA, 2011. ACM.

[Coo12] Eben Cook. Creating the Flood Effects in Uncharted 3. In
Game Developers Conference, 2012.

[Cor13] Exa Corp. PowerFLOW. http://www.exa.com/powerflow.

html, 2013. [Online as of February-2013].

[Del02] Paul J. Dellar. Nonhydrodynamic modes and a priori con-
struction of shallow water lattice boltzmann equations. Phys.
Rev. E, 65:036309, Feb 2002.

[DG96] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed parti-
cles: a new paradigm for animating highly deformable bodies.
In Proceedings of the Eurographics workshop on Computer ani-
mation and simulation ’96, pages 61–76, New York, NY, USA,
1996. Springer-Verlag New York, Inc.

[DGK+02] Dominique D’Humières, Irina Ginzburg, Manfred Krafczyk,
Pierre Lallemand, and Li-Shi Luo. Multiple-relaxation-time
lattice Boltzmann models in three dimensions. Phil. Trans. R.
Soc. A, 360:437–451, 2002.

[DW07] Scott T. Davis and Chris Wyman. Interactive refractions with
total internal reflection. In Proceedings of Graphics Interface
2007, GI ’07, pages 185–190, New York, NY, USA, 2007. ACM.

[ED06] Elmar Eisemann and Xavier Décoret. Fast scene voxelization
and applications. In ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games, pages 71–78. ACM SIGGRAPH,
2006.

http://www.exa.com/powerflow.html
http://www.exa.com/powerflow.html

BIBLIOGRAPHY 99

[ED08] Elmar Eisemann and Xavier Décoret. Single-pass gpu solid
voxelization and applications. In Proc. of Graphics Interface
(GI), volume 322 of ACM International Conference Proceeding
Series, pages 73–80. Canadian Information Processing Society,
2008.

[EFFM02] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian
Mitchell. A hybrid particle level set method for improved in-
terface capturing. J. Comput. Phys., 183(1):83–116, November
2002.

[FAMO99] Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, and Stan-
ley Osher. A non-oscillatory eulerian approach to interfaces
in multimaterial flows (the ghost fluid method). J. Comput.
Phys., 152(2):457–492, July 1999.

[FDH+87] Uriel Frisch, Dominique D’Humières, Brosl Hasslacher, Pierre
Lallemand, Yves Pomeau, and Jeam-pierre Rivet. Lattice gas
hydrodynamics in two and three dimensions. Complex Sys-
tems, 1(4):649–707, 1987.

[FF01] Nick Foster and Ronald Fedkiw. Practical animation of liquids.
In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’01, pages 23–
30. ACM, 2001.

[FHP86] Uriel Frisch, Brosl Hasslacher, and Yves Pomeau. Lattice-gas
automata for the Navier-Stokes equation. Phys. Rev. Lett.,
56:1505–1508, Apr 1986.

[FM96] Nick Foster and Dimitri Metaxas. Realistic animation of liq-
uids. Graphical Models and Image Processing, 58(5):471 – 483,
1996.

[FM97a] Nick Foster and Dimitris Metaxas. Controlling fluid animation.
In Proceedings of the 1997 Conference on Computer Graphics
International, CGI ’97, pages 178–, Washington, DC, USA,
1997. IEEE Computer Society.

[FM97b] Nick Foster and Dimitris Metaxas. Modeling the motion of
a hot, turbulent gas. In Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, SIG-
GRAPH ’97, pages 181–188, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[GDN98] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer.
Numerical Simulation in Fluid Dynamics. A Practical Intro-
duction. SIAM, 1998.

100 BIBLIOGRAPHY

[GKT+06] Sebastian Geller, Manfred Krafczyk, Jonas Tölke, Stefan
Turek, and Jaroslav Hron. Benchmark computations based
on lattice-Boltzmann, finite element and finite volume meth-
ods for laminar flows. Computers & Fluids, 35(8–9):888 – 897,
2006.

[GM77] R. A. Gingold and J. J. Monaghan. Smoothed particle hy-
drodynamics: Theory and application to non-spherical stars.
Mon.Not.Roy.Astron.Soc., 181:375, 1977.

[GOH12] Carlos Gonzalez-Ochoa and Doug Holder. Water Technology
of Uncharted. In Game Developers Conference, 2012.

[GPMC91] Massimo Germano, Ugo Piomelli, Parviz Moin, and William H.
Cabot. A dynamic subgrid-scale eddy viscosity model. Physics
of Fluids A: Fluid Dynamics, 3(7):1760–1765, 1991.

[GRGT10] Markus Geveler, Dirk Ribbrock, Dominik Göddeke, and Ste-
fan Turek. Lattice-boltzmann simulation of the shallow-water
equations with fluid-structure interaction on multi- and many-
core processors. In Rainer Keller, David Kramer, and Jan-
Philipp Weiss, editors, Facing the multicore-challenge, pages
92–104. Springer-Verlag, 2010.

[Gro13] Khronos Group. OpenCL - The open standard for parallel pro-
gramming of heterogeneous systems. http://www.khronos.

org/opencl/, 2013. [Online as of February-2013].

[GRZZ91] Andrew K. Gunstensen, Daniel H. Rothman, Stéphane Zaleski,
and Gianluigi Zanetti. Lattice boltzmann model of immiscible
fluids. Phys. Rev. A, 43:4320–4327, Apr 1991.

[GS03] Irina Ginzburg and Konrad Steiner. Lattice boltzmann model
for free-surface flow and its application to filling process in
casting. Journal of Computational Physics, 185(1):61 – 99,
2003.

[GSC04] Juan Guardado and Daniel Sánchez-Crespo. Rendering water
caustics. In GPU Gems, pages 31–44. Addison-Wesley, 2004.

[GSMA08] Diego Gutierrez, Francisco J. Seron, Adolfo Munoz, and Os-
car Anson. Visualizing underwater ocean optics. Computer
Graphics Forum, 27(2):547–556, 2008.

[GSSP10] Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and
Renato Pajarola. Interactive SPH simulation and rendering on
the GPU. In Proceedings of the 2010 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation, SCA ’10, pages

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

BIBLIOGRAPHY 101

55–64, Aire-la-Ville, Switzerland, Switzerland, 2010. Euro-
graphics Association.

[HA07] X.Y. Hu and N.A. Adams. An incompressible multi-phase sph
method. Journal of Computational Physics, 227(1):264 – 278,
2007.

[Har04] Mark J. Harris. Fast fluid dynamics simulation on the gpu. In
GPU Gems, pages 637–666. Addison-Wesley, 2004.

[HB13] Jared Hoberock and Nathan Bell. Thrust - Parallel Algorithms
Library. http://thrust.github.com/, 2013. [Online as of
February-2013].

[HdPP76] J. Hardy, O. de Pazzis, and Y. Pomeau. Molecular dynam-
ics of a classical lattice gas: Transport properties and time
correlation functions. Phys. Rev. A, 13:1949–1961, May 1976.

[HJ89] F. J. Higuera and J. Jiménez. Boltzmann approach to lattice
gas simulations. EPL (Europhysics Letters), 9(7):663, 1989.

[HKK07] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi.
Smoothed particle hydrodynamics on GPUs. In Proc. of Com-
puter Graphics International, CGI ’07, pages 63–70, 2007.

[HL97a] Xiaoyi He and Li-Shi Luo. Lattice boltzmann model for the
incompressible navier–stokes equation. Journal of Statistical
Physics, 88:927–944, 1997.

[HL97b] Xiaoyi He and Li-Shi Luo. Theory of the lattice Boltzmann
method: From the Boltzmann equation to the lattice Boltz-
mann equation. Phys. Rev. E, 56:6811–6817, Dec 1997.

[HLD96] Xiaoyi He, Li-Shi Luo, and Micah Dembo. Some progress in
lattice Boltzmann method. Part I. Nonuniform mesh grids.
Journal of Computational Physics, 129(2):357 – 363, 1996.

[HN81] C.W Hirt and B.D Nichols. Volume of fluid (vof) method for
the dynamics of free boundaries. Journal of Computational
Physics, 39(1):201 – 225, 1981.

[HQ07] Wei Hu and Kaihuai Qin. Interactive approximate rendering
of reflections, refractions, and caustics. IEEE Transactions on
Visualization and Computer Graphics, 13(1):46–57, January
2007.

[HS89] William Hibbard and David Santek. Interactivity is the key.
In Proceedings of the 1989 Chapel Hill workshop on Volume

http://thrust.github.com/

102 BIBLIOGRAPHY

visualization, VVS ’89, pages 39–43, New York, NY, USA,
1989. ACM.

[HSCD96] S. Hou, J. Sterling, S. Chen, and G. D. Doolen. A Lattice
Boltzmann Subgrid Model for High Reynolds Number Flows.
Fields Institute Communications, 6:151–166, 1996.

[HW65] Francis H. Harlow and J. Eddie Welch. Numerical calculation
of time-dependent viscous incompressible flow of fluid with free
surface. Physics of Fluids, 8(12):2182–2189, 1965.

[IGLF06] Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald
Fedkiw. Efficient simulation of large bodies of water by cou-
pling two and three dimensional techniques. In ACM SIG-
GRAPH 2006 Papers, SIGGRAPH ’06, pages 805–811, New
York, NY, USA, 2006. ACM.

[IKLH04] Milan Ikits, Joe Kniss, Aaron Lefohn, and Charles Hansen.
Volume rendering techniques. In GPU Gems, pages 667–692.
Addison-Wesley, 2004.

[IYO95] Takaji Inamuro, Masato Yoshino, and Fumimaru Ogino. A
non-slip boundary condition for lattice Boltzmann simulations.
Physics of Fluids, 7(12):2928–2930, 1995.

[JCKS02] Henrik W. Jensen, Per H. Christensen, Toshiaki Kato, and
Frank Suykens. A practical guide to global illumination using
photon mapping. In SIGGRAPH 2002 Course Notes, 2002.

[Kaj86] James T. Kajiya. The rendering equation. In Proceedings of the
13th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’86, pages 143–150, New York, NY,
USA, 1986. ACM.

[KM90] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics
for computer graphics. In Proceedings of the 17th annual con-
ference on Computer graphics and interactive techniques, SIG-
GRAPH ’90, pages 49–57, New York, NY, USA, 1990. ACM.

[KO96] S. Koshizuka and Y. Oka. Moving-particle semi-implicit
method for fragmentation of incompressible fluid. Nuclear Sci-
ence and Engineering, 123(3):421–434, 1996.

[KTL03] Manfred Krafczyk, Jonas Tölke, and Li-Shi Luo. Large-eddy
simulations with a multiple-relaxation-time lbe model. Inter-
national Journal of Modern Physics B, 17:33–39, 2003.

BIBLIOGRAPHY 103

[KW03] J. Kruger and R. Westermann. Acceleration techniques for
gpu-based volume rendering. In Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), VIS ’03, pages 38–, Washington,
DC, USA, 2003. IEEE Computer Society.

[Lab13] Stanford University Graphics Lab. BrookGPU. http://

graphics.stanford.edu/projects/brookgpu/, 2013. [On-
line as of February-2013].

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. In Proceed-
ings of the 14th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’87, pages 163–169, New
York, NY, USA, 1987. ACM.

[LCM+08] Jonas Lätt, Bastien Chopard, Orestis Malaspinas, Michel Dev-
ille, and Andreas Michler. Straight velocity boundaries in the
lattice Boltzmann method. Phys. Rev. E, 77:056703, May 2008.

[LD11] Gábor Liktor and Carsten Dachsbacher. Real-time volume
caustics with adaptive beam tracing. In Symposium on Inter-
active 3D Graphics and Games, I3D ’11, pages 47–54, New
York, NY, USA, 2011. ACM.

[Lev90] Marc Levoy. Efficient ray tracing of volume data. ACM Trans.
Graph., 9(3):245–261, July 1990.

[LGF04] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating
water and smoke with an octree data structure. In ACM SIG-
GRAPH 2004 Papers, SIGGRAPH ’04, pages 457–462, New
York, NY, USA, 2004. ACM.

[LH10] Hyokwang Lee and Soonhung Han. Solving the shallow water
equations using 2d sph particles for interactive applications.
The Visual Computer, 26:865–872, 2010.

[LL00] Pierre Lallemand and Li-Shi Luo. Theory of the lattice boltz-
mann method: Dispersion, dissipation, isotropy, galilean in-
variance, and stability. Phys. Rev. E, 61:6546–6562, Jun 2000.

[Lot11] Timothy Lottes. Fxaa. Technical report, Nvidia, 2011.

[LTKF08] Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fed-
kiw. Two-way coupled sph and particle level set fluid sim-
ulation. IEEE Transactions on Visualization and Computer
Graphics, 14(4):797–804, July 2008.

http://graphics.stanford.edu/projects/brookgpu/
http://graphics.stanford.edu/projects/brookgpu/

104 BIBLIOGRAPHY

[Luc77] L. B. Lucy. A numerical approach to the testing of the fission
hypothesis. Astronomical Journal, 82:1013–1024, December
1977.

[LvdP02] Anita T. Layton and Michiel van de Panne. A numerically
efficient and stable algorithm for animating water waves. The
Visual Computer, 18:41–53, 2002.

[LWK03] Wei Li, Xiaoming Wei, and Arie Kaufman. Implementing lat-
tice boltzmann computation on graphics hardware. The Visual
Computer, 19:444–456, 2003.

[MB96] Nelson Max and Barry Becker. Flow Visualization Using Mov-
ing Textures. In David C. Banks, Tom W. Crockett, and
K. Stacy, editors, Proceedings of the ICAS/LaRC Symposium
on Visualizing Time-Varying Data, NASA Conference Publi-
cation 3321, pages 77–87, 1996.

[MCG03] Matthias Müller, David Charypar, and Markus Gross.
Particle-based fluid simulation for interactive applications. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, SCA ’03, pages 154–159,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association.

[MLS99] Renwei Mei, Li-Shi Luo, and Wei Shyy. An accurate curved
boundary treatment in the lattice Boltzmann method. J. Com-
put. Phys., 155(2):307–330, November 1999.

[MMS04] Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. Anima-
tion and control of breaking waves. In Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer an-
imation, SCA ’04, pages 315–324. Eurographics Association,
2004.

[MSD07] Matthias Müller, Simon Schirm, and Stephan Duthaler.
Screen space meshes. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation,
SCA ’07, pages 9–15, Aire-la-Ville, Switzerland, Switzerland,
2007. Eurographics Association.

[MZ88] Guy R. McNamara and Gianluigi Zanetti. Use of the Boltz-
mann equation to simulate lattice-gas automata. Phys. Rev.
Lett., 61:2332–2335, Nov 1988.

[NCGB95] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius.
A consistent hydrodynamic boundary condition for the lattice
Boltzmann method. Physics of Fluids, 7(1):203–209, 1995.

BIBLIOGRAPHY 105

[NS92] Francesca Nannelli and Sauro Succi. The lattice Boltzmann
equation on irregular lattices. Journal of Statistical Physics,
68:401–407, 1992. 10.1007/BF01341755.

[Nvi11] Nvidia. Nvidia CUDA C Programming Guide, 4.1 edition,
2011.

[Nvi13] Nvidia. Parallel Programming and Computing Plat-
form. http://www.nvidia.com/object/cuda_home_new.

html, 2013. [Online as of February-2013].

[NY06] Timothy S. Newman and Hong Yi. A survey of the march-
ing cubes algorithm. Computers & Graphics, 30(5):854 – 879,
2006.

[OH95] J. F. O’Brien and J. K. Hodgins. Dynamic simulation of splash-
ing fluids. In Proceedings of the Computer Animation, CA ’95,
pages 198–. IEEE Computer Society, 1995.

[OKTR11] Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau,
and Jean-Jacques Roux. A new approach to the lattice boltz-
mann method for graphics processing units. Computers &
Mathematics with Applications, 61(12):3628 – 3638, 2011.

[OS88] Stanley Osher and James A. Sethian. Fronts propagating with
curvature-dependent speed: algorithms based on hamilton-
jacobi formulations. J. Comput. Phys., 79(1):12–49, November
1988.

[OS09] Jesús Ojeda and Antonio Suśın. Aceleración de simulaciones de
fluidos Lattice Boltzmann utilizando CUDA. In II Workshop
de Aplicaciones de Nuevas Arquitecturas de Consumo y Altas
Prestaciones, 2009. isbn:978-84-692-7320-3.

[OS13a] Jesús Ojeda and Antonio Suśın. Enhanced lattice boltzmann
shallow waters for real-time fluid simulations. In Eurographics
2013, accepted, 2013.

[OS13b] Jesús Ojeda and Antonio Suśın. Hybrid particle lattice boltz-
mann shallow water for interactive fluid simulations. In Proc.
of the 8th International Conference on Computer Graphics
Theory and Applications (GRAPP), accepted, 2013.

[OS13c] Jesús Ojeda and Antonio Suśın. Real-time rendering of en-
hanced shallow water fluid simulations. Preprint, 2013.

[oVRPL13] Persistence of Vision Raytracer Pty. Ltd. Pov-ray. http://

www.povray.org/, 2013. [Online as of February-2013].

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.povray.org/
http://www.povray.org/

106 BIBLIOGRAPHY

[Per85] Ken Perlin. An image synthesizer. In Proceedings of the 12th
annual conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’85, pages 287–296, New York, NY, USA,
1985. ACM.

[Per02] Ken Perlin. Improving noise. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques,
SIGGRAPH ’02, pages 681–682, New York, NY, USA, 2002.
ACM.

[PH10] Matt Pharr and Greg Humphreys. Physically based Rendering.
Morgan Kaufman, 2010.

[Pix13] Pixar. Pixar’s renderman. http://renderman.pixar.com/

view/renderman, 2013. [Online as of February-2013].

[PKW+03] Thomas Pohl, Markus Kowarschik, Jens Wilke, Klaus
Iglberger, and Ulrich Rüde. Optimization and profiling of the
cache performance of parallel lattice boltzmann codes. Parallel
Processing Letters, pages 549–560, 2003.

[POC05] Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba.
Real-time relief mapping on arbitrary polygonal surfaces. In
Proceedings of the 2005 symposium on Interactive 3D graphics
and games, I3D ’05, pages 155–162, New York, NY, USA, 2005.
ACM.

[Poh08] Thomas Pohl. High Performance Simulation of Free Surface
Flows Using the Lattice Boltzmann Method. PhD thesis, Tech-
nischen Fakultät der Universität Erlangen-Nürnberg, 2008.

[PTB+03] Simon Premžoe, Tolga Tasdizen, James Bigler, Aaron Lefohn,
and Ross T. Whitaker. Particle-based simulation of fluids.
Computer Graphics Forum, 22(3):401–410, 2003.

[QDL92] Y. H. Qian, D. D’Humières, and P. Lallemand. Lattice BGK
models for Navier-Stokes equation. EPL (Europhysics Letters),
17(6):479, 1992.

[RGW+03] Stefan Roettger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl,
and Wolfgang Strasser. Smart hardware-accelerated volume
rendering. In Proceedings of the symposium on Data visualisa-
tion 2003, VISSYM ’03, pages 231–238. Eurographics Associ-
ation, 2003.

[RSP07] Eric Risser, Musawir Shah, and Sumanta Pattanaik. Faster
relief mapping using the secant method. Journal of Graphics,
GPU, and Game Tools, 12(3):17–24, 2007.

http://renderman.pixar.com/view/renderman
http://renderman.pixar.com/view/renderman

BIBLIOGRAPHY 107

[Sal99] R. Salmon. The lattice boltzmann method as a basis for ocean
circulation modeling. Journal of Marine Research, 57(3):503–
535, 1999.

[SBC+11] Barbara Solenthaler, Peter Bucher, Nuttapong Chentanez,
Matthias Müller, and Markus Gross. SPH Based Shallow Wa-
ter Simulation. In Jan Bender, Kenny Erleben, and Eric Galin,
editors, VRIPHYS 11: 8th Workshop on Virtual Reality Inter-
actions and Physical Simulations, pages 39–46, Lyon, France,
2011. Eurographics Association.

[Sch94] Christophe Schlick. An Inexpensive BRDF Model for
Physically-based Rendering. Computer Graphics Forum,
13(3):233–246, 1994.

[Sch97] Gernot Schaufler. Nailboards: A rendering primitive for image
caching in dynamic scenes. In Proceedings of the Eurographics
Workshop on Rendering Techniques ’97, pages 151–162, Lon-
don, UK, UK, 1997. Springer-Verlag.

[Sch10] Martin Schreiber. GPU based simulation and visualization of
fluids with free surfaces. Diploma thesis, Technische Universi-
tat München, Fakultät für Informatik, June 2010.

[SF95] Jos Stam and Eugene Fiume. Depicting fire and other gaseous
phenomena using diffusion processes. In Proceedings of the
22nd annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’95, pages 129–136, New York, NY,
USA, 1995. ACM.

[SFK+08] Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu,
and Jarek Rossignac. An unconditionally stable maccormack
method. J. Sci. Comput., 35(2-3):350–371, June 2008.

[Sim13] Game Physics Simulation. Game Physics Simulation. http:

//bulletphysics.org/, 2013. [Online as of February-2013].

[SKALP05] László Szirmay-Kalos, Barnabás Aszódi, István Lazányi, and
Mátyás Premecz. Approximate ray-tracing on the gpu with
distance impostors. Computer Graphics Forum, 24(3):695–704,
2005.

[Sko93] P. A. Skordos. Initial and boundary conditions for the lattice
Boltzmann method. Phys. Rev. E, 48:4824–4842, 1993.

[SKP07] Musawir A. Shah, Jaakko Konttinen, and Sumanta Pattanaik.
Caustics mapping: An image-space technique for real-time

http://bulletphysics.org/
http://bulletphysics.org/

108 BIBLIOGRAPHY

caustics. IEEE Transactions on Visualization and Computer
Graphics, 13(2):272–280, March 2007.

[SL03] Songdong Shao and Edmond Y.M. Lo. Incompressible sph
method for simulating newtonian and non-newtonian flows
with a free surface. Advances in Water Resources, 26(7):787 –
800, 2003.

[Sma63] J. Smagorinsky. General circulation experiments with the
primitive equations. Monthly Weather Review, 91:99–164,
1963.

[Sou05] Tiago Sousa. Generic refraction simulation. In GPU Gems 2,
pages 295–305. Addison-Wesley, 2005.

[SP09] B. Solenthaler and R. Pajarola. Predictive-corrective incom-
pressible sph. In ACM SIGGRAPH 2009 papers, SIGGRAPH
’09, pages 40:1–40:6, New York, NY, USA, 2009. ACM.

[Sta96] Jos Stam. Random caustics: natural textures and wave theory
revisited. In ACM SIGGRAPH 96 Visual Proceedings: The
art and interdisciplinary programs of SIGGRAPH ’96, SIG-
GRAPH ’96, pages 150–, New York, NY, USA, 1996. ACM.

[Sta99] Jos Stam. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
SIGGRAPH ’99, pages 121–128, New York, NY, USA, 1999.
ACM Press/Addison-Wesley Publishing Co.

[Sta03] Jos Stam. Flows on surfaces of arbitrary topology. In ACM
SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 724–731,
New York, NY, USA, 2003. ACM.

[Suá06] Núria Suárez. Coupling Marker and Cell and Smoothed Parti-
cle Hydrodynamics for Fluid Animation. PhD thesis, Univer-
sitat Politècnica de Catalunya, 2006.

[Sus03] Mark Sussman. A second order coupled level set and volume-
of-fluid method for computing growth and collapse of vapor
bubbles. Journal of Computational Physics, 187(1):110 – 136,
2003.

[SZ99] Ruben Scardovelli and Stéphane Zaleski. Direct numerical sim-
ulation of free-surface and interfacial flow. Annual Review of
Fluid Mechanics, 31(1):567–603, 1999.

[Tec13] Next Limit Technologies. Realflow. http://www.realflow.

com/, 2013. [Online as of February-2013].

http://www.realflow.com/
http://www.realflow.com/

BIBLIOGRAPHY 109

[Tes01] Jerry Tessendorf. Simulating ocean water. In SIGGRAPH
2001 Course Notes, 2001.

[TFK+03] Tsunemi Takahashi, Hiroko Fujii, Atsushi Kunimatsu,
Kazuhiro Hiwada, Takahiro Saito, Ken Tanaka, and Heihachi
Ueki. Realistic animation of fluid with splash and foam. Com-
puter Graphics Forum, 22(3):391–400, 2003.

[Thü07] Nils Thürey. Physically based Animation of Free Surface Flows
with the Lattice Boltzmann Method. PhD thesis, Technischen
Fakultät der Universität Erlangen-Nürnberg, Mar 2007.

[TMFSG07] Nils Thürey, Matthias Muller-Fischer, Simon Schirm, and
Markus Gross. Real-time breaking waves for shallow water
simulations. In Computer Graphics and Applications, 2007.
PG ’07. 15th Pacific Conference on, pages 39 –46, 2007.

[TR04] Nils Thürey and U. Rüde. Free surface lattice-boltzmann fluid
simulations with and without level sets. Proc. of Vision, Mod-
elling, and Visualization VMV, pages 199–207, 2004.

[TSB07] Guido Thömmes, Mohammed Seäıd, and Mapundi K. Banda.
Lattice boltzmann methods for shallow water flow applica-
tions. International Journal for Numerical Methods in Fluids,
55(7):673–692, 2007.

[Tub10] Kevin Tubbs. Lattice Boltzmann Modeling for Shallow Wa-
ter Equations using high performance computing. PhD thesis,
Louisiana State University, 2010.

[Tö10] Jonas Tölke. Implementation of a lattice boltzmann kernel
using the compute unified device architecture developed by
nvidia. Computing and Visualization in Science, 13:29–39,
2010.

[vdLGS09] Wladimir J. van der Laan, Simon Green, and Miguel Sainz.
Screen space fluid rendering with curvature flow. In Proceed-
ings of the 2009 symposium on Interactive 3D graphics and
games, I3D ’09, pages 91–98, New York, NY, USA, 2009. ACM.

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport.
In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’97, pages 65–
76, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

110 BIBLIOGRAPHY

[vKvdBT08] Kees van Kooten, Gino van den Bergen, and Alex Telea. Point-
based visualization of metaballs on a gpu. In GPU Gems 3,
pages 123–148. Addison-Wesley, 2008.

[Vla10] Alex Vlachos. Water Flow in Portal 2. In SIGGRAPH Course
on Advances in Real-Time Rendering in 3D Graphics and
Games, 2010.

[WD06] Chris Wyman and Scott Davis. Interactive image-space tech-
niques for approximating caustics. In Proceedings of the 2006
symposium on Interactive 3D graphics and games, I3D ’06,
pages 153–160, New York, NY, USA, 2006. ACM.

[WG00] Dieter A. Wolf-Gladrow. Lattice-Gas Cellular Automata and
Lattice Boltzmann Models - An Introduction. Springer, 2000.

[WH94] Andrew P. Witkin and Paul S. Heckbert. Using particles to
sample and control implicit surfaces. In Proceedings of the
21st annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’94, pages 269–277, New York, NY,
USA, 1994. ACM.

[WLMK04] Xiaoming Wei, Wei Li, K. Mueller, and A.E. Kaufman. The
lattice-boltzmann method for simulating gaseous phenomena.
Visualization and Computer Graphics, IEEE Transactions on,
10(2):164 –176, march-april 2004.

[WN09] Chris Wyman and Greg Nichols. Adaptive caustic maps using
deferred shading. Computer Graphics Forum, 28(2):309–318,
2009.

[Wol86] Stephen Wolfram. Cellular automaton fluids 1: Basic theory.
Journal of Statistical Physics, 45:471–526, 1986.

[Wym05] Chris Wyman. An approximate image-space approach for in-
teractive refraction. In ACM SIGGRAPH 2005 Papers, SIG-
GRAPH ’05, pages 1050–1053, New York, NY, USA, 2005.
ACM.

[Wym08] Chris Wyman. Hierarchical caustic maps. In Proceedings of
the 2008 symposium on Interactive 3D graphics and games,
I3D ’08, pages 163–171, New York, NY, USA, 2008. ACM.

[YHK07] Cem Yuksel, Donald H. House, and John Keyser. Wave parti-
cles. ACM Trans. Graph., 26(3), July 2007.

[YK09] Cem Yuksel and John Keyser. Fast Real-time Caustics from
Height Fields. The Visual Computer (Proceedings of CGI
2009), 25(5-7):559–564, 2009.

BIBLIOGRAPHY 111

[ZB05] Yongning Zhu and Robert Bridson. Animating sand as a fluid.
In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages
965–972, New York, NY, USA, 2005. ACM.

[ZH97] Qisu Zou and Xiaoyi He. On pressure and velocity boundary
conditions for the lattice Boltzmann BGK model. Physics of
Fluids, 9(6):1591–1598, 1997.

[Zho02] J.G. Zhou. A lattice boltzmann model for the shallow wa-
ter equations. Computer Methods in Applied Mechanics and
Engineering, 191(32):3527–3539, 2002.

[Zho04] J.G. Zhou. Lattice Boltzmann Methods for Shallow Water
Flows. Springer, 2004.

[Zho11] J.G. Zhou. Enhancement of the labswe for shallow water flows.
Journal of Computational Physics, 230(2):394 – 401, 2011.

[Zie93] Donald P. Ziegler. Boundary conditions for lattice Boltz-
mann simulations. Journal of Statistical Physics, 71:1171–
1177, 1993.

	Introduction
	Objectives and Goals
	Thesis overview

	Simulation of Fluids
	Navier-Stokes equations
	Smoothed Particle Hydrodynamics
	Lattice Boltzmann Method
	Present fluid simulation limits

	Lattice Boltzmann Method
	Evolution: how it became to existence
	Algorithm skeleton
	Boundary conditions

	Mathematical Derivation
	Boltzmann Equation
	Lattice Boltzmann Equation

	Parametrization
	Large Eddy Simulation & Improved Stability
	LBM 3D with a Free-surface
	D3Q19 model and modified equilibrium distribution function
	LBM Volume of Fluid

	Shallow Waters Simulation
	D2Q9 model and equilibrium distribution function
	Underlying terrain and other forces
	Dry sections
	Dynamic Obstacles

	Hybrid LBMSW-Particle Model
	Detection
	Generation
	Reintegration

	CUDA Implementation
	CUDA Architecture
	Programming Model
	Hardware Implementation

	LBM in CUDA
	LBM3D-VOF
	LBMSW

	Hybrid Particle-LBMSW

	Fluid visualization
	Raycasting the LBM3D-VOF volume
	Rendering of the LBMSW-Particle model
	Lower scale detail
	Caustics
	Refraction and Reflection
	Particle Rendering
	Surface Foam

	Results and discussion
	LBM3D in CUDA
	LBM3D - Volume of Fluid
	Comparing approaches
	Future work

	Hybrid Particle - LBMSW
	Comparing approaches
	Future work

	Closure

	Bibliography

