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Resum

Al llarg dels darrers anys, els sistemes de detecció humana basats en visió per computador
han començat a exercir un paper clau en diverses aplicacions lligades a l’assisténcia a la con-
ducció, la videovigilància, la robòtica i la domòtica. Detectar persones és, sens cap dubte,
una de les tasques més difı́cils en el camp de la Visió per Computador. Aixó es deu prin-
cipalment al grau de variabilitat en l’aparença humana associada a la roba, postura, forma
i grandária. A més, altres factors com escenaris amb molts elements, oclusions parcials o
condicions ambientals poden fer que la tasca de detecció sigui encara més difı́cil.

Els mètodes més prometedors a l’estat de la qüestió es basen en models d’aprenentatge
discriminatius que són entrenats amb exemples positius (vianants) i negatius (no vianants).
El conjunt d’entrenament és un dels elements més rellevants a l’hora de construir un detector
que faci front a la citada gran variabilitat. Per tal de crear el conjunt d’entrenament es re-
quereix supervisió humana. L’inconvenient en aquest punt és el gran esforç que suposa haver
d’anotar, aixı́ com la tasca de cercar l’esmentada variabilitat.

En aquesta tesi abordem dos problemes recurrents a l’estat de la qüestió. En la primera
etapa, es pretén reduir l’esforç d’anotar mitjançant l’ús de gràfics per computador. Més conc-
retament, desenvolupem un escenari urbà per més endavant generar un conjunt d’entrenament.
Tot seguit, entrenem un detector usant aquest conjunt, i finalment, avaluem si aquest detector
pot ser aplicat amb èxit en un escenari real.

En la segona etapa, ens centrem en millorar la robustesa dels nostres detectors en el
cas en que els vianants es trobin parcialment ocluids. Més concretament, presentem un nou
mètode de tractament d’oclusions que consisteix en millorar la detecció de sistemes holı́stics
en cas de trobar un vianant parcialment ocluid. Per dur a terme aquesta millora, fem ús
de classificadors (experts) locals a través d’un mètode anomenatrandom subspace method
(RSM). Si el sistema holı́stic infereix que hi ha un vianant parcialment ocluid, aleshores
s’aplica el RSM, el qual ha estat entrenat prèviament amb un conjunt que contenia vianants
parcialment ocluids. L’últim objectiu d’aquesta tesi és proposar un detector de vianants fiable
basat en un conjunt d’experts locals. Per aconseguir aquest objectiu, utilitzem el mètode
anomenatrandom forest, a on els arbres es combinen per classificar i cada node és un expert
local. En particular, cada expert local es centra en realitzar una classificació robusta de zones
del cos. Cal remarcar, a més, que el nostre mètode presenta molta menys complexitat a
nivell de disseny que altres mètodes de l’estat de la qüestió, alhora que ofereix una eficiència
computacional raonable i una major precisió.
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Abstract

During the last decade vision-based human detection systems have started to play a key role
in multiple applications linked to driver assistance, surveillance, robot sensing and home au-
tomation. Detecting humans is by far one of the most challenging tasks in Computer Vision.
This is mainly due to the high degree of variability in the human appearance associated to
the clothing, pose, shape and size. Besides, other factors such as cluttered scenarios, partial
occlusions, or environmental conditions can make the detection task even harder.

Most promising methods of the state-of-the-art rely on discriminative learning paradigms
which are fed with positive and negative examples. The training data is one of the most
relevant elements in order to build a robust detector as it has to cope the large variability of
the target. In order to create this dataset human supervision is required. The drawback at this
point is the arduous effort of annotating as well as looking for such claimed variability.

In this PhD thesis we address two recurrent problems in the literature. In the first stage,
we aim to reduce the consuming task of annotating, namely, by using computer graphics.
More concretely, we develop a virtual urban scenario for later generating a pedestrian dataset.
Then, we train a detector using this dataset, and finally we assess if this detector can be
successfully applied in a real scenario.

In the second stage, we focus on increasing the robustness of our pedestrian detectors
under partial occlusions. In particular, we present a novel occlusion handling approach to
increase the performance of block-based holistic methods under partial occlusions. For this
purpose, we make use of local experts via a Random Subspace Method (RSM) to handle these
cases. If the method infers a possible partial occlusion, then the RSM, based on performance
statistics obtained from partially occluded data, is applied. The last objective of this thesis
is to propose a robust pedestrian detector based on an ensemble of local experts. To achieve
this goal, we use the random forest paradigm, where the trees act as ensembles an their nodes
are the local experts. In particular, each expert focus on performing a robust classification of
a pedestrian body patch. This approach offers computational efficiency and far less design
complexity when compared to other state-of-the-art methods, while reaching better accuracy.
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Chapter 1

Introduction

Over the past decades the total population around the world, which is mostly found in urban
scenarios, have significantly increased. Figure 1.1 shows a daily scene in one of the most
populated cities in the world. In 2010, the world population reached the figure of 6.89 billion
people [74]. Being India and China the two countries with the highest increase. At the same
time, the number of vehicles around the world grew noticeably. In 2010, a research study
reported an estimated ownership rate of 148 vehicles (in which trucks were not included)
per 1000 people in the whole world [67]. These two growths during the last years have led
consequently to a greater interaction between both vehicles and pedestrians, which sadly has
resulted in a large number of accidents with injuries and deaths.

Meanwhile, governments, institutions and automotive companies around the world have
been incrementing their efforts to reduce the number of casualties caused by traffic accidents.
Education, awareness through different media1, and making vehicles and roads more safe
have been the main instruments to decrease the traffic casualties. However, as reported by the
World Health Organization (WHO) [53] in their last 2013 publication, 1.24 million people
are still being killed every year on the world’s roads, which continues to be unacceptable.
Moreover, WHO predicts that traffic injuries will become the fifth cause of death by 2030.

Although great efforts are being made, as mentioned before, reducing the number of
traffic casualties has recently become a crusade. In order to improve the traffic safety the
automotive industry and scientific research community have been developing and integrating
new systems into the vehicle. These systems, commonly known asadvanced driver assis-
tance systems(ADAS) are designed to help the driver through warnings and, in certain cases,
automatically taking active decisions,e.g.braking the vehicle. For instance, three examples
of successfully commercialised ADAS are lane departure warning, intelligent headlights con-
trol, and adaptive cruise control (ACC), which are intended to keep the vehicle on the lane,
to avoid dazzling the other drivers, and maintain a safe distance from the preceding vehicle,
respectively. In Figure 1.2, we show an example of each system.

1In the most dangerous pedestrian crossings of Barcelona we can read ’One in three deaths in traffic
accidents were pedestrians’ to alert the citizens.

1
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Figure 1.1: A typical crowded scene in the Shibuya intersection, Tokyo. Photo
credit: www.tokyoluv.com

1.1 Pedestrian Protection Systems

One of the most complex safety systems in ADAS arepedestrian protection systems(PPSs)
[3,19,27,30], which are specialised in avoiding vehicle-to-pedestrian collisions. In fact, this
kind of accidents results in approximately 150000 injuries and 7000 killed pedestrians every
year just in the European Union [73]. Similar statistics apply to the United States, while
underdeveloped countries are increasing theirs year after year. Actually, over a third of road
traffic deaths in low- and middle-income countries are among pedestrians and cyclists, in
which less than 35% of these countries have policies in place to protect these road users [53].

In the case of PPSs, the most promising approaches make use of images as main source
of information, as can be seen in the large amount of proposals exploiting them [30]. Hence,
the core of a PPS is a forward facing camera that acquires images and processes them us-
ing Computer Vision techniques. In fact, the Computer Vision community has traditionally
maintained a special interest in detecting humans, given the challenging topic it represents.
Pedestrians are one of the most complex objects to analyse mainly due to their variability in
pose, clothing, and size. Moreover, other factors such as heavily cluttered backgrounds, par-
tial occlusions, or environmental conditions may influence the detector accuracy. In addition,
the images are acquired from a mobile platform, which makes human detection algorithms
such as background subtraction, key in fields like video-surveillance, hardly applicable in a
straightforward manner for PPSs. Finally, the task has to be carried out in real-time.

Most successful vision-based pedestrian detection systems rely on discriminative learn-
ing paradigms. Along this line, researchers have been mostly working on two different is-
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(a) (b) (c)

Figure 1.2: Three different ADAS examples. (a) the lane departure warning is
showing the lane markings location. (b) the intelligent headlights control adapts
the headlights mode (e.g.high and low beans) according to the traffic situation. (c),
the ACC of a porsche car. Image credits: (a) and (b), cvc.uab.es/adas; and (c)
www.porsche.com.

sues: designing features [10, 56, 79, 81, 82], and classification through machine learning al-
gorithms [10, 25, 45, 79, 88, 89]. State-of-the-art approaches can be divided into two groups:
holistic, which rely on detecting the target as a whole, andpart-based, which usually combine
the detection of different parts of the body (head, torso, arms, legs, etc.) with a deformable
structure among the parts. Holistic methods offer robustness with respect to illumination,
background and texture changes, whereas part-based methods have an advantage for differ-
ent poses and a claimed robustness to partial occlusions [18]. The current learning process in
both groups consists on feeding the algorithm with examples (pedestrians) and counterexam-
ples (background). Then, once the algorithm ’learns’ the differences in the form of a pedes-
trian classifier, this can be fed into a pedestrian detector to operate in the traffic environment.
In most cases the positive examples consist of cropped images, termed windows, in which
pedestrians are placed in the center with a certain margin around them, and for the negative
examples, windows without2 any pedestrian. Note that some part-based approaches require
a set of positive and negative annotated parts [8] or patches [26, 39, 68], which considerably
increases the amount of work involved in the data acquisition phase.

1.2 Objectives

In this thesis, we address two recurrent subjects in the literature. First, we aim to mitigate the
annotation labour required to train a pedestrian classifier, by making use of last advances in
computer graphics. Second, to increase the accuracy of state-of-the-art pedestrian detection.
In particular, we focus on both detection under partial occlusion as well as capturing pedes-
trian appearance variability using an ensemble of local experts. Accordingly, we describe the
main objectives of this dissertation are:

2Some authors also introduce as negative samples windows containing non centered pedestrians
[84].
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O1 Demonstrating the viability of using virtual data for pedestrian detection. We first
create a virtual dataset, then train a detector, and finally evaluate its performance in a
real scenario.

O2 Presenting a novel occlusion handling approach to improve the performance of block-
based holistic methods. Here, we make use of local experts to handle partial occlu-
sions. If the holistic confidence is not high enough when classifying a candidate win-
dow and the window is inferred as a partially occluded pedestrian, then an ensemble of
local experts, based on performance statistics obtained from partially occluded data, is
applied.

O3 Proposing a robust detector. To achieve this goal we present a novel pedestrian de-
tection approach that combines the strength of a local expert at each node using rich
block-based features with the advantages of a Random Forest ensemble, such as com-
putational efficiency and far less design complexity when compared to other state-of-
the-art methods [18].

1.3 Thesis outline

State-of-the-art

Chapter 2 summarizes the state-of-the-art. This is done while describing the different
stages of a vision-based pedestrian detection system. In this chapter, we emphasize the clas-
sification stage.

Exploring virtual worlds

To build a robust detector every specific aspect in the training process can be crucial. One
of the most important elements in this process is the training dataset. In fact, a rich dataset in
terms of different shapes, poses, clothes, illuminations, and backgrounds is always desirable
to obtain a reliable detector. To create such rich dataset, human supervision is required. For
instance, once a video sequence or an image has been obtained, it is usually3 necessary to
annotate the bounding box of each pedestrian for training purposes. Moreover, although
negative examples can be extracted from negative images without any kind of supervision,
the negative images from which these examples come from also need to be labelled. The
drawback at this point is the required effort of annotating as well as looking for such claimed
variability (unless a large amount of data is collected to cope the necessary variability, which
does not help anything to reduce the work). Besides, while one might think that this labour
needs to be done only once, a new camera settings, a change of environment or other issues
may imply the requirement of collecting more examples or an entire new dataset. Therefore,
removing or mitigating the consuming task of manually annotating examples is a substantial
contribution.

In the last decade, thanks to the last advances in computer graphics the video game sce-
narios and models have reached a high realism. This fact brought us the idea of developing a
virtual world in order to generate a virtual pedestrian dataset. In particular, we used a public

3In some cases, it is even necessary to provide the parts or patches of the pedestrians.
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(a) (b)

Figure 1.3: Our virtual city. (a) a global view from the map editor of our virtual city.
(b) an image shot of our scenario.

available modification, called Object Virtual Video Tool (OVVT) published in [69], of the
Half Life 2 engine game, one of the most popular games in the gamers community4. We
developed and created from the scratch a virtual city with four different variants (four differ-
ent type of illuminations with building and ground texture changes) in which human models
and cars were moving around (see Fig. 1.3). Then, using some additional libraries provided
by the same company which developed the OVVT, we recorded several virtual video se-
quences in which the information related to the target such as the location, the pixel by pixel
groundtruth, and the level of occlusion were automatically generated. Next, using the col-
lected video sequences and the stored information we generated a pedestrian virtual dataset
to finally training a pedestrian detector. The main concern of this work was if such a virtual
detector could be successfully used in real scenarios. To clarify this question, in Chap. 3,
we carried out several experiments by comparing the virtual detector versus a large real one
pedestrian dataset, the Daimler pedestrian dataset [19]. Additionally, we explored the impact
in the accuracy with respect to the different number of virtual models, the total number of
examples and the pose distribution. Thus, in Chapter 3 we address objective O1.

So far, the results shown in Chap. 3 demonstrated that a pedestrian classifier trained with
virtual data could be successfully applied in a real-world scenario. More importantly, our
contribution motivated other researchers to start working on the use of synthetic data [37,61,
62]. Besides, once finished this work, we detected new issues. In fact, the performance of the
virtual detector was not performing as expected in other datasets. After analysing the possible
causes, we finally found that these problems were related to the domain adaptation context.
This finding gave rise to a new thesis carried out by one of my group colleagues [76]. Another
contribution was that after the publication of this first work, we made publicly available our
virtual training dataset for benchmarking purposes.

4In 2004, Half Life 2 was the winner of over 35 ’Game of the Year’ awards.
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Figure 1.4: Some examples of partial occlusions. On the left, a pedestrian stepping
out from behind a vehicle. On the right, a pedestrian partially occluded by a baby
trolley.

An occlusion handling approach

Detecting partially occluded pedestrians can be determinant in certain situations. For
instance, a parent pushing a baby trolley or a pedestrian stepping out from behind a car are
two specific cases which can be frequently seen in urban scenarios (see Fig. 1.4). While
detecting non occluded pedestrians, as mentioned before, deserves a special effort, detecting
partially occluded pedestrians is an even harder labour. If parts such as the legs, the arms or
even half body are occluded, pedestrian classifiers can interpret such regions of the window
as noise or background and consequently misclassifying the candidate window. Therefore, a
robust detector able to increase its accuracy against partial occlusions is vital.

In Chapter 4, we describe a general framework for occlusion handling. This proposal
consists in a block-based holistic classifier supported by a random subspace method (RSM)
to handle the candidates inferred as partially occluded. More concretely, in case the holistic
method fails due to a possible partial occlusion, the RSM is applied in the region of the
window less likely to be occluded. This is possible thanks to the training procedure, in which
a validation dataset of partially occluded pedestrians (generated using our previous virtual
framework) is used through a selection strategy to choose the best combination of classifiers.
Therefore, in Chapter 4 we are addressing objective O2.

To conduct a full study, we evaluated and compared our method with the current state-of-
the-art. Motivated by the lack of a public pedestrian dataset with a large number of partially
occluded targets, we additionally created a dataset with hundreds of partially occluded pedes-
trians named PobleSec (the largest dataset in the literature had at most around 100 partially
occluded pedestrians as reported in [81], in our case we have 1117 partially occluded anno-
tated pedestrians). Our dataset was used to evaluate at the detection level the accuracy of
the current methods against partial occlusions. Evaluations at the classification and detec-
tion level are also reported for non-occluded data. For evaluating the classification accuracy,
we used the publicly available Daimler [44] dataset, which is divided into two different sub-
sets, non occluded and partially occluded pedestrians, and the well-known INRIA person
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dataset [10] for the evaluation on non-occluded pedestrians.

The results obtained when compared with the current state-of-the-art for holistic ap-
proaches using occlusion handling [82] confirmed the advantages of using our framework.
Besides our method presented several benefits: it could be extended to other class of objects;
no extra computation in terms of features was required when applying the RSM; it did not
need stereo or motion information to handle partial occlusion as other methods [44]; and, for
training our method, it only required non- and partially-occluded positive examples, while
other methods required the exact annotation of the occluded region of the target. Both, the
real and the virtual (used in the training procedure) datasets created during this work were
also publicly released for comparison purposes. Only a recently published dataset [54] con-
tains more partially occluded pedestrians annotated than ours, which means that the PobleSec
dataset remains the second largest dataset in the literature in terms of partially occluded
pedestrians.

A random forest of local experts

As previously introduced, detecting partially occluded pedestrians may increase the chances
of reducing the number of casualties. In the literature [18, 30], part-based approaches are
claimed to be robust against partial occlusions as well as pose variability. This highlight and
the success of our previous approach motivate us to develop a new method based on local
experts.

In Chapter 5 we address the objective O3,i.e.we propose a new method for pedestrian
detection. The main aim in this part of the thesis was to present an accurate detector when
compared with the state-of-the-art but also robust to partial occlusions. In our proposal,
during the training process, every single weak classifier of each tree was selecting the most
discriminant local patch via an optimization process on the holistic descriptor. This local
patch was chosen from an initial random subset of all possible patches. The main differences
at this point with respect to the original random forest were the optimization process in which
the weak classifier was obtained and the use of richer descriptors. The main difference with
respect to the standard framework is that in each node the optimization process is not only
based on a maximization of a purity measure, but also on a maximum-margin optimizer which
minimizes the classification error over the samples of the node. This was achieved by making
use of a local expert sustained by a linear vector machine (SVM) which assured the optimal
hyperplane that splits the training samples at each node. Besides, it is important to note that
previous works were not using the random forest approach to classify a candidate window
but to locate the center position, with a certain confidence, of the target with respect to each
patch.

Additionally, to speed-up our method we integrated the random forest into a soft cas-
cade. Basically, this approach permitted to increase the efficiency while keeping the original
accuracy provided by the RF. It is also worth mentioning that, while efficiency was not our
main concern, the resulting detector achieved a comparable speed to the fastest approaches
in the literature as reported in [18]. Besides, our RF can be easily extended to other class
objects as well as incorporating new features such motion, multi-resolution or colour for
further improvement. To validate our method, we conducted several evaluations on four dif-
ferent pedestrian datasets, INRIA [10], Caltech [18], Daimler [19] and ETH [21]. In these
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evaluations, we also compared the current state-of-the-art with our method. To evaluate the
performance against partial occlusions we made use of the partial occlusion evaluation subset
of Caltech and PobleSec.

Conclusions

Finally, Chaper 6 draws the main conclusions of this thesis.



Chapter 2

State of the art

In this chapter we describe the complete1 architecture of a pedestrian detection system based
on the framework proposed by Gerónimoet al. [29] (see Fig. 2.1). For this purpose, we
explain the different stages that form part of a complete system: from the data acquisition
process to the final output detections. In each stage, we discuss the issues that have to be
undertaken and the different solutions existent in the state-of-the art. Thus, the objective of
this chapter is two-fold: first to provide a general view of a complete pedestrian detection sys-
tem, and second to provide an exhaustive review of the state-of-the-art and how the existent
methods solve the issues found when building a complete system. In order to write several
parts of this chapter we made use of [18,29] as a especially rich source of documentation.

2.1 Pedestrian detection system architecture

In this section we describe the components of a complete pedestrian detection system (see
Fig. 2.1), leaving out the tracking and application modules. We start in section 2.1.1 by de-
scribing the data acquisition component, which addresses the issue of which sensors are used
by the system. Although this component is not shown in Fig. 2.1, it is a fundamental part of
the system, as different sensors provide different input images to the system. Next, we see in
section 2.1.2 the preprocessing stage, which addresses issues coming from the exposure, gain
and calibration. Section 2.1.3 describes the foreground segmentation module, which provides
the regions of the image where the presence of a pedestrian is plausible. Typically, this mod-
ule outputs a set of candidate windows that are later evaluated by the classifier. Section 2.1.4
describes the classification component. This part of the system comprises indeed two sub-
modules, which are the visual representation and the classifier applied to this representation.
There have been a large variety of methods proposed in the literature for making the classi-
fication stage efficient and accurate, and we provide a review of the most important works in
section 2.1.4 Finally, in section 2.1.5 we see the last component of the system, which is the

1In our case we do not include the tracking stage.

9
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detection refinement. This typically consists of grouping the multiple overlapped detections
obtained from the classification stage, in order to obtain a spatially precise set of detections.

2.1.1 Data Acquisition

Sensors can be divided into two different types, active and passive ones. While the first
ones, for example, radars, lidars and laser scanners, transmit signals in a specific direction
or working space to later obtain their reflection, the second ones, such as cameras (CCD
and CMOS) composed by millions of photosensitive components, capture light and convert
it into an electronic signal. As pointed by Gerónimoet al. [30], systems based on active
sensors usually encounter problems when distinguishing pedestrians from other objects in
urban scenarios. This is mainly due to the reflectance properties. Besides, the cost of these
sensors is much higher than the cost of the passive ones. Hence, most of the pedestrian
detection systems in the literature rely on passive sensors [29].

Cameras can work in a wide electromagnetic spectrum range. Based on this range, cam-
eras are divided into three different subsets: Visible spectrum (VS), near infrared (NIR)
and thermal infrared (TIR). Figure 2.2 shows the same scene using VS and TIR sensors.
Since pedestrian detection is typically addressed in daytime, VS cameras are by far the most
used [29]. Nevertheless, NIR and TIR cameras are also used for detecting pedestrians under
other circumstances2, such as night time, fog or heavy rain. During daytime NIR and TIR
sensors can also be used to support VS cameras. When using a specific set of headlights,
e.g.xeon ones, VS cameras are capable of capturing a near infrared range, which gives an
additional advantage to the VS cameras with respect to the rest. The methods we introduce
in next sections work in the visible spectrum.

2.1.2 Preprocessing

In most recent works, issues coming from exposure, gain or calibration are rarely mentioned
by authors. However, the posterior stages involved during the detection procedure may be
affected if these problems are not handled properly. Only few works have addressed this
problem. For instance, Nayaret al. [50] proposed some locally adaptive dynamic range ap-
proaches in order to adjust the exposure. Recent cameras are starting to capture images using
a high dynamic range (HDR), which provides a highly contrasted images and is determinant
in order to reduce the impact of the issues coming from the exposure. Note that many detec-
tion systems fail on poorly contrasted images. Hence, incorporating HDR images is key for
improving the system performance. Besides, to handle exposure, recent cameras use more
sophisticated automatic aperture systems, which benefits the final performance.

2Depending on the situation, a specific active sensor can be more appropriate than the others.
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Figure 2.1: On-board pedestrian detection system architecture proposed by
Gerónimoet al. [29] (figure from the original thesis).
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(a) VS (b) TIR

Figure 2.2: Out-door scene during daytime. (a) using a VS camera sensor, and (b)
using a TIR camera sensor (images from [12]).

2.1.3 Candidate generation

In this section we focus on the most widely used candidate generation technique, which is
a simple sliding window. In fact, the most successful methods in the literature rely on a
sliding window strategy. Non sliding window approaches such as segmentation [33] or key
point [40,65] based methods, as pointed by Dolláret al. [18], tend to fail for low to medium
resolution settings. Almost all the sliding window based methods, except one of them [2],
use a pyramid in order to handle different detection scales [10]. In the case of Benensonet
al. [2], the authors propose instead of resizing the image to apply multi-scale classifiers over
the image for efficiency purposes.

The common sliding window approach yields a set of candidates to be sent to the classi-
fication stage. Due to the exhaustive scanning, this technique brings two main disadvantages:
1) the large number of possible candidates (usually thousands of them), which makes it in-
feasible to achieve a real-time performance, and 2) irrelevant regions are also scanned, which
may increase the number of false positives and the computational time that implies evaluat-
ing these candidates. Therefore, reducing the number of candidates and avoiding irrelevant
regions of the image is crucial at this point. For this purpose, several authors have proposed
different segmentation techniques which can be categorized into three different types: 2D,
stereo and motion. In the next section we describe several state-of-the-art detection systems
in which some of the previous techniques are integrated.

2.1.4 Classification

After the candidate generation step, each window needs to be classified. The common ap-
proach in this phase consists in using a discriminative model based on a learning algorithm
previously trained with examples and counterexamples. These methods define a feature space
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in which each positive and negative training example is represented by a descriptor. Then,
the algorithm, using the previous representation space, builds a model to discern between the
positive and negative examples. Finally, using the learnt model the system classifies each
candidate window.

As introduced in Chapter 1, most of the works in the literature focus on two main ob-
jectives: 1) designing new features, and 2) developing machine learning algorithms. As a
result, various representations and learning algorithms have been proposed for pedestrian
detection [18, 19, 30]. Concerning features the most relevant works include the use of Haar
wavelets, and other Haar-like features; edge orientation histograms (EOH); histograms of ori-
ented gradients (HOG) inspired on the scale-invariant feature transform (SIFT); local recep-
tive fields (LRF); integral histograms; colour histograms such as color-self similarity (CSS);
covariance features; local binary patterns (LBP); histograms of flow (HOF) coming from mo-
tion; stixels coming from depth; and other features coming from orientations, depth, motion
and segmentation. Some authors have proposed combining features coming from different
sources showing in some cases an increase of the performance [44,81]. Regarding the learn-
ing algorithms, boosting classifiers such as AdaBoost; Neural Networks (NN); linear support
vector machines (SVM); histogram intersection kernel SVM (IKSVM); latent SVM; Multi-
ple kernel SVM; and other SVM variants have been recurrently used in the literature. Next,
we review the state-of-the-art based on the previous machinery.

One of the first sliding window approaches for object detection was proposed by Pa-
pageorgiouet al. [57] at the beginning of last decade. This method relies on Haar wavelet
features together with a non-linear SVM using a quadratic function to map the features into
a higher dimensional representation space. The Haar wavelet features consist in an over-
complete dictionary of local, oriented, multi-scale intensity differences between adjacent
rectangular regions. This type of representation can be interpreted as a derivative at a large
scale. After this work, the same authors together with Mohan [48] presented a part-based
method, using again Haar features and a classification procedure that consists of two layers:
in the first layer, a quadratic SVM classifier is used in order to classify the parts of the pedes-
trian, and in the second layer a linear SVM classifier is used in order to obtain a single score
for the whole pedestrian based on the classification scores of the parts.

Zhaoet al. [92], introduced afeed forward neural networkwith gradient magnitude fea-
tures. The main core of the classifier is a NN fed with gradient information coming from
stereo-based segmentation.

Later, Viola and Jones [78] proposed AdaBoost cascades, which consists of several re-
jection levels of AdaBoost classifiers. Additionaly, the authors incorporate integral images
for fast computation of Haar-like features. In [80], the same authors use Haar-like features
to model motion information. These Haar-like features are an extension of the original dic-
tionary (see Fig. 2.3). Mikolajczyket al. [47] introduced a coarse-to-fine cascade approach
using AdaBoost based on orientation features in order to learn different body parts. Then, the
different part detectors are assembled into a probabilistic framework.

In [66] Sashuaet al. , using SIFT-inspired features [43], introduced a part-based ap-
proach. In this case, an AdaBoost classifier is used in order to classify each candidate win-
dow. As weak classifiers the authors proposed a total of 117 classifiers coming from thirteen
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(a) (b)

Figure 2.3: (a) Original Haar features, and (b) Haar-like features.

Figure 2.4: The configuration of the nine sub-regions defined in the part-based ap-
proach proposed by Shashuaet al. [66] over the gradient image (figure extracted
from [66]).

original part classifiers (see Fig. 2.4). Each one of the thirteen part classifiers was trained
with nine different training subsets.

Dalal and Triggs [10] presented a new descriptor named HOG and a linear SVM as the
learning method. The HOG features are obtained by dividing the window into a block-based
structure. Then, each block is divided again into2 × 2 cells from which a histogram of
gradient orientations is extracted. The final descriptor is the result of concatenating all these
histograms. Zhuet al.[93] proposed to use the AdaBoost as a feature selector over a large set
of HOG blocks of different sizes to later classify each window via a rejection cascade. This
work achieved similar performance when compared with [10], but with less computation
time.

Wu and Nevatia [87] presented a new part-based method based on a new set of fea-
tures, termed edgelets, which encode the intensity and the shape information of an edge (see
Fig. 2.5). Each part is then trained using these features and AdaBoost. Finally, the part re-
sponses are combined by a probabilistic approach in which cases of multiple and possibly
inter-occluded humans are considered. This method focused on detecting multiple and par-
tially occluded people in cluttered scenes. Later, the same authors also introduced a method
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Figure 2.5: The first five features (edgelet) selected by the Adaboost approach in
[86], and the prior distribution (images extracted from the original paper).

that combines object detection and segmentation based on edgelets and AdaBoost [86], and
combined edgelet and HOG features with AdaBoost and SVM learning algorithms for both
VS and TIR imagery [91].

Tuzel et al. [72] presented a new approach based on the covariance matrices as object
descriptors using a LogiBoost algorithm on Riemannian manifolds. In their work the authors
propose the use of Riemannian manifolds in order to deal with the fact that the used descrip-
tors (covariance matrices) do not live in a vector space. Later works such as [71] have used a
similar idea to build a part-based approach.

In [55], Panget al. used multiple instance learning (MIL) through a boosting learning
approach named Logistic Multiple Instance Boost. In this work, in order to efficiently use the
histogram feature, the method utilizes a decision stump based on a graph embedding. MIL
has also been used in other works for automatically determining the position of parts without
any kind of supervision [25, 42]. Felzenszwalbet al. [25] proposed a deformable part-based
approach that models the unknown part positions as latent variables in an SVM framework,
termed LatSVM. Recently, several authors have been extending this work. For instance, Park
et al. [58] extended this work to a multi-scale approach (see Fig. 2.6), Ouyanget al. [54] to
a deep model approach with occlusion handling, and Pedersoliet al. [60] proposed a coarse-
to-fine approach to accelerate the detector.

Maji et al. [45] proposed an approximation of the histogram intersection kernel for use
with SVMs (HIKSVM) together with multi-level oriented edge energy features (similar to
HOG, but simpler). The main advantage of the HIKSVM is based on the fact that it can
be computed in logarithmic time, or approximately constant time, while consistently outper-
forming the linear kernel. Following this insight, Walket al. [81] made use of the HIKSVM
accompanied with multiple features. In particular, the authors proposed the CSS descriptor
combined with HOG and HOF features, this last features proposed by Dalal in [9]. Wanget
al. [82], combine HOG and LBP, and make use of linear SVM as classifier. In this case, the
authors also introduce an occlusion handling approach based on the linearity of the algorithm
and the block-based structure. Similar to HOG, the LBP is computed in the entire window
divided by cells.
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(a) (b) (c)

Figure 2.6: Multi-resolution templates based on the HOG descriptor proposed orig-
inally by Dalal and Triggs [10]. (a) low resolution template, (b) high resolution
template, and (c) high resolution template with parts (original figure from [58]).

In [77], Vedaldiet al. proposed a three layer cascade in which the first stage is evaluated
by a fast linear SVM, the second one by a quasi-linear SVM and the final one by a non-
linear SVM. This framework permits to apply a MKL classifier in a reasonable time while
outperforming previous approaches.

Dollar et al.[15] proposed an extension of [79] in which Haar-like features are computed
over LUV colour channels, grayscale, gradient magnitude and gradient magnitude quantized
by orientation (see Fig. 2.7). This work at the same time has been recently extended. In the
first case, the same authors [14] sped up the previous framework. The authors named it the
Fast Pedestrian detector in the West (FPDW). Basically, the feature responses computed at a
single scale are used to approximate feature responses at nearby scales, which considerably
reduces the computational time. In the second case, the same authors, based on the idea that
detector responses at nearby locations and scales are correlated, introduced a crosstalk cas-
cade [13] in which nearby detectors are sharing information between each other to achieve a
higher efficiency. In the third and last case, Benensonet al. [2] extended [14]. In particular,
Benensonet al. proposed a pedestrian detection system based on a soft cascade approach
without image resizing and the use of stixels (efficient features coming from detph). In this
case, the authors use a multi-scale classifier with a fixed number of scales. Then, to approxi-
mate nearby scales in between the defined ones, authors follow a similar procedure compared
to [14].

2.1.5 Detection refinement

Once all the possible candidates have been classified, the next step consists of grouping mul-
tiple overlapped detections to provide one single detection per target. For such task, a simple
algorithm that provides one detection per pedestrian is clustering. The two non-maximum
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Figure 2.7: From left to right, the original image; the multiple image channels of the
input image; and the features extracted from the different channels (figure from [15]).

suppression (NMS) clustering techniques most extended in the literature rely on: the Mean
Shift (MS) algorithm [9] and the pairwise max (PM) suppression [25]. In the former, the
algorithm finds the minimum set of detection windows which best adjust to the targets in
the image. The second one makes a pairwise comparison of all the detections, and if the
area of overlap between a pair exceeds a certain threshold, the one with lower confidence is
suppressed.

2.2 Evaluation Methodologies

The standard evaluation methodology to assess the performance of the different pedestrian
detectors is usually known asper-image evaluation. Some authors also evaluate the per-
formance of the classifier, termedper-window evaluation. Both evaluation methodologies
have been recurrently used in the literature [18, 19, 30]. However, in object detection, the
per-image evaluation tends to be the standard evaluation methodology [63] because the main
concern in real applications is the performance at the detection level. The former evaluation
type provides a curve that depicts the tradeoff between detection rate (i.e., the percentage of
mandatory pedestrians that are actually detected) and the number of false positives per im-
age (FPPI). The second evaluation type, given a classifier, yields the trade-off between miss
classifications and the number of false positive windows (FPPW). Depending on the author,
instead of detection or classification rate the plot show the missrate vs the FPPI/FPPW. The
same happens with the axes, some authors set them into the logarithm scale and other do
not. Additionally, the average performance of each curve can be shown. It is also worth to
mention that some authors differ on the evaluation range according to the FPPI and FPPW.
In this thesis, we initially focus on the range10−1 to 100 as is more interesting from the real
application point-of-view. Later, in Chap. 5, we show results in the range10−2 to 100 for
benchmarking purposes following the recent tendency in the literature.

In order to identify a window as a true positive or a false positive, the most common crite-
rion used in object recognition is the PASCAL VOC criterion [23]. Given a detection window
Wd, and a window labelled as mandatory pedestrianWl,the following ratio is computed:
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r(Wd,Wl) =
a(Wd ∩Wl)

a(Wd ∪Wl)
. (2.1)

Based on this ratio,Wd is considered a true positive if there is aWl for whichr(Wd,Wl) >
0.5, and otherwise,Wd is considered a false positive. Undetected mandatory pedestrians
count as false negative,i.e., thoseWl for which there is noWd with r(Wd,Wl) > 0.5. If,
given aWl, more than oneWd passes the true positive criterion (i.e., multiple detections),
only one of them is considered, and the rest are considered as false positives. Note that such
criterion usually affects training because of the bootstrapping.



Chapter 3

Exploring virtual worlds

Over the last years video games have achieved a high realism thanks to the recent advances
in computer graphics. In this chapter we explore the potential of using virtual worlds for
pedestrian detection. We first assess the viability of using virtual data for training a pedestrian
detector by comparing it with a real detector in real images. This is done by first developing
an urban scenario and then recording several video sequences to later create the dataset to
train the virtual detector. Moreover, we investigate other interesting issues. In particular, we
explore the impact in the detection performance with respect to the different number of virtual
models, the total number of examples and the pose distribution. To validate our experiments
we make use of one of the largest datasets in the literature [19] and for the detector a linear
SVM with HOG features, the machinery most used in the literature. The results obtained in
this chapter demonstrate that a virtual detector can be successfully applied in a real scenario.
Besides, the experiments conducted in this work provide several useful insights related to the
number of models, examples and the pose distribution. These last contributions bring new
possible lines of research.

3.1 Introduction

State-of-the-art detectors rely on machine learning algorithms trained with labelled samples,
i.e., examples(pedestrians), andcounterexamples(background). Therefore, in order to build
robust pedestrian detectors the quality of the training data is fundamental. Last years var-
ious authors have publicly released their pedestrian datasets [10, 17, 19, 30, 84] which have
gradually become more challenging (bigger number of samples, new scenarios, occlusions,
etc.). In the last decade, the traditional research process has been to present a new database
containing images from the world, and then researchers developed new and improved de-
tectors [18, 19, 41, 72]. In this chapter, we explore the possibilities that a virtualcomputer
generateddatabase, free of real-world images, can offer to this process.

The use of Computer Graphics in Computer Vision is not novel. Graumanet al. [32]
exploit computer generated images to train a probabilistic model to infer multi-view pose

19
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estimation. Such generated images are obtained by using a software tool. More specifically,
the shape model information is captured through different multiple cameras obtaining the
contour of the silhouettes simultaneously, and the structure information is formed by a fixed
number of 3D body part locations. Later, shape and structure features are used together
to construct a prior density using a mixture of probabilistic PCAs. Finally, given a set of
silhouettes a new shape’s reconstruction is obtained to infer the structure. Broggiet al. [5]
use synthesised examples for pedestrian detection in infrared images. More specifically, a 3D
pedestrian model is captured from different poses and viewpoints in which the background is
later modelled.

Finally, instead of following a learning-by-examples approach to obtain a single classi-
fier, a set of templates is used by a posterior pedestrian detection process based on template
matching. Enzweileret al. [20] enlarge a set of examples by transforming the shape of
pedestrians (labelled in real images) as well as the texture of pedestrians and background. The
pedestrian classifier is learnt by using a discriminative approach (NNs with LRFs and Haar
features with SVM are tested). Since these transformations encode a generative model, the
overall approach is seen as a generative-discriminative learning paradigm. The generative-
discriminative cycle is iterated several times in a way that new synthesised examples are
added in each iteration by following a probabilistic selective sampling to avoid redundancy
in the training set. These examples are later used to train a model to be used in a detector.
Marı́net al. [46] use a commercial game engine to create a virtual pedestrian dataset to train
a synthetic model to test in real images. Then, they show the comparison between real and
virtual models revealing the similarity of both detectors in terms of HOG features and SVM
classifier.

More recently, Pishchulinet al. [61] employ a rendering-based reshaping method to
generate a synthetic training set using real subjects (similar to [20]) from only few persons
and views. In this case, they collected a dataset of eleven subjects each represented in six
different poses corresponding to a walking cycle. Eight different viewpoints are then used
to capture each pose. Later, they gradually change the height of each pose (15 higher/15
smaller) to obtain 20400 positive examples in total. Finally, they explore how the number of
subjects used during the training process affects the performance as well as the combination
between real and synthesised models. The same authors [62] also explore the use of synthetic
data obtained from a 3D human shape model in order to complement the image-based data.
Such 3D human shape and pose model is obtained through a database of 3D laser scans
of humans which describes shape and pose variations. Similar to [61] best performance is
obtained when training models in different datasets and then combining them.

The reviewed proposals can be divided into the using synthesised examples coming from
real data and the ones using only virtual examples. While promising detectors based on
synthesised examples are still needed of real images in which models are obtained through
sophisticated systems [61, 62], the virtual worlds generated using just synthetic data offer a
large number of available models and possibilities without using real data. In this chapter
we focus on learning pedestrian models in such virtual worlds to be used in real world de-
tection and how different settings perform when testing in real data. In particular, following
the approach in [46] we learn such appearance using virtual samples in order to detect pedes-
trians in real images (Fig. 3.1). Besides, we extend the approach published with specific
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analysis on the required number of virtual models and training examples to get a satisfactory
performance, and present new results on how the pose influences the performance.

The process is as follows. We record training sequences in realistic virtual cities and train
appearance-based pedestrian classifiers using HOG and linear SVM, a baseline method for
building such classifiers that remains competitive for pedestrian detection in the ADAS con-
text [18, 19]. As Marı́net al. we test such classifiers in the same publicly available dataset,
Daimler AG [19]. The obtained results are evaluated in a per-image basis and compared with
the classifier obtained when using real samples for training. In this work, we specially focus
on exploring the impact in the performance w.r.t the different number of virtual models, the
total number of examples and the pose distribution.

The structure of the chapter is as follows. Section 3.2 introduces the datasets used for
training (real world and virtual world ones) and testing (only real world images). Section
3.3 details the conducted experiments, which use the real- and virtual-pedestrian models in
a complete detection system. Section 3.4 presents the results and corresponding discussions.
Finally, section 3.5 summarizes the conclusions and future work.

3.2 Datasets

The lack of publicly available large datasets for pedestrian detection in the ADAS context has
been a recurrent problem for years [18, 19, 30]. For instance, INRIA dataset [10] has been
the most widely used for pedestrian detection. However, it contains photographic pictures in
which people are mainly close to the camera and in focus. Moreover, there are backgrounds
that do not correspond to urban scenarios, which are the most interesting and difficult ones
for detecting pedestrians from a vehicle.

Fortunately, three more adapted datasets for the ADAS context have recently been made
publicly available. They have been presented by Caltech [17], Daimler [19], and the Com-
puter Vision Center [30]. In the current work, we perform the experiments in Daimler dataset
since it comes from one of the most relevant automotive companies worldwide, thus, we can
expect the images to be quite representative for ADAS. Our proposed virtual dataset is also
focused on ADAS images, but acquired from a virtual car in a computer graphics generated
world. In the next sections we summarise the details of both datasets.

3.2.1 Real images

We summarize the main characteristics of Daimler’s dataset. In fact, it consists of a training
set and different testing sets.

Training set

The images of this set are grayscale and were acquired at different times of day and locations
(Fig. 3.3).
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Figure 3.1: Training a pedestrian classifier in virtual-world scenarios for a pedestrian
detector operating in real world.

Examples. The original training frames with pedestrians are not publicly available, but
cropped pedestrians are. From 3915 manually labelled pedestrians, 15660 were obtained by
applying small vertical and horizontal random shifts (i.e., jittering) and mirroring, and then
put publicly available. The size of each cropped example is48×96 pixels, which comes from
the24× 72 pixels of the contained pedestrian plus an additional margin of12 pixels per side.
All the original labelled pedestrians are at least72 pixels high, thus, some of the samples
come from downscaling but none from upscaling. All the samples contain pedestrians that
are upright and not occluded.

Counterexamples. 6744 pedestrian-free frames were delivered. Their resolution is640×
480 pixels. Thus, to gather cropped counterexamples these frames must be sampled. Concep-
tually, the sampling process we use can be described as follows. We need counterexamples
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of the same dimensions than the cropped pedestrian examples,i.e., 48×96 pixels. Therefore,
we can select windows of size48ki × 96ki pixels, wherek is the scale step (1.2 in our case)
andi ∈ {0, 1, 2, ...}, provided that they are fully contained in the image we are sampling.
Then, we can downscale the counterexamples by a factorki using, for instance, bi-cubic in-
terpolation. In practice, we implement this sampling idea by using a pyramid of the frame to
be sampled and then by cropping windows of size48 × 96 pixels at each layer [9], which is
closely related to the scanning strategy used by the final pedestrian detector (Sect. 3.3).

Testing set

The testing set consists in a sequence of 21790 grayscale frames of640 × 480 pixels. The
sequence was acquired on-board while driving during 27 minutes through urban scenarios.
Moreover, this testing set does not overlap the training set. The testing set includes 56492
manually labelled pedestrians. The labels contain also an additional information indicating
whether they are ofmandatorydetection or not. Basically, the pedestrians labelled as non-
mandatory are those either occluded, not upright, or smaller than72 pixels high. There are
2459 mandatory pedestrians in total. Frames of the training set can be seen with overlayed
results in Sect. 3.4 (Fig. 3.11).

3.2.2 Virtual images

In order to obtain virtual images, the first step consists in building virtual scenarios. We
have carried it out by using the video game Half-Life 2 [70]. This game allows to run maps
created with an editor namedHammer(included in the Valve’s software package), as well
as to add modifications (a.k.a. mods). We use Hammer to create realistic virtual cities with
roads, streets, buildings, traffic signs, vehicles, pedestrians, different illumination conditions,
etc. Once we start toplay, the pedestrians and vehicles move through the virtual city by
respecting physical laws (e.g., pedestrians do not float and cannot be at the same place than
other solid objects at the same moment) as well as by following their artificial intelligence
(e.g., vehicles move on the road).

In order to acquire images in virtual scenarios we use themodcreated by the company
ObjectVideo. Tayloret al. [69] show the usefulness of such amodfor designing and validat-
ing people tracking algorithms for video surveillance (static camera). A relevant functionality
consists in providing pixel-wise groundtruth for human targets (Fig. 3.2). However, since the
aim in [69] is to test algorithms under controlled conditions, all the work is done with virtual
scenarios without considering real world images. Thus, the work we present in this chapter
is not actually related to [69] apart from the use of the same Half-Life 2mod.

In fact, we created an application to augment the functionalities of such amodwith the
possibility of moving a virtual camera as if we were driving. In particular, in order todrive
through a virtual city we introduced a camera with a given height as well as pitch, roll and
yaw angles, and then we move it keeping these parameters constant. The only constraint that
must be ensured is that these parameters are compatible with a camera forward facing the
road from inside a vehicle, for instance, as if it was placed at the rear view mirror behind the
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(a) (b)

Figure 3.2: Virtual image with corresponding automatically generated pixel-wise
groundtruth for pedestrians. (a) Original image, and (b) the pixel-wise groundtruth
image, where each pedestrian has a different color label.

CounterexamplesExamples

Daimler

Virtual

Figure 3.3: Examples and counterexamples taken from real images (Daimler’s
dataset) and from virtual ones.

windshield. Finally, in order to emulate the dataset of Daimler, we set the resolution of our
virtual camera to640× 480 pixels.

As in [46] we created four virtual cities which, in fact, correspond to a single one in terms
of graphical primitives,i.e., we only changed some building, ground and object textures so
that they look different as well as the overall illumination to emulate different daytimes.
In order to introduce more variability in terms of pedestrians (aspect ratio and clothes) in
these cities with respect to the ones in [46], we added new human models into the game,
finally achieving a set of 60 different pedestrians (see Figure 3.4). Note that since they are
articulated moving models seen from a moving camera, each virtual pedestrian can be imaged
with different poses and backgrounds. Figure 3.3 plots samples of the virtual training set that
we describe in the rest of this section.

Examples. We recorded forty video sequences by driving through the virtual cities. In
total we obtained 100075 frames, at 5fps, which corresponds to 5 hours, 33 minutes and 35
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Training Set Training process
Cropped pedestrians(jitter and mirroring included) 1st round: cropped pedestrians / cropped background Testing sets

& Background frames & Bootstrapping: additional cropped background

Daimler 15660 & 6744 15660 / 15560 & All False Positives Full set: 21790 frames
Virtual 1440, 4320, 12960 & 1219 1440, 4320, 12960 / 2438 & All False Positives Mandatory set: 973 frames

Table 3.1: Training and testing settings for our experiments.

seconds. The virtual car was driven without any preferredplan of route. Along the way we
captured images containing pedestrians in different poses and with different backgrounds.
Since we can obtain the groundtruth of the virtual pedestrians automatically, we consider
only those upright, non-occluded, and with a height equal or larger than72 pixels in the
captured images (pedestrianstaller than72 pixels require further down scaling as we will
see) like in the training set of Daimler database. This gives us 7973 pedestrians to consider
in order to construct the set of examples for training. It is worth mentioning that in order to
have automatically labelled examples analogous to the manually labelled ones of Daimler’s
training set (i.e., with the torso centered with respect to the horizontal axis), we cannot just
take the bounding boxes corresponding to the pixel-wise groundtruth. Instead, we apply the
following process to each virtual pedestrian:

1. For some pedestrian poses, the bounding box obtained from the pixel-wise groundtruth
is such that the torso is not well centered in the horizontal axis, so we automatically
correct this. More specifically, we project the pedestrian groundtruth into its horizontal
axis. Then we take the location of the maximum of the projection as the horizontal
center of the torso. Finally, we shift the initial pixel-wise bounding box so that its
horizontal center matches the one of the torso.

2. Then, we modify the location of the sides of the pedestrian bounding box preserving
the previous re-centering, but enforcing the same aspect ratio and proportional back-
ground margins than the pedestrians in the training set of Daimler (i.e., 24/72 and
12/72, respectively). This is automatically achieved by simply applying standard rule
of proportionality.

3. The bounding box at this point can still be larger than the canonical bounding box of
the pedestrian examples of Daimler’s training set,et al. , larger than48 × 96 pixels.
Thus, the final step consists in performing a down scaling using bi-cubic interpolation.

Counterexamples. In order to collect the counterexamples for training, we used the same
four virtual cities than to obtain the examples, but now without pedestrians inside,i.e., we
drove through theseuninhabitedcities to collect pedestrian-free video sequences. We collect
frames from these sequences in a random manner but assuring a minimum distance of five
frames between any two selected frames, which is a simple way to increase variability. In
fact, the images where taken with an initial resolution of720× 1280 pixels, and laler scaled
to480×640. In total we have 1219 frames without virtual pedestrians, so they can be sampled
to gather virtual counterexamples. The sampling process is, of course, the same than the one
previously described for Daimler (Sect. 3.2.1).

The video sequences were taken with the highest graphics quality allowed by the game
engine. In particular, the changed settings were: the model detail, which controls the number
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of polygons and extra detailing; the texture detail; the color correction, which increases the
realism; the antialiasing mode, which smooths the jagged lines when rendering; the high
definition rate (HDR), which gives a higher vivid and contrasting lighting; and the filtering
mode, which determines how clear is the detail of the textures as they fade into the distance
to the camera.

3.3 Experiment design

3.3.1 Pedestrian detector components

In order to detect pedestrians we need a pedestrian classifier learnt from the training set by
using specificfeaturesand alearning machine. With this classifier wescan a given image
looking for pedestrians. Since multiple detections can be produced by a single pedestrian,
we also need a mechanism toselect the best detection. The procedures we use for features
extraction, machine learning, scanning the images, as well as selecting the best detection
from a cluster of them, are the same no matter if the classifier was learnt using virtual images
or real ones (et al. , from Daimler). Let us briefly review which are these components in our
case.

Features and learning machine.

The combination of the histograms of oriented gradients (HOG) features and linear SVM
learning machine, proposed by Dalalet al. in [10], has been proven as a competitive method
to detect pedestrians in the ADAS context [19]. Similar conclusions are also obtained when
using a large ADAS-inspired dataset for testing in [17]. In fact, recent proposals that outper-
form HOG/linear-SVM when using the INRIA dataset include both HOG and linear SVM
as core ingredients [82]. Thus, we think that HOG/linear-SVM stands as a relevant baseline
method for learning pedestrian classifiers, so we use it in our experiments. In particular, we
follow the settings suggested in [10] for both HOG and linear SVM, as it is also done in [19].
A minor difference comes from the fact that in Daimler’s datasets the images are grayscale
while the virtual images are RGB. This issue is easily handled by just taking at each pixel
the gradient orientation corresponding to the maximum gradient magnitude among the RGB
channels (as in [10] for INRIA dataset).

Scanning strategy.

We use the first type of sliding window described in Chap. 2, which consists in a sliding win-
dow approach implemented through a pyramid to handle different detection scales. [9]. We
could consider the sliding window parameters found in [19] as the best in terms of pedestrian
detection performance for the so-calledgeneric pedestrian detectioncase with Daimler’s
testing set. However, at this stage we followed the settings proposed in [9].
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Selecting the best detection.

To group multiple overlapped detections and (ideally) provide one single detection per target
we follow an iterative confidence- and overlapping- based approach,i.e. a kind of non-
maximum-suppression. This technique, used by I. Laptev in [38], consists of four basic steps:
1) create a new cluster with the detection of highest confidence; 2) recompute the cluster with
the mean of the detections overlapping the new cluster; 3) iterate to step 2 until the cluster
position does not change; 4) delete the detections contained in the cluster and iterate to 1
while there are detections. This NMS approach has been also used in the bootstrapping stage.

For us, as described in Chap. 2, a pedestrian detector consists of a pedestrian classifier,
plus the above seen techniques of sliding window and non-maximum-suppression. Therefore,
we are not considering tracking of pedestrians, but we think this does not affect the aim of
this chapter.

3.3.2 Training

Training with Daimler dataset

We train the HOG/linear-SVM classifier with the 15660 provided examples and collect also
15560 counterexamples by sampling the 6744 provided pedestrian-free images as explained
in Sect. 3.2.1, which is the approach followed in [19]. In addition, we also apply oneboot-
strappingstep, i.e., with the first learnt classifier we run the corresponding pedestrian de-
tector on the 6744 pedestrian-free frames and collect false positives to enlarge the number
of counterexamples and retrain. This bootstrapping technique is known to provide better
classifiers [10, 19, 49] than simply train once. In our case, instead of collecting 15660 false
positives, like in [19], all the false positives considered by the initial classifier are collected
during bootstrapping. Thus, the final classifier is trained using 15660 examples and over
90000 counterexamples. By following such technique we found to increase the performance
of the final detector.

Training with virtual dataset

Learning a classifier by using the virtual training set is analogous to the Daimler case,i.e.,
HOG/linear-SVM and one bootstrapping stage are used. In our experiments we do not only
explore the feasibility of using virtual data for learning a reliable pedestrian detector, but
also the total number and variability between pedestrian models that is required and how the
pose influences the detection. First, we test how many different models are at least required
to obtain similar performance as the real dataset. Later, given a fixed number of models,
we assess the performance of different number of examples, in particular, 1440, 4320, and
12960. Next, different adapted pose distributions are generated and compared one another.
And finally, a final detector is trained using real and virtual data.

In order to assess how robust the training process is to changes, when using different
training examples coming from the same virtual world, we perform a random selection of the
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Figure 3.4: Sample of each pedestrian model used in our virtual world. In total there
are sixty different models (models from garrysmod.org).

total number of labelled pedestrians into five subsets with the aim of conducting five trainings
regarding each of the experiments described above in which every model is proportionality
represented in each random subset. Then, from the 80000 total pedestrians annotated (≥ 72
pixels tall) to conduct our experiments we extract a thousand of them -in this case 1080, the
closest multiple of total number of pedestrians, 60 (see Figure 3.4)- per training subset. In
order to emulate Daimler training set, we apply two jitters and a mirroring per jitter, which
means that in total every subset contains 4320 examples. Note that the randomness when all
the models are used comes in terms of pose and illumination, while in the case of reduced
number of models, it comes also from the pedestrian models themselves (the ones that have
been selected).

Moreover, to ensure a certain variability on the subsets of examples, every subset is
generated so that every pedestrian model selected has a gap of five frames between examples,
thus making the differences come from pose and background.

In order to generate the different pose distribution sets, we first define the aspect-ratio
of the legs in each pedestrian sample. This is the horizontal projection length of the bottom
of the shape-mask image -a quarter of the image- divided by the total length of the bottom
window (see bottom right image in Figure 3.6 (a)). Then, we split the aspect-ratio into nine
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Figure 3.5: A virtual pedestrian through different backgrounds and illuminations.

different ranges. Later, we define four different distributions in terms of aspect-ratio (Uni-
form, Normal050, Gamma025 and Gamma075 -the numbers 025, 050 and 075 related to the
distribution names, represent the peak of each distribution-), which define the way we sample
the training samples with respect to their pose. Finally, we randomly sample subsets based
on the adapted distributions through the defined ranges. In Figure 3.6 (b) we show the sam-
pling distributions for Gamma025, Gamma075, Normal050, and Uniform. For instance, in
Gamma025 more virtual pedestrians with closed legs than opened ones are selected, while in
Gamma075 occurs the opposite.

3.3.3 Testing

In order to reduce the computational time of the experiments, rather than using the 21790
testing frames from Daimler, we rely on a representative but reduced testing set as performed
in [46]. Specifically, those frames in which there is at least a mandatory pedestrian to detect
(3.2.1) are first selected, then one every two frames is taken out. This final set of frames is
considered asmandatory testing set. There are 973 of such frames and they contain 1193
mandatory pedestrians.

We use the mandatory testing set to evaluate all the pedestrian detectors associated to the
classifier learnt with Daimler’s training set and the same for the other detectors related to the
virtual training set.
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Figure 3.6: Aspect-ratio legs distributions. (a) Examples with different aspect-ratio
legs values of the same model - the bottom right image in (a) shows how the aspect-
ratio is computed. (b) Sampling distributions: Gamma025, Gamma075, Normal050,
and Uniform.

3.4 Results

In this section we describe the obtained results following the settings summarised in the
previous section.

To assess the performance of the different pedestrian detectors we useper-image eval-
uation detailed in Chap. 2. We choose to plot missrate detection rate versus FPPI both in
logarithm scale. We restrict the range for plotting such curves to[10−1, 100], which means
that we focus our interest in those regions that allow between one false positive per ten im-
ages and one FPPI. Similarly to [18], instead of using a single point on the curve to compare
the performances, we compute the log-average miss rate at nine points on the curve equally
distributed over the logarithmic x-axis. For the evaluation, we follow the PASCAL VOC cri-
terion described in Chap. 2. The sliding window can be defined as a triple(∆x,∆y,∆s), in
which the first two parameters denote the spatial stride, and the third parameter is the scale
step. In our case, the triple used in our experiments is(8, 8, 1.2).

Figure 3.7 shows the obtained performance curves of the virtual and real approaches
following the PASCAL criterion (see Chap. 2). In Figure 3.7 (a) the mean and the stan-
dard deviation of the 5-experiment-based of the virtual based training are shown. The virtual
approach is conducted by using a fixed number of 4320 positive samples with all the pedes-
trian models proportionally represented. The standard deviation illustrates how robust the
approach is when generating different random subsets, being its value0.66 points. In Figure
3.7 (b) the best curve and the worst curve are plotted versus the Daimler baseline approach.
As it can be seen, the results reveal the similarity of both datasets. The difference between the
best virtual-world-based curve and the real-world-based one less than one point, and compar-
ing the worst virtual-world-based curve and the real-world-based one such difference is still
less than five points when comparing the AUC average. Altogether, the results, as presented
in [46], allow us to contemplate that the differences of the learnt virtual-world-based detec-
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Figure 3.7: Per-image evaluation of the pedestrian detectors following PASCAL
criterion [22]. Left: mean performance and standard deviation obtained in the 5
experiments with virtual samples and the sixty models over the mandatory testing
set. Right: performances of virtual highest and lowest AUC average versus Daimler
performance. The percentage between parenthesis next to each curve description
represents the AUC average between range[10−1, 100].

tor and the real-world-based one are minimal in terms of performance. Figure 3.11 shows
some qualitative results when using the real-world-based and virtual-world-based detectors.
As expected, both detectors are quite similar in particular detections, however, they seem to
slightly differ in the false positives.

Next we show the performances when using different number of models in the training
procedure. Figure 3.8 (a) reproduces the different curves when using 2, 5, 10, 15, 30 and
60 pedestrians models. In this case, the mean of each experiment related to the number of
pedestrian models is shown. As the AUC average indicates, the performance tends to saturate
when 15 models are used. Note that these models have been captured through different
illumination, background and pose (see Figure 3.5). In figure 3.8 (b), we can see that when
the number of models is reduced the standard deviation increases: when using a number of
15 the standard deviation value is1.89 points, while when using 2 the value is12.36 points.
While the average performance when using a reduced number of pedestrian models is worse
than the ones with 30, and 60, in some cases detectors learnt with 10 models achieve almost
the same performance than the ones trained with more models. This reflects that depending
on the models selected to train we can achieve a higher or lower performance, meaning that
some virtual pedestrians suit more than the others real ones, always in terms of HOG features.

Figure 3.9 (a) shows the performance of the approaches when training with different total
number of positive examples. In this case the curves show the mean of five random exper-
iments when training with 1440, 4320, and 12960. The results manifest that training with
1440 is not enough to achieve the desired performance, while training with 4320 or 12960
do. Accordingly, the classifier converges with already 4320. In Figure 3.9 (b) we show the
different performance between detectors trained on real, virtual and their combination. The
performance when using both data altogether outperform the ones using separate data. In this
case, four points better than just using independent sets. Indeed, it seems that real and virtual
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Figure 3.8: Per-image evaluation of the pedestrian detectors using different number
of different models. (a) mean performances obtained in the 5 experiments with vir-
tual samples for each fixed number of pedestrian models: 2, 5, 10, 15, 30 and 60.
(b) mean and standard deviation of the subsets generated by 2 and 15 models. Both
plots have been obtained over the mandatory test.

data can be complementary, outperforming in this case both detectors. This complementarity
could be explained by the fact that both detectors detect almost the same pedestrians and fail
in different background as already mentioned.

Next experiments evaluate the effect of the pose of training models in the performance.
In such experiments we model four different distributions to assess their behaviour when
testing on real images. Figure 3.10 (a) shows the different mean performances versus the
original one (with no selection). As it can be seen, the performance that suits more the dataset
and has closer performance to the original one is the called Gamma025, which samples are
more likely to be in a close legs pose than a lateral walking one. Figure 3.10 (b) shows the
comparison between the original and the Gamma025 distributions, in which it can be seen
the similarity.

3.5 Conclusions

In this chapter we have explored the potential of virtual worlds in order to train appearance-
based models for PPSs. The machine learning algorithm used to classify in our experiments
is the linear SVM based on HOG features, ade factostandard in pedestrian detection. The
whole detection pipeline consists of a sliding-window, the classification and finally, a non-
maximum-suppression procedure. We first compare the virtual detector versus the real one
in real images, and conclude that both performances are fairly the same. Several experiments
with different virtual datasets to explore the possibilities in pedestrian detection, and con-
cretely in appearance, that are carried to assess what virtual data can offer. In particular, we
demonstrate that just few virtual pedestrian models can achieve almost the same accuracy of
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Figure 3.9: Per-image evaluation of the different experiments. (a) Comparison of
virtual detectors using different number of training examples: 1440, 4320, and 12960
pedestrians. (b) Comparison of different detectors trained on real and virtual data
separately, and altogether.
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Figure 3.10: Experiments on the pose variation. (a) shows the different perfor-
mances between the adapted distributions and the original one. (b) shows the
comparison between pedestrian poses found in the original distribution and the
gamma025 distribution. Each bark, with k ∈ {1, . . . , 9}, shows the percentage
of pedestrians that belong to the aspect-ratio range[0.1k, 0.1(k + 1)[.
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Classifier trained with real-world samples.

Classifier trained with virtual-world samples.

Figure 3.11: Qualitative results at100 FPPI taken when following PASCAL VOC
criterion. Top row: using the pedestrian detector based on Daimler’s training set.
Bottom row: using the pedestrian detector corresponding to the training with virtual
samples, in particular with the classifier of highest detection rate at100 FPPI. Green
bounding boxes are right detections, yellow ones are false positives and red ones
misdetections.

the detectors trained with more models, which means that adding new models does not bring
any improvement. This same conclusion can be seen in [61]. Besides, we investigate whether
increasing the total number of examples used can benefit the detection or not. In this case
the obtained results show that the performance converges. However, this fact can come from
the machine learning and features used, so in future experiments we will test other widely
used features such as Haar-like [78] features or LBP [51]. Finally, we study how the pose in
pedestrians can influence in detection. The different pose distributions used proves that, in
this specific case, the original distribution, in which the number of pedestrians walking across
the camera is small compared to the others (i.e.standing/front-rear), achieves the best perfor-
mance. These last results expose once again the similarity between virtual and real data when
performing urban scenarios. Besides, combination results show the complementarity of real
and virtual, outperforming the baseline. Therefore, the work done so far indicates that the
virtual scenario generation stage is an important key to achieve state-of-the-art performance.

Once we finished this work, we assessed the performance of the virtual detector in other
datasets (see Fig.3.12). The results showed that the detector was no longer reaching the same
accuracy as the detector trained with the new dataset. At this point, we found we were facing
a domain adaptation context problem. This new research line was out of the scope of this
thesis, thus we decided to continue with our two other objectives (see Chap. 1). This new
line of research has been continued by one of the PhD students in our group as the main
topic of his thesis [75]. On the other hand, as future work we plan to use other targets in our
occlusion handling framework such as vehicles.
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Figure 3.12: Per-image evaluation in the INRIA person dataset. The three differ-
ent curves correspond to the detectors trained using INRIA, Daimler and Virtual
datasets, and tested in the INRIA person dataset. As can be seen, Daimler and
Virtual detectors obtain similar accuracy, but worst accuracy than INRIA detector.
These results highlight the domain adaptation context problem (figure from [75]).
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Chapter 4

Occlusion Handling via Random
Subspace Classifiers

In this chapter we propose a general method to address partial occlusions for human detection
in still images. The Random Subspace Method (RSM) is chosen for building a classifier en-
semble robust against partial occlusions. The component classifiers are chosen on the basis of
their individual and combined performance on a hold-out validation set containing examples
of partially occluded pedestrians. For this purpose, we make use of the framework developed
in the last chapter in order to generate a large variety of examples of partial occlusions that
can happen in a real situation.

The main contribution of the work presented in this chapter lies in our approach’s capa-
bility to improve the detection rate when partial occlusions are present without compromising
the detection performance on non occluded data. In contrast to many recent approaches, we
propose a method which does not require manual labelling of body parts, defining any seman-
tic spatial components, or using additional data coming from motion or stereo. Moreover, the
features used in the holistic classification are reused by the RSM, which means that there is
no additional computational cost. The method can also be easily extended to other object
classes. The experiments are performed on three large datasets: the INRIA person dataset,
the Daimler Multicue dataset, and a new challenging dataset, calledPobleSec, in which a
considerable number of targets are partially occluded. The different approaches are evaluated
at the classification and detection levels for both partially occluded and non-occluded data.
The experimental results show that our detector outperforms state-of-the-art approaches in
the presence of partial occlusions, while offering performance and reliability similar to those
of the holistic approach on non-occluded data. The datasets used in our experiments have
been made publicly available for benchmarking purposes.

37
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4.1 Introduction

As introduced in the first chapter, most promising pedestrian detection methods can be di-
vided into two different groups: Holistic, which consist in detecting the pedestrian as a whole
target, and Part models, which rely on the combined detection of the different parts of the
body. Holistic methods offer robustness with respect to illumination, background and texture
changes, whereas part-based methods have an advantage for different poses [18]. In all cases,
the presence of partial occlusions causes a significant degradation of performance, even for
part-based methods which are supposed to be robust in that respect [18].

Expectedly, detection in the presence of partial occlusions has sparked significant interest
[8,28,31,44,82,85]. For instance, an accident in which a vehicle hits a pedestrian is likely to
occur when the pedestrian is not in full view to the driver,e.g., when it appears from behind
a parked car. Captured in a sequence of images, several frames prior to the accident will
contain a partially occluded human figure. Therefore, accurate detection in the presence of
partial occlusion is of paramount importance when building driver assistance systems.

Current methods for handling occlusion lack generalisation, either because additional
information is required (coming from manual annotations of the parts or from other sensors),
or they are tied to a specific object class [31,44,82,85]. Therefore, our aim is to introduce a
general method for automatic, accurate and robust detection of human figures in the presence
of partial occlusion.

Image windows framing partially occluded persons tend to be misclassified due to the fact
that, given the descriptor of the whole window, the features corresponding to the occluded
areas can be interpreted by the classifier as noise or background. Accordingly we argue that
an appropriate solution for these situations is to apply classifiers trained on regions less likely
to be occluded. More specifically, we propose to learn the different regions of the window by
using random subspace classifiers [34], and subsequently find the optimal ensemble through
a bespoke selection strategy.

The proposed approach brings several benefits: 1) the approach is generic, therefore ap-
plicable to any class of objects; 2) as the random subspace classifiers are trained in the orig-
inal space, no further feature extraction is required; 3) the detection is done on monocular
intensity images, unlike other methods for which stereo and motion information are manda-
tory [44]; and 4) during training, we only require a subset of images with and without partial
occlusion; other detection methods require delineation of the occluded area.

Following our previous work [46], here we use a virtual-world based dataset with the
occlusion labelling available by design. We also introduce a new real world dataset with
occluded pedestrians for testing.

The remainder of this chapter is organised as follows. Section II introduces the related
work. Section III presents the method from a generic point of view. Section IV, presents a
particular implementation for human detection. Section V, relates the design followed in our
experiments. In Section VI we validate and discuss our method. Finally, Section VII draws
the main conclusions and future work.
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Figure 4.1: Occlusion handling scheme. From left to right, the steps for classifying
a window.

4.2 Related Work

Dollar et al. [18] evaluated state-of-the-art detectors under occlusions, and demonstrated that
both holistic and part-based methods have similar unsatisfactory performance. This is at-
tributed to the fact that these methods are not specifically designed for handling occlusions.

Very few methods from the literature handle occlusions explicitly. In [8], Daiet al.
propose a part-based method for face and car detection. The method consists of a set of
substructure-detectors, each of which is composed of detectors related to the different parts
of the object. The disadvantage of this method is that the different parts of the object need to
be manually labelled in the training dataset, in particular, eight parts for face detection and
seven parts for cars.

A general approach based on the response of different part detectors and a whole-object
segmentation process is introduced in [85] by Wuet al. The method requires a hierarchical
object-parts design with eleven components making up the head, the torso and the legs. The
edge pixels of the object that positively contribute to the part detectors are extracted and used
together with the part detector responses to obtain a joint likelihood of multiple objects. In
this joint likelihood an occlusion reasoning is applied. In case of finding any inter-object
occlusions, the occluded parts are ignored. The main drawback of this method is that it
requires a manual spatial alignment of the objects, which has to be adapted to each object
class. In addition, it requires a special camera set-up in which the camera has to look down
on the ground-plane.

Wanget al. [82] propose a new scheme to handle occlusions. More concretely, the re-
sponse at a local level of the Histograms of Oriented Gradients (HOG) [6] descriptor is used
to determine whether or not such local region contains a human figure. Then, by segmenting
the binary responses over the whole window, the algorithm infers the possible occlusion. If
the segmentation process does not lead to a consistent positive or negative response for the
entire window, an upper/lower-body classifier is applied. The drawback of this method is that
it makes use of a pre-defined spatial layout that characterises a pedestrian but not any other
object class.
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A mixture of experts for handling partial occlusion is presented in [44] by Enzweileret al.
The component layout the authors use is composed by three overlapped regions: head, torso
and legs. Then, during the classification process, expert weights are computed to focus on the
unoccluded region through a segmentation process applied to the depth and motion images.
While the authors demonstrate the robustness of their method against partial occlusions, the
drawback of this approach is that it requires both stereo vision and motion information, which
limits its applicability if we do not have this additional information. Furthermore, the method
is based on a pre-defined spatial layout that is characteristic of the pedestrian, which limits
its applicability for other classes of objects.

Gaoet al. [28] tackle occlusions by identifying and using in the training process cells
of pixels which belong to the object in the bounding box. The method outputs not just the
detection but also the inferred segmentation. However, the method requires the tedious task
of manual labelling all the cells that belong to the object in the training set.

In [31], Girshicket al. propose an extension of the deformable part-based detector [25]
with occlusion handling. Specifically, the method tries to place the different body parts over
the window. Then, if some of the parts are not matched, the method tries to fit in their
designated place occluding objects learned from the data. The obvious inconvenience of such
an approach is the need of learning the objects that occlude the target. Besides, to extend the
method to other classes a different occlusion reasoning has to be defined.

Here we propose a method for detecting human figures in still images, which can handle
occlusion automatically. Manual annotation or defining specific parts/regions of the window
are not needed. Our method is based on an ensemble of random subspace classifiers obtained
through a selection process. It is worth mentioning that, as the random subspace classifiers
use the original feature space, there is no additional feature extraction cost. Similar to [82]
and [44], the proposed approach uses a segmentation process to find the unoccluded part of
a candidate-window. An ensemble is applied only in uncertain cases. In particular, the pro-
posed method generalises the inference process presented in [82] by extending it to multiple
descriptors.

4.3 Occlusion Handling Method

4.3.1 Proposal Outline

We present a general method for handling partial occlusions (see Fig. 4.1). In such a design,
the window is described by a block-based feature vector. The resulting feature vector is
evaluated by the holistic classifier. If the confidence given by the holistic classifier falls into
an ambiguous range (Fig. 4.1-A), then an occlusion inference process is applied by using the
block responses. Finally, if the inference process determines that there is a partial occlusion
(Fig. 4.1-B), an ensemble classifies the window. Otherwise, the final output is given by the
holistic classifier. Notice that, in order to obtain a more accurate decision, we apply the
ensemble only when partial occlusion is suspected. In the following, we explain in detail the
components shown in Fig. 4.1.
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4.3.2 Block Representation

Our detection system relies on using a block-based representation, one of the most successful
descriptor types in use today [18]. A well-known example of such descriptor is the HOG of
Dalal et al. [82], although there exist many other examples [64, 72]. In section 4 we explain
our specific choice for this work. Fig. 4.2 illustrates the idea of this type of representation,
where the window descriptorx ∈ R

n is defined as the concatenation of the features extracted
from every predefined blockBi, i ∈ {1, . . . ,m}. A block is a fixed subregion of the window
as shown in Fig. 4.2. Our method also allows the blocks to overlap. The descriptor is denoted
asx = (B1, . . . ,Bm)T .

The feature vectorx is passed to a holistic classifierH :

H : R
n −→ (−∞,+∞)

x 7−→ H(x)
(4.1)

where the feature space dimension,n, isn = m · q, beingq the number of features per block.

The higher the value returned by the function H the higher the confidence that there is a
pedestrian in the given window. Note that the functionH can be any classifier that returns a
continuous-valued output, for example, a hyperplane learnt with an SVM.

4.3.3 Occlusion Inference and Posterior Reasoning

In order to detect if there is a partially occluded human figure in the image, we make use of
a procedure similar to the one of Wanget al. [82]. First, we determine whether the score of
the holistic classifier is ambiguous. For example, the response from an SVM classifier can be



42 OCCLUSION HANDLING

Map formed with 

s1,…,sm  

Map after applying 

segmenation 

Inference 

output 

No 

occlusion 

Completely positive: 

 

Completely negative: 

No 

occlusion 

Positive and negative: 

Occlusion 

(occluded blocks) 

(pedestrian blocks) 

ms i'

ms i'

ms i'

Figure 4.3: Occlusion inference and posterior reasoning. From left to right, the
initial map formed by the local responsessi; in the middle, the output after segmen-
tation,s′i; at the right, the three inference outputs.



4.3. Occlusion Handling Method 43

perceived as ambiguous if it is close to 0. When the output is ambiguous, an occlusion infer-
ence process is applied. This is based on the responses obtained from the features computed
in each block. In particular, for every blockBi, i ∈ {1, . . . ,m} we define a local classifier
hi:

hi : R
q −→ (−∞,+∞)

Bi 7−→ h(Bi)
(4.2)

where the classifierhi takes as input thei-th blockBi of the window, and provides as output
the likelihood that the blockBi is part of the pedestrian or, otherwise, is part of an occluding
object or background.

The algorithm for the occlusion inference and the posterior reasoning is described in
Alg. 1. For each blockBi we obtain a discrete labelsi by thresholding the local response
hi(Bi) (see Alg. 1). The discrete labelsi indicates whether the blockBi is part of the
pedestrian (si = 1) or is part of an occluding object or background (si = −1). Once we
have determined this for all the blocks, we can define a binary map as illustrated in Fig. 4.3,
and then apply a segmentation algorithm on this binary map. The objective of applying
segmentation is to remove spurious responses and to obtain spatially coherent regions. As a
result of this segmentation, we obtain spatially coherent block labelss′i (see Fig. 4.3), and we
can determine if there is actually an occlusion or not.

Algorithm 1: The occlusion inference and posterior reasoning (Fig. 4.1-B)
pseudo-code.

Input : B1, . . . ,Bm

Output : Found partial occlusion
Procedure:
foreach i ∈ 1, . . . ,m do

Calculatehi(Bi);
si := sign(hi(Bi));

end
(s′

1
, . . . , s′m) := seg(s1, . . . , sm);

if |
∑

s′i| 6= m then
return true;// There are occluded blocks

else
return false;// Pedestrian or Background

end

In Algorithm 1, (s1, . . . , sm) represents the binary image given by the sign of the local re-
sponses(h1(B1), . . . , hm(Bm)), beingsi ∈ {−1, 1}, ∀i ∈ {1, . . . ,m}. After obtaining the
local responsessi, the algorithm returns(s′1, . . . , s

′
m) as the result of applying a segmentation

process over the binary image, where agains′i ∈ {−1, 1} ∀i. Finally, the algorithm returns
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a boolean confirming whether there is a partial occlusion depending on the responses. More
concretely, if all the responsess′i are negative, we interpret that such window only contains
background. If the responses are all positive, then we consider that there is a pedestrian with
no occlusions. Finally, if there are both, positive and negative values, we consider that there
is a partial occlusion (see Fig. 4.3).

4.3.4 Ensemble of Local Classifiers

In general, partial occlusions can vary considerably in terms of shape and size; hence a flex-
ible model is needed. We propose an adapted Random Subspace Method (RSM) [34,35] for
this task. In particular, we propose to use classifiers trained on random locally distributed
blocks; the collection of such classifiers is subsequently browsed to find an optimal combi-
nation. Our adapted RSM is introduced below (see Fig. 4.4).

Block-based Random Subspace Classifiers

GivenI = {1, . . . ,m} the set of block indices, in thek-th iteration we generate a random
subsetJk of indices, whereJk ⊂ I. This selection process is carried on until we obtainT
different subsets of indicesJ1, . . . , JT . Thek-th subsetJk containsmk indices, where this
number can vary across different iterations.

Given thek-th subsetJk = {jk1 , ..., j
k
mk
}, we define a subspace formed with the blocks

indexed byJk : {Bjk
1

, ..., Bjkmk

}. For each subspace, we train an individual classifiergk.
Thus, the decision function of each base classifier of the ensemble can be expressed as a
composition of functions:

R
m·q Pk−→ R

mk·q
gk−→ (−∞,+∞)

x =







B1

...
Bm






7−→







Bjk
1

...
Bjkmk






7−→ (gk ◦ Pk)(x)

(4.3)

wherePk denotes the projection from the original space to the subspace defined byJk, and
gk the corresponding classifier trained in such subspace. For simplicity of notation, from now
on, we will usegk instead of(gk ◦ Pk).

The algorithm for the random subspace classifiers generation is described in Alg. 2,
whereD is the training set,xj denotes thej-th sample andlj its respective label. Given
theJk indices we apply a segmentation algorithm to the binary image(r1, . . . , rm), where
ri = 1 if the i-th block forms part ofJk, andri = −1 otherwise (see Fig. 4.5 left image).
The segmentation is intended, again, as a means of obtaining spatial coherence in the se-
lected blocks (see Fig. 4.5 right image). As a result of this segmentation process we obtain a
new binary image from which we construct a new setJ ′

k. In particular, letr′i be the binary
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Algorithm 2: Our random subspace classifiers pseudo-code.

Input : Training datasetD = {(xj , lj)|1 ≤ j ≤ n}, T
Output : g1, . . . , gT
Procedure:
I := {1, . . . ,m};
J := {∅};
k := 1;
while k ≤ T do

Randomly select a subsetJk ⊂ I with Jk 6= ∅;
GivenJk generate the according(r1, . . . , rm);
(r′

1
, . . . , r′m):=seg(r1, . . . , rm);

ObtainJ ′

k from (r′
1
, . . . , r′m);

if |
∑

r′i| 6= m ∧ J ′

k /∈ J then
Traingk inDk = {(P ′

k(xj), lj)|1 ≤ j ≤ n};
J := J ∪ {J ′

k};
k := k + 1;

end
end

value of thei-th block after segmentation, then we defineJ ′
k = {i : r′i = 1}, i.e., the set

of blocks that are positive in the segmented binary map (see Fig. 4.5 right image). Then, if
the binary image(r′1, . . . , r

′
m) obtained after applying segmentation has all its values set to 1

(the resulting classifier would be the holistic classifier), to -1 (no subspace can be defined) or
J ′
k ∈ J (which means that we have already trained a classifier in the subspace defined byJ ′

k)
we discard this set. Otherwise, we train a classifier in the setDk defined by the projection
P ′
k, which is characterised by the indices inJ ′

k.

Note that, in the original RSM a fixed number of features are randomly selected from the
original space,i.e., all the subspaces have the same dimension. In our case, the dimension
mk may differ from one random subspace to the next asmk = |J ′

k|. This way, the classifiers
are trained in areas with different sizes.

Algorithm 2 is used for generatingg1, . . . , gT trained on random blocks. Based on that,
we obtain our final ensemble through the selection strategy described below.

Classifier Selection (N -Best Strategy)

The accuracy ofgk, k ∈ {1, . . . , T} in our ensemble depends on the discriminative strength
of the local region where this classifier is applied. In order to filter out the less accurate
classifiers, our system uses theN -best algorithm [59]. A validation set is used (see Section
4.5.1) to select a subset of classifiers which work best when combined. For this purpose, the
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Figure 4.4: Training of the adapted random subspace method for handling partial
occlusion.

algorithm first sorts the classifiers by their individual performance on the validation set and
evaluates how many best classifiers form the optimal ensemble. The single best classifier is
considered first. Then an ensemble is formed by the first and the second classifiers and eval-
uated on the validation set. The third classifier is added, and the ensemble evaluated again,
and so on. We apply a weighted average for calculating the final decision, in which weights
are related to the individual performances (see Eq. 4.4). The ensemble with the highest ac-
curacy is selected among the nested ensembles. One of the most important advantages of
this strategy is its linear order of complexity regarding the number of evaluations. For an en-
semble ofT classifiers, we needT individual evaluations plusT − 1 combined evaluations,
giving complexityO(T ). Besides, during the evaluations it is not necessary to re-compute
the features.

Final Ensemble

Givenx and the classifiersgk selected after theN -best strategy, the combined decision can
be finally expressed as:

E (x) =
∑

k∈S

ωkgk(x) , (4.4)

whereS is the set of the classifier indices that form the optimal ensemble, with|S| ≤ T , and
ωk their corresponding weights. We deriveωk using the validation set described in Section
4.5.1.

Combining holistic and part classifier responses is a common technique used in part-
based approaches [25, 82]. In our case, if the score given by the ensemble is not confident
enough (i.e., the score is smaller than a fixed thresholdth), we combine both scores. More
precisely, we apply a linear combination between them:
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Figure 4.5: Adapted random block selection. On the left, the initial randomly se-
lected blocks (in white), and on the right the blocks selected after applying segmen-
tation to obtain spatially coherent regions.

C (x) = αH (x) + (1− α)E (x) , (4.5)

whereα weights the scores of both classifiers. In Section 4.5.4 we describe how to obtain the
best parameters for our method.

4.4 Human Detection with Occlusion Handling

In the previous section, we presented a general method to handle partial occlusions for object
detection. In order to illustrate and validate our approach, in this section we describe in detail
a particular instantiation of our method for the class of humans.

In order to apply our method to pedestrians, we make use of both linear SVMs and
HOG descriptors, which have been proven to provide excellent results for this object class.
In addition to HOG descriptor, we also test our system using the combination of the HOG
and the Local Binary Pattern (LBP) descriptor [52], which has recently been proposed by
Wang et al. [82] for human detection. In the following we explain very briefly each of these
components.

Given a training datasetD, the linear SVM finds the optimal hyperplane that divides the
space between positive and negative samples. Thus, given a new inputx ∈ R

n, the decision
function of the holistic classifier can be defined as:

H(x) = β +w
T · x ,

wherew is the weighting vector, andβ is the constant bias of the learnt hyperplane. Moti-
vated by its success, we also propose to use the linear SVM as the learning algorithm for the
base classifiers described in Sec. 4.3.4.

The HOG descriptor was proposed by Dalalet al. [10] for human detection. Since then,
the descriptor has grown in popularity due to its success. These features are widely used
now in object recognition and detection. They describe the body shape through a dense
extraction of local gradients in the window. Usually, each region of the window is divided
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into overlapping blocks where each block is composed of cells. A histogram of oriented
gradients is computed for each cell. The final descriptor is the concatenation of all the blocks’
features in the window.

The LBP descriptor proposed first by Ojalaet al. [52] has been successfully used in face
recognition and human detection [1, 82, 90]. These features encode texture information. In
order to compute the cell-structured LBP descriptor, the window is divided into overlapping
cells. Then, each pixel contained in a cell is labelled with the binary number obtained by
thresholding its value to its neighbour pixel values. Later, for each cell a histogram is built
using all the binary values obtained in the previous step. Finally, the cell-structured LBP is
the result of concatenating all the histograms of binary patterns in such window.

The HOG-LBP is the concatenation of both descriptors, HOG and LBP. These two de-
scriptors complement each other, as they combine shape and texture information. Besides,
this combination has been proven to outperform the original HOG descriptor [18]. Note that
in our case we interpret every cell LBP as a block, thus a block HOG-LBP represents the
concatenated block HOG and the cell LBP computed in the same region.

Following the formulation proposed by Wanget al. [82], the constant biasβ can be dis-
tributed to each blockBi by using the training data (see Eq. 10 in [82]). This technique
allows the possibility to rewrite the decision function of the whole linear SVM as a summa-
tion of classification results. Then, using this formulation we can define the local classifiers
described in the previous Sect. 4.3.3 as:

hi(Bi) = βi +w
T
i ·Bi ,

wherewi andβi are the corresponding weights and distributed bias for each blockBi, re-
spectively. By defining the local classifiers this way, no additional training per block is re-
quired. Moreover, when computing the holistic classifier, the local classifiers are implicitly
computed, which means that there is no extra cost.

In this work, instead of just using HOG features to infer whether there is a partial occlu-
sion [82], we extend the process to rely on both, HOG and LBP features. Thus, the response
of eachhi is given by all the features computed in the same blocki. As in [82], the segmen-
tation method used in our implementation is based on the mean shift algorithm [6], whose
libraries are publicly available1. The mean shift weights are set towi = |hi(Bi)|.

4.5 Experimental Design

In this section, we outline the set-up followed in our experiments. We describe in detail the
different datasets used, as well as the procedure conducted during the training and the testing
phases. As explained in Section 4.3.4, as part of our training procedure we make use of
a hold out validation set. In order to obtain this validation set we propose the use of virtual
pedestrians, a sample of which is shown in Fig. 4.7. The Daimler multi-cue dataset, published

1http://coewww.rutgers.edu/riul/research/code/EDISON/index.html
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recently [44], is proposed for evaluating the different approaches at the classification level.
The INRIA person dataset [10], in which almost none of the pedestrians are occluded, is used
to assess the detectors under no occlusions. To evaluate the detector under partially occluded
data, we compiled a new dataset, calledPobleSec, in which a significant number of partially
occluded pedestrians are annotated.

4.5.1 Validation dataset

For the validation stage, we need partially occluded data where only the bounding box of the
entire object needs to be specified. Recently, the use of synthetic data in Computer Vision has
grown in popularity [37,46,61,76] due to their multiple advantages (no manual annotation is
required, easy generation of more samples, the possibility of reproducing difficult scenarios,
etc.). In this work, we generate a validation set of partially occluded pedestrians needed in the
training process (see Fig. 4.4). In particular, using the same game engine as in our previous
work [20], we built a scenario with 50 different human models (see Fig. 4.6), and created
four different variations by introducing illumination, texture and object changes. Afterwards,
we recorded 40 video sequences with a freely moving virtual camera, and extracted only
positive examples in which humans were partially occluded (see Fig. 4.7). For validating
the classifiers learnt in the INRIA dataset we extracted humans whose bounding boxes were
at least 96 pixels tall (around 8000 positive samples in total), and for the classifiers learnt
in the Daimler dataset, bounding boxes of height 72 pixels or more (over 12000 examples).
Negative images (without humans) were extracted from the same scenario with its different
variations. Note that real data with the corresponding label (partially/non-occluded) could
also be used in the classifier selection. For the classifiers learnt in the INRIA and the Daimler
datasets, we rescaled the extracted humans to the same sizes,i.e., 64 × 128 and48 × 96,
respectively.

4.5.2 Datasets

INRIA person dataset

This dataset was proposed by Dalalet al. [10], and it is still one of the most widely used
datasets in human detection. The data is already divided into training and testing subsets. The
annotations are provided for the original positive images (those containing pedestrians). The
images come from a personal digital image collection, and pedestrians are shown in different
poses against a variety of backgrounds (indoors, urban, rural) in which people are normally
standing or walking. Examples and counterexamples in the training set are normalised to
64× 128 pixels, in which pedestrians are downscaled to a height of 96 pixels (a margin of 16
pixels is added around them). We use the INRIA training set for training the classifiers and
the testing set to evaluate the detectors under no occlusions (see Table 4.1 for more detail).
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Daimler multi-cue dataset

In 2010, Enzweileret al. [44] published a new dataset, also divided into training and test-
ing parts (see Table 4.1). We used the same partition of the data in our experiment. Two
different evaluations at the classification level are done, one assessing the classifiers against
partially occluded pedestrians, and the other one only using non-occluded pedestrians. For
each labelled pedestrian, Enzweileret al. [44] generated additional samples by geometric jit-
tering. The provided images were captured from a vehicle-mounted calibrated stereo camera
rig (grayscale) in an urban environment. The authors also supply the stereo and flow images
corresponding to each sample. Only cropped examples and counterexamples are provided,
which have a resolution of48 × 96 pixels and a margin of 12 pixels around each side. Non-
pedestrian samples contain a bias towards more difficult patterns in terms of shape, which
means that hard negative examples are also provided.

PobleSec dataset

In order to evaluate the different approaches under partial occlusions at per-image level, we
have created a new challenging dataset, calledPobleSec. We captured 327 positive images
with a digital camera with a resolution of640 × 480. The images have been taken in urban
scenarios in Barcelona and both non-occluded and partially occluded pedestrians are anno-
tated.PobleSecdataset has a similar number of labelled pedestrians to the Daimler Partially
Occluded dataset. The details of the datasets used in the training and testing stages are shown
in Table 4.1.
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INRIA 1208 - 614 1218 566 - - 288 453
Daimler 6514 32465 - - 3201 620 16235 - -
PobleSec - - - - - 1117 - 593 -

Table 4.1: Comparison of the different pedestrian datasets. The number of humans
shown are the total number of labelled ones.

4.5.3 Implementation details

Following the same procedure as Dalalet al. [10], we train the holistic classifier by sim-
ply feeding the linear SVM with the positive samples and 10 random negative samples per
negative image. Once the classifier is trained, we run the detector over the training negative
images keeping all the false positive samples (also named hard negatives). Later, we retrain
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Figure 4.6: Virtual scenario.

the classifier by using the initial and new hard negatives. For the upper/lower-body classifiers
used in Wang’s method and for the random subspace classifiers, the initial training is done
by using the samples obtained at the first bootstrapping step in the holistic training. Next, we
conduct an additional bootstrapping for each one of them (using only the corresponding di-
mensions). The holistic classifier is also retrained. This means that all the classifiers undergo
a second bootstrapping phase.

The training with both INRIA and Daimler data is performed using only intensity images.
For the different classifiers trained in the Daimler dataset, no additional bootstrapping is done,
as positive and negative cropped samples are already provided. In our experiments we use the
original size of the windows (in contrast to [44], where the windows were scaled to36 × 84
pixels with 6 pixels of margin for their specific component layout). Observe that in this work
we only focus on handling occlusion based on features extracted from intensity, so there is no
need to follow their specific layout. We implemented Wang’s method using both HOG and
HOG-LBP descriptors following the same procedure as originally proposed [82].

In our implementation, the HOG descriptor of each window consists of7 × 15 blocks
with a spatial shift of 6 pixels for the Daimler data, and 8 pixels for the INRIA data. This
leads to overlapping blocks for both data sets. Each block is divided into2 × 2 cells of a
fixed number of pixels. We applied6 × 6 cells for the Daimler data and8 × 8 cells for
the INRIA data. The histogram of oriented gradients with 12 and 9 orientation bins were
computed, respectively. The HOG feature vector is normalised using a L2HYS norm. For
the LBP descriptor, we compute cell structures using the same block HOG size with the same
spatial shift. This means that both descriptors are computed in the same region. The L1-sqrt
norm is applied for the normalization. In order to remove the aliasing effect when scaling
the images (in the training procedure and the detection evaluation), we incorporate a bilinear
interpolation.
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α th Ambiguous range
Wanget al. [82] 0.7 1.5 [−2, 1]

Our method 0.3 2 [−2, 1]

Table 4.2: Best parameters for Wang’s method and our method.

Figure 4.7: Partially occluded examples included in the validation set.

4.5.4 Training methodology

Different methodologies have been proposed in the literature to conduct the validation stage.
Following [36], we use the hold-out protocol (H-method). It has low-computational cost
and high reliability for large data sets, and is reproducible when training and testing data
are specified. We divided the validation set into halves, one for estimating the individual
performance of each base classifier, and the other for evaluating theN -best ensemble (see
Sect. 4.3.4). The human images were randomly split between the two halves.

In Table 4.5.4 we show the best parameters found by using our virtual dataset for both
occlusion handling methods (Wang’s approach and our approach). In particular, we found the
best values for: the ambiguous range defined in Section 4.3.1 (see Fig. 4.1-A); the weights
wk, the classifier score thresholdth, and the weightα defined in Section 4.3.4; the minimum
and maximum random subspace dimensions used in our adapted RSM (15 and 90 blocks,
respectively); and the MeanShift parameters.

4.5.5 Performance Evaluation

In this chapter, in addition to the per-image evaluation, described in Chap. 2, we also evaluate
the classification rate (per-window) for benchmarking purposes. On one hand, the classifica-
tion system assigns a continuous-valued output to each input window related to the likelihood
that the window contains a human. The detection system, on the other hand, employs a slid-
ing window for different scales through a HOG/HOG-LBP features pyramid. Thus, for each
image a group of detections is returned with their respective confidences. Later, a verification
refinement is conducted to prune several detections of the same pedestrian through a confi-
dence based non-maximum suppression process. Similarly to [18] and the previous chapter,
we compute the log-average miss rate.
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Following the triplet defined in Chap. 3,(∆x,∆y,∆s), in which the first two parameters
denote the spatial stride, and the third parameter denotes the scale step, we use the same
parameter values,(8, 8, 1.2). For the evaluation criterion we use the PASCAL VOC criterion
(see Chap 2).

For the experiments performed in thePobleSecdataset, we consider those labels manda-
tory in which the pedestrian are completely inside the frame, partially occluded and at least
96 pixels tall. Analogous to [18], we normalise all bounding boxes to have a width of0.41
times the height during the per-image evaluation. For each classifiergk, k ∈ {1, . . . , T}
described in Sec. 4.3.4, its respective weightwk is set to be proportional to the log-average
classification rate between10−4 and10−1 FPPW. The weightswk are normalised to sum to
one.

4.6 Results

In this section we describe and discuss the experimental results. Two state-of-the-art methods
are compared with our approach, the holistic method and Wang’s one with partial occlusion
handling. To prove its viability, our approach should be tested for partially occluded as well
as non-occluded data.

4.6.1 Per Window

Figure 4.8 shows the results on the Daimler Non Occluded dataset at per-window level. As
can be seen in Fig. 4.8 (a), the performances using HOG features between our approach and
the holistic approach are similar (around 1 percentage point in log-average between perfor-
mances). Wang’s method, instead, shows a higher miss rate at low false positive per window.
In Fig. 4.8 (b) we show the performances of the extended HOG-LBP methods. Again, the
performances of our approach and the holistic approach are almost equivalent, which corrob-
orates the HOG results. However, Wang’s method, like when using HOG features alone, has
a higher miss rate at low false positive per window.

In Fig. 4.9, we show the curves for the three different methods using HOG and HOG-LBP
features on the Daimler Partially Occluded dataset. Fig. 4.9 (a) shows that, for HOG, Wang’s
approach is 2 percentage points better than the holistic approach, whereas our approach was
5 percentage points better. Fig. 4.9 (b) shows that both methods with explicit handling of
occlusion outperform the baseline approach in the HOG-LBP feature space.

4.6.2 Per Image

In Fig. 4.10 we show the per-image evaluation using HOG and HOG-LBP on the INRIA
testing dataset. Both sub-figures indicate that the occlusion handling does not degrade the
performance of the classifier for either Wang’s or our method compared to the holistic ap-
proach.
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Figure 4.8: Per-window evaluation on Daimler Non Occluded dataset of the three
different methods. (a) Evaluation using HOG features. (b) Evaluation using HOG-
LBP features. In parenthesis the log-average miss rate between10−4 and10−1.
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Figure 4.9: Classification comparison on Daimler Partially Occluded dataset. (a)
Evaluation of the different methods using HOG features. (b) Performance curves of
the methods using HOG-LBP. In parenthesis the log-average miss rate between10−4

and10−1.
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Figure 4.10: Detection curves on the INRIA testing dataset. (a) Evaluation of the
different methods on the test set using HOG features. (b) Performance curves of
the approaches using HOG-LBP features. In parenthesis the log-average miss rate
between10−1 and100.

Figure 4.11 shows the detection curves on thePobleSecdataset using both HOG and
HOG-LBP features. Only partially occluded humans were used in this evaluation as de-
scribed earlier. The holistic method fails for both HOG and HOG-LBP features. The best
performance is demonstrated by our method for both feature spaces. When using the HOG
descriptor, our approach outperforms the holistic approach by 7 percentage points on aver-
age, and Wang’s method by 4 percentage points. When using the HOG-LBP descriptor our
approach outperforms the holistic method by 9 percentage points and Wang’s method by 6
percentage points. In contrast to the other methods, our extended HOG-LBP based approach
outperforms the HOG based one.

In Figures 4.13 and 4.14 we show a qualitative comparison between the different ap-
proaches at one FPPI using HOG and HOG-LBP descriptors. As can be seen, in both cases,
the holistic approach is able to detect certain pedestrians which are partially occluded. How-
ever, it does not detect those with a higher level of occlusion. Both occlusion handling meth-
ods exhibit better performance by detecting cases missed by the holistic approach. Our ap-
proach manages to detect true positives where both other methods fail. This can be seen, for
example, in the third and fifth columns of frames in both figures. When both methods have
the same true positive detections, Wang’s method tends to introduces more false detections,
as seen in the second column of frames in Fig. 4.13.

4.6.3 Discussion

After having presented and analyzed the results, we discuss here the points where the pro-
posed framework shows a performance superior to both the holistic method [10] and Wang’s
method [82].
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Figure 4.11: Per-image curves generated on thePobleSecdataset. (a) Evaluation
of the different methods on the test set using HOG features. (b) the three different
curves using HOG-LBP features. In parenthesis the log-average miss rate between
10−1 and100.

As we have seen, both Wang’s method and ours provide a significantly better perfor-
mance than the holistic method when there are partial occlusions. This is due to the fact that
the holistic method makes use of all the features in the window, including those ones that
correspond to occluded parts. The latter features add noise to the classifier’s decision, and
significantly reduce the performance of the holistic method (see Fig. 4.11). In contrast, both
Wang’s method and our method focus only on the non occluded regions of the window. This
fact makes these methods more robust when we have partial occlusions, as shown in Fig.
4.11.

Now let us discuss the difference in performance between our method and Wang’s method
in the presence of partial occlusions, and explain the technical reasons why our method per-
forms better in this case. Wang’s method divides the window into two disjoint regions (up-
per/lower), therefore, destroying the relationship between features from the two parts. How-
ever, this relationship might be important for handling different types of partial occlusions.
In contrast, our classifier model consists in an ensemble obtained through a selection pro-
cess under which a large number of classifiers responsible for differently shaped parts of the
window is used (see Fig. 4.12). Therefore, in our method the relationship between features
from different parts of the window is maintained, in contrast with Wang’s method. The model
obtained with our method is more complete leading to a higher accuracy.

Based on the score of the classifier for each individual block, Wang’s method selects the
part of the window (upper or lower) that contains a lower number of occluded blocks. The
drawback of this method is that, many times, the individual blocks are not very informative,
and therefore the score obtained for these blocks is noisy. This leads to a poor part selection
if we use Wang’s method. In contrast, in our method the selection is based on performance
statistics over a validation data set which contains only partially occluded samples. This
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Figure 4.12: Heat-maps of which features (blocks) are used in each of our final
ensembles. For each block in the window, the figure shows a score (color) equal
to the number of classifiers that use the block. From left to right, the heat-maps
corresponding to the48× 96 classifiers using HOG and HOGLBP, and the64× 128
ones using HOG and HOGLBP, respectively.

drives our method to finding and using, collectively, regions in the window that are frequently
non-occluded.

Finally, let us discuss the performance of the three methods (our method, Wang’s method
and the holistic one) in the situation where there are no occlusions. In this case, the three
methods perform similarly (see Fig. 4.10). The conceptual reason why this happens is that
both Wang’s method and our method only handle the cases inferred as partial occluded tar-
gets. The rest of the windows are evaluated by the holistic method. This common design
brings comparable performance to the holistic method for non-occluded targets and a signif-
icant improvement against partial occluded ones.

In Figure 4.12 we show four different heat-maps. Each one of them indicates which
features (blocks) are actually used in each of our final ensembles (read figure’s caption for
more details). On one hand, the uneven shading in all the heat-maps shows that features from
all parts of the window are present in the ensemble, be it only in a small number of classifiers.
This fact demonstrates one of the advantages of our method described above, which consists
of preserving and drawing upon relationships between features in the whole window. On the
other hand, the large blue area in the bottom half of the window shows that the lower part is
rarely useful (also supported by the study performed in [18]). These circumstances together
with the results shown in this section highlight the benefit of relying on a supervised statistical
learning of the type of occlusions that a given class typically undergoes,i.e., in opposition to
making a specific hard assumption about such occlusions (e.g., upper/lower selection).

4.7 Conclusions and Future Work

In this chapter, we have presented a general approach for human detection in still images with
the presence of partial occlusion. The method is based on a modified random subspace classi-
fier ensemble. The method can be easily extended to other objects, and allows to incorporate
other block-based descriptors. Two of the most widely used descriptors in the literature of
pedestrian detection have been implemented, HOG and HOG-LBP. The linear SVM was used
as the base classifier. We evaluated our approach on two large datasets, INRIA and Daimler.
The INRIA data is considered a standard benchmark for human detection. We designed and
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Figure 4.13:Per-image results at one FPPI using HOG features. Top row, the detec-
tions using the holistic detector without occlusion handling. Middle row, the detec-
tions using Wang’s detector. Bottom row, the detections using our method.

Figure 4.14: Per-image results at one FPPI using HOGLBP features. Top row, the
detections using the holistic detector without occlusion handling. Middle row, the
detections using Wang’s method. Bottom row, the detections using our method.

released for public use a new challenging dataset calledPobleSec. The virtual-reality dataset
for per-image detection is also released for public use. Both per-window and per-image eval-
uations have shown that the proposed approach works on a par with the holistic approach
when no occlusions are present and outperforms both holistic and Wang’s approaches for
detection of partially occluded pedestrian images.
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As future work, we plan on adding new descriptors, using new kernels (through embed-
ding techniques), and applying our method to other objects.



60 OCCLUSION HANDLING



Chapter 5

Random Forest of Local Experts for
Pedestrian Detection

In the previous chapter we presented a novel ensemble of local classifiers based on the Ran-
dom Subspace Method. In this chapter, we push this idea further and present a new method
that effectively combines multiple ensembles of rich local experts. We achieve this by adapt-
ing the classical Random Forest framework in order to work with discriminant local models.
While the objective of the last chapter was to present a method robust against partial occlu-
sions, in this chapter we focus on learning a rich model that is able to cope well with the large
intra-class variability typical of pedestrians, especially due to the multiple articulated poses
that they can adopt. For this purpose, we present a new Random Forest which combines mul-
tiple discriminant local experts. This combination provides flexibility in the learned spatial
arrangements and a certain robustness against partial occlusions, even though the method is
not specifically designed for occlusion handling, in contrast with our previous method.

The proposed method works with rich block-based representations such as HOG and
LBP, in such a way that the same features are reused by the multiple local experts, so that
no extra computational cost is needed with respect to a holistic method. Furthermore, we
demonstrate how to integrate the proposed approach with a cascaded architecture in order to
achieve not only high accuracy but also an acceptable efficiency. In particular, the resulting
detector operates at five frames per second using a laptop machine. We tested the proposed
method with well-known challenging datasets such as Caltech, ETH, Daimler, and INRIA.
The method proposed in this work consistently ranks among the top performers in all the
datasets, being either the best method or having a small difference with the best one.

5.1 Introduction

Pedestrian detection is an extremely challenging task due to the large intra-class variability
caused by different articulated poses and clothing, cluttered backgrounds, abundant partial
occlusions and frequent changes in illumination. The seminal work of Dalal and Triggs [10]
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showed the importance of using rich block-based descriptors such as the Histograms of Ori-
ented Gradients (HOG) representation, which provides both robustness and distinctiveness.
Building upon this work, other authors have proposed additional features that enrich the vi-
sual representation, including the use of color through self-similarity features (CSS) [81],
texture through block-based Local Binary Patterns (LBP) [82], and the design of efficient
gradient-based features via integral channels [13–15].

All of these approaches are holistic, in the sense that the whole pedestrian is described
by a single feature vector and is classified at once. Recently, some authors have proposed
successful methods for combining local detectors [8, 24, 85] and integrating the evidence
from multiple local patches [26,39,68]. This type of approaches provides more flexibility in
the spatial configuration of the different parts of the object, which leads to higher adaptability
to the different poses of the pedestrian. Furthermore, it provides higher robustness against
partial occlusions and atypical part appearances [26]. The most promising local part-based
approach, proposed by Felzenszwalb et al. [24] has shown state-of-the-art results in several
challenging datasets, being consistently ranked among the top performers.

Regarding the classification method, most approaches have made use of linear SVM
classifiers [11, 24, 81, 82], which combine both the strength of the SVM machinery and the
efficiency of a linear computation. AdaBoost is also a popular classifier for pedestrian detec-
tion, typically used in the presence of large numbers of features [15, 16, 83], or for speeding
up the detection through cascaded layers of Boosting [14, 79, 93]. In particular, the use of
cascades has made it possible to obtain close to real-time performance in the detection stage,
especially when combined with integral features [14].

cluster #1 cluster #2

(a) (b) (c) (d)

Figure 5.1: (a) Classification of individual patches in the Hough Forest [26,39,68],
(b) detection by Hough voting, (c) classification of image windows in the proposed
method used in a (d) sliding window framework.

Recently, Random Forest ensembles [26,39,68] have been proposed as an alternative type
of ensemble classifier for pedestrian detection. However, traditionally based on simple pixel
comparisons, their detection accuracy has remained moderate. In this chapter, we propose a
novel pedestrian detection approach that combines the flexibility of a part-based model with
the fast execution time of a Random Forest classifier. In this proposed combination, the role
of the part evaluations is taken over by local expert evaluations at the nodes of the decision
tree. As an image window proceeds down the tree, a variable configuration of local experts
is evaluated on its content, depending on the outcome of previous evaluations. Thus, our
proposed approach can flexibly adapt to different pedestrian viewpoints and body poses. At
the same time, the decision tree structure ensures that only a small number of local experts
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are evaluated on each detection window, resulting in fast execution. The proposed detection
system was evaluated with a variety of well-known pedestrian datasets such as Caltech [18],
Daimler [19], ETH [21] and INRIA [10], where it consistently ranks among the top perform-
ers. This is on a par with the most successful part-based detection system [24], while our
method presents far less design complexity and higher computational efficiency.

The rest of this chapter is organized as follows. Section 5.2 describes the state-of-the-
art approaches related to ours, section 5.3 describes key concepts of the standard Random
Forest classifier, section 5.4 introduces the proposed method, section 5.5 provides results and
section 5.6 summarizes the work and discusses its contributions.

5.2 Related work

Closely related to our work, there are recent patch-based methods that make use of a specific
type of Random Forests (RF) called Hough Forests (HF) [26, 39, 68]. Before explaining
the HF, let us summarize briefly the RF framework. In RF, each node corresponds to a
simple binary test that is applied to the input data. Depending on the outcome of this test,
processing continues with the left or right child node until a leaf node is reached. Each leaf
node stores a probability distribution over class labels, which is taken as the corresponding
tree’s classification confidence when the leaf node is reached.

The HF approach takes up this idea, but applies it on a patch level. Here, the leaf nodes
take up the role of visual words, and each of them stores a vote distribution for the relative
position of the object center. The votes from activated leaf nodes are combined in a Hough
Voting space, and object locations are determined as local maxima of the vote distribution.

The HF classifier is significantly different from the RF classifier proposed in the present
work. While HF is used for classifying the individual local patches, the proposed RF is used
for classifying the entire object at once. For this purpose, at training time each node of the
tree receives a subset of window samples containing the entire object and decides which local
patch is most discriminant based on the given data (see Figs. 5.1(c)-(d)). As a result, each
tree of the forest provides an ensemble of local experts, where each expert is specialized in a
different local patch of the object.

An important difference with respect to [26, 39, 68] is that in these approaches the col-
lection of local patches is sampled beforehand from the window and introduced into the tree.
Therefore, each node of the tree is forced to learn each patch of the collection, regardless of
whether or not this patch is discriminant for classifying the whole object. In contrast, in the
proposed method each node of the tree automatically selects the local patch that is found to
be the most discriminant one, based on the subset of samples received. Furthermore, by us-
ing the RF machinery the local patch selected by each node complements, in a discriminative
sense, the local patches selected by its ancestors in the tree, obtaining a strong ensemble of
local experts. At the end of the process each tree of the forest has selected a different collec-
tion of discriminant local patches, increasing the robustness and generalization capability of
the final classifier.
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5.3 Standard weak learner model

Before discussing the classifier proposed in our work, let us first introduce the basic concepts
and notation of the Random Forest ensemble [7]. For lack of space we restrict the explanation
to only the standard weak learner model, and we refer to [7] for an in-depth description of
the RF classifier.

Given a tree of the forest, we follow the notation in [7] and denote asSj the set of samples
received by thej-th internal or split node of this tree. We denote ash(~v; θj) ∈ {0, 1} the split
function associated with this node, where~v is a feature vector andθj is the set of parameters
defining the split function. The split function acts as a weak classifier that is part of the
ensemble defined by the whole tree. At training time, thej-th node receives a subset of
samplesSj , and based on this data the classifierh(~v; θj) is trained. This is done by finding
the optimal parametersθj for this classifier. At test time, thej-th node receives the feature
vector~v, and this vector is passed to either the left or the right child depending on the output
of h(~v; θj) ∈ {0, 1}.

Criminisi et al. [7] define a general framework for defining the split functionh(~v; θj). In
this framework, the set of parametersθj is defined asθj = (φ, ψ, τ), where the parameter
φ is defined as a feature selection function that allows to disregard the noisy features in~v,
the parameterψ defines a geometric transformation that maps the data to a space where it is
separable, and the parameterτ is a threshold that permits to classify the points.

In order to clarify the ideas, let us consider a common instantiation of this general frame-
work. The feature selectorφ is defined as the functionφ(~v) = ~u where~u ∈ R

s contains a
subset of components of~v ∈ R

d, s < d. The geometric transformation is parameterized by
a vector~ψ ∈ R

s defining a linear projectionφ(~v) · ~ψ over the selected features1. Finally,
the split functionh(~v; θ) is defined as[φ(~v) · ~ψ < τ ], where[] is the indicator function. As
a result, the classification is performed by first selecting some of the components of~v, then
projecting the resulting vector, and then applying the thresholdτ .

Let T be the search space where the parametersθj live. The optimal parametersθj are
estimated as follows:

1. Randomly sample a small subsetTj ⊂ T .

2. For eachθ ∈ Tj do:

(a) Split the setSj into two subsets:

SLj = {~v ∈ Sj : h(~v; θ) = 0}

SRj = {~v ∈ Sj : h(~v; θ) = 1}

(b) Evaluate the goodness of the previous partition using some measure of purity

1Using some abuse of notation, we write~ψ as a vector in order to express the linear projection
φ(~v) · ~ψ. However, in the general framework of Criminisi et al. [7] the parameterψ defines a generic
geometric transformation, and thus should be expressed as a function in the general case.
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such as the information gain:

I(θ) = H(Sj)−
∑

child∈{L,R}

|Schildj |

|Sj |
H(Schildj ) (5.1)

whereH(S) is the entropy:

H(S) = −
∑

c∈C

p(c) log(p(c)).

3. Define the parameters for nodej as:

θj = argmax
θ∈Tj

I(θ)

5.4 Proposed method

In this work we define a novel ensemble of local experts based on an averaged combination
of random decision trees. We first describe the main differences with respect to the standard
RF framework by using generic pattern recognition concepts. Afterwards we will introduce
the concepts specific to pedestrian detection, and introduce our ensemble of local experts.

5.4.1 Weak learner model

The main difference with respect to the standard framework is that in each node the optimiza-
tion of the parametersθ is not only based on a maximization of a purity measure (Eq. 5.1),
but also on a maximum-margin optimizer which minimizes the classification error over the
samples of the nodeSj . In particular, this is done by optimizing the linear transformation~ψ
based on the linear SVM learning algorithm. Later on we will see that the joint use of this
learner together with and an appropriate feature selectorφ(~v) provides the desired ensemble
of local experts.

Keeping the discussion still under generic pattern recognition terms, the optimization
process for each nodej is composed of the following steps:

1. Randomly generate a subset{φ1, . . . , φK} of K feature selectorsφk(~v). The genera-
tion of theseK feature selectors is explained in section 5.4.2.

2. Fork = 1, . . . , K do:

(a) LetSφk

j be the transformed set of samples:Sφk

j = {φk(~v) : ~v ∈ Sj}.

(b) Obtain a discriminant linear transformation~ψk by learning a linear SVM classi-
fier over the transformed samplesSφk

j .
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(c) Find the thresholdτk that maximizes the purity (Eq. 5.1) of the following parti-
tion:

SLj = {~v ∈ Sj : ~ψ
T
k · φk(~v) ≤ τk}

SRj = {~v ∈ Sj : ~ψ
T
k · φk(~v) > τk}

Note that the projected values~ψT
k · φk(~v) are classification scores provided by

the previously learned linear SVM classifier2.

(d) LetPk = I(φk, ~ψk, τk) be the maximum purity value obtained in the previous
step.

3. Letk∗ = argmaxk=1,...,K Pk. Define the split function for nodej as:

h(~v; θj) = [~ψk∗ · φk∗(~v) ≤ τk∗ ] . (5.2)

The most important difference between the proposed weak learner model and the stan-
dard one (Section 5.3) lies in the optimization of the linear transformation in step 2.b. In our
case, this is carried out by a discriminant optimizer such as the linear SVM learner. This
learner obtains a hyperplane that optimally separates the set of training samples at each node.
In contrast, in the standard weak learner model (Section 5.3) the optimization consists of
randomly generating a few transformations and then evaluating each transformation together
with the rest of parameters (the feature selectorφ and thresholdτ ) in order to obtain the
combination that maximizes the purity of the resulting partition. While the latter approach
also provides a discriminant classification of the samples, there is no guarantee that the re-
sulting hyperplane provides an optimal maximum-margin discrimination. In addition to this
conceptual difference, the use of a discriminant classifier such as the linear SVM, together
with an appropriate definition of the feature selectorφ (see section 5.4.2) allows us to train
our ensemble of local experts inside the RF framework.

5.4.2 Feature selector

We define our ensemble of local experts through the definition of an appropriate feature
selectorφ(~v). Fig. 5.2 shows an illustration of the idea: given an image window, a block based
descriptor~v such as HOG is extracted by partitioning the window intoN×M blocks3. Given
this block-based descriptor~v, each feature selectorφk defines a rectangular region formed by
contiguous blocks (see Fig. 5.2).

In particular, thek-th feature selectorφk is generated by randomly selecting the coordi-
nates(i, j) of the top-left block, and randomly generating the widthW and heightH of the
rectangular area, where1 ≤W ≤ L and1 ≤ H ≤ L, with L the predefined maximum size.

2Technically, the vector~ψ is obtained as~ψ = (~wT , b)T , where~w andb are the weights and offset
provided by the linear SVM classifier. The feature selectorφ(~v) is then obtained asφ(~v) = (~zT , 1)T

where~z contains a subset of the components in~v. This way we have:~ψT
· φ(~v) = ~wT

· ~z + b.
3Note that neighbour blocks usually overlap each other, although this is not illustrated in the Fig.

5.2.
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φ1

φ2

φ3

Figure 5.2: Illustration of our feature selector. In here, we show a conceptual grid
of blocks.

Given the previous definition of the feature selectorφk, thek-th local expert is defined
asEk(~v) = ~ψT

k · φk(~v). As explained in section 5.4.1, the transformation~ψk is learned
by using a discriminant learner such as linear SVM, using the transformed samplesSφk

j as
training set. This is equivalent to extracting a local block-based feature vector from the same
rectangular area across the different image windows introduced into the node, and feeding
them to a learner that obtains a model of this part of the window. In our case, however, an
explicit extraction of local descriptors is not necessary, making the approach computationally
efficient.

Note that there is a very large number of possible feature selectorsφk that can be defined
over a typical block-based descriptor such as HOG or HOG-LBP, and not all of them provide
the same discriminatory power. Using the weak learner defined in Section 5.4.1, thej-th node
randomly generates a fixed numberK of feature selectorsφk, learns the corresponding local
expertsEk and selects the most discriminant one according to the given data. The selected
local expertEk also complements, in a classification sense, the ones selected by the other
nodes in the same branch of the tree. This is due to the fact that the data samples received by
the nodej depend on the classification provided by its ancestors. As a result, each tree of the
forest provides an ensemble of local experts which are both discriminant and complementary.

5.4.3 Definition of other RF components

The rest of the RF components are defined in a standard way [7]. This comprises the type
of randomness, and the aggregation rule used for obtaining the final output of the forest.
Regarding the type of randomness, we do not use bagging in this work, i.e., each tree of
the forest receives the whole training set. This choice is recommended in the analysis of
Criminisi et al. [7] and gave us slightly better results in preliminary tests.

Regarding the output of the forest, letpt(c|~v) be the probability that the window~v be-
longs to classc, computed by thet-th tree of the forest. This probability is obtained during
the training stage. Every leaf stores the class distribution of the training samples that reach
it, and then each leaf probability is set according to this distribution. Given this, we use
the average as aggregation rule in order to compute the probability for the whole forest:
pF(c|~v) =

1

T

∑T

t=1
pt(c|~v), whereT represents the number of trees in the RFF .
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5.4.4 Bootstrapping procedure

We use bootstrapping at training time in order to select a subset of negative windows from the
large pool of possible negatives. For this purpose, we propose to use an efficient procedure
that consists of the following steps:

1. Set the initial training set asS = P ∪ N , whereP is the set of cropped pedestrians,
andN is an initial set of negative windows that are randomly sampled.

2. Set the initial forest asF = ∅

3. Fori = 1, . . . , Nboot do:

(a) TrainM new trees using the training setS. Add the trees to the current forest
F .

(b) Use the current forestF for detecting false positives in the training images.
Consider these false positives as negative samples and add them to the training
setS.

(c) Use the new training setS for updating the leaf probabilitiesp(c|~v) for all the
trees in the current forestF .

Our strategy, when compared with [68], allows to reduce the number of hard negatives
obtained at each iteration. This is mainly due to the fact that at each iteration more trees
are responsible for classifying, and that all the probabilitiesp(c|~v) stored at the leaf nodes
are updated using the entire training set (which slightly increments their discriminative abil-
ity). Moreover, it is worth mentioning that the training time is reduced thanks to the smaller
number of negative samples introduced at each iteration.

5.4.5 Soft Cascade

In order to speed up the detection of objects, we propose to use a Soft Cascade (SC) archi-
tecture [4]. LetT be the total number of trees in the forest,M be the number of trees used
in an initial layer,η be a predefined rejection threshold (see Section 5.5.1), and~v be the
block-based representation of the current window. We propose the following SC algorithm:

1. score← 1

M

∑M

t=1
pt(c = 1|~v)

2. t←M

3. Whilescore > η andt < T do:

(a) score← 1

t+1
(score · t+ pt+1(c = 1|~v))

(b) t← t+ 1

4. If score < η reject window~v, otherwise outputscore.
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The cascade works by first gathering enough evidence for the window~v, through the use of
M trees in the initial layer (step 1). After this initialization, a new tree is added at each layer
of the cascade (step 3.a) and the score is updated. The process continues until all the trees
have been added or the score is lower thanη. In this case the window is rejected and the
evaluation stops.

As we will see in the results section, the SC provides a significantly faster detection. This
is due to the fact that a large majority of windows are rejected at early stages of the cascade,
and thus there is no need to compute the probability for all the trees of the forest on these
windows.

5.4.6 Candidates generation pruning

The components introduced so far can be employed for detecting generic object classes (not
just pedestrians). We introduce now an additional component that is specific for pedestrian
detection. In particular, we make use of a-priori geometry information, based on three differ-
ent assumptions: i) the frames are compensated for car pitch motion, ii) the pedestrians are
standing on the floor, and iii) the floor is flat.

Using projective geometry, we haveh ≈ Hf
d
, whereh is the height of the pedestrian in

the image,H is the height of the pedestrian in the world,d is the distance of the pedestrian to
the camera andf is the focal length. Furthermore, if(x, y) is the position of the pedestrian
in the image, the vertical coordinatey is inversely proportional to the distanced: y ∝ 1

d
+ y0

(see Fig. 5.3(a)). This way, the pedestrian appears at the bottom of the image (i.e.,y = ymax)
when it approaches the camera, and it appears close to the horizon line (i.e.,y = y0) when
the distanced in the real world tends to infinite (see Fig. 5.3(a)).

Combining the both equations, we have:h ∝ Hf(y − y0), which indicates a linear
relationship between the height of the pedestrianh and its vertical positiony in the image.
In order to verify this relationship, the actual values ofh andy were measured for all the
pedestrians from the Caltech training set. Fig. 5.3(b) shows these values plotted as blue
points, where the horizontal axis representsh and the vertical axis representsy. The red line
corresponds to the linear regression forŷ, the green lines show the standard deviation, and
the yellow lines delimit the possible range of values where all the samples are contained.
The data clearly shows a strong correlation between the pedestrian heighth and its vertical
positiony, where the variability is due to the different heightH of the pedestrians, which
follows a normal distribution, and the fact that the ground is not completely flat in the real
world.

Given the previous observations, in this work we propose a simple method for discarding
unrealistic window candidates before introducing them to the classifier. At training time, we
compute the linear regression and standard deviation (as in Fig. 5.3(b)) for the pedestrians in
the training set. Assuming that the test images have been captured under similar conditions,
at test time we discard all the window candidates whose height and vertical position(h, y)
fall outside the range defined by the standard deviation interval. In practice, this is done
as follows: for each level of the scale-space pyramid we only need to extract the visual
representation~v and the classification score for those windows whose vertical positiony fall
in a certain range.
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Figure 5.3: Projective geometry (a), linear regression of pedestrian heighth versus
vertical positiony in the image (b)

The proposed candidate pruning provides both a speed up in the detection step and a re-
duction of false positives appearing in regions of the image where it is not physically plausible
to have a pedestrian. An evaluation of the impact of both factors is provided in section 5.5.

5.5 Results

The INRIA dataset [10] is currently being used in the literature as a training-validating
dataset. Then, once the best parameters are found during the validation, authors usually
report additional results on other challenging datasets. We followed a similar procedure.

Due to the large number of parameters, most of them were estimated by testing just a few
reasonable values. The selected values are described in Section 5.5.1. There were two param-
eters, however, that were exhaustively optimized using a validation set (i.e. the INRIA testing
dataset). In Section 5.5.2, we describe the corresponding experiments. In Section 5.5.3, we
provide a comparison against the best state-of-the-art methods on these other datasets. Fi-
nally, Section 5.5.4 provides an evaluation of the computational cost obtained with different
alternatives.

5.5.1 Experimental setup

In this work, we evaluated the use of both HOG [10] and HOG-LBP [82]. Some modifications
were introduced into the HOG-LBP descriptor: i) we used the same spatial partition as in
HOG for LPB, resulting in 105 spatial blocks; ii) we did not interpolate the pixels around the
compared central one, in order to prevent the texture information from being distorted; iii)
in order to add robustness against noise, we used an offset when comparing the central pixel
with its neighbours; and iv) we only used the luminance channel. Altogether, these changes
permitted us to reduce the computational cost while maintaining an accuracy similar to the
one of the original definition [82].
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Regarding the computation of the sliding window, we used a step size of eight pixels,
which allows to reuse overlapping blocks. For the multi-resolution pyramid we set the scale
stride to 1.05.

During the Random Forest construction we used the following stopping criterion. A
node is no longer split if either of the following conditions occurs: a) its depth is larger than 6
levels; b) the subset of samples contains less than 10 samples; or c) the percentage of samples
from the same class is above 99%. This type of stopping criterion is standard [7], and the
specific values were observed to provide good results on the INRIA dataset.

We used a fixed thresholdη = 0.1 in the SC (section 5.4.5). In the Bootstrapping proce-
dure (section 5.4.4) the hard negatives are defined as those negative samples whose classifi-
cation confidence is larger than0.25.

Similar to the previous chapters, we performed the standard per-image evaluation used in
pedestrian detection [18,19,30]. However, in order to quantify the performance and compare
our approach to other state-of-the-art methods we used the well-known Caltech pedestrian
toolbox [18]. The unique difference between our previous framework and the Caltech one is
the range in which the log-average miss-rate is computed. In their case the compute it in the
range10−2 to 100.

The CGP step described in Section 5.4.6 was only used in the Caltech dataset, in order to
obtain a fair comparison with the best performer in this dataset [58], that also uses a similar
CGP component. Sections 5.5.3 and 5.5.4 show the performance of our system both including
a CGP step and not including it.
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Figure 5.4: Validation results using HOG. (a) Performance as a function of max-
imum patch sizeL, (b) performance as a function of the number of bootstrapping
rounds.

5.5.2 Estimation of parameters

Two parameters were exhaustively optimized using the test set of the INRIA dataset. The
first one is the maximum patch sizeL selected by each local expert (see section 5.4.2). This
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parameter represents the compromise between having an expert that is based onlocal (i.e.
small) regions and the use of distinctive (i.e. large) regions. In Fig. 5.5(a) we can see that
the accuracy increases as we increase the maximum patch size, until it reaches3× 3 blocks.
Permitting larger patches leads to lower accuracy.

The second parameter is the number of bootstrapping iterationsNboot. This parameter is
important due to the high computational cost of each bootstrapping iteration, which makes it
necessary to estimate the minimum number of iterations that provide an accuracy converging
to the maximum. In Fig. 5.5(b) we can see that the accuracy saturates with 20 iterations (we
also tried 25 and 30 iterations, but the accuracy was no longer increasing). The results using
HOG features were analogous to the HOG-LBP ones.
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  5−iterations   (30 trees) 18.9 ±1.6%
10−iterations   (55 trees) 16.4 ±1.3%
15−iterations   (80 trees) 15.7 ±1.5%
20−iterations (105 trees) 15.4 ±1.2%
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Figure 5.5: Validation results using HOGLBP. (a) Performance as a function of
maximum patch sizeL, (b) performance as a function of the number of bootstrapping
rounds.

5.5.3 Comparison with the state-of-the-art

Our final detector was evaluated using three well-known, challenging datasets: Caltech [18],
Daimler [19] and ETH [21]. Results are shown in Fig. 5.6, where we also include results on
INRIA for completeness, and where we compare the accuracy of our approach against the
best methods of the state-of-the-art. Regarding the Caltech dataset, most of the works in the
literature only use the so-called “Reasonable” subset, so that we use this subset as reference.
However, we also show results on the “Overall” and the “Partial occlusion” subsets [18] for
completeness. We only use our CGP approach in the Caltech testing dataset (where we used
the Caltech training data for estimating the CGP parameters).

Our method matches or outperforms the state-of-the-art methods in all three datasets.
Only in the Caltech “Reasonable” subset three methods outperform our approach (if we do not
include the CGP component), although the third best performer has a similar accuracy to the
one of our method. If we use CGP, the accuracy increases. In this case, our method matches
the second best performer (MultiFtr-Motion [81]) and it is outperformed by only one method
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24.7% MultiFtr+CSS
22.2% ChnFtrs
21.3% RandForest−HOG
20.0% LatSvm−V2
16.0% VeryFast
15.4% RandForest−HOGLBP
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ETH pedestrian dataset

 

 

60.7% MultiFtr+CSS
60.0% MultiFtr+Motion
57.5% ChnFtrs
54.8% VeryFast
50.9% LatSvm−V2
48.1% RandForest−HOG
45.0% RandForest−HOGLBP
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Daimler pedestrian dataset

 

 

45.6% RandForest−HOG
39.2% MultiFtr+CSS
38.0% LatSvm−V2
29.4% RandForest−HOGLBP
29.2% MultiFtr+Motion
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65.8% RandForest−HOG
63.3% LatSvm−V2
60.9% MultiFtr+CSS
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55.1% RandForest−HOGLBP
51.0% RandForest−HOGLBP−CGP
50.9% MultiFtr+Motion
48.5% MultiResC (CGP)
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87.7% LatSvm−V2
85.5% MultiFtr+CSS
82.8% ChnFtrs
82.8% MultiFtr+Motion
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Caltech testing dataset: Partial occlusion

 

 

81.4% MultiFtr+CSS
81.3% LatSvm−V2
73.0% MultiFtr+Motion
73.0% ChnFtrs
71.6% MultiResC (CGP)
69.1% RandForest−HOGLBP−CGP

Figure 5.6: Miss rate versus false positive per image curves in the INRIA, Daimler,
ETH and Caltech testing. For the Caltech testing dataset we show results under three
different conditions: reasonable, overall and partial occlusion (please refer to [18]
for further details).
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(MultiResC (CGP) [58]) in the reasonable evaluation subset. It is worth mentioning that
these methods make use of additional sources of information (multi-resolution in MultiResC
(CGP) [58] and motion in MultiFtr-Motion [81]). These sources can also be incorporated in
our approach. In fact, both [81] and [58] make use of block-based representations in order
to include these sources of information, so that they can be integrated in our framework with
moderate changes. This would further increase the accuracy of our method.

Regarding the rest of the other Caltech evaluation subsets (“Overall” and “Partial occlu-
sion”), we can see that the conclusions are maintained. In all the cases, our method is in
the top positions. In particular, the RandForest-HOGLBP-CGP outperforms the MultiResC
(CGP) in the “Partial occlusion” subset. Additionally, in Fig. 5.7 we show the results of
our random forest compared to the linSVM, our previous occlusion handling method, and
Wang’s approach [82] in the PobleSec dataset. These results are consistent with the fact that
local-patch based methods are usually more robust against partial occlusions than the holistic
ones.
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Figure 5.7: Per-image evaluation in PobleSec. (a) Performance using HOG features,
and (b) performance using HOGLBP. We refer to our occlusion handling approach
as RSM.

5.5.4 Testing speed

In order to evaluate the computational cost, we used a laptop machine with a i7-2860QM
CPU at 2,50GHz. Furthermore, we parallelized our code in order to compute several scales
of the pyramid at the same time, and in order to compute several trees of the forest at the same
time (this last parallelization was only performed for our baseline and it was not performed
when using the SC component).

Table 5.1 shows the runtime of the proposed approach, including the baseline without
any speed-up, the use of SC and the use of both SC and CGP. If we consider pedestrians
with a minimum height of 96 pixels, the system operates at 4 fps with HOG, and 3 fps with
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HOG-LBP. This can be further sped up if we use some hardware optimization. For this
purpose, we used AVX instructions in order to implement the dot product involved in the
SVM classification. In this case, we reached 5.9 fps with HOG and 4.6 fps with HOG-LBP.
These times make the resulting system fairly fast in comparison with the state-of-the-art, as
evaluated in [18]. As an example, the two fastest detectors evaluated in that survey operate at
1.2 fps and 6.5 fps, while the proposed approach operates at 1.9 fps without any optimization
(using only the SoftCascade and excluding the CGP step) and at 4.6 fps if we use both AVX
instructions and the CGP step. At the same time, the proposed approach ranks in the top
positions in terms of accuracy, as shown in this section.

≥ 50 pixels ≥ 96 pixels
HOG HOG-LBP HOG HOG-LBP

RandForest 0.15 0.09 0.75 0.53
SoftCascade 0.60 0.45 2.51 1.88
SoftCascade + CGP1.23 0.93 4.01 3.17

Table 5.1: Frames per second (fps) obtained when detecting pedestrians in the Cal-
tech test dataset. Second column shows the fps when detecting pedestrians with a
minimum height of 50 pixels using HOG and HOG-LBP. And the third column, the
fps for pedestrians with a minimum height of 96 pixels with HOG and HOG-LBP.

5.6 Conclusions

In this chapter, we have presented a novel approach for estimating ensembles of local experts
through the RF framework. The proposed approach works with rich block-based descriptors
which are reused by the different experts of the ensemble in such a way that each expert
selects the most discriminant local patch based on this descriptor. Making use of the RF
framework, the patches selected by each tree are both discriminant and complementary, and
at the end of the process the forest estimates a diverse collection of ensembles providing both
robustness and generalization capabilities. As part of the work, we show how to integrate the
proposed RF classifier into a SC architecture.

Altogether the proposed work provides an interesting framework that permit to match the
best approaches in terms of accuracy, as measured across several challenging datasets, with-
out including additional sources of information such as motion, multi-resolution or colour.
These sources can be easily integrated in the future in order to further increase accuracy. At
the same time, we showed how the proposed architecture permits to obtain a quasi real-time
performance at test time, on pair with some of the fastest detection approaches. This is due
to the integration of the SC component.
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Chapter 6

Conclusions

Pedestrian detection is one of the most challenging tasks in Computer Vision. This is mainly
due to the range of variability in terms of the appearance caused by the different clothing,
poses, sizes and partial occlusions. Moreover, weather conditions may also influence the
detector performance, as well as the illumination, the quality of the camera sensor, and highly
textured elements present in the background. The research in this field has been mainly
concentrating its efforts on two different lines of investigation: 1) design of features, and 2)
learning machine algorithms.

In this dissertation we can divide our work into two different stages. In the first stage
of the thesis, we have explored how computer graphics could benefit pedestrian detection.
In particular, we have addressed the question of whether or not a pedestrian detector trained
using virtual data could be successfully applied in a real scenario. A positive answer to this
question brings the possibility of reducing or even removing the tiring time of annotating
required to collect the training data, which, with no doubt, can be considered a significant
contribution.

In the near future, such a virtual data will be naturally collected from the simulators
that the automotive industry is developing. In the meantime, as a proof of concept, we have
developed an entire virtual city using a mapping tool. To achieve a high realism we have made
use of all the possibilities the game engine provided. First, we have introduced elements such
as buildings, roads, streets, traffic signs, different ground textures, trash on the floors, trees,
dust and cars. Second, we have used over 50 different human models with type of male and
female bodies and clothing. Third, we have used the game’s artificial intelligence to move
the human and car models around the city. Fourth, we have used the best video options
available in the game (HDR, anti-aliasing, high quality textures, etc.). Fifth, different types
of illuminations. Once we have finalized the development, we have driven through the virtual
city with an on-board virtual camera, recording several video-sequences using four different
illuminations (we tried to reproduce different daytime moments). Next, we have randomly
generated a virtual dataset. Then, we have trained two different detectors, one using the
virtual data and another one using a real dataset. For training the detector, we have used the
HOG descriptor accompanied with a linear SVM. Both, the HOG descriptor and the SVM are
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two of the most used features and learning machine algorithms, respectively, in the literature.
The number of training samples and the algorithm parameters are the same in both cases.
Finally, the two detectors are validated in one large real dataset. The final results demonstrate
the viability of using virtual data for pedestrian detection. In fact, both detectors achieve a
similar accuracy. We detected domain adaptation problems when applying our virtual-world
based detector to new real-world images. This domain adaptation issue gave rise to a full new
PhD developed in parallel to this one.

As mentioned before, another challenge is to detect partially occluded pedestrians. Ac-
cordingly, In the second part of this dissertation, we have focused on improving the detection
against partial occlusions. To this end, two different methods have been proposed: a novel
framework for occlusion handling, and a robust detector based on a random forest of local
experts ensemble.

We have presented a novel method to handle partial occlusions. After investigating the
problem, we have found that in most cases occluded parts tend to confuse the classifier as
they can be interpreted as noise or background, and therefore lead to a misclassification. Our
belief at this point is that, if the classifier is able to avoid such regions and rely only on those
in which no occlusion is present, the chances of handling these cases may increase. Follow-
ing this hypothesis, we present a general framework in which only those candidates inferred
as partially occluded are again evaluated by a Random Subspace Method (RSM). To infer a
candidate window as a partially occluded pedestrian we take advantage of the block-based
structure and the linearity of the SVM used as the holistic classifier. More concretely, we
divide the global response into local responses and then analyse them to figure out if there
is a possible partially occluded pedestrian. The key of RSM is how the ensemble has been
trained. In particular, the final ensemble we have obtained is the result of a training stage in
which the best random classifiers against partial occlusions are selected and then combined.
Here, each random classifiers is trained on a rigid compact region of the window formed by
blocks. To validate our proposal, we have carried out two different evaluations, per window
and per image. For both evaluations, the final detector has been confronted to non-occluded
data and partially occluded one. When evaluating the performance against partial occlusions,
our algorithm outperforms the current state-of-the-art. Some of the advantages of our method
are: it is not class dependent; it can be extended to other block-based descriptors; and other
sources of information such motion, stereo or multiresolution can be used for further im-
provement. Besides, the RSM reuses the same features used by the holistic SVM, which
means that no additional computational cost is needed. The experiments have been carried
out using two different sets of features, related to shape and texture, in the first case using only
HOG and in the second case combining HOG and LBP features. We make publicly available
the two datasets created in this work for benchmarking purposes. The virtual dataset used in
the validation stage, which includes only partially occluded pedestrians. The real pedestrian
dataset to assess the performance at the per image level against partial occlusions, which
includes images taken in urban scenarios in Barcelona.

Finally, we have explored how to capture the appearance variability of pedestrians (clothe,
pose, view, occlusion) using a ensemble of local experts, where such an ensemble consists
in a random forest. Concretely, at every node of each random decision tree the most dis-
criminant local expert is selected during the training process. As basic (node/expert) learning
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machine we have used HOG+LBP features with the linear SVM to assure an optimum split
for each tree node, through a maximum-margin optimization. The robust ensemble is then
the result of the complementary joined trees. Later, we integrate the final random forest into a
Soft Cascade (SC). The SC is introduced to increase the efficiency while keeping the original
accuracy. Finally, we have performed several evaluations in different pedestrians datasets.
Moreover, we have assessed the speed of the system. The results show that while matching
the best approaches in the state-of-the-art, our method achieves a quasi real-time performance
when testing, on a pair with some of the fastest detectors in the literature. Besides, the RF
presents some advantages similar to those of our previous occlusion handling method. The
initial features are reused by each node and tree of the random forest, the method can be eas-
ily extended to other object classes, and it can also benefit from other sources of information
such as motion or depth.

As a future work, we would like to assess the detection of other targets such as vehi-
cles using our occlusion handling framework and our random forest of local experts. We
would also like to implement two other random forest variants. More concretely, a Extremely
Randomized Trees (ERT) ensemble, and a Random Ferns one. ERT have the advantage of
reducing the training time with respect the RF. Random Ferns are also faster to train than the
RF and they can also be parallelized at the decision tree level. It would be also interesting to
include additional sources of information such as stereo, multi-resolution or colour into our
system. Finally, we plan to integrate the random forest of local experts proposed in this thesis
into our previous occlusion handling framework.
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