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RESUM

La diabetis és una malaltia cronica que es caracteritza per nivells elevats de glucosa en sang a
causa de la destrucci6 irreversible de les cel-lules del pancrees (diabetis tipus 1), que sén respon-
sables de la excrecié d’insulina, o degut a una combinaci6 de resisténcia a la accié de la insulina
i una secrecié d’insulina compensatoria inadequada (diabetis tipus 2). La diabetis pot conduir
a complicacions micro o macrovasculars a llarg termini amb conseqiiéncies potencialment peril-
loses per a la vida. S’estima que el nombre de persones en edat de 20 a 79 anys amb diabetis,
augmentara de 79 milions al 2012 a 371 milions al 2030. Les consequéncies economiques de la
diabetis a Europa sén significatives, amb costos anuals de 138.8 milions d’euros el 2012.

La diabetis és una de les malalties més greus que han de ser regulades artificialment. El
tractament convencional amb insulina es basa en multiples injeccions diaries o amb infusié sub-
cutania continua mitjangant bombes d’insulina. Tot i que aquesta ultima terapia és la millor
opcid disponible en I’actualitat, encara presenta diversos inconvenients per mantenir els nivells
de glucosa en sang prop de la normoglicemia. En les Gltimes decades s’han produit avengos signi-
ficatius en el camp dels dispositius terapeéutics per a la diabetis tipus 1. Aixo ha promogut el de-
senvolupament del pancrees artificial, també conegut com un sistema d’administracié d’insulina
de llag tancat, per administrar insulina de forma automatitzada i continuament d’acord amb
els nivells de glucosa mesurats en temps real. S’han proposat diverses estrategies de regulacié
durant la dltima decada per fer front a diferents condicions dels pacients, algunes ja han estat
provades en assajos clinics.

En aquesta investigacid, es desenvolupen estrategies de control en lla¢ obert i llag tancat
encaminades a superar els principals problemes de control al periode postprandial. En primer
lloc, es va desenvolupar un nou algoritme de control basat en models per a la regulacié de
glucosa postprandial en lla¢ obert basat en la tecnologia d’inversié de conjunts. Aquest coor-
dina automaticament els valors d’insulina basal-bol d’una manera eficient per tal d’aconseguir
certs objectius de control predefinits. L’algoritme va ser dissenyat per permetre la seva inte-
gracié en bombes d’insulina intel-ligents. Finalment, es van implementar estrategies de regulacié
basades en tecniques de control en mode lliscant i limitacions de la insulina a bord, per reduir
el risc d’episodis d’hipoglucemia tardana per tal d’aconseguir un acompliment més segur sense
augmentar el temps a hiperglucéemia. La robustesa dels controladors va ser demostrada mit-
jancant una amplia evaluacié i validacié en un entorn virtual integral especificament dissenyat
i implementat en aquesta tesi per permetre simulacions realistes. Una metodologia practica
per “virtualitzar” una cohort real de pacients diabetics tipus 1 també va ser desenvolupada.
D’altra banda, s’espera que un algoritme de control de glucosa en sang de llag tancat, dissenyat
i desenvolupat en aquesta tesi, sigui validat en un assaig clinic multicentric.
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RESUMEN

La diabetes es una enfermedad crénica que se caracteriza por niveles elevados de glucosa en
sangre debido a la destruccién irreversible de las células 8 del pancreas (diabetes tipo 1), que
son responsables de la excrecién de insulina, o debido a una combinacién de resistencia a la
accién de la insulina y una secrecién de insulina compensatoria inadecuada (diabetes tipo 2).
La diabetes puede conducir a complicaciones micro o macrovasculares a largo plazo con conse-
cuencias potencialmente peligrosas para la vida. Se estima que el nimero de personas en edad
de 20 a 79 anos con diabetes, aumentara de 79 millones en el 2012 a 371 millones en el 2030.
Las consecuencias econémicas de la diabetes en Europa son significativas, con costos anuales de
138.8 mil millones de euros en 2012.

La diabetes es una de las enfermedades més graves que han de ser reguladas artificialmente.
El tratamiento convencional con insulina se basa en multiples inyecciones diarias o con infusién
subcutdnea continua mediante bombas de insulina. Aunque esta ultima terapia es la mejor
opcién disponible en la actualidad, atin presenta varios inconvenientes para mantener los nive-
les de glucosa en sangre cerca de la normoglucemia. En las ultimas décadas se han producido
avances significativos en el campo de los dispositivos terapéuticos para la diabetes tipo 1. Esto
ha promovido el desarrollo del pancreas artificial, también conocido como un sistema de ad-
ministracién de insulina de lazo cerrado, para administrar insulina de forma automatizada y
continuamente de acuerdo con los niveles de glucosa medidos en tiempo real. Se han propuesto
varias estrategias de regulaciéon durante la ultima década para hacer frente a diferentes condi-
ciones de los pacientes, algunas ya han sido probadas en ensayos clinicos.

En esta investigacion, se desarrollan estrategias de control en lazo abierto y lazo cerrado en-
caminadas a superar los principales problemas de control en el periodo postprandial. En primer
lugar, se desarrollé un nuevo algoritmo de control basado en modelos para la regulacién de
glucosa postprandial en lazo abierto basado en la tecnologia de inversién de conjuntos. Este co-
ordina automéaticamente los valores de insulina basal-bolo de una manera eficiente a fin de lograr
ciertos objetivos de control predefinidos. El algoritmo fue disenado para permitir su integracién
en bombas de insulina inteligentes. Por tultimo, se implementaron estrategias de regulacién
basadas en técnicas de control en modo deslizante con limitaciones de la insulina a bordo para
reducir el riesgo de episodios de hipoglucemia tardia a fin de conseguir un desempeno mas seguro
sin aumentar el tiempo en hiperglucemia. La robustez de los controladores fue demostrada medi-
ante una amplia evaluacién y validacién en un entorno virtual integral especificamente disefiado
e implementado en esta tesis para permitir simulaciones realistas. Una metodologia préctica
para “virtualizar” una cohorte real de pacientes diabéticos tipo 1 también fue desarrollada. Por
otra parte, se espera que un algoritmo de control de glucosa en sangre de lazo cerrado, disenado
y desarrollado en esta tesis, sea validado en un ensayo clinico multicéntrico.
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ABSTRACT

Diabetes is a chronic disease characterised by elevated plasma glucose levels due to the irre-
versible destruction of f—cells in the pancreas (Type 1 diabetes), which are responsible for the
excretion of insulin or a combination of resistance to insulin action and an inadequate compen-
satory insulin secretory response (Type 2 diabetes). Diabetes can cause long-term micro- or
macrovascular complications with potentially life-threatening consequences. The total number
of people with diabetes in the age range of 20-79 is projected to increase from 371 million in
2012 to 552 million in 2030. The economic consequences of diabetes in Europe are profound,
with annual costs of 138.8 billion EUR in 2012.

Diabetes is a serious disease that must be artificially regulated. Conventional insulin treat-
ment is based on multiple daily injections (MDI) or continuous subcutaneous insulin infusion
(CSII) pumps. Although CSII therapy is currently the best available option for diabetic patients,
this method presents several drawbacks regarding the maintenance of blood glucose levels near
normoglycaemia. Significant advances in the field of therapeutic devices for Type 1 diabetes
have been achieved over the last decade. This has promoted the development of the artificial
pancreas, which is also known as the closed-loop insulin delivery system, to deliver insulin in an
automated and continuous manner according to real-time sensor glucose levels. Several closed-
loop control strategies have been proposed during the last decade to address different patient
conditions, some of which have already been tested in clinical trials.

In the work presented in this dissertation, open-loop and closed-loop control strategies that
were aimed at resolving major control problems in the postprandial period were developed. A
new model-based control algorithm for postprandial glucose regulation in open-loop, which is
based on set-inversion technology, was developed. It automatically and efficiently coordinates
the values of basal-bolus insulin to achieve certain predefined control objectives. The algo-
rithm was designed to enable integration into existing smart insulin pumps. Closed-loop control
strategies based on sliding mode techniques and insulin-on-board constraints were implemented
to reduce the risk of late hypoglycaemic events and to obtain safer controller performance with-
out increasing the period of hyperglycaemia. Extensive evaluation and validation of the control
robustness was performed in a comprehensive virtual environment that was specifically designed
and implemented to facilitate realistic simulations. A practical methodology to “virtualise” a
cohort of real Type 1 diabetic patients was also developed. A closed-loop blood glucose control
algorithm was also designed and developed in this thesis and is expected to be validated in a
multicentre clinical trial.






Chapter 1

Introduction

This chapter presents an overview of the dissertation and considers the motivations of the
research. The challenges, objectives, and methodology of this study are briefly explained. A
description of the structure and content of the thesis is also presented.

1.1 Motivation

Diabetes mellitus (DM) is a disease characterised by absolute or relative insulin deficiency (Type
1 diabetes — T1D and Type 2 diabetes — T2D, respectively). It is currently one of the most
common chronic conditions and has a significant impact on European public health and econ-
omy. The International Diabetes Federation estimates that more than 8.4% of the European
population in the age range of 20-79, that is, approximately 55 million European citizens, cur-
rently suffer from diabetes; this number is expected to increase to 64 million by the year 2030.
The economic consequences of diabetes in Europe, with annual costs of 138.8 billion EUR in
2012 (International Diabetes Federation, 2011), are profound. Approximately 10% of diabetic
patients are affected by T1D, and Europe has the highest global prevalence rate of T1D in
children.

Diabetes constitutes serious risks for the health and life of citizens. Previously, people af-
fected with DM died from a diabetic coma. However, the discovery of insulin in 1921 has
minimised the risk of this acute complication and has transformed diabetes into a chronic con-
dition. Currently, T2D (previously referred to as noninsulin-dependent diabetes mellitus) can
be effectively treated with oral medicine. Conversely, the external administration of insulin is
required for the survival of patients with T1D (also known as insulin-dependent diabetes melli-
tus or juvenile diabetes). With the availability of miniature glucometers, which are easy to use
and provide affordable point-of-care, self-monitoring of glucose levels is prevalent. By creating
an opportunity for self-management, glucometers enable patients to actively participate in their
treatment. Compared with multiple daily injections of insulin therapy, continuous subcutaneous
insulin infusion treatment using an insulin pump has proven to be effective for reducing HbAlc
(an index of mean glycaemic control) in patients with T1D (Doyle , Boland; Retnakaran et al.,
2004); however, hypoglycaemic episodes have not been reduced.

In the last two decades, technological progress has fuelled research on closed-loop glucose
control systems (artificial pancreas), which combine an insulin pump and a continuous glucose
monitor (CGM) for a more effective treatment of T1D subjects. Although satisfactory clinical
results have been reported for overnight glucose control (Sherr et al., 2013; Elleri et al., 2011b),
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several challenges for effectively realising an optimal postprandial (post-meal) closed-loop con-
trol of blood glucose are evident. The lack of accuracy for existing continuous glucose monitors
in the hypoglycaemic range, the safety of insulin pumps, the disturbances during large meals,
stress and physical exercise, a patient’s variability and the delays in the subcutaneous route have
been identified as limiting factors in the development of an artificial pancreas for ambulatory use.

Different approaches have been suggested to address meal disturbances in closed-loop glu-
cose controllers. Fully closed-loop systems, in which information about meal size and timing
are not provided in advance to the system, have demonstrated poor performance with unac-
ceptably high postprandial glucose and low post-meal nadir glucose (Steil et al., 2006, 2011).
These results have promoted less-ambitious approaches, in which meals are announced to the
system by the generation of feed-forward action, such as a prandial insulin bolus (semi-closed
loop). Hybrid approaches have also been proposed, in which a percentage of the prandial bo-
lus is applied and the remainder of the prandial bolus is provided to the closed-loop controller
(Hovorka, 2011). Clinical studies have compared the efficacy of these solutions for reducing
postprandial excursions during closed-loop control systems with the efficacy of fully closed-loop
systems (Weinzimer et al., 2008a). The results indicate that the first generation of an artificial
pancreas will require the announcement of meals. However, the prevention of overcorrection
remains the primary drawback of control algorithms. Aggressive tuning for a low post-prandial
glucose peak may cause an accumulation of insulin and produce late hypoglycaemia. This pos-
sibility imposes the consideration of constraints on residual insulin activity (insulin-on-board)
in Proportional-Integral-Derivative (PID) (Steil et al., 2006, 2011; Ruiz et al., 2012) and Model-
Predictive-Control (MPC)-based systems (Ellingsen et al., 2009; Percival et al., 2011). However,
clinical results of the few existing prototypes of automated glycaemic control during a meal with
PID and MPC have not been satisfactory (Steil et al., 2011; Kovatchev et al., 2010; Dassau
et al., 2013). Some emerging approaches using dual hormonal schemes to reduce severe hypo-
glycaemia have also been examined with PID and MPC control algorithms (El Youssef et al.,
2011; El-Khatib et al., 2010).

Despite control strategies with meal announcement and the inclusion of constraints on resid-
ual insulin activity, the prevention of overcorrection, which causes hypoglycaemia episodes, re-
mains a significant challenge for control algorithms. Therefore, innovative strategies are needed
for efficient and safe post-meal glucose control. Improvements in control algorithms, measure-
ment accuracy, and fault-detection systems will deliver the required performance and safety for
automated post-meal control in T1D.

1.2 Problems and Challenges

A list of the primary challenges for the development of artificial pancreas systems are outlined
as follows:

e Inter- and intra-patient variability: Due to the large inter-subject variability of glu-
cose regulation, which requires tuning of the system, an artificial pancreas system must
be patient-specific. Factors affecting inter-patient variability include hormonal changes,
stress, illness, and activity levels. An artificial pancreas must also address intra-patient
variability (Wilinska et al., 2010; Rossetti et al., 2012). It must consider variations in in-
sulin sensitivity produced by circadian rhythms and changes in insulin absorption as well
as meal absorption (Heinemann, 2002; Scholtz et al., 2005).
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e Coping with disturbances and uncertainty: An artificial pancreas system is affected
by numerous disturbances, such as meals, stress and exercise, which are sources of uncer-
tainty. In fully closed-loop systems, information about a meal is not introduced into the
system. In other approaches, information about meals is introduced into the system (meal
announcement), which generates advice about a prandial insulin bolus. Food intake is an
important source of uncertainty as accurate estimates are difficult to construct for a mixed
meal and errors can occur when counting carbohydrates (Graff et al., 2000; Brazeau et al.,
2013).

e Extensive physiological delays in the subcutaneous route: In healthy people, in-
sulin is delivered from the S-cells in the pancreas to the portal circulation. In this case, the
delay in insulin action is approximately 30 min (Hovorka, 2006). When the subcutaneous
route is used to deliver insulin, the delay in insulin action is approximately 90 min from
the time of infusion, even when rapid-acting insulin analogues are used. Additional delay
is attributable to glucose sensing in the subcutaneous route due to the transport of glucose
from blood to the interstitial fluid. These delays may result in the overdosing of insulin
and insulin stacking, which increases the risk of hypoglycaemia. To minimise the risk of
insulin-stacking, appropriate control methods must be used and control actions must be
constrained based on robust estimations of the insulin-on-board.

e The accuracy and reliability of existing CGM systems: The lack of accuracy and
reliability of CGM systems has technologically hindered the automation of insulin delivery.
Relative errors greater than 20% have been reported in different CGM systems, which
produce challenges for a closed-loop controller, especially when the temporal patterns of
the errors are presented in the form of bias. To improve their reliability, CGM systems
should contain an embedded self-monitoring capacity and should possess the ability to
detect abrupt faults and malfunctions (Mazze et al., 2009).

e The safety of insulin pumps: Although insulin pumps are highly developed and can be
integrated into an artificial pancreas, their reliability requires improvement. The failure of
most infusion systems involve the infusion set components and the subcutaneous infusion
site, e.g., obstruction of the infusion set, infection of the infusion site, leakage from the
infusion site or leakage at the infusion set connection (Guilhem et al., 2006).

1.3 Objectives

The general objective of this research is to develop efficient and safe open and closed-loop strate-
gies for postprandial glucose control in T1D patients.

To achieve this objective, the study addressed the following specific issues:

1. To develop a virtual environment for intensive and realistic preclinical testing and valida-
tion of blood glucose controllers. The definition of realistic scenarios will be performed in
a simple manner, including intra-patient circadian variation in insulin sensitivity, easy-to-
import dynamic profile features of model parameters, estimated rate of glucose appearance
from mixed meals, representative models and failures of insulin pumps and continuous glu-
cose monitoring systems, and several outcome metrics.
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2. To develop a new postprandial control algorithm that can be efficiently implemented into
smart insulin pumps. Analysis of interval simulations, physiological assumptions, and
search domain contractions will be used to enable efficient implementation.

3. To develop and extensively evaluate closed-loop postprandial control algorithms that ex-
hibit appropriate postprandial responses whilst maintaining safety by limiting the risk of
late hypoglycaemic events. Sliding mode techniques will be used to include insulin-on-
board constraints to prevent hypoglycaemia.

4. To implement and validate the developed closed-loop postprandial glucose controller for
use in clinical trials and subsequent acceptance by the regulatory agency.

1.4 Thesis Structure

This dissertation is organised as follows:

e Chapter 1 introduces the motivation for this research, outlines the main challenges of
the development of the artificial pancreas and presents the research objectives.

e Chapter 2 presents an overview of T1D and the complications and health-care costs for
diabetic patients. It describes conventional methods used for blood glucose control and the
postprandial control therapies that are currently performed in home-care systems. The
devices involved in blood glucose control are also presented.

e Chapter 3 details artificial pancreas research and major advances by leader teams in
this field. Different closed-loop control approaches for glucose regulation, which have been
evaluated in clinical trials and in silico experiments, are addressed. Simulators that are
extensively used to facilitate the development of artificial pancreas systems are also de-
scribed in this chapter.

e Chapter 4 describes the simulator that was designed to develop more realistic testing
scenarios for the improvement and validation of glucose controller designs. First, models
of the glucose insulin system, which are part of the virtual environment, are presented.
Second, a practical procedure to represent a real cohort of T1D subjects in silico is also
described. Last, all elements that comprise the virtual environment and a test scenario,
including all realistic features with challenging intra-patient variations, are presented.

e Chapter 5 addresses the problem of the computational performance of a new open-loop
postprandial control approach envisioned to be practically implemented. First, a brief
review of the interval analysis and set inversion technology, on which the methodology is
based, is presented. Second, the non-optimised version of this control approach and the
proposed optimisation algorithm are described. Last, to demonstrate the feasibility of the
proposed method, a performance comparison, according to several specific solutions and
practical issues, is presented.
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e Chapter 6 is dedicated to the design and validation of a closed-loop control approach
for the postprandial period based on sliding mode techniques. This approach enables the
reduction of late hypoglycaemic events without increasing the period of hyperglycaemia.
Realistic simulations used to evaluate this control approach are addressed to demonstrate
the robustness with regards to overcorrection of hyper- and hypoglycaemia under chal-
lenging conditions. Different glucose controllers, which utilise a safety layer based on
insulin-on-board constraints, are presented to compare the effects on control performance.

e Chapter 7 presents the software application designed to clinically validate a closed-loop
control algorithm for the postprandial period, which was developed based on simulation
results obtained in chapter 6. This chapter also includes a description of the study proto-
col and provides information about the technical documentation required by the national
regulatory agency prior to the initiation of clinical trials.

e Chapter 8 outlines the conclusions and contributions of this research and future studies.

The framework of this thesis is the coordinated project DPI12010-20764-C02, “Nuevas es-
trategias de control glucémico postprandial mediante terapia con bomba de insulina en diabetes
tipo 1”7 (CLOSEDLOOP4MEAL).






Chapter 2

Type 1 Diabetes and Blood Glucose
Control

2.1 Diabetes Overview

Diabetes mellitus (DM) is a metabolic disease characterised by elevated blood glucose concen-
tration where pancreas either no longer produces enough insulin or cells do not properly uptake
glucose in the plasma. Figure 2.1 presents a blood glucose response from a healthy and a di-
abetic patient when ingests 1 g/kg glucose in a oral glucose tolerance test. The blood glucose
resultant for a diabetic patient is higher and takes 3—4 h more to return to baseline.

350

Blood Glucose (mg/dl)

Time (h)

Figure 2.1: Oral glucose tolerance test. The blue line corresponds to a healthy person and the
red line to a diabetic patient.

2.1.1 Types of Diabetes
Type 1 diabetes

Type 1 diabetes mellitus (T1D, known also as insulin-dependent or childhood-onset diabetes) is
a chronic and autoimmune disease characterized by the irreversible destruction of the S—cells in
the islets of Langerhans of the pancreas, which are responsible for the excretion of insulin. The
inability of the diabetic organism to produce insulin leads to hyperglycemia, which may cause
severe diseases in the long-term. Without insulin, glucose remains in the bloodstream, so blood
glucose levels increase, especially after meals (Hanas, 2007). The glucose is then passed out of

13
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the body in the urine.

Although T1D can develop at any age, it typically appears during childhood or adolescence.
Most common symptoms of T1D include tiredness, hunger, and loss of weight. Untreated hy-
perglycaemia can lead to serious complications, including cardiovascular diseases, kidney failure,
blindness, and stroke. When hypoglycaemia is untreated, it will worsen and cause confusion,
clumsiness, or fainting. Severe hypoglycaemia can lead to seizures, coma, and even death.

Early in 1993, the Diabetes Control and Complications Trial Research Group (DCCT) re-
ported the relation among hyperglycemia and the risk of chronic micro and macro vascular com-
plications (Diabetes Control and Complications Trial Research Group, 1993; Reichard et al.,
1993). DCCT showed that an intensive insulin treatment keeping blood glucose levels near
normoglycemia can significantly reduce the risk of the chronic complications associated with
diabetes. Today, the treatment required to achieve this glucose control objective involves the
administration of insulin into the body, exercise, and a healthy diet. These treatments in turn
increase the risk of severe hypoglycaemia, with all its consequences. Regrettably, a universal,
efficient, and safe system of normalizing the glucose levels of T1D patients is still lacking.

Type 2 diabetes

Type 2 diabetes (T2D, known also as noninsulin-dependent or adult-onset diabetes) is charac-
terised by a relative lack of insulin secretion and sensitivity. Over time, the number of 5—cells
starts to decline and the T2D patient must be treated with insulin, like the T1D, to maintain
his/her blood sugar at normal levels. T2D is very insidious and can develop over years before
being diagnosed as it is a more gradual process than that of T1D. It is usually found in people
over 40 years old, and accounts approximately 90-95% of diabetic patients population worldwide.

T2D is the more common type, can develop at any age and is often preventable. It is
believed that the origin of T2D is multifactorial. The risk of developing this form of dia-
betes increases with age, obesity, lack of physical activity, and some nutritional related factors
(American Diabetes Association, 2012). Most common symptoms include thirst, urination, and
tiredness. The same disease process can cause impaired fasting glucose and/or impaired glucose
tolerance without fulfilling the criteria for a diagnosis of diabetes.

2.1.2 Numbers and Estimations

Diabetes mellitus is one of the most common worldwide chronic diseases with continued and
growing socio-economic impact. According to the latest data from the International Diabetes
Federation (IDF), the number of people living with diabetes was more than 371 million in 2012,
and it will increase to 552 million by 2030. Between 2011 and 2030, the number of adults with
diabetes is expected to increase a 92% in low-income countries, followed by 57% in lower-middle
income countries, 46% in upper-middle income countries, and 25% in higher income countries
(Shaw et al., 2010; Whiting et al., 2011). The prevalence of diabetes is increasing in every
country and half of people with diabetes are unaware of their condition (see Figure 2.2). This
increase of worldwide prevalence is mainly attributable to an aging population, the growth in
population size, urbanization, and a high prevalence of obesity and sedentary lifestyles.
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Figure 2.2: IDF global projections for prevalence of people with diabetes (20-79 years), 2011
2030 (taken from Scully (2012)).

Diabetes mellitus and its complications are largely responsible for early death worldwide.
More than 4.6 million people (20-79 years) died from diabetes in 2011, accounting for 8.2% of
global all-cause mortality of people in this age group (International Diabetes Federation, 2011).
Figure 2.3 shows an estimation of the number of deaths attributable to diabetes.

<100 @® 8,000-39,999
100-1,500 @® 40,000-99,999
®1,500-7,999 @>100,000

No data

Figure 2.3: IDF estimations for deaths of diabetes related complications (2079 years) in 2011
(taken from International Diabetes Federation (2011)).

The health-care costs of diabetic people are double the costs incurred by people without dia-
betes (R=2). Estimated global health-care expenditures to treat diabetes and prevent complica-
tions totalled at least US dollars (USD) 465 billion in 2011. By 2030, this number is projected to



16 2. Type 1 Diabetes and Blood Glucose Control

exceed some USD 595 billion. Health-care expenditures due to diabetes account for 11% of the
total health-care expenditures in the world in 2011 (International Diabetes Federation, 2011).
Figure 2.4 shows the estimated expenditure for diabetes by IDF for 2011, assuming R=2. It is
clear that there are economic and social benefits in identifying effective therapies for diabetes.

<1,000 @ 100,000-999,999 No data
1,000-9,999 @ 1,000,000-9,999,999
» 10,000-99,999 @ >10,000,000

Figure 2.4: Total health-care expenditures (USD) due to diabetes (20-79 years) in 2011 (taken
from International Diabetes Federation (2011)).

2.1.3 Complications

Diabetes complications may be disabling or even life-threatening. Insulin deficiency and sub-
sequent high blood sugar levels eventually damage blood vessels, nerves, and organ systems in
the body. The potentially debilitating complications arising with diabetes may initiate in the
short- or long-term.

Short-term complications

Short-term complications are the day-to-day problems that can appear without warning. Hypo-
glycemia and hyperglycemia are considered short-term complications, and the symptoms vary
depending on how much the glucose levels are reduced or elevated. Both T1D and T2D may
develop the same complications. Some people, especially those with prediabetes or T2D, may
not experience symptoms initially. In T1D, symptoms tend to come on quickly and be more
severe. Some of the signs and symptoms of T1D and T2D include:

e Increased thirst
e Blurred vision

e Extreme hunger
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Unexplained weight loss

Fatigue

Slow-healing sores

Frequent urination

High blood pressure

Weakness or shakiness

e Nervousness
e Frequent infections, such as gums or skin infections and vaginal or bladder infections

Prolonged hyperglycaemia can lead to a condition called “ketoacidosis”, which is caused by
high levels of ketones in the blood and urine. Ketones are a byproduct of the breakdown of
muscle and fat that happens when there is not enough insulin. This can lead to acidosis or “di-
abetic ketoacidosis” (DKA), a condition in which the blood is too acidic. DKA is an emergency
situation that requires immediate care, otherwise it may induce a diabetic coma.

Long-term complications

Diabetes is a chronic illness with no cure, and it is progressive. High blood sugar levels eventu-
ally damage blood vessels, nerves, and organ systems in the body. Many of the complications
of diabetes do not show up until after many years of having the disease.

Glycosylated hemoglobin (HbAlc) is the “gold standard” in the management of diabetes and
it is commonly used to assess long-term blood glucose control. The normal range for the HbAlc
test is 4-6% for people without diabetes. Above this range, the higher the HbAlc value, the
greater long-term risk of complications associated with diabetes. These chronic complications
can be classified as macro-vascular, or as micro-vascular. Among the potential complications are:

Cardiovascular disease Diabetes dramatically increases the risk of several cardiovascular
problems, including coronary artery disease with chest pain (angina), heart attack, stroke
and narrowing of arteries (atherosclerosis). People with diabetes are more likely to have
high cholesterol and hypertension, both of which cause damage to the cells lining the artery
walls. Cardiovascular disease is one of the leading causes of death for people with diabetes
and can account for 50% or more of deaths due to diabetes.

Nerve damage (neuropathy) The impact of diabetic neuropathy in the nerve damage can
range from slight inconvenience as loss of feeling, pain and weakness in the feet, legs,
hands, and arms, to major disability and even death. Excess sugar can injure the walls of
the tiny blood vessels (capillaries) that nourish the nerves. Neuropathy affects more than
60% of T1D people.

Kidney damage (nephropathy) Diabetic kidney disease is one of the most common and
most devastating complications of diabetes. The kidneys contain millions of tiny blood
vessel clusters (glomeruli) that filter waste from the blood. Diabetes can damage this
delicate filtering system. Severe damage can lead to kidney failure or irreversible end-
stage renal disease. About one third of T1D people develop nephropathy.
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Eye damage (retinopathy) Diabetic retinopathy is the most common and serious eye-related
complication of diabetes. It is a progressive disease that can destroys small blood vessels
of the retina, potentially leading to blindness. Diabetes also increases the risk of other
serious vision conditions, such as cataracts and glaucoma. Nearly all T1D people show
some symptoms of diabetic retinopathy, usually after about 20 years of living with diabetes;
approximately 20% to 30% of them develop the advanced form.

Erectile Dysfunction Diabetes is one of the primary causes of erectile dysfunction. An erec-
tion occurs when nerves send a message to the muscles of the corpus cavernosa in the penis
to relax so that the spongy tissue can fill with blood. With diabetes, the nerve impulses
are impaired, so the muscles do not relax adequately, and the circulation to the corpus
cavernosa may be impaired as well so that the tissue can not fill with blood.

Foot damage Nerve damage in the feet or poor blood flow to the feet increases the risk of
various foot complications. Left untreated, cuts and blisters can become serious infections.
Severe damage might require toe, foot or even leg amputation.

Skin and mouth conditions Diabetes may leave skin problems, including bacterial and fun-
gal infections. Gum infections also may be a concern, especially with a history of poor
dental hygiene.

2.2 Blood Glucose Control

2.2.1 Synopsis of Blood Glucose-Insulin Regulation

An appropriate regulation of blood glucose concentration is generally performed with insulin
to reduce high glycaemia and with glucagon to counteract and maintain glycaemia within a
normoglycaemic range (70-109 mg/dl or 3.9-6.04 mmol/1). Both hormones are secreted by the
pancreatic islets of Langerhands and are critical to the regulation of carbohydrate, protein and
lipid metabolism. Figure 2.5 illustrates the feedback loop, in which the two hormones maintain
homeostasis for blood glucose levels. The basic mechanism for blood glucose regulation can be
explained by two metabolic conditions. When a person consumes a meal, his/her glucose level
increases, which is referred to as hyperglycaemia, and the S—cells of the pancreas respond by
secreting insulin to consume the glucose in the plasma and cease glucose production in the liver.
When a person exercises, his/her glucose level decreases, which is referred to as hypoglycaemia,
and the a—cells of the pancreas respond by releasing glucagon and the liver converts glucagon
and glycogen to glucose. Exogenous factors that affect blood glucose concentration include food
intake, physical activity, illness, stress, and reproductive state.

2.2.2 Diabetes Treatment

Diabetes mellitus treatment has progressively evolved since the discovery and isolation of insulin
and its subsequent purification in 1921 (Bliss, 2007). Prior to 1921, people with diabetes were
treated using strict diet control to achieve smooth blood glucose peaks and to prevent death.
In 1978, the synthetic version of human insulin subsequently led to current diabetes treatment.
Insulin enables diabetic patients to live with a chronic disease according to basic considerations
of insulin therapy. Presently, the most common treatment for T1D patients is performed sub-
cutaneously through injections or infusion of insulin.
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Figure 2.5: Insulin and glucagon secretion from islet cells, which maintains homeostasis for
blood glucose levels (adapted from Campbell et al. (2006)).

Alternatives, such as islet transplantation, offers the advantages of safety and stability and a
potential remedy as no reservoir of insulin is required. However, the high risk of graft rejection,
which is potentially carcinogenic, is a deterrent to the use of islet transplantation (Senior et al.,
2012). As the side effects can be significant, it is often performed in conjunction with a kidney
transplant. Therefore, this alternative is typically reserved for patients who exhibit serious dia-
betes complications. Until stem cells for the regeneration of pancreatic S—cells become available
(Soria et al., 2001), T1D management using insulin therapy can improve a person’s quality of life.

The use of synthetic insulin to counteract §—cell destruction and subsequent genetic manipu-
lation of its structure creates an extensive range of insulin analogues with unique pharmacologic
features. Each type of insulin is characterised as follows:

e Onset - when the effects of insulin are detected;
e Peak - when the effects of insulin achieve optimum performance;

e Duration - the length of time during which the effects of insulin are exhibited.

Available insulin analogues are classified according to their period of action, as shown in Table
2.1. In some cases, pre-mixed insulin —a combination of specific proportions of intermediate-
acting, short-acting or rapid-acting insulin in one bottle or insulin pen— is an option.
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‘ Insulin type Generic and brand name Onset of action  Peak effect Duration ‘
rapid-acting Lispro (Humalog) 5-15 minutes  30-90 minutes  3-5 hours
Aspart (NovoLog) 10-20 minutes 1-3 hours 3-5 hours
short-acting Regular (Humulin R, Novolog R)  30-60 minutes 1-5 hours 6-10 hours
intermediate-acting NPH human (Humulin N) 1-2 hours 6-14 hours 16-24 hours
long-acting Glargine (Lantus) 1.1 hours None ~24 hours

Table 2.1: Pharmacokinetics of available insulin products.

2.2.3 Intensive Insulin Treatment

Conventional treatment conducted with insulin analogues is administered daily in one to three
fixed doses of insulin using a mixture of intermediate- and short-acting insulin. This regime
is minimally intrusive for diabetics with a normal lifestyle (i.e., consuming approximately the
same amount of food at the same time each day and maintaining the same daily level of activity)
to match the insulin dose. However, the use of several insulin doses per day to achieve blood
glucose levels that are similar to the blood glucose levels of nondiabetic people has been shown
to minimise the risk of long-term complications associated with hyperglycaemia (Diabetes Con-
trol and Complications Trial Research Group, 1993). This treatment is referred to as intensive
insulin therapy (IIT). IIT typically employs the subcutaneous route and involves a continual
supply of insulin to serve as basal insulin, a supply of meal insulin in doses that are proportional
to the nutritional load of the meals (also known as bolus insulin), and a supply of extra insulin
when needed to correct high glucose levels.

Insulin analogues with different physiologic pharmacokinetic properties were used to obtain
optimised intensive insulin therapies (Diabetes Control and Complications Trial Research Group,
1993; Hirsch, 2005). An IIT performed with multiple daily injections (MDI) is implemented with
long-acting insulin analogues for basal insulin, which are expected to produce a daily flat profile
of plasma insulin concentration, and rapid-acting insulin formulations for bolus insulin, which
is expected to exhibit rapid onset of action to overcome postprandial hyperglycaemia or high
glucose concentrations (Shetty and Wolpert, 2010).

An IIT performed with continuous subcutaneous insulin infusion (CSII), which is imple-
mented by an insulin pump using short- or rapid-acting insulin analogues, is used for basal and
bolus dosages. In CSII therapy, basal infusion rates are programmed with time-varying profiles
over a 24-h period to account for circadian variations of a patient’s insulin sensitivity and ac-
tivity. Figure 2.6 shows the insulin profiles obtained from mentioned insulin therapies.

Modern insulin pumps for CSII therapy contain an electronic drive mechanism that enables
the delivery of small amounts of insulin or microboluses from a reservoir, as shown in Figure
2.7. To emulate basal insulin, the pump varies the delivery frequency of microboluses accord-
ing to the insulin rate programmed by the user. This mechanism enables greater flexibility and
more effective glycaemic control. Several studies have shown that diabetes patients who undergo
intensive insulin treatments with CSII using insulin pumps exhibit improvements in glycaemic
control compared with MDI, especially in patients with a history of poor glycaemic control (Bell
and Ovalle, 2000; Pickup et al., 2002; Retnakaran et al., 2004; Nimri et al., 2006; Buse et al.,
2011).
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Figure 2.6: Insulin profiles obtained according to the therapy used. In red the bolus insulin dose
and in blue the basal insulin dose. Profile obtained from (a) insulin released in non-diabetics,
(b) insulin delivery with conventional therapy, (c) insulin delivery with multiple daily injections
(MDIs), and (d) insulin delivery with continuous subcutaneous insulin infusion (CSII). The
insulin profile from non-diabetics is highlighted in all figures with dashed lines.

For the MDI or CSII methods, IIT requires self-monitoring of blood glucose to achieve op-
timal blood glucose regulation. The patient must frequently check his/her glucose levels and
consider an estimation of their carbohydrate intake, their insulin sensitivity, and the amount
of insulin previously administered as well as other considerations. According to blood tests in
typical cases, insulin injections are supplied subcutaneously three or four times daily.

The major benefits of IIT include prevention or reduction of the progression of long-term
diabetes complications. In 1993, the Diabetes Complications Research Group reported that the
strict control of blood sugar levels reduces the risk of diabetes-related heart attacks and strokes
by more than 50%, reduces the risk of eye damage by more than 75%, reduces the risk of nerve
damage by 60%, and prevents or slows the progression of kidney disease by 50% (Diabetes Con-
trol and Complications Trial Research Group, 1993; Reichard et al., 1993).

2.3 Control Devices for Glucose Regulation

2.3.1 Insulin Delivery

Several options of insulin delivery to perform intensive insulin therapies (IIT) are available
(Takahashi et al., 2008). Due to its rapid delivery capabilities, rapid-acting insulin is commonly
used with subcutaneous injection to comprise the bolus supply of endogenous insulin during
meal intake. In particular, the subcutaneous injection of Lispro insulin has been proven to take
effect within approximately the same time frame as intravenous-injected regular (normal) in-
sulin (Bellazzi et al., 2001). This finding enables the control of patient glucose levels with home
monitoring that is similar to the control of patient glucose levels with intravenous management
but in a less invasive and painful manner.
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Figure 2.7: Main parts of an insulin pump (obtained from Valla (2010)).

The majority of people who take insulin use a needle and syringe to subcutaneously inject
insulin. Common alternatives for delivering insulin consist of insulin pens and insulin pumps.
Using a syringe, insulin pen or insulin pump, the subcutaneous insulin supply is usually admin-
istered in the fat under the skin. Figure 2.8 shows examples of these devices. Injection ports,
injection aids, and insulin jet injectors are also available.

Figure 2.8: Devices used for insulin delivery: syringe, pen, and pump.

For insulin injections with a syringe or an insulin pen, basal supply is performed by slow-
acting insulin as it achieves a longer effect than other types of insulin. In addition to the prandial
bolus, each shot in IIT is devised such that the effect of the insulin dosage can be maintained
for as long as possible. An insulin pump continuously supplies a small amount of rapid-acting
insulin analogues as basal doses (Bode, 2011). The bolus dose during mealtime is supplied by
increasing the rate of insulin to adjust high blood glucose concentrations. Of all treatments,
insulin pump therapy is the treatment that closely simulates the action of a healthy pancreas.

Some important features about insulin pens and insulin pumps are described as follows:
Insulin pens are convenient and simple ways of injecting insulin and are considered less painful

than a standard needle or syringe. An insulin pen resembles a pen with a cartridge. Some
insulin pens contain cartridges of insulin that are inserted into the pens, whereas other
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pens are pre-filled with insulin and discarded after the insulin has been exhausted.

Insulin pumps are approximately the size and weight of a cell phone. They comprise a dis-
posable insulin reservoir, a small battery-operated motor that is linked to a computerised
control mechanism module with a display, and a subcutaneous infusion set (cannula and
tubing system). Integrated systems, such as the MiniMed Paradigm REAL-Time System,
represents the first step in combining glucose monitoring and insulin delivery systems and
employs the most advanced technology available.

Table 2.2 lists pros and cons of insulin pens and insulin pumps in comparison with conven-
tional syringes.

2.3.2 Glucose Monitoring
Glucometers

The first patent for a blood glucose monitor for health-care use in diabetic patients was filed in
1971 in the USA by Anton Clemens. New versions of the sensor were subsequently developed.
The first studies with this home blood glucose monitoring, which demonstrated a dramatic
improvement in glycaemic control in 10 T1D patients, revealed a mean glycated haemoglobin
(HbAlc) of 5.4% at the endpoint compared with a baseline of 10.3% (Peterson et al., 1978).

To adjust diabetes treatment, point samples are predominantly used to check the level of
glucose from capillary blood measured with a glucometer. Self-monitoring of blood glucose
(SMBG) can be performed anywhere, such as at home or work. The process involves pricking a
fingertip to collect a drop of blood, absorbing the blood with a test strip, and inserting the test
strip into an electronic glucose monitor, which displays a number on a screen. Figure 2.9 shows
a typical device used to perform capillary blood tests.

Figure 2.9: Glucose meter used in a capillary blood test.

SMBG has been described as one of the most important advancements in diabetes manage-
ment since the invention of insulin. Capillary blood glucose levels at the fingertip have been
shown to correlate with systemic arterial blood glucose levels (Koschinsky et al., 2003). Recent
advances in glucose sensor technology for measuring interstitial glucose concentrations have
challenged the dominance of glucose meters in diabetes management (Cengiz and Tamborlane,
2009). Nearly all commercially available glucose sensors share the subcutaneous interstitial fluid
(ISF) compartment as their preferred implantation site. Numerous technologies are pursued
to develop novel glucose sensors, including invasive, non-invasive or minimally invasive sensors.
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Insulin pens

Pros

Cons

- They are portable, discreet, and convenient for
remotely administered injections.

- The extraction of insulin from a bottle is not
necessary, it is already pre-filled in the self-
contained cartridge.

- They usually allow a patient to set an accurate
dose by the simple turn of a dosage dial.

- Their design and compact size enable simple
and convenient insulin delivery.

- Possible single-dose amounts range from 0.5 to
80 units, depending on the pen.

- Insulin in pens and cartridges are frequently
more expensive than insulin in bottles for use in
syringes.

- Some types of insulin are not available for use
in insulin pen cartridges.

- Some insulin is wasted when pens are used, one
to two units of insulin are wasted when the pen
is primed prior to each injection.

- The mixing of different types of insulin is pre-
vented, if an insulin mixture is required, it is not
available as a pre-mix.

- Some patients may also require two insulin
pens if their treatment involves two different
types of insulin.

Insulin

pumps

Pros

Cons

- Delivers insulin in precise units, a minimum of
0.05 units, that can be closely matched to the
needs of a patient.

- Facilitates matching of insulin to the lifestyle
of a patient rather than adjusting the lifestyle of
a patient to his/her body’s response to insulin
injections.

- Reminders and alerts on pumps can be cus-
tomised for safety to improve control and reduce
the frequency of hypoglycaemia.

- Eliminates the inconvenience of multiple daily
injections and the unpredictable effects of asso-
ciated intermediate- or long-acting insulin.

- Enables a patient to exercise without having
to consume large amounts of carbohydrates.

- Includes bolus advisors that assist the patient
and delivers special meal boluses that corre-
spond to the delayed absorption of certain foods.

- Can cause weight gain.

- Can be bothersome as the patient is frequently
attached to the pump.

- Increases the risk of diabetes ketoacidosis, if in-
sulin delivery is disrupted for any reason, blood
glucose will increase and rapidly increase the
risk of ketoacidosis.

- May be expensive, the pump costs approx-
imately $7000 and the supplies cost approxi-
mately $1500 per year.

- Can malfunction and deliver too much or too
little insulin.

Table 2.2: Primary features of insulin pens and insulin pumps.

According to these technologies, measurements may depend on transdermal, sampling of blood
or ISF. Please see Takahashi et al. (2008); Oliver et al. (2009) for a comprehensive review of the
topic.
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Continuous Glucose Monitoring

Existing continuous glucose monitoring (CGM) systems have the advantage of direct insertion
of electrochemical sensors into the subcutaneous space rather than having to transport of the
sampled fluid outside the body to detect glucose concentrations. Commercially available CGM
systems that are approved by the Food and Drug Administration (FDA) have been introduced
over the last decade. The first system on the market was the MiniMed (Northridge, CA) con-
tinuous glucose monitoring system, which stored glucose readings every 5 min for a maximum
of 3 days (Tavris and Shoaibi, 2004). However, sensor glucose values were only available retro-
spectively after downloading of the sensor data.

The advent of real-time glucose sensing has been crucial to glucose monitoring technology.
In contrast with former retrospective analysis systems, real-time glucose monitoring enables a
patients to rapidly adjust their insulin doses, food intake and physical activity by inspecting
glucose values and trends and by responding to low and high glucose alarms.

The main value of CGM in clinical practice involves the identification of trends of glucose
values and the reduction in the frequency and severity of hypoglycaemic events. In previous
years, three continuous glucose monitors have appeared on the market: the Abbott FreeStyle
Navigator® continuous glucose monitoring system, the DexCom SEVEN®, and the Medtronic
MiniMed Paradigm® REAL-Time insulin pump and continuous glucose monitoring system. The
devices display a new glucose reading every 1 to 5 minutes for a maximum of seven days of con-
tinuous wear per sensor insertion. Figure 2.10 shows currently available CGM systems.

Figure 2.10: Current CGM devices used in home monitoring: the Abbott FreeStyle Navigator®
continuous glucose monitoring system, the DexCom SEVEN®, and the Medtronic MiniMed
Paradigm® REAL-Time insulin pump and continuous glucose monitoring system.

As continuous glucose sensor manufacturing has not progressed to the accuracy and precision
of blood glucose meter strips, sensor glucose signals must be calibrated against corresponding
blood glucose meter levels. Although sensor levels may trail glucose levels by 5-10 min, the
most important effect on lag is the introduction of error during calibration, which affects long-
term sensor performance. The effect of sensor lag on performance is evident during periods of
rapid glucose rate of change (increase or decrease). Software programs have been designed to
accommodate the lag in subcutaneous glucose readings (Stout et al., 2004). Biocompatibility
problems, such as biofouling and degeneration, contribute to drift in sensor signals over time
and affect sensor functionality (Mang et al., 2005).

The continuous glucose sensor is a critical component of closed-loop insulin delivery systems
and must be selective, reliable, durable, wearable, rapid, predictable and acceptable for contin-
uous patient use. CGM systems are expected to become more suitable devices that encourage
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improvements in future applications.

2.4 Postprandial Control

Advances, such as the discovery of insulin and modern diabetes technology, have generated
significant improvements in the quality of life of diabetes patients. However, hypoglycaemia
remains the most feared complication of insulin therapy by prescribers and patients. Although
modern rapid-acting insulin analogues suppress glucose increases either by meals or variations in
sensitivity, it requires 90-120 minutes for subcutaneously delivered insulin analogues to attain
their maximum glucose-lowering capacities.

A primary challenge that entail the delays associated of the absorption of subcutaneously
delivered insulin is the postprandial period. Using insulin infusion to compensate for meals,
particularly unannounced meals, can cause late postprandial hypoglycaemia as open- or closed-
loop systems may deliver too much insulin as a way to correct high postprandial glucose levels.

This problem can be significantly reduced by the intravenous route, which offers several ben-
efits compared with other routes of insulin injection. For example, intravenous infusion of insulin
acts more rapidly and reaches the bloodstream more effectively, which enables management of
an insulin overdose. Subcutaneous insulin injection is preferred to facilitate continuous glucose
management as it is much more agreeable and safer to conduct during home monitoring. In
addition, the subcutaneous route exhibits a minimal risk of infection and, compared with con-
ventional single injections, a subcutaneous infusion of insulin improves the administration of the
glycaemic profile. Intraperitoneal insulin infusion is rapidly effective and is less likely to produce
hypoglycaemia than subcutaneously infusion due to rapid uptake and metabolic activity, but
requires invasive procedures to install and maintain.

Regardless of the route, an important limitation of insulin therapy in postprandial control is
its one-way action, i.e., insulin cannot be removed from the body once it is supplied. Research
on dual-hormone therapies that considers the administration of insulin and glucagon to reduce
the risk of hypoglycaemia are in progress (Castle et al., 2010; El-Khatib et al., 2010). However,
commercially available glucagon is not likely to be suitable for extended pump use as it does
not maintain its liquid form at room temperature after the powder and solution are combined
(Jackson et al., 2012). Research is underway to develop more stable formulations of the hormone
(Haidar et al., 2013). Thus, physicians and patients should carefully select the type and amount
of insulin to use in their daily control therapies.

Insulin pumps used for CSII therapy offer more advantages over MDI and facilitate a more
comfortable lifestyle. Modern insulin pumps incorporate bolus advisors that help patients to
calculate prandial bolus, which is a customisable basal insulin flow that is sensitive to daily
changes and custom alarms. (Walsh and Roberts, 2006; Zisser et al., 2008a). Similarly to sup-
port intensive insulin therapy (IIT), industry investment and research progress in more reliable
CGM systems has enabled the development of corrective actions by improving the performance
of open-loop treatments. They are currently combined in decision support systems or sensor-
augmented insulin pumps.

Although subcutaneous insulin infusion is expected to follow complex real hormone secretion,
conventional insulin therapy does not sufficiently follow the complex metabolism of a nondiabetic
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person. The majority of existing problems in postprandial control refer to insulin dynamics, take
too long to begin and last too long for most meals. This undesired imbalance, which is usu-
ally represented by poorly controlled T1D patients, produces short-term hyperglycaemia and
late-term episodes of hypoglycaemia (Walsh and Roberts, 2006). Imprecise estimation of the
amount of ingested carbohydrates, metabolic changes in the glucose-insulin system, and sources
of variability, such as stress and physical activity, are also prone to hypoglycaemia in the late
postprandial period (Diabetes Control and Complications Trial Research Group, 1993; Reichard
et al., 1993; Fatourechi et al., 2008).

2.4.1 Basal-Bolus Therapy

The suggested bolus dose to be performed using MDI or CSII therapy is calculated based on
several patient’s parameters as the insulin-to-carbohydrate ratio (I : CHO), the correction fac-
tor (CF), and the insulin-on-board (IOB) to prevent insulin stacking (Zisser et al., 2008a). The
bolus dose is typically calculated as follows:

pBG — TBG

Bolus =1:CHO x CHO
olus X + T

— IOB (2.1)

where I : CHO in units of IU/g, CHO is the meal in units of g, pBG is the preprandial blood
glucose value in units of mg/dL, TBG is the target for glucose concentration in units of mg/dL,
and the C'F is in units of mg/dL/IU. The IOB value is commonly calculated according to some
predefined curves that are used to estimate the remaining active insulin in the body (Walsh
and Roberts, 2006). In addition to prandial boluses, the correction factor C'F' is also used with
occasional fingerstick glucose measurements in IIT to trigger corrective actions in order to react
to deviations from the nominal profile expected to produce with the control therapy. These
correction actions are more suitable when a continuous glucose monitoring system is involved.

Regarding the basal dose, the first step is to determine the total daily dose (T'DD) of insulin:

TDD = K x W (2.2)

where W is the subject’s weight and K is a subject-specific constant that is dependent on
the sensitivity exhibited by each patient. The units of W are in kilograms and the range of
K is typically 0.5 to 2.0 IU/kg (Walsh and Roberts, 2006). The basal insulin requirement is
approximately 50% of the T'D D; thus, the resulting basic basal rate (IU/h) should be expressed
as follows:

(2.3)

TDD
Basal =0.5 | ——
asa < 22 >

Insulin sensitivity changes throughout the day due to circadian variation of hormone levels.
During a single 24-h cycle, basal insulin requirements are relatively high during the early morn-
ing period and subsequently decrease during the remainder of the day and night.
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2.4.2 Bolus Types and Settings

In CSII therapy, bolus insulin infusion can be delivered via different profiles to distribute the
meal-related insulin infusion in a manner that optimises postprandial glycaemic control. Normal,
square wave, and dual wave boluses are currently embedded into commercial insulin pumps as
part of automatic bolus calculators or bolus advisors to address different meal compositions or
other circumstances, such as stress, exercise and foods, which vary in glycaemic index or in fat
and protein content (Chase et al., 2002; Zisser et al., 2010b; Klonoff, 2012). Figure 2.11 shows
the types of bolus profiles currently found in insulin pumps.

- -
o
-

' Normal ' Square wave Dual wave
E Bolus E Bolus = Bolus
=i---- Time ----= =i---- Time ----M= -i---- Time ----J=

Figure 2.11: Bolus insulin profiles available in modern insulin pumps.

Insulin pump settings are commonly adjusted by the healthcare provider to calculate appro-
priate basal and bolus doses. Whichever method is used to calculate parameters, it is generally
considered a starting point and should be refined as needed as insulin resistances may vary from
person to person and/or over time.

Several guidelines for optimal bolus calculator settings from formulas based on individual
measurements have been investigated to minimise frequent hypoglycaemia and lower elevated
mean glucose levels (Davidson et al., 2008; Shashaj et al., 2008; Scheiner et al., 2009; Walsh
et al., 2010, 2011). Even when parameters like I : CHO, CF, IOB, and basal doses from T DD
are accurately and appropriately used, situational dose modifications by users will always be
required for changes in activity, weight, stress, and other variables.

Despite the development of bolus advisors and associated guidelines to obtain appropriate
settings, the optimisation of postprandial control remains an empiric process based on the ex-
perience of the physician and the patient; it does not offer complete solutions to the primary
concerns of T1D patients and only partially satisfies IDF guidelines for postmeal control (no hy-
poglycemia and 2-h postprandial glucose below 140 mg/dL) (International Diabetes Federation,
2007). A critical evaluation of several clinical trials, which were performed to determine the
impact of the different types of boluses on postprandial metabolic control, revealed fundamental
shortcomings in the study design and performance of the majority of the trials (Heinemann,
2009). Therefore, the benefits of different bolus profiles included in modern insulin pumps, such
as the combination/dual-wave bolus, need to be carefully accepted until better evidence is ob-
tained.

In silico studies have also been conducted to improve the process of tuning parameters
involved in conventional schemes and to test new open-loop control schemes. Run-to-run opti-
misation methods have been presented by Zisser et al. (2005) and Palerm et al. (2007) to adjust
I : CHO based on user evaluation of CHO amount and several blood glucose measurements.
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The best-fitting basal insulin injection doses were implemented by dividing the day into four
segments. This repetitive blood glucose control strategy was focused on the adaptation of the
basal insulin infusion rate in order to reduce the risk of hypoglycemia, and converged within ap-
proximately six days of simulation without hypoglycemia events. However, it can not respond to
a rapid change in glucose concentration (meals) which may cause severe hyperglycemia (Palerm
et al., 2008).

A prandial insulin delivery method using a set-inversion-based (SIB) algorithm based on
mathematically guaranteed techniques (interval analysis) was presented in Bondia et al. (2009);
Revert et al. (2011). The algorithm calculates the optimal prandial basal-bolus combination
from a pre-prandial glucose measurement and a patient’s prediction model which may account
for intra-patient variability. SIB algorithm, also called iBolus algorithm, revealed the need of a
temporal basal decrement at mealtime combined with an equivalent increase in the meal bolus
(a generalization of the superbolus concept introduced by Walsh and Roberts (2006)). This
alternative bolus profile achieves good postprandial performance when the carbohydrate con-
tent is high, such as in meals that contain grams of carbohydrates equal to or greater than the
person’s weight (kg). The iBolus algorithm allows for a decrease in a meal bolus combined with
an equivalent increase in basal delivery. Compared to traditional bolus administration mode,
one of the major advantages of this new approach is that it allows the patient be more aggressive
and flexible with prandial insulin doses without increasing the risk for late-term hypoglycemia.

2.5 Summary

In this chapter, a brief overview of diabetes, the short- and long-term complications of diabetes,
and the associated socio-economic impacts are described. Traditional and modern therapies,
which are employed as part of intensive insulin therapy to improve the blood glucose control of
diabetic patients, have also been addressed. The most considerable advance in intensive insulin
therapy involves modern devices of diabetes technology, which enable the patient to be more
effective in their daily treatment. Existing devices for insulin delivery and glucose measurement
are presented with a special focus on subcutaneous insulin pumps and continuous glucose mon-
itoring systems. Finally, the control methods most extensively used for postprandial glucose
regulation in T1D are also described.






Chapter 3

Artificial Pancreas Research

3.1 Introduction

Improving glycaemic control and overcoming drawbacks of traditional therapies, which are likely
to produce abnormal glucose levels and present inappropriate burdens for patients, was envi-
sioned with the concept of glycaemic control in a “closed-loop”; in diabetes technology, this
is also referred to as the artificial pancreas (AP). The AP is an engineering solution that can
simulate the endocrine function of a healthy pancreas to provide fully automated glycaemic
control. It consists of a continuous glucose monitoring (CGM) system, which provides real-time
measurements to an automatic closed-loop controller that is responsible for calculating and ad-
ministering the proper dose to infuse using an insulin pump without (or with minimal) human
intervention. Figure 3.1 shows a schematic design of automatic glycaemic control or AP.

Insulin Insulin
Target Error dose delivered
glucose 4 Controller Insulin Pump
Glucose
Monitoring

Figure 3.1: Closed-loop components of an artificial pancreas system.

Utilising current insulin pump and glucose sensor technology, closed-loop systems present a
promising method of addressing the complications of hypoglycaemia and hyperglycaemia, whilst
simultaneously maintaining recommended levels of HbAlc by experts (Weinstock, 2011).

However, the control of postprandial glycaemia excursions is a barrier to AP development.
Meals comprise the main challenge of existing clinical validations of the few existing prototypes
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of automated glycaemic control. For safety and regulatory reasons, automatic closed-loop ther-
apies have only been administered with intensive supervision (Hovorka et al., 2010; El-Khatib
et al., 2010; Kovatchev et al., 2010; Cobelli et al., 2011; Breton et al., 2012). Some deployments
of a wearable AP for outpatient trials, including a smartphone computational platform for am-
bulatory use, are underway (Cobelli et al., 2012). Unfortunately, robust and reliable automatic
control systems that are capable of providing satisfactory performance for different patient con-
ditions, including the postprandial period, have not yet been realised.

From a control standpoint, the design of a control algorithm for the AP encounters the fol-
lowing challenges:

Slow dynamic response to the control action.

Nonlinear, uncertain and time-varying models.

Large disturbances, such as meals, stress and exercise.
e Non-negative actuation.

e Measurement errors, including noise, drift and bias.

In recent years, numerous research teams have worked to develop artificial pancreas systems
(Weinzimer et al., 2008b; Kovatchev et al., 2009; Buckingham et al., 2010; Kovatchev, 2011; Hov-
orka et al., 2011; Heinemann et al., 2011; Ward et al., 2011; Nimri et al., 2012). Improvements
in continuous glucose monitors, such as improved sensors (more reliable and more precise) and
more accurate calibration algorithms, represent significant progress. However, the development
of reliable, effective and robust control algorithms that consider all problems of the subcutaneous
route and safety issues, remains a major concern.

One of the most significant global advances in the field of the AP was accomplished by the
Juvenile Diabetes Research Foundation (JDRF) Artificial Pancreas Consortium, which launched
in 2006 to validate the effectiveness of new technologies in continuous glucose monitoring and
to promote the development of simulators for preclinical testing that enable “close the loop”
by linking continuous glucose monitors with insulin pumps. This research extends previous
studies that were funded by JDRF at Yale, which demonstrated that patients with T1D, who
used closed-loop systems in a hospital, frequently measured in the normal glucose range. The
consortium has funded multiple sites coordinated by the Jaeb Centre for Health Research to as-
sess the feasibility, efficacy and safety of various automated closed-loop glucose control systems
and to improve their effectiveness in real-world situations, such as meals, exercise, and stress.
Although initial research has been conducted in hospital-based clinical settings, the initiative is
also testing AP systems in settings representative of daily life, such as at home or school. Con-
sortium participants include Cambridge University, Boston University, the Oregon Health and
Science University, the Sansum Diabetes Research Institute, Stanford University, the University
of Colorado, the University of Virginia, and Yale University. Groups from Italy and France also
participate.

In addition to JDRF’s aggressive campaign, which is focused on accelerating the develop-
ment, regulatory approval, clinician adoption, and health insurance coverage of an artificial
pancreas and its components, AP research is one of the critical path initiatives of the Food and
Drug Administration (FDA). The FDA aims to accelerate the development and availability of a
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safe and effective artificial pancreas for the treatment of diabetes mellitus. In partnership with
the National Institutes of Health (NIH), the FDA has established a multidisciplinary group of
scientists and clinicians to address the clinical, scientific and regulatory challenges related to
this unique medical product.

The Diabetes wiREless Artificial pancreas consortiuM (DREAM) project (Nimri et al., 2012)
is an international collaborative research project that consists of teams from Schneider Chil-
dren’s, the Department of Pediatric Endocrinology and Diabetes at Kinderkrankenhaus auf
der Bult in Hannover, Germany, and the Department of Pediatric Endocrinology, Diabetes and
Metabolism at University Children’s Hospital in Ljubljana, Slovenia. In this project, an artificial
pancreas trial was conducted outside of the hospital as a prospective crossover study within the
framework of the 3-day DREAM Camp for Children with Diabetes at a hotel near Jerusalem.
The camp was composed of 18 children between the ages of 12 and 15 years. A team of en-
gineers and medical staff remained in the control room in the hotel during both nights, where
they supervised the trial by remote control and monitored the glucose levels of the children.

The Artificial Pancreas At Home (AP@home) consortium is a European project that com-
menced in February 2010. The consortium consists of 12 partners in seven European countries.
In the first phase of the AP@home project, the available AP algorithms were tested with CGM
systems and insulin pumps that were available on the market using a “two-port” approach with
two skin punctures to attach the glucose monitor and the insulin pump. In that stage, the aim
was to improve the accuracy of the glucose sensors and the safety and effectiveness of the algo-
rithms that relate insulin delivery to blood glucose levels. Innovative AP systems that combine
an insulin pump and a CGM system into a single device, which uses only one access point through
the skin, were also developed. In the final year of the 4-year project, the performance of the
newly created AP system, including remote monitoring facilities, was compared with standard
daily intensive insulin therapy in a multinational controlled trial. The AP@home consortium
combines world-renowned experts in the fields of medical device development, clinical studies
and modelling and control algorithms. Consortium participants include seven academic partners
(the University of Cambridge, the University of Padova, the University of Pavia, the Univer-
sity Hospital of Amsterdam, the University of Montpellier, the Medical University Graz, and
EPF Lausanne) and five industrial partners (Profil Institut fiir Stoffwechselforschung GmbH,
Triteq Ltd, Sensile Medical AG, STMicroelectronics and 4a engineering GmbH). The project
was funded by the European Commission’s Framework Programme 7.

Medtronic manufactured the first AP controllers in the United States. Although their con-
trollers cannot be considered fully closed-loop controllers, they are first-generation partially
automated systems of AP systems that link CGM measurements with insulin pumps, which
automatically stop insulin delivery (shutting off) in response to pending low blood glucose lev-
els. Shutting off the flow of insulin occurs in healthy people in response to low blood sugar.
The results of several studies performed at Stanford and in Denver indicated that the device
reduced the total number of low blood sugar episodes in diabetics by 31.8% compared with
the total number of low blood sugar episodes experienced by diabetics using an insulin pump
without a shutoff feature. The study results also showed that the device had no impact on the
long-term control of blood sugar (Alc). Medtronic has presented the study results to the FDA
and received an approval letter for its next-generation pump device, which includes the shut-
ting off feature; the device can be approved provided the company satisfies certain conditions.
Currently, Medtronic and other companies, including Johnson & Johnson’s Animas unit, are
designing next-generation devices that include additional automated features, that is, a system
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designed to predict when diabetics are in danger of low blood sugar levels and that implements
pre-emptive measures, such as decreasing the amount of insulin the pump delivers. The initial
studies conducted at night with 19 adults with T1D revealed that the software control program
helped people stay within a target range 90% of the time.

This chapter outlines the postprandial control approaches in closed-loop systems and em-
phasises the approaches previously tested in clinical trials. Relevant software tools that have
been implemented to support glycaemic control design for educational purposes or directed to
AP development are also presented.

3.2 Closed-Loop Approaches and Clinical Trials

One of the distinctive challenges of blood glucose control for closed-loop systems is the effect
of the meal “disturbance”, which is particularly difficult as the meal triggers a rapid increase
in glucose that is substantially faster than the time required for insulin absorption and action.
Inherent delays of the subcutaneous route may result in overadministration of insulin to com-
pensate for the meal and, consequently, low secondary glucose levels after a few hours (late
hypoglycaemia).

This control task is currently being addressed by the control community in two different
ways. The first approach is based on proportional-integral-derivative (PID) techniques, which
are well-established, reliable, robust, contain few parameters, demonstrate intuitive tuning, and
applied extensively in industry (Clemens, 1979; Steil et al., 2006; Weinzimer et al., 2008b; Cas-
tle et al., 2010; Steil et al., 2011; Ruiz et al., 2012; Sherr et al., 2013). The second approach is
based on model predictive control (MPC), which entails an on-line optimisation procedure that
determines an optimal control signal for a given model (Hovorka et al., 2004b; Schaller et al.,
2006; Kovatchev et al., 2010; El-Khatib et al., 2010; Elleri et al., 2011a; Devries et al., 2012;
Elleri et al., 2013; Turksoy et al., 2013b; Dassau et al., 2013). Fuzzy logic control is another
algorithmic approach, which approximates reasoning to replicate conventional insulin-dosing in-
structions by diabetes practitioners (Atlas et al., 2010; Nimri et al., 2012).

However, fully automated schemes of closed-loop control have not been completely success-
ful in addressing insulin needs during mealtime (Steil et al., 2006; Hovorka et al., 2004a). All
artificial pancreas trials reported a significant peak in postprandial glucose above the normal
range (Cobelli et al., 2011). Due to large disturbances (meals) and long delays (subcutaneous
route), a semi-automatic control with meal announcement usually performs better than fully
automatic controls, particularly for patients with low sensitivity to insulin (Weinzimer et al.,
2008b; Elleri et al., 2011a). In the semi-automatic scheme, the most challenging control prob-
lem is the prevention of late postprandial hypoglycaemia, which is typically caused by controller
over-reaction whilst maintaining a reasonable postprandial peak. Different proposals for limit-
ing insulin administration have been published in both PID and MPC control approaches (Steil
et al., 2011; Ellingsen et al., 2009).

In this section, special attention to PID and MPC controllers that have been implemented in
experimental or clinical trials are considered. Other approaches that have been experimentally
or extensively evaluated in silico are also presented.
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3.2.1 PID controllers

The PID algorithm is expressed by the following mathematical representation

u(t) = ky [e(t) + e / e(t)dt + mp dil(;) (3.1)

TI

where e = r — y is the error (difference between the set point and measured output; e.g., differ-
ence between the desired and measured glucose concentration) and u is the manipulated input
(e.g., insulin infusion rate). The three tuning parameters are k,, which is the proportional gain;
77, which is the integral time; and 7p, which is the derivative time. These PID tuning parame-
ters are related to biometric parameters of the patient (Steil et al., 2004).

A PID control strategy is attractive for glucose control as it simulates the first-phase and
second-phase responses of nondiabetic individuals, which are used by the pancreas S—cells to
secrete insulin in response to the continuously sensed glucose (Steil et al., 2004). Figure 3.2
shows the analogous behaviour of insulin response from the f—cell and the PID control.

1000 5
~ 4 .
750 - —_
3 2
~ E/ 31
£ 500 g
: E
— 4 =]
250 £
0 ; . . 0 T . . 1
-60 0 60 120 180 0 60 120 180
Time (min) Time (min)

Figure 3.2: Biphasic insulin response to step increase in glucose of the f—cells (left), and with
the PID control model (right). The shaded regions on the PID response represent each control
action (proportional-integral-derivative) obtained. (adapted from Steil et al. (2004)).

The first significant clinical result regarding the fully automated closed loop was obtained
by Medtronic Inc. In Steil et al. (2006), the feasibility of a fully automated closed loop system
was demonstrated in 10 adults with T1D using a subcutaneous external pump and sensor and
a controller, known as an external physiologic insulin delivery (ePID) algorithm, in reference
to the employed PID control technique. The mean peaks of the postprandial glucose levels
were higher than the ideal peaks, with average glucose levels of 189 mg/dL, 172 mg/dL and 225
mg/dL for the food, dinner and breakfast, respectively, measured two hours after each meal. PID
controllers have also been used for intravascular and subcutaneous glucose sensing and insulin
delivery (Shimoda et al., 1997; Steil et al., 2004; Renard et al., 2006) and during intraperitoneal
insulin delivery (Renard et al., 2010).

Due to the presence of substantial delays in the subcutaneous insulin-to-glucose route, PID
control may react less rapidly and effectively to meals than the usual pre-meal boluses of con-
ventional therapy. To improve the performance of the PID in postprandial glycaemic control,
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a feed-forward action (using a regular bolus), which was conducted approximately 15 min prior
to a meal, was added to the fully closed-loop version to create a hybrid scheme for meal com-
pensation as demonstrated by Weinzimer et al. (2008b). Although both settings were shown
to effectively prevent glucose variations, the hybrid control was more effective than the fully
closed-loop in terms of minimising post-meal glycaemic excursions.

Recently, Steil et al. (2011) a negative feedback of the estimated plasma insulin was added
to the PID action in the ePID-IFB algorithm. This feedback involves model-based feedback of
insulin concentration, which creates a cascade type of strategy to mitigate hypoglycaemic events
(Palerm, 2011). The PID algorithm with insulin feedback is modelled as

u(t) =k {e(t) n 71[ / e(t)dt + 71 dz(;) — L (t) (3.2)

where 71, is the feedback component. In the first clinical assessment of the ePID-IFB algorithm,
a meal bolus of 2 IU was included (Steil et al., 2011), regardless of the meal size. The results re-
vealed a mean peak of postprandial glucose of 172 mg/dL, 150 mg/dL and 173 mg/dL for lunch,
dinner and breakfast, respectively. These levels are below the recommended maximum glucose
level of 180 mg/dL but above the ideal level of 150 mg/dL. In a recent clinical trial with four
T1D patients, a crossover study that compared the use of a version of the ePID-IFB algorithm
without pre-meal manual bolus versus the PID was performed (Ruiz et al., 2012)). The control
results showed similar postmeal blood glucose excursions of 114 + 28 versus 114 + 47 mg/dl
and the total insulin delivery averaged 57 + 20 IU with PID versus 45 + 13 IU with ePID-
IFB. However, eight hypoglycaemic events occurred during PID control versus no PID control
during ePID-IFB. Although several studies effectively demonstrate the benefits of ePID-IFB to
mitigate hypoglycaemia, significant benefits of mitigating postprandial hyperglycaemia remain
inconclusive. Some concerns involve estimation of the control gain. The ePID-IFB algorithm
has proven to be effective in reducing the risk of nocturnal hypoglycaemia whilst increasing the
percentage of time spent in the target range, regardless of activity levels during mid-afternoon
(Sherr et al., 2013).

In another PID based algorithm, Marchetti et al. (2008b) proposed to switch off the PID
controller prior to ingestion; the re-start time was a function of the current blood glucose concen-
tration and the rate of change. The control performance was successful with respect to differing
patient body weights and initial glucose values in simulations conducted over a 30-day period.
As the switching criteria are dependent on direct blood glucose measurements, this control algo-
rithm requires modification prior to application in a subcutaneous control system. Subsequently,
a feedforward controller was included to accommodate the glucose rate of appearance according
to meal size (Marchetti et al., 2008a). However, as the control action is dependent on the rate
of appearance of meal-derived glucose, a control scheme including a library of mixed meals is
required to adapt this methodology to a practical application.

An asymmetric PID control algorithm without the derivative term was designed to account
for different risks associated with hypo- and hyperglycaemia variations (Gantt et al., 2007).
The proportional gain is adapted as a function of the output error in a scheme of subcutaneous
glucose measurement and insulin delivery. Although abnormal negative glucose variations (hy-
poglycaemia) are treated more aggressively than positive variations, simulation performances
showed that hypoglycaemic events can be reduced but not prevented. The control algorithm



3.2. Closed-Loop Approaches and Clinical Trials 37

has to be improved to completely impede hypoglycaemia and improve the postprandial blood
glucose to normoglycaemia using a more aggressive insulin reaction.

PID with a Dual Hormone Scheme

An algorithm named the fading memory proportional derivative (FMPD), which is based on
the PID control system without an integration component, was designed for insulin delivery
(El Youssef et al., 2009). Instead of using integration to arrive at basal- and duration-related
insulin delivery rates, the FMPD applies a “fading memory” of the proportional and derivative
components to utilise the duration of abnormal glycaemia. The “fading memory” designation
refers to weighting recent errors more heavily than remote errors. This method was success-
fully applied to rats with T1D (Gopakumaran et al., 2005; Ward et al., 2005) and was recently
implemented to deliver glucagon in a dual-hormonal control scheme with T1D patients (Castle
et al., 2010). In the latter implementation, the proportional and derivative error gain factors
for glucagon were negative, such that negative proportional and derivative errors prompted an
increase in the glucagon rate. Although effective for reducing the risk of hypoglycaemia, results
presented by Castle et al. (2010) show that glucagon cannot be fully relied upon to reverse the
effect of insulin overdelivery.

In El Youssef et al. (2011), insulin-on-board was continually estimated to minimise hypogly-
caemia using a model derived from data published by Holmes et al. (2005). The insulin infusion
was discontinued if the estimated insulin-on-board reached 20% of the subject’s estimated total
daily insulin requirement. Oral hydrocortisone was repeatedly administered to create insulin
resistance to compare the FMPD algorithm with an adaptive proportional-derivative (APD)
algorithm, which adapted FMPD parameters as a function of an estimated insulin sensitivity.
Although results for the APD algorithm showed elevated insulin infusion rates, which led to
lower glucose levels than the observed glucose levels during the comparable period of the FMPD
algorithm, the APD algorithm did not increase the incidence of hypoglycaemia compared with
the FMPD algorithm.

3.2.2 MPC controllers

The basic approach to MPC is shown in Figure 3.3, in which a model is used to predict the
effect of current and future control movements (insulin infusion rates) on future outputs (glucose
concentration). An optimiser determines the best set of current and future control moves to
maintain the desired outputs for this future prediction horizon. This control approach enables
constraints on the state and control variables to be satisfied (Camacho and Bordons, 1999). As
MPC requires the repeated solving of an optimisation problem, computational cost has been
a frequent deterrent to its application for all systems, with the exception of systems with ex-
tremely slow dynamics.

Generally, the MPC approach functions by comparing the model-predicted glucose levels
with the actual glucose levels, updating the model, and calculating future insulin infusion rates
to minimise the difference between the model-predicted glucose concentration and the target
glucose concentration. This approach simply accommodates delays associated with insulin ab-
sorption and also accounts for meal intake and prandial insulin boluses. The basic framework
of MPC involves many different types of models and objective functions.
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Figure 3.3: MPC. At time step tj, a sequence of M control movements is selected to minimise a
performance criterion that involves the predicted output (y) over P time steps, which is subject
to maximum and minimum constraints on the manipulated input (u) (taken from Bequette
(2005)).

A basic approach of MPC is an unconstrained linear scheme, which neglects constraints and
employs a linear model an input-output form, such as an ARX-type or ARMAX-type model,
instead of a state-space model, to prevent the need for a state observer. In Magni et al. (2007),
a basic unconstrained MPC strategy was implemented, in which the model is a linearisation of
the glucose-insulin model of Dalla Man et al. (2006) obtained at an average value of the popu-
lation parameters. The results of simulation studies of the linear MPC (LMPC) indicate that
a single parameter, such as the weighting on the output predictions in the objective function,
can be tuned for each individual for improved performance. Data used to tailor this uncon-
strained LMPC include the patient’s individual body weight, the average total daily insulin use,
the typical insulin-to-carbohydrate ratio, and the typical insulin infusion basal rate. In Soru
et al. (2012), techniques for meal compensation from conventional insulin therapy and individ-
ualisation of linear models for improved performance were implemented in simulation studies
involving four different scenarios and 100 subjects. In this study, two implementable strategies
were compared: a single adjustable parameter based on clinical parameters without an individ-
ualised model and low-order models to produce a more realistic model based on patient-specific
information.

First, commercial realisations of an artificial pancreas are expected to include the uncon-
strained LMPC scheme due to its simplification. The following clinical trials have been con-
ducted using unconstrained LMPC:

e Bruttomesso et al. (2009): Unconstrained LMPC in a preliminary clinical trial with six
subjects was performed at two clinical investigation centres. The results demonstrate the
feasibility of this control approach during 22 h of overnight hospital admissions. A sample
time of 15 min in the control action and a prediction horizon of 240 min were employed.

e Clarke et al. (2009): Unconstrained LMPC using individualised models based on weight,
total daily insulin dose, and correction factor was performed with eight subjects in an
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overnight study following a standardised meal. Overnight hypoglycaemic events were
significantly reduced, whereas the occurrence of postprandial blood glucose excursions
was similar during closed-loop and open-loop control.

e Kovatchev et al. (2010): Unconstrained LMPC performance reports from a pilot study
involving 20 adults. A one-min sensor sample time and a 15-min actuator sample time
were utilised. The design of the control algorithm was performed entirely in silico (less than
6 months). Nocturnal hypoglycaemic events were reduced from 23 to 5 and the amount
of time within the target range increased from 64% to 78%, compared with standard
open-loop treatment.

e Devries et al. (2012): Unconstrained LMPC algorithm by Soru et al. (2012) and the nonlin-
ear MPC algorithm by Hovorka et al. (2010) were examined in trials involving 47 patients
in six centres. Each closed-loop algorithm exhibited a higher mean glucose level than
mean glucose levels using open-loop control; however, both resulted in shorter incidences
of hypoglycaemia than open-loop control.

In the constrained LMPC approach, which is also referred to as explicit multiparametric
MPC, the existence of a closed-form solution can be computed offline under the piecewise con-
stant control law. An application to blood glucose control in a virtual subject was reported in
Dua et al. (2006). An online optimal solution via quadratic programming methods was imple-
mented by Lee et al. (2009) and presented as a computationally advantageous alternative to
constrained LMPC. In Ellingsen et al. (2009), a strong dynamic /OB constraint was incorpo-
rated in the optimisation problem of a constrained LMPC based on ARX models. The IOB
constraint was designed to be shaped as a function of meal size to prevent violation. Thus,
the OB constraint was employed to embed certain safety factors that already existed within
the real-time control module. In Lee and Bequette (2009), subspace identification techniques to
develop discrete state space models and IOB constraints were incorporated. Features such as
a pump shut-off algorithm to prevent hypoglycaemia and meal detection with size estimation
algorithms to handle unannounced meals were also included. In Percival et al. (2011), low-order
models based on clinical parameters were used to design a multi-parametric MPC strategy
with an insulin-on-board algorithm, which enables the constrained optimisation problem to be
solved using a lookup table. The use of a lookup table significantly reduces the computational
requirements. A pilot clinical trial evaluation of this fully automated artificial pancreas was
conducted using commercial devices in 17 subjects (Dassau et al., 2013). The results showed
that blood glucose was maintained in the near-normal range (80-180 mg/dL) for an average of
70% of the trial time. In Cameron et al. (2011, 2012), a multiple model probabilistic predictive
control (MMPPC) strategy that minimises an asymmetric risk function subject to satisfying
hypoglycaemic constraints was designed. In this implementation, MMPPC was forced to be
more conservative when uncertainties were high. Clinical studies are underway to test the feasi-
bility of MMPPC that incorporates meal detection, meal size estimation, and insulin-on-board
constraints for closed-loop insulin delivery in a carefully monitored inpatient clinical research
environment. In Eren-Oruklu et al. (2009), an adaptive generalised predictive control (GPC)
strategy for regulating estimated blood glucose levels based on CGM measurements was imple-
mented. This strategy was compared with linear quadratic control in simulation studies based
on the glucose-insulin system of Hovorka et al. (2004a) and Glucosim models (Agar et al., 2005).
In Eren-Oruklu et al. (2009), an adaptive Generalized Predictive Control (GPC) strategy, a type
of input-output unconstrained LMPC, was used to regulate the estimated blood glucose levels
based on CGM measurements. This was compared with Linear Quadratic Control in simula-
tion studies based on the glucose-insulin system of Hovorka et al. (2004a) and Glucosim models
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(Agar et al., 2005). In Turksoy et al. (2013a), a multivariable adaptive GPC was employed with
physiological signals such as energy expenditure and galvanic skin response, obtained from a
multisensory armband, and glucose measurements, obtained from a CGM system, to generate
a multiple-input-single-output model for predicting future glucose concentrations. Insulin-on-
board predictions were also designed to control the blood glucose of patients with T1D. The
controllers were tested in a pilot clinical trial, which comprised seven cases with three different
patients, for 32 or 60 h without any meal or activity announcements.

In Hovorka et al. (2004a), a nonlinear model predictive control (NMPC) was designed using
the glucose-insulin model of Hovorka et al. (2002). The need for an individual model was
addressed by online recursive identification of model parameters within a Bayesian setting. Thus,
parameters which describe insulin sensitivity were re-estimated at each control step depending
on the current plasma glucose measurement. In addition, Magni et al. (2009b) demonstrated a
distinct improvement of NMPC over linear MPC for the average virtual subject of the glucose-
insulin model from Dalla Man et al. (2006). The following experiments on real patients were
performed using NMPC:

e Hovorka et al. (2004b); Schaller et al. (2006): NMPC based on intra venous measurements,
which were delayed 30 min to simulate the time lag associated with the subcutaneous
route, was employed in clinical studies with 10 T1D patients under fasting conditions.
This scheme demonstrated potential feasibility.

e Hovorka et al. (2010); Elleri et al. (2011b): NMPC was employed in overnight studies in
which CGM data were entered manually in the algorithm and the results were transferred
to a pump in 15-min intervals. A reduction in nocturnal hypoglycaemia was achieved
compared with standard pump treatment. Application after a standard evening meal and
late-afternoon exercise resulted in 20% improvement in the number of glucose levels within
a target range for children and adolescents. Results showed no significative difference of
the closed-loop performance when the controller is initiated at different start times.

e Hovorka et al. (2011); Hovorka (2011): NMPC based on a fully automated strategy, which
incorporated a time sample of 15-min, was used in overnight studies with adults. It
was initiated immediately after dinner or a late night snack accompanied by alcohol.
Results suggested that closed loop delivery of insulin may improve overnight control of
glucose levels respect to conventional insulin therapy, and reduce the risk of nocturnal
hypoglycaemia.

e Elleri et al. (2011a): NMPC used with pre-meal bolus doses was evaluated in a multina-
tional study to reduce the frequency of nocturnal and after breakfast hypoglycaemic events.
The controller achieved glucose levels as effectively as patient-directed conventional insulin
pump therapy.

e Murphy et al. (2011a,b): NMPC was used in women with T1D throughout different stages
of pregnancy. Near-optimal nocturnal glycaemic control was obtained in early and late
pregnancy stages.

e Elleri et al. (2013): NMPC was used in adolescents with T1D to maintain glycaemic control
after meals, physical exercise, and with snacks not announced to the algorithm. The
percentage of glucose was in the target range of 84%, and the mean plasma glucose level
was 128 mg/dL compared with a glucose percentage of 49% and a mean plasma glucose
level of 165 mg/dL for conventional insulin pump therapy. Hypoglycaemia occurred during
10 control visits and 9 NMPC executions.
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MPC with a Dual-Hormone Scheme

The GPC control strategy was initially experimented in studies involving diabetic swine using
both insulin and glucagon to improve control at lower blood glucose levels (El-Khatib et al.,
2007, 2009). An adaptive GPC algorithm based on a discrete-time second-order model with
model parameters adapted on line was designed to employ insulin or glucagon, depending on
the sign of the difference between the measured glycaemia and its target value (El-Khatib et al.,
2007). A prediction of the insulin concentration was included in the objective function to
prevent problems associated with JOB. In the human clinical studies, this adaptive GPC was
used to compute the insulin rate, whereas a PD controller that was active under certain glucose
concentrations was used for glucagon delivery (El-Khatib et al., 2010). In this implementation,
a prediction horizon of one was used in the adaptive GPC, which resulted in an adaptive PID
controller. Constraints on insulin were imposed by clamping and were not part of the control
algorithm. A 5-min sample time was used for the sensor measurements.

3.2.3 Other controllers

Fuzzy logic employs graded membership for given variables (e.g., blood glucose and derived
signals as the rate of change) and a defined interaction between the variables. Rules such as if
(blood glucose is too high) and (rate is low) then (dosage is little) are used in this scheme, which
yield an exact number using defuzzification techniques (Trajanoski and Wach, 1996). A fuzzy
logic control algorithm for delivery insulin developed by Atlas et al. (2010) was tested in a trial
of seven adults. This approach is part of the MD-Logic artificial pancreas system and uses a
combination of control-to-range and meal detection system with a 5-min sample time. In Miller
et al. (2011), a learning algorithm that extends the MD-Logic strategy to improve interpatient
variability, was simulated. Automated overnight closed-loop studies in seven patients of the
MD-Logic system were presented by Nimri et al. (2012).

Chen et al. (2008) implemented a fuzzy control scheme that uses blood glucose and the
rate-of-change in silico based on ten rules. In the fuzzy logic controller designed by Mauseth
et al. (2010), blood glucose acceleration was also used and the algorithm was tuned based on a
personalisation factor. In Campos-Delgado et al. (2006), a fuzzy-based controller including sub-
cutaneous glucose measurements and insulin delivery was implemented to consider associated
delay.

In Wang et al. (2010a), iterative learning control was implemented to improve the closed-loop
performance of an MPC strategy in simulation studies over several days. Fewer than 10 days
were required to regulate the glucose levels of an individual within the desired range of glucose
values. In Magni et al. (2009a), a run-to-run approach for implementing day-by-day tuning of an
unconstrained MPC algorithm was implemented. The aggressiveness of the closed-loop control
law was effectively auto-tuned regardless of the meal variation and slow parameter variations,
such as daily insulin sensitivity. Some strategies based on continuous glucose monitoring, as
proposed by Wang et al. (2009), vary the basal insulin delivery depending on the glucose trend
and certain heuristic assumptions. Based on current blood glucose levels and the rate of change,
the basal rate is adapted using a gain multiplier, which is determined by a basal gain mosaic. A
bolus design combined with this basal therapy was involved for treating severe hyperglycaemia
(Wang et al., 2010b). In this approach, a bolus is automatically delivered to compensate for the
influence of meals and to correct for hyperglycaemia. The “optimal” bolus size is determined
according to the blood glucose level, the target blood glucose, the insulin-to-carbohydrate ratio,
the correction factor, and a final component of TOB to prevent insulin stacking, which may lead
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to hypoglycaemia. This strategy is dependent on an accurate estimate of the ingested CHO
and, therefore, appears to be more feasible in a scheme with meal announcement.

Other model-based but robust techniques such as H, for perfect tracking and disturbance
rejection of meals (Parker et al., 2000; Ruiz-Veldzquez et al., 2004; Kienitz and Yoneyama, 1993;
Chee et al., 2005; Kovacs et al., 2013), sliding mode control with prediction of glucose after meals
and feedforward action (Abu-Rmileh et al., 2010; Kaveh and Shtessel, 2008), as well as control
based on neural networks (de Canete et al., 2012; Trajanoski and Wach, 1998; Alamaireh, 2006;
El-Jabali, 2005; Dazzi et al., 2001), have also been explored.

3.3 Modelling and Simulation

In silico diabetes simulators are used to optimise clinical designs and improve the performance
of control algorithms prior to application to actual patients. Simulators can show the behaviour
exhibited by the glucose dynamics of diabetic patients using a mathematical model of the in-
teractions in the glucose-insulin system. A comprehensive model of the glucose-insulin system
describes the processes of insulin pharmacokinetics and pharmacodynamics, carbohydrate ab-
sorption, and glucose transport and elimination. Many models of glucose regulation have been
proposed in recent decades. A review of glucose-insulin dynamics has been presented by Nucci
and Cobelli (2000); Mari (2002); Makroglou et al. (2006); Wilinska and Hovorka (2008); Garcia-
Jaramillo (2011). Two of the most relevant and comprehensive mathematical models of the
glucose-insulin system are described in detail in section 4.2

The simulator may include particular devices involved in glycaemic control. Features about
glucose measurement sensors or the infusion pump used to deliver exogenous insulin are com-
monly included in simulators intended for control design. Most simulators are created as educa-
tional tools of diabetes and are used by T1D patients and medical staff to evaluate traditional
therapies.

AP research requires testing of closed-loop control algorithms in animals or humans with the
approval of regulatory agencies, which involves several constraints related to resource demand
and ethical issues. However, few in silico diabetes simulators are intended for AP research. In
addition to a comprehensive mathematical model of the glucose-insulin system, a simulator to
accelerate AP development also requires a virtual population of T1D patients to extensively test
the designed control algorithms. High robustness, safety, feasibility and practical implementa-
tion, as well other imperative issues, must be satisfied by the AP.

A discussion of different simulators used as educational and research tools in the field of
diabetes technologies and an overview of the most relevant simulators designed specifically for
AP development are included in the following section.

3.3.1 Diabetes Related Simulators

AIDA (automated insulin dosage advisor) is one of the most popular diabetes simulators.
The AIDA was developed by Lehmann and Deutsch in 1992 (Lehmann and Deutsch, 1992a) and
was originally designed as a simulator to teach diabetic patients and clinical staff about glucose-
insulin interaction, insulin dosage, and dietary adjustments to perform more effective diabetes
therapies (Wilson, 1999). The AIDA has been continuously upgraded through integration of new
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models of subcutaneous insulin absorption and carbohydrate digestion and absorption. Some of
the models that comprise the AIDA structure describe the kinetics of meal glucose appearance
in the plasma (Lehmann and Deutsch, 1992b) and the subcutaneous insulin plasma rate of the
appearance of several insulin analogues (Berger and Rodbard, 1989). The model of Tarin et al.
(2005) is used to describe rapidly acting insulin analogues, short-acting (regular) insulin prepa-
rations, intermediate-acting insulin, and long-acting insulin analogues (Lehmann et al., 2009).
The subsystems of insulin action and glucose kinetics has remained unchanged since the first
version was developed (Lehmann and Deutsch, 1992b).

Although the AIDA is a freeware educational simulator program with numerous downloads
(Lehmann, 1999, 2001), insufficient information of refined individual simulations render it un-
feasible for realistic simulations.

GLUCOSIM was developed by Agar in 2005 (Agar et al., 2005). The main purpose of
the GLUCOSIM is to assist medical and engineering students with the visualisation of glucose-
insulin dynamics and the response to external perturbations, such as meal intake and the supply
of insulin. The GLUCOSIM employs the Puket model (Puckett, 1992) to describe the dynamics
of insulin and glucose levels in the blood of healthy individuals and T1D patients. This com-
partmental model represents the transport of glucose and insulin through the major vessels to
the capillaries according to actual body regions. The main disadvantages of these models is the
lack of consideration of personal variations in physiological parameters and the average model
output values.

This simulator contains two modes: a “healthy person” mode, in which the user can modify
the body weight and the meal protocol during a 24 h simulation, and a “T1D person” mode,
in which the user can select conventional treatment or well-established closed-loop strategies.
However, the design and testing of new control strategies is not viable.

GIM (glucose-insulin model) is an interactive diabetes simulator developed by Dalla Man in
2007 (Dalla Man et al., 2007). The purpose of the GIM is to provide a user-friendly interface
for investigators, who do not possess specific modelling experience, to compare healthy people
with insulin-resistant people or open-loop versus closed-loop treatments for T1D patients. The
GIM uses the model of the glucose-insulin system described by Cobellis’s group (Dalla Man
et al., 2006; Dalla Man et al., 2007). The model for healthy subjects is composed of glucose and
insulin subsystems linked by the control of glucose on insulin secretion and by insulin on glu-
cose utilisation and endogenous production. The T1D subject is simulated by substituting the
insulin secretion module with a subcutaneous insulin infusion module. This model is presented
in section 4.2.1.

This simulator has a graphical user interface to facilitate the adjustment of menu options,
which vary according to normal or T1D subjects. Open- and closed-loop options are available
and, according to the end use (educational or research), inclusion of new control algorithms
may be allowed. However, the inclusion of more realistic conditions, such as insulin sensitivity
variation or a virtual cohort of T1D patients to perform individual assessment, do not exist in
this simulator.



44 3. Artificial Pancreas Research

JEDMA (java educational diabetes management advisor) is an educational simulator that was
developed by Herndndez-Ordonez in 2007 (Herndndez-Ordofiez et al., 2007). The purpose of the
JEDMA is to provide an educational diabetes simulator with enhancements based on options
from other simulators, such as the AIDA and the GLUCOSIM. The JEDMA includes three mod-
els, which describe glucose-insulin dynamics using a compartmental model proposed by Sorensen
(1985) and an extended version that considers exercise periods, including important metabolic
effects related to glucose regulation gastric (Hernandez-Ordonez and Campos-Delgado., 2006):
the model of glucose absorption by the intestine proposed by Lehmann and Deutsch (1992b)
and the model of subcutaneous insulin absorption of several insulin analogues for MDI therapy
proposed by Berger and Rodbard (1989).

This simulator enables the user to include MDI or CSII intensive therapies for which different
predefined control algorithms can be tested. However, the design concept of the final realisation
does not enable inclusion of additional control strategies or a virtual patient cohort for control
assessment.

Archimides is a simulator used for educational and research purposes. It was developed by
Eddy and Schlessinger (Eddy and Schlessinger, 2003) at Kaiser Permanente Southern Califor-
nia in 2003. The purpose of Archimides is to realistically simulate what occurs in health care
systems and address research challenges for which empirical studies may be impractical due to
factors, such as high cost, extensive follow-up periods, large sample sizes, lack of participation
by vendors or customers, or the rapid pace of technological change. In a typical application
of the simulator, hundreds of patients can be simulated, each patient possesses an individual
anatomy and physiology disorders can be simulated using different medical care facilities, tests
and treatments by medical staff can be simulated, and the output measures can be simulated.

The Archimides model includes organic systems with the continuous interaction of more
than 50 biological variables (Schlessinger and Eddy, 2002). The level of detail and realism was
determined by medical considerations, the need to differentiate clinically relevant variables, and
the level of detail required to conduct clinical trials. The full Archimedes model is designed to be
comprehensive and includes not only patients but also other important aspects of a health care
system, such as health care personnel, facilities, equipment, supplies, policies and procedures,
regulations, utilities, and costs.

The Archimedes simulator supports decisions by clinicians and administrators regarding sev-
eral issues related to clinical trials in health care systems. However, this type of simulator is not
suitable for the development of new treatments for T1D patients due to the inability to predict
outcomes for a particular patient. Instead, Archimides predicts average trends with conventional
treatments.

The Archimides simulators are based on population models; as a result, their capabilities
are limited to the prediction of population averages. For the development of the artificial pan-
creas, a different type of system that is capable of simulating the glucose-insulin dynamics of a
particular person is needed.
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3.3.2 Artificial Pancreas Simulators

The baseline requirements include a comprehensive model of the glucose-insulin system, a cohort
of virtual patients who represent a target population of real T1D patients, and models of the
instrumentation used in a practical implementation of the artificial pancreas. Additional fea-
tures, such as instrumentation failures, diurnal and daily variability, mixed meal perturbations,
and several outcome measurements, are employed to improve the functionality and realism of
the simulator.

Although most comprehensive models do not completely reflect realistic behaviour as they
do not consider important physiological variables, such as stress and physical activity, they are
useful for eliminating or improving inappropriate control designs. The Hovorka et al. model
(Hovorka et al., 2004a) has been used for both simulation and experimental control purposes
(Hovorka et al., 2007) in the UCAM (University of Cambridge) simulator (Chassin, 2005). Sim-
ilarly, the DallaMan et al. model developed by Cobelli’s group in Padova, Italy (Dalla Man
et al., 2007) has been used in the UVa (University of Virginia) simulator, which was accepted as
a substitute for animal trials in the preclinical testing of closed-loop control in T1D (Kovatchev
et al., 2009).

The Hovorka et al. and Dalla man et al. model have been primarily used for control in
development of the AP. These models are described in section 4.2. Additional hardware-in-the-
loop implementations, as presented by Dassau et al. (2009) and in which the instrumentation
models are replaced with real devices, are used to perform clinical trials. This implementation
incorporates a CGM system and an insulin pump to communicate the control algorithm with
real in/out signals from T1D patients.

The UCAM and UVa simulators, which illustrate the features currently used to promote the
development of AP prototypes, are described as follows:

UCAM simulator The main components included in this simulator are the subjects, the glu-
cose sensor, the insulin pump, the glucose controller, and the experimental protocol, as shown
in Figure 3.4. A simulated human is represented by the simulation model of the glucose-insulin
system described by Hovorka et al., and the corresponding individual parameters set. This sim-
ulator have a cohort of 18 virtual patients with T1D.

A remarkable difference with respect to the UVa simulator is the within-subject variabil-
ity. The inter- and intra-subject variability is established for each individual subject. Diurnal
variations and unmodelled effects of intra- or within-subject variability are implemented using
certain time-variant parameters. However, only sinusoidal oscillations with amplitudes of 5%
and 3h periods can be performed using nominal values of the time-varying parameters. A single
parameter that represents a reduction in plasma glucose concentration is employed to include
the effect of physical exercise on glucose homeostasis. Figure 3.5 includes an example for the
setup of the subject in this simulator.

The model of measurement error and calibration error in the glucose sensor is a generic rep-
resentation consisting of two parameters, the coefficient of variation (CV) of the measurement
error and the CV of the calibration error. The sensor error signal can also be derived from a
specific data-based representation of a real CGM system. The model of error in insulin pump
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Figure 3.4: Structure of UCAM simulator (taken from Chassin (2005)).

delivery comprises three parameters: the infusion type (intravenous or subcutaneous), the error
CV of continuous infusion, and the error CV of an insulin bolus.

The experimental protocol includes the details of the in silico experiment, as shown in Figure
3.6. Basic information regarding scenario configuration, the administration of meals, the pro-
posed insulin route, the rescue CHO option, the exercise sessions characteristics, the disturbance
or unannounced events, the system failures in adjusting the insulin pump occlusion or loss of
sensor signal, the beginning glucose and the target glucose range are included.

The outcome measures of this simulator comprise 32 built-in functions for processing the
response signals. The functions include the mean value, the percentage of time spent in the
target glucose range, the number of all hypoglycaemia events, the root mean square error, and
the area under the curve. The UCAM simulator was implemented using Matlab 7.8.

UVa simulator The components, which are organised as shown in Figure 3.7, include a co-
hort of virtual patients with T1D, a sensor error model capable of reproducing the time lag,
calibration bias, and random noise, and a model of the insulin pump that considers engineering
limitations.

Figure 3.8 presents the main user interface window of this simulator, which enables the def-
inition of a test scenario, the selection of subjects, the selection of the CGM sensor and insulin
pump, and the selection of a set of outcome metrics.

The simulated human is represented in this simulator by the mathematical model of the
glucose-insulin system as described by Dalla man et al. The UVa simulator have a large cohort
of in silico subjects, which are based on real individual data that spans the observed vari-
ability of key parameters in the general population. The cohort of virtual patients includes 100
adults, 100 adolescents, and 100 children, which reflects an important inter-subject variability of
information. However, intra-subject variability is not defined or assumed in this implementation.

The sensor simulation model is described by Breton and Kovatchev (2008) and is based
on sensor-reference glucose data pairs. In this model, the decomposition of sensor errors was
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Figure 3.5: Structure of the UCAM subject setup (taken from Chassin (2005)).
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Figure 3.6: UCAM example protocol (taken from Chassin (2005)).

performed as errors due to calibration, blood-to-interstitial glucose transfer, and random noise.
The features of three CGM system devices are included: Freestyle Navigator’ ™, Guardian RT,
and Dexcom STST™ . The model of insulin pump is defined as the period and dynamics of
insulin transport from subcutaneous tissue to blood as described by Dalla Man et al. (2007) and
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Figure 3.7: UVa components (taken from Kovatchev et al. (2008)).

discrete insulin infusion corresponding to stepwise basal pump rate and insulin boluses. The
technical limitations of two devices are included: the Omnipod Insulin Management System and
Deltec Cozmo®. However, additional system failures features are not included in this simulator.

The set of metrics of glucose control implemented within the simulation environment in-
cludes several measures of average glycaemia, temporal glucose variability, and associated risks
for hypoglycaemia and hyperglycaemia. These measures include the mean blood glucose; the
percentage of time spent within the target range; the area under the curve per gram CHO,;
graphical metrics, such as a histogram of blood glucose rate of change; or a control variability
grid analysis (CVGA). The UVa simulator was implemented using Matlab and Simulink plat-
forms.

3.4 Summary

In this chapter, a brief review of the current state of artificial pancreas research is introduced.
Modern devices for home-monitoring are used in conjunction with control algorithms in closed-
loop, which determines the amount of insulin to infuse at each moment. The main AP control
approaches, which were performed experimentally or in clinical trials, are addressed. Different
simulators, which were implemented to improve and/or support glycaemic control design with
educational and artificial pancreas research, and the implementation of physiological models to
perform simulations, are discussed.
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Chapter 4

Virtual Environment for Designing
and Testing of Glucose Controllers

4.1 Introduction

This chapter is devoted to a detailed description of the design and simulation platform used
in this thesis (Leén-Vargas et al., 2011a). The platform corresponds to a virtual environment
composed of several stages to support the development of closed-loop insulin delivery systems
for T1D. This platform enables the user to define an experiment as simple or as complex as
required in a practical and intuitive manner (Ledén-Vargas et al., 2010, 2011b, 2012c). After the
controller is extensively tested, it can be directly integrated into an electronic control unit that
reuses the entire code and facilitates a rapid prototyping design (Ledén-Vargas, 2009).

This chapter is organised as follows: First, the models of the virtual patients used in the
platform and the proposed method for representing in silico a real patient cohort is described.
Second, an overview of the components of the virtual environment and a detailed description
of prominent features that represent realistic scenarios is provided. Last, a realistic test experi-
ment for the evaluation and validation of several closed-loop glucose controllers in the remaining
chapters is presented.

4.2 Virtual Patients

Virtual patients are extensively employed in diabetes research as a substitute for the glucose-
insulin system of real patients. This research is conducted using mathematical models of subcu-
taneous insulin absorption, carbohydrates digestion and absorption, and the control of insulin on
glucose utilisation and endogenous production. Figure 4.1 illustrates the relationships amongst
these processes.

The primary reason for using virtual patients is to develop extensive preclinical testing of
control strategies in artificial pancreas studies. Several clinical trials have been supported by in
silico studies, in which a comprehensive assessment of individuals and virtual populations have
become a prerequisite.

In this section, the model of Dalla Man et al. and Hovorka et al., which represent the
glucose-insulin system, are described. Both models are used extensively for control and have
been integrated into the platform. This section also discusses a method to “virtualise” a real
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Grams of carbohydrates

Digestion and absorption

v Exogenous glucose flow

Insulin .
) Subcutaneous Insulin-Glucose Plasma glucose
delivery . . X > ] >
insulin absorption Exogenous Dynamics
Insulin flow

Figure 4.1: General scheme of the glucose-insulin system.

patient cohort by considering clinical parameters to obtain information about the expected per-
formance of real glycaemic control studies.

4.2.1 Dalla Man et al. model

Carbohydrate digestion and absorption: Dalla Man et al. (2006) proposed a three-compartment
nonlinear model (see Figure 4.2), two for the glucose in the stomach solid Qss1 (mg) and liquid
Qsto2 (mg), and one for the glucose in the intestinal tract Qg (mg). The meal is digested in
the stomach with a grinding coefficient k,.; (min~!); then the chyme (partially-digested food)
enters the intestine with fractional coefficient of transfer keypt (min_l) and finally glucose is
absorbed and enters the bloodstream.

.9 Ra

Kempt(Qsto)

Figure 4.2: Scheme of gastro-intestinal Dalla Man et al. system (adapted from Dalla Man et al.
(2007).

The rate of appearance R, (mg kg~ min~!) describes glucose transit through the stomach
and intestine:

Qsto(t) = Qstor (t) + Qsto2(t) Qs10(0) =0

dQsCtl‘f(t) = —kgri Qsto1 (t) + D 6(t) Qsto1(0) = 0

A2 (1, Qu) Quia®) + ki Quor()) Qun(0) =0 (1)
Dtll) e QousD) + hepa (. Quie) Quort) Q) =0

Rq(t) = ’W R,(0) =0

In order to guarantee model identifiability, kg.; is fixed and equal to ke (min~!). Further-
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more, f is the fraction of intestinal absorption which actually appears in plasma (90%), kqps
(min_l) is the rate constant of intestinal absorption, D (mg) is the amount of carbohydrate to
be ingested, 0(¢) is the impulse function, and BW (kg) is the body weight.

The coefficient of gastric emptying kemyp: is a time-variant nonlinear function of Qs, as shown
in Figure 4.3.

kmax - k

kempt (t, Qsto) = kmin+ 5 min {tanh(a(Qsto(t)—b D)) —tanh(B(Qsto(t)—d D))+2} (4.2)

kmax

Kmeanf —-———- -\ ] ]

kmin

Qsto

Figure 4.3: kempi(t, @sto) function, where D is the total glucose quantity of the last meal.

The parameters a and f are constraints in order to kempt(t, Qsto) = kmaz for Qsto(t) = D
and Qs0(t) = 0, as follows:

B 5 5 5
2D (1-b)’ " 2Dc

(07

where kpnin and kpqe are the minimum and maximum rate of gastric emptying respectively, b
is the percentage of the dose for which the rate of gastric emptying decreases at kjean, and c is
the percentage of the dose for which the rate of gastric emptying is back to kyeqn-

Subcutaneous insulin absorption: The model formulated by Dalla Man et al. (2007) to de-
scribe the subcutaneous insulin absorption uses two-compartments: S; and Sy (pmol kg™!) to
represent the polymeric and the monomeric insulin in the subcutaneous tissue respectively (see
Figure 4.4).

Figure 4.4: Scheme of subcutaneous insulin kinetics proposed by Dalla Man et al. (2007).
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The model is represented by the following equations:

B w0 - (- k0510 510 = 5

45:(t) _ ka S1(t) — ka252(t) S(0) = ka 51(0) (4:3)
dt ka?

S(t) = ka1 S1(t) + ka2 Sa(t) S(0) =5,

where u (pmol kg~! min~!) represents injected insulin flow, k; (min~!) is called degradation

constant, k.1 and kg (min_l) are absorption constants. The quantity S, (pmol min_l) rep-
resents insulin infusion to maintain diabetic patient at basal steady state and S (pmol kg~!
min~!) is the rate of appearance of insulin in plasma.

Insulin action and glucose kinetics: Some modifications to model of Dalla Man et al. (2007),
regarding to B—cells insulin secretion, were presented by Magni et al. (2007) to simulate the
specific metabolism of T1D. This model is composed of one glucose and one insulin subsystem
linked by the control of insulin on glucose utilization and endogenous production, as can be seen
in Figure 4.5.
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Qo Appearancd
\
?\; E
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Ly ’ SYSTEM % :
o] TISSUE
Production Utilization
[ S ¥ (] i 'Y
I H 1ol 1 )
I ¢ . TEEEETTE ] '
R e e e L e e e e P e e T A S S A L 1
Subcutaneous L : |r ________________________________ I
Insulin Insulin Rate of
Infusion Appearance
SUBCUTANEOUS . INSULIN e
= SPACE | SysTEM

~
~ .
QO Plasma Insulin 1’

Figure 4.5: Scheme of the glucose-insulin system in T1D. Solid lines represent glucose and
insulin fluxes; dashed lines represent control signals. Physical activity affects insulin-independent
glucose utilization (taken from Dalla Man et al. (2009)).

Next, the sub-models corresponding to each one of the subsystems are described.
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Glucose Subsystem: Dalla Man et al. (2007) used a two-compartment model to describe
glucose kinetics, as can be seen in Figure 4.6.

Figure 4.6: Scheme of the glucose subsystem (adapted from Dalla Man et al. (2007)).

The model equations are:

“E”—E@WHJMQ—wm—E@—m@@+@@@ Gp(0) = Gpp
dcjitt(t = —U,a(t) + k1Gp(t) — kaGy(2) Gi(0) = Gu (4.4)
G@y_G%ﬂ G(0) = Gy

where G, and G (mg kg~1) are glucose masses in plasma and rapidly-equilibrating tissues, and
in slowly equilibrating tissues, respectively, G (mg dL.=!) plasma glucose concentration, with the
suffix b denoting the basal state. EGP (mg kg~! min~!) is the endogenous glucose production,
R, (mg kg~! min~!) is the glucose rate of appearance in plasma, E (mg kg~! min—!) is renal ex-
cretion, U;; and U,y are the insulin independent and dependent glucose utilizations, respectively.
Vy (dL kg™1) is the distribution volume of glucose and k; and ks (min~!) are the rate parameters.

At basal steady-state endogenous production EGP, equals glucose disappearance, i.e. the
sum of glucose utilization and renal excretion (which is zero in the normal subject), Uy + Ej:

EGP, =U, + E (4.5)

The glucose renal excretion F is modeled by a linear relationship with plasma glucose

E(t) =

ket (Gp(t) — ko) i Gp(t) > keo
0 it Gy(t) < keo

where k.; (min~!) is the glomerular filtration rate and kep (mg kg!) is the renal threshold of
glucose.

Endogenous glucose production subsystem: This model incorporates the notion that a portal
insulin signal controls the rapid suppression of EGP. Since the portal insulin signal is an an-
ticipated version of plasma insulin, it was approximated with a portal-like derivative of insulin
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concentration signal.

The endogenous glucose production, is described as:

EGP(t) = ky1 — kyoGp(t) — kpsIy(t)  EGP(0) = EGP, (4.6)

where k,1 (mg kg~! min~!) is the extrapolated EGP at zero glucose and insulin, k2 (min—1!)

liver glucose effectiveness, and k3 (mg kg~! min~! per pmol L~!) parameter governing ampli-
tude of insulin action on the liver. I; is a delayed insulin signal realized with a chain of two
compartments:

N0 _jn@-r10) 60 -1
dt (4.7)
djéit(t) = —ki(la(t) = h@))  1a(0) =1,

where k; (min~!) is the rate parameter accounting for delay between insulin signal and insulin
action. EFGP is also constrained to be non-negative.

At basal steady state, one has,

kpl = EGP, + kp2pr + k?pglb

S0,

EGP(t) = EGPy + kyy (G, — Gp(t)) + kps(I — I4(2)) (4.8)

Glucose utilization subsystem: The model of glucose utilization by body tissues during a
meal assumes that glucose utilization is made up of two components: insulin-independent and
insulin dependent.

U(t) = Usi(t) + Uia(t) (4.9)

Insulin-independent utilization takes place in the first compartment, is constant, and repre-
sents glucose uptake by the brain and erythrocytes (Feps):

Uz(t) - Fcns

Insulin-dependent utilization takes place in the remote compartment and depends nonlin-
early (Michaelis Menten) upon glucose in the tissues:

t
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where V,,(X(¢)) (mg kg=! min~! per pmol L71), and K,,(X(¢)) (mg kg=! per pmol L~1) are
assumed to be linearly dependent upon a remote insulin, X (pmol L™1):

(4.11)
Km(X(t» = Kmo
which depends from insulinemia in the following way
dX(¢
O X@ t P~ B) X(0)=0 (112)

where I is plasma insulin, and pyy (min~!) is a rate constant defining insulin action on periph-
eral glucose utilization. V0 (mg kg=! min~!), and K,,0 (mg kg~!) are the Michaelis-Menten
parameter of glucose utilization at zero insulin action, and V., (mg kg~! min~! per pmol L71)
is the disposal of insulin sensitivity.

In the basal steady state one has:

Fens — EGPI) + lepb
ko

Up=EGP, = Feps +

Gy =

VmO th
K mo + th

from which

(EGPb - Fcns)(KmO + th)

V_ o=
m0 th

Insulin subsystem: Insulin flow S, coming from the subcutaneous compartments, enters the
bloodstream and is degraded in the liver and in the periphery. The two-compartment model
used to describe insulin kinetics can be seen in Figure 4.7.

Figure 4.7: Schema of the insulin subsystem (adapted from Dalla Man et al. (2007)).

The model equations are:
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dZit) = —Il(t)(m1 + mg) + mo Ip(t) Il(O) =1y
dlgit) = —Iy(t)(m2 + ma) +mq I;(t) + S(1) I,(0) = Ly

(4.13)

where I, and I; (pmol kg~!) are insulin masses in plasma and in liver respectively, I (pmol L™1)
is plasma insulin concentration, V; (L kg™!) is the distribution volume of insulin, my, msg, ms,
and my4 (min~!) are rate parameters, and mg, ms, and my depend on m; in the following way:

06 CL
mg =06—————
2 HE, V; BW
B HE,
=TT,
CL
— 0.4
e V, BW

(4.14)

where H E}, is the basal hepatic insulin extraction and was fixed to 0.6, CL (min~1!) is the insulin

clearance.

At basal one has

Iy = —=—— Ip = 1p Vi

(4.15)

where Iy, and I, corresponds with to the basal steady state of insulin masses in plasma and in

liver respectively.

Subcutaneous Glucose Kinetics: In Magni et al. (2007), the subcutaneous glucose concentra-

tion Gy (mg/dl) is obtained as:

dG (t)
dt

= —kseGr(t) + kscG(2)

where k. is a transfer-rate constant.

4.2.2 Hovorka et al. model

(4.16)

Carbohydrate digestion and absorption: In Hovorka et al. (2004a) and Wilinska et al. (2010),
carbohydrates catabolism to monosaccharide (mostly glucose) taking place during meal diges-
tion, as well as intestinal absorption is described. The glucose absorption rate Ug(t) (mg min~—1)

is represented by:
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dGi(t)  dGi(1)

+ BioxD(t)  G1(0) =0

. dt

dGa(t) _ Gi(t)  Ga(t) (4.17)
dt tmaz tmaa:

Uer — Ct;2(t)

being D(t) (mg) the amount of CHO ingested at time t, Bio (dimensionless) is the bioavail-
ability of the meal and ¢ax (min) is the time-of-maximum appearance rate of glucose in plasma.

Subcutaneous insulin absorption: Hovorka et al. (Hovorka et al., 2004a; Wilinska et al.,
2010) described two-compartments that represents the absorption of subcutaneously adminis-
tered rapid-acting insulin (see Figure 4.8).

Figure 4.8: Compartment model of subcutaneous insulin absorption proposed by Hovorka et al.
(2004a).

The model is represented by the following equations:

dS (t)

T u(t) — kaS1(t) S1(0) = ulgg)
dsjt(t) = koS1(t) — koSa(t)  S2(0) = S1(0) s
dz _ kaSQ(t)
a vy kel(2)

where S7 and Sy (mU) represents insulin masses in the accessible and nonaccessible compart-
ments, v (mU min~!) represents administration (bolus and infusion) of rapid-acting insulin, &,
(min~!) is insulin absorption rate constant, V; (L kg~!) is the volume of distribution of rapid-
acting insulin, I (mU kg L) is the insulin concentration in plasma, and k. (min~!) represents
the fractional elimination rate from plasma.

Insulin action and glucose kinetics: In Hovorka et al. (2002), the model regards separately at
each action of insulin on different phenomena with its final effect on blood glucose. The relation
between insulin in plasma, every virtual compartment representing insulin actions and the two
compartments for glucose are shown in Figure 4.9.

Two compartments representing kinetics of native glucose:
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Figure 4.9: Compartment model of glucose-insulin system (adapted from Hovorka et al. (2004a)).

W 0 (0@ + ki Qalt) — Fy ()~ Fi(t) + Ug(0)

+EGPy(1 — 25(1)) Q1(0) = G(0) V
T (0@ - (k2 + 22(0)Qs00) Qu(0) - 2T Y
G(t) = Q‘lf;) G(0) = G,

where @1 and @2 (mmol) represents the masses of glucose in the accessible and non-accessible
compartments, kjp (min~!) represents the transfer rate constant from the non-accessible to
the accessible compartment, Vi (L kg™') represents the distribution volume of the accessible
compartment, G (mmol L~1) is the glucose concentration in plasma and EGPy (mmol min~1)
represents endogenous glucose production extrapolated to the zero insulin concentration. Fg;
(mmol min~!) is the total non-insulin-dependent glucose disposal, and F is the renal glucose
clearance above the glucose threshold of Ry, (mmol L™1):

Fa(t) = 085}3)611(% (4.20)
Rcl(G(t) - Rthr)VG if G(t> > Rthr
Fr(t) = { 0 if G(t) < Ry (421)

where R, is the renal clearance constant.

The model adds a new compartment for every action of insulin, and there are three consid-
ered events: insulin increases the flow of glucose from blood to the tissues, insulin increases the
glucose uptake by muscles and adipose tissue, and insulin inhibits production of glucose in the
liver. These three influences are reflected in the model as virtual compartments (see Figure 4.9).
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The insulin actions are modelled as first-order processes:

dx(;t(t) = —ka1x1(t) + ka1 SrrI(t)  x1(0) = Srr 1(0)
dib’;t(t) = —kaoxa(t) + ka2 S1pI(t) x9(0) = Sip I1(0) (4.22)
dx;t(t) = —kasw3(t) + kasSieI(t)  x3(0) = S;g I(0)

where 21 (min~!) represents the effects of insulin on glucose distribution/transport, x5 (min=1!)
represents the effect on glucose disposal, and 23 (min~—!) the effect on endogenous glucose pro-
duction; kg, ¢ = 1,...,3 are deactivation rate constants, and Syp, Srp and Sig (min_1 per
mU L~!) are insulin sensitivities to transport, disposal, and endogenous glucose production,

respectively.

Subcutaneous Glucose Kinetics: The model of the interstitial glucose kinetics uses a simple
diffusion model:

dC(t)
dt
where C is glucose concentration in the subcutaneous tissue, G is glucose concentration in the
plasma, and kg in: is the transfer-rate constant.

= _ka,int[G(t) - C(t)] (423)

4.2.3 Representing a Real Patient Cohort

A conventional procedure for virtualising a real patient cohort involves the identification of in-
dividual parameters of a representative model of the glucose-insulin system. Signals, such as
glucose or insulin concentration, are obtained from specific clinical tests, including the oral glu-
cose tolerant test or the intravenous glucose tolerant test as well as other tracer signals in the
identification process. Population values associated with well-known metabolic processes are
reused in most identification procedures to reduce complexity and promote a better fit (Hovorka
et al., 2002; Dalla Man et al., 2006). Data fitting software, such as SAAM II, return optimal
parameter estimation and associated statistics (Barrett et al., 1998).

However, this identification procedure is expensive with regards to the associated cost-
benefits, as the number of virtual patients is equivalent to the number of real patients. For
this reason, information about the model parameters from clinical studies have been adapted
to additional approaches. Virtual patients included in the FDA-approved UVa simulator were
derived from probability distribution functions associated with the model parameters of Dalla
Man et al. (Kovatchev et al., 2009). Virtual patients included in the UCAM simulator were
derived from the conventional procedure, whereas the virtual cohort was validated by compar-
ing the outcomes obtained from real closed-loop tests with the results obtained in the in silico
version of similar tests (Wilinska et al., 2010).

The approach implemented and described in this section is conducted from the statistical
data of the model parameters of Hovorka et al., and a discarding method related to the common
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clinical parameters of T1D patients (Ledn-Vargas et al., 2012a).

Probability distributions of model parameters were extracted from Chassin (2005). Tables 4.1
and 4.2 show the univariate and multivariate parameters, respectively, from the Hovorka et al.
model respectively.

Symbol Units Distribution Limits ‘

Vo liter kg~ ! exp(Ve) ~ N(In(0.15),0.23%) [0.09-0.25]

R,  mmol liter™! R_ipy ~ N(9,1.5%) [7.5-15]
R_y min ! R_q ~ N(0.01,0.025%) [0.003-0.03]
Vi liter kg~* Vi ~ N(0.12,0.0122) [0.08-0.180]
ke, min ! kq ~ N(0.018,0.00452) [0.005-0.060]
ke min~! ke ~ N(0.14,0.0352) [0.050-0.300]
Bio % Bio ~ U(70,120) -

tmaz min exp(1/tmaz) ~ N(-3.689,0.252)  [0.010-0.040]

ka_int min ! exp(Ka_int) ~ N(-2.372,1.0922) -

k1o min ! exp(ki2) ~ N (-2.813,0.43%) [0.01-0.2]
Ea1 min~! exp(kq1) ~ N(-5.684,1.0%) [0.0002-0.0500]
Eao min ! exp(ka2) ~ N(-2.882,0.75%2)  [0.0050-0.4000]
Ka3 min~! exp(kq3) ~ N(-3.730,0.752)  [0.0030-0.1000]

Table 4.1: Univariate model parameters.

] Symbol Units Mean
Fo pmol kg~! min~! 11.1
EGP, pmol kg=! min—! 16.9
Srp min~! per mU liter™!  5.05 x 1074
Sie per mU liter ! 0.019
Srr min~! per mU liter~! 18.41 x 10™*

Table 4.2: Multivariate model parameters.

The sampling procedure for extracting parameter vectors was performed using the quasi-
Monte Carlo (QMC) method (Niederreiter, 1978). The conventional Monte Carlo (MC) method
is also available. However, the qMC method stratifies the random generation of values through
a quasi-random sequence, which ensures a better distributed sampling than the pseudo-random
sequences in the MC method. The difference between the conventional MC and the gMC meth-
ods is illustrated by Figure 4.10, which compares two random sequences in one dimension.

In the case of multivariate parameters, the covariance matrix is employed for sampling the
probability distribution. The covariance matrix is obtained using parameter data from Chassin
(2005), which were previously transformed to be normally distributed, as shown in Eq. 4.24.
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Figure 4.10: 1000 simulated N(0,1) random values using (a) the Monte Carlo and (b) the quasi-
Monte Carlo method.

0.221 0.053 -0.283 -0.024 0.242
0.063 0.155 -0.177 0.221  0.158
-0.283 -0.177 0.830 -0.072 -0.269 (4.24)
-0.024 0.221 -0.072 0.410 0.148
0.242 0.158 -0.269 0.148 0.446

Once the sampling procedure is completed, the raw cohort of virtual patients is obtained by
antitransformation. The discard method to eliminating incorrect virtual patients is divided into
the following two stages:

e First, virtual patients with parameter values beyond an allowable range or with an insulin-
independent glucose utilisation greater than the endogenous glucose production are omit-
ted.

e Second, virtual patients with clinical parameter values beyond the target range are omitted.
All virtual patients are assessed using open-loop tests to calculate the clinical parameters.
The target range is defined according to the requirements of the in silico experiment.

The process for representing a real patient cohort is summarised in Figure 4.11.

As an illustration of generation methodology, a virtual cohort based on clinical parameters
of a real cohort is developed. Table 4.3 lists the clinical parameters from a real patient cohort.
The target range of values for the virtual patients is defined by +2SD from the mean of the
clinical parameters in the discard method.

A list of clinical parameters for the discard method may contain the total daily basal, the
total daily bolus, the total daily dose, the insulin-to-carbohydrate ratio, and the duration of
insulin action (DIA). The corresponding tests used to calculate these clinical parameters are
described as follows:



64 4. Virtual Environment for Designing and Testing of Glucose Controllers

Representative
muodel of
Glucose-Insulin
system

v

Probability
distribution of
madel
parameters

v

Zampling
procedure

v

Clinical ; jectiv
Discard Objective
pa;:;g;tﬁrcinf P rocedure achieved?

Virtual cohort
generated

Figure 4.11: Flow diagram of the virtual patient generation.

Basal insulin: In the Hovorka et al. model, some equations can be combined and reformu-
lated to yield the following expressions:

b +vb? — 4ac

I 4.25
p 2 ( )
where I, is the plasma insulin, and the remaining terms are:

a = (GyVeSir + EGPyS1E)SID

b= EGPySigkis + (Focl(O) + FR(O) — Ug(O) — EGP())S[D (4.26)

c= (FOCI(O) + FR(O) - Ug(O) - EGP())klg

where G}, corresponds to the basal glucose value obtained with basal insulin in a steady state.
The corresponding insulin infusion Usgg is subsequently obtained from the subcutaneous insulin
absorption model as follows:

Usss = Vikelp (4.27)
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| Basal dose (U) Bolus dose (U) Total daily dose (U) I/CHO (U/g) Mean blood glucose (mg/dl) DIA* (h) |

‘ 20.8+8.4 20.14+10.3 40.9+15.0 0.13+0.04 158.2+20.1 4140 ‘
* DIA stands for Duration of Insulin Action

Table 4.3: Mean and standard deviation of clinical parameters for patients with T1D in a
Barcelona hospital.

Total daily dose of insulin and Insulin-to-carbohydrate ratio: Both parameters are estimated
from an open-loop test using 3 meals per day and a meal size according to the daily calorie re-
quirements of each virtual patient. The corresponding basal insulin to maintain plasma glucose
over 100 mg/dl in a steady state is used in this test. The goal is to establish a bolus size that
produces a maximum period of normoglycaemia. Daily calorie Cp and carbohydrates CHOp
are calculated as:

Cp = Weight - CalorieFactor

(4.28)
crop - 2

where Cp is divided by 10 to reflect 40% of calories obtained from carbohydrates. CalorieFactor
is adjusted to 14, which represents a carbohydrate requirement associated with a moderate ac-
tivity level (Walsh and Roberts, 2006). The open-loop protocol is breakfast, lunch and dinner
at 08:00, 13:00 and 20:00 respectively, and a corresponding prandial bolus is administered 20
min prior to a meal.

Duration of insulin action: This test begins with a high blood sugar (in the range of hy-
perglycaemia) and minimal bolus on board acting. An accurate correction bolus and a correct
duration of insulin action will return a high blood sugar to the target ragA]nge by the end of
the duration time period with no additional lowering of the blood sugar during the 2 hours
beyond this time (Walsh and Roberts, 2006). In this case, each virtual patient is brought to
hyperglycaemia by suspending the insulin infusion and attaining a reduction in glucose of 100
mg/dl as a target.

As a result, given the 100 virtual patients generated by sampling the probability distribu-
tions, only 17% have approved the proposed discard method. In the first filter 53% of virtual
patients were dismissed. Of the 47% admitted in this filter, 36% satisfied the requirements of
the second filter. The clinical parameters resulting from this test are shown in Table 4.4.

| Basal dose (U) Bolus dose (U) Total daily dose (U) I/CHO (U/g) Mean blood glucose (mg/dl) DIA (h) |
‘ 22.6+8.2 24.246.2 46.7+11.3 0.1240.02 131.7£0.9 6.1£1.5 ‘

Table 4.4: Mean and standard deviation of clinical parameters from the virtual patients.

One of the main advantages of the generation process is the flexibility of the simulation
procedure. This method reuses collected statistical data from previous clinical studies to satisfy
actual conditions of open-loop control tests. In this manner, a cohort of real patients who will
be used in a clinical trial has a virtual counterpart that satisfies the same clinical parameters
without identifying the individual parameters values of the model used. Although the proposed
method can be easily and practically implemented, acquiring a virtual counterpart for a specific
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patient may require a considerable amount of computation; however, this option is also valid.
The use of virtual counterparts for T1D patients involved in an actual clinical study facilitates the
optimisation of glycaemic control, which improves the effectiveness of the resources invested in
development and subsequent clinical implementation. Although only open-loop control metrics
have been proposed in this implementation, the use of closed-loop control metrics is also feasible.
Due to the complexity of this procedure, the initial use of the discard method, which considers
common clinical parameters, may be more appropriate.

4.3 In Silico Platform

4.3.1 Overview

The layout of the platform is shown in Figure 4.12. The closed-loop control scheme comprises the
virtual patient, the instrumentation, and the controller block. The platform requires metadata
to set up each block and configure the experimental design. An additional block is employed
to configure parameters settings, such as the sample period, the differential equation solver,
and the experiment protocol. The last block contains the outcomes used to assess the con-
trol performance. This platform environment and the graphic user interface is implemented in
LabVIEWTM | Each platform element is described as follows:

Metadata

-Model of glucose-insulin system
-Mixed meals profile
-Intra-subject variability

v

Virtual Patient j

Metadata
== - Metadata
- - Insulin Fump Glucose Sensing
-Failure type and schedule -b maodel madel -Failure type and schedule
-Model features -Madel features
[ Contral
Algorithm
Metadata

According to control method

Figure 4.12: The layout of the platform, which includes a virtual patient with proper instru-
mentation for a closed-loop control scheme and the control algorithm to close the loop.

The main menu for the platform is shown in Figure 4.13. All configuration blocks are ac-
cessed using this menu. It also includes a scenario summary window, options to load and save,
and control buttons to run or stop the simulation.
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3 Main menui e |

Scenario Summary
VIRTUAL PATIENT SUBMENIU
VIRTUAL MODEL: Dalla man
SELECTED PATIENTS:
PATIENT VARIATIONS IN MODEL PARAMETERS: No variations MIXED MEALS: No

PATTERNS OF SENSITIVITY: No

CONTROLLER CONTROLLER SUBMENU:

RESCUE CHO SCHEME: No.
MEAL ANNOUNCEMENT: No CONTROLLER: PID.

HERDUWARE

HARDWARE SUBMENU!
PUMP: Cozme
PUMP FAILURE: No

SENSOR: Guardian

EXPERIMENT ERROR BASE: 0

SENSOR FAILURE: No

IT SUBMENU:
TOTAL TIME (min): 0
OUTCOMES PHASE (min): 0
- STEP SIZE (min): 0,00
STABT NE BEGI I ATIAN (mini: 0

Figure 4.13: Platform main menu.

The virtual patient submenu is shown in Figure 4.14. The model of the glucose-insulin
system by Hovorka et al. or Dalla Man et al. is selected and a list of virtual patients are
available. The option of parameters dynamics allows a user to define sinusoidal variations or
import customised variations over model parameters. In addition, an option designed to include
and customise patterns of circadian variability to sensitivity parameters is also available. The
last option for defining whether the virtual patient will work with profiles of rate glucose ap-
pearance from mixed meals or the corresponding model of carbohydrate absorption is included.
A description of intra-patient variability and information about mixed meals is detailed in the
following sections.

£3 VP submenuwi =0

VIRTUAL PATIENT SUBMENU

Hovorka | Dalla Man

Parameters Dynamics
Sinusoidal variations

Virtual Patients

Parameter ke2 E Pa“eir_“? ot Sensitivity Variation® = Pattern(t)£1 +£2
Sensitivity

Active? From (min)
%Nominal | Period (h)  Phase (h) .

Advanced @ Yes/No = -
g g g 0
.
Qitore, “Default Sensitivity Variation: fl=f2=1
0 0 3

3

“'W
- o
0

0 5 10 15 20 4

To(min)  fl )

Param Variation = Param-fL +f2

From (min) To(min)  fL 2

Amplituc

¥ Use Mixed Meals Time (h)

Figure 4.14: Virtual patient submenu.

The controller submenu is shown in Figure 4.15. Meal announcement and CHO rescue are
options available to the control algorithm if required. With the meal announcement option,
the controller has information about the timing and size of the meal intake. With the rescue
option, it is possible to define the CHO size and the interval to check the glucose concentration.
It is also possible to configure the turn on/off schedule of the controller during the simulation
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duration. The remaining options are configured according to the design of the control algorithm.

13 Controller submenu.vi Front Panel on Untitied Project 1/My Computer b= le
CONTROLLER SUBMENU
- [CIRESCUE CHO SCHEME
[FIMEAL ANNOUNCEMENT
] Anticipation time (min) i Besiue cosie )
[CIAmount of Intake [1 Type of food g RestdeCHOTeal (i)
| PID | ¢PID-IFB | PID-SMRC Auto | PID-SMRC Manual | oL | New Controlier cativoistsvsiass: || ion /Off Control = 1/0
PID gains SMRC settings 10Bmax Values Night
proportional gain (Kc) 40,0256 — o Night Starttime (h) From = To
) - 2 Start time (1) 2 miny |y H2e
integral time (Ti, min) (¢} Inf @ Ly 23 Set Point (mg/di) .
Intern Time Step (min) 108 value (L) 100 I 0 I 120 I 1 El
etime (Td, 1 o 57 |_120 l_I”f |_1 i
Night Control Manual Period (min) =
gt Conton 10 = s Star time ()
sm‘(of‘.) Bokis setfings - 2 Add Sensor Errar?
Tanes reBolus’ SetPoint (mg/dl)
ey ) My PO VCHO  Piming Timeminl 108 value ) i s
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Basal Profile to 1087
[ toa ‘ Save ‘ o Cancel oK

Figure 4.15: Controller submenu.

The hardware submenu is shown in Figure 4.16. This submenu involves the insulin pump
and the glucose monitoring system. Features of several devices and representative failures have
been included in both cases. For glucose monitoring, a loss of signal can be scheduled; for an
insulin pump, a different type of occlusion can be adjusted and scheduled to the simulation.
Model devices are described in the following sections.

{3 Hardware submenu.yi e

HARDWARE SUBMENU

Insulin Pump | OmniPod [+ CGMs | Navigator [+]
Error base 4
[ Setting Pump Failure [l Setting CGMS Failure
Failure intervals Delivery type Loss of signal
From Interval ~ From Interval
(min)  (min) ®ZERO (min)  (min)
5 2 CURRENT
© PARTIAL
= o 0 0 -
% of nominal
{ [ Loa ‘ Save | ’ Cancel | oK

Figure 4.16: Hardware submenu.

The experiment submenu is shown in Figure 4.17. Simulation settings relative to the solver
and the corresponding step size are adjusted using this submenu. In addition, the experiment
duration and a phase term used to modify the sensitivity patterns can be found. The CHO proto-
col enables the user to specify the duration and size of meals and the corresponding bolus insulin
if required. A profile of basal rate insulin can be defined as a constant, dynamic or default profile.

The outcomes submenu is shown in Figure 4.18. In this menu, several metrics can be selected
to evaluate the control algorithm. The period of assessment can be adjusted to a specific simu-
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13 Bxperiment submenui
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Simulation Settings 2830 Experiment duration
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“

[ import Import
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Figure 4.17: Experiment submenu.

lation. Additional information about the provided metrics is detailed in the following sections.

3 Outcomes submenu.i
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4.3.2 Mixed Meals

Figure 4.18: Outcomes submenu.

In silico studies of the artificial pancreas require the implementation of complex conditions that
reflect real challenges to the control algorithm. Different models of the glucose-insulin system
have been developed to explain the complex dynamics involved. However, some processes, such
as carbohydrate absorption or insulin action, are modified daily by external disturbances, which
have not been modelled and may impair the final performance of control algorithms. In the case
of carbohydrate absorption, given a model for a virtual patient, such as Dalla Man et al. or
Hovorka et al., the glucose appearance response disregards the meal composition and prevents
the handling of complex dynamics by the control algorithm.

Intensive in silico trials should be as realistic as possible to evaluate performance and safety.
The MICELab group has developed a mixed meals library that contains profiles of the rate
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of glucose appearance from several meal compositions using Bayesian identification methods
(Barajas-Solano et al., 2012; Herrero et al., 2012). This library is implemented into the platform
as an additional feature that enables variability in mixed meals of different sizes and compo-
sitions. When a mixed meal is selected for simulation, the carbohydrate absorption model is
replaced by the time profile of the corresponding meal. Table 4.5 contains information about
the mixed meals library, and Figures 4.19 and 4.20 show their corresponding time profiles. The
mixed meal option appears in the platform in the virtual patient submenu, as shown in Fig-
ure 4.14. When this option is selected, the experiment submenu displays the corresponding meal
codes from the library and the protocol schedule also changes, as illustrated in Figure 4.21.

4.3.3 Intra-Patient Variability

Intra-patient variability of insulin sensitivity defines the metabolic balance between insulin con-
centration and glucose disposal. This variability is present in T1D patients as an individual
profile of variation that can be characterised and considered for improved continuous subcuta-
neous insulin infusion treatment. Several patient-related factors, such as illness, exercise, stress,
dawn phenomenon or alcohol, and treatment-related factors, such as medications, can influence
insulin sensitivity.

Models with virtual patients, such as patients in the Dalla Man et al. model, do not cur-
rently consider any intra-patient variability; however, it is reflected in the model description
(Dalla Man et al., 2007). Virtual patients in the Hovorka et al. model are susceptible to sinu-
soidal variations in insulin sensitivity (Wilinska et al., 2010). Individualised variations of insulin
sensitivity as presented by real patients have not been detailed or applied extensively in virtual
patients. The inclusion of this intra-patient variability enables more realistic simulations and
enhanced information about patient treatment.

For patients with T1D, patterns of basal insulin are achieved with an insulin pump to com-
pensate variation from insulin sensitivity. Parameters related to insulin sensitivity in the Dalla
Man et al. model are modified to implement realistic circadian variations. Figure 4.22 shows
the patterns found in T1D patients classified by age range. In this thesis, all simulation tests
focus on adult patients; the solid square pattern in Figure 4.22 is selected as the baseline for the
basal insulin dynamics of virtual patients.

In the Dalla Man et al. model, the V,,; parameter represents the disposal of insulin sensi-
tivity and is modified accordingly. Figure 4.23 shows the average variation applied to the V,,,
parameter for adult virtual patients. The individualisation of this variation for each virtual
patient enables the reproduction of the basal insulin profile from the selected pattern, as shown
in Figure 4.24. Note that the applied variation exhibits inverse dynamics as the basal insulin
and the insulin sensitivity have opposing effects.

Table 4.6 summarises the hourly basal insulin values per patient to accommodate the cir-
cadian variation in the insulin sensitivity shown in Figure 4.23. Also, Table 4.7 shows the
insulin-to-carbohydrate ratio for each patient.

The platform includes a specific option in the virtual patient submenu to set up the inclusion
of insulin sensitivity variation. There are two alternatives: clicking the check button of patterns
of sensitivity or using the associated advanced options. The advanced options allow the user
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l Meal Ingredients CHO (g) ‘
1 Milk, white rice, pear, bran-cookies, low-fat cheese, oil 52.0
2 Milk, white rice, pear, bran-cookies, oil 111.0
3 Milk, white bread, low-fat cheese, butter, oil 52.5
4 Milk, white bread, low-fat cheese, butter, oil 111.0
5 Pasta + low content of sunflower oil 75.0
6 Pasta + high content of sunflower oil 75.0
7 Rice pudding, sugar and cinnamon 50.0
8 Kidney benas, wholemeal bread, salami, cheese 50.0
9 Pasta + psyllium low fat 52.0
10 Barley Temp 25.0
11 Oat Tempe 25.0
12 Chocolate Raspberry Bar 10.0
13 Chocolate Daydream shake 10.0
14 Peanut Butter Chocolate Bar 25.0
15 Chocolate Daydream shake fructose 25.0
16 Lightly Salted Soy Protein Chips 25.0
17 Soy Spaghetti 25.0
18 Low GI (250ml of water): Boiled pearl barley 50.0
19 High GI (285ml of water): Mashed potato 50.0
20 Baked potato, gelatin, turkey breast 45.0
21 Boiled rice, corn, turkey breast 50.0
22 White bread, eggs, margarine and orange juice 50.0
23 Powdered nutritional supplement 50.0
24 Pasta and tomato sauce 50.0
25 Pasta and tomato sauce + oil 50.0
26 Pasta and tomato sauce + oil + psyllium 50.0
27 High CHO meal 93.0
28 High fat meal 27.0
29 Pasta + medium content of sunflower oil 75.0
30 Standard breakfast 1 120.0
31 Standard breakfast 2 70.3
32 Standard breakfast 3 50.0
33 Cheese omelet, bread and margarine 38.0
34 Spaghetti with tomato, cheese and lentils 87.0
35 Cornflakes, milk, bread and margarine 104.0
36 Oatmeal, milk, bread and margarine 62.0
37 Barley with tomato and cheese 68.0
38 Oat cereal, milk, strawberry jam and orange juice breakfast 69.0
39 Fiber and fruit cereal, milk, rockmelon, pineapple 50.0
40 High fiber cereal, milk, strawberries, grapefruit 42.0
41 Egg omelet, bread, spinach, red capsicum, grilled tomato 20.2
42 Egg omelet, honey, bread, spinach, red capsicum 15.5
43 Bread, milk, brown sugar, banana, orange juice 47.0
44 Muffin, peanut butter 27.3
45 Candy bar, milk, ice-cream, heavy cream 80.0
46 Syrup, Skimmed milk, fat-free ice-cream 80.0
47 Biscuit, no-fat yogurt 94.0
48 Wheat flakes, fresh cheese, milk 91.0
49 Wheat-biscuit, low-fat milk, whole-meal bread, fruit, poultry, vegetable 1 123.0
50 Wheat-biscuit, low-fat milk, whole-meal bread, fruit, poultry, vegetable 2 126.0
51 Vegetable lasagna, cream dessert, orange drink 27.0
52 Vegetable lasagna, skim milk dessert, orange drink 120.0
53 White Rice 75.0
54 100% rolled barley 75.0
55 50% rolled barley 75.0
56 30% rolled barley 75.0
57 White Wheat Bread 50.0
58 Whole Kernel Bread 50.0
59 B-glucan Rye Bread 50.0
60 Whole Meal Pasta 50.0

Table 4.5: Library of mixed meals.
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Figure 4.19: Time profile of rate glucose appearance for mixed meals (a) 1-5 (b) 6-10 (c) 11-15
(d) 16-20 (e) 21-25 and (£) 26-30.

to define scheduled modifications as amplitude or bias to the patterns. In this manner, the
predefined variations of insulin sensitivity can be customised according to the requirements of
the control testing. Figure 4.25 shows the customisable settings of insulin sensitivity variations
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Figure 4.20: Time profile of rate glucose appearance for mixed meals (a) 31-35 (b) 36—40 (c)

41-45 (d) 46-50 (e) 51-55 and (f)

from the virtual patient submenu.

56—60.

In practice, four or five values of basal insulin are usually set in the insulin pump daily
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Figure 4.22: Average hourly basal rate values by age group. The open triangle represents ages
3-10 years of age, the open square depicts ages 11-20 years of age, the solid square represents
ages 21-60 years of age, and the solid triangle depicts ages >60 years of age (taken from Scheiner
and Boyer (2005)).
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Figure 4.23: Mean and standard deviation of the variation profile of the insulin sensitivity
parameter V,,,,, which was applied to adult virtual patients in the Dalla Man et al. model.

to prevent glucose variations above 30 mg/dL (Scheiner et al., 2009). Figure 4.26 shows an
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Figure 4.24: Mean and standard deviation of the basal insulin profile applied to adult virtual
patients in the Dalla Man et al. model.

. Patient | , o, 5 4 5 6 7 8 9 10
Time
02:00 1.60 1.80 1.85 1.05 190 1.90 1.50 1.45 1.65 1.75
05:00 214 241 216 123 285 222 165 1.70 2.07 2.34
10:00 128 144 1.66 094 152 1.67 1.41 1.30 1.40 1.40
16:00 1.67 191 191 1.08 201 1.96 1.53 1.50 1.72 1.85
20:00 127 143 1.66 094 151 1.71 1.41 1.30 1.39 1.39

Table 4.6: Individualised basal insulin rate (IU/h) for each patient in the cohort.

) Patient | 2 3 4 5 6 7 8 9 10
Time
00:00 100 100 .100 050 .125 .075 .050 .075 .150 .175
12:00 0833 .0833 .075 .0333 .1166 .05 .025 .055 .1166 .125
19:00 050 050 .050 .040 113 .050 .031 .038 .063 .063

Table 4.7: Individualised insulin-to-carbohydrate ratio (IU/g) for each patient in the cohort.
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Figure 4.25: Advanced settings of patterns of sensitivity options from the virtual patient sub-
menu.

example of the glucose concentration response when the default basal insulin profile is applied
to the virtual patient. As a control, the platform includes an option in the experiment sub-
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menu named default basal insulin that can be selected to obtain a corresponding daily basal
insulin. This default profile substantially counteracts the effect of variation in insulin sensitivity.
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Figure 4.26: Glucose concentration response of a virtual patient (a), including variation in
insulin sensitivity, and (b), according to the basal insulin applied. The blue dashed line denotes
a profile of basal insulin and the solid red line denotes a constant value of basal insulin.

The combination of sinusoidal variations in the platform, for varying any model parameter
and the intra-patient variation of insulin sensitivity, enable the construction of numerous realis-
tic control scenarios that contain diurnal and day-to-day variability.

4.3.4 Instrumentation models

Glucose sensor model The glucose sensor model is employed to estimate the behaviour of
the measurement errors of continuous glucose monitoring (CGM) systems and enables a more
realistic simulation of test scenarios. Several recent studies have been conducted on the accu-
racy of CGM systems (Gerritsen et al., 1999; Gross et al., 2000; Cheyne et al., 2002; Kovatchev
et al., 2004; Clarke et al., 2005; Clarke and Kovatchev, 2007; Zisser et al., 2008b). The primary
challenges of achieving accuracy are the sensitivity, the calibration stability and the inherent
physiological lag between the blood glucose concentration and the interstitial glucose concentra-
tion.

The model suggested by Breton and Kovatchev (2008) represents the measurement behaviour
of CGM systems and provides an improved description of sensor error dynamics than the Gaus-
sian noise commonly included in control simulations (Chassin et al., 2004). Although this model
demonstrates a sophisticated level of abstraction, Facchinetti et al. (Facchinetti et al., 2010)
partially dismissed it due to the difficulty of achieving a perfect calibration when working with
data collected in vivo. However, the Breton & Kovatchev model exhibits sufficient representa-
tiveness for use in realistic simulation tests.

The model comprises two components. The first component is related to the transport delay
from the blood to the interstitial glucose concentration. The measurement is obtained from the
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interstitial space. Eq. 4.29 describes this component as a first-order diffusion model as

dIG(t)
dt

where IG(t) and BG(t) are the interstitial and blood glucose concentration respectively, and 7
is a rate constant for the two fluids.

_ —%(IG(t) — BG(1)) (4.29)

The second component is related to the noise sensor, which does not constitute white noise,
and is modelled by an autoregressive moving average (ARMA) model as shown in Eq. 4.30.

en =0.7(en—1 + vp) (4.30)

where v, ~ ¢(0,1) is independent and identically distributed (i.i.d.), i.e., an error which is inde-
pendent of previous errors and time and obtained from the same probability distribution. The
sensor error &, is calculated from the time series of normally distributed e, using a Johnson
transformation Eq. 4.31.

en=¢&+ /\sinh(en 6_ 7) (4.31)

where &, A, v, and 0 are fixed; their values are listed on Table 4.8.

] Parameter Value

¢ _5.471
A 15.96
~ -0.544
5 1.689

Table 4.8: Parameter values used for Johnson transformation.

Commercial CGM systems have restrictions on measurement accuracy and technical features,
such as the display period of glucose measurements or the minimum and maximum allowable
glucose values, which are dependent on the manufacturer. Table 4.9 shows the display period
of the CGM systems implemented on the platform.

’ Model Display period (min) ‘

Dexcom 3
Guardian 5
Navigator 1

Table 4.9: Display period of glucose measurements of implemented CGM systems.

The technical failure of loss of signal in the CGM systems has been implemented to evaluate
the performance of glucose controllers under malfunctioning conditions. A failure schedule can
be adjusted in the simulation setup of the hardware submenu.
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Insulin Pump Model According to Hovorka (2006); Kovatchev et al. (2009), incorrect insulin
delivery influences the performance of the glucose control algorithm. In this manner, deviations
in the expected value of the insulin basal delivery or the insulin bolus must be considered in
realistic simulations. The error model used for these deviations was assumed uncorrelated, with
a zero mean and a constant coefficient of variation (CV) (Wilinska et al., 2010). According to
the insulin pump, a specific CV can be set using data from the experimental tests in Zisser et al.
(2010a).

The minimum basal and bolus increments and the maximum insulin delivery rate were imple-
mented as technical features. These features are defined by the manufacturer and vary amongst
devices. Table 4.10 presents the feature values for two commercial insulin infusion pumps.

Model Basal Bolus Maximum Maximum
increment (IU) increment (IU) basal rate (IU/h) bolus dose (IU/h)
Deltec Cozmo 0.05 0.05 35 75
Omnipod 0.05 0.05 30 30

Table 4.10: Technical features of implemented insulin pumps.

Regarding the types of failures of insulin pumps in real-life scenarios, three effects were
considered: constant delivery, partial delivery, and non-delivery of insulin. Each represents a
different degree of pump occlusion. A constant delivery is a software failure in which the pump
insulin does not respond to new values and maintains the current insulin delivery value. A
partial delivery is a hardware failure in which the insulin pump occlusion prevents a full delivery
rate. A non-delivery is a complete suspension of insulin delivery. To include this behaviour in
the simulation, a failure schedule can be adjusted in the hardware submenu.

4.3.5 Outcome Measurements

The outcome measurements available in the platform are organised by graphical or numerical
type. The following list briefly describes briefly the measurements used in the platform.

e One of the most useful measurements is the control variability grid analysis (CVGA), which
is a graphical tool commonly used in closed-loop assessment. It locates the performance of
a control algorithm in a given area according to an observation period. Each data point in
CVGA represents the minimum /maximum values obtained during the glucose excursion
(Magni et al., 2008).

e The risk trace is based on a data transformation that normalises the blood glucose scale
(Kovatchev et al., 1998). Each blood glucose reading is transformed using the formula
f(BG) = 1.509([in(BG)]%¥* — 5.381) for blood glucose (BG) measured in milligrams per

deciliter.

e The Poincare plot is usually employed in time series analysis. In diabetes treatment, this
plot evaluates the variability between consecutive blood glucose readings. A time spacing
of 1 h is typically used.

e The grading system is another graphical outcome used to evaluate the efficacy and safety
of closed-loop systems and glucose controllers. The grading outcome is the quantification
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of time spent in each of six grades, A-F, to describe the level of control grade. This

quantification is performed in the pre-prandial and post-prandial periods (Chassin et al.,
2005).

e The aggregate blood glucose represents an hourly classification of hypoglycaemia, normo-
glycaemia or hyperglycaemia.

e The histogram displays a tabulated frequency graph of blood glucose readings by range.

The blood glucose signal displayed in Figure 4.27 was used to perform these graphical out-
comes. The results are shown in Figure 4.28.
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Figure 4.27: Example of (a) blood glucose signal, and (b) corresponding sensor measure glucose
signal.

The remaining outcomes consist of numerics, such as the low blood glucose index (LBGI) or
the high blood glucose index (HBGI), which are used to evaluate variability and risk (Kovatchev
et al., 1998, 2002). The blood glucose risk index is the sum of LBGI and HBGI. The standard
deviation of the blood glucose rate of change is also included.

Numerical outcomes for measuring the average blood glucose and the deviation from a cus-
tomised target range are also available.

4.4 Constructing a Simulation Scenario for Postprandial Con-
trol

A realistic and challenging simulated scenario is created to evaluate the robustness of the perfor-
mance of the control algorithms introduced in this thesis. Concerns regarding the hypoglycaemic
protection and its consequence on patient safety are evaluated with this scenario design.

Virtual patients of the Dalla man et al. model with individualised circadian variations, as
previously introduced in section 4.3.3, are combined with daily sinusoidal variations of 20%
amplitude with 19 h and 29 h periods of insulin sensitivity and insulin absorption, respectively.
In the case of insulin sensitivity variation, the sinusoidal variation was performed using the
parameter V,;; in the case of insulin absorption, the sinusoidal variation was performed using
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Figure 4.28: Outcomes metrics implemented in the in silico platform: (a) CVGA, (b) risk
trace, (c) Poincare plot, (d) aggregate blood glucose, (e) histogram, (f) grading system, and (g)

available numeric outcomes.
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parameters kq1, kg2, and ky.

Regarding the meal glucose, the rate of blood glucose appearance profile corresponding to
six different meals from the library introduced in section 4.3.2 were selected in an 18-meal simu-
lation trial per patient, for a total of 180 tests. The meals are approximately 60 g; this meal size
is generally used in clinical trials. The nutritional composition is listed in Table 4.11, whereas
their corresponding rate of blood glucose appearance profiles are shown in Figure. 4.29.

T
= Meal 1
= = =Meal 3
='='Meal9
—+— Meal 40
—=— Meal 41
Meal 42 |5

Rate of glucose appearance [mg/min]

3 4
Time (h)

Figure 4.29: Rate of glucose appearance of mixed meals from Table 4.11.

Meal code | CHO Fat Protein Fiber Energy(kcal)‘

1 52 10.5 14.5 1.7 300
3 52 - - 2.6 240
9 52,5 10.5 14.5 - 300
40 62 17.0 12.0 - 120
41 68 8.0 12.0 - 120
42 69 12.8 13.1 - 300

Table 4.11: Nutritional composition of mixed meals (in grams) used for the test scenario.

The total simulation time is 28800 minutes, which corresponds to 20 days, in which the first
day and the last day are used as transitory periods. A mixed meal is administered daily at
12:00; each meal is administered three times during the simulation execution but under different
intra-patient variability conditions, according to the previously described sinusoidal variations.
The protocol for meal intake corresponds to the meal-codes [1, 40, 9, 41, 3, 42], i.e., interleaving
low and high rate of glucose appearance profiles.

4.5 Summary

In this chapter, a complete description of the in silico platform features are presented. This
platform facilitates the simple and intuitive design of a broad range of realistic scenarios through
customisation options in all components. The models that comprise the platform components
are presented, with particular emphasis on the virtual patients and the instrumentation used
in artificial pancreas development. A method for representing in silico a real cohort of patients
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with T1D has been suggested, which can be beneficial to a process of control design intended
for clinical trials. A realistic test scenario has been constructed and presented to address the
challenge of control algorithms introduced in this thesis.



Chapter 5

Open-Loop Postprandial Control: A
Set-Inversion-Based Approach

5.1 Introduction

This chapter presents a practical strategy designed to compute a solution in the basal-bolus
space of an innovative and promising open-loop method for postprandial glycaemic control
named iBolus (Rossetti et al., 2012). The objective is to optimise the computation time of the
iBolus algorithm to enable integration of this bolus advisor in smart insulin pumps. This optimi-
sation is performed by reducing the number of iterations performed with the set-inversion-based
technology used in the previous non-optimised iBolus algorithm. A methodology based on the
analysis of interval simulations, physiological assumptions, and search domain contractions was
developed (Leén-Vargas et al., 2012b).

This chapter is organised as follows: First, a brief background on the mathematically guar-
anteed techniques (interval analysis) is used to calculate the interval simulations and the corre-
sponding application in set-inversion problems is introduced in section of interval analysis and set
inversion. Second, the section of prandial insulin delivery algorithm describes the methodology
used by the non-optimal version of the iBolus algorithm. Third, the section about the optimisa-
tion method presents the target, the conditions governing the optimisation, the constraints used
in the non-optimised and optimised versions of the iBolus algorithm, and the algorithm rationale
about the implemented procedure. Last, the numerical results and discussion are presented to
show the potential extent of the inclusion of this approach in commercial insulin infusion pumps.

5.2 Interval Analysis and Set Inversion

Interval analysis arose in the context of numerical analysis and the study of propagation of com-
putational errors in finite number systems (Moore, 1966, 1979): if real numbers are substituted
by compact subsets of the digital scale (intervals) which contain it, and real operators by interval
operators, computations will lead to intervals that contain the actual solution, whose width is
a measure of the approximation error. It is precisely this property of inclusion of the actual
solution that makes interval analysis and methods derived very interesting when a mathematical
guarantee is desired.

83
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Inclusion functions are thus one of the fundamental tools in interval analysis. In the follow-
ing, [x] will denote a real interval, and & and T are its left and right endpoints, respectively.
Interval vectors, or boxes, will be denoted in boldface, [x]. The set of all real intervals will be
denoted by IR and the set of n-dimensional boxes as IR".

A formal definition follows.

Definition 1: Given a function f : R® — R™, the interval function [f] : IR" — IR™ is an
inclusion function for f , if for any box [x] = [x,X] € IR"

[f]([x]) = [min f(x), max f(x)].
z€[x] z€([x]

The simplest way to get an inclusion function for f is replacing the real variable z with an
interval variable [z] and the real arithmetic operations with corresponding interval operations.
The result [f] is called a natural inclusion function of f (Moore, 1966). However, this may yield
significant overestimation when multiple instances of a variable appear in the expression to
evaluate (multiincidences problem). Other inclusion functions have been studied to reduce this
problem like centered forms or Taylor expansion forms. See for instance Moore (1966, 1979);
Alefeld and Herzberger (1983); Jaulin et al. (2001) for more details on this topic.

Currently, interval analysis is a mature technology that has been successfully applied in fields
aside numerical analysis such as robotics, control, computer graphics, economy, global optimiza-
tion, and fault detection, among others (Jaulin et al., 2001).

An important application of interval analysis is the solution of set inversion problems. Let
X C R” and Y C R™ be an input and output space, respectively. Given a set Y C Y and a
map f: X — Y, the set X := x € X|f(x) € Y is sought. The set Y is usually defined through
constraints on the output space. The Set Inversion via Interval Analysis (SIVIA) algorithm
(Jaulin et al., 2001) makes use of a branch-and-bound technique together with interval analysis
to get an approximation of the solution set X. This approximation is done in terms of subpavings
(collection of boxes of the appropriate dimension with nonoverlapping interiors). An inner
and outer subpaving, which will be denoted as [X]; and [X], , respectively, are built so that
[X]; € X C [X], . Hence, it is guaranteed that [X]; will contain only solutions while the
complementary set of [X],, denoted as [X], , will contain only nonsolutions (see Figure 5.1).

Some definitions of interest for the SIVIA algorithm are below presented.

Definition 2: The width of a box [x] = [x,X] € IR™ is w([X]) := maz;c,.. n} (Ti — 2;)-

(z; +fi)‘

Definition 3: The midpoint of a box [x] = [x,X]| € IR" is m([x]) := 5

Definition 4: The left and right children of a box [x] = [x,X]| € IR™ are

L([x]) i= [zg, @] x - [ag, m([a])] > - X e, T
R([x]) = [y, 1] < - [m[25]), T5) % -+ X [2n, T
where j is the first component of [x]| with maximum width, that is, j = min{ilw([z;]) = w([x])}.

SIVIA algorithm (Jaulin et al., 2001). Let X be the solution set sought and [X]; and [X],
be two subpavings corresponding to inner and outer approximations of X as defined earlier. Let
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Figure 5.1: Plot that illustrates the concept of inner and outer subpaving. The dark rectangles
represent the inner subpaving and guarantee the fulfillment of the constraints. The outer sub-
paving is made up of both the dark and the light rectangles. Its complementary set (in white)
is guaranteed to contain only nonsolutions that violate some of the constraints. Results in the
boundary (light rectangles) are unknown a priori.

[t] : IR™ — IB be a test interval function from the set of n-dimensional interval vectors (box in
the input space) to the set of interval booleans, IB = 0, 1, [0, 1] (where 0 stands for false, 1 for
true, and [0, 1] for indeterminate). Finally, let [x] € IR™ be an initial box in the input space
and € be a positive precision factor that can be chosen arbitrarily low. The SIVIA algorithm is
as follows:

] SIVIA (in: [t], [x], € 0ut : [X];, [X]o)

if [t]([x]) = 0, return;

if [t]([x]) =1, then {[X]; := [X]; U [x]; [X]o := [X]o U [x]; return; };
if w([x]) < €, then {[X], := [X], U [x]; return; };

SIVIA([t]vL([X])v S [X]Z’ [X]o)§

SIVIA([t]v R([X])v 6 [X]Zv [X]O)a

The inner subpaving will thus contains the boxes classified as true, while the outer subpaving
contains the false and indeterminate boxes (of width smaller than the tolerance defined). Not
small enough indeterminate boxes will be splitted in two subboxes by the midpoint of its largest
dimension and the procedure repeated.

5.3 Prandial Insulin Delivery Algorithm

Set-Inversion-Based (SIB) prandial insulin delivery is a control strategy implementing the SIVIA
algorithm to meet a set of predefined constraints. This is done through a recursive search of
combinations of three components: namely, the bolus dose, the postprandial basal dose, and the
time for basal-to-baseline restoration (the postprandial basal duration (PPBD)) (Revert et al.,
2011).
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SIB algorithm functionality can be summarized as follows. Given an interval vector (or box)
of inputs [x], comprising the elements of bolus dose, basal dose, and PPBD, the SIB algorithm
determines whether:

1. The full range of therapies contained in [x] meet the constraints.
2. None of them meet the constraints.

3. Some of them meet the constraints.

For the third case, the corresponding input box is partitioned and the resulting boxes are
re-evaluated in an iterative way by the algorithm until getting a box that meets the constraints.

At each step in the algorithm, a patient’s glucose-insulin model is used to predict the post-
prandial glycemia corresponding to the therapies contained in [x], using interval simulation
techniques (Calm et al., 2011). After comparing the predicted postprandial glycemia with the
constraint set, a 3-D plot of boxes meeting these constraints is obtained (see Figure 5.2(a)). A
2-D basal-bolus projection is then useful for showing the basal-bolus combinations space that
will lead to a good performance for a particular patient and meal (see Figure 5.2(b)).
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Figure 5.2:  Plot representing: (a) three-dimensional (basal dose, bolus dose, and PPBD)
feasible set and (b) its corresponding basal-bolus two-dimensional projection.

It should be noted that, even when meeting all constraints, the postprandial behavior asso-
ciated with each possible basal-bolus combination inside the paving of solutions is different.

5.4 Optimization Method

According to the results shown in Revert et al. (2010), the basal-bolus combination of interest
within the paving of solutions corresponds to the box containing the maximum value for bolus
dose as it successfully meets the constraints imposed, and accordingly, it was established as the
optimization aim in this work.

The input space X, as in the non-optimized version, corresponds to the standard capabilities
found in commercial insulin pumps: 0-40 insulin units (IU) for the bolus dose; 0-10 IU /h for the
basal dose; and 0-300 min for the PPBD. However, unlike the branch and bound method used
by the SIVIA algorithm, in the optimization method the basal-bolus plane of the input space
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Figure 5.3: Basal-bolus space partitioned in a grid for the optimization method.

is partitioned into a grid of fixed granularity (see Figure 5.3), where the size of the basal-bolus
components corresponds to the minimum width used in the non-optimized version of the SIB
strategy. This size covers the range of inaccuracy present in insulin pumps (Zisser et al., 2010a).
The PPBD component is treated as a single-value (real value) throughout the optimization pro-
cess, and only at the last stage an upper and lower limit is computed to produce an interval
output.

In essence, the optimization algorithm focuses on moving a box, [x], of fixed size from an
starting point and cross the grid following a smart pathway to reach the target solution in few
steps.

The set of constraints C used here correspond to those used by Revert and coauthors:

e 2 h postprandial glucose value below 140 mg/dl in a 5 h time horizon

e A maximum glucose slope of 10 mg/dl/h starting 4 h after the meal in order to avoid the
late-term hyperglycemia.

e Hypoglycemic threshold of 70 mg/dl

e A 5 h postprandial glucose value above 90 mg/dl in order to avoid hypoglycemia.

The dynamic relationship between glucose and insulin was included implicitly in the algo-
rithm proposed through the following physiological assumption: the more insulin delivered, the
more blood sugar is lowered in the patient. Such physiological knowledge is useful for ruling out
search areas according to the optimization aim.

Interval simulations (Calm et al., 2011), characterized by reflecting the collection of postpran-
dial glucose profiles predicted for a set of therapies, were used. These interval simulations use
a customized patient model which takes account different sources of uncertainty. The glucose-
insulin model used in this optimization method was the same as that used in the non-optimized
version. Model identification and validation was carried out from 6-day domiciliary data using a
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continuous glucose monitor. For three days, the patient advanced or delayed bolus infusion with
respect to mealtime at lunch according to an optimal experiment design to maximize sensitivity
of identified parameters. Three additional days following the standard treatment were used for
model validation. A detailed description about the model and its identification can be found in
Laguna et al. (2010).

5.4.1 Algorithm Rationale

The optimization task was divided into two main stages: first finding the box containing the
maximum bolus value that meets the hypoglycemia and hyperglycemia constraints (including
the 5 h glucose above 90 mg/dl) and then verifying the slope constraints.

The optimization procedure is described by using a graphical example as follows. A typical
search path in the basal-bolus plane is shown in Figure 5.4. In this figure, the blue squares
represent “checkpoint” input boxes at algorithm steps where a certain condition is reached. Be-
cause we are seeking a solution with a maximum bolus value, the starting point (initial box)
“[xo]” always corresponded to the maximum bolus dose possible and the minimum basal dose
according to insulin pump capabilities. At this point, the hypoglycemia condition was always
obtained because of the extreme bolus value (see Figure 5.5).

o
[ o ]

LLEaving of solutions

Bolus (IU}

Nominal
value Basal (IU/h)

Figure 5.4: Smart search pathway used by the optimization algorithm. If the constraints are
met by a basal value less than the nominal value, the solution may be found in checkpoints
“[x1]” or “[x2]”; otherwise, it will be in “[x4]”, “[x5]”, or beyond.

To achieve a non-hypoglycemia condition, i.e., to reach checkpoint box “[x;]”, a bolus decre-
ment is required. In this procedure, the basal component was fixed at the minimum (0 IU/h)
and the PPBD component to the maximum (300 min) (i.e., the minimum basal infusion, be-
cause the nominal basal dose > 0 IU/h) to perform a domain-space contraction in the bolus
component (see Figure 5.4) until the hypoglycemia constraint was met.

After reaching “[x1]”, the hyperglycemia constraint is checked. If it is met, the algorithm
verified that the slope constraints are met. If not, a change in PPBD can be conducted.
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Figure 5.5: Typical interval glucose response when using the maximum bolus limit. The hypo-
glycemia constraint is always violated at the initial box “[xo]”.

When the box is below the nominal basal dose, a longer PPBD implies a smaller basal infu-
sion. Conversely, when the box is above the nominal basal dose, a longer PPBD implies a larger
basal infusion. Figure 5.6 shows this behavior.

Two parameters, tHyper and tHypo, were used to discover if a PPBD variation could help
meet the hyperglycemia constraint. When the box is below the nominal basal tHyper cor-
responds to the maximum time at which the hyperglycemia condition is no longer true, and
tHypo corresponds to the minimum time at which the hypoglycemia condition is no longer true
(see Figure 5.6(a)). In case the box is above the nominal basal, tHyper corresponds to the min-
imum time at which the hyperglycemia condition is no longer true and tHypo corresponds to
the maximum time at which the hypo-glycemia condition is no longer true (see Figure 5.6(b)).
Hence hypoglycemia and hyperglycemia constraints will be met simultaneously if

(1) tHyper > PPBD > tHypo, for below nominal-basal boxes or

(2) tHyper < PPBD < tHypo for above nominal-basal boxes.

Therefore, if condition (1) is not valid for the box “[x;]”, it is still possible to modify the
bolus value to affect the dynamics of tHyper and tHypo.

The next checkpoint box, “[x2]”, is the bolus value when tHyper or tHypo is zero. If tHyper
is zero for “[x2]”, (1) is not fulfilled and a basal/bolus dose is not found. On the other hand,
if tHypo is zero for “[x2]”, (1) is fulfilled, and therefore it is a solution. Typical dynamics for
tHyper and tHypo in reaching “[x2]” are shown graphically in Figure 5. Such dynamics are
quite different. The trends can be explained based on the bolus reduction effect, whose action is
mainly reflected on the hypoglycemia rather than the hyperglycemia condition. This behavior
can also be treated as a “slopes” problem. When a bolus reduction occurs, tHypo starts with
a slope “s0” and tHyper with a slope “s1”. Both trends finalize with the same slope “sf” when
reaching “[x2]” (see Figure 5.7). Therefore, (1) will or will not be fulfilled for “[x2]” according
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Figure 5.6: Insulin profiles (left) and their corresponding glucose responses (right) for two cases.
(a) When a box is below the nominal basal, a shorter PPBD value produces a lower glucose
response (blue solid curve) than a longer PPBD value (red dashed curve). (b) When a box is
above the nominal basal, those PPBD values imply the opposite action. The dashed green lines
area and the solid orange lines area indicates the values of PPBD at which hyperglycemia or
hypoglycemia conditions are obtained, respectively.

to the distance between tHyper and tHypo for box “[x;]”.
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Figure 5.7: tHyper and tHypo dynamics observed in a bolus-PPBD plane. For some cases, no
bolus reduction will achieve tHyper > tHypo (left); for other cases, it can be achieved (right).

It is worth mentioning that basal value may be increased according to the patient needs, but
there is a limit on how far the basal dose may be decreased in order to increase the bolus dose
sufficiently to cover large carbohydrate meals. Up to this checkpoint, the most likely situation
where no solution would be found will be for large carbohydrate intakes and foods with high



5.5. Numerical Results 91

glycemic index.

If, when reaching “[x2]”, (1) is not fulfilled, a further decrement in the bolus value will not
be useful unless a new checkpoint with a different basal value is considered.

As (1) is not fulfilled for “[x2]”, no value below the nominal basal will be part of the so-
lution. Indirectly, all basal insulin values between the minimum and the nominal have been
applied through the previous PPBD variation. Therefore, the next checkpoint box “[x3]” corre-
sponds to the same bolus, but using the nominal basal value. Here, PPBD is again set at 300 min.

However, a value equal to the nominal basal implies a new and lower bolus value to meet
the hypoglycemia constraint. This procedure corresponds to checkpoint box “[x4]”.

In later checkpoints (e.g., “[x4]” and “[x5]”), iterative changes in bolus insulin to meet the hy-
poglycemia constraint followed by changes in basal insulin to meet the hyperglycemia constraint
are performed until both constraints are met simultaneously. In this process, some changes in
PPBD will be performed.

After the hypoglycemia and hyperglycemia constraints are met, PPBD should be changed to
meet the slope constraints depending on the current basal value and on which slope was violated
(upper or lower).

If this action is insufficient, with the slope violated being the lower slope, the algorithm will
finish with no solution and a new process will need to be started using constraints more relaxed.
However, if the upper slope is violated, a final option for improving the insulin action is to
reduce the bolus component in an iterative way while the basal component is maximized. The
flowchart of the optimized version of the SIB strategy is summarized in Figure 6.

The flowchart of the optimized version of the iBolus algorithm is summarized in Figure 5.8.

5.5 Numerical Results

To compare the optimization performance, responses of the non-optimized processing method
(SIVIA algorithm) obtained for six real patients with T1D were used. The same patient model
was used both in the optimized and non-optimized version. Continuous glucose monitoring data
were used to obtain the respective patient model. Demographic characteristics of the subjects
were as follows: six subjects (three males), age 41.8 + 7.3 years, diabetes duration 20 + 10
years, hemoglobin Alc 8.0% =+ 0.6%, and body weight 68.7 + 10 kg.

The comparison was carried out on a workstation Dell Precision T3500, Intel® Xeon Pro-
cessor of 2.67 GHz and RAM memory of 4096 MB.

Results are presented in Table 5.1. As comparison metrics, the number of iterations and
the total computation time was used (see Table 1). Iteration counting was based on how many

interval simulations were performed during the corresponding algorithm steps.

Regarding the final solutions given by each strategy, once the solution box is found, the
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Figure 5.8: Flowchart of the optimized version of the iBolus algorithm. Hypo, hypoglycemia
constraint; Hyper, hyperglycemia constraint; PPBD, postprandial basal duration.

insulin to be infused corresponds to the middle point m([x]) of each component range (center of
the box). The results show that the recommended basal/bolus doses found with this faster SIB
method presented only minor differences from those of the non-optimized SIB strategy. Table
5.2 presents an statistical comparison about this issue.

LabVIEW software was used to estimate the computation time of the optimized iBolus
algorithm when it is running at a very low processing rate. The results show that the mean
of iterations for the optimized version requires approximately 3.59 s at 20 MHz processing.
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Patient Iterations for Time (s) Iterations for Time (s)
non-optimized iBolus | non-optimized iBolus | optimized iBolus | optimized iBolus
01-1 277675 3098.38 30 0.406
01- 2 364653 4127.28 25 0.328
01- 3 333043 3266.38 34 0.468
01- 4 55735 540.04 67 0.889
02-1 155781 1556.45 123 1.623
02- 2 277279 2833.72 69 0.936
02- 3 112321 1150.76 93 1.154
02- 4 587443 5946.55 168 2.153
03-1 151707 1486.5 25 0.343
03- 2 711113 7133.46 24 0.328
04- 1 119139 1187.17 34 0.452
04- 2 274975 2735.84 33 0.452
04- 3 125455 1242.06 37 0.514
04- 4 240843 2384.65 62 0.842
05- 1 58335 601.87 46 0.593
05- 2 72971 745.05 96 1.217
05- 3 36977 379.51 44 0.577
05- 4 32263 368.36 75 0.967
06- 1 332203 3330.83 88 1.124
06- 2 992627 9929.81 90 1.154
06- 3 38929 384.01 90 1.108
06- 4 81337 831.82 73 0.952
Mean 246945.6 2617.7 64.8 0.844

Table 5.1: Performance Comparison between the Non- and Optimized iBolus algorithm. For
each patient, several tests were conducted using different meal sizes.

Error Basal comparison | Bolus comparison | PPBD comparison
(IU/h) (1IU) (min)
*MAE+SD 0.0540.06 0.17+0.14 12.3+8.8
90th Percentile 0.12 0.43 20.56
Median 0.028 0.13 8.87

*MAE stands for mean absolute error.

Table 5.2: Statistical comparison of the difference between solutions given from optimized and
the non-optimized iBolus algorithm.

According to the Medical Solutions Guide (Maxim Integrated, 2011), a similar processing power
is used in current smart insulin pumps.

5.6 Discussion

Parameter values of the patient model were set using data obtained from an ongoing clinical
study about the performance of the iBolus algorithm in real patients (Rossetti et al., 2012). An
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optimization strategy was implemented to compare its solutions with those of the non-optimized
version. We found that the optimization version obtains similar solutions to the non-optimized
iBolus, but in 0.032% of the time. However, it must be said that the baseline for the compar-
ison time was the complete space of solutions of the non-optimized strategy. The new iBolus
algorithm does not require the computation of such a global grid; therefore, a much lower com-
putation time was expected.

In order to put the method into context, the accuracy and efficiency of the optimized version
was compared against a Monte Carlo approach. A standard Monte Carlo test was developed
with 1% and 5% of all possible combinations of basal, bolus, and PPBD at random. The best
solution in each test was selected to calculate the mean absolute error with respect to the solu-
tion obtained using the non-optimized iBolus version (see Table 5.3). An important difference
in accuracy was obtained compared with the one achieved by the optimized version (see Table
5.2). Moreover, given a total number of boxes of 320000 owing to the minimum size used, 1%
and 5% of Monte Carlo correspond to 3200 and 16000 simulations, respectively. This means 50
and 250 times the number of simulations required by the optimized iBolus version.

Monte Carlo test

Basal comparison

Bolus comparison

PPBD comparison

(IU/h) (IU) (min)
MAEZSD for 1% 0.31+0.3 1.03£0.6 53.084+46.3
MAEZ£SD for 5% 0.15+0.14 0.33+0.25 27.23+£30

Table 5.3: Mean Absolute Error using best solution of Monte-Carlo technique for 1% and 5% of
all possible with respect to solution of non-optimized iBolus algorithm.

The inclusion of physiological knowledge in the optimization strategy enables development
of efficient search pathways to replace methods based on extensive search algorithms, where each
possible combination is tested, whatever its physiological effects.

We acknowledge that this computing optimization is an ad hoc approach designed for an
specific bolus insulin advisor. It must be pointed out that embedding this algorithm into an
insulin pump may require modifications of the bolus-on-board computation as currently done.
Although a temporal basal decrement at mealtime does not contribute to bolus on board, basal
increments above baseline may be considered as combo boluses. In this case, the basal excess
should compute as bolus on board.

It is worth noting that temporal basal decrements are related to super boluses as introduced
by Walsh and Roberts (Walsh and Roberts, 2006). However, in this case, no constraints on
total insulin administered exist. The algorithm automatically computes the required bolus dose
and basal decrement (and for how long) to fulfill constraints on postprandial glucose based on
the amount of carbohydrate intake and the prediction of the patient’s behavior (considering
intra-patient variability). Thus the algorithm may present an increment of total insulin dose if
a patient changes his eating. Carbohydrate counting is used as input to the model, but not for
a direct computation of the bolus size. An additional advantage of the method is that carbohy-
drate estimation error, as commonly done by the patients, can be naturally considered by the
method as intervals in the meal intake.
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As a limitation, the method relies on a mathematical model including meal absorption. Cur-
rent models of carbohydrate digestion and absorption are limited due to the clinical data used
for its development and may be representative of only a particular type of meal. Although
variability in glucose absorption can be included in this methodology, more research is needed
for the characterization of absorption profiles for different groups of meals.

In conclusion, a computationally efficient method for finding the maximum bolus-insulin
solution of the iBolus algorithm using an smart search pathway has been presented and tested.
The results indicate that an embedded version within modern insulin pumps is now feasible.
Clinical studies are needed for a validation of the clinical efficiency of the method.

5.7 Summary

In this chapter, the theoretical background about interval analysis and set inversion are ad-
dressed. Those concepts are implemented in the new bolus advisor named iBolus using the
set inversion via interval analysis (SIVIA) algorithm, which has presented acceptable results
for postprandial glycaemic control. The optimisation method of the iBolus algorithm included
in this chapter was designed to facilitate integration of this bolus advisor into modern insulin
pumps. The results indicate that no significant differences with respect to the non-optimised
version were found. In addition, simulation tests have proved that the computational perfor-
mance of this new control algorithm is feasible for modern insulin pumps during the postprandial
period.






Chapter 6

Closed-Loop Postprandial Control:
Design and In silico Validation

6.1 Introduction

In this chapter, the problem of postprandial blood glucose control for T1D patients is treated
using closed-loop control algorithms implementing insulin-on-board (IOB) constraints. The ob-
jective is to reduce hypoglycaemic events, which are usually presented as a result of overcorrec-
tion on the glucose-insulin system, in which a previous insulin administration is not considered.
This reduction is mandatory, especially in black-box model-based control strategies, as detailed
information about a patient’s internal behaviour is not required. As mentioned previously in
Chapter 3, this problem has been addressed for a PID controller by incorporating a term propor-
tional to the expected plasma insulin level that inhibits the PID output or in the case of grey-box
model-based control as model-predictive, JOB adaptation is introduced into the control move
calculations to constrain insulin delivery. These solutions are proven to be effective in reducing
the risk of hypoglycaemia. Certain formulated approaches are not robust in the uncertainty of
the glucose-insulin system, whereas other approaches are dependent on measurements of blood
glucose or meal size, which may be susceptible to inaccuracies.

The formulation of a control scheme that can be intuitively understood and that simply
and practically resolves these problems is a desirable contribution to postprandial blood glucose
control. In this research, sliding mode control based techniques are used. This methodology
enables the systematic inclusion of explicit constraints as it relies on the definition of a compen-
sation loop, which is added to the control scheme to reduce adverse effects. The control schemes
with sliding mode control addresses many constrained control problems regarding manipulated
(input) and controlled (output) variables, as well as internal state limitations. The problem of
overcorrection in postprandial control is addressed in this thesis by including bounds for the
insulin-on-board signal. By taking an estimated OB value and conditioning a suitable variable
structure, the maximum insulin delivery that is compatible with the OB safety constraint can
be determined (Ledn-Vargas et al., 2013b).

A model used to estimate the TOB value is presented in the first part of this chapter.
Subsequently, the new hybrid adaptive PD controller based on sliding mode control techniques
is described. In this control scheme, the controller gain was used as the variable structure to
fulfill the IOB safety constraint. A practical methodology, which is based on clinical tests
and validated in silico, is proposed here to determine an effective bound for the IOB value.

97



98 6. Closed-Loop Postprandial Control: Design and In silico Validation

This control scheme is compared with similar approaches to demonstrate the attractive features
and the performance achieved with this new strategy. In the last part of this chapter, a new
safety scheme designed with the sliding mode reference conditioning technology for reducing
the risk of hypoglycaemia, especially in the postprandial period, was implemented and applied
to several control approaches to evaluate its effect on behaviour, performance, and robustness
under realistic test conditions. A method for optimal tuning, which demonstrates the potential
offered by this safety scheme after inclusion in several glucose controllers, was also addressed
(Leén-Vargas et al., 2013c).

6.2 Insulin-on-Board

The insulin-on-board can be defined as the amount of administered insulin that is still active in
the body. In an attempt to reduce hypoglycemia events, some smart pumps estimate the OB
to correct the boluses in order to prevent from excessive insulin stacking, particularly when
boluses are given close together. Each patient exhibits its own insulin activity dynamics, which
is usually characterized by the duration of insulin action (DIA), a parameter that clinicians are
used to tune when setting up insulin pumps. A method to calculate the patient DIA is detailed
in Walsh and Roberts (2006), and the test addressed is summarized as follows:

The test begins with a high blood sugar (in range of hyperglycemia) and not much
bolus on board acting. An accurate correction bolus and a correct DIA will return
a high blood sugar to target by the end of the duration time period with no excess
lowering of the blood sugar during the 2 hours beyond this time. This shows the speed
of the insulin and the true patient DIA. However, two things may happen if it is not
achieved:

e If a low occurs before the end of patient DIA, the correction factor number is
probably too small, resulting in a correction bolus that is too large (or the basal
rate may be too high).

e If a low occurs after the end of patient DIA, either the duration is too short
(usually at least 4.5 to 6 hours is appropriate) or the basal rate may be too high
and needs retesting. It is recommended to test the basal rate first to ensure it is
accurate before testing the correction bolus.

Thus, the mentioned smart pumps estimate the actual JOB from a set of time decay curves
parameterized by DIA. The shape of the curves used by the pumps depends on the manufacturer
and the type of insulin, but they are often linear function of time.
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6.2.1 Estimation of Insulin-on-Board

Here, the insulin activity is represented by a two-compartment dynamical model based on Wil-
inska et al. (2005):

T = ()~ KpraGi(0

%(t) = KD]A(Cl('[J) - CQ(t))

TOB(t) = Ci(t) + Ca(t)

(6.1)

where C7 and Cy are the two compartments and w(¢) is the insulin dose. The constant Kpya
is tuned for each patient so as model (6.1) replicates its corresponding DIA. Because the way
Kpra is calculated, (6.1) encompasses both the kinetics and dynamics of the insulin action.
Fig. 6.1 shows the insulin activity curves obtained with model (6.1) for typical DIA values,
while Table 6.1 shows the corresponding values of Kpra for several DIA values.
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Figure 6.1: Estimated time profiles of insulin activity parameterized by DIA.

| DIA(h) [2 25 3 35 4 45 5 55 6 65 7 75 8 |
| Kprax 107239 315 26 221 195 175 163 147 13 122 11.3 10.6 9.9 |

Table 6.1: IOB model parameter Kpjra (min‘l) for different durations of insulin action.

6.3 Hybrid Adaptive PD Controller

An artificial pancreas for ambulatory purposes has to deal with the delays inherent to the sub-
cutaneous route, the carbohydrate intakes, the metabolic changes, the glucose sensor errors and
noise, and the insulin pump constraints. A hybrid adaptive PD controller is proposed in this
thesis to overcome these problems. The control scheme adopted is depicted in Fig. 6.2. The
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controller presents a hybrid structure combining open-loop and feedback control.
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Figure 6.2: Hybrid control scheme for glucose regulation.

Adaptive
Algorithm

The basis for the feedback control is a PID-like controller. The controller gain and deriva-
tive time constant can be designed as usual. However, the integral action is replaced with an
open-loop basal insulin profile. This integral action can eventually be switched on during the
night. The main reason to remove the integral term during the postprandial period is that the
control objective during this period is not to closely regulate glycemia at a given set-point but to
reject a disturbance (the meal) without undershoots (hypoglycemia). An integral action strong
enough, accumulating the error during the early postprandial period, will inevitable increase the
risk of an overshoot in the glucose level unless a smoothed trajectory be implemented. On the
other hand, a high integral time devised to reduce significantly the risk of late hypoglycemia is
not capable of tracking the circadian variations in the insulin sensitivity. Note that this is not a
limitation of the proposed algorithm but is inherent to the demanding realistic testing scenario
used to evaluate the controller performance, which is described in section 4.4.

6.3.1 Control Structure

Fig. 6.3 shows the structure of the proposed hybrid controller. The closed-loop control output
Upq, Which contains a term proportional to the blood glucose error G,y — G5 and a derivative
term, is added to the basal insulin I, provided by the open-loop control. This signal is mul-
tiplied by the time-varying adaptive gain v, which takes values in the set 0 <~ < 1, to give u,.
Finally, the insulin dose administered to the patient us is the sum of the bolus (Ipsys) and the
control signal u..

Note that the adaptation gain v not only affects the feedback action but also the basal insulin
dose. The equations describing the hybrid control action are:

dG
upg = — K <(Gref —Gs) =1y dts)

Uc = Upd + Ibasal (62)
Uy = () ue
Uy = Uy + Ibolus
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Figure 6.3: Structure of the hybrid PD controller.

The adaptive algorithm calculates on-line the maximum gain « compatible with the IOB
constraint so as to avoid excessive control action during the first postprandial period. This is
described in the next subsection.

6.3.2 Switching Adaption Law

Fig. 6.4 displays the block diagram of the proposed adaptive algorithm for ~ on-line adjust-
ment. It runs every sampling peri/og of the pump just before pump insulin dose updating.
It predicts the evolution of IOB (IOB) during the following sampling period and determines,
as explained next, the gain ~ used to calculate the insulin dose to be supplied during that period.

Adaptive Algorithm

switching |
108 1 'y
ST O r @ Joae )
—’?—’lo_ M Avera ge _!_.

Figure 6.4: Block diagram of the adaptation law.

A variable structure algorithm based on sliding mode concepts previously developed by
Garelli et al. (2011) is proposed in this adaptive scheme to determine the maximum gain com-
patible with the safety constraint. Note that system inversion techniques could alternatively be
used. However, the variable structure approach allows a very simple and efficient implementa-
tion.

The switching function o is constructed with the TOB estimator (6.1) and the TOB limit,
which is determined using the procedure described in the next section.This signal o commands
the comparator. Its output w takes the value 1 for positive inputs and 0 otherwise. Finally, the
gain -y is obtained as the average value of w during the pump updating period.
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The mathematical equations describing the adaptation algorithm are:

1 ifo>0 J—
w{ 0 otherwise ’ o =10B-108 (6.3)

From (6.1) and (6.2), the time evolution of o is governed by the equation:

do
i KpraCa — Ipotus — Uew (6.4)

That is,
do .
7 = KpraCy — Ipolus — Uc ifog>0 (6 5)
ag . .
% - KDIACQ - Ibolus ifo <0

The algorithm works as follows. Immediately after a bolus, the insulin-on-board increases
largely surpassing the prescribed limit ¢ = 0, hence o < 0. As a result, the signal w switches
to 0, so as to cancel the input to the IOB estimator. Therefore, ITOB falls until crossing the
surface ¢ = 0. Just when o becomes non-negative, w switches to 1. Two things may happen
then, depending on the sign of ‘é—‘;. If Cfi—‘t’ > 0, o increases further leaving the JOB and going to
the interior of the safety region o > 0. Conversely, if ‘fl—‘; < 0, the constraint is reached again and
w switches to 0. In this case, a fast switching sequence occurs on the constraint o = 0 until the
insulin administered by the controller is not enough to compensate for the insulin decay term
KpraCsy. In other words, after a transient following the bolus administration (called reaching
mode in variable structure systems theory), a transitory sliding regime is established on the
sliding surface ¢ = 0. During this mode, w switches at very fast frequency between 0 and 1.
When the sliding existence condition does not hold anymore (u. < KpraCs), the sliding regime
is left and the controller becomes fully operational. The discontinuous w is averaged during the
algorithm runtime, yielding v. Fast switching at the pump command signal is thus avoided.
Fig. 6.5 display the on-line performance of this adaptive algorithm for two consecutive control
periods of 10 minutes each.

6.3.3 Operation Example

The operation of the adaptive controller is illustrated here. The postprandial period after a 60
g meal of patient 1 of the UVa cohort is displayed in Fig. 6.6. The responses obtained using
the proposed hybrid PD controller with and without OB limitation are shown in solid and
dashed line, respectively. In the former case, it is seen that the adaptive gain is automatically
switched to zero after the bolus, thus leading to a faster decrease in the JOB. Once the es-
timated IOB reaches the safety constraint, a sliding regime is established on it, characterized
by a fast switching of w between the extreme values of v (0 and 1). Then, as the JOB does

!This frequency depends basically on the minimum time step used for running the algorithm. It is desirable
to have a much smaller time step than the control period.
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Figure 6.5: Two consecutive control periods 10 min each with an internal sample time of 1 min
of the adaptive algorithm. (a) shows the switching behaviour of w that avoids an excess in IOB
(limit fixed to 6.1 IU), and (b) shows the resulting /OB prediction based on such w dynamics.
(c) shows the v value as the average of w in each period, and (d) shows the effective /OB
obtained based on such vy value. Note that the internal loop of the adaptive algorithm acts in a
predictive way on each control period. The time step of this internal loop defines the maximum
switching rate of w, the higher the maximum frequency of w, the higher the performance of the
adaptive algorithm.

not try to go beyond its limit anymore, w keeps constant at its maximum value and the IOB
falls below its constraint until the following meal. The gain +y is the filtered version of w in the
way described in section 6.3.2. The insulin infusion profile and glucose response are also shown.
It is observed that the proposed adaptive algorithm avoids the hypoglycemia event occurring
with the unconstrained hybrid PD control. Note that this improvement in the late postprandial
period does not entail an appreciable deterioration in the early one.

6.3.4 Determination of Insulin-on-Board Constraint

The determination of an appropriate, easy-to-find, and robust insulin-on-board limit is significa-
tively sensitive for a safety scheme based on this constraint. Two experiments were considered
to design and validate a feasible clinical test used to calculate the TOB limit required in (6.3) by
the adaptive controller. In the first one, a cohort of ten virtual patients from Kovatchev et al.
(2009) without parameters variation were used to develop the clinical test. In the second one,
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Figure 6.6: Time response of patient 1 to the hybrid PD controller with and without /OB
constraint.

data from a clinical trial were used to contrast the results obtained in silico.

The in silico experiment starts from a conventional Basal/Bolus therapy with an optimal
postprandial control performed on each virtual patient for meal tests of 40 g and 100 g. This
optimal Basal/Bolus therapy is devised to achieve the minimum glucose excursion but also
avoiding hypoglycemia. Fig. 6.7 depicts the time response of the blood glucose concentration
during the postprandial period. A numeric summary of such optimal open-loop therapies is
presented in Table 6.2.

| Patient /1 2 3 4 5 6 7 8 9 10
Ipasw(U/h) |16 18 1.85 1.07 19 1.89 15 144 1.63 1.73
Bolus40g(IU) | 5 75 45 33 86 48 225 36 56 77
Bolus100g(IU) | 6.3 94 71 56 137 88 37 44 8 11

Table 6.2: Optimal open-loop therapies used in conventional Basal/Bolus control

The optimal Basal/Bolus therapy and the corresponding patient’s DIA are used to estimate
the TOB from (6.1). Fig. 6.8 displays the corresponding time response.

The in silico experiment ends with a closed-loop control using a PID tuned with techniques
drawn from Steil et al. (2006). This control is performed to the same meal tests of 40 g and 100
g but adding the adaptive algorithm to the PID, and testing as /OB limit the /OB values at the



6.3. Hybrid Adaptive PD Controller

105

160

140

N
=]

o
=]

Glucose (mg/dL)

80~

60

4
time (h)

(a)

Glucose (mg/dL)

@
=)

4
time (h)

(b)

Figure 6.7: Mean and standard deviation of blood glucose resulting from the optimal open-loop
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Figure 6.8: Mean and standard deviation of JOB from optimal open-loop therapy in meal tests
of (a) 40g, and (b) 100g.

27 and 37¢ postprandial hour from the preceding Basal/Bolus therapy. Table 6.3 contains the
corresponding IOB values at the 2"¢ and 3"¢ postprandial hour from the open-loop meal tests.

Fig. 6.9 displays the blood glucose resulting from each /OB limit value tested in the closed-loop
control.

Results of the closed-loop control are tabulated regarding to minimal glucose values and the
time the safety scheme is used per patient and per meal, Tables 6.4 and 6.5. It is observed that
the best results for meals of 40 g were obtained using an TOB limit corresponding to the IOB
value at the 2" postprandial hour, whereas for meals of 100 g an JOB limit corresponding to
the TOB value at the 3"¢ postprandial hour was the best option. Others values for JOB limit
either cause unacceptable hypoglycemia events or an excessive use of the safety scheme.
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Figure 6.9: Mean and standard deviation of blood glucose resulting from closed-loop therapy
using as JOB limit the JOB value at the (a) 2" and (b) 3" postprandial hour of the optimal
open-loop therapy for a meal test of 40 g; while as TOB limit the IOB value at the (c) 2"¢ and
(d) 374 postprandial hour of the optimal open-loop therapy for a meal test of 100 g.

Analyzing the IOB estimation from open-loop tests, it is observed that a strong linear re-
lationship between the TOB values at the 2"¢ and 3"¢ postprandial hour from meal test of 40 g
and 100 g respectively, is presented with a correlation coefficient of R = 0.99.

This linear relationship found in silico is then compared against data from a clinical trial
(Rossetti et al., 2012), where conventional open-loop therapies for postprandial control in meal
tests of 40 g and 100 g were tested per patient. JOB estimation for 9 patients from this clin-
ical trial was calculated using the model (6.1), the patient DIA value, and the corresponding
Basal/Bolus therapy administered. Resulting /OB values at the 2nd and 37 postprandial hour
for each meal test of this clinical trial are listed in Table 6.6.

The same way as in the in silico experiment, results from clinical data reflected a similar
behaviour between the TOB values at the 2"¢ and the 3" postprandial hour from meal test of
40 g and 100 g respectively. This case, a correlation coefficient of R = 0.89 continues to show
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Meal test of 40g Meal test of 100g
Patient | IOB at 2™ pp* hour | IOB at 3"¢ pp hour | IOB at 2" pp hour | IOB at 3"¢ pp hour

(IU) (IU) (IU) (IU)
1 3.66 2.74 6.35 4.35
2 2.47 1.34 4.76 1.99
3 2.20 1.27 3.33 1.59
4 1.76 1.14 3.00 1.49
5 2.09 1.23 4.14 1.82
6 1.83 1.11 4.19 2.09
7 2.01 1.38 4.32 2.34
8 2.71 1.62 4.51 2.37
9 1.39 0.94 2.68 1.31

*pp states postprandial

Table 6.3: IOB values obtained in silico at the 2" and 3"% postprandial hour from open-loop
meal tests of 40g and 100g.

Using as limit the IOB value Using as limit the IOB value
at 2" pp hour at 3"% pp hour
Patient | Min. Glucose | Time on Safety | Min. Glucose | Time on Safety
(mg/dL) (min) (mg/dL) (min)
1 84.5 0 86.7 10
2 91.3 0 95.5 35
3 82.0 22 92.6 60
4 86.3 12 95.9 66
5 86.7 0 86.7 0
6 79.8 23 87.7 55
7 85.4 18 93.7 51
8 87.1 0 87.1 0
9 76.2 21 81.5 50
10 81.0 0 87.1 25

Table 6.4: Minimum glucose values obtained in silico per patient for a meal test of 40g.

a high linear dependency. Fig. 6.10 shows the lineal regression obtained for each case, in silico
and clinical data, between the /OB values mentioned.
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Using as limit the IOB value Using as limit the IOB value
at 2" pp hour at 3" pp hour
Patient | Min. Glucose | Time on Safety | Min. Glucose | Time on Safety
(mg/dL) (min) (mg/dL) (min)
1 74.0 63 79.7 102
2 86.8 49 93.7 144
3 74.6 100 91.2 175
4 72.0 60 92.4 151
5 67.4 0 78.3 51
6 66.3 95 79.8 151
7 80.0 88 90.4 164
8 71.6 16 79.4 56
9 60.4 137 67.9 179
10 71.4 64 82.4 137

Table 6.5: Minimum glucose values obtained in silico per patient for a meal test of 100g.

Meal test of 40g Meal test of 100g
Patient | IOB at 2" pp* hour | IOB at 3" pp hour | IOB at 2™ pp hour | IOB at 3"¢ pp hour

(IU) (1IU) (IU) (IU)
1 3.66 2.74 6.35 4.35
2 2.47 1.34 4.76 1.99
3 2.20 1.27 3.33 1.59
4 1.76 1.14 3.00 1.49
5 2.09 1.23 4.14 1.82
6 1.83 1.11 4.19 2.09
7 2.01 1.38 4.32 2.34
8 2.71 1.62 4.51 2.37
9 1.39 0.94 2.68 1.31

*pp states postprandial

Table 6.6: Clinical OB value at the 2" and 3"? postprandial hour from open-loop meal test of

40 g and

100 g.

Because data from open-loop tests of both, in silico experiment and clinical trial, share a
very similar relationship about the appropriate candidate to use for JOB limit in the closed-loop
control with the adaptive algorithm, one can say that this safety limit is supported indirectly
by clinical data. Therefore, this methodology is adopted here to find a robust 7OB limit.

It is worth noting that the JOB limit is not depending of the meal size. Therefore, the
TOB limit proposed in this thesis as hypoglycemic protection is a constant value, although a
time varying limit following the circadian variation of insulin sensitivity could also be a sensible
choice. A procedure to find the JOB limit based in the above considerations is presented below.




6.3. Hybrid Adaptive PD Controller 109

y=1.22x-0.59
r y=1.05x-0.67

IOB at 3" pp h from 100g Meal Test
I0B at 3 pp h from 100g Meal Test
o
o

3 4 5 6 7 8 9 10 1 1 1.5 2 25 3 3.5 4
I0B at 2™ pp h from 40g Meal Test 10B at 2™ pp h from 40g Meal Test

(a) (b)

Figure 6.10: Lineal regression between OB values at the 2"¢ and 3"¢ postprandial hour from
meal tests of 40 g and 100 g respectively using (a) in silico experiment, and (b) clinical data.

IOB limit determination procedure

The following procedure summarizes the open-loop postprandial clinical test proposed to obtain
the OB limit:

1. Achieve an initial condition of preprandial blood glucose concentration between
80 and 120 mg/dL without insulin bolus administration during the previous 5
hours.

2. Administer a meal with 40g to 100 g of carbohydrates together with an insulin
bolus.

3. Observe blood glucose evolution during the following 10 hours,

e If minimum glucose is outside the set (75,90), then repeat step 2 adjusting
the bolus. Alternatively the correction factor, for a retrospective calculation
of bolus, can be used.

e Else, calculate the JOB limit using (6.1) and the next formula:

TOB = I0B(Ti0p)
CHO + 80g (6.6)

T f
I0B 60/h

where CHO(g) is the amount of carbohydrate intake. T7op varies between 2 and 3 hours when
CHO changes between 40 g and 100 g. It is important to note that the OB limit derived in
this way is almost independent of the meal used in the test, as reflected the above in silico and
real data experiments. Fig. 6.11 illustrates the method to obtain OB from the insulin clearance
curve and (6.6) for two different meals. It is verified that, although T7op is significantly different
for each meal, the corresponding limits are practically equal.
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Figure 6.11: Calculation of JOB using IOB and blood glucose response.

Note that the bound IOB, calculated as suggested before or in any other way, can be
intuitively adjusted with medical criteria according to the closed-loop response exhibited by the
patient. For instance, the physician should decrease TOB in the case of frequent hypoglycemia,
or increase it if the controller action is too conservative or the restriction is active during too

long time.

6.3.5 Controller Tuning

Only three clinical trials are used to tune the adaptive PD controller. The proportional gain is
tuned in proportion to the total daily dose insulin (I7pp):

60 ITpp
— el 6.7
P T, 1500 (6.7)

where ITpp is obtained using a protocol of 200g CHO distributed in 40g, 80g and 80g at 08:00,
13:00 and 19:00 respectively. The derivative gain is set to T; = 90min for all patients. The
Kpra parameter of the IOB estimator is derived from the DI A, which is calculated following
the trial described in section 6.2. Finally, the JOB limit is obtained following the procedure
described in section 6.3.4. All the controller and relevant parameters are listed in Table 6.7.

6.3.6 Performance Results

The performance and robustness of the hybrid adaptive PD controller is assessed under the chal-
lenging and realistic test scenario described in section 4.4. It includes mixed meals, controller
mistuning, circadian variations in the insulin sensitivity, discrete measurement and actuation,
sensor errors and other disturbances. The focus of the analysis is on the 8 hour postprandial pe-
riod. A night controller is switched on at midnight every day to achieve a preprandial glycemia
near to 90 mg/dL before the meal.
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Patient 1 2 3 4 5 6 7 8 9 10
Ipp(IU) 51.2 56.4 57.7 332 689 b54.6 422 434 59.7 63.2
I:CHO(1U/g) .0833 .0833 .0750 .0333 .1166 .0500 .0250 .0550 .1166 .1250
DIA(h) 6.33 260 550 7.16 6.33 6.33 550 6.33 8.00 6.83
K,(IU/h per mg/dL)|.0227 .0250 .0256 .0147 .0306 .0242 .0187 .0193 .0265 .0281
Kpra(min~') .0122 .0315 .0147 .0113 .0122 .0122 .0147 .0122 .0099 .0113
TOB(IU) 61 19 57 39 7v8 61 38 53 89 81

Table 6.7: Controller and other relevant parameters

The same controller without gain adaptation is also evaluated to put in evidence the effect
of TOB limitation. Other two PID-like controllers found in the literature are implemented to
have an additional baseline measure of performance and to emphasize the attractive features of
the proposed gain adaptation algorithm. One of them is the fully automatic PID controller with
insulin feedback (Steil et al., 2011) described in section 3.2.1, with a feedback parameter value
of 5/6. The other, based on the proposal of Weinzimer et al. (2008b), is a hybrid PID controller
with a 35% pre-bolus administered 15 min before the meal. The proportional and derivative
gains are the same for all controllers, whereas the integral gain of the PID controllers is set to
450 min. The glucose set-point is also the same for all controllers as well as the initial condition.

Performance is compared, based on time responses and usual metrics such as the mean and
standard deviation of the maximum glucose excursion, the number of hypoglycemia events, and
the time the patients were in hyperglycemia and in hypoglycemia. Moreover, the graphical tool
CVGA described in section 4.3.5 measures the performance of a control algorithm on an obser-
vation period is used.

The results and metrics obtained for the 180 meal tests are depicted in Figs. 6.12 and 6.13,
and in Tables 6.8 and 6.9. Fig. 6.12 depicts the time response of the blood glucose concentration
during the postprandial period. A very distinctive feature of the proposed controller is that
the standard deviation decreases with time. Moreover, the time response obtained with the
proposed controller does not exhibit the undershoot observed in the other cases.

Table 6.8 displays the numerical results. It is observed that only 2 hypoglycemia events
occurred when using the hybrid adaptive PD controller, whereas more than 75 events occurred
when using the other ones. Moreover, the time in hypoglycemia was significantly reduced from
around 15% to 0.11% when using the proposed controller. It is also worthy to note that hypo-
glycemia avoidance is not achieved at the cost of an increase in severe hyperglycemia events.
Meanwhile, the other metrics are very similar for all controllers.

Fig. 6.13 displays CVGA corresponding to the four controllers using an observation period
of 8 hours postprandial glucose. A numeric assessment of the overall level of glucose regulation
by the summary outcome of the CVGA is also tabulated by zones in Table 6.9.

It is observed that the hybrid adaptive PD controller avoids the cases of severe hypoglycemia
present for the other controllers. After comparing with the same controller without gain adap-
tation, it can be concluded that this improvement is due to the IOB limitation. Furthermore,
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Figure 6.12: Mean and standard deviation of blood glucose for (a) PID with insulin feedback

(PID-IFB), (b) PID controller with 35% pre-bolus, (c) PD controller with bolus, (d) Hybrid
Adaptive PD controller.

Controller Metric Excursions (mg/dL) | # hypos|Time hyper % |Time hypo %
PID-IFB 79.13+£36.36 76 5.84 15.55
PID with 35% pre-bolus 69.401+39.14 84 5.38 14.75
PD with bolus 56.351+36.58 92 3.58 16.72
PD with bolus and IOB 68.851+39.15 2 6.26 0.11

Table 6.8: Mean and standard deviation of maximum glucose excursion, number of hypoglycemia
events (hypos) and time in hyper (4180 mg/dL) and hypoglycemia (j70 mg/dL)

it can be observed that the proposed controller achieves the largest amount of points in A and
B zones, whereas there are only 4 points in the C-D-E zone. This behaviour states the suscep-
tibility of the rest of controllers to overcorrection of hyperglycemia and hypoglycemia.
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Figure 6.13: CVGA for (a) PID with insulin feedback (PID-IFB), (b) PID controller with 35%
pre-bolus, (c) PD controller with bolus, (d) Hybrid Adaptive PD controller.

Conteolis: Zone | )\ B BU BL CL CU DL DU E
PID-IFB 57 7 4 17 0 58 0 1
PID with 35% pre-bolus |30 1 65 27 0 55 0 2
PD with bolus 22 0 66 51 0 40 0 1
PD with bolus and TOB|[65 34 17 60 1 0 1 2 0

Table 6.9: Control variability grid analysis for the different controllers

6.4 Safety Auxiliary Feedback Element Evaluation

This section presents an extensive performance evaluation of several closed-loop glucose con-
trollers for T1D, with and without a novel safety layer, based on sliding mode reference condi-
tioning technology known as the safety auxiliary feedback element (SAFE) (Revert et al., 2013).
Traditional therapies are prone to poor glucose regulation, especially in the postprandial period,
due to both physiological and technological limitations. Uncertainty is present throughout the
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control system, namely, significant errors in glucose measurement, variability in the metabolic
system related to kinetic and dynamic insulin action, or uncertainty in the glucose absorption
and utilisation. This uncertainty entails strong limitations for the development of a practical
and individualised model of the glucose-insulin system for each patient. The SAFE method
controls the amount of insulin-on-board according to a unique constraint that can be adjusted
with clinical criteria. The primary advantage of this scheme is that it does not affect the design
of the main controller, which could be independently designed in advance.

6.4.1 SAFE Method

The SAFE method is briefly presented as follows 2.

Figure 6.14 presents a block diagram of a general glucose control loop to which the SAFE
layer has been added. In the main control loop, the control action wu. is the pump’s insulin infu-
sion rate, whereas u s represents the feed-forward action of priming bolus in meal announcement
schemes. The glucose controller can be of any type, even nonlinear. For simplicity, the controller
is assumed biproper (i.e., with a direct path from the error to the control action), which is of
practical significance.

The SAFE algorithm implements an outer safety loop for glucose control with the main
objective of reducing the number and severity of postprandial hypoglycaemic events. The algo-
rithm automatically adjusts the desired glucose reference G4 to a safety reference G4, when the
residual insulin in the subcutaneous tissue, the IOB, exceeds a given upper limit /OB. That
is, the outer control loop is only active when the /OB changes to undesirable values beyond the
imposed constraints, which in this case limits the main controller action.

108 SAFE algorithm
——————— 3 —— T,
e
. ® _ ioB| 10B |
Switch model |
r—-———————————
Glucose u u G
< P Patient >
4 controller *

Figure 6.14: Basic scheme of a glucose control loop with the SAFE algorithm.

As the JOB is inaccessible, it must be estimated. The OB estimation model presented
in section 6.2.1 is employed in this evaluation. From the estimated IOB, a switching law is
defined to generate the correct signal for the glucose reference G4, which prevents surpassing
JIOB. The main advantage of this approach is that it is applicable to any main control loop
controller and thus provides a generalised method to address the over-reaction problem. The
following paragraph describes how the switching function of the SAFE layer is implemented in
this study.

>The reader is referred to Revert et al. (2013) for further details.
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6.4.2 Switching SAFE Law

Only the upper constraint /OB for IOB is considered as the main objective is to mitigate the
problem of postprandial hypoglycaemic incidence. To fulfil this constraint, the following switch-
ing law is proposed.

fwTdfot)>0
w(t) = { 0 otherwise, (6.8)
with
o(t) = IOB — TOB + 7(I0B — TOB) (6.9)

When the upper bound is violated (or about to be violated), the w switches to wt # 0 to
increase the safety reference G4, and reduce the control action u., with the aim of preventing
hypoglycaemia due to excess insulin.

The resulting discontinuous signal w during the IOB limitation is smoothed out by the
first-order filter represented in the block F' previously to being added to G4 to produce Gds?’.

6.4.3 Glucose Controllers

Two PID-like glucose controllers, with and without the SAFE method, are evaluated. The first
controller is the classical PID algorithm, in which the integrative term is replaced by the basal
insulin from the open-loop therapy and a prandial bolus defined by the patient’s insulin-to-
carbohydrate ratio and the corresponding meal size is implemented. This scheme is referred to
as the PDBasal Hybrid controller, as shown in Figure 6.15.

SAFE
algorithm

Gy u Ug G
yp— :? M Patient >
us

Figure 6.15: PDBasal Hybrid scheme with implementation of the SAFE method.

3Note that the filter F' has been replaced with respect to Revert et al. (2013) as we assume G is constant.
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The second controller is the well-established fully closed-loop PID-IFB algorithm presented
in section 3.2.1, as shown in Figure 6.16. The control law is as follows:

SAFE .
algorithm
G G u u G
g 2 PID o Y » Patient >
—F .T
VL Insulin
PK model

Figure 6.16: PID-IFB scheme with implementation of the SAFE method. The prandial Bolus
insulin was not employed in this realisation.

u(t) = ky {e(t) + 7}] /e(t)dt + 7D dil(:) — I, (t) (6.10)

where 71, is the feedback component. The estimated plasma insulin I, is a two-compartment
model assumed for the pharmacokinetics of insulin, with a bi-exponential impulse response given
by

(et — g7t/ (6.11)

where 71 and 79 are time constants (in min) associated with the subcutaneous absorption of
insulin, K is the insulin clearance, and Ip is the magnitude of the impulse (bolus) of insulin
delivered at time t=0.

This insulin pharmacokinetic model is represented by the following equations

d[(jilfft) = ud(t) — agL(t)
(6.12)
Wl B ) a0

where L is an intermediate compartment, a; = 1/71 and ag = 1/79. The values for the model
time constants are 71 = 55 min and 72 = 70 min and for insulin clearance K, = 1 L/min.
According to Palerm (2011), the PID algorithm with insulin feedback must deliver the same
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insulin-infusion rate to the subject as for the case without insulin feedback (i.e., ¥ = 0). There-
fore, for a given controller gain selected for the case without insulin feedback, such as the nominal
value given in Eq. 6.10, it can be adjusted by multiplying it by the factor

6.4.4 Performance Results

The challenging test scenario designed in section 4.6, which implements realistic conditions, in-
cluding different types of uncertainties and disturbances, and considers mixed meals, diurnal
and day-to-day time-varying metabolic changes in insulin sensitivity and insulin absorption;
controller mistuning; discrete measurement and actuation; and sensor errors, is also employed
in this evaluation methodology. The resulting performance with and without the SAFE method
is compared based on time responses and certain metrics.

Improvement in the performance of nominal-tuning controllers

To evaluate the control performance when the SAFE layer is added, the PDBasal Hybrid and
the PID-IFB controllers were tuned based on default parameters values. Both cases use the
same gain, and were tuned in proportion to the total daily dose insulin (I7pp), as presented in
section 6.3.5. The derivative gain was set to Ty = 90 min for all patients in both controllers. The
basal insulin profile from the open-loop control designed to counteract the variation in insulin
sensitivity was used in the PDBasal Hybrid controller whereas the integrative gain was set to
T; = 450 min and the feedback term v was set to 5/6 in the PID-IFB algorithm.

The practical procedure based on in silico experiments and clinical data presented in section
6.3.4 to determine the JOB limit was employed instead of the provisional method suggested by
Revert et al. (2013). The filter cut-off frequency was set to 0.1 min~! and unity gain. The w*
value was set to 350 mg/dl, and 7 was set to 10 min. All other controller and relevant parameters
are listed in Table 6.7. The performance results for nominal tuning according to the number of
hypoglycaemic events and the mean blood glucose excursion are presented in Table 6.10.

The addition of the SAFE layer results in enhanced performance of hypoglycaemic events
despite a moderate increment in the mean blood glucose excursion in both controllers.

6.4.5 Optimal Tuning

Extensive controller tunings were evaluated for the PDBasal Hybrid and the PID-IFB to obtain
the best achievable performance with and without the SAFE layer. Based on the preceding
nominal-tuning, the controller gain K, was changed to -60%, -40%, -20%, 0%, +20%, +40%,
+60%; whereas the I : CHO and the ~ term of the PDBasal Hybrid and PID-IFB, respectively,
were changed to -60%, -30%, 0%, +30%, +60%. Therefore, 35 different tuning combinations
were evaluated in each case with and without the SAFE layer. Figs. 6.17 and 6.18 graphically
illustrate the resulting number of hypoglycaemic events and the mean excursion obtained with
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PDBasal Hybrid PID-IFB
With SAFE Without SAFE With SAFE Without SAFE
Patient | Hypos \ Excursion | Hypos \ Excursion | Hypos \ Excursion | Hypos \ Excursion

1 1 64.6 10 60.2 0 74.2 7 72.4
2 0 52.0 6 39.7 0 87.2 3 72.0
3 0 68.7 9 54.7 3 107.8 8 93.9
4 0 67.0 8 46.4 3 102.5 12 87.6
5 0 63.1 6 51.1 1 90.6 6 86.7
6 0 69.6 8 46.2 3 111.8 10 96.3
7 0 63.5 8 41.2 1 96.5 9 74.8
8 0 62.1 12 54.2 0 75.1 6 72.7
9 1 121.7 18 108.6 0 134.9 10 129.3
10 0 78.6 8 68.4 1 108.1 7 103.1

Table 6.10: Performance results of PDBasal Hybrid and PID-IFB with and without the SAFE
layer using nominal-tuning.

and without the SAFE layer. Note the additional arrow from the best tuning case without
SAFE to the best case with SAFE.
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Figure 6.17: Performance results of patient six of the PDBasal Hybrid with (circle) and without
(cross) the SAFE layer using several combinations of the control gain and the size of the prandial
bolus.

Tables 6.11 and 6.12 display the best performances for each patient for the PDBasal Hybrid
and the PID-IFB controller, respectively. The number of hypoglycaemic events, the mean blood
glucose excursion, and the best tuning combination are listed as a percentage change from the
nominal-tuning.

An improved performance is achieved not only for hypoglycaemic events but also for the
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Figure 6.18: Performance results of patient six of the PID-IFB algorithm with (circle) and
without (cross) the SAFE layer using several combinations of the control gain and the insulin
feedback term gamma.

With SAFE Without SAFE

‘ Patient | Hypos ‘ Excursion ‘ Gain Kp ‘ Gain I:CHO | Hypos ‘ Excursion ‘ Gain Kp ‘ Gain I.CHO

1 0 69.1 -40 -30 1 72.9 -60 -60

2 0 35.9 -60 60 0 49.3 -60 -30

3 0 52.9 20 60 6 73.9 -60 -60

4 0 50.4 -40 60 6 45.3 -60 0

5 0 52.1 -60 30 2 74.3 -60 -60

6 0 54.8 -40 60 6 715 -60 -60

7 0 51.4 -40 60 6 36.9 -40 0

8 0 53.0 -60 60 0 67.0 -60 -60

9 0 115.5 -40 30 6 128.4 -60 -60

10 0 68.7 -60 30 3 92.34 -60 -60
Table 6.11: Performance results of the PDBasal Hybrid with and without the SAFE layer

regarding to minimal hypoglycaemic events and glucose excursion using the best-tuning. The
best tuning of Kp and I : CHO in each case is presented as a percentage change with respect
to the nominal value.

mean blood glucose excursion when the SAFE layer is added to the controllers. In the case of
the PID-IFB controller, patient two performs better when the SAFE layer is not added.

6.4.6 SAFE in other control schemes (MPC)

One way to illustrate the adaptability of the SAFE layer to control schemes other than schemes
based on PID controllers is to evaluate its effect on predictive controllers. In this case, model
predictive control (MPC) is used. One class of MPC is the constrained type, in which constraints
are explicitly included in the objective function. However, this test is implemented illustratively
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With SAFE Without SAFE
’ Patient | Hypos ‘ Excursion ‘ Gain Kp ‘ Gain v | Hypos ‘ Excursion ‘ Gain Kp ‘ Gain v
1 0 71.3 40 0 0 7.4 -40 -30
2 0 83.8 -60 -60 0 72.9 -40 -60
3 0 104.1 0 -60 0 114.5 -60 -20
4 0 97.4 -20 -60 0 128.0 -60 30
5 0 89.5 -20 -60 0 94.6 -60 -60
6 0 104.1 -40 -60 0 142.9 -60 30
7 0 86.5 -60 -60 0 106.7 -60 0
8 0 73.3 0 -60 0 75.3 -40 -30
9 0 134.1 -20 -60 0 140.2 -40 60
10 0 109.9 -40 -60 0 115.5 -60 -30

Table 6.12: Performance results of PID-IFB with and without the SAFE layer regarding to
minimal hypoglycemia events and glucose excursion using the best-tuning. The best tuning of
Kp and « in each case is presented as a percentage change with respect to the nominal value.

to demonstrate attractive SAFE features. As the MPC is a model-based controller, a model rep-
resenting glucose-insulin dynamics based on ARX models is used (Magni et al., 2009b; Ellingsen
et al., 2009). The ARX model identification implemented in this proof uses the meal glucose
and the variation in insulin delivered with respect to basal rate as inputs and uses the variation
in blood glucose concentration with respect to basal as an output.

To adequately represent glucose-insulin dynamics, a 1-day open-loop experiment with hy-
poglycaemia, normoglycaemia and hyperglycaemia was performed. The identification protocol
includes breakfastl, lunch, dinner, and breakfast2 at 08:00, 13:00, 21:00, and 08:00, respectively.
However, insulin is not administered during breackfast1, meal glucose is not administered during
lunch but insulin is given, and the insulin delivered during breackfast2 was four times higher
than a typical dosage. The prediction performance was enhanced by transforming the inputs
with a first-order-order transfer function (Finan et al., 2007) and by the “recursively estimate
ARX model” function included in the LabVIEW system identification toolkit.

The validation data were obtained from several variations of an open-loop experiment, includ-
ing three meals during which the insulin delivered to each patient was modified using different
pre-meal and post-meal bolus sizes (Magni et al., 2009a). The ARX parameter values used in
the system identification toolkit were A[B1 B2|[d1 d2], where A=15, B1=B2=15, d1=10 and
d2=0. The sampling period was 1 min.

Constant MPC tuning parameters were maintained during the simulation. The prediction
horizon and the control horizon were set to 250 time steps and 50 time steps, respectively. The
weight for the change in delivered insulin rate was set to 200, whereas the weight for the glucose
set point tracking was set to 1. The set point was set to 140 mg/dl for the first four postpran-
dial hours and was set to 100 mg/dl for the remaining time. Fig. 6.19 shows the blood glucose
response, the delivered insulin, and the IO B estimation obtained for patient 5 with and without
the SAFE layer added to the MPC.

Note that six meals are prone to present hypoglycaemic events without the SAFE layer. In
addition, the blood glucose excursion is not significantly affected by the addition of the SAFE
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Figure 6.19: Blood glucose, insulin infusion, and IOB calculation of the MPC (gray) and the
MPC-SAFE (black) response for patient five.

layer is added.

6.5 Summary

In this chapter, two safety schemes designed to prevent late hypoglycaemia under postprandial
control are addressed. The two schemes are the specific hybrid adaptive PD controller strategy
and the SAFE method envisioned to improve the safety of any glucose controller. To guarantee a
robust performance, both strategies are based on sliding mode control techniques. The inclusion
of a soft insulin-on-board constraint enables regulation of the insulin delivered to the patient in
a practical and easy-to-implement manner. The major differences between these approaches is
the variable structure used to modify the main control action, the switching function defined
in the commutation law, and the updating procedure of the main control action. Although
the safety scheme based on gain conditioning was designed for a specific control algorithm, this
methodology could be implemented to additional glucose controllers. A practical procedure to
determine a feasible insulin-on-board limit for the safety constraint was obtained after in silico
experiments and a clinical data analysis. The safety schemes that supervise the normal perfor-
mance of glucose controllers in this thesis have proven to be effective for reducing the risk of
late hypoglycaemic events and have shown the potential for enhanced postprandial control with
aggressive controller actions without jeopardising patient safety.






Chapter 7

Control Software Application:
Implementation and Validation for
use in Clinical Trials

7.1 Introduction

The Department of Endocrinology of the Hospital Clinico Universitario de Valencia, the Hospital
Clinic i Universitari de Barcelona, the Institute of Control Systems and Industrial Computing
at the Universitat Politecnica de Valencia and the Institute of Informatics and Applications at
the Universitat de Girona are part of an interdisciplinary research group that clinically validated
the novel blood glucose control algorithm for closed-loop glycaemic control, which implements
the SAFE layer as presented in the previous chapter.

Standardised meal tests are performed in T1D subjects treated with CSII therapy to compare
the administration of a classical bolus (open-loop study) with a controller-driven prandial in-
sulin delivery (closed-loop study) based on continuous subcutaneous glucose monitoring (CGM).
Significant advances in postprandial control in terms of reduction of postprandial glucose vari-
ability and of the incidence of hypoglycaemia are expected.

In this chapter, the software application designed to validate and test the robustness of the
control algorithms outlined. First, a protocol summary about the planned study is presented.
Second, an overview of the main features related to the control software application is provided.
Last, implementation and validation of the generated control device (software with embedded
control algorithm) are briefly presented. Introductory information regarding technical documen-
tation required by the regulatory agency for the control device to be used in clinical trials is also
presented (Leén-Vargas et al., 2013a).

7.2 Study Protocol Summary

Title

Improving postprandial glycaemia by a new developed closed-loop control system (Closed-
loop4meals)

123
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Investigators

Hospital Clinico Universitario de Valencia (study site), Hospital Clinic i Universitari de
Barcelona (study site), Universidad Politécnica de Valencia, and Universitat de Girona (Engi-
neering team).

Objective
Clinical validation of a new algorithm for closed-loop control of postprandial glucose in com-
parison with a standard bolus (open-loop control), in T1D subjects using insulin pump therapy.

Design

Randomized, prospective, multicentric (Hospital Clinico Universitario de Valencia y Hospi-
tal Clinic de Barcelona), single-blind, one-way, repeated measures (four periods, two sequences)
crossover study on T1D subjects under insulin pump therapy.

Population

Eligible subjects will be patients with T1D for more than one year, aged between 18 and
60 years and with a body mass index (BMI) between 18 and 30 kg/m2 intensive insulin ther-
apy by means of continuous subcutaneous insulin infusion (CSII) for at least 6 months before
screening, glycosylated haemoglobin between 6.0% and 8.5%; without advanced chronic micro-
and macroangiopathic diabetic complications.

Sample size
Twenty subjects with T1D under CSII therapy.

Treatments

Closed-loop insulin administration (with an engineering-developed glucose controller) will
be tested and compared with standard insulin treatment (Open-loop) in the postprandial state.
Assessment and validation of the Closed-loop will be carried out through the execution of four
8-hour mixed meal tests. Each subject will undergo two mixed meals with Open-loop control
and the other two meals with Closed-loop controlled insulin administration.

Study variables

Primary variable
The primary variable will be the coefficient of variation of the area under the curve (AUC)
of plasma glucose (PG) during the postprandial period (CV AUC-PGO0-8h).

Secondary variables
Secondary variables will be the following:

1. CV of PG during the early (CV AUC-PGO0-3h) and the late (CV AUC-PG3-8h) postpran-
dial phases.

2. AUCO0-8h, AUCO0-3h and AUC3-8h of PG.

3. Time spent in an acceptable glycaemic range (70-180 mg/dl), during the 0-8h, 0-3h and
the 3-8h postprandial period.

4. Maximum (Cmax) and time to maximum (Tmax) of PG.
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Safety data
e Physical examination Haematology, clinical chemistry, and urine analysis.
e Standard 12-lead electrocardiogram.

e Monitoring of any adverse event rose during experiments.

Study duration and dates
The expected duration of this study will be 12 months, with subject recruitment planned to
start in September 2013 and ending of experiments projected until October 2014.

7.3 Software Description

The investigational control device comprised the software application that implemented the
control algorithm. This control algorithm implements the safety auxiliary feedback element
(SAFE), which was evaluated in the previous chapter. The main controller in this study is
based on a PID algorithm that includes information from conventional open-loop therapy. The
software application includes a graphical interface for the input and display of data and contains
the required modules for implementation and execution of the control algorithm for use in clin-
ical trials. The main characteristics of the software application are described in the next section.

7.3.1 System Requirements

The following requirements must be fulfilled to install the software application:

Operating system Preinstalled versions of Windows 7, 32-bit Home Basic /
Home Premium / Professional / Enterprise / Ultimate (SP 1)

Processor 32-bit (x86) at 1 GHz or higher
RAM 1 GB minimum
Hard drive 200 MB required for installation

Screen resolution 1360 x 768 pixels recommended

7.3.2 Software Framework

The software framework is illustrated in Figure 7.1. The framework begins with the login user
request, which limits the use of the application to users that previously registered in a database
that maintains a tracking log, see Figure 7.2.

This software must be simultaneously run on two computers. One computer serves as the
principal computer and the other computer serves as a backup. Thus, in the event of failure or
abnormal operation, a suspension of control activity or loss of historical data are prevented. As
different functions are performed by each computer, two modes of execution are available in the
software: in the principal, the application is used to perform control actions and log procedures;
in the backup, the application waits for a recovery request to act in principal mode, as shown in
Figure 7.3.
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Figure 7.1: Software framework.
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Figure 7.2: Login user.

The establishment of the connection between the computers is performed using the specified
file paths of two shared folders; one previously created folder on each computer. This connection
setup evaluates whether proper communication is performed by verifying reading and writing
options on both folders. When this procedure is verified, the user interface is updated, as shown
in Figure 7.3.

[ CL4M Controls - Modo de ejecucién B |

Modo de ejecucion @ Principal ' Backup

Carpeta PC principal | C\Users\MICELabl'\Desktop\ CarpetaMICELAB L

Carpeta PC backup | \\MICELABE_2\Users\MICELab2\Desktop\CarpetaMICELAB_2

[ Establecer conexién ]

Conexidn establecidas

Figure 7.3: Execution mode and Connection confirmation.

The patient is selected from a dropdown list of all available patients who have been previously
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incorporated in the data folder of the application. The patient information can be subsequently
visualised in an additional table from the main menu, see Figure 7.4. The options displayed in
the main user interface are dependent on the type of study to be performed, i.e., if it is an open-
or closed-loop test, as shown in Figure 7.5.
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Figure 7.4: Information chart of clinical parameters for the patient selected and respective

settings of the control algorithm.
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Figure 7.5: Selection of patient and type of study.

The main function of the software is performed in the main menu of the user interface.
This menu include options for enabling the start/stop record, start/stop control, introduction of
glucose measurements and visualisation of ARD errors, confirmation of suggested and effective
insulin values, confirmation of the intake event, input of rescue CHO, and visualisation of glu-
cose and insulin trace, as shown in Figure 7.6. In the registration process, all information about
the test (glucose and insulin values, incidences, and events), is stored in each sampling period
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in two files, with one for each shared folder to successfully retrieve the information in the event
of error or failures.
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Figure 7.6: Main menu: (1) Patient and study information, (2) glucose data, (3) insulin data, (4)
data on sampling times, (5) intake data, (6) incidents, (7) registration, control, and exit options,
(8) numeric outputs and temporal scale options of the charts, and (9) glucose and insulin charts.

7.4 Implementation and Validation

The closed-loop blood glucose control algorithm used in the control software application is illus-
trated in Figure 7.7. The SMRC block corresponds to the SAFE layer described previously in
section 6.4.1, and the main controller is designed as a hybrid scheme. This block is based on a
PID algorithm, in which the derivative component is directly calculated from the glucose mea-
sured (approach typically used in industry to prevent control malfunctions of set-point changes).
The integrative component is replaced by the basal insulin profile obtained from the open-loop
adjustment. The prandial bolus is calculated from the patient’ insulin-to-carbohydrate ratio
and is incremented to create a super bolus by adding the amount of insulin corresponding to the
first hour of postprandial basal insulin. This control scheme is referred as the PDBasal Hybrid
SAFE algorithm.

The controller was designed and implemented in the software application and manually per-
formed every 15 min. The platform employed to develop the control software was LabVIEW,
which enables a rapid prototyping design. All code implemented in LabVIEW during the design
stage of the controller was directly embedded into the software application, which accelerated
the process of implementation and validation. Figure 7.8 displays screen shots obtained from
the software code implemented in LabVIEW.
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Figure 7.7: General scheme of the controller which will be clinically validated in the multicenter
trial: the PDBasal Hybrid SAFE algorithm.

In the validation process, both the PDBasal Hybrid SAFE algorithm and the control soft-
ware application were validated according to a specific requirement set. Regarding the control
algorithm, the following requirements were considered:

e Demonstrate robustness with different nutritional composition of meals, variation in insulin
sensitivity, errors in the CGM system readings, delays in the CGM system, delays in the
control action, and with variation in insulin action.

e Minimise mid-hypoglycaemia and prevent inducing of severe hypoglycaemia.

e Evaluation with a representative virtual population of the target cohort.

Regarding the software application, the following requirements were considered:

e Specific interface requirements: correct import patient, study and protocol information,
start/stop data logging and control, management of inputs, and display and recording of
data.

e Correct performance in backup mode operation.

All requirements were successfully accomplished and validated. In the case of the control
algorithm, the validation was performed based on the realistic scenario test used in the previous
chapter. For the software validation, several tests were conducted to check all the elements
that integrate the user interface. Figures 7.9 and 7.10 show graphical outcomes from particular
results of these validation tests.
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Figure 7.8: Graphical code in LabVIEW used to implement the (a) derivative action, and the
(b) SMRC scheme.

7.5 Technical Documentation

Required documents were prepared for approval by the national regulatory agency AEMPS
(Agencia Espafiola de Medicamentos y Productos Sanitarios). An outline of the contents of
these documents is presented as follows:

1. Risk Management: In this document, a risk analysis is performed to identify potential
undesirable side effects in normal use of the device (control software) and to assess whether they
constitute risks in relation to performance. This analysis includes the identification of hazards
and potential risks associated with the manufacture and use of the product and a description
of the actions that have been performed to minimise or eliminate the identified risks in confor-
mance with standard technique UNE-EN 14971 (AEMPS).

2.1 Controller Requirements: In this document, the requirements to develop and validate
this control device were defined. These requirements provide the basis for the development of
the controller, its robustness and security properties and the in silico validation required for
approval by the AEMPS.
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Figure 7.9: CVGA from the test in the (a) open-loop control and (b) closed-loop control;
corresponding blood glucose response from the (c) open-loop control and (d) closed-loop control.
These results demonstrate better performance of the PDBasal Hybrid SAFE algorithm according
to safety and postprandial responses in conventional open-loop therapy.

2.2 Controller Design: The design of the device is defined in this document. It describes
the control algorithm approach and the visualisation scheme of the software application.

2.3 Controller Validation: The validation of the device is defined in this document. It

describes a set of validation tests that are performed by the device for strict compliance with
the defined requirements.

2.4 Controller Implementation: In this document, the implementation of the device is

described. All graphical codes regarding the software application and the control algorithm are
also presented.

3. User Manual of the control software application: This document includes a user
manual for the device. It details each of the steps to be performed during the software initial-
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Figure 7.10: Real-time validation test of the software application.

isation and execution process and also describes each element included in the graphical user
interface.



Chapter 8

Conclusions and Future Work

This thesis concludes by noting the contributions presented in the previous chapters. Potential
future research on the subject of this thesis is also discussed.

8.1 Contributions

The main contribution of this thesis is the development of efficient and safe open- and closed-
loop strategies for postprandial glucose control in Type 1 diabetic patients. A closed-loop blood
glucose control algorithm, which was designed and developed in this thesis, is expected to be
validated in a multicentre clinical trial. The contributions of the thesis are summarised as follows:

e A virtual environment for intensive and realistic preclinical testing and validation of blood
glucose controllers was developed. Realistic scenarios can be simply performed in this
virtual environment. The main options include intra-patient circadian variation of in-
sulin sensitivity, customised dynamics for patient model parameters, estimated rate of
glucose appearance profiles from a sizable library of mixed meals, real features and fail-
ures of insulin pumps and continuous glucose monitoring systems, and several numerical
and graphical outcome metrics. The virtual environment was designed to facilitate a
flexible definition of the control scenario from a unique graphical user interface and was
implemented based on a graphical system design approach using the LabVIEW platform.

e An innovative and efficient postprandial control algorithm based on basal-bolus coordi-
nation for implementation in smart insulin pumps was developed and tested. Analyses
of interval simulations, physiological assumptions, and search domain contractions were
completed. As a limitation, the method relies on a mathematical model including meal
absorption. Studies to validate the clinical efficiency of the control algorithm are needed.

e Closed-loop postprandial control algorithms that exhibit acceptable postprandial responses
were developed and extensively tested. In these algorithms, the risk of late hypoglycaemic
events was limited by insulin-on-board constraints to maintain safety. Sliding mode tech-
niques were employed to gain robustness against parameter uncertainty and variability
(which may cause severe hypoglycaemic events) by implementing a secondary loop with-
out affecting the main control design. The results from the in silico evaluation indicate
that the proposed controllers were successful in reducing the number of hypoglycaemic
events without increasing the period of hyperglycaemia. They also demonstrate robust-
ness with regards to overcorrection of hyper- and hypoglycaemia. The results suggest
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that additional improvement in the controller response can be accomplished by lowering
the set-point, providing a larger bolus or aggressively tuning the control gains. This evi-
dence resulted in the development of the control algorithm to be employed in clinical trials.

e The new closed-loop postprandial glucose control algorithm designed and developed in
this thesis was implemented and extensively evaluated in silico as a form of preclinical
testing for future use in clinical trials. The control algorithm was embedded in a real-time
software application that was specifically designed according to medical and engineering
requirements in concordance with the national regulatory agency for the development
of investigational devices (Agencia Espanola de Medicamentos y Productos Sanitarios,
AEMPS). A limitation of this control device for clinical trial use is the lack of automation
of the closed-loop system, which requires the input of CGM readings into the computer
and subsequent manual alteration of pump settings every 15 minutes by medical staff.

8.2 Future Research

To continue the research initiated by this thesis, several improvements should be made to the
developed control system to develop a practical application. The first aim is to evaluate the
PDBasal Hybrid SAFE blood glucose control algorithm in real T1D patients to validate its per-
formance in the postprandial period.

The second aim is to expand the control algorithm operation to day and night performances,
including three “large” meals. In this thesis, a closed-loop control in the postprandial period
was addressed; however, in a practical application of the system, diurnal dynamics must be
considered. The development of strategies to evaluate dynamical /OB limitations according to
patient variability is also proposed.

A third aim is to develop autotuning capabilities in the control algorithm through smart
learning approaches, which consider daily variability and adapt system performance according
to long-term changes.

Last, a supervisory scheme for the control system that implements additional real-time in-
formation about the patient, such as heart rate, body temperature, and qualitative health signs,
should be developed to govern and adapt different operation modes of the control algorithm
according to a patient’s current condition (physical activity, stress, and illness).
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