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Resumen de la Tesis

Sitting on a cornflake,
waiting for the van to come

La persistencia de modelos

La Ingenieŕıa del Software Dirigida por Modelos (Model-Driven Engineering, MDE)
ha surgido en los últimos años como una nueva área de la Ingenieŕıa del Software
que pone un especial enfásis en el uso sistemático de modelos a lo largo del ciclo de
vida software, mejorando la productividad y calidad del mismo en aspectos como
el mantenimiento y la interoperabilidad. Las técnicas MDE, como el metamodelado
y las transformaciones de modelos, son útiles para abordar la complejidad del soft-
ware ya que incrementan los niveles de abstracción y automatización [BCW12]. Sin
embargo, aunque la MDE ha ido ganando aceptación por parte de la comunidad
software, ”su adopción está siendo sorprendentemente lenta” [Sel12] y uno de los
factores cŕıticos para dicha adopción es la existencia de herramientas robustas, us-
ables y eficientes que estén orientadas a la creación de aplicaciones industriales; la
persistencia y la consulta de modelos son dos ejemplos de los servicios que tales her-
ramientas deben ofrecer, ya que la capacidad de almacenar eficientemente modelos
y de extraer información de ellos es clave para su gestión y uso.

El trabajo presentado en esta tesis aborda los problemas de la persistencia de
modelos y de la consulta de modelos. La persistencia de modelos es el servicio que
proporciona el almacenamiento de modelos residentes en memoria en medios per-
sistentes tales como un conjunto de ficheros o una base de datos. La consulta de
modelos es el proceso de buscar dentro de un modelo un conjunto de elementos
que satisfagan una determinada condición y transferirlos al cliente desde el almace-
namiento persistente. Hemos realizado un análisis y caracterización del estado del
arte en ambas áreas para obtener el conocimiento que nos era necesario para diseñar
e implementar nuestra propia propuesta de persistencia de modelos, Morsa, aśı como
nuestra propia propuesta de consulta de modelos, MorsaQL, la cual está integrada
en la anterior.

Otro aspecto cŕıtico para la adopción de la MDE por parte de la industria es la
escalabilidad de las herramientas que acceden a modelos grandes. Como se comenta
en [KPP08], ”la escalabilidad es lo que está echando para atrás a un gran número
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de potenciales usuarios”. Para el desarrollo de nuestras propuestas de persistencia y
consulta de modelos hemos abordado un escenario orientado a aplicaciones, en el que
aplicaciones tales como las transformaciones de modelos leen únicamente pequeños
trozos de los modelos para procesarlos (por ejemplo, creando nuevos modelos o
generando diferentes artefactos como código fuente o documentación); una solución
de persistencia que aborde tal escenario debe proporcionar los medios para recorrer
partes concretas de un modelo de forma eficiente, en vez de cargarlo por completo
en memoria. Como se comenta en [Sel08][KRM+13], el manejo de modelos grandes
requiere de algún mecanismo que permita a un cliente cargar sólo los objetos que
van a ser usados. Este comportamiento de carga bajo demanda es imprescindible
cuando se persigue una persistencia de modelos escalable.

Los repositorios de modelos son una tecnoloǵıa emergente para la persistencia
de grandes modelos, surgida para superar las limitaciones de la persistencia basada
en XMI [XMI11], que proporcionan acceso remoto a éstos, aśı como caracteŕısticas
avanzadas tales como acceso concurrente, manejo de transacciones y versionado.
Actualmente, CDO [CDO12] es el repositorio de modelos más maduro disponible
para la plataforma EMF [SBPM08] (Eclipse Modeling Framework), aunque presenta
problemas de escalabilidad, como se ha demostrado en esta tesis.

Cuando una aplicación cliente accede un modelo persistente, la integración entre
dicha aplicación y la solución usada para la persistencia (por ejemplo, un repositorio)
debeŕıa ser transparente, esto es, conforme a la interfaz de acceso a modelos estándar
que se haya definido en el framework de modelado que se esté usando (por ejemplo,
la interfaz Resource de EMF) y sin imponer ningún tipo de pre o post procesado en
los (meta)modelos para su carga o guardado, como la generación de código fuente
espećıfico a partir de los (meta)modelos a almacenar [CDO12][KH10].

La extracción de información de un modelo puede ser realizada de forma visual
cuando el tamaño y la complejidad de un modelo son reducidos, como suced́ıa en
las primeras aplicaciones basadas en modelos. Sin embargo, en la actualidad un
modelo puede ser muy grande y complejo, por lo que su inspección visual puede
ser muy dif́ıcil [JS09]. Por otro lado, programar aplicaciones MDE se ha vuelto
más complicado en aquellos aspectos relacionados con la extracción de información:
las implementaciones proporcionadas por los frameworks de modelado requieren la
programación de una lógica de navegación, que con la creciente complejidad de
los modelos de entrada, puede ser una tarea tediosa y proclive a errores, dando
como resultado un código que no es lo suficientemente legible ni expresivo como
para resultar mantenible. Por lo tanto, para la extracción de información contenida
en modelos, se hace necesario tener métodos legibles, expresivos y mantenibles de
consulta de modelos.
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Contribuciones

El objetivo principal de esta tesis es la creación de un repositorio de modelos con
especial énfasis en la escalabilidad para el manejo de grandes modelos y en la inte-
gración transparente. Este repositorio ofrece dos servicios básicos:

• la persistencia de modelos, que permite manejar modelos grandes y propor-
ciona a las aplicaciones cliente un acceso escalable integrado de forma trans-
parente y

• la consulta de modelos, que permite a un cliente obtener elementos de un mod-
elo almacenado en el repositorio mediante la especificación de las restricciones
que deben de ser satisfechas por dichos elementos.

En esta tesis presentamos Morsa, una aproximación a la persistencia de mode-
los enfocada en la escalabilidad e integración. El problema de la escalabilidad
es abordado usando mecanismos de carga bajo demanda y guardado incremental,
soportados por una caché de objetos configurable mediante diversas poĺıticas. El
diseño del modelo de datos de Morsa está fuertemente inspirado en el paradigma
de las bases de datos de documentos NoSQL. Por otro lado, el problema de la
integración mediante la implementación de la interfaz EMF de acceso a modelos
persistentes, aśı como mediante el diseño de algoritmos de carga y almacenaje que
no requieren ningún pre o post procesado de (meta)modelos. Hemos realizado una
implementación para EMF [Mor13] que usa una base de datos MongoDB [Ban11] y
que se integra de forma transparente con herramientas cliente tales como los lengua-
jes de transformación de modelos.

Además de la persistencia de modelos, el repositorio creado ofrece el lenguaje de
consultas MorsaQL, que ha sido definido como un lenguaje espećıfico del dominio
(DSL) interno [Fow10]. MorsaQL ha sido diseñado con los objetivos de usabili-
dad, seguridad y eficiencia para la definición y ejecución de consultas sobre el
repositorio de modelos Morsa.

Finalmente, para estudiar el estado del arte en las áreas de la persistencia y
consulta de modelos y obtener el conocimiento necesario para desarrollar nuestras
propias soluciones, hemos realizado un estudio y una comparativa de aproximaciones
a ambas áreas. Este estudio y comparativa constituyen una contribución valiosa de
esta tesis, ya que pueden ser útiles a la comunidad MDE a la hora de decidir qué
solución es la idónea en base a las necesidades que se presenten.

Desarrollo

Encontramos por primera vez la necesidad de desarrollar una solución de persistencia
de modelos en el contexto de un proyecto de migración dirigida por modelos de
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Oracle Forms a Java. En dicho proyecto, se generaban modelos de tamaño medio
a grande que haćıan necesario tener un almacenamiento persistente eficiente para
su almacenaje y acceso; además, se definieron complejos metamodelos de forma
colaborativa en el marco de un equipo de investigación, por lo que empezaron a surgir
problemas de versionado, demostrándose que el soporte de Subversion [CSFP04] no
era adecuado.

Para abordar los problemas de la persistencia y versionado de modelos, desarrol-
lamos un repositorio llamado Metarep [EPGM10], del cual presentamos un primer
prototipo en el taller ICWMP en Málaga (España), donde recibió un feedback posi-
tivo. Sin embargo, algunos miembros de la comunidad MDE expresaron que estaban
más interesados en un repositorio escalable para modelos grandes que en una solución
de versionado de modelos, por lo que decidimos descartar Metarep y comenzar un
nuevo desarrollo, escogiendo MongoDB como su base de datos en lugar de MySQL,
que hab́ıa sido la base de datos de Metarep.

Aunque descartamos Metarep, su desarrollo nos enseñó varias lecciones sobre la
persistencia y versionado de modelos que consideramos útil extender, investigando
más en el área de la persistencia de modelos. El resultado de dicha investigación fue
un estudio que nos sirvió para guiarnos en la elicitación de los objetivos y requisitos
de la solución de persistencia de modelos que queŕıamos desarrollar.

Una vez realizada la investigación en persistencia de modelos, comenzamos a
desarrollar Morsa, presentando un primer prototipo en el congreso MoDELS en
Wellington (Nueva Zelanda) en 2011 [EPSGM11], donde tuvo una muy buena
acogida, siendo elegida una de las cinco mejores contribuciones del congreso. Ex-
tendimos Morsa para soportar todas las operaciones de persistencia de modelos:
almacenaje, carga, actualización, borrado y consulta; usamos Morsa en el contexto
del proyecto de Oracle Forms a Java, para el cual el candidato recibió una beca de
la Fundación Séneca (Agencia Regional de Ciencia y Tecnoloǵıa, CARM).

El problema de las consultas a modelos surgió cuando Morsa tuvo que ser usado
para obtener elementos que satisfacieran condiciones, mostrando que tanto el código
EMF como las aproximaciones de consulta de modelos disponibles en la actualidad
para EMF no eran lo suficientemente efectivas, usables ni eficientes. Se tomó la
decisión de desarrollar un lenguaje de consultas integrado en Morsa, realizando un
paso preliminar de análisis del estado del arte. Con el conocimiento adquirido en
dicho análisis desarrollamos el Morsa Query Language (MorsaQL), un DSL interno
implementado en Java e integrado en Morsa.

Resultados

Como paso previo al diseño de nuestras soluciones de persistencia y consulta de
modelos, realizamos un estudio del estado del arte en ambas áreas (ver los Caṕıtulos

4



Resumen de la Tesis

3 y 7, respectivamente). Hicimos esto identificando un conjunto de dimensiones para
cada área que nos ayudó tanto a definir las caracteŕısticas que una solución de per-
sistencia de modelos debeŕıa proporcionar como a evaluar soluciones de consulta
de modelos. Usamos estas dimensiones para caracterizar seis soluciones de persis-
tencia diferentes (XMI, ModelBus, EMFStore, CDO, MongoEMF y OOMEGA, ver
la Sección 3.2) y cinco soluciones de consulta de modelos diferentes (EMF, EMF
Query, MDT OCL, CDO OCL e Inc Query, ver la Sección 7.5) y para compararlas
entre śı (ver la Sección 3.3 y el Caṕıtulo 9, respectivamente).

Con el conocimiento adquirido, diseñamos e implementamos Morsa, un reposito-
rio de modelos enfocado a la escalabilidad de las aplicaciones cliente que acceden
a modelos grandes. El diseño arquitectónico y de datos de Morsa (ver la Sección
5.1) ha sido ideado para soportar el acceso de grano fino a grandes modelos, per-
mitiendo la carga bajo demanda y el almacenaje incremental. La arquitectura de
Morsa consiste en un manejador que usa una caché de objetos con poĺıticas que de-
ciden qué elementos del modelo deben ser obtenidos de la base de datos y cuáles no
son necesarios, por lo que pueden ser descargados del cliente par ahorrar memoria.
El manejador implementa la interfaz de persistencia del framework de modelado
para proporcionar integración, imponiendo muy pocos cambios en las aplicaciones
existentes para poder ser usado como almacenamiento persistente. En el Caṕıtulo
6 se demuestra que el prototipo de Morsa para EMF y MongoDB tiene un mejor
comportamiento en el acceso parcial a modelos que XMI y CDO y que es capaz de
manipular modelos de mayor tamaño que CDO.

Tras conseguir un prototipo estable de Morsa, diseñamos e implementamos un
lenguaje de consultas para Morsa llamado MorsaQL (ver el Caṕıtulo 8), con los ob-
jetivos de usabilidad, seguridad y eficiencia. La sintaxis abstracta de MorsaQL
(ver la Sección 8.2) proporciona una serie de conceptos que permiten la definición
de contextos (esto es, espacios de búsqueda) y condiciones (es decir, restricciones)
sobre atributos y relaciones, la navegación de relaciones y la parametrización de la
ejecución de una consulta en términos de profundidad, anchura, número de resulta-
dos y resolución de proxies (ver las Secciones 2.3 y 5.3.1.2). La sintaxis concreta de
MorsaQL (ver la Sección 8.3) ha sido implementada como un DSL interno que se
asemeja a SQL y EMF Query. Una combinación de los patrones method chaining,
nested functions y expression builder (ver la Sección 2.5) permite obtener una sin-
taxis concreta legible que prorporciona comprobación sintáctica en tiempo de diseño.
Por otro lado, dada su naturaleza de DSL interno, MorsaQL puede ser combinado
con sentencias Java para extender su funcionalidad. Su eficiencia queda demostrada
en la evaluación del Caṕıtulo 9.

Además de Morsa y MorsaQL, esta tesis presenta un análisis, evaluación y com-
parativa de siete soluciones de persistencia de de modelos y seis soluciones de con-
sulta de modelos (incluyendo Morsa y MorsaQL), lo cual es muy útil para guiar
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a los desarrolladores de MDE sobre qué solución debeŕıan usar en función de sus
necesidades. En las Secciones 3.3, 6.2 y 9.4 se muestran los cuadros comparativos
de este estudio. La Sección 10.2 muestra la comparativa entre Morsa y el resto de
las soluciones de persistencia de modelos analizadas.

Conclusiones

Esta tesis analiza el problema de la persistencia y consulta de modelos, proponiendo
Morsa, un repositorio de modelos orientado a la escalabilidad de las aplicaciones
cliente y la integración transparente con el framework de modelado, y MorsaQL,
un lenguaje de consulta de modelos integrado en Morsa que permite la definición y
ejecución de consultas de forma usable, segura y eficiente.

El desarrollo de Morsa y MorsaQL, junto con el estudio del estado del arte real-
izado de forma previa a ellos, nos ha proporcionado un conocimiento más profundo
de la problemática asociada a la persistencia y consulta de modelos, en dimensiones
como la arquitectura de las soluciones desarrolladas, la granularidad de su acceso
a modelos, la preservación de la semántica de los metamodelos almacenados, las
necesidades sintácticas de un lenguaje de consultas, etc. Por otro lado, la evaluación
de Morsa y MorsaQL y su comparación con las principales soluciones de persisten-
cia y consulta de modelos disponibles en la actualidad aportan un importante valor
añadido en forma de recomendaciones para la utilización de unas u otras soluciones
en función del uso que se les vaya a dar.

Finalmente, el conocimiento adquirido nos ha permitido definir unas ĺıneas gen-
erales de investigación que, a nuestro parecer, seŕıa beneficioso explorar de cara a
conseguir una mayor alineación de las tecnoloǵıas de la Ingenieŕıa del Sofware Di-
rigida por Modelos para, en la medida de lo posible, paliar la situación actual, la
cual ”sufre de un exceso de balas de plata” [Sel12].
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Abstract

Sitting in an English garden
waiting for the Sun

The paradigm of Model-Driven Engineering (MDE) has emerged as a new area of
Software Engineering that uses models to improve the productivity and reusability of
software in order to achieve industrial standards. Models are the central artefacts in
MDE, and a way to efficiently persist them is crucial for the scalability, usability and
distribution of model-driven tools such as model transformations. As models grow
in size and complexity, the need of model persistence and model querying solutions
arises to efficiently storage large models and obtain information from them in a
expressive, readable and reliable way.

In this thesis we present Morsa, a model repository that provides scalable ma-
nipulation of large models through load on demand and incremental store; model
persistence is supported by a NoSQL database. We discuss a database design as
well as some load on demand and incremental store algorithms. A prototype that
integrates transparently with the Eclipse Modeling Framework (EMF) is presented
and its evaluation demonstrates that it is capable of fully managing large models
with a limited amount of memory. Moreover, a set of benchmarks has been exe-
cuted, exhibiting better performance than the EMF XMI file-based persistence and
the most widely used model repository, CDO.

In order to design and implement Morsa, we analyzed six representative model per-
sistence solutions (XMI, ModelBus, EMFStore, CDO, MongoEMF and OOMEGA)
through the identification of seven dimensions on model persistence. A categoriza-
tion of model persistence solutions was made based on the defined dimensions and
the empyrical knowledge achieved with the analysis of the different solutions.

A model query language has been defined for the Morsa repository, providing an
efficient, usable and safe means to query models stored in the repository. This lan-
guage, called MorsaQL, has been implemented as an internal DSL. A metamodel
for the abstract syntax of MorsaQL has been defined, paired with a textual no-
tation and a semantics that is given by an interpreter. A set of benchmarks has
also been executed, comparing MorsaQL to other model querying approaches and
demonstrating its better fitness for our goals.

As a prior step to the development of MorsaQL, we made an analysis and com-
parison of five different model querying approaches currently available for EMF.
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To do so, we identified a set of dimensions on model querying and used them to
characterize the different approaches.

Therefore, the contributions of this work are: (i) the Morsa repository, a client-
scalable model persistence approach that integrates transparently with applications;
(ii) the MorsaQL query language, an efficient, usable and safe querying approach
for Morsa and (iii) a survey on model persistence and model querying approaches,
including guidelines for future research and for helping MDE developers choose the
model persistence and querying approaches that best fit their needs.
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Introduction

I am he as you are he
as you are me
and we are all together

Since most current human activities are software-dependent, building software has
become a strategic activity for the economic and social development of countries.
The main goal of the Software Engineering discipline is to achieve the full industrial-
ization of software, that is, to create an industry that produces high-quality software
at a low cost. The transition from craftwork to industry is mainly the result of the
mechanization of production processes, the standardization and composition of com-
ponents, the use of tools for task automation and the creation of product lines. A
significant improvement in the industrialization of software has been achieved thanks
to the application of automation and reuse techniques and the adoption of software
standards, but more progress is still needed in order to achieve a true software in-
dustry [GSKC04]. The model-based software lifecycle has matured along the last
decade as a new paradigm that promises a significant increase in software automa-
tion and industrialization, specially when combined with the reusability provided
by the software product lines approach.

Model Driven Engineering (MDE) has emerged as a new area of software engineer-
ing that emphasizes the systematic use of models in the software lifecycle in order
to improve its productivity and quality in some aspects such as maintainability and
interoperability. MDE techniques, e.g. metamodeling and model transformations,
allow tackling the complexity of software by raising its abstraction and automation
levels [BCW12]. These techniques have been proven useful not only for developing
new software applications [MDA03][KT08] but also for reengineering legacy systems
[ADM07][UN10] and dynamically configuring running systems [BBF09]. Although
MDE is gaining acceptance in the software community, ”the adoption of this ap-
proach has been surprisingly slow” [Sel12] and one of the critical factors for its
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successful adoption is the existence of robust, usable and efficient tools aimed to
create industrial applications; model persistence and model querying are two exam-
ples of the services that such tools must offer, since the ability to efficiently persist
models and retrieve information from them is essential for model management.

The aim of this thesis has been the construction of a model repository, called
Morsa, that supports scalable access and provides a model querying language called
MorsaQL. Therefore, we had to tackle the issues derived from the model persistence
and model querying research areas areas. Model persistence is the service that pro-
vides the serialization of in-memory models into a persistent storage such as a file
set or a database. Model querying is the process of searching a model for a set of
model elements that satisfy a given condition and transfer it from the persistent
storage to the client application. An analysis and characterization of the state of the
art in both areas has been made in order to gain the knowledge we needed to design
and implement Morsa and MorsaQL, our own approaches to model persistence and
model querying, respectively.

The rest of this chapter is organized as follows: first, the motivation of the work
is presented; then, the main contributions of the thesis are enumerated; afterwards,
the development of this thesis is explained; finally, the contents of the rest of this
thesis are outlined.

1.1 Motivation

The increasing maturity of MDE technologies is promoting their adoption by large
companies [MFM+08][HWRK11], taking advantage of their benefits in terms of
productivity, quality and reuse. However, applying MDE in this context requires
industry-scale tools that can operate with complex models with a size of millions of
objects. Model-Driven software modernization [CGM10][GZL+04] is an example of
scenario where these tools would be needed in order to efficiently manage very large
and complex models extracted from source code [CGM10] or data [DPCGM13] of
legacy artifacts. One basic operation of such tools is model persistence and the corre-
sponding model access, and they must satisfy two essential requirements: scalability
and tool integration.

One critical concern for the industrial adoption of MDE is the scalability of tools
when accessing large models. As noted by [KPP08], ”scalability is what is holding
back a number of potential adopters”. According to [KRM+13], achieving scalability
in MDE involves: (i) being able to construct large models, (ii) enabling large teams
of modelers to construct and refine large models collaboratively, (iii) advancing the
state of the art in model querying so it can cope with large models and (iv) providing
an infraestructure for efficient storage, indexing and retrieval of such models. In this
thesis we have tackled the third and fourth dimensions — model querying and model
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persistence, focusing on the scalability on client applications.

Several scenarios can be defined for scalability on client applications, depending
on the kind of access and manipulation done to persisted models; e.g. a user-oriented
scenario is the one where human users do small edits on models and visualize whole
models concurrently. The scenario we address in this thesis is an application-oriented
one, where client applications such as model transformations read only small portions
of models and process them (e.g. to create new models or to generate different
artefacts such as source code or documentation); a persistence solution that tackles
such scenario must provide means to traverse specific parts of a model efficiently
instead of fully loading it.

One approach for tackling scalability is to partition models via some modular-
ization construct provided by the modeling language [KPP08]. Instead of having to
manage large models, modularization would allow to keep the models at a reasonable
size. However, the complexity of large models makes it difficult to automatically par-
tition them into fragments that are easily accessible [Sel08] hence having a scalable
model persistence solution would be mandatory. For example, source code models
extracted from a legacy system being modernized may not be properly modulariz-
able because of the complexity of their interconnections.

The XMI (XML Metadata Interchange) format [XMI11] is normally used for the
serialization(i.e. persistence) of models. When some operation (e.g. a model trans-
formation) is performed on a model, the stored XMI file has to be parsed in order
to build the model in memory as an instance of its metamodel. For example, in
the widely used Eclipse Modeling Framework (EMF) [SBPM08] the usual approach
consists of a SAX parser that fully reads an XMI file and builds the entire model
in memory at once. However, large models may not be fully kept in memory, caus-
ing the parser to overflow the client. Although XMI files support modularization
through references between modules (i.e. files), requesting a single element from a
referenced module would require its full load, so this solution does not scale. There-
fore, as noted in [Sel08], handling large models requires some mechanism that allows
the client to load only the objects that will be used. This load on demand behaviour
is a must when pursuing scalable model persistence.

To overcome the limitations of XMI-based persistence, model repositories
[CDO12] [KH10] are emerging as persistence solutions for large models, providing
remote model access with advanced features such as concurrent access, transaction
support and versioning; some available model repositories are discussed in Section
3.2. Currently, CDO [CDO12] is the most mature repository for EMF; however, it
does not scale properly as shown in Chapter 6.

Tool integration is another concern that arises when client applications access
persisted models. The integration between a persistence solution and any client
should be transparent, that is, it should conform to the standard model access
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interface defined by the considered modeling framework (e.g. the Resource interface
of EMF). Moreover, a persistence solution that integrates transparently must not
require any pre or post-processing on the (meta)models in order to load or store
them, e.g. requiring source code generation for the persisted (meta)models, as in
CDO [CDO12] and EMFStore [KH10].

Information can be retrieved from models mainly in two ways: visually and pro-
grammatically. On the one hand, a developer can visually inspect a model using a
model visualizer that represents models as graphs, trees, etc. and manually select the
information he or she wants to retrieve. On the other hand, a model can be queried
by an application to automatically retrieve the data of interest; the programmer of
such an application needs some means to programmatically inspect models in order
to retrieve information from them.

The retrieval of information from a model may be performed visually when the
size and complexity of such model is low, as was usual in the model-driven applica-
tions that first appeared. However, nowadays models can be very large and complex,
so visual inspection has become too difficult to perform. To tackle this, some solu-
tions such as model partitioning have been presented [GZL+04] to build views that
are easier to inspect by humans. Moreover, the programming of MDE applications
has also become more difficult in those aspects related to the retrieval of informa-
tion because the provided implementations of modeling frameworks usually rely on
navigational semantics for this task; however, the growing complexity of the input
models makes coding this navigation tedious and error prone, resulting in code that
is neither readable or expressive enough to be maintainable.

Because of the need of methods to retrieve information from models in a readable,
expressive and maintainable way, dedicated query languages and APIs (Application
Programming Interfaces) have been developed. The OMG defined the Object Con-
straint Language (OCL) [OCL06a] as the standard language for defining constraints
(e.g. invariants and preconditions) and queries for MOF models. The Eclipse Mod-
eling Framework also provides an API for querying models named EMF Query
[EMF12]. Other query languages such as XPath [XPa99] offer navigational seman-
tics to query models in a more declarative way.

Therefore, the main goal of this thesis is to provide the MDE community with a
means to manage large models with a focus on scalability and tool integration. Such
management can be performed by two tools:

• A model persistence solution that handles large models and provides client
applications with scalable access and transparent integration and

• a model querying solution that allows a client to retrieve model elements from
the model persistence solution by specifying the constraints that must be sat-
isfied by the results of a query in a usable, safe way. Such a solution must also
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be efficient in memory and time to contribute to the scalability of the model
persistence solution.

1.2 Contributions

In this thesis we present a model repository for scalable access that provides a
model querying language. Next, we present the three main contributions achieved
as a result of our research work.

Firstly, we have developed Morsa, a model persistence approach aimed at achiev-
ing scalability and transparent tool integration. The problem of scalability is
tackled using load on demand and incremental save mechanisms supported by an
object cache which is configurable with different policies. We discuss how these poli-
cies fit for common model traversals such as depth-first order and breadth-first order.
The design of Morsa’s data model is heavily inspired on the document-based NoSQL
database paradigm (although it could be deployed over any kind of database). We
have dealt with the problem of transparent tool integration by implementing the
EMF interface for accessing persisted models and by designing our load and store
algorithms so that no (meta)model pre or post-processing is required. We contribute
a prototype implementation for EMF [Mor13] that uses a MongoDB [Ban11] NoSQL
backend and integrates transparently with client tools such as model transformation
languages.

Secondly, in order to give model querying support to Morsa, we have defined the
Morsa Query Language (MorsaQL), a query language integrated with our model
repository that has been implemented as an internal DSL [Fow10]. MorsaQL has
been designed to achieve usability, safeness and efficiency in the definition and
execution of queries against the Morsa model repository.

Finally, a survey and comparison of model persistence and model querying ap-
proaches have been made to analyze the state of the art in both areas in order to
gain the necessary knowledge for the development of the two solutions. These survey
and comparison are also a valuable contribution of this thesis, since it can be useful
for the MDE community to decide what solutions to use, depending on their needs.

1.3 Development

The need of a model persistence solution first showed up in the context of a project
aimed at developing a model-driven migration from Oracle Forms to Java. In this
project, medium-sized to large models were generated, requiring an efficient per-
sistent storage in order to persist and access them; moreover, complex metamodels
were defined collaboratively within a small research team, so versioning issues began
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to appear, as Subversion [CSFP04] support was proven non-optimal.
In order to tackle the problems of model persistence and model versioning, we

created a repository called Metarep [EPGM10] and presented its first prototype at
the ICWMP workshop in Málaga (Spain), 2010, where it received positive feed-
back. However, several members of the MDE community expressed that they were
more interested in a scalable repository for large models rather than in a model
versioning solution, so we decided to discard Metarep and start a new development,
choosing MongoDB as its database backend, instead of MySQL, which was the one
for Metarep. The choice of MongoDB was motivated by its support to scalability,
its lightweight client-server communication and because of the better fitness of the
document-based database paradigm for the representation of models.

Although we discarded Metarep, its development taught us several lessons on
model persistence and versioning that we considered useful to extend, doing more
research on the model persistence area. As a result of this research, a survey was pro-
duced, guiding the elicitation of the goals and requirements of the model persistence
solution that we wanted to create.

Once we had a deeper knowledge of the area of model persistence, we started
developing Morsa, achieving a first prototype that was presented at the MoDELS
conference in Wellington (New Zealand) in 2011 [EPSGM11], where it was very
well received, becoming one of the best five contributions of the conference. Morsa
was then extended to fully support the different operations on model persistence:
store, load, update, delete and query and used in the context of the Oracle Forms to
Java project, for which the candidate received a grant from the Fundación Séneca
(Agencia Regional de Ciencia y Tecnoloǵıa, CARM).

The problem of model querying arose when Morsa had to be used in the context
of the migration from Oracle Forms to Java to retrieve elements that satisfied condi-
tions, evidencing that plain EMF code and the current model querying approaches
available to EMF where not effective, usable and efficient enough. The decision of
developing a query language integrated in Morsa was then made, and a preliminary
step of analyzing the state of the art was needed. With the knowledge achieved with
such analysis, we developed the Morsa Query Language (MorsaQL), an internal
DSL implemented in Java that is integrated with Morsa. This language was proven
efficient, usable and safe in the context of the Oracle Forms to Java project and
using a set of benchmarks derived from the Grabats 2009 contest [JS09].

1.4 Outline of this thesis

The structure of the rest of this document is as follows:

• Chapter 2 introduces the background needed for the better understanding
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of this thesis, comprising concepts of MDE, the Eclipse Modeling Framework,
model persistence, Domain- Specific Languages and the NoSQL movement.

• Chapter 3 analyzes the state of the art in model persistence, defining a
set of dimensions on model persistence that are broke down into features.
These dimensions are used to characterize and compare a selected set of model
persistence approaches.

• Chapter 4 presents the running example that will be used to illustrate the
design and operation of Morsa and to evaluate both Morsa and MorsaQL. This
running example is based on the Grabats 2009 contest [JS09].

• Chapter 5 describes Morsa in terms of its architectural and data design, its
performance of the basic model persistence operations and its implementation
and integration with the Eclipse Modeling Framework.

• Chapter 6 evaluates Morsa and compares it with XMI and CDO, the most
widely used model persistence approaches for EMF. A set of benchmarks is
defined and executed against the models provided by the running example
presented in Chapter 4.

• Chapter 7 presents the problem of model querying and introduces the state
of the art for this research area. A set of dimensions on model querying is
presented in order to characterize the currently available model querying ap-
proaches and MorsaQL in the following chapters.

• Chapter 8 describes MorsaQL in terms of the dimensions presented in the
previous chapter. The abstract syntax, concrete syntax and semantics of Mor-
saQL are explained in detail.

• Chapter 9 evaluates MorsaQL and compares it against the model querying
approaches presented in Chapter 7. The running example from Chapter 4 is
used to evaluate the dimensions defined in Chapter 7.

• Chapter 10 presents our conclusions and further work. To do so, a catego-
rization of Morsa using the dimensions and features defined in Chapter 3 is
made; then, Morsa is compared to the selected model persistence approaches.
Some research guidelines are outlined for model persistence and finally, the
publications, tools, projects and grants related to this thesis are commented.
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Background

Expert texpert
chocking smokers
don’t you think the joker
laughs to you?

This chapter introduces the background needed for the better understanding of
this thesis, which consists of: a brief explanation of the basic concepts of MDE,
such as metamodeling and model transformations; the Eclipse Modeling Framework
(EMF), presenting its metamodel and tooling; the representation of models as graphs
and the terminology that is used to describe them; the persistence of models and
its related operations; some concepts on Domain- Specific Languages (DSLs) and
an approach to the NoSQL movement, describing its main paradigms and benefits.

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) is the term that is commonly used to refer to the
area of Software Engineering that involves a set of development paradigms based
on four basic principles [BCW12]: (i) models are used to represent aspects of a
software system at some abstraction level; (ii) they are expressed using DSLs (a.k.a.
modeling languages) (iii) that are built by applying the meta-modeling technique
and (iv) model transformations provide automation in the software development
process.

2.1.1 Metamodeling

A metamodel is a model that describes the concepts and relationships of a certain
domain. A metamodel is commonly defined by means of an object-oriented con-
ceptual model expressed in a metamodeling language such as Ecore [SBPM08] or
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MOF [MOF06]. A metamodeling language is in turn described by a model called
the meta-metamodel. Metamodeling languages provide four main constructs to ex-
press metamodels: classes (normally referred as metaclasses) for representing domain
concepts, attributes for representing properties of a domain concept, association re-
lationships (aggregations or references) between pairs of classes to represent connec-
tions between domain concepts and generalizations between child metaclasses and
their parent metaclasses for representing specialization between domain concepts.
We will use the term structural feature to refer to both attributes and relationships.

Figure 2.1 shows a metamodel called OOMetamodel that represents a simple
object-oriented programming language with concepts such as module, class, fea-
ture, field, method and parameter, which have been modeled as metaclasses. This
metamodel will be used for explaining the concepts of metamodeling and the repre-
sentation of a model as a graph. A special OOModel metaclass has been introduced
to aggregate all modules. All these metaclasses have a name attribute which they
inherit from a NamedElement class that is not shown for the sake of readability.
The example also shows several association relationships among the metaclasses
(modules, classes, returnType, features, type) and a generalization from Method and
Field to Feature. Figure 2.2 is a UML object diagram that represents a model of an
object-oriented program consisting of two modules, two classes, one method, one
field and two method parameters.

Figure 2.1 Metamodel for a simple object-oriented programming language

In MDE, the four-level metamodeling architecture [CESW08][BCW12] is nor-
mally used to explain the relationships between models, metamodels and meta-
metamodels. An instance-of (or conformance) relationship is given between a model

17



Background

Figure 2.2 Example model representing an instance of a simple object-oriented
programming language

and its metamodel as well as between a metamodel and its meta-metamodel. The
elements of a (meta)model are instances of (they conform to) the metaclass of its
(meta)metamodel. For example, the object modelOne in Figure 2.2 is an instance of
the metaclass OOModel in Figure 2.1, which is in turn an instance of the element
from the meta-metamodel that represents metaclasses (e.g. EClass in the Ecore meta-
metamodel).

Two kinds of association relationships can be established between metamodel
metaclasses (and therefore between model elements): containment and reference.
A reference relationship is a reference from a source metaclass (or model element)
to a target metaclass (or model element). For instance, the relationship returnType
between metaclasses Method and Class shown in Figure 2.1 is a reference; this re-
lationship is also shown between instances classOne and methodOne in Figure 2.2.
A containment relationship is a kind of part-of relationship (or aggregation) from a
container element (i.e. a metaclass or model element) to a contained element. Such
a relationship has three properties:

• Exclusive ownership: the contained element cannot be part of more than one
container element.

• Dependency : the lifetime of a contained element is the same of the one of its
container element.

• Transitivity : if an element A is contained by an element B and B is also
contained by another element C, then A is contained by C.

For instance, the relationship between metaclasses Module and Class in Figure 2.1
is a containment; this relationship is also shown between instances moduleTwo and
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classOne in Figure 2.2. Although containment relationships are not compulsory in
all metamodeling languages, we assume their existence because it is the way EMF
(which is the modeling framework used in this thesis) is designed and also because
they can be semantically emulated by regular relationships.

2.1.2 Model Transformations

Model transformations allow automating the conversion of models between different
levels of abstraction. An MDE solution usually consists of a model transformation
chain that generates the desired software artefacts from the source models. Two
kinds of model transformations are commonly used: model-to-model transformations
(M2M) generate a target model from a source model by establishing mappings be-
tween their metamodels and model-to-code transformations (M2C or model-to-text,
M2T) generate textual information (e.g. source code) from an input model. A sur-
vey on model transformation languages can be found in [CH06]. Some examples of
M2M model transformation languages are QVT [QVT08], ATL [JABK08], Epsilon
[Eps12] and RubyTL [SCGM07]; MOF2Text [MOF08] and XPand [Eff06] are some
of the most widely used M2C or M2T model transformation languages.

M2M transformations are used in a transformation chain as intermediate stages
that reduce the semantic gap, while M2C transformations produce the target arte-
facts at the last stage of the chain. A model transformation language requires ac-
cessing to persistence solutions in order to read the input models and, for M2M
transformations, to write the generated ones. The process of writing model trans-
formations can be made easier using a declarative model querying approach. It is
worth noting that a model transformation language may be described by means of
a metamodel [TJF+09], so a transformation could be also persisted and queried as
a model.

2.2 Eclipse Modeling Framework

This thesis uses the Eclipse Modeling Framework (EMF) [SBPM08] as its reference
modeling framework, as the majority of the approaches commented and evaluated
in Chapters 3 and 7 have been developed for this framework. EMF is a modeling
framework defined for the Eclipse platform and inspired on the MOF modeling
framework. [MOF06]. Although it was initially designed for code generation, the
MDE community has adopted it as the foundation for most of its model-based
developments, being the most widely used modeling framework at the moment.
EMF is composed of a meta-metamodel called Ecore and the tooling needed for the
creation and manipulation of Ecore (meta)models, which is usually referred also as
EMF.
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Figure 2.3 The Ecore metamodel

The Ecore meta-metamodel supports all the constructs defined in the previous
section for metamodeling languages and adds some others that are focused on code
generation or integration with Java and the Eclipse platform (e.g. EFactory, which
is a factory class that creates model elements). Figure 2.3 shows the main concepts
and relationships of the Ecore metamodel (the attributes and the least relevant
references have been ommitted for the sake of clarity). As can be seen, metaclasses
are represented as EClasses and structural features are represented as EStructuralFea-
tures, which may be attributes (EAttributes) or relationships (EReferences). The type
of an structural feature may be an EClass if it is a reference or an EDataType if it
is an attribute. The same meta-metaclass is used for representing both containment
relationships and references (a containment boolean attribute is used to discern this,
not shown for the sake of readability). A metamodel is represented in Ecore as an
EPackage, which may include subpackages (i.e. composite metamodels).

The two basic interfaces of the EMF tooling are EObject and Resource: they rep-
resent the root class of every model element and the medium in which model ele-
ments are stored, respectively, and are essential for any application that uses the
framework. EMF supports two ways of manipulating models: code generation and
dynamic models. Given a metamodel, EMF can generate a set of classes and inter-
faces which represent the metaclasses of the metamodel and can be instantiated to
create models. This is called generated EMF. Instead of generating code, EMF also
allows a model to be dynamically generated by creating instances of a generic model
object interface called DynamicEObject as the model elements are loaded from a re-
source. This is called dynamic EMF, and offers higher genericity and lower memory
consumption, although its performance may be lower.
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2.3 Models as graphs

A (meta)model can be represented as a directed labelled graph whose nodes are
instances of (meta)metaclasses and whose arcs are determined by association rela-
tionships, being the labels on those arcs the names of the associations (for models)
or their kinds (for metamodels) Given this, some terminology defined for graphs
that will be used throughout this thesis is introduced below. Given an object (i.e. a
model element):

• an ancestor is an object that transitively contains it;

• a descendant is an object transitively contained by it;

• a child is an object that is directly contained by it;

• a parent is an object that directly contains it;

• a sibling is an object with the same parent;

• its breadth is its position in the list that contains it;

• its depth is the number of ancestors that contain it.

Moreover, a subgraph (i.e. model partition) is a graph whose nodes and arcs are
a subset of a given graph and a root object is an object that has no ancestors. We
illustrate the meaning of these concepts using the model on Figure 2.2, which shows
the containment relationships between model elements. In this figure we can observe
the following:

1. modelOne is the root object, so its depth is 0.

2. methodOne’s ancestors are classOne, moduleTwo and modelOne, so its depth is
3.

3. classTwo is a sibling of classOne and its breadth is 2.

4. classOne’s parent (container) is moduleTwo.

5. classOne’s children are methodOne and fieldOne.

6. classOne’s descendants are methodOne, fieldOne, parameterOne and parame-
terTwo. A subgraph could be formed by these objects.

2.4 Model persistence

Model persistence is a service provided by modeling frameworks in order to serialize
in-memory models into a persistent storage such as a file set or a database. A per-
sistence solution is a tooling that provides model persistence to client applications,
whether they manage models programatically or through direct manipulation by
final users; a model that is serialized and stored in a persistence solution is called
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a persisted model. Model persistence is therefore a key aspect of MDE, supporting
most of the MDE techniques, such as metamodeling and model transformation.

There are five basic operations in model persistence that involve moving models
between a client application and a persistent storage:

• Load : a model or a model partition (i.e. a part of a model) is transferred from
the persistent storage to the client’s memory. It involves rebuilding a set of
model elements from their serialized counterparts. If the whole model is rebuilt,
it is fully loaded ; otherwise, the model is partially loaded.

• Store: a model or a model partition is transferred from the client’s memory
to the persistent storage. It involves representing an in-memory model in the
format used by the persistence solution (e.g. relational tuples). If the whole
model is stored at once, it is fully stored ; otherwise, the model is incrementally
stored.

• Update: a model or a model partition that is already persisted is modified in
the client’s memory and then transferred to the persistent storage. It involves
modifying the already persisted model elements to reflect the changes done
by the client application. An update is usually done in an automatic fashion
when a modified model or model partition is stored.

• Delete: a model or model partition is removed from the persistent storage.
Deletion may be performed automatically when a model or model partition is
updated and some model elements have been removed from it.

• Query : a set of model elements that satisfy a given condition is transferred
from the persistent storage to the client.

These operations are needed when client applications access models and traverse
them for different purposes. For example: an M2M transformation may look for a
particular element that satisfies a given condition and then traverse all its descen-
dants in order to generate a new target model element; an M2C transformation may
simply traverse a whole model, processing each element once or twice. Both appli-
cations require loading a source model, traversing it and, for the former, building
target model elements in memory; because such source model may be very large, a
persistence solution should provide means to perform partial load, achieving scala-
bility. Incremental store is also very important because it provides means to discard
already generated model elements after they are stored.

In frameworks such as EMF, models are persisted as XML files, which become
unscalable as models grow in size. There is a need for persistence solutions that
dynamically manage memory usage, performing partial load and incremental store
of model elements; such a persistence solution is called a repository. Some popular
model repositories are CDO [CDO12], EMFStore [KH10] and ModelBus [HRW09],
which will be described in detail in Chapter 3.
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2.5 Domain-Specific Languages

A Domain-Specific Language (DSL) is a language that is defined for a specific do-
main and that is usually created by applying metamodeling, since it is represented
by a metamodel and its instances are models. A DSL normally consists of three
basic elements: abstract syntax, concrete syntax and semantics. The abstract syntax
describes the set of language concepts and their relationships, along with the rules to
combine them. Meta-metamodeling provides a good foundation for this component,
but other formalisms such as grammars have also been used over the years. The
concrete syntax defines the notation of the DSL, which can be textual or graphical
(or a combination of both). The semantics defines the behavior of the DSL; there
are several approaches for defining it [Kle08], but it is typically provided by building
a translator (i.e. a compiler) to another language that already has a well-defined
semantics (e.g. a programming language) or an interpreter.

Several techniques have been proposed for the implementation of both textual
DSLs [Fow10][MHS05][EPMGM08] and graphical DSLs [KT08][CJKC07]. In this
work we focus on textual DSLs, and particularly consider two kinds of styles ac-
cording to the implementation technique used: external DSLs and internal DSLs.
An external DSL is typically built by creating a parser that recognizes the language’s
concrete syntax and then developing an execution infrastructure, if necessary. Nowa-
days, language workbenches that are based on metamodeling are gaining acceptance
as they facilitate the creation of external textual and graphical DSLs; such tools are
considered a third technique for building DSLs in [Fow10].

An internal DSL or fluent API, however, is implemented on top of a general
purpose language (the host language) and reuses its infrastructure (e.g. concrete
syntax, type system and run-time system), which is extended with domain-specific
constructs. The DSL is therefore defined using the abstractions provided by the host
language itself. For instance, in an object-oriented language, method calls can be
used to represent keywords of the language. Languages with a non-intrusive syntax
(e.g. LISP, Smalltalk and Ruby) are well suited for use as host languages [SGM09].

According to [Fow10], an internal DSL can be typically implemented in host lan-
guages that have an intrusive syntax or static typing (e.g. Java, C#) using the
method chaining, function sequence or nested function patterns, or a combination
of them. These patterns use the expression builder pattern to build a semantic model
(i.e. an instance of the class model that represents the concepts of the DSL) and
ensure the correction of the instances of the language, acting like a parser [Fow10].
The expression builder is a class that is usually statically imported in languages such
as Java to avoid its explicit reference. Code indentation is crucial for the legibility
of the DSL using every pattern.

The method chaining pattern builds a semantic model by using a sequence of
method calls where each call acts on the result of the previous calls; it has the ad-
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vantage of not needing an explicit variable to hold the context of the part of the
semantic model that has been built so far (i.e. a context variable); however, it is
cumbersome for building hierarchical or nested structures. Listing 2.1 shows an ex-
ample of how to build an excerpt of the model shown in Figure 2.2 using method
chaining in Java: the OOModelBuilder class implements the expression builder pat-
tern, providing a method to create the root model element (ooModel); methods are
defined in the different classes to instantiate each metaclass (e.g. module, method)
and feature (e.g. name, returnType). Note that special methods such as modules and
endModules (lines 4 and 22, respectively) must be used to indicate when an object
or collection of objects has been completely built; these methods act as language
keywords or delimiters.

1 OOModel modelOne = OOModelBuilder
2 .ooModel()
3 .name(”modelOne”)
4 .modules()
5 .module()
6 .name(”moduleOne”)
7 .endModule()
8 .module()
9 .name(”moduleTwo”)

10 . classes ()
11 . class ()
12 .name(”classOne”)
13 . features ()
14 .method()
15 .name(”methodOne”)
16 .returnType(”classOne”)
17 .endMethod()
18 .endFeatures()
19 .endClass()
20 . endClasses()
21 .endModule()
22 .endModules()
23 .endOOModel();

Listing 2.1 Example of an internal DSL implemented using the method chaining
pattern

The function sequence pattern builds a model through a sequence of independent
function calls. It is more flexible than the method chaining pattern, because each
function is called in a separate statement, so non-DSL code can be put in between
statements to perform complex operations that are not supported by the DSL. How-
ever, it requires a context variable that is implicitly referenced. Listing 2.2 shows
how to build an excerpt of the model shown in Figure 2.2 using a function sequence
in Java. Note that only static methods from the OOModelBuilder class (i.e. the ex-
pression builder) are used; methods that act as keywords or delimiters (e.g. modules
and endModule at lines 3 and 21, respectively) are also used. These methods would
use a context variable held by the expression builder to keep track of the semantic
model built at a certain point.
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1 OOModel modelOne = OOModelBuilder.ooModel();
2 name(”modelOne”);
3 modules();
4 module();
5 name(”moduleOne”);
6 endModule();
7 module();
8 name(”moduleTwo”);
9 classes () ;

10 class () ;
11 name(”classOne”);
12 features () ;
13 method();
14 name(”methodOne”);
15 returnType(”classOne”);
16 endMethod();
17 endFeatures() ;
18 endClass() ;
19 endClasses() ;
20 endModule();
21 endModules();

Listing 2.2 Example of an internal DSL implemented using the function sequence
pattern

The nested function pattern builds a model through a sequence of function calls
where the result of a function is used as a parameter for another one, unlike the
function sequence pattern, where the function calls are independent. It is visually
clearer than the method chaining pattern and it does not need context variables,
but can be cumbersome to parse since the order of evaluation is reversed. Listing
2.3 shows how to build an excerpt of the model shown in Figure 2.2 using nested
functions. Note that the ending keyword-like functions such as endModule are no
longer needed and that the features of an object are no longer identified by method
names but by their position as parameters of the nested functions.

1 OOModel modelOne = OOModelBuilder
2 .ooModel(”modelOne”,
3 modules(
4 module(
5 ”moduleOne”
6 ) ,
7 module(
8 ”moduleTwo”,
9 classes (

10 class (
11 ”classOne”,
12 features (
13 method(
14 ”methodOne”,
15 ”classOne”
16 )
17 )
18 )
19 )
20 )
21 )
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22 ) ;

Listing 2.3 Example of an internal DSL implemented using the nested function
pattern

The expression builder pattern is also used in these patterns to resolve the ref-
erences between model elements, which are specified by name. For example, the
reference to the classOne object that is specified by name by the returnType refer-
ence of the methodOne object in lines 16, 15 and 15 of Listings 2.1, 2.2 and 2.3,
respectively, is resolved internally by the OOModelBuilder class.

2.6 The NoSQL movement

Two decades ago, new database applications that would require managing complex
objects (e.g. geographic information or multimedia systems) evidenced the limita-
tions of the relational model for the representation and processing of that sort of
data. Then, new kinds of database management systems (DBMS) were defined, such
as object-oriented and object-relational database systems [SM95].

More recently, database applications for domains such as searching text on the
web or processing data streams have again exposed that relational DBMSs are not
adequate for the new user requirements and hardware characteristics (distribution,
scalability, etc.). The number of applications for which the “one size fits all” ap-
proach of the commercial SQL solutions does not apply is increasing. This approach
is too general to achieve certain degrees of scalability and performance and leads to
an excessive deployment complexity from a design and architectural point of view
[Sto10].

The NoSQL [Str11] term is used to refer to different new database paradigms
which are an alternative to the predominant relational DBMSs. Web applications
such as social networks (e.g. Facebook), text searching (e.g. Google) and e-commerce
(e.g. Amazon), which manage very large and complex data, are some examples of
scenarios where different NoSQL databases have been successfully used. The main
difference between NoSQL databases and relational databases is the set of properties
they provide; while relational databases provide all the ACID (Atomicity, Consis-
tency, Isolation and Durability) properties, NoSQL databases provide a subset of
the CAP properties: Consistency (whenever a writer updates, all readers see the
updated values), Availability (the system operates continuously even when parts
of it crash) and Partition tolerance (the system copes with dynamic addition and
removal of nodes) [SF12].

The main flavours of NoSQL are the key-value stores, the document databases
and the column-oriented ones. Key-value stores have a single map/dictionary that
allows clients to put and request values per key. Key-value stores such as Dynamo
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[DHJ+07] favor high scalability over consistency and omit rich querying and ana-
lytics features. Document databases such as MongoDB [Ban11] and CouchDB [Cou]
encapsulate key-value pairs in composite structures named documents, providing
more complex and meaningful data than key-value stores without any document
schema, thus eliminating the need of schema migration efforts. Documents can form
graphs by establishing references among them and containment relationships (i.e.,
the value associated with a key is a document), so they are a good choice for repre-
senting object models; hence, the data model in a document database is composed of
several graphs represented by documents and, in some cases as MongoDB, grouped
in collections. Finally, column-oriented databases such as Bigtable [CDG+06] store
and process data by columns instead of rows in a similar way as the analytics and
business inteligence solutions.

The application of NoSQL databases to MDE provides a natural mapping between
models and their persisted counterparts: as explained above, models can be seen as
graphs, and some kinds of NoSQL databases such as the document-based ones are
well suited for representing graphs; on the other hand, the mapping from graphs
to tables and rows used by relational databases and object-relational mappings is
cumbersome, less natural and less readable. Morever, there are some features of the
NoSQL databases that may be be beneficial to the persistence of models:

1. Scalable: as explained before, many MDE applications involve large models.
Applications that involve large amounts of data representing object models
scale better in NoSQL than in relational databases [Str11][Cat10].

2. Schemaless : having no schemas means having no restrictions to co-evolve meta-
models and models. Relational repositories usually create database schemas for
each stored metamodel, making their evolution more difficult and the confor-
mance of existent models to the newer versions of their metamodels [CDO12].

3. Accessible: many NoSQL databases offer their data as JSON objects [JSO]
through APIs that can be accessed via HTTP or REST calls. This provides
additional opportunities to access models from web browsers, web services, etc.
The integration of MDE and web-based technologies could lead to the storage
of models in the Cloud [CDT12].
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Mister city
policeman sitting
pretty little
policemen in a row

This chapter presents the current state of the art in model persistence. In order to
characterize and evaluate the currently available model persistence approaches, a set
of dimensions on model persistence is defined. Then, a selection of model persistence
approaches is presented, evaluated and compared. Finally, some conclusions about
the state of the art in model persistence are drawn.

3.1 Dimensions on model persistence

In order to provide the operations defined in Section 2.4, several design choices are
involved in the creation of a model persistence solution, which can be grouped into
dimensions. In this section we identify and define these dimensions, which will also
be used to describe the selected set of persistence solutions in Section 3.2. We have
identified these seven dimensions on model persistence:

1. The Storage medium dimension specifies the features that describe the
medium that actually holds the serialized models.

2. The Architecture dimension describes how a persistence solution is imple-
mented at a high abstraction level, that is, in terms of components and their
relationships.

3. The Access dimension defines the features that characterize the implementa-
tion of the four basic operations of model persistence related to the manipu-
lation of models (see Section 2.4): load, store, update and delete.
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4. The Query dimension specifies the features that describe the query operation
of model persistence (see Section 2.4).

5. The Transparency dimension is concerned about the amount of persistence-
specific information that must be considered by a client in order to persist a
model and how the solution respects the original semantics of the models.

6. The Version control dimension defines the features that are concerned about
model versioning.

7. The Client interface dimension specifies the features of the communication
between a client (human or application) and the persistence solution.

Figure 3.1 The dimensions on model persistence

These dimensions are shown in Figure 3.1 as a feature diagram, i.e. a visual repre-
sentation of a feature model, which characterizes products (in this case, persistence
solutions) in terms of the features that they provide [BSRC10]. A feature can be
exploded into subfeatures; the relationship between a feature and a subfeature can
be mandatory, meaning that the subfeature is required to achieve the feature, or
optional. Subfeatures can be alternative or exclusive, meaning that at least one or
only one of the subfeatures must be selected, respectively. The definition of these di-
mensions is the result of studying a variety of persistence approaches, reviewing the
existing literature and, most of all, designing and implementing our own solutions
[EPGM10]. Each dimension is explained in detail in the following subsections.

3.1.1 Storage medium

The Storage medium is the dimension that describes how a model is actually serial-
ized. This dimension is very relevant, since it has a deep influence on the capabilities
provided by a persistence solution and also on its scalability and architecture. Figure
3.2 shows the features of this dimension. A storage medium is characterized by its
Physical model and its Identification schema.

3.1.1.1 Physical model

The physical model specifies the technology that implements the persistent storage
of a solution; it can be a file set or a database.
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Figure 3.2 The Storage medium dimension

A file set is a collection of files that represent a model. When a file set is used for
model serialization, the persistence solution is usually file-based ; however, a repos-
itory may also use a file set for its implementation. The main difference between
a file set and a collection of files used by a database to serialize its data is that
a database file usually groups objects based on efficiency criteria, while a file set
groups semantically related objects (e.g. from the same model) following criteria
such as proximity. A file set is defined by two features: encoding and location.

The encoding of a file may be binary, textual or use a markup language such as
XML. Binary files [JS09] are usually smaller and human clients cannot read them
but applications such as transformations can; on the other hand, a textual file [Emf]
may be easily read by a human client but an application would require a grammar in
order to recognize it; finally, a markup language [XMI11] is an intermediate solution
since it is human-readable (although it may be too verbose) and applications rely
on standard parsers to recognize it.

The physical location of a file set can be local or remote. A local file is stored
in the same machine that runs the client application or that is used by the human
client, so its access is fast; however, it can only be accessed by clients at the same
machine. A remote file is stored in a machine that is not the one used by the clients
(e.g. file server), so they must communicate with it through a network in order to
access the model. This solution is usually slower but allows for distributed access,
version control and other capabilities related to the use of remote servers. Both local
and remote files can be mixed in a single file set.

A database is a storage medium that serializes data as remote files or in the
memory of a server. Databases are managed by dedicated server applications that
perform services such as access control, transaction support and consistency check.
We have considered the three most extended database paradigms: relational, object-
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oriented and NoSQL, as seen in Figure 3.2.
A relational database stores data as rows (i.e. tuples) inside tables (i.e. tuple

sets). Since a relational database is not adequate for representing graphs (e.g. object
models), an object-relational mapping (ORM) is normally used [SM95]. An ORM is
a tool that provides the client an objectual representation of a relational database,
simplyfing the management of CRUD (Create, Read, Update, Delete) operations and
transactions. A transaction is a set of operations and relational databases manage
them ensuring the ACID properties: Atomicity (a transaction must be executed
completely or not at all), Consistency (the result of a transaction is a valid state of
the database), Isolation (transactions do not interfere among them) and Durability
(a commited transaction is permanent). A persistence solution that is based on a
relational database via an ORM may benefit itself from these properties. However,
its representation of models is rather unnatural and may lead to poor performance
[SZFK12]: a metamodel is usually represented as a database schema with tables
representing the different metaclasses and model elements are represented as tuples
inside those tables; relationships are represented as foreing keys. This representation
is very rigid since a change in a metamodel cannot be easily propagated to a change
in a database schema.

An object-oriented database stores data as objects that have references among
them. The whole database conforms to an object-oriented data model where ob-
jects are instances of classes that can be related through aggregation and inheri-
tance hierarchies. Object-oriented databases are usually built as persistent object-
oriented programming languages in object-oriented programming languages [Cat91].
An object-oriented database is well suited for representing models as both them and
the object-oriented data model can be represented as object graphs. They appeared
in the early nineties as a way to manage complex data that could not be repre-
sented efficiently in relational databases (e.g. software artefacts, electronic devices,
documents); however, their querying capabilities are limited and they show a low
performance on transaction processing [SM95].

The NoSQL databases were already introduced in Section 2.6. As a reminder,
note that NoSQL databases have some features that may be beneficial to model
persistence: they are scalable, schemaless and nearly all of them support JSON for
management and object retrieval, providing means to put the models in the Cloud
[CDT12].

3.1.1.2 Identification schema

The identification schema specifies how a model element is uniquely identified by a
persistence solution. A model element may be identified following a tightly coupled
identification schema or a loosely coupled one.

A tightly coupled identification schema is one where the identity of a model element
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depends on other model elements or on the physical implementation of the storage
medium. This is a disadvantage, since moving an element from its current position to
a new one would change its identity and all the references that point to it would have
to be updated. An example of this schema is a URI composed of the path elements
from the root element of the model to the identified one (e.g. an EMF URI) or a
physical location (e.g. disk or file system address). A tighly coupled database schema
is one where the references between model elements are restricted by constraints that
do not allow moving an element (e.g. foreign keys in relational databases prevent
model elements from moving between tables).

A loosely coupled identification schema is one where the representation of each
model element is independent from the rest and from the physical implementation
of the storage medium. This is usually achieved through unique identifiers (e.g.
UUIDs) and mappings between identifiers and actual locations, such as file registers
(for file sets) or indexes (for databases). Finally, a mix of loose and tight coupling
is possible: a file may contain both URIs and UUIDs [XMI11] and a database may
combine UUIDs and foreign keys [EPGM10].

3.1.2 Architecture

The Architecture dimension describes the software components that form a per-
sistence solution and their relationships. This dimension has a big impact on the
scalability of the solution, as explained below. An architecture for a model persis-
tence solution is usually either a Client-only one or a Client-server one, as shown
in Figure 3.3. The choice between the different architectures is usually a trade-off
between scalability (for both client and server), fault tolerance and concurrency.

Figure 3.3 The Architecture dimension
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3.1.2.1 Client-only

A client-only architecture is composed of a driver that is used by the client (user or
client application) to interact with a passive storage medium such as a file set. All
the logic involved in the serialization of a model and the management of the storage
medium is dealt by the driver. The medium may be local or remote; for the latter,
a remote server may be managing the medium, but it is not part of the architecture
since it ignores its role in the persistence solution. This is the most client-heavy
architecture and may lead to memory issues (e.g. memory overload when loading
large models).

3.1.2.2 Client-server

A client-server architecture is composed of a driver and a remote server (although
the server may also be local). Its main feature is the server coupling, which indicates
the dependency between the client and the server. If the architecture supports only
online coupling, then the client must always be connected to the server in order to
manipulate persisted models, even if it has already loaded them; on the other hand,
the offline coupling provides the client means to unbind the loaded objects from
the server. We have identified three different client-server architectures for model
persistence, depending on the number of components involved, their functionality
and the awareness that the server has about the semantics of the stored data: fat
client, thin client and n-layer.

A fat client is a client-server architecture where the server stores data in a black-
box manner, that is, without knowing their actual semantics. In a persistence solu-
tion designed in this way, the client uses a driver that encodes a model in the format
that is supported by the server (e.g. tuples, documents, etc.) and then sends it. There
is no server support for communication or synchronization between clients, so the
consistency of the persisted models depends on the drivers, hence the degree of con-
currency achieved is low. On the other hand, there is little network communication,
which enchances performance.

A thin client is a client-server architecture where the server stores data in a white-
box manner, that is, understanding their semantics and hence being able to process
them. In a persistence solution designed in this way, the driver is used by the client
simply to send model elements to the server, which encodes and stores them. The
server may support communication and synchronization between clients, providing
more concurrency than the fat client, but at the cost of more network communication
(e.g. changes in objects must be reported to the server).

An n-layer architecture is a thin client where the server role is divided into several
logical servers, which can be in the same machine or in different ones. The most
common n-layer architecture is the one that hosts the application server and the
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database engine in different machines. This allows for multiple servers, promoting
scalability and fault tolerance; however, more network communication is needed.

3.1.3 Access

The Access dimension covers four of the five basic operations related to model per-
sistence defined in Section 2.4: store, load, update and delete. It also covers how
the local copy is stored in the machine and the support for transactions. Figure 3.4
shows the features of this dimension.

Figure 3.4 The Access dimension

3.1.3.1 Local copy

When a client retrieves a model from a persistence solution, a local copy is created in
the client machine. This local copy is intended to save communications between the
persistence solution and the client application. There are two kinds of local copies:
file based and in-memory.

A file-based local copy creates temporary or permanent files in the client’s file
system; these files usually represent entire models or large model partitions rather
than individual objects. This is how file-based client-server solutions work and has
the advantage of avoiding remote communications; some repositories work in this
way too. Its main disadvantages are its absence of synchronization for changes in
the original model and the efficiency issues that may be caused by big models being
communicated and serialized as files in the client machine.
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An in-memory local copy is a set of objects in the client’s memory. It is more effi-
cient than the file-based one, which would anyway require a memory representation
when loaded, and allows for change synchronization with the persistence solution.

3.1.3.2 Transaction support

A transaction, as introduced in Section 3.1.1.1, is a set of operations that must be all
successfully executed or else discarded. A persistence solution provides transaction
support when the client can, at least, explicitly define the beginning and end of a
transaction. Transaction support provides stability by preventing inconsistencies on
the stored models.

3.1.3.3 Store

A store operation transfers a model from the client’s memory to the persistent
storage. Depending on whether the transfer is done in one or several steps, there
can be two scenarios: full store and incremental store.

The full store scenario is the simplest and is usually the default one. In this
scenario, a model is made persistent in a single operation: a client holds the whole
model in its memory and then transfers it to the persistence solution; however,
this transfer may be done in several steps by the underlying persistence driver to
minimize the communication latency, but this is transparent to the client. The main
advantages of the full store are its simplicity and its savings in communication
latency, since few transfers are done to the persistence solution. On the other hand,
its main disadvantage is its memory usage: the biggest model that can be made
persistent is the one that fits in the client’s memory; moreover, since the storing
process usually requires more memory than the actual model for persistence-specific
data, even a model that can be kept in memory may not be persisted.

The incremental store scenario deals with the main disadvantage of the full store
scenario. Suppose a model that is too big to be kept in the client’s memory or to be
efficiently managed (e.g. a model representing the source code of a software system,
comprising millions of elements); this model could have been generated, for instance,
by the client either manually or automatically (e.g. by means of a model transforma-
tion) or by a remote application that transfers it to the client in a streaming fashion.
Storing such a model would be impossible in a single operation (i.e. full store), so the
client may partition it in several pieces and store them separately in different store
operations. This behaviour is called incremental store: each store operation adds a
new model partition to the ones already stored; however, this is not considered a
series of update operations since the model is not committed until the last partition
is stored, while updates always work between committed states.
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3.1.3.4 Load

A load operation transfers a model from the persistent storage to the client’s memory.
Depending on the number of steps that are required to load a model, there can be
two scenarios: full load and load on demand.

The full load scenario simply fetches all the objects of a requested model from a
persistent storage and transfers them to the client’s memory. Again, this transfer may
be done by the underlying persistence driver in several steps in order to optimize the
communication between the persistence solution and the client. The main advantages
of the full load are its simplicity and its smaller communication latency. Its main
disadvantage is that the biggest model that can be loaded from the persistence
repository is at most the biggest one that can be kept in the client’s memory.

The load on demand scenario deals with the disadvantage of the full load scenario
by defining a way to load and keep in memory only the objects that the client
needs in a certain moment. For instance, suppose a model transformation that must
traverse only a few elements of a model. In a full load scenario, the whole model
would be transferred to the client and then traversed until the elements of interest
are located; if the model is too big for the client’s memory, it would either overload
it or not being loaded at all. However, in a load on demand scenario, the client would
request only the elements to be traversed, preventing overloads. Depending on its
granularity, there can be two load on demand scenarios: single and partial.

A single load on demand scenario is the transfer of a single model element from
the persistent storage to the client’s memory. This is the opposite to the full load and
uses the least memory possible. However, if more than one element is actually needed,
multiple transfers from the persistence solution to the client may be inneficient, as
communication overheads could be avoided by doing just one transfer.

A partial load on demand scenario transfers a cluster of model elements (i.e. a
model partition) in a single step. This is an intermediate scenario between the full
load and the single load on demand: it uses less memory from the client than the
former and the communication between the client and the persistent storage requires
less transfers than the latter, hence being more efficient.

Depending on the action that triggers a load on demand scenario, both single
and partial load on demand may work implicitly or explicitly. An implicit load
on demand is triggered when the client requests one or more model elements that
have not been loaded, but without knowing so: the persistence driver transparently
manages the load on demand of the requested elements. An explicit load on demand
is triggered when a client performs a query to the persistence solution. When a
partial load on demand is triggered implicitly, a prefetching algorithm is executed
in order to calculate which elements must be fetched from the persistence solution.
Usually, the prefetching algorithm fetches elements that are either physically (i.e.
related in the model) or logically (i.e. consecutively requested by the client) close to
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the ones that have been requested, in order to make them available when they are
needed, thus working in a cache-like fashion and saving communication overhead.
An implicit triggering is usually preferred to make the access to the persistence
solution simpler and more transparent.

3.1.3.5 Update

An update operation transfers the modifications done to previously loaded objects
from the client’s memory to the persistent storage. An update operation goes from
one consistent state (i.e. a state where all the constraints of the storage medium
are satisfied) of the persistence solution to another. Note that this does not mean
that the state of the persisted model conforms to its metamodel; if this was to be
enforced, the flexibility and usability of the persistence solution would be reduced,
since partial models [SBP07] could not be stored. The update of a model may be a
expensive operation because it implies the modification of the metadata that support
the representation of a model in the storage medium. Depending on the granularity
of the update, it can be full or partial.

A full update is one where a whole model is sent to the persistent storage in order
to update some parts of it. The persistence solution may internally update only the
modified elements or else delete the whole model and fully store it again. This is not
preferred since it requires the transfer of entire models.

A partial update is one where only the modified elements are sent to the persistent
storage in order to update them. A persistence driver may implement a full update
by doing a partial update of the modified elements transparently to the client. This
is preferred because a client can request a full update and a partial update with
different operations that are performed in the same efficient way.

3.1.3.6 Delete

A delete operation removes one or more elements from a persisted model. If some
elements are deleted from a model, but not all, the operation is usually performed as
an update. If the whole model is deleted, a dedicated operation should be provided
by the persistence solution. Depending on the implementation of such operation,
the storage medium and the internal representation of models in that medium, the
deletion may be coarse-grained or fine-grained.

A coarse-grained deletion removes a model as a top-level entity from the persistent
storage (e.g. a table or schema drop in a relational database or as a file removal in
a file system). Its main advantages are its simplicity and atomicity.

A fine-grained deletion removes a model by removing all its elements from the
persistent storage; if the solution is internally designed in such a way that the rep-
resentation of different models is tangled, a fine-grained delete operation is needed

37



Model Persistence

to guarantee the consistency of the storage medium. This behavior is not preferred
since it is much slower than the coarse-grained deletion and may also lead to incon-
sistency issues if the operation is interrupted.

3.1.4 Query

The Query dimension covers the basic model persistence operation of query defined
in Section 2.4, which searches the elements from a model that satisfy a given condi-
tion. Those elements may have already been transferred (i.e. loaded) to the client’s
memory; otherwise, they are loaded from the persistent storage. It is worth noting
that a query must be executed both against the in-memory model and the persisted
one because there can be elements in the former which have been modified but not
updated int the latter, hence the query must consider inconsistent data. Figure 3.5
shows the features of this dimension. A persistence solution must provide a standard
or dedicated query language in order to support querying.

Figure 3.5 The Query dimension

A standard query language is a language that is well-known and formally defined
by an organization. Because of this, its usage is usually supported by third-party
libraries or modules that are accessed by the persistence solutions. The most common
for persistence solutions are SQL (Structured Query Language) and OCL (Object
Constraint Language). SQL is the standard query language for relational databases.
It is widely spread and its declarative nature makes it easy to use for relational data
(i.e. tables and rows); however, models are graphs, and mapping them to relational
data is not trivial, making it difficult to use SQL for model querying. On the other
hand, OCL [OCL06a][WK03] is a declarative language defined for completing UML
models, whose capabilities for navigating models are very appropriate for querying
models; however, it is not supported by almost any storage medium, so a translation
step is usually needed, reducing its performance.
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A dedicated language is an ad-hoc language defined for the persistence solution;
it may be based on a formalism or not. A dedicated language has the advantage
of being designed specifically for the architecture of the persistence solution, so it
is usually more efficient and usable than a standard language. The actual imple-
mentation of the language may be an application programming interface (API), an
internal DSL or an external DSL [Fow10]. An Application Programming Interface
(API ) is a set of software artefacts (e.g. methods, data structures, etc.) that pro-
vide some functionality to a client application such as querying against a persistence
solution. The main advantage of a query API is that it can be combined with the
client application’s code for simplifying queries that involve loops and alternatives;
however, complex queries that test multiple conditions over many attributes and
relationships between elements may become too verbose and hence not readable or
maintenable. An external DSL is a domain-specific language supported by a tooling
(e.g. parsers and editors) that is independent from the client application’s language.
An external DSL should be conceived to simplify complex queries, although the
definition of loops and alternatives may be cumbersome, depending on the design of
its constructs. An intermediate solution is an internal DSL (or fluent API) [Fow10],
which is a programming interface whose syntax resembles a DSL; it is more readable
than a regular API and it can also be combined with regular constructs of the host
language for handling loops and alternatives; greater detail on internal DSLs is given
in Section 2.5.

3.1.5 Transparency

The Transparency dimension defines what persistence-specific code or actions must
be included in the client code or performed on the models, respectively, in order to
store and access models in and from a persistence solution. It is also concerned about
the degree in which the persistence solution respects the semantics of the metamod-
eling language and the persisted models. This dimension is relevant because it gives
a glimpse on the flexibility of a solution; the ideal solution would not imply any
persistence-specific code or operations, using only the persistence interface defined
by the modeling framework. We have identified three main features: integration,
metamodel management and semantic transparency, as seen in Figure 3.6.

3.1.5.1 Integration

The integration between a persistence solution and a modeling framework is done
through an API. Its level of transparency depends on which API is used and it can
be transparent, opaque or customized.

A persistence solution shows transparent integration with a modeling framework
when its driver implements the persistence interface of the framework, that is, a
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Figure 3.6 The Transparency dimension

client code does not require any persistence-specific statement to communicate with
the persistence support. This is very convenient, since a user does not need to learn
a new persistence interface; however, it hinders the flexibility of the persistence
solution because any operation that is not supported by the modeling framework’s
persistence interface could not be requested to the solution, even if it provides it.

On the other hand, an opaque integration uses an API specifically developed for
the persistence solution. It may support any kind of operation that is provided by
the solution, but any client application that interacts with it must combine this API
with the one of the modeling framework, resulting in a code that is not portable
between different persistence solutions.

Finally, a customized integration schema is transparent for the client application
since it implements the persistence interface of the modeling framework, but also
adds methods to support the special capabilities provided by the persitence solution.
Using a customized integration, a client application may work with the persistence
solution without any persistence-specific statements in its souce code and it may also
use capabilities that are not supported by the framework. It is worth noting that the
persistence solution should use any extension mechanism provided by the modeling
framework in order to achieve compatibility with other persistence solutions.

3.1.5.2 Metamodel management

The metamodel management feature describes how a metamodel is represented in
a persistence solution, its availability to the client and the need of registering it in
the solution. This feature is optional because a persistence solution may use a local
copy of a metamodel instead of storing it, using the identifier of the metamodel (e.g.
an URI) in the storage medium.

The representation of a metamodel in a persistence solution can be implicit or
explicit. An implicit representation is one where the metamodel structure is obscured
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in the persistence solution, that is, it is not represented as a regular artefact of
the storage medium. For instance, when a metamodel is represented as a database
schema instead of as a set of rows stored in one or more tables. Although an implicit
representation is not inherently bad, it is usually bound to a low level of availability
(see below) and the management of metamodels by the storage medium is hindered.
Its main advantage is that the metamodel may be accessed by the user quickier
than a regular model; for instance, it is faster to access a metamodel represented
as a compressed file inside a database than to rebuild it from tables and rows. An
explicit metamodel representation stores the metamodels as regular artefacts of the
storage medium, so they can be manipulated. This is desirable because it is more
flexible, as explained below.

The availability of a metamodel represents the operations that a client can perform
over a metamodel stored in a persistence solution and it can be none, read-only and
read & write. The availability is none when a metamodel is totally transparent
to the client, i.e. it cannot access it in any way. This is a drawback because it
makes the solution less flexible; for instance, a change in a metamodel would require
rebuilding its representation, and models would need to be migrated to be consistent
with the new metamodel. As commented above, an implicit representation leads
to a low availability, since it is transparent to the client as the metamodel is not
represented as a regular artefact of the storage medium. Read-only and read & write
availabilities allow clients to load and update metamodels, respectively. The most
desirable availability is the latter because it allows the client to modify metamodels,
providing more flexibility.

Finally, a persistence solution may require the manual registration of metamodels
in order to use them. This is usually imposed by solutions that use implicit repre-
sentation and it is a negative feature since it makes the client aware of the actual
persistence solution being used.

3.1.5.3 Semantic transparency

The degree of persistence-related metadata added to metamodels and models deter-
mines the level of semantic transparency provided by a persistence solution, which
may be total, partial or intrusive.

Total semantic transparency does not modify models or metamodels and handles
persistence metadata in separated artefacts. This prevents issues caused by conflicts
between models and persistence metadata (e.g. name conflicts in features) and makes
the client unaware of the specific persistence solution that is accessed.

Partial semantic transparency is achieved when models or metamodels are mod-
ified in order to store persistence metadata but this modification is transparent to
the client. For instance, EMF EAnnotations are usually transparent to client applica-
tions such as model transformations. Partial semantic transparency is less desirable
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than total transparency but is better than intrusive transparency.
The lowest semantic transparency is the intrusive one, which is caused by severe

modifications on models and metamodels in order to store persistence metadata;
such modifications include changes in attribute values, additions of new metaclasses,
etc. Not only the semantics of the models are modified, but also the changes may
lead to validation issues (e.g. a new metaclass has the same name as an existing
one) and other problems. This is obviously the least desirable transparency.

3.1.6 Version control

The Version control dimension exposes the features of a version control system
for models and metamodels. The development of a software artefact usually goes
through different stages where different developers introduce changes on the arte-
fact; those changes need to be commited and merged (combinated) and may conflict
with each other. A version is a software artefact that has changed, and a revision is
a version that has been validated and commited. A Version Control System (VCS)
[ASW09] is a tool that manages the versioning of software artefacts, i.e. the vali-
dation, commiting, merging and conflict resolution of versions. The features of this
dimension are: collaboration schema, VCS architecture, merge, branching and model
comparison (see Figure 3.7).

Figure 3.7 The Version control dimension

3.1.6.1 Collaboration schema

Different developers may share models under distributed development using either
a pesimistic or optimistic collaboration schema.

A pesimistic collaboration schema provides mutual exclusion by following a lock-
modify-unlock paradigm, i.e. only one user may modify a model or model element
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(which is locked by that user) at a time while the others wait. This is a coarse-grained
solution that severely perjudices concurrency, although it is safest one.

An optimistic collaboration schema provides a totally distributed solution since
it allows users to keep a copy of a model (a local copy), modify it and store it back
in the persistence solution, whose VCS uses a comparison algorithm to determine
changes and conflicts. Such a schema may support change notification, which in-
volves notifying clients whenever a change is made on a shared element. This is
useful for collaborative design and the degree of relevance of remote changes may
be customizable from just notification to local copy invalidation.

3.1.6.2 VCS Architecture

The architecture of a VCS describes not only its implementation in terms of distri-
bution but also the way clients interact with the version control. The architecture of
the version control system may differ from the one of the persistence solution, and
it can be centralized or distributed.

A centralized version control implements a client-server model with a master
repository that is accessed by clients [CSFP04]. The master repository handles model
comparison, conflict detection, and versioning history.

A distributed VCS uses local servers deployed on each client machine, so the client
does not need a network connection anymore to commit versions, access versioning
history, etc. [Cha09]. Servers may connect among them and share all changes per-
formed on the persisted models to build a unique global revision. This is far more
complex than a centralized VCS, but more flexible.

3.1.6.3 Merge

A merge is the combination and resolution of conflicting changes performed on
the same model by different clients. Although merging is an operation provided by
optimistic schemas, pesimistic schemas may also provide it for combining branches.
There are three kinds of merge: raw, two-way and three-way.

A raw merge simply performs all the changes in a certain order (e.g. temporal
order) on the original persisted model. This is the simplest merge but it does not
resolve conflicts, so it may lead to undesired resolutions.

A two-way merge performs a model comparison among the different versions and
detects the conflicts among them, but since it does not consider the original version
of the model, it cannot detect changes like creation or deletion of elements.

A three-way merge performs model comparison among the different versions and
the original version of the model, detecting all kinds of changes. It is the de-facto
standard for current VCSs such as Subversion [CSFP04].
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3.1.6.4 Branching

A branch consists of a set of revisions that are conceptually or semantically related
among them and represent a separated development line from the rest of revisions.
Branches are useful to provide different versions of the same model for different devel-
opment scenarios such as maintenance, design, production, etc. Branching support
in VCSs may be done either implicitly or explicitly.

Implicit branching usually replicates the original (root) model and stores each
revision (branch) in a different location. A branch is like any other model, but the
VCS engine is responsible of recognizing its branch nature.

Explicit branching stores branch-related metadata natively in the storage medium.
This may be done through mechanisms such as labels, tags or separated folders.
The granularity of such metadata may vary: for instance, a single representation of
a model may contain elements that belong to different branches.

3.1.6.5 Model comparison

Model comparison is a key feature for version control because it provides the infor-
mation for identifying differences and conflicts among models. A model comparison
algorithm determines whether two models are equal or not, and the deltas (i.e. dif-
ferences) between them. There are two strategies for model comparison: state-based
and change-based. The main difference between them is how they recognize the
correspondences between elements.

State-based comparison algorithms use heuristic-driven matching algorithms to
recognize which elements in the new revisions correspond to each element in the
original one, and then calculate changes between them [BP08]. They are usually
slow since they traverse the whole models and their accuracy is not perfect; however,
they require few or none additional information on the models.

Change-based comparison algorithms keep trace of loaded elements in order to
record their changes in the different versions [BHH+12]. Once these elements are
stored back, the comparison algorithm inspects only their changes, instead of the
whole models. These algorithms are preferred because they are faster than the state-
based ones and more reliable; on the other hand, they require additional information
on model elements (e.g. change descriptors) and the unique identification of each
model element is a must in order to compare different versions.

3.1.7 Client interface

The Client interface dimension describes the interaction between a client and a
persistence solution. There are two kinds of interfaces: User Interfaces (UIs), which
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are accessed by human users, and Application Programming Interfaces (APIs), which
are acessed by applications.

Figure 3.8 The Client interface dimension

3.1.7.1 UI

Two kinds of UIs can be used by human users to access the persistence services:
textual (TUI) and graphical (GUI). Moreover, a user interface may provide different
tools for managing the persistence solution.

A Textual User Interface (TUI ) is a console-based program where a human user
types commands in order to manage the persistence solution. A TUI is the simplest
kind of user interface and the most limited, since it cannot display complex visualiza-
tions, so its functionality usually consists of simple operations such as downloading
models to local files, deleting them or managing user permissions.

A Graphical User Interface (GUI ) is a part of a window-based application which
shows information on the state of the persistence solution (e.g. lists of stored models
and their versions), visualizes persisted models and offers support for operations (e.g.
wizards for queries). Being a GUI more complex than a TUI, it normally supports
the tools for repository management described below.

The user interface of a persistence solution may provide a set of tools in order
to facilitate the management of the persisted models and the solution itself. Such
tools may include editors, browsers and version managers. A model editor provides
manipulation of persisted models, usually in a graphical interface (e.g. a tree or a
graph) with property sheets and other capabilities such as querying. A persistence
browser shows all the persisted models to the user in order to facilitate their access
(rather than having to remember their identifiers) and query for whole models. A
version manager allows users to access any revision of a model, create and manip-
ulate branches, merge them and other VCS functions.
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3.1.7.2 API

An Application Programming Interface (API) is defined to give access to the features
provided by a persistence solution via method invocation. APIs provide integration
with artefacts such as model transformations. Depending on its design, an API may
be a framework, application and/or a service one.

A framework API is designed to be integrated with a modeling framework such
as EMF or Epsilon, normally at a very low level of abstraction, which is beneficial
for application integration (e.g. with model transformations) as commented in 3.1.5.
Such an API usually supports fine-grained access such as load on demand.

An application API is designed to be integrated with an application such as an
Integrated Development Environment (IDE) e.g. Eclipse 1 or Visual Studio 2. Per-
sistence solutions designed in this way usually offer a higher level of abstraction,
delegating model access to the methods of the hosting application.

A service API is designed to be exposed as a remotely available service such
as a web service or a CORBA server [COR12]. Its level of abstraction may vary,
but it is usually restricted to downloading local copies of models and manipulating
revisions. However, using low-level remote services such as CORBA may provide a
more detailed access to the persisted artefacts.

3.2 Persistence solutions

We have selected six persistence solutions that are representative either for their
popularity or for their capabilities, including XMI, ModelBus, EMFStore, CDO,
MongoEMF and OOMEGA. We have considered XMI because it is the default one
for frameworks such as EMF; ModelBus and EMFStore have been included because
of their rich user interface and integration with Eclipse; CDO is the most widely
used model repository and also an Eclipse project; MongoEMF takes a different
approach to model persistence by using a NoSQL database and finally OOMEGA
has been included because of its integrated all-in-one design.

Each solution is evaluated in three steps: (i) the solution is presented; (ii) its
main features are explained: architecture, storage medium, model and metamodel
representations, client access (including querying capabilities) and version control
and finally (iii) a brief description of the solution in terms of the seven dimensions
on model persistence is given.

1The Eclipse Platform: http://www.eclipse.org
2Microsoft Visual Studio: http://www.microsoft.com/visualstudio
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3.2.1 XMI

The XML Metadata Interchange (XMI) [XMI11] file format is an OMG standard
for exchanging metadata information via XML. XMI is the standard way to serialize
models and metamodels in MOF and EMF. In this chapter we analyze XMI as used
by the EMF modeling framework.

The architecture of an XMI-based solution involves an XML parser and a set of one
or more files that represent models and metamodels. A model is represented as one
or more files that reference each other through URIs. Metamodels are represented
as models, but in separate files. A client accesses models by fully parsing the XMI
file(s). Although there is no support for querying or version control, EMF provides
tools for such operations (e.g. EMFQuery [EMF12] for querying and EMFCompare
[BP08] for comparison). The seven dimensions on model persistence are covered by
XMI as follows:

1. Storage medium: consists of a local or remote file set with markup encoding
using either a loosely or tightly coupled identification schema.

2. Architecture: a local or remote client-only.

3. Access: a file-based local copy without transaction support can be accessed
for full store, full load, full update and coarse-grained delete, since the SAX
parser that is normally used does not support load on demand.

4. Query: no query support is provided.

5. Transparency: being XMI the default persistence solution for EMF and
MOF, it provides transparent integration with explicit, read & write meta-
model representation without any registration and total semantic trans-
parency.

6. Version control: no version control is provided.

7. Client interface: no user interface is provided, being a framework API the
only way to communicate with the persistence solution.

3.2.2 ModelBus

ModelBus 3 [HRW09] is a framework that provides integration of MDE tools for
EMF inside the ModelPlex 4 project; it is implemented as an Eclipse application.
It is based on the idea of modeling service as an operation having models as inputs
and outputs. Different modeling services may be connected through CORBA and
web service-based middleware.

The architecture of a ModelBus repository is shown in Figure 3.9. It consists of a
ModelBus server, which is a standalone Eclipse application, and a Subversion server,

3ModelBus Model-Driven Integration Framework: http://www.modelbus.org
4ModelPlex Modeling Solution for Complex Software Systems: http://www.modelplex.org
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Figure 3.9 ModelBus architecture

both shown at the right side. The ModelBus client (left side) uses an Eclipse instance
that holds local copies of the accessed models, which are managed by a repository
helper that communicates with the server via a DOSGI session [OSG03]. A model
is represented as a set of one or more XMI files held by a Subversion repository, i.e.
a folder in the Subversion server; metamodels are also represented as XMI files. A
client accesses models through web services that provide methods to fully download
them as local copies and to search the repository; once a model is downloaded, the
ModelBus client builds a user interface for its manipulation. The integration of a
Subversion server provides version control capabilities; for each model, its repository
contains subfolders that hold revision properties, binary-formatted deltas and arte-
fact locks. Model comparison is provided by EMFCompare. The seven dimensions
on model persistence are covered by ModelBus as follows:

1. Storage medium: consists of a remote file set with markup encoding (XMI
files) using either a loosely or tightly coupled identification schema. Versioning
information uses binary encoding.

2. Architecture: a thin client client-server architecture with offline server cou-
pling is provided thanks to the use of local copies downloaded from Subversion.

3. Access: a file-based local copy can be accessed for full store, full load, full up-
date and coarse-grained delete, since the local copy is an XMI file. Transaction
support is provided by Subversion.

4. Query: no query support is provided by the repository.

5. Transparency: ModelBus shows opaque integration because of the manual
download of models. Metamodels are managed in the same way as XMI (see
Section 3.2.1) and partial semantic transparency is achieved due to Subversion.
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6. Version control: ModelBus’ embedded Subversion engine provides optimistic
collaboration schema in a centralized VCS architecture supporting implicit
branching and 3-way merge with state-based comparison.

7. Client interface: ModelBus relies on the Subversion Eclipse plugin to show
a rich GUI with all kinds of tools. Its API is both an application and a service
one, because it depends on Eclipse and support web services.

3.2.3 EMFStore

EMFStore 5 [KH10] is an EMF-based repository designed for usability. It is part of
the UNICASE [BCHK08] client, an Eclipse application for model integration that
supports traceability, bug tracking and project managing, among others. Validation,
migration, edition and navigation of models are provided by a set of tools called the
EMF Client Platform, which is bundled with EMFStore.

Figure 3.10 EMFStore architecture

The architecture of an EMFStore repository is shown in Figure 3.10; it is similar
to the one of a Subversion repository. The EMFStore server and the clients run into
separate Eclipse instances. The local copy of a model is represented in the client
side as a project, i.e. a set of folders, containing one or more XMI files that hold
model partitions; model elements are identified by identifiers that are locally unique
for that model. A user session manages project (model) repository metadata. In
the server side, a model is represented resembling a Subversion project (see Section
3.2.2). A metamodel is represented as an Eclipse plugin that has to be manually

5EMFStore, a model repository for EMF: http://eclipse.org/emfstore/
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registered in the EMFStore server; such plugin contains EMF code generated from
the metamodel, which has to be modified to add a special metaclass at the top of its
hierarchy and to remove non-supported features. A client accesses models through an
API or a GUI for browsing projects (models) and fully downloads them as XMI files
with UNICASE metadata for visualization and version control. EMFStore provides
version control capabilities similar to the ones of Subversion, but without branching.
Each project stores a stable model and revision deltas (i.e. change descriptions) that
are used to build a certain revision from the stable model and that can also be merged
to rebuild the model at a customizable revision-count pace.

1. Storage medium: consists of a remote file set with markup encoding (XMI
files) using either a loosely or tightly coupled identification schema.

2. Architecture: EMFStore is implemented as a thin client client-server archi-
tecture using Eclipse. Local copies provide offline server coupling.

3. Access: a file-based local copy can be accessed for full store, full load, full
update and coarse-grained delete, since the the local copy is an XMI file.
Transaction support is provided by the repository.

4. Query: no query support is provided.

5. Transparency: EMFStore shows opaque integration and intrusive semantic
transparency because of the modifications it imposes on metamodels, which
require manual registration and are represented in an implicit way.

6. Version control: like Subversion, EMFStore provides optimistic collabora-
tion schema in a centralized VCS architecture with 3-way merge, but using a
change-based comparison. Branching is not supported.

7. Client interface: EMFStore provides a GUI with all kinds of Subversion-
inspired tools, but simpler and less functional. Its API is an application one
that depends on Eclipse and UNICASE.

3.2.4 CDO

Connected Data Objects (CDO) [CDO12] is an EMF model repository designed for
collaborative distributed development of models. CDO is the most widely used model
repository mostly because of its Eclipse project status and its inclusion in the Eclipse
Modeling bundle; however, it has been shown that it lacks performance for large
models [SZFK12]. It provides features like replication and conflict resolution with a
rich user interface for repository management and model edition. It is implemented
as both an Eclipse plugin and a standalone application.

The architecture of CDO is shown in Figure 3.11. It consists of a client, a database
and a server containing several managers for tasks such as session management,
querying, transaction management and version control; these managers use a set of
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Figure 3.11 CDO Architecture

plugins to communicate with one or more databases. The client side of CDO pro-
vides a GUI for model edition and simple repository management. On the server
side, different database paradigms (relational, NoSQL and object-oriented) are sup-
ported, although the database architecture is based on an object-relational mapping
(ORM) designed for relational databases, which is emulated in the rest, hence not
taking advantage of the particular benefits of each one. A model is represented in
CDO as a set of rows in the database schema that represents its metamodel; such
a schema is usually composed of a table for each concrete metaclass or for each
metaclass (abstract or concrete); metamodels are also stored as compressed files in
a dedicated table. A client accesses models using an implementation of the standard
EMF persistence interface (Resource) called CDOResource that handles CDOObjects,
which implement the EMF model object interface (EObject). Clients use CDORe-
sources to manage transactions, views and communication with the CDO server. In
order to access a model, a connection to the CDO repository must be done, which
can be a transaction (read & write access with explicit locking, commit and roll-
back), an auditory (a read-only view of the state of a model at a certain timestamp)
or a plain read-only view of the current version. CDOObjects representing model
elements may fall into two different kinds: native and legacy. Native objects support
load on demand and versioning, but CDO-specific code generation and manual reg-
istration of their metamodels is needed, while legacy objects do not support those
features, although their metamodels also need to be registered.

A client may query the repository using SQL, OCL and a variation of the former
called HQL if Hibernate [BK04] is used as the ORM. SQL queries are very cumber-
some since the actual database schema needs to be known, which is not a trivial task
since an ORM is used. OCL queries require the server to load all the objects of the
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queried model. Furthermore, the logical model of CDO does not allow querying ele-
ments of a single model (all persisted models are queried simultaneously). Optimistic
version control is provided by CDO with change notification and invalidation when
working online; it also supports automatic merging (conflicts cannot be resolved
manually by the client) and branching. However, clients must rely on timestamps
to access revisions. The seven dimensions on model persistence are covered by CDO
as follows:

1. Storage medium: CDO stores models in a database, which may be of any
kind, but with a tightly coupled identification schema.

2. Architecture: an n-layer architecture with a client, a server and a database is
used by CDO. Although older versions supported only online server coupling,
the current one (4.0) supports offline coupling by storing changes in the client.

3. Access: CDO uses an in-memory local copy and supports full store, full and
partial updates and coarse-grained delete. Full load and both single and partial
load on demand are supported with implicit triggering. Partial load is managed
by a configurable prefetching algorithm. Moreover, transactions are supported.

4. Query: supported query languages are SQL and OCL.

5. Transparency: CDO implements a customized integration. Metamodels are
represented in an implicit and read-only way with manual registration. Native
objects allow for partial semantic transparency.

6. Version control: CDO provides optimistic collaboration schema with change
notification. Its VCS is centralized and supports 3-way merge using a change-
based comparison algorithm. Explicit branching is also provided.

7. Client interface: the GUI of CDO includes a collaborative concurrent model
editor. A framework and an Eclipse-dependant application APIs are used to
connect to the repository, manage it and access to persisted models.

3.2.5 MongoEMF

MongoEMF [Hun13] is a model persistence solution based on MongoDB and de-
signed to provide a transparent persistence layer, supporting queries and integration
on the Eclipse platform through OSGI. It has emerged from the EMF community
as a personal research, attracting the attention of several developers for testing.

The architecture of MongoEMF is shown in Figure 3.12, and is composed of
a client side and a server side which is a MongoDB database. The client side of
MongoEMF implements the URIHandler EMF interface, which is used by the stan-
dard EMF Resource; this handler relies on two builders for converting DBObjects
(i.e. MongoDB documents) into EMF EObjects and viceversa, using a converter for
(un)marshalling datatypes. All the communications between the MongoDB database

52



Model Persistence

Figure 3.12 MongoEMF architecture

and the client are done in BSON [BSO10] through input and output streams. A
model is represented in MongoEMF as a document for the root element and nested
documents for all its contained objects; a single collection holds all stored models.
Metamodels are not stored in the database, so they need to be manually registered
in the Eclipse package registry; references between persisted model elements and
their metaclasses are done through relative logical URIs.

Like CDO, a MongoEMF client accesses models using the standard EMF Resource
interface, but the identification schema of MongoEMF hinders load on demand be-
cause it represents containment relationships using document nesting (a form of
tight coupling); however, simple partial load on demand and incremental store can
be achieved through a model partition mechanism that uses the EMF feature of
cross-document referencing, handling remote references that are represented in the
database as special proxy documents. MongoEMF provides simple queries through
a dedicated API. Although a client can query for a single element, single load on
demand is only possible when such element does not have any containment rela-
tionship, due to document nesting. The seven dimensions on model persistence are
covered by MongoEMF as follows:

1. Storage medium: MongoEMF uses a NoSQL MongoDB database with a
tighly coupled identification schema.

2. Architecture: the client-server architecture of MongoEMF is conformed by
a fat client with offline server coupling and a database.

3. Access: MongoEMF supports full load, full store, both partial and full up-
date and coarse-grained delete. Simple incremental store and partial load on
demand are provided by the model partition described above. The triggering
is either implicit or explicit without a prefetching algorithm. No transaction
support is given and the local copy is memory-based.
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4. Query: simple queries can be defined using a dedicated API.

5. Transparency: integration between MongoEMF and client applications is
customized. Metamodels are represented in an implicit way that is not acces-
sible by the client and manual registration is required. MongoEMF provides
total semantic transparency.

6. Version control: MongoEMF does not support any version control feature.

7. Client interface: an EMF framework API, an Eclipse OSGI application in-
terface and a service one are provided.

3.2.6 OOMEGA

OOMEGA [OOM12] is an all-in-one Eclipse-based platform that provides its own
modeling framework with model transformations and various model persistence so-
lutions: binary files, XML files and an object-oriented database repository; only the
latter will be discussed in this chapter, since the other two do not add any special
capability over XMI (see Section 3.2.1). Some EMF tools such as ATL [JABK08]
have been adapted to interact with OOMEGA’s own modeling framework.

Figure 3.13 OOMEGA architecture

The architecture of OOMEGA is shown in Figure 3.13. An OOMEGA client ap-
plication interacts with a session managed by a network layer that performs all the
communications to and from a Versant 6 object database through input and output
object streams and manages memory, object caching and prefetching. The network
layer component can be omitted, being the client in charge of its duties in that case.
A model is represented in OOMEGA as a set of objects in the Versant database
with references to the metamodel, which is also represented in the database in the
same way; even the meta-metamodel of OOMEGA is stored in the database homo-
geneously. However, manual metamodel registration is needed. References between

6Versant Object Database: http://www.versant.com
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model elements are established as OIDs (i.e. object identifiers), which can be used to
perform single or partial load on demand. OOMEGA also supports file-based model
persistence.

A client accesses models using OOMEGA’s model persistent interface, which sup-
ports all kinds of load, store, delete and update; since the modeling framework and
the persistence solution have been designed together, the former has all the methods
and data structures required by the latter, so their integration is transparent. Com-
plex queries can be performed using a Java internal DSL whose syntax is similar to
SQL, providing operations such as grouping and ordering. Although no version con-
trol is provided, an event notifier informs of changes done to the persisted objects by
other clients. The seven dimensions on model persistence are covered by OOMEGA
as follows:

1. Storage medium: OOMEGA uses an object-oriented database using a loosely
coupled identification schema, although an ORM may be used over a relational
one using a tightly coupled identification schema.

2. Architecture: a fat client with online server coupling and a database conform
the client-server architecture of OOMEGA.

3. Access: All kinds of access are supported by OOMEGA with any kind of local
copy. Load on demand is triggered in an implicit or explicit way.

4. Query: a Java internal DSL provides querying capabilities.

5. Transparency: the integration is transparent and the semantic transparency
is total. Metamodels are represented in an explicit way and can be accessed in
a read & write fashion, although manual registration is required.

6. Version control: OOMEGA does not provide any version control, but
changes performed to persisted objects are notified to all clients.

7. Client interface: again, being the framework and the solution designed to-
gether, a framework API is used.

3.3 Comparison

Figures 3.14 to 3.20 show the comparison between the different model persistence
solutions for each of the seven dimensions on model persistence. Greyed cells indicate
the ocurrence of a feature. Each dimension is commented below.

The comparison on the Storage medium dimension is shown in Figure 3.14. On the
one hand, XMI, ModelBus and EMFStore use file sets as their storage media; not
surprisingly, they show the poorest capabilities in model access, mainly because their
unit of work is a whole model or a model partition. On the other hand, CDO and
OOMEGA may use multiple kinds of databases, but they are optimized to relationals
and object-oriented ones, respectively; MongoEMF uses a MongoDB database with
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Figure 3.14 Comparison between solutions for the Storage medium dimension

Figure 3.15 Comparison between solutions for the Architecture dimension

limited access capabilities. Figure 3.15 shows the comparison on the Architecture
dimension. ModelBus and EMFStore are both thin clients, because they are based
on and inspired by Subversion, respectively. CDO is the only n-layer architecture,
which allows it to provide multiple synchronized repositories. Finally, MongoEMF
and OOMEGA are fat clients, communicating with a raw database server. It is worth
noting that only OOMEGA requires online server coupling, mainly because of its
change notification mechanism.

Figure 3.16 Comparison between solutions for the Access dimension

The Access dimension shows the big difference between file sets and databases:
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Figure 3.17 Comparison between solutions for the Query dimension

XMI, ModelBus and EMFStore only offer full store, load, update and delete, while
the others support almost all operations. However, not all of the database reposito-
ries offer the same degree of compliance for each operation: for instance, the partial
load on demand of MongoEMF is very limited, and CDO shows poor performance
when managing large models [SZFK12]. The commented difference is even bigger
in the Query dimension, being XMI, ModelBus and EMFStore incapable of any
querying (see Figure 3.17). The Transparency dimension shows uneven results (see
Figure 3.18): possibly the most relevant aspect to note is that the best results are
achieved by OOMEGA, showing that a proper persistence support should be part
of the design of a modeling framework. On the other side, the worst results are
achieved by EMFStore, which may not even be capable of persisting some models
because of its intrusive semantic transparency.

Figure 3.18 Comparison between solutions for the Transparency dimension

The comparison on the Version control dimension is shown in Figure 3.19. Due to
their Subversion support or inspiration, ModelBus and EMFStore show good ver-
sioning capabilities, but CDO is unarguably the best. MongoEMF does not provide
any version control, mainly because it is still a research prototype, while the oth-
ers are stable commercial releases. It is worth noting that the OOMEGA database
persistence does not provide version control; however, its file-based persistence may
be combined with Subversion. The Client interface capabilities of each solution are
related to their version control ones: ModelBus, EMFStore and CDO offer rich user
interfaces (although the APIs of the former two are very poor), while MongoEMF
offers a rich API, but no user interface. Finally, OOMEGA shows a rich set of user
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Figure 3.19 Comparison between solutions for the Version control dimension

Figure 3.20 Comparison between solutions for the Client interface dimension

interface tools and a complex API thanks to its framework-integrated design.

3.3.1 Categorization

As a result of the evaluation and comparison of the different persistence solutions,
we have categorized them in four categories, depending on their purpose: default,
user-oriented, application-oriented and integrated.

A default persistence solution is the one that is specified by the modeling frame-
work; XMI falls into this category. Default solutions usually provide simple capabil-
ities with no aim on advanced features such as scalability or versioning. However,
they are the most transparent and normally all the other solutions must fit their
interfaces to the default ones. OOMEGA may also fall into this category, but we
preferred to define a special one for it.

A user-oriented persistence solution is designed to be used by a human client.
User-oriented solutions offer rich user interfaces and versioning capabilities, although
they usually consider models as atomic artefacts, so scalability and transparent
integration are almost impossible to achieve. ModelBus and EMFStore clearly fall
into this category; CDO is mainly user-oriented, but it also provides a framework
API for application integration.

An application-oriented persistence solution is designed to be integrated with
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applications. It provides poor or no user interface, but a rich API instead. Thanks
to their low-level persistence support, application-oriented solutions may perform
better than the user-oriented ones, being faster and more scalable. MongoEMF is
an application-oriented solution.

Finally, an integrated persistence solution is one that has been designed together
with a modeling framework with special focus in advanced persistence solution capa-
bilities such as version control and UIs; OOMEGA falls into this category. Integrated
solutions have the potential to be both user-friendly and application-oriented, pro-
viding rich user interfaces and scalability; their actual capabilities depend completely
on the decisions of their developers (e.g. OOMEGA does not support version control
when using database persistence).
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4
Running Example

See how they smile
like pigs in a sty,
see how they snied

In order to illustrate the design and operation of the model repository and model
language presented in this thesis, as well as to perform their evaluation, a running
example will be used in the following chapters. This chapter presents (i) the test
metamodel, (ii) the test models and (iii) the test query for the running example.

4.1 Test metamodel

The running example is based on the reverse engineering case study of the Grabats
2009 contest [JS09]. This case study consisted in executing a particular query on
five very large test models that represent Java source code. The JDTAST metamodel
that defines these models is composed of three packages: the Core package includes
metaclasses that represent logical units such as projects, packages or types; the
DOM package includes metaclasses for representing abstract syntax trees for Java
source code, e.g. compilation units, methods, etc.; finally, the PrimitiveTypes package
includes metaclasses that represent Java primitive types such as String or Integer.

4.2 Test models

We have considered the models proposed in the Grabats 2009 contest. They conform
to the JDTAST metamodel. There are five models, from Set0 to Set4, each one
containing its predecessor. Table 4.1 shows the size of the XMI file corresponding to
each model, the number of Java classes represented, the number of model elements
contained and the size of the number of objects that satisfy the test query.
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Figure 4.1 Grabats 2009 contest JDTAST metamodel simplification

Name XMI Size Java classes Model Elements Result size
Set0 8.8MB 14 70447 1
Set1 27MB 40 198466 2
Set2 283MB 1605 2082841 41
Set3 598MB 5796 4852855 155
Set4 646MB 5984 4961779 164

Table 4.1 Test models

4.3 Test query

The query proposed in the case study consists in obtaining every class (i.e. instance
of TypeDeclaration) that declares a static, public method whose returning type is
that same class. Figure 4.1 shows the subset of the JDTAST metamodel involved in
this query. The information about Java modifiers and returning types is specified in
the DOM package. However, there is no explicit reference from a method’s returning
type (Type element) to the declaration of that type (TypeDeclaration element); the
matching between both objects must be done by their name. Listing 4.1 shows the
query for the test case using OCL. The query basically consists in the following steps
for each TypeDeclaration element of the model:
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1. Get the fullyQualifiedName of the Name element referenced by its name rela-
tionship.

2. Find at least one MethodDeclaration element referenced by its bodyDeclarations
relationship that:

a) has a Type element referenced by the returnType relationship and

b) that Type element is a SimpleType and has a Name element referenced by
the name relationship and

c) that Name element has a fullyQualifiedName attribute that matches the
fullyQualifiedName obtained in step 1 and

d) that has two Modifier elements referenced by its modifiers relationship,
one of them with a value of true for its static attribute and the other with
a value of true for its public attribute.

1 TypeDeclaration. allInstances () −>
2 select (td : TypeDeclaration | td.bodyDeclarations −>
3 exists (bd : BodyDeclaration |
4 bd.oclAsType(MethodDeclaration)
5 .returnType.oclAsType(SimpleType).name
6 . fullyQualifiedName = td.name.fullyQualifiedName
7 and bd. modifiers −>
8 exists (em : ExtendedModifier | em.oclAsType(Modifier). static )
9 and bd. modifiers −>

10 exists (em : ExtendedModifier | em.oclAsType(Modifier).public )))

Listing 4.1 OCL query for the test case

We have chosen this test case for four reasons: (i) the test models are very large and
capable of overloading the memory of a client application; (ii) the complexity of the
metamodel requires type checking and casting due to its various type hierarchies, so
the resulting query will be syntactically and semantically complex; (iii) these models
have been extracted from the source code of real applications and (iv) the test query
is a realistic example of the kind of access done by client applications such as model
transformations.
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Morsa

I am the eggman,
they are the eggmen

This chapter describes Morsa, our approach for model persistence. Morsa is a
model repository that supports all the model persistence operations defined in Sec-
tion 2.4; this chapter covers four of the five operations, since querying is covered in
Chapter 8, as its support has been implemented as a dedicated DSL called MorsaQL.

The chapter is organized as follows: first, the design of Morsa is explained; then,
the store, load, update and delete operations are covered; finally, the implementation
of Morsa and its integration with EMF is described.

5.1 Design

As commented in the Introduction, Morsa has two main design goals: transparent
integration and scalability. The goal of transparent integration requires an architec-
tural design that allows client applications to use the repository without doing any
specific modifications on the modeling artifacts or the source code, such as editing
the (meta)models or using specific programming interfaces. The architectural design
of our solution is described in Section 5.1.1.

The goal of scalability requires a data design that is loosely coupled enough to
support the load and store of model partitions or single objects from a large model in
an efficient way for the client. The data design of our solution is described in Section
5.1.2. Moreover, the architectural design is also involved in the goal of scalability
since its components support the data design.

63



Morsa

5.1.1 Architectural design

Morsa is based on a fat client client-server architecture, whose components are shown
in Figure 5.1. The client side is hosted on the client machine, i.e. the one that runs
the client application, and the server side is hosted on a remote machine, e.g. a
dedicated server (although it may be the same machine).

The client side of Morsa supports integration through a driver (MorsaDriver) that
implements the modeling framework persistence interface, allowing client applica-
tions to manipulate models in a standard way. Since Morsa is aimed at manipulating
large models, a load on demand mechanism has been designed to provide clients with
efficient partial load of large models, achieving scalability. This mechanism relies on
an object cache (ObjectCache) that holds loaded model elements in order to reduce
database queries and manage memory usage; it is managed by a configurable cache
replacement policy (CachePolicy) that decides whether the cache is full or not and
which objects must be unloaded from the client memory if needed. The client side
communicates with the server side using a backend adapter (MorsaBackend) that
abstracts it from the actual database. An encoder (MorsaEncoder) is used to create
and manipulate repository objects and backend queries.

Figure 5.1 Architecture of the Morsa repository

On the server side of Morsa, a database backend provides the actual storage of
models. Thanks to the MorsaBackend component, any kind of database can be used
for persisting models. Moreover, the data design of Morsa has been devised having
in mind a NoSQL document database, so the mapping between the client side and
the server side for such a database is natural and almost direct. Mappings between
Morsa and other databases can be applied, but their implementation could be less
direct and hence less efficient.
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5.1.2 Data design

On the client side of Morsa, a data model has been designed to represent the ob-
jects stored in the repository in a way that provides independence from the actual
database backend.

As explained in Section 2.3, a model can be seen as a graph whose nodes are
the model elements and whose arcs are the relationships among them. A model is
represented in Morsa as a collection of MorsaObjects connected through MorsaRefer-
ences. Such a collection is called MorsaCollection and has an identifier (e.g. the URI
of the (meta)model in EMF); MorsaCollections can also represent model partitions
(i.e. a subgraphs). Since a metamodel can also be seen as a model that conforms
to a meta-metamodel, the representation of both models and metamodels is ho-
mogeneous. Figure 5.2 shows an example of the representation of a model called
javaModel in the Morsa repository. On the left side, an instance of the JDTAST
metamodel (see Figure 4.1) is shown; on the right side, a set of MorsaObjects rep-
resents both the model and the part of the metamodel referenced by the model
elements. Solid arrows represent relationships between elements and dashed arrows
represent instanceOf relationships between objects and their metaclasses.

Each MorsaObject represents a model element and is composed of a set of key-
value pairs that encode the structural features of that element. The key is the name
of the structural feature and the value may be a primitive value if the feature is an
attribute or a MorsaReference if the feature is a relationship; multi-valued attributes
(e.g. collections in Ecore) are represented as collections of values (e.g. arrays in Mon-
goDB). A MorsaObject also contains a descriptor of metadata used for identification,
querying and optimization. This descriptor is also encoded as a set of key-value pairs.
For a given MorsaObject representing a model element, its descriptor specifies the
following features:

i. MorsaID : repository-unique, backend-dependent identification (e.g. a UUID).

ii. Metatype: MorsaReference to the MorsaObject representing the metaclass from
which the model element has been instantiated.

iii. Container : MorsaReference to the MorsaObject representing the model element
that contains this one (see Section 2.3).

iv. Ancestors : a list of MorsaReferences to the MorsaObjects that represent the
ancestors of the model element (see Section 2.3).

v. Breadth: the position of the model element inside its containing relationship.

vi. Depth: the number of ancestors of the model element.

The MorsaID is a key feature because it allows the ObjectCache to uniquely
identify loaded objects in the client side. The Metatype feature allows the client side
to infer the objects’ structural features. Breadth, Depth, Ancestors and Container
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Figure 5.2 Example of repository persistency for the running example

features represent the structure of the object graph and are used for partial loading
as explained later in Section 5.3.1.2.

A MorsaReference is a smart reference (i.e. an usage of the Proxy pattern
[GHJV95]) that is composed of, at least, the MorsaID of the referenced element, its
Metatype and the MorsaCollection that holds it, i.e. its containing model; depend-
ing on the implementation of MorsaBackend being used, it may contain additional
information.

Figure 5.3 shows the internal structure of the MorsaObjects that represent the
elements t2 and TypeDeclaration of the model and metamodel, respectively, shown
in Figure 5.2. The MorsaID, Container, Ancestors and Metatype values for this
example have been simplified to the name of the object for the sake of readibility.
Note that the Breadth feature of t2 has a value of 2 because t2 is located on the
second position of the typeDeclarations relationship of the c1 CompilationUnit; also
note that its Metatype feature references the MorsaObject that corresponds to the
TypeDeclaration metaclass.

A special MorsaCollection called the index collection holds the index object, which
is a singleton MorsaObject whose keys are the identifiers of the (meta) models stored
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Figure 5.3 Internal structure of two MorsaObjects

in the repository (e.g. URIs for EMF) and whose values are MorsaReferences to the
root objects of those (meta)models. For each metamodel package a MorsaCollection is
created. The index object is used by the MorsaDriver to access (meta)models. Figure
5.4 shows how the index object references the root objects of the three packages
(Core, DOM and PrimitiveTypes) defined in the metamodel of Figure 4.1. Note that
the index object points to the jm1 model element, which is the root of the javaModel1
model, described in Figure 5.2.

MorsaObjects provide the client-side a way to transfer model elements from/to a
Morsa repository that is backend-independent. Figure 5.5 illustrates the components
of the client-side architecture that interact in order to load a model element; for the
sake of readability, some components and operations such as the ObjectCache and
its related mechanisms have been omitted. The following steps are executed:

i. The client application sends a request (r) to the repository for a model element.

ii. The MorsaDriver (which is accessed transparently by the client application
since it implements the modeling framework persistence interface) passes the
request to the MorsaBackend.

iii. The MorsaBackend encodes the request using the MorsaEncoder and sends it
to the database.

67



Morsa

Figure 5.4 Collections contained by the repository for the JDTAST metamodel
packages and three sample models

iv. The object returned by the database is decoded by the MorsaEncoder into a
MorsaObject by request of the MorsaBackend, who returns it to the MorsaDriver.

v. The MorsaDriver transforms the MorsaObject into an object that conforms to
the modeling framework (e.g. EObject for EMF), which is returned to the client
application.

The interaction for storing a model element is very similar. The actual processes
of storing and loading model elements are more complex and will be explained in
Sections 5.2 and 5.3, respectively. The following sections describe the algorithms for
the store, load and update operations on models and model partitions, as defined in
Section 2.3. These algorithms are explained in terms of the presented data model,
so transfer of objects from/to the database is obviated for the sake of simplicity and
the persistence backend is seen as a set of MorsaObjects rather than a database.
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Figure 5.5 Simplification of the interaction between client-side components for
loading a model element

5.2 Model store

When a model is created in client memory from scratch, for example by means of
a model transformation, it has to be stored in the repository to become persistent.
Model store is the operation of storing a model in the repository for the first time or
fully replacing a model that is already persistent. Storing a model may be seen as a
simple task: basically, the MorsaDriver transforms the elements of the input model
into MorsaObjects and saves them into the persistence backend. If the input model
is too large to store it in one single operation due to network latency or to be kept
it in the client’s memory, it may be stored in several steps. We call the simplest
scenario full store; the other scenario is called incremental store. Metamodels are
stored prior to its conforming models using full store if they are not already persisted
in the repository.

5.2.1 Full store

The full store algorithm is executed when a model is stored for the first time or when
it is fully replaced. This algorithm uses a fixed-size queue, namely pending object
queue, to optimize the access to the database backend. When an input model is
traversed to generate the persistent model, the created MorsaObjects are temporally
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stored in the pending object queue rather than sent to the database backend, hence
the queue acts as a buffer. By sending a batch of stores instead of many individual
ones, the communication between the client side and the server side is optimized,
avoiding overheads. After being sent to the persistence backend, the MorsaObjects
are discarded from the client memory.

The first step of the algorithm is to create the new MorsaCollection that will
represent the stored model in the repository. Then, the algorithm traverses the
whole model in a depth-first order, executing the following steps for each model
element:

1. A MorsaObject is created, storing all the feature values of the model element:

a) Attributes are encoded by the MorsaEncoder as primitive type values.

b) Relationships are encoded by the MorsaEncoder as MorsaReferences.

c) References to model elements that have not been stored yet imply the
creation of new MorsaIDs that will be assigned to those model elements
at the time they are stored.

d) The descriptor of the model element (see Section 5.1.2) is calculated and
encoded. If the model element does not have any corresponding MorsaID,
a new one is created and assigned to it.

2. The newly created MorsaObject is added to the pending object queue. If the
queue is full or if the last model element has been traversed, all its MorsaObjects
are sent to the persistence backend in its own representation.

5.2.2 Incremental store

When a model is stored for the first time or when it is fully replaced but is too big
to be kept in the client’s memory or to be stored in a single operation, the incre-
mental store algorithm is used. A scenario for incremental store could be one where
a client extracts objects from an external resource in a streaming fashion and stores
them in several steps, i.e. every step stores a model partition. The incremental store
algorithm consists in executing the already described full store algorithm for every
model partition that has to be stored, but with two differences: (i) only one Mor-
saCollection is created for all the model partitions (since they all belong to the same
model) and (ii) every time a model partition is saved, all the objects that represent
it are unloaded. To unload an object is to remove it from memory, making room for
the objects that represent the next model partition. The process of unloading will be
explained in Section 5.3. Morsa keeps track of the already processed objects using
a save cache that maps them to their MorsaIDs. When the last model partition is
stored, this map is deleted.
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Since relationships between objects can be stored in the repository prior to the
referenced objects, the incremental store scenario may lead to dangling references
if the process is stopped before completion. To solve this, Morsa provides a special
operation that eliminates all references to objects that have not been actually stored
in the repository. There are two possible scenarios, depending on the connection be-
tween the driver and the repositor: on the one hand, if the driver has been connected
to the repository over all the incremental store process and still is, it calculates the
difference between the save cache (i.e. the model elements that have a MorsaID
assigned to them) and the ones that have been actually stored in the repository
and then removes or updates all the stored MorsaReferences that reference them; on
the other hand, the calculation is done travesing the whole persisted model. Since
such updates of the repository are very expensive, they are natively executed at the
database where possible (e.g. using JavaScript server-side functions in MongoDB).

5.3 Model load

This section is dedicated to the load operation on models, as described in Section
2.4. First, the two diferent scenarios that we have identified for model loading will
be described; then, the load on demand algorithm will be explained and finally
the cache management and replacement policies that run on the client side will be
described.

5.3.1 Loading scenarios

Since our approach is intended to manipulate large models, two scenarios have been
considered: full load and load on demand. These scenarios are explained in detail
below. The load on demand scenario has been tackled using an object cache managed
by a cache replacement policy. Metamodels are always fully loaded and kept in
memory for efficiency reasons: they are relatively small compared to models and it
is worth loading them once instead of accessing the persistence backend every time
a metaclass is needed. Each object is identified in the persistence backend by its
MorsaID feature. A mapping between loaded objects and their MorsaIDs is held by
the object cache (ObjectCache) in order to know which objects have been loaded,
preventing the driver from loading them again. The selection and configuration of
each scenario is done by the client application by parametrization of the MorsaDriver.

5.3.1.1 Full load

Consider a small or medium-sized model that can be kept in memory by a client
application. If the whole model is going to be traversed, it would be a good idea
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to load it once, hence saving communication time with the persistence backend. We
call this scenario full load and this is the way EMF works when loading XMI files.
We aim at supporting full load with the least memory and time overhead possible.
The Morsa full load algorithm works simply by fetching all the MorsaObjects of a
model following its containment relationships. A new model element is created in
the client memory for every MorsaObject, filling its features with the values stored
in that MorsaObject.

5.3.1.2 Load on demand

Consider a model that is too large to be kept in memory by a client application;
consider also a model that can be kept in memory but only a part of it is going
to be traversed. An efficient solution for loading models in both cases would be to
load only the necessary objects as they are needed and then unload the ones that
eventually become unnecessary to save client memory. This scenario is called load
on demand. We define two load on demand strategies: single load on demand and
partial load on demand.

A single load on demand algorithm fetches objects from the database one by one.
This behavior is preferred when the objects that need to be accessed are not closely
related (i.e, they are not directly referenced by relationships) and memory efficiency
is more important than network performance, that is, when the round-trip time of
fetching objects from the persistence backend is not relevant. The resulting cache
will be populated only with the traversed objects.

On the other hand, a partial load on demand algorithm fetches an object subgraph
from the persistence backend starting at a given root object. The structure of the
subgraph to be fetched is customizable: given a requested root object, its subgraph
contains all its descendants within a certain depth and breadth values. For example,
consider that in the model shown in Figure 5.6(a) objects jm1 and jp1 have already
been loaded and pf1 is requested with a maximum subgraph depth of 4 and maximum
subgraph breadth of 2. Because the Depth feature value of pf1 is 2, the maximum
depth will be 6. Objects pf1, ic1, ic2, c1, c2, t1, t2, t4, t5, m1, m2, f1 and m4 will be
included in the subgraph, but t3, f2 and t6 will not, because their Breadth feature
value is 3 (greater than 2). Note that m3 has a depth of 6 and a breadth of 1,
but since its parent t3 is not included in the subgraph, it doesn’t get loaded either.
This behavior is preferred when all the objects that are related to an object will be
traversed soon and memory efficiency is less important than network performance,
that is, when the round-trip time of fetching objects from the persistence backend
is critical. The resulting cache will be populated with the objects that have been
traversed and those expected to be traversed in the near future, as shown in Figure
5.6 (c). For the sake of readability, the MorsaIDs shown in this figure are the names
of the corresponding objects. This is a simple form of prefetching that tries to take
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advantage of spatial locality.

Figure 5.6 Partial load on demand in the running example: a) model b) object
cache before partial load c) object cache after partial load
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5.3.2 Load on demand algorithm

The load on demand algorithm is triggered whenever a model element that is not
in the client’s memory (i.e. in the ObjectCache) is requested; this can be done by
explicit request from the client application or by implicit request when a relationship
is traversed and the referenced element is not in the client’s memory. Our load on
demand algorithm work as follows:

1. A model element is requested.

2. The MorsaDriver requests the fetching of the corresponding MorsaObject to the
MorsaBackend.

3. A new model element is created, filling its attributes with the values stored
in the MorsaObject and its relationships with proxies that allow the load on
demand of the referenced model elements. These proxies are special objects
that have the same structure as model elements, but hold no feature values.
Instead, they hold a URI containing a MorsaReference that allows their resolu-
tion by the repository. When a proxy is resolved, it becomes a model element
with all its feature values filled. In EMF, the idea of proxies is used to represent
cross-resource references.

4. The new model element and its proxies are stored in the ObjectCache, mapping
them to their corresponding MorsaIDs.

a) If single load on demand is used, go to step 5.

b) If partial load on demand is used, a request is sent to the MorsaBackend
to get all the objects of the defined subgraph. The MorsaBackend uses
the Ancestors feature to calculate which objects are descendants of the
requested one and then to filter the results using their Depth and Breadth
attributes. Each one of these objects is then loaded executing the steps 1
to 3 of this algorithm.

5. If the cache becomes overloaded, some objects of the cache are unloaded as
explained in the next section.

6. The new model element is returned to the client application, which can use it
as a regular element.

5.3.3 Cache management

The object cache holds the objects that have been loaded from the repository for
three purposes: (i) memory management, (ii) object identification and (iii) prevent-
ing the driver from loading objects that have already been loaded. The object cache
is parameterized by a size limit and a replacement policy; both parameters are set
by the client application, which passes them to the Morsa driver.
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The size limit is the amount of objects that can be held by the cache; however, this
limit is soft because some modeling frameworks such as EMF require model elements
to have their relationships filled, that is, their values must be fetched in the form of
proxies or actual model elements. For example, consider again the model in Figure
5.6 (a): elements jm1 and jp1 have already been loaded and are stored in the cache,
which has a maxium size of 7 objects, as shown in Figure 5.6 (b). The partial load
on demand of pf1 is requested with a subgraph depth of 2 and a subgraph breadth
of 2, meaning that pf1, ic1, ic2, c1 and c2 will be loaded and stored in the cache.
However, since the modeling framework requires the direct relationships of every
object to be fully filled, when c1 and c2 are loaded, their children t1..t6 must be
fetched as proxies and stored in the cache, causing it to be overloaded to a size of
13 model elements as shown in Figure 5.6 (c).

Whenever the cache becomes overloaded, the exceeding model elements must be
unloaded. A cache replacement policy algorithm selects the elements to be unloaded
from the client memory. Unloading an element implies downgrading it to a proxy,
i.e. unsetting all its features. A proxy requires less memory than an actual model
element and it can be discarded by the underlying language if it is not referenced
by any other object.

When a modified model element is unloaded, all its changes must be persisted
in some way to avoid losing them. Storing the element in the MorsaCollection that
corresponds to its model would not be appropriate since the unloading mechanism is
not triggered by the client, who sees the model as it was entirely in-memory and may
want to persist changes only at a certain moment. Because of this, modified elements
are stored as MorsaObjects in a special MorsaCollection called the sketch collection;
this collection is also persistent in the repository. Whenever a model element is
requested, the sketch collection must be examined in the first place to check if
that element has been modified and unloaded previously. The presence of modified
model elements in the sketch collection partly invalidates the representation of the
graph structure of the model built by the Ancestors feature values since modified
ancestors and descendants are not updated in the persistence backend. A partial
load on demand of a subgraph that contains modified ancestors or descendants
would ignore objects that are contained in the subgraphs of the modified ones.
Elements are removed from the sketch collection when they are loaded into memory
or when the model is explicitly stored by the client. The definition of a modified
model element is explained in Section 5.4.

5.3.4 Cache replacement policies

A cache replacement policy is encapsulated in a CachePolicy object. We have con-
sidered four cache replacement policies:
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• An FIFO (First In-First Out) policy would unload the oldest objects of the
cache. This policy is useful when a model is traversed in depth-first order, but
only if the cache can hold the average depth of the model. On the contrary,
it would cause objects to be unloaded after being traversed and then loaded
again when requested for traversal.

• An LIFO (Last In-First Out) policy would unload the most recent objects
of the cache. This policy is useful when a model is traversed in breadth-first
order, but only if the cache can hold the average breadth of the model. Both
the LIFO and the FIFO policies calculate the size of the subgraph directly
contained by the object that caused the cache overload and unload that many
objects. In the example of Figure 5.6, an LIFO policy would unload the objects
t1...t6, while an FIFO policy would unload jm1, jp1, pf1, ic1, ic2, and c1.

• An LRU (Least Recently Used) policy would unload the least used objects
of the cache. The LIFO, FIFO and LRU policies are well known in the area
of operating systems. An LRU policy would be equivalent to a FIFO one for
depth-first and breadth-first traversals.

• An LPF (Largest Partition First) policy would unload all the elements that
conform the largest model partition contained by the cache. This is a conser-
vative solution that is useful when a model is traversed in no specific order.
It does not consider if the selected elements are going to be traversed so it
may lead to multiple loads of the same objects. This policy unloads at least
an amount of objects proportional to the maximum size of the cache.

The choice of which cache replacement policy is used is currently made by the
end user. However, it could be automatically made by the MorsaDriver by analysis
of (meta)models and access patterns (i.e. prefetching).

5.4 Model updating and deleting

When a model is loaded (fully or partially), modified and then stored back, an
update operation takes place. As mentioned in Section 2.4, an update is a store
operation where the stored elements have been modified. Therefore, the update
algorithm is an extension of the one described in Section 5.2.1 for the full store:
model elements are traversed in the same way, but modified and deleted objects
must be treated differently. Another scenario that involves model update is when a
model is generated in several steps: as each step is finished, the generated subgraph
is no longer necessary and hence it can be unloaded from the client’s memory; some
of the unloaded objects may be loaded back and modified to perform further steps.

We consider that a model element is modified if any of its feature values has
changed or if it has been moved from one parent to another. We classify modified
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elements in three categories: modified elements are model elements whose feature
values have changed, modified parents are model elements whose containment re-
lationships have changed and modified children are model elements that have been
moved from one parent to another. Note that while a modified parent is a special
kind of modified element, a modified child may not have any of its feature values
changed. Modified elements are updated to the repository. Modified parents must
update also the Breadth feature values of their children because a new child has
been added or removed. Finally, modified children must update their Container and
Ancestors feature values because they are now in a different part of the object graph,
and also update the Ancestors feature values of their descendants in order to faith-
fully reflect the new structure of the object graph. Modified elements, ancestors and
children all retain their original MorsaIDs.

A model element is deleted when it is not contained by any other model element
and it is not identified as a root of the model by the modeling framework (i.e. in
EMF, roots elements are the ones directly contained by a Resource object). A deleted
object is also a modified child but since it is not going to be persisted anymore,
there is no need to update its descendants. Because containment relationships are
exclusive, when an element is deleted its children become deleted and so on, deleting
the whole subgraph formed by the descendants of the deleted element. While other
behaviors may be performed (e.g. moving the descendants of the deleted element
to their nearest ancestor), we have decided to implement the semantics defined on
Ecore [SBPM08] and MOF [MOF06], which are the most widely used metamodels.

Figure 5.7 shows en example of an update; modifications done on the source
model (left side) are: (i) TypeDeclaration t2 is moved from CompilationUnit c1 to
CompilationUnit c2 and (ii) ICompilationUnit ic1 is deleted. Therefore, t2 is a modified
child, because it has been moved from one parent to another; c2 and pf1 are modified
parents, because a child has been removed and added, respectively; t1 and c1 will
also be deleted since they no longer have any parent and they are not root objects.
The result of the update can be seen in Figure 5.7 (right side): the Ancestors feature
value of MethodDeclaration m2 has changed, replacing ic1 and c1 with ic2 and c2,
and the Breadth feature values of ic2, c2, t2, t3 and t4 have also changed to faithfully
represent the new object graph structure.

Deleting an entire model in Morsa is very simple: the MorsaDriver requests the
MorsaBackend the removal of the MorsaCollection that holds the model. Depending
on the underlying database backend, this could be implemented as a table drop
(relational), collection drop (NoSQL), etc. Dangling references from other models
to deleted objects could be eliminated using the special operation commented in
Section 5.2.2. When some model elements are deleted rather than the entire model,
a model update is performed instead.

77



Morsa

Figure 5.7 Modifications and deletions over the running example

5.5 Integration and implementation

Morsa is intended to be integrated with modeling frameworks and their applications
(e.g. model transformation engines). Our current prototype [Mor13] is integrated
with EMF. As commented in Section 5.1.1, a transparent way to achieve integration
is to design the MorsaDriver as an implementation of the persistence interface of
the modeling framework (Resource in EMF); this is done in our prototype using a
MorsaResource class that is connected to the MorsaDriver, which delegates the imple-
mentation of all the Resource methods to the driver. Persisting a model in Morsa is
done without any preprocessing, since there is no need of generating model-specific
classes, modifying metamodels or registering them into the persistence solution, as
opposed to other approaches [CDO12][KH10][HRW09]. Metamodels are seamlessly
persisted if they are not already in the database. Additional information for persis-
tence configuration can optionally be passed to the driver; Morsa uses the standard
parameters of the EMF load and save methods to pass this configuration information.

Morsa supports both dynamic and generated EMF. A dynamic model element is
generated at runtime using EMF dynamic objects (DynamicEObjectImpl instances)
which use reflection to generically instantiate metaclasses. On the other hand, a gen-
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erated model element is an instance of a metamodel-specific class that has been ex-
plicitly generated through an EMF generator model. Dynamic objects are preferred
for tool integration since they do not require code generation. Other approaches
[CDO12] support only generated model objects reimplementing part of the EMF
framework to handle persistency. Morsa uses a subclass from DynamicEObjectImpl
called MorsaEObject that handles proxy resolution automatically: if a feature of a
proxy is accessed by a client (see Section 5.3.1.2), the proxy itself requests its own
resolution to the MorsaDriver.

We have developed a prototype that exhibits all the features described previously:
EMF integration, full load, single and partial load on demand, cache replacement
policies, full and incremental store, update and deletion. Its integration with EMF
includes all the methods defined in the Resource interface.

Since the data design is heavily inspired on the document database paradigm
as explained in Section 5.1.2, we wanted to have our prototype implemented for
such a database, although the architecture of Morsa can be implemented for other
database paradigms such as the relational or other NoSQL approaches. The choice
for the database engine was between CouchDB [Cou] and MongoDB [Ban11], since
they are the most relevant document-based NoSQL databases. On the one hand,
CouchDB consists of a flat address space of JSON [JSO] documents that can be
selected and aggregated using JavaScript in a Map/Reduce [DG04] manner to build
views which also get indexed. It supports multiple concurrent versions of the same
document, detecting conflicts among them. On the other hand, MongoDB allows
grouping documents in collections and provides multi-key indexing and sophisti-
cated querying using a dedicated language or JavaScript Map/Reduce functions.
MongoDB stores BSON [BSO10] documents, which are different from the ones of
CouchDB as they can include nested documents, providing a more objectual data
schema. A MongoDB database can also be automatically sharded to distributed
database servers. We have chosen MongoDB as the database engine for our pro-
totype mainly because of its dynamic queries (as opposed to the static views of
CouchDB), its server-side JavaScript programming and its lightweight BSON sup-
port for communicating objects. BSON provides fast and bandwith-efficient object
transfer between the client and the database.

Being our data model very close to the one of MongoDB, most of the concepts
supporting Morsa can be directly mapped to MongoDB: MorsaObjects are mapped to
MongoDB DBObjects (i.e., BSON objects), MorsaCollections are mapped to DBCol-
lections (i.e, collections of documents) and MorsaIDs are represented as ObjectIds.
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Evaluation of Morsa

See how they run
like pigs from a gun,
see how they fly

This chapter evaluates our approach in terms of memory and time consumption
and compares it with CDO, the most widely used model repository (see Section 3.2.4)
for EMF and XMI (see Section 3.2.1), the default persistence support for EMF. The
evaluation has been made using the running example presented in Chapter 4; the
evaluation of the query test case is covered in Chapter 9.

The organization of this chapter is as follows: first, the test benchmarks are in-
troduced; then, the results for every test benchmark are presented and commented;
finally, an overall assessment is made, explaining the main differences between the
performance results of each persistence solution.

6.1 Test benchmarks

We have built a different benchmark for the operations of store, load, update and
delete, as defined in 2.4 (the query operation is discussed in Chapter 7 and evaluated
in Chapter 9):

1. The model store benchmark consists in storing the set of test models into each
of the solutions. Full store is executed over every solution and incremental
store is executed over Morsa, being the only solution that supports it. Each
test model is loaded from its XMI file in the first place and then stored in each
solution.

2. The model load benchmark consists in loading the set of test models from
each solution. Full load is executed over every solution and load on demand
is executed over CDO and Morsa. Both kinds of load consist in traversing the
whole models in a depth-first order and in a breadth-first order.
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3. The model update benchmark consists in executing the Grabats 2009 test query
described in Chapter 4 for each test model and then switching the container
objects of the first and the last results, deleting the middle result and finally
updating the model on each solution. If only one object is returned by the
query, it is deleted; if only two objects are obtained by the query, their con-
tainers are switched and no object is deleted.

4. The model delete benchmark consists in deleting the test models from each
solution. Since the deletion of a XMI model does not imply any XMI processing
but just a file deletion, it has not been considered.

6.2 Results

Each benchmark has been executed using the EMF XMI loading facility, a CDO
repository in legacy and native mode (see Section 3.2.4) and a Morsa repository
using single and partial load on demand. Both repositories have been configured
to achieve best speed or least memory footprint, depending on the test; their con-
figuration parameters have been fine-tuned based on their documentation and our
empyrical experience. All tests have been executed under a Intel Core i7 2600 PC at
3.70GHz with 8GB of physical RAM running 64-bit Windows 7 Professional Sp1 and
JVM 1.6.0. CDO 4.0 is configured using DBStore over a dedicated MySQL 5.0.51b
database. Morsa has been deployed over a MongoDB 1.8.2 database. Memory is
measured in MegaBytes and time is measured in seconds.

6.2.1 Model store

Table 6.1 shows the results of the model store benchmark. The incremental store
scenario has been tested with incremental store as described in Section 5.2.2 (Inc
mode) and also as described in Section 5.4 (Inc by update), i.e. taking the source
model, partitioning it and storing each partition separately updating the root of the
model in each step. We were not able to either incrementally store the test models
on CDO or fully store the Set3 and Set4 models because even with the maximum
available memory for both the server and the client, a timeout exception was always
thrown.

XMI is obviously the fastest solution and the one consuming the least memory by
far because it does not involve either network communication or object marshalling.
In addition, the test models have been loaded from the XMI files in order to store
them for CDO and Morsa, which implies a memory overhead that has been reduced
as much as possible using incremental save in Morsa. In a full store scenario, CDO
performs better in memory but worse in time (except for Set2). However, using
incremental store Morsa consumes much fewer memory, which is comparable to
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that used by XMI (but aprox. 100 times slower) and Morsa is faster than CDO and
uses less memory for the Set2 model when using incremental store by update.

6.2.2 Model load

Table 6.2 shows the results of the model load benchmark. Again, XMI is the fastest.
For the best speed test case, a full load has been executed over CDO and Morsa,
showing that our repository is aprox. 40% faster. For the least memory test case,
depth-first and breadth-first order have been considered because of their relevance
on memory consumption. Morsa uses less memory than CDO (aprox. 2.5 times
less) in all cases and in most of them is even faster. Moreover, Morsa also requires
less memory than XMI, although it is much slower. The difference in performance
between single load on demand and partial load on demand is due to the fact that
a very simple prefetching algorithm is used for partial load on demand, hence not
optimizing the subgraph that is loaded from the repository. The cache configuration
for single and partial load on demand is 900 objects size cache for Set0 and Set1
and 9000 for Set2, Set3 and Set4 with FIFO and LIFO cache replacement policies
for depth-first and breadth-first order, respectively.

6.2.3 Model update

Table 6.3 shows the results of the model update benchmark. These results reflect
only the update process, leaving the load and query apart. For the best speed test
case, CDO is always slower than XMI (except for the Set1 test model). On the other
hand, CDO uses far less memory than XMI for the least memory test case. Morsa
is faster and uses less memory than CDO and XMI in all cases except Set0 and
Set1, where CDO uses less memory, and Set2, where XMI is faster. These results
show that the update of the Ancestors, Depth and Breadth attributes, which support
partial load on demand and querying, is not very expensive.

6.2.4 Model delete

Table 6.4 shows the results of the model delete benchmark. Since the current Morsa
prototype uses MongoDB, the deletion of a model consists in dropping a MongoDB
collection, which is a very fast operation that demands almost no memory from the
client application. On the other side, a model deletion in CDO implies finding and
deleting all model elements, which is a very heavy and slow process.
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6.3 Overall assessment

The execution of the test benchmarks has shown that Morsa is indeed faster and uses
less memory than CDO for all the basic operations and the Grabats 2009 contest
query as the size of the input model grows. Moreover, CDO cannot handle the store
of the two largest models. Compared to XMI, Morsa is usually faster and uses less
memory when only a model partition is needed, e.g. the update test case. On the
other hand, Morsa is slower than XMI when a full model must be traversed. However,
when client memory is an issue, the growth of the memory needed by Morsa as the
models become larger is less dramatic than the one of XMI. Finally, it must be noted
that the traversal algorithm has a remarkable impact on the performance of Morsa,
so choosing the cache replacement policy that best matches it and configuring the
Morsa driver peroperly is a must.

Note that both Morsa and CDO are client-server persistence solutions, so there
is a communication overhead between the client application and the repository that
is not present in XMI, which is a local solution. We have chosen this assymetrical
conditions instead of storing the XMI files on a remote server because the latter is not
a realistic scenario and to show that even though there is a communication overhead,
Morsa and CDO still can perform better than XMI in some cases. Finally, CDO
provides features that are not yet supported by Morsa, such as version management
and fault tolerance. These features are outside the scope of this thesis, but its is
worth noting them because their implementation may had have an impact on the
results of the benchmarks; however, in order to minimize such impact, CDO was
configured for read-only access (that is, without versioning) were applicable and a
single repository was setup.
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Opt Solution Mode
Set0 Set1 Set2 Set3 Set4

Mem Time Mem Time Mem Time Mem Time Mem Time
- XMI - 38 246 199 497 955 2.680 1961 5.838 2.562 6.304

Speed CDO Native 23 327 19 358 174 7.816 - - - -
Speed Morsa Single 25 185 44 247 224 6.116 685 4.539 702 4.671
Mem CDO Native 4 344 6 297 62 11.326 - - - -
Mem Morsa Single 9 189 13 382 17 7.207 41 6.973 44 8.549

Table 6.3 Performance results of the model update benchmark

Solution Mode
Set0 Set1 Set2 Set3 Set4

Mem Time Mem Time Mem Time Mem Time Mem Time
Morsa - 4 90 4 72 4 161 4 202 4 206
CDO Native 103 24.289 289 64.480 2284 686.554 - - - -

Table 6.4 Performance results of the model delete benchmark
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7
Model Querying

Corporation teeshirt,
stupid bloody tuesday

This chapter presents the problem of model querying and how it is addressed by a
selected set of model querying approaches for EMF. The organization of this chapter
is as follows: first, the motivation of querying models is explained; then, the OCL
standard is briefly introduced; a set of dimensions that will describe and evaluate
both the selected model querying approaches and our own one (which is described
in Chapter 8) are defined; an example query is presented afterwards in order to
help visualize the different approches; finally, each model querying approach of the
selected set is presented and described in terms of the example query.

7.1 Motivation

Model querying is the process of applying the query operation defined in Section
2.4 to search for a set of model elements that satisfy a given condition inside a
(meta)model. The simplest way to query a model is to visually inspect it using a
visualization application like a tree or graph editor; this can be done by human
users. A further step would be using code that navigates the model while checking
the conditions on the navigated elements. Finally, a navigational approach such as
XPath [XPa99] can be used by both human users and client applications to make
the traversal of models easier.

As the acceptance of MDE grows, the former techniques have to be applied to
tackle more challenging problems that require managing complex and large mod-
els like those that represent source code [JS09], software architectures [ADM07] or
communication networks [SZFK12], which make visual inspection almost unfeasible;
moreover, the complexity of the search patterns used by applications such as model
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transformations is now beyond simple navigation rules and raw code querying seems
too verbose and hard to maintain to be considered.

Model querying has arisen as a relevant research topic in the area of MDE, as there
is a substantial amount of work done on such purpose (Section 7.5 describes some
approaches). Model querying is related to other MDE research areas as it can be a
foundation where techniques for model visualization, model comparison and model
versioning rely to simplify their implementations and make them more efficient.

7.2 The OCL standard

OCL [OCL06a][WK03] is a declarative language defined by the OMG as an add-on to
UML in order to complete UML models with information such as constraints, queries
and derived attributes; moreover, OCL can be applied to any MOF-compliant model.
The current version of OCL (2.3.1.) has been formally published as an ISO standard
(ISO/IEC 19507). In the context of MDE, OCL can be used as both a navigation
language for M2M and M2T transformations and a constraint language for defining
well-formedness rules for metamodels. Several implementations of OCL (or OCL-
like languages) have been built to be used in MDE applications (e.g. OCLinEcore
for Ecore models [OCL06b]). However, OCL is not supported by almost any storage
medium for models, so a translation step is usually needed; given the complexity of
OCL, this reduces its performance.

7.3 Dimensions on model querying

We have identified four key dimensions that a querying approach should address:
effectiveness, usability, safeness and efficiency. These dimensions summarize some
widely used criteria for evaluating and comparing programming languages. They
have also helped us evaluating the different model querying approaches (see Section
7.5 and Chapter 9).

We define the effectiveness of a querying approach as its ability to perform
complex queries with the least actual queries executed against the persistent stor-
age. This dimension summarizes the following evaluation criteria for programming
languages:

• Expresiveness : a querying approach should support every needed feature.

• Preciseness : a querying approach should be able to handle slight variations
in a uniform and simple way. For instance, object-oriented features such as
polymorphism.
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We measure the effectiveness of a querying approach as the amount of separated
queries that must be performed in order to retrieve the desired model elements
from a persistence solution: the less queries that are needed, the more effective the
language is. Each one of these queries (or subqueries) provides the other queries
intermediate results that, when combined, produce the desired result; each one of
this subqueries must be executed separetely. Some features that provide greater
effectiveness are nested subqueries and named variables (i.e. variables that hold the
result of an operation and can be accessed by later operations).

The usability of a querying approach is related to making reading and writ-
ing a query easier. This dimension summarizes the following evaluation criteria for
programming languages:

• Readability : a query should be easily understood by anyone just by knowing
the involved metamodel.

• Writability : queries should be written in a clear, concise, quick and correct
manner.

• Consistency : a querying approach should use a syntax that is similar to the
one of a well-established query language that users are familiar with.

We measure the usability of a querying approach as (i) the amount of declarative
(the less,the better) and imperative (the more, the worse) statements, (ii) the ab-
sence of explicit type castings and checks and (iii) non-query statements that may
appear mixed with the query ones (e.g. Java constructors) and (iv) the resemblance
to a well-established query language.

The safeness of a querying approach is related to the support for compilation or
interpretation given by the approach and its integration capabilities on existing or
new applications. This dimension summarizes the following evaluation criteria for
programming languages:

• Reliability : a querying approach should enforce its syntactic and semantic rules
prior to the execution of queries so no unexpected errors occur.

• Provability : the process of a query should be formally verifiable through the
analysis of that query.

• Portability : a querying approach should be usable in different applications
without requiring major changes in them.

We measure the safeness of a querying approach as (i) the enforcement of syntactic
and (ii) semantic rules of the language in design time, (iii) the independence from
any external tool rather than linked code to create, edit, execute or manipulate
queries in any way and (iv) the existence of a formal basis supporting the querying
approach.
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The efficiency of a querying approach is related to the amount of resources
that it consumes when executing a query. This dimension represents basically the
efficiency evaluation criterion for programming languages. We measure the efficiency
of a querying approach as the (i) time and (ii) memory needed for executing a query.
This is possibly the hardest dimension to address, since it strongly depends on the
underlying persistence solution and usually the more effective and usable a language
is, the less efficient it may be (as it has to deal with complex querying structures).

Our main goal is to develop a querying approach for Morsa that is focused on
efficient and usable querying which can be easily integrated with client applications
aciheving the most possible effectiveness. Section 7.5 describes some already existing
model querying approaches, while Chapter 8 shows the query language that we have
developed for Morsa.

7.4 Example query

An example query will be used on the following sections to illustrate how the different
approaches that have been analyzed in this thesis cover the four dimensions identified
in Section 7.3. We have chosen a different example than the one presented in Chapter
4 because its simplicity is better suited for describing each querying approach, using
short and readable examples. The runnnig example presented in Chapter 4 will be
used in the evaluation of MorsaQL and the selected querying approaches in Chapter
9.

Figure 7.1 State machine metamodel

The example query consists of a language for the definition of simple state ma-
chines, which is a canonical example that is frequently used in the literature. Figure
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7.1 shows the abstract syntax of this language. A StateMachine holds states and
transitions. States can be regular (State), initial (InitialState) or final (FinalState).
The Transitions go from a source state to a target state; the opposite relationships to
source and target are outgoing and incoming, respectively. All the metaclasses have
a name attribute. An example of a model that conforms to this metamodel is shown
in Figure 7.2 using the UML notation for state machines; the example describes the
basic operation of a simple compiler that reads source code, checks its syntax and
semantics and finally generates binary code. Note that the final state can be reached
from three different states following three transitions: two errors and one successful
step.

Figure 7.2 State machine model for a simple compiler

Along with the metamodel and the model, we have defined a query to help us
describe the syntax of each of the querying approaches we have analyzed. It consists
in obtaining every state that could yield to an error, that is, every State that is the
source of a Transition whose target is a FinalState and whose name is error. For the
example model, this query would find the Check syntax and Check semantics states.
Note that an error transition could have also been represented as a child class of
Transition, but we have not used this design in order to show queries that handle
both attributes and references. The OCL specification of this query would be (being
self the StateMachine object):

1 self . states−>select(state | state .outgoing −> exist(
2 transition | transition . oclIsKindOf( FinalState ) and ( transtion .name = ”error”)
3 )
4 )

Listing 7.1 OCL specification for the example query
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7.5 Existing querying approaches for EMF

Several approaches have been defined for querying EMF models. In this section,
some of them will be presented and described. We have chosen five approaches that
include plain code, two implementations of OCL, an API and an external DSL (see
Section 2.5); this choice has been made following the concerns of integration in client
applications, efficiency and use by the modeling community.

The following subsections describe each approach in terms of their syntax (both
abstract and concrete) and their semantics (i.e. the way they calculate queries) using
the example query to illustrate them. Since APIs are not strictly languages, we will
consider that their classes and relationships are their abstract syntax and that their
concrete syntax are the way their instances are created and interact through method
parameterization and invocation. The characterization of each approach using the
dimensions defined in Section 7.3 will be done in Chapter 9.

7.5.1 Plain EMF

The simplest approach to model querying in EMF is to use plain EMF Java code.
Both generated and dynamic EMF classes provide methods to navigate models fol-
lowing the relationships between their elements: the former classes provide dedi-
cated, strongly-typed methods while the latter make use of the reflective API of
EMF. Virtually any query can be performed using this approach (and usually other
approaches rely on it under the scenes) and packed inside a method or a class. How-
ever, even using methods or classes to organize and modularize the code, a query
could become too complex to be easily written; moreover, type checking and casting
are mandatory when using dynamic EMF, and even with generated models they are
necessary when dealing with type hierarchies, making code even more difficult to
write, read and maintain. On the other side, this approach benefits itself from all
the operations and control structures that Java provides, e.g. loops, conditionals,
recursion, etc.

Listing 7.2 shows the Java code for implementing the example query in plain
EMF using both dynamic and generated EMF. The generated EMF code is briefer,
clearer and safer since the strong typing of the objects prevents the use of reflective
methods and type checks. As can be seen, a query in plain EMF is just a matter of
navigating through relationships and checking constraints using plain Java code.

1 //With dynamic EMF
2 Collection <EObject> states = new LinkedList<EObject>();
3 EObject stateMachine = (EObject)resource.getContents().get(0) ;
4 List<EObject> transitions = stateMachine.eGet(
5 stateMachine.eClass () . getEstructuralFeature (” transitions ”)) ;
6
7 for (EObject transition : transitions ) {
8 EObject target = (EObject) content.eGet(

92



Model Querying

9 content. eClass () . getEStructuralFeature (”target”)) ;
10 if ( target . eClass () .getName().equals(”FinalState”)) {
11 String name = (String)content.eGet(
12 content. eClass () . getEstructuralFeature (”name”));
13 if (name.equals(”error”)) {
14 EObject source = (EObject)content.eGet(
15 content. eClass () . getEstructuralFeature (”source”)) ;
16 states .add(source);
17 }
18 }
19 }
20
21 //With generated EMF
22 Collection <State> states = new LinkedList<State>();
23 StateMachine stateMachine = (StateMachine)resource.getContents().get(0) ;
24
25 for ( Transition transition : stateMachine. getTransitions ()) {
26 State target = transition .getTarget() ;
27 if ( target instanceof FinalState ) {
28 if ( transition .getName().equals(”error”)) {
29 states .add( transition .getSource()) ;
30 }
31 }
32 }

Listing 7.2 Example query with plain EMF

The above listed code does the following:

1. An empty list is created to accomodate the results of the query. Note that for
dynamic EMF, the list is of kind EObject, while for generated EMF, the list is
of kind State (lines 2 and 18).

2. The root of the model (i.e. the StateMachine object) is obtained from the
resource variable, which is an instance of the Resource EMF interface used to
represent a model storage (lines 3 and 19).

3. A list containing all the Transitions is obtained using a reflective method (eGet)
or a strongly-typed one (getTransitions) for dynamic and generated EMF, re-
spectively (lines 4 and 21).

4. The list of Transitions is iterated (lines 6 and 21), obtaining their target States
(lines 7 and 22) and checking that they are of instances of FinalState (lines 8
and 23).

5. The name attribute of the Transition is obtained (lines 9 and 24) and, if it is
equal to error (lines 10 and 24), the source state of the Transition is obtained
(lines 11 and 25) and stored in the list (lines 12 and 25).

The architecture of a querying approach based on plain EMF is basically the
one of the EMF framework, because there are no additional features built on top
of it, although it can use modularization mechanisms such as method and class
encapsulation.
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7.5.2 EMF Query

EMF Query [EMF12] is an EMF component for model querying released in 2005
as an Eclipse Project. It is designed as an API that somehow resembles an internal
DSL (see Section 2.5), since it has classes named after SQL keywords (SELECT,
FROM and WHERE) but it cannot be considered as one, because there is too much
syntactic noise (i.e. presence of syntactic elements from the host language, such as
initializer methods) on its concrete syntax. Figure 7.3 shows the abstract syntax of
EMF Query, which involves the following classes:

• The SELECT class represents query statements and is the entry point from
which queries are built. An instance of this class is formed by a FROM and a
WHERE objects and stores the maximum number of results to be found.

• The FROM class is used to specify the search scope of a query, i.e. the root
object from which the query starts to search for results. It is internally repre-
sented as an IEObjectSource. Such a search scope may be a single EObject or
a collection of them.

• The WHERE class is used as the start point of the conditions that must be
satisfied by the results of the query.

• The Condition class represents the conditions that the query must check. It is
the root of the hierarchy of conditions. Additional conditions can be created
and linked using the AND and OR methods.

• The EObjectCondition class represents the conditions that a model element
must satisfy. Its subclasses EObjectAttributeValueCondition, EObjectReference-
ValueCondition and EObjectTypeRelationCondition check attribute and reference
values and type conformance, respectively. An EObjectAttribuveValueCondition
uses a DataTypeCondition object for the actual value check.

• The DataTypeCondition represents conditions applied to primitive values such
as strings or integers. It has subclasses for the different EMF primitive types
and their operations (e.g. greater than, equals, etc.); these are not shown for
the sake of clarity.

• The IQueryResult interface represents the results from a query as an EObject
collection.

Listing 7.3 shows the source code that specifies the query from the example query
using the concrete syntax of EMF Query. There are four things worth noting in it:

• A query is created as a SELECT object that is passed its components objects
(FROM and WHERE) as parameters of its initialization method, as seen in
lines 12 to 18 and 25 to 33.
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Figure 7.3 Abstract syntax of EMF Query

• EObjectReferenceValueCondition objects are used to navigate through the rela-
tionships between model elements by specifying first the relationship to nav-
igate and then the condition to filter navigated elements, as seen in lines 14
and 15.

• There is little difference in the size of the query code between dynamic EMF
and generated EMF because of the use of EReference and EAttribute objects
to specify the structural features that are being checked, as seen in lines 27
and 32.

• Using EReference and EAttribute objects imply the need of obtaining the EClass
objects for states, transitions and final states on advance when using dynamic
EMF, as seen in lines 7 to 10. This makes the code longer.

1 //With dynamic EMF
2 EObject stateMachine = (EObject)resource.getContents().get(0) ;
3 List<EObject> states =
4 ( List<EObject>)stateMachine.eGet(stateMachineClass.eClass()
5 . getEstructuralFeature (”states”)) ;
6
7 EPackage stateMachinePackage = stateMachine.eClass().getEPackage();
8 EClass stateClass = (EClass)stateMachinePackage. getEClassifier (”State”);
9 EClass transitionClass = (EClass)stateMachinePackage. getEClassifier (” Transition ”);

10 EClass finalStateClass = (EClass)stateMachinePackage. getEClassifier (”FinalState”);
11
12 SELECT select = new SELECT(Integer.MAX VALUE,
13 new FROM(states),
14 new WHERE(new EObjectReferenceValueCondition ((EReference)stateClass.getEstructuralFeature(”outgoing”),
15 new EObjectReferenceValueCondition( (EReference) transitionClass . getEstructuralFeature (”target”),
16 new EObjectTypeRelationCondition( finalStateClass )) .AND(
17 new EObjectAttributeValueCondition((EAttribute) transitionClass .
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18 getEstructuralFeature (”name”), new StringValue(”error”)))))) ;
19
20 IQueryResult result = select .execute() ;
21
22 //With generated EMF
23 StateMachine stateMachine = (StateMachine)resource.getContents().get(0) ;
24
25 SELECT select = new SELECT(Integer.MAX VALUE,
26 new FROM(stateMachine.getStates()),
27 new WHERE(new EObjectReferenceValueCondition(StateMachinePackage
28 .getState Outgoing(),
29 new EObjectReferenceValueCondition(StateMachinePackage.
30 getTransition Target () ,
31 new EObjectTypeRelationCondition( finalStateClass )) .AND(
32 new EObjectAttributeValueCondition(StateMachinePackage.
33 getNamedElement Name(), new StringValue(”error”))))));
34
35 IQueryResult result = select .execute() ;

Listing 7.3 Example query with EMF Query

The query engine of EMF Query is rather simple: the SELECT object gets the
search scope from the FROM object and then iterates over all its descendants, check-
ing the conditions specified under the WHERE object for each one of them, which is
more or less what plain EMF does, so EMF Query can be considered as a facade to
simplify the coding of queries by presenting the client a more declarative interface.

7.5.3 MDT OCL

MDT OCL [OCL12] (a.k.a. Eclipse OCL) is an Eclipse project dedicated to the im-
plementation of the OCL standard language (see Section 7.2) for the EMF modeling
framework, both for model querying and for specifying restrictions on metamodels.
MDT OCL provides an external DSL and an API named OCLInEcore and OCLInter-
preter, respectively, to define OCL queries and constraints. OCLInEcore provides a
text editor built with XText [EB10] that can be used within the metamodel editor
of Eclipse to define and evaluate OCL constraints and queries. In this thesis we will
consider OCLInterpreter, which is the API that can be used by client applications to
define OCL queries at runtime.

The specification for the abstract and concrete syntax details of OCL can be
found in [OCL06a]. The abstract and concrete syntax of the OCLInterpreter API are
described below. Figure 7.4 shows the abstract syntax of the OCLInterpreter API,
involving the following classes:

• The OCL class represents the MDT OCL engine, acting as a facade for the
OCL parser and evaluator. It has to be initialized with an EnvironmentFactory
that provides its Environment.

• The Environment class represents a metamodeling framework, as MDT OCL
may also work with UML models. EcoreEnvironment is the environment for
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EMF and is provided by the EcoreEnvironmentFactory, which is a subclass of
EnvironmentFactory. It also stores the context of a query, i.e. the type of its
self OCL variable.

• The OCLHelper class encapsulates the OCL parser and is obtained from an
OCL object configured for a certain environment. When supplied an EClassifier
as its context, it can parse text queries, generating OCLExpression objects.

• The OCLExpression class represents parsed OCL expressions, which may be
constraints or queries.

• The Query class represents the OCL evaluator, which evaluates expressions
represented as OCLExpressions against a given Environment, producing a col-
lection of objects as a result, which may be model elements or plain Java
objects. In order to evaluate the query, it must be passed an EObject that acts
as the self variable of OCL.

Figure 7.4 Abstract syntax of the OCLInterpreter MDT OCL API

Listing 7.4 shows the implementation of the running example query using the
MDT OCL approach. Note that the only differences between dynamic and generated
EMF are the first and the last lines (lines 2 and 16 for dynamic EMF and lines 19
and 33 for generated EMF), because the parsing done by OCLHelper automatically
resolves the class names for dynamic EMF.

1 //With dynamic EMF
2 EObject stateMachine = (EObject)resource.getContents().get(0) ;
3 EClass stateMachineClass = (EClass)stateMachinePackage. getEClassifier (”StateMachine”);
4
5 OCL<?, EClassifier , ?, ?, ?, ?, ?, ?, ?, Constraint , EClass, EObject> ocl =

OCL.newInstance(EcoreEnvironmentFactory.INSTANCE);
6
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7 OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();
8 helper .setContext(stateMachineClass) ;
9

10 OCLExpression<EClassifier> expression = helper.createQuery(
11 ” self . states −> ”
12 + ”select(st : State | st .outgoing −> ”
13 + ”exists(t : Transition | t . target . oclIsKindOf( FinalState ) ”
14 + ”and t.name = ’error’))”
15 ) ;
16
17 Query<EClassifier , EClass, EObject> query = ocl.createQuery(expression) ;
18 Collection <EObject> result = (Collection<Object>)query.evaluate(stateMachine);
19
20 //With generated EMF
21 StateMachine stateMachine = (StateMachine)resource.getContents().get(0) ;
22
23 OCL<?, EClassifier , ?, ?, ?, ?, ?, ?, ?, Constraint , EClass, EObject> ocl =

OCL.newInstance(EcoreEnvironmentFactory.INSTANCE);
24
25 OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();
26 helper .setContext(stateMachine.eClass ()) ;
27
28 OCLExpression<EClassifier> expression = helper.createQuery(
29 ” self . states −> ”
30 + ”select(st : State | st .outgoing −> ”
31 + ”exists(t : Transition | t . target . oclIsKindOf( FinalState ) ”
32 + ”and t.name = ’error’))”
33 ) ;
34
35 Query<EClassifier , EClass, EObject> query = ocl.createQuery(expression) ;
36 Collection <State> result = (Collection<State>)query.evaluate(stateMachine);

Listing 7.4 Example query with MDT OCL

The above code listing does the following:

1. An OCL instance is created passing it an instance of the EcoreEnvironmentFac-
tory class (lines 5 and 23).

2. An OCLHelper instance is created (lines 7 and 8) and its context is set to the
EClass that represents the StateMachine metaclass (lines 25 and 26).

3. An OCLExpression instance is created, passing in the string that specifies the
OCL query (lines 10 to 15 and 28 to 33).

4. A Query instance is created using the OCLExpression object (lines 17 and 18)
and the result is obtained by invoking its evaluate method (lines 35 and 36).

The MDT OCL engine parses OCL expressions and builds their abstract syntax
trees. Then, using a visitor pattern, it evaluates the expressions against the model
elements. MDT OCL uses knowledge from the metamodel to narrow the search space
and avoid traversing entire model partitions as plain EMF and EMF Query do.
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7.5.4 IncQuery

IncQuery (or EMF-IncQuery) [BHH+12] is a framework for defining declarative
queries against EMF models. Its query language is implemented as an external DSL
generated with XText. This DSL allows queries to be represented as graph patterns
that are evaluated using a variation of the Rete algorithm [For82], which computes
models as graphs. The novel feature of IncQuery is that it provides an incremental
querying mechanism that tracks changes in model elements and then adapts its
representation of the already executed queries so that they do not have to be fully
evaluated again. IncQuery generates Eclipse plugins for each query that have to be
registered in the Eclipse Platform; although this thesis is focused on approaches that
can be seemlessly integrated within the code of client applications, we have selected
this approach because of its focus on query optimization.

The abstract syntax of IncQuery is shown in Figure 7.5, including the following
classes:

• A Package is a collection of Patterns defined for a given set of EPackages which
it must Import. This is the root of IncQuery’s abstract syntax.

• A Pattern is a collection of conditions that must be satisfied by a set of pa-
rameters (i.e. model elements), which are represented as Variables typed by
EClasses. However, Variables may be defined inside Constraints using dynamic
typing (i.e. without declaring their types).

• A Constraint is a condition that must be satisfied by a Variable. This is the root
of a hierarchy of conditions that perform specialized tasks such as checking type
conformance (EClassConstraint for classes and EDataTypeConstraint for primi-
tive types) and equality or unequality between variables (MatchingConstraint).

• A RelationConstraint checks that the value of a structural feature is equal to a
primitive value (EAttributeConstraint) or a variable (EReferenceConstraint). If
the variable has not been already declared, the EReferenceConstraint navigates
the reference and stores its value on that variable. For more complex attribute
conditions, CheckConstraints allow defining imperative blocks with expressions.

• A PatternConstraint invokes a pattern and stores its results in a local variable.

Listing 7.5 shows the implementation of the running example query using Inc-
Query. The meaning of each statement on the test pattern is:

1. Line 7: get all the outgoing Transitions from S and store them in T. Note that
the type of variable T is dynamically inferred at runtime.

2. Line 8: get the target from each Transition T and store it in FS. Note that even
the multiplicity of a variable changes dynamically.

3. Line 9: check that FS is an instance of FinalState.
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Figure 7.5 Abstract syntax of IncQuery

4. Line 10: check that the name of T is error.

After writing the pattern file, it is automatically compiled by XText, producing a
Matcher and a MatcherFactory classes that need to be registered as Eclipse plugins.
Then, a client application may request them to a registry in order to execute the
query against an entire Resource. The results of the query are returned as IPattern-
Match objects, which are maps of objects indexed by the names of the parameters
defined in the pattern (in this case, the only parameter is S). Note that only the
source code for generated EMF is shown, since IncQuery cannot work with dynamic
EMF, as it requires the generation of the EMF code for the metamodels and their
registration as Eclipse plugins.

1 //IncQuery file
2 package StateMachine
3
4 import ”es.modelum.statemachine”
5
6 pattern test (S : State) = {
7 State .outgoing(S, T);
8 Transition . target (T, FS);
9 FinalState (FS);

10 Transition .name(T, ”error”);
11 }
12
13 //Invocation from client application
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14 List<State> result = new LinkedList<State>();
15 IncQueryMatcher matcher = MatcherFactoryRegistry
16 .getMatcherFactory(”StateMachine.test”)
17 .getMatcher(resource) ;
18
19 Collection <IPatternMatch> matches = matcher.getAllMatches();
20
21 for (IPatternMatch match : matches) {
22 result .add(match.get(”S”));
23 }

Listing 7.5 Example query with IncQuery

IncQuery evaluates patterns by representing the source model as a VPM [VP03]
graph and then executing the Rete algorithm against that graph. Once a pattern
is calculated, its results are cached and if some model element is modified, every
evaluated pattern is evaluated again for that model element, saving execution time.

7.5.5 CDO OCL

The recommended query language for CDO (see Section 3.2.4) is OCL. An MDT
OCL engine runs on the server side of CDO and evaluates queries against the dis-
tributed objects. The main difference between CDO OCL and MDT OCL is the
interface, which in the former is much simpler. The only classes involved in a CDO
OCL query are:

• CDOView or CDOTransaction for read-only access. These classes represent
transactions, as explained in Section 3.2.4.

• CDOQuery for defining a query as plain text. This class is intended to generate
queries for different languages, so the name of the language must be passed
as a parameter along with the search scope and the context. The results of
the query are returned as a generic type or a generic list, so there is no type
casting required.

Listing 7.6 shows the implementation of the example query using CDO OCL. Note
that only generated EMF has been used since CDO requires it. Also, note that there
is no direct relationship between the Resource from where the StateMachine is loaded
and the CDOView; this is due to the fact that the scope of a transaction in CDO is
the whole repository, not just a model.

1 CDOSession session = getSession();
2 CDOView view = session.openView();
3
4 StateMachine stateMachine = (StateMachine)resource.getContents().get(0) ;
5 CDOQuery query = view.createQuery( ”ocl”, ” self . states −>
6 + ”select(st : State | st .outgoing −> ”
7 + ”exists(t : Transition | t . target . oclIsKindOf( FinalState ) ”
8 + ”and t.name = ’error’))”, stateMachine);
9
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10 List<State> result = query.getResult() ;

Listing 7.6 Example query with CDO OCL

The server side of CDO uses MDT OCL to parse and evaluate queries against
the distributed objects held by the server. It is worth noting that a query is not
evaluated directly against the database; instead, all the model elements that may
be involved in that query have to be loaded from the database and held in the server
which, as will be seen in Chapter 9 delivers poor performance.
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8
MorsaQL

If the Sun don’t come,
you get a tan from
standing in the
English rain

In this chapter we present our approach to model querying using Morsa, our
own model repository, which was introduced in Chapter 5. As done with the other
approaches in Section 7.5, the query language of Morsa will be described in terms
of its abstract syntax, its concrete syntax and its semantics.

8.1 Design goals

As explained in Section 7.1, a dedicated querying solution is a must when having
to perform complex queries against large models. After studying the approaches
described in Section 7.5 and testing some of them with Morsa, we found their per-
formance too low, mainly because of the way they traverse models to query them.
For this reason, we decided to design and implement our own query language for
Morsa, called Morsa Query Language (MorsaQL).

The main design goals of MorsaQL are its efficiency, usability and safeness, as
defined in Section 7.3. Efficiency on MorsaQL is achieved through its semantics,
which optimize the access to the database backend by minimizing the amount of data
that is transferred between the client and the server; in this way, a client application
can query the Morsa repository using very little memory.

The usability of MorsaQL is achieved through its implementation as an inter-
nal DSL, which provides a natural syntax with declarative statements and no type
checking, resulting in a readable and writable language that is consistent with com-
mon notations as it mimics the syntax of SQL and EMF Query.
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Finally, the safeness of MorsaQL also relies on its implementation as an internal
DSL, making it portable as it is easy to integrate queries on source code without
any external parser and reliable, thanks to its syntactic checking capabilities. We
have chosen to leave effectiveness as a secondary goal, since we are focused on
integrating our query language in client applications in a usable and efficient way,
rather than to provide a highly expressive language; however, preciseness has been
tackled, supporting polymorphism.

The design of MorsaQL is inspired on SQL as a query is built using a SELECT
- FROM - WHERE schema, although it uses object navigation instead of relational
algebra to define the constraints of a query. This choice has been made to make
the language consistent with both SQL and EMF Query, which is the recommended
query language for EMF; we have not chosen to be consistent with OCL since
it is too complex to be implemented as an internal DSL. The SELECT operator
declares the type of the resulting element; the FROM operator declares the context
(a.k.a. search scope) of the query, that is, the ancestor to all the possible results;
finally, the WHERE operator specifies the constraints that the results must satisfy
using navigational statements that narrow the search scope by traversing the model
through its relationships and conditions that check the actual contraints.

8.2 Abstract syntax

The abstract syntax of MorsaQL is shown in Figure 8.1. Although it is an internal
DSL, the classes are not named after the keyword of the operation they represent
as it is done in EMF Query (see Section 7.5.2): the QueryBuilder provides methods
to build queries in a semantic-noise free way without imposing such constraints on
the rest of the classes. The main classes provided by MorsaQL for building model
queries are:

• A MorsaQuery is a query that can be passed to a MorsaResource for its parsing
and execution. Such a query cannot be modified.

• A ParseableQuery is a query that can be parsed by QueryParser, normally un-
der request of a MorsaResource or a MorsaDriver internally. The result of this
parsing is a set of MorsaObjects as explained in Section 8.4. The difference
between a ParseableQuery and a MorsaQuery is that the former can be modi-
fied to parameterize the following attributes of the query: the maximum depth
(see Section 5.1.2) of the results (depth), the maximum number of them (limit),
whether they are returned as proxies or internally resolved by the MorsaDriver
(asProxies), whether to consider or not the subtypes of the involved metatypes
(includeSubtypes) and to only return the number of results found (count).
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• The QueryBuilder is the expression builder (see Section 2.5) that manages the
building of queries so that the process may be performed as the instantiation
of an internal DSL. It provides methods for instantiating the different classes
in a natural way that does not involve the use of Java constructors, reducing
the syntactic noise.

• A SelectStatement is the root of a MorsaQL query. It declares the expected
metatype of the results and gives access to the rest of the elements in a query.

• A FromStatement specifies the context of a query, i.e. its search scope, in the
form of an EObject or a collection of them. If no context is given, the Query-
Parser assumes that the query is performed against the roots of a MorsaRe-
source. The initial context for the first condition is, by default, conformed by
all the objects of the metatype declared in the SelectQuery that are descen-
dants of the context; this saves navigation from the root of the model to the
elements of interest.

• A WhereStatement is, like the WHERE class of EMF Query, the start point from
where the constraints that must be satisfied by a query result are specified.

• An AbstractCondition is a condition (i.e. constraint) that must be satisfied by
the results of the query. It checks a given feature of a given metatype and it is
the root of the rest of the condition classes.

• A NavigateStatement represents a navigation over a reference of a partial result
(i.e. a model element that satisfies the previous conditions). This is similar to
the EObjectReferenceValueCondition of EMF Query. The elements on the other
side of the navigated reference must satisfy the nested condition referenced by
nextCondition, which uses the result of the navigation as its context.

• A TerminalCondition represents a condition whose results cannot be navigated
because they are primitive values. As its name suggests, every nesting of condi-
tions must end with a TerminalCondition. This class is the root class for Boolean-
Condition conditions such as equals or not equals, StringCondition conditions
such as equals or substring, NumericalCondition conditions such as greater or
less than and CollectionCondition conditions such as includes or empty ; there
is a class for representing each condition, although they have been ommitted
from Figure 8.1 for the sake of readability.

• A TypeCondition checks the type of a feature value. The difference between
a TypeCondition and a NavigationCondition is that the former is a terminal
condition and it implies no navigation, so the context of the condition remains
the same.

• An Operator is a boolean operator (i.e. and and or, not shown) that can relate
the results of various conditions. The condition that owns the operator is its
left side, while its rightSide reference points the condition that is the right side
of the operator. The condition on the right side inherits the context from the
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one on the left side, that is, the one declared on the FromStatement object or
the result of the last NavigateCondition.

Figure 8.1 Abstract syntax of MorsaQL

8.3 Concrete syntax

As explained in Section 8.1, the concrete syntax of MorsaQL has been designed to
make it consistent with the most used query language (SQL) and the current EMF
querying approach (EMF Query); this means that a query is built using SELECT -
FROM - WHERE block. The constraints (a.k.a. conditions) of the query are specified
against the current context, which is narrowed using the navigate method that nav-
igates the relationships of the model elements in the search scope; each constraint
is specified using a keyword (i.e. a method), a structural feature (or its name) and
a value. Once a query has been built, the done method makes it available as a
MorsaQuery object that can be queried using a MorsaResource instance.

The concrete syntax of MorsaQL has been implemented as an internal DSL with
the usability and safeness in mind. The QueryBuilder class is statically imported to
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allow a natural-looking use of the method chaining and nested function patterns (see
Section 2.5) where the names of the methods are the keywords of the language and
no Java constructors are used. This can be seen in Listing 8.1, which shows the code
that must be written to perform the example query defined in Section 7.4.

1 //With dynamic EMF
2 EObject stateMachine = (EObject)resource.getContents().get(0) ;
3
4 MorsaQuery query = SELECT(”es.modelum.statemachine/State”)
5 .FROM(stateMachine)
6 .WHERE(navigate(”outgoing”)
7 .asType(”es.modelum.statemachine/Transition”)
8 . INSTANCEOF(”target”, ”es.modelum.statemachine/FinalState”)
9 .AND(STREQ(”name”, ”error”))).asProxies().done();

10
11 Collection <EObject> result = morsaResource.query(query);
12
13 //With generated EMF
14 StateMachine stateMachine = (StateMachine)resource.getContents().get(0) ;
15
16 MorsaQuery query = SELECT(StateMachinePackage.getState()
17 .FROM(stateMachine).
18 .WHERE(navigate(StateMachinePackage.getState Outgoing())
19 . INSTANCEOF(StateMachinePackage.getTransition Target(), StateMachinePackage.getFinalState())
20 .AND(STREQ(StateMachinePackage.getTransition Name, ”error”))).asProxies().done();
21
22 Collection <EObject> result = morsaResource.query(query);
23
24 //Using find
25 StateMachine stateMachine = (StateMachine)resource.getContents().get(0) ;
26
27 Collection <EObject> result = SELECT(StateMachinePackage.getState()
28 .FROM(stateMachine)
29 .WHERE(navigate(”outgoing”)
30 . INSTANCEOF(”target”, es.modelum.statemachine/FinalState”)
31 .AND(STREQ(”name”, ”error”))).asProxies().find();

Listing 8.1 Example query with MorsaQL

The above listed code does the following:

1. Line 4 (line 16 for generated EMF) creates a SelectStatement that specifies
that the type of the result must be State.

2. Line 5 (line 17 for generated EMF) creates a FromStatement that specifies the
root context of the query. The actual context for the first condition will be the
set of States that are descendants of stateMachine.

3. Line 6 (line 18 for generated EMF) creates a WhereStatement that serves as the
container for all the conditions. The navigate method instances a Navigation-
Statement that navigates the outgoing reference of each State, retrieving every
Transition element. The Transition type of the navigated elements is ensured
by the asType method (line 7), which is optional.

4. Line 8 (line 19 for generated EMF) creates an INSTANCEOFCondition condi-
tion (subclass of TypeCondition) that checks if the value pointed by the target
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reference of each Transition obtained in Line 6 (line 18 for generated EMF) is
an instance of the FinalState class.

5. Line 9 (line 20 for generated EMF) creates an ANDOperator (subclass of Op-
erator) that joins the condition built in line 8 (line 19 for generated EMF)
with a STREQCondition (subclass of StringCondition) that checks if the value
of the name attribute of each Transition obtained in line 8 (line 19 for generated
EMF) is error. The AND and OR operators are short-circuited in MorsaQL.
The done method tells the QueryBuilder class to stop building the query, re-
turning a MorsaQuery object that contains the query that must be parsed as a
ParseableQuery object; its execution is then parameterized using the asProxies
method, which tells the driver to not resolve the results and return them as
proxies.

As can be seen, the concrete syntax of MorsaQL features high usability thanks
to the extensive use of the QueryBuilder methods (the ones that do not define an
explicit caller object, such as navigate), following a SQL-like syntax where no Java
keywords appear and the parameters of the methods have been reduced to the ones
that are strictly necessary for querying purposes.

For even less code usage, ParseableQuery provides a find method that automatically
requests the execution of the query to the MorsaResource, as shown in lines 25-31,
without having to explicitly use a MorsaQuery object. The safeness goal is achieved
thanks to its implementation as an internal DSL, since the syntactic correctness
of a query is checked by the Java compiler and the integration between a client
application and a query is clean.

Note that in Listing 8.1, the main difference between using dynamic EMF and
generated EMF is that metatypes and feature declarations may be done using Java
objects in the latter, as it is done in EMF Query (see Section 7.5.2); moreover,
they can be also declared as strings when using generated EMF. It is also worth
noting that the type check done by the asType (line 7) method is not compulsory:
if ommitted (line 18), the metatype of the navigated element is the one specified by
the reference.

8.4 Semantics

We will now describe how MorsaQL performs a query. Its semantics has been devised
to achieve good efficiency through low execution time and client memory usage. The
process of performing a query consists in generating a different MorsaObject for each
one of its conditions and then use them to execute database queries incrementally,
fetching partial results that conform the search scope of the next conditions until
the actual results are obtained; several MorsaObjects can be packed together so that
less queries are effectively performed against the database.
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A MorsaObject that represents a condition is built as a prototype of the results to
be fetched, following a query by example approach. As explained in Section 5.1.2, a
MorsaObject is composed of a descriptor and a content. In the case of such a proto-
type, the descriptor declares the expected type of the results (MetaType key), the
model elements that conform the root context (Ancestors key) and the identifiers
(MorsaID key) of the model elements that conform the current context (i.e. the al-
ready obtained partial results). The content of the MorsaObject declares the features
that must be checked by the query and their expected values, which can be regular
expressions, depending on their type.

The linking between conditions made by NavigateStatement and Operator objects
is parsed as a tree of nested MorsaObjects. A MorsaObject parsed from a Navigat-
eStatement contains a special key for the nextCondition reference in its descriptor,
being its value a nested MorsaObject representing the next condition, and a special
key called Ref in its content for the name of the reference that is navigated. A con-
dition that is linked to another one by an Operator object declares a special key in
its descriptor for its rightSide reference, being its value a nested MorsaObject repre-
senting the linked condition. Figure 8.2 shows how the example query is performed
through its different stages, which are the following:

1. A generation stage parses each AbstractCondition into a MorsaObject that rep-
resents the condition as a query to the database; the MorsaEncoder encodes
these objects into the database backend’s native representation. For our Mon-
goDB prototype, the MorsaObjects are transformed into DBObjects. For the
example query, the following actions are performed:

a) The NavigateStatement is parsed into a MorsaObject with the following
decriptor keys:

• MetaType: the type of the expected results is State, as it is the ex-
pected type of the results of the query.

• Ancestors : the root context of the query is the stateMachine model
element.

• nextCondition: the nested MorsaObject representing the next condi-
tion (shown in the figure as an aggregation).

Its content declares the Ref key with the name of the outgoing reference,
which is the one that is navigated.

b) The INSTANCEOFCondition is parsed into a MorsaObject with the follow-
ing descriptor keys:

• MetaType: the type of the expected result is Transition, since it is the
metaclass that declares the target reference.
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• Ancestors : the root context of the query is the stateMachine model
element.

• rightSide: the nested MorsaObject representing the condition linked
by the ANDOperator operator (shown in the figure as an aggregation).

Its content declares the target key with a regular expression that checks
that the type of the target reference value is an instance of FinalState.

c) The STREQCondition is parsed into a MorsaObject with the following
descriptor keys:

• MetaType: the type of the expected result is Transition, since it is the
metaclass that declares the error attribute.

• Ancestors : the root context of the query is the stateMachine model
element.

Its content declares the name key that checks that the name attribute
value is error.

2. A packing stage packs all the conditions that have been joined using Opera-
tors into a mininal set of MorsaObjects, since they all have the same context
as they are TerminalConditions. This reduces the amount of queries that are
sent to the database, increasing the efficiency of the whole querying process.
In the example query, this packing joins the MorsaObjects parsed from the
INSTANCEOFCondition and the STREQCondition into a single one with the
following descriptor keys:

• MetaType: the type of the expected result is Transition, which is the com-
mon type of the packed conditions.

• Ancestors : the root context of the query is the stateMachine model ele-
ment.

Its content declares the target and name keys that check the values of the target
and name structural features, respectively. The MorsaObject parsed from the
NavigateStatement now contains the new packed MorsaObject in its nextCon-
dition key.

3. Finally, an execution stage transforms the MorsaObjects into database queries
and sends them to the database. The conditions that are nested in NavigateS-
tatements are evaluated in first place to reduce the context of the latter. For
the example query, this would be the following:

a) The first query to be sent is the one contained by the NavigateStatement,
which returns the MorsaIDs of its results: CheckSyntaxToEnd, which is
the transition between the Check syntax and End states and CheckSeman-
ticsToEnd, which is the transition between the Check semantics and End
states (see Figure 7.2).
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b) The query for the NavigateStatement is then executed using the MorsaIDs
of the results of its referenced query (CheckSyntaxToEnd and CheckSeman-
ticsToEnd, their actual MorsaIDs are not shown for the sake of readabil-
ity) as its context, declaring them in its MorsaID descriptor key. This
query returns the information needed to build the proxies that represent
the results: the Check syntax and Check semantics states, shown in the
figure using the notation from Figure 7.2.

c) The results are then returned to the client application as proxies, which
would be resolved automatically by the MorsaDriver when they are ac-
cessed.

Figure 8.2 Semantics of the Morsa Query Language for the example query

For even better efficiency, Morsa uses a cache that stores the results of every query
as MorsaReferences. If a cached query is executed again, its results are resolved from
the ObjectCache if they are still in memory or otherwise fetched from the database
without having to recalculate the query.
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9
Evaluation of MorsaQL

See how they fly
like Lucy in the sky,
see how they run

In this chapter, the evaluation of the different querying approaches presented in
Section 7.5 and the Morsa Query Language will be shown. The test case used for
the evaluation is the query proposed in the running example introduced in Chapter
4, whose implementation in OCL is shown in Listing 4.1. The test models are the
ones shown in Table 4.1.

This chapter is organized as follows: first, the effectiveness, usability and safe-
ness dimensions of each approach (as defined in Section 7.3) will be tested by
analyzing the code used to build the test query; the efficiency dimension will be
evaluated by executing the different querying approaches over three persistence so-
lutions: XMI (see Section 3.2.1), CDO (see Section 3.2.4) and Morsa (see Chapter
5); finally, the results of the evaluation will be commented.

9.1 Evaluated approaches

Not every combination of querying approaches and persistence solutions can be
done: some of the former are only available for the persistence solutions they are
designed to interact with. Table 9.1 explains the possible combinations between
querying approaches and persistence solutions, showing also which are the default
and recommended ones for each persistence solution. In the following, each combi-
nation will be named after its persistence solution and its querying approach (e.g.
XMI+EMF stands for plain EMF over XMI).

We have not considered IncQuery over Morsa or CDO because it basically indexes
and transforms a whole model before querying it, which is highly inefficient for a
model repository as it is a case of full load (see Section 6.2).
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XMI MORSA CDO
EMF Default Default Default

EMFQ Recommended Tested Tested
OCL Tested Tested Tested
INCQ Tested Not considered Not considered
COCL Not available Not available Recommended
MQL Not available Recommended Not available

Table 9.1 Combinations between persistence solutions and querying approaches.
EMF stands for plain EMF, EMFQ stands for EMF Query, OCL stands
for MDT OCL, INCQ stands for Inc Query, COCL stands for CDO
OCL and MQL stands for MorsaQL

9.2 Effectiveness, usability and safeness evaluation

The first three dimensions identified on Section 7.3 will be evaluated together in this
section. For each querying approach, the source code of the test query will be shown
and used to evaluate its effectiveness, usability and safeness using the metrics
shown in Tables 9.2, 9.3 and 9.4, respectively. These metrics are aligned with the
ones commented in Section 7.3.

Metric Meaning Unit
NQ Number of queries against the persistent storage Integer

Table 9.2 Evaluation metrics for the effectiveness dimension

Metric Meaning Unit
DC Majority of code is declarative Boolean
TC Absence of type castings and checks Boolean
RC Absence of mixed non-query code Boolean
CS Consistency with established query languages Boolean

Table 9.3 Evaluation metrics for the usability dimension

Metric Meaning Unit
SY Syntactic checking prior to execution Boolean
SE Semantic checking prior to execution Boolean
IN Independence from external tools Boolean
FB Existence of a formal basis Boolean

Table 9.4 Evaluation metrics for the safeness dimension

To make the reading of the evaluation of each dimension easier, the terms low,
medium and high will be used. For the efectiveness dimension, we have estimated
that a high value is achieved when an approach uses the same or less queries than
the OCL standard, which uses 1 query (NQ metric), as shown in the Listing 4.1.
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Given that, a medium value is achieved when 2 queries are used and a low value is
achieved when 3 or more queries are needed.

For the usability and safeness dimensions, each metric with a value of True
adds 1 point to the total score of the approach for that dimension. A low value is
achieved with a score of 1 or less, a medium value is achieved with a score of 2 and
a a high value is achieved with a score of 3 or above.

9.2.1 Plain EMF

The test query has been implemented in plain EMF in two steps: one that obtains
every TypeDeclaration and another one that checks if a TypeDeclaration satisfies the
constraints of the query. This separation has been done to refactor the second step
into a single checkTypeDeclaration method, as it is common to all the studied persis-
tence solutions, which have a different method for obtaining all the TypeDeclarations,
optimized using their own features.

Listings 9.1 and 9.2 show the implementations of the checkTypeDeclaration method
with dynamic and generated EMF, respectively; the main differences between both
of them are the ones pointed in Section 7.5.1. Listings 9.3, 9.4 and 9.5 show the code
to get all the TypeDeclarations from XMI, Morsa and CDO, respectively (Listings
9.4 and 9.5 will be used in the rest of the test cases for Morsa and CDO, respec-
tively). Morsa and CDO use their advanced capabilities to access directly to all the
TypeDeclarations of a model, which is impossible with plain EMF.

1 //With dynamic EMF
2 boolean checkTypeDeclaration(EObject typeDeclaration) {
3 EPackage domPackage = typeDeclaration.eClass().getEPackage();
4 EClass typeDeclarationClass = typeDeclaration. eClass () ;
5 EClass methodDeclarationClass = (EClass)domPackage.getEClassifier(”MethodDeclaration”);
6 EClass simpleTypeClass = (EClass)domPackage.getEClassifier(”SimpleType”);
7 EClass nameClass = (EClass)domPackage.getEClassifier(”Name”);
8 EClass mdifierClass = (EClass)domPackage.getEClassifier(”Modifier”);
9

10 List<EObject> bodyDeclarations =
(List<EObject>)typeDeclaration.eGet(typeDeclarationClass.getEStructuralFeature(”bodyDeclarations”));

11 for (EObject bodyDeclaration : bodyDeclarations) {
12 if (found) break ;
13 if (bodyDeclaration. eClass () . equals(methodDeclarationClass)) {
14 EObject returnType = (EObject)bodyDeclaration.eGet(

methodDeclarationClass.getEStructuralFeature(”returnType”));
15 if (returnType.eClass () . equals(simpleTypeClass)) {
16 EObject returnTypeName = (EObject)returnType.eGet( simpleTypeClass.getEstructuralFeature(”name”));
17 String returnTypeFQName = (String)returnTypeName.eGet(

nameClass.getEStructuralFeature(”fullyQualifiedName”));
18 EObject typeDeclarationName = (EObject)typeDeclaration.eGet(

typeDeclarationClass . getEstructuralFeature (”name”));
19 String typeDeclarationFQName = (String)typeDeclarationName.eGet(

nameClass.getEStructuralFeature(”fullyQualifiedName”));
20 if (returnTypeFQName.equals(typeDeclarationFQName)) {
21 boolean foundStatic = false ;
22 boolean foundPublic = false ;
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23 List<EObject> modifierList = (List<EObject>bodyDeclaration.eGet(
MethodDeclarationClass.getEStructuralFeature(”modifiers”));

24 for (EObject modifier : modifierList ) {
25 if ( modifier . eClass () . equals( modifierClass )) {
26 if ( foundStatic && foundPublic) break;
27 if ((Boolean)modifier .eGet( modifierClass . getEStructuralFeature (” static ”))) foundStatic = true;
28 if ((Boolean)modifier .eGet( modifierClass . getEStructuralFeature (”public”))) foundPublic = true;
29 }
30 }
31 if ( foundStatic && foundPublic) result .add(typeDeclaration) ;
32 return true ;
33 }
34 }
35 }
36 }
37 return false ;
38 }

Listing 9.1 TypeDeclaration check with dynamic plain EMF

1 //With generated EMF
2 boolean checkTypeDeclaration(TypeDeclaration typeDeclaration ) {
3 for (BodyDeclaration bodyDeclaration : typeDeclaration .getBodyDeclarations()) {
4 if (found) break ;
5 if (bodyDeclaration instanceof MethodDeclaration) {
6 MethodDeclaration methodDeclaration = (MethodDeclaration)bodyDeclaration;
7 if (methodDeclaration.getReturnType() instanceof SimpleType) {
8 SimpleType returnType = methodDeclaration.getReturnType();
9 String returnTypeFQName = returnType.getName().getFullyQualifiedName();

10 String typeDeclarationFQName = typeDeclaration.getFullyQualifiedName();
11 if (returnTypeFQName.equals(typeDeclarationFQName)) {
12 boolean foundStatic = false ;
13 boolean foundPublic = false ;
14 for (ExtendedModifier modifier : methodDeclaration.getModifiers ()) {
15 if ( modifier instanceof Modifier) {
16 if ( foundStatic && foundPublic) break;
17 if ( modifier . getStatic ) foundStatic = true;
18 if ( modifier . getPublic) foundPublic = true;
19 }
20 }
21 if ( foundStatic && foundPublic) result .add(typeDeclaration) ;
22 return true ;
23 }
24 }
25 }
26 }
27 return false ;
28 }

Listing 9.2 TypeDeclaration check with generated plain EMF

1 //With dynamic EMF
2 List<EObject> result = new LinkedList<EObject>();
3 Iterator <EObject> iterator = resource.getAllContents () ;
4
5 while ( iterator .hasNext()) {
6 EObject eObject = iterator .next() ;
7 if (eObject. eClass () .getName().equals(”TypeDeclaration”) && eObject.eClass().getEPackage.getNsURI()
8 . equals(”org.amma.dsl.jdt.dom”)) {
9 if (checkTypeDeclaration(eObject))
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10 result .add(eObject);
11 }
12 }
13
14 //With generated EMF
15 List<TypeDeclaration> result = new LinkedList<TypeDeclaration>();
16 Iterator <EObject> iterator = resource.getAllContents () ;
17
18 while ( iterator .hasNext()) {
19 EObject eObject = iterator .next() ;
20 if (eObject instanceof TypeDeclaration) {
21 if (checkTypeDeclaration((TypeDeclaration)eObject))
22 result .add((TypeDeclaration)eObject);
23 }
24 }

Listing 9.3 Code for obtaining the TypeDeclarations from XMI with plain EMF

Table 9.5 summarizes the evaluation of the metrics for the plain EMF approach:

Metric Meaning Value
NQ Number of queries against the persistent storage Infinite
DC Majority of code is declarative False
TC Absence of type castings and checks False
RC Absence of mixed non-query code False
CS Consistency with established query languages False
SY Syntactic checking prior to execution True
SE Semantic checking prior to execution True
IN Independence from external tools True
FB Existence of a formal basis False

Table 9.5 Evaluation of the effectiveness, usability and safeness metrics for
the plain EMF approach

The effectiveness of this approach is not easy to evaluate, since there is no
explicit querying or separated access to the persistence solutions. We will consider
it low because we gave the NQ metric a value of infinite, since depending on the
persistence solution, this approach may issue a query every time a relationship is
navigated.

The usability of this approach is obviously low : the code is almost completely
imperative and, in the case of dynamic EMF, there are so many type castings and
checks that it is hardly readable or writable at all. Moreover, there is no difference
between the regular code and the one dedicated to querying. The code does not
resemble any well-established query language either. On the other hand, no external
tools are needed to execute the code, so it is portable.

The safeness of this approach is high: since it is basically plain EMF code, there
is no need of an integration effort into client applications and the syntactic and
semantic checking is done by the Java compiler; on the other hand, semantic checking
is only possible when generated EMF is used. No formal basis relies underneath
EMF.
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1 //With dynamic EMF
2 List<EObject> result = new LinkedList<EObject>();
3 List<EObject> typeDeclarationList =
4 SELECT(”org.amma.dsl.jdt.dom/TypeDeclaration”).FROM(resource);
5
6 for (EObject typeDeclaration : typeDeclarationList ) {
7 if (checkTypeDeclaration(typeDeclaration))
8 result .add(typeDeclaration) ;
9 }

10
11 //With generated EMF
12 List<TypeDeclaration> result = new LinkedList<TypeDeclaration>();
13 List<EObject> typeDeclarationList =
14 SELECT(”org.amma.dsl.jdt.dom/TypeDeclaration”).FROM(resource);
15
16 for (EObject typeDeclaration : typeDeclarationList ) {
17 if (checkTypeDeclaration((TypeDeclaration) typeDeclaration ))
18 result .add((TypeDeclaration)typeDeclaration ) ;
19 }

Listing 9.4 Code for obtaining the TypeDeclarations from Morsa

1 //With generated EMF
2 CDOSession session = getSession();
3 CDOView view = session.openView();
4 List<TypeDeclaration> result = new LinkedList<TypeDeclaration>();
5
6 List<TypeDeclaration> typeDeclarationList =
7 view.createQuery(”ocl”, ”TypeDeclaration. allInstances ()”,
8 DOMPackage.getTypeDeclaration());
9

10 for (TypeDeclaration typeDeclaration : typeDeclarationList ) {
11 if (checkTypeDeclaration(typeDeclaration))
12 result .add(typeDeclaration) ;
13 }

Listing 9.5 Code for obtaining the TypeDeclarations from CDO

9.2.2 EMF Query

Listings 9.6 and 9.7 show the implementations of the checkTypeDeclaration method
with EMF Query for dynamic and generated EMF, respectively, that are executed
over every TypeDeclaration, which may have been obtained in different ways, depend-
ing on the persistence solution that is being used; Listings 9.4, 9.5 and 9.8 show the
code to get all the TypeDeclarations from Morsa, CDO and XMI, respectively. The
main differences between the dynamic and the generated EMF versions are the same
as the ones pointed in Section 7.5.2. Table 9.6 shows the evaluation of the metrics
for this approach.

1 //With dynamic EMF
2 boolean checkTypeDeclaration(EObject typeDeclaration) {
3 EPackage domPackage = typeDeclaration.eClass().getEPackage();
4 EClass typeDeclarationClass = typeDeclaration. eClass () ;
5 EClass methodDeclarationClass = (EClass)domPackage.getEClassifier(”MethodDeclaration”);
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6 EClass simpleTypeClass = (EClass)domPackage.getEClassifier(”SimpleType”);
7 EClass nameClass = (EClass)domPackage.getEClassifier(”Name”);
8 EClass modifierClass = (EClass)domPackage.getEClassifier(”Modifier”);
9 EObject typeDeclarationName = (EObject)typeDeclaration.eGet( simpleTypeClass. getEstructuralFeature (”name”));

10 String typeDeclarationFQName = (String)typeDeclarationName.eGet(
nameClass.getEStructuralFeature(”fullyQualifiedName”));

11
12 SELECT select = new SELECT(1,
13 new FROM(typeDeclaration),
14 new WHERE(new EObjectReferenceValueCondition(
15 (EReference) typeDeclarationClass . getEStructuralFeature (”bodyDeclarations”),
16 new ObjectTypeRelationCondition(methodDeclarationClass).AND(
17 new EObjectReferenceValueCondition(

(EReference)methodDeclarationClass.getEStructuralFeature(”returnType”),
18 new EObjectReferenceValueCondition( (EReference) simpleTypeClass.getEStructuralFeature (”name”),
19 new EObjectAttributeValueCondition( (EAttribute)

nameClass.getEStructuralFeature(”fullyQualifiedName”),
20 new StringValue(typeDeclarationFQName))))
21 .AND(new EObjectReferenceValueCondition(

(EReference)methodDeclarationClass.getEStructuralFeature(”modifiers”),
22 new EObjectAttributeValueCondition( (EAttribute) modifierClass . getEStructuralFeature (” static ”),
23 new BooleanCondition(true)))
24 .AND(new EObjectReferenceValueCondition(

(EReference)methodDeclarationClass.getEStructuralFeature(”modifiers”),
25 new EObjectAttributeValueCondition( (EAttribute) modifierClass . getEStructuralFeature (”public”),
26 new BooleanCondition(true))))
27 ))))) ;
28 IQueryResult result = select .execute() ;
29 return ! result . isEmpty();
30 }

Listing 9.6 checkTypeDeclaration check with dynamic EMF Query

1 //With generated EMF
2 boolean checkTypeDeclaration(EObject typeDeclaration) {
3 SELECT select = new SELECT(1,
4 new FROM(typeDeclaration),
5 new WHERE(new EObjectReferenceValueCondition(
6 DOMPackage.getTypeDeclaration BodyDeclarations(),
7 new ObjectTypeRelationCondition(
8 DOMPackage.getMethodDeclaration()).AND(
9 new EObjectReferenceValueCondition(

10 DOMPackage.getMethodDeclaration ReturnType(),
11 new EObjectReferenceValueCondition(
12 DOMPackage.getSimpleType Name(),
13 new EObjectAttributeValueCondition(
14 DOMPackage.getName FullyQualifiedName(),
15 new StringValue(name))))
16 .AND(new EObjectReferenceValueCondition(
17 DOMPackage.getMethodDeclaration ReturnType(),
18 new EObjectAttributeValueCondition(
19 DOMPackage.getModifier Static,
20 new BooleanCondition(true)))
21 .AND(new EObjectReferenceValueCondition(
22 DOMPackage.getBodyDeclaration Modifiers(),
23 new EObjectAttributeValueCondition(
24 DOMPackage.getModifier Public,
25 new BooleanCondition(true))))
26 ))))) ;
27 IQueryResult result = select .execute() ;
28 return ! result . isEmpty();
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29 }

Listing 9.7 TypeDeclaration check with generated EMF Query

Metric Meaning Value
NQ Number of queries against the persistent storage 2
DC Majority of code is declarative False
TC Absence of type castings and checks False
RC Absence of mixed non-query code False
CS Consistency with established query languages True
SY Syntactic checking prior to execution True
SE Semantic checking prior to execution False
IN Independence from external tools True
FB Existence of a formal basis False

Table 9.6 Evaluation of the effectiveness, usability and safeness metrics for
the EMF Query approach

The effectiveness of this approach is medium: two separate queries are needed
to obtain the results: one to get all the TypeDeclarations and another one to check
each one of them. This is due to the fact that EMF Query does not provide named
variables, which may have been used to reference the feature name of each TypeDec-
laration from the rest of the query (see Listing 4.1 for an example of this).

The usability of this approach is low : although the code is somehow declarative
and consistent since it mimics the syntax of SQL, there are lots of Java constructors
and complicated class names all over the queries, and the fact that it requires the
EStructuralFeature and EClass objects to define conditions makes it even worse, with
many type castings for dynamic EMF.

The safeness of this approach is medium: the syntactic correctness of the state-
ments is checked before execution but not the semantic one, as there is no connection
between the results of one condition and the conditions that are applied to them;
moreover, the approach is independent from any external tool.

1 //With dynamic EMF
2 List<EObject> result = new LinkedList<EObject>();
3 SELECT select =
4 new SELECT(Integer.MAX VALUE,
5 new FROM(resource.getContents()),
6 new WHERE(new EObjectTypeRelationCondition(typeDeclarationClass));
7
8 IQueryResult typeDeclarationList = select .execute() ;
9

10 for (EObject typeDeclaration : typeDeclarationList ) {
11 if (checkTypeDeclaration(typeDeclaration))
12 result .add(typeDeclaration) ;
13 }
14
15 //With generated EMF
16 List<TypeDeclaration> result = new LinkedList<TypeDeclaration>();
17 SELECT select =
18 new SELECT(Integer.MAX VALUE,
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19 new FROM(resource.getContents()),
20 new WHERE(new EObjectTypeRelationCondition(typeDeclarationClass));
21
22 IQueryResult typeDeclarationList = select .execute() ;
23
24 for (EObject typeDeclaration : typeDeclarationList ) {
25 if (checkTypeDeclaration((TypeDeclaration) typeDeclaration ))
26 result .add((TypeDeclaration)typeDeclaration ) ;
27 }

Listing 9.8 Code for obtaining the TypeDeclarations from XMI with EMF Query

9.2.3 MDT OCL

Listing 4.1 shows the OCL query for the test case as it would be for standard OCL.
However, this query led to errors when executed in MDT OCL (e.g. elements that
were identified as being of a certain type using oclIsKindOf failed when cast to that
type using oclAsType), so after some debugging we were able to write the query
with the fewest OCL queries, as shown in Listings 9.9 (for dynamic EMF) and 9.10
(for generated EMF). As can be seen, the checkTypeDeclaration method needs a
TypeDeclaration argument: Listings 9.4, 9.5 and 9.11 show the code to get all the
TypeDeclarations from Morsa, CDO and XMI, respectively. The main differences
between the dynamic and generated EMF implementations are same as the ones
pointed in Section 7.5.3. Table 9.7 shows the evaluation of the metrics for this
approach.

1 //With dynamic EMF
2 boolean checkTypeDeclaration(EObject typeDeclaration) {
3 EPackage domPackage = typeDeclaration.eClass().getEPackage();
4 EClass typeDeclarationClass = typeDeclaration. eClass () ;
5 EClass nameClass = (EClass)domPackage.getEClassifier(”Name”);
6 EClass methodDeclarationClass = (EClass)domPackage.getEClassifier(”MethodDeclaration”);
7 EObject typeDeclarationName =

(EObject)typeDeclaration.eGet(typeDeclarationClass. getEstructuralFeature (”name”));
8 String typeDeclarationFQName = (String)typeDeclarationName.eGet(

nameClass.getEStructuralFeature(”fullyQualifiedName”));
9

10 OCL<?, EClassifier , ?, ?, ?, ?, ?, ?, ?, Constraint , EClass, EObject> ocl =
OCL.newInstance(EcoreEnvironmentFactory.INSTANCE);

11 OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();
12 helper .setContext( typeDeclarationClass ) ;
13
14 OCLExpression<EClassifier> expression = helper.createQuery(
15 ” self .bodyDeclarations −> select(bd : BodyDeclaration bd.oclIsKindOf(MethodDeclaration))”);
16
17 Query<EClassifier , EClass, EObject> query = ocl.createQuery(expression) ;
18 Collection <EObject> methodDeclarations = (Collection<EObject>)query.evaluate(typeDeclaration);
19 for (EObject methodDeclaration : methodDeclarations) {
20 OCLHelper<EClassifier, ?, ?, Constraint> helper2 = ocl .createOCLHelper();
21 helper2 .setContext(methodDeclarationClass);
22 OCLExpression<EClassifier> expression2 = helper2.createQuery(
23 ” self .returnType.oclAsType(SimpleType).name.fullyQualifiedName = ’” + name +
24 ”’ and self . modifiers −> exists(m : ExtendedModifier | m.oclAsType(Modifier). static )” +
25 ” and self . modifiers −> exists(m : ExtendedModifier | m.oclAsType(Modifier).public )”);
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26 Query<EClassifier , EClass, EObject> query2 = ocl.createQuery(expression2);
27 Object oclResult2 = query2.evaluate(methodDeclaration);
28 if ( oclResult2 instanceof Boolean && ((Boolean) oclResult2))
29 return true ;
30 }
31 return false ;
32 }

Listing 9.9 MDT OCL query for the TypeDeclaration check using dynamic EMF

1 //With generated EMF
2 boolean checkTypeDeclaration(TypeDeclaration typeDeclaration ) {
3 OCL<?, EClassifier , ?, ?, ?, ?, ?, ?, ?, Constraint , EClass, EObject> ocl =

OCL.newInstance(EcoreEnvironmentFactory.INSTANCE);
4 OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();
5 helper .setContext(DOMPackage.getTypeDeclaration());
6
7 OCLExpression<EClassifier> expression = helper.createQuery(
8 ” self .bodyDeclarations −> select(bd : BodyDeclaration bd.oclIsKindOf(MethodDeclaration))”);
9

10 Query<EClassifier , EClass, EObject> query = ocl.createQuery(expression) ;
11 Collection <MethodDeclaration> methodDeclarations =

(Collection<MethodDeclaration>)query.evaluate(typeDeclaration);
12 for (MethodDeclaration methodDeclaration : methodDeclarations) {
13 OCLHelper<EClassifier, ?, ?, Constraint> helper2 = ocl .createOCLHelper();
14 helper2 .setContext(methodDeclarationClass);
15 OCLExpression<EClassifier> expression2 = helper2.createQuery(
16 ” self .returnType.oclAsType(SimpleType).name.fullyQualifiedName =
17 ’” + typeDeclaration.getName().getFullyQualifiedName() +
18 ”’ and self . modifiers −> exists(m : ExtendedModifier | m.oclAsType(Modifier). static )” +
19 ” and self . modifiers −> exists(m : ExtendedModifier | m.oclAsType(Modifier).public )”);
20 Query<EClassifier , EClass, EObject> query2 = ocl.createQuery(expression2);
21 Object oclResult2 = query2.evaluate(methodDeclaration);
22 if ( oclResult2 instanceof Boolean && ((Boolean) oclResult2))
23 return true ;
24 }
25 return false ;
26 }

Listing 9.10 MDT OCL query for the TypeDeclaration check using generated EMF

Metric Meaning Value
NQ Number of queries against the persistent storage 3
DC Majority of code is declarative True
TC Absence of type castings and checks True
RC Absence of mixed non-query code False
CS Consistency with established query languages True
SY Syntactic checking prior to execution False
SE Semantic checking prior to execution False
IN Independence from external tools True
FB Existence of a formal basis False

Table 9.7 Evaluation of the effectiveness, usability and safeness of the metrics
for the MDT OCL approach

The effectiveness of this approach is low. Three separate queries are needed to
obtain the results: one to get all the TypeDeclarations, one to get all their MethodDec-
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laration and a last one to check each one of the latter. However, if the original OCL
query (see Listing 4.1) could have been used, the effectiveness would have been high,
since only one query would have been needed, thanks to the use of named variables.

The usability of this approach is high: the OCL code (lines 15, 23 to 25, 41
and 49 to 52 in Listing 9.10) is completely declarative and type castings are only
done when necessary, although Java loop and conditional structures are needed to
relate the results of the three queries. Moreover, all the code that supports the query
but it is not part of it (e.g. the Helper objects) is clearly separated. The language
is consistent with a well-established language since it is the proposed standard for
MOF.

The safeness of this approach is low : no syntactic or semantic checking is done
before the query is executed, as the queries are specified as text strings. Moreover,
no formal basis is used; however, the approach is independent from external tools.

1 //With dynamic EMF
2 OCL<?, EClassifier , ?, ?, ?, ?, ?, ?, ?, Constraint , EClass, EObject> ocl =
3 OCL.newInstance(EcoreEnvironmentFactory.INSTANCE);
4
5 OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();
6 helper .setContext( typeDeclarationClass ) ;
7
8 OCLExpression<EClassifier> expression = helper.createQuery(”TypeDeclaration. allInstances ()”);
9 Query<EClassifier , EClass, EObject> query = ocl.createQuery(expression) ;

10
11 Collection <EObject> typeDeclarationList = (Collection<EObject>)query.evaluate(resource);
12 List<EObject> result = new LinkedList<EObject>();
13 for (EObject typeDeclaration : typeDeclarationList ) {
14 if (checkTypeDeclaration(typeDeclaration))
15 result .add(typeDeclaration) ;
16 }
17
18 //With generated EMF
19 OCL<?, EClassifier , ?, ?, ?, ?, ?, ?, ?, Constraint , EClass, EObject> ocl =
20 OCL.newInstance(EcoreEnvironmentFactory.INSTANCE);
21
22 OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();
23 helper .setContext(DOMPackage.getTypeDeclaration());
24
25 OCLExpression<EClassifier> expression = helper.createQuery(”TypeDeclaration. allInstances ()”);
26 Query<EClassifier , EClass, EObject> query = ocl.createQuery(expression) ;
27
28 Collection <TypeDeclaration> typeDeclarationList = (Collection<TypeDeclaration>)query.evaluate(resource);
29 List<TypeDeclaration> result = new LinkedList<TypeDeclaration>();
30 for (TypeDeclaration typeDeclaration : typeDeclarationList ) {
31 if (checkTypeDeclaration(typeDeclaration))
32 result .add(typeDeclaration) ;
33 }

Listing 9.11 Code for obtaining the TypeDeclarations from XMI with MDT OCL
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9.2.4 IncQuery

Listing 9.12 shows how the test query is written in IncQuery: first, an IncQuery-
specific file is written with the actual pattern (i.e. query) and then that pattern is
invoked from the client application. Table 9.8 shows the evaluation metrics for this
approach.

1 //IncQuery file
2 package grabats
3
4 import ”org.amma.dsl.jdt.dom”
5 import ”org.amma.dsl.jdt. primitiveTypes ”
6
7 pattern grabats(T : TypeDeclaration) = {
8 TypeDeclaration.bodyDeclarations(T, M);
9 MethodDeclaration.returnType(M, R);

10 SimpleType(R);
11 SimpleType.name.fullyQualifiedName(R, S);
12 TypeDeclaration.name.fullyQualifiedName(T, S);
13 find methodWithReturnType(M, S);
14 MethodDeclaration.modifiers(M, MF1);
15 MethodDeclaration.modifiers(M, MF2);
16 MF1 != MF2;
17 Modifier . public (MF1, true);
18 Modifier . static (MF2, true);
19 }
20
21 //Invocation from client application
22 List<TypeDeclaration> result = new LinkedList<TypeDeclaration>();
23 IncQueryMatcher matcher = MatcherFactoryRegistry
24 .getMatcherFactory(”grabats.grabats”).getMatcher(resource) ;
25
26 Collection <IPatternMatch> matches = matcher.getAllMatches();
27 for (IPatternMatch match : matches) {
28 result .add(match.get(”T”));
29 }

Listing 9.12 IncQuery query for the test case

Metric Meaning Value
NQ Number of queries against the persistent storage 1
DC Majority of code is declarative True
TC Absence of type castings and checks True
RC Absence of mixed non-query code True
CS Consistency with established query languages False
SY Syntactic checking prior to execution True
SE Semantic checking prior to execution True
IN Independence from external tools False
FB Existence of a formal basis True

Table 9.8 Evaluation of the effectiveness, usability and safeness metrics for
the IncQuery approach

The effectiveness of this approach is high: only one query must be performed
against the persistence solution to get the expected results.
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The usability of this approach is high: the code is completely declarative and
since an external DSL is used, all the statements are for query definition, so there
is no Java code mixed in between of it. However, the graph pattern matching is not
so well-established as a common query language.

The safeness of this approach is high: although it completely depends on external
tools to define queries and even to execute them, as the generated pattern matchers
must be registered as plug-ins in the Eclipse platform, it checks for syntactic and
semantic correctness and is based on the graph pattern formalism.

9.2.5 CDO OCL

Although it is also an implementation of OCL, CDO OCL cannot use the query de-
fined for MDT OCL (see Listing 9.10), because its lack of type checks (i.e. oclIsKindOf
invocations) makes the query return OCLInvalid objects when a type cast fails. This is
not relevant for MDT OCL because it just discards the rest of query in a short-circuit
fashion and continues evaluating the next partial result, but CDO OCL throws an
exception whenever an OCLInvalid object is produced, so type checking is a must.
Since the and operator of OCL is not short-circuited, the type checks must be done
using conditional blocks;

Listing 9.13 shows how the original OCL query (see Listing 4.1) would have to be
written for its execution within CDO. However, since CDO uses MDT OCL on the
server side, the problems that we encountered for MDT OCL also appeared here, so
we had to split the original query into several ones, as shown in Listing 9.14. Again,
the code in Listing 9.5 is needed to provide the TypeDeclarations to the query; since
CDO OCL can only be used with the CDO persistence solution, there are not any
other options to get the TypeDeclarations as it happens with the previous approaches.
Table 9.9 shows the evaluation of the metrics of this approach.

1 TypeDeclaration. allInstances () −>
2 select (td : TypeDeclaration | td.bodyDeclarations −>
3 exists (bd : BodyDeclaration |
4 if bd.oclIsKindOf(MethodDeclaration) then
5 if bd.oclAsType(MethodDeclaration).returnType
6 . oclIsKindOf(SimpleType) then
7 if bd.oclAsType(methodDeclaration).returnType
8 .oclAsType(SimpleType).
9 name.fullyQualifiedName = td.name.fullyQualifiedName then

10 bd. modifiers −> exists (em : ExtendedModifier |
11 if em.oclIsKindOf(Modifier) then em.oclAsType(Modifier). static else false endif )
12 and
13 bd. modifiers −> exists (em : ExtendedModifier |
14 if em.oclIsKindOf(Modifier) then em.oclAsType(Modifier).public else false endif )
15 else false
16 endif
17 else false
18 endif
19 else false
20 endif
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21 )
22 )

Listing 9.13 OCL query for the test case using CDO

1 //With generated EMF
2 boolean checkTypeDeclaration(TypeDeclaration typeDeclaration ) {
3 CDOQuery query = view.createQuery(”ocl”,
4 ” self .bodyDeclarations −> select(bd : BodyDeclaration |
5 bd.oclIsKindOf(MethodDeclaration))”, typeDeclaration ) ;
6
7 List<MethodDeclaration> methodList = query.getResult();
8 for (MethodDeclaration methodDeclaration : methodList) {
9 CDOQuery query2 = view.createQuery(”ocl”,

10 ” if self .returnType.oclIsKindOf(SimpleType) then ”
11 + ”if self .returnType.oclAsType(SimpleType).name.fullyQualifiedName = ’” +
12 typeDeclaration .getName().getFullyQualifiedName() + ”’ then ” +
13 ” self . modifiers −> exists(em : ExtendedModifier | ”
14 + ”if em.oclIsKindOf(Modifier) then em.oclAsType(Modifier). static else false endif ) and ”
15 + ”self . modifiers −> exists(em : ExtendedModifier | ”
16 + ”if em.oclIsKindOf(Modifier) then em.oclAsType(Modifier). public else false endif ) ”
17 + ”else false endif else false endif”, methodDeclaration);
18 if ((Boolean) methodQuery.getResult()) return true ;
19 }
20 return false ;
21 }

Listing 9.14 CDO OCL query for the TypeDeclaration check

Metric Meaning Value
NQ Number of queries against the persistent storage 3
DC Majority of code is declarative False
TC Absence of type castings and checks False
RC Absence of mixed non-query code False
CS Consistency with established query languages True
SY Syntactic checking prior to execution False
SE Semantic checking prior to execution False
IN Independence from external tools True
FB Existence of a formal basis False

Table 9.9 Evaluation of the effectiveness, usability and safeness metrics for
the CDO OCL approach

The effectiveness of this approach is low. Three separate queries are needed to
obtain the results: one to get all the TypeDeclarations, one to get all their MethodDec-
laration and a last one to check each one of the latter. As happens with MDT OCL,
if the original OCL query (see Listing 9.13) could have been used, the effectiveness
would have been high.

The usability of this approach is low : it shows the same issues as MDT OCL
(Java statements to relate the results of each query), but in this case even the original
query shown in Listing 9.13 is full of conditional statements and type checks because
of the implementation of the server side of CDO. If the original query could have
been used, the readability would have been high.
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The safeness of this approach is low : no syntactic or semantic checking is done
before the query is executed, as the queries are specified as text strings. Moreover,
it is even worse than MDT OCL, since the errors are returned as exceptions with
very little detail.

9.2.6 Morsa Query Language

As happened with other studied approaches, the test query must be split into two
separate steps, one for obtaining each TypeDeclaration and another one to check it.
The first step is implemented by the code shown in Listing 9.4; since MorsaQL can
only be used with the Morsa persistence solution, there are not any other options to
get the TypeDeclarations as it happens with the other previous approaches. Listing
9.15 shows the implementation of the checkTypeDeclaration method that performs
the second step.Table 9.10 shows the evaluation of the metrics for this approach.

1 //With dynamic EMF
2 boolean checkTypeDeclaration(EObject typeDeclaration) {
3 EPackage domPackage = typeDeclaration.eClass().getEPackage();
4 EClass typeDeclarationClass = typeDeclaration. eClass () ;
5 EClass nameClass = (EClass)domPackage.getEClassifier(”Name”);
6 EObject typeDeclarationName = (EObject)typeDeclaration
7 .eGet( typeDeclarationClass . getEstructuralFeature (”name”));
8
9 String typeDeclarationFQName = (String)typeDeclarationName

10 .eGet(nameClass.getEStructuralFeature(”fullyQualifiedName”))
11
12 MorsaQuery query = SELECT(”org.amma.dsl.jdt.dom/MethodDeclaration”)
13 .FROM(typeDeclaration)
14 .WHERE(navigate(”returnType”)
15 .ofType(”org.amma.dsl.jdt.dom/SimpleType”)
16 . navigate(”name”).STREQ(”fullyQualifiedName”, typeDeclarationFQName))
17 .AND(navigate(”modifiers”)
18 .ofType(”org.amma.dsl.jdt.dom/ExtendedModifier”)
19 .BOOLEQ(”static”, true))
20 .AND(navigate(”modifiers”)
21 .ofType(”org.amma.dsl.jdt.dom/ExtendedModifier”)
22 .BOOLEQ(”public”, true))
23 . asProxies () . includeSubtypes() . limit (1) .done();
24
25 Collection <EObject> result = ((MorsaResource)resource).query(query);
26 return ! result . isEmpty();
27 }
28
29 //With generated EMF
30 boolean checkTypeDeclaration(TypeDeclaration typeDeclaration ) {
31 MorsaQuery query = SELECT(DOMPackage.getMethodDeclaration())
32 .FROM(typeDeclaration)
33 .WHERE(navigate(”returnType”)
34 .ofType(DOMPackage.getSimpleType())
35 . navigate(”name”).STREQ(”fullyQualifiedName”,
36 typeDeclaration .getName().getFullyQualifiedName()))
37 .AND(navigate(”modifiers”)
38 .ofType(DOMPackage.getExtendedModifier())
39 .BOOLEQ(”static”, true))
40 .AND(navigate(”modifiers”)
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41 .ofType(DOMPackage.getExtendedModifier())
42 .BOOLEQ(”public”, true))
43 . asProxies () . includeSubtypes() . limit (1) .done();
44
45 Collection <EObject> result = ((MorsaResource)resource).query(query);
46 return ! result . isEmpty();
47 }

Listing 9.15 Morsa Query Language query for the TypeDeclaration check

Metric Meaning Value
NQ Number of queries against the persistent storage 2
DC Majority of code is declarative True
TC Absence of type castings and checks True
RC Absence of mixed non-query code True
CS Consistency with established query languages True
SY Syntactic checking prior to execution True
SE Semantic checking prior to execution False
IN Independence from external tools True
FB Existence of a formal basis False

Table 9.10 Evaluation of the effectiveness, usability and safeness metrics the
Morsa Query Language approach

The effectiveness of this approach is medium: two separate queries are needed
to obtain the results: one to get all the TypeDeclarations and one to check each one
of them. As happens with EMF Query, this is due to the lack of named variables.

The usability of this approach is high: thanks to its implementation as an internal
DSL, there is little or no Java code in between the query statements, which are
completely declarative, and no type checks or casts are done; instead, the type
constraint for an intermediate result is embedded on the condition that calculates
it, and only if necessary. Moreover, the concrete syntax mimics SQL, which is a
well-established query language.

The safeness of this approach is medium: syntactic checking is provided by the
internal DSL, although there is no semantic checking, and the integration between
the query language and the client applications is clean, since no external tools are
needed. However, there is no formal basis.

9.3 Efficiency evaluation

In this section, the efficiency dimension defined in Section 7.3 will be evaluated
against each model querying approach using XMI, CDO and Morsa. This section is
organized as follows: (i) the evaluation scenario will be described; (ii) the test results
for each model will be explained and finally (iii) the results for Morsa and MorsaQL
will be commented.
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We have tested the combinations between persistence solutions and querying ap-
proaches shown in Table 9.1 (except the ones marked as Not available or Not con-
sidered). Each combination has been configured to give the best balance between
time and memory consumption.

9.3.1 Evaluation scenario

The execution environment has been an Intel Core i7 2600 PC at 3.70GHz with
8GB of physical memory running 64-bit Fedora Core 17 and OpenJDK JVM 1.7.
CDO has been configured using DBStore over a dedicated MySQL 5.0.51b database.
Morsa has been deployed over a MongoDB 1.8.2 database.

The test query has been executed twice over each test model and each of the
combinations defined above. Six measurements have been performed: the time and
memory it takes to initialize the combination (e.g. model load from XMI or meta-
model load from Morsa), the time and memory it takes to execute the first query
and the time and memory it takes to execute the second query. We have executed
the same query twice to evaluate also the performance of the caching mechanisms
of the different combinations.

9.3.2 Results for every approach

Figures 9.1 to 9.5 show the results for the different test models. We could not store
models Set3 and Set4 in CDO. The Init Time, Init Mem, Query 1 Time, Query 1 Mem,
Query 2 Time and Query 2 Mem labels stand for initialization time and memory, first
query time and memory and second query time and memory, respectively.

Figure 9.1 Time (milliseconds) and memory (MegaBytes) consumption for Set0
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Figure 9.2 Time (milliseconds) and memory (MegaBytes) consumption for Set1

Figure 9.3 Time (milliseconds) and memory (MegaBytes) consumption for Set2

The total time or memory is shown on the right side of each bar. Note that for
the XMI combinations, most of the time and memory is spent on initialization (i.e.
model load), while the Morsa and CDO ones spent most of its time and memory
on the first query. An exception for this is CDO+COCL, which spends almost the
same time for the first and the second query and uses very little memory, as the
query as calculated by the server. It is worth noting that, although it cannot be
perceived on the figures, the evaluation time for the second query (and hence, every
other one past it) for IncQuery is less than one millisecond, so for many repeated
queries it would perform better than the rest; the opposite happens to plain EMF,
EMF Query and MDT OCL, which need almost the same time for each query as
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the size of the input model grows.

Figure 9.4 Time (milliseconds) and memory (MegaBytes) consumption for Set3

Figure 9.5 Time (milliseconds) and memory (MegaBytes) consumption for Set4

Overall, Morsa and CDO use much less memory and are faster than XMI, and
their fastest combinations are with plain EMF. Morsa is usually faster and uses
less memory than CDO. Morsa is only beaten in memory by CDO+COCL, which
uses almost the same client memory for all the test cases thanks to its server-side
querying, but is between 8 and 30 times slower than Morsa. It is worth noting that
EMF Query performs very badly over both repositories and MDT OCL performs
worse than EMF Query over XMI but better over Morsa and CDO.
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9.3.3 Results for Morsa

Focusing only on the performance of the Morsa combinations, Figure 9.6 shows
the evolution of performance of the different querying approaches over Morsa: the
memory and time consumption of EMF Query grows dramatically as the size of the
test models grows, while the rest of the approaches grow at a more lineal pace.

Figure 9.6 Evolution of the time (left, in milliseconds) and memory (right,
in MegaBytes) consumption of the different querying approaches in
Morsa between the test models

Figure 9.7 Number of objects (in thousands) loaded from the Morsa repository
for each test model and querying approach. The size of the test models
is represented by the dashed line
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Figure 9.7 shows how many model elements are actually accessed by each query-
ing approach compared to the actual size of each model; as can be seen, the poor
performance of EMF Query is directly related to the amount of model elements it
loads, while the good memory performance of MorsaQL is based on its low element
demand. In fact, the number of elements that MorsaQL requests to the repository
for each result is quite low, as shown in the right side of Figure 9.8; this gives an
idea of the efficiency of the query language (i.e. an ideal query language will only
load the results). Moreover, the left side of Figure 9.8 shows that the bigger the
model is queried, the less additional model elements are loaded from the repository
relatively to each of its TypeDeclarations.

Figure 9.8 Number of objects loaded from the Morsa repository for each test
model and querying approach per TypeDeclaration (left) and per result
(right)

9.4 Overall results

It is difficult to compare the results of every tested combination, since the behavior
of the same querying approach differs depending on which persistence solution is
accessing. In order to make a numerical comparison feasible, we have assigned a
score to each dimension, following these rules:

• For the effectiveness dimension, considering that the maximum value
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achieved for the NQ metric is infinity and the minimum is 1, the score is
0 for infinity and 4 - NQ for the rest.

• For the usability and safeness dimensions, the score is the sum of the amount
of true values obtained in their metrics.

• For the efficiency dimension, the score is relative to their rank for a given
persistence solution compared to the other approaches: the best performer
scores 4 points, the second scores 3, the third scores 2 and the worst scores 1.
This is so because each efficiency measurement is dependent from a persistence
solution and should not be compared between persistence solutions.

Given these rules, the efficiency dimension has a score from 1 to 4 and the rest
have a score from 0 to 4. Table 9.11 shows the evaluation results using the above
defined scoring schema. Note that although IncQuery is the least efficient approach
over XMI, it might turn out to be the best if the same queries are executed many
times, thanks to its indexes.

Name Effectiveness Usability Safeness Efficiency Efficiency Efficiency
XMI Morsa CDO

Plain EMF 0 0 3 4 3 4
EMF Query 2 1 2 3 1 2
MDT OCL 1 3 1 2 2 3
IncQuery 3 3 3 1 - -

CDO OCL 1 1 1 - - 1
MorsaQL 2 4 2 - 4 -

Table 9.11 Evaluation results

A ranking of querying approaches is something mainly subjective, because it de-
pends on the preferences or needs of the user: for instance, if usability, safeness
and effectiveness are a must and efficiency and portability are not very relevant,
the ideal choice would be IncQuery, since its external DSL makes it very easy to write
queries; on the other hand, if efficiency and portability are mandatory, MorsaQL
should be used. However, considering every dimension equally relevant, a ranking
can be made for each persistence solution, as shown in Table 9.12; in the case of a
tie, the approach with the highest mode wins. As can be seen, if efficiency would
have been the priority, plain EMF would have ranked higher.

Focusing on Morsa, MorsaQL is the best option because it overall scores the
highest marks. Given that our main design goal was to achieve efficiency, that
dimension should have been assigned more weight when building the Morsa ranking,
which would have made MorsaQL even better than the other approaches.
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Rank XMI Morsa CDO
1 IncQuery (10) MorsaQL (12) MDT OCL (8)
2 EMF Query (8) MDT OCL (7) EMF Query (7)
3 MDT OCL (7) EMF Query (6) Plain EMF (7)
4 Plain EMF (7) Plain EMF (6) CDO OCL (4)

Table 9.12 Querying approach ranking by persistence solution
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Conclusions and Further Work

Man, you should
have seen them
kicking Edgar Allan Poe

This chapter presents our conclusions and further work. To do so, we have catego-
rized the Morsa repository and described it in terms of the categories and dimensions
defined in Chapter 3; a comparison between Morsa and the model persistence ap-
proaches evaluated in Section 3.3 is also discussed. We also propose some research
guidelines based on our experience and on the results of the comparison between
model persistence approaches. Finally, the publications, tools, projects and grants
related to this thesis are listed after the furter work is commented.

10.1 Categorization of the Morsa repository

In order to classify Morsa in one of the three categories defined in Section 3.3.1,
it must be characterized using the dimensions on model persistence explained in
Section 3.1. Figure 10.1 shows a feature diagram that depicts the features covered
by Morsa:

1. Storage medium: Morsa uses a database to store models, which in theory
may be of any kind, although at this moment only a NoSQL one has been
implemented. Its identification schema is loosely coupled, as it has been imple-
mented with UUIDs (MorsaIDs, see Section 5.1.2).

2. Architecture: a fat client with offline coupling implements the client-server
architecture of Morsa (see Section 5.1.1).

3. Access: Morsa supports all kinds of Access using an in-memory local copy. A
simple prefetching algorithm guided by containment relationships is used for
load on demand. No transaction support is provided. See Sections 5.2-5.4 for
more detail.
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4. Query: queries may be specified in a dedicated language implemented as an
internal DSL (MorsaQL, see Chapter 8) and also as an API that provides
methods that internally rely on MorsaQL for common queries such as getting
descedants, ancestors, instances of a given metaclass, etc.

5. Transparency: a customized integration is achieved. Metamodels are repre-
sented in an explicit and read & only way without any preprocessing or manual
registration achieving total transparency (see Section 5.1.2).

6. Version control: Morsa does not support any version control.

7. Client interface: Morsa provides no user interface and its main interface is
an EMF framework API (see Section 5.5).

Section 3.3.1 defined four different categories for model persistence solutions: de-
fault, which is the one provided by the modeling framework, usually supporting only
few features; user-oriented, which provides a rich user interface but has no focus on
scalability and integration; application-oriented, which provides a poor user inter-
face but a rich API; and integrated, which may easily provide every feature since its
development has been paired with the one of the modeling framework. Considering
this, we can consider that Morsa is an application-oriented repository, that is, a
persistence solution designed to be integrated with applications. It provides no user
interface, but a rich API instead, and it is focused on scalability and integration.

10.2 Comparison with other persistence approaches

Compared to XMI (see Section 3.2.1), the default model persistence approach for
EMF, Morsa is a better model persistence approach, since it provides many more
features. Although Morsa achieves much lower performance than XMI in operations
that imply the full traversal of models (see Sections 6.2.1 and 6.2.2), its native
support to model querying and its higher performance for load on demand (see
Chapter 9) make it a better option for this operations.

Compared to the user-oriented persistence solutions analyzed in Chapter 3, that
is, ModelBus (see Section 3.2.2) EMFStore (see Section 3.2.3) and CDO (see Sec-
tion 3.2.4), it can be noted that the former two provide substantially less Access and
Query features than Morsa and their Transparency dimension is far less than what
Morsa achieves; however, their Client interface capabilities are way more advanced,
providing useful graphical interfaces that give support to a rich set of Version con-
trol features (less rich for EMFStore), while Morsa does not provide any of these
characteristics.

With regard to CDO, it covers most of the dimensions at at least the same extent
as Morsa, particularly the Version control and Client interface ones, which are
unarguably better covered by CDO, as Morsa provides neither of them; the Access
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and Query dimensions are covered by CDO at the same extent as Morsa, but as
shown in Chapters 6 and 9, they do not achieve the same efficiency and effectiveness
than the ones in Morsa. Moreover, the Transparency achieved by CDO is lower
than the one of Morsa, since only parallel semantic transparency and an implicit,
read-only metamodel management are achieved by the former.

Compared to MongoEMF (see Section 3.2.5), the only application-oriented persis-
tence approach evaluated in Chapter 3, Morsa supports more features of the Access
dimensions, particularly single load on demand, a proper partial load on demand
and a prefetching algorithm. Moreover, Morsa provides both an API and an inter-
nal DSL for querying (i.e. MorsaQL), while MongoEMF only provides the former.
The degree of Transparency achieved by Morsa is also superior than the one of Mon-
goEMF, which requires manual registration of metamodels and represents them in
an implicit way.

Compared to OOMEGA (see Section 3.2.6), the only integrated persistence ap-
proach evaluated in Chapter 3, Morsa provides less features, which is normal, as both
the modeling framework and the model persistence support in OOMEGA have been
designed together, while Morsa had to be integrated with EMF. However, Morsa
provides offline server coupling and does not require manual model registration,
two features not supported by OOMEGA.

10.3 Conclusions

One critical concern for the industrial adoption of MDE is the scalability of tools
when accessing large models. As commented in [KRM+13], achieving scalability in
MDE involves four goals: (i) the ability to construct large models, (ii) the support
to collaborative modeling, (iii) the creation of efficient model querying approaches
and (iv) the efficient storage, indexing and retrieval of large models. As shown in
this thesis, we have tackled the third and fourth goals by defining new approaches
and tools in the model persistence and model querying research areas.

Model persistence and model querying are two emerging areas of research, as
demonstrated by the amount of persistence approaches that are being developed cur-
rently as either commercial products (ModelBus, EMFStore, CDO and OOMEGA)
or research developments (MongoEMF) and the querying approaches available for
the EMF modeling framework (EMF Query, MDT OCL, CDO OCL and IncQuery).
These proposals extend modeling frameworks like EMF with capabilities that make
them more adapted to industrial-scale projects, where large models are often pro-
duced and manipulated, distributed development teams, where versioning is conve-
nient, and model-driven tools like model transformations, where accessing only parts
of a model using load on demand and model querying can be critical for performance.

In order to develop our own model persistence and model querying approaches,
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we studied the state of the art of both model persistence (see Chapter 3) and model
querying (see Chapter 7). To do so, we identified a set of dimensions for each of the
areas that helped us identifying both the features that a model persistence approach
should provide and the criteria for evaluating model querying approaches; moreover,
we used these dimensions to characterize six different model persistence approaches
(see Section 3.2) and five different model querying approaches and (see Section 7.5)
and to compare them (see Section 3.3 and Chapter 9, respectively).

With the knowledge gained by studying the state of the art on model persis-
tence and model querying, we designed and implemented Morsa, a model repository
aimed at achieving scalability for client applications that access large models. The
architectural and data design of Morsa (see Section 5.1) were devised to support
fine-grained access to large models that allow for load on demand and incremental
store, using a separate collection for each model instead of a single one (as CDO
does) and a loosely coupled identification schema paired with metadata inside every
MorsaObject that gives support to model querying and partial load on demand by
representing the structure of the stored models in terms of containment relationships
(see Sections 5.1.2, 5.3.1.2 and 8.4).

The architectural design of Morsa is composed of a fat client (see Section 3.1.2.2)
implemented by MorsaDriver and a database backend that is abstracted by a
MorsaBackend component, which represents the database as a set of MorsaObjects
(i.e. a set of key-value pairs). The MorsaDriver uses an ObjectCache (i.e. a cache
of MorsaObjects and a CachePolicy (i.e. a cache replacement policy) components to
decide what model elements should be retrieved from the database backend and
what model elements are no longer necessary and hence can be unloaded from the
client application to save memory. The MorsaDriver component implements the per-
sistence interface of the modeling framework to provide tool integration, requiring
very few changes in existing applications in order to use Morsa as their persistent
storage (see Section 5.5).

Using load on demand and incremental store, Morsa allows large models to be per-
sisted and accessed without overloading the client application’s memory, as demon-
strated in Chapter 6, where a prototype of Morsa for EMF and MongoDB is com-
pared to XMI and CDO. This comparison consisted in executing four benchmarks
against large models taken from the Grabats 2009 contest [JS09] (see Chapter 4),
demonstrating that Morsa suits better for partial model access than XMI and CDO,
and that it handles larger models than CDO.

Once we had an stable prototype of our model repository, we designed and im-
plemented a query language for Morsa, namely MorsaQL, as presented in Chapter
8. The main design goals of MorsaQL are its efficiency, usability and, to a lesser
extent, its safeness, as defined in Section 7.3.

The abstract syntax (see Section 2.5) of MorsaQL (see Section 8.2) provides differ-
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ent concepts that allow the definition of contexts (i.e. search spaces) and conditions
(i.e. constraints) on attributes and relationships, the navigation of relationships and
the parameterization of the execution of a query in terms of depth, breadth, object
count and proxy resolution (see Sections 2.3 and 5.3.1.2).

The concrete syntax (see Section 2.5) of MorsaQL (see Section 8.3) has been
implemented as an internal DSL that resembles SQL and EMF Query, the most
used query language and the recommended model querying approach for EMF,
respectively, for better consistency (see Section 7.3). MorsaQL is implemented using
a combination of the method chaining and nested function patterns described in
Section 2.5 that uses the expression builder pattern in the form of the QueryBuilder
class. The resulting concrete syntax is very readable, writable and provides syntactic
checking at coding time; semantic checking is done at runtime. Moreover, thanks to
its internal DSL nature, MorsaQL can be combined with Java statements to improve
its functionality.

The semantics (see Section 2.5) of MorsaQL (see Section 8.4) involves the rep-
resentation of the structure of the stored models provided by the metadata inside
every MorsaObject (see Section 5.1.2) when querying the database backend, achiev-
ing good performance thanks to a rather low ratio between loaded elements and
query results (see Section 9.3.3). Queries are represented also as MorsaObjects fol-
lowing a query-by-example model. A cache of query results is maintained by the
MorsaDriver to prevent accessing the database backend whenever is possible.

In addition to the Morsa model repository and the MorsaQL model query lan-
guage, this thesis presents an analysis, evaluation and comparison of seven different
model persistence and six model querying approaches (including Morsa and Mor-
saQL), which is also very helpful for guiding MDE developers on which approaches
they can use, depending on their needs. Comparative charts can be found in Sections
3.3, 6.2 and 9.4. The comparison between Morsa and the rest of the analyzed model
persistence approaches is done in Section 10.2.

10.4 Research guidelines

Based on our experience, the comparison and categorization made in Chapter 3 and
the evaluation made in Chapter 9, we have identified two main research lines that
should be a priority on the area of model persistence: convergence and benchmarking.

The convergence between user-oriented and application oriented model persistence
solutions into solutions that provide the features of both should be addressed in a
near future in order to provide both the rich interfaces and versioning capabilities of
the former and the scalability and integration of the latter. This should be a natural
trend since every kind of client would benefit from using such a persistence solution:
human users would use a rich, friendly interface suited for distributed teamwork and
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client applications such as model transformation would run efficiently in a scalable
environment.

However, currently user-oriented persistence solutions are the ones that are get-
ting the most attention and spreading in the MDE community, being CDO the most
used and the one with a more mature and active development. While each new ver-
sion of CDO adds new capabilities for concurrent distributed teamwork, scalability
and integration do not get much attention, if any. On the other hand, application-
oriented persistence solutions which are focused on scalability and integration, such
as MongoEMF or Morsa, are academic researchs that have no focus on teamwork
or versioning at the moment.

We think that the technology and knowledge are mature enough to align both
categories of persistence solutions keeping the best of each one, so a solid foundation
on model persistence is built; then, on top of this foundation of scalability and
services, other persistence solutions could be built focusing on specific tasks and
scenarios, in the same way as DSLs are built on top of the foundation provided by
metamodeling frameworks and transformations. Recent publications are starting to
value this approach, e.g. [KRM+13] defines the extensibility of a model repository
as a research direction in order to create customizable tools where components for
different management issues, such as model versioning, can be plugged in.

Benchmarking of persistence solutions should also be addressed. Just as in the
database area [Cat93], the definition of benchmarks for model persistence could be
very helpful for the users; for instance, they may give guidance to the developers
of MDE solutions when choosing the tool that best fits their needs. However, few
attempts have been made on comparing the performance of different persistence
solutions [SZFK12][JS09]. This is due to the complexity of developing a benchmark
that gives homogeneous performance measurements for the variety of access schemas
provided by the different persistence solutions; for instance, it is hard to properly
compare a solution that uses file sets with full load and another one that supports
partial load on demand over a database. In addition, few benchmarks have been
defined to measure the scalability of a persistence solution for both the client and
the solution when loading, storing, updating, deleting and querying big models.

10.5 Further work

This thesis tackles both the problem of model persistence and the problem of model
querying, so our further work will address both research areas.
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10.5.1 Model persistence

With regard to model persistence, our future work is to extend Morsa in order to
provide new features to it, as well as to optimize the existing ones.

From an architectural point of view, Morsa is a fat client, which is an architecture
that has some drawbacks, as explained in Section 3.1.2.2, being the lack of change
synchronization between users the most relevant to us; thus, our further work in-
cludes refactoring Morsa into an n-layer architecture, where the communication
between a MorsaDriver running in a client application and a database backend is
managed by a dedicated server. This is not a simple task, as the server should not
become a bottleneck due to the synchronization of changes between clients.

Once an n-layer architecture is obtained, version control capabilities (see Section
3.1.6) could be implemented. As this would require deep changes in the data design
of Morsa in order to store deltas, revisions and other versioning information, we
haven’t studied this functionality in depth yet. Version control is one feature that
is requested by the MDE community, as stated in [KRM+13], but that hasn’t been
successfully fulfilled yet.

The optimization of Morsa can be tackled not only through code analysis and
debugging, but also by including more metadata and complex algorithms in the
repository. In order to obtain more efficient prefetching algorithms and cache re-
placement policies, metadata about the structure of a metamodel and a model
could be extracted statically; this may include: average depth and breadth of the
relationships between model elements, semantic dependencies between relationships
or metaclasses, etc. This metadata may also be beneficial for model querying. This
would tackle the research direction of indexing models defined in [KRM+13], pro-
viding rich metadata that can work as indexes.

Finally, since cloud computing is becoming very relevant nowadays, we are con-
sidering the implementation of a REST [Fie00] interface to Morsa. This would re-
quire an n-layer architecture, since the interface should be repository-oriented, not
database-oriented. This would provide access to the repository from many more
technologies than just EMF, although the representation and the functionality of
the loaded model elements would be different, mainly because a REST interface
can be directly accessed from applications such as web browsers, that do not know
anything about MDE and may not use repository drivers.

10.5.2 Model querying

With regard to model querying, our future work is to enhance the effectiveness
and efficiency of MorsaQL.

In order to enhance the effectiveness of MorsaQL, the key feature to develop
would be the definition and use of named variables, that is, variables that are as-
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signed subquery results and can be used by conditions. Introducing this feature is
not straightforward, since it requires complex syntactic and semantic checking, but
it would be very beneficial for the effectiveness of MorsaQL, since a query such as
the one defined in Chapter 4 could be performed with a single MorsaQL query (a
named variable would be used to store the fullyQualifiedName of a TypeDeclaration)
instead of two.

The efficiency of MorsaQL could be improved implementing the already men-
tioned retrieval of metadata about (meta)model structure and also by developing
a more advanced caching mechanism that provides a querying mechanism as incre-
mental as possible, so changes on model elements do not invalidate whole sets of
query results in the cache, but only the ones directly involved in the change.

10.6 Publications

10.6.1 Journals with impact factor

• J. Espinazo-Pagán, J. Sánchez and J. Garćıa-Molina. A Repository for Scal-
able Model Management. Software and Systems Modeling, 2013. Published on-
line at: http://link.springer.com/article/10.1007%2Fs10270-013-0326-8# DOI:
10.1007/s10270-013-0326-8.

Impact Factor: 1,250 (32/105, 1st third of JCR/Software Engineer-
ing)

• J. Espinazo-Pagán and J. Garćıa-Molina.Querying Large Models Efficiently.
Information and Software Technology. Under review.

Impact Factor: 1,522 (23/105, 1st third if JCR/Software Engineer-
ing)

• J. Espinazo-Pagán and J. Garćıa-Molina. A Survey on Model Persistence.
ACM Computing Surveys. Under review.

Impact Factor: 3,543 (3/100, 1st third of JCR/Theory and Methods)

10.6.2 Conferences of a quality similar to a journal due to their
acceptance rate

• J. Espinazo-Pagán, J. Cuadrado and J. Garćıa-Molina. Morsa: a Scalable Ap-
proach for Persisting and Accessing Large Models. At the International Model
Driven Engineering Languages and Systems (MoDELS) Conference, vol. 6981,
pp 77-92, Wellington, New Zealand, 2011. Springer-Verlag.

Acceptance Rate: 20% (chosen as one of the five most relevant con-
tributions) 14 external cites
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• J. Espinazo-Pagán, M. Mernárguez and J. Garćıa-Molina. Metamodel Syn-
tactic Sheets: An Approach for Defining Textual Concrete Syntaxes. At the
European Conference on Model Driven Architecture - Foundations and Appli-
cations, vol. 5095, pp 185-199, Berlin, Germany, 2008. Springer-Verlag.

Acceptance Rate: 30%

10.6.3 International conferences/workshops

• J. Espinazo-Pagán and J. Garćıa-Molina. A Homogeneous Repository for Col-
laborative MDE. At the International Workshop on Model Comparison in
Practice of the International Conference on Objects, Models, Components,
Patterns, pp 55-65, Málaga, Spain, 2010. ACM.

10.6.4 National conferences/workshops

• J. Espinazo Pagán, J. Sánchez Cuadrado, and J. Garćıa Molina. Un repositorio
NoSQL para acceso escalable a modelos. At the Jornadas de Ingenieŕıa del
Software y Bases de Datos, pp 521-534, Almeŕıa, Spain, 2012.

10.7 Developed tools

The Morsa model repository (including the MorsaQL query language) is avail-
able as an Eclipse plugin at http:/www.modelum.es/morsa/. The documentation
of the repository is available at http://www.modelum.es/morsa/doc/morsa/ and
http://www.modelum.es/morsa/doc/morsa.mongodb.

10.8 Projects that have used the results of this thesis

The results of this thesis have been applied to the following projects:

• Impulso de la investigación en tecnoloǵıas del Desarrollo de Software
(Un entorno para el desarrollo y modernización basados en modelos
Forms-ADF)

Funding entity : CARM, Consejeŕıa de Universidades, Empresa e Investigación.
Programa PEPLAN. Subvenciones a proyectos estratégicos en el Plan Regional
de Ciencia.

Duration: 01/01/2009 — 31/12/2010.

Main researcher : Dr. Jesús Joaqúın Garćıa Molina (Universidad de Murcia).
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The goal of this project was the definition of a software environment for the
migration of Oracle Forms applications to ADF. The Metarep model reposi-
tory was developed as part of this project to enhance the collaboration of the
development team when producing (meta)models.

• Construcción de un lenguaje de modelos tipado estáticamente y con
facilidades modulares

Funding entity : Ministerio de Ciencia e Innovación TIN2009-11555.

Duration: 01/01/2010 — 31/07/2012.

Main researcher : Dr. Jesús Joaqúın Garćıa Molina (Universidad de Murcia).

The goal of this project was the development of a statically typed, modular
transformation language. Morsa was initially designed to serve as the persis-
tence layer for this language, providing a rich API for querying and performing
load on demand.

• Herramienta orientada a la migración basada en modelos

Duration: 01/01/2010 — 31/12/2011.

Main researcher : Dr. Jesús Joaqúın Garćıa Molina (Universidad de Murcia).

This project was aimed at the creation of a tooling to assist the automatic
migration of Oracle Forms applications to a Java platform. Morsa was used in
this project as a repository to hold the large models that were extracted from
the legacy Oracle Forms applications, which included PL/SQL code, widget
definitions, database schemas, etc.

• GUIZMO: Un framework para la modernización basada en modelos
de interfaces de usuario

Funding entity : CARM, Ayudas a Proyectos de Investigación, Fundación
Séneca.

Duration: 01/01/2012 — 31/12/2013.

Main researcher : Dr. Jesús Joaqúın Garćıa Molina (Universidad de Murcia).

The goal of this project is the development of a model-driven framework for
the automatic migration of graphical user interfaces. Both this framework
and Morsa where used in the context of the previous project to develop a
semiautomated tool for migrating Oracle Forms applications.

10.9 Grants

During the development of this thesis, the candidate enjoyed the following grant:
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• Beca asociada a la realización de proyectos de i+d, innovación y
transferencia de tecnoloǵıa.

Funded by Agencia Regional de Ciencia y Tecnoloǵıa, Fundación Séneca from
July 2010 until July 2013, allowed the candidate to develop the Morsa repos-
itory and the above mentioned project.
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able Approach for Persisting and Accessing Large Models. In Proceed-
ings on the 14th International Model Driven Engineering Languages
and Systems (MoDELS) Conference. Springer, October 2011.

149

http://labs.google.com/papers/mapreduce-osdi04
http://www.eclipse.org/modeling/emft/? project=emfatic
http://www.eclipse.org/projects/project.php? id=modeling.emf.query
http://www.eclipse.org/projects/project.php? id=modeling.emf.query
http://www.eclipse.org/epsilon/


Bibliography

[Fie00] R. Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000.

[For82] C. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17–37, 1982.

[Fow10] M. Fowler. Domain-Specific Languages. Addison-Wesley Professional,
2010.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[GSKC04] J. Greenfield, K. Short, S. Kent, and J. Crupi. Software Factories: As-
sembling Applications with Patterns, Models, Frameworks and Tools.
Wiley, 2004.

[GZL+04] J. Grey, J. Zheng, Y. Lin, S. Roychoudhury, H. Wu, R. Sudarsan,
A. Gokhale, S. Neema, F. Shi, and T. Bapty. Model-Driven Program
Transformation of a Large Avionics Network. In Proceedings on the 3rd
International Conference on Generative Programming and Component
Engineering, pages 361–378. Springer, 2004.

[HRW09] C. Hein, T. Ritter, and M. Wagner. Model-Driven Tool Integration
with ModelBus. In Proceedings on the 1st International Workshop on
Future Trends on Model-Driven Development (FTMDD), in the con-
text of the 11th International Conference on Enterprise Information
Systems (ICEIS), pages 35–39. INSTICC Press, May 2009.

[Hun13] Bryan Hunt. Mongo EMF: https://github.com/BryanHunt/
mongo-emf/, 2013.

[HWRK11] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Em-
pirical assessment of MDE in industry. In Proceedings of the 33rd
International Conference on Software Engineering, pages 471–480.
ACM, May 2011.

[JABK08] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a model
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