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Abstract

Network monitoring has always been a topic of foremost importance for both net-
work operators and researchers for multiple reasons ranging from anomaly detection
to traffic classification or capacity planning. Nowadays, as networks become more
and more complex, traffic increases and security threats reproduce, achieving a deeper
understanding of what is happening in the network has become an essential necessity.

In particular, due to the considerable growth of cybercrime, research on the field
of anomaly detection has drawn significant attention in recent years and tons of pro-
posals have been made. All the same, when it comes to deploying solutions in real
environments, some of them fail to meet some crucial requirements.

Taking this into account, this thesis focuses on filling this gap between the re-
search and the non-research world. Prior to the start of this work, we identify several
problems. First, there is a clear lack of detailed and updated information on the most
common anomalies and their characteristics. Second, unawareness of sampled data
is still common although the performance of anomaly detection algorithms is severely
affected. Third, operators currently need to invest many work-hours to manually in-
spect and also classify detected anomalies to act accordingly and take the appropriate
mitigation measures. This is further exacerbated due to the high number of false pos-
itives and false negatives and because anomaly detection systems are often perceived
as extremely complex black boxes.

Analysing an issue is essential to fully comprehend the problem space and to be
able to tackle it properly. Accordingly, the first block of this thesis seeks to obtain
detailed and updated real-world information on the most frequent anomalies occurring
in backbone networks. It first reports on the performance of different commercial
systems for anomaly detection and analyses the types of network anomalies detected.
Afterwards, it focuses on further investigating the characteristics of the anomalies found
in a backbone network using one of the tools for more than half a year. Among other
results, this block confirms the need of applying sampling in an operational environment
as well as the unacceptably high number of false positives and false negatives still
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reported by current commercial tools.
On the whole, the presence of sampling in large networks for monitoring purposes

has become almost mandatory and, therefore, all anomaly detection algorithms that
do not take that into account might report incorrect results. In the second block
of this thesis, the dramatic impact of sampling on the performance of well-known
anomaly detection techniques is analysed and confirmed. However, we show that the
results change significantly depending on the sampling technique used and also on
the common metric selected to perform the comparison. In particular, we show that,
Packet Sampling outperforms Flow Sampling unlike previously reported. Furthermore,
we observe that Selective Sampling (SES), a sampling technique that focuses on small
flows, obtains much better results than traditional sampling techniques for scan de-
tection. Consequently, we propose Online Selective Sampling, a sampling technique
that obtains the same good performance for scan detection than SES but works on a
per-packet basis instead of keeping all flows in memory. We validate and evaluate our
proposal and show that it can operate online and uses much less resources than SES.

Although the literature is plenty of techniques for detecting anomalous events,
research on anomaly classification and extraction (e.g., to further investigate what
happened or to share evidence with third parties involved) is rather marginal. This
makes it harder for network operators to analise reported anomalies because they
depend solely on their experience to do the job. Furthermore, this task is an extremely
time-consuming and error-prone process. The third block of this thesis targets this issue
and brings it together with the knowledge acquired in the previous blocks. In particular,
it presents a system for automatic anomaly detection, extraction and classification with
high accuracy and very low false positives. We deploy the system in an operational
environment and show its usefulness in practice.

The fourth and last block of this thesis presents a generalisation of our system that
focuses on analysing all the traffic, not only network anomalies. This new system seeks
to further help network operators by summarising the most significant traffic patterns
in their network. In particular, we generalise our system to deal with big network
traffic data. In particular, it deals with src/dst IPs, src/dst ports, protocol, src/dst
Autonomous Systems, layer 7 application and src/dst geolocation. We first deploy a
prototype in the European backbone network of GÉANT and show that it can process
large amounts of data quickly and build highly informative and compact reports that
are very useful to help comprehending what is happening in the network. Second, we
deploy it in a completely different scenario and show how it can also be successfully
used in a real-world use case where we analyse the behaviour of highly distributed
devices related with a critical infrastructure sector.



Resum

La monitorització de xarxa sempre ha estat un tema de gran importància per operadors
de xarxa i investigadors per múltiples raons que van des de la detecció d’anomalies fins
a la classificació d’aplicacions. Avui en dia, a mesura que les xarxes es tornen més i més
complexes, augmenta el trànsit de dades i les amenaces de seguretat segueixen creixent,
aconseguir una comprensió més profunda del que passa a la xarxa s’ha convertit en
una necessitat essencial.

Concretament, degut al considerable increment del ciberactivisme, la investigació
en el camp de la detecció d’anomalies ha crescut i en els darrers anys s’han fet moltes i
diverses propostes. Tot i això, quan s’intenten desplegar aquestes solucions en entorns
reals, algunes d’elles no compleixen alguns requisits fonamentals.

Tenint això en compte, aquesta tesi se centra a omplir aquest buit entre la recerca
i el món real. Abans d’iniciar aquest treball es van identificar diversos problemes. En
primer lloc, hi ha una clara manca d’informació detallada i actualitzada sobre les anoma-
lies més comuns i les seves caracteŕıstiques. En segona instància, no tenir en compte
la possibilitat de treballar amb només part de les dades (mostreig de trànsit) continua
sent bastant estès tot i el sever efecte en el rendiment dels algorismes de detecció
d’anomalies. En tercer lloc, els operadors de xarxa actualment han d’invertir moltes
hores de feina per classificar i inspeccionar manualment les anomalies detectades per
actuar en conseqüència i prendre les mesures apropiades de mitigació. Aquesta situació
es veu agreujada per l’alt nombre de falsos positius i falsos negatius i perquè els sis-
temes de detecció d’anomalies són sovint percebuts com caixes negres extremadament
complexes.

Analitzar un tema és essencial per comprendre plenament l’espai del problema i per
poder-hi fer front de forma adequada. Per tant, el primer bloc d’aquesta tesi pretén
proporcionar informació detallada i actualitzada del món real sobre les anomalies més
freqüents en una xarxa troncal. Primer es comparen tres eines comercials per a la
detecció d’anomalies i se n’estudien els seus punts forts i febles, aix́ı com els tipus
d’anomalies de xarxa detectats. Posteriorment, s’investiguen les caracteŕıstiques de
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les anomalies que es troben en la mateixa xarxa troncal utilitzant una de les eines
durant més de mig any. Entre d’altres resultats, aquest bloc confirma la necessitat
de l’aplicació de mostreig de trànsit en un entorn operacional, aix́ı com el nombre
inacceptablement elevat de falsos positius i falsos negatius en eines comercials actuals.

En general, el mostreig de trànsit de dades de xarxa (és a dir, treballar només amb
una part de les dades) en grans xarxes troncals s’ha convertit en gairebé obligatori i,
per tant, tots els algorismes de detecció d’anomalies que no ho tenen en compte poden
veure seriosament afectats els seus resultats. El segon bloc d’aquesta tesi analitza i
confirma el dramàtic impacte de mostreig en el rendiment de tècniques de detecció
d’anomalies plenament acceptades a l’estat de l’art. No obstant, es mostra que els re-
sultats canvien significativament depenent de la tècnica de mostreig utilitzadai també
en funció de la mètrica usada per a fer la comparativa. Contràriament als resultats re-
portats en estudis previs, es mostra que Packet Sampling supera Flow Sampling. A més,
a més, s’observa que Selective Sampling (SES), una tècnica de mostreig que se centra
en mostrejar fluxes petits, obté resultats molt millors per a la detecció d’escanejos
que no pas les tècniques tradicionals de mostreig. En conseqüència, proposem Online
Selective Sampling, una tècnica de mostreig que obté el mateix bon rendiment per a
la detecció d’escanejos que SES, però treballa paquet per paquet enlloc de mantenir
tots els fluxes a memòria. Després de validar i evaluar la nostra proposta, demostrem
que és capaç de treballar online i utilitza molts menys recursos que SES.

Tot i la gran quantitat de tècniques proposades a la literatura per a la detecció
d’esdeveniments anòmals, la investigació per a la seva posterior classificació i extracció
(p.ex., per investigar més a fons el que va passar o per compartir l’evidència amb tercers
involucrats) és més aviat marginal. Això fa que sigui més dif́ıcil per als operadors
de xarxa analalitzar les anomalies reportades, ja que depenen únicament de la seva
experiència per fer la feina. A més a més, aquesta tasca és un procés extremadament
lent i propens a errors. El tercer bloc d’aquesta tesi se centra en aquest tema tenint
també en compte els coneixements adquirits en els blocs anteriors. Concretament,
presentem un sistema per a la detecció extracció i classificació automàtica d’anomalies
amb una alta precisió i molt pocs falsos positius. Adicionalment, despleguem el sistema
en un entorn operatiu i demostrem la seva utilitat pràctica.

El quart i últim bloc d’aquesta tesi presenta una generalització del nostre sistema
que se centra en l’anàlisi de tot el trànsit, no només en les anomalies. Aquest nou
sistema pretén ajudar més als operadors ja que resumeix els patrons de trànsit més
importants de la seva xarxa. En particular, es generalitza el sistema per fer front al “big
data” (una gran quantitat de dades). En particular, el sistema tracta IPs origen i dest́ı,
ports origen i dest́ı, protocol, Sistemes Autònoms origen i dest́ı, aplicació que ha generat
el trànsit i finalment, dades de geolocalització (també per origen i dest́ı). Primer,
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despleguem un prototip a la xarxa europea per a la recerca i la investigació (GÉANT) i
demostrem que el sistema pot processar grans quantitats de dades ràpidament aix́ı com
crear informes altament informatius i compactes que són de gran utilitat per ajudar a
comprendre el que està succeint a la xarxa. En segon lloc, despleguem la nostra eina
en un escenari completament diferent i mostrem com també pot ser utilitzat amb èxit
en un cas d’ús en el món real en el qual s’analitza el comportament de dispositius
altament distribüıts.
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Resumen

La monitorización de red siempre ha sido un tema de gran importanciancia para op-
eradores de red e investigadores para múltiples razones que van desde la detección
de anomaĺıas hasta a la clasificación de aplicaciones. Hoy en d́ıa, a medida que las
redes se vuelven más y más complejas, aumenta el tráfico de datos y las amenazas de
seguridad siguen creciendo, conseguir una comprensión más profunda de lo que ocurre
en la red se ha convertido en una necesidad esencial.

Concretamente, debido al considerable incremento del ciberactivismo, la investi-
gación en el campo de la detección de anomaĺıas ha crecido y en los últimos años
se han hecho muchas y varias propuestas. Aun aśı, cuando se intentan desarrollar
estas soluciones en entornos reales, algunas de ellas no cumplen algunos requisitos
fundamentales.

Teniendo esta problemática en cuenta, esta tesis se centra en llenar este vaćıo entre
la investigación y el mundo real. Antes de iniciar este trabajo se identificaron varios
problemas. En primer lugar, hay una clara falta de información detallada y actual-
izada sobre las anomaĺıas más comunes y sus caracteŕısticas. En segunda instancia,
no tener en cuenta la posibilidad de trabajar con sólo parte de los datos (muestreo de
tráfico) continúa siendo bastante extendido a pesar del severo efecto en el rendimiento
de los algoritmos de detección de anomaĺıas. En tercer lugar, los operadores de red
actualmente deben invertir muchas horas de trabajo para clasificar e inspeccionar man-
ualmente las anomaĺıas detectadas para actuar en consecuencia y tomar las medidas
apropiadas de mitigación. Esta situación se ve agravada por el alto número de falsos
positivos y falsos negativos y porque los sistemas de detección de anomaĺıas son a
menudo percibidos como cajas negras extremadamente complejas.

Analizar un tema es esencial para comprender plenamente el espacio del problema
y poder hacerle frente de forma adecuada. Por lo tanto, el primer bloque de esta tesis
proporciona información detallada y actualizada del mundo real sobre las anomaĺıas
más frecuentes en una red troncal. Primero se comparan tres herramientas comerciales
para la detección de anomaĺıas y se estudian sus puntos fuertes y débiles, aśı como los
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tipos de anomaĺıas de red detectadas. Posteriormente, se investigan las caracteŕısticas
de las anomaĺıas que se encuentran en la misma red troncal utilizando una de las
herramientas durante más de medio año. Entre otros resultados, este bloque confirma
la necesidad de la aplicación de muestreo de tráfico en un entorno operacional aśı
como el número inaceptablemente elevado de falsos positivos y falsos negativos en
herramientas comerciales actuales.

En general, el muestreo de tráfico de datos de red (es decir, trabajar sólo con una
parte de los datos) en grandes redes troncales se ha convertido en casi obligatorio
y, por lo tanto, todos los algoritmos de detección de anomaĺıas que no lo tienen
en cuenta pueden ver seriamente afectados sus resultados. El segundo bloque de
esta tesis analiza y confirma el dramático impacto del muestreo en el rendimiento de
técnicas de detección de anomaĺıas plenamente aceptadas en el estado del arte. No
obstante, se muestra que los resultados cambian significativamente dependiendo de la
tácnica de muestreo utilitzada y también en función de la métrica usada para hacer la
comparativa. Contrariamente los resultados en estudios previos, se muestra que Packet
Sampling supera Flow Sampling. Además, se observa que Selective Sampling (SES),
una técnica de muestreo que se centra en muestrear flujos de datos pequeños, obtiene
resultados mucho mejores para la detección de escaneos que las técnicas tradicionales
de muestreo. En consecuencia, proponemos Online Selective Sampling, una técnica
de muestreo que obtiene el mismo buen rendimiento para la detección de escaneos
que SES, pero trabaja paquete por paquete en lugar de mantener todos los flujos en
memoria. Después de validar y evaluar nuestra propuesta, demostramos que es capaz
de trabajar online y utiliza muchos menos recursos que SES.

A pesar de la gran cantidad de técnicas propuestas en la literatura para la detección
de eventos anómalos, la investigación para su posterior clasificación y extracción (p.ej.,
para investigar más a fondo lo que pasó o para compartir la evidenciancia de un ataque
con tercerosinvolucrados) es más bien marginal. Esto hace que sea más dif́ıcil para los
operadores de red analalitzar las anomaĺıas reportadas, ya que dependen únicamente
de su experiencia para hacer el trabajo. Además, esta tarea es un proceso extremada-
mente lento y propenso a errores. El tercer bloque de esta tesis se centra en este
tema teniendo también cuenta los conocimientos adquiridos en los bloques anteriores.
Concretamente, presentamos un sistema para la detección, extracción, y clasificación
automática de anomaĺıas con una alta precisión y muy pocos falsos positivos. Adi-
cionalmente, desplegamos el sistema en un entorno operativo y demostramos su utili-
dad práctica.

El cuarto y último bloque de esta tesis presenta una generalización de nuestro
sistema que se centra en el análisis de todo el tráfico, no sólo en las anomaĺıas. Este
nuevo sistema pretende ayudar m a los operadores ya que resume los patrones de tráfico
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más importantes de su red. En particular, se generaliza el sistema para hacer frente al
“big data” ”(una gran cantidad de datos). En particular, el sistema trata IPs origen
y destino, puertos origen y destino, protocolo, Sistemas Autónomos origen y destino,
aplicacinón que ha generado el tráfico y finalmente, datos de geolocalitzación (también
para el origen y el destino). Primero, desplegamos un prototipo en la red europea
para la investigación y el desarrollo (GÉANT) y demostramos que el sistema puede
procesar grandes cantidades de datos rapidamente aśı como crear informes altamente
informativos y compactos que son de gran utilidad para ayudar a comprender lo que
está sucediendo en la red. En segundo lugar, desplegamos nuestra herramienta en un
escenario completamente diferente y mostramos cómo también puede ser utilizado con
éxito en un caso del mundo real en el que se analiza el comportamiento de dispositivos
altamente distribuidos.
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Chapter 1

Introduction

In recent years, understanding what is really happening in a network is increasingly
becoming more and more complex due to the ever-growing list of applications shap-
ing today’s Internet traffic. Consequently, traffic monitoring and analysis has become
crucial for tasks ranging from intrusion detection to traffic engineering, capacity plan-
ning or traffic classification. In particular, due to the tremendous rise of cyber attacks
worldwide [1], the amount of research focused on anomaly detection has been vast.
However, lots of proposals often do not comply with some real world requirements
when deployed in large backbone networks. In this thesis, we analyse and address
some of these challenging issues.

This chapter discusses the motivations and challenges behind this dissertation and
also provides an overview of the thesis and its main contributions. Finally, it explains
how the present manuscript is structured.

1.1 Motivations

Network operators have always been interested in keeping track of the anomalies hap-
pening in their network. Traditionally, they have focused on operational (e.g., link
faults), or traffic and routing anomalies, observable via SNMP. More recently, there
has been a business driver for observing anomalies related to security issues, network
abuse, or IPR violation. The reason for investing in security, even in core networks,
is that offering a more secure network (i.e., protecting customers from external or
internal threats) is becoming a differentiating factor for ISPs, already offering man-
aged security services to their business customers. Furthermore, commercial peering
agreements between ISPs often include commitments to avoid transferring potentially

1
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harming traffic (e.g., DoS attacks).
Although it is plenty of solutions for anomaly detection, some of them are often

based on outdated assumptions or unrealistic requirements. This is because detailed
information about the types and characteristics of current network anomalies happening
in large networks is rather rare in the literature [2, 3, 4, 5, 6]. As a result, our
understanding of these anomalies happening in backbone networks is often incomplete
or simply outdated. Taking into account the incredible complexity of the Internet today
and how fast new threats and applications emerge daily, being aware of current trends
is crucial. In this thesis, we address this by performing an in-depth analysis on the
anomalies found in a large backbone network for more than half a year.

Many anomaly detection proposals have not been yet widely adopted by network
operators because of several practical problems regarding its practical applicability in
operational environments. Namely 1) they generate a large number of false positives,
and false negatives, 2) they do not take traffic sampling into account, 3) they are
often seen as extremely complex mechanisms that act as black boxes, 4) they do not
distinguish different anomaly types (most systems differentiate between normal and
anomalous traffic), and 5) they do not provide any mechanisms for further analysing
an anomaly once it has been detected, among others.

Due to the almost mandatory usage of sampling in high-speed links, anomaly detec-
tion has become an even more challenging task. Robustness against traffic sampling is
now a topic of paramount importance since network operators tend to apply aggressive
sampling rates when using monitoring tools like NetFlow [7] (e.g., take 1 packet out
of 1000) in order to handle worst case scenarios and network attacks. For this reason,
it is fundamental to build sampling-resilient anomaly detection mechanisms.

In particular, in this thesis we are interested in analysing the performance of scan
detection algorithms under sampling. We focus on network scanning for several rea-
sons. Firstly, they are frequently the prequel of other attacks (e.g., worm propagation)
and, therefore, there is general interest in detecting them reliably. Secondly, scanning
activities represent more than 80% of the anomalies on the Internet according to a
recent study [8]. Moreover, scans can put monitoring platforms in serious trouble (the
nature of this sort of anomalies can easily overflow flow tables due to the potentially
large set of new flows generated by the scanner). Several methods for scan detection
have been proposed in the literature. The straightforward approach flags a scanner
when it connects to more than a certain number of destinations during a fixed interval
of time. This method is implemented in the well-known Snort IDS [9]. The mechanisms
analysed in this thesis (TRW [10] and TAPS [11]) are more complex and have shown
to be more effective. In particular, TRW is implemented in the also well-known Bro
IDS [12]. The idea of TRW is that a scanner will fail more connections than a benign
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host, thus classifying a host as non-legitimate when it makes too many consecutive
failed connections. TAPS is based on the observation that scanners visit many more
destination IPs vs. ports than normal hosts (or the reverse, depending on the type
of scan; vertical or horizontal). Likewise TRW, when this condition is accomplished
several times, TAPS will report the host generating such flows as a scanner.

Several studies have analysed the impact of sampling on anomaly detection [13,
14, 15, 16, 17, 18] and few have focused specifically on scan detection [14, 13]. In
particular, the impact of Packet Sampling on TRW and TAPS was analysed in [14].
It was observed that both the false positives and the false negatives increased signif-
icantly with sampling for TRW. It was also concluded that TAPS was more resilient
to sampling than TRW because even though TRW had higher success ratio, TAPS
exhibited a significantly lower ratio of false positives. The same authors extended the
analysis to several sampling mechanisms in [13]. It was shown that Packet Sampling
introduced an important bias in the flow size distribution and that techniques target-
ing large flows were not convenient for scan detection (scanning attacks use small
flows). Consequently, it was concluded that Flow Sampling was the best choice for
scan detection under sampling.

While previous works (e.g., [13]) used only the same percentage of sampled flows
as the common metric to compare the different sampling methods, in this thesis we
also use the same fraction of packets. Since every packet must be processed by the
router, it is also important to compare the accuracy of all sampling methods according
to the ratio of sampled packets. The motivation of this came from the fact that
given a flow sampling rate, the fraction of analysed packets is significantly different
among the sampling methods, which results in an unfair comparison, specially for
packet-based sampling techniques like Packet Sampling. For instance, according to our
traces, sampling 10% of the flows results only in 3.01% of sampled packets for Packet
Sampling, while Flow Sampling gets 9.2% and other sampling techniques sample an
even larger percentage. Unlike previously reported [14, 13], after this analysis we were
able to observe that Packet Sampling could perform better than Flow Sampling under
certain scenarios.

Selective Sampling [18] is a recently proposed sampling technique that targets
small flows, which are normally used for launching scanning attacks. However, this
technique first needs to capture all packets and then it samples entire flows. The main
issue of this scheme is that all the flows must be kept in main memory and it is not
implementable in the packet-based NetFlow deployed in most routers. In this thesis,
we propose a sampling technique that has the same goal (sample small flows) but
does not need to capture all the traffic. By taking per-packet decisions, our method
requires significantly less resources while keeping the same good performance for scan
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detection showed by Selective Sampling and being implementable in NetFlow.
In addition to anomaly detection, anomaly classification, i.e., automatically identi-

fying the type of a detected anomaly (e.g., scan attack), has been marginally studied
in the past. Lakhina et al. [19] cluster the output of a PCA-based anomaly detector to
identify anomalies with similar behaviour. However, human intervention is necessary to
find out the correspondence between each reported cluster and the high-level anomaly
that it is describing. Tellenbach et al. [20] classify changes to generalized entropy
metrics of traffic feature distributions to identify the type of detected anomalies. They
demonstrate that this approach can classify with accuracy of around 85% synthetic
anomalies. Choi et al. [21] make use of parallel coordinate plots to find unique patterns
of attacks that are easy to recognize visually by a human expert. In contrast, in this
thesis we are able to automatically classify network anomalies without requiring later
manual inspection.

Moreover, analysing the root cause of network anomalies is a matter of increasing
importance. Once an anomaly has been flagged, network operators need to diagnose
the type of the anomaly in order to act accordingly and take the appropriate mitigation
measures. Presently, operators typically need to invest many work-hours to manually
inspect and classify detected anomalies, which is an extremely complex, slow, and
expensive process [22]. The problem of anomaly extraction has been recently treated
in the literature [23, 24]. Among the existing proposals, the most relevant to our
work [23] uses a frequent item-set mining (FIM) algorithm to identify the flows related
to an anomaly from a given hint (e.g., an involved IP address) provided by an external
anomaly detector. In this thesis, we present a FIM-based system that is not only able
to extract these flows related to an anomaly for further investigation but also performs
anomaly detection and classification by combining data mining with machine learning.

After deploying such tool in an operational environment and confirming its use-
fulness for anomaly detection, extraction and classification, we realized that the used
techniques were powerful enough to be used for a broader and more challenging goal
not limited only to network anomalies. In particular, FIM-based algorithms have the
ability of naturally handling larger amounts of data, which makes them specially suit-
able for processing network traffic. In recent years, the Internet traffic has increased
and its mix has changed significantly. In such a rapidly changing environment with
so much data, it is critical to build traffic profiling tools that are able to process big
network traffic data efficiently to extract knowledge about what is happening in a net-
work. Cyber-activism, social networks, peer-to-peer applications or streaming services
are only a few examples of the ever-growing list of applications, services and network
attacks that mold Internet traffic today. Furthermore, existing applications and attacks
continuously change their behaviour while new applications, services and cyber-threats
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emerge every day.
The most basic traffic profiling technique (and likely the most widely-used one) is

extracting heavy hitter reports about the top, e.g., IP addresses, that drive network
utilization. However, a simple traditional report of the, e.g., top source IP addresses,
does not give any information about what these hosts are actually doing, which reduces
a lot the utility of such reports. To address this problem, previous work has studied the
problem of finding multi-dimensional and hierarchical heavy hitters (HHHs). Notably,
AutoFocus [25] is the best known tool for finding multi-dimensional HHHs. An HHH is
an aggregate (e.g., an IP address prefix) on a hierarchy that appears frequently under
certain constrains. The input data can be single- or multi-dimensional (e.g., IP address
pairs) which gives rise to single- and multi-dimensional HHHs.

Although AutoFocus is a state-of-the-art HHH-based traffic profiling tool, it has
some important limitations. First, its computational overhead grows exponentially with
the number of dimensions. Because of this, it is restricted to 5-dimensional HHHs
(where the five dimensions correspond to the source and destination IP addresses, the
port numbers and the protocol) and it is very hard to extend it with additional traffic
features. In this thesis, we propose an extension of our system that is able to build
reports that contain other relevant information, such as the layer 7 traffic application,
the source and the destination Autonomous Systems (ASes) and the geographical lo-
cation. This extension provides precise and compact traffic summaries of what is really
happening in a network. For example, a report looks like “Univ.A Google Location-X
Video”, i.e., University A shares a significant amount of video traffic with a Google
data center at Location-X. Second, even with 5-dimensional HHHs AutoFocus exhibits
very high computational overhead and cannot typically meet near real-time1 guaran-
tees even at low input rates. The last part of this thesis presents this extension of our
system and shows examples of real reports that are very useful for network operators.

1.2 Thesis Overview and Contributions

This thesis is about filling the gap between the real-world requirements from the net-
work security industry and the research carried out in the anomaly detection area. The
main hypothesis behind this dissertation is that practitioners and researchers working
on anomaly detection do not go hand in hand due to a mismatch of such requirements.
For example, the presence of sampling is often omitted in research proposals, which
makes it difficult to deploy them in real environments, where their performance might

1We define near real-time as the requirement of fully processing an x-minute interval of traffic
data in no longer than x minutes, where x is typically a small constant, like a 5-minute window.
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be affected due to the aggressive sampling rates that are commonly used. Additionally,
other factors such as the amount of false positives or the lack of support for assisting
the still manual investigation of network anomalies pose an important breach between
industry and research.

To fill this gap, the first part of the thesis studies 1) the real-world requirements
from the point of view of a network operator and the performance of current commercial
tools for anomaly detection and 2) the actual characteristics of anomalous traffic in
the wild. Among others, we found that the amount of false positives and negatives
is surprisingly high even in commercial tools. This shows current limitations that
need to be addressed by researchers and also demonstrates that there is still a lot of
work left in this area as latest research advances have not been fully applied in the
industry. After identifying the mismatch of requirements and the characteristics of
current anomalies, the second part of the thesis analyses state-of-the-art methods for
anomaly detection under these real-world constraints. We found that, unlike previously
reported, Packet Sampling can be a good option for scan detection and also discovered
that a data mining algorithm called frequent item-set mining, which had not been
previously used in this area, is very convenient for anomaly detection and is also resilient
to traffic sampling. All in all, we believe that having a clear understanding of the real
requirements from the industry and knowing the characteristics of current anomalous
traffic in the wild will help to guide research on anomaly detection towards more
practical and actual problems faced by network operators and other practitioners in
this area. Chapters 4, 5 and 6 of this thesis are a first step towards this direction.
Next, we give an overview of each chapter and summarise the main contributions of
this thesis.

The main goal of the first block (Chapter 3) is to provide a long-term study of
current security-related anomalies happening in backbone networks. We analyse their
types and how frequent they are. Additionally, we investigate the behaviour of each
sort of attack and the most common origins and destinations of such anomalies, among
others. Moreover, we report on the practical limitations of current commercial tools for
anomaly detection in an operational environment, which is an important aspect to take
into account and helps identifying areas where research still needs further improvement.

This block makes two contributions. First of all, although there has been consid-
erable work in the design and evaluation of anomaly detection methods, information
regarding the type and characteristics of network anomalies in operational networks
does not exist in the literature. To the best of our knowledge, this is the first work
that provides this sort of feedback to the research community. For example, we show
that scans are the most frequent attacks in the European backbone network of GÉANT.
This type of knowledge is essential in order to guide research towards particularly prob-
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lematic anomalies in the real world (e.g., improving the detection of scanning attacks
in this case). Additionally, other information that we report such as the anomaly distri-
bution and the characteristics of each type of anomaly is also unknown and can be of
great interest for any researcher working on anomaly detection in order to e.g., design
better detection algorithms.

Second, researchers usually do not have access to data from backbone networks or
the possibility of testing commercial tools (they are, in general, too expensive). As a
consequence, current limitations of commercial solutions are unknown by the commu-
nity. Thus, the information provided in this block will be a precious resource for any
researcher working on anomaly detection. Providing this feedback can probably help
directing further investigations towards solving specific real world problems. For exam-
ple, we found that the overlap among the anomalies detected by current commercial
tools is surprisingly low, which indicates a significantly high number of false negatives.
Moreover, we show that the overall number of false positives is still important and re-
port on the false alarms per anomaly type. This information highlights that some areas
require further research by the anomaly detection community to overcome the limita-
tions of current anomaly detection mechanisms deployed in operational environments.

The second block (Chapter 4) is devoted to analyse the impact of sampling on
already proposed algorithms for network anomaly detection. First, we analyse the effect
of different traffic sampling techniques on well-known scan detection mechanisms and
conclude that Packet Sampling performs better than Flow Sampling under the same
percentage of packets (previous studies used the same percentage of flows). Second,
we propose a new sampling technique based on Selective Sampling and show that it
uses far less resources while keeping the same good accuracy and being implementable
in routers.

Previous works had reported instead that Flow Sampling (FS) was preferable over
Packet Sampling (PS) for scan detection [14, 13]. In particular, it had been concluded
that PS offered a very poor performance for scan detection [14, 13]. This was a
major concern for network security as routers only implement packet-based sampling.
However, in this block we reach different conclusions by using a different methodology.
Specifically, our first contribution on this topic is to show that PS performs better than
FS under the same percentage of packets. Previous studies used the same percentage
of flows for the comparison. Overall, we show that PS is neither better nor worse than
FS as they both offer similar performances in terms of accuracy. Nonetheless PS has
two key advantages over FS: it is already supported by routers and its computational
complexity is lower. This knowledge is an important contribution not only for the
research community but also for router vendors, because based on previous studies, the
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bottom line was that routers should be upgraded to support FS in order to increase the
performance of scan detection algorithms. We show instead that PS performs similarly
to FS for scan detection, which indicates that this update would be not only arguable
but would consume much more resources in the router.

Out of the four sampling techniques we analysed, Selective Sampling (SES) [17]
offered the best performance for scan detection. However, this technique keeps all the
traffic in memory as it needs to know the final size of the flow, which is very costly
in terms of memory. Moreover, SES is not implementable in NetFlow as it works
on a per-flow basis. Our second contribution of this block is a sampling technique
that keeps the same accuracy that SES but does not require to store all the traffic,
which results in several benefits in terms of resource consumption. We propose Online
Selective Sampling, a packet-based sampling technique based on SES that 1) is able to
obtain the same good results for scan detection, 2) is faster and uses less memory and
3) works online and can be implemented in the packet-based Sampled NetFlow [26],
which is deployed in most routers.

The third block (Chapter 5) is centered on building a system for automatic anomaly
detection, extraction and classification that is easily comprehensible for network oper-
ators. The system proposed uses data mining for anomaly detection and extraction,
and machine learning for anomaly classification. We show that our proposal has high
accuracy and very low false positives by deploying it in the Catalan NREN.

Machine learning (ML) mechanisms have been largely used for anomaly detection.
The key novelty and main contribution of this chapter resides on using ML together
with a technique called frequent item-set mining (FIM). To the best of our knowledge,
this is the first work that uses FIM for anomaly detection. The main advantage of FIM
is that it is able to characterize anomalies very well. This is due to the very nature
of FIM, which finds strong and frequent correlations among elements. Anomalies are
composed by sets of flows sharing certain features (e.g., the destination IP and port
for a Distributed Denial-of-Service or the source and the destination IPs for a vertical
scan). FIM accurately extracts all these flows generating an attack and therefore it is
very convenient to describe it (e.g., average flow size of the attack traffic or number of
flows that contain the attack). These sets of flows, called frequent item-sets, together
with their description, allow ML to characterize different anomaly types very accurately.
For example a frequent item-set summarising more than e.g., 3000 flows from a fixed
source IP to a particular destination IP, using the same source port, but targeting
different destination ports and using an average packet size of 29 bytes (UDP with
1 byte of payload) is a clear indicator of malicious activity (a vertical scan in this
particular case). In contrast, using different types of aggregations (e.g., by source or
destination IP) would be less accurate as aggregations are pre-defined and, therefore,
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they can contain few or too much traffic, which, in turn, might include a mixture of
both legitimate and anomalous flows.

Finally, the fourth block (Chapter 6) shows how the methodology presented in the
previous block can be generalised to build a system (FaRNet) that deals with all the
traffic, not only network anomalies. In particular, we show that FIM can easily handle
the huge amount of traffic in backbone networks (e.g., GÉANT) and produce highly
synthetic reports that are able to summarise what is happening in the network very
compactly. We show that the flexibility and the scalability of our system, which is
not limited to the traditional 5-tuple like AutoFocus, makes it possible to investigate
many other interesting features (e.g., geolocation or traffic application) and build
much more informative and useful reports that can help network operators to better
comprehend what type of traffic is shaping their networks. We successfully deploy a
prototype of FaRNet in the European backbone network of GÉANT. Furthermore, we
also present another deployment of the same tool in a different environment related
with monitoring the behaviour of highly distributed devices in a critical infrastructure
sector (see Appendix A).

Our main contribution in this last block is to show how FIM is able to deal with
much more data than proposed algorithms for reporting exact hierarchical heavy hitters
(HHH) [27, 28, 25]. We show how our FIM-based proposed algorithm for dealing with
hierarchical data is far superior to the well-known AutoFocus [25, 29], which is the
state-of-the-art HHH-based tool. While AutoFocus works offline and already presents
heavy computational overhead for analysing 5 dimensions, we show that FIM scales
well as it is able to process up to 10 dimensions in near real-time.

Additionally to the better performance offered by our FIM-based proposal, mining
five new dimensions (source and destination ASes, source and destination geolocation
and layer 7 application on top of the 5-tuple), provides much more synthetic, relevant
and useful traffic summaries with respect to AutoFocus reports. For example, we can
find patterns such as e.g., Spain is exchanging an important amount of P2P traffic
with the United States using a specific source AS. In contrast, AutoFocus would only
report activity at a very low level of granularity, i.e., interaction among certain IPs,
which, in turn, would be split into multiple lines of the summary. This report would
not provide an extremely valuable knowledge to a network operator. Furthermore,
while AutoFocus does not scale to more dimensions, our FIM-based FaRNet could be
easily extended to deal with other hierarchical elements. For instance, it could be used
to correlate network traffic (e.g., NetFlow) with routing data (e.g., AS-paths), which
could be utilized to perform an analysis on the most heavily used paths (useful for
traffic engineering or cost reduction).
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1.3 Thesis Outline

This thesis dissertation is organised as follows. First, Chapter 2 gives the necessary
background on the algorithms analysed in this thesis and describes the scenarios used
throughout this manuscript. Next, the four core blocks of the thesis are covered.
First, Chapter 3 presents the Anomaly Analysis block, where a long-term analysis on
the network anomalies found in the European-wide backbone network of GÉANT is
reported. This is based on the work published in [22, 8]. Next, Chapter 4 first analyses
the impact of several sampling techniques on two well-known scan detection algorithms.
Afterwards, based on the results, the second part of the block describes our new packet-
based sampling technique proposal, which works remarkably well for scan detection
under sampling. This part of the thesis is published in [30, 31]. Chapter 5 presents our
system for anomaly detection, extraction and classification based on frequent item-
set mining and machine learning. Its design, evaluation and deployment have been
published in [32, 33, 34]. Next, Chapter 6 explains how the system presented in the
previous chapter can be successfully generalised to analyse big network traffic data and
produce highly compact traffic summaries, which are very helpful for network operators
to understand what is happening in their networks. Part of this work was published
in [35] and the full version was submitted to a journal and is currently under review (see
Appendix B). Finally, Appendix A presents a real world use case that shows how the
methodology presented in chapters 5 and 6 can be successfully used in a completely
different environment to analyse the behaviour of highly distributed devices related
with a critical infrastructure sector. Ultimately, Chapter 6.5 covers the related work
and Chapter 7 concludes this thesis and presents some ideas for future work.



Chapter 2

Background

This chapter first describes the different types of network anomalies (Section 2.1), sam-
pling techniques (Section 2.2), scan detection mechanisms (Section 2.3) and frequent
item-set mining algorithms (Section 2.4) analysed in this thesis. Finally, Section 2.5
explains the scenarios and datasets used for the experiments of this thesis.

2.1 Network Anomalies

We focus on some of the most common types of network attacks: Network Scan,
Port Scan, Denial-of-Service and Distributed Denial-of-Service. Note that all these
anomalies are malicious attacks. Other anomalies such as Flash Crowds, which are not
ordinary but do not have a malicious purpose, are not within the scope of this thesis.
Next, we describe each anomaly type.

2.1.1 Network Scans

NS or horizontal scans are carried out by sending probes to identify running services
on a network. Those probes are always sent to one specific port (or a few), but to a
multitude of destinations. The most common are SYN scans and ACK scans but other
(not necessarily protocol legitimate) TCP flags combinations can be used.

2.1.2 Port Scans

PS or vertical scans are aimed at detecting running services on a specific machine.
Essentially, this type of scan consists of sending a message to a huge amount of ports,

11
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one at a time. The kind of response received indicates whether the port is used and
can therefore be further probed for weakness. Frequently, these scans are carried out
via UDP with 1 byte of payload packets (total packet size of 29 bytes).

2.1.3 Denial-of-Service

A DoS is an attack on a computer system that floods the network or the end system.
They are attempts to make a resource unavailable to its users. Most common sub-
categories are DoS UDP Floods and DoS TCP SYN Floods. A UDP Flood attack can
be carried out with a large number of packets with a small byte size or with packets with
a large byte size. The later type may look similar to a legitimate“ heavy UDP transfer
(e.g., bandwidth tests, high-volume P2P transfers, streaming applications or complex
data transfers. A TCP SYN Flood attack is carried out by sending a succession of
SYN requests to a target system. Some methods (e.g., usage of syn cookies, tuning of
TCP parameters, use of stateful firewalls) can help to reduce the effects of this attack.
However, this attack is still largely used.

2.1.4 Distributed DoS

DDoS attacks can take the forms described for DoS, but the senders are a multitude
of (often compromised) systems attacking a single target. The effects of distributed
attacks are nastier and their mitigation more difficult.

2.1.5 Others

This category was used to separate traffic that looked suspicious but did not fit in the
groups above.

2.2 Sampling Techniques

In this section, we describe the following five sampling techniques: Sampled NetFlow,
Packet Sampling (PS), Flow Sampling (FS), Smart Sampling (SMS) and Selective
Sampling (SES). While the first four methods are well-known in the literature and
commonly used, the fifth mechanism was also considered because it targets small
flows, which are precisely the type of flows used by scanning attacks.

PS is widely used because of its low CPU consumption and memory requirements.
Flow-based approaches (e.g., SMS) overcome some of the shortcomings of PS (e.g.,
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they keep the original flow size distribution) but, in exchange, they have higher resource
requirements. Thus, some trade-off between accuracy and resource requirements is
needed. Next, we describe each sampling technique.

2.2.1 Sampled NetFlow

NetFlow [7] is a network protocol developed by Cisco Systems [36] used to collect IP
traffic information on routers. It essentially aggregates incoming packets into flows
(NetFlow records) and expires them every certain interval of time. The flow definition
is not exactly the same among the different NetFlow versions but it is mainly composed
by the source and destination IPs, the source and destination ports and the protocol.
As we can deduce from the definition, a flow is considered to be unidirectional since
a response flow would have the source and the destination IPs and ports reversed and
the router would find no match with any previous flow, thus creating a new one. In
order to avoid resource exhaustion on routers due to network anomalies or bursts in
the traffic NetFlow allows sampling. When Sampled NetFlow [26] is activated, the
router samples one packet out of N for every time interval configured.

2.2.2 Packet Sampling

Packet Sampling (PS) takes each packet with probability 0 ≤ p < 1. There are several
versions [37] of this mechanism such as Systematic Packet Sampling and Random
Packet Sampling. The first one samples packets in a deterministic way (take every k-
th packet), while the second one depends on random decisions. Our PS implementation
corresponds to the latter.

2.2.3 Flow Sampling

Flow Sampling (FS) takes each flow with probability 0 ≤ p < 1. In order to implement
it efficiently, we used a hash-based technique called Flowwise Packet Sampling [38].
This technique does not need to collect all packets of each flow before sampling, i.e.,
it takes per-packet decisions.

2.2.4 Smart Sampling

Smart Sampling [39] (SMS) is a flow-based sampling technique that focuses on large
flows and drops the small ones. In order to define what large means, a threshold z
must be provided. z indicates the minimum size of the flows that will be sampled.
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Flows with lower size will be discarded with a certain probability p(x), which is inversely
proportional to their size (x):

p(x) =

{
x/z x < z
1 x ≥ z

2.2.5 Selective Sampling

Selective Sampling [17] (SES) is also a flow-based sampling method. SES focuses on
small flows, which are normally used for scanning. It uses three different parameters:
z, c and n. The first one corresponds to the threshold that defines the size of a small
flow (in packets). c is the probability of sampling a small flow (a flow with at most
z packets). Finally, n is used to further regulate the percentage of non-small flows
taken. The higher n, the lower the probability of sampling a flow with more than z
packets. A flow of size x packets is sampled according to the following expression:

p(x) =

{
c x ≤ z
z/(n · x) x > z

2.3 Scan Detection mechanisms

Simple scan detection algorithms, like the one used by the Snort IDS, are useless
nowadays since attackers can easily evade detection by reducing their scanning rate.
There are other techniques capable of achieving higher rates of detection such as
TRW and TAPS, which we analyse in this thesis. Next, we describe how these two
scan detection algorithms work.

2.3.1 TRW

The main idea behind Threshold Random Walk (TRW) [10] is that one scanner will fail
more connections than a legitimate client when trying to establish a connection. The
method works under two hypothesis: the host is either legitimate (H0) or malicious
(H1). Yi is the final state of the i-th connection performed by a host:

Yi =

{
0 if connection successful
1 if connection failed

Pr[Yi = 0|H0] = θ0 Pr[Yi = 1|H0] = 1− θ0
Pr[Yi = 0|H1] = θ1 Pr[Yi = 1|H1] = 1− θ1
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Due to the fact that scanners will fail more connections than benign hosts, the
following condition must be accomplished:

θ0 > θ1

Since it is possible to fail some connections even being a benign host, the decision
of flagging a host as a scanner is not taken just after the first failure. For each source
there is an accumulated ratio that is updated each time a flow ends.∧

(Y ) =
∏n

i=1
Pr[Yi|H1]
Pr[Yi|H0]

The update is performed depending on the flow state: connection established or
failed attempt. If a source IP keeps scanning, it will accumulate failed connections and,
eventually, it will exceed the established threshold, thus being recognised as a scanner.
Similarly, a legitimate host making several successful connections will be classified as
non-scanner.

2.3.2 TAPS

Time-based Access Pattern Sequential hypothesis testing (TAPS) [11] is based on the
observation that the ratio between the number of destination IPs and the number
of destination ports (or the reverse) when the source IP is an scanner is significantly
higher than the same ratio when the host is benign.

As the name suggest, TAPS is based on the same statistical method that TRW uses.
It only changes two things: the way it detects a suspicious behaviour and the update
mechanism. It checks the following fractions every t seconds (which is a configurable
parameter given to the algorithm):

#accessed IPs
#accessed ports > k #accessed ports

#accessed IPs > k

The left side expression indicates a horizontal scan or a network scan, while right
side expression means that a port scan or a vertical scan is going on (refer to Section 2.1
for details on types of scans).

When any of these two fractions is higher than a pre-configured threshold k, the
per-source IP ratio is updated. Likewise TRW, when this accumulated value reaches
a certain limit, that source is classified either as a scanner (upper threshold) or a
legitimate host (lower threshold).
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2.4 Frequent Item-Set Mining

The field of frequent item-set mining (FIM), comes from the data mining world and
essentially tries to extract information from the data by finding out the most frequent
relationships among different items. The original reason why this concept was created
was to analyse the so called supermarket transaction data. Its purpose was to discover
if there were any particular items bought frequently together by customers (e.g., chips
and beer are bought together in 90% of the cases). This type of information can be
extremely useful to, later on, e.g., offer promotions.

An item is considered frequent if it appears often in the data. “Often can be
defined either as an absolute number (number of occurrences) or as a relative parameter
(percentage relative to the overall amount of data) and it is called minimum support
(s). An item will be frequent if it has at least s occurrences or if it represents at
least s% of the overall transactions. In terms of supermarket transaction data, a
transaction would include all the items that a customer bought (one transaction per
buyer). In summary, the problem of frequent item-set mining consists of looking for
items occurring together (item-sets) above s.

The downward-closure property of FIM states that an item-set is frequent iff all its
subsets are frequent. For this reason, all the subsets of a frequent item-set are also
frequent and the output of FIM can include many redundant item-sets. To address this
problem, there are three types of outputs that a frequent item-set miner can extract:
all, closed or maximal [40]. The first group simply includes all item-sets while the last
one extracts only the longest patterns in case of redundant sub-patterns. Closed item-
sets try to find the optimal trade off between the excessive redundancy of extracting all
item-sets and the inevitable loss of granularity given by maximal item-sets. Closed item-
sets miners return the longest item-sets and, in addition, present also these patterns
inside it that have higher frequency. For instance, suppose item {a} has frequency 100
and that item-set {a,b} has frequency 80. If min sup = 75, all frequent item-sets
would be both {a} and {a,b}. The maximal item-set miner would only show item-set
{a,b}. The closed miner would return as well both item-sets because {a} has higher
frequency than its parent in terms of hierarchy ({a,b}). If, item-set {a} had frequency
80 instead of 100, the closed miner would not show it since it would not add further
information with respect to {a,b} (in case of having the same frequency, show the
longest item-set).

FIM mines efficiently an input set of transactions to discover frequent patterns.
Each input transaction T consists of a set of l items T = {e1, ..., el}. When using
FIM for network traffic, we model each traffic flow as a transaction where the items
correspond to different flow features. For example, an input transaction can consist of
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the 5-tuple, i.e., , the source and destination IP addresses, the source and destination
port numbers and the protocol.

A large number of FIM algorithms have been studied in the literature. In this thesis,
we analyse Apriori [41], FP-growth [42], and Eclat [43] because they are the reference
algorithms of the three main paradigms for computing a FIM solution. In addition,
we also select RElim [44] and SaM [45], which are two highly-optimized variants of
FP-growth. A survey of existing algorithms can be found in [46]. Next, we summarise
the key features of each algorithm.

Apriori [41] is the first and simplest FIM algorithm. It works in breadth first order
by iteratively merging frequent item-sets of increasing length. It starts by computing
frequent item-sets of length one. Based on the downward-closure property, it then joins
them to compute candidate item-sets of length two. Afterwards, it makes a pass over
the input transactions and discards candidate item-sets that are not frequent. This
procedure is repeated recursively until no more candidate item-sets can be generated.
Apriori has two main drawbacks. First, it needs k passes over the input data, where
k is the length of the longest item-set. Secondly, candidate generation and testing is
extremely slow as the number of candidate item-sets can be very large. In order to
overcome these issues, faster and more efficient algorithms have been proposed.

Eclat [43], instead of working with the typical horizontal representation of trans-
actions, i.e., a list of items for each transaction, it uses a vertical layout, i.e., each
item has an associated list of transaction identifiers where it appears in. It traverses
the data in a depth first order and intersects the lists of transaction identifiers of the
corresponding items for the counting.

FP-growth [42] uses a structure called Frequent Pattern Tree (FP-tree). In an FP-
tree, those transactions sharing items will also share the same branch in the tree, which
allows storing the data with higher compactness (especially for dense datasets). FP-
growth skips the process of checking all candidate item-sets against all the database
for each iteration, which is an extremely slow process and becomes untreatable as
input data grows up or the minimum support s gets lower. FP-growth improves this
by significantly reducing the possible candidates to that part of the database related
to a particular item (called the conditional pattern base). Another factor that explains
why FP-growth is faster than Apriori is that it only reads the database twice.

The main strength of RElim [44] lies on its simplicity. It does not use any complex
data structures, it process the transactions directly. It proceeds by recursive elimina-
tion. Firstly, it selects all transactions that have the least frequent item (among those
items that are frequent). Then, it removes that item from them and recursively pro-
cess the reduced database remembering the items found during the recursion. When
the recursion ends, all frequent item-sets for the removed item have been computed.
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Table 2.1: Taxonomy of the related work
Related Work Hierarchical Items Real-Time Dimensionality

FIM
√

- High
HHH

√ √
Low

AutoFocus
√

- Low

Table 2.2: Itemset reported after a DDoS attack from multiple source IPs towards IP A and
port B

SrcIP dstIP srcPort dstPort proto
* A * B *

Afterwards, the algorithm repeats the process with the second least frequent item and
without the already processed item in the database.

SaM [45], purely based on horizontal representation, is a simplified version of RElim.
It performs in two steps: split and merge. In the split step, all arrays starting with the
leading item of the first transaction are copied into new arrays and that leading item
is removed. This process is repeated recursively to find all frequent item-sets for the
leading item. Then, in order to obtain the conditional pattern base not containing the
leading item, a merge step with the rest of the database not containing that item is
needed. Optimized versions of both RElim and SaM have been recently proposed by
the authors [47].

In Table 2.1 we summarise how the main previous works differ in the dimensionality
of the input records, the type of items (flat or hierarchical), and the (near) real-time
or offline processing of the input records.

2.4.1 FIM for anomaly detection

The main idea behind using frequent item-set mining for anomaly detection is the fact
that a security anomaly such as a scan, a network scan or a DDoS will imply that there
will be a significant amount of flows sharing a certain subset of the flow features. For
instance, if there is a DDoS towards IP A and port B, FIM would find an item-set
as the one we can see in Table 2.2. As we can observe, while the dstIP and dstPort
columns have specific values, the remaining all contain wild cards, which stand for non
specific values. The item-set showed in the table summarises in a compact way all
flows with destination IP A and destination port B.

In frequent item-set mining for anomaly detection, the minimum support is specified
in terms of flows (each transaction is a flow). It will indicate the amount of flows that
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Fig. 2.1: GÉANT network.

an attack must have in order to be reported as a frequent item-set by the miner. The
fine tuning of this parameter is difficult and depends on several factors. Namely what
attack wants to be detected, the characteristics of the network where it is being tested
or the presence of sampling. While a low s will lead to many false positives (frequent
item-sets corresponding to legitimate traffic), a high value might reduce significantly
the detection rate by significantly increasing the false negatives (anomalies going under
the radar).

2.5 Scenarios

In this section, we present the three different network scenarios that have been used
to perform the experiments of this thesis.
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Fig. 2.2: CESCA and UPC scenarios.

2.5.1 GÉANT scenario

DANTE [48] is a non-profit organization that plans, builds and operates the GÉANT [49]
backbone network. GÉANT is a /19 transit network connecting 34 European NRENs
with 18 points-of- presence (PoPs) spread over Europe (with 10Gb/s links almost ev-
erywhere), a dozen of non-european NRENs, and two commercial providers (Telia an
Global Crossing) (see Figure 2.1). It is the main interconnection point for inter-NREN
traffic. For a certain subset of NRENs, GÉANT is also the primary gateway to the com-
mercial Internet (other NRENs have their own connection to the non -research world).
Although it is a R&E network, more than half of the traffic is towards commercial
providers. The overall handled traffic is more than 50Gb/s.

DANTE collects Sampled NetFlow [26] from the GÉANT core routers. NetFlow is
collected from every router interface with an external peering network. As GÉANT is
a purely transit network, this setup is sufficient to account for all the traffic.

2.5.2 CESCA scenario

This scenario consists of two 10 Gigabit Ethernet links that connect the Catalan Re-
search and Education Network (also known as Scientific Ring [50]) to the global Inter-
net via its Spanish counterpart (RedIRIS [51]). The Scientific Ring is managed by the
Supercomputing Center of Catalonia (CESCA [52]) and connects more than seventy
Catalan universities and research centers using many different technologies that range
from ADSL to Gigabit Ethernet [50] (see Figure 2.2).

2.5.3 UPC scenario

This scenario is composed by two Gigabit Ethernet links that connect our university,
Universitat Politècnica de Catalunya BarcelonaTech (UPC), with the Internet through
the Scientific Ring [50]. UPC connects around 10 campuses, 25 faculties and 40
departments to the Internet through the Scientific Ring (see Figure 2.2).



Chapter 3

Anomaly Analysis

3.1 Introduction

The amount of information on current anomalies happening in backbone networks as
well as their characteristics and behaviour is scarce in the literature [2, 3, 4, 5, 6].
For this reason, this chapter addresses this issue by analysing the anomalies found for
several months in the European backbone network of GÉANT.

During fall 2008, DANTE analysed three commercial tools for anomaly detection.
One year after (fall 2009), one of those tools was permanently deployed in the GÉANT
network. This chapter reports on the benchmarking of the tools and the obtained
results obtained using the finally deployed tool for half a year. First, it describes
the limitations of current commercial tools and discusses some aspects that still need
further research from the perspective of a network operator. Second, it provides a
long-term study of the anomalies occurring in a continental backbone network.

After manually analysing more than 1000 attacks, we found that, surprisingly, the
overlap among the anomalies detected by different tools is extremely low. This is a
clear indicator that false negatives are still significant even when comparing commercial
tools that are supposed to detect the same sort of anomalies. In addition, our study
reveals that Network Scan attacks are the most persistent and shows that there are
certain geographical regions that are predominant when looking at the top attackers
or targets respectively.

The remainder of this chapter is organized as follows. Section 3.2 describes the
followed methodology as well as the requirements used by DANTE to build a short-list
of suitable anomaly detection tools. Afterwards, Section 3.3 reports on the differences
found among those tools during the evaluation phase in terms of usability, true and false
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Fig. 3.1: NetFlow collection scenario in the GÉANT network

positives, false negatives and also regarding the different types of anomalies detected.
Section A.3 presents a study of the network anomalies found in GÉANT along with
their properties after using the selected tool for approximately six months. Finally,
Section A.4 summarises and concludes this chapter.

3.2 Context

During fall 2008, DANTE started looking for a solution to enhance the security of its
network, and of its customer networks, by analysing three different anomaly detection
commercial products. After evaluating the performance of each tool with the same
input data for several months, one of them was permanently deployed in the GÉANT
backbone network (mid November 2009).

At the beginning of this study, the sampling rate in Sampled NetFlow was set
to 1/1000. Later on, the routers were replaced, which allowed to migrate to 1/100
sampling. Therefore, we must take into account that the analysis of the tools presented
in Section 3.3 (fall 2008) and the study presented in Section A.3 (2009-2010) were
performed under different sampling rates.

NetFlow v5 [7] was used since anomaly detection tools require visibility on very
granular flows (the ones defined by the 5-tuple src/dst IP, src/dst port and protocol),
which is the default (and only one) provided by NetFlow v5. The NetFlow traffic
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is exported to a single fanout box duplicating it towards multiple destinations (see
Figure 3.1). This setup allowed us to evaluate all the anomaly detection tools using
exactly the same input data.

3.2.1 Tool Requirements

In order to start the process to select one tool for anomaly detection, three candidate
tools were short-listed on the basis of a set of requirements. We think that those
requirements are representative enough to be useful for any other network operator or
company willing to deploy a similar solution. In addition, we think that they impose
a serious set of limitations that should be taken into account by researchers working
on building anomaly detection algorithms meant to work in real-world networks. Next,
we provide the list of requirements along with a brief explanation for each one.

1. Sampled NetFlow support. Given the large scale and traffic volume in backbone
networks, one of the main requirements of network operators is the ability of the tools to
work with sampled flow-level data (e.g., Sampled NetFlow [26]). Several state-of-the-
art tools require access to packet payloads, which renders these solutions impractical
for this environment. Recent studies [53, 13, 14] have shown that the accuracy of
certain anomaly detection techniques is dramatically affected under sampling.

2. Non intrusive collection of data. Tools require often other data, beyond
NetFlow. Specifically, sometimes configuration information about the routers needs to
be collected to build a tool representation of the network topology and/or to correlate
it with information contained in the NetFlow records (e.g., the interface id). Some
tools require collection of BGP data, some also IS-IS1. The collection of other data
should not impose the deployment of additional hardware or difficult configuration
changes in the routers. Since most of GÉANT’s customers and peering connectivity
points are on 10 Gb/s lines, for cost and deployment complexity, approaches requiring
the installation of dedicated probes are not appropriate.

3. Accurate detection and classification. For an operator, it is essential to be able
to differentiate the anomaly type (correct anomaly classification), to report the end
hosts involved and to detect the anomaly duration. It is also very important to detect
both the start and the end time of the anomaly (anomaly window) with a precision in
the order of several minutes. Based on DANTE’s NOC (Network Operations Center)

1BGP (Border Gateway Protocol) is the most commonly used protocol to exchange routing
information between Autonomous Systems while IS-IS (Intermediate System To Intermediate System)
is limited to an administrative domain or network.
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engineers experience, the delay between the true event and its detection should not
exceed 20-30 min. and false positives should be low enough in order to be treatable
by an operator (e.g., no more than 10-15 anomalies per day).

4. Collection of evidence related to anomalies. Collecting information about
the anomalies in a structured way is important to investigate and possibly mitigate
the anomalies in collaboration with other CERTs2. Relevant information includes: IP
addresses and ports, time of the incident and entry/exit network points (both routers
and peers).

5. Scalability. The scale of the GÉANT network and the type of traffic posed a
significant requirement. At the time of this study, GÉANT had around 10 million
unique speaking hosts per day on network with global connectivity, mainly composed
of 10 Gb/s links carrying a mixture of research (e.g., grid traffic) and more “ordinary
Internet traffic. Thus, the problem was to detect anomalies with a huge number of
IPs and large volumes of composite traffic.

Another important requirement taken into account in DANTE’s case was to have tool
support. For this reason, only commercial solutions were considered.

3.2.2 Analysed Tools

As a result of the above requirements, three commercial tools were short-listed: Ne-
tReflex [54], PeakFlow SP [55] and StealthWatch [56]. These three tools represent a
good cross-section of current best practice techniques in anomaly detection. Moreover,
they are all based on different approaches and, therefore, it will be possible to catch a
potentially broader range of anomalies with the same input.

Concerning their working scheme, although we cannot go deep into the internal
details about what exact algorithms they use due to the fact that they are proprietary,
we give below an overview of their main functionalities and architectures. For further
details about each particular anomaly detection method these tools are based on, refer
to Chapter 6.5.

NetReflex (NR)

Functionality Overview

2A CERT (Computer Emergency Response Team) is a group of experts that takes care of any
security-related event threatening a NREN.
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NetReflex is a non-intrusive system providing real-time and network-wide visibility.
By collecting and processing traffic and routing information, NR is capable of perform-
ing the following three tasks: topology analysis, traffic analysis and anomaly analysis.
The first task focuses mainly on auto-discovering the topology of the network. The
traffic analysis task performs real-time inspection of the traffic and, finally, the last
task focuses on detecting and classifying anomalies.

Architecture

NR consists of a single physical appliance that integrates all functionalities described
above. The system is splitted into the following five core parts: topology analysis,
traffic analysis, anomaly analysis, search engine and reporting system. In the first
component the system provides information on the topology of the network and other
information such as the flows entering or exiting a single PoP or the utilization of a
particular link. The traffic analysis functionality computes the traffic matrix. With this
information an operator can easily spot the PoP pairs exchanging most of the traffic.
In the anomaly analysis component, it reports the anomalies detected along with their
type (e.g. DDoS) and all the related meta-data (entering and exiting PoP, source or
destination IP, destination port, etc.). The system also provides a search engine, that
gives access to the raw NetFlow data and allows the user to perform queries based on
the IPs, ports, protocol, entering PoP, etc. Finally, the reporting component provides
several types of summaries such as anomaly reports or traffic activity at different levels
(e.g., PoP-to-PoP or AS-to-AS).

Anomaly Detection Approach

It uses a technique based on a recent research work [57, 19] that employs Principal
Component Analysis (PCA). It applies both volume and entropy metrics along with
PCA to discriminate what is normal and what is not. It fuses NetFlow, BGP and IS-IS
data and creates a PoP to PoP matrix (18x18 in the GÉANT’s case). The PoP to
PoP traffic is the elementary unit over which the detection algorithm is run, so that
every detected anomaly can be attributed to one uni-directional PoP pair. The fusion
of different sources of data and algorithms has several advantages. First, the use of
routing data can split the traffic into PoP-PoP pairs and enable the anomaly detection
on a level of granularity that is useful for taking corrective actions. Second, PCA allows
the automatic compensation of the higher variability of the traffic that some PoP-PoP
pairs may “naturally have. Finally, entropy-based metrics enable the detection of low
volume anomalies that cannot be detected using only metrics based on the variation
of volume.
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PeakFlow SP (PF)

Functionality Overview

PeakFlow is a network-wide system that correlates flow data, SNMP and routing
information to build logical models and learn what network behaviours are normal.
The feedback provided by these models is then used by operations staff to detect
and mitigate anomalies, improve network performance and make better decisions for
traffic management and capacity planning. The main difference between PF and the
other two products presented in this work is that this tool is the only one providing
protection besides detection. It is able to keep crucial services such as the DNS/web
servers running after detecting a threat towards them.

Architecture

It consists of five types of appliances: the Collector Platform (CP), the Flow Sensor
(FS), the Business Intelligence (BI), the Portal Interface (PI) and the Threat Manage-
ment System (TMS). The CP is placed in the backbone or in a peering edge and takes
care of collecting the NetFlow data. The FS, which is placed in the client edge, extends
network security to the customer. The BI appliance analises the network and reports
on its performance (e.g., applications being used). The PI component gives access to
the service by providing an interface. It can have multiple instances. For example, in
the case of GÉANT, each customer (i.e., NREN) could have its own user interface.
Finally, the component taking care of security is the TMS. This part of the software
is in charge of detecting the anomalies and applying the proper countermeasures to
block them while allowing the flow of legitimate traffic.

Anomaly Detection Approach

This software uses statistical-based and signature-based anomaly detection. Re-
garding the statistical analysis, it detects anomalies on the basis of variation of traffic
volumes. It first creates baseline definitions and then compares the real-time traffic
against it to look for abnormal deviations. As for the signatures, it tries to match
previously stored patterns with the incoming traffic. Although the statistical base of
the anomaly detection of this tool is one of the oldest in the market, the tool has the
potential benefit of being easily configurable and using a common Knowledge Base
leveraging a quite large installation base. Moreover, several customers (around 50 at
the time of the test) provide voluntarily their anomaly feeds to the vendor, who has
thus the ability to create new signatures triggering anomalies.
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StealthWatch (SW)

Functionality Overview

The StealthWatch system provides insight about what applications and services are
running in the network, how are they performing, and who is using them. Moreover,
it uses behavioural-based analysis to detect security anomalies. Taking into account
all this information, it allows IT teams to have more detailed insight and make more
reliable decisions for crucial tasks such as incident response, troubleshooting or capacity
planning.

Architecture

It is divided into five components: Management Console (MC), Flow Collector
(FC), Flow Replicator (FR), Flow Sensor (FS) and Identity (ID). The MC is the user
interface through which an operator is able to see graphical representations of what is
going on in the network (in terms of both security and usage). The FC takes care of
collecting the NetFlow data. The FR component is able to aggregate multiple data
sources (e.g., NetFlow, SNMP) in a single data stream and forward it to one or more
destinations. The FS is in charge of identifying those applications being used across
the network. Finally, the ID part maps any unexpected network event with the user or
group of users who caused it.

Anomaly Detection Approach

This system employs behavioural-based analysis. Traffic sent or received by hosts
is observed for a number of days (learning phase) and then, the host is classified into
the best fitting category according to this profiling (e.g., end host or web server).
Deviations from what is believed the “normal” behaviour of the host lead to the
triggering of anomalies. This tool requires the manual feed of static BGP prefixes
to cluster the IPs in groups. Despite the potential scalability weakness of per-host
profiling (see Section 3.3.6), it can be very accurate and precise for detecting sudden
anomalous behaviour of single hosts (often related to suspicious of malicious activity).
The statistical analysis done in the background is complex. However, the user of this
tool has the possibility to easily vary the sensitivity of a host or group of hosts to
reduce the number of false positives or to whitelist non-interesting anomalies for the
specific scenario where the tool is being used.
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Table 3.1: Details for the datasets
Label Duration Period #flows/#packets/#bytes Sampling

dataset-1 13 days Nov.’08 1.97G/4.12G/3.21T 1/1000
dataset-2 175 days Nov.’09-May’10 99.38G/699.95G/576.16T 1/100

3.3 Analysis of the Tools

In this section, we analise the three tools presented in Section 3.2. Firstly, the dataset
and the methodology followed during the analysis are explained. Afterwards, an analysis
of the true and false positives, the false negatives, the type, and distribution of the
anomalies is provided for each tool. Finally, we observe how the origins of the anomalies
are split in order to see if any of the tools has any bias in the detection.

3.3.1 Dataset and Methodology

The analysis of the tools is based on a 13 days long dataset from GÉANT collected
during November 2008 (days 9-12, 16, 18-22, 23-26) with a sampling rate of 1/1000.
We refer to this dataset as dataset-1 (see details in Table 3.1).

Every single anomaly inside dataset-1 was manually analysed via access to the raw
NetFlow records by a DANTE security team with long experience in network security.
Some of the anomalies (especially unclear cases) were double-checked with NRENs
to obtain an independent validation. An overall of 1006 anomalies were manually
analysed.

Each anomaly was classified either as a true positive (TP), a false positive (FP)
or as an Unknown (U). TP means that there was enough evidence to confirm that
the event was indeed due to a malicious activity, whereas a FP implies that there was
a clear indication that the detected anomaly corresponded to legitimate traffic. An
anomaly was classified as an unknown when the security team was not able to reach
a conclusion and, therefore, they were not able to confirm if it was just normal traffic
(FP) or an actual anomaly (TP). A small sample of false negatives (FN) was also
analysed as discussed in Section 3.3.4.

3.3.2 Type of Anomalies

We analysed the type and distribution of the anomalies reported by each tool. We
classified all the reported alarms into the security categories described in Chapter 2.
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Fig. 3.2: Anomalies reported by each tool

As we can observe in Figure 3.2, NetReflex (NR) and StealthWatch (SW) detected
events falling into all categories, while PeakFlow SP (PF) missed completely all the
Network Scans. This sort of attack is clearly the most frequent one according to NR
and SW (42% and 72% respectively). Even though with different percentages, these
two tools also coincided classifying the second more frequent attack, the DoS (33%
and 17%), and the least common, the DDoS (4% and < 1%). The most significant
discrepancy left was the amount of reported PS : while NR detected quite a lot of them
(14%), SW only triggered 2%.

PF presented quite different results showing a proportion of 39% of DoS attacks
and 4% for both Port Scans and DDoS (respectively). In addition, according to
this tool, more than half of the detected anomalies (53%, almost all of them FP, as
explained in Section 3.3.4) belonged to the Others category while SW and NR showed
significantly smaller percentages for that group (8% and 6% respectively). Note that
all tools were working under an aggressive sampling rate during the evaluation period
(1/1000) and therefore this could have a significant impact on their accuracy.

The results clearly reflect the strong points of the methods the tools are based on.
For example, SW, based on per-host behavioural analysis, was the strongest detecting
Network Scans because when there is scanning activity, the behaviour of a host changes
significantly. PF, that uses a baseline to detect abnormal volume variations, was the
one detecting more DoS because this sort of attack uses large amounts of packets or
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Fig. 3.3: True Positives, False Positives and Unknowns for the evaluated tools

bytes. Finally, NR, based on entropy, showed the best balance among the four types
of anomalies.

3.3.3 True and False Positives Analysis

Concerning the figures per tool (see Figure 3.3), SW was the one detecting more
anomalies (549) followed by NR (344). PF was the one with the smallest set of
reported anomalies: 113. Regarding the True Positives (TP), NR had the best ratio
(82.26%) followed closely by SW (77.59%), while PF showed the worst performance
with 45.13%. The false positive (FP) ratio for NR was the lowest one (15.98%), while
SW had a similar value (20.4%). Half of the anomalies detected by PF (54.86%) were
FP. Therefore, NR clearly showed the best ratio TP-FP, although it detected far less
anomalies than SW. Regarding the “Unknowns” category, NR and SW had just few
cases (≈2% each) and PF did not have any.

Figure 3.4 shows the total number of TP, FP and Unknowns per anomaly type for
each tool and also taking into account all tools together. As we can clearly observe in
Figure 3.4(a), the amount of overall FP compared to the number of TP was reasonably
low for PS, NS and DDoS. On the contrary, the false positive ratio was non negligible
in the case of DoS (29.2%), while the Others category was almost purely composed
by FP. Figure 3.4(c) shows that the FP in the former group were basically signaled by
PF. The false positives in case of DoS were mainly because of NR and SW. For NR
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Fig. 3.4: True Positives, False Positives and Unknowns per anomaly type

(Figure 3.4(b)), they were almost one-third of the TP and, for SW (Figure 3.4(d)),
the FP were, strangely, as big as the number of true positives.

3.3.4 Anomaly Overlap and False Negatives Analysis

For an anomaly detection system, the tradeoff between false negatives (FN) and FP
is very important. Since we knew the set of true anomalies for all tools and also their
intersection, we were able to compute a lower bound of the FN for each tool. For a
given tool, we know that its lower bound of FN is composed by all TP flagged by the
other tools but not detected by the tool itself.

However, analysing the full set of FN was extremely hard in our environment,
because it requires manual inspection of every single flow (i.e., 1.97 × 109 flows, not
only those belonging to anomalies detected by the tools) to determine whether it is
part of an anomaly. We discarded other alternatives, such as performing a penetration
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Table 3.2: Lower bound of false negatives per tool and anomaly type for dataset-1
PS NS DoS DDoS Others Overall

NetReflex 9 350 67 3 1 430
PeakFlow SP 50 505 122 3 2 682
StealthWatch 40 123 113 12 4 292

Overall 99 978 302 18 7 1404

test, due to legal issues since the analysed sources and destinations were outside the
administrative domain of DANTE.

Surprisingly, the intersection among the set of anomalies detected by all tools was
limited to a few percent. NR had only 17 anomalies in common with PF and 29
with SW. PF and SW only shared 6 anomalies. This is a strong indication that the
particular anomaly detection approach used by each tool clearly influences what kinds
of anomalies are reported, even though all tools aim to the detect the same type
of events. This highlights the importance of combining different anomaly detection
systems to catch a broader range of anomalies.

Concerning the lower bound of false negatives per anomaly type, they all presented
huge values as we can observe in Table 3.2 (last row). They were approximately twice
as big as the TP for both NS and DoS (respectively). For DDoS, they were almost
equal to the TP whereas PS showed the lowest ratio (close to two-thirds of the TP).
Regarding the overall number of FN for each tool, PF was the one with the highest
value (682) followed by NR (430) and SW (292). Note that although all tools detected
approximately the same sort of anomalies, the lower bound of false negatives for the
tool with the lowest value (SW), already indicates that there were at least 67.91%
more anomalies happening in the network besides those being detected by the tool
itself.

In order to confirm that the false negatives were so significant, we performed an
alternative analysis based on a subset of all the FN. The newly created ground truth
of anomalies was manually validated and created independently of the tools. We used
frequent item-set mining (FIM), which has been recently used in the literature to
extract sets of anomalous flows [23, 32, 33, 34, 31, 35] (refer to Chapter 2 for more
details). We randomly selected sixteen 30-minute samples of NetFlow within dataset-1
and run FIM on them. Afterwards, we manually splitted the reported sets of flows into
legitimate and anomalous traffic. In case of being anomalous, we also classified them
taking into account the types of anomalies described in Section 3.3.2. This final set of
anomalies with their corresponding type was our ground truth. Therefore, any anomaly
in this ground truth that was not detected by a particular tool was considered a false
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negative for that specific tool. We run FIM with the minimum support (s) set to 2000
flows, which resulted in a reasonable number of anomalies to be treated manually.
Accordingly, this analysis of false negatives was limited to those anomalies reported by
NR, PF or SW that had 2000 flows or more. For the analysed intervals of time and
having at least 2000 flows, NR, PF and SW had 8, 5 and 4 anomalies respectively.

Although all the anomalies flagged by NR, PF and SW were found using FIM for the
analysed periods, we found many more anomalies that had not been detected by any of
the three tools. In particular, the manually validated ground truth had 126 anomalies.
Therefore, the lowest percentage of FN was for NR (93.65%), closely followed by PF
(96.03%) and SW (96.83%). This new evaluation further certified that even current
commercial tools are still missing a vast amount of anomalies.

3.3.5 Origin of the Anomalies

As described in Section 3.2.2, SW required the manual introduction of BGP prefixes in
order to group hosts and profile their behaviour. To check if that factor had any impact
on how SW was performing, we decided to investigate the origin of the anomalies.
Figure 3.5 shows that, while the sources of the anomalies detected by PF and NR are
spatially split among NRENs and no NRENs, SW shows a bias towards NREN origins,
the ones for which DANTE was able to provide the BGP prefixes (NRENs are DANTE’s
customers). The reason behind this is that DANTE could not create those prefixes
for its commercial peers due to their enormous variability and size. Therefore, SW
failed to profile those sources and detect anomalies coming from there. The sources
labeled as Mix stand for those attacks coming from multiple origins that could not
be classified either as NRENs or no-NRENs, because they were a mixture of both of
them. However, this group was not significant enough to change the bias showed by
SW. When we were not able to determine the location of an anomaly in particular (e.g.,
due to IP spoofing), we classified it as an Unknown. This group was not significant
either for any of the tools.

3.3.6 Configurability, Scalability and Usability of the Tools

Besides analysing the performance of the tools, network operators are also interested
in other important features, such as their configurability, scalability and usability. This
section shows a qualitative analysis of such features because we think this can be
almost as important as the evaluation itself for operators or any other organization with
a large network willing to deploy an anomaly detection system in a similar scenario.
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Fig. 3.5: Source of the detected anomalies

We describe below what we learnt during the configuration phase of the tools as well
as how usable they were during the evaluation process.

Configurability

NR and PF were running on one server each, whereas SW required a main server and
management workstation. All three solutions were deployed in a central location within
the GÉANT network (Frankfurt). All tools met requirement 1 (see Section 3.2.1), i.e.,
they worked with the already existing NetFlow scenario of GÉANT. PF and NR required
also SNMP access to the routers for obtaining network configuration information. NR
and PF required as well receiving live BGP feeds from our routers. We configured them
both to be part of the iBGP (internal BGP) full mesh of our 18 routers. Note that NR
uses BGP to build a POP to POP traffic matrix (with NetFlow only it is possible to
derive the ingress POP, but not the egress one). PF only used BGP information for
doing traffic peering analysis. As explained in Section 3.2.2 and 3.3.5, SW required
the manual feed of static BGP prefixes to cluster the IPs of observed traffic in groups.
That was easy for DANTE’s customers (European NRENs), whose prefixes are fixed or
vary with a very low dynamic, but not feasible for the rest due to their large size and
higher dynamism. NR also required the collection of IS-IS data, and this was achieved
by simply letting the tool server be layer 2 adjacent with one of the routers. This
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information was not used for the Anomaly Detection component.

Scalability

All the tools proved to be able to handle and process the NetFlow and other data
feeds they needed. In particular, SW proved to be very accurate for the detection of
malicious activity originating/targeting only the set of BGP prefixes defined in advance.
However, we estimated that extending it to all our peers (including those providing
global connectivity - Telia and Global Crossing) would have required a twenty fold
increase in the memory requirements of the tool, thus boosting its cost and impacting
its performance.

Usability

Both SW and NR provided a compact exporting of the information for the detected
anomalies. SW (being host behavioural based) can also show other anomalies asso-
ciated to one IP that is the source or target of an anomaly. This functionality is not
present in NR. However, NR can precisely associate an anomaly to an entry/exit point
of the network, and to an entry/exit BGP peer due to its fusion of NetFlow and BGP
data. SW is less precise in this respect, especially when at least one of the anomaly
entry/exit points does not belong to a European NREN (which is the most common
case). Regarding PF, external third-party tools were needed in some cases in order to
investigate an event, which made this tool less usable than the others.

Learning Curve

The interface of NR is very intuitive as it clearly defines the different available sections
(e.g., anomaly detection and traffic analysis). The system has a very short learning
curve as the drill depth is approximately six clicks. The interface of SW was also
very straight forward. The user console is very intuitive, providing multiple paths to
investigate an event. At the same time, this could be an issue as the route to the
solution could be ten to fifteen clicks before reaching the NetFlow level. PF was the
least intuitive tool due to the non-practical graph styles and the way to show events
back to the operator, which made it harder to analise each anomaly.

3.3.7 Tool Selection

Taking into account the requirements listed in Section 3.2.1 and after evaluating the
three tools, NR was finally deployed in the GÉANT backbone network. Next, we
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provide a summary of this evaluation and explain the step-by-step reasoning towards
our final selection.

Although it is not possible to determine how it affected their performance, all
tools were able to work with sampled input (Sampled NetFlow) (requirement 1). Two
of them, NR and PF, required no additional hardware other than a server running
the software and no complex changes to the routers were necessary (requirement 2).
However, SW needed an extra workstation besides the server and also required the
manual introduction of BGP prefixes, which for DANTE’s case was only possible for
the European NRENs, a subset of all their peers. The performance of the tools in
terms of both accurate detection and classification (requirement 3) was surprisingly
different and a discriminating factor for the selection process. In terms of true and
false positives (Section 3.3.3), NR showed the best results with 82.26% of TP and
15.98% of FP, followed closely by SW. PF was the worst in that respect. Regarding
the types of anomalies detected (Section 3.3.2), while the PF did not report any
Network Scan, both SW and NR flagged anomalies of all types. However, when
looking at the origin of the attacks (Section 3.3.5), it was clear that SW showed
a huge bias towards those anomalies coming from those previously given subset of
BGP prefixes (mainly European NRENs), therefore being far less competitive than
NR, which provided precise identification of the anomalies irrespective of the peering
type. As regards the collection of evidence related to an anomaly (requirement 4),
NR was the one providing the highest detail for a reported anomaly, including entry
and exit points in GÉANT and related IPs and ports. Finally, regarding the scalability
of the tools (requirement 5), SW was the only one that presented issues. In case all
BGP prefixes could have been provided, it would have needed an unrealistic amount
of memory.

All in all, due to its easy configuration, its best detection and classification, its
independence of the origin of the anomaly, its scalability and its higher detail for
a reported attack, NR was clearly the best tool given DANTE’s requirements, and,
therefore, the software finally deployed in GÉANT.

3.3.8 Discussion

It must be noted that the tool finally deployed in GÉANT, NR, is merely anecdotal.
The relevant aspect lies on the followed methodology and the performed experiments
during the benchmarking rather than on the final decision, which will always depend
on the particular network environment and specific needs.

For instance, for SW, it is clear that the impossibility to provide all the BGP prefixes
(for both size and scalability issues), significantly reduced the detection capabilities of
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the tool. In a different scenario, where the organization willing to deploy it could
provide this information, it could be perfectly possible that SW outperformed NR.

Regarding PF, although it showed the worst overall performance, it was the best
tool detecting Denial-of-Service attacks, with almost no false positives (both SW and
NR reported significant proportions of FP for this particular anomaly). Moreover, PF is
the only solution providing mitigation of an attack after detection. To give an example,
for an ASP (application service provider), which is interested in assuring high quality
and availability of its services, this solution would fit better than the others because
it flags DoS with high accuracy and, additionally, is capable of blocking the malicious
traffic while allowing legitimate users to continue using the service.

Please note that, even though PF performed poorly in GÉANT, according to its
manufacturer, Arbor Networks, PF is one of the most widely deployed commercial
solutions for anomaly detection. Therefore, this confirms the fact that a particular
software is neither good nor bad by itself, but depends on its adequacy to the network
environment and the singular requirements of the operator.

3.4 Analysis of the Anomalies

After selecting the set of tools to analise (Section 3.2) and evaluating them (Sec-
tion 3.3), NetReflex (NR) was deployed in the GÉANT backbone network. In this
section, we present a study about the anomalies we have found after operationally us-
ing this tool for half a year. We show their their types, properties, magnitudes, origins
and destinations.

3.4.1 Validation of the Deployed Tool

This study is based on another dataset labeled as dataset-2 (see details in Table 3.1).
While dataset-1 was obtained during the evaluation of the three tools, dataset-2 was
collected using the deployed tool (NR). dataset-2 covers almost a seven months period
(10th of November 2009 - 3rd of May 2010). In order to confirm that the tool was
performing as expected, since it was not feasible to manually check all the anomalies
in dataset-2 due to its duration, a subset of six days of NetFlow data (10th, 11th,
16th, 17th, 23rd and 26th of November 2009) was collected (see details in Table 3.3).
All these anomalies were manually validated following exactly the same methodology
explained in Section 3.3.1.

In Table 3.3 we can observe that the TP-FP (88.01%-11.99%) of NR improved with
respect to its TP-FP during the tool evaluation period (82.26%-15.98%, Section 3.3).
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Table 3.3: Details for the 6 manually analysed days of dataset-2 (November 2009).
Day #TP #FP #flows #packets #bytes

10th 39 9 619.43M 4.09G 2.15T

11th 40 4 613.06M 4.01G 2.10T

16th 44 4 581.34M 3.55G 1.99T

17th 38 2 604.66M 3.73G 2.06T

23rd 45 9 598M 3.45G 2.03T

26th 29 4 560.06M 3.67G 2.01T
Overall 235 32 3.57G 22.5G 12.33T

The main reason behind this difference are two key modifications made to NR after
its deployment in GÉANT. In particular, the changes made by the vendor were the
following. Firstly, the traffic in case of UDP floods was systematically checked in
the reverse direction of the attack (i.e., outgoing from the target). This check was
motivated by the fact that, during the evaluation period, it was observed that most of
the false positives for DoS were actually bandwidth tests, large transfers, high-volume
P2P activity and data streaming, all of which require minimal bidirectional interaction
between the involved hosts. Consequently, if the reverse portion of the traffic turned
out to be more than a given threshold of the incoming, it was assumed that there was
a legitimate communication going on and no anomaly was signaled. We selected a
threshold of 10%, which resulted in a good tradeoff between TP and FP for DoS. This
change significantly reduced the overall FP. Secondly, the sensitivity of the algorithm
towards commonly attacked ports was improved, as it will be explained in Section 3.4.2.
Also, recall that dataset-1 was captured under 1/1000 sampling while dataset-2 was
collected with a sampling rate of 1/100, which might contribute as well to the overall
performance improvement of NR.

3.4.2 Anomaly Distribution

As already observed in dataset-1, dataset-2 confirmed that Network Scans are clearly
the most frequent attack with a percentage of 79%, while the rest of the considered
security attacks (Port Scans, DoS and DDoS) represent the remaining 21%. It seems
hat NS are some sort of background activity that is almost always going on looking
for open well-known ports to later on exploit some known vulnerability associated to
services running on these ports. DoS and Port Scans are the next most frequent
attacks with a quite similar percentage (11% and 8% respectively). The least common
are DDoS attacks with only 2% of the reported anomalies.

The reason why the percentage of detected NS changed so much between dataset-
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2 (79%) and dataset-1 (42%, see Figure 3.2) is, as already mentioned in Section 3.4.1,
because NR was tuned after its deployment in GÉANT. The vendor of NR added the
capability to select, at configuration time, specific destination ports where to increase
the anomaly analysis sensitivity. We used that feature to make it focus on frequently
attacked ports that were reported by StealthWatch (SW) but missed by NR during
the evaluation. Recall that, according to Figure 3.4, SW detected more than twice as
many NS as NR (before tuning). In particular, we added ports 22 (SSH), 135 (RPC),
139 (Netbios), 445 (SMB) and 1433 (SQL), which are often misused (e.g., SSH brute
force attempts or SQL injections) and thus enhanced the detection of the algorithm.

We think that the anomalies detected by NR after the tuning better reflected
the reality than before modifying it. The anomaly distribution of NR after tuning
(NS :79%, PS :8%, DoS :11%, DDoS :2%) is more similar to SW (NS :72%, PS :2%,
DoS :17%, DDoS :<1%). However, note that the distribution of the anomalies found
in the GÉANT backbone network could still be biased towards how good or bad is NR
in detecting each type of attack.

3.4.3 Top Attacked Ports

Looking at Figure 3.6(a) we can see the top 10 ports attacked taking into account all
the anomalies. We observed that seven of them were attacks to well-known ports of
widely-known services: port 22 (SSH), port 1433 (Microsoft SQL), ports 135 and 445
(Windows) and port 80 (Web) are in the top 4, while port 443 (HTTPS) and 3306
(MySQL) are in the 7th and 8th position. The other three most attacked ports were
12174, 8443 and 6000. The first port refers to a vulnerability that affects outdated
Symantec servers from fall 2009. The second is a popular non-standard alternative for
listening to HTTPS connections, and the third is used in X-Window servers. Given
that this only shows the top attacked ports regardless of the attack, we then analysed
how that distribution looked like for every type of anomaly in order to see if there are
particular ports preferred for each kind of attack.

We observed that, as expected, the overall top targeted ports was indeed dominated
by the main ports attacked for Network Scans (see Figure 3.6(b)), which is expected
given that it is, by far, the most frequent attack. The most common subtype is SSH
scanning, followed by port 1433 and Windows Netbios ports for networking functions
such as file-sharing (ports 135 and 445). Port 80 is the next one, but with lower
intensity. Regarding the five ports left (12174, 443, 3306, 8443 and 6000), they all
had less than 10 instances during these analysed period.

Regarding DoS (Figure 3.6(c)), the most significant attacks happened on ports
53, 80, 0 and 22. Attacks to DNS ports are normally DNS cache poisoning attempts,
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(d) DDoS

Fig. 3.6: Top attacked ports

which means that a DNS server has received an update from a non-authoritative DNS
source and thus its clients are receiving fake data. Regarding attacks to ports 80 and
22, they are quite well-known and intend to saturate either a web or a SSH server to
make it unavailable to its clients. We then found port 0, which according to IANA [58]
is reserved, but sometimes is used in OS fingerprinting activities. However, we believe
that the majority of “port zero” flows are due to packet fragmentation, and to the
fact that NetFlow v5 creates a flow with destination port zero for fragmented packets.
As showed in Figure 3.6(d), for DDoS, port 80 is clearly the most targeted port. The
second one is port 6667 (IRC or Internet Relay Chat), which is often used to remotely
control hosts previously infected by a Trojan (zombies). These set of hosts are called
“botnets” and can be used to launch massive DDoS attacks. We finally found the
well-known attacks to ports 53 and 22. The set of remaining ports were 25345, 2001
(Trojan), port 0 again and 7000 (Trojan).
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Table 3.4: Average number of flows/packets/bytes per anomaly type found in the six
manually validated days inside dataset-2

flows packets bytes

Network Scans 1.75K 1.75K 74.8K
Port Scans 153.47K 347.33K 9.64M

DoS 2.33 960.22K 40.10M
DDoS 1.15M 1.15M 46.06M

3.4.4 Magnitude of the Anomalies

In this section, we provide an analysis about the average number of flows, packets
and bytes involved in each sort of anomaly. Given that NR does not provide volume
information together with the reported anomalies, we used the raw NetFlow data saved
for the subset of six days that we manually validated. In order to obtain the correct
flows associated to each anomaly, we used the same method described in Section 3.3.4,
a recent extension [33] of the Apriori algorithm [23] .

Table 3.4 shows that the volumes associated to each sort of anomaly are signifi-
cantly different. Concerning the number of flows, it is clear that DoS attacks rarely use
more than one or two flows, while the other anomalies involve a much higher number.
The anomaly type using more flows with a huge difference is the Distributed DoS. We
then find the scans: in the first place there is the Port Scan, with a large number of
flows corresponding to the different ports tested and then we clearly observe that the
intensity of a Network Scan is the lowest (in terms of flows). Regarding the number
of packets, the average for DDoS and DoS is the highest while NS are, by far, the
attacks using the least. Both Network Scans and DDoS generate single-packet flows
(they show equal amount of packets and flows, respectively). Finally, regarding the
number of bytes, Port Scans do not seem to be “stealthy activities and have a number
of bytes comparable to DoS even that being lower. NS are the ones using the lowest
amount of bytes. Regarding DoS and DDoS we can see that they look almost exact
in terms of packets and bytes but they clearly differ concerning the amount of flows
they use for attacking: DoS use a few flows while DDoS launch attacks coming from
a huge amount of sources.

3.4.5 Origin and Destination of the Anomalies

This section presents a study of how the origins and the destinations of the anoma-
lies were distributed over GÉANT. Most of them (56%) were generated from outside
GÉANT and 38% of them came from the inside. The remaining 6% came from an un-
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known location (see end of Section 3.3.5 for more details). Regarding the destination,
a huge amount of the attacks (70%) were directed to the GÉANT network while 24%
of the anomalies had outside targets and 6% had unidentified receivers.

Surprisingly, almost half of all the anomalies analysed (45%) came solely from
the Asia-Pacific region, specially from China, probably because of the high amount
of infected PCs running non-properly patched Windows OS. Regarding the remaining
countries, none of them generated (separately) more than 6% of the overall anomalies.
Concerning the top targets, there was not a clearly predominant region. Israel (not
a EU member but connected to GÉANT) was the most commonly attacked country
(8% of the anomalies) along with Greece (7%), North America (6%), Portugal (5%)
and Estonia (5%). Israel and Estonia have had and still have some political issues that
may explain their presence at the very top even though they are small networks (they
receive/send little traffic with respect to other bigger research networks).

When studying the top origin-destination pairs, we found that the most frequent
one was from no-NREN to NREN (53.38%). This was due to the fact that the most
frequent type of anomaly, as we saw in Section 3.4.2, was the Network Scan, which
we can consider as some sort of background activity proportional to the number of
hosts in a network. Since the no-NRENs represent the “rest of the Internet” (i.e. non-
academic networks) it was quite expected this number of anomalies to be numerically
dominant. The next pairs were from NREN to no-NREN, with a far lower percentage
(21%), and from NREN to NREN (16.78% of the anomalies). The remaining pairs
represented less than 9% of the attacks.

3.5 Chapter Summary

In this chapter, we analysed three commercial tools for anomaly detection and provided
a study about the type and characteristics of the current security threats happening
in a large backbone network. We also reported the strengths and shortcomings found
while using these tools, as well as the experience and knowledge we acquired during
this long process.

After manually classifying more than 1000 anomalies, we learnt that their distri-
bution, as well as the accuracy of each tool, were significantly different. While the
true positives were generally reasonable, the ratio of false positives was quite high for
all tools. Surprisingly, we found that the overlap between the anomalies detected by
different tools was minimal. This indicates that the number of false negatives is still
significant even in commercial tools, and shows the importance of combining different
approaches to obtain a stronger anomaly detection system by potentially catching a
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broader range of malicious events. As for what tool performed better for each anomaly
type, we observed that while StealthWatch (based on host behaviour) was the best
with Network Scans, PeakFlow SP (based on traffic volumes) was better at discovering
DoS. NetReflex (based on PCA and entropy) exhibited the best balance regardless of
the anomaly type.

In addition, we studied the most common types of anomalies, the top attacked
ports, the volumes associated to each anomaly and their sources and destinations
after using the deployed tool for approximately six months. Our study revealed the
tremendous frequency and persistence of Network Scan attacks. We also showed
that every type of anomaly had its own preferred destination ports. As expected, the
overall top-3 is governed by well-known targets: SSH (22), Microsoft SQL (1433) and
a Windows resource-sharing (135). Regarding the magnitude of each sort of anomaly,
while DoS rarely use more than 1 or 2 flows, DDoS attacks generate, by far, the
highest amount of flows. Network Scans involve the lowest number of packets and
bytes and few flows. On the contrary, Port Scans use a quite large number of flows,
packets and bytes. Moreover, we observed that the Asia-Pacific region turned out to
be the region generating most of the attacks while small countries like Israel or Estonia
were common targets.

From a practical point of view, we also reported on the acquired experience during
this long process. We realized about the complexity and diversity of the traffic observed
in a large academic network. For instance, it is quite common to observe traffic
that behaves like a Denial-of-Service but happens to be some legitimate research
experiment. This fact points out a key learning aspect that should be central for any
anomaly detection tool. Each network is different and the detection algorithm must be
flexible enough to adapt to it. Moreover, the configuration of the tools as well as their
long term scalability are important aspects. To give an example, while StealthWatch
would have required substantial upkeep in maintaining the prefix lists, NetReflex did
not need anything from a manual perspective.
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Chapter 4

Impact of Sampling on Anomaly
Detection

4.1 Introduction

In this chapter, we first analise the impact of sampling on two scan detection algorithms.
Afterwards, based on the obtained results, we propose a sampling technique that works
well for scan detection and is able to work on a per-packet basis, thus using less
resources than previous proposals and being able to work online.

First, we analise the impact of sampling on TRW [10] and TAPS [11]. In particular,
we evaluate them under four sampling techniques: Packet Sampling, Flow Sampling,
Smart Sampling [39] and Selective Sampling [17]. Details of this algorithms can
be found in Chapter 2. Except for Selective Sampling, the other sampling techniques
were chosen because they are well-known and frequently used in the literature, spe-
cially Packet Sampling (e.g., Sampled NetFlow [26] is very extended among network
operators, and it is based on Packet Sampling). We also included Selective Sampling,
a recent sampling proposal that targets exactly the kind of flows that are typically
responsible of the scans (small flows, i.e., with few packets).

Regarding the scan detection algorithms, both TRW and TAPS performance was
vastly degraded due to sampling. While TRW turned out to be almost useless under
sampling (except for Selective Sampling, in which case it exhibited a quite acceptable
performance), TAPS showed to be significantly more resilient. Contrarily to the results
reported by previous works on the bad performance of Packet Sampling for scan de-
tection [14, 13], in our experiments we observed that Packet Sampling outperformed
Flow Sampling in most of the scenarios. Finally, Selective Sampling exhibited the best

45
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overall performance among the evaluated sampling techniques.
Second, taking into account the good results reported by Selective Sampling, we

propose a new sampling technique called Online Selective Sampling that also targets
small flows. The main problem of Selective Sampling is that it must work offline
because it first needs to capture all the flows to later apply flow sampling, since it is
not possible to know the flow size in advance. Consequently, the main objective of
Online Selective Sampling is to sample the same flows that Selective Sampling, but,
instead of collecting all the packets in the first place and then discarding entire flows,
Online Selective Sampling will sample on a per-packet basis (it is implementable online,
before the aggregation of packets into flows occurs). Results show that Online Selective
Sampling samples the same traffic that Selective Sampling but without capturing all
the traffic, thus saving time and memory.

In summary, this chapter makes the following contributions:

• We perform the evaluation using the same fraction of flows and also the same
fraction of packets and show that Packet Sampling can perform better than
Flow Sampling under fair conditions.

• We present the first analysis of TRW and TAPS under Selective Sampling and
show that it is better than traditional sampling techniques.

• We propose Online Selective Sampling, a sampling technique that targets the
same traffic that Selective Sampling. However, our proposal is packet-based, i.e.,
it does not need to aggregate packets into flows to perform the sampling, thus
needing less memory and time than Selective Sampling and being implementable
in NetFlow.

The rest of this chapter is organised as follows. First, Section 4.2 describes the
datasets used for the analysis and the followed methodology. Afterwards, Section 4.3
reports the results obtained on the impact of sampling on scan detection. In Sec-
tion 4.4, our sampling technique proposal, Online Selective Sampling, is described and
evaluated. Finally, Section 4.5 summarises this chapter.

4.2 Scenario and Methodology

4.2.1 Datasets

For the evaluation, we use four traffic traces from the UPC scenario (see Table 4.1).
The datasets are 60-minute traces from 2012 collected at different times of the day
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Table 4.1: Detailed information about the traces used.
Trace Start Time Duration Flows Packets Bytes

dataset-1 03:00 60 min. 5.5M 59.5M 39.6G
dataset-2 09:00 60 min. 7.9M 128.3M 95.1G
dataset-3 15:00 60 min. 8.6M 136.2M 101.5G
dataset-4 21:00 60 min. 6.5M 94.3M 67.4G

(morning, noon, evening and night).

4.2.2 Ground Truth

In order to analise what is the impact of sampling on TRW and TAPS, we first need
to establish a ground truth of true scanners. We followed the same approach proposed
in [11, 13, 14], i.e., we created a super set of scanners. In our case, we run TRW,
TAPS, Snort and Bro with with loose parameters. Afterwards, we used frequent item-
set mining (FIM) and manual inspection as in [32, 33, 8, 34] to double-check that
all the scanners in the output were indeed malicious attacks. For more details on
FIM, refer to Chapter 2. After this process, we obtained the final list of true scanners
(ground truth) against which we will compare the scanners detected after applying
sampling. Note that although we can not guarantee that the obtained ground truth
is purely composed by true scanners, FIM increases the reliability of the ground truth
with respect to previous works [11, 13, 14] because it significantly reduces the need
for human intervention, which might be error-prone .

4.2.3 Methodology

We configured TRW and TAPS with a false positive ratio of 0.01, probability of
detection to 0.99, probability of having a successful connection being a scanner to
0.2 and to 0.8 for a legitimate host as recommended in [10, 11]. As in [14, 13], the
ratio used by TAPS to detect suspicious sources (k) and the time bin to check it (t)
were configured differently for each traffic trace and sampling rate in order to obtain
the optimal results. Refer to Chapter 2 for details about TRW and TAPS and their
configuration parameters.

Even though it is not possible to configure a router to sample a certain percentage
of the incoming flows, previous works have only considered a scenario where all sam-
pling methods receive the same fraction of flows to perform the comparison among
techniques [13]. However, most routers only support packet-based sampling (e.g.,
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Table 4.2: Percentage of sampled flows given a portion of sampled packets (top) and vice
versa (bottom) on dataset-3.

%pkts
PS FS SMS SES

%flows %flows %flows %flows
10% 24.21% 11.08% 0.0062% 78.15%

%flows
PS FS SMS SES

%pkts %pkts %pkts %pkts
10% 3.01% 9.2% 85.35% 0.66%

Sampled NetFlow [26]). That is the reason why it is important to perform the com-
parison with the same fraction of packets for all sampling techniques. Moreover, note
that the sampling rate for packet-based (e.g., Packet Sampling) and flow-based (e.g.,
Smart Sampling) sampling techniques has different meanings. While in the first case
it refers to the fraction of sampled packets, in the latter case it indicates the portion of
sampled flows. This results in a significantly different amount of sampled packets and
flows among the different sampling methods (see Table 4.2). For instance, when sam-
pling 10% of the flows from dataset-3, Packet Sampling receives 3.01% of the packets
and Flow Sampling gets approximately 9.2%. Therefore, from the point of view of
Packet Sampling, the comparison is not fair because it is receiving far less packets
than Flow Sampling. The reason why the same fraction of flows corresponds to such a
small percentage of packets for PS is that the probability of sampling packets from the
same flow is extremely low because most flows are small. Therefore, sampling more
than one packet per flow is very unlikely. In order to make all the sampling methods
comparable under fair conditions, in this thesis we performed the analysis considering
two different scenarios: the same fraction of packets (sfp) and the same fraction of
flows (sff). In sfp, all sampling methods take the same percentage of the traffic in
terms of packets. On the contrary, in sff, the comparison is performed for the same
percentage of flows.

We analise the performance of the algorithms using the following metrics previously
defined in [11]:

Success Ratio: SR = #true scanners detected
#true scanners

False Positive Ratio: FPR = #false scanners detected
#true scanners

The success ratio SR indicates how efficient a particular algorithm under sampling
is by computing what proportion of the detected scanners matches these scanners in
the ground truth (#true scanners). The false positive ratio FPR shows how correct is
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that algorithm, i.e., it reports the percentage of misclassified scanners (sources wrongly
classified as scanners).

4.3 Analysing the Impact of Sampling on Scan De-
tection

In this section, we study the impact of Packet Sampling (PS), Flow Sampling (FS),
Smart Sampling (SMS) and Selective Sampling (SES) on TRW (Section 4.3.1) and
TAPS (Section 4.3.2) scan detection algorithms. For details about each sampling
technique and scan detection method, refer to Chapter 2. Afterwards, Section 4.3.3
discusses what portscan detection mechanism and sampling technique are the best
options and also compares our results with conclusions reached in previous works.

4.3.1 Impact of Sampling on TRW

Figures 4.1 and 4.2 report on the performance of TRW under sampling for sfp and sff,
respectively. In particular, they show the average and the standard deviation among
all traces for the success ratio and the false positive ratio under sfp (Section 4.3.1)
and sff (Section 4.3.1), respectively. Four major conclusions can be extracted from
this analysis. First, the performance of TRW is poor even when there is no sampling.
Specifically, the amount of reported false negatives is high. Second, the impact of
sampling is severe on TRW for all sampling methods except for SES. Third, PS is
better than FS for sfp. Finally, the FPR is small for all the sampling techniques.

Same fraction of packets

Figure 4.1 shows the impact of sampling on TRW for the same fraction of packets
(sfp). First of all, note that TRW is only able to detect ≈ 20% of the scanners in
the ground truth when there is no sampling, which highlights the fact that its low
performance is mainly caused by the algorithm itself and not only because of sampling.
Moreover, we confirm that sampling further degrades TRW’s accuracy as previously
reported [14, 13]. Regarding the sampling techniques, we can see that except for SES,
the impact of sampling on TRW’s success ratio (SR) is severe. For instance, under
SMS, TRW’s SR reaches zero with more than 75% of the packets sampled. This is
due to the fact that, while TRW tracks single SYN-packet flows to spot scanners, SMS
samples large flows, i.e., looks down on small flows and, therefore, keeps flows that
are useless for TRW. For PS and FS, the SR degrades linearly for increasing sampling
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Fig. 4.1: Impact of sampling on TRW (mean ± stdev). Success Ratio (left) and False
Positive Ratio (right) for varying fraction of sampled packets (sfp).

rates (s) even though PS is slightly better than FS. Note that previous works [13]
reported that PS was worse than FS. However, the analysis was performed under sff,
i.e., under unfair conditions for PS (see Section 4.2.3). Therefore, this result shows
that it is not true that FS is better than PS or vice versa. It essentially shows that the
final conclusion depends on the metric you use to compare both methods. In contrast
to the other sampling techniques, for SES, the SR shows to be equal to the unsampled
case and gets even higher for s up to ≈ 1%. Moreover, for lower sampling rates, SES
is still capable of detecting some scanners. The reason why TRW performs so good
under SES is because this sampling method focuses on small flows, which are precisely
these flows that TRW looks for to find out scanners. SES outperforms the unsampled
case because it drops non-small flows, and, therefore, leads TRW to a biased scenario
where most of the hosts are only generating single SYN-packet flows. The advantages
of opportunistic flow-based sampling techniques with respect to to random methods
or even unsampled scenarios have been recently reported in [18].

Regarding the false positive ratio (FPR) under sfp, all sampling techniques behave
similarly, i.e., they all report low false positives. In particular, PS is the sampling
technique performing the worst. In particular, the highest peak (≈ 3.2%) happens
when sampling 25% of the packets. This is due to the well-known flow-shortening
effect [14, 13], which transforms multi-packet flows into single packet flows and thus
leads to the wrong classification of many hosts. Similarly, SES presents an unrealistic
scenario where most of the hosts are only generating single SYN-packet flows. However,
SES manages to keep a lower FPR for all sampling rates (its maximum value is close
to 2%). Both FS and SMS show almost no false positives because the former keeps
the flow size distribution and the latter leads mainly to false negatives (low SR), but
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Fig. 4.2: Impact of sampling on TRW (mean ± stdev). Success Ratio (left) and False
Positive Ratio (right) for varying fraction of sampled flows (sff).

not to false positives due to the systematic drop of small flows.

Same fraction of flows

Figure 4.2 shows the impact of sampling on TRW under sff, i.e., using the same
methodology that previous works [13]. Similarly to the sfp case, SES continues report-
ing the highest success ratio, PS and FS show lower and similar performance among
each other and, again, SMS is clearly the worst sampling method for TRW. Nonethe-
less, some differences can be spotted with respect to sfp. For instance, the point
where SES’ SR reaches its peak is now at ≈ 30% of sampled flows while in sfp was
around 1% of the packets. This 30% of the flows represent only 1% of the packets
(they are essentially single packet flows and thus they account for a little amount of
the total packets). Also, SMS now reaches SR ≈ 0 around 12% of the flows while for
sfp it was for ≈ 90% of the packets. This happens due to the fact that SMS retains
large flows with higher probability and, therefore, a minor part of all flows (≈ 12%)
account for almost all packets (≈ 90%). Moreover, with respect to sfp, in this scenario
the SR reported by FS is either better or equal to PS’s due to the fact that under sff,
PS receives less packets.

As regards the FPR for sff, similarly to the sfp case, the results show very low values.
This happens because the percentage of sampled traffic is smaller and, therefore, the
chances of detecting either true or false scanners are lower as well.
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Fig. 4.3: Impact of sampling on TAPS (mean ± stdev). Success Ratio (left) and False
Positive Ratio (right) for varying fraction of sampled packets (sfp).

4.3.2 Impact of Sampling on TAPS

Figures 4.3 and 4.4 report on the performance of TAPS under sampling. In particular,
they show the average and the standard deviation among all traces for the success
ratio and the false positive ratio under sfp (Section 4.3.2) and sff (Section 4.3.2),
respectively. Overall, we can extract the following conclusions. First, the impact of
sampling on TAPS is significant but lower than on TRW. Second, similarly to the
TRW case, PS outperforms FS for sfp. Third, SES performs far better than the other
sampling techniques for sfp. Finally, the FPR are low but slightly higher than TRW’s.

Same fraction of packets

Figure 4.3 shows the impact of sampling on TAPS for sfp. First of all, note that,
on average, TAPS is only able to detect 57.47% of the scanners in the ground truth
when there is no sampling. Although the detection rate is far higher than TRW’s, this
highlights the importance of combining several mechanisms to detect a broader range
of anomalies (e.g., in our case, using Snort, Bro, TRW and TAPS). The performance
degradation among sampling methods is similar to TRW’s. Specifically, we observe
that SES is the sampling method offering the best success ratio followed by PS and
FS, and finally, SMS. Similarly to the TRW case, the sampling methods focusing on
small flows perfom better than these that take large flows with higher probability (see
Section 4.3.1). Moreover, we observe that like for TRW under sfp, PS reports higher
SR than FS, which is not aligned with previous works [13].

Similarly to what we observed for both sfp and sff for TRW, TAPS reports low
false positives because...
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Fig. 4.4: Impact of sampling on TAPS (mean ± stdev). Success Ratio (left) and False
Positive Ratio (right) for varying fraction of sampled flows (sff).

Same fraction of flows

Figure 4.4 shows the impact of sampling on TAPS for sff. As we can see, the behaviour
is quite different with respect to to sfp. All sampling methods show a similar degrada-
tion in the success ratio for decreasing sampling rate. While PS and FS already showed
such decrease in the SR for sfp, SES and SMS did not. Specifically, this is the first
scenario where SES does not show any superiority with respect to the other sampling
techniques. On the contrary, in this case SES turns out to be slightly worse than the
other techniques. This is because, for the same percentage of flows, SES receives much
less packets than the others. Oppositely, for a given fraction of flows, SMS takes a
very large amount of packets (because it samples big flows). Consequently, the good
success ratio showed by SMS is due to the fact that it essentially has most of the
traffic (e.g., from Table 4.2, only 10% of flows correspond to ≈ 85% of the packets).

Regarding the FPR, the behaviour is similar to sfp, i.e., low false positives for all
sampling techniques.

4.3.3 Discussion

It is clear that the performance of both TRW and TAPS is severely affected by sampling.
However, the TAPS is able to detect more scanners. The main reason behind such
behaviour is that TAPS does not depend on any specific packet. While TRW tracks
single SYN-packet flows, TAPS does not care about what particular packet of a flow is
taken but about the access patterns of each host. This makes TRW more sensitive to
the particular packet being discarded. However, although TAPS systematically reports
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higher SR, TRW shows slightly better FPR. Overall, as previously noticed [14], TAPS
is preferable over TRW in the presence of sampling.

As regards the sampling techniques evaluated, we reach two major conclusions.
First, unlike previous works reported [14, 13], PS shows better results than FS when
using the same fraction of packets for both TRW and TAPS (previous studies only
used the same fraction of flows to compare the techniques, which was unfair for PS).
Second, SES clearly outperforms the other sampling techniques for all scenarios except
for TAPS under sff. For this reason, we decided to implement this sampling technique
to work on a packet per packet basis (Section 4.4).

4.4 Online Selective Sampling

Many anomalies such as scans use small flows to perform network attacks. Therefore,
keeping these flows rather than the large ones facilitates identifying the anomalous
traffic out of the whole traffic. There is a recent sampling proposal called Selective
Sampling [17] (SES), whose goal is precisely to take just these small flows (refer to
Chapter 2 for details). The problem of Selective Sampling is that it first needs to
capture all the packets and then samples entire flows, i.e., all incoming flows must
be stored in memory until they expire. This working scheme is contradictory with the
main goal of traffic sampling, which is precisely to save resources by discarding part
of the traffic. Our sampling proposal, Online Selective Sampling (OSES), targets the
same type of traffic (small flows) but instead of capturing full flows, it takes per-packet
decisions, thus requiring much less resources and being able to work online.

Recall that SES preferentially samples small flows (defined by a threshold in pack-
ets) and looks down on large flows. The key idea of our proposal, OSES, is to maintain
a flow (i.e., to sample its packets) while it is small. If we define a small flow as a x-
packet flow (x ≥ 1), OSES will sample all flows having at most x packets with a
certain (high) probability and take all the flows having x + 1 packets or more with
lower probability (the more packets, the higher the discarding probability).

The straightforward solution used in [17] is to first store all flows in a hash table
and then, as they expire, remove them from the table with a certain probability (see
Section 2.2.5). However, this solution requires a lot of memory and is not fast enough
in high-speed links. In particular, the inter-arrival times in links of several Gb/s are in
the order of nanoseconds, thus requiring the process time per packet to be incredibly
fast [59]. In contrast, we base our solution on bloom filters, which are a feasible option
due to their extremely quick look up time and low memory requirements. In our case
a flow is kept in the hash table while it is not discarded by OSES (instead of waiting
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until it finishes or expires as in SES).
Next, Section 4.4.1 gives some essential background on bloom filters. Afterwards,

Section 4.4.2 explains in detail how OSES works and Section 4.4.3 validates its imple-
mentation.

4.4.1 Background on Bloom Filters

The idea of a bloom filter [60] is to provide a fast way to decide if an element belongs
to a given set. In our case, it is used to control whether a certain flow has been
discarded until now. If it it has been dropped before, any incoming packet belonging
to it will be directly discarded. Otherwise, the packet will be processed normally. If
the new packet forces the flow not to be sampled (e.g., because the flow becomes non
small), that flow is immediately set in the bloom filter.

A bloom filter uses a bitmap, which is an array of bits of size m. Initially, all
the positions of that bitmap are set to 0. When an element arrives (a new packet
in our case) a certain number of hash functions (k) are applied to it. Since we are
tracking flows we apply those functions to the corresponding 5-tuple of the packet.
Every position referenced by the hash functions is set to 1. According to the expected
different elements (flows) to count (n) and the desired false positive probability (p),
k and m are set as described in [60]. In order to know if a given element has been
already seen, all the positions referenced by its hash functions must have value 1.
Otherwise, it means that the element is new. It may be possible (depending on p) to
obtain an incorrect answer after looking for an element in the bitmap (false positive).
There are no false negatives. As we will see later, a bloom filter needs less memory
than a traditional hash table in exchange for a negligible error introduced by the false
positives.

4.4.2 Our Proposal: Online Selective Sampling

Online Selective Sampling (OSES) working scheme is described in Algorithm 1. For
every incoming packet we first check if its corresponding flow has been previously
discarded by looking it up in the bloom filter (line 2). If there is a match, the packet
is directly dropped (line 3) because it means that the corresponding flow has been
already dropped before. If the flow is not in the bloom filter (line 4), it means that
the flow to which that packet belongs to, has not been discarded yet. In this case, the
new packet is processed. As it will be explained later, prob oses (line 9) calculates the
probability of sampling the current packet. If the returned probability is lower than the
random number q (line 10), the packet is dropped (line 13), its flow is deleted from
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Algorithm 1: Online Selective Sampling Algorithm

Input: BF : bloom filter;
HT : Hash table of packets;
n: OSES parameter;
c: OSES parameter;
z: OSES parameter;

Output: For each incoming packet, it indicates if it is sampled;

for every incoming packet pkt do1

if get(BF , hash func(pkt)) then2

discard pkt;3

else4

flow = lookup(HT , hash func(pkt));5

q = random();6

x = size packets(flow);7

/* probability of sampling the packet */8

p = prob oses(x, n, c, z);9

if p < q then10

delete(HT , flow);11

set(BF , hash func(pkt));12

discard pkt;13

else14

sample pkt;15

the hash table (line 11) and its 5-tuple is set in the bloom filter (line 12). Otherwise,
the packet is sampled.

Since we do not capture the entire flow, we do not know its final size to decide
whether it must be sampled or not. We only know its size until the current packet.
Since our goal is to sample the same flows that Selective Sampling but without cap-
turing all the traffic, we must find a way to make that the probability of taking a flow
packet by packet is exactly the same that in the case of sampling the flow directly when
all its packets have been captured. If that occurs, both sampling methods would be
equivalent. In order to make this happen, the probability for OSES must be corrected
at each step in such a way that the accumulated probability until the last packet results
in exactly the same probability as directly sampling that flow with SES.

Consider that psesx and posesx are the probabilities of sampling a x-packet flow for
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SES and OSES, respectively. Our goal is:

posesx = psesx (4.1)

While for SES this probability depends on a single random decision, for OSES it is
the accumulation of x random and independent decisions, one for each packet of the
flow. In particular:

posesx =
x∏

i=1

rosesi (4.2)

Consequently, from equations 4.1 and 4.2, the probability of sampling the x-th
packet of a flow (rosesx ) can be computed as follows:

psesx = posesx =
x∏

i=1

rosesi → rosesx =
psesx∏x−1

i=1 rosesi

=
psesx

posesx−1

(4.3)

Recall the probability function of SES from Chapter 2:

psesx =

{
c x ≤ z
z/(n · x) x > z

(4.4)

In order to accomplish Eq. 4.1, the accumulated probability posesx for OSES must
be equal to c up to z packets and z/(n · x) when the flow becomes bigger. Therefore,
for a flow of x− 1 packets:

posesx−1 =

{
c x ≤ z + 1
z/(n · (x− 1)) x ≥ z + 2

(4.5)

Next, we compute the probability of sampling the i-th packet for OSES (rosesi ).
First, note that for x = 1, posesx = rosesx = c to accomplish Eq. 4.1. For x > 1, from
Eq. 4.3, Eq. 4.4 and Eq. 4.5, we can deduce that the individual probability of sampling
the i-th packet of a flow is the following:

rosesi =


c i = 1
1 1 < i ≤ z
z/(c · n · i) i = z + 1
(i− 1)/i i > z + 1

(4.6)

For instance, suppose that we have a flow of size x = 5 packets. We configure
SES with c = 0.9, n = 1 and z = 2. According to SES ’ formula (Eq. 4.4) and these
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Table 4.3: Flow size distribution comparison between SES and OSES on dataset-1 (c=0.9,
z=2, n=1).

Method 1 pkt 2 pkts 3 pkts 4 pkts 5 pkts 6 pkts

SES 73.673% 12.893% 5.319% 3.250% 1.930% 0.99%
OSES 73.672% 12.891% 5.317% 3.241% 1.934% 0.997%

parameters, the probability of sampling that flow is 2/(1 × 5) i.e., 40%. Using the
same configuration for OSES, the sampling process works as follows.

1. Probability of sampling packet 1:

• roses1 = c = 0.9

2. Probability of sampling packet 2:

• roses2 = pses2 /poses1 = c/c = 1

3. Probability of sampling packet 3:

• roses3 = pses3 /poses2 = z/(n · x · c) = 0.74

4. Probability of sampling packet 4:

• roses4 = pses4 /poses3 = (x− 1)/x = 0.75

5. Probability of sampling packet 5:

• roses5 = pses5 /poses4 = (x− 1)/x = 0.8

We can confirm that indeed poses5 = pses5 . In particular, poses5 =
∏i=5

i=1 r
oses
i =

0.9 · 1 · 0.74 · 0.75 · 0.8 = 0.4 = pses5 .

4.4.3 Validation

The first goal of this section is to show that the traffic sampled by OSES is equivalent
to the traffic sampled by SES. The bloom filter was configured withm = 218 (the power
of 2 is due to implementation reasons). We empirically observed a negligible number
of false positives (<< 1% of the incoming packets). We compare the percentage of
sampled flows and packets, the average flow size and the flow size distribution. The
average and the standard deviation for several executions on dataset-1 for c = 0.9,
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Fig. 4.5: Performance differences between OSES and SES in terms of both execution time
and memory usage on dataset-1.

z = 2, n = 1 resulted in 76.53%± 0.01 of sampled flows, 11.98%± 0.005 of sampled
packets and an average flow size of 1.68±8.94 ·10−4 packets for OSES. Similarly, SES
showed almost identical results: 76.54%± 0.01 sampled flows, 11.99%± 0.01 packets
and an average of 1.68 ± 0.001 packets per flow. As we can observe, the differences
among SES and OSES are negligible. These minor discrepancies are due to the random
decisions. Moreover, Table 4.3 shows that the flow size distribution for both methods
is almost identical. Note that for clarity reasons, only the percentage of flows from
sizes 1 to 6 packets are reported (the remaining flow sizes account for less than 2% of
the total flows all together). Therefore, after this analysis, we confirm that the traffic
sampled by our proposal, OSES, is indeed equivalent to the traffic sampled by SES but
without requiring to capture entire flows.

Figure 4.5 shows the resource consumption differences between OSES and SES
on dataset-1. In particular, we can observe a percentage that indicates how OSES
performs with respect to SES. For the execution time, the difference is computed as
(tOSES − tSES)/tSES, where t is the execution time. Similarly, for the memory usage,
the percentage is calculated as (mOSES − mSES)/mSES, where m is the maximum
memory used. Therefore, while a positive percentage indicates that OSES was worse
than SES, a negative value implies that OSES outperformed SES. As we can see in the
figure, OSES is clearly better than SES in terms of both execution time and memory
usage. For low sampling rates, OSES shows its best performance by using almost 40%
less memory than SES due to the quick drop of a large amount of packets by the
bloom filter. Also, OSES shows to be approximately 15% faster for the same reason.
As the sampling rate gets higher, the differences between both methods are reduced
but OSES still shows significantly better results. As the percentage of sampled flows
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gets closer to 100%, the overhead of the bloom filter in terms of both runtime and
memory becomes visible up to the point that OSES turns out to be slightly worse (only
for more than 99.8% of sampled flows).

The results obtained in this section accomplish our twofold objective, i.e., con-
tinue capturing scanners reliably under sampling and using less resources than SES.
Moreover, while SES is not NetFlow-compatible because it is a flow-based sampling
mechanism, OSES would be easily implementable to work online in most routers be-
cause, like NetFlow, it works on a per-packet basis.

Finally, we also evaluated the performance of TRW and TAPS under OSES. As
expected, similarly to the results reported by SES in Section 6.3, OSES also showed
very good results for scan detection under sampling.

4.5 Chapter Summary

In this chapter we have analysed the impact of sampling on two scan detection algo-
rithms to determine if they are robust enough to continue finding portscans reliably.
In contrast to some previous studies, we have been able to see that, under the same
fraction of packets, Packet Sampling performed better than Flow Sampling for scan
detection. Furthermore, we proposed a new sampling technique equivalent to Selective
Sampling that keeps its good results for scan detection but uses less resources and is
implementable in the widely deployed NetFlow.

Regarding the analysed scan detection algorithms, we confirmed that both TRW
and TAPS were significantly impacted by sampling. However, even though TRW’s per-
formance was dramatically affected, TAPS showed higher resilience. Unlike previously
reported, we found that Packet Sampling outperformed Flow Sampling when using
the same fraction of packets as the common metric to compare techniques (previous
studies had used the same fraction of flows). Smart Sampling showed to be rather
useless for both TRW and TAPS. In contrast, Selective Sampling presented the best
behaviour among all the sampling techniques achieving remarkable performance for
both TRW and TAPS.

Finally, we proposed Online Selective Sampling, a new sampling technique similar
to Selective Sampling that works on a per-packet basis instead of taking per-flow
decisions. Consequently, Online Selective Sampling is able to drop flows as soon as
they become too large and, therefore, it needs less CPU and memory than Selective
Sampling while keeping good performance for scan detection.



Chapter 5

Anomaly Detection, Extraction and
Classification

5.1 Introduction

In this chapter, we introduce a scheme that automatically detects, extracts and clas-
sifies network anomalies. Our scheme combines simple and effective techniques from
two worlds: data mining and machine learning.

First, we use frequent item-set mining (FIM) to find a set of frequent item-sets
(FIs). For more details on FIM, refer to Chapter 2. Second, our scheme builds a
decision tree to classify frequent item-sets as anomalous or benign and to determine
their specific type in case they are anomalous. A key novelty of our approach is that
we classify FIs based on a set of FI features. Intuitively, we decompose observed traffic
into distinct groups (FIs) of related traffic flows, which enables us to classify each FI
with high accuracy. The decision tree classifies the type of an anomaly along a two-
level hierarchy: a main class, e.g., Port Scans, Network Scans or Denial-of-Service,
and a subclass, e.g., UDP scan, SYN Scan, ACK Scan, etc. For detailed information
of each anomaly type see Chapter 2. A main advantage of our scheme is that it is
conceptually simple and, therefore, easy to understand and configure by a network
operator. Our scheme can be used as a stand-alone anomaly detector and classifier
or it can be combined with anomaly extraction [23], in which case it only performs
anomaly classification.

We have thoroughly evaluated our scheme with real traces and manually verified
the detected anomalies. An exhaustive analysis using data from the European-wide
backbone network of GÉANT showed that our scheme has very high accuracy (ap-
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Fig. 5.1: System Overview

proximately 98%). Finally, we have built a corresponding anomaly detection and clas-
sification system, have deployed it in a regional academic network and have further
confirmed its effectiveness by reporting similar accuracy and low false positive rates
(approximately 1%) when monitoring the two 10 Gb/s links that connect the Catalan
and the Spanish NREN. The decision trees used by our system were trained with la-
beled data from the GÉANT network and were found to be accurate when applied to
classify anomalies in the regional academic network. This is particularly promising as
it shows that it is possible to learn a traffic model in one network and use it effectively
in a different network.

The rest of this chapter is organized as follows. Section 5.2 presents our anomaly
detection and classification scheme while Section 5.3 describes its evaluation and later
deployment. Finally, Section A.4 summarises the obtained results and concludes this
chapter.

5.2 System proposal

A fundamental idea of our approach is that the entity that is classified as either normal
or anomalous is a frequent item-set (FI). In contrast, previous approaches to network
traffic anomaly detection typically classify a time interval based on aggregate metrics
derived from the traffic observed during this time interval. We also split time into
intervals, e.g., 5-minute intervals, then for each time interval we find the corresponding
FIs, and finally we classify FIs. We argue that it is much easier to classify a frequent
item-set as normal or anomalous than to classify the entire traffic observed during a



5.2. SYSTEM PROPOSAL 63

time interval since a FI conveniently groups flows related to anomalies. We describe
how we exploit FIM in Section 5.2.1.

Figure 5.1 shows an overview of our anomaly detection and classification scheme.
The offline information flow in the bottom of the figure creates a decision tree starting
from a semi-manually derived ground truth of normal, anomalous, or unknown frequent
item-sets. The ground truth, as we discuss in detail further on, can be derived using the
traffic inspection techniques developed in [61] and/or by leveraging information from
external anomaly detectors. The normal, anomalous, and unknown frequent item-sets
are fed to a learning algorithm, which produces a simple decision tree that is used
for detecting anomalies and for classifying the type of a detected anomaly. On top
of Figure 5.1, we illustrate the online information flow. Given a set of traffic flows
observed, e.g., with NetFlow, during a time interval, we first apply FIM to extract
frequent item-sets; then for each frequent item-set we compute a number of traffic
features; and finally we use the decision tree to classify frequent item-sets based on
their features. We describe our anomaly classification approach based on supervised
learning in Section 5.2.2.

5.2.1 Anomaly Detection and Extraction

The extraction of item-sets allows us to represent traffic in a compact form, which
more clearly reflects the characteristic behaviour and patterns of network anomalies.
The set of items we select to perform the mining on is the well known 5-tuple flow
(source/destination IP addresses, source/destination ports and protocol). The se-
lection of these items makes our scheme compatible with NetFlow, which is widely
deployed in operational environments.

Table 5.1 shows three example item-sets, one per row. Each of these item-sets
summarises a group of flows. Each field can have a specific value or a wild card,
which means that there is no restriction for that field. For example, the second item-
set summarises all flows coming from one specific IP address that is scanning multiple
destination IP addresses on port 80 using different source ports, while the first item-set
resembles a distributed attack to a specific destination IP address and port. The learn-
ing method we present in Section 5.2.2 automatically identifies the correct anomaly
class of an item-set. In our example, it would classify the first item-set as a DDoS and
the second as a Network Scan.

In order to avoid the exponential growth in the FIM utput, we use maximal item-set
mining. Recall that maximal item-set mining finds only those frequent item-sets that
do not have a frequent superset. In the example of Table 5.1, maximal item-set mining
would suppress the third item-set. We selected the FPmax* algorithm [62] as a miner,
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Src IP Dst IP Src Port Dst Port Protocol
Item-set 1 * 1.1.1.1 * 5010 TCP
Item-set 2 2.2.2.2 * * 80 TCP
Item-set 3 * * * 80 TCP

Table 5.1: Example of item-sets

which according to [63] is one of the best performing methods for finding maximal
item-sets. Nonetheless, note that our system is not tied to FPmax* and any other
frequent item-set miner could be used instead.

Grahne et al. introduced FPmax [64], which used FP-growth to mine only maximal
item-sets. Later on, the same author presented FPmax* [62], which, although keeping
exactly the same basic algorithm, included some important improvements regarding
the quickness of FPmax thanks to the addition of some new data structures.

We specify the minimum support in terms of flows, although as we will describe in
Section 5.2.2, we also have a separate data structure to deal with attacks that result
in a large number of packets, but in a small number of flows, e.g., single DoS.

Figure 5.2 shows how the number of frequent item-sets changes with the minimum
support (ms) parameter. The dashed line shows on the right y-axis the total number
of frequent item-sets in the output. The solid line shows on the left y-axis the number
of frequent item-sets we have manually identified as anomalous. We observe how these
two variables change depending on the ms. We observe that although decreasing the
ms increases the number of anomalous item-sets, this comes at a price: the total
amount of found item-sets rises exponentially. Moreover, we observe that for any
ms, the amount of reported frequent item-sets is always far higher than the number of
anomalous item-sets. Our classifier distinguishes between normal and anomalous item-
sets. As we describe in Section 5.2.2, we create a ground truth of normal, anomalous,
and unknown item-sets and learn their characteristics. This way, our classifier can
automatically filter out those item-sets that correspond to normal traffic and reduce
the number of item-sets reported.

Compared to the anomaly extraction technique of [23], which applies FIM on a
pre-filtered set of flows based on meta-data from an external anomaly detector to
extract and summarise anomalous flows, our approach is substantially different. First,
we also detect anomalies by classifying FIs using a very simple classifier. Second,
we additionally classify detected anomalies. Our scheme can be used as stand-alone
anomaly detector and classifier or in combination with the anomaly extraction technique
of [23] to classify anomalies. In Section 5.3, we evaluate our system using real traces
from two different networks and we show that it obtains high accuracy both with and
without an external detector.
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Fig. 5.2: Total number of reported frequent item-sets (right axis) vs. anomalous frequent
item-sets (left axis) for varying minimum support.

Selecting the correct ms parameter requires a small number (typically 2-3) of “trial
and error” iterations. As reported in [65], actionable anomaly alarms require on average
60 minutes of investigation, which would correspond to 8 alarms per day assuming a
full-time employ for analysing alarms. Therefore, the ms parameter should be set high
enough so that the output does not overwhelm the administrator of the system with
too many alarms. Through extensive experimentation, we have found that a suitable
ms parameter is typically in the range between 1% and 10% of the number of input
flows. In Section 5.3 we use this intuitive rule to guide the selection of the ms. For
further discussion on the selection of the ms, refer to Section 6.3.2.

5.2.2 Anomaly Classification

In order to classify the item-sets extracted by FPmax* we use a machine learning (ML)
technique. According to [66], the C4.5 algorithm [67] is one of the methods that offers
the best trade-off between execution time and accuracy in traffic classification. We
selected its evolution, the C5.0 algorithm.

In order to apply ML for anomaly classification, we first need a ground truth of
pre-classified anomalies. Secondly, we have to decide what features will be used to
perform the classification. Finally, we need to define a list of anomaly types.
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Value
Defined Undefined

Defined Src IP/Dst IP True False
Src/Dst Port Port Number NaN
Protocol Protocol Number NaN
URG/ACK/PSH/RST/SYN/FIN True False
Bytes per Packet #Bytes/#Packets
Packets per Flow #Packets/#Flows

Table 5.2: Frequent item-set classification features

The C5.0 algorithm uses a labeled data-set to create a model that predicts the
class of an item-set. It selects one feature at each step to split the training dataset
accordingly. The importance of a particular feature is given by the gain ratio (GR)
metric, which is the entropy H for each anomaly class with and without the selected
feature. The gain ratio is defined as follows:

GR(Class, Feature) = H(Class)−H(Class|Feature)
H(Feature)

Establishing a ground truth is one of the most critical phases of any machine learn-
ing process, because the entire classification process relies on its accuracy. We have
used a set of anomalies detected in the GÉANT backbone network. These anomalies
were first detected by three commercial anomaly detectors and then manually validated
by the security experts of GÉANT [22]. An important aspect of our classification is
that the decision tree needs to distinguish between legitimate and anomalous item-sets.
Consequently, we extended the ground truth as described in Section 5.3 with item-sets
corresponding to normal traffic.

For each item-set we use the 13 features shown in Table 5.2 that can be trivially
derived from NetFlow data. For the source and destination IP addresses, we use a
boolean that states if an IP address is part of a frequent item-set. The source and
destination port features take values between 1 and 65535. If a port is not defined, a
special value is used to indicate that it is not a number (NaN). Similarly, the protocol
feature takes a specific protocol value or the NaN value. The Bytes per Packet (bpp)
and Packets per Flow (ppf) features are important to collect information about the
bandwidth usage and to capture the used packet sizes, e.g., packets of minimal length
are commonly used in attacks such as Network Scans or Port Scans. Finally, the TCP
flags are encoded in six boolean features indicating if a specific flag is set or not.

Our system classifies the anomalies according to the types described in Chapter 2.
Note that in the current chapter, the anomaly type Others is renamed as Unknown.
Moreover, there is a new group that includes the legitimate traffic: Normal.
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Fig. 5.3: Feature gain ratio for the main (left) and secondary (right) tree.

We created two different decision trees, one for item-sets with a large number of
flows (Main Tree), and a second for subclasses of DoS with a small number of flows
(Secondary Tree). We split the tree for performance reasons, since the Secondary Tree
is much more compact than the Main Tree.

Finally, we ranked the features with the gain ratio metric, which is the discriminator
used by C5.0, to understand the importance of each feature and to identify redundant
ones. Figure 5.3 shows the that all the features were important except for the URG
flag in the Secondary Tree.

5.3 Evaluation and Deployment

To build the ground truth for our evaluation, we used a set of 994 anomalies that
were first detected by three commercial anomaly detection systems (NetReflex [54],
PeakFlow SP [55] and StealthWatch [56]) over a 14-day period and then were manually
verified by a team of security experts in GÉANT. For further details on the tools and
the analysis refer to Chapter 3 and [22, 8].

We ran FPmax* on raw NetFlow data collected during the reported anomalous time
intervals using a starting minimum support (s) value of 1000. We manually examined
the output to identify item-sets corresponding to the reported anomalies. When we
could not find one, we progressively decreased s until an anomalous item-set was
found. In few cases, which we discarded, the s reached almost zero without identifying
an anomalous item-set. After this process, we ended up with 760 anomalous item-sets,
which we used as ground truth. To classify an item-set as normal or anomalous, we
manually examined a sample of the flows of an item-set, e.g., the first 20, using the
methodology shown in [33]. We classified an item-set as anomalous, if its flows had
suspicious feature values, e.g., destination port 22, and regular patterns pointing to
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an automated process, like a bot, that generated them. For example, one such regular
pattern is the observation of a very large number of flows with a specific packet size,
combination of TCP flags, source addresses, and flow inter-arrival time interval. In
order to differentiate between malicious and legitimate traffic, we added normal item-
sets to the training set. To find normal item-sets we applied FPmax* on random
samples of 30-minute intervals for the same 14-day period during which the anomalies
were found. We then manually inspected the flows of approximately 300 new item-sets
and classified them as anomalous if they exhibited specific malicious patterns. Finally,
since some DoS anomalies use a very small number of flows (mostly one or two) but
lots of packets or bytes, we also added to the training set item-sets of anomalous and
normal traffic with these properties, i.e., a small number of flows and a very large
number of packets or bytes. The final ground truth used in the evaluation contains
1249 labeled item-sets.

We use three standard metrics to measure the performance of our classifier. While
the first captures its overall accuracy, the second and third metrics evaluate its perfor-
mance for specific anomaly classes.

overall accuracy = TruePositives
TruePositives+FalsePositives

precision(X) = TruePositives(X)
TruePositives(X)+FalsePositives(X)

recall(X) = TruePositives(X)
TruePositives(X)+FalseNegatives(X)

We implemented and evaluated our scheme using data from two different networks:
1) from the European backbone network of GÉANT (Section 5.3.1) and 2) from two
10Gb/s links interconnecting the Catalan with the Spanish NREN (Section 5.3.2).

5.3.1 Evaluation in GÉANT

In these experiments, we used our system solely for traffic classification. To validate
the classification results, we used 10-fold cross-validation and report the average figures
over 10 rounds. In Figure 5.4 we illustrate the precision and recall per class as well as
the overall classification accuracy.

We observe that without balancing, even if the overall accuracy is greater than
95%, our classifier had a moderate performance for certain classes, i.e., note the low
precision and recall (two left bars) for ACK Port Scans and ICMP Floods. Despite
the poor performance for these two classes, the overall accuracy with the unbalanced
training set was high because these two classes make a small fraction of the overall
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Fig. 5.4: GÉANT classification accuracy

number of anomalies in the training data. To address this problem, we balanced the
representativeness of anomaly classes in the training set by increasing the instances of
under-represented types. We also balanced the class of normal traffic to increase the
frequency of applications with few occurrences (e.g., DNS). With these modifications,
our classifier had very good results for the most common anomalies and substantially
increased its precision and recall also for the previously under-represented classes. The
precision and recall for each anomaly type with the balanced training data is shown by
the two right bars in Figure 5.4 and is substantially higher than with the unbalanced
training data. The overall accuracy also increased from nearly 96% to approximately
98%.

5.3.2 Deployment in a Production Network Monitoring Plat-
form

In our second scenario, we integrated our system into a production monitoring platform,
called SMARTxAC [68], and deployed it in the CESCA network [52]. For details on
the network scenario refer to Chapter 2. In the experiments we describe below, we use
our scheme for both anomaly detection and classification.

The minimum support (s) is set to 3% of the total traffic, which triggers approx-
imately 30 anomalies per day. To classify the item-sets, we used the two decision
trees, which were trained using the labeled data derived from GÉANT. To validate the
accuracy of our solution, we manually inspected all the detected anomalies during the
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Fig. 5.5: SMARTxAC classification accuracy

first 10 days of August 2011. During this period, the system reported 310 different
attacks of 7 different anomaly (sub)classes.

The two leftmost bars of each block in Figure 5.5 show the classification results.
The overall accuracy of the system was greater than 94%. For two anomaly classes,
i.e., DDoS and ACK Port Scans, the precision rate was low. These classes made a
very small fraction of the total number of anomalies (4,52% and 1,29% respectively).
Except for these two cases, the system had a very good accuracy with only 18 false
positives out of 310 anomalies.

The analysis of the low precision for DDoS and ACK Port Scans showed that 80%
of these false positives were replies from SYN Floods and Network Scans misclassified
as ACK Port Scans and DDoS, respectively. In order to correct this, we modified the
system to look for these specific response patterns. The two rightmost columns of
each group in Figure 5.5 show the precision and recall after applying the improvement
to the system. As we can observe, the overall accuracy improved to 99,1%. The false
positive detection ratio decreased to 1,3% (only 4 erroneously classified anomalies out
of 310).

The results in this second scenario show that the decision trees, which were built
by learning from the GÉANT network, can be effectively used in a different network.
This indicates that the model and the selected features behave well independently of
the network characteristics.



5.4. CHAPTER SUMMARY 71

5.4 Chapter Summary

In this chapter, we presented a novel scheme to detect and classify network traffic
anomalies that combines frequent item-set mining with machine learning. Using real
data from two different networks we showed that our solution has a very high classifi-
cation accuracy, i.e., above 98%, and a low false positive rate, i.e., approximately 1%.
In addition, with our proposal it is easy for network operators to understand and reason
about detected anomalies. Based on our scheme, we have implemented an anomaly
detection and classification system and deployed it in a production network, where it
successfully monitors two 10 Gb/s links. Moreover, a particularly promising feature of
our classifier is that it has been trained using traffic traces from the European backbone
network of GÉANT and has been used successfully to detect and classify anomalies in
a substantially different regional network.
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Chapter 6

Fast Recognition of
High-Dimensional Network Traffic
Patterns

6.1 Introduction

In this section, we introduce a fundamentally new approach to extract HHHs based
on generalized frequent item-set mining (FIM). Generalized FIM scales much better to
higher dimensional data than the well-known AutoFocus [25] and supports attributes
of hierarchical nature, like IP addresses and geolocation. We exploit generalized FIM
to design and implement a new system, called FaRNet (FAst Recognition of high multi-
dimensional NETwork traffic patterns), for (near) real-time profiling of network traffic
data. Our system is capable of analysing multi-dimensional traffic records with both
flat and hierarchical attributes.

We thoroughly evaluate the performance of FaRNet using real traffic traces from
the European backbone network of GÉANT [49] and show that it scales very well to
analysing multi-dimensional data. We find that on commodity hardware that FaRNet
can process up to 416,000 flows/sec with flat attributes and up to 127,500 flows/sec
with hierarchical attributes. We also show that sampling can drastically reduce the
memory consumption and CPU overhead, while introducing only a very small error.
Compared to AutoFocus, FaRNet is much faster, scales better to higher dimensions
and produces traffic reports that are more meaningful for a network operator.

A prototype of FaRNet has been deployed and used operationally for more than six
months in the NOC of GÉANT [33]. We report experiences on how generalized FIM

73
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is useful in practice.

In summary, we make the following contributions:

• We introduce a new approach for discovering hierarchical multi-dimensional
heavy hitters based on generalized frequent item-set mining that is much more
scalable and flexible than existing schemes.

• We build a new system for network traffic profiling and thoroughly evaluate its
performance. We show that FaRNet is much faster than AutoFocus. With
flat attributes FaRNet can process up to 416,000 flows/sec and with hierarchical
attributes up to 127,500 flows/sec on commodity hardware. In addition, it scales
much better than AutoFocus to higher dimensional data.

• Our system has been deployed and used for more than six months in the NOC of
GÉANT, the European backbone network. We describe our experience on how
generalized FIM is useful in practice.

The rest of this chapter is organized as follows. In Section 6.2, we describe FaRNet
and propose modifications to existing FIM algorithms to efficiently deal with flat and
hierarchical network traffic data. Section 6.3 shows the results after evaluating FaRNet
and validating it against the well-known AutoFocus tool. Afterwards, Section 6.4
reports on the deployment of a prototype version of FaRNet in a real backbone network.
Finally, Section 6.5 concludes this chapter.

6.2 FaRNet: Building an efficient FIM system for
network traffic

This section presents our system for FAst Recognition of high multi-dimensional NET-
work traffic patterns (FaRNet). FaRNet efficiently analises network data and extracts
useful frequent patterns that summarise the traffic activity of the network. First,
Section 6.2.1 presents the architecture of FaRNet. Afterwards, we explain how we
extend and optimize the FIM algorithms described in Chapter 2 to deal with flat (Sec-
tion 6.2.2) and hierarchical data (Section 6.2.3). Finally, Section 6.2.4 describes how
we use sampling to improve the performance of FaRNet.
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Fig. 6.1: FaRNet architecture.

6.2.1 FaRNet Overview and Architecture

Even though previous works (e.g., HH, HHH) are extremely useful to find frequent
traffic patterns in network traffic, they are limited to explore a pre-defined set of di-
mensions (e.g., the well-known 5-tuple in case of AutoFocus). Adding more dimensions
results in an explosion in terms of runtime because of the exponential growth of com-
binations generated. The main objective of FaRNet is building a better tool that 1) is
capable of dealing with high multi-dimensional data; 2) provides more comprehensive
traffic reports; and 3) can perform in a timely fashion.

Figure 6.1 shows the architecture of FaRNet. As we can observe, FaRNet receives
four inputs: NetFlow data, minimum support (s), data treatment and sampling rate
(p). s is the threshold that determines if the size of a set of flows is big enough to be
considered a frequent item-set. The next parameter indicates the type of mining: flat
or hierarchical. While for the flat case the input data is considered to be completely
plain, in the hierarchical scenario certain dimensions have associated hierarchies. IP
addresses consist of prefixes from length 8 to 32 and ports have a two-level hierarchy
(specific port and its group, i.e., well-known or not). Similarly, the applications have
also two elements, the specific application and its group (e.g., BitTorrent an P2P).
Finally, geolocation data has four different elements for each IP (continent, country,
region and city). For traffic classification, i.e., to infer the applications, we use machine
learning [69]. Note that although our current implementation of FaRNet is based on
these features, any other hierarchical element could be trivially addded as the system
scales well with the number of dimensions. Finally, the sampling rate parameter (p)
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Table 6.1: Example of a traditional flow-based report (top three rows) and its equivalent
reports for AutoFocus (middle) and FaRNet (bottom).

sIP dIP sPort dPort proto app sAS dAS sGeoloc dGeoloc

Flow-based
1.1.1.1 2.2.2.2 5000 80 6 n/a n/a n/a n/a n/a
1.1.1.2 2.3.3.3 6000 80 6 n/a n/a n/a n/a n/a
1.1.1.3 2.4.4.4 7000 80 6 n/a n/a n/a n/a n/a

AutoFocus 1.1.1.0/30 2.0.0.0/8 high-ports 80 6 n/a n/a n/a n/a n/a

FaRNet 1.1.1.0/30 2.0.0.0/8 high-ports 80 6 HTTP X Y United States Europe

indicates if sampling will or will not be applied. FaRNet has a single output: frequent
item-sets.

FaRNet’s first step is to sample the input if the user selects a sampling rate p < 1.
Otherwise, it jumps directly to FIM. Depending on the selected type of mining, different
paths will be taken. For flat treatment, a FIM algorithm for flat data will be used. For
hierarchical treatment, an optimized FIM algorithm extended to deal with hierarchical
traffic attributes will be run. This extension, called Progressive Expansion k-by-k
(PEK), is explained in Section 6.2.3. The FIM boxes of Figure 6.1 perform maximal
item-set mining to suppress redundant information. We adapt, extend and optimize
the implementations of different FIM algorithms by [70] to deal with network traffic
data.

In Table 6.1, we can observe several examples of network traffic activity reports.
The first three lines represent a traditional flow-based report that describes the activity
of different hosts accessing distinct servers on port 80. Line 4 shows the output that
AutoFocus would return. As we can observe, this report offers more detail by showing
the specific prefixes of source and destination IPs as well as the specific range of source
ports used. Finally, line 5 shows the output of FaRNet. We can see that, additionally
to what AutoFocus reported, FaRNet is able to find other interesting associations
regarding the application used (column 6), the destination AS (column 8) and the
geolocation (city, region, country and continent) for both the source and the destination
IP addresses (last two columns). From the point of view of a network operator, the
usefulness of FaRNet with respect to to extensive flow-based reports or the limited
case of AutoFocus is clear due to their higher clarity and better summarization of what
is truly happening in the network.

6.2.2 FIM with flat attributes

With flat attributes, each flow record corresponds to a transaction with a fixed size of
10 items corresponding to the well-known 5-tuple (source and destination IP addresses,
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source and destination ports and protocol), the application, the source and destination
AS and the source and destination data for the geolocation. All items are interpreted as
plain data. In this case, FaRNet uses the FIM algorithms described in Chapter 2 with
no further modification. In Section 6.3.2, we compare and evaluate the performance
of these FIM algorithms with flat traffic data. Note that the system presented in
Chapter 5 for automatic anomaly detection, extraction and classification uses FIM for
flat data (transactions have 5 items from the 5-tuple).

6.2.3 FIM with hierarchical attributes

Why is hierarchical mining interesting? For instance, suppose there is a high-volume
horizontal scan towards a certain subnet. Although FIM flat would spot the attack,
it would only be able to report its source IP and destination port. On the other
hand, hierarchical FIM would be able to find the specific subnet under attack and also
discover if a certain range of ports had been used (e.g., well-known ports). However,
AutoFocus would also find this type of information. Suppose now that there is a large
amount of users from different countries in Europe massively accessing websites located
in Asia. In this case, neither FIM flat nor AutoFocus would be able to discover such
pattern. The former because it does not support hierarchies and the latter because
it is limited to the 5-tuple. Nonetheless, FIM hierarchical would find this association
in a higher level of the hierarchy, i.e., it would report interaction between Asia and
Europe. In hierarchical FIM, IPs, ports, applications and geolocation data are treated
as hierarchical elements.

In this thesis, we propose the following three approaches to extend FIM to deal with
hierarchical network traffic data: Full Expansion (Section 6.2.3), Progressive Expansion
(Section 6.2.3) and Progressive Expansion k-by-k (Section 6.2.3). Next, we present
the specific working scheme for each case.

Full Expansion The straightforward solution for allowing FIM to deal with the hi-
erarchical nature of network traffic is expanding each item of the transaction with
its corresponding ancestors. For IPs, this means replacing each IP by all its possible
prefixes from length 8 to 32, i.e., 25 items (note that prefixes of length shorter than
8 have not been considered since they have never been assigned). Regarding ports,
they are translated into two items: its value and its corresponding range. If it is
lower than 1024, it belongs to the well-known or low-ports group (0-1023). Other-
wise (≥ 1024), it is part of the high-ports (1024-65535). The protocol remains as a
plain attribute. Similarly to ports, applications are also translated into two items: the
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specific application (e.g., Skype) and the group it belongs to (e.g., VoIP). Concerning
the geolocation, for each IP address, we obtain four new elements: the continent, the
country, the region and the city. Consequently, in Full Expansion (FE) all transactions
are extended from 10 items (flat case) to 67 (25 items per IP, two items per port, one
for the protocol, two for the application, one for each AS and four for the geolocation
of each IP).

Hierarchical FIM will be able to provide greater granularity by automatically finding
frequent IP prefixes, interaction between port ranges, associations between continents,
countries, regions and cities and the applications generating such traffic. Full Expansion
results are presented in Section 6.3.2.

Progressive Expansion In Full Expansion, all transactions are always extended to
67 items when mining the 10 dimensions. Nonetheless, in most cases, extending all
prefixes of an IP is not necessary because a fully defined 32-bit IP is rarely frequent by
itself. On the contrary, prefixes of inferior length have higher chances of being above
the minimum support. For instance, a certain prefix a.b.0.0/16 might be frequent even
though a more specific subnet (e.g., a.b.c.0/24) is not. Similarly, while a city is not
often frequent by itself, its corresponding region, country or continent might be.

For simplicity, from here on, all the extensions and optimizations will refer only to
IP addresses. However, note that all the proposals made are applicable to the other
hierarchical features presented in this thesis and, in general, to any other hierarchical
element.

Taking into account that an IP address is rarely frequent by itself, Progressive
Expansion (PE) will not always generate all its 25 prefixes. An IP prefix of length k
will only be explored if its corresponding k − 1 prefix (parent prefix or ancestor) is
frequent. Otherwise, the expansion for that IP will end at level k− 1. This is because
if a certain prefix is not frequent, all prefixes of superior length will not be frequent
either (downward-closure property, Chapter 2). The frequency of a particular prefix is
calculated by progressively counting the frequency of its shorter prefixes (see example
in Section 6.2.3). Progressive Expansion results are reported in Section 6.3.2.

Progressive Expansion k-by-k The main drawback of PE is that it needs to go
through all transactions 25 times1, which is very costly in terms of runtime. Con-
sequently, this section presents Progressive Expansion k-by-k (PEK), which seeks to
reduce this part of the process while avoiding the generation of useless prefixes. This

1Note that this is because of the depth of the IP address hierarchy and, therefore, it would change
depending on the hierarchical element we are dealing with (e.g., 4 for the geolocation).
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Algorithm 2: Progressive Expansion k-by-k
Input: k: number of bits to expand at each step;

ms: minimum support;
Trees: array of trees for /8 prefixes;

for l = 8; l ≤ 32; l = l + k do1

for every transaction T do2

for every IP address e in T do3

if l == 8 or parent is frequent(e,l - k,ms) then4

/*initialize a node if not set*/;5

n = get node by prefix(Trees,e,l);6

n.count += T.weight;7

/*T.weight captures number of bytes, pkts, or flows*/;8

/*compute unknown frequencies recursively*/;9

for every tree TR in Trees do10

if TR.child[left] not NULL then11

TR.child[left].count = compute frequencies(TR.child[left]);12

if TR.child[right] not NULL then13

TR.child[right].count = compute frequencies(TR.child[right]);14

for every transaction T do15

for every IP address e in T do16

expand item(e,Trees,ms);17

/*walk tree and return frequent ancestors*/18

is achieved by expanding k bits at each step instead of going one by one (PE is a
particular case of PEK with k = 1). When using PEK, all transactions will be read
1 + 24/k times instead of 25. Note that the only valid values for k are 1, 2, 3, 4, 6,
8, 12 and 24.

Algorithm 2 shows PEK’s working scheme. First, all prefixes of length l = 8 are
generated for all IPs of all transactions and, uniquely for these that are frequent, a
binary tree is created (only the root node). Afterwards, for each prefix of length l+ k
with a frequent ancestor (prefix of length l, tree level l − 8), its corresponding tree
is expanded up to level l + k − 8 (line 6). After going through all possible values of
l (8 ≤ l ≤ 32), all frequencies in intermediate nodes (nodes between explored levels,
i.e., among l − 8 and l + k − 8) are recursively computed (lines 12 and 14). Details
of the recursivity can be found in Algorithm 3. Finally, transactions are expanded only
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Algorithm 3: compute frequencies
Input: n: node of the tree;

if n == NULL then1

return 0;2

else if n.level == 32 then3

return n.count;4

else5

n.count = compute frequencies(n.child[left]) +6

compute frequencies(n.child[right]);
return n.count;7

with those prefixes that are known to be frequent by going though the corresponding
tree from the root to the leaves following a depth-first approach (line 17).

The following example illustrates how PEK computes the prefixes and frequencies
for the IP address 192.168.10.5 and k = 2. The first step consists of generating the bi-
nary tree for its prefix of length 8, i.e., 192/8. Afterwards, if the root node is frequent,
prefixes of length 10 are generated (2-bit expansion). Therefore, frequencies for prefixes
192.192/10, 192.128/10, 192.64/10 and 192.0/10 are calculated. Then, the compu-
tation for intermediate nodes (prefixes of length 9) is calculated by moving backwards
in the binary tree. In this case, prefixes 192.192/10 and 192.128/10 have a common
ancestor, i.e., 192.128/9. Thus, the frequency of the intermediate node 192.128/9 is
the sum of frequencies of its two descendants, 192.192/10 and 192.128/10. Likewise,
the frequency for 192.0/9 comes from 192.64/10 and 192.0/10.

For k = 24, PEK would generate all prefixes of length 8 and 32 (same behaviour as
FE except for the first pruning of infrequent /8 prefixes). In this case, PEK would be
extremely fast (it would go through all transactions only twice). However, it would use
a lot of memory (it would directly expand all trees to the maximum of 25 levels without
performing any sort of prefix pruning). Therefore, our goal is finding a value of k such
that the trade-off between memory usage and runtime is optimal. This trade-off is
investigated in Section 6.3.2.

6.2.4 Sampling

In order to reduce the volume of input transactions, we can apply random sampling, i.e.,
we randomly sample each input record with probability p, where 0 < p ≤ 1. Sampling
reduces the volume of input data and therefore speeds up the mining process. However,



6.2. FARNET: BUILDING AN EFFICIENT FIM SYSTEM FOR NETWORK TRAFFIC81

sampling can have undesired effects. In particular, the frequent item-sets of sampled
input may differ from the frequent item-sets of unsampled input. We identify the
following four cases:

1. Identical item-sets. Both the sampled and the original output yield an identical
frequent item-set that has exactly the same items. The flows matching such
item-sets are true positives.

2. Lost Item-set. An item-set that was in the original output does not appear after
applying sampling because it is undersampled and its frequency is not above
the minimum support anymore. The flows belonging to such item-sets are false
negatives.

3. New item-set. An item-set that is not frequent is oversampled and becomes
frequent in the sampled transactions. Item-sets with frequency close to the
minimum support are more likely to transition to frequent. Flows contained in
new item-sets are false positives.

4. Transformed Item-set. This happens when two or more item-sets in the original
output are merged into a new item-set in the sampled output. Normally, this
new item-set has more defined items than the original because it is precisely a
combination of them. In general, all the flows matching this item-set are true
positives because even though the item-set is not strictly the same, its pattern
defines the same set of flows matching the union of original item-sets.

Note that frequent item-sets close to the minimum support (s) are more likely to
trigger false positives or negatives. The lower s, the higher the number of item-sets
with frequency close to it. Therefore, the chances of either losing frequent item-sets
or creating new ones are higher for smaller s.

To estimate the error due to sampling, we model the process with a binomial
distribution. In particular, if N is the original size of an item-set, n the size of an
item-set after sampling, and p the sampling rate, then the binomial distribution gives
the probability of obtaining exactly n successes, i.e., a frequent item-set of size n, out
of N independent trials, each of which yields a certain probability of success p. Using
the binomial distribution, we can answer the following question. Given a minimum
support s, what reduced s’ should be used in order to ensure with high probability that
the original frequent item-sets will remain after applying sampling? Our goal is to find
what minimum support s′ is needed in order to guarantee with a certain probability
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Table 6.2: Details of the dataset
label #flows #packets #bytes duration

trace-1 0.51M 5.46M 5.55G 15m.
trace-2 1.96M 25.22M 21.88G 1h.
trace-3 3.87M 47.77M 42.20G 2h.
trace-4 5.77M 72.37M 67.83G 3h.

that an original item-set of N flows will be kept after sampling. Being x the size of
that item-set after sampling:

P (x > s′) = 1− P (x ≤ s′) = 1− CDF (s′, N, p) = 1−
s′∑
i=0

(
N

i

)
pi(1− p)N−i

From the formula above, the probability p of an item-set of 1000 flows of reaching
s = 100 flows after applying a 10% sampling does not even reach 50% (p ≈ 47%).
However, by using the binomial distribution we can find in advance a desirable setting.
In this example, setting s′ = 60 ensures that the original frequent item-set will not be
lost. Nonetheless, there is no need to reduce the minimum support so aggressively.
Using s′ = 80 would allow keeping all the original item-sets with high probability
(p ≈ 98%).

The impact of sampling on the performance and accuracy of FaRNet and the
trade-off between true positives and false positives depending on the choice of s′ will
be discussed in Section 6.3.2.

6.3 Performance Evaluation

In this section, we first describe the scenario and datasets used in the evaluation
(Section A.2.1). Afterwards, we report FaRNet results with flat and hierarchical data,
and also evaluate its performance under sampling (Section 6.3.2). Note that this part
of the evaluation focuses on a simplified version of FaRNet with a limited number
of dimensions (5-tuple) to allow the comparison with AutoFocus [25] (Section 6.3.3).
Finally, Section 6.3.4 reports on the results obtained by FaRNet when mining the full
set of 10 dimensions (5-tuple, application, src/dst AS and src/dst geolocation).

6.3.1 Scenario and Datasets

The experiments presented in this section were performed using four NetFlow traces
from 2011 from one of the 18 the points-of-presence of the European backbone network
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Fig. 6.2: Density (left), number of unique items (middle) and average transaction length
(right) for varying minimum support on trace-1 (t1), trace-2 (t2), trace-3 (t3) and trace-4
(t4).

of GÉANT [49]. For details on the network scenario refer to Chapter 2. The details of
the datasets can be found in Table 6.2. Figure 6.2 also plots their average transaction
length (l), number of unique items (n) and density (d = l/n) for varying minimum
support (s). As it will be discussed later, these parameters have an important impact
on the performance of the mining algorithms, and their values depend not only on the
dataset, but also on the particular method applied; i.e., flat, Full Expansion (FE) or
Progressive Expansion (PE). For PE, they also depend on the value of s. The figure
confirms that traffic data is extremely sparse (only datasets with d ≥ 0.1 are considered
dense in the literature [45]).

6.3.2 FaRNet Performance

In this section, we compare the algorithms presented in Chapter 2 with flat and hier-
archical attributes. Afterwards, we select the best performing algorithm among them
and show the gain introduced by the optimizations proposed in Section 6.2. Finally,
we discuss on the selection of the appropriate value of s. Recall that for all the exper-
iments in this section, only the 5-tuple (i.e., src/dst IP addresses, src/dst ports and
protocol) has been used.

We split the four NetFlow traces described in Table 6.2 in time bins of 15 minutes
and show the average and the standard deviation in the results. From here on, in this
section we will refer to that set of bins as the dataset. Note that the longer the time
bin considered, the higher the resources needed (i.e., more running time and memory
usage). We use an Intel Core2 Quad processor Q9300 and 3GB of main memory
running Debian 5.0.5 (32 bits).
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Fig. 6.3: Memory usage (left) and execution time (right) with flat attributes and varying
minimum support on dataset.

Flat treatment

Figure 6.3 shows the performance of all the evaluated FIM algorithms for flat data (i.e.,
Apriori, Eclat, FP-growth, RElim and SAM). On the left plot, we observe the memory
used for values of s ranging from 0.1% to 10% (we discuss later in Section 6.3.2 on the
appropriate selection of s). In order to clearly observe how each algorithm managed
memory, the plots show two different values: the maximum total memory used (’Max
peak’) and the memory strictly reserved during the mining task. The main problem
of reporting only the maximum peak is that the specific behaviour of each method is
completely hidden below that peak. In particular, the dotted line labeled as ’Max peak’
in Figure 6.3 shows the maximum total memory used, which is the same for all the
algorithms regardless of s (≈ 36MB). This happens for two reasons. First, because
the part of the code that takes care of reading the input data and performing a first
pass for counting the support of single element item-sets is common to all methods in
the code provided in [70]. And second, because this first pass needs far more memory
than the rest of the mining process.

Regarding the memory usage of each algorithm, Apriori is clearly the one with the
lowest consumption. FP-growth shows the worst memory usage while SAM, RElim and
Eclat report similar results. The main reason behind such memory differences between
Apriori and the rest lies on the fact that, except for Apriori, all algorithms use complex
data structures that book big memory blocks (e.g., ≈1 MB for SAM). On the other
hand, Apriori asks for small pieces of memory every time it needs them.

In contrast, when looking at the execution time of each algorithm (Figure 6.3,
right), the differences are hardly noticeable among each other. Overall, after analysing
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Fig. 6.4: Memory usage (left) and execution time (right) with Full Expansion for varying
minimum support on dataset.

both the runtime and the memory used for the mining by each of the algorithms,
Apriori turns out to be the best algorithm for FaRNet for dealing with flat data.

Full Expansion

The objective of this section is to analise how the presented FIM algorithms perform
on hierarchical data to, later on, apply the optimizations presented in Section 6.2 to
the best performing method. Recall that the goal of mining hierarchical data is to
obtain higher granularity on the reported frequent item-sets. For example, if there is
a scan, it might be possible to find out the specific subnet that is under attack (with
flat treatment this is not possible).

Figure 6.4 shows the performance of SAM, RElim, FP-growth and Eclat when
using Full Expansion (FE) on dataset. On the left plot, we can observe the memory
consumption (in logarithmic scale) for different s values. FP-growth and Eclat show
the highest memory consumption. However, while FP-growth is the worst performing
algorithm for s > 2%, Eclat’s memory consumption becomes close to SAM’s and
RElim’s for s ≥ 4%. In contrast, both SAM and RElim scale smoothly for decreasing
values of s (e.g., the memory usage for the mining is approximately one order of
magnitude lower than FP-growth’s and Eclat’s for s = 0.1%).

As regards the runtime, RElim and FP-growth are the fastest and, for s < 1%,
RElim is slightly better than FP-growth. FP-growth is among the quickest algorithms
due to its compact FP-tree representation and RElim is particularly designed to deal
with sparse datasets, which is the case for network traffic data (see Figure 6.2). Eclat
performs similarly to RElim and FP-growth but only for s ≥ 1%. SAM turns out to
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Fig. 6.5: Memory usage (left) and execution time (right) comparison between flat, Full
Expansion, Progressive Expansion and Progressive Expansion k-by-k for varying minimum
support on dataset.

be the slowest algorithm except for s = 0.1%, in which case Eclat shows the worst
results.

Note that Apriori algorithm does not appear in Figure 6.4 due to scalability issues,
which impeded us to run it with hierarchical attributes even for the greatest s = 10%.
The main problem with Apriori is the candidate generation and testing step, which
becomes too slow and needs too much memory with long transactions. Note that in
this version of FaRNet limited to 5 dimensions (5-tuple), transactions have 55 items
in FE instead of 5 as in the flat case (25 items for each IP, two per port and one for
the protocol).

Based on Figure 6.4, RElim shows the best trade-off between execution time and
memory consumption for Full Expansion in FaRNet. Therefore, in the following sub-
sections we evaluate the different optimizations presented in Section 6.2 on top of
RElim.

Progressive Expansion

In this section, we discuss the advantages of using Progressive Expansion over Full
Expansion. Figure 6.5 shows the performance of RElim for all proposed methods:
flat, Full Expansion (FE), Progressive Expansion (PE) and Progressive Expansion k-
by-k (PEK). On the memory side (left plot), the effect of applying PE is clear. Note
that the figure reports the total memory consumption, including both the first pass
to compute 1-element item-sets and the rest of the mining process. With PE, the
number of generated prefixes is dramatically reduced compared to FE, because of the
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Fig. 6.6: Results for Progressive Expansion k-by-k on dataset. Memory usage (left) and
execution time (right) for varying minimum support and different values of k.

fact that full IPs are rarely frequent enough to be above s and, therefore, they are
generally cut before reaching /32. Consequently, the memory needed is far lower (e.g.,
≈ 60% reduction for the lowest s on trace-1). Moreover, as s goes up, PE gets
closer to flat treatment. In Figure 6.2 (middle), we can also observe that the average
transaction length decreases with s. In particular, for s = 0.1% the average length is
≈ 32 elements (32.23), while for s = 10% it hardly reaches 8 elements (8.06).

Nonetheless, the pruning task results in an important increase of the execution
time. Figure 6.5 (right) shows that PE is slower than FE. This is due to the fact that
PE must go through all transactions 25 times, each one for extending all prefixes by one
bit until reaching /32 (in FE every transaction is read only once and each IP directly
expanded into 25 items). The next section evaluates an optimization that addresses
this issue.

Progressive Expansion k-by-k

Figure 6.6 plots the memory usage (left) and the execution time (right) for all possible
values of k when using Progressive Expansion k-by-k (PEK). In terms of memory,
k = 24 is the worst option (it expands directly all trees and, therefore, needs a lot of
memory), while all the other values of k behave much better. However, when switching
to the runtime comparison, k = 12 and k = 24 turn out to be the best choices while
k = 1 is the worst (it needs to analise all transactions 25 times). Clearly, k = 12 is
the optimal choice.

Figure 6.5 shows that PEK with k = 12 outperforms both FE and PE in terms of
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Table 6.3: Impact of sampling on FaRNet for trace-1: mean± stdev for true positives rate
(TPR) and false positives rate (FPR) for different minimum supports (s) and sampling rates
(p).

p = 1% p = 10% p = 25%
TPR (%) FPR (%) TPR (%) FPR (%) TPR (%) FPR (%)

s = 0.1% 93.64± 0.32 1.38± 0.12 98.76± 0.16 0.9± 0.09 99.26± 0.15 0.55± 0.1
s = 1% 97.26± 0.65 1.77± 0.45 98.87± 0.18 0.78± 0.22 99.33± 0.41 0.36± 0.09
s = 2% 96.81± 1.62 1.24± 0.65 99.72± 0.27 0.12± 0.04 99.96± 0.03 0.11± 0.04
s = 4% 95.76± 5.22 0.46± 0.36 98.33± 1.62 0.31± 0.28 99.36± 1.34 0.11± 0.21
s = 6% 98.73± 1.2 2.47± 2.86 99.75± 0.26 1.46± 2.59 99.78± 0.26 0.23± 0.32
s = 8% 98.94± 1.43 0.41± 0.76 100± 0 0± 0 100± 0 0± 0
s = 10% 100± 0 1.32± 2.88 100± 0 1.29± 2.89 100± 0 0± 0

both execution time and memory consumption. Although PEK and PE use approxi-
mately the same memory, PEK’s execution time is vastly reduced with respect to PE’s
(transactions are only read three times to generate /8, /20 and /32 prefixes).

Sampling

Next, we evaluate the impact of sampling on the output of FaRNet. We use the
following metrics to quantify the error introduced by sampling. Let X be the union
of flows matching all the frequent item-sets after running FaRNet on unsampled data.
Likewise, Y defines this set of flows for the sampled case.

True Positives Rate: TPR = |X∩Y |
|X|

False Positives Rate: FPR = |Y−X|
|X|

While true positives show the efficiency with respect to the unsampled case, the
false positives indicate the correctness of the output (infrequent item-sets that turned
frequent due to the sampling process).

In Table 6.3, we can observe the error introduced in the output of FaRNet due to
sampling for varying s and sampling rate p on trace-1. Concerning the TPR, we obtain
a percentage close to 94% in the worst case. Moreover, for p > 1%, the TPR is always
extremely close to 100% regardless of s. We see that higher p and s result in smaller
error. As regards the FPR, the worst results are clearly obtained for the lowest p. The
highest value is 2.47%. However, for higher p, the number of false positives is greatly
reduced, especially for low s. The reason why smaller values of s lead to less false
positives is because the number of frequent item-sets that turn out to be mistakenly
reported as frequent, account for a low number of flows with respect to the overall
input flows.
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For example, for s = 10% and p = 1%, we obtain TPR = 100% and FPR =
6.42%. These false positives are due to the fact that in the unsampled output, there is
an item-set whose frequency is very close to s (9.96%) that, after sampling, depending
on the case, becomes frequent (new item-set phenomenon described in Section 6.2.4).
This only mistakenly classified item-set is provoking that peak in the FPR.

All in all, we can conclude that for p = 10% and above, we obtain great accuracy
and low false positives. Also, for the most aggressive sampling rate, p = 1%, we get
acceptable values of both TPR and FPR as long as we use reasonably high values of
s.

In Figure 6.5, we can observe the memory usage and runtime when applying sam-
pling to FaRNet. As expected, when we apply a non-aggressive p = 25%, the improve-
ment in the performance is significant. Runtime beats clearly PEK w/o sampling and
becomes very close to flat treatment. Regarding memory usage, it becomes the best
among all methods, including the flat case. With this sampling rate, FaRNet needs less
than 4 seconds in the worst case to process a trace of 15 minutes with approximately
half million flows (trace-1). This confirms that FaRNet performs (near) real-time.

Selecting the minimum support

Frequent item-sets are useful for many reasons (e.g., traffic profiling, anomaly extraction[23],
anomaly detection [34]). They tell the operator what is happening in the network in
a compact and summarised way. However, it is essential to tune the FIM system so
that the amount of reported frequent item-sets is treatable by a human. While low s
might lead to huge outputs with too much information, high s may hide interesting
patterns. Therefore, finding the proper trade-off is crucial so that FaRNet’s output is
useful for a network operator.

Figure 6.7 shows how the top-k of frequent item-sets varies for different s and data
treatments (flat or hierarchical) when mining the 5-tuple on trace-1 (see details in
Table 6.2). While in the horizontal axis we see s from 0.1% to 10%, the vertical axis
depicts the size of the output for a particular s (in logarithmic scale). We observe that
for both flat and hierarchical attributes the number of item-sets decreases rapidly as s
increases. However, the number of frequent item-sets changes significantly depending
on how we treat the data. For flat attributes, the size of the output is always, at
least, one order of magnitude lower than for hierarchical data, except for the most
aggressive s = 10%. This difference is due to the growth of frequent combinations
between hierarchical elements, i.e., IP prefixes and ports. Therefore, in order to obtain a
reasonable and humanly treatable number of item-sets in the output, the recommended
s parameter changes significantly depending on the case.
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Fig. 6.7: Number of frequent item-sets for flat and hierarchical data and varying minimum
support for trace-1.

Let us assume that we are interested in extracting the top-10 or top-20 of frequent
item-sets. While we should use a 5% ≤ s ≤ 10% for hierarchical data, a s close to
1% would be more convenient for the flat case. For example, for trace-1, s = 1%
returns 10 item-sets for flat treatment but, in order to reach a similar figure for the
hierarchical case, s must be increased up to 8%.

6.3.3 Comparison with AutoFocus

AutoFocus [25] is the only available tool of similar nature to our system (see Chapter 6.5
for details on AutoFocus). In order to validate the implementation of FaRNet, we
compare it against AutoFocus. For the comparison, we configured both systems so
that the same threshold is used to decide whether an item-set is frequent. While
FaRNet uses the minimum support (s), AutoFocus uses a parameter called resolution.
We also limited the number of dimensions analysed by FaRNet to only these attributes
used by AutoFocus to perform the mining, i.e., five (the 5-tuple). For the experiments
in this section, we used trace-1 (see details in Table 6.2).

Performance comparison

Figure 6.8 shows how FaRNet and AutoFocus perform for different values of s. Note
that only the first 10000 flows of trace-1 are used for this comparison. This is because
the available implementation of AutoFocus [29] is not dimensioned to handle more
flows (when it receives more than that amount, it does not count them accurately due
to collisions). In terms of runtime (right plot), FaRNet is clearly faster regardless of
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Fig. 6.8: Memory usage (left) and execution time (right) comparison between FaRNet
(PEK12) and AutoFocus for the first 10K flows of trace-1.

s. Moreover, as s decreases, AutoFocus’ execution time increases exponentially, while
FaRNet is able to handle it smoothly. Although for the highest s AutoFocus’ runtime
(1s) is relatively close to FaRNet’s (0.10s), for s = 0.1% AutoFocus is approximately
three orders of magnitude slower (223s vs 0.48s).

As regards the memory consumption (left plot), AutoFocus is better than FaRNet
for s ≥ 1%. However, for lower values of s, AutoFocus consumption rises rapidly
and ends up consuming far more memory than FaRNet (88.77 MB vs 7.79 MB for
s = 0.1%). All in all, FaRNet shows to be quicker and more resilient to low s than
AutoFocus, although it uses more memory for s = 1% and above. However, note that
the memory consumption of FaRNet (without sampling) is reasonably low in the worst
case (below 10 MB).

In order to improve FaRNet results, we apply sampling to the input data. In
particular, the triangle dotted line in Figure 6.8 shows FaRNet under a 25% sampling
rate. As we can observe, FaRNet becomes faster than without sampling and, more
importantly, gets really close to the memory consumption of AutoFocus. Under this
sampling rate, FaRNet’s memory usage is lower than AutoFocus’ for s < 2% and
approximately the same for s > 5%. However, for intermediate values of s (2% and
4%), FaRNet is still slightly worse.

Near real-time processing

An important advantage of FaRNet over AutoFocus is that FaRNet is capable of
operating near real-time (i.e., it can process x minutes of data in less than x minutes).
As shown in Figure 6.5, FaRNet without sampling can process 15 minutes of NetFlow
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data (trace-1) in significantly less than 20 seconds regardless of the minimum support.
Note that FaRNet works on fixed time windows, i.e., it collects data during a certain
time bin and when it ends it processes that data and produces results in less than the
time bin. While processing, FaRNet needs to store part of the next time bin in a buffer,
otherwise some traffic would be lost.

When applying 25% sampling, FaRNet can analise trace-1 with low error in less
than 4 seconds in the worst case (lowest s). On the contrary, AutoFocus is not able to
provide real-time results. As depicted in Figure 6.8, for the first 10,000 flows of trace-1
(which correspond to approximately 18 seconds of traffic in our scenario), AutoFocus
struggles for low s. For s = 0.5% it is slightly below the threshold of 18 seconds (16.25
seconds), but for s = 0.1%, AutoFocus needs more than 12 times that time (almost 4
minutes).

Scalability to more dimensions

The main issue of AutoFocus is its lack of scalability as the number of dimensions
increases. Essentially, AutoFocus combines several unidimensional hierarchies (trees)
into a multi-dimensional bigger hierarchy. The problem of such a pass is that the
combinations grow exponentially with more dimensions. This is because each new
dimension considered must be “replicated” for every single node of every unidimensional
hierarchy. In particular, the number of clusters above the threshold is bounded by
r
∏k

i=1 di, where k is the number of dimensions considered, i.e., 5 when mining the 5-
tuple (i.e., srcIP, dstIP, srcPort, dstPort and protocol). d is the depth of the hierarchy
of dimension i (e.g., 25 for IPs) and r is the resolution [25]. Therefore, the more
dimensions and the higher the depth of the hierarchies, the worse. In contrast, adding
more dimensions to FaRNet is as easy as increasing the transaction length. We have
already seen that FaRNet easily handles transaction lengths of 55 items for the 5-tuple.
In next section, we report results on analysing the full set of 10 dimensions and show
that FaRNet is able to process them very quickly.

6.3.4 Mining more dimensions

By mining the full set of 10 dimensions, item-sets like these reported in Table 6.4 can
be obtained. In particular, this table shows the top-10 frequent item-sets reported by
FaRNet on trace-1 for s=1%. This top accounts for approximately 10% of the traffic.
Note that a higher value of s could be used to summarise a higher percentage of the
traffic in only 10 entries. The table also shows the item-sets returned by AutoFocus in
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Table 6.4: Top-10 frequent item-sets reported by AutoFocus and FaRNet on trace-1 sorted
by descending frequency (s=1%). lp and hp stand for low-ports and high-ports, respectively.

item-set sIP dIP sPort dPort proto app sAS dAS sGeoloc dGeoloc

AutoFocus

1 * * lp hp 6 n/a n/a n/a n/a n/a
2 * * 80 hp 6 n/a n/a n/a n/a n/a
3 * * hp hp 6 n/a n/a n/a n/a n/a
4 A.0.0.0/8 * lp hp 6 n/a n/a n/a n/a n/a
5 * * hp lp 6 n/a n/a n/a n/a n/a
6 A.0.0.0/10 * * hp 6 n/a n/a n/a n/a n/a
7 A.0.0.0/10 * lp hp * n/a n/a n/a n/a n/a
8 A.0.0.0/9 * 80 hp 6 n/a n/a n/a n/a n/a
9 A.14.29.110/32 * 80 hp 6 n/a n/a n/a n/a n/a
10 * * hp 80 6 n/a n/a n/a n/a n/a

FaRNet

1 A.14.29.110/32 * 80 hp 6 HTTP 70 786 Bethesda GB
2 * B.128.0.0/10 80 hp 6 HTTP * * US EU
3 C.66.122.0/24 * 80 hp 6 HTTP 32 * Stanford EU
4 C.66.120.0/21 * 80 hp 6 HTTP 32 786 Stanford GB
5 * B.48.0.0/13 80 hp 6 HTTP * 2200 US FR
6 D.234.254.12/30 * 80 hp 6 HTTP 6932 * Danvers EU
7 E.100.0.0/18 * hp hp 6 * 1103 * Amsterdam *
8 D.234.252.14/32 * 80 hp 6 HTTP 6932 * Danvers EU
9 A.14.29.110/32 * 80 hp 6 HTTP 70 680 Bethesda DE
10 A.14.29.110/32 * 80 hp 6 HTTP 70 2200 Bethesda FR

order to observe the differences among both systems. FaRNet is able to process this
trace (≈ 0.5 million flows) in approximately 12 seconds.

As we can see in the table, while AutoFocus essentially reports quite general IP
prefixes, FaRNet is able to find much richer item-sets containing more concrete prefixes,
specific locations, applications and ASes. For example, the 9th item-set reported by
AutoFocus describes the activity of a a host that, judging by the source port, could be
a web server. However, other than its source IP, the remaining data of the item-set is
not extremely useful. However, when looking at the output provided by FaRNet, we
can see that item-sets 1, 9 and 10 uncover some very interesting hidden associations
related to the very same item-set. In particular, we confirm that the host is indeed a
web server (its associated application is HTTP), we find its source AS and also discover
that it is located in a city called Bethesda (Maryland, US). Specifically, this web server
hosts a widely used tool in the research community that gives access to a database of
references on life science and biomedical topics. Moreover, we observe that it is being
accessed from several European countries (Great Britain, Germany and France) and
also find the corresponding destination AS for each case. Note that for the hierarchical
attributes, only the most specific element is reported (e.g., in case of Bethesda, only
the city is reported because adding the continent, the country and the region would be
redundant). As we have been able to observe in this example, in order to understand
what is really happening in the network, the item-sets reported by FaRNet are more
synthetic and, therefore, much more informative than these returned by AutoFocus.
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Table 6.5: List of item-sets found by FaRNet for a vertical scan detected by NetReflex.
sIP dIP sPort dPort

X.191.64.165 Y.13.137.129 55548 *
Z.66.124.39 Y.13.137.129 * *

* Y.13.137.129 3072 80
* Y.13.137.129 1024 80

6.4 Deployment

Two versions of FaRNet have been deployed in two different environments. The first
deployment is described in this section and the second,

A prototype version of FaRNet [33] based on flat treatment on the 5-tuple [23]
has been deployed in the European-wide backbone network of GÉANT (see scenario
details in Chapter 2). It is essentially used by the network operators for automati-
cally extracting and summarizing compactly all the traffic flows causing an anomaly
(anomaly extraction). Even though FaRNet is a tool for traffic profiling, our main
intuition for using it for anomaly extraction is that anomalies often result in large sets
of flows with similar characteristics [23] (e.g., when there is a DDoS, lots of flows
share the same destination IP and port). Consequently, anomalies will appear in the
reports of FaRNet as frequent item-sets. In particular, FaRNet has been used for two
purposes in GÉANT: 1) validate anomaly alarms previously triggered by an already ex-
isting anomaly detection tool in the network (NetReflex [54]) and 2) collect malicious
evidence in a compact summary to send it to the involved parties.

We also deployed FaRNet in a different environment related with monitoring the
behaviour of highly distributed devices in a critical infrastructure sector (refer to Ap-
pendix A for details).

The process of analysing an anomaly works as follows: 1) NetReflex triggers an
alarm and provides the related meta-data (e.g., involved IPs), which is used to extract
a set of candidate flows responsible for the anomaly; 2) each flow is modeled as an
item-set with 5 items and FaRNet is used to extract the frequent item-sets out of
the large set of candidate flows obtained in step 1. FaRNet also provides the network
operators with a GUI that allows them to extract the frequent item-sets associated
with an alarm, investigate the raw flows matching any returned item-set, and tune the
extraction parameters if needed (e.g., the minimum support).

In order to ensure that the prototype of FaRNet was working as expected, we
performed an evaluation during the deployment process in order to validate its results.
During this evaluation, we randomly selected anomalies from 10 days. For 42% of
the anomalies, FaRNet found uniquely the item-set strictly related to the meta-data
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reported by NetReflex. Additionally, for 26% of the cases, the algorithm evidenced
additional flows related to the anomaly that were not provided by the anomaly detector.
These were particularly interesting cases because FaRNet was able to discover new
anomalies that had been missed by NetReflex. For example, the following meta-data
were signaled and labeled as a vertical scan by NetReflex: “sIP: X.191.64.165, dIP:
Y.13.137.129, srcPort: 55548 and dstPort: *. When analysing the same anomaly
using FaRNet, the frequent item-sets in Table 6.5 were found. The 1st was precisely
the item-set responsible of the anomaly already flagged by NetReflex. The 2nd was
another host doing a similar vertical scan on the same target, while the 3rd and 4th
were two simultaneous DDoS on port 80 against the same target. We believe that
this capability of finding more flows related to an anomaly has general applicability.
Moreover, in 26% of the cases, some additional item-sets related to legitimate activity
were extracted, which could be trivially filtered out by the network operator. For the
remaining 6% of the alarms, FaRNet was not able to extract meaningful flows, which
could be due to a stealthy anomaly not captured by our extraction technique or due
to a false positive-alarm (FP).

Overall, FaRNet was extremely useful for the network operators of GÉANT. In
particular, it provided the following:

1. Fast and more reliable anomaly analysis with respect to the time-consuming and
error-prone manual investigation.

2. Discovery of additional information related to an anomaly that was missed by
NetReflex.

3. Easier identification of FP reported by NetReflex.

4. Useful and compact summaries of the traffic.

6.5 Chapter Summary

We analysed the performance of state-of-the-art FIM algorithms when applied to net-
work traffic data, and extended and optimized them to deal with hierarchical dimensions
such as IP addresses, ports, applications and geolocation data. We also evaluated the
impact of sampling on the performance of FIM algorithms, and showed that it signifi-
cantly reduces computational overhead while providing precise output.

Based on this analysis, we built FaRNet, a network traffic profiling system that
offers better performance and flexibility and also scales to a much higher number
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of dimensions than AutoFocus. In order to validate the correctness of FaRNet, we
compare it with AutoFocus by using a limited version of our system configured to
produce the same output. Using traffic data from a large backbone network, we show
that when mining only the 5-tuple, FaRNet is able to process 15 minutes of traffic in
less than 4 seconds with a very small error. We show that FaRNet is up to three orders
of magnitude quicker than AutoFocus. As a consequence, FaRNet is able to process
high volumes of multi-dimensional traffic data in (near) real-time, while AutoFocus
was designed for offline analysis of a pre-defined set of 5 dimensions. Finally, when
analysing the full set of 10 dimensions, FaRNet confirmed its ability to produce more
useful and synthetic reports and also showed that it scales very well with the number
of dimensions by analysing 15 minutes of traffic in approximately 12 seconds (w/o
sampling).

We deployed a preliminary version of FaRNet in the European backbone network
of GÉANT and showed its usefulness and good results for assisting network engineers
when dealing with anomalies in an operational environment.

The state-of-the art of this thesis is split into five sections: anomaly analysis (Sec-
tion 6.6), anomaly detection (Section 6.7), extraction (Section 6.8) and classification
(Section 6.9) and, finally, impact of sampling on anomaly detection (Section 6.10).

6.6 Anomaly Analysis

There are few studies providing feedback about traffic anomalies and its behaviour
and characteristics in network traffic. However, none of these studies on his own can
be considered representative enough because they are either based on short-term data
(few weeks or months) or extracted from small networks (e.g., university links).

In [2], firewall logs were collected over four months from over 1600 different net-
works world wide (5 full class B networks, approximately 45 full Class C sized networks
and many smaller sub-networks). This study revealed large intrusion activity on a daily
basis and also found that a few sources were responsible for a significant part of the
attacks. Moore et al. studied the broad visibility of flooding attacks and worms by us-
ing network telescopes [3, 4]. The unwanted traffic sent to network telescopes (range
of monitored network addresses) was analysed and global activity for such attacks was
inferred. [5] sought to characterize anomalous traffic by using 2 months of data during
2004. The analysed data was composed by one /8 network, two /19 networks and
ten /24 subnets. It reported on temporal patterns and correlated activity among other
characteristics. It concluded that the presence of worms and autorooters is significant.
They provided as well some feedback on how to use their insights for monitoring and
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detection purposes. More recently, [6] provided an analysis of the evolution of the
scanning activity over 12.5 years (1994-2006). Network traffic was continuously col-
lected at the border of the Lawrence Berkeley National Laboratory (LBNL) in Berkeley
(USA). LBNL’s address space consists of two /16 networks and a small number of /24
network blocks. It reports on the number of scanners as well as targets and probing
patterns during that period of time.

Additionally, the closest studies we can find in the literature basically analysed
general characteristics and evolution trends for the Internet traffic.

In [71], characteristics on wide area Internet from OC-3 (≈155 Mbps) links in com-
mercial Internet backbone of MCI Communications Corp. [72] are presented. However,
since the longest analysed trace lasts only fore one week, it can not be considered a
long-term study. In [73], McCreary et al. reported results from the NASA Internet
traffic exchange point. The study took into account 10 months of data, from May 1999
to March 2000 and showed that there was an increase of streaming and gaming traffic.
In [74], a passive monitoring system called IPMON deployed in the Sprint backbone
network [75] is described. In addition, changes in Internet traffic characteristics during
2001 and 2002 based on measurements from OC-3 (≈155 Mbps), OC-12 (≈622 Mbps)
and OC-48 links(≈2.5 Gbps) are reported. In [76], a 5-year study (1998-2003) about
traffic measurements from research, academic and commercial sites is presented. [77]
reports a 7-year analysis (2001-2008) of long term behaviour of certain traffic charac-
teristics.

6.7 Anomaly Detection

The amount of research on anomaly detection is huge and increasing every day. Fur-
thermore, already existing threats change fast and new and unknown anomalies contin-
uously show up. The state-of-the-art on anomaly detection can be divided in two gen-
eral groups: specific-anomaly detection (Section 6.7.1) and general-purpose anomaly
detection methods (Section 6.7.2). The first set includes concrete mechanisms to
detect well-known anomaly types. The second describes techniques focusing on de-
tecting anything that differs from usual, which means that mechanisms in this group
can detect both known and unknown anomalies. Next, we review the most significant
works. For more details please refer to [78].
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6.7.1 Attack-specific Techniques

This Section covers the most relevant literature on the detection of these anomalies
analysed in this thesis, i.e., scans (Section 6.7.1) and denial of service attacks (Sec-
tion 6.7.1).

Scans

In [79], Lee et al. described the distinct scanning attacks and also defined their general
behaviour. They differentiate three kind of scans: vertical, horizontal and a mixture
between them. For details on scan types refer to Chapter 2.

There are lots of proposed solutions for scan detection. The most straightforward
detection mechanism keeps a counter of the number of contacted destination ports and
IPs from a given source IP for a fixed time window. This is implemented in the Snort
IDS [9]. Nonetheless, this mechanism is not extremely effective as it totally depends
on the time window, i.e., an attacker can launch a scanning attack at a very low rate
to avoid being detection. Some works such as [80] focus particularly on detecting slow
or stealthy scans, i.e., scanning attacks performed a at a very low rate. However the
complexity of its computations renders this proposal unfeasible for high-speed links.

Consequently, more complex algorithms with higher detection rates have been pro-
posed. Notably, Threshold Random Walk (TRW) [10] and Time based Access Pattern
Sequential hypothesis testing (TAPS) [11]) are well-known techniques in the literature.
TRW is implemented in the Bro IDS [12]. For details on TRW and TAPS refer to
Chapter 2.

Several improvements have been proposed for TRW [81, 82, 83]. The main differ-
ence between original TRW and [81] is that the latter is able to catch scanners quicker.
However, neither the original TRW nor this approach are able to scale to high-speed
links because they do not take into account memory constraints (very limited memory
access time and tiny memory size). Consequently, further improvements have been pro-
posed for TRW in order to address these memory-related problems [82, 84, 85, 83, 86].
TAPS was also improved with TAPS-SYN [14], which showed a lower ratio of false pos-
itives with respect to the original TAPS. Finally, some mechanisms based on entropy
measurements have also addressed the problem of scan detection [19, 87].

For further details refer to [83] and references therein.

DoS/DDoS

There is significant research dealing with DoS and DDoS attacks. In general, defense
mechanisms against these attacks can be split into three general groups: 1) prevention,
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2) detection, and 3) reaction. DoS prevention is the most effective defense mechanism
because it aims to filter the attack before it actually happens. However, when a DoS
occurs it is of crucial importance to be able to detect it in order to take the appropriate
measures. Finally, attack reaction focuses essentially on reducing the effect of a DoS,
i.e., trying to mitigate the attack and offer the expected service under attack.

One of the proposed solutions for DoS prevention focuses on filtering the traffic
either entering or leaving a network by controlling if the incoming/outgoing packets
are coming from or going to an expected range of IP addresses [88]. Similarly, Park
and Lee proposed Router-based Packet filtering [89], which seeks to filter unexpected
traffic inside a network rather than on the edges as in [88].

As regards DoS detection, many proposals have been made. In [90, 91], a mech-
anism that flags heavy changes in packet rates between hosts as DoS attacks was
proposed. Statistical analysis was used for detection of SYN floods [92, 93]. The
former [92] uses the ratio of SYN packets to FIN and RST packets while the latter [93]
measures other metrics such as TCP traffic volume. In both cases, they build a profile
for normal traffic and trigger a DoS when the observed traffic does not fit that profile.
Spectral analysis is used in [94] to differentiate between normal and malicious flows
by monitoring the amount of packets observed in a fixed time window. In [95], the
authors exploit the traffic pattern observed when a DoS is happening, which differs
clearly from legitimate traffic. Whereas a DDoS attack generates many traffic flows
from different sources to the same dst and port, normal traffic is normally highly uncor-
related, i.e., many destination IPs and ports are visited. Such patterns are detected by
using Kolmogorov-based algorithms. Time series analysis is employed to build a profile
of normal traffic using e.g., the auto-regressive model and raises anomalies when the
traffic differs from that model [96]. In [97], the authors propose a mechanism that
monitors all the IPs interacting with the target. In general this set of IPs remains
stable unless an attack occurs, in which case the system flags a DoS.

Signature-based approaches are not extremely useful to detect DoS attacks because
DoS easily change its content and therefore designing accurate signatures is highly
ineffective [84]. However, these sorts of techniques might be successful for detecting
the communication between the attacker and its zombies (unless this interaction is
encrypted, which happens often) [98]. In contrast, anomaly-based approaches are
more appropriate as they are able to flag anything that differs from normal rather
than depending on pre-defined anomalous patterns. In order to define what is normal,
statistical definitions are used (e.g., IP packet length) [99, 100]. Afterwards, the
similarity between the observed traffic and the normal profile must be determined in
order to flag an attack. Forrest and Hofmeyr proposed LISYS, a system for Intrusion
Detection that is able to detect an attack after some initial training to learn what
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traffic is legitimate [101].
Reacting to an attack is crucial in order to allow legitimate users to use the attacked

service as quickly as possible. The first step to reduce the impact of an attack is to
protect the bottleneck, i.e., either the link or the end-host delivering the service [102].
Schuba et al. proposed a mechanism that is able to free allocated resources of sus-
picious TCP connections in the target (generated by a SYN flood) by sending RST
packets [103]. The main idea in [104] is to ask legitimate clients of the service to
increase their bandwidth usage to the maximum they can so that the traffic aggregate
coming from them is higher than the malicious. If that is accomplished, legitimate
hosts should be able to use their service. In [105], the authors propose booking re-
sources for legitimate users, e.g., by using a server farm and a load balancer in order
to improve the availability of the given service. Peng et al. present a scheme where
the target host records these IPs that more often interact with it and when it is under
attack it rejects any IP out of that history-based database [106]. An agent-cotroller
mechanism is proposed in [107] for mitigating attacks within the domain of an ISP.

For more details on the state-of-the art on (D)DoS attacks, please refer to the
available surveys [108, 109, 110].

6.7.2 General-purpose Techniques

The proposed solutions can be basically split into these general groups: statistical-
based [111, 112, 113, 114], subspace-based [115, 116, 57, 19, 117, 118], signal-
based [119, 120, 121] and behaviour-based [19, 87].

Statistical-based mechanisms use prediction to know what is the next expected
value (time series prediction). If the measured metric differs too much from its pre-
diction, it is considered to be an anomaly. Different periods of time are considered:
weekdays, weekends, day, night, etc. For each combination of these intervals, two
thresholds are defined: the upper one and the lower. When some specific measured
metric (e.g., #pkts, #flows, #bytes...) exceeds its corresponding upper or lower value
an anomaly is reported. There are several approaches. Exponential smoothing [111]
is the simplest method for prediction: the predicted value is extracted from the aver-
age between the current prediction and the current real value. The problem of this
approach is that it does not account for seasonality, so it would always report anoma-
lies when there were fast changes due to normal activity. The other prediction model
is called The Holt-Winters Forecasting Algorithm [111] and it tries to overcome the
previous problem. Its prediction is an average of three variables that account for base-
line, linear trend and seasonality respectively. Each of these variables is updated using
exponential smoothing.
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The subspace-method [57] analyses what the authors call OD-flows (flows with the
same Origin and Destination points of the monitored network). Because of the high
dimensional multivariate data structure of that flows, a lower-approximation is needed:
Principal Component Analysis (PCA) [116]. This mathematical method captures the
most important trends of the explored data (it preserves the significance of the data
while reducing its complex initial structure). Then, the subspace method divides the
resulting set into normal and anomalous. If the projection of the data in the second
space is higher than a previously given value, an anomaly is flagged. All that procedure
is known as (single-way) subspace method but there are other mechanisms based on
that one like the multi-way subspace method [19]. There, Lakhina et al., focused on
data distribution: they wanted to detect the anomalies according to changes on the
distribution of some particular metrics. The way they studied the distribution of a
certain data set is the entropy: the higher is the dispersion of the data the higher
is the entropy value (a 0 value of entropy means no variation). They claim that
entropy allows to detect unseen anomalies by volume metrics (e.g., number of packets
or bytes). First, they compute the anomaly for each OD-flow and feature (sources
and destinations IPs and ports) and then, they apply the before explained subspace
method.

Next mechanisms are based on signal-processing techniques. In [119], wavelets are
used. A wavelet transform is the procedure of dividing a given signal into different
frequency components. Applied to anomaly detection it is used in such a way that
each component is used to look for anomalies matching its scale: low-frequency com-
ponents contain very sparsed anomalies, so they are used to detect long-time anoma-
lies. High-frequency components are useful to detect spontaneous changes (short-term
anomalies). In [120], Thottan et al. show the potential and challenges associated with
applying signal processing techniques to the problem of network anomaly detection by
presenting an mechanism based on abrupt change detection.

As regards behaviour-based mechanisms, in addition to [19], there are other dif-
ferent approaches like [87]. In that thesis, Xu et al, detect anomalies according to
changes on the distribution of some specific measured metrics. The way they studied
the distribution of a certain data set is the entropy: the more disperse the data is,
the higher is its entropy value. First of all, for each host, the distribution probability
is calculated for each metric: source IP, destination IP, source port and destination
port. After that, the most significant values are selected from each set. For each of
these values they observed how the other three related metrics changed (e.g., if testing
a certain source IP, they investigated what happened with the destination IP, source
port and destination port for all flows having that source IP). According to that three
values they made their decision (e.g., a scanner IP would have a large accessed set of
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destination IPs or ports with fixed or random source ports).
A recent research work [24] that does not fit in any of the before mentioned groups

has been proposed. The main difference is that whereas all the others need to learn
what normal traffic is, this approach skips that step and bases the detection only on
observing changes in strongly correlated flows. For instance, in a DDoS, there will be
lots of flows sharing the same destination IP and port, which will violate the expected
equilibrium that is accomplished when traffic is normal. They claim to be more effective
than other well-known approaches such as wavelets [119].

6.8 Anomaly Extraction

The usage of frequent item-set mining (FIM) for network monitoring and anomaly
detection has been hardly treated as a research topic. In [23, 122], each flow is
considered to be a transaction of length 7: source and destination IP, source and
destination port, protocol, #packets and #bytes. Apriori algorithm is used to precisely
identify all the traffic flows associated with an anomaly among a large set of candidate
flows identified somehow by an anomaly detection system.

More recently, researchers have studied the related problem of finding hierarchical
heavy hitters (HHH) [27, 28, 123, 124, 125]. Given a stream of items, e.g., IP ad-
dresses, a HHH is an aggregate, e.g., an IP address prefix, on a hierarchy that appears
often. The HHH problem is, in fact, a special case of the more general FIM problem.
HHH algorithms typically process the input data in a streaming fashion, approximate
the HHHs, and can accommodate a small number of dimensions. Most FIM algorithms
operate in an offline fashion, i.e., making multiple passes over input data, without ap-
proximation and scale better to a large number of dimensions. Furthermore, finding
heavy hitters over streams of flat (network traffic) attributes is a widely-studied special
case of the more general HHH problem (and in turn of the FIM problem). Heavy
hitters are simply frequent items in an 1-dimensional stream of flat items.

AutoFocus [25] is a well-known system for finding HHHs over network traffic data.
In contrast, to most other HHH algorithms, it operates in an offline manner making
multiple passes over the input data. It takes as input 5-tuples of IP addresses, ports,
and protocol, it treats IP addresses and ports as hierarchical attributes, and it finds
frequent 5-dimensional aggregates. AutoFocus is the most related previous work. In
fact, AutoFocus is essentially a particular case of FaRNet. The main contribution of
our thesis is to build a new traffic profiling system based on FIM principles that is much
faster, more flexible and more general than AutoFocus and allows to easily extend the
input 5-tuples to include a much larger number of dimensions.
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Later on, in [126], a more efficient version of Autofocus was proposed, although
without making its code available. In [61], the subspace method (see Section 6.7.2)
is combined with traffic sketches in order to provide both anomaly detection and
later identification of those flows responsible for the anomaly. Recently, Silveira et al.
proposed a technique called URCA [24] that iteratively reduces the candidate flows
by removing those that seem to be normal according to the feedback received by the
anomaly detector. Note that it does not depend on a particular anomaly detection
system but only on the type of feedback it receives from it, and, therefore, it is not
tied to a particular detection approach. After isolating the anomalous flows, it clusters
together similar anomalies.

6.9 Anomaly Classification

Only few works have strictly addressed the problem of anomaly classification. By
anomaly classification we refer to identifying precisely the high-level anomaly type
(e.g., network scan) of an alarm rather than only reporting the alarm (i.e., not giving
only a merely binary response normal/anomalous traffic). Note that obtaining labeled
data, i.e., annotating anomalous traffic with representative and precise anomaly classes
is extremely challenging because of both its intrinsic complexity and the highly dynamic
nature of anomalous traffic.

Some proposals have presented techniques to inject synthetic anomalies in a dataset
in order to obtain a labeled training dataset for supervised anomaly detection [127, 128].
Other works assume the availability of training datasets, which is very difficult as it
would be necessary to have all the anomalies appearing in a dataset properly character-
ized [129, 130]. Lakhina et al. [19] cluster the output of a PCA-based anomaly detector
to identify anomalies with similar behaviour. Nonetheless, human intervention is still
necessary to find the correspondence between each reported cluster and the high-level
anomaly that it is describing. Tellenbach et al. [20] classify changes to generalized
entropy metrics of traffic feature distributions to identify the type of detected anoma-
lies. They show how this approach can classify synthetic anomalies with an accuracy
of ≈ 85%. Finally, Choi et al. [21] make use of parallel coordinate plots to find unique
patterns of attacks that are easy to recognize visually by a human expert.
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6.10 Impact of Sampling on Scan Detection

There is not a lot of research dealing with the impact of sampling on scan detection but
some work had been already done: [13, 53, 14, 15, 16, 17]. All these works, essentially
analyse the performance of existing scan detection mechanisms by testing them under
different sampling techniques. More recently, some researchers have also directed their
efforts towards improving that performance rather than only analysing it [121, 131].

Mai et al. studied the impact of packet sampling on portscan detection in [14].
TRW, TAPS and an entropy-based anomaly detection technique were tested. Con-
cerning TRW, they found out that flow size became lower in the presence of sampling,
thus resulting in more false positives and a significant increase of the success ratio.
They also showed that the metric used by TAPS (relation between number of accessed
destination IPs and ports) is less affected, thus concluding that TAPS is better than
TRW under sampling. When comparing both mechanisms under sampling, they ob-
served that, while TRW had better success ratio, TAPS exhibited a lower ratio of false
positives. Regarding to the entropy-based analysis, it presented a performance very
similar to TAPS mechanism due to the fact that both mechanisms detect scanners
profiling destination access patterns. They even proposed a new portscan detection
method based on TAPS called TAPS-SYN, that reduced the false positives ratio.

In [13], the same authors tested several sampling methods (Packet Sampling,
Flow sampling, Sample-and-Hold and Smart Sampling) against two portscan detec-
tion mechanisms (TRW and TAPS) and a wavelet-based volume anomaly detection
mechanism. They found out that Flow Sampling performed better for both portscan
and volume anomalies detection, while the other methods obtained very poor results.
While Packet Sampling suffered the well-known flow shortening, Sample and Hold and
Smart Sampling showed to be not suitable for anomaly detection since they look down
on small flows (and attacks like port scans and DoS are made using that kind of flows).

In [53], Brauckhoff et al. studied how specific metrics are affected by sampling
looking at counts of bytes, packets and flows, together with several feature entropy
metrics. They concluded that entropy summarisation is more resilient to sampling than
volume-based metrics.

In [15], the impact of sampling on a Change-Point Detection (CPD) method [113]
and a PCA-based anomaly detection mechanism [132], is analysed. They made the
experiments under several sampling methods proposed in the PSAMP IETF draft [133]:
Systematic sampling, Random n-out-of-N Sampling and Uniform Probabilistic Sam-
pling. They concluded that Sistematic Sampling is almost useless for anomaly detec-
tion when the anomaly detection mechanism relies on specific packet characteristics
(e.g., TCP flags). When flow-based metrics are used instead, the performance is
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directly related to the sampling rate. Regarding the PCA-based method, the same
behaviour is observed (it does not care about the particular sampling method used).

In [17], Androulidakis et al. designed a new flow-based sampling technique called
Selective Sampling that focuses on small flows. These flows are usually responsible of
port scanning and DoS activity. Then, they tested how it worked under a CPD anomaly
detection mechanism. Moreover, its performance is compared with another flow-based
sampling method (Smart Sampling) and against Random Flow Sampling. This new
sampling technique showed to improve the anomaly detection effectiveness and, some-
times, it even outperformed the unsampled case. Unlike in previous works [14], they
observed that Smart Sampling overcame Flow Sampling in some cases, thus conclud-
ing that it can be used for anomaly detection if the used detection mechanism relies
on large flows.

In [16], the authors extended their previous work testing their new sampling tech-
nique against a PCA-based anomaly detection mechanism. They observed that Selec-
tive Sampling exposed the anomalies more clearly than Flow Sampling did, and, in
some cases, even better than the unsampled case. They attributed this improvement
to the fact that the nine metrics that they used for PCA were more correlated in
small-flows (Selective Sampling focuses on small flows).

Recently, two works [121, 131] have focused on providing solutions to the impact
of sampling rather than analysing the impact itself as previous studies did. In [121],
Brauckhoff et al. propose an approach based on signal-processing that seems to im-
prove significantly the performance of anomaly detection techniques under packet sam-
pling. In [131], an algorithm called Progressive Security-Aware Packet Sampling is
proposed in order to sample traffic in such a way that you keep mainly malicious part.
Consequently, the performance achieved by the anomaly detector behind it is higher
than when it receives randomly sampled data.
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Chapter 7

Conclusions

This thesis has addressed some of the current practical challenges for anomaly detec-
tion in backbone networks by providing updated and detailed information on current
anomalies, analysing and improving the impact of sampling and building a system for
anomaly detection, extraction and classification. Furthermore, we also showed how
the presented system can be successfully generalised to perform fast recognition of
high-dimensional patterns from big network traffic data and successfully deployed it in
two operational environments.

First, we analysed three commercial tools for anomaly detection and provided a
study about the type and characteristics of the current security threats happening in
a large backbone network. We also reported the strengths and shortcomings found
while using these tools, as well as the experience and knowledge we acquired during
this long process.

Second, we studied the impact of sampling on two scan detection algorithms to
determine if they are robust enough to continue finding port scans reliably. In contrast
to previous works, we observed that when using the same fraction of packets as the
common metric to compare, Packet Sampling performed better than Flow Sampling
for scan detection. Moreover, we showed that Selective Sampling, a recent sampling
proposal that targets small flows, achieves the best overall performance for scan detec-
tion. The main problem of this technique is that it needs to keep all flows in memory
in order to determine their size. This is costly in terms of memory and does not work
online. Accordingly, we proposed a new implementation called Online Selective Sam-
pling that works on a per-packet basis and keeps the same good results reported by
Selective Sampling. Due to the ability to drop flows when they become large, our
sampling proposal uses significantly less resources and is implementable in the widely
deployed packet-based NetFlow.

107
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Third, we presented a novel scheme to detect, extract and classify network anoma-
lies that combines frequent item-set mining with machine learning. We showed that our
solution has a very high classification accuracy (above 98%), and a low false positive
rate (approximately 1%). Moreover, we were able to see that the model performed
remarkably well in a network where it was not trained, which means that there are
certain features that are independent from the environment.

Finally, we generalised our system and showed that it can be successfully used for
extracting knowledge out of high multi-dimensional network traffic data, which can
greatly help network operators to comprehend what is shaping their traffic. Addition-
ally, a prototype of our system was deployed in two different scenarios to further show
its usefulness. First, it was used in GÉANT to assist engineers in the investigation
of network anomalies and second, it helped to monitor the malfunctioning of highly
distributed devices related with a critical infrastructure sector.

In summary, the key contributions of this thesis are the following:

• It provides a long-term analysis on current network anomalies happening in a
backbone network, which lacks in the literature as access to data from large
networks is uncommon for the research community. This feedback will help
researchers to focus on the most problematic anomalies and achieve a better
understanding of their behaviour and characteristics.

• It reports on the practical limitations of current commercial tools for anomaly
detection, which are not usually accessible for researchers (they are, in general,
too expensive). This information will allow the research community to focus on
still to be improved real world problems.

• Unlike previously reported, it shows that Packet Sampling outperforms Flow
Sampling under the same fraction of packets, which is important as most routers
only support packet-based sampling.

• It proposes Online Selective Sampling, a packet-based implementation of Selec-
tive Sampling, that is able to keep the same good accuracy for scan detection
while using much less resources.

• It shows that frequent item-sets summarise all the traffic flows of an anomaly
very well, which allows a better characterization of network attacks and thus,
the creation of more accurate models for anomaly classification using machine
learning.
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• It shows that techniques based on frequent item-set mining are faster, more
flexible and more scalable to high-dimensional data than methods based on hi-
erarchical heavy hitters (HHH). Furthermore, it also shows that, by mining more
dimensions, the traffic summaries produced are much more synthetic and useful
than those limited to e.g., the 5-tuple produced by HHH-based algorithms like
AutoFocus.

7.1 Future Work

In this thesis we have only covered few of the many challenges for anomaly detection
faced by network operators. Moreover, the problems we tackled allow further research
and improvements. For example, it is essential to work with up-to-date data on current
anomalies in order to point research towards the right direction. Therefore, although we
provided a long-term analysis on the behaviour of nowadays anomalies, it is necessary
that this kind of data is updated from time to time due to the continuously changing
network environment.

As regards the impact of sampling on anomaly detection, we have focused on a
particular type of attack using two specific detection schemes under four sampling tech-
niques. Therefore it is plenty of opportunities for future research either by analysing
another sort of anomaly, another detection technique or by using other sampling tech-
niques. Furthermore, as the speed of network links increases, the need for more aggres-
sive sampling rates will be mandatory and investigating the performance of state-of-the
art algorithms under these new conditions will be important as well.

As we explained during the manuscript, both the system we proposed for automatic
anomaly detection, extraction and classification and FaRNet work near real-time, i.e.,
on fixed time-windows. However, data is neither static nor finite. On the contrary,
data streams are infinite and dynamic. Consequently, several assumptions are not valid
any more if these systems have to work real-time. For instance, data can be read only
once and item-sets can change from frequent to infrequent over time.
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approach to portscan detection in very high-speed links,” in Proc. of Passive and
Active Measurement (PAM), Mar. 2011.



118 BIBLIOGRAPHY

[87] K. Xu, Z. Zhang, and S. Bhattacharyya, “Profiling internet backbone traffic:
behavior models and applications,” in Proc. of ACM SIGCOMM, Aug. 2005.

[88] P. Ferguson, “Network ingress filtering: Defeating denial of service at-
tacks which employ ip source address spoofing (rfc 2827),” May 2000,
http://tools.ietf.org/html/rfc2827.html.

[89] K. Park and H. Lee, “On the effectiveness of route-based packet filtering for
distributed dos attack prevention in power-law internets,” in Proc. of ACM SIG-
COMM Conf., Aug. 2001.

[90] T. M. Gil and M. Poletto, “Multops: a data-structure for bandwidth attack
detection,” in Proc. of USENIX Security Symp., Aug. 2001.

[91] S. Abdelsayed, D. Glimsholt, C. Leckie, S. Ryan, and S. Shami, “An efficient
filter for denial-of-service bandwidth attacks,” in Proc. of IEEE GLOBECOM,
Dec. 2003.

[92] H. Wang, D. Zhang, and K. G. Shin, “Detecting syn flooding attacks,” in Proc.
of IEEE INFOCOM, Jun. 2002.

[93] R. B. Blazek, H. Kim, B. Rozovskii, and A. Tartakovsky, “A novel approach to de-
tection of denial-of-service attacks via adaptive sequential and batch-sequential
change-point detection methods,” in Proc. of IEEE Systems, Man and Cyber-
netics, Jun. 2001.

[94] C.-M. Cheng, H. Kung, and K.-S. Tan, “Use of spectral analysis in defense
against dos attacks,” in Proc. of IEEE GLOBECOM, Nov. 2002.

[95] A. Kulkarni, S. Bush, and C. Evans, “Detecting distributed denial-of-service
attacks using kolmogorov complexity metrics,” Dec. 2001, technical Report
2001CRD176, GE Research & Development Center.

[96] J. B. Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichandran, and
R. K. Mehra, “Proactive detection of distributed denial of service attacks using
mib traffic variables-a feasibility study,” in Proc. of IEEE/IFIP Intl. Symp. on
Integrated Network Management, May 2001.

[97] T. Peng, C. Leckie, and K. Ramamohanarao, “Proactively detecting distributed
denial of service attacks using source ip address monitoring,” in Proc. of IFIP-
TC6 Networking, May 2004.



BIBLIOGRAPHY 119

[98] G. Cheng, “Malware faq: Analysis on ddos tool stacheldraht v1.666,” 2006,
http://www.sans.org/security-resources/malwarefaq/stacheldraht.php.

[99] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles, “Hide: a hierarchi-
cal network intrusion detection system using statistical preprocessing and neural
network classification,” in Proc. of IEEE Workshop on Information Assurance
and Security, Jun. 2001.

[100] C. Manikopoulos and S. Papavassiliou, “Network intrusion and fault detection: a
statistical anomaly approach,” IEEE Communications Magazine, vol. 40, no. 10,
pp. 76–82, Oct. 2002.

[101] S. A. Hofmeyr and S. Forrest, “Architecture for an artificial immune system,”
Evolutionary computation, vol. 8, no. 4, pp. 443–473, 2000.

[102] J. K. Millen, “A resource allocation model for denial of service,” in Proc. of
IEEE Symp. on Security and Privacy, May 1992.

[103] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and
D. Zamboni, “Analysis of a denial of service attack on tcp,” in Proc. of IEEE
Symp. on Security and Privacy, May 1997.

[104] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker, “DDoS
defense by offense,” in Proc. of ACM SIGCOMM, Sept. 2006.

[105] F. Kargl, J. Maier, and M. Weber, “Protecting web servers from distributed
denial of service attacks,” in Proc. of Intl. Conf. on World Wide Web, May
2001.

[106] T. Peng, C. Leckie, and K. Ramamohanarao, “Prevention from distributed denial
of service attacks using history-based ip filtering,” in Proc. of IEEE ICC, Aug.
2003.

[107] U. K. Tupakula and V. Varadharajan, “A practical method to counteract denial
of service attacks,” in Proc. of Australian Computer Science Conf., Feb. 2003.

[108] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mech-
anisms,” ACM SIGCOMM Computer Communication Review (CCR), vol. 34,
no. 2, pp. 39–53, Apr. 2004.



120 BIBLIOGRAPHY

[109] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mechanisms: classi-
fication and state-of-the-art,” Computer Networks, vol. 44, no. 5, pp. 643–666,
Oct. 2004.

[110] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense
mechanisms countering the dos and ddos problems,” ACM Computing Surveys
(CSUR), vol. 39, no. 1, p. 3, Apr. 2007.

[111] P. Brockwell, R. Davis, and I. NetLibrary, “Introduction to time series and fore-
casting,” Mar. 2002.

[112] J. Brutag, “Aberrant behavior detection and control in time series for network
monitoring,” in Proc. of USENIX Systems Administration Conf. (LISA), Dec.
2000.

[113] H. Wang, D. Zhang, and K. Shin, “Change-point monitoring for the detection of
dos attacks,” IEEE Transactions on Dependable and Secure Computing (TDSC),
vol. 1, no. 4, pp. 193–208, Dec. 2004.

[114] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statistical meth-
ods for anomaly detection,” in Proc. of ACM SIGCOMM Conf. on Internet
Measurement (IMC), Oct. 2005.

[115] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anoma-
lies,” in Proc. of ACM SIGCOMM, 2004.

[116] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and N. Taft,
“Structural analysis of network traffic flows,” Proc. of the joint international
Conf. on Measurement and modeling of computer systems, pp. 61–72, 2004.

[117] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of pca for traffic
anomaly detection,” ACM SIGMETRICS Performance Evaluation Review (PER),
vol. 35, pp. 109–120, Jun. 2007.

[118] D. Brauckhoff, K. Salamatian, and M. May, “Applying pca for traffic anomaly
detection: Problems and solutions,” Apr. 2009.

[119] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of network traffic
anomalies,” in Proc. of ACM SIGCOMM Workshop on Internet Measurment
(IMW), Nov. 2002.



BIBLIOGRAPHY 121

[120] M. Thottan and C. Ji, “Anomaly detection in ip networks,” IEEE Transactions
on Signal Processing, vol. 51, pp. 2191–2204, Aug. 2003.

[121] D. Brauckhoff, K. Salamatian, and M. May, “A signal processing view on packet
sampling and anomaly detection,” in Proc. of IEEE INFOCOM, Mar. 2010.

[122] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian, “Anomaly
extraction in backbone networks using association rules,” ETH Zurich, TIK-
Report 309, Sept. 2009.

[123] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding hierarchical
heavy hitters in streaming data,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 1, no. 4, pp. 2:1–2:48, Jan. 2008.

[124] J. Hershberger, N. Shrivastava, S. Suri, and C. Tóth, “Space complexity of
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Appendix A

Real-world Use Case

A.1 Introduction

This appendix shows how the methodology used in chapters 5 and 6 can be successfully
applied in a different environment. In particular, it shows how frequent item-set mining
(FIM), in conjunction with other techniques, can be successfully used to find and
Analise anomalies in an extensive network of highly distributed electronic devices related
with a critical infrastructure sector.

This appendix of the thesis is part of a collaboration with a private company
(Barcelona Digital Technology Centre [134]), and, therefore, specific details on the
scenario as well as on the data used and the monitored devices cannot be disclosed.
This appendix fits in a bigger project that seeks to create a solution to predict and
automate the process of detecting and mitigating anomalous situations related to the
availability, security, and usability of such devices. In this appendix we report on the
very first steps of this project.

In an extensive network of devices with lots of data ranging from status updates to
malfunctioning reports or activity summaries, FIM is a particularly interesting method
for mining data efficiently and discovering frequent patterns and strong correlations.
For example, it can be used to find the most problematic devices of the network. Also,
due to its capability of finding frequent correlations, it might be able to, for example,
find devices failing simultaneously. This would allow investigating (also with data
mining) any potential common root-cause problems producing such malfunctioning.
Finally, this appendix also focuses on applying time series analysis for predicting the
behaviour of the devices, which is extremely helpful for optimizing resources in, e.g.,
logistics. It would be possible to foresee the number of operatives needed to fix a
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Table A.1: Datasets details.
Label Init Date End date Duration #records

devices-info - - - 12000
daily-agg Nov.’10 Oct.’12 2 years 5.83× 106

breakdowns Jan.’12 Jan.’13 1 year 98.48× 103

daily-summ Jan.’12 Nov.’12 316 days 635.56× 106

operational Jan.’12 Jan.’13 1 year 151.13× 106

certain number of devices that, with high probability, will not work properly.
The rest of this appendix is organized as follows. First, Section A.2 describes the

datasets used and the followed methodology. Next, Section A.3 reports on the results
obtained in this phase of the project and finally, Section A.4 summarises the conclusions
we extracted after using our methodology in a different environment.

A.2 Scenario and Methodology

A.2.1 Datasets

The monitored devices are distributed all over Spain. These devices generate lots
of data, ranging from daily activity summaries to specific reports on their failures.
Specifically, the available data sources are described below. For details on the duration
and the magnitude of each dataset, please refer to Table A.1.

• Devices info: static information of each device (e.g., date it entered the network
or model).

• Location: where is the device placed (e.g., zip code, city and region).

• Daily aggregations: per-day reports that specify several percentages indicating
how a device worked during that day for a particular metric (e.g., 95% availabil-
ity).

• Breakdown summaries: this report shows exact times when a device failed and
started working again.

• Daily summaries: for each device, it shows its work flow. In particular, for each
component it has, it is possible to monitor if it worked properly or if it had any
malfunctioning and for how long.
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Fig. A.1: Unavailability distribution (left) and its evolution in the last two years (right).

• Operational data: it summarises the activities performed by a particular device
(e.g., number of operations and type).

A.2.2 Methodology

The first step was to integrate all data sources to create a single per-device profile that
contained all its associated information. Afterwards, we proceeded with a preliminary
analysis in order to understand the new environment. In particular, we focused on
analysing the unavailability of the devices, which is the most critical resource. We
studied its distribution, its temporal evolution and its value depending on their location
among others. Once we were familiarized with the new domain, we focused on solving
the following two problems: 1) finding the most problematic devices and 2) predicting
its unavailability for specific time periods. Finally, we centered our efforts towards the
visualization of these results, which is also of foremost importance to provide timely
results that facilitate a quick response.
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Fig. A.2: Unavailability depending on the location (left) and the model of the device (right).

A.3 Proposed solution

A.3.1 Preliminary analysis

Figure A.1 shows the distribution of the average unavailability of the devices (left). As
we can observe, it follows a normal distribution with a slightly positive skew, which
means that the mass of the distribution is more concentrated on the left of the figure
(lower percentages of unavailability). The mean is 2.16% and the median 1.94%. The
Q3 quartile indicates that 75% of the devices have an average unavailability below
2.72%. The 95th percentile is 4.38% and the maximum value observed is 20.23%.

The right plot of Figure A.1 presents the evolution of the unavailability for the two
years of the historical (daily-agg). Two main conclusions can be extracted: 1) the
availability of the devices has worsened in 2012 with respect to 2011 and 2) there are
significant seasonal patterns. In particular, we can see that the first months of each
year (January to March) are the best and that December and summer (June and July)
are the worst.

Figure A.2 analyses the unavailability depending on the location (left) and the
device model (right). As we can observe, the location seems to play a significant
role in the availability of a device. Specifically, the are five zones where the value is
notably higher (Melilla, Ceuta, Canàries, Andalusia i Múrica). One factor that might
explain such differences is the extreme temperatures affecting these zones particularly.
Regarding the model, we can also observe that there are important differences. Note
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that for privacy reasons, real model names are hidden. Model J presents an availability
that is far better than the rest. Moreover, we can observe important differences among
the other models.

A.3.2 System architecture

For obvious reasons, we cannot disclose the real architecture of the proposed solution.
Nonetheless, we describe how the reported results fit inside the proposed solution.
The algorithms used in this block will be part of an “alert subsystem” that will be
fed by many data sources (Section A.2.1) and will generate smart and proactive alerts
(sections A.3.3 and A.3.4). Afterwards, this alerts will be sent to the visualization
subsystem (Section A.3.5), among others, which are out of the scope of this thesis.

A.3.3 Problematic devices

In this section, we present the results obtained when using Frequent Item-Set Mining
(FIM) for analysing which are the most problematic devices. In this environment, we
used FIM as follows. First, we defined as problematic all devices with an unavailability
above 5% on a particular day. Thus, the first step to calculate the devices impacting
the most on the network, we compute a list of problematic devices for every day in the
daily-agg dataset. In FIM terminology (Chapter 2), each of these lists is a transaction.
Using FIM, we are able to quickly compute the most problematic devices (devices
failing a percentage of days above the specified minimum support s). We perform this
analysis for the whole network. However, in order to obtain actionable information, we
also analyse the devices causing more problems per-zone so that identifying the worst
behaving devices per-area can be used intelligently when organizing the operatives sent
to fix them.

Likewise Chapter 5, the solution proposed in this appendix also uses FIM for mining
flat data. In contrast, note that Chapter 6 presented a system that uses FIM for dealing
with hierarchical elements. However, while in the present appendix and Chapter 6
transactions have a variable number of elements (e.g., list of devices that failed for
a particular day in this case), in Chapter 5 they are always composed by 5 items (5-
tuple). Regarding the algorithms used, while Chapter 5 used FPmax* and Chapter 6
used Apriori (flat data) and RElim (hierarchical data), in this appendix we used Eclat.
As explained in Chapter 6, the reason for selecting a FIM algorithm depends on the
dataset characteristics (e.g., transaction length). As we can observe in Figure A.3, in
this case we are dealing with much longer transactions (167.98 items per transaction
on average), which changes significantly the scenario. Moreover, a significant amount
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Fig. A.3: Daily transaction size distribution of problematic devices for all the network.

of transactions reach the maximum transaction length, which is far higher than the
mean (232).

As an additional requirement, in this case, rather than focusing on the best tradeoff
between memory and runtime as in e.g., Chapter 6, the algorithm giving the quickest
response was preferred. However, for completeness with respect to previous chapters,
this appendix also reports on the memory consumption. Figure A.4 shows the perfor-
mance (mean±stdev) of the evaluated FIM algorithms i.e., Apriori, Eclat, FP-growth,
RElim and SAM. On the left plot, we observe the memory used for values of s ranging
from 1% to 10%. Apriori turns out to be, by far, the worst performing algorithm
as already reported (Chapter 6). Regarding the remaining techniques, they did not
present any significant differences. In contrast, when looking at the execution time
of each algorithm (Figure A.4, right plot), the differences are noticeable among each
other. Overall, after analysing both the runtime and the memory used for the mining
by each of the algorithms, Eclat turns out to be the best algorithm.

Using s=10%, FIM reports that the top-5 problematic devices of the network fail
27.06%, 22.18%, 18.17%, 17.17% and 16.04% of the days, respectively. All reported
frequent item-sets are of size one, i.e., one single device. Nonetheless, lowering s to
5%, FIM is able to find longer frequent item-sets, i.e., with more than one device, which
means that they malfunctioned simultaneously. This is very interesting as it gives the
opportunity to further investigate for possible common root-cause analysis affecting
both devices by applying FIM on other data describing these devices. However, this
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Fig. A.4: Comparison among FIM algorithms tested.

has not yet been addressed in the project.

Regarding the most problematic devices for each zone, the main difference resides
on the smaller size of the transactions as the number of daily problematic devices
is much lower for a single zone (with respect to the whole network). Specifically,
on average, the number of problematic devices is ≈ 1.032, which holds extremely
similar performance results in terms of both runtime and memory usage for all the FIM
algorithms.

A.3.4 Behaviour prediction

In order to organize resources properly, it is very important to be proactive rather than
reactive to problems. Even though operatives will have to go to the place where a device
is malfunctioning, if you are able to know that it will fail in advance, it is possible to e.g.,
efficiently design the followed route or correctly dimension the number of operatives
needed depending on the number of problems predicted. In order to address this issue
we used time series analysis. Specifically, we employed Holt Winters [111] and ARIMA
models (see Chapter 6.5 for details). We designed models for specific devices and also
for zones.

Figure A.5 shows an example of the prediction for the unavailability of specific
device. The black line stands for the historical data while the blue represents the
prediction. The colored areas around the prediction are the 80% (dark blue) and the
95% (light blue) confidence intervals respectively. In the first case, we realized that
making daily predictions for each device was not possible as the behaviour did not show
any clear daily pattern. However, when aggregating the data weekly, the models were
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Fig. A.5: Weekly prediction of the unavailability of a single device for the next 6 months.

able to detect some patterns as we can see in the figure.

Figure A.6 shows the per-zone prediction for the number of devices that will be
down. Any device is considered to be down when its availability is above 5%. Note that
in contrast to the prediction presented in Figure A.5, we are forecasting the absolute
number of devices that will have problems rather than their unavailability percentage
individually. Since a zone includes many devices, the model is able to catch both daily
and weekly patterns (left and right plots, respectively).

In order to determine the goodness of a created model, we used the root-mean-
square error (RMSE), which measures the error between the values predicted by the
model and the values actually observed. Therefore, the lower the RMSE, the better
the model is. This measure is particularly useful because it uses the same scale of the
predicted variable, i.e., number of devices that will be down in the former example.
This is interesting as it allows to have a quick idea of whether the error of the model
is acceptable or not. The RMSE can only be used for comparing models predicting the
same variable.

A.3.5 Visualization

Representing data visually is a particularly effective method to understand it quickly.
Visualization is especially useful if it shows the information in the geographical location
where it is actually occurring. For instance, if there is a certain prediction of some
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Fig. A.6: Daily (left) and weekly (right) prediction of the number of devices that will be
down for a particular zone.

malfunctioning devices for a city for the next week, it is straightforward to spot where
there will be more problems by plotting and observing circles of different sizes or colors
in each zone of the city. Another example could be monitoring the whole network of
devices in real-time in order to identify failures or any other metric in a rapid manner.

Indeed, when we represented e.g., the predicted unavailability in a map, we realized
about some clear patterns we had not seen before. We saw that while in specific zones
of a city the problems concentrated on the weekends, for other areas, the problems
were higher for other days. However, we can not give further details on this. Instead,
Figure A.7 shows the physical distribution of the devices, which gives an idea of the
potential of this type of representation. While the black points represent devices,
the shadowed areas indicate how dense a specific area is. In particular, the color of
the shadows goes from dark blue (low density) to light blue (high concentration of
devices).

A.4 Chapter Summary

In this appendix we have presented a real-world deployment that successfully uses our
methodology in a different environment. In particular, we have showed the usefulness
of FIM for mining large amounts of data and finding interesting correlations quickly
in an extensive network of highly distributed devices. Furthermore, we reported how
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Fig. A.7: Devices location in the map.

time series analysis serves the purpose of predicting the behaviour of these devices.
The number of devices present in the network has grown significantly during the last

couple of years and the tendency to keep rising seems quite clear. Therefore, the ability
to deal with an ever increasing amount of data is a matter of growing necessity. As a
consequence, using efficient algorithms for analysing big data and creating actionable
knowledge will be a must-do for business.
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