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Executive Summary

In Nuclear Fusion Technology, MHD flows can be encountered in liquid metal (LM)
breeding blankets, the part of a fusion reactor where tritium, one of the fusion fuels, is
to be produced. LM breeding blankets can be classified into three types, according to the
fraction of the thermal load extracted by the LM. In the first BB type, called separately-
cooled blanket, the LM (usually PbLi) is to be used only for breeding purposes and a
primary coolant (typically helium or water) is required to extract the heat deposited
both in the structure and in the LM zone. In separately-cooled BBs, LM flows at low
velocities (∼mm/s), what makes buoyancy the predominant force. In the second BB
type, called dual-coolant blanket, the LM acts as a secondary coolant by extracting the
thermal load deposited in the LM zone, whereas the primary coolant only extracts the
heat deposited in the structure. In this case, the LM must travel at higher velocities
(∼10 cm/s) and inertia and buoyancy are of the same order of magnitude. In the third
and last BB type, called self-cooled blanket, the LM is the primary and unique cooling
fluid for the entire blanket and, hence, its velocity must be even higher than in the
dual-coolant type (∼0.5m/s), what makes inertia to dominate over buoyancy.

The flow inside breeding blanket channels can be very complex, particularly in those
blanket types where buoyancy plays a relevant role. The understanding of the flow na-
ture, including the possible instabilities that might appear, the exact knowledge of flow
profiles for tritium control purposes, and the prediction of thermal fluxes for thermal
efficiency analysis are of great interest for blanket design optimisation.

In this direction, a thermal-MHD coupled simulation tool has been implemented
in the OpenFOAM toolkit. The resultant code can be understood as a preliminary
predictive tool for liquid metal breeding blanket channel design. The developed code is
a transient 3D tool that accounts for thermal-MHD coupling and can deal with several
layers of materials.

The development process of this tool consists of a first MHD phase and a second
thermal-MHD coupling phase. Along the MHD phase, various MHD modelling strate-
gies have been studied, starting with the implementation of an induced magnetic field
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formulation and continuing with an electric potential formulation based on the low
magnetic Reynolds approximation, in this case using the conservative formula of the
Lorentz force proposed by Ni et al. (2007). Two pressure-velocity couplings have been
analysed. The first one is based on a projection method whereas the second one, which
has proved to be more robust, follows a PISO-like algorithm (Weller et al. 1998). In the
thermal-MHD coupling phase, the MHD model has been extended to account for energy
transport phenomena. The coupling has been achieved by means of the Boussinesq hy-
pothesis, and the viscous dissipation and Joule generation terms have been neglected in
the energy balance. In terms of algorithm structure, the energy equation can be simply
introduced sequentially in a fractional step algorithm, or as an extra equation inside
the PISO loop, in a PISO-like algorithm.

The developed tool accounts for the linear wall function for Hartmann boundary
layers from Leboucher (1999), which reduces substantially the CPU time of the simu-
lations. The code also accounts for fluid-solid thermal and electrical coupling by means
of coupled fluid and solid grids. The coupling is implicit at grid level, so no extra iter-
ative process is required between both domains. Special attention has been placed in
correctly coupling liquid-solid energy transport equations by means of the conservative
form of the equations in both domains.

All along the development process, validation steps have been carried out with suc-
cessful results. Such validations are based on both analytical and numerical solutions.
Special focus has been placed in evaluating the code performance when coarse meshes
are used, since, with the available CPU capacities, mesh size is a limiting constraint
for breeding blanket channels simulation.

Since time step is not only crucial for stability purposes, but also for accuracy of
the results, special emphasis has been placed on estimating the required time step
criterion, either by means of a more conservative monotone scheme (Patankar 1980) or
by a 1D linear stability von Neumann analysis.

An alternative thermal-MHD tool has also been implemented following the 2D ap-
proach from Sommeria and Moreau (1982) (SM82). Such code accounts for the 0-
equation Q2D turbulence RANS model from Smolentsev and Moreau (2006).

Three application cases are considered. In the first case, the integrated effect of
volumetric heating and magnetic field on tritium transport in a U-bend flow, as applied
to the EU HCLL blanket concept (which is a separately-cooled blanket), is studied. The
second application case corresponds to the thermal analysis of the blanket design that is
being developed in the framework of the Spanish National Project on Breeding Blanket
Technologies TECNO FUS (through the CONSOLIDER-INGENIO 2010 Programme).
The third and last case includes the instability analysis of a pressure-driven MHD flow
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in a horizontal channel with a constant thermal load. The application cases have not
only shown the code capabilities to simulate liquid metal channels in breeding blankets
but, also, have provided a useful know-how on flow properties inside those channels.

Related to liquid metal modelling in HCLL blanket, it has been observed that the
fluid-solid electromagnetic coupling is relevant since it determines, together with the
Hartmann number, the magnitude of the electromagnetic damping of the flow. If the
only output parameters needed from the simulation are averaged values of tempera-
tures, Nusselt and heat fluxes, fluid-solid thermal coupling can be avoided, being re-
placed by the use of a thermal boundary condition based on an estimation of the overall
heat transfer coefficient (from tne LM to the He cooling channels). To this aim, an accu-
rate estimator of the heat transfer coefficient helium-Eurofer is required. Nevertheless,
for buoyancy induced vortices detection, fluid-solid thermal coupling is required in the
simulation. It can be anticipated that, when the correct electromagnetic damping is
considered (real Ha and electric conductivity ratio), the flow in the core of the channel
remains 2D except in the Hartmann boundary layers, and vortical structures are only
expected to exist in the HCLL design near the gap close to the first wall. In any case,
if vortical structures exist along the channel, their characteristic length is expected to
be the channel height. The presence of vortical structures is related to 3D secondary
motions; their effect on the main flow and on relevant design parameters (e.g. tritium
permeation ratio) should be analysed.

For an accurate prediction of the tritium permeation ratio (TPR), it is urgent to de-
velop new and precise measurements of tritium transport properties, specially tritium
solubility. In the present study, a preliminary tritium analysis has been addressed by
considering tritium as a passive scalar and neglecting helium influence on the flow (He
is a by-product of the breeding reaction with lithium). Results show similar TPR values
for electrically conducting and insulating walls, since in both cases high velocity zones
exist near the walls (due to either M-shape profile or vortical structures). An important
result is the influence that Hartmann walls can have on the total TPR, reaching about
10 % of the total permeated tritium, whereas their surface is 15 % of the total wall
surface.

The TECNO FUS blanket concept is of the dual-coolant type, with high LM veloci-
ties. Therefore, inertia is predominant in front of buoyancy. Correspondingly, the flow
in the core of the banana-shaped (toroidal) channels is expected to be 2D, except at
Hartmann boundary layers, with no vortical structures. Thus, the alternative 2D tool
(SM82) can be used. Among the issues which are relevant for the simulation, MHD tur-
bulence modelling is, probably, the most prominent aspect since flow profile is strongly
dependent on it. However, there is a lack of accurate Q2D MHD turbulence models,
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specially when buoyancy effects have to be considered. The thermal performance of the
blanket can be defined by means of the LM temperature gain (which should be of order
∼300oC), the maximum temperature of the structural material (Eurofer, that must be
kept below 550oC), the thermal stress across the flow channel insert (FCI, an electri-
cal and thermal insulating layer of ceramic foam), and the LM thermal gain (which
depends on the temperature gain but also on the LM flow rate). From the sensitiv-
ity analysis carried out in this study, it can be predicted that, for a maximised liquid
metal temperature increment with an inlet velocity of 0.2 m/s, FCI thermal conduc-
tance should be around 1 W/m2K. In contrast, for a maximised LM thermal gain, what
would imply a reduced thermal stress across FCI layer, and under the studied design
specifications, higher velocities are preferable, what would also imply a reduced ther-
mal stress across FCI layer. However, this second thermal strategy would result in a
lower LM temperature increment, which is not desirable for efficiency reasons.
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1 Introduction

1.1 Overview and aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Document outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Overview and aim

1.1.1 Motivation

For the proper design of fusion reactors’ liquid metal (LM) breeding blankets (BB),
tools capable of predicting the LM flow nature, pressure drop, heat flux and average
temperatures, as well as tritium inventories and the tritium permeation ratio (TPR),
are required. To this aim, it is essential to have a simulation code able to take into
account, if not all, at least the most relevant phenomena that occur in LM channels.

The synergy between the Department of Physics and Nuclear Engineering at the
UPC (GREENER, Lluı́s Batet) and the National Fusion Laboratory at CIEMAT (NFL,
Luis Sedano) has been instrumental in the progress towards the development of such
tool. On one hand, part of the NFL research is focused on the development of predictive
tools for tritium control in BB. One of the main drawbacks of the instruments at hand
for tritium transport prediction is that flow is not simulated in detail so that the influ-
ence of the flow profile on tritium transport is not accounted for. On the other hand, one
of the research lines at GREENER is the thermal-hydraulics of nuclear plants. Hence,
their work is based on flow simulation and heat and mass transfer. As a result of such
synergy, a new research line was born between both groups, within whose framework
the work presented in this PhD dissertation has been developed.

Several Computational Fluid Dynamic (CFD) tools have already been developed and
are continuously being validated (as soon as new experimental data is available) for
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1.1. Overview and aim

BB studies. Examples of these tools are the CFX user defined files in the KIT Research
centre (in Karlsruhe, Germany, Kharicha et al. 2004), aimed to the study of magneto-
hydrodynamic (MHD) flows in blankets, or the Castem code in CEA (France, Gabriel
et al. 2007) in which MHD is coupled with temperature. Also some in-house codes are
being developed, being an example the one in UCLA (California, USA, Smolentsev et al.
2010), with thermal MHD coupling. None of them, however, is open source.

In GREENER’s Thermal-Hydraulics Studies Group, some experience had been achie-
ved on the open source code OpenFOAM (http://www.openfoam.org, Weller et al. 1998)
so that its use was considered for the development of the present PhD thesis. Open-
FOAM choice seemed appropriate, not only for code accessibility, transparency and
feasibility of incorporating new models, but also for the opportunity it offers to work
in collaboration with other research groups. Indeed, in recent years the use of Open-
FOAM has spread within the magnetohydrodynamic (MHD) research community ap-
plied to BB technology, first at Coventry University (Alban Pothérat), and recently in
KIT (Chiara Mistrangelo) and UCLA (Sergey Smolentsev).

This research line is framed in a context of international efforts to develop and val-
idate predictive tools capable of extrapolation to DEMO conditions, as declared by the
European Union’s Joint Undertaking for ITER experiment, Fusion for Energy (F4E,
Zmitko 2009). Thus, it can be stated that the goal of the present PhD thesis, the devel-
opment of a thermal-MHD predictive tool for liquid metal breeding blankets, based on
the open source code OpenFOAM, coincides with such Fusion for Energy milestone.

1.1.2 Scope of the research

For a basic simulation of the flow in liquid metal breeding blankets, coupling the MHD
phenomenon with heat transfer is crucial. Other relevant aspects include tritium and
helium production (in breeding reactions) and transport, thermal and electromagnetic
stresses on the structure, and thermal loads, among others. It soon become evident that
for an incipient research line and in the frame of a PhD thesis, all phenomena could not
be encompassed. Thus, the scope of the present PhD research was reduced to MHD
and thermal coupling phenomena. Tritium transport has been sporadically analysed
considering tritium as a passive scalar. In principle, only laminar flows are considered,
although a first approach to turbulent analysis has also been carried out.

Since different approaches to MHD modelling exist, more than one algorithm has
been developed and validated. Comparisons between the developed algorithms are car-
ried out when needed. All along validation phases, both analytical and numerical so-
lutions have been used. However, a code can be always further validated, specially
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regarding the complex phenomena encountered in thermal MHD coupling.
It is not the scope of the present research to optimise in terms of CPU time the

developed code. Efforts have been focused on the quality of results rather than on
simulation time. Nevertheless, since the OpenFOAM toolkit is largely optimised, the
resulting code is quite efficient in terms of CPU costs.

The natural aim of a predictive tool is to be used in the design optimisation. However,
in the present PhD dissertation, since the phenomena involved in liquid metal breeding
blankets are complex, and very often the flow presents instabilities, main efforts need
to be focused on understanding the nature of such flows rather than on improving the
breeding blanket design. Nevertheless, in some specific cases, such design improvement
is crucial, mostly in the initial breeding blanket design phases, and thus, unavoidable.

This study has been developed in the frame of the Spanish National Project on
Breeding Blanket Technologies TECNO FUS (through the CONSOLIDER-INGENIO
2010 Programme). In TECNO FUS, a new liquid metal breeding blanket concept is
being worked out, which basically is a dual-coolant design but with high liquid metal
velocities and higher thermal efficiency (http://www.tecnofus.net/). As a consequence,
the analysis of the flow in the proposed blanket design as well as a preliminary design
optimisation has been required.

1.2 Document outline

This PhD dissertation is organised in five parts.
The first part includes the motivation and objectives of the PhD research, and pro-

vides an overview of the nuclear fusion technology and the concept of breeding blanket,
and a classification of some of the most relevant designs (Chapter 2). MHD thermofluid
phenomena occurring in breeding blanket channels and the related transport equations
are also explained in this first part (Chapter 3). In order to provide the reader with a
more applied definition of MHD effects, a brief introduction of main flow characteristics
at high Hartmann numbers is given. Also, with the dimensionless numbers defined in
Chapter 3, some of the relevant liquid metal breeding blanket designs are analysed. To
end this first part of the PhD dissertation, an overview of the State of the Art is given
(Chapter 4), focused basically on the key steps that allow to understand the starting
point of the research.

The second part includes all the code development carried out in the frame of the
present research. It is split into two chapters. In Chapter 5, the three studied MHD
formulations are explained and the four implemented algorithms are described and val-
idated. In this chapter, two different stability analyses are exposed in sections 5.2.2 and
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5.2.3. Also, the implemented Hartmann wall function and the fluid-solid electromag-
netic coupling strategy are shown in sections 5.2.4 and 5.2.5, respectively. In Chapter
6, the thermal MHD coupling is described and the implemented algorithm defined and
validated.

The third part of this PhD dissertation consists of three application cases. In the
first case (Chapter 7), the integrated effect of volumetric heating and magnetic field on
tritium transport in a U-bend flow, as applied to the HCLL blanket concept, is studied.
The second application case (Chapter 8) corresponds to the thermal analysis of the
blanket design that is being developed in the frame of TECNO FUS project. The third
and last case (Chapter 9), includes the instability analysis of a pressure-driven MHD
flow in a horizontal channel with a constant thermal load.

The fourth part of the document summarises the main conclusions and includes rec-
ommendations for further studies.

Published papers and publications related with the present research are listed in
the appendices, at the end of the document.
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2.1 Nuclear Fusion Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Breeding Blankets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 TBM: BB for ITER experiment . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Nuclear Fusion Technology

In the last decades, international efforts towards the development and deployment of
alternative energy sources have been steadily increasing. One promising alternative
despite its technological challenges is nuclear fusion. It has the great advantage of
nuclear energy, regarding the amount of energy generated, but avoids the main risk of
the fission energy as no chain reaction is involved and the reaction is thermally self-
limiting. However, is still in a technological development stage and will not be ready
for commercial deployment within decades. In order to be feasible, there are still many
technological challenges to overcome, from the creation of new high temperature resis-
tant materials with good behaviour under irradiation, to control and remote diagnos-
tics. Obviously, all conceptual design should be based upon safety and environmental
aspects.

Several fusion nuclear reactions exist, as listed in reaction 2.1, where the fuel is
restricted to deuterium (21H), tritium (31H) and/or helium (32He), and the values given
correspond to the total energy released (kinetic energy of products). If the required
nuclear reactions were to be induced by the thermal motion of the nuclei (the so-called
thermonuclear fusion) it would be necessary to achieve extremely high temperatures,
probably 100 million degree K (Wesson 2006). Under such conditions, the reaction
would take place at plasma state of the matter and both external heating and plasma
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confinement would be required.

2
1H + 2

1H → 3
2He + 1

0n + 3.3 MeV (2.1a)
2
1H + 2

1H → 3
1H + 1

1H + 4.0 MeV (2.1b)
3
1H + 2

1H → 4
2He + 1

0n + 17.6 MeV (2.1c)
2
1H + 3

2He → 4
2He + 1

1H + 18.3 MeV (2.1d)

Since the maximum reaction rate for the deuterium-tritium (D–T) reaction 2.1c oc-
curs at temperatures about 1-2 orders of magnitude lower than for D–D or He–D reac-
tions, D–T reactions is considered the best alternative in the short/mid-term.

If D–T reaction is to be considered, the fuels for the fusion reaction would be deu-
terium and tritium. Deuterium fuel is abundant in water (30 g/m3) and can be extracted
by electrolysis, despite the required technology is not yet economically feasible. The
main drawback is tritium because, despite its radioactive decay product is a low energy
beta that cannot penetrate the outer dead layer of human skin, the internal exposure
of tritium (from inhalation, ingestion or skin absorption) is a main hazard.

Tritium production has been limited to military industry, from what nuclear fusion
technology has to remain independent, and, in few quantities, heavy water-moderated
reactors (CANDU type). Despite tritium short biological half-life should prevent signif-
icant long-term accumulation in the atmosphere, the difficulty for tritium confinement
makes its storage and transport not feasible due to radioactive contamination. Thus,
apart from the start-up phase of the reactor, tritium should be produced inside the
reactor in a proper way to ensure tritium self-sufficiency. The proposed strategy for
such tritium production is the tritium breeding blanket concept, as commented in next
section.

At the present stage of fusion technology development, the external heating of the
plasma is achieved by means of ohmic heating, microwaves and neutral beam injec-
tion (Wesson 2006). Plasma confinement is obtained by means of a magnetic field pro-
duced by super-conducting magnets. Two different fusion reactor concepts related to
plasma confinement are being developed: the tokamak reactor and the stellerator re-
actor. Several efforts have been carried out regarding both technologies, with great im-
provements, but some basic technological limitations or unknowns are still present. On
one hand, stellerators could theoretically achieve higher temperatures in the plasma,
what might allow to avoid the D–T reaction and tritium confinement problems. On the
other hand, plasma stability and confinement is even more technologically challenging
in stellerators than in tokamak designs.

The first fusion experiment took place about 1930 and, by the mid 1950s ”fusion ma-
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chines” were operating in the Soviet Union, the United Kingdom, the United States,
France, Germany and Japan (http://www.iter.org/). In 1968, researches in the Soviet
Union achieved higher temperature levels and plasma confinement times than those
achieved so far. From that time on, the tokamak was to become the dominant con-
cept in fusion research, and tokamak devices multiplied across the globe. It became
evident the need of unified economic and technological efforts. The Joint European
Torus (JET, Wesson 2006, http://www.jet.efda.org/) in Culham, UK, in operation since
1983, was a first step in this direction. JET is collectively used by the EURATOM
(European Atomic Energy Community) Associations of more than 20 European coun-
tries. In 1991, the JET tokamak achieved the world’s first controlled release of fusion
power. Other key milestones are the 6 minutes and 30 seconds of plasma confine-
ment in the Tore Supra Tokamak (Cadarache, France, http://www-drfc.cea.fr/), and
the highest value of fusion triple product –density, temperature and confinement time–
in the Japanese JT-60 (http://www.jt60sa.org/index.htm). US fusion facilities have
reached temperatures of several hundred million degree Celsius (TFTR and NSTX ex-
periments, http://nstx.pppl.gov/). Other relevant fusion experiments include ASDEX
device in Germany (http://www.ipp.mpg.de/), RFX in Italy (http://www.igi.cnr.it/)
and the stellarators TJ-II in Spain (http://www-fusion.ciemat.es/) and W7-X in Ger-
many (http://www.ipp.mpg.de/).

The fusion energy gain factor Q is defined as the ratio between fusion power con-
tained in charged products and the required plasma heating power. Plasma energy
breakeven (Q = 1) has never been achieved: the current record for energy release is
held by JET, which succeeded in generating 70% of input power. Scientists have now
designed the next-step device (ITER) which will be able to produce Q up to 10 (50 MW
of input heating power and 500 MW of fusion heating power)

Beyond ITER experiment, fusion community is already working on the conceptual
design of DEMO (DEMOnstration Power Plant). DEMO is defined as the predecessor
to a commercial-sized fusion reactor, generating electricity at the level of a few hundred
MW (∼2500 MW of fusion power with Q = 25) and using all technologies necessary for
a commercial device.

2.2 Breeding Blankets

As introduced in the previous section, in a D–T powered fusion reactor tritium must be
produced – ”bred” – inside the fusion reactor. A feasible option to generate such tritium
is based on the interaction between the high energy (14 MeV) neutrons generated in the
fusion reaction (2.1c), with lithium following reaction 2.2b. However, a more interesting
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reaction would be 2.2a due to both its exothermic nature and greater tritium production
cross section. Thus, for breeding purposes, the blanket (surrounding the plasma) should
contain lithium 6

3Li. Since natural lithium is 92.44 % 7
3Li, enrichment techniques up to

90 % 6
3Li are required. Also, for energy sustainability reasons, the Tritium Breeding

Ratio or TBR has to be higher than 1 (typically 1.15). To this aim, a neutron multiplier
such as lead or beryllium (apart from 7

3Li) has to be included in the blanket.

for thermal neutrons: 1
0n +6

3 Li −→4
2 He +3

1 H + 4.78 MeV (2.2a)

for fast neutrons: 1
0n +7

3 Li −→4
2 He +3

1 H +1
0 n− 2.47 MeV (2.2b)

Since the blanket is located between the plasma and the magnet (see figure 2.1), one
of its functions is shielding the super-conducting magnets (and the vacuum vessel that
contains the entire system) against neutron and gamma radiation.

Moreover, since the energy originated in the fusion reactions must be transformed
into useful heat, the blanket has to extract the nuclear power in an efficient way. This
is carried out by means of coolant fluids that circulate through the blanket structure.

The three above mentioned blanket functions (breeding, shielding and heat extrac-
tion) are schematically shown in figure 2.1. It can be seen that the primary fuels for
the fusion reactor are deuterium and lithium. The unburned tritium and deuterium
fractions have to be refuelled into the core, together with the tritium produced in the
blanket. Thus, tritium has to be extracted through the so called Tritium Extraction
System (TES) before tritium refuelling. In figure 2.1, the power generation system is
drawn separately from the breeding system, but in reality both systems are unified.
Controlling tritium inventories is of utmost interest because of (1) tritium is one of the
fusion reaction fuels and the TBR is only slightly greater than 1, and (2) tritium is
radioactive and, thus, its emissions must be kept under highly restrictive limits. Such
tritium control must consider not only permeation through structural materials but
also trapping effects (such as fluid stagnation zones or presence of helium bubbles, for
example) and inefficiencies in various tritium processing systems.

Several breeding blanket (BB) designs or conceptual proposals, classified according
the use of solid or liquid breeding materials:

1. Liquid Breeder Concepts

• Liquid breeder can be:

– Liquid metal (high conductivity, low Prandtl number): Li or PbLi eutectic
(15.7 % Li atomic fraction)
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Plasma

Blanket

MagnetD

Li

n

D,T,He

TES

T,He

He

power system

Li

Figure 2.1: Schematic of the fuel cycle in a fusion reactor.

– Molten salt (low conductivity, high Pr): Flibe (LiF)n · (BeF2), Flinabe
(LiF-BeF2-NaF)

• BB concepts can be classified depending on the cooling role played by the
liquid breeder:

– Separately cooled: A unique coolant exists and the breeder circulates at
low speed for tritium extraction purposes.

– Self-Cooled: liquid breeder is circulated at high speed to operate as pri-
mary coolant for the entire blanket

– Dual Coolant: The primary coolant is responsible of cooling the first wall
and the structure, whereas breeding zone is self-cooled.

2. Solid Breeder Concepts

• Always separately cooled

• Solid Breeder: Lithium Ceramic (Li2O, Li4SiO4, Li2TiO3, Li2ZrO3)

• Coolant: Helium or Water

The lead-lithium liquid metal breeding blanket is a promising concept since lead
avoids the use of beryllium (neutron multiplier) and tritium is extracted relatively easy
from the alloy.
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Structural material selection relays basically on reduced activation ferritic/martensitic
(RAFM) steels due to their superior resistance against irradiation swelling, although
some vanadium alloys and SiC composites are also considered in the mid/long-term.
The choice of a RAFM steel determines the operational window of blanket structure
temperature; which is limited to ∼300-550 oC.

In the considered BB, the coolant fluid can be helium, CO2, pressurised water or
the liquid metal breeder. Despite its low cost and availability, pressurised water is
not desirable due to the production of tritiated water, from which is very difficult to
extract the tritium and refuel it. At present, only Japan is considering water as cooling
material (konishi 2010). Depending on the cooling relevance of the liquid metal breeder,
the liquid metal BBs are classified as separately cooled, dual coolant or self-cooled,
as listed in the previous classification. The separately cooled blanket is considered
mainly in EU, whereas USA and Japan are basically focused on dual-coolant designs
(http://www.fds.org.cn/). The self-cooled design, despite being the most attractive one,
presents high technological challenges.

Recently, in the frame of the Spanish National Project on Breeding Blanket Technolo-
gies TECNO FUS (through the CONSOLIDER-INGENIO 2010 Programme), a new BB
concept is being worked out, which basically is a dual-coolant design but with high
liquid metal velocities and higher thermal efficiency (http://www.tecnofus.net/).

All the proposed designs are to be finally tested before their introduction into a com-
mercial fusion reactor. However, until now, no experimental fusion reactor has tested
any breeding blanket. Thus, the testing and data collection of BBs is essential and
urgent.

2.3 TBM: BB for ITER experiment

Nowadays, the main fusion experiment is ITER, the International Thermonuclear Ex-
perimental Reactor, which is being built in Cadarache, France. ITER is a joint project
involving Europe (represented by EURATOM), China, India, Japan, South Korea, the
Russian Federation and the United States. The goal is to demonstrate that, from a sci-
entific and technical point of view, fusion can be used as an energy source on earth
(http://www.iter.org/). The first plasma should be possible in ITER by June 2018
(Zmitko 2009).

Compared with current conceptual designs for future fusion power plants, ITER will
include most of the necessary technology, but will be of slightly smaller dimensions and
will operate at about one-sixth of the power output level. It will generate 500 MW of
fusion power for extended periods of time, ten times more than the energy input needed
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Figure 2.2: ITER experiment design

to keep the plasma at the right temperature. It will also be used to test a number of
key technologies, including the heating, control, diagnostic and remote maintenance
that will be needed for a real fusion power station.

ITER (figure 2.2) is a deuterium–tritium fusion reactor based on tokamak techno-
logy. Not all of the blanket is considered for breeding; instead, there are only some
specific locations (in three of the so called equatorial ports) where the BB modules will
be inserted. Therefore, BBs have to be designed in a modular form. Since one of the
specific technical goals in ITER is to test and develop concepts for breeding tritium from
lithium-containing materials inside thermally efficient high temperature blankets sur-
rounding the plasma, the BB modules designed for being tested in ITER are called Test
Blanket Modules (TBM).

Among the TBM that are being developed nowadays, the present PhD dissertation
will focus on liquid metal TBM since they are the ones that involve MHD phenomena.
Six liquid metal breeder TBM designs exist, listed in table 2.1, chosen by their efficiency
and technological feasibility. It can be seen that three separately cooled designs, two
dual coolant designs and only one self-cooled design are to be tested in ITER. In order to
give a global overview, the separately cooled HCLL design and the dual coolant DCLL
design are described in the next sections. For a comparison of the main MHD flow
characteristics, the reader is referred to section 3.4.2.

Although almost all the designs contemplate the use of ferritic/martensitic steel as
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Design Country Structural material Tritium breeder cooler
DCLL USA RAFM(F82H) LiPb LiPb/He
DFLL CN RAFM(CLAM) LiPb LiPb/He
HCLL EU RAFM(EUROFER) LiPb He
HCML KO RAFM(EUROFER) LiPb He
LLCB IN LAFMS LiPb He
LiV RF V-alloy Li Li

Table 2.1: Existing liquid breeder TBM.

structural material, Zmitko (2009) points out that such structures are expected to: (1)
deform the magnetic field, (2) increase plasma instabilities, and (3) induce ions losses.
Since the magnitude of the effects is unknown, detailed calculations and experiments
are required. In order to reduce the expected effects, the introduction of correction coils,
TBMs mass reduction or recession should be considered. No decision has already been
taken to the knowledge of the author.

In the first plasma phase of ITER experiment (the electromagnetic phase, that is
expected to take place from June 2018 until June 2024, -Zmitko 2009-) main objectives
concerning TBMs are: (1) to asses the overall functionality of the TBM, (2) to validate
the performance and predictability of heat extraction from the First Wall, (3) to validate
the structural integrity, (4) to verify the impact of RAFM steel on plasma, and (5) to
measure MHD effects on liquid metal (pressure drop, velocity and temperature profiles)
as a function of flow rate. All aspects related to high neutron flux, including thermal
efficiency, thermal stresses, tritium production and tritium permeation are considered
in future ITER phases, specially in deuterium-tritium phases at the end of the ITER
experiment (2027-2030).

The organisation that decides which experiments are going to take place in ITER
is Fusion for Energy (F4E, http://fusionforenergy.europa.eu/), which is the European
Union’s Joint Undertaking for ITER and the Development of Fusion Energy, created in
April 2007. As declared by this organisation in Zmitko (2009), one of the relevant ITER
activities is the development and validation of the predictive/modelling tools capable of
extrapolating to DEMO conditions. To validate such tools, some experiments in ITER
and out-of ITER are being planned.

2.3.1 EU HCLL TBM

In the HCLL design, PbLi eutectic acts as tritium breeding material whereas cooling
is assured by circulating pressurised helium. Eurofer is being considered as structural
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material, with a special treatment based on beryllium at the first wall in order reduce
the release of impurities into the plasma. The Pb-15.7Li circulates under an intense
magnetic field at low velocities (∼ mm/s). Such velocities are limited by the pressure
drop of MHD origin derived from the coupling between the induced current and the
magnetic field, due to the high electrical conductivity of the Eurofer. The liquid metal
withstands an important part of the thermal power deposited by neutron radiation
in the component, and transports tritium for its external recovery. The pressurised
(8 MPa) helium has an inlet temperature of 300 oC and an outlet temperature of 500 oC.

The module designed for ITER (EU HCLL TBM, Salavy et al. 2008) consists of a
1650 mm (poloidal) × 484 mm (toroidal) × 575 mm (radial) box stiffened by the so
called Stiffening Plates in order to withstand the internal pressure of 8 MPa in case of
accident. The structure is cooled by helium. Each module consists of several breeder
units (BU). In each breeder unit the liquid metal flows radially (towards or away from
the plasma in an alternate way) . Inside the BU, the liquid metal is cooled by cooling
plates where helium flows inside very thin cooling channels. The fluid travels from
one BU to the next one through a narrow gap between the First Wall and the stiff-
ening plate. At the outlet of the TBM, tritium permeated through the Eurofer wall
towards the helium has to be recovered in the Tritium Extraction System (TES) and,
afterwards, the purified helium is sent to the power generation system. A sketch of the
TBM decomposition is showed in figure 2.3.

The design of the HCLL TBM has undergone several revisions in the last years; for
instance, in figure 2.3 each BU consists of 5 cooling plates, while in a more recent design
described by Aiello et al. (2009), only 3 cooling plates are considered and the cooling
channels design is redefined. Also, in the present HCLL design, liquid metal enter the
module at its bottom due to buoyant effects (Reimann et al. 2006).

2.3.2 US DCLL TBM

The DCLL breeding blanket design is an evolution of ARIES concept (Sze et al. 2000).
Since DCLL is a dual-coolant design, the liquid metal flows at a higher velocity (∼10 cm/s)
than in the HCLL. The PbLi flows through long poloidal channels for power conversion
and tritium breeding. The chosen structural material is reduced activation ferritic steel
(RAFS). Helium is the coolant for the structural material, including the First Wall.

The module designed for ITER (US DCLL TBM, Wong et al. 2006, , Smolentsev
et al. 2006, Smolentsev et al. 2010) consists of a 2 m (poloidal) × 30 cm (toroidal) ×
20 cm (radial) box stiffened by the so called Stiffening Plates in order to withstand the
internal helium pressure of 8 MPa in case of accident. Preliminary designs consisted of
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breeding blanket

First Wall

stiffening plates

cooling plate

breeder unit (BU)

HCLL module

Figure 2.3: Decomposition of a EU HCLL TBM

two rows of poloidal ducts. The flow entered the module from the bottom and travelled
through the front (close to the First Wall) ducts and returned downstream through the
back ducts (see figure 2.5). However, with the aim of better extrapolating the DCLL
concept to DEMO, in terms of thermal performance, new improvements are being de-
fined. Indeed, in the present design, described by Wong et al. (2010), the liquid metal
enters the upper part of the module from the back, flows down the back duct and turns
at the bottom of the module before flowing up the front duct (see figure 2.4). This mod-
ification is motivated by the need of reducing the risk of hot spots due to reverse fluid
currents caused by the buoyancy forces opposing to the flow.

The pressurised helium presents an inlet/outlet temperature of 350 oC–410 oC, while
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lead lithium at 2 MPa lays in the range of 360 oC–470 oC, according to Wong et al.
(2010). Such temperatures are limited by the structural material properties (maximum
steel structure temperature of 550 oC and a corrosion limit of about 480 oC).

In order to reduce MHD pressure drops and increase the liquid metal maximum tem-
perature, flow channel inserts (FCI) made of silicon carbide (SiC), either as a composite
or as foam, are introduced between the structural material and the liquid metal (as
seen in figure 2.5). FCI presents a very low electrical conductivity, what minimises the
coupling between the induced current and the magnetic field, reducing the MHD pres-
sure drop. This allows higher liquid metal velocities. Moreover, since the FCI material
has a very small thermal conductivity, it acts as a thermal insulator and temperature
limits for the structural material do not represent such a restrictive constrain.

Between the FCI (typically 5mm thick, Smolentsev et al. 2008) and the structural
material, a thin (∼2 mm) gap also filled with PbLi exists. The gap and the main flows
are connected through small openings in one of the FCI walls to equalise the pressure
on both sides of the FCI.
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Figure 2.4: PbLi circulation in the
US DCLL TBM, from Wong et al.
(2010)

Figure 2.5: Section of the US DCLL
TBM. The two rows of ducts can be
seen with the surrounding FCI (in or-
ange), from Wong et al. (2006)
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In this chapter MHD thermofluid phenomena occurring in breeding blanket chan-
nels and the related transport equations are explained. Other phenomena also occur-
ring in breeding blanket liquid metal channels, so as corrosion, material activation or
thermal stresses, are not considered here. For the sake of clarity, only the basic concepts
are explained and the final equations shown, skipping the somewhat cumbersome in-
termediate steps. Mainly, all concepts are extracted from four references, the book from
Oliver and de Saracibar (2002), Davidson (2001), Cramer and Pai (1973) and Müller
and Bühler (2001).

The explanation includes the assumed hypotheses, MHD transport equations and
thermal coupling. At the end of this Chapter, a brief introduction of main flow charac-
teristics at high Hartmann numbers is given in order to provide the reader with a more
applied definition of MHD effects.

3.1 Hypotheses

The first step before starting analysing any phenomenon is defining the hypotheses
needed in order to simplify (or just define) the study. All the hypotheses here mentioned
are introduced along the following sections; however, it has been deemed useful for
the reader to have them listed here in order to get an overview of the simplifications
applied.
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The main hypotheses applied in the development of the governing flow equations
are:

1. continuum media

2. incompressible fluid

3. Boussinesq hypothesis

4. Newtonian fluid with the Stokes condition for the bulk viscosity

5. homogeneity and isotropy of materials

6. electrically conducting fluid

7. relativistic terms neglected in the constitutive relations for the electric displace-
ment and the magnetic induction.

8. no magnetic monopoles

9. symmetric Maxwell stress tensor

10. low magnetic Reynolds number approximation

11. negligible expansion/contraction work, viscous dissipation and Joule generation.

All equations have been developed macroscopically, assuming a continuum medium,
so that infinitesimal calculus can be applied. This could only be discussed in a micro-
scale analysis, where all nuclear interactions can be studied in detail. In that case, a
statistical analysis could be more appropriate.

Considering the fluid as incompressible is a strong simplification, specially in a non-
isothermal system. However, following Boussinesq hypothesis, if in the expected tem-
perature differences the fluid density does not vary substantially, the fluid can be con-
sidered incompressible in all terms of the momentum equation except at the buoyant
term. This issue is analysed in section 3.3.

The following three hypotheses are related to material properties. Only the homo-
geneity and isotropy of material properties involve a simplification. Such simplification
would not be acceptable if, for example, fluid properties vary considerably with temper-
ature.

The next three hypotheses are needed in order to simplify Maxwell’s equations. All of
them are perfectly reasonable for liquid metal MHD flows and, hence, widely accepted.

The low magnetic Reynolds number approximation is valid when liquid metal flows
at laboratory velocities are considered, which is the case in the present study. The
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interest of this approximation is that it simplifies a big deal the describing equations
reducing the unknowns of the final set of equations. An extended explanation of this
hypothesis is included in section 3.2.

In order to simplify the energy equation, a negligible expansion/contraction work, a
negligible viscous dissipation, and a negligible Joule generation are assumed. Such sim-
plifications are perfectly reasonable under the flow conditions considered in the frame
of the present study.

3.2 Magnetohydrodynamics

In the context of the present PhD dissertation, magnetohydrodynamics (MHD) refers
to isothermal hydrodynamics under the influence of a magnetic field. Hence, the equa-
tions involved are Navier-Stokes equations and Maxwell equations. Navier-Stokes
equations include a continuity equation and the linear momentum equation. The first
one is obtained from a mass conservation balance; the second one from Newton’s Second
Law. Under all the hypotheses above mentioned (section 3.1), Navier-Stokes equations
take the form:

∇ · v = 0 (3.1a)
∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ ν∇2v + bf (3.1b)

where v, p, t, ρ, ν and bf stand for velocity, pressure, time, density, kinematic viscos-
ity and body forces vector, respectively. The two terms on the left hand side (l.h.s.) of
equation 3.1b are the transport of linear momentum, i.e., the transient term and the
convective term. The two first terms on the right hand side (r.h.s.) of equation 3.1b
correspond to surface forces: the pressure and the viscous terms. The last term cor-
responds to all the body forces applied, including buoyancy and Lorentz force, among
others.

In order to evaluate the Lorentz force and all the magnetic variables of interest,
Maxwell equations need to be manipulated. Maxwell equations presented here (equa-
tions 3.2) are simplified considering approximately grossly neutral fluid, obtaining the
so called pre-Maxwell equations.

Solenoidal nature of B ∇ ·B = 0 (3.2a)

Faraday’s law of induction ∇×E = −∂B
∂t

(3.2b)

Ampere’s law equation ∇×B = µm j (3.2c)

Charge conservation ∇ · j = 0 (3.2d)

Ohm’s law j = σm(E + v ×B) (3.2e)

Lorentz force F = j×B (3.2f)
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3.2. Magnetohydrodynamics

where B, E, j, µm and σm stand for the magnetic field, the electric field, the electric
current density, the magnetic permeability and the electric conductivity, respectively.

Using the pre-Maxwell equations (3.2), and defining η = 1
σmµm

, an equation for the
magnetic field B can be obtained:

∂B

∂t
= ∇× (v ×B) + η∇2B (3.3)

Also, the Lorentz force (equation 3.2f) can be developed as follows:

F = j×B =
1

µm

(
−∇B2

2
+ (B · ∇)B

)
(3.4)

Hence, the Lorentz force is split into two parts, one corresponding to a magnetic
pressure drop, the gradient term, and the other corresponding to a stress term. With
all this, the system of equations to be solved for pure MHD1 is:

∇ · v = 0 (3.5a)

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ ν∇2v +

1

µmρ

(
−∇B2

2
+ (B · ∇)B

)
(3.5b)

∂B

∂t
= ∇× (v ×B) + η∇2B (3.5c)

∇ ·B = 0 (3.5d)

Here, the bi-directional coupling between velocity and magnetic field is made ex-
plicit. Such coupling can be conceptually explained by artificially (but usefully) splitting
the phenomenon into three steps (see Davidson (2001), section 1.1):

1. The relative movement of a conducting fluid and a magnetic field causes an elec-
tromagnetic force (of order |v×B|) in accordance with Faraday’s law of induction.
At the same time, according to Ohm’s law, electric currents are generated.

2. According to Ampère’s law, these currents must rise to a second induced magnetic
field. This adds to the original magnetic field and the effect is usually such that
the fluid appears to ’drag’ the magnetic field lines along with it.

3. The combined magnetic field (imposed plus induced) interacts with the induced
current density, j, to give rise to a Lorentz force (per unit volume), j×B. This acts
on the fluid and is generally directed so as to inhibit the relative movement of the
magnetic field and the fluid.

1when the only body force bf corresponds to the Lorentz force
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3.2.1 Dimensionless equations

The goal of this section is to obtain the dimensionless numbers that characterise the
flow. There are several strategies to do so, here, v, t, B, j and p are adimensionalised
with vo, L/vo, Bo, σmvoBo (from Ohm’s law) and σvoB

2
oL (from Lorentz force), respec-

tively. L is the characteristic length, being usually half of the length in the direction
of the externally imposed magnetic field Bo, and vo is the characteristic velocity such
as, for example, the forced flow velocity. The ·̂ symbol has been used to indicate the
dimensionless variables. The dimensionless set of equations is:

∇ · v̂ = 0 (3.6a)

∂v̂

∂t̂
+ (v̂ · ∇)v̂ = −N ∇p̂+

1

Re
∇2v̂ +

N

Rm

(
−∇B̂

2

2
+ (B̂ · ∇)B̂

)
(3.6b)

∂B̂

∂t̂
= ∇× (v̂ × B̂) +

1

Rm
∇2B̂ (3.6c)

∇ · B̂ = 0 (3.6d)

where:

• Reynolds number Re = voL
ν relates the inertial forces with the viscous ones.

• Interaction parameter N = σmB2
oL

ρvo
relates the magnetic forces with the inertial

ones.

• Magnetic Reynolds number Rm = voL
η (being η = 1

σmµm
) relates the magnetic

advection with the magnetic diffusion.

The Hartmann number is then obtained as Ha = (NRe)1/2 = BoL(σmρν )1/2, which relates
the magnetic forces with the viscous ones.

3.2.2 Low Rm approximation

The magnetic Reynolds number, Rm, gives an idea of the freezing of the magnetic field
lines. For very low Rm (Rm << 1), the magnetic field lines are almost frozen (the mag-
netic field will tend to relax towards a purely diffusive state, and inhomogeneities in the
field will be smoothed out), what implies that the induced magnetic field is negligible.
This reasoning leads to the inductionless approximation, also called low Rm approxi-
mation or Quasi-Static approximation, where the flow no longer affects the magnetic
field. Under these conditions, and following the so called φ-formulation that uses φ, the
electric potential, as the main variable, the set of equations governing the pure MHD
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flow is:

∇ · v = 0 (3.7a)
∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ ν∇2v +

j×Bo

ρ
(3.7b)

∇2φ = ∇ · (v ×Bo) (3.7c)

j = σm (−∇φ + v ×Bo) (3.7d)

Notice that the total magnetic field B has been split into two terms, the externally
applied magnetic field Bo and the induced magnetic field b, being the latter negligible
under the inductionless approximation. The Poisson equation for the electric potential
(3.7c) has been obtained applying the divergence operator on Ohm’s law.

The dimensionless form of this system of equations, with φ normalised with voBoL

is:

∇ · v̂ = 0 (3.8a)
∂v̂

∂t̂
+ (v̂ · ∇)v̂ = −N ∇p̂+

1

Re
∇2v̂ + N (̂j× B̂) (3.8b)

∇2φ̂ = ∇ · (v̂ × B̂) (3.8c)

ĵ = −∇φ̂ + v̂ × B̂ (3.8d)

where Rm no longer appears. The great advantage of this system (3.7) in front of the
complete set of equations (3.5) is the simplicity of the numerical solution. That is, the
three transient convective-diffusion equations for the induced magnetic field (equation
3.5c for each component −i, j, k−) is substituted by a Poisson equation (equation 3.7c)
and an explicit evaluation of the current density (equation 3.7d), which are much easier
to solve and need less computational efforts. For these reasons, the low Rm approxi-
mation (system 3.7) is the one generally solved by the community of MHD analysts
working on fusion technology.

Recently, a new MHD approach has been presented by Smolentsev et al. (2010),
where a j-formulation based on the electric current as the main electromagnetic vari-
able is introduced. Compared to the φ-formulation, the j-formulation avoids some nu-
merical errors potentially present at high Hartmann numbers, but needs to solve a
vectorial j equation instead of the scalar φ equation, requiring more computation time.

3.3 Heat Transfer

The integral total energy equation, based on the first law of thermodynamics, is pre-
sented in equation (3.9); where ε corresponds to the total energy per unit mass defined
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as the sum of the kinetic energy, the internal energy u, and the magnetic energy ωm.

d

dt

∫
Ω

ρ ε dV︸ ︷︷ ︸
total energy variation rate

=
d

dt

∫
Ω

ρ

(
1

2
v · v + u +

ωm
ρ

)
dV

=

∫
∂Ω

((−p · I + ρ ν ∇v) · v) · n dS︸ ︷︷ ︸
surface stresses rate

+

∫
Ω

ρ bf · v dV︸ ︷︷ ︸
body forces rate

−
∫
∂Ω

q · n dS︸ ︷︷ ︸
heat and e.m. energy flux

+

∫
Ω

ρ Sthermal dV︸ ︷︷ ︸
others (reaction, radiation,...)

(3.9)

Note that Ω and ∂Ω are the system’s volume and its surface area, correspondingly.
The development of this equation into the final one, as a function of temperature, is

very complex and the exposition here of the complete process will not contribute to a
deeper understanding. Thus, only the final equation is shown. However, it is important
to keep in mind all the concepts that are involved in this development, which include:

• The Reynolds Transport Theorem, the continuity equation and the kinetic energy
equation (from the linear momentum equation)

• The definition of the enthalpy i: i = u+ p
ρ

• The relation between enthalpy and entropy s: di = T ds+ 1
ρdp

• Maxwell’s relations

• The definition of the thermal expansion coefficient β: β = −1
ρ

(
∂ρ
∂T

)
p

• The magnetic energy definition ωm = B·B
2µm

• The Fourier law: q = −k∇T , where k is the thermal conductivity

With all this, the total energy equation is written as:

ρ Cp
dT

dt︸ ︷︷ ︸
thermal energy gain

− β T
dp

dt︸ ︷︷ ︸
exp.contractions

=
j2

σm︸︷︷︸
Ohmic gain

+ (ρ ν ∇v) : d︸ ︷︷ ︸
viscous dissipation

+ k ∇2T︸ ︷︷ ︸
heat fluxes

+ ρ Sthermal︸ ︷︷ ︸
other

(3.10)

where T , Cp and d stand for temperature, heat capacity at constant pressure, and the
symmetric part of the velocity gradient (deformation), respectively.

If the studied fluid is a liquid, work done by expansions or contractions can be ne-
glected. Moreover, in liquid metal MHD flows as applied to breeding blanket studies,
the influence on the flow of both viscous dissipation and the Joule generation terms is
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small enough, compared to other terms, that both terms can be neglected from the en-
ergy equation. Instead, the source term S′thermal is of great interest in BB simulations
since it is related to the neutron irradiation from the plasma to the breeding material.

Applying the above mentioned assumptions, the simplified energy equation (3.11) is
obtained, where α = k

ρCp
is the thermal diffusivity.

∂T

∂t
+ ∇ · (vT ) = α∇2T + S′thermal (3.11)

3.3.1 Coupling between momentum and temperature

Coupling between momentum and temperature equations is essential for a correct flow
analysis. The necessity of the coupling arises from the fact that density varies with
temperature, which should be made explicit in the equation of state of the fluid. In
the present case, however, as the thermal expansion coefficient, β, of the liquid metal
is one order of magnitude lower than typical values for gases, and half the value for
liquid water, the equation of state can be substituted by a constant density in all terms
of the momentum equation except the buoyancy term, according to the Boussinesq hy-
pothesis. This way, the flow can still be considered as incompressible, where equation
3.7a still applies. The buoyancy term is part of the body forces (ρbf ) and corresponds
to (ρg), where g is the gravity vector. Several correlations between the density and the
temperature can be used in the buoyancy term. Here, a linear Taylor expansion of the
density is used, according to:

ρ = ρo −
(
∂ρ

∂T

)
o

(T − To) = ρo (1 − βo (T − To)) (3.12)

where To, ρo and βo are the temperature, density and thermal expansion coefficient at
the reference state (·o). Hence, the momentum equation (3.7b) is now modified as:

∂v

∂t
+ (v · ∇)v = −∇pd

ρo
+ ν∇2v +

j×Bo

ρo
− βo g (T − To) (3.13)

Note that pd is the so called dynamic pressure, what in fact means the total pressure
minus the hydrostatic one. For the sake of clarity, the complete development related to
both pressure and buoyancy terms is shown in equation 3.14.

−∇p+ ρ g = −∇p+ ρo (1 − βo (T − To)) g

= −∇(p− phyd)− ρo βo g (T − To)

= −∇pd − ρo βo g (T − To) (3.14)
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3.3.2 Dimensionless equations

The same normalisation as in section 3.2.1 has been applied. The new variable, the
temperature increment (T − To), has been normalised by a reference temperature
gradient ∆To, obtaining T̂ . Thus, the momentum equation yields:

vo
L

[
∂v̂

∂t̂
+ (v̂ · ∇)v̂

]
= −σ vo B

2
o

ρo
∇p̂d +

ν vo
L2
∇2v̂ +

σ vo B
2
o

ρo
(̂j× B̂) − βo go ∆To ĝ T̂ (3.15)

If Lorentz forces balance buoyant forces then the characteristic velocity would be
vo,MHD, shown in equation 3.16, where Gr = gβ∆TL3

ν2
is the Grashof number, which is a

ratio of the buoyant forces to the viscous forces.

σvoB
2
o

ρoβogo∆T
= 1 −→ vo = vo,MHD =

Gr

Ha2

ν

L
(3.16)

In contrast, for non MHD flows, vo,HY D = Gr0.5νL−1. The ratio of both numbers
yields the Lykoudis number Ly = vo,HY D/vo,MHD = Ha2Gr0.5, which relates Lorentz
and buoyant forces. Thus, for high Ly , the magnetic damping is predominant.

When vo,MHD is used as the characteristic velocity, the dimensionless system of equa-
tions is:

∇ · v̂ = 0 (3.17a)

Gr

Ha4

[
∂v̂

∂t̂
+ (v̂ · ∇)v̂

]
= −∇p̂d +

1

Ha2∇
2v̂ + (̂j× B̂) − ĝT̂ (3.17b)

∇2φ̂ = ∇ · (v̂ × B̂) (3.17c)

ĵ = −∇φ̂ + v̂ × B̂ (3.17d)

PrGr

Ha2

[
∂T̂

∂t̂
+ ∇ · (v̂T̂ )

]
= ∇2T̂ + S′thermal (3.17e)

where Pr is the Prandtl number Pr = ν
α and provides a relation between the hydrody-

namic boundary layer depth and the thermal one. Note that the Rayleigh number is
defined as Ra = Gr Pr . Comparing equation 3.17b with equation 3.8b, GrHa−2 plays
the role of Re for pure MHD flows, whereas Ly2 = Ha4Gr−1 plays the role of N . If
Ha4Gr−1 >> 1, inertia effects can be neglected in the momentum balance (eq. 3.17b)
except when high velocity jets are expected to appear at side boundary layers, as stated
by Bühler (1998). Another interesting dimensionless number is the Peclet number,
Pe = PrGrHa−2. For Pe << 1, inertia effects can be neglected in the energy balance
(eq. 3.17e).
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3.4. Main flow characteristics at high Hartmann numbers

3.4 Main flow characteristics at high Hartmann numbers

MHD flows behave substantially different than pure hydrodynamic flows, being such
difference even stronger when buoyancy exist. Thus, it has been considered neces-
sary to include a brief introduction on qualitative understanding of basic MHD flow in
section 3.4.1, whereas a characterisation of the flow in breeding blanket channels is
exposed in section 3.4.2.

3.4.1 Basics of MHD flows

In figure 3.1 a cross-section of a square channel of side 2a is shown. The externally
applied magnetic field is aligned with z axis while the flow travels in x direction. Here,
the only body force is the Lorentz force, and no buoyancy is considered. The walls
aligned with the magnetic field are called side walls, whereas the walls perpendicular
to the magnetic fields are the Hartmann walls. Such type of flow has been widely
studied as, for instance, by Shercliff (1953) and Hunt (1965).

Under the above mentioned pressure-driven flow specifications (B = (0, 0, Bz) and
v = (vx, 0, 0)), the induced electric current at the core flow travels in the negative y axis
direction, as sketched in figure 3.2. This electric current, when interacting with the
magnetic field, generates a Lorentz force that acts as a damping force that opposes the
pressure gradient. As a result, the velocity profile is flattened at the core region. As Ha

increases, the electromagnetic damping increases. Hence, for a given Re number, the
pressure drop increases with Ha.

The ratio between the electric conductivity of the walls and that of the fluid has a
great influence on the flow. Such ratio, often called wall conductivity ratio, is expressed
as Cw = σwδw/(σa), where σ, δw and a stand for electric conductivity, wall depth and
characteristic flow dimension along magnetic field lines, respectively.

If all walls are perfectly insulated (Cw,side = Cw,Ha = 0, see Shercliff 1953), due
to charge conservation, the electric current stream lines close their path inside the
fluid domain. Hence, electric current travel close to side walls first and, then, along
Hartmann walls until the opposite side wall before closing the path, as shown in figure
3.2. As a result, Lorentz force is strongly reduced close to side walls whereas it is x
positive near Hartmann walls. Close to side walls, the unique force is the viscous one
and the so called side boundary layer develops. Such layer is of depth δside = a/Ha0.5.
Next to Hartmann walls, the Lorentz force opposes the viscous force and the so called
Hartmann boundary layer develops. As Ha increases, the Lorentz force pushes the flow
further and the Hartmann boundary layer depth decreases according to δHa = a/Ha

(δHa = 42µm in PbLi for B = 1T). Thus, at high Ha numbers, Hartmann boundary

28



Chapter 3. Phenomena

layers are much thinner than side ones. If the magnetic field is not perpendicular to
a pair of walls, inner boundary layers exist. However, here, only the case with the
magnetic field perpendicular to one pair of walls is considered. Results for Ha = 300

andN = 9·103 are shown in figure 3.3. Due to the high Ha number, Hartmann boundary
layers are hardly seen in the figure, however, the core-flattened velocity profile as well
as the closed electric current path can be clearly observed.

Figure 3.1: Sketch of a cross-section of
a channel

Figure 3.2: Schematic drawing of forces
acting on the fluid for Cw,side = Cw,Ha = 0

Figure 3.3: Ha = 300, N = 9 · 103, Cw,side = Cw,Ha = 0, velocity profile on the left and electric
current stream lines on velocity on the right.

If side walls are perfectly insulated but Hartmann walls are perfectly conducting
(Cw,side = 0 and Cw,Ha = ∞, see Hunt 1965), electric currents can cross Hartman walls
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and, hence, the overall electric resistivity decreases compared with the perfectly insu-
lating case. Thus, the total amount of circulating electric current increases, causing an
increase on the Lorentz force. As a result, the core velocity is reduced and the main
part of the flow is carried out by side boundary layers (where almost no Lorentz force
exist). Results for Ha = 300 are shown in figure 3.4. According on what was already
predicted in Müller and Bühler (2001), the velocity at side boundary layers exceeds the
average duct velocity by a factor of (Ha/2)0.5. The obtained velocity profile is the well
known M-shaped profile. If a fixed Re is imposed, when Cw, side = 0 and Cw,Ha = ∞
the pressure drop is higher than for the perfectly insulating case.

Figure 3.4: Ha = 300, N = 9 · 103, Cw,side = 0, Cw,Ha = ∞, velocity profile on the left and
electric current stream lines on velocity on the right.

For the case with perfectly conducting side and Hartmann walls (Cw,side = Cw,Ha =

∞, see Hunt 1965), a Lorentz force opposing the flow exists at side boundary layers,
what reduces the magnitude of the jets. As the total amount of circulating electric
current increases even more than the case with Cw, side = 0 and Cw,Ha = ∞, the flow
is strongly damped and, for a given Re, the pressure drop increases substantially.

3.4.2 Fusion technology flow conditions

According to Smolentsev et al. (2010), typical Ha, Re and Gr values for DCLL, HCLL
and Self-cooled blanket concepts, introduced in section 2.3, are listed in table 3.1 to-
gether with other characteristic dimensionless numbers. Both DCLL and HCLL values
correspond to ITER TBM designs, whereas Self-cooled data is predicted for DEMO spec-
ifications considering Bo = 10 T, vo = 0.5m/s and L = 0.05 m. For the estimation of the
Grashof number, the characteristic temperature scale is defined as ∆T = S̄ a2/k, which
is associated with the average radial thermal load S̄, the characteristic length a and the
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liquid metal conductivity k. Also, from Ha, Re and Gr values, some interesting dimen-
sionless numbers have been calculated and included at the same table (3.1), considering
lead lithium to be at 450oC, hence Pr = 0.015 (Mas de les Valls et al. 2008).

For the DCLL and Self-cooled cases, the Re number is high enough for turbulence
to exist. According to Re/Ha ratio, the flow would present Q2D turbulence (see section
4.1.3). Moreover, since walls have a finite electric conductivity, the M-shaped profile is
retrieved and high velocity jets appear at side boundary layers. Due to the high Re,
such jets could present some instabilities.

In all three cases, Gr is very high, hence, buoyancy can alter the flow. Whether the
flow is buoyant predominant or not depends, basically on the ratio between the mean
flow velocity and the buoyant one (vo,MHD in previous section). In HCLL design, this
ratio, despite being of order 10−2, is one order of magnitude higher than in the DCLL
or Self-coled designs. In fact, according to the results by Kharicha et al. (2004), it can
be stated that, in HCLL blanket, buoyant convection may become as relevant as forced
flow. However, according to the high Lykoudis numbers, the magnetic damping has
enough relevance to obtain an equivalent Re = Gr/Ha2 number much below the forced
one, in all three cases.

Whether the flow is unsteady or not, can be grossly predicted following the flow
classification from Molokov (1997). According to this classification, both DCLL and Self-
cooled flows would correspond to the unsteady inertial flow, whereas HCLL flow would
be steady and inertial. However, such classification is only valid for pure MHD flows
and buoyancy might cause some flow instabilities (due to Rayleigh-Bénard instability).

Relative to numerical strategies, as the equivalent interaction parameter Ha4/Gr is
very high in all three cases, inertia effects can be neglected from momentum balance.
However, only for the HCLL case where Pe << 1, inertia effects could be removed from
the energy balance.

Blanket type Ha Re Gr Re/Ha Ly Pe Gr/Ha2

DCLL (ITER TBM) 6.5 · 103 3.0 · 104 7.0 · 109 4.6 505 2.5 165.7
HCLL (ITER TBM) 1.1 · 104 670 1.0 · 109 0.06 3.8 · 103 0.1 8.3
Self-cooled (DEMO) 4.5 · 104 3.2 · 104 2.0 · 1012 0.7 1.4 · 103 14.8 987.6

Table 3.1: Typical breeding blanket dimensionless numbers

In general, the following flow characterisation is widely accepted:

• In the Self-cooled blanket, as the liquid metal flows at high velocities (∼ 0.5 m/s),
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MHD pressure drop is the most critical issue. In order to reduce such pressure
drop, electrical insulators are required. However, the technical problem related to
such a good insulator is not solved yet. MHD turbulence and flow instabilities are
also relevant issues.

• In the US DCLL blanket, the liquid metal flows at a moderate velocity (∼ 0.01 −
−0.1 m/s), thus, electric insulation can be provided using SiC Flow Channel In-
serts (FCI). MHD turbulence and buoyancy are also relevant aspects. Moreover,
in order to keep lead lithium at a maximum temperature for thermal efficiency
purposes, while fulfilling the temperature specifications for the structural mate-
rial, a thermal insulator is required. FCI can act as both thermal and electrical
insulators.

• In the HCLL blanket, liquid metal flows at a very low velocity (< 1 mm/s), hence
low MHD pressure drops are expected (except at complex geometries as manifolds
and at fringing fields). However, buoyant predominance of the flow is predicted.

Other aspects not mentioned above but also relevant would include corrosion, tri-
tium and helium transport, interfacial slip and electromagnetic coupling between chan-
nels.

In Chapter 4, main research on critical breeding blanket MHD related aspects is
summarised.
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The field of Physics dealing with moving electrically conducting fluids under the in-
fluence of a magnetic field was first named Hg-dynamics, as suggested in the pioneering
work of Hartmann (1937). In that work, based on an analytical study of a Hg laminar
flow in an homogeneous magnetic field, three main results were obtained: (1) For elec-
trically insulating walls, the velocity profile only depends on a dimensionless parameter
that was later named Hartmann number (Ha); it was proved that within strong mag-
netic fields, the original parabolic flow profile was flattened as a consequence of the so
called magnetic damping. (2) Velocity profiles depend on Ha and wall electrical conduc-
tivity. (3) A high magnetic field could relaminarise an initially turbulent hydrodynamic
flow.

Since then, MHD research has included analytical, experimental, asymptotic and
numerical studies. Its interest not only lays on fusion technology but also includes
a wide range of applications. The application of which earlier references have been
reported is electromagnetic pumping, what was first observed by Northrup (1907) and,
then, studied by Hartmann (1937). Control techniques for metallurgical processing also
benefit from MHD effects in the stabilisation of free surfaces and in the homogenisation
of solidification or casting processes (with or without electromagnetic stirring). A sum-
mary of these techniques was given by Lielpeteris and Moreau (1989) and Kolesnichenko
(1990). Magnetic fields can also be used to generate levitation confinement of either
small droplets of sample (for material properties measurement, Egry et al. 2001) or
large volumes of fluid (for extreme temperatures melting, Bojarevics et al. 2010). For
MHD power generation, gaseous MHD is a promising alternative in terms of high elec-
tric conversion efficiency and low emissions (Sporn and Kantrowitz 1959, Steg and Sut-
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ton 1960 and Tillack and Morley 1998). Other relevant MHD applications are magnetic
levitation in trains (Tixador 1994) and seawater MHD propulsion (Graneau 1989 and
Tixador 1994).

Five main MHD issues are relevant for fusion technology: (1) liquid metal MHD
flows, (2) fluid-solid electrical coupling, (3) wall functions, (4) MHD turbulence, and (5)
thermal MHD coupling. In section 4.1 just a brief summary of the state-of-the-art in
the first four items is introduced, whereas main landmarks obtained in the coupling
between liquid metal MHD and heat transfer are introduced in section 4.2. Extended
reviews are included, when required, in parts II and III.

4.1 Review of LM MHD research

Numerical MHD analysis has been carried out following four different strategies (see
Müller and Bühler 2001 for a detailed explanation):

1. Analytical analysis, limited to simple channel geometries. Solutions are typically
series expansions difficult to evaluate at high Ha;

2. Asymptotic analysis which consider Ha >> 1 for fully developed stationary condi-
tions;

3. Full system of equations (hydrodynamics plus electrodynamics equations) consid-
ering the bidirectional interaction between the fluid and the magnetic field by
means of the induced magnetic field and the Lorentz force;

4. Low magnetic Reynolds number approximation or inductionless approximation,
where the induced magnetic field is neglected.

In the asymptotic analysis the flow can be divided in different regions including: (i)
the core flow, (ii) Hartmann boundary layers (at walls perpendicular to the magnetic
field), (iii) side boundary layers (at walls parallel to the magnetic field), (iv) corner
regions, and, (v) internal layers. The core solution is obtained by neglecting the viscous
effects; thus, the obtained equation is a balance between pressure gradient and Lorentz
force. Core solutions must match with other region solutions and boundary conditions
must be fulfilled. Some relevant examples include the circular channel with fringing
magnetic field of Reed et al. (1987) or the channel with a sudden expansion of Bühler
et al. (2007). However, at flow conditions relevant for fusion technology, the asymptotic
analysis is complex and requires some extra simplifications. Few works in this direction
have been carried out as, for instance, Bühler (1998).
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The full system of equations includes, apart from the Navier-Stokes equations, a
vectorial transport equation for the magnetic field and a correction for the solenoidal
nature of it, see Chapter 3 and section 5.1. Thus, the resulting system of equations
is quite large and its resolution is time expensive. Since liquid metals at laboratory
velocities always present a low magnetic Reynolds number (Rm∼10−6), the induction-
less approximation, also called quasi-static approximation, is a reasonable strategy in
order to reduce the number of equations to be solved. Indeed, in the inductionless ap-
proximation, the induced magnetic field is neglected so that the coupling of the velocity
and the magnetic field is simplified. A comparison of the inductionless approximation
with the full set of governing equations, as applied to fully developed flows, can be
found in Smolentsev and Tananaev (1994), where authors concluded that the induced
magnetic field formulation (with the full set of governing equations) has a better con-
vergence behaviour. An explanation for it could be the non conservation of the current
density in the studied inductionless model. Indeed, the unique drawback of the in-
ductionless approximation is the difficulty on conserving the current density, what is
critical at high Hartmann numbers. In this direction, several strategies have been pro-
posed. For instance, for incompressible MHD flows, Sterl (1990) proposed a numerical
scheme for uniform rectangular staggered meshes, but it was limited to low Hartmann
numbers and simple geometries. The scheme proposed by Leboucher (1999) for nonuni-
form rectangular staggered meshes was limited to simple geometries and unidirectional
magnetic field. More recently several proposals have been published including, among
others, the schemes used by di Piazza and Bühler (2000), Aleksandrova et al. (2002)
and Mistrangelo (2006), for collocated meshes, although none of them is fully conserva-
tive regarding current density. A recent and very attractive proposal is the one by Ni
et al. (2007) where an alternative for obtaining consistent and conservative schemes
for non-structured meshes is exposed.

The cases analysed in liquid metal MHD using CFD codes are rather simple com-
pared with standard hydrodynamic cases. More frequently, the cases are simple chan-
nels (Shercliff 1953, Hunt 1965, Ni et al. 2007), U-bends (Molokov et al. 1995), channels
with obstacles (Dousset and Pothérat 2008), channel expansions (Mistrangelo 2006)
and vortex generation or damping (Sommeria 1988). Despite their simplicity, all these
cases are closely related to blanket simulations. For instance, channel expansions are
present in the manifolds, U-bends exist all over the breeding unit, and channel obsta-
cles are interesting as turbulence promoters in order to increase heat transfer.
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4.1.1 Fluid-solid electrical coupling

According to what was already exposed by Hartmann (1937), the ratio between the
electric conductivity of the walls and that of the fluid has a great influence on the flow.
Thus, the electrical coupling of several side-by-side channels, with conducting walls
between them, could give rise to the multi-channel effect (McCarthy and Abdou 1991,
Molokov 1993). Such effect is expected to exist in the HCLL breeding blanket design
and can alter considerably the channel flow. In order to take into account such fluid-
solid-fluid interaction, wall can be modelled with some conservative assumptions at the
interface (see section 5.2.5). Such multi-channel effect was studied by Mistrangelo and
Bühler (2009) using the CFX code.

However, if no multi-channel effect or other fluid-solid interactions are expected to
exist, an alternative to fully simulate the solid is the thin wall boundary condition
from Walker (1981). Such boundary condition is widely used despite the fact that some
problems at corner regions have been found (Temperley and Todd 1971, Walker 1981
and Tabeling 1982). A comparison of both strategies using OpenFOAM code is carried
out by Mistrangelo (2010).

4.1.2 Wall functions

Electrically conducting fluids under the influence of a high magnetic field tend to de-
velop a flat core velocity profile where boundary layers play an important role. Indeed,
Hartmann boundary layers have a characteristic thickness ∼ a/Ha−1 and are respon-
sible for the Joule and viscous dissipation. In contrast, side boundary layers have a
characteristic thickness ∼ a/Ha−1/2 and, under certain conditions, they can carry the
main part of the flow by means of jets parallel to the wall. Thus, mesh refinements in
such boundary layers at high Ha is a quite expensive requirement.

In order to avoid such meshing, some wall functions for Hartmann boundary layers
have been proposed. The most commonly used wall function was proposed by Walker
(1981) and assumes a linear Hartmann boundary layer. It results in a modified version
of the thin wall boundary condition. More complex wall functions that allow mass
transfer across the boundary layers are the one from Hunt and Ludford (1968) and the
one from Pothérat et al. (2002). These latter approaches are specially interesting for
Bödewadt-Hartmann pumping cases (Davidson and Pothérat 2002).

4.1.3 MHD Turbulence

It is well known that flow regime moves from laminar to turbulent as Reynolds number
(Re) increases. Turbulence has multiple definitions, but basically, it is typically related
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with highly random, unsteady and three-dimensional fluid motion. However, in MHD
flows, turbulence can be found in quasi two-dimensional (Q2D) flows. Whether the flow
is Q2D or fully 3D depends on the ratio Re/Ha and on the wall electrical conductivity
ratio (Cw). Typically, for perfectly insulated walls where Cw = 0, the critical (Re/Ha)

ratio is (Re/Ha)cr = 300 as stated by Smolentsev and Moreau (2007). Thus, for higher
Reynolds, the flow is fully 3D and turbulent. Below the limit, the flow is laminar or
Q2D turbulent. Flow in breeding blankets is expected to be below such limit.

Q2D turbulence is caused by eddy elongation along magnetic field lines. Thus, all
three dimensional effects are confined in the thin Hartmann layers at the walls per-
pendicular to the magnetic field, where almost all Ohmic and viscous forces occur. For
a detailed explanation, see Davidson (2001).

As in pure hydrodynamics, turbulence can be numerically studied by means of direct
numerical simulations (DNS) or by the use of turbulence models. Such models can be
classified as LES and RANS models. Few models have been developed related with
high Ha and low Rm numbers. LES models have been applied to study homogeneous
turbulence (with no wall effect); a recent review can be found in Knaepen and Moreau
(2008). Among RANS models, several zero-equation models with anisotropic definition
of the turbulent viscosity have been developed in order to asses Q2D turbulence, such
as those from Smolentsev and Moreau (2006) for 2D MHD with internal shear layers,
and from Cuevas et al. (1997) for 3D MHD (section 5.3); but zero-equation models, due
to their nature, do not reproduce the internal turbulence structure. A more advanced
one-equation model based on an extra turbulent kinetic energy equation is exposed by
Smolentsev and Moreau (2007) for the 2D set of equations. Two-equation models for
MHD turbulence are unknown to the author; however, some DNS simulations have
been carried out by Smolentsev and Moreau (2006) in order to analyse the internal
turbulence structure of the flow in a simplified channel. DNS simulations for the entire
module are not affordable nowadays, and further research should be done in order to
obtain more reliable Q2D turbulence models for blanket simulation.

It is worth mentioning that, following suggestions from Rodi (1993), MHD turbu-
lence models should account for buoyancy effects as a function of the Richardson num-
ber, Ri , which is a ratio of the buoyant forces with the inertial forces, and can be ex-
pressed as Ri = GrRe−2. However, no such model, applied to MHD turbulence, has
been found by the author.
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4.2 Review of buoyant MHD convection research

Buoyant MHD convection is a critical issue for the correct understanding of liquid metal
flows under breeding blanket conditions. The eutectic PbLi in current BB designs is ex-
posed to high Grashof numbers, typically in the range of 109 − 1012. In absence of a
magnetic field, this Gr number would indicate that transitional flow and some insta-
bilities could appear. However, when a transverse magnetic field is present, the core
flow is dramatically damped and, depending on wall electric properties, jets can appear
near the walls. This core damping has a re-laminarisation effect on the flow, increasing
the critical Gr number.

Modelling magnetoconvective flow in the blanket is a complex issue and all efforts
done in this direction so far imply some flow or geometry simplifications. In general,
flow is assumed to be inductionless, the Boussinesq hypothesis is applied, and no Joule
generation nor viscous dissipation is considered. Hereafter, main landmarks are ex-
posed with special focus on the assumed flow conditions, being such conditions per-
fectly defined by dimensionless numbers (see section 3.3 for a detailed explanation of
their meaning). Also, particular emphasis has been done related with volumetrically
heated flows, as is the typical scenario in breeding blanket channels.

In Ozoe and Okada (1989) the effect of the magnetic field orientation on the natural
convection was numerically analysed for three-dimensional cubical enclosures. Later,
the same authors carried out the corresponding experimental study (Okada and Ozoe
1992).

Garandet et al. (1992) made an analytical study of a two-dimensional cavity with
vertical magnetic field (parallel to gravity), considering both thermally insulated and
conducting Hartmann walls, and a fixed horizontal temperature gradient. In both
cases, a one-dimensional velocity profile in the core, linear at high Ha numbers, and
the classical exponential profile in the Hartmann layer were obtained.

A high Ha number asymptotic analysis was made by Alboussière et al. (1996) consid-
ering the flow to be inertialess. Although the analysis considers the driving force to be
independent of the fluid velocity, which is not valid for buoyancy flows, the study shows
the relevance of the nature of electric symmetry along magnetic field lines on the mag-
nitude of the velocity. Later, Bühler (1998) made an asymptotic analysis specifically for
buoyant magnetohydrodynamic flows assuming that the flow remains laminar and the
walls are electrically thin. The Peclet number (Pe = PrGrHa−2) was considered suffi-
ciently low to neglect inertia effects on energy balance. Moreover, the assumed high
Interaction parameter (or Stuart number N = Ha2/Re) allowed to consider the flow to
be inertialess. In the study, high-velocity jets were observed for the first time along per-
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fectly conducting side walls (parallel to the magnetic field). In this asymptotic analysis,
and considering an imposed heat flux, the influence on the symmetry was highlighted.
Bühler (1998) also studied the case of uniform volumetric heating, where Hartmann
walls were adiabatic and heat was removed through side walls, which were considered
at the same temperature. It was shown that, despite a uniform temperature along
magnetic field lines exist, the flow may deviate considerably from two-dimensionality.

In di Piazza and Ciofalo (2002a) a differentially heated cavity with transverse mag-
netic field was studied with a steady 3D algorithm implemented in a CFD code. The
fluid was considered to be lead lithium and Ha was in the range 102−103, wall conduc-
tivity ratio varied between 0 and ∞. Results show the existence of a complex three-
dimensional flow with secondary motions. The suppression of convective motion as Ha

or Cw increase was observed. The same authors studied numerically a volumetrically
heated cubic enclosure with the same algorithm in di Piazza and Ciofalo (2002b). The
fluid was considered to be lead-lithium and the study covered a range of Grashof num-
bers from 107 to 109, whereas Ha was between 102−103 and different wall conductivities
were assumed. With the obtained high Peclet number and low Interaction parameter,
it was necessary to take into account convective heat transfer and inertia effects on
the momentum balance. In all studied cases, the magnetic damping was sufficient to
stabilise the flow, despite the fact that secondary motions were still present. It was
demonstrated that the critical Grashof number increases with Ha.

Following results by Bühler (1998), the existence of the high velocity jets at the
side boundary layers was deeply investigated by Molokov and Bühler (2003), where it
was stated that the amount of fluid carried by these jets at the side boundary layer is
proportional to the electric potential gradient between the layer and the core. Under
some temperature distributions, the electric current lines are tangential to all walls
and thus the induced jets are reduced drastically.

Kharicha et al. (2004) studied numerically the transient buoyant convection of a
lead-lithium filled cavity with non-uniform heat source. Since 0 < Pe ≤ 1.07, the con-
vective term in momentum equation was neglected. In the case of a horizontal cavity,
flow conditions were such (Ha = 1 · 104–2 · 104, Gr ∼ 5 · 109 and electrically conducting
walls) that the magnetic damping was sufficient to stabilise the flow, and only a unique
recirculation cell located at the hottest part of the cavity was obtained. Pressure driven
buoyant duct flows were also studied where buoyant convection was found to be strong
enough to generate some vortical patterns. In the same range of Ha and Gr but consid-
ering a high velocity pressure-driven flow as applied to the DCLL blanket, Vetcha et al.
(2009) made a stability analysis with a 2.5D code based on a pseudo-spectral method.
Due to the high Re, Q2D turbulence was assumed. Results indicate that, under DCLL

39



4.2. Review of buoyant MHD convection research

blanket conditions, all disturbances associated with Q2D turbulent buoyant flows in
the front ducts will likely be damped by the strong toroidal magnetic field.

Thus, the presence of vortical structures is associated with a moderate electromag-
netic damping, a moderate pressure-driven flow and a high buoyant force. In this direc-
tion, a non-inertialess flow with 0≤Ha≤104, Gr =4·107 and electrically insulated walls
was studied experimentally and numerically by Authié et al. (2003). The experimental
setup consisted of a vertical enclosure with horizontal magnetic field, either perpendic-
ular or parallel to the imposed temperature gradient. At Ha ≤ 800 the fluid presented
unsteady vortices aligned with the magnetic field lines, whose dimensions were about
the channel width. The transient evolution of experimental Nusselt was analysed and
compared with the numerical one considering laminar flow and quite coarse meshes.

Recently, several summaries of thermofluid MHD critical issues related to breeding
blankets have been published: see for instance Reimann et al. (1995) for the self-cooled
proposal, Reimann et al. (2006) for HCLL blanket design, and Smolentsev et al. (2008)
for the US DCLL design. A recent summary on MHD thermofluid critical issues in
blankets can be found in Smolentsev et al. (2010).
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This part is the core of the present dissertation as it covers all the studied strategies
for MHD simulation under nuclear fusion conditions.

Nuclear fusion conditions, as applied to breeding blankets, include high magnetic
field, high temperature gradient and thermal load, and, last but not least, tritium and
helium breeding and transport. Other effects would include thermal and electromag-
netic stresses on structures and corrosion.

This dissertation is focused on MHD and thermal effects, whereas tritium transport,
when needed, is simplified to a transport of a passive scalar, with no helium interaction.
Also, the thermal load is considered as known (but not necessarily constant in space or
time), hence, no neutronic analysis is carried out. Despite such simplifications, the flow
is quite complex and several modelling strategies can be considered. In this section,
some MHD modelling strategies are first exposed and, afterwards, the chosen thermal
MHD coupling described.

The proposed modelling strategies have been implemented in the OpenFOAM tool-
box. Such tool has been chosen for several reasons: (1) leading developers have a long
experience on CFD modelling so that the quality of the code can be assumed, (2) it is
widely used and, hence, validated for a wide variety of cases, (3) it is open source, what
means that the code is totally transparent and allows the introduction of code improve-
ments and new developments, (4) it is currently being improved by a vast community,
mainly supported by the official group SGI (http://www.openfoam.com/), but also by one
of the original developers under Wikki Ltd. (http://www.wikki.co.uk/), and (5) feedback
from leading developers can easily be obtained from the forum web site (http://www.cfd-
online.com/Forums/openfoam/).

OpenFOAM (Field Operation And Manipulation) CFD Toolbox is a free, open source
CFD software package. The code is an object oriented numerical simulation toolkit for
continuum mechanics, written in C++. The toolkit implements operator-based implicit
and explicit second and fourth-order Finite Volume discretisation in three dimensional
space and on curved surface. More insight on code structure can be found in the official
manuals and in Jasak (1996).

Details on code implementation and validation steps are exposed all along Chapters
5 and 6.

This part is to be understood as linked with Chapter 3, where the physical phe-
nomena, the considered hypotheses or flow assumptions, and the resulting governing
equations were exposed.
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5.1 B-formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 φ-formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 A 2D approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

There are several approaches for modelling pure MHD. Here, only the three of them
applied in the framework of this thesis are exposed. The section is split in three parts.
In the first part the full set of equations 3.5 is considered, including implementation
strategies and validation cases. In the second part, the reduced set of equations 3.7,
corresponding to the low Magnetic Reynolds approximation, is studied. This part also
includes an stability analysis, a wall function implementation, and the fluid-solid cou-
pling strategy, along with validation cases. In the last part of this section, the 2D
system of equations is introduced. This 2D approach, not mentioned in Chapter 3, is a
result of CPU requirements for the application case presented in Chapter 8.

The different modelling approaches and validation steps are presented according to
the chronological order in which they have been applied. Moreover, as these approaches
were implemented and used in different stages of the development of the present thesis,
there is some lack of uniformity in the presentation of the results (error estimation,
analyses, etc.).

5.1 B-formulation

The B-formulation is based on the full set of equations 3.5 and, hence, it considers the
bi-directional coupling between velocity and the magnetic field. The critical point is
to enforce the solenoidal nature of the magnetic field (∇ · B = 0). Although the initial
magnetic field satisfies this constraint, multi-dimensional simulations do not guarantee
it along time evolution. If ∇ · B = 0 is not guaranteed, the solution may incorporate
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errors and, even worse, may become unstable. There are several strategies to deal with
this problem (Tóth 1998):

1. Increase of spatial resolution. This is the simplest technique and consists of in-
creasing the mesh resolution (i.e. reducing the grid size) until the magnetic field
divergence becomes small enough for the solution to converge. This works only
for stable schemes.

2. Non-conservative formulation. This technique consists of including in the momen-
tum (3.5b) and magnetic field (3.5c) equations new non-conservative source terms.
Such terms, proportional to ∇ ·B, appear when equation 3.2a is not accounted for
in the development of the final set of equations. These source terms should remain
zero all along the simulation. As found by Powell (1994), the main advantage is
that, if a 8-wave Riemann solver is used, the system remains stable. The error
associated with ∇ ·B persists, but is small.

3. Vector potential formulation. The final set of equations can be rewritten in terms
of the vector potential A (B = ∇×A); thus, the divergence free constrain is always
satisfied. The disadvantage of this approach is that the order of spatial deriva-
tives increases by one, which reduces the order of accuracy. With this formulation
the equations are not in a conservative form, become complicated in 3D, and the
boundary conditions on the vector potential may not be physically intuitive.

4. Constrained transport formulation. The original constrained transport method by
Evans and Hawley (1988) offers a simple and efficient solution by using staggered
grids for finite difference schemes. The magnetic field components are represented
on the cell interfaces, whereas density, momentum and energy in the cell centres.
In order to adapt this method to finite volume schemes, Tóth (2000) proposed a
central differencing method.

5. Projection scheme. This method was proposed by Brackbill and Barnes (1980)
as a correction to the magnetic field after the time step is completed, by some
arbitrary numerical scheme. The name comes from the idea that the predicted
magnetic field obtained at a time step can be projected to a divergence-free (new)
magnetic field for the same time step.

Although high spatial resolution is needed in the process of assessment of numerical
errors, it is of great interest that the developed code does not require fine meshes to
be conservative; thus, the first method is not of interest. In OpenFOAM, all main
variables are defined at cell centres so that, the constrained transport formulation is

46



Chapter 5. MHD modelling strategies

not applicable. Therefore, if B is to be the main variable and the already implemented
OpenFOAM solvers are to be used (for simplicity), the Projection method proposed by
Brackbill and Barnes (1980) is the most adequate. Indeed, the Projection method is
the one implemented in the official OpenFOAM version. This method is based on the
decomposition of a vector field into the sum of a curl and a gradient:

B∗ = ∇×A + ∇ψ (5.1)

where B∗ is the predicted magnetic field, A is the vector potential and ψ is a scalar
function. Taking the divergence of both sides, a Poisson equation for ψ is obtained:

∇2ψ = ∇ ·B∗ (5.2)

Thus, the predicted magnetic field needs to be corrected by:

B = B∗ − ∇ψ (5.3)

To ensure that the obtained B is solenoidal, the Laplace operator in the ψ Poisson
equation 5.2 must be evaluated in two steps, that is, as a divergence of the gradient
(∇2ψ = ∇ · (∇ψ)). Thus, the divergence operator used in the Laplace operator must
be the same as the one used for calculating (∇ · B∗) in 5.2 and, the gradient operator
used in the Laplace operator must be equal to the one used for calculating (∇ψ) in 5.3.
Note that the correction on the magnetic field (equation 5.3) does not affect the current
density j = ∇×B = ∇×B∗.

The method implies an extra Poisson equation, but it can be efficiently solved with
either direct or iterative solvers. It is also important to apply the boundary conditions
to the corrected magnetic field and to choose good boundary conditions for the Poisson
equation.

Next, the algorithm used to implement the B-formulation to OpenFOAM is de-
scribed.

5.1.1 Algorithm 1: B-PISO

First of all, let’s define a general transport equation for v as: Av(v) v = bv(v). Defin-
ing D and G as the divergence and gradient discrete operators respectively, the set of
governing equations 3.5 can be written in discrete form for each grid node yielding:

D(v) = 0 (5.4a)
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∂v

∂t
+ D(φvv) − D(νG(v))−D

(
φB
ρ µm

B

)
+G

(
B2

2ρ µm

)
︸ ︷︷ ︸

Av(v) v

= − G (p/ρ)︸ ︷︷ ︸
bv(v)

(5.4b)

∂B

∂t
+ D(φvB) − D(φBv)−D

(
1

η
G(B)

)
︸ ︷︷ ︸

AB(B) B

= 0 (5.4c)

D(B) = 0 (5.4d)

where, according to OpenFOAM notation, Sf is the face surface, φv = (vf · Sf ), φB =

(Bf · Sf ) and the subscript f indicates the interpolated value at control volume’s face.
Matrix Av(v) can be split in diagonal terms av(v) and off-diagonal terms. A new matrix
can be now defined as Hv(v) = −(Av(v) v − av(v) v). Following this procedure, a new
matrix HB(B) is obtained for the magnetic field B.

Continuity and momentum coupling is solved following the pressure-based PISO-
like algorithm developed by Weller et al. (1998). Thus, the algorithm presented in this
section is hereafter called B − PISO algorithm. In pressure-based algorithms, conti-
nuity equation is manipulated by means of momentum equation to obtain a pressure
equation. Here, momentum equation is used as a pre-conditioner for the velocity in
order to improve the accuracy of the Laplacian solver for the pressure equation. Once
the new pressure is obtained, the velocity is corrected. Very schematically, and using
the above mentioned matrix notation, the MHD algorithm used for the full set of equa-
tions is listed in Algorithm 1. As can be seen, the Picard linearisation method has been
used as well as the Jacobi pre-conditioner. This algorithm was already available in
the official OpenFOAM version, except for the magnetic field correction step, that was
implemented according to the Projection Method from Brackbill and Barnes (1980).

Another improvement with respect to the original algorithm has been the splitting
of the magnetic field in Bo, the externally applied magnetic filed, and b, the induced
one. This allows the user to impose a fixed external magnetic field (that do not need to
be constant in time and/or in space), which is the common practise in fusion technology
applications. Thus, new boundary conditions can be used (equations 5.5 and 5.6, being
n the surface normal unit vector), where the user needs to define the initial map for Bo

and b, and the B map is created as the sum of both, with Bo-type boundary conditions.

B = Bo electrically insulated wall (5.5)
∂B
∂n = 0 perfectly conducting wall (5.6)
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Algorithm 1 (B-PISO)

1. Initial map for v, p, Bo, b and ψ. Evaluate φv = (vf&Sf ) and φB = (Bf&Sf )

2. Prepare momentum discrete coefficients (eq. 5.4b):
Av(v) v → fvm::ddt(v) + fvm::div(φv,v)− fvm:: laplacian(ν,v)

−fvc ::div(φB ,B/(ρ µm)) + fvc::grad(magSqr(B)/(2ρ µm))

av(v) → diag(Av(v)) Hv(v) → −(Av(v) v − av(v) v)

Solve momentum equation Av(v) v = −fvc ::grad(p)/ρ to get v∗

3. PISO loop, with a fixed number of iterations.
Velocity pre-conditioner: v′ =

(
Hv(v∗)
av(v∗)

)
, φ′v = (v′f&Sf )

Solve pressure equation (pEqn): fvm:: laplacian( 1
av(v′) ρ , p) = fvc::div(φ′v)

Correct φ′v by means of the implicit terms φv = (φv)
′ − pEqn.flux

Solve continuity equation for error estimation: fvc ::div(φv)

Correct v′ and update boundary conditions v = v′ − 1
av(v′) ρ ∗ fvc ::grad(p)

4. Magnetic loop, with a fixed number of iterations.
Prepare magnetic field discrete coefficients (eq. 5.4c):

AB(B) B → fvm::ddt(B) + fvm::div(φv,B)− fvc ::div(φB ,v)

−fvm:: laplacian( 1
η ,B)

aB(B) → diag(AB(B)) and HB(B) = −(AB(B) B− aB(B) B)

Solve magnetic field equation AB(B) B = 0 to get B∗

Solve ψ equation (ψEqn): fvm:: laplacian( 1
aB(B∗) , ψ) = fvc::div(φ′B)

Correct φ′B by means of the implicit terms φB = (φB)′ − ψEqn.flux

Solve conservation of B equation for error estimation: fvc ::div(φB)

Correct B and update boundary conditions B = B− 1
aB(B) ∗ fvc ::grad(ψ)

5. Next time step.
Determine the time step.
Return to step 2.

Note: OpenFOAM’s notation has been used

Validation: Hartmann, Shercliff and Hunt cases

Three basic validation cases have been studied: Hartmann flow (Hartmann 1937), Sher-
cliff case (Shercliff 1953) and Hunt’s case (Hunt 1965). In all the simulations carried
out in this section, time step has been fixed fulfilling the CFD constrain C (Courant
et al. 1967) and the magnetic damping time τ = ρ

σmB2 constrain from Davidson (2001):

C ≤ 1 (0.5 for 2D cases) and ∆t < τ
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All validation cases reach a steady state. Numerically, it has been considered that
the steady state is reached when the variation in all variables (compared with values
at previous time step) is less than 10−6.

The equations have been solved by the (Bi-)Conjugate Gradient with incomplete-
Cholesky pre-conditioner. In all the simulated cases, solver precision has been set to
10−8 for vectorial fields, whereas 10−9 has been set for scalar fields. Inner iterations
through the PISO loop have been set to 3.

Hartmann flow

Hartman’s flow is the basic 2D MHD case for code validation; it is found between
two infinite parallel walls with a transverse constant magnetic field (in y direction).
The imposed inlet flow is parallel to this walls (x direction) and has a parabolic profile.
Walls are electrically insulated. The system is sketched in figure 5.1.

Figure 5.1: Hartmann case

The analytical solution is:

v = v0
cosh(Ha)− cosh(Ha y/a)

cosh(Ha)− sinh(Ha)/Ha

For the simulation, a 2D mesh has been defined in the x-y plane; hence, the Hart-
mann boundary layers are included in the domain and need to be solved. Wall distance
is 2a = 2 m and the length is five times this distance. The initial mesh (mesh 1) has
been defined with 100× 40 nodes uniformly distributed.

The non-slip velocity boundary condition has been imposed at walls and a fixed uni-
form velocity of vin = vo = 1 m/s has been imposed at the inlet. At the outlet, developed
velocity boundary conditions have been assumed. Fluid properties are such that, under
the above mentioned flow conditions, Re = 2.

The Hartmann channel has been simulated for Ha ∈ [0, 20]. In figure 5.2 the veloc-
ity profile at the middle length of the channel is represented for each Ha number at
steady state. It can be seen how, as Ha increases, maximum velocity is damped and,
at the same time, Hartmann boundary layers develop. These Hartmann layers have a
thickness of the order of (a Ha−1), being a the half of the channel width.

In order to evaluate the mesh consistency of the algorithm, several meshes have
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been used for Ha = 20, the resulting error is exposed in table 5.1, where the error has
been evaluated according to equation 5.7, being vtheory the analytical velocity obtained
from equation 5.7 and v the numerical solution. It can be seen that the error reduces
drastically with the mesh density. In fact, in order to obtain ε < 1, four nodes have been
required at Hartmann boundary layer.

ε = max

(
|v − vtheory|
vtheory

)
· 100 (5.7)

Figure 5.2: M-shaped profiles for different Ha

mesh nodes ε %

1 100 x 40 19.45
2 200 x 80 2.69
3 400 x 160 0.97

Table 5.1: Velocity error in
Hartmann’s case, as a function
of the mesh for Ha=20. B-PISO
algorithm.

Shercliff ’s case

In Shercliff (1953), the steady motion of an electrically conducting, viscous fluid
along rectangular channels in the presence of an imposed magnetic field is analysed.
The applied magnetic field is perpendicular to a pair of walls and all four walls are
non-conducting (Cw = 0). To obtain the analytical solution, Shercliff presents the case
where conditions are streamwise invariant (in the z-direction), excluding the pressure,
what fits with developed flow conditions. For a case set up as that shown in figure 5.3
and a fixed pressure gradient, the analytical solution has been found and exposed in
several works. Here, the corrected solution given by Ni et al. 2007 is shown, which is
a reformulation for high Hartmann numbers of the solution presented by Hunt (1965)
when all walls are perfectly insulated. The solution is:

vz = ν−1V

(
−∂p
∂z

)
a2 (5.8)

V =

∞∑
k=0

2(−1)kcos(αkξ)

lα3
k

(1− V2 − V3) (5.9)

V2 =

(
dB r2k + 1−exp(−2r2k)

1+exp(−2r2k)

)
exp(−r1k(1−η))+exp(−r1k(1+η))

2

1+exp(−2r1k)
2 dBNk + 1+exp(−2(r1k+r2k))

1+exp(−2r2k)

(5.10)
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V3 =

(
dB r1k + 1−exp(−2r1k)

1+exp(−2r1k)

)
exp(−r2k(1−η))+exp(−r2k(1+η))

2

1+exp(−2r2k)
2 dBNk + 1+exp(−2(r1k+r2k))

1+exp(−2r1k)

(5.11)

where the dimensionless coordinate along magnetic field lines is η = x/a and the one
perpendicular to it is ξ = y/a. l = b/a is the aspect ratio, and dB = Cw = σwδw/(σa) is
the Hartmann wall conductivity ratio, which, for Shercliff ’s case equals zero. Also:

Nk =
(
Ha2 + 4α2

k

)1/2
r1k, r2k =

1

2

(
±Ha +

(
Ha2 + 4α2

k

)1/2)
αk =

(
k +

1

2

)
π

l

y

vz

xz

Figure 5.3: Case set up for Shercliff ’s case

Periodic boundary conditions
have been implemented where
a mean velocity is fixed by the
user and the code evaluates the
corresponding pressure drop.
This strategy reduces drasti-
cally the number of points along
channel axis and, hence, the
computational time. Thus, a 3D
mesh with only three nodes along
z-axis is used.

In figure 5.4, the velocity and the induced magnetic field in z-direction have been
plotted for Ha = 1000. At such a high Ha, the core velocity is flat and boundary layers
very thin, specially Hartmann boundary layers.

The simulation results for different Ha and meshes have been tabulated in table 5.2.
All meshes except the third one in table 5.2 ( 80 × 30 nodes for Ha = 1000) are defined
so as to include four nodes at Hartmann boundary layer. The mesh concentration (conc.
in table 5.2) refers to the ratio between the largest volume and the smallest one. The
eighth and ninth columns of this table correspond to the velocity errors with respect to
the analytical solution along one axis, i.e. εx represents the error along x axis. Since
such errors are obtained at some fixed nodes not corresponding to real ones (as a post-
process in OpenFOAM), the solution has been interpolated. Hence, the exposed errors
also include interpolation errors that should decrease with mesh refinement. It can be
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Figure 5.4: Results for Shercliff ’s case at Ha = 103 and Re = 10. Axial velocity profile
(left), and axial induced magnetic field (right), B-PISO algorithm.

seen that, provided the Hartmann boundary layers are correctly modelled, the velocity
error is kept below 2 %. When different meshes are used (Ha = 103), the error decreases
drastically with mesh refinement.

Ha Re τ mesh conc. Ha−1/2 Ha−1 εy % εx % δs/a δHa/a

100 9 0.100 40 x 40 10 0.1 0.01 1.6 0.6 0.4 0.07
300 10 0.035 80 x 40 100 0.058 0.003 0.9 0.1 0.2 0.01
1000 10 0.003 80 x 30 200 0.032 0.001 3.6 0.05 0.08 0.005
1000 10 0.003 160 x 60 200 0.032 0.001 0.5 0.01 0.08 0.005

Table 5.2: Main results for the Schercliff ’s case with B-PISO algorithm.

The resulting thickness of each boundary layer (δs and δHa ) is obtained approxi-
mately from results and can be compared with the theoretical values also exposed in
table 5.2 (Ha−1/2 and Ha−1, respectively). It can be seen that, despite the low accuracy
of the measured boundary layer thickness, the order of magnitude coincides with the
theoretical one.

A detailed comparison of the simulated velocity profile at side boundary layers, com-
pared with the analytical solution, is exposed in figure 5.5. Good accuracy can be ob-
served.
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(a) (b)
Figure 5.5: Side layer (a) and Hartmann layer (b) axial velocity profiles for Ha =
103 and Re = 10. Comparison between numerical results and analytical solution for
Shercliff ’s case, with B-PISO algorithm.

Hunt’s case

In Hunt (1965) different wall conductivities were studied for a rectangular duct sim-
ilar to that exposed in previous section. In case II of that article, Hartmann walls are
conducting (with wall conductivity ratio from 0 to ∞) whereas side walls are perfectly
insulated. The geometry and dimensions are the same as those for Shercliff ’s case.
The particular case of perfectly conducting Hartmann walls, which is commonly called
Hunt’s case, is of great interest since it reproduces the so called M-shaped velocity pro-
file with a flat core velocity and jets at side boundary layers (see section 3.4.1 for a
detailed explanation). At high enough Ha, a reverse flow appears between the jet and
the core flow; thus, Hunt’s case provides an excellent set-up for code validation with a
complex velocity profile.

As in the previous case, walls are non-slip and periodic boundary conditions are
considered along the channel axis. The analytical resolution is the same as for Sher-
cliff ’s case but with dB = Cw,Ha = ∞. From numerical velocity profiles at different
Ha, exposed in figure 5.6, it can be observed the dependency of the M-shaped profile
with Hartmann. When jets appear at the side wall (Ha ≥ 100), the core velocity is much
smaller compared to the Shercliff ’s solution at the same Ha number, in fact, it takes val-
ues around v/vo = 10−2. In these cases, the difference between the theoretical solution
and the simulated one is of the order of machine error and, hence, the relative velocity
error is very difficult to reduce by mesh refinement (εy error in table 5.3). Therefore,
to get an order of magnitude of the quality of the solution, the mean flow error (εv) has
been calculated. To obtain this error, the pressure gradient computed by the code is
used to calculate the theoretical mean velocity from the Hunt’s solution (equation 5.8).
The εv error, also called mean flow error, is the relative error between the computed
mean mass flow and the theoretical one. In table 5.3 these results are listed for differ-
ent Ha and meshes. It can be seen that the mean flow error is small enough to consider
that accurate results are obtained. Note that the magnetic Reynolds number is kept
always below 1. Some cases have been simulated with Rm = 300 and some conver-
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Figure 5.6: Side layer (a) and Hartmann layer (b) axial velocity profiles for Hunt’s
case at different Ha and Re = 10, B-PISO algorithm.

Ha Re Rm N τ mesh conc. εx % εy % εv %
0 10 0.01 0 ∞ 40 x 40 10 x 10 2.80 2.80 0.3
1 10 0.01 0.1 104 40 x 40 10 x 10 2.77 2.74 0.3

10 10 0.01 10 102 40 x 40 10 x 10 2.21 2.23 0.2
100 10 0.01 103 1 40 x 40 10 x 10 1.95 4449.23 0.6
1000 10 0.01 105 10−2 40 x 40 10 x 10 21.09 332.68 4.2
1000 10 0.01 105 10−2 60 x 60 200 x 100 0.17 255.91 1.6
1000 10 0.01 105 10−2 60 x 80 200 x 200 0.48 198.26 1.6
1000 10 0.01 105 10−2 60 x 120 200 x 200 0.21 78.22 1.5
1000 10 0.01 105 10−2 80 x 140 100 x 400 0.22 72.65 1.5

Table 5.3: Main results for the Hunt’s case with B-PISO algorithm.

gence problems have been experimented due to the bidirectional coupling between the
velocity and the magnetic field.

5.2 φ-formulation

As mentioned in section 3.2.2, the final set of equations 3.7 obtained when the induc-
tionless approximation is considered requires less computational time than the full
set of equations solved by B-PISO algorithm. The main drawback is the need for an
accurate electric current estimator that ensures current conservation. Here, the con-
servative strategy from Ni et al. (2007) is chosen.

In this section, two different algorithms are introduced (φ-FSPM and φ-PISO), being
the unique difference between them the pressure-velocity coupling strategy.
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5.2.1 Algorithm 2: φ-FSPM

The pressure.based algorithm proposed by Ni et al. (2007) follows a Four Step Projec-
tion Method. Thus, exactly the same algorithm has been implemented in OpenFOAM,
resulting in Algorithm 2, hereafter called φ-FSPM. In this algorithm, the pressure gra-
dient term in the momentum equation is neglected and the Lorentz force term in the
same equation is explicit, for the velocity predictor estimation step. Then, the pressure
equation is solved and the predicted velocity can be corrected. Afterwards, the elec-
tric potential equation is solved. Finally, the electric current and the Lorentz force are
evaluated.

In order to conserve the electric current charge, Ni et al. (2007) proposed three al-
ternatives. From those, the one applied here is the proposal based on a conservative
formula of the Lorentz force. It first requires a consistent scheme for calculation of
the current flux on cell faces. This step has been implemented following equation 5.13,
where jn stands for the cell surface orthogonal component of the current density flux,
the subscript f indicates the interpolated value at control volume’s face, Sf is the face
surface of the control volume, and ∇sn is a surface normal gradient that already in-
cludes non-orthogonal mesh corrections. Once jn is obtained, the Lorentz force can be
evaluated at cell centres following equation 5.14, where Ωc is the cell volume and C is
the cell centre.

χ = (σf (vf ×Bof )) · Sf (5.12)

jn = −σf (∇snφ) · |Sf |+ χ (5.13)

j×Bo = − 1

Ωc

∑
f

(jn · (Bo ×C)f )−C× 1

Ωc

∑
f

(
jn ·Bof

)
(5.14)

Returning to the original set of equations 3.7, and following the same strategy than
for the B-PISO algorithm in section 5.1.1, the equations can be written in discrete form
for each grid node, yielding:

D(v) = 0 (5.15a)
∂v

∂t
+ D(φvv) − D(νG(v)) − (j×Bo)/ρ︸ ︷︷ ︸

Av(v) v

= − G (p/ρ)︸ ︷︷ ︸
bv(v)

(5.15b)

D(σG(φ)) = D(σ(v ×Bo)) (5.15c)

j = σ(−G(φ) + v ×Bo) (5.15d)

where, D and G are the divergence and gradient discrete operators, respectively, and,
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according to OpenFOAM notation, φv = (vf · Sf ) is the face volumetric flux. As before,
matrix Av(v) can be split in diagonal terms av(v) and off-diagonal terms. A new matrix
can be now defined as Hv(v) = −(Av(v) v − av(v) v).

With the conservative constraints from Ni et al. (2007) (equations 5.13 and 5.14) and
the above mentioned notation, Algorithm 2 is obtained.

Algorithm 2 (φ-FSPM)

1. Initial map for v, p and φ. Evaluate φv and Lorentz force.

2. FSPM loop with a fixed number of iterations
2.1 Prepare momentum discrete coefficients (eq. 5.15b)

Av(v) v → fvm::ddt(v) + fvm::div(φv,v)− fvm:: laplacian(ν,v)− (j×Bo)
ρ

av(v) → diag(Av(v)) Hv(v) → −(Av(v) v − av(v) v)

Solve momentum equation Av(v) v = 0 to get v′

Evaluate φ′f = v′f &Sf

2.2. Solve pressure equation (pEqn): fvm:: laplacian( 1
av(v′) ρ , p) = fvc::div(φ′v)

Correct φ′v by means of the implicit terms φv = φ′v − pEqn.flux

Solve continuity equation for error estimation: fvc ::div(φv)

Correct v′ and update boundary conditions v = v′ − 1
av(v′) ρ ∗ fvc ::grad(p)

2.3. Magnetic coupling:
Evaluate the magnetic flux term χ = (σf ∗ (vf ×Bof ))&Sf
Solve electric potential equation: fvm:: laplacian(σ, φ) = fvc::div(χ)

Evaluate jn (eq. 5.13)
Evaluate the Lorentz force (eq. 5.14)
Solve conservation of jn for error estimation: fvc ::div(jn)

3. Next time step.
Determine the time step.
Return to step 2.

Note: OpenFOAM’s notation has been used

When the electric potential is the main electromagnetic variable, the corresponding
boundary conditions are:

∂φ
∂n = 0 electrically insulated wall (jn = 0)

φ = 0 perfectly conducting wall
(
∂jn
∂n

= 0

)
where n stands for the surface normal unit vector.
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Validation: Shercliff and Hunt cases

As suggested by Ni et al. (2007), the crank-Nicholson scheme is used; hence, the method
is second order in time. The Central-Difference discretisation in space has been cho-
sen. The equations have been solved by the (Bi-)Conjugate Gradient with incomplete-
Cholesky pre-conditioner. Two different validation cases have been studied: (1) Sher-
cliff ’s case, and (2) Hunt’s case, both explained in section 5.1.1. Finally, a comparison
with the B-PISO algorithm performance at coarse meshes is carried out.

In all simulated cases, solver precision has been set to 10−8 for velocity and 10−9 for
pressure and electric potential. Inner iterations through the FSPM loop have been set
to 3. And the steady state has been defined to have relative error between successive
time steps below 10−7.

Shercliff ’s case
Shercliff ’s case has been studied for Ha = 100 and Re = 10 (N = 103) in a rectan-

gular channel (figure 5.3). Taking advantage of the developed flow profile, a 3D mesh
with periodic inlet/outlet boundary conditions, based on a fixed mass flow rate and the
corresponding pressure drop evaluation, is used; therefore, with only three nodes in
the channel axis direction the flow is perfectly reproduced. Walls are defined as non-
conducting imposing ∇nφ = 0. Different meshes have been considered, as defined in
table 5.4. The coarsest mesh, mesh 0, has already 7 nodes in Hartmann boundary
layer; hence, all the meshes are fine enough to accurately capture the flow profile, as
can be observed in figure 5.7.
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Figure 5.7: Hartmann layer (a) and Side layer (b) axial velocity profiles for Shercliff ’s
case at Ha = 100 and Re = 10, φ-FSPM algorithm.

Being vo the mean flow velocity and Ω the studied domain, and the subscript th
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indicating the theoretical value (according to equation 5.9), the errors exposed in table
5.4 can be defined as:

εp = 100 · |∇p−∇pth|
∇pth

%

εv = 100 ·mean
(
|v − vth|

vo

)
%

L2(Ω) =

(∫
Ω

(
|v − vth|

vo

)2

dV

)2

∇ · jac accounts for the accumulative electric current divergence, all along the simu-
lation. Thus, results exposed in table 5.4 indicate that: (1) the electric current is not
perfectly conserved at each time step in coarse meshes, despite the fact that the overall
electric current is conserved all along the simulation (low∇·jac values), (2) mesh refine-
ment reduces the non-conservation of electric currents, (3) for an accurate estimation
of the pressure gradient (with an error below 1 %), more than 7 nodes at the Hartmann
boundary layer are required, (4) the mean velocity error is very small, even at coarse
meshes, and (5) the error decreases very fast with mesh refining at coarse meshes but
not at fine ones. Finally, it can be said that the φ-FSPM algorithm has a good behaviour
for Shercliff ’s case, with accurate results in reasonable meshes.

mesh nodes ∇ · j ∇ · jac εp % εv % L2(Ω)

0 40× 20 1.70 · 10−5 2 · 10−19 1.83 0.36 7.8 · 10−3

1 80× 40 4.56 · 10−6 2 · 10−20 0.57 0.15 3.3 · 10−3

2 160× 80 1.19 · 10−6 −3 · 10−19 0.22 0.11 2.2 · 10−3

2a 160× 160 5.48 · 10−7 2 · 10−9 0.20 0.10 2.0 · 10−3

Table 5.4: Simulation errors for Shercliff ’s case (Ha = 100, Re = 10) with
φ-FSPM algorithm.

Hunt’s case

Hunt’s case has been studied for Ha = 103 and Re = 700 (N = 1.43·103) in a rectangu-
lar channel (figure 5.3). Compared to Shercliff ’s validation test, the Hartmann number
is substantially higher and, as a result, boundary layers are much thinner. As before,
a 3D mesh with periodic inlet/outlet boundary conditions, based on a fixed mass flow
rate and the corresponding pressure drop evaluation, is used. Side walls are defined to
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be non-conducting (∇nφ = 0) whereas, at Hartmann walls, the boundary condition im-
poses φ = 0. The studied meshes are defined in table 5.5. Compared with the simulated
cases for Shercliff ’s case, these meshes are very coarse; for instance, mesh 3 includes
only 4 nodes in Hartmann boundary layer. This results in very inaccurate flow profiles
for mesh 0, as can be seen in figure 5.8. Such errors are quickly reduced with mesh
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Figure 5.8: Hartmann layer (a) and Side layer (b) axial velocity profiles for Hunt’s
case at Ha = 103 and Re = 700, φ-FSPM algorithm.

refinement, as shown in table 5.5. Here, the same error definition as in the previous
validation has been used. From the velocity profile along side boundary layer, it can
be stated that two critical points exist: (a) the peak of the jet, and (b) the recirculation
zone. In order to quantify the accuracy in the peak zone, εpeak has been defined, which
corresponds to the relative velocity error just at the peak of the side boundary layer jet.
As before, the error is reduced drastically in mesh 1. It can be stated that the algorithm
provides accurate results also for Hunt’s case, even at very coarse meshes. This is an
interesting result since, for the simulation of the entire blanket, due to computational
resources limitations, the simulated mesh might not be as fine as desired.

mesh nodes ∇ · j ∇ · jac εpeak % εv % L2(Ω)

0 20× 20 4.14e− 5 2.3e− 9 6.34 20.89 1.04

1 40× 40 7.79e− 6 1.0e− 9 2.47 4.30 0.20

2 80× 80 1.75e− 6 2.6e− 9 1.63 1.51 0.08

3 160× 160 3.01e− 7 1.7e− 10 1.41 1.39 0.09

Table 5.5: Simulation errors for Hunt’s case (Ha = 103, Re = 700) with
φ-FSPM algorithm.
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Comparison with B-PISO algorithm

Comparing εv results for Hunt’s case at Ha = 103 in tables 5.3 and 5.5, with mesh
40 × 40 it can be predicted that both algorithms behave very similar. Assuming that
the low magnetic Reynolds approximation is valid, and provided that the first order
Euler temporal scheme is used, main difference between both algorithms is that B-
PISO algorithm provides a better pressure-velocity coupling, based on PISO strategy.

Considering the first order temporal discretisation and the Central Difference spa-
tial discretisation for both algorithms, a comparison of their behaviour for Shercliff ’s
and Hunt’s cases has been done. The chosen time step criterion follows the constraint
in equation 5.19, according to the 1D monotone stability analysis described in section
5.2.2. In all cases, the (Bi-)Conjugate Gradient solver with the incomplete-Cholesky
pre-conditioner has been used.

Shercliff ’s case
In table 5.6 the chosen meshes and simulation results for Shercliff ’s case with Ha =

102, Re = 10, N = 103 and a = b are shown. In the table, NHa and Nside stand for the
number of nodes on Hartmann and side boundary layers, respectively. It can be seen
that φ-FSPM algorithm presents a better behaviour at very coarse meshes whereas B-
PISO has a better accuracy improvement with mesh refinement. With very fine meshes,
both results present almost the same error.

mesh concentration nodes NHa Nside B-PISO φ-FSPM
εv % εv %

0 uniform 20× 20 0.1 1 91.53 13.10
1 uniform 40× 40 0.2 2 16.84 8.21
2 uniform 80× 80 0.4 4 2.91 4.04
3 uniform 160× 160 0.8 8 0.77 1.45
A wall conc. 184× 140 4 15 0.15 0.11

Table 5.6: Error comparison between B-PISO and φ-FSPM algorithms for
Shercliff ’s case (Ha = 102, Re = 10).

In figure 5.9 the oscillating behaviour of B-PISO algorithm at very coarse meshes,
linked with its needs of artificial numerical diffusion for such coarse meshes, is made
explicit. Thus, it can be stated that B-PISO algorithm behaves as a high order scheme.
In a detailed analysis of the results, where the diffusion term is compared with the
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Lorentz force term in the momentum equation, it has been observed that at coarse
meshes, both terms are not balanced. Thus, al alternative method for evaluating mesh
quality could be based on the analysis of the balance between diffusion and Lorentz
terms.
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Figure 5.9: Hartmann layer (a) and Side layer (b) axial velocity profiles for Shercliff ’s
case at Ha = 102 and Re = 10, comparison for different meshes and both B-PISO and
φ-FSPM algorithms.

Hunt’s case
In table 5.7 the chosen meshes and simulation results for Hunt’s case with Ha =

103, Re = 10, N = 103 and a = b are shown. Like in Shercliff ’s case, the error is
substantially lower for the φ-FSPM algorithm at coarse meshes. Also, according to
figure 5.10, oscillations appear at very coarse meshes for B-PISO algorithm.

mesh concentration nodes NHa Nside B-PISO, εv % φ-FSPM, εv %
2 uniform 80× 80 0.08 2.5 30.08 17.26
3 uniform 160× 160 0.16 5.1 7.67 5.21
A wall conc. 240× 336 4 7.9 – 1.70

Table 5.7: Error comparison between B-PISO and φ-FSPM algorithms for Hunt’s case
(Ha = 103, Re = 10).
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Figure 5.10: Hartmann layer (a) and Side layer (b) axial velocity profiles for Hunt’s
case at Ha = 103 and Re = 10. Comparison for different meshes and both B-PISO and
φ-FSPM algorithms.

Conclusions

To conclude, φ-FSPM algorithm has better time requirements (lower CPU costs) for
each iteration and has better convergence with very fine meshes. In contrast, B-PISO
algorithm needs less inner iterations and, thus, finds the steady state faster, but be-
haves as a high order scheme, hence, presents oscillations near a discontinuity.

Thus, a combination of both algorithms is desired. Such combination is exposed in
section 5.2.5.

5.2.2 Stability Analysis 1: Monotone scheme

According to Patankar (1980), the most simple stability analysis of a numerical scheme
applied to a given transport equation is based on imposing that all coefficients in the
discrete equation have the same sign.

The 1D linearised momentum equation 3.7b, applying the Central Difference scheme
in space and the first order Euler (explicit) in time, can be expressed as:

∂v
∂t + (v · ∇)v = −∇pρ + ν∇2v + j×Bo

ρ

aivi = a0
i vi + a0

i+1vi+1 + a0
i−1vi−1 + bi

where, given a control volume of a one-dimensional mesh, the central node corresponds
to subscript i whereas the east and west nodes to subscripts (i+ 1) and (i− 1) respecti-
vely. Superscript ’0’ stands for previous time step. The explicit Lorentz force term has
been simplified to vB2

o according to Leboucher (1999), what implies that the main flow
direction is perpendicular to the externally applied magnetic field. For a fixed time step
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∆t and a uniform mesh spaced as ∆x, the coefficients are:

ai = 1

a0
i = 1− σB2

o∆t

ρ
− 2ν∆t

(∆x)2

a0
i+1 = −vo∆t

2∆x
+

ν∆t

(∆x)2

a0
i−1 =

vo∆t

2∆x
+

ν∆t

(∆x)2

Thus, if all the coefficients are to have the same sign, two constrains for stability are
obtained:

L + D ≤ 1

C/D ≤ 1

where C,D and L are defined in 5.17. Note that the second constrain is typical (Patankar
1980) for Central Difference scheme and corresponds to a grid Peclet number lower than
2. Note also that L = NC, where N is the interaction parameter.

C =
vo∆t

∆x
(5.17a)

D =
2ν∆t

(∆x)2
(5.17b)

L =
σB2

o∆t

ρ
= NC (5.17c)

Combining both mentioned constrains would yield to:

C + L ≤ L + D ≤ 1 (5.18)

This double constrain has been simplified to equation 5.19, which is the constrain im-
plemented in the φ-FSPM algorithm and tested hereafter. It has to be mentioned that,
since the temporal scheme is not explicit but implicit except for the Lorentz force term,
this constrain is useful in terms of accuracy but is not needed in terms of stability.
In cases where the diffusion is not relevant (laminar cases), D can be neglected from
equation 5.19.

C + L+D ≤ 1 (5.19)
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Sensitivity analysis on time step criterion

Considering Hunt’s case at Ha = 103 and Re = 700, and assuming laminar flow, a
sensitivity analysis on time step criterion is performed. Since the final flow is two-
dimensional, results obtained by the monotone stability analysis should be modified
accordingly. In pure hydrodynamical flows, it is widely accepted that the 1D constrain
C ≤ 1 should be reduced to C ≤ 0.5 for 2D flows and C ≤ 0.2 for 3D flows (these values
are suitable for uniform meshes). The same effect is expected to be found for the MHD
case.

For pure hydrodynamic cases, the diffusive contribution to the accuracy constrain (D)
is often neglected. Following such strategy, several (C+L) values have been studied and
compared with a simulation that fulfils the theoretical 2D constrain (C + L+D ≤ 0.5).

To carry out such analysis, a fully 3D mesh is required with a fixed velocity at the
inlet, otherwise the periodic inlet/outlet boundary condition could alter the transient
behaviour of the flow. The channel dimensions are 2a × 2a × L, where L = 10a. A
fixed 3D mesh of 60 × 40 × 50 nodes (x-y-z) has been used, with a high concentration
towards Hartmann walls (of factor 100), a low concentration towards side walls (factor
10) and uniform along channel axis. The results with this mesh, according to parame-
ters shown in table 5.5, are expected to be accurate since Hartmann layers are meshed
into 12 nodes. For the transient analysis, an initial map corresponding to developed
hydrodynamic flow with a fixed mass flux at the inlet is imposed. The total pressure at
the outlet has been fixed.

In table 5.8 results for different time steps are shown. In the table, τsteady stands
for the total time required to reach the steady state (defined as a maximum relative
variation of the velocity of 10−7). The electric current is conserved in all the cases and
the L2 norm error along each axis is minimised for C + L = 0.2 (which is a typical
value for 3D cases), what indicates the three-dimensional nature of the flow due to
the entrance effect, despite the length of the channel. The velocity profiles, exposed

C + L ∆t (s) τsteady (s) ∇ · j ∇ · jac L2(x) L2(y)

0.2 0.4 531.176 3.5e− 5 3e− 9 0.19 0.40

0.5 1 530.714 7.6e− 5 3e− 9 0.34 0.82

1 2 531.429 1.4e− 4 4e− 9 0.54 1.50

2 3.33 541.667 1.6e− 4 4e− 9 0.60 1.71

Table 5.8: Transient behaviour of φ-FSPM algorithm, for Hunt’s case
(Ha = 103, Re = 700).
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in figure 5.11, make explicit the above mentioned minimisation of the L2 norm errors
when C + L = 0.2. This figure also features the results for the case where the full
constrain including the diffusion term (equation 5.18 extrapolated to a 2D case) is taken
into account, which implies an even smaller time step. It can be seen that, with the
latter time step, both the numerical and analytical solutions match. Therefore, the
diffusive contribution to the accuracy constrain should not be omitted.

In figure 5.12(a), the temporal evolution of the error is plotted, showing the good
convergence of the algorithm and the inaccuracy of the results when C + L = 2. This
is a relevant result since it indicates that, although stability is guaranteed, the time
step criterion can alter substantially the accuracy of the numerical result. In figure
5.12(b) it can be seen that a relatively large number of inner iterations (20) is required
at the first stage of the transient simulation whereas at an advanced time only 2-3
inner iterations are needed to converge.
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Figure 5.11: Hartmann layer (a) and side layer (b) axial velocity profiles for Hunt’s
case at Ha = 103 for different time step criterion, φ-FSPM algorithm.
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Figure 5.12: Error evolution with time (a) and inner iteration evolution with time (b)
for Hunt’s case at Ha = 103 for different time step criterion (C +L), φ-FSPM algorithm.
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It is worth mentioning that the inaccuracy of results is strongly affected by non-
uniformity of the mesh. Indeed, for a uniform mesh, when the time step constrain
is met in one control volume, it is met in the entire domain. This is not the case of
non-uniform meshes, where the most restrictive cell (usually the smallest one) is the
one that fixes the time step; with that time step, numerical diffusion in all other cells
is expected to exist. If a uniform time step is used over the entire domain (as is the
present case), the diffusion problem cannot be avoided.

5.2.3 Stability Analysis 2: von Neumann analysis

A von Neumann stability analysis of a linearised momentum equation can be easily
performed in order to obtain an order of magnitude of the time step required by the al-
gorithm in a more accurate manner than with the monotonic scheme exposed in section
5.2.2. Such analysis, hereafter exposed, has been performed with Maple software.

The von Neumann stability analysis, described in many books, e.g. Leveque (2002)
and Hoffman (2001), consists on finding the so called amplification factor A for the
Fourier Transformation of the momentum equation (equation 5.20, where U , k, ∆x

and ∆t are the discrete velocity, the wave number, the mesh size and the time step,
respectively) and calculating the required constraints in order to fulfil |A| ≤ 1, which is
a sufficient condition for stability.

Un+1(k) = A(k,∆x,∆t)Un(k) (5.20)

Regarding to φ-formulation algorithms (φ-FSPM in section 5.2.1 and φ-PISO in sec-
tion 5.2.5), the aim is analysing the stability of the momentum equation where all terms
except the Lorentz force term are treated implicitly and the Central Difference scheme
is used for both advection and diffusion terms. In a first approach, and in order to de-
couple momentum from continuity and temperature equations, pressure gradient and
buoyancy terms are omitted from momentum equation. Moreover, the system is con-
sidered 1D and the grid uniform. Under this discretisation, the discrete momentum
equation is:

Un+1
i − Uni +

C
2

(
Un+1
i+1 −

n+1
i−1

)
=
D
2

(
Un+1
i+1 − 2Un+1

i + Un+1
i−1

)
− LUni (5.21)

where C, D and L are v ∆t
∆x , 2ν ∆t

∆x2
and σ B2

0 ∆t
ρ respectively (defined in equations 5.17).

Subscript indicates the grid position whereas superscript indicates the time step.
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The obtained amplification factor is:

A =
(2− 2L) (2− 2Dcos(k∆x) + 2D)

(2− 2Dcos(k∆x) + 2D)2 + 4C2sin(k∆x)2
− i 2 (2− 2L) Csin(k∆x)

(2− 2Dcos(k∆x) + 2D)2 + 4C2sin(k∆x)2

Since (|A|)2 ≤ 1 is a condition for stability, for the sake of simplicity (|A|)2 is evalu-
ated, yielding:

(|A|)2 =
(L − 1)2

1 +D2cos(k∆x)2 − 2Dcos(k∆x)− 2D2cos(k∆x) + 2D +D2 + C2 − C2cos(k∆x)2

It can be easily seen that for k∆x = 0 the constrain L ≤ 2 is already obtained, but
with the special case L = 1 → A = 0. The same analysis for other k∆x factors does not
provide any extra information because the obtained constrains are always fulfilled.

When looking for maxima or minima of (|A|)2, three different solutions for k∆x are
obtained. The first solution is the already mentioned k∆x = 0 and the other two solu-
tions:

arctan

(
±
(
−D2 − 2D2C2 + C4 − 2D3

)1/2
−D2 + C2

,
−D2 −D
−D2 + C2

)

If (|A|)2 is evaluated for these latter solutions, the stability condition results in:(
C2 −D2

)
(L − 1)2

C2 (2D + C2 + 1)
< 1

Hence, it can be stated that the 1D linear momentum equation discretised by an im-
plicit scheme except for the Lorentz force term, and using the Central Difference scheme
(equation 5.21) is stable provided that L ≤ 2 (with the exception of L = 1), is never per-
fectly accurate and implies a phase error of:

φ = arctan

(
=(A)

<(A)

)
= arctan

(
Csin(k∆x)

−1 + (cos(k∆x)− 1)D

)

The above mentioned result can be also observed in figure 5.13, where the locus of
the amplification factor, as a function of L, C and D numbers is represented. It can be
proved that even with high values of C and D, the solution is still stable provided L ≤ 2

(with the exception of L = 1, which gives A = 0).

When no magnetic field is applied, the classical convection-diffusion equation is ob-
tained and the scheme becomes unconditionally stable, as was also stated in Hoffman
(2001).
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Figure 5.13: Locus of the amplification factor A

5.2.4 Wall function

The efficiency of Direct Numerical Simulations (DNS) of MHD duct flows under intense
magnetic fields mainly depends on how the flow inside the very thin Hartmann layers
is addressed. In order to avoid computing the flow inside these layers, specific boundary
conditions at the interface between the bulk flow and the Hartmann layers relying on
analytical functions (wall functions) can be used. The implementation of such wall
functions in OpenFOAM in the framework of the present thesis was deemed necessary,
regarding the CPU time limitations of the thermal-hydraulics group at the UPC. To this
aim, a short stay at Coventry University, with Alban Pothérat and Vincent Dousset as
hosts, was carried out. The wall function implementation could be efficiently carried
out because both groups (at Coventry University and at UPC) were already developing
MHD tools in OpenFOAM.

Wall functions rely on Taylor expansions of the flow quantities with respect to the
flow parameters Ha and N. The wall function implemented in the short stay was the one
proposed by Walker (1981). This wall function neglects terms of order (1/Ha). In this
approximation, the normal velocity at the interface between the Hartmann layers and
the bulk flow is neglected because this velocity is of order 1/Ha. So, no fluid exchange is
allowed at this interface. This wall function will be referred to as linear wall function.

The linear wall function has been implemented as described in Leboucher (1999)
and Muck et al. (2000). It basically consists of a Neumann-type boundary condition
of the form represented in equation 5.22 which has to be solved implicitly. Hence, for
each time step a new internal loop has to be built where the electric potential and its
boundary condition have to be solved. The slip boundary condition is used for velocity.

∇nφ = −(aCw + δHa) ∇2
⊥φ (5.22)
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The l.h.s. in equation (5.22) is the Neumann-type (fixed gradient) boundary condi-
tion that has to equal the r.h.s. obtained from the results of solving the electric potential
equation (3.7c). The subscript n represents the wall normal direction whereas ⊥ in-
cludes both wall parallel directions in a 3D frame. So, if n = x then ∇2

⊥φ = ∂φ2

∂y ∂y + ∂φ2

∂z ∂z .
The coefficient (aCw + δHa) is the sum of the wall conductivity ratio (Cw = (σw δw)/(σa))
and the boundary layer thickness (δHa = a/Ha), where a is half of the dimension paral-
lel to the magnetic field.

Hence, once the linear wall function has been implemented, the new algorithm is
already able to deal with walls with finite and nonzero conductivity, which is a very
useful code improvement in order to be able to simulate more real cases. However, some
problems have been observed by the author at high Cw in corner regions that make
such wall function unsuitable for its use as a solid wall emulator. Recently, Mistrangelo
(2010) has proposed a new solid emulator with OpenFOAM code by solving a 2D φ

equation for the wall surface and coupling it with the 3D φ equation at the fluid region.

Validation: Shercliff’s case

The implemented linear wall function has been validated with Shercliff ’s case (Shercliff
1953) already described in section 5.1.1. The case set up is represented in figure 5.3 and
the analytical solution is obtained from equation 5.9. In this case b = 2a.

First, a mesh influence analysis has been carried out for Ha = 50 and imposing a
pressure gradient of d(p/ρ)/dz=1.6 Pa/m in equation 5.8, what corresponds to Re = 46.3

and N = 54. The Hartmann boundary layer depth has been set to δHa = a/Ha. Four
different meshes have been studied, as listed in table 5.9. The finest one corresponds
to a DNS mesh and, thus, has been used without wall function. Meshes 0, 1 and 2 are
coarser meshes that need wall functions. In fact, mesh 2 equals the DNS mesh except
at Hartmann boundary layers.

In table 5.9, Nside corresponds to the number of nodes in side boundary layers (of
depth a/Ha1/2), εm stands for the relative mass flux error, and εx and εy are the relative
velocity errors along x or y axis, respectively. Velocity profiles of the simulated cases are
shown in figure 5.14. Note that εm is evaluated here instead of the pressure gradient
error (as was done in previous validation cases); this is because the periodic boundary
condition used here is defined so that a pressure gradient is imposed instead of an inlet
mean velocity. The boundary condition, consequently, evaluates the mass flux.

Obviously, the relative velocity error along x axis (along magnetic field lines) is sub-
stantially larger when the wall function is used, since Hartmann boundary layers are
not simulated. However, both εm and εy are lower when the linear wall function is used
with mesh 2. Moreover, the computational time (CPU time in table 5.9) is drastically
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mesh nodes Nside εm % εy% εx% CPU time
Full DNS 26× 80 30 0.67 1.19 3.27 3h 53’

2 16× 80 30 0.41 0.55 57.86 2h 12’
1 16× 52 20 0.30 1.28 57.86 42’
0 8× 40 15 0.51 4.77 57.86 5’

Table 5.9: Simulation results of φ-FSPM algorithm with linear Wall Func-
tion for Shercliff ’s case (Ha = 50, N = 54).

reduced, as the reduction in mesh nodes is predominant over the extra time required
for the boundary condition inner iterations. It can be stated that, for a fixed Ha and N,
the mesh can be coarsened without any substantial loss of accuracy and with a great
improvement on the CPU time. Indeed, comparing DNS mesh with mesh 0, the mesh
has been coarsened by a factor of 0.15 but the reduction on the mass flow accuracy
has been 0.24 % whereas the time reduction has been more than 98 %, what means a
reduction time from almost 4 hours to 5 minutes. These are very promising results.
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Figure 5.14: Hartmann layer (a) and side layer (b) axial velocity profiles for Sher-
cliff ’s case at Ha = 50 and Re = 46.3 , with and without Wall Function (WF), φ-FSPM
algorithm.

A second study has been carried out with the aim of defining the optimal Hartmann
boundary layer depth. To this aim, the same case has been repeated with mesh 1 but
with double δHa . From results in table 5.10 and figure 5.15, it can be stated that, despite
a slight reduction in CPU time for δHa = 2a/Ha, simulating the Hartmann boundary
layer as having a depth of δHa = a/Ha yields more accurate results.

A third study has consisted on analysing the Ha range of applicability of the linear
wall function. Keeping constant the pressure gradient, Hartmann number has been
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mesh δHa εm % εy% εx% CPU time
1 a/Ha 0.30 1.28 57.86 42’
1 2a/Ha 4.22 2.00 12.79 39’

Table 5.10: Influence of δHa on wall function performance
with φ-FSPM algorithm (Ha = 50, N = 54).
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Figure 5.15: Hartmann layer (a) and side layer (b) axial velocity profiles for Shercliff ’s
case at Ha = 50 and Re = 46.3 , with Wall Function (WF) and different Hartmann
boundary layer depths, φ-FSPM algorithm.

modified. Some results have been exposed in table 5.11. The case with Ha = 50 is the
same is in the previous studies, whereas in cases with higher Hartmann numbers the
inlet velocity profile has been obtained from the exact solution for the above mentioned
pressure drop.

Ha Re N mesh nodes Nside εm % εy% εx% CPU time
50 46.3 5 · 10 2 16× 80 30 0.41 0.55 57.86 2h 12’

100 23.7 4.2 · 102 2 16× 80 30 0.25 0.75 56.63 1h 48’
500 4.9 5.1 · 104 3 20× 70 20 0.10 0.57 0.64 9h 46’

1000 2.5 4.0 · 105 3 20× 70 20 0.44 0.68 0.03 17h 59’

Table 5.11: Influence of Ha on wall function performance with the φ-FSPM algorithm
(for a fixed dp/dz).

The behaviour of the linear wall function improves as Ha increases since this wall
function is obtained under the assumption of both high Ha and high N. At Ha < 50,
the wall function has been proved to work until the limit of Ha = 35, but at low Ha

the convergence of the boundary condition inner loop is difficult and, hence, the wall
function needs to be relaxed.
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5.2.5 Algorithm 3: φ-PISO

This third algorithm arises from the requirements of algorithm improvement exposed
in the comparison study between B-PISO and φ-FSPM algorithms in section 5.2.1. But
an even stronger reason for the development of this third algorithm are the problems
observed when simulating channels with all walls perfectly conducting. Under such
cases, strange flow behaviour was observed where unphysical unsteady inverse velocity
jets where obtained. In front of such relevant problem, and analysing the comparison
study mentioned above, this third algorithm was developed.

The algorithm follows basically the φ-FSPM magnetic field treatment, but pressure-
velocity coupling follows a PISO-type algorithm (similar to B-PISO algorithm). The
basic structure of the algorithm is exposed in Algorithm 3. Also, it accounts for the
linear wall function exposed in section 5.2.4 and fluid-solid coupling, as explained below.

Fluid-solid coupling

Solid coupling implementation has a dual goal. On one hand it provides an interesting
alternative to the thin-wall condition, avoiding the corner region problems mentioned
in section 5.2.4. On the other hand, it is essential for accurate thermofluid MHD simu-
lation.

To implement fluid-solid coupling in OpenFOAM, and according to the latest Open-
FOAM releases 1.6-ext and 1.7.1, two different strategies may be followed. A first
strategy implies coupling both domains (fluid and solid) by means of internal bound-
ary conditions. An example of this strategy can be found in the chtMultiRegionFoam
algorithm in the official OpenFOAM-1.7.1 version. The main drawback is the need of
an iterative process between both liquid and solid domains if a converged transient
simulation is needed. The second strategy, hereafter called grid coupling strategy, con-
sists on directly coupling both meshes (fluid and solid) and solving a unique matricial
system. Since different transport equations are required at each domain, the matricial
system is built from the corresponding two transport equations, each one attributed
to one sub-domain. Such strategy can be found in the ConjugateHeatFoam algorithm,
available in the extended OpenFOAM-1.6-ext release from Wikki Ltd. Obviously, in
order to couple both transport equations, the main variable must be conserved at the
interface. For electromagnetic coupling, both the electric potential and the electric cur-
rent are conserved at the interface, hence, this second strategy is perfectly suitable in
the present study. The disadvantage of the grid coupling strategy lays on the need of
dealing with larger mesh domains at solver level; however, this disadvantage is com-
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Algorithm 3 (φ-PISO)

1. Initial map for v, p and φ.
Evaluate φv = ρ ∗ (vf · Sf ) and Lorentz force.

2. Prepare momentum discrete coefficients (eq. 5.15b) for FLUID DOMAIN:
Av(v) v → fvm::ddt(ρ,v) + fvm::div(φv,v)− fvm:: laplacian(νρ,v)− (j×Bo)

av(v) → diag(Av(v)) Hv(v) → −(Av(v) v − av(v) v)

Solve momentum equation Av(v) v = −fvc ::grad(p) to get v∗

3. PISO loop, with a fixed number of iterations, in LIQUID DOMAIN.
Velocity pre-conditioner: v′ =

(
Hv(v∗)
av(v∗)

)
, φ′v = ρ ∗ (v′f&Sf )

Solve pressure equation (pEqn): fvm:: laplacian( ρ
av(v′) , p) = fvc::div(φ′v)

Correct φ′v by means of the implicit terms φv = (φv)
′ − pEqn.flux

Solve continuity equation for error estimation: fvc ::div(φv)

Correct v′ and update boundary conditions v = v′ − 1
av(v′) ∗ fvc ::grad(p)

4. Magnetic coupling with COUPLED DOMAINS:
Evaluate the magnetic flux term in LIQUID DOMAIN χ = (σf ∗ (vf ×Bof ))&Sf
Solve electric potential equation ON COUPLED DOMAINS:

FLUID DOMAIN: fvc ::div(χ)− fvm:: laplacian(σ, φ) = 0

SOLID DOMAIN: −fvm:: laplacian(σsolid, φsolid) = 0

Evaluate jn in LIQUID and SOLID DOMAINS (eq. 5.13)
Evaluate the Lorentz force in LIQUID DOMAIN (eq. 5.14)
Solve conservation of jn for error estimation in LIQUID DOMAIN: fvc ::div(jn)

5. Next time step.
Determine the time step.
Return to step 2.

Note: OpenFOAM’s notation has been used

pensated by the fact that no inner iterations at the interface are required. In the frame
of the present PhD thesis, the grid coupling strategy has been implemented.

Thus, very schematically, the hydrodynamic PISO algorithm is solved for the fluid
domain, obtaining both the velocity and the pressure field maps. Then, both domains
are coupled and the electric potential equation is solved (without velocity term in the
solid domain; see Algorithm 3). With the obtained electric potential, the electric current
and the Lorentz force term can be evaluated and the iterative loop closed.
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Validation: fringing magnetic field

Basic validation steps for Shercliff ’s and Hunt’s case have yielded the same results as
with the φ-FSPM algorithm, since they consist of basically the same equations but a
different pressure-velocity coupling. However, φ-PISO algorithm does not present any
problem when all walls are perfectly conducting.

An interesting validation case that includes fluid-solid coupling and 3D effects is the
fringing magnetic field case from Sterl (1990). It consists on a rectangular duct with
constant cross-section and thin walls where liquid metal flows, as sketched in figure
5.16. A non-uniform magnetic field, varying in the streamwise direction according to
equation 5.23, is present. The behaviour of such flow would correspond to the flow at
an inlet of the magnet, where the magnetic field is low. Sterl’s results are obtained
numerically and no experimental data exists. However, for flow outgoing the magnet
(from the high magnetic field region to the non-magnetic field region) some experiments
can be found for both circular and rectangular ducts in Reed et al. (1987). Here, the
study carried out by Sterl (1990) has been chosen since it deals with lower Hartmann
and Reynolds numbers.

Figure 5.16: Sketch of the channel with fringing magnetic field.

By(x) =
Bo

1 + exp(−x/xo)
(5.23)

The chosen magnetic field shape (equation 5.23) only has one component of the mag-
netic field vector different from zero to save computational time. The gradient of the
magnetic field profile is fixed by the xo magnitude. If xo is positive, the magnetic field

75



5.2. φ-formulation

rises from zero to Bo, whereas negative xo values represent a magnetic field decrease
from Bo to zero. For the studied case, xo = 0.15 has been used, obtaining the magnetic
field profile shown in figure 5.16.

A correct magnetic field would be divergence and curl-free. However, the imposed
magnetic field (equation 5.23) does not fulfil the curl-free condition. A comparison be-
tween equation 5.23 and a curl-free but non divergence-free version of it was performed
by Sterl (1990). Results justified the use of equation 5.23 with reasonably small dif-
ferences, including a small reduction of the pressure drop and of the amount of fluid
driven into the side layers. Such results are in accordance with arguments given by
Talmage and Walker (1987).

The simulated case corresponds to Ha = 50, Re = 2.5 (N = 103), Cw = 0.1 (σwall/σ =

2.5) and xo = 0.15. Several structured non-uniform meshes have been studied and are
listed in table 5.12, where Nside, NHa , Nwall and Ncentre stand for nodes in side boundary
layers (of depth 3a/Ha0.5), nodes in Hartmann boundary layers (of depth 2a/Ha), nodes
across the wall and nodes in the central part of the channel in x direction (of width 4a),
respectively. Such boundary layers’ depth have been chosen from previous results, as
those exposed in table 5.2. It can be seen that: (1) mesh 0 is a very coarse mesh with
only two nodes in the Hartmann boundary layer, (2) mesh 1 has been strongly refined
along main flow direction (x axis) and across side and Hartmann boundary layers, (3)
in mesh 2 such refinement in boundary layers is reinforced as well as across the solid
walls, (4) mesh 3 is based on mesh 2 but with a more uniform mesh, and (5) mesh 4 is
a very fine mesh, considered here as the reference one for error estimation.

mesh Nside NHa Nwall Ncentre Ntotal

0 9 2 3 30 59600
1 21 5 3 120 561280
2 28 8 5 120 860800
3 28 8 5 120 1610240
4 36 12 10 120 2444800

Table 5.12: Description of several meshes used to simulate
the fringing magnetic field case from Sterl (1990), with φ-PISO
algorithm.

Velocity profiles just after the magnetic field step are shown for three different
meshes in figure 5.17. It can be seen that velocity is captured with good accuracy even
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with mesh 1. Some characteristic errors are exposed in table 5.13, where εv stands
for the relative velocity error along z axis at x/a = 0.13 and εφ stands for the relative
electric potential error along x axis at side boundary layer (z/a = 1). All errors are
calculated considering results obtained with mesh 4 as the reference ones. As expected,
mesh errors are considerably reduced with mesh refinement and results obtained with
mesh 3 can be considered accurate enough. By comparing results from meshes 2 and 3
it can be stated that mesh uniformity is required in order to accurately capture the jet.

Figure 5.17: Velocity profiles for the fringing magnetic field
case at x/a = 0.13, for different meshes.

mesh max (εv) avg (εv) max (εφ) avg (εφ)

0 1.83 · 101 8.97 · 100 4.25 0.44
1 2.41 · 100 8.56 · 10−1 0.09 0.02
2 1.45 · 100 4.80 · 10−1 0.38 0.14
3 9.21 · 10−1 4.97 · 10−1 0.29 0.05

Table 5.13: Relative errors obtained with the simulated
meshes, considering results obtained with mesh 4 as the re-
ference ones. Fringing magnetic field case from Sterl (1990),
with φ-PISO algorithm.

In order to provide an overview of the flow in the fringing magnetic field case, veloc-
ity profiles at different duct cross-sections are shown in figure 5.18. The transition from
purely hydrodynamic flow to the M-shaped MHD flow can be clearly observed. Whereas
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Hartmann boundary layers, once formed, remain without changes, side boundary lay-
ers experience large changes along the x axis. In fact, the M-shaped profile is max-
imised at x = 0.

Figure 5.18: Velocity profiles at different cross sections for the fringing magnetic field case.

Before giving a qualitative reasoning of such profiles, it is required that the charac-
teristic parameters be plotted. Those parameters are: (1) the dimensionless magnetic
field (normalised by Bo), (2) the dimensionless pressure on the centreline, p(x, 0, 0) (adi-
mensionalised by ρv2N ), (3)the dimensionless pressure at the sidewall, p(x, 0, 1), (4)
the dimensionless streamwise pressure gradient, −∂xp(x, 0, 0), and (5) the dimension-
less transverse potential difference, ∆φ(x) = |φ(x, 1, 0)−φ(x, 0, 1)| (adimensionalised by
avBo). All these parameters obtained with the simulation and mesh 3 are compared
with the numerical results from Sterl (1990) in figure 5.19. A good agreement can be
seen for all parameters and differences are only observed for the electric potential at
the developed MHD flow region. As stated by Mistrangelo (2006), such differences can
be caused by the high numerical resolution used in our simulations.

The change in the flow profile shape along the channel can be easily explained with
the help of figure 5.19 and the electric potential field map in figure 5.20. In the devel-
oped MHD region, the electric current path remains almost in the y − z plane due to
the y electric potential gradient. However, at the central part of the channel where a
magnetic field gradient exists, a streamwise electric potential gradient is formed and
currents travel along x axis closing their path for current conservation, as the electric
current streamlines in figure 5.20 show. Such electric current paths generate strong
Lorentz forces just after the B inflection point that oppose the flow and, just at the
centre, a spanwise (transverse) Lorentz force appears that pushes the fluid towards the
centre (sketched in figure 5.20). The effect of this force is compensated by the pressure
gradient, as can be seen in figure 5.19. As a result, the main part of the flow travels
through narrow side jets and the M-shaped profile is enhanced. As the flow moves for-
ward, the unique component of the Lorentz force is the streamwise component which
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Figure 5.19: Comparison between simulated results using
mesh 3 and results from Sterl (1990)

magnitude is smaller than at the centre of the channel, thus, the M-shaped profile is
less abrupt and the MHD flow becomes fully developed.

Figure 5.20: Electric potential distribution and electric current stream lines for the fringing
magnetic field case. Lorentz force directions are sketched.

The above mentioned x component of the electric current is plotted in figure 5.21
just at the central cross-section and along the z+ axis. It can be seen that, in the fluid
domain (0 < z/a < 1), a negative electric current exists close to the side wall. As the
wall has a higher electrical conductivity than the fluid (2.5 times higher, in this case),
electric currents in the wall (z/a > 1) are considerably higher.

5.3 A 2D approach

At large interaction parameters, viscous effects are restricted to thin boundary layers
and an inviscid core region exists (figure 3.2). It has been shown that the core velocity
and the electric potential do not vary along magnetic field lines at leading order of
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Figure 5.21: Streamwise electric current component
(dimensionless) along the z+ axis for the fringing mag-
netic field case, including fluid and solid domains.

approximation (Müller and Bühler 2001).

The same behaviour is observed when turbulence is present. Indeed, at high Rey-
nolds, very low magnetic Reynolds, and high interaction parameter, the energy-containing
eddies are rapidly stretched in the magnetic field direction. Thus, Quasi-two-dimensional
(Q2D) turbulence appears. Across planes perpendicular to the magnetic field, energy is
transferred by means of electromagnetic and viscous forces, being the latter relatively
smaller as Reynolds increases. Such electromagnetic and viscous forces act as damping
forces in the Hartmann layers.

When the flow can be assumed 2D, the three-dimensional MHD equations 3.7 can be
integrated along magnetic field lines according to Sommeria and Moreau (1982). When
all walls are perfectly insulating, such integration yields:

∇ · v⊥ = 0 (5.24a)
∂v⊥
∂t

+ (v⊥ · ∇)v⊥ = −1

ρ
∇pd + ν∇2v⊥ +

v⊥
τ

(5.24b)

where v⊥ is the velocity vector perpendicular to magnetic field lines and τ is the Hart-
mann braking time τ = Ha−1a2/ν. For conducting Hartmann walls, with a finite wall
conductivity ratio Cw, the Hartmann braking time can be evaluated as (Müller and
Bühler 2001, Smolentsev et al. 2008):

τ = Ha−1a
2

ν

(
1

1 + CwHa/(1 + Cw)

)
(5.25)

A more recent 2D approach based on the vorticity equation can be found in Müller
and Bühler (2001), which yields:

∇⊥ · ((1 + Cw)∇⊥φ) = ω (5.26a)
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∂ω

∂t
+ ((∇ψ)× (∇ω))‖ =

1

Re
∇2
⊥ω −

a

τReν
ω − N

1 + Cw
∇⊥Cw · ∇⊥φ (5.26b)

∇2
⊥ψ = −ω (5.26c)

where ω is the vorticity component aligned with the magnetic field and ψ is the stream
function. In equation 5.26b, the term including τ represents the decay of vorticity
whereas the last term accounts for vorticity production due to variation of wall con-
ductivity. Such term is not considered in the most classical approach from Sommeria
and Moreau (1982), as shown in equation 5.24b.

The 2D approach, when applicable, is a very useful MHD modelling strategy in terms
of reduced CPU time.

Next, the algorithm used to implement the 2D set of equations 5.24 to OpenFOAM
is described.

5.3.1 Algorithm 4: SM82

The algorithm follows basically the OpenFOAM’s original PISO algorithm but includes
an extra term corresponding to magnetic damping, according to equation 5.24b. Such
term involves the Hartmann braking time τ , which is provided by the user. The basic
structure of the algorithm is exposed in Algorithm 4. It also accounts for fluid-solid
coupling, as explained in section 5.2.5.

Following the same strategy than for previous algorithms (see, for instance, section
5.1.1), the set of equations 5.24 can be written in discrete form for each grid node,
yielding:

D(v⊥ = 0 (5.27a)
∂ρ v⊥
∂t

+ D(φvv⊥) − D(ν ρ G(v⊥)) +
ρ v⊥
τ︸ ︷︷ ︸

Av(v⊥) v⊥

= − G(p)︸ ︷︷ ︸
bv(v⊥)

(5.27b)

where, D and G are the divergence and gradient discrete operators, respectively. Ac-
cording to OpenFOAM notation, φv = ρ

(
v⊥f · Sf

)
is the face mass flux and the sub-

script f indicates the interpolated value at control volume’s face. As before, matrix
Av(v⊥) can be split in diagonal terms av(v⊥) and off-diagonal terms. A new matrix
can be now defined as Hv(v⊥) = −(Av(v⊥) v⊥ − av(v⊥) v⊥). With this notation, the
hereafter called SM82 algorithm is exposed in Algorithm 4.
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Algorithm 4 (SM82)

1. Initial map for v⊥ and p. Evaluate φv.

2. Prepare momentum discrete coefficients (eq. 5.27b):
Av(v) v → fvm::ddt(ρ,v⊥) + fvm::div(φv,v⊥)− fvm:: laplacian(νρ,v⊥) + ρ v⊥

τ

av(v) → diag(Av(v)) Hv(v⊥) → −(Av(v⊥) v⊥ − av(v⊥) v⊥)

Solve momentum equation Av(v⊥) v⊥ = −fvc ::grad(p) to get v⊥
∗

3. PISO loop, with a fixed number of iterations.
Velocity pre-conditioner: v⊥

′ =
(

Hv(v⊥
∗)

av(v⊥∗)

)
, φ′v = ρ ∗ (v⊥

′
f&Sf )

Solve pressure equation (pEqn): fvc ::div(φ′v)− fvm:: laplacian( ρ
av(v⊥′)

, p) = 0

Correct φ′v by means of the implicit terms φv = (φv)
′ + pEqn.flux

Solve continuity equation for error estimation: fvc ::div(φv)

Correct v⊥
′ and update boundary conditions v⊥ = v⊥

′ − 1
av(v⊥′)

∗ fvc ::grad(p)

4. Next time step.
Determine the time step.
Return to step 2.

Note: OpenFOAM’s notation has been used

Validation: Shercliff’s case

Shercliff ’s case has been studied for Ha = 300 and Re = 10 (N = 9 · 103) in a rectangular
channel (figure 5.3). The same case has been studied using either φ-PISO and SM82
algorithms. When the φ-PISO algorithm has been used, the mesh is 3D and periodic in-
let/outlet boundary conditions, based on a fixed mass flow rate, are imposed; therefore,
with only three nodes in channel axis direction the flow is perfectly reproduced. The
same boundary condition has been used for the 2D mesh used with the SM82 algorithm.

Different meshes have been considered, as defined in table 5.14. Note that, when
the SM82 algorithm has been used, only one node in the direction of the magnetic
field has been considered. The coarsest 3D mesh, mesh 0, has already 6 nodes in the
Hartmann boundary layer; hence, all meshes are fine enough to accurately capture the
core velocity, as can be seen in figure 5.22.

A first order temporal scheme and the Central-Difference discretisation in space
have been chosen. The (Bi-)Conjugate Gradient solver with incomplete-Cholesky pre-
conditioner has been used. In all simulated cases, solver precision has been fixed to 10−8

for velocity and 10−9 for pressure (and electric potential for the φ-PISO algorithm). The
steady state has been defined to have relative variation between successive time steps
below 10−7 for all variables.
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Figure 5.22: Side layer axial velocity profiles for Shercliff ’s case at Ha = 300 and Re = 10
using mesh 1. φ-PISO (a) and SM82 (b) algorithm comparison.

Being vo the mean flow velocity and vc the velocity at the centre of the channel, and
indicating the subscript th the theoretical value (according to equation 5.9), the errors
exposed in table 5.14 can be defined as:

εp = 100 · |∇p−∇pth|
∇pth

%

εv = 100 · average
(
|v − vth|

vo

)
%

εvc = 100 ·
(
|vc − vth,c|

vo

)
%

These errors are evaluated along y axis (perpendicular to the applied magnetic field).
Thus, results exposed in table 5.14, together with velocity profiles in figure 5.22, indi-
cate that: (1) velocity profile in side boundary layer is not accurately obtained with the
SM82 algorithm (2) the SM82 algorithm has a substantially reduced pressure gradient
error, specially at coarse meshes, (3) whereas the φ-FSPM algorithm presents good con-
sistency (error is reduced as mesh refinement is increased), SM82 does not. Thus, it
can be stated that the SM82 algorithm presents very good behaviour at coarse meshes
but, with fine meshes, the overall (average) precision might decrease.

Due to the above mentioned SM82 behaviour, SM82 algorithm has only been used in
those cases where a 3D mesh is not affordable due to CPU limits, as is the case studied
in Chapter 8.

Turbulence model

The flow studied in Chapter 8 presents Q2D turbulence; hence, the SM82 algorithm
needs to account for a Q2D turbulence model. The chosen RANS model to be imple-
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φ-FSPM SM82
mesh nodes (Ny ×Nz) εp % εv % εvc % εp % εv % εvc %

0 14× 20 3.20 0.82 0.87 0.17 1.92 0.15
1 28× 40 1.12 0.43 0.28 0.33 0.82 0.34
2 56× 80 0.43 0.25 0.22 0.36 0.82 0.38

Table 5.14: Simulation errors for Shercliff ’s case (Ha = 300, Re = 10) with
φ-PISO and SM82 algorithms.

mented has been the zero-equation model from Smolentsev and Moreau (2006). In this
model, focused on Q2D turbulence caused by shear layers, the turbulent (eddy) viscos-
ity perpendicular to the magnetic field lines νt,⊥ is obtained considering an elementary
shear layer of thickness δ and a momentum equation for the core velocity in accordance
with Sommeria and Moreau (1982), yielding:

νt,⊥ = 0.25δ2/τ (5.28)

where τ is the Hartmann braking time. The thickness of the shear layer can be esti-
mated following the work of Messadek and Moreau (2002) (equation 5.29), where ex-
perimental measurements of a circular tank filled with mercury and under a vertical
magnetic field and radial horizontal electric currents were analysed. Despite the sin-
gularity of the experimental setup, Smolentsev and Moreau 2006 pointed out that the
obtained thickness correlation can be applied if Q2D turbulence exist. This correlation
is:

δ ∼ 2a

(
Ha

Re

)−1/2

(5.29)

Moreover, following the numerical simulation strategy exposed in Smolentsev and
Moreau (2006), a wall-damping factor is introduced in order to correct the eddy-viscosity
in the regions near the walls. Such wall-damping factor varies exponentially from zero
to one within the boundary layer. This results in a non-uniform effective viscosity
(νeff = ν + νt,⊥) so that a second term in the momentum equation must be introduced,
as exposed in equation 5.30.

∂v⊥
∂t

+ (v⊥ · ∇)v⊥ = −1

ρ
∇pd + ∇ · (νeff∇v⊥) + (∇v⊥) (∇νeff ) +

v⊥
τ

(5.30)
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In the algorithm, both viscous terms are implemented as:

∇ · (νeff∇v) + (∇v) (∇νeff ) =

=
1

3
νeff∇ (∇ · v) + ∇ · (νeff∇v) − 2

3
(∇νeff ) (∇ · v) + (∇v) (∇νeff )

= −2

3
∇ (νeff∇ · v) + ∇ ·

(
νeff

(
(∇v) + (∇v)T

))
= ∇ · (νeff∇v) + ∇ ·

(
νeff

(
(∇v)T − 2

3
trace

(
(∇v)T

)))
= ∇ · (νeff∇v) + ∇ ·

(
νeff dev2

(
(∇v)T

))
(5.31)

where trace and dev2 are OpenFOAM objects defined in the official version. The above
mentioned procedure for non uniform viscosities is already used in some OpenFOAM
applications.
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In this section the coupling of MHD flows with thermal transport is explained. Such
phenomenon has multiple names, including thermofluid MHD (Smolentsev et al. 2010),
magnetoconvection (Müller et al. 1999) or buoyant MHD (di Piazza and Bühler 1999),
among others. Here, the most simple but global name ’thermal MHD’ has been used.
The fluid motion is affected by temperature gradients but it is not necessarily driven
only by natural convection, as the ’buoyant MHD’ label seems to indicate. Indeed,
the flow can be driven by an external force (a pressure gradient, for instance) but due
to the existence of a thermal load, buoyant convection exists as well. Therefore, the
fluid motion becomes even more complex than in pure MHD flows and some thermal
instabilities are to be expected.

In order to carry out such coupling, following the development exposed in section
3.3, a new scalar equation corresponding to the temperature field (equation 3.11) to-
gether with a modified momentum equation according to the Boussinesq hypothesis
and the corresponding buoyant term (equation 3.13) are to be considered. The final set
of dimensionless governing equations is exposed in equations 3.17.

Next, the algorithm used to implement the the thermal coupling to OpenFOAM is
described and validated.
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6.1 Algorithm 5: φT-PISO

The implemented algorithm follows the same structure than the φ-PISO algorithm (sec-
tion 5.2.5) and includes the energy equation, or temperature equation, sequentially.

As done in section 5.1.1, a general transport equation is defined for v as: Av(v) v =

bv(v). Defining D and G as the divergence and gradient discrete operators respectively,
the set of governing equations 3.17 can be written in discrete form for each grid node
yielding:

D(v) = 0 (6.1a)
∂ρo v

∂t
+ D(φvv) − D(ν ρo G(v)) − (j×Bo) + βo ρo (T − To)g︸ ︷︷ ︸

Av(v) v

= − G(pd)︸ ︷︷ ︸
bv(v)

(6.1b)

D(σG(φ)) = D(σ(v ×Bo)) (6.1c)

j = σ(−G(φ) + v ×Bo) (6.1d)
∂ρo T

∂t
+ D(φvT ) − D(α ρ G(T )) − Sthermal/Cp = 0 (6.1e)

where, according to OpenFOAM notation, φv = ρo (vf · Sf ) is the face mass flux and
the subscript f indicates the interpolated value at control volume’s face. Matrix Av(v)

can be split in diagonal terms av(v) and off-diagonal terms. A new matrix can be now
defined as Hv(v) = −(Av(v) v − av(v) v).

As mentioned in section 5.2.1, the electric current conservative scheme based on a
conservative formula of the Lorentz force proposed by Ni et al. (2007) is considered.
It first requires a consistent scheme to calculate the current flux on cell faces. This
step has been implemented following equation 6.3, where jn stands for the cell surface
orthogonal component of the current density flux, Sf is the face surface of the control
volume, and ∇sn is a surface normal gradient that already includes non-orthogonal
mesh corrections. Once jn is obtained, the Lorentz force can be evaluated at cell centres
following equation 6.4, where Ωc is the cell volume and C are the cell centre coordinates.

χ = (σf (vf ×Bof )) · Sf (6.2)

jn = −σf (∇snφ) · |Sf |+ χ (6.3)

j×Bo = − 1

Ωc

∑
f

(jn · (Bo ×C)f )−C× 1

Ωc

∑
f

(
jn ·Bof

)
(6.4)

Continuity and momentum coupling is solved following the pressure-based PISO-
like algorithm defined by Weller et al. (1998). Thus, this algorithm is hereafter called
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φT-PISO algorithm. In pressure-based algorithms, a pressure equation is obtained from
the continuity equation together with the momentum equation. Here, the momentum
equation is used as a pre-conditioner for the velocity in order to improve the accuracy
of the Laplacian solver for the pressure equation. Once the new pressure is obtained,
the velocity is corrected. Very schematically, and using the above mentioned matrix
notation, the thermal MHD algorithm used for the full set of equations is exposed in
Algorithm 5. The Picard linearisation method has been used as well as the Jacobi pre-
conditioner.

The implemented algorithm also accounts for the linear wall function presented in
section 5.2.4.

The same thermal coupling methodology (including fluid-solid thermal coupling) has
been applied to the SM82 algorithm (section 5.3.1).

6.2 Validation for steady flows

A fully developed flow in a horizontal square section of a differentially heated long ver-
tical enclosure, in the presence of a strong horizontal magnetic field, has been analysed
following the study from Tagawa et al. (2002). In that study, all walls were perfectly
insulated and temperature profile was imposed to be linear. The authors obtained ana-
lytical results for the central velocity gradient under two different flow configurations:
(1) perpendicular temperature gradient with respect to magnetic field, which is called
the perpendicular case, represented in figure 6.1 and (2) the corresponding parallel
case. Both solutions are given in equation 6.5, where W and X are the dimensionless
velocity and coordinate in the direction of the temperature gradient, respectively nor-
malised with L and ν/L. The characteristic dimension L, also used in the Ha and Gr

numbers, corresponds to the dimension of the cavity square section (2a).

dW

dX ⊥
=
−Gr
2 Ha

dW

dX ‖
=
−Gr
Ha2 (6.5)

Tagawa et al. (2002) numerically reproduced flows at Gr = 104 and Ha = ( 0, 100,
500, 2000 ), and compared the obtained results with the analytical solution in equation
6.5. A non-uniform mesh was proposed, with 32×32 nodes in the horizontal plane (fully
developed flow), 8 nodes at side boundary layers and 1 node at Hartmann boundary
layers. A mesh sensitivity analysis was carried out by increasing the number of nodes
in the Hartmann boundary layer whereas keeping the total mesh size.

In the present validation, the same cases as in Tagawa et al. (2002) have been repro-
duced and the errors with respect to the analytical solution quantified and presented
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Algorithm 5 (φT-PISO)

1. Initial map for v, pd, φ and T .
Evaluate φv = ρo ∗ (vf · Sf ) and Lorentz force.

2. Prepare momentum discrete coefficients (eq. 6.1b):
Av(v) v → fvm::ddt(ρ,v) + fvm::div(φv,v)− fvm:: laplacian(νρ,v)

−(j×Bo) + βoρo (T − To)g
av(v) → diag(Av(v)) Hv(v) → −(Av(v) v − av(v) v)

Solve momentum equation Av(v) v = −fvc ::grad(pd) to get v∗

3. PISO loop, with a fixed number of iterations.
Solve temperature equation (equation 6.1e):

fvm::ddt(ρ, T ) + fvm::div(φv, T )− fvm:: laplacian(α, T )

= fvm::Sp(Sthermal/(CpT ), T )

Velocity pre-conditioner: v′ =
(

Hv(v∗)
av(v∗)

)
, φ′v = ρ ∗ (v′f&Sf )

Solve pressure equation (pdEqn): fvm:: laplacian( ρ
av(v′) , pd) = fvc::div(φ′v)

Correct φ′v by means of the implicit terms φv = (φv)
′ − pdEqn.flux

Solve continuity equation for error estimation: fvc ::div(φv)

Correct v′ and update boundary conditions v = v′ − 1
av(v′) ∗ fvc ::grad(pd)

4. Magnetic coupling:
Evaluate the magnetic flux term χ = (σf ∗ (vf ×Bof ))&Sf
Solve electric potential equation: fvc ::div(χ)− fvm:: laplacian(σ, φ) = 0

Evaluate jn (eq. 6.3)
Evaluate the Lorentz force (eq. 6.4)
Solve conservation of jn for error estimation: fvc ::div(jn)

5. Next time step.
Determine the time step.
Return to step 2.

Note: OpenFOAM’s notation has been used

in table 6.1. It can be observed that the obtained numerical results are in very good
agreement with results from Tagawa et al. (2002). It has to be mentioned that if, in-
stead of locating just one node on the Hartmann boundary layer (NHa = 1), two nodes
are considered with the same mesh size, the accuracy is increased by about one order
of magnitude.

Velocity field and electric potential field with electric current stream lines are shown
in figure 6.2 for the perpendicular case and in figure 6.3 for the parallel one, both for
Ha = 100. In figures, Φ is the dimensionless electric potential, normalised with φ/νB.
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Figure 6.1: Sketch of the case setup for the
perpendicular case of Tagawa et al. (2002).

condition analytical results
case Ha nodes NHa dW/dX W dW/dX error %

perpendicular 0 32 × 32 1 – 73.02 355.5 –
100 32 × 32 1 50.00 17.61 55.25 10.48

32 × 64 2 16.86 51.41 2.81
32 × 96 3 16.71 50.65 1.28

32 × 128 4 16.66 50.38 0.74
500 32 × 32 1 10.00 4.51 11.28 12.78

32 × 64 2 4.22 10.32 3.18
32 × 96 3 4.17 10.15 1.44

32 × 128 4 4.15 10.09 0.88
2000 32 × 32 1 2.50 1.24 2.80 12.17

parallel 100 32 × 32 1 1.00 3.04 0.99 1.12
500 32 × 32 1 0.04 0.69 0.04 0.06

Table 6.1: Numerical results for a developed buoyant flow with a strong magnetic field. Com-
parison against analytical solution from Tagawa et al. (2002).

Concerning the perpendicular case, buoyancy velocity profiles induce an electric cur-
rent according to Ohm’s law which, in the core, travels from the centre to both side
boundary layers (following negative potential gradient). Since currents need to close
their path inside the fluid domain for conservation, the j streamlines show the four
regions observed in figure 6.2(b). The induced currents generate a Lorentz force that
opposes the flow, reducing the magnitude of the buoyant convection. In figure 6.2(a) the
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typical linear velocity gradient at the core of the cavity is observed; such gradient is
reduced as Ha increases. When the thermal gradient is aligned with the magnetic field
(parallel case), the induced electric currents travel from one side boundary layer to the
other and close their path in a unique structure, as shown in figure 6.3(b). This circula-
tion produces a damping Lorentz force at the core whereas at side boundary layers the
Lorentz force vanishes. Thus, the flow is forced to circulate through the four thin side
boundary layer jets of figure 6.3.

(a) Velocity field (b) Electric potential and electric current
stream lines

Figure 6.2: Results for a fully developed flow with insulated walls for Gr = 104, Ha = 100 and
temperature gradient perpendicular to the magnetic field.

(a) Velocity field (b) Electric potential and electric current
stream lines

Figure 6.3: Results for a fully developed flow with insulated walls for Gr = 104, Ha = 100 and
temperature gradient parallel to the magnetic field.
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6.3 Validation for unsteady flows

In other to simulate a real 3D case, the same cavity is closed with top and bottom walls
being the total height 7.5 L. Following indications from Authié et al. (2003), the case
with Gr = 4 · 106 has been simulated for Ha 100 and 500. In this case, the temper-
ature profile is not imposed and the temperature gradient is always perpendicular to
the magnetic field direction. Results for velocity, electric potential and temperature are
shown in figures 6.4 and 6.5. As obtained in Authié et al. (2003), a steady solution is
obtained for Ha 500 with similar flow profiles as in the fully developed case, except for
the top and bottom walls. A unique velocity vortex is generated and temperature pro-
file is almost linear. The obtained mean Nusselt number is 1.56. When Ha is reduced
to 100, three unsteady vortices appear (figure 6.5(a)) and the temperature field is no
more linear; in this case the magnetic field is not strong enough to suppress thermal
instabilities. In this case, a mean Nusselt number of 2.85±0.2 is obtained. Both Nus-
selt numbers are consistent with the experiments from Okada and Ozoe (1992). The
obtained results for Ha = 100 do not follow the numerical solution given in equation 6.5
since the flow is fully 3D.

In order to simulate a flow setup within the range of the experimental results, Authié
et al. (2003) studied the time evolution of the Nusselt number at Gr = 4 ·107, where the
flow is expected to be more complicated and oscillatory. Here, some of the studied cases
are reproduced using the 3D algorithm φT-PISO coupled with the linear wall function
presented in section 5.2.4. Some results are represented in figure 6.6, where τ = L2/ν

is the dimensionless time. In order to compare these results with the ones of Authié
et al. (2003), it has to be kept in mind that, since flow properties are different in both
studies (although Pr is the same), τ scales different.

In figure 6.6(b), results for Ha = 200 obtained with the mesh proposed by Authié
et al. (2003), labelled as ’coarse mesh’, are compared with results obtained with a finer
mesh. The coarse mesh size in the horizontal cross section (x× z) is (32× 32), whereas
the fine mesh is (40 × 32), hence the fine mesh has a better resolution along the tem-
perature gradient direction. From results in figure 6.6, it can be stated that the flow is
unstable and that mesh influence is relevant, what makes the obtained Nusselt num-
ber non accurate. Such mesh size influence on Nusselt number is consistent with the
discrepancies between numerical and experimental Nusselt values reported by Authié
et al. (2003).

In order to understand the nature of the observed flow fluctuations, the dimension-
less numbers are evaluated following the analysis presented in section 3.3.2 (where the
characteristic dimension was a instead of L). Characteristic dimensionless numbers are
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(a) v (b) φ (c) T

Figure 6.4: Results for a cavity of height 7.5L with perpendicular temperature gradient, Gr =
4 · 106 and Ha = 500.

listed in table 6.2. It can be observed that: (1) the equivalent Reynolds number (Re ′) is
quite high at low Ha numbers, (2) the ratio Re ′/Haa indicates that at Ha = 0 the flow is
turbulent with a 3D flow pattern and for Ha ≥ 100 the flow presents Q2D turbulence or
remains laminar, (3) due to the high Peclet numbers, inertia effects cannot be neglected
in the energy balance, and (4) the high equivalent interaction parameter indicates that
inertia effects can be neglected from the momentum balance at Ha ≥ 300. As a result,
with such dimensionless analysis and the observed results, it can be stated that the
hydrodynamic flow is 3D turbulent, and at low to moderate Hartmann number Q2D
turbulence develops. In order to precisely capture the associated flow oscillations, a
very fine mesh is required.
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(a) v (b) φ (c) T

Figure 6.5: Results for a cavity of height 7.5L with perpendicular temperature gradient, Gr =
4 · 106 and Ha = 100.

In order to determine at what Hartmann the flow remains laminar but becomes
unstable (for instance, periodic), Fourier transformations in space and time of the nu-
merical results are required. A first attempt towards such analysis is carried out in
Chapter 9, where flow conditions are simplified and a mesh fine enough is used (and
justified).
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Figure 6.6: Nusselt analysis for a cavity of height 7.5L with perpendicular temperature
gradient, Gr = 4 · 107, (a) Hartmann influence evaluated with a coarse mesh (the same mesh
used by Authié et al. (2003) and (b) mesh influence on the Ha = 200 case.

HaL 0 100 200 300 400
uo,MHD = ν

a
Gra
Ha2

a
∞ 0.08 0.02 0.009 0.005

Re ′ = Gra
Ha2

a
∞ 2000 500 222 125

Re ′/Haa ∞ 40 5 1.5 0.6
Pe = PrGra

Ha2
a

∞ 50 12.5 5.6 3.1

Ly2 = N ′ = Ha4
a

Gra
∞ 1.2 20 101 320

Table 6.2: Dimensionless numbers analysis for a cavity of height
7.5L with perpendicular temperature gradient, GrL = 4 · 107.

6.4 Algorithm 6: φT-PISO FSI

For fluid-solid thermal coupling, the grid coupling strategy for the electromagnetic cou-
pling explained in section 5.2.5 has been applied. Thus, both energy equations for fluid
and solid domains are coupled in a unique matricial system of equations.

Following the strategy proposed in the extended OpenFOAM version (OpenFOAM-
1.6-ext, from Wikki Ltd.) under the name conjugateHeatFoam, the energy (tempera-
ture) equations for both solid and fluid domains correspond to equations 6.6 (where
φv = (vf · Sf )), which are written in a non-conservative form (the argument inside the
derivatives in the left hand side is (T ) instead of (ρCpT )). However, an energy balance
all over the domain using numerical values obtained with this strategy results in some
inaccuracies. Only when ρCp = 1 and the mesh size at both sides of the interface is
the same, the balance matches. The problem has been solved implementing the con-
servative form of the energy equation (equations 6.7, being φv = ρo (vf · Sf )), where
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the argument inside the derivatives in the l.h.s. is (ρoCpT ). Theoretically, both sets of
equations should provide the same solution; however, due to the discretisation strategy,
the differences can become relevant.

∂T

∂t
+ D(φvT ) − D(αG(T )) − Sthermal/(ρoCp) = 0 (6.6a)

∂Tsolid
∂t

− D(αsolidG(Tsolid)) − Sthermal,solid/(ρo,solidCp,solid) = 0 (6.6b)

∂(ρoCpT )

∂t
+ D(Cp φvT ) − D(kG(T )) − ρo Cp Sthermal = 0 (6.7a)

∂(ρo,solidCp,solidTsolid)

∂t
− D(ksolidG(Tsolid)) − ρo,solid Cp,solid Sthermal,solid = 0 (6.7b)

The thermally and electromagnetically coupled algorithm where the conservative set
of equations are used, hereafter called φT-PISO FSI, is shown in Algorithm 6.

The consequences of dealing with one or other algorithm are shown in the application
case 3, in Chapter 9, where the flow is buoyant predominant and unsteady and, hence,
the discrepancies between solutions obtained by both algorithms are large.
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Algorithm 6 (φT-PISO FSI)

1. Initial map for v, pd, T and φ.
Evaluate φv = ρo ∗ (vf · Sf ) and Lorentz force.

2. Prepare momentum discrete coefficients (eq. 5.15b) for FLUID DOMAIN:
Av(v) v → fvm::ddt(ρo,v) + fvm::div(φv,v)− fvm:: laplacian(νρo,v)

−(j×Bo) + βoρo (T − To)g
av(v) → diag(Av(v)) Hv(v) → −(Av(v) v − av(v) v)

Solve momentum equation Av(v) v = −fvc ::grad(pd) to get v∗

3. PISO loop, with a fixed number of iterations, in LIQUID DOMAIN.
Velocity pre-conditioner: v′ =

(
Hv(v∗)
av(v∗)

)
, φ′v = ρo ∗ (v′f&Sf )

Solve pressure equation (pdEqn): fvm:: laplacian( ρo
av(v′) , pd) = fvc::div(φ′v)

Correct φ′v by means of the implicit terms φv = (φv)
′ − pdEqn.flux

Solve continuity equation for error estimation: fvc ::div(φv)

Correct v′ and update boundary conditions v = v′ − 1
av(v′) ∗ fvc ::grad(pd)

4. Thermal coupling with COUPLED DOMAINS:
Solve temperature equation ON COUPLED DOMAINS:

FLUID DOMAIN: fvm::ddt(ρo Cp, T ) + fvm::div(φv Cp, T )

−fvm:: laplacian(k, T ) = ρo Cp Sthermal
SOLID DOMAIN: fvm::ddt(ρo,solid Cp,solid, Tsolid)

−fvm:: laplacian(ksolid, Tsolid) = ρo,solid Cp,solid Sthermal,solid

5. Magnetic coupling with COUPLED DOMAINS:
Evaluate the magnetic flux term in LIQUID DOMAIN χ = (σf ∗ (vf ×Bof ))&Sf
Solve electric potential equation ON COUPLED DOMAINS:

FLUID DOMAIN: fvc ::div(χ)− fvm:: laplacian(σ, φ) = 0

SOLID DOMAIN: −fvm:: laplacian(σsolid, φsolid) = 0

Evaluate jn in LIQUID and SOLID DOMAINS (eq. 5.13)
Evaluate the Lorentz force in LIQUID DOMAIN (eq. 5.14)
Solve conservation of jn for error estimation in LIQUID DOMAIN: fvc ::div(jn)

6. Next time step.
Determine the time step.
Return to step 2.

Note: OpenFOAM’s notation has been used
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7.1 Motivation

In this first application case, the integrated effect of volumetric heating and magnetic
field on tritium transport is being addressed, as applied to EU HCLL-TBM. In the
EU HCLL-TBM the eutectic Pb-15.7Li flows radially at low velocities (see section 2.3.1
for a detailed description of the blanket), and, due to the high thermal load, buoyant
structures might appear. Tritium, generated in and transported by liquid metal, may
eventually permeate through channel walls. Moreover, some tritium trapping zones
may exist, as flow vortical structures or helium bubbles. The accurate prediction of
tritium inventories and permeation fluxes is of crucial interest for safety reasons.

Some efforts towards such tritium prediction have been already carried out by tri-
tium system codes, as the one by Gastaldi et al. (2008) for HCLL DEMO. Such codes are
proposed on the basis of steady state flow process diagrams. A more detailed tritium
model was implemented in TMAP7 1D tritium transport tool by Moreno and Sedano
(2009). Future improvements of such system codes are expected to include, in a mod-
ular way, computational refinements at component channel level. In this direction, it
is necessary to include fluid interaction effects. However, very few authors deal with
thermal MHD coupling and tritium analysis at the same time. For example, Gabriel
et al. (2007) apply the CEA code cas3m, a finite element based CFD tool, to study two
simplified HCLL radial channels, coupled by means of internal boundary conditions.
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The study is 2.5D and assumes steady state. Tritium is transported considering it as a
passive scalar. The main conclusion is that natural convection in HCLL is not relevant
for tritium permeation, increasing by less than 10 % the permeation rate.

The study carried out in the frame of the present application case analyses the buoy-
ant flow in a simplified HCLL blanket similar to that studied by Gabriel et al. (2007),
but considering the influence of the U-bend that joints both radial channels near the
First Wall. Indeed, a simplified 3D configuration, corresponding to one inlet and one
outlet channels (both between one stiffening plate and two adjacent cooling plates) and
the 180 degree bend, is analysed. For more details on the complete HCLL geometry
for ITER reactor see, e.g., Rampal and Aiello (2006). Geometry and dimensions of the
simulated channel are sketched in figure 7.1.

Figure 7.1: Geometry and dimensions for the simplified channel

The study includes first a case set-up description. Modelling strategies are then
summarised (section 7.2). In section 7.3, results of the study are given considering both
electrically insulated and perfectly conducting walls. This section includes an analysis
of the effect of channel boundary conditions (inlet/outlet) on tritium transport, and a
sensitivity analysis of tritium permeation fluxes to diffusivity and solubility parame-
ters. A final discussion is included in section 7.4.

7.1.1 Flow parameters and case set-up

The fluid is the eutectic Pb-15.7Li. Properties are taken from the Pb-15.7Li database
(Mas de les Valls et al. 2008) obtaining a Prandtl number of 1.51 · 10−3 at 723.15 K. In
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Chapter 7. U-bend in the HCLL blanket

this study, a magnetic field of 0.7 T perpendicular to the flow (z axis in figure 7.1, which
represents the toroidal direction in the fusion reactor) is considered.

Setting boundary conditions is a main concern. Real boundary conditions would im-
ply to simulate the whole blanket, even the manifolds and connecting pipes; any partial
analysis of the real geometry includes non realistic boundary conditions. For the simpli-
fied system depicted in figure 7.1, velocity is assumed to be known and uniform at the
inlet, walls are non-slip and a free outlet with fixed pressure is imposed. Temperature
is uniformly fixed at inlet and walls at 723.15 K. The incoming flow at the inlet contains
no tritium and, at the outlet, tritium leaves the domain only by advection since tritium
concentration gradient is set to zero. Wall boundary conditions follow equation 7.3.

Source terms (heat deposition and tritium generation) in equations 3.11 and 7.1
decrease with r, the distance from the first wall along the radial direction (x axis in
figure 7.1). For the present study they are somewhat arbitrarily chosen to be:

Sthermal = 5.37 · 107 exp(−88.91 r) + 5.15 · 106 exp(−8.069 r) W/m3

Stritium = 6.64 · 10−7 r(−1.2473) mol/m3s

which are of the order of magnitude of the values found in ITER-TBM.

Under HCLL-ITER specifications, liquid metal flows at a low velocity, between 0.1–
1 mm/s, which corresponds, according to dimensions in figure 7.1, to Reynolds number
of 48–480 at the inlet (ReDin). The Hartmann number is Haa = 1740 and the interac-
tion parameter or Stuart number is Na = 3935. Here, subscripts indicate the chosen
characteristic dimension. For Grashof number evaluation, the temperature gradient is
calculated from the integration of the heat deposition in a single inlet/outlet channel
obtaining ∆TL = SthermalL/k = 2.51 and GrL = 5.2 · 109. For tritium transport, the
Schmidt number is Sc = 134.

When thermal MHD coupling is studied, as in the present case, and following the
normalisation from Bühler (1998) (and explained in detail in section 3.3.2), the equiv-
alent Re number is Gra/Ha

2
a = 61.2 and the corresponding interaction parameter is

Ha4
a/Gra = 5 · 104. Peclet number is Pe = Gr Pr Ha−2 = 0.9 which is not very small,

so convective heat transfer has to be considered. Since Gra/Ha
5/2 = 41, inertia effects

cannot be omitted.

The above mentioned scenario, with high Ha and Gr numbers, indicates that mesh
refinement is a key issue, specially at boundary layers and in the U-bend. However,
an optimal mesh in terms of mesh induced errors is not affordable for computational
limitations. Hence, relatively coarse meshes are to be used and mesh errors quantified.
In the following analyses, three different meshes have been defined as a function of
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the number of nodes in Hartmann boundary layers (of width a/Ha) and side boundary
layers (of width a/Ha1/2). The finest mesh is called mesh 2 and is the one considered
a priori as reasonably adequate for MHD simulations, as it has 4 nodes in each Hart-
mann boundary layer, 10 nodes in each side boundary layer, and 777600 nodes for the
whole system. The coarsest mesh, called mesh0, has only 2 nodes in the Hartmann
boundary layers and 5 in the side ones, with 92784 nodes. Mesh 1 is an intermediate
mesh between mesh 0 and mesh 2 with 291168 nodes in total.

A mesh quality analysis can be done comparing the obtained numerical pressure
drop along the U-bend (∆pd ).

7.2 Modelling strategies

Related to thermal MHD coupling, two different algorithms have been used. For electri-
cally insulated walls, the φ-FSPM algorithm described in section 5.2.1 is coupled with
heat transport equation following the same procedure explained in section 6.1. How-
ever, for perfectly conducting walls, due to φ-FSPM algorithm limitations, the φT-PISO
algorithm described in section 6.1 is used. Some results concerning to the perfectly
insulating walls have been repeated with the more accurate φT-PISO algorithm with
almost the same results.

The application of Boussinesq hypothesis is justified since density variation is less
than 0.1 % for the range of temperatures expected in the HCLL. However, further anal-
yses in order to evaluate the effects of this assumption are needed.

Time marching is accomplished differently for the FSPM algorithm than for the
PISO one. In the case of the FSPM algorithm, an internal loop for each time step is
implemented in order to permit real transient simulations. However, the code can also
be run in a pseudo-transient mode by simply reducing the number of internal loop it-
erations (in this study this number is 2). When PISO algorithm is considered, since
the error is drastically reduced with only 2 iterations, there is no need of using the
pseudo-transient mode.

In the Breeding Blanket, tritium breeds at the same time as helium; hence, a de-
tailed tritium transport model needs to account for 1) the possible helium bubble nu-
cleation and its coalescence, 2) effect of bubbles on liquid metal transport, 3) surface
tritium transport including tritium recombination at bubble surface and wall interac-
tion, and 4) other effects as Soret effect, for example. Thus, the physical phenomena
are complex and require dealing with two phase flows and material property uncer-
tainties, among others. In this direction, an attempt on tritium/helium transport in
HCLL has been carried out by Batet et al. (2011) and Fradera et al. (2011). In the
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present work it is assumed that tritium does not alter liquid metal properties nor flow
behaviour and the presence of helium bubbles has been omitted. Thus, a passive scalar
transport equation (equation 7.1) is sufficient to model tritium transport and has been
sequentially implemented. In equation 7.1, CT stands for tritium concentration, DT for
the tritium diffusion coefficient, and Stritium for the tritium generation.

∂CT
∂t

+ (v · ∇)CT = ∇ · (DT∇CT ) + Stritium (7.1)

The terms in equation 7.1 can be non-uniform in space and non-constant in time. In
fact, it typically follows an exponential correlation with the distance to the First Wall,
as mentioned in previous section.

Despite the walls are not modelled in the present study, they can be indirectly con-
sidered in tritium analysis by means of the wall boundary condition. In this case, with
equal tritium partial pressure in the liquid metal (LM) and the structural material
(SM), Sievert’s law can be used to find a relationship of both tritium concentrations at
fluid-solid interface (equation 7.2). By imposing equal tritium fluxes at both sides of
the interface, tritium concentration gradient can be obtained from equation 7.3, where
CT,LMi and CT,SMi are tritium concentration at the fluid/solid interface for the liquid
metal and the structural material (Eurofer) respectively, ks is Sievert’s coefficient and
d the wall width. In order to obtain equation 7.3, it has been considered that tritium
concentration at outer solid wall is zero. This clearly is an oversimplification of reality
and implies that both: 1) recombination is instantaneous at the outer solid wall, and 2)
concentration in cooling helium channels is zero as well.

CT,LMi

ks,LM
=
CT,SMi

ks,SM
(7.2)

DT,LM

(
∂CT,LM
∂x

)
i

= DT,SM

(
∂CT,SM
∂x

)
i

' −
DT,SMks,SM

ks,LM

CT,LMi

d
(7.3)

7.2.1 Numerical aspects

Simulations are carried out with a (Bi-)Conjugate Gradient solver. In all the equations,
the Central Difference scheme has been used for the spatial discretisation whereas
temporal discretisation is first order accurate. Steady state criterion is fixed with a
relative error of 10−6 for each field map. For full transient simulations, convergence
criterion at each time step is set to 0.5 10−6.

Since all terms in momentum equation are solved implicitly except the Lorentz force
term, this latter term is the critical one for stability purposes. As justified in section
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5.2.3, the time step criteria has been chosen from a 1D stability analysis obtaining the
constraint (L ≤ 2.0; L 6= 1), according to equation 7.4.

L =
σ B2

0 ∆t

ρ
(7.4)

It is well known that for a 3D case, the time constrain must be reduced. In Open-
FOAM, and for pure 3D hydrodynamic cases where the Courant number C has to be
fulfilled, it is suggested to use always C ≤ 0.2 instead of the 1D constrain C ≤ 1 . In the
present study, following the previous suggestion, L ≤ 0.2 has been imposed and it has
been proved to be sufficient for a stable and accurate simulation.

When in the following, a pseudo-transient simulation is done with the FSPM algo-
rithm, two internal iterations are carried out. However, since time restrictions are met,
results are still accurate, as will be proved in section 7.3. In fact, for the transient sim-
ulations, usually a high number of iterations is only needed for the first time steps and,
afterwards, 2–3 iterations are sufficient.

7.3 Results

The basic analysis is split in three parts: (1) pure hydrodynamics, (2) MHD, and (3)
heat transfer MHD. Afterwards, two different analysis in order to understand the ob-
tained results are carried out including (i) the effect of channel boundary conditions
(inlet/outlet) on tritium transport, and (ii) a sensitivity analysis of tritium permeation
fluxes to diffusivity and solubility parameters.

7.3.1 Pure hydrodynamics

In the pure hydrodynamic analysis neither a magnetic field nor temperature gradients
exist in the system. The hydrodynamic analysis not only is essential for a better un-
derstanding of the phenomena that appear in more complex flow situations, but it also
provides the correct scenario for the initial ITER phases (without plasma) and for some
real transients.

The system has been simulated for different Reynolds numbers using mesh 2 (de-
fined in section 7.1.1) without time step inner convergence (pseudo-transient simula-
tion), although the time step accuracy criterion given in section 7.2.1 (i.e., L ≤ 0.2) is
met. Reynolds numbers are chosen to cover the range of typical HCLL-ITER values.

Figure 7.2 illustrates how higher Reynolds numbers correspond to larger jet veloci-
ties at the U-bend. Considering that only one of the several sub-channels of a HCLL-
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ReDin flow mesh ∆pd (Pa)
48 steady 0 1.47 · 10−3

1 1.57 · 10−3

2 1.61 · 10−3

480 unsteady 0 5.69 · 10−2

Table 7.1: Summary of simulation results for the pure hydrodynamic case

like breeder unit is simulated, it seems better to use the Reynolds number at the gap
(so is, using the gap hydraulic diameter instead of the channel’s) to characterise the
oscillating behaviour, given the fact that the flow at the gap would be several times
larger for the same ReDin in a simulation of the whole unit. For Regap & 395 the flow be-
comes unstable because shear instability appears (Drazin 2002); oscillations propagate
through the outlet channel.

a: ReDin = 48, Regap = 53 b: ReDin = 240, Regap = 264

c: ReDin = 360, Regap = 395 d: ReDin = 480, Regap = 527

Figure 7.2: Velocity maps as a function of Reynolds number. Flow starts being unsta-
ble at about ReDgap

of 395.

Oscillations in HCLL have not been reported before. This result is of crucial interest
because oscillations could affect the structure of the module.

Mesh influence on pressure drop is analysed for ReDin = 48 (corresponding to case
a of figure 7.2) using the three meshes mentioned in section 7.1.1. Although the cal-
culated pressure drop (table 7.1) slightly depends on the mesh refinement, values are
quite similar.

All the above mentioned results have been obtained by means of pseudo-transient
simulations in the FSPM, defined in section 7.2, which is only correct if a steady solu-
tion is known to exist. In case of instabilities, oscillations or turbulence, full transient
simulation (converged at each time step) is required. Both pseudo-transient and full
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transient simulations have been compared for the channel at ReDin = 480 (case d of fig-
ure 7.2) and mesh 0. A phase space map for both simulations is shown in figure 7.3(a).
The phase space map is obtained defining the critical point pcritic, corresponding to the
middle length of the outlet channel, where the oscillations are more severe. Time evo-
lution of the magnitude of velocity is shown in figure 7.3(b). Both the periodic nature of
the solution and the order of magnitude of velocity obtained in the two cases are very
similar, but the period of the oscillation is not. Thus, for a detailed quantification of the
period of the oscillation and hence, the vibrations that the flow induces in the structure,
a full transient simulation would be required.

(a) (b)
Figure 7.3: (a) phase space map and (b) temporal evolution at pcritic point for the
pure hydrodynamic case with ReDin

= 480 and mesh 0. Comparison of full transient
simulations (solid line) and pseudo-transient simulations (dotted line).

7.3.2 MHD

Since walls in HCLL blanket have a finite conductivity Cw, a realistic MHD simulation
of the U-channel would imply to electrically couple the walls with the fluid. This cou-
pling could be achieved either by modelling the solid and numerically coupling both do-
mains, or by applying the thin wall boundary condition from Müller and Bühler (2001),
which is, theoretically, only valid for fully developed flows. Since fluid-solid coupling is
required not only for the MHD simulation but also for the thermal and tritium analysis,
the simulation of solid wall coupling is of utmost interest. It is beyond the scope of the
present study such coupling analysis and, as a first approximation of the influence of
magnetoconvection on tritium transport, two idealised electric boundary conditions are
considered at walls: 1) a perfect insulated wall Cw = 0 and b) a perfect conducting wall
Cw=∞. Both cases are analysed separately.
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Chapter 7. U-bend in the HCLL blanket

Perfectly insulated walls

At Haa = 1740 and considering perfectly insulated walls, simulation results show how
the Lorentz force is able to stabilise the oscillating flow obtained at ReDin = 480, as
shown in figure 7.4(a). The stabilised flow is 2D except in Hartmann boundary layers.

(a) Velocity field (b) Velocity profiles

Figure 7.4: Velocity field and profiles for ReDin = 480 and Haa = 1740, with Cw = 0.
Velocity profiles are taken at the central x plane.

In figure 7.4(b) velocity profiles in the centre of the inlet and outlet channels are
shown. As expected, the inlet channel has a symmetric flow profile and can be con-
sidered as almost fully developed flow. However, flow in the outlet channel cannot be
considered as fully developed because of the stagnation zone appearing just after the
U-bend.

Electric potential field for ReDin =480 is shown in figure 7.5 for the central plane per-
pendicular to the magnetic field, nevertheless, the electric potential is constant along
magnetic field lines. As expected, isolines for electric potential follow velocity stream-
lines. It is more interesting to observe the electric current stream lines, shown in the
same figure. It is obvious that the entrance effect is quite important, the flow needing
almost half of the inlet channel to become fully developed (a fixed homogeneous inlet
velocity has been imposed). At the bend, the jet and the reattachment zone provoke a
quite complicated electric current path that is not developed until almost the end of the
outlet channel.

Pressure drop for all MHD simulations is shown in table 7.2. As expected, MHD
effects increases pressure drop. When comparing ∆pd obtained for the three meshes (at
ReDin 480), it can be seen that mesh 1 is required to obtain an accurate simulation.
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Figure 7.5: Electric potential field and electric current streamlines for ReDin
= 480

and Haa = 1740, with Cw = 0.

Perfectly conducting walls

When perfectly conducting walls are considered, the M-shaped profile is recovered ex-
cept for the bend, as shown in figure 7.6(b). At the bend, the jet is reduced in size but
involves a higher velocity (figure 7.6(a)). However, the magnetic field is strong enough
to obtain not only a stable solution but also a developed flow profile at the outlet chan-
nel.

(a) Velocity field (b) Velocity profiles

Figure 7.6: Velocity field and profiles for ReDin
= 480 and Haa = 1740, with Cw = ∞.

Velocity profiles are taken at the central x plane.

Electric potential field for ReDin = 480 is shown in figure 7.8 for the central plane
perpendicular to the magnetic field. In order to capture the electric potential gradients
at the bend, the chosen legend does not allow to see the electric potential gradient in the
inlet and outlet channel, which is qualitatively similar to the one shown in figure 7.5
for insulated walls. In contrast of what occurs when cw = 0, in the perfectly conducting
walls case the electromagnetic coupling is strong enough to reduce substantially the
entrance effect and to minimise the zone affected by the U-bend; thus, the electric
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current streamlines look quite regular all along the system, except for the bend itself.
At the bend, strong electric potential gradients appear related to each of the vortices
shown in figure 7.7 for more clarity. If walls conductivity is to be considered finite,
higher velocity jets are expected at the inlet and outlet channels and, thus, an even
more complicated flow profile at the U-bend.

Figure 7.7: Velocity field and velocity streamlines for ReDin
=

480 and Haa = 1740, with Cw =∞.

Figure 7.8: Electric potential field and electric current
streamlines for ReDin

= 480 and Haa = 1740, with Cw =∞.

As expected, according to table 7.2, pressure drop is substantially increased when
conducting walls are considered. When a mesh quality analysis is performed with per-
fectly conducting walls, it can be stated that mesh0 is fine enough to provide good ∆pd

precision. Thus, under the studied flow conditions, perfectly conducting walls need less
mesh refinement than insulating walls.
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Cw ReDin flow mesh ∆pd (Pa)
0 48 steady 0 1.60 · 10−2

480 steady 0 1.85 · 10−1

1 1.90 · 10−1

2 1.91 · 10−1

∞ 48 steady 0 2.50 · 101

480 steady 0 2.49 · 102

1 2.48 · 102

Table 7.2: Summary of simulation results for the MHD study

7.3.3 Heat transfer MHD

In this section, the complete coupled case with GrL = 5.21 · 109 has been analysed.
Mainly, all simulations are carried out with mesh 0 due to simulation run time lim-
itations. Indeed, if τCPU represents the CPU time in seconds needed to simulate 1
physical second, and the case has been run in parallel with openMPI and using 3 cores
(Intel Core2 2.5MHz), for ReDin = 480 and Cw = 0, τCPU is 184 and 1500 for mesh 0
and 1 respectively. Also, for ReDin = 480 and Cw = ∞, the simulation time is reduced
to τCPU = 133 and 580 for mesh 0and mesh 1 respectively. If the mean residence time
(without considering vortices) in the whole system is about 800 s, then, the minimum
simulation time is 1.7, 13.9, 1.2 and 5.4 days respectively. If an unsteady solution ex-
ists, the required simulation time is increased substantially. Simulations with a finer
mesh (mesh 2) can take a couple of months.

As shown in the following, unstable flows are often found. Thus, full transient sim-
ulations are always done, either for FSPM and PISO algorithms. As stated in section
7.2, the FSPM has been used for cases where Cw = 0 whereas PISO algorithm, due to
its better coupling, is used for Cw =∞ cases. PISO algorithm reaches exactly the same
solution for Cw = 0 than FSPM.

Perfectly insulated walls

The complete coupled case with GrL = 5.21 ·109 has been analysed for mesh0 and veloc-
ity and temperature field maps are shown in figure 7.9. For both Reynolds numbers 48
and 480, vortices appear in the solution at the inlet, due to Rayleigh-Bénard instability,
the bend and the outlet, as shown in figures 7.9(a) and 7.9(c). The inlet vortex is in-
directly imposed by the inlet temperature boundary condition; in fact, in real blankets
the lead lithium is already heated when it enters the blanket and thus, such vortex is
not expected to exist. The most relevant aspect is that, for both Reynolds numbers, the
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same maximum velocity is obtained in vortices located at the bend despite the fact that
the difference in the flow rate is of one order of magnitude. At the same time, when
comparing this peak velocity with the one obtained in the pure MHD case (7.4(a)), it
can be stated that the value obtained in the MHD thermofluid simulation is not a di-
rect consequence of the channel narrowing. All this indicates the natural convection
predominance in the flow.

(a) ReDin = 48, Velocity field

(b) ReDin = 48, Temperature field

(c) ReDin = 480, Velocity field

(d) ReDin = 480, Temperature field

Figure 7.9: Velocity and temperature fields with Haa = 1740 and GrL = 5.21 ·109, with
Cw = 0. Middle plane for z axis on the left and middle plane for x axis on the right.
Results obtained with mesh 0 and Boussinesq hypothesis.

In figures 7.9(b) and 7.9(d) it can be observed how the temperature field experiences
two hot spots before and after the bend, with similar temperatures in both cases. How-
ever, due to fixed wall temperature boundary condition, the U-bend itself is at a lower
temperature. The temperature field is clearly 3D whereas vortices are stretched in z
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axis, along magnetic field lines. For the sake of clarity, the stream lines are sketched
for the case with ReDin = 48 in figure 7.10.

Figure 7.10: Streamlines for ReDin = 48, Haa = 1740 and
GrL = 5.21 · 109, with Cw = 0.

Despite the similarity in the buoyancy force and the natural convection phenomenon,
the case with ReDin = 480 is steady whereas the case with ReDin = 48 is periodic. Flow
oscillation is mainly located at the U-bend, as shown by the phase space map in figure
7.11. The period of such oscillation is around 27 s and only alters the temperature field
by 0.2 degree.

Figure 7.11: Phase space map for ReDin
= 48,

Haa = 1740 and GrL = 5.21 · 109, with Cw = 0.
Solid line (bottom right corner) represents a point
at the centre of the outlet channel and dotted line
represents a point at the bend.

For ReDin =480 the simulation has also been carried out for mesh1 in order to analyse
mesh quality. Results show (figure 7.12) that a substantially different velocity field is
obtained with a finer mesh, despite buoyant predominance of the flow still exists and
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the same maximum velocity at vortices is obtained (see figure 7.9(c) for comparison).
This discrepancy is evident when comparing pressure drop (∆pd) in table 7.3. Therefore,
finer meshes would be necessary to accurately determine flow profiles.

Figure 7.12: Velocity field for ReDin
= 480, Haa = 1740 and

GrL = 5.21 · 109, with Cw = 0 and mesh1.

The pressure drop for both Reynolds numbers is of the same order of magnitude (see
table 7.3). This indicates again that buoyancy dominates flow convection. Comparing
these pressure drops with the ones obtained for purely MHD cases, it can be stated that
buoyancy increases substantially ∆pd, specially at low Reynolds numbers.

Electric potential isocontours for ReDin = 48 are plotted in figure 7.13. φ isocontours
take the form of elongated structures which coincide with velocity vortices. Indeed,
from the simplified set of equations from Bühler (1998), it is already shown that the
Laplacian of the electric potential equals the vorticity component in the magnetic field
direction.

It is worth mentioning that a fixed wall temperature is not realistic, but provides a
first overview on the main phenomena. In a fluid-coupling simulation, such tempera-
ture gradients perpendicular to walls would not appear and vortices might be damped.
But then, if the complete blanket were to be simulated, the observed flow perturba-
tions due to buoyancy could be increased. Therefore, more sophisticated simulations
are needed to fully determine the nature of the flow in a real HCLL blanket.

Perfectly conducting walls

When perfectly conducting walls are considered, the same maximum velocity, located at
the bend (figures 7.14(a) and 7.14(c)), is observed for both Reynolds numbers, as in case
Cw = 0. Despite this fact seems to indicate the predominance of the natural convec-
tion in the flow, velocity streamlines make evident the complex flow (at low velocities)
obtained for Reynolds 48, whereas for Reynolds 480 the flow is fully developed every-
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Figure 7.13: Electric potential isocontours for ReDin
= 48,

Haa = 1740 and GrL = 5.21 · 109, with Cw = 0. The front plane
shows the electric potential field whereas the central and the
back planes show the velocity field.

where except at the bend itself. For both Reynolds the solution is unstable but flow
oscillations are mainly located at the bend. At ReDin =48, the period of such oscillation
is around 200 s and only alters the temperature field by 0.1 degree, while at ReDin =480

the oscillations are minimum (less than 0.01 degrees) with a low period (around 0.15 s).
It has to be mentioned that the inlet vortex is damped for Reynolds 48 whereas it is
suppressed for Reynolds 480. Temperature fields from figures 7.14(b) and 7.14(d) are
quite similar to those for perfectly insulated walls.

Electric potential isocontours for ReDin = 48 are plotted in figure 7.15. As com-
mented previously, peak values of φ are located at the velocity vortices, the sign of φ
indicating the direction of the rotation. The electric current stream lines are similar to
those obtained for the Cw = 0 MHD case in 7.8.

For ReDin = 480 the simulation has also been carried out for mesh1 in order to anal-
yse mesh quality. However, the obtained results are very similar to the ones obtained
for mesh 0, as demonstrated by the resulting pressure drop in table 7.3. Therefore,
accurate results are already obtained with mesh 0.

In contrast of what was obtained for cw = 0, pressure drop is quantitatively differ-
ent (one order of magnitude) for each Reynolds number. Such difference indicates the
predominance of electromagnetic pressure drop.

7.3.4 Influence of boundary conditions on tritium permeation

Bred tritium travels along the channel, its inventory being affected by permeation
through walls. Evaluation of tritium inventory and tritium permeation ratio (hereafter
called TPR) is needed for, among other, safety reasons.
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(a) ReDin = 48, Velocity field

(b) ReDin = 48, Temperature field

(c) ReDin = 480, Velocity field

(d) ReDin = 480, Temperature field

Figure 7.14: Velocity and temperature fields with Haa = 1740 and GrL = 5.21 · 109,
with Cw = ∞. Middle plane for z axis on the left and middle plane for x axis on the
right. Results obtained with mesh 0 and Boussinesq hypothesis.

As mentioned in section 7.2, tritium transport can be simplified considering tritium
as a passive scalar. Of course, a more realistic approach taking into account helium and
its effects on tritium transport if helium bubbles are present, would provide different
TPR and tritium inventories than those obtained here. However, present results can
be seen as a preliminary TPR analysis with the aim of providing the influence on TPR
under different flow (and numerical) situations.

In the case study sketched in figure 7.1 three critical boundary conditions need to be
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Figure 7.15: Electric potential field and electric current
streamlines for ReDin = 48, Haa = 1740 and GrL = 5.21 · 109,
with Cw =∞.

Cw ReDin flow mesh ∆pd (Pa)
0 48 unsteady 0 0.66

480 unsteady 0 0.62
1 0.55

∞ 48 unsteady 0 23.9
480 unsteady 0 247.9

1 247.1

Table 7.3: Summary of simulation results for the MHD thermofluid study

defined: at the inlet, wall and outlet.

Concerning to wall boundary condition, equation 7.3 has been used with a tritium
diffusion coefficient in lead lithium of 10−9 m2/s, which is of the same order of magni-
tude as the expected one (Mas de les Valls et al. 2008). Tritium solubility coefficient
in lead lithium is somewhat arbitrarily chosen to be 2.9 · 10−3 mol/m3Pa0.5, which is
in the middle of the range (two orders of magnitude) of the proposed values. A sensi-
tivity analysis for these values is shown in section 7.3.5. For the structural material
coefficients, a diffusivity of 1.12 · 10−8 m2/s and a solubility coefficient of 1.825 · 10−2

mol/m3Pa0.5 have been considered according to Esteban et al. (2007).

In the present study, a zero tritium concentration is imposed at inlet, which would
correspond to an idealised Tritium Extraction System (TES). At the outlet, since vor-
tices may be present, a zero gradient boundary condition is fixed for the outcoming flow,
whereas a zero concentration is fixed for the incoming flow. In the following, the outlet
boundary condition is analysed in more detail.

Tritium concentration fields for perfectly insulating walls are shown in figure 7.16.
At both Reynolds numbers, high concentration is obtained at vortices and at the outlet.
Vortices are expected to transport a high tritium concentration due to the stagnant ve-
locities and high residence time, so that it is reasonable to obtain a high tritium concen-
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tration in vortices. What is not so straightforward is to identify the reason for the high
concentration obtained at the outlet, specially for ReDin = 48, as can be seen in figure
7.17 (note that tritium concentration at the outlet more than doubles the concentra-
tion at the middle plane of the outlet channel). This unphysical result is a combination
of the presence of vortices crossing the outlet section and the outlet tritium boundary
condition.

(a) ReDin = 48

(b) ReDin = 480

Figure 7.16: Passive scalar concentration fields for DT = 10−9 m/s and ks = 2.9 ·
10−3 mol/m3Pa0.5, with Haa = 1740, GrL = 5.21 · 109 and Cw = 0. Middle plane for z
axis on the left and middle plane for x axis on the right. Results obtained with mesh 0
and Boussinesq hypothesis.

Figure 7.17: Passive scalar concentration profiles for
DT = 10−9 m/s and ks = 2.9 · 10−3 mol/m3Pa0.5, with
ReDin

= 48, Haa = 1740, GrL = 5.21 · 109 and Cw = 0.
Profiles are obtained on y axis at the centre of the outlet
channel (solid line) and at the outlet (dotted line).

119



7.3. Results

Parameter 0L 0.25L 0.50L 0.75L

TPR % 20.7 18.8 17.9 17.7
JHa % 9.8 12.9 13.1 12.9

CT,mean (mol/m3) 8.0 · 10−3 5.0 · 10−3 3.6 · 10−3 2.1 · 10−3

Table 7.4: Cut-off position effect on tritium permeation analysis for ReDin
= 48, Haa =

1740, GrL = 5.21 · 109 and Cw = 0, using mesh 0. The diffusion coefficient is DT = 10−9

m2/s and the Sievert’s constant ks = 2.9 · 10−3 mol/m3Pa0.5.

In order to obtain a TPR which does not depend on the outlet boundary condition, a
different set up has been studied based on limiting the region where the tritium source
exists, avoiding tritium generation near the inlet/outlet of the U-channel. Therefore,
four different cut-off positions have been defined: at 0L, 0.25L, 0.5L and 0.75L, where L
is the channel length (figure 7.1). All cases have been simulated using the wall bound-
ary condition based on Sievert’s law and with ReDin = 48. In table 7.4 results are listed.
Three parameters are compared: 1) TPR, 2) CT,mean which is the mean tritium concen-
tration and is representative of the tritium residence time, and 3) JHa , which is the
percentage of permeation through the Hartmann walls and indicates 3D effects (Notice
that the Hartmann walls surface is 15 % of the total wall surface).

As expected, average tritium concentration (CT,mean) decreases as the cut-off position
increases. Permeation is substantially reduced for 0.25L case and, later for 0.50L case,
whereas 0.75L case experiences little TPR reduction. The first reduction is caused by
the independence between core solution and outlet boundary condition, which is exactly
the aim of this study. However, the second TPR reduction can be explained by the fact
that tritium source term is neglected at the central stagnant region between two main
vortices (figure 7.10). Stagnant zones imply, if any tritium is generated there, high
tritium concentrations (and residence times) and, thus, high permeation fluxes if such
stagnant zone is close to the wall. Therefore, the most realistic TPR value is the one
obtained from 0.25L case.

From results in table 7.4, it can be stated that if a 2.5D simulation were to be carried
out by omitting Hartmann walls, the error on TPR would be around 10 % (JHa ∼ 10).

7.3.5 Sensitivity analysis on tritium physical data

A large span of data regarding tritium transport parameters (DT , ks) exists in litera-
ture. Therefore, a sensitivity analysis on this parameters is of crucial interest. Here,
the analysis is carried out considering both insulating and perfectly conducting walls.
In order to avoid the influence of the outlet boundary condition, tritium source term
close to the outlet is neglected (case 0.25L from previous section). Among the available
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data (see Mas de les Valls et al. (2008) for a summary of it), two extreme values of DT

and ks have been chosen. Values for diffusion coefficient are chosen from Terai et al.
(1992) (DT, 2.41 · 10−9 m2/s) and Reiter (1991) (DR, 1.41 · 10−9 m2/s). Sievert’s constant
has been chosen from Aiello et al. (2006) (SA, 2.56 · 10−2 mol/m3Pa0.5) and Reiter (1991)
(SR, 1.01 · 10−3 mol/m3Pa0.5). All correlations are evaluated at 700 K and parameters
are considered constant with temperature.

From comparing results (table 7.5) for ReDin = 48 and Cw = 0, the huge difference
on TPR as a function of the chosen D and ks values becomes obvious. In fact, it can
be stated that: 1) main uncertainties come from ks value and larger ks implies lower
TPR, and 2) DT value uncertainty is not so critical and its relationship with TPR is not
straightforward due to the complex vortical flow. Facing such differences on TPR as a
function of (mainly) ks, tritium transport analysis only make sense in terms of design
optimisation, but not for an accurate TPR estimator.

By comparing results for different Reynolds numbers, it can be observed that larger
Reynolds numbers reduce tritium concentration and limit TPR, as had been stated by
Reimann et al. (2006).

From results in table 7.5 the mesh quality can also been analysed. Indeed, for Rey-
nolds 480, two different meshes have been used (mesh 0 and mesh 1). The obtained
results indicate that perfectly conducting walls, and under the studied flow conditions,
requires less mesh resolution than insulating walls.

The most important result from this sensitivity analysis is, probably, the fact that
almost the same TPR is obtained for both Cw values. This phenomena can be explained
by the fact that high velocities are present near walls for both Cw = 0 and Cw = ∞.
Indeed, for perfectly insulating walls, big vortical structures appear due to thermal
instabilities, whereas when perfectly conducting walls are considered, side boundary
jets exist.

7.4 Discussion

In the present work, modelling of integrated effect of volumetric heating and magnetic
field on tritium transport in HCLL blanket-type channels is studied. To this aim, a 3D
MHD algorithm based on an electric potential formulation, together with temperature
coupling using Boussinesq hypothesis, has been used.

The HCLL blanket-type channel that has been studied corresponds to an inlet and
outlet lead lithium channel between two cooling plates and the stiffening plates. It in-
cludes the gap that connect both channels at the first wall. Hence, the simulated chan-
nel can be defined as a U-bend where the fluid travels perpendicular to the (toroidal)
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ReDin , Cw, mesh case TPR % JHa % CT,mean (mol/m3)
48, 0, mesh0 DT-SA 3.4 18.1 5.8 · 10−3

DT-SR 33.2 10.0 4.2 · 10−3

DR-SR 29.8 9.8 4.4 · 10−3

DR-SA 3.5 18.2 5.8 · 10−3

480, 0, mesh0 DT-SA 0.4 15.3 6.7 · 10−4

DT-SR 5.6 12.3 6.3 · 10−4

480, 0, mesh1 DT-SA 0.4 14.9 6.3 · 10−4

DT-SR 5.2 11.8 5.9 · 10−4

48,∞, mesh0 DT-SA 3.5 17.9 5.6 · 10−3

DT-SR 25.8 17.1 4.4 · 10−3

480,∞, mesh0 DT-SA 0.4 11.6 5.1 · 10−4

DT-SR 4.7 12.6 4.9 · 10−4

480,∞, mesh1 DT-SA 0.4 11.2 5.2 · 10−4

DT-SR 4.8 12.1 4.9 · 10−4

DR-SR 4.2 12.0 4.9 · 10−4

DR-SA 0.5 10.6 5.2 · 10−4

Table 7.5: Tritium permeation analysis for Haa = 1740 and GrL = 5.21 · 109, for differ-
ent diffusivities and Sievert’s constants.

magnetic field. The thermofluid MHD flow in such a channel is complex and, in order
to give a major insight in the phenomenon, different scenarios have been studied in-
cluding: 1) pure hydrodynamics with Reynolds 48 and 480, 2) MHD with Hartmann
number 1740 and 3) MHD thermofluid coupling with Grashof 5.21 · 109.

A jet is produced at the narrowing of the channel in the U-bend for pure hydro-
dynamic simulations. When this jet reaches the wall, it can experience shear stress
instabilities that travel all along the outlet channel. Flow shear instabilities have been
found for Regap & 395. Considering that only one out of four sub-channels of the breeder
unit have been simulated, the actual critical Reynolds might be slightly different.

For the MHD simulation, two different electric boundary conditions have been con-
sidered: insulating walls and perfectly conducting walls. When insulating walls are
considered, the magnetic field is able to suppress the formation of the jet at low Rey-
nolds numbers, and the flow becomes stable among the studied Reynolds. For perfectly
conducting walls, the flow is also stable but the M-shaped profile is obtained all along
the channels except at the bend. Mesh requirements are lower for perfectly conduct-
ing walls than for insulated walls, since no jet reaches the wall. The effect of a fixed
homogeneous inlet velocity is evident for the insulated walls case as a large entrance
zone is found. However, when perfectly conducting walls are considered, the flow is
fully-developed almost everywhere except at the bend itself. Further study is needed
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in this direction mainly by increasing the Hartmann number to real ITER conditions
and by electrically coupling the fluid and the structural material, which would provide
larger jets at side boundary layers.

The considered thermal source, which is of the same order of magnitude as the ex-
pected in ITER reactor, is sufficient to induce natural convection in the studied chan-
nels, with independence of the Reynolds number and electric wall boundary condition.
Such natural convection can become unstable with periodic velocity oscillations at the
U-bend. However, thermal induced oscillations are not significant. When insulating
walls are considered, vortices appear all over the channel due to inverse thermal gra-
dients between fluid and fixed wall temperature. In contrast, for perfectly conducting
walls, such vortices are mainly found at the bend, specially at high Reynolds numbers.
It is worth mentioning that a fixed wall temperature is not realistic, but provides a
first overview on the main phenomena. In a fluid-coupling simulation, high tempera-
ture gradients perpendicular to walls would not appear and vortices might be damped.
Also, with a higher Hartman number, the ratio Gr/Ha5/2 would be substantially lower
and inertia effects could be neglected, which was observed by Vetcha et al. (2009) for
the DCLL blanket design. However, if the complete blanket were to be simulated, the
observed flow perturbations due to buoyancy could be increased. To sum up, more so-
phisticated simulations are needed to fully determine the nature of the flow in a real
HCLL blanket.

A tritium transport analysis has been performed on the obtained MHD thermofluid
simulations. A detailed analysis on the effect of inlet/outlet boundary condition has
been done. Moreover, a sensitivity analysis to diffusivity and solubility is carried out.
As expected, the large uncertainties on tritium physical data (specially Sievert’s coeffi-
cient) produce large variations on the obtained permeation ratio, varying about one or-
der of magnitude. Another expected result is that, at higher Reynolds number, tritium
permeation is reduced. What was not expected is that, under the studied flow condi-
tions, permeation ratio is independent on wall electric conductivity. This is explained
by the existence of velocity jets either in insulated walls and perfectly conducting walls.
In the first case, the jets correspond to the M-shaped profile. In the second case, jets
are part of vortical structures caused by thermal instabilities. Therefore, it is urgent to
analyse the flow behaviour considering fluid-solid coupling.

To sum up, further studies considering fluid-solid coupling, a higher Hartman num-
ber and a more detailed geometry of the blanket are needed. However, for an accurate
tritium permeation ratio prediction, it is urgent to develop new and precise measure-
ments of tritium transport data, specially of solubility.
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8.1 Motivation

In the frame of the Spanish Breeding Blanket Technology Programme TECNO FUS,
that started on 2008, the dual-coolant liquid metal blanket for DEMO specifications
is considered for design refinements. The proposed new blanket concept is hereafter
called TECNO FUS blanket. It can be considered as a transition option towards a self-
cooled concept, which implies higher theoretical thermal efficiency. Design is relatively
simple (thus robust) exploiting the excellent thermal and breeding properties of the
alloy Pb-15.7Li and the satisfactory non-structural functions of SiC inserts under irra-
diation (to be developed and tested). At the present status of the study (Juanas and
Fernández 2009), liquid-metal channels are conceived as vertical insulated banana-
shape (poloidal) channels where main refinements include: a) optimised channel geom-
etry and b) improvements on flow channel inserts.

This application case intends to yield firsts simulation results concerning liquid
metal flow profiles and thermal behaviour. Such (preliminary) analysis can provide
useful data not only to understand the flow in TECNO FUS channels but also to opti-
mise the design.

In this chapter, an explanation of the TECNO FUS proposal is given (section 8.1.1)
along with a brief overview of flow characterisation and model (section 8.1.2). Pre-
vious overviews of phenomena related to liquid metal blanket designs, and available
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strategies to model them, have been presented for several designs or proposals, in-
cluding Reimann et al. (1995) for the Self-cooled blanket, Reimann et al. (2006) for
the HCLL, and Smolentsev et al. (2008) for the US DCLL. All them focus on critical
blanket issues such as MHD pressure drop, electrical insulation, three dimensional
flows, multi-channel effect, buoyancy-driven flows, etc. A recent summary on MHD
thermofluid critical issues in blankets can be found in Smolentsev et al. (2010). Fol-
lowing such studies, in section 8.1.2, the expected MHD flow in TECNO FUS blanket
is characterised and, accordingly, some modelling strategies are proposed.

The applied modelling strategies used in the present study are described in section
8.2, whereas results can be found in section 8.3. The modelling study focuses on optimi-
sation of thermal performance of the TECNO FUS blanket, which means a maximised
LM temperature increment (between inlet and outlet) while keeping the Eurofer tem-
perature below its limits (about 550oC) and minimising the thermal stresses across the
FCI. Final discussion of the study can be found in section 8.4.

8.1.1 Definition of the proposed TECNO FUS blanket concept

According to Juanas and Fernández 2009, the reactor is split in 12 segments, each one
consisting of two inboard and three outboard blanket modules, the latter shown in fig-
ure 8.1. Initially, each module consists of four banana-shaped (poloidal) channels, two
in the front and two in the back, connected at the bottom of the module. Liquid metal
(Pb-15.7Li) flows from the inlet manifold at the top, down through the front channels
and returns through the back channels up to the outlet manifold. The blanket poloidal
length L is 9193 mm, so it covers almost all the poloidal dimension of the reactor. Each
channel has a radial depth 2b of 355 mm and a toroidal width 2a of 610 mm. More
details of the geometry are given in figure 8.1.

The present status of the design considers, with 3450 MW of fusion power, a neutron
wall loading for the blanket of 2.1 MW/m2. The amplification factor, defined as the
effective thermal deposition (deposited and generated power) divided by the original
thermal deposition, is estimated to be 1.16. The thermal load for the TECNO FUS
geometry has been obtained from a 2D-axisymmetric neutronic assessment using a
simplified, onion layer-like, isometric model from Catalán et al. (2010). At the current
status of the study, no poloidal distribution is considered. From results in Catalán et al.
(2010), the thermal load can be expressed following an exponential curve (equation 8.1),
where r stands for the distance to the First Wall.

Sthermal = 12exp(−4.8r) + 40exp(−20r) MW/m3 (8.1)
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Figure 8.1: Three outboard blanket modules forming a segment (left) and
module dimensions in mm (right) for the present TECNO FUS proposal
from Juanas and Fernandez (2009)

Improvements on the above mentioned neutronic load and channel geometry are
currently being carried out, however, minor changes are expected on MHD thermofluid
properties.

As liquid metal (LM) flows, it experiences a huge thermal load caused both by ther-
mal deposition from plasma’s reaction and by neutron reactions in PbLi. At the same
time, the large magnetic field, responsible for plasma confinement, interacts with the
flow velocity inducing electric currents and, thus, generating the Lorentz force that
opposes the flow. All of this results in a considerable increase of fluid temperature
at the inlet channel only diminished by helium cooling channels at the walls. Pre-
liminary TECNO FUS blanket characterisation considers a helium average tempera-
ture of 400 oC and an inlet LM temperature of 450 oC. A LM temperature gradient of
300 oC would be desirable to permit efficient heat extraction through a super-critical
CO2 heat exchanger. Thus, the flow rate should be high enough to avoid excessive ther-
mal stresses on the structure but, at the same time, able to provide a high LM outlet
temperature. MHD pressure drop is not an aspect of major concern due to the presence
of flow channel inserts (FCIs). Indeed, the present TECNO FUS blanket concept con-
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siders the FCIs to be directly in contact with the steel so that no pressure equalisation
openings are needed. Thus, a reasonable reduction of the MHD pressure drop can be
achieved with relatively low values of the FCI electrical conductivity.

8.1.2 Flow characterisation and model

Considering a toroidal magnetic field of 7 T, the Hartmann number for the previously
defined TECNO FUS blanket is Haa = 51390. Velocity specifications lay in the range of
0.1− 1.0 m/s, which corresponds to a Reynolds number at the inlet of ReDin = 3.3 · 105−
106. Therefore, parameterR = Rea/Haa = 4.4−44.2 for TECNO FUS concept lays in the
range of US DCLL and self-cooled blanket designs. For the estimation of the Grashof
number (Gr ), a characteristic temperature scale has been defined as ∆T = S̄thermal b

2/λ,
which is associated with the average radial thermal load S̄thermal and the liquid metal
conductivity λ. For the TECNO FUS blanket, Gr b = 2.8 · 109 is obtained, which is in
accordance with the dual-coolant concept (Smolentsev et al. 2010). All dimensionless
numbers have been calculated using the PbLi database from Mas de les Valls et al.
(2008).

Under the above mentioned flow conditions, and considering the large poloidal length
of each banana-shaped channel, the flow could be modelled using the two-dimensional
set of equations from Sommeria and Moreau (1982) (SM82) which include an extra dif-
fusive term in the momentum equation due to the contribution of Hartmann boundary
layers. Such system of equations has already been commented in section 5.3. Main dif-
ferences between 3D and 2D models rely on boundary layers at side walls. The obtained
2D boundary layers might differ from Shercliff boundary layers (in real 3D flows) be-
cause of the different origin of each one, as pointed out by Pothérat (2007). Therefore,
2D results, while of great value, should be contrasted with detailed 3D simulations.

In contrast, for specific complex flow zones, such as the 180o turn at the bottom of
the module where the four channels merge, or the inlet and outlet manifolds, a three-
dimensional numerical code must be applied in order to accurately capture the main
flow parameters, such as the pressure drop and the local Nusselt number. Indeed,
manifolds and complex geometries are responsible for the major part of the total pres-
sure drop and it can not be reduced significantly using insulating FCI, acting uniquely
as thermal insulators. The required 3D MHD code could consider the inductionless ap-
proximation, but special emphasis should be placed on conserving electric currents (see
for example Ni et al. 2007). Such 3D algorithm could be improved with the Hartmann
wall function from Bühler (1994) (see section 5.2.4), or more sophisticated ones from
Hunt and Ludford (1968) and Pothérat et al. (2002).
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Under the above mentioned ReDin , MHD turbulence is expected to exist. Following
the Haa–Rea diagram in Smolentsev and Moreau (2007), the liquid metal flow in the
TECNO FUS proposal would correspond to the Q2D region. This implies that all three
dimensional effects are confined in the thin Hartmann layers at the walls perpendicular
to the magnetic field, where almost all Ohmic and viscous forces occur. The existing
turbulence models have been described in section 4.1.3.

Electrical coupling between the LM channel and walls could give rise to the multi-
channel effect (McCarthy and Abdou 1991, Molokov 1993). However, since FCIs electric
conductivity is very low, and provided that the thickness of the FCIs is sufficient, the
multi-channel effect would be minimised. Anyway, the velocity jets that would appear
in the side boundary layers, caused by non-zero wall conductance ratio, could experience
flow instabilities and, hence, fluctuations. Such fluctuations are not expected to alter
the core flow profile, as stated in Cuevas et al. (1997).

According to results in sections 7 and 9, thermal effects are expected to be 3D. In-
deed, in HCLL-type LM channels, such effects might represent up to 10 % of the total
thermal losses. Therefore, despite using the SM82 set of equations for the MHD mod-
elling, the temperature field should be solved by a 3D solver.

When comparing the characteristic velocity at which buoyancy forces balance Lorentz
forces (vo,MHD = (Gr/Ha2)(ν/a) ∼ 10−7 m/s), with the mean flow velocity (0.1−1.0 m/s),
it is evident that buoyancy, despite the high Gr number, is not expected to play a
relevant role on velocity profiles, even in the downward channel, where flow inertia
and buoyancy oppose each other. Such effect is confirmed by the Archimedes Number
(Gr/Re2), which is below unity. In this direction, the Boussinesq hypothesis could be
applied to couple both the heat transport and MHD equations. However, the applicabil-
ity of this hypothesis under the high temperature gradient present in the LM channels
should be verified. Moreover, thermal coupling between LM, FCI, structural material
and helium cooling channels would provide a more accurate modelling of the thermal
process. This, at the same time, could alter the flow profile.

8.2 Modelling strategies

The chosen algorithm to be applied in this second application case is the 2D MHD al-
gorithm SM82, described in section 5.3.1, coupled with heat transport as explained in
sections 6.1 and 6.4. Such algorithm has been chosen due to its reduced CPU costs. In-
deed, since the poloidal flow in the TECNO FUS blanket is to be modelled, with special
focus on heat extraction and efficiencies, the 3D mesh required for the large poloidal
length of each banana-shaped channel would be unaffordable with the available CPU
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resources in our group.

Turbulence has been modelled following the 0-equation RANS MHD model from
Smolentsev and Moreau (2006) (see section 5.3.1). As suggested by the authors, for
an estimation of the turbulent thermal diffusivity, a turbulent Prandtl number of 1.1
has been considered. No extra correction has been introduced for thermal effects.

Since accurate steady state solutions are to be found, time marching is accomplished
by two iterations for each time step and without velocity pre-conditioner (momentum
equation is not explicitly solved). Simulations are carried out with a (Bi)-Conjugate
Gradient solver. In all the equations, the Central Difference scheme has been used
for the spatial discretisation whereas temporal discretisation is first order accurate.
Steady state criterion is fixed with a relative error of 10−7 for each field map.

A special Robin type boundary condition has been applied in the external walls (in
contact with the fluid domain), following equation 8.2, where Ueq stands for the overall
heat transfer coefficient, Tb.c. and THe stand for the boundary and helium temperatures
and n represents the surface normal vector. Equation 8.2 represents a 1D steady state
thermal balance between the liquid metal interface (with subscript b.c., as for boundary
condition), and the helium cooling channels. Indeed, the heat flux that leaves the LM
domain (by a thermal diffusive process following Fourier’s law) equals the total heat
extracted by helium.

Ueq (Tb.c. − THe) = k

(
∂T

∂n

)
b.c.

(8.2)

The overall heat transfer coefficient might include several thermal resistances as the
thermal convection associate resistance in the cooling fluid (helium), and the thermal
diffusive resistance of both the FCI and the structural material (Eurofer, EU). The final
expression is shown in equation 8.3, where δ stands for the wall thickness.

Ueq =
1

h−1
He + δFCI

kFCI
+ δEU

kEU

(8.3)

The above mentioned temperature boundary condition is a fixed gradient based
boundary condition. Thus, at each iteration, (dT/dn)b.c. is evaluated according to equa-
tion 8.2, where Tb.c. corresponds to the previous iteration value. The user needs to
specify both THe and Ueq values.

As can be observed, the balance used in equation 8.2 corresponds to an idealised
1D flat wall balance, where no thermal generation exists in the solid domain. In fact,
thermal loads would also exist in solid walls, but they are not considered in the present
preliminary study. Moreover, the 1D idealisation might only be valid for small enough
Biot numbers, which is not exactly the present case. In order to account for 2D heat
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transfer, the fluid domain should be coupled with the solid domains (FCI and EU) fol-
lowing the coupling strategy described in section 5.2.5. A study in this direction has
been carried out and discussed in section 8.3.2.

8.3 Results

This section is split into two different studies.
In the first study, a sensitivity analysis of Eurofer surface temperature to inlet veloc-

ity is carried out. As a required step, an analysis of mesh induced error is done in order
to define an adequate mesh for further studies. Then, for different LM inlet velocities,
the critical design parameters are evaluated and discussed, including: (a) LM temper-
ature gain along the blanket ∆TLM , (b) maximum Eurofer temperature Tmax,EU , that
must be kept below 550 oC, and (c) thermal stresses across FCI layer ∆TFCI .

The second study consists of a sensitivity analysis of FCI thermal conductivity. Such
analysis includes a comparison between the coupled domain configuration, consider-
ing LM, FCI and Eurofer domains, and the single domain configuration corresponding
to the LM domain with a Robin type thermal boundary condition at walls, following
equation 8.2.

8.3.1 Sensitivity analysis of mass flow rate

TECNO FUS blanket velocity specifications lay in the range of 0.1− 1.0 m/s. The exact
value is to be defined as a function of several analyses including thermal efficiency, tri-
tium extraction, thermal loads in the structural materials and FCI, and MHD pressure
drop, among others. The present study is a preliminary analysis where an adequate
flow rate is proposed in terms of maximum liquid metal temperature increment and
Eurofer temperature below material limitations. In this direction, a sensitivity analy-
sis of inlet velocity has been carried out.

Simulations are conducted considering electrically insulated walls due to the pres-
ence of FCIs. A non-slip boundary condition has been considered at walls, despite re-
cent studies from Smolentsev (2009) indicate that interfacial slip will exist. A poloidal
distribution of the thermal load (equation 8.1) with a poloidal factor of 1.2 has been con-
sidered, whereas keeping constant the average value of Sthermal for the entire blanket.
The poloidal factor represents poloidal non-uniformities of the thermal deposition due
to plasma’s shape; indeed, in the equatorial region of the blanket, the thermal load is
expected to be larger than in the top and bottom zones. The resulting thermal load field
map is shown in figure 8.2 left.
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A fixed and uniform inlet temperature of 723.15 K has been assumed, which is a
simplification of the real case but provides a reasonable initial map without preventing
from a correct evaluation of the liquid metal temperature increment between inlet and
outlet (∆TLM ). The Robin type thermal boundary condition at walls shown in equation
8.2 has been implemented considering a constant helium temperature of 673.15 K and
an overall (helium/Eurofer/FCI, equation 8.3) heat transfer coefficient of 3000 W/m2 K;
such value corresponds to the limiting case of infinite thermal convection coefficient for
helium and hence, exclusively depends on wall thickness. Here, a FCI layer of 2 mm
depth and thermal conductivity kFCI = 15 W/m·K (Shinavski 2008) and an Eurofer
layer of 6 mm depth and thermal conductivity kEU = 30 W/m·K are considered. An
infinite value of the helium thermal convection coefficient has been chosen due to the
lack of accurate values under TECNO FUS cooling channels conditions. The overall
heat transfer coefficient may vary considerably for different FCI depths and thermal
properties, which is studied in next section.

The obtained velocity field map does not differ substantially from the isothermal
MHD case (without thermal load and with zero gradient thermal boundary conditions)
for all studied inlet velocities, and only experience a soft tilt due to buoyancy. This
behaviour, so different from that obtained in the DCLL design (Smolentsev et al. 2008),
is due to the relevance of inertia in front of buoyancy. In figure 8.2, both relative velocity
and temperature fields are shown for an inlet velocity of 0.4 m/s (Rea ∼ 9·105). A unique
stagnation zone is observed corresponding to the internal wall of the 180o bend at the
bottom of the blanket. Due to the high Lorentz force, no jet is formed after the abrupt
bend. Due to the large thermal load present in the downcoming channel, and due to the
accumulated enthalpy, the LM temperature increases as the flow reaches the bottom of
the blanket. At the outcoming channel, the thermal load is substantially reduced and
the cooling wall effect reduces the LM temperature. At the internal part of the bend,
since the fluid velocity is lower, the temperature is maximum. Thus, the maximum
Eurofer temperature is also expected at this region of the blanket.

Mean Nusselt number as a function of inlet velocity is shown in figure 8.3. For
Nusselt number evaluation, the temperature differences between the inlet and helium
channels is considered, together with the characteristic length a, following equation
8.4. In order to measure the discretisation error, three different non-structured meshes
have been used; their number of nodes are, from coarse to fine, 6.6 · 104, 1.4 · 105 and
3.3 · 105, and hereafter they are referred as meshes 0, 1 and 2 respectively. Mesh 2
has four nodes in side boundary layers. For all meshes the velocity profiles are very
similar, except in side boundary layers. Accordingly, it can be stated that calculated
Nusselt number is strongly mesh-dependent. However, as shown in figure 8.3, for this

132



Chapter 8. 2D analysis of the TECNO FUS blanket concept

Figure 8.2: From left to right: thermal load, relative velocity field and
temperature field for an inlet velocity of 0.4 m/s and mesh 2

preliminary analysis, sufficient accuracy is achieved with mesh 1.

Nu =
(dT/dn)b.c.

(Tinlet − THe) /a
(8.4)

Figure 8.3: Nusselt number as a function of the inlet velocity
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With the wall temperature and wall temperature gradient obtained from simula-
tions, Eurofer surface temperature can be extrapolated applying Fourier law in the
wall normal direction, for a given FCI depth and thermal conductivity, following equa-
tion 8.5. For material limitations, such temperature should be kept below 550o C. An
evolution of Eurofer surface temperature as a function of the inlet velocity is shown in
figure 8.4. From these results, it can be stated that a minimum velocity of about 0.3 m/s
is required under the considered thermal load and boundary conditions.

Tmax,EU = max

(
Tb.c. − abs

(
(dT/dn)b.c. kδFCI

kFCI

))
(8.5)

Figure 8.4: Extrapolated temperature at Eurofer surface as a function of
the inlet velocity

For a better comprehension of the general thermal phenomena, several tempera-
tures are given in figure 8.5. Tmean corresponds to the average LM temperature, while
Tmax is its maximum value. It can be observed that, as expected, mean flow temper-
ature decreases with increasing mass flux. This, at the same time implies a lower
∆TLM , evaluated as the difference between the mean outlet temperature Tout and the
inlet temperature. Tmax,wall corresponds to the maximum LM temperature at walls.
Comparing Tmax,wall with Tmax,EU , the thermal insulation properties of the FCI become
evident.

The temperature difference across the FCI, can be obtained following equation 8.6.
Such temperature difference is shown in figure 8.6 together with ∆TLM and the total
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Figure 8.5: Different temperatures obtained and/or extrapolated from
simulation results as a function of the inlet velocity, mesh 1

thermal power flux extracted by the fluid, (q/A)LM , calculated following equation 8.7.

∆TFCI = max

(
abs

(
(dT/dn)b.c. kδFCI

kFCI

))
(8.6)

(q/A)LM = ρcpvin∆TLM (8.7)

In terms of ∆TLM , ∆TFCI and Tmax,EU , the optimum inlet velocity would be of about
0.2 m/s, but in order to improve ∆TLM and reduce ∆TFCI and Tmax,EU , an optimisation
on FCI depth and thermal properties should be carried out (see next section). Moreover,
according to figure 8.6, a fourth design parameter should be included: the total ther-
mal power flux extracted by the fluid (q/A)LM . It can be stated that, under the above
mentioned flow conditions and with this preliminary evaluation, a higher inlet velocity
would improve the total extracted heat.

8.3.2 Sensitivity analysis of FCI thermal properties

As mentioned above, the previous results correspond to a FCI thermal conductivity
of 15 W/m·K FCI from Shinavski (2008) and an FCI thickness of 2 mm. According
to Smolentsev et al. (2006), the thermal conductivity of SiC FCI can lay between 1-
20 W/m·K, depending on the fabrication technique. The chosen FCI and its depth can
alter considerably the thermal behaviour of the blanket.

In the present study, an assessment through sensitivity and parametric analyses
of the required FCI thermal conductivity is performed. The case set up is the same
as in the previous study. The chosen inlet velocity is 0.2 m/s since it has been previ-
ously found to be optimal in terms of Tmax,EU , maximum ∆TLM , minimum ∆TFCI and
maximum qLM .
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Figure 8.6: Temperature differences for the liquid metal and FCI, to-
gether with total heat extracted by the LM as a function of the inlet ve-
locity, mesh 1

kFCI 0 1 2 5 10 15 20
Ueq 0 454 833 1667 2500 3000 3333

Table 8.1: Several FCI thermal conductivity, and corresponding overall
heat transfer coefficient, considered in the present study

Following the same procedure for thermal boundary condition evaluation, an infinity
thermal convection coefficient for helium is considered, Eurofer layer is estimated to
be 6 mm depth and with a thermal conductivity of 29.5 W/m·K, and a 2 mm depth
FCI layer is considered. Varying kFCI , the equivalent overall heat transfer coefficient
can be estimated according to equation 8.3. In practise, using the boundary condition
in equation 8.2, what really defines the influence of FCI is the ratio (k/δ)FCI . Thus,
the present study can be understood as a sensitivity and parametric analysis of the
required (k/δ)FCI ratio. The simulated cases are summarised in table 8.1. In all cases,
and according to previous results, the so called mesh 1 has been used.

As expected, Nusselt number increases with Ueq, so is, with FCI thermal conductivity
(figure 8.7). Ideally, for the present design, in between of the DCLL and the Self-cooled
concepts, the Nusselt number should be as low as possible in order to obtain a maximum
∆TLM .

In figure 8.8, some characteristic temperatures are shown. As previously, TLM is
the average LM temperature and Tmax,EU is the maximum extrapolated temperature
at Eurofer applying Fourier’s law, for a given FCI depth and thermal conductivity, as
expressed in equation 8.5. Tmean,FCI has been extrapolated following equation 8.8. It
can be observed that, whereas average LM temperature decreases with Ueq, maximum
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Figure 8.7: Nusselt number as a function of Ueq.

temperature at Eurofer increases. Ideally, if FCI were a perfect thermal conductor,
Eurofer and LM temperatures would become equal at the interface. It can be seen that
FCI mean temperature is almost constant along Ueq simulated values.

Tmean,FCI ∼
(
Tmax,wall −

∆TFCI
2

)
(8.8)

Figure 8.8: Characteristic temperatures as a function of Ueq.

Analysing the maximum Eurofer temperature behaviour with Ueq, it can be stated
that a maximum FCI thermal conductivity of 10 W/m·K should be guaranteed for a
2 mm FCI thickness (Ueq ≤ 2500 W/m2·K) and under the studied flow conditions.

Concerning LM temperature increment along the blanket (figure 8.9), at 0.2 m/s and
under the above mentioned flow conditions, an increase of 300 oC would only be possible
for perfectly insulating FCI. A more realistic temperature gain of ∼250 oC would be
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desirable. However, ∆TFCI can become a serious problem in terms of thermal stresses,
as, for FCI thermal conductivity of 1–2 W/m·K (Ueq ≤ 833 W/m2·K), ∆TFCI ∼ 270 oC,
which can be considered too high. An alternative would be to increase the FCI depth
δFCI while keeping the ratio kFCI/δFCI .

Figure 8.9: Temperature differences for the liquid metal and FCI as a
function of Ueq.

Finally, in figure 8.10, the thermal losses through walls qwall and the LM power gain
qLM , evaluated according to equations 8.9 and 8.10 respectively, are plotted in percent-
age using the total heat generated in the blanket (equation 8.1). In the equations, S,
ρ, cp and v stand for control volume surface area, LM density, LM heat capacity and
LM velocity, respectively. It must be reminded that such values are obtained for a 2D
simulation, neglecting the thermal contribution of Hartmann walls. Considering the
obtained results, and for TECNO FUS blanket specifications, a FCI thermal conductiv-
ity of 1–2 W/m·K would be recommended.

(q/A)wall =

∫
wall

(
kS

(
dT

dn

))
(8.9)

(q/A)LM =

∫ outlet

inlet

(
ρcpvT + kS

(
dT

dn

))
(8.10)

Previous results have been compared with a simulation where both FCI and Eurofer
layers have been also modelled and thermally coupled to the LM. For such simulation,
the FCI mesh has 3.9 · 105 nodes whereas Eurofer is meshed into 2.8 · 105 nodes. The
LM mesh is the same as in previous simulations, with 1.4 · 105 nodes. Such refined solid
meshes have been required because of their small thickness (2 mm and 6 mm, respec-
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Figure 8.10: Thermal fluxes ratio as a function of Ueq.

tively). The thermal conductivity of FCI has been chosen to be, according to previous
results and following suggestions by Yu et al. (2010), 1.8 W/m·K. The helium ther-
mal convection coefficient has been chosen to be 4000 W/m2·K, according to Smolentsev
et al. (2006). This results in an equivalent overall heat transport coefficient of about
Ueq = 639 W/m2·K. Results are shown in previous figures (8.7-8.10) with blank markers
and the label ’FSI’, which stands for Fluid-Solid Interface.

From the results, it can be stated that the overall phenomenon is well captured with
a unique liquid domain and a thermal boundary condition according to equation 8.2.
Indeed, both ∆TLM and ∆TFCI are accurately predicted, as well as the thermal losses
ratio. However, Tmax,EU and Tmean,FCI appear to not accurately follow te extrapolated
values. Such deviations might be caused by 2D phenomena not modelled in the above
mentioned expressions.

In figure 8.11, the temperature field map of the internal U-bend region in the stud-
ied TECNO FUS blanket is shown. The three domains (LM, FCI and Eurofer) can be
clearly distinguished as well as the used non-uniform mesh. From the temperature
field map it becomes evident the thermal insulator nature of the FCI.

In all simulated cases, approximately the 18 % of the total wall losses occur through
the first wall, about 34 % through the external wall, and about 47 % across the internal
wall. Hence, in order to further improve the design, helium cooling channels design
should consider such differences.

8.4 Discussion

In this second application case of the present PhD dissertation, MHD issues of the flow
inside banana-shaped channels of the proposed TECNO FUS DEMO concept have been
qualified. Among the most relevant issues, MHD turbulence modelling is, probably,
the most relevant aspect since flow profile is strongly dependent on it. The lack of
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Figure 8.11: Temperature map and mesh definition for the fluid-solid cou-
pled case.

an accurate MHD turbulence model is commented, specially when buoyancy effects
have to be considered. Other critical aspects include electrical and thermal coupling,
Hartmann wall functions and three-dimensional flows are expected to appear at the
inlet/outlet manifolds as well as at the bottom of the blanket.

Preliminary results for a 2D toroidal plane of the TECNO FUS blanket are pre-
sented, together with a sensitivity analysis of Eurofer surface temperature to inlet ve-
locity. The obtained velocity profile does not present any vortex except at the internal
wall of the bend. Hence, MHD turbulence effects are strong enough to compensate
buoyancy. The analysis has allowed to know in detail the nature of the flow and mesh
requirements. Likewise, it has made evident the need for further optimisation in the
definition of FCI, both in thickness and thermal conductivity.

In this direction, a second sensitivity analysis of FCI thermal conductivity has been
carried out. The chosen design parameters include the LM temperature gain ∆TLM , the
maximum Eurofer temperature Tmax,EU (that must be kept below 550 oC), the thermal
stresses across FCI layer ∆TFCI and the thermal LM gain qLM .

The coupled domain configuration, considering LM, FCI and Eurofer domains, has
been compared with a single domain configuration corresponding to the LM domain
with a Robin type thermal boundary condition at walls, following equation 8.2. From
the obtained results, it can be stated that the overall phenomena is well captured with
a unique liquid domain. Indeed, both ∆TLM and ∆TFCI are accurately predicted, how-
ever, Tmax,EU evaluation requires more refinement. The use of a single domain is very
interesting in terms of reduced CPU time.

Results indicate that, on the base of optimised ∆TLM criteria, considering 6 mm
of Eurofer and 2 mm of FCI, an inlet LM velocity of 0.2 m/s or lower and a thermal
conductivity of about 1–2 W/m·K would be recommended. In order to avoid high tem-
perature differences across the FCI layer, FCI thickness should be increased keeping
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the (k/δ)FCI ratio. In contrast, for a maximised qLM , and under the above mentioned
design specifications, higher velocities would be preferable, which would also imply a
reduced ∆TFCI . However, this second thermal strategy would result in a lower LM
temperature increment, which is not desirable for efficiency reasons.

For an accurate assessment of the cooling system requirements, heat losses at both
side and Hartmann walls should be predicted. Such analysis could be carried out by 2D
simulations of a fully-developed flow across a radial-toroidal plane.
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9.1 Motivation

Lead lithium flowing inside breeding blanket channels in a fusion reactor is subject to a
Hartmann number of the order of 104 and a Grashof number of about 109−1012. Hence,
the resulting electromagnetic force tends to stabilise the core flow, whereas buoyancy
is strong enough to oppose such effect. As pointed out in section 3.4.2, in the DCLL
design buoyancy can be of the same order of magnitude as the electromagnetic force,
while in the HCLL design buoyancy is expected to be dominant. As a result, the liquid
metal flow in liquid metal breeding blankets can present vortical patterns. Indeed,
according to previous studies exposed in section 4.2 (Bühler 1998, di Piazza and Ciofalo
2002a, Kharicha et al. 2004, Vetcha et al. 2009 and Authié et al. 2003), the presence of
vortical structures is associated with a moderate electromagnetic damping, a moderate
pressure-driven flow and a dominant buoyant force. Even if the magnetic damping is
strong enough to stabilise the flow, secondary motions can still be present (di Piazza and
Ciofalo 2002a). Moreover, although temperature along magnetic field lines is uniform,
the flow may deviate considerably from two-dimensionality (Bühler 1998). Further
research is required in order to understand such secondary motions and 3D flows in
breeding blanket liquid metal channels.

With the focus on the HCLL blanket, and motivated by results previously obtained
(Chapter 7), the pressure-driven flow in a horizontal channel, subject to a horizontal
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magnetic field perpendicular to one pair of walls and under a uniform thermal load,
is studied. A sketch of the case set up is shown in figure 9.1. Under the studied flow
conditions (Ha = 3000 and Gr = 2.6 ·1011), the magnetic field is not able to completely
suppress the vortices. However, despite its unstable nature, flow is expected to remain
laminar. With the aim of analysing the influence of the wall boundary condition on
flow vortical structures, different scenarios are considered for the helium cooling of the
walls: (1) fixed wall inner surface temperature, (2) overall heat transfer coefficient be-
tween LM and helium cooling channels, and (3) fluid-solid coupling (LM/Eurofer) with
the external solid wall being cooled by helium (see section 9.2 for a detailed explana-
tion). Therefore, in cases (2) and (3) average wall temperature is expected to be different
for upper and lower walls, what implies that the fluid is not only subject to a thermal
load but also to a thermal gradient between walls.

Figure 9.1: Sketch of the channel geometry

In this third application case, the unstable nature of the resulting flow within the
channel sketched in figure 9.1 is studied, as well as its influence on relevant thermal
parameters, including Nusselt number and power losses. First, the flow is characterised
by its dimensionless numbers and a theoretical prediction of flow nature is carried out.
Then, results of the numerical study are exposed and discussed.

9.1.1 Flow characterisation

According to the boundary conditions explained in section 9.2, the pressure-driven flow
in the channel sketched in figure 9.1 has a Reynolds number Rea = 770, based on the
channel half width dimension a. A Hartmann number Haa = 3000 has been considered
since it implies a very strong magnetic damping while allowing the use of a relatively
coarse mesh. The chosen uniform thermal source term (Sthermal) corresponds to the
average thermal load expected in the HCLL blanket (Gabriel et al. 2007). Thus, Gra=

2.6·1011, where the characteristic temperature gradient is evaluated according to ∆T =

Sthermala
2/k, being k the thermal conductivity of the fluid. All fluid properties have
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been calculated using the PbLi database (Mas de les Valls et al. 2008).
Following the Ha–Re diagram by Smolentsev and Moreau (2007), the flow is expected

to be laminar, however, since buoyancy is relevant, if not dominant, a better character-
isation of the flow is required. According to the dimensionless equations 3.17-3.17e
(section 3.3.2), the characteristic dimensionless numbers are: (1) GraHa

−2
a which plays

the role of the Reynolds number and equals 2.9·104, (2) Ha4
aGr−1

a which is an equivalent
Interaction parameter and equals 3.0·102, and (3) Pe = PrGrHa−2, which equals 4.5·102.
The interaction parameter, despite being high, is not sufficient to neglect inertia terms
in the momentum equation. Peclet number is greater than unity, which means that
inertia cannot be neglected from energy balance. Thus, the flow corresponds to the un-
steady inertial flow zone in the stability diagram from Molokov (1997). Whether the
flow is laminar (and unsteady) or experiences Q2D turbulence cannot be predicted a
priori. However, considering results exposed in Chapter 7, in the present study it has
been assumed that Haa = 3000 is high enough to keep Gra below its critical limit.

In a recent study by Gelfgat and Molokov (2011), the stability of Q2D flow in a later-
ally heated 3D box with a strong magnetic field normal to main circulation is analysed.
As a result of such study, the critical Grashof number for oscillatory instability of steady
flows to appear is obtained, for several Grashof numbers and aspect ratios. The flow
is quite different that the one studied here as, instead of the inlet and outlet boundary
conditions, two isothermal hot and cold walls are imposed. Moreover, no thermal load
is assumed and two different configurations for the horizontal walls are considered:
thermally insulated or perfectly heat conducting walls. Despite such differences, the
vortical flow pattern reproduced in that work is also expected to exist in the present
studied configuration, what might indicate that the conclusions obtained in that work
could be applied to the present one. In the work from Gelfgat and Molokov (2011),
Prandtl number has the same value as in the present case, walls are also electrically
insulating and aspect ratios from 4 to 10 are considered (here, the aspect ratio is 8.24).
From their results, taking into account the present configuration, the critical Grashof
number would lay between 1.9·109–6.5·109. Therefore, it could be predicted beforehand
that oscillatory flows are expected in the present configuration.

9.2 Modelling strategies

For this application case, different algorithms are required depending on how the wall
is simulated. Indeed, for case (1), with a fixed wall temperature, and case (2), where
an overall heat transfer coefficient is calculated, the 3D algorithm φT-PISO (section
6.1) with a unique domain, corresponding to liquid metal, is used. However, for case
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(3), with fluid-solid coupling, the φT-PISO FSI algorithm has been used (section 6.4).
Differences obtained in case (3) both with conservative and non-conservative energy
equations are shown and justified in section 9.3.

In all cases, fully 3D simulations are carried out in order to accurately predict the
flow nature, including secondary 3D effects.

The pressure-driven flow sketched in figure 9.1 is considered to have a mean velocity
of 1 mm/s, typical of HCLL blanket. Inlet boundary condition for the channel is a critical
aspect, since it can alter considerably the flow nature. Available information on the
design is not sufficient to determine the velocity profile at the blanket channels’ inlet.
It is assumed that inlet flow is well mixed and, as a result, temperatures are almost
homogeneous and no big vortical structures exist at the channel entrance. As a first
approximation, an inlet velocity profile corresponding to the fully developed MHD flow
is imposed together with a constant inlet temperature of 723.15 K. Outlet is simulated
with a free boundary condition.

The non-slip velocity boundary condition is imposed at walls, and three different
thermal boundary conditions at walls are analysed. In case (1), the inner wall temper-
ature is equal to the LM inlet temperature. This case corresponds to the most simple
configuration, studied in application case 1, in Chapter 7. In case (2), following the
same procedure as in Chapter 8, a thermal convection boundary condition is imposed
following equation 9.1, where Ueq stands for the overall heat transfer coefficient, Tb.c.
stands for the LM boundary temperature; THe stands for the helium boundary temper-
ature; and n is the surface normal vector. Equation 9.1 represents a 1D steady state
thermal balance between the liquid metal interface (with subscript b.c., as for boundary
condition), and the helium cooling channels. Indeed, the heat flux that leaves the LM
domain (by a thermal diffusive process following Fourier’s law) equals the total heat
extracted by helium. Here, THe = 675.15 K and Ueq = 3336 W/m2 K; such value corre-
sponds, according to equation 9.2, to 3 mm of Eurofer (Mergia and Boukos 2008) and
a helium thermal convection coefficient of 5500 W/m2 K (following numerical results
from Aiello et al. 2009). In case (3), LM (PbLI) and structural material (Eurofer) are
thermally coupled and the thermal boundary condition, of a convective type, is placed
at the external wall surface (Ueq = hHe).

Ueq (Tb.c. − THe) = k
(
∂T
∂n

)
b.c.

(9.1)

Ueq = 1

h−1
He +

δEU
kEU

(9.2)

The balance used in equation 9.1 corresponds to an idealised 1D flat wall balance,
where no thermal generation exists in the solid domain. In fact, thermal loads would
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also exist in solid walls, but they are not taken into account in the present study. More-
over, the 1D idealisation would only be valid for small enough Biot numbers, which is
not exactly the present case. Thus, comparing results obtained with wall simulation
strategies (2) and (3) would provide valuable information on whether such simplifica-
tion can be applied or it introduces unacceptable inaccuracies in the results.

In the present study, and as a first step, the idealised case of electrically fully in-
sulated walls is analysed. Two reasons support this simplification. First, it makes
fluid-solid thermal coupling effects explicit; since walls do not allow electric currents
to travel outside the fluid domain, all three cases would be equivalent. Second, it in-
creases the dominance of buoyancy; indeed, it is expected that using real Eurofer elec-
tric conductivity, magnetic field damping will increase along with the stability of the
flow (di Piazza and Ciofalo 2002b, Gabriel et al. 2007 and results presented in Chapter
7).

For unsteady flow analysis, a transient simulation is required. Thus, the initial field
map plays an important role. With the idea of providing an initial map field as real-
istic as possible, the initial v, p and φ maps are obtained from fully developed MHD
simulations. In terms of temperature, it is expected that the temperature map be very
similar to the one obtained for purely diffusive thermal conditions, except in strongly
vortical zones. Therefore, the initial temperature map has been chosen to be the corre-
sponding to purely diffusive thermal conditions (Pe=0) with a thermal source term of
5.45 ·106 W/m3, which, as explained in section 9.1.1, is the average value expected for
HCLL blanket design (Gabriel et al. 2007) and yields Gra=2.6·1011. No thermal source
term is considered in the solid domain.

The time step for an accurate transient 3D simulation is chosen so as the constrain
L ≤ 0.2 is fulfilled. Such value has been taken from an adaptation to a 3D simulation
of the 1D stability analysis presented in section 5.2.3. In some periods of the transient
calculation, the time step has been reduced in order to capture all fluid instabilities.

In order to y reproduce the flow pattern, a mesh with 2.1 ·105 nodes has been used
for the liquid domain, with 4 nodes in the Hartmann boundary layer of depth 2a/Ha,
and 15 in the side one of depth 2a/Ha0.5. Walls are assumed to be made of 3 mm of
Eurofer. For the solid domain simulation, a solid mesh with 9.4 ·104 nodes has been
considered, which has 7 nodes in the normal fluid-solid interface direction. Results of a
mesh quality analysis are shown in section 9.3.2.

A first order Euler Implicit in time and second order Central Difference in space
numerical discretisations has been applied, except for the convective terms (D(φvv) in
the momentum equation 6.1b andD(φvT ) in temperature equation 6.1e). In such terms,
the OpenFOAM scheme Gauss limitedLinearV 1 has been used, which corresponds to a
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total variation diminishing scheme (TVD, Jasak 1996).
Simulations are carried out with preconditioned (bi)-conjugate gradient. The Diago-

nal incomplete-Cholesky pre-conditioner is used for solving scalar transport equations
(T , p and φ), whereas the incomplete-LU pre-conditioner is used for solving momen-
tum equation. The solver tolerance is set to 10−8 for velocity and 10−9 for the scalar
variables.

9.3 Results

The present application case can be split into several sub-studies, including:

• A purely diffusive thermal condition analysis, carried out by totally decoupling
temperature from momentum (Pe=0, section 9.3.1). Such study has been useful
to evaluate numerical results both from φT-PISO and φT-PISO FSI algorithms. It
has also provided the initial temperature maps for transient simulations.

• A mesh quality analysis carried out with a reference and an extremely fine meshes,
by means of FFT studies (section 9.3.2).

• The thermal wall treatment analysis (section 9.3.3), in order to evaluate the pos-
sible differences found on results obtained using the three proposed wall treat-
ments.

• An analysis of the critical Grashof number for flow oscillations to appear (section
9.3.4).

• Periodic (cyclic) boundary conditions analysis in order to evaluate the effect of the
inlet/outlet boundary condition (section 9.3.5).

Results are finally discussed in section 9.4.

9.3.1 Velocity-temperature decoupled case: 2D thermal effects

The differences that might appear due to the three different ways in which thermal
effects in the wall are modelled (1: fixed wall temperature, 2: overall heat transfer co-
efficient and 3: fluid-solid coupling with helium thermal convection coefficient) may be
explained by analysing the three cases with the temperature field decoupled from the
momentum balance. This situation can be easily reproduced, by solving the tempera-
ture equation with no convective term and without solving neither continuity (pressure)
nor momentum equations.
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Temperature field maps for such simulation are shown in figure 9.2 for a central
plane perpendicular to the magnetic field, and in figure 9.3 for a central spanwise plane.
It is obvious that cases (2) and (3) are very similar, whereas the average temperature is
considerably higher for the case (1). Hence, in case (1), walls do not extract enough heat
to reproduce the physical flow conditions. In figure 9.3 the 3D nature of the temperature
field is made explicit.

(1) fixed wall temperature (723.15 K) (2) overall heat transfer coefficient

(3) fluid-solid coupling with helium heat transfer coef.x

y

z

784689

700   720   740    760   780
T (K)

Figure 9.2: Decoupled temperature map fields for the three cases in a central plane
perpendicular to the magnetic field lines

(1) fixed wall temperature (723.15 K) (2) overall heat transfer coefficient

(3) fluid-solid coupling with helium heat transfer coef.

x

y

z

784677

700    725    750    775
T (K)

Figure 9.3: Decoupled temperature map fields for the three cases in a
central spanwise plane.

The above mentioned qualitative differences can be quantified in terms of average
and maximum temperatures and heat fluxes, as listed in table 9.1. The liquid metal
average temperature Tavg and the inlet/outlet temperature difference ∆TLM , together
with average wall temperatures (Tside and THa ) are shown in table 9.1. Second row
values for cases (2) and (3) in the table correspond to the average temperature at the
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case qLM % qside % qHa % Tavg K Tside K THa K ∆TLM K
(1) fixed temp. 3.0 43.6 4.9 758.00 723.15 723.15 36.18
(2) overall Ueq 0.2 44.6 5.3 736.43 700.89 690.92 14.08

689.97 683.95
(3) FSI 0.0 44.6 5.3 736.31 700.71 690.21 13.93

689.51 682.56

Table 9.1: Simulation results for the non-buoyant simulations

external walls in contact with helium; such temperature is just at the external solid
boundary in case (3), whereas, in case (2) it is extrapolated according to equation 9.3,
where Tb.c. is the temperature at the LM boundary, (dT/dn)b.c. is the normal temper-
ature gradient at the boundary, and δEU and kEU are the Eurofer wall thickness and
thermal conductivity respectively. Equation 9.3 is obtained from a 1D steady balance
between the pure diffusive thermal flux (following Fourier’s law) in the fluid boundary
side and in the solid boundary side.

Textrapolated, wall = average

(
Tb.c. − abs

(
(dT/dn)b.c. kLM δEU

kEU

))
(9.3)

Apart from the expected temperature differences between case (1) and the other two
cases, it is worth noting the ability to capture the 3D temperature field by case (2).
Indeed, the extrapolated wall temperature values obtained in case (2) are almost equal
to the values computed in the simulation of case (3).

Heat fluxes include heat loses across the walls (qside and qHa respectively) and liquid
metal gain (qLM ). They are shown in table 9.1 in percentage with respect to the total
thermal load. Since the system is symmetric in y and z axis, thermal flux across the
upper and lower side walls is identical, and the same occurs for the top and bottom
Hartmann walls. The values shown in table 9.1 correspond to only one of the walls.
It can be seen that, in all cases, the heat extracted through the side walls is about
one order of magnitude higher than the one extracted by Hartmann walls. The main
difference relies on the liquid metal thermal gain, which is substantially larger in case
(1).

The difference between the average LM temperature and the average side wall tem-
perature can be used as a rude indicator of the buoyancy force. The value of this differ-
ence is about 35 K regardless of the strategy applied for the wall. Thus, it appears that
buoyancy has the same relevance in all three cases.
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case qLM % qside % qHa % Tavg K Tside K THa K ∆TLM K
(3) FSI, C 0.0 44.6 5.3 736.31 700.71 690.21 13.93

689.51 682.56
(3) FSI, NC 6.1 41.7 5.3 765.86 731.27 711.38 49.71

708.00 694.58

Table 9.2: Simulation results comparison between the conservative formulation and
the non-conservative one

Conservative versus non-conservative fluid-solid coupling

Case (3) has been simulated with the φT-PISO FSI algorithm, which implements the
conservative form of the energy equation (section 6.4). However, as mentioned in Chap-
ter 6, the first thermal MHD algorithm implemented in the frame of the present PhD
dissertation was the φT-PISO algorithm, based on the non-conservative form of en-
ergy equation. In this latest case, the temperature is the energy variable; hence, the
energy equation is divided by density and heat capacity, obtaining a temperature equa-
tion (equation 3.11). In order to thermally couple fluid and walls, two temperature
equations are implemented, following the conjugateHeatFoam solver strategy from ex-
tended OpenFOAM distribution (OpenFOAM-1.6-ext, from Wikki Ltd.), one for the fluid
domain and the other for the solid domain.

Case (3) was simulated at first with such non-conservative algorithm. However,
when an energy balance was performed on the obtained results, the non-conservative
nature of the algorithm become evident. Only when the studied fluid and solid were
defined to have ρCp = 1, with equal grid sizes at both sides of the interface, then results
were conservative. As a result, the conservative form of the energy equation (equations
6.7) was implemented, obtaining the expected results, i.e. similar to those obtained with
case (2), as shown in table 9.1. Differences between results obtained in both algorithms
are shown in table 9.2, where NC and C stand for non-conservative and conservative,
respectively.

To sum up, it can be stated that with the non-conservative algorithm (NC) the un-
balance between fluid and solid domain is produced by (ρCp)/(ρCp)solid ratio and grid
size difference. If inertia dominates the flow, thermal inaccuracies do not alter the
flow profile. However, for a strongly buoyant flow, which often it becomes unstable, the
non-conservative algorithm cannot be applied.
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9.3.2 Mesh requirements

In order to evaluate mesh quality, it is necessary to repeat at least one simulation with a
very fine mesh and to evaluate the differences in the obtained simulation results. Here,
case (1) considering full thermal MHD coupling (i.e. coupling energy and momentum
balances) has been simulated with the mesh defined in section 9.2, called mesh 0, and
with a very fine mesh called mesh 1.

Mesh 1 has 2.16·106 nodes, with 8 nodes in each Hartmann boundary layer of depth
2a/Ha, and 30 in each side boundary layer of depth 2a/Ha0.5. Thus, while boundary
layer precision has been doubled, the overall number of nodes has been increased by
one order of magnitude, what implies that the mesh is much more dense and uniform
and, thus, all vortical structures are better captured.

As exposed and discussed in section 9.3.3, the flow is unstable and complex. Thus,
the comparison between results obtained with different meshes is not straightforward.
Assuming the oscillatory nature of the flow, it seems appropriate to compare an average
velocity map for each mesh, obtained from several instantaneous maps, in order to
avoid numerical noise. Due to the high CPU requirements for simulations with mesh
1, and in order to avoid the first part of the transient simulation where the initial field
map influence is maximal, the map obtained in case (1) –fixed wall temperature– after
346 s with mesh 0, has been used as the initial map for mesh 1. From time 346 s to
351.6 s, simulations with both meshes have been carried out. During the simulations,
20 field maps have been printed for each case, which have been used for mesh quality
comparison.

The time consumed in such a short simulation (from 346 s to 351.6 s) is 4 hours for
mesh 0, whereas mesh 1 has needed 93 hours 1. Thus, it is out of the research group
present CPU capacities to simulate a long transient phenomenon with mesh 1.

Before showing the results of the FFT analysis using the above mentioned 20 field
maps, results obtained with both meshes at 350 s are qualitatively compared (figures
9.4-9.6). It can be seen that some small vortices that are detected with mesh 1, are
damped with mesh 0. However, main vortical structures are well captured by the coarse
mesh as well. The presence of vortices is also visible on the temperature and electric
potential field maps. From results, it can be stated that the characteristic dimension of
vortical structures is the channel height, and that the flow appears to remain laminar.

However, for an accurate estimation of the quality of mesh 0, the (spatial) 2D Fast
Fourier Transformation analysis, in a plane perpendicular to magnetic field lines, has
been performed. Such plane has been chosen as representative of the whole domain,

1Such simulations have been carried out in parallel mode using 32 processors Intel(R) Xeon(TM) CPU
3.00GHz, from RDLab cluster

152



Chapter 9. Influence of wall thermal modelling on MHD buoyancy

x

y

z
mag(v) (m/s)

0 0.039
0.01   0.02   0.03

mesh 0 mesh 1

Figure 9.4: Magnitude of the velocity field for the two meshes at 350 s in case (1).
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Figure 9.5: Temperature field for the two meshes at 350 s in case (1).
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Figure 9.6: Electric potential field for the two meshes at 350 s in case (1).

since velocity is almost uniform along magnetic field lines, except at Hartmann bound-
ary layers. Therefore, a 3D analysis would provide no extra information regarding sta-
bility. The variable to be analysed is the magnitude of the velocity field, which provides
information on vortex velocity.

Once the 20 field maps have been obtained for each mesh, the first step has been to
interpolate the values into a uniform mesh of 128×128×32 nodes. The number of nodes
of such mesh is a power of two in each direction, which is required for the FFT post-
process (Brigham 1988) carried out by means of QtOctave software. The size of this
uniform mesh has been selected so that cell volume size is equivalent to the average
cell volume size in mesh 1. It is worth mentioning that the interpolation (from each
mesh to the uniform FFT mesh) introduces numerical noise to the solution, however,
such interpolation cannot be avoided.

With the interpolated velocity maps, the FFT is performed at each time step and
an average FFT is carried out using all 20 available maps for each mesh. In figure
9.7 the results for each mesh are shown, where axes correspond to spatial frequency
domain (units: 1/m) and the magnitude is the average FFT (see table 9.3 for FFT peak
values). The differences between different mesh results become evident. Indeed, the

153



9.3. Results

mesh 0 mesh 1
FFT freq. x (1/m) freq. y (1/m) FFT freq. x (1/m) freq. y (1/m)

-10.142178 0.000000 0.000000 -10.245506 0.000000 0.000000
-7.246165 0.000000 -26.242862 -7.421329 0.000000 26.242862
-7.246165 0.000000 26.242862 -7.421329 0.000000 -26.242862
-6.701677 6.369414 -26.242862 -6.636632 6.369414 -26.242862
-6.701677 -6.369414 26.242862 -6.636632 -6.369414 26.242862
-5.678351 -6.369414 0.000000 -5.549106 -6.369414 -26.242862
-5.678351 6.369414 0.000000 -5.549106 6.369414 26.242862
-5.569888 -6.369414 -26.242862 -5.533302 0.000000 -52.485724
-5.569888 6.369414 26.242862 -5.533302 0.000000 52.485724
-5.456719 0.000000 -78.728586 -5.422255 0.000000 -78.728586
-5.456719 0.000000 78.728586 -5.422255 0.000000 78.728586
-5.272528 6.369414 -104.971448 -5.320377 -6.369414 0.000000
-5.272528 -6.369414 104.971448 -5.320377 6.369414 0.000000
-4.988556 6.369414 -52.485724 -5.030290 0.000000 -104.971448
-4.988556 -6.369414 52.485724 -5.030290 0.000000 104.971448

Table 9.3: FFT major peaks for both meshes

core frequency span is larger for mesh 1, but such enlargement corresponds to low FFT
values. This means that smaller structures are captured with the fine mesh. However,
same peak locations and with almost the same FFT magnitude are obtained by both
meshes, as detailed in table 9.3. To conclude, and according to the exposed results, mesh
0 is fine enough to provide accurate information on the flow nature and the principal
vortical structures.
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Figure 9.7: Spatial 2D FFT of the magnitude of the velocity in a x-y plane
(perpendicular to the magnetic field), for mesh 0 and mesh 1.

With the support of these results, all the simulations presented in the following
sections have been carried out with mesh 0.
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9.3.3 Influence of thermal boundary condition

For the three studied thermal boundary conditions, with Rea = 770, Haa = 3000 and
Gra=2.6·1011, the flow is unstable. Thus, it appears that buoyancy is predominant. In
figure 9.8 velocity, temperature and electric potential maps after 40 seconds from initial
condition are shown for case (2). Although at 40 s the flow is still evolving, the effects
of the initial conditions have been already damped and the complex flow pattern, with
several vortical structures, can already be observed. Such vortices are elongated along
magnetic field lines; however, the velocity field is slightly 3D and (not shown in the
figure) temperature field is clearly 3D.
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Figure 9.8: Velocity, temperature and electric potential results for case (2) (overall
thermal convection coefficient of 3336 W/m2K) at 40 s after the initial time. At the
bottom left of the figure, velocity streamlines are plotted together with the velocity
map at the central plane. It can be seen that velocity field is not fully 2D.

For the three studied cases, vortices with a characteristic length of approximately
the channel height are observed. Also, as the simulation time increases, inlet vortices
become more stable and independent of the rest of vortical structures, which travel
along the channel length. Therefore, it can be concluded that neither the thermal strat-
egy applied for the walls nor the inlet boundary condition are the unique cause for vor-
tices to exist. Indeed, the effective cause for vortices to exist is the deposited thermal
load together with the presence of cooling walls.

Transient evolution of the average LM temperature (figure 9.9(a)) is quite similar
for cases (2) and (3), what indicates that the thermal boundary condition (equation
9.1) provides sufficient information to capture the overall buoyancy phenomenon. The
temporal fluctuations experienced by the average temperature are not relevant, being
always less than 5 oK. However, the average outlet velocity largely fluctuates for all
three cases (figure 9.9(b)). This fluctuation is explained by the presence of travelling
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vortices and the hot spot that exists in its core (see figure 9.8). Hence, when the bulk
of a vortex crosses the outlet boundary condition, the average outlet temperature is ex-
pected to increase substantially, recovering lower temperature values when the vortex
has totally crossed the outlet boundary condition.
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Figure 9.9: Transient evolution of average LM temperature (a) and average outlet
temperature (b) for the three cases.

For Nusselt number estimation, the initial temperature field map, corresponding to
a thermally decoupled case (Pe = 0), is used as the reference value, following equation
9.4. Thus, Nusselt number provides with information on the non purely diffusive nature
of the flow. Indeed, if the flow would remain stable and, thus, stratified, Nusselt number
would remain very close to unity. Results for the transient evolution of the average
Nusselt number at the upper (y+) side wall (figure 9.10(a)) indicate that, for all three
strategies of wall boundary condition, heat transfer is enhanced duo to buoyancy effects.
In fact, the heat transfer increase can be grossly estimated to be about 20% (Nu ∼ 1.2).
The oscillations of the average Nusselt number indicate, once more, the unstable nature
of the flow.

Nu = average

(
(dT/dn)b.c.

(dT/dn)b.c.,Pe=0

)
(9.4)

Temporal evolution of the average Nusselt number for case (2) is plotted in figure
9.10(b) for the four walls. It can be seen that heat transfer is only enhanced at the
upper side wall. This result is explained from the temperature field map in figure
9.8. Indeed, hot spots are mainly located at the upper half of the channel and, hence,
since helium temperature and heat transfer coefficient are assumed equal in all walls,
temperature difference across the wall is higher for the upper side wall.
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Figure 9.10: Transient evolution of average Nusselt number (a) at the upper side wall
for the three cases, (b) in all four walls for case (2).

case Tavg Tout Tside,up Tside,down THa Nuside,up Nvortices |φ|avg |v|max
1 749.5 687.6 723.2 723.2 723.2 1.20 18 1.9 · 10−2 1.04

2 730.4 661.3 706.6 698.9 690.3 1.21 16 2.2 · 10−2 0.72

3 730.3 664.9 705.5 698.5 689.5 1.18 18 2.3 · 10−2 0.89

Table 9.4: Comparison for the three cases at 40 s from the initial time. Temperatures
are in K whereas φ and v are dimensionless

Since both average Nusselt numbers in Hartmann walls are equal, it can be stated
that, despite 3D thermal effects are observed, the temperature field is, as expected,
symmetric along magnetic field lines.

In table 9.4 some characteristic temperatures and Nusselt numbers are compared
for the three cases at maps corresponding to 40 s. Once more, cases (2) and (3) yields
almost the same results. For all three cases, it can be observed that the upper (y+)
side wall is considerably hotter than the other walls, being both Hartmann walls at the
same temperature.

When calculating the heat fluxes for case (2) (figure 9.11), it can be stated that heat
is mainly removed by side walls, being the heat removed by each Hartmann wall about
5% of the total gain. Similar transient evolution of the heat fluxes is obtained for cases
(1) and (3).

A surprising result in figure 9.11 is that, despite large oscillations due to the unsta-
ble flow nature, the LM is mainly cooled all along the channel (what was not the case
for Pe = 0 simulations). This, of course, is an unrealistic result probably caused by
boundary conditions. Indeed, a fixed inlet temperature (probably too high) and a zero
gradient outlet temperature, together with the presence of vortical structures, are not
representative of the real problem. To that it must be added the fact that the He cooling
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Figure 9.11: Transient evolution of heat fluxes for case (2). Results
are shown in % with respect the total thermal load.

channels are assumed at constant temperature. It has to be mentioned that this effect
is not observed in case (1). To further analyse this issue, the same flow set up but with
periodic boundary conditions is studied and discussed in section 9.3.5.

In order to quantify the number and magnitude of the existing vortices, the measure-
ment of the vorticity is not suitable since vorticity is maximum not only at the centre of
the vortices but also at walls. Therefore, local maxima/minima of electric potential are
used as vortex indicators. Such type of analysis has not been found in the literature by
the author but, according to figure 9.8, it seems a proper method for vortex detection.
The analysis consists of first extracting φ data for the central plane perpendicular to
the applied magnetic field, and then finding electric potential maxima/minima by going
into each cell and comparing φ values with its neighbours. Results of the analysis are
shown in table 9.4, where the total number of vortices, Nvortices, the average among the
obtained Nvortices of the peak φ magnitude within them and the maximum dimension-
less velocity all over the domain (as an indicator of the buoyancy predominance in the
flow) are shown. From the results it can be stated that the three cases present the same
complex flow pattern and no relevant differences are obtained.

9.3.4 Instabilities evolution with Gr

According to what was mentioned in section 9.1.1 related to the work of Gelfgat and
Molokov (2011), the expected critical Grashof number for oscillatory instability of steady
flows applied to the present configuration would lay between 1.9·109–6.5·109. Indeed,
under the present flow conditions (Gra=2.6·1011), the flow has proved to be unstable. In
this section, the effect of the Grashof number in the results is studied. To this aim, case
(1) (fixed wall temperature) is simulated for different thermal loads according to the
law (α × Sthermal), where α is a scale factor that takes values between 0.01 and 1. The
underlying idea is to decrease the Grashof number to the point it reach the expected
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α Gr Re ′ = Gr/Ha2 vo,MHD N ′ = Ha4/Gr

1 2.6·1011 2.9·104 3.8·10−2 3.0·102

0.6 1.6·1011 1.8·104 2.3·10−2 5.1·102

0.1 2.6·1010 2.9·103 3.8·10−3 3.0·103

0.05 1.3·1010 1.5·103 1.9·10−3 6.1·103

0.01 2.6·109 2.9·102 3.8·10−4 3.0·104

Table 9.5: Simulations varying the total thermal load, case (1).

critical value. The studied cases are listed in table 9.5. As explained in section 3.3.2,
Re ′ = Gr/Ha2 plays the role of the Reynolds number, vo,MHD is the velocity required
for the electromagnetic forces to balance with buoyant forces, and N ′ = Ha4/Gr plays
the role of the Interaction parameter. Values of vo,MHD, when compared with the mean
flow velocity of 1 mm/s, provide an idea whether the Hartmann number is high enough
to suppress buoyant effects or not. According to vo,MHD and results from Gelfgat and
Molokov (2011), the case with α = 0.01 is expected to remain stable whereas the other
studied cases (α ≥ 0.05) might present some oscillations or periodicities.

From the transient evolution of the average LM temperature (figure 9.12(a)) it could
seem that flow oscillations do not appear until α > 0.1. However, in an evaluation of
the upper side wall average Nusselt (figure 9.12(b)) oscillations do appear at lower α
values. In fact, the only calculation in which flow remains stable corresponds to the
value of α = 0.01. This result coincides perfectly with what has been extrapolated from
Gelfgat and Molokov (2011) results and from vo,MHD analysis.
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Figure 9.12: Transient evolution of average LM temperature (a) and Nusselt number
at the upper side wall (b) for several α values, being α the scaling coefficient of Sthermal.

Periodicity of results cannot be predicted and, in this direction, larger simulation
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9.3. Results

time would be required. Theoretically, periodic flow is expected to exists at low α values,
whereas higher α are expected to induce chaotic flows.

For a better analysis, some characteristic parameters as a function of α are plotted in
figure 9.13. These values are obtained by time averaging the transient results (skipping
the initial 40 s), and the corresponding standard deviation is shown in error bars. As
expected, LM average temperature increases with α, but the same effect cannot be
observed on the LM outlet temperature. Heat transfer is enhanced with α, as can be
seen in the increase of the average Nusselt number; however, such increase is less
pronounced at high Gr numbers. The same effect can also be observed on heat fluxes
through the upper and lower side walls.

T (K) Nu

v (m/s)� (V)N

�

� �

�

�
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avg

Figure 9.13: Characteristic parameters as a function of α values, being α the scaling
coefficient of Sthermal.

It can be seen in the heat fluxes plot that for α ≥ 0.1, the thermal flux ratio extracted
by each wall remains, more or less, the same regardless of theGr. Approximately, about
48 % is extracted by the upper side wall, whereas the lower one extracts about 38 % of
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the total thermal gain. Both Hartmann walls extract the same flux ratio, about 5 %,
which is more or less what is gained by the LM. The magnitude of the obtained heat
fluxes is better understood when compared to the wall surface ratio, which for each
side wall represents 38 % of the total boundary surface, whereas for each Hartmann
wall only represents 7 %. When results are compared to the ones obtained for a purely
diffusive case (table 9.1) it can be stated that, for the buoyant flow, heat extraction
is enhanced in the upper side wall and reduced in the lower side wall and in both
Hartmann walls.

In order to quantify the number and magnitude of the existing vortices, local max-
ima/minima of electric potential are considered as indicators of core vortices, as ex-
plained in the previous section. Concerning average values of the number of vortices,
Nvortices, it can be seen that for α = 0.01 only one vortex exists, which corresponds to the
one induced by the inlet boundary condition (figure 9.14). As α increases, the number
of vortices also increase, until α ' 0.6; above this point the average number of vortices
remains constant with α. Despite such constant Nvortices value, the rotational velocity
of the existing vortices increases with α, as can be seen by the average φ value and the
maximum velocity.

When the maximum velocity is compared to the characteristic one (vo,MHD, which
balances buoyancy and Lorentz forces), three flow regions are distinguished. In the
first one, corresponding to (α ≤ 0.01), flows are stable due to inertia dominance (vinlet >
vo,MHD). The second region corresponds to 0.01 ≤ α ≤ 0.85, where vmax > vo,MHD.
Finally, in the third regionvmax < vo,MHD. From the observed results, it can be stated
that the second region is where heat transfer is specially enhanced, whereas in the
third region both the Nusselt number and the number of vortices remain constant with
α.

9.3.5 Periodic flow boundary conditions

In order to avoid the forcing of the inlet vortex (figures 9.8 and 9.14), periodic (cyclic)
flow boundary conditions can be applied. Such conditions are introduced in the code by
means of a zero gradient outlet boundary conditions for all variables (velocity, pressure,
electric potential and temperature); the obtained outlet values are then imposed at
inlet. Of course, this strategy can be done because a structured mesh is being used.
Since periodic boundary condition has to be also used for pressure, a forced pressure
gradient is imposed in the momentum equation so that the specified mean velocity
value is fulfilled. Therefore, the solved pressure equation of the φT-PISO algorithm
only serves for continuity reasons.
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Figure 9.14: Velocity and temperature field maps for different α values, being α the
scaling coefficient of Sthermal.

Results obtained for the case (2) at 40 s from the initial time (figure 9.15) show the
unstable nature of the flow even when periodic boundary conditions are applied. When
the obtained results are compared with the ones obtained with a simulation where
a fixed temperature and velocity are fixed at the inlet (figure 9.8), it can be stated
that velocity is lower using periodic boundary conditions and the number of vortical
structures is reduced. However, the characteristic length of such vortices is the same
in both simulations.

Transient average temperature and Nusselt numbers, obtained from simulation re-
sults with both fixed and periodic boundary conditions, are compared in figure 9.16
with two different approaches to the wall boundary condition, cases (1) and (2). It can
be stated that the flow has the same behaviour in both cases. However, when compar-
ing the number of vortical structures, it can be seen that with the periodic boundary
condition the number of vortical structures is substantially lower.
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Figure 9.15: Velocity, temperature and electric potential field maps for case (2) with
periodic boundary conditions at 40 s from the initial time.
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Figure 9.16: Transient evolution of average LM temperature (a), average Nusselt
number at the upper side wall (b), and number of vortices (c) for periodic and non-
periodic flow set-ups, with cases (1) and (2).

When some characteristic temperatures and heat fluxes are compared for case (2)
(table 9.6), the similarity between both (fixed and periodic boundary conditions) results
becomes evident.

Results obtained in cases (2) and (3) with cyclic boundary conditions are compared
in figures 9.17(a) and 9.17(b). It can be seen that, although the average temperature
is quite similar, some differences exist specially regarding the number of vortical struc-
tures. Indeed, when the fluid-solid thermal coupling (case (3)) is considered, the num-
ber of vortices is substantially reduced. Therefore, the damping effect of heat transport
along the structure (in the streamwise direction) is relevant for flow stability studies.
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case (2) Tavg Tside,up Tside,down THa Tout
fixed 730.0± 1.2 706.5± 0.9 699.2± 0.5 690.1± 0.2 683.4± 37.5
cyclic 728.2± 0.4 705.7± 0.6 699.2± 0.2 689.0± 0.1 672.3± 21.5

case (2) qLM % qside,up % qside,down % qHa %
fixed 5.6± 4.4 −53.7± 1.4 −41.9± 0.9 −5.0± 0.1
cyclic 4.1± 1.7 −52.4± 0.9 −41.9± 0.3 −4.7± 0.0

Table 9.6: Characteristic temperatures anf heat flux ratios for case (2), with fixed and
periodic (cyclic) boundary conditions.
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Figure 9.17: Transient evolution of average LM temperature (a) and number of vor-
tices (b) for periodic (cyclic) flow set-ups with cases (2) and (3).

Since the oscillatory nature of the flow and heat fluxes do not vary substantially
when comparing results with fixed and periodic boundary condition, it might be con-
cluded that the vortex at the inlet (induced by the fixed boundary condition) does not
alter substantially the flow. However, the influence of the inlet vortex can be stronger
for lower thermal loads, where buoyancy is not so dominant. Therefore, the simula-
tions were repeated for smaller α values (the thermal load scaling factor). Results of
the analysis are shown in figure 9.18. A long time simulation is needed for oscillations
to appear at α = 0.05, while no oscillation is observed for α = 0.01. The obtained oscil-
lating nature of the flow matches perfectly with the obtained with fixed inlet boundary
conditions.

9.4 Discussion

In this third application case, a summary of the research carried out related to unsteady
buoyant MHD flows caused by internal heating, at high Ha and Gr numbers, has been
assessed. The most critical aspect lies on whether the flow is unstable and laminar
or Q2D turbulent. In this direction, the characterisation by means of dimensionless
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Figure 9.18: Transient evolution of average LM temperature (a), average Nusselt
number at the upper side wall (b), and number of vortices (c) for several α values and
periodic flow conditions in case (1), being α the scaling coefficient of Sthermal.

numbers is of crucial interest and the use of a fine enough mesh that captures all flow
structures is essential.

Under the assumed flow conditions (Rea = 770, Haa = 3000 and Gra = 2.6 · 1011) a
mesh study based on FFT analysis has been performed. Results indicate that the basic
mesh used for the present study is fine enough to capture all flow information.

The velocity-temperature decoupled case (Pe = 0) has been studied and results with
conservative and non-conservative energy equations have been compared. The need of
a conservative formulation is made explicit.

The critical Grashof number above which flow oscillations appear is found to lay in
the range Gra,cr = 2.6 · 109− 1.3 · 1010, which matches well with the values extrapolated
from Gelfgat and Molokov (2011).

Three modelling strategies for the thermal transfer at the wall have been applied in
order to determine the nature of the vortical structures found in previous work (Chap-
ter 7). The three options are (1) fixed wall temperature, as in Chapter 7, (2) overall
heat transfer coefficient, and (3) fluid-solid coupling. Moreover, two inlet/outlet bound-
ary conditions are analysed: (a) fixed inlet velocity and temperature, and (b) periodic
flow conditions. It has been shown that complex vortical structures appear in all cases
and that they are not uniquely caused by the inlet flow temperature nor by the wall
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boundary condition.
A vortices detection method based on identifying local maxima/minima of the elec-

tric potential has been built. From such analysis, it has been possible to quantify the
decrease of vortical structures due to the introduction of periodic instead of fixed bound-
ary conditions. However, the remaining vortices have the same characteristic length as
those that appear with the fixed inlet velocity and temperature boundary condition.
Such characteristic length is the channel height.

Fluid-solid thermal coupling is required for an accurate prediction of the flow nature,
in terms of number of vortical structures. However, average temperatures and heat
fluxes are accurately predicted with the use of an overall heat transfer coefficient.

For the three studied wall conditions, the thermal flux extracted by each wall is
independent of the inlet/outlet boundary condition or Grashof number. Approximately,
about 48 % of the thermal load is extracted by the upper side wall, whereas the lower
one extracts about 38 %. Both Hartmann walls extract the same flux ratio, about 5 %,
which is more or less what is gained by the LM. When these values are compared to
the heat fluxes in a purely diffusive case (Pe = 0) it can be stated that heat extraction
is enhanced by buoyancy in the upper side wall, whereas it is reduced in the lower side
wall and in both Hartmann walls.

It is worth mentioning that finite electric conductivity at solid region should also
be addressed for a full comprehension of the phenomena occurring in the EU HCLL
blanket channels.
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10 Conclusions on MHD modelling

The first step for MHD modelling is to define the main electromagnetic variable,
which can be (1) the induced magnetic field, (2) the electric potential, or (3) the electric
current. If the flow presents high magnetic Reynolds number (as in astrophysics), the
induced magnetic field formulation must be considered. Otherwise, the decision should
be chosen in terms of restrictions on CPU time and code properties. Indeed, the induced
magnetic field formulation (B-formulation) requires solving the three components of
the induced magnetic field transport equation, fulfilling the solenoidal nature of B and
calculating electric currents for Lorentz force estimation. The electric potential formu-
lation (φ-formulation) substitutes a φ Laplacian equation for the B transport equation
and the B divergence free equation. The electric current formulation (j-formulation)
replaces such Laplacian equation with the three components of a j equation. Therefore,
the φ-formulation is expected to require less CPU time for each algorithm iteration.
However, if electric current conservation is not fulfilled, the algorithm would have a
worst convergence leading to a higher number of iterations per time step, which would
reduce the advantage of a φ-formulation.

At the present stage of the study, the author suggests to follow the φ-formulation
strategy based on the conservative formula of the Lorentz force from Ni et al. (2007).
However, the author has no experience with the j-formulation from Smolentsev et al.
(2010), which could be a promising MHD modelling strategy.

The performance of the implemented MHD modelling strategy strongly depends on
the hydrodynamic part of the algorithm. For a pressure-based Navier-Stokes imple-
mentation, several pressure-velocity coupling strategies exist. Among them, a projec-
tion method and a PISO-like algorithm have been studied in the frame of the present
PhD thesis. Of course, the selection of the strategy depends on the CFD tool to be
used. From the obtained results, the second-order PISO-like algorithm implemented in
OpenFOAM (Weller et al. 1998) has proved to be robust it requires less inner iterations,
which reduces substantially the CPU time.

169



A key aspect for CPU time reduction is the implementation of a Hartmann wall
function, which avoids meshing the Hartmann boundary layer (of order Ha−1). In this
direction, the linear wall function from Leboucher (1999) has been successfully imple-
mented yielding satisfactory results. However, since such wall function does not allow a
net flux crossing the boundary layer, it is not suitable for cases with vortical structures,
where 3D secondary flows are expected (as in application cases 1 and 3, in Chapters
7 and 9). Therefore, advanced wall functions, as the one proposed by Pothérat et al.
(2002), should be implemented.

The electromagnetic coupling of the walls is crucial in order to study real flows.
Indeed, when finite electrical wall conductivity is considered for MHD simulations, the
M-shaped profile is retrieved and the electromagnetic damping increased with respect
to the electrically insulated case. Such coupling can be implemented by means of the
thin wall boundary condition (Müller and Bühler 2001), which in fact is an expansion
of the linear wall function mentioned above. However, when the implemented wall
function is used as the thin wall boundary condition, it presents some problems in
corner regions. A possible alternative is to follow the suggestions from Mistrangelo
(2010), where a 2D φ equation is solved on the system surface and coupled with the 3D
(Laplacian) φ equation.

When the thermal coupling of the walls is also required, fluid-solid domains coupling
is essential. In this direction, the implemented algorithm has accounted for fluid-solid
coupling following OpenFOAM’s strategy in ConjugateHeatFoam, available in the ex-
tended OpenFOAM-1.6-ext release from Wikki Ltd.

The influence of the time step on the simulation results is often underestimated.
In fact, time step is not only crucial for stability purposes, but also for the accuracy
of the results. In this direction, special emphasis has been placed on the estimation
of the required time step criterion, either by means of a more conservative monotone
scheme (Patankar 1980) or by 1D linear stability von Neumann analysis. However, such
analysis, apart from being a simplification of the real one (by means of linearisation and
1D reduction), is specific for each spatial and temporal numerical scheme. Hence, such
analysis should be carried out for each discretisation strategy.

In some simulations where the flow is expected to be Q2D, it seems more appropriate
to use a specific MHD modelling strategy for 2D flows, as the one proposed by Sommeria
and Moreau (1982) (SM82), which has also been implemented in OpenFOAM. Such
modelling neglects possible 3D flows expected to occur in vortical flow patterns and,
hence, the use of the SM82 algorithm has to be restricted to very simple flows. An
advanced configuration for such modelling strategy is described by Müller and Bühler
(2001), and its study and implementation in OpenFOAM should be carried out by the
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author in a near future.
Last but not least, MHD turbulence is a crucial issue to consider for dual-coolant

breeding blankets and most of the engineering MHD flows. Under strong magnetic
fields, MHD turbulence becomes Q2D, but the lack of Q2D MHD turbulence models
makes its simulation unaffordable. In the present study, the 0-equation RANS model
from Smolentsev and Moreau (2006) has been implemented; however, further studies
should be conducted before accurately predict LM flow in dual-coolant BB channels.
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11 Conclusions on thermal MHD
modelling

Thermal modelling of fluids is a classical field of study. The first decision to make,
when modelling thermal transport within a fluid, is whether to consider that the fluid
density varies substantially with temperature or not. In the present study, the fluid
is PbLi, whose density dependence on temperature is relatively mild. Indeed, PbLi
thermal expansion coefficient is one order of magnitude lower than typical values for
gases, and half the value for liquid water. Thus, the Boussinesq hypothesis is perfectly
applicable on the Navier-Stokes equations.

When electromagnetic effects are to be considered, no special issues with respect
to MHD modelling appear. In fact, the unique B-energy coupling would be the Joule
effect, which is neglected in the present study. Such simplification, despite being widely
accepted, should be further analysed in future studies.

In terms of algorithm structure, the energy equation can be simply introduced se-
quentially in a fractional step algorithm, or as an extra equation inside PISO loop, in a
PISO-like algorithm.

To implement fluid-solid coupling in OpenFOAM, according to the latest OpenFOAM
releases 1.6-ext and 1.7.1, two different strategies could be followed. A first strategy
would imply to couple both domains (fluid and solid) by means of internal boundary
conditions. An example of this strategy can be found in the chtMultiRegionFoam algo-
rithm in the official OpenFOAM-1.7.1 version. The main drawback is the need of an
iterative process between both liquid and solid domains if a converged transient simu-
lation is needed. The second strategy, called grid coupling strategy, would be coupling
directly both meshes (fluid and solid) and solving a unique matricial system. Since dif-
ferent transport equations are required at each domain, the matricial system would be
built from the corresponding two transport equations, each one attributed to one sub-
domain. Such strategy can be found in the ConjugateHeatFoam algorithm, available in
the extended OpenFOAM-1.6-ext release from Wikki Ltd. Obviously, in order to couple
both transport equations, the main variable must be conserved at the interface. For
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electromagnetic coupling, both the electric potential and the electric current are con-
served at the interface, whereas for thermal coupling, temperature must be equal at
each side of the interface. Hence, the second strategy is perfectly suitable in the present
study. The disadvantage of the grid coupling strategy lays on the need of dealing with
larger mesh domains at solver level; however, this disadvantage is compensated by the
fact that no inner iterations at the interface are required. In the frame of the present
PhD thesis, the grid coupling strategy has been implemented.

Special attention has to be placed in order to couple correctly liquid-solid domains.
Indeed, if the mesh is strongly non-uniform and fluid properties are very different
across the boundary layer, some non-conservative effects might be present. In this
direction, special emphasis has been placed so as to keep the conservative form of the
energy equation in both domains.

It is worth mentioning the influence that inlet/outlet boundary conditions might
have on the flow profile, specially for strongly buoyant flows. For academic or idealised
cases, such influence can be avoided by the use of periodic (cyclic) boundary conditions.
However, for a physically realistic flow set up, the domain of study should be enlarged
until achieve known temperature (and velocity) boundary conditions, which is often too
demanding.
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For an ideal simulation of any liquid metal breeding blanket, the studied domain
should start/end outside the magnetic field region, far upflow from the inlet and down-
flow from the outlet manifolds, so that inlet/outlet boundary conditions could be more
accurately defined. Both the externally applied magnetic field and the thermal load
should vary in space and time according to each breeding blanket design. The code
should be able to manage different scales including liquid metal domain, solid struc-
tures (Eurofer, FCI, etc.) and helium cooling channels. Thermal effects should be cou-
pled to MHD effects, and fluid-solid thermal and electrical coupling considered. A 3D
mesh would be required, refined at Hartmann and side boundary layers, which is by
itself a very restrictive condition at typical breeding blanket Hartmann numbers. The
used algorithm should be fully 3D and transient. Mechanical stresses and deformations
of solid structures caused by temperature differences or electromagnetic forces should
also be simulated. Finally, tritium and helium bred in the liquid metal should be con-
sidered, not only because tritium inventories and permeation fluxes are relevant for
blanket design (for tritium self-sufficiency of the fusion reactor and for safety reasons),
but also because tritium and helium might alter liquid metal electrical and thermal
properties and, hence, LM flow profiles.

Obviously, such simulations are not affordable nowadays. All we can do is to simplify
the system, assume some hypotheses and model only those issues that have greater
interest. Once the results are obtained, a deep analysis of the solution is required, to-
gether with an estimation of the effect that those issues not considered or the relaxation
of assumptions imposed would have on the results.

In the frame of the present PhD dissertation, main issues of interest are MHD and
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thermal effects. The system has always been simplified by restricting the analysis to
liquid metal channels, avoiding manifolds, expansions and helium cooling channels.
The developed tool, however, can be applied to all type of geometries. Some hypotheses
assumed in all simulations, such as the Boussinesq hypothesis, or the low magnetic
Reynolds approximations (both assumptions are widely accepted). Moreover, due to
CPU computational resources limitation, mesh size has always been a critical aspect.
As a result, the obtained know-how related to liquid metal flows in breeding blanket
modules can only be partial and subject to the influence of aspects not taken into ac-
count (i.e. presence of helium bubbles).

The implemented tool has been applied to understand the flow in two different breed-
ing blankets: the EU HCLL and the TECNO FUS blanket concept.

12.1 HCLL breeding blanket channels

In order to study the liquid metal flow in HCLL channels, 3D thermal-MHD simulations
have been carried out. Special attention has been given to buoyancy effects and flow
oscillations. In the study, although both the Reynolds and the Grashof numbers are
kept within the same range as the expected ones, the considered Hartmann number
is about one order of magnitude lower than the expected one, which provides with a
substantially reduced electromagnetic damping.

In terms of liquid metal modelling in the HCLL blanket, fluid-solid MHD coupling
determines, together with the Hartmann number, the magnitude of the electromag-
netic damping. Therefore, the numerical tool must include electromagnetic fluid-solid
coupling. However, results have shown that, if the only output parameters needed from
the simulation are averaged values of temperatures, Nusselt and heat fluxes, fluid-solid
thermal coupling can be avoided, being replaced by the use of a thermal boundary con-
dition based on an estimation of the overall heat transfer coefficient (from tne LM to the
He cooling channels). To this aim, an accurate estimator of the heat transfer coefficient
helium-Eurofer is required. Nevertheless, in order to detect buoyancy induced vortices,
fluid-solid thermal coupling is required in the simulation.

In terms of the flow nature in the HCLL blanket LM channels, it can be summarised
that:

• A jet is produced at the narrowing of the channel in the U-bend for a pure hydro-
dynamic scenario. When this jet reaches the wall, it can experience shear stress
instabilities that travel all along the outlet channel. Such jet is damped by elec-
tromagnetic forces.
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• It has been proved that the temperature field is always 3D.

• The thermal flux extracted by each wall is independent of the Grashof number.
Approximately, about 48 % of the thermal load is extracted by the upper side wall,
whereas the lower one extracts about 38 %. Both Hartmann walls extract the
same power, about 5 %, which is more or less the thermal power carried away by
the LM.

• It can be anticipated that, when a realistic electromagnetic damping is simulated
using appropriate values for the Ha and the electric conductivity ratio, the flow in
the core of the channel remains 2D except in the Hartmann boundary layers, and
vortical structures are only expected to exist near the gap close to the first wall.

• If vortical structures exist along the channel, their characteristic length is ex-
pected to be the channel height.

• If vortical structures exist, the existence of 3D secondary motions is probable.
Their effect on the main flow and on relevant design parameters (e.g. tritium
permeation ratio) should be analysed.

For an accurate prediction of the tritium permeation ratio (TPR), it is urgent to de-
velop new and precise measurements of tritium transport properties, specially solubil-
ity. In the present study, a preliminary tritium analysis has been addressed considering
tritium a passive scalar and neglecting helium influence on the flow (He is a by-product
of the breeding reaction with lithium). Results show similar TPR values for electri-
cally conducting and insulating walls (because LM velocities near the side walls are
similar in both cases, due to either M-shape profile or vortical structures). Moreover,
since Hartmann walls represent about 15 % of the total wall surface, their influence on
the overall TPR is not negligible, reaching values of about 10 % of the total permeate
tritium flux.

12.2 TECNO FUS blanket concept

The TECNO FUS blanket is a dual-coolant type concept, with high LM velocities. There-
fore, inertia is predominant in front of buoyancy. Correspondingly, the flow in the core
of the banana-shaped (toroidal) channels is expected to be 2D, except at Hartmann
boundary layers, with no vortical structures. Thus, the 2D MHD model from Sommeria
and Moreau (1982) can be used coupled with 2D thermal effects.

Among the issues which are relevant for the simulation, MHD turbulence modelling
is, probably, the most prominent aspect since flow profile is strongly dependent on it.
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However, there is a lack of accurate Q2D MHD turbulence models, specially when buoy-
ancy effects have to be considered.

The thermal performance of the blanket can be defined by means of the LM tem-
perature gain (which should be of order ∼300oC), the maximum temperature of the
structural material (Eurofer, that must be kept below 550oC), the thermal stress across
the FCI, and the LM thermal gain (which depends on the temperature gain but also on
the LM flow rate).

Fluid-solid thermal coupling is required in order to accurately predict both the max-
imum Eurofer temperature and the thermal stress across the FCI layer.

From the sensitivity analysis carried out in this study, it can be estimated that,
for a maximised liquid metal temperature increment with an inlet velocity of 0.2 m/s,
FCI thermal conductance should be around 1 W/m2K. In contrast, for a maximised LM
thermal gain, what would imply a reduced thermal stress across the FCI layer, and
under the studied design specifications, higher velocities are preferable. However, this
second thermal strategy would result in a lower LM temperature increment, which is
not desirable for efficiency reasons.

For an accurate assessment of the cooling system requirements, heat losses both at
side and Hartmann walls should be predicted. Such analysis could be carried out by 2D
simulations of a fully-developed flow across a radial-toroidal plane.

Another interesting pending issue is the analysis of the bend zone, at the bottom of
the blanket where the four channels merge, by means of a detailed 3D simulation.
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Publications and presentations
related to this research

Pb-15.7Li database

Due to the lack of a database for the eutectic Pb-15.7Li, which included all breeding
blanket related fluid properties, the first period of the study consisted of building such
a database. The obtained database was first presented in two congresses and then, a
paper was published.

A1 Lead-lithium Eutectic material database for Nuclear Fusion Techno-
logy
Journal of Nuclear Materials, vol. 378, issue 3, pp. 353-357. 2008
E. Mas de les Valls, L.A. Sedano, L. Batet, I. Ricapito, A. Aiello, O. Gastaldi
and F. Gabriel

P1 Lead-lithium Eutectic material database for Nuclear Fusion Techno-
logy
IVth Int. Workshop on Materials for HLM Cooled Reactors and Related
Technologies, Rome (Italy), 21.23th May, 2007
L.A. Sedano, E. Mas de les Valls, L. Batet, I. Ricapito, A. Aiello, O. Gastaldi
and F. Gabriel

P2 Base de datos del eutéctico Pb-15.7Li para TFN
33a Reunión Anual de la Sociedad Nuclear Española, Segovia (Spain), 26.28th
September, 2007
E. Mas de les Valls, L.A. Sedano, L. Batet, I. Ricapito, A. Aiello, O. Gastaldi
and F. Gabriel
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Algorithms implemented in OpenFOAM

The implemented algorithms and corresponding validation steps have been presented
in 6 workshops or congresses.

P3 Numerical analysis of buoyancy effects on liquid metal MHD flows
Workshop on Numerical Simulations of MHD flows, Karlsruhe (Germany),
18-20 October 2010
E. Mas de les Valls, J. Fradera, L. Batet

P4 Recent MHD activities for blanket analysis at UPC
36a Reunión Anual de la Sociedad Nuclear Española, Santiago de Compostela
(Spain), 6-8 October 2010
E. Mas de les Valls, J. Fradera, L.A. Sedano, S. Badia, R. Planas, L. Batet

P5 Desarrollo de herramientas computacionales de simulación acoplada
de la MHD y el transporte de tritio en los canales de ITER HCLL
34a Reunión Anual de la Sociedad Nuclear Española, Murcia (Spain), 29-31
October 2008
E. Mas de les Valls, J. Fradera, L. Batet, L. Sedano

P6 OpenFOAM capabilities for MHD simulation under nuclear fusion
technology conditions
OpenFOAm workshop, Milano (Italy), 10-11 July 2008
E. Mas de les Valls, L. Batet

P7 Transient algorithm for low magnetic Reynolds number simulations
MHD Fundamentals, from liquid metals to astrophysics, Brussels (Belgium),
10-11 July 2008
E. Mas de les Valls, L. Batet

P8 Resistive MHD simulations with OpenFOAM. Algorithm strategies
International Workshop on Numerical Simulations of Magnetohydrodynamic
Flows, Karlsruhe (Germany), 14-15 November 2007
E. Mas de les Valls, L.A. Sedano, L. Batet
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Chapter . Publications and presentations related to this research

Liquid metal flows in Breeding Blankets

The application cases studied in the frame of the present PhD dissertation have been
presented in 8 workshops or congresses. Also, 2 papers have been published and 1 has
been submitted for peer review.

A2 Modelling of integrated effect of volumetric heating and magnetic
field on tritium transport in a U-bend flow as applied to HCLL blanket
concept
Fusion Engineering and Design, vol. 86, issues 4-5, pp 341-356. June 2011
E.Mas de les Valls, L. Batet, V. de Medina, J. Fradera, L. Sedano

A3 Qualification of MHD effects in dual-coolant DEMO blanket and ap-
proaches to their modelling
Fusion Engineering and Design, In Press, Corrected Proof, Available online 11
May 2011
E. Mas de les Valls, L. Batet, V. de Medina, J. Fradera, L.A. Sedano

A4 Influence of thermal performance on design parameters of a He/LiPb
dual coolant DEMO concept blanket design
Submitted to Fusion Engineering and Design, FUSENGDES-D-11-00381
E. Mas de les Valls, L. Batet, V. de Medina, J. Fradera, M. Sanmartı́, L.A.
Sedano

P9 Estudio paramétrico de un diseño conceptual de envoltura regener-
adora He/LiPb de doble refrigerante para DEMO
37a Reunión Anual de la Sociedad Nuclear Española, Burgos (Spain), 28-30
September 2011
E. Mas de les Valls, L. Batet, J. Fradera, M. Sanmartı́, L.A. Sedano

P10 Influence of thermal performance on design parameters of a He/LiPb
dual coolant DEMO concept blanket design
International Symposium on Fusion Nuclear Technology (ISFNT-10), Portland
(USA), 11-16 September 2011
E. Mas de les Valls, L. Batet, V. de Medina, J. Fradera, M. Sanmartı́, L.A.
Sedano
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P11 Numerical analysis of MHD-thermofluid flows considering sandwich
structures as applied to liquid breeding blankets for fusion technology
8th PAMIR International Conference, Fundamental and Applied MHD, Corsica
(France), 5-9 September 2011
E. Mas de les Valls, L. Batet, V. de Medina, J. Fradera, L.A. Sedano

P12 MHD modelling for liquid metal banana-shaped channels for Dual-
Coolant breeding blanket for DEMO
26th Symposium on Fusion Technology, SOFT, Porto (Portugal), 27 September -
1 October 2010
E. Mas de les Valls, V. de Medina, L. Batet, J. Fradera, L. Sedano

P13 TMHD modeling activities at UPC aimed at breeding blanket analysis
IEA International Workshop on Liquid Metal Breeder Blanket, Madrid (Spain),
23-24 September 2010
E. Mas de les Valls, J. Fradera, R. Codina, S. Badia, R. Planas, L. Sedano, L.
Batet

P14 Flow analysis in the HCLL-TBM ITER channels including MHD and
heat transfer
Eccomas CFD, Lisboa (Portugal), 14-17 June 2010
E. Mas de les Valls, J. Fradera, L. Batet

P15 Análisis de sensibilidad de los distintos modelados utilizados para
los canales de los módulos de ensayo de envoltura ITER HCLL (EU
ITER-TBM)
37a Reunión Anual de la Sociedad Nuclear Española, Sevilla (Spain), 28-30
October 2009
E. Mas de les Valls, J. Fradera, L.A. Sedano, L. Batet

P16 Boundary layer analysis for coupled mixed convection and MHD flow
on tritium permeation in ITER TBM c-shaped channels
25th Symposium on Fusion Technology, SOFT, Rostock (Germany), 15-19
September 2008
E. Mas de les Valls, F. Gabriel, C. Moreno, J.A. Jiménez, L. Batet, L. Sedano
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Authié G, Tagawa T and Moreau. R 2003 Buoyant flow in long vertical enclosures
in the presence of a strong horizontal magnetic field. Part 2. Finite enclosures
European Journal of Mechanics B/Fluids 22 203–220

Batet L, Fradera J, de les Valls E M and Sedano L 2011 Numeric implementation of a
nucleation, growth and transport model for helium bubbles in lead-lithium HCLL
breeding blanket channels. Theory and code development. Fusion Engineering
and Design

Bojarevics V, Roy A and Pericleous K 2010 Magnetic Levitation of Large Liquid Vol-
ume Magnetohydrodynamics 46(4) 317–329

Brackbill J and Barnes D 1980 The effect of nonzero ∇ · b on the numerical solution
of the magnetohydrodynamic equations Journal of Computational Physics 35(3)
426–430

Brigham E 1988 The Fast Fourier Transform and its Applications Prentice-Hall, Inc.

Bühler L 1994 Magnetohydrodynamic flows in arbitrary geometries in strong,
nonuniform magnetic fields. A numerical code for the design of fusion reactor
blankets Fusion Technology 27 3–24

193



REFERENCES

Bühler L 1998 Laminar buoyant magnetohydrodynamic flow in vertical rectangular
ducts Physics of Fluids 10(1) 223–236

Bühler L, Horanyi S and Arbogast E 2007 Experimental investigation of liquid-metal
flows through a sudden expansion at fusion-relevant hartmann numbers Fusion
Engineering and Design 82 2239–2245

Catalán J, Ogando F, Sanz J, Palermo I, Veredas G, Gómez-Ros J and Sedano L 2010
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