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Efficient models for building acoustics:
combining deterministic and statistical methods

by

Cristina D́ıaz-Cereceda

PhD dissertation
Advisors: Jordi Poblet-Puig and Antonio Rodŕıguez-Ferran
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Abstract

Efficient models for building acoustics:
combining deterministic and statistical methods

Cristina Dı́az-Cereceda

Advisors: Jordi Poblet-Puig and Antonio Rodŕıguez-Ferran

Modelling vibroacoustic problems in the field of building design is a challenging

problem due to the large size of the domains and the wide frequency range required

by regulations. Standard numerical techniques, for instance finite element methods

(FEM), fail when trying to reach the highest frequencies. The required element size is

too small compared to the problem dimensions and the computational cost becomes

unaffordable for such an everyday calculation.

Statistical energy analysis (SEA) is a framework of analysis for vibroacoustic

problems, based on the wave behaviour at high frequencies. It works directly with

averaged magnitudes, which is in fact what regulations require, and its computational

cost is very low. However, this simplified approach presents several limitations when

dealing with real-life structures. Experiments or other complementary data are often

required to complete the definition of the SEA model.

This thesis deals with the modelling of building acoustic problems with a reason-

able computational cost. In this sense, two main research lines have been followed.

In the first part of the thesis, the potential of numerical simulations for extend-

ing the SEA applicability is analysed. In particular, three main points are addressed:

first, a systematic methodology for the estimation of coupling loss factors from numer-

ical simulations is developed. These factors are estimated from small deterministic

simulations, and then applied for solving larger problems with SEA. Then, an SEA-

like model for non-conservative couplings is presented, and a strategy for obtaining

conservative and non-conservative coupling loss factors from numerical simulations is

developed. Finally, a methodology for identifying SEA subsystems with modal anal-

ysis is proposed. This technique consists in performing a cluster analysis based on

the problem eigenmodes. It allows detecting optimal SEA subdivisions for complex

domains, even when two subsystems coexist in the same region of the geometry.

In the second part of the thesis, the sound transmission through double walls is

analysed from different points of view, as a representative example of the complexities
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of vibroacoustic simulations. First, a compilation of classical approaches to this

problem is presented. Then, the finite layer method is proposed as a new way of

discretising the pressure field in the cavity inside double walls, specially when it

is partially filled with an absorbing material. This method combines a FEM-like

discretisation in the direction perpendicular to the wall with trigonometric functions

in the two in-plane directions. This approach has less computational cost than FEM

but allows the enforcement of continuity and equilibrium between fluid layers. It is

compared with experimental data and also with other prediction models in order to

check the influence of commonly assumed simplifications.

Finally, a combination of deterministic and statistical methods is presented as a

possible solution for dealing with vibroacoustic problems consisting of double walls

and other elements. The global analysis is performed with SEA, and numerical sim-

ulations of small parts of the problem are used to obtain the required parameters.

Combining these techniques, a realistic simulation of the vibroacoustic problem can

be performed with a reasonable computational cost.
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enorme paciencia sólo es equiparable a su gran corazón. Gracias por no dejarme
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Introduction

Motivation

Social concern about acoustic pollution has increased in recent years, leading to

the emergence of associations dedicated to combating this phenomenon all over the

world, such as the Spanish association of lawyers Juristas Contra el Ruido (2013),

the French Comité des victimes de la pollution et du bruit (2013) or the American

Citizens Coalition Against Noise Pollution (2013). For this reason, the problem of

noise transmission has become a topic of growing interest in many fields.

For the particular case of building design, the maximum noise levels allowed in

rooms are defined by regulations. Two types of noise sources are considered: noise

caused by impacts in the structure (impact noise) or by acoustic sources in other

rooms or outside the building (airborne noise). The trend of these regulations is to

become more and more restrictive over time. For instance, in April 2009 the Spanish

building regulations Código Técnico de la Edificación (technical building code) CTE

(2009) were updated and the real noise perceived between dwellings was reduced

from the old 88 dB (based on the basic standard for construction Norma Básica de

la Edificación NBE-CA (1988)) to 65 dB.

Moreover, the best parameters for structural design are often in confrontation with

the optimum parameters in acoustic design. For instance, continuous floor elements

are useful for bearing wind or seismic loads, but they also transmit sound energy in

the form of structure-borne vibration.

Due to all these reasons, reliable models for vibroacoustic problems are required,

in order to predict the noise insulation through different structural configurations.

With these models the most influencing parameters in the noise transmission can be

determined and a correct acoustic design can be performed.

1



INTRODUCTION

Building acoustics: regulations

The maximum allowable noise levels (either airborne or impact noise) in rooms are

defined in the Spanish regulation CTE (2009). In that document, some acceptable

configurations of structures are suggested in order to minimise the noise levels in

rooms. If the configuration is not one of those suggested, a test must be performed

in situ in order to verify the insulation level of the building.

Several parameters are defined by building acoustic regulations in order to estab-

lish the insulating effect of building structures for airborne noise. They all consider

variables averaged both in space (a single value defining a wall or a room) and time.

The sound level difference D = L1 − L2 between two rooms separated by a

partition is the difference between the sound pressure level

L = 10 log10
〈p2rms〉
p20

(I.1)

in the sending room and the receiving room. 〈p2rms〉 is the spatial root mean square

value of the pressure in the room and p0 = 2 · 10−5 Pa is the threshold of audible

pressure. The sound level difference depends on the room characteristics as much as

on the wall properties. That is why the sound reduction index R (also known as

transmission loss TL in some countries) is defined, see ISO 140-3 (1995). It is com-

puted as the logarithmic ratio between the incident acoustic power in the structure

and the transmitted acoustic power

R = 10 log10
Π in

Πrad
. (I.2)

The impact noise is usually quantified with the normalised impact sound pres-

sure level Ln. This parameter is defined by the ISO 140-6 (1998) as the sound

pressure measured in the receiving room when the tested floor is excited by the nor-

malised tapping machine, Fig. I.1, corrected with a factor that takes into account the

acoustic absorption of the room

Ln = 10 log10

(
Πrad

p20

4ρairc

A0

)
, (I.3)

where ρair is the air density, c is the sound speed in the air and A0 is the reference

absorption area (10m2 for dwellings).

The vibration level difference Dij , defined by Hopkins (2007), is a magnitude

similar to the sound level difference, but related to vibrations instead of sound. It is
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Fig. I.1: Tapping machine. Source: www.sp.se, retrieved on 2013-08-01

used to measure the vibration transmission between two structures through joints

Dij = 10 log10
〈Ei〉
〈Ej〉

, (I.4)

where 〈Ei〉 and 〈Ej〉 are the averaged energies of structures i and j respectively.

All these variables are frequency-dependent. They are usually averaged in third

octave bands. Moreover, there are other magnitudes such as the weighted apparent

sound reduction index R′
w, ISO 717-1 (1997), or the weighted normalised impact

sound pressure level Ln,w, ISO 717-2 (1997), which provide a single value defining the

insulating effect of a structure against the airborne and the impact noise respectively.

These values are computed by comparison of the corresponding frequency-dependent

curve with a reference curve, that typically includes frequencies from 100 to 3150 Hz,

see example of Fig. I.2. The single number obtained is used in regulations to classify

a structure as fit or unfit.

Main challenges

Modelling vibroacoustic problems in the field of building design has some particular

features:

• The first aspect is the frequency range of interest. Magnitudes like R′
w or Ln,w

require computations between 100 and 3150 Hz, and sometimes this range is

extended to 50-5000 Hz, ISO 717-1 (1997).

• The second feature is the size of the problem: typically several meters or even

tens of meters.
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Fig. I.2: Reference curve for the impact noise, ISO 717-2 (1997)

• The third characteristic of the problem is the fluid-structure coupling: acoustic

waves excite structures and these, in turn, cause new acoustic waves. This

coupling implies different wavelengths in the problem at a certain frequency.

The combination of these special features causes the standard numerical tech-

niques (for instance finite element methods) to fail when trying to reach the highest

frequencies required by regulations. The element size required is too small for the

problem dimensions and the computational cost becomes unaffordable for such an

everyday problem, see Zienkiewicz (2000).

Alternative modelling techniques are used to avoid these problems: wave-based

approximations, two-dimensional or even one-dimensional simplifications. However,

they miss some information of the real problem.

Another widely used technique is statistical energy analysis (SEA), see Lyon

(1975) and Craik (1996): this is a framework of analysis based on the averaged

powers flowing between rooms and structures. This type of analysis is based on the

wave behaviour at high frequencies and works directly with averaged magnitudes,

which is in fact what regulations take into account. Its computational cost is very

low. However, it presents several limitations for modelling complex configurations.

Usually experimental data or numerical simulations are required to address these
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deficiencies.

Therefore, there is a need for efficient and reliable strategies to model the sound

transmission through any type of building structure. They should be able to deal

with complex geometries and materials for the whole frequency range of interest and

with a reasonable computational cost.

Overview

This thesis deals with the efficient modelling of real-life building acoustic problems.

In this sense, two main research lines have been followed. On the one hand, the

potential of numerical (deterministic) simulations to get relevant information for sta-

tistical energy analysis is assessed. On the other hand, efficient numerical methods

are presented for modelling deterministically simple vibroacoustic problems. These

two main topics are combined in order to deal with complex problems efficiently.

This thesis is divided in two parts. The fist one deals with the potential of

combining numerical simulations with statistical energy analysis in order to model real

vibroacoustic problems with a reasonable computational cost. This part is structured

as follows:

• In Chapter 1 an introduction to statistical energy analysis is provided, detailing

the main challenges and limitations of this framework of analysis.

• In Chapter 2 a study on the optimal procedure for obtaining SEA coupling

loss factors numerically is presented. These factors are obtained from small

deterministic simulations and then applied to solve larger problems with SEA.

• In Chapter 3 an SEA-like approach accounting for non-conservative couplings

is developed, and a methodology for obtaining the associated parameters from

small numerical simulations is presented.

• In Chapter 4 a new strategy for decomposing a vibroacoustic domain into SEA

subsystems is proposed. It consists in performing a cluster analysis based on the

problem eigenmodes, and allows the detection of different subsystems sharing

the same physical region.

The second part of the thesis deals with the problem of sound transmission through

double walls, as a representative example of the complexities of vibroacoustic sim-
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ulations. In this part, comparisons of different models are shown, both reviewing

classical methods and proposing new techniques. It is structured as follows:

• In Chapter 5 an introduction to double walls is done, as well as a review of

existing models of their acoustic behaviour. In particular, four approaches to

this problem, with different level of complexity, are presented in detail.

• In Chapter 6 the finite layer method is presented as a discretisation method

for the pressure field in the cavity of a double wall, and compared with other

methods and experimental data. This technique combines a FEM discretisation

in the direction perpendicular to the wall with trigonometric functions in the

two in-plane directions.

• In Chapter 7 an efficient approach for modelling the sound insulation of double

walls is presented. It is based on statistical energy analysis, but uses determin-

istic simulations for obtaining SEA parameters.

At the end of the document, the main conclusions and contributions of the thesis

are enumerated, as well as the related publications. They are followed by a list of the

future research lines arising from this work.

6
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Extending statistical energy

analysis with numerical simulations
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Chapter 1

Introduction: main challenges in

statistical energy analysis

Statistical energy analysis (SEA) is an energy-based framework of analysis for vibroa-

coustic problems. It is typically used for modelling the transmission of sound and

vibrations within closed domains such as buildings, vehicles, or industrial devices.

The first derivations of SEA appeared at two independent works, developed by

Lyon and Maidanik (1962) and Smith (1962) respectively, and it is still widely used

due to its low computational cost and simplicity, as shown by Crocker and Price

(1969).

The first book compiling the basic theory of SEA and the procedure for applying

it to dynamical systems was written by Lyon (1975). The main idea is that a complex

vibroacoustic system can be divided into simpler subsystems, characterised by their

modal densities and internal loss factors. The power fluxes between these subsystems

can be expressed in terms of their averaged energies with the help of the coupling

loss factors (CLFs). Knowing the power input to the system, a set of equations can

be derived from the power balances of the subsystems, such that the only unknowns

of the problem are their averaged energies.

These power flow equations are valid if the subsystems are reverberant, and there-

fore the pressure or vibration field in them can be considered to be diffuse. This is

assumed to be true if the SEA subsystems satisfy a certain set of assumptions, known

as the SEA hypotheses, which hold in most systems within the high frequency range,
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see Hodges and Woodhouse (1986) and Lyon and DeJong (1995). These hypotheses

are summarised in Table 1.1.

1. Statistically independent excitation forces: the external forces
do not excite a particular mode. This is required for having uncorre-
lated modal vibrations.

2. Equal probability of modes occurring in a certain frequency
range: all the modes within a certain subsystem and frequency range
occur with the same probability. This also contributes to guarantee
the diffuse field assumption.

3. Equipartition of modal energy in a subsystem, and incoher-
ent modal response between modes in the coupled subsys-
tems: the equipartition of modal energy means that every mode has
equal energy. The incoherent modal response is the modal approach
to the diffuse field assumption (no mode dominates the dynamics of
the system), inherent to the statistical method.

4. Weak (or light) coupling between subsystems: the flow of ex-
changed energy is small compared with the internal dissipation of
energy.

Table 1.1: SEA hypotheses

The SEA formulation is based on the power balances of the subsystems. For a

particular subsystem i, this balance is expressed as

Π in
i = Πdiss

i +

n∑

j=1
j 6=i

Πij, i = 1, . . . , n, (1.1)

where Π in
i is the external power entering the subsystem, Πdiss

i is the power dissipated

at the subsystem and Πij is the power exchanged between subsystems i and j. For

the particular case of 2 subsystems, an illustrative sketch is shown in Fig. 1.1.

The power dissipated by subsystem i is

Πdiss
i = ωηii〈Ei〉, i = 1, . . . , n, (1.2)

where ω = 2πf , f is the vibration frequency, and ηii and 〈Ei〉 are the internal loss

factor and the averaged energy of subsystem i respectively.
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diss

Π2

diss

Fig. 1.1: Sketch of an SEA system consisting of two subsystems.

The key aspect of the SEA formulation is the assumption that the power Πij

exchanged between subsystems i and j can be expressed in terms of their averaged

energies as

Πij = ω (ηij〈Ei〉 − ηji〈Ej〉) , (1.3)

by means of the coupling loss factors ηij and ηji. These factors are assumed to satisfy

the consistency relationship

ηijni = ηjinj , (1.4)

where ni is the modal density (number of modes per Hz) of subsystem i. This is

a reasonable assumption if the hypotheses of Table 1.1 are fulfilled, as discussed by

Lyon (1975).

Therefore, for each subsystem, the power balance of Eq. (1.1) can be rewritten in

terms of the energies of the subsystems as

Π in
i = ωηii〈Ei〉+ ω

n∑

j=1
j 6=i

(ηij〈Ei〉 − ηji〈Ej〉) , i = 1, . . . , n (1.5)

and, joining the power balances of all the subsystems, one gets:

ω




∑n
i=1 η1i −η21 −η31 . . . −ηn1
−η12

∑n
i=1 η2i −η32 . . . −ηn2

−η13 −η23
∑n

i=1 η3i . . . −ηn3
...

...
...

. . .
...

−η1n −η2n −η3n . . .
∑n

i=1 ηni








〈E1〉
〈E2〉
〈E3〉
...

〈En〉





=





Π in
1

Π in
2

Π in
3
...

Π in
n





. (1.6)

This linear system is used to obtain the averaged value of the energy at each

subsystem for a given configuration of incoming powers.

Modelling a vibroacoustic system with SEA involves the following steps:
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1. Introduction: main challenges in SEA

1. Dividing the system into subsystems.

2. Obtaining the internal loss factor of each subsystem.

3. Obtaining the coupling loss factors between each pair of subsystems exchanging

energy.

4. Solving the linear system (1.6) to obtain the averaged energies for every sub-

system.

5. Computing the output of engineering interest from the averaged energies.

These steps are clear enough for simple geometries and connections, and not so

clear for complex systems. The division into subsystems is usually straightforward if

the domain consists only of thin plates and acoustic volumes. Moreover, the internal

loss factors of homogeneous solids or resonant cavities can be obtained from their

material properties. Finally, the coupling loss factors can be obtained with analytical

expressions for simple connections between the subsystems. These expressions are

often based on the wave approach as detailed by Craik (1996) and Cremer et al.

(1973).

Solving vibroacoustic problems with SEA has many advantages, such as low com-

putational cost, robustness in front of small parameter changes and working directly

with the averaged energy, which is often required for computing the quantity of inter-

est. However, its application to real-life systems has serious limitations. Fahy (1994)

compiles the most important shortcomings of SEA, such as the impossibility of deal-

ing with non-conservative connections or the need of considering indirect couplings

in order to reproduce the power fluxes in certain systems.

Besides, SEA hypotheses (Table 1.1) are not always satisfied in real problems.

Different authors have studied to what extent these requirements have to be met to

get good results with SEA. Elmallawany (1978) and Woodhouse (1981) study the

importance of SEA hypotheses by means of comparisons with empirical expressions.

Keane and Price (1987) study the applicability of SEA for strong couplings (springs),

and provide an SEA-like formulation for such a case.

More recently, Culla and Sestieri (2006) compare SEA with deterministic simula-

tions in order to identify those hypotheses determinant for the accuracy of the results.

In the examples of their work, the modal equipartition is the crucial hypothesis for

the good performance of SEA. Le Bot and Cotoni (2010), in turn, provide a space of

12



possible material and geometrical parameters such that SEA hypotheses are fulfilled,

for different examples.

Another difficulty when using SEA is the modelling of vibroacoustic domains

with heterogeneities, complex geometries or alternations of solid and fluid domains

with small dimensions, such as masonry walls or honeycomb panels. In these cases,

the division into subsystems may not be straightforward and there are no analytical

expressions for the internal or coupling loss factors.

Different authors have worked to overcome these limitations. Some of them use

experiments to obtain the missing information needed to perform a complete SEA

analysis. For instance, Cuschieri and Sun (1994) use experiments to determine the

dissipation and coupling loss factors (even for subsystems that are not in contact).

Hopkins (2002) studies the particular case of the experimental estimation of coupling

loss factors for low modal densities and overlaps.

Other authors use numerical simulations to analyse the system behaviour and

obtain extra information. Some of them focus on the modal properties of the system:

Maxit and Guyader (2003) present the SmEdA formulation, a reformulation of SEA

taking modal energy distribution into account. They propose the use of the finite

element method (FEM) to calculate modal information in the cases of complex sub-

systems. Finnveden (2004) computes the group velocity and modal density required

for the analysis also with the help of FEM. Mace (2005) deals with the concept of

proper SEA and quasi-SEA systems, studying the dependence of the direct and indi-

rect CLFs on the modal properties of the system. Gagliardini et al. (2005), in their

virtual SEA strategy, compute the energy transfer matrices with FEM for many fre-

quencies and excitations and use this information to optimise the decomposition of

the problem into SEA subsystems and estimate coupling loss factors.

Numerical simulations can also be directly combined with SEA leading to a cou-

pled model. That is the case of the approach proposed by Shorter and Langley (2005),

based on adding finite element discretisations to SEA at those parts of the domain

where a detailed description is required. Cotoni et al. (2007) validate this technique

with the help of experiments.

Besides the experiments and numerical simulations, other techniques are com-

bined with SEA in order to overcome some of its limitations. Manning (1994) uses

general mobility functions to formulate SEA parameters. Renji et al. (2001) propose

a formulation accounting for both resonant and non-resonant transmission, with new

13



1. Introduction: main challenges in SEA

coupling loss factors. Guasch and Aragonès (2011) propose an algorithm based on

graph theory to obtain the dominant energy transmission paths in an SEA model,

and Barbagallo (2013) combines variational principles with SEA for modelling mul-

tilayered structures.

In summary, statistical energy analysis is a very powerful technique for dealing

with vibroacoustic problems at high frequencies. Many authors have worked in the

last decades to study and extend the applicability range of SEA. However, there are

still many open problems and questions to be answered. In this part of the thesis, the

potential of numerical simulations for extending the SEA applicability is analysed.

In particular, three main points are addressed:

• The estimation of coupling loss factors for complex conservative connections,

Chapter 2.

• The modelling of non-conservative couplings, Chapter 3.

• The subsystem identification, Chapter 4.

Simple numerical simulations are used to obtain the required information for dealing

with real-life vibroacoustic problems with SEA.
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Chapter 2

Conservative couplings: estimation

of coupling loss factors1

A study on the optimal procedure for obtaining SEA coupling loss factors (CLF)

numerically is presented. The energies of an SEA system with two subsystems (one

excited, the other one unexcited) are obtained from deterministic numerical simu-

lations. Three different ways of isolating the CLF are explored: from the power

balance of the excited subsystem (first approach) or the unexcited subsystem (second

approach) and from the power transmitted through the connection (third approach).

An error propagation analysis shows that the first approach is unreliable and that the

second approach is the best option. As application examples, the CLF between some

typical building structures is computed. These examples also illustrate the potential

of the estimated CLFs to solve larger problems with SEA.

2.1 Preliminaries

Due to its averaged nature, SEA is not designed to take into account small details of

the problem geometry or heterogeneities. For complex systems, the parameters re-

quired in the SEA formulation, such as the coupling loss factors, cannot be calculated

analytically. One option for obtaining these parameters is to identify them from labo-

1Chapter based on reference: Dı́az-Cereceda et al. (2013a)
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2. Conservative couplings: estimation of coupling loss factors

ratory measurements as De Langhe and Sas (1996) or Semprini and Barbaresi (2008)

do.

Another option is to estimate these parameters with deterministic formulations

and numerical methods. Some authors like Simmons (1991), Steel and Craik (1994)

or Fredö (1997) use finite element methods (FEM) to obtain the energy fluxes in the

problem and then estimate SEA parameters from them. Their interest is focused in

dynamic problems with no acoustic interaction and they do not apply the obtained

parameters for solving larger problems.

Maxit and Guyader (2001) estimate the coupling loss factors from modal param-

eters of the SEA subsystems. They use modal analysis to obtain these parameters

by means of simplifying the problem with the help of substructuring. This approach

is therefore limited to domains where, for every pair of subsystems in contact, one

of them has a clearly stiffer behaviour than the other. However, it cannot deal with

problems where the subsystems are not in direct contact but connected by a third

element, such as double walls. Maxit and Guyader apply their approach to obtain

coupling loss factors between beams and plates with common edges and Totaro et al.

(2009) use the same approach to compute coupling loss factors between structures

and cavities.

Finally, Thite and Mace (2007) deal with the idea of obtaining robust estimators

of these parameters from the deterministic results. They explore the usefulness of

Monte Carlo simulations for obtaining robust enough values of the coupling loss

factors to be used later in different types of problems.

In this chapter, a technique for obtaining the coupling loss factors between two

subsystems is proposed. This technique is based on deterministic simulations and

is independent of the device connecting the subsystems. The goal is to apply the

obtained factors for solving larger vibroacoustic problems with SEA.

2.2 Coupling loss factor calculation

The technique for computing the CLF between two subsystems is based on the sound

transmission between them when only one of the subsystems is excited. For any

connecting device between them, the SEA formulation is

{
Π in

1

0

}
= ω

[
η11 + η12 −η21
−η12 η21 + η22

]{
〈E1〉
〈E2〉

}
. (2.1)
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2.3. Error propagation analysis

The standard procedure in SEA would be to compute the averaged energies of

the subsystems with Eq. (2.1). The input power is usually known, for a given excita-

tion. In building acoustics, the internal loss factor can be computed with analytical

expressions available in the literature for most types of subsystems, see Craik (1996).

However, the analytical expression for the coupling loss factor is only available for

simple connections.

Here, the SEA formulation for a system consisting of two subsystems is used

to estimate the coupling loss factor. The averaged energies are obtained from the

numerical simulation of the same vibroacoustic problem and Eqs. (2.1) and (1.4) are

used to compute η12. Since the energy values are frequency-dependent, the CLF will

also depend on the frequency, and therefore the result of the computation will not be

a single value but a CLF law in terms of the frequency.

Three different ways are explored for computing the coupling loss factor. Two

of them are based on the SEA formulation for the 2-subsystem case, Eq. (2.1). The

third one is based on the power exchange at the connection, Eq. (1.3). They are:

First expression: CLF is isolated from the first equation in system (2.1) (power

balance of subsystem 1) as

η12 =
Π in

1 /ω − η11 〈E1〉
〈E1〉 − n1

n2
〈E2〉

. (2.2)

Second expression: CLF is isolated from the second equation in system (2.1)

(power balance of subsystem 2) as

η12 =
η22 〈E2〉

〈E1〉 − n1

n2
〈E2〉

. (2.3)

Third expression: CLF is isolated from the expression (1.3) of the power trans-

mitted through the connection as

η12 =
Π12

ω
(
〈E1〉 − n1

n2
〈E2〉

) . (2.4)

2.3 Error propagation analysis

The three techniques described in Section 2.2 involve operations between approxi-

mated quantities. Both the energies of the subsystems and the incoming and ex-

changed powers are computed from numerical simulations. Therefore, an analysis of
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2. Conservative couplings: estimation of coupling loss factors

the error propagation (see Henrici (1964) or Higham (1996)) is required in order to

check the reliability of the three expressions proposed to compute the CLF.

The relative error of a certain approximation x̄ with respect to the exact value x

can be computed as

rx =
x− x̄

x
. (2.5)

For the sake of simplicity, the following assumptions are made:

• 〈E1〉 ≫ 〈E2〉. This is the weak coupling hypothesis of Table 1.1, required by

the SEA framework.

• η11 = η22 and n1 = n2. In all the examples both subsystems have the same

properties, in particular the same internal loss factor and modal density. This

assumption is not necessary but simplifies the expressions and facilitates the

understanding of the error propagation.

• The internal loss factors ηii are known with a high accuracy and, therefore, their

error is negligible.

If these simplifications are incorporated to Eq. (2.2), the value of the relative error

of η12 computed with the first expression is

rη12 ≃ (rΠin
1
− r1)

(
Π in

1

)

ω 〈E1〉
(

Πin
1

ω〈E1〉
− η11

) = (rΠin
1
− r1)

(
1 +

〈E1〉 η11
Πin

1

ω
− η11 〈E1〉

)
=

= (rΠin
1
− r1)

(
1 +

〈E1〉
〈E2〉

)
=

(
1 +

〈E1〉
〈E2〉

)
rΠin

1
−
(
1 +

〈E1〉
〈E2〉

)
r1, (2.6)

where r1 and rΠin
1

are the relative errors associated to the computation of 〈E1〉 and
Π in

1 respectively.

The assumption of weak coupling leads to the conclusion that |rη12 | ≫|rΠin
1
− r1|.

The relative error of the CLF computed with this approach is larger than those of

the energy and incoming power of subsystem 1. There is an amplifying factor of the

error caused by the subtraction of two very similar values, Π in
1 /ω and η11 〈E1〉, that

makes this way of estimating the CLF unreliable.

The error committed in the computation of the CLF obtained with the second

expression (2.3) is

rη12 =
r2 − r1
1− r1

≃ r2 − r1 (2.7)

18



2.3. Error propagation analysis

where r2 is the relative error in the calculation of 〈E2〉. The error in the CLF is of

the same order of the errors in the calculation of the energies.

In a similar way, the value of the error committed with the third expression

(2.4) is

rη12 ≃ rΠ12 − r1, (2.8)

where rΠ12 is the relative error associated to the computation of Π12. As in Eq. (2.7),

the error in the CLF is of the order of the errors of the computed quantities, with no

amplifying factor.

The relative error of the three expressions can be computed as a linear combination

of the relative errors of the energies and powers. In Equations (2.7) and (2.8) the

combination coefficients are equal to one, but in Eq. (2.6) they are much larger than

one. The main conclusion is that subtractions of very similar quantities should be

avoided in the computation of the CLF. Instead, expressions in which the power

exchanged in the connection or the energy of the unexcited subsystem appear in the

numerator provide better results.

Two considerations must be done regarding these results. The first one is their

dependence on the weak coupling between the subsystems. If the coupling is strong,

the first expression (2.2) performs much better in terms of the error propagation,

because the two quantities in the subtraction are not similar any more. However,

the weak coupling is a hypothesis of SEA and, therefore, strong couplings lead to

unreliable results with the three expressions.

The second consideration is related to the estimation of the CLF from experi-

mental values. In that case, the experimental error may be a systematic error, and

the values of rΠin
1
and r1 may have the same sign and be of the same order. In that

case, even if the coefficients that multiply the energy and power errors in Eq. (2.6)

are much greater than one, the value of the two terms may be similar and therefore,

they could compensate and provide a low value of the CLF error. This is one possible

reason for the good results achieved by Campolina et al. (2012), when they estimate

the coupling loss factor from experimental measurements. However, it is better to use

the second expression, since it provides a more robust way for computing the CLF.

In fact, this expression is equivalent to those resulting from the formulations of Fredö

(1997) and Simmons (1991) and the CLF expression derived in the Power Injection

Method, see De Langhe and Sas (1996). The third expression is also reliable, but it

requires obtaining another value: the transmitted power.
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2. Conservative couplings: estimation of coupling loss factors

2.4 Applications in building acoustics

The three techniques described in Section 2.2 for estimating the CLF are validated

here for some mechanical examples whose analytical expression is provided in the

literature. Also, the traditional treatment of double walls with SEA is analysed here,

comparing it with the CLF estimations derived from numerical simulations of this

vibroacoustic problem.

2.4.1 Coupling loss factor for mechanical connections

In this section, some structural configurations with a known analytical expression

of the CLF are studied. All the examples consist of walls or floors. They have

been modelled as thin plates, connected by mechanical devices. More details on the

deterministic model are provided in Appendix A.

The mechanical and geometric properties of the plates are summarised in Tables

2.1 and 2.2 respectively. The external excitation of the system is always a force of

1 N, applied on plate 1 at every Hz. Therefore Π in
j = 0 for j > 1. The excitation

is applied in twenty different (random) points and the resulting energies and powers

are averaged as described in Appendix A.

The CLF calculations obtained for each Hz are also averaged in third octave bands

before plotting the result.

Variable Symbol Value
Young’s modulus E 2.5 × 109N m−2

Density ρ 692.3 kg m−3

Poisson’s ratio ν 0.3
Loss factor η 3%

Table 2.1: Mechanical properties of the GN plasterboard plates.

Variable Symbol Value
Plate size, x direction Lx 2.4 m
Plate size, y direction Ly 2.4 m
Thickness h 13 mm

Table 2.2: Geometric properties of the GN plasterboard plates.
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2.4. Applications in building acoustics

2.4.1.1 Double wall with connecting point springs

The first example reproduces the case of a double wall without considering the effect of

the air in the cavity. It consists of two parallel simply supported leaves connected with

nine translational springs, equally distributed along the leaves as shown in Fig. 2.1.

These springs represent the effect of studs connected by point screws to the leaves.

The stiffness of each spring is K = 8 · 105 Nm−1.

Fig. 2.1: Distribution of the nine springs.

The CLF estimations have been compared with an analytical expression typically

used in SEA by Hopkins (2007) or Craik (1996), obtained by analogy with an electrical

circuit and valid when each connection acts independently of the others

η12 =
ncRe {Y2}

ωM1|Y1 + Y2 + Ys|2
. (2.9)

In Eq. (2.9),

Yi =
1

8
√
Biρsi

i = 1, 2 (2.10)

is the point mobility of each leaf, M1 is the mass of leaf 1,

Ys =
iω

K
(2.11)

is the mobility of the spring, i =
√
−1 is the imaginary unit, Bi = Eh3/12(1 − ν2)

is the bending stiffness of plate i, ρsi its mass per unit surface, and nc = 9 is the

number of springs used.

In Fig. 2.2 the three methods described in Section 2.2 for computing the CLF are

compared with the analytical expression.

For this simple problem, the numerical estimations of the CLF provide good

results for the second and third expressions. However, results derived from the first
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Fig. 2.2: Comparison of the coupling loss factor η12 for nine spring connections.

expression (2.2) are wrong. This behaviour is explained with the analysis of error

propagation shown in Section 2.3, and confirms the unreliability of this expression

for obtaining the CLF, specially when the coupling between the leaves is very weak.

This is illustrated in Fig. 2.3, where the evolution of the ratio 〈E1〉 / 〈E2〉 with the

frequency is shown.

The figure shows that, the larger the frequency, the larger the amplifying factor.

This is coherent with the weaker behaviour of the coupling when the frequency in-

creases, and explains the large error of the first expression, specially at the highest

frequencies.

The differences at low frequencies are reasonable, since most of the SEA hypothe-

ses are not satisfied at those frequencies and therefore the SEA-based expressions are

no longer valid. That is why frequencies lower than 125 Hz are not shown in the

figures.

2.4.1.2 Rotational joint

The second example consists of two adjacent floors with a rotational joint in the

common edge, see Fig. 2.4. It reproduces the effect of elastic joints through a long

22



2.4. Applications in building acoustics

10
1

10
2

10
3

f (Hz)

〈 E
1 〉 

/ 〈
 E

2 〉 

12
5 

16
0 

20
0 

25
0 

31
5 

40
0 

50
0 

80
0 

10
00

12
50

16
00

20
00

25
00

31
50

63
0 

Fig. 2.3: Evolution of the error amplification factor with the frequency.

floor. The rotation stiffness of the joint is Kθ = 103 Nm/radm. It relates the

plate rotations θ and bending moments m on both sides of the joint as m1 = m2 =

Kθ (θ1 − θ2). For more details on this model, see Dı́az-Cereceda et al. (2011).

Fig. 2.4: Sketch of the rotational joint.

The CLF estimated from the numerical solution is compared with an analytical

expression obtained with the wave approach, see Cremer et al. (1973). It is based

on the orthogonality between the joint and the waves propagating in the floor. The

vibration field in the excited floor span (subsystem 1) is assumed to consist of incident

waves, reflected waves in the far field (propagating) and reflected waves in the near
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2. Conservative couplings: estimation of coupling loss factors

field (evanescent). The vibration field in the span with no external excitation consists

of transmitted waves, both in the near and the far field. The expressions of the

vibration fields in spans 1 and 2 (vz1 and vz2) are

vz1 = vz (exp (−ik1y) + r exp (ik1y) + ri exp (k1y))

vz2 = vz (t exp (−ik2y) + ti exp (−k2y))
(2.12)

where k1 and k2 are the wavenumbers in spans 1 and 2 respectively, r and t are the

reflection and transmission parameters, ri and ti their equivalents in the near field

and y is the direction of the wave propagation.

In order to find r, t, ri and ti the boundary conditions at the contact line of both

spans are applied

vz1 = 0; vz2 = 0; m1 = m2 = Kθ (θ1 − θ2) . (2.13)

Assuming that the wavenumbers and bending stiffnesses are the same for both

spans k1 = k2 = ks and B1 = B2 = B, the following linear system holds:




1 1 0 0

0 0 1 1

−1 1 1 −1

i 1 i− Bks
Kθ

1 + Bks
Kθ








r

ri

t

ti





=





−1

0

1

i




. (2.14)

From this system, the value of r is obtained and therefore the transmission coef-

ficient can be computed as τ12 = 1 − |r|2. The CLF is obtained with the expression

for two plates sharing one edge

η12 =
2cplateLedgeτ12

πωS
(2.15)

where cplate =
√
ω2B/ρs is the propagation velocity of the waves in the plates, Ledge

is the length of the common edge and S is the surface of one plate.

In Fig. 2.5 the comparison between the three estimation methods described in

Section 2.2 and this analytical approximation is shown.

Again the errors with the first expression (2.2) are unacceptable, while the other

techniques present the same trend as the analytical one. However, there are some

differences between the results obtained with the second and third expressions. A

possible explanation for this discrepancy is that the computation of the power trans-

mitted at the joint is less trustable than that of the example of Section 2.4.1.1. In this
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Fig. 2.5: Comparison of the coupling loss factor η12 for the rotational joint.

case, the power must be computed along a line and is also affected by the boundary

conditions of the plate (the joint is located at an edge of the span). Therefore, the

estimation of the CLF from the power at the connection (third expression) is less

accurate than in the previous example.

2.4.1.3 Application for long floors

With the CLF estimations for the rotational joint, a new configuration is simulated:

the propagation of vibrations through a long floor consisting of four simply supported

plates linked together with elastic joints as shown in Fig. 2.6.

The goal is to check whether the CLF obtained in Section 2.4.1.2 for the rotational

joint can be used in the SEA simulation of a structure consisting of more than two

subsystems, i.e. more than two floor spans. This is an example of the potential of

the technique proposed in this chapter: obtaining the coupling loss factor between

two subsystems with a deterministic computation and applying it for solving larger

problems with SEA.

In order to perform the full statistical energy analysis, the only information

needed, in addition to the coupling loss factor, are the internal loss factors of the
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2. Conservative couplings: estimation of coupling loss factors

Fig. 2.6: Sketch of the four plates linked with rotational joints.

subsystems and the input power. The internal loss factor is the same for all the

subsystems and is defined in Table 2.1 (ηii = η). The input power is computed as

Π in
1 = 1

2
|F1|2Re {1/Y1} because the velocity field is not known a priori. F1 is the

force applied to subsystem 1.

Using the CLF ηnum12 obtained in Section 2.4.1.2 for every joint and assuming that

all the connections and subsystems are equal (ηij = ηnum12 ∀ i 6= j), the energies of

every subsystem are obtained from the global SEA system





Π in
1

0

0

0





= ω




η + ηnum12 −ηnum12 0 0

−ηnum12 η + 2ηnum12 −ηnum12 0

0 −ηnum12 η + 2ηnum12 −ηnum12

0 0 −ηnum12 η + ηnum12








〈E1〉
〈E2〉
〈E3〉
〈E4〉




. (2.16)

The vibration level difference between the first and the fourth floor spans

D14 = 10 log
〈E1〉
〈E4〉

(2.17)

obtained with SEA is compared in Fig. 2.7 with the numerical solution obtained

for the deterministic analysis of the four plates. The results obtained with SEA

are computed using the two best CLF laws estimated in the 2-subsystem case: the

second and third expressions (Eqs. (2.3) and (2.4) respectively). The trend of D14

is well captured with SEA, for both laws of the CLF. For the SEA computation, a

tridiagonal 4 × 4 problem is solved at each frequency, while the linear systems to

be solved in the numerical computation are block-tridiagonal and their size ranges

from 624 degrees-of-freedom (dof) for the lowest frequency to 968 dof for the highest

frequency.
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Fig. 2.7: Comparison of the vibration level difference D14 for a floor consisting of four
spans.

2.4.2 Coupling loss factor in double walls

The isolating effect of the air cavity located between the two leaves of a double wall

is analysed here. This example has been chosen because it is a representative vibroa-

coustic problem and also because the SEA treatment of double walls is a challenge:

the air cavity may be treated as an SEA subsystem or just as a connection between

subsystems, see Hopkins (2007).

The use of statistical energy analysis for modelling double walls is analysed by

Brekke (1981), Craik and Smith (2000) and Craik (2003). Brekke concludes, with the

help of experiments, that the effect of the air stiffness should be taken into account,

as well as the resonant transmission, for lower frequencies. On the other hand, Craik

focuses on the search of accurate expressions for the indirect coupling loss factor

between the rooms and the cavity.

Here, the coupling loss factor between the two leaves of the double wall is com-

puted numerically and compared with analytical expressions available in the litera-

ture. The numerical calculation is done using modal analysis to discretise both the

leaves and the cavity. More details on this approach can be found in Section 5.2.3
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2. Conservative couplings: estimation of coupling loss factors

(Part II). The excitation is an impact on one of the leaves. Twenty different positions

of the excitation are used, and the resulting energies are computed and averaged as

described in Appendix A.

The properties of the leaves are described in Table 2.1 and the cavity thickness

is H = 70 mm. Therefore, the mass-air-mass natural frequency for the two leaves

and the cavity is fmam = 106.5 Hz. Moreover, the absorption coefficient at the cavity

contour is assumed to be α = 0%. This is a reasonable assumption, since the area of

the cavity contour is much lower than the rest of areas involved in the problem, and

therefore the dissipation at the cavity is negligible compared to the energy transmis-

sions. If the cavity was filled with absorbing material, the behaviour would be very

different and the cavity should be treated as a non-conservative connection between

the two leaves. This topic is addressed in Chapter 3.

Different SEA references such as Craik (1996) or Hopkins (2007) do not coincide

in the optimal way to deal with double walls in SEA. Neither the identification of

subsystems nor the coupling loss factor expressions are clear.

A very common option is to consider the cavity as an SEA subsystem as shown

by Craik (1996) (see Fig. 2.8), and obtain its own modal density

ni =
4πf 2Vcav

c3
+

2πfScav

4c2
+
Lcav

8c
(2.18)

and internal loss factor

ηii =
cαScav

8πfVcav
, (2.19)

where c is the sound speed in the air, Vcav is the cavity volume, Scav is the surface

of the cavity boundary (the sum of the areas of all the faces surrounding the cavity

except the contact surfaces with the leaves) whose absorbing factor is α and Lcav

is the sum of the lengths of the twelve cavity edges. In the examples of this work,

ηii = 0.

Then, the coupling loss factors between the cavity and the leaves are obtained as

ηij =
ρaircσradfc
4πf 2ρs

, (2.20)

where fc is the coincidence frequency between the leaf and the air and σrad is the

radiation efficiency of the leaf. The radiation efficiency is computed with the expres-

sions defined by Maidanik (1962) with a small modification: the critical frequency

treatment is applied for all the frequencies in a range of fc ± 5Hz.
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2.4. Applications in building acoustics

Fig. 2.8: SEA sketch of a double wall with the cavity considered as a subsystem.

For this case, an equivalent coupling loss factor between the leaves is obtained in

order to compare it with the other techniques. This is possible because the absorp-

tion coefficient at the cavity is null and, therefore, the cavity only transmits energy,

without dissipating it.

Considering the cavity as subsystem 3, the global SEA-system is





Π in
1

0

0





= ω



η11 + η13 −η31 0

−η13 η33 + η31 + η32 −η23
0 −η32 η22 + η23








〈E1〉
〈E3〉
〈E2〉




. (2.21)

Assuming that the two leaves are identical (η13 = η23, η31 = η32 and η11 = η22)

and imposing η33 = 0, the system becomes





Π in
1

0

0





= ω



η11 + η13 −η31 0

−η13 2η31 −η13
0 −η31 η11 + η13








〈E1〉
〈E3〉
〈E2〉




. (2.22)

Isolating 〈E3〉 from the second equation and replacing it in the other two, the

system can be reduced to

{
Π in

1

0

}
= ω

[
η11 + η13/2 −η13/2
−η13/2 η11 + η13/2

]{
〈E1〉
〈E2〉

}
(2.23)

and, therefore, the equivalent coupling loss factor is

ηequi12 =
η13
2
. (2.24)

Another option is to consider the air cavity as a connection between the two

subsystems (leaves) as shown in Fig. 2.9; in particular as a spring with stiffness

Kair = ρairc
2S/H . This approach takes into account the non-resonant transmission

caused by the stiffness of the air. The coupling loss factor is computed with the

electrical circuit analogy, as done by Hopkins (2007), using Eq. (2.9) with nc = 1.
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2. Conservative couplings: estimation of coupling loss factors

Fig. 2.9: SEA sketch of a double wall with the cavity considered as a connection.

In this work, the coupling loss factor between the two leaves of a double wall is

obtained solving the vibroacoustic problem with modal analysis and isolating the CLF

with the second expression (2.3). This CLF law is compared with the two analytical

approaches in Fig. 2.10. The dimensions of the leaves are the same as in Table 2.2.
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Fig. 2.10: Comparison of the coupling loss factor η12 for the cavity inside double
walls. Separated effects.

Leaving the low-frequency discrepancies aside, Fig. 2.10 shows that the numerical

estimation of the CLF is a good way of taking into account all the physical phenomena

occurring in the wall. It shows, as suggested by Brekke (1981), two main features: on

the one hand, the importance of the equivalent stiffness of the air, specially at mid

frequencies; on the other hand, the coincidence phenomenon that takes place at 2500

Hz in this double wall. This phenomenon is only considered by SEA when the cavity

is treated as a subsystem. In fact, SEA overestimates a little the transmission at that
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2.5. Concluding remarks

frequency. This may be due to the simplifications involved in the expressions of the

radiation efficiency. Therefore, both analytical expressions miss part of the physical

information. However, if the analytical expressions are to be used, a complete SEA

model is recommended, considering both transmission paths in order to reproduce

the real behaviour. The cavity must be considered both as a connecting device and

as a subsystem (see Fig. 2.11).

Fig. 2.11: SEA sketch for the combination of the two techniques.

In Fig. 2.12 the coupling loss factor obtained numerically is compared with the

CLF resulting from adding the coupling loss factor between the two leaves computed

with the electrical analogy and the equivalent coupling loss factor between the leaves

described in Eq. (2.24). The need of considering both behaviours together along the

whole frequency range becomes evident.

2.5 Concluding remarks

• The main idea developed in this chapter is that small deterministic simulations

can be used to estimate SEA coupling loss factors. These factors can be further

used to solve larger problems with SEA.

• The way of computing the CLF once the deterministic problem is solved is

very important for performing a good estimation. The quantities from which

the CLF is computed already have a certain error, and therefore a study of

the error propagation is required. Expressions where two similar quantities are

subtracted must be avoided.
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Fig. 2.12: Comparison of the coupling loss factor η12 for the cavity in double walls.
Combined effects.

• For vibroacoustic problems, such as the case of double walls, a numerical estima-

tion allows to take into account both the resonant and the non-resonant trans-

mission. It also allows to detect that the two analytical approaches, associated

to the treatment of the cavity as a subsystem or as a connection respectively,

only provide a good model of the real behaviour if they are added.
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Chapter 3

Non-conservative couplings2

Accounting for dissipative (non-conservative) couplings with statistical energy analy-

sis is an open issue. In this chapter, an equivalent circuit analogy is used to relate the

power dissipation at a coupling with the energies of the subsystems. The coupling is

characterised by means of two factors: the conservative coupling loss factor (CCLF)

and the non-conservative coupling loss factor (NCLF), related to the transmitted and

dissipated energy respectively. A methodology for obtaining these parameters from

small numerical simulations is presented, and validated with a simple example that

can be approached analytically. This technique is applied in Chapter 7 for modelling

the sound transmission through double walls filled with absorbing material.

3.1 Preliminaries

As discussed by Fahy (1994), dealing with non-conservative couplings is one of the ma-

jor challenges of SEA. Some efforts have been done in considering this kind of connec-

tions with SEA by Chow and Pinnington (1987), Fredö (1996), Beshara and Keane

(1996) and Sheng et al. (1998, 2004). They reach an SEA-like system that takes into

account dissipative effects in the couplings.

In particular, Chow and Pinnington introduce an equivalent internal loss factor

of the subsystems that models the losses in the connection. Fredö does not modify

the internal loss factors of the subsystems or their coupling loss factors; he introduces

2Chapter based on references: Dı́az-Cereceda et al. (2013b) and Dı́az-Cereceda et al. (2013c)
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3. Non-conservative couplings

radiation loss factors at the connection. Beshara and Keane also introduce a damping

parameter in the connection instead of modifying the internal or coupling loss factors.

Finally, Sheng et al. provide a formulation in which the effect of the non-conservative

coupling is considered with an equivalent internal loss factor for the subsystems (like

Chow and Pinnington) and a new coupling loss factor that accounts for transmission

and damping and the same time.

The two last works are restricted to mechanical problems, and are not further

applied for vibroacoustic cases, or absorbing materials. Besides, the possibility of

extending any of these formulations for dealing with larger SEA systems, consisting

of both conservative and non-conservative connections, is not discussed.

The technique developed here is aimed at describing an SEA-like approach for

systems with non-conservative connections and a methodology to apply it for any

vibroacoustic system consisting of both conservative and non-conservative couplings.

3.2 Non-conservative couplings with SEA

The SEA framework divides the problem domain into two types of elements: subsys-

tems and connections.

An SEA subsystem is a part of the domain such that the energy associated to

each of its modes is ideally the same. Every subsystem has its own modal density

and an internal loss factor that characterises the fraction of energy dissipated in it.

SEA connections are those elements connecting the subsystems. They have a

conservative behaviour, transmitting energy from one subsystem to the other without

losses. They are characterised by a coupling loss factor that relates the power across

the connection with the energies of the subsystems connected by it.

The effect of a point connection between two SEA subsystems may be studied

with the equivalent circuit approach proposed by Olson (1943). This technique is

used by Hopkins (2007) to compute the coupling loss factor of a spring connecting

two leaves. In general, for any point device connecting two leaves, the global system

may be represented as a circuit like that of Fig. 3.1, where Y1 and Y2 are the point

mobilities of leaves 1 and 2 respectively and Yc is the mobility of the connection.

The mechanical−electrical analogy is described in Table 3.1 and the assumptions

of the analysis are:

• Leaf 1 has an external excitation and leaf 2 has none.

34



3.2. Non-conservative couplings with SEA

Fig. 3.1: Circuit equivalent to a double wall.

• v0 is the propagating bending wave velocity of leaf 1 far from the point connec-

tion.

• Any point of the unexcited leaf that is far enough from the connection point

has a negligible velocity compared to v0.

• v1 and v2 are the velocities at the connecting point of leaves 1 and 2 respectively.

Mechanics Electrics
Force F Intensity I
Velocity v Potential V

Admittance (point mobility Y ) Impedance Z

Table 3.1: Mechanical-electrical analogy.

By analogy with the electrical circuit, the excitation force can be expressed in

terms of the velocities and point mobilities as

F =
v0

Y1 + Y2 + Yc
(3.1)

and the velocities of the leaves at the connecting point can be expressed as v1 =

(Y2 + Yc)F and v2 = Y2F .

The power entering the connection (on the closest side to leaf 1) is, see Hopkins

(2007),

Π
(1)
12 =

1

2
Re{Fv∗1} =

1

2

Re{Y2 + Yc}|v0|2
|Y1 + Y2 + Yc|2

(3.2)
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and the power leaving the connection (on the leaf 2 side) is

Π
(2)
12 =

1

2
Re{Fv∗2} =

1

2

Re{Y2}|v0|2
|Y1 + Y2 + Yc|2

. (3.3)

Therefore, the power dissipated at the connection is

Πdiss
12 = Π

(1)
12 −Π

(2)
12 =

1

2

Re{Yc}|v0|2
|Y1 + Y2 + Yc|2

. (3.4)

If the connection is conservative, the power leaving subsystem 1 enters subsystem

2 without losses, that is Πdiss
12 = 0 (Fig. 3.2): the connection mobility Yc is purely

imaginary. For the particular case where the connection is a spring, it is Yc = iω/K.

In that case, Re{Yc} = 0 and therefore Πdiss
12 = 0: there is no dissipation at the

conservative connection. The power entering the connection is the same as the power

leaving it.

Subsystem 1
Conservative

coupling

�1
diss

Subsystem 2�1
in

�2
diss

�12

(1)

�12

(2)

Fig. 3.2: Sketch of a conservative coupling.

If the coupling, on the contrary, has a dissipative behaviour, part of the power

leaving subsystem 1 is transmitted to subsystem 2 and the rest is dissipated at the

connection. The mobility Yc in this case has a non-zero real part. For instance, in

the particular case of a set of spring and dashpot shown in Fig. 3.3,

Yc =
1

C +K/iω
, (3.5)

and therefore Re{Yc} 6= 0. Some power is dissipated at the connection (Fig. 3.4).

The power balances of the two leaves are

Π in
1 = Πdiss

1 +Π
(1)
12 (3.6)

for the excited leaf and

Πdiss
2 = Π

(2)
12 (3.7)
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3.2. Non-conservative couplings with SEA

Fig. 3.3: Connection consisting of a spring and a dashpot.

Subsystem 1
Non-conservative

coupling

�1
diss

Subsystem 2�1
in

�2
diss

�12

(1)

�12

(2)

�12
diss

Fig. 3.4: Sketch of a non-conservative coupling.

for the unexcited one.

Assuming that 〈E1〉 = M1〈v2rms〉, where 〈v2rms〉 = |vo|2/2, the power dissipated at

the connection can be expressed as

Πdiss
12 = ωγ12〈E1〉 (3.8)

and the power transmitted to subsystem 2 as

Π
(2)
12 = ωη12〈E1〉. (3.9)

Therefore, the power leaving the connection is Π
(1)
12 = ω (η12 + γ12) 〈E1〉.

In Eqs. (3.8) and (3.9), two new parameters have been introduced. On the one

hand, a factor governing the amount of power dissipated at the connection: the non-

conservative coupling loss factor (NCLF)

γij =
Re{Yc}

ωMi|Yi + Yj + Yc|2
, i 6= j. (3.10)

On the other hand, a factor governing the amount of power reaching the unexcited

leaf: the conservative coupling loss factor (CCLF)

ηij =
Re{Yj}

ωMi|Yi + Yj + Yc|2
, i 6= j. (3.11)
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The power balances of Eqs. (3.6) and (3.7) can be rewritten in terms of the

averaged energies for the non-conservative coupling as

Π in
1 /ω = η11〈E1〉+ (η12 + γ12) 〈E1〉 (3.12)

and

η22〈E2〉 = η12〈E1〉. (3.13)

Following the same procedure in a more general case, with excitations on both

subsystems, the global system yields

Π in
1 /ω = η11〈E1〉+ (η12 + γ12) 〈E1〉 − η21〈E2〉

Π in
2 /ω = η22〈E2〉+ (η21 + γ21) 〈E2〉 − η12〈E1〉,

(3.14)

which can be written in matrix form as

ω

[
η11 + η12 + γ12 −η21

−η12 η22 + η21 + γ21

]{
〈E1〉
〈E2〉

}
=

{
Π in

1

Π in
2

}
. (3.15)

The effect of the non-conservative joint leads to an SEA-like system with two new

factors in the diagonal: the non-conservative coupling loss factors γ12 and γ21. If

these factors are equal to zero, the conservative case is recovered. However, if the

coupling dissipates energy, they are different from zero and factors η12 and η21 change

with respect to the conservative case.

Eq. (3.15) provides similar relations between the connection losses and the energies

of the subsystems as Sheng et al. (2004) do. However, the information included

in the coefficients is different. Sheng et al. define a new equivalent internal loss

factor instead of adding an extra term in the diagonal (defined here as NCLF). The

advantage of defining the NCLF is that several non-conservative couplings of the

same type can be concatenated easily without having to recompute any parameter.

The equivalent internal loss factor defined by Sheng et al. needs to be recomputed

when the subsystem is in contact with more than one non-conservative coupling..

Another remarkable difference with Sheng et al. is the nomenclature used for the

loss factors. In their formulation, they incorporate the factor γij within the equivalent

internal loss factor. Therefore, they only have one coupling loss factor, which they call

non-conservative coupling loss factor. In this thesis, however, a formulation with two

coupling loss factors is developed, see Eq. (3.15). They have been called CCLF and

NCLF because, if the dissipative component of the coupling is removed, the NCLF
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3.3. Estimation of the coupling loss factors

becomes zero and the CCLF becomes the classical coupling loss factor. Therefore,

the name of non-conservative coupling loss factor is used with a different meaning in

the two works.

3.3 Estimation of the coupling loss factors

The expressions for ηij and γij , defined in Eqs. (3.10) and (3.11) respectively for

a point connection, cannot be used for most of the real-life dissipative connections.

Therefore, to model a large vibroacoustic problem with many subsystems and non-

conservative connections, these parameters can be computed from the numerical sim-

ulation of smaller parts of the problem. Once these parameters are known, the global

system can be solved with the SEA-like approach.

Parameters ηij and γij of a non-conservative coupling between two subsystems

can be obtained from numerical simulations of the energy transmission between the

two subsystems. These simulations should include the dissipative behaviour of the

coupling. For a given excitation, both the input powers Π in
i and the averaged energies

of the leaves 〈Ei〉 can be computed solving the vibroacoustic problem numerically, as

described in Appendix A. Assuming that ηii is known for every subsystem, the rest

of the SEA parameters can be isolated from the power balances of the system.

If the two subsystems have different properties (which is the most common case),

the structure is not symmetric and there are four parameters to compute: η12, η21,

γ12 and γ21.

To obtain them all, the SEA formulation of two mutually independent problems is

required, in a similar way as the approach used by Yan et al. (2000) for conservative

connections. These two problems correspond to the system behaviour for two different

excitations: one on subsystem 1 and the other on subsystem 2. For each different

excitation, the averaged energies of the subsystems are computed numerically. If

these energies are replaced in the SEA-like formulation of each problem (3.15), a

4× 4 linear system can be solved to obtain the four parameters desired




〈E1〉 −〈E2〉 〈E1〉 0

〈Ê1〉 −〈Ê2〉 〈Ê1〉 0

−〈E1〉 〈E2〉 0 〈E2〉
〈−Ê1〉 〈Ê2〉 0 〈Ê2〉








η12

η21

γ12

γ21





=





Π in
1 /ω − η11〈E1〉
−η11〈Ê1〉
−η22〈E2〉

Π in
2 /ω − η22〈Ê2〉




. (3.16)
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3. Non-conservative couplings

In system (3.16), 〈Ei〉 and 〈Êi〉 are the averaged energies of subsystem i for exci-

tations applied to subsystems 1 and 2 respectively.

Analytical solution of the linear system (3.16) leads to

η12 =
Π in

2 〈E2〉
ω
(
〈E1〉〈Ê2〉 − 〈E2〉〈Ê1〉

) (3.17)

and

γ12 =
Π in

1 〈Ê2〉 −Π in
2 〈E2〉

ω
(
〈E1〉〈Ê2〉 − 〈E2〉〈Ê1〉

) − η11 (3.18)

(and similar expressions for η21 and γ21). Eq. (3.17) is a robust way of computing

the conservative coupling loss factor η12. Eq. (3.18), on the other hand, is unreliable

for γ12 ≪ η11, because it involves the subtraction of two similar numbers in such a

case. Indeed, the subtraction of two similar quantities is a dangerous operation (as

commented in Section 2.3), prone to amplify any errors in the numerical estimation

of the energies and powers. More details on this particular are given in Section 3.4.

Due to the unreliability of Eq. (3.18) for γ12 ≪ η11, an alternative formulation

is proposed. If the power exchanged between the subsystems and the connection is

computed on both sides of the connection, it can be expressed in terms of the energies

of the subsystems for the two types of excitations as

Π
(1)
12 /ω = (η12 + γ12) 〈E1〉 − η21〈E2〉

Π
(2)
12 /ω = η12〈E1〉 − (η21 + γ21) 〈E2〉

(3.19)

and
Π̂

(2)
12 /ω = (η21 + γ21) 〈Ê2〉 − η12〈Ê2〉

Π̂
(1)
12 /ω = η21〈Ê2〉 − (η12 + γ12) 〈Ê1〉.

(3.20)

Subtracting the two equations of each system and rearranging them, the following

system results:

(
〈E1〉 〈E2〉
〈Ê1〉 〈Ê2〉

){
γ12

γ21

}
=

1

ω

{
Π

(1)
12 −Π

(2)
12

Π̂
(1)
12 − Π̂

(2)
12

}
. (3.21)

Analytical solution of the linear system (3.21) leads to

γ12 =

(
Π

(1)
12 −Π

(2)
12

)
〈Ê2〉 −

(
Π̂

(1)
12 − Π̂

(2)
12

)
〈E2〉

ω
(
〈E1〉〈Ê2〉 − 〈E2〉〈Ê1〉

) (3.22)
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3.4. Error propagation for the coupling loss factors

(and a similar expression for γ21). As will be described in Section 3.4, Eq. (3.22)

is only unreliable if the coupling transmission is much higher than the dissipation

(Π
(2)
12 ≫ Π

(1)
12 − Π

(2)
12 ). However, in that case the connection may be considered

conservative and the classical SEA formulation should be used, assuming γ12 = 0.

Therefore, Eq. (3.22) is more robust than Eq. (3.18) because its reliability does not

depend on the properties of the subsystems. The main disadvantage of system (3.21)

is the extra postprocessing effort required for computing Π
(i)
12 and Π̂

(i)
12 from the results

of the numerical simulation. However, it is the most advisable way to compute γ12

and γ21.

If the two leaves are identical, the problem is symmetric and then η12 = η21 and

γ12 = γ21. For this case, only one simulation is required, and the systems to be solved

are simpler.

3.4 Error propagation for the coupling loss

factors

A study on the error propagation committed in the computation of the CCLF and the

NCLF is shown here. For the sake of simplicity, the problem is assumed symmetric.

Therefore, subsystems 1 and 2 are equal and γ12 = γ21 and η12 = η21.

In that case, only one simulation is required (exciting only one of the subsystems,

in this case subsystem 1) and the expressions for the coupling loss factors derived

from Eq. (3.16) are:

η12 =
Π in

1 〈E2〉
ω (〈E1〉2 − 〈E2〉2)

(3.23)

and

γ12 =
Π in

1

ω (〈E1〉+ 〈E2〉)
− η11. (3.24)

The error committed when computing the coupling loss factors from numerical

values of the powers and energies is analysed. The effect of the error propagation

from those quantities estimated numerically is studied. Other magnitudes such as

the frequency and the internal loss factors are assumed error-free.

The error committed computing η12 with Eq. (3.23) is

rη12 = rΠin
1
+ r2 − 2r1

( 〈E1〉2
〈E1〉2 − 〈E2〉2

)
+ 2r2

( 〈E2〉2
〈E1〉2 − 〈E2〉2

)
(3.25)
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3. Non-conservative couplings

which, assuming that 〈E1〉 ≫ 〈E2〉, leads to

rη12 =≃ rΠin
1
+ r2 − 2r1, (3.26)

where ri is the error committed in the calculation of 〈Ei〉. The value of the error in

the CLF is of the same order of the errors of the energies and power.

The error committed computing γ12 with Eq. (3.24) is

rγ12 =
Π in

1

Π in
1 − η11ω (〈E1〉+ 〈E2〉)

(
rΠin

1
− r1

〈E1〉
〈E1〉+ 〈E2〉

− r2
〈E2〉

〈E1〉+ 〈E2〉

)
. (3.27)

Assuming that 〈E1〉 ≫ 〈E2〉, the error is

rγ12 ≃
Π in

1

Π in
1 − η11ω (〈E1〉+ 〈E2〉)

(
rΠin

1
− r1

)
. (3.28)

In case η11 is greater than γ12 by orders of magnitude, the factor multiplying the errors

Π in
1 /
[
Π in

1 − η11ω (〈E1〉+ 〈E2〉)
]
≫ 1, and therefore Eq. (3.24) amplifies the error

committed in the computation of γ12. This expression is not reliable for computing

the non-conservative coupling loss factor in this case.

Instead, if the symmetric version of Eq. (3.21) is used

γ12 =
Π

(1)
12 −Π

(2)
12

ω (〈E1〉 − 〈E2〉)
, (3.29)

the error committed is

rγ12 =
Π

(1)
12

Π
(1)
12 −Π

(2)
12

r
Π

(1)
12
− Π

(2)
12

Π
(1)
12 −Π

(2)
12

r
Π

(2)
12
− 〈E1〉
〈E1〉 − 〈E2〉

r1−
〈E2〉

〈E1〉 − 〈E2〉
r2. (3.30)

Assuming that 〈E1〉 ≫ 〈E2〉, the error becomes

rγ12 ≃
Π

(1)
12

Π
(1)
12 −Π

(2)
12

r
Π

(1)
12

− Π
(2)
12

Π
(1)
12 −Π

(2)
12

r
Π

(2)
12

− r1. (3.31)

The error committed in the computation of γ12 with Eq. (3.29) is only amplified if

Π
(2)
12 ≫ Π

(1)
12 −Π(2)

12 . However, in that case, the dissipative behaviour of the connection

can be neglected and the NCLF can be set as γ12 = 0.

3.5 Validation example

The technique proposed in Section 3.3 for the coupling loss factor estimation is applied

here for a simple mechanical problem. In this particular case, the coupling loss factors
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3.5. Validation example

can be computed analytically with a simplified approach and compared with the

numerical estimations.

The example consists of two leaves of plasterboard connected through a mechan-

ical device. This device is represented as a spring with a complex stiffness, in order

to model a connection that both transmits and dissipates energy. In this case, the

point mobility associated to the connection is

Yc =
iω

Kc

, (3.32)

where Kc ∈ C is the stiffness of the connecting device. Therefore, the coupling loss

factors can be computed with Eqs. (3.10) and (3.11).

Eqs. (3.10) and (3.11) are based on all the hypotheses described in Section 3.2.

The energy flux is supposed to go only in one direction and the force is assumed to

be the same from the application point to the receiving leave. These hypotheses are

reasonable for this example.

The numerical problem is solved as described in Appendix A, considering a com-

plex value of the spring stiffness. The excitation is a point force applied on one of

the leaves, averaged as described in the Appendix. The properties of the leaves have

already been described in Table 2.1 and Table 2.2, and the stiffness of the connection

is Kc = 104 (1 + 0.1 i) N m−1.

The comparison of the numerical estimations and the analytical expressions for

the CCLF and the NCLF is shown on Figs. 3.5 and 3.6 respectively, averaged in

third octave bands. Results for frequencies lower than 250 Hz are not shown because

SEA hypotheses are not fulfilled there.

Fig. 3.5 shows a very good agreement between the two techniques for the CCLF.

On Fig. 3.6 the NCLF is estimated both with Eq. (3.22) and Eq. (3.18). As the

error propagation analysis suggested, Eq. (3.18) provides wrong results for the NCLF

estimation because γ12 ≪ η11. In fact, some parts of the curve are not plotted

because the computed NCLF is negative at those frequencies. The CCLF obtained

with Eq. (3.17) is almost identical to the one computed with the analytical expression.

This agreement is regarded as a validation of both the simplifying hypotheses of the

analytical approach and the proposed numerical technique for estimating coupling

loss factors.
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Fig. 3.5: Validation of the estimation of the CCLF η12 for a mechanical connection.
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Fig. 3.6: Validation of the estimation of the NCLF γ12 for a mechanical connection.
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3.6. Concluding remarks

More complex examples of the estimation of CCLF and NCLF are presented in

Chapter 7 (Part II). In particular, absorbing layers in double walls are modelled as

non-conservative couplings. The estimated parameters are then applied for modelling

larger problems combining conservative and non-conservative couplings with SEA.

3.6 Concluding remarks

• This chapter shows an SEA-like formulation accounting for non-conservative

connections. These connections are characterised by means of two types of

coupling loss factors: the conservative ηij and the non-conservative γij coupling

loss factors, related to the transmitted and dissipated energy respectively.

• Factors ηij and γij can be computed with numerical simulations of a system

consisting of 2 subsystems with a non-conservative connection. Attention must

be paid to the error propagation in these computations. Once these factors are

obtained, they can be used to solve larger problems with SEA, as in Chapter 7.

3.7 Future directions

The next steps in the modelling of non-conservative couplings with SEA should be

the following:

• A comparison between the effect of treating absorbing materials as SEA sub-

systems or as non-conservative couplings should be done. Experimental data

could be used to validate both approaches.

• The proposed SEA-like approach should be validated for different types of ab-

sorbing material.

• Simplified expressions for the CCLFs and NCLFs associated to different dissipa-

tive elements, such as absorbing layers, should be developed. These expressions

would provide the coupling loss factors in terms of the properties of the con-

nection and the subsystems surrounding it.
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Chapter 4

Subsystem identification

In this chapter a new strategy for decomposing a vibroacoustic domain into SEA

subsystems is proposed. It consists in performing a cluster analysis based on the

problem eigenmodes and incorporates the mutual inertia ratio between subsystems as

a decision variable. This analysis is combined with a classification of the eigenmodes

to allow the identification of SEA subsystems, even if they share the same physical

region.

4.1 Preliminaries

The statistical energy analysis framework is based on the power flow between sub-

systems. Therefore, the proper subdivision of the domain into subsystems is crucial

for the good performance of SEA. These subsystems are defined by Lyon (1975) as

“groups of ‘similar’ energy storage modes. These modes are usually modes of the

same type (flexural, torsional, etc.) that exist in some section of the system”. For

classifying a certain set of modes as a subsystem, they must fulfil two main criteria:

1. Similarity: all the modes must have a similar energetic response in front of any

possible excitation.

2. Significance: they must play an important role in the transmission, dissipation

or storage of energy of the problem.
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4. Subsystem identification

In many typical applications, subsystem identification is straightforward. Com-

mon building elements like beams or thin plates clearly fulfil the requirements pre-

viously discussed. However, SEA may also be a powerful tool for dealing with vi-

broacoustic problems with complex shapes and non-conventional configurations. Ex-

amples of this kind of problems might be found, for instance, in the automotive or

aerospace industries, or even in some new architectonic designs. In these cases the

domain subdivision is not so clear and often the decomposition is done following

material or geometrical criteria, see Chen et al. (2012) or Forssén et al. (2012).

Different authors have worked on domain substructuring for energy models. For

instance, Kassem et al. (2011) propose an strategy for their local vibroacoustic energy

model based on searching the validity frequencies for a certain substructuring. In the

particular case of the identification of SEA subsystems, relevant works are those by

Fahy (2004), Gagliardini et al. (2005) and Totaro and Guyader (2006).

Fahy (2004) studies qualitatively the effect of subdividing the cavity inside a

car into different subsystems. He concludes that this can be done, in particular at

the region below the seats, but recommends the use of experimental information for

checking the robustness of the approach.

Gagliardini et al. (2005) propose a strategy for identifying SEA subsystems. It is

based on the energetic transfer functions obtained between points of the domain for

different excitations. This analysis involves solving the vibratory problem for every

excitation in a particular frequency band.

The strategy proposed by Totaro and Guyader (2006) also requires the numerical

simulation of the vibratory problem for a representative set of excitations and provides

an spatial division of the domain into subsystems. They discretise the domain with

finite elements and perform a cluster analysis of these elements. The analysis is

based on a set of energy transfer functions obtained for different excitations, and

a principal component analysis of these functions is performed before the cluster

analysis, to reduce the data size.

The main limitation of these methods is that they perform a purely spatial sub-

division into subsystems. This means that a certain point of the domain cannot

belong to two different subsystems at the same time. However, a certain region of

the domain may present two types of modes with very different energetic responses

to excitations, as commented by Lyon (1975) or Maidanik (1977). For example, a

structure consisting of thin shells may present both flexural and in-plane modes for
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4.2. Methodology for one type of significant modes

the frequency range of interest.

The new strategy proposed here is based on a modal analysis of the problem.

The domain is decomposed in small cells, and these cells are classified with a cluster

analysis as Totaro and Guyader (2006) do, but in this case the analysis is based on

the energies for a set of eigenmodes of the problem. This approach is intimately

related to the definition of subsystem proposed by Lyon, and allows as a novelty the

possibility of preprocessing the modes for defining more than one subsystem at a

certain spatial region. Even if this research is on an early stage, the obtained results

are very promising. Two added advantages of this strategy are that no excitations

are required for the analysis (there are no issues of excitation selection), and its low

computational cost (it only requires the computation of a few eigenmodes). This

last advantage is particularly important because the identification of subsystems is a

preprocessing step in SEA calculation, and one of the main features of SEA is its low

computational cost.

4.2 Methodology for one type of significant

modes

In this section, the case where only one type of modes fulfils the significance criterion

is analysed. Hence, the goal is to obtain a geometrical decomposition of the domain

into subsystems. If there are different types of significant modes in the domain,

further considerations need to be done. That case is discussed in Section 4.3.

4.2.1 Cluster analysis based on the system eigenmodes

The idea of cluster analysis was first introduced by Tryon (1939). It consists in

grouping a set of elements in such a way that elements in the same group (called

cluster) are more similar (in some sense or another) to each other than to those

in other groups, Everitt et al. (2009). The similarity between elements is measured

as the distance between them in the sample space. The dimensions of this space

coincide with the number of samples used for the analysis. The main ingredients for

the hierarchical cluster analysis performed here are the following:

49



4. Subsystem identification

• The cluster elements:

In the work by Totaro and Guyader (2006), the cluster elements are the finite

elements. However, a fine mesh that can capture properly the wave behaviour of

the vibration and pressure fields, presents huge differences between the averaged

energies of the elements. This may lead to a wrong subdivision, where elements

coinciding with nodes or anti-nodes of the waves, or strongly influenced by the

boundary conditions, might be identified as different subsystems. The averaged

behaviour of the waves is better captured if cells with a size equal or larger than half

a wavelength are considered. Therefore, the maximum wavelength (for the lowest

frequency considered) of the problem is computed, and the domain is divided into

cells of side equal or greater than half the maximum wavelength. These

are the cluster elements to classify.

• The sample space:

This space is formed by the normalised energetic contributions to differ-

ent eigenmodes of the problem. Therefore, the dimension of the space is equal

to the number of eigenmodes considered. These modes are computed with Cast3M

(2003) from a finite element model of the physical problem. The eigenmodes of the

problem are good samples for the cluster analysis, because each of them provides

an independent and significant case to analyse.

This contrasts with the approach of Totaro and Guyader (2006). They obtain their

samples by computing the energy transfer functions for different positions of the

excitation and at every Hz within a third octave band of interest. Two variables

are combined to generate a representative set of samples. Then, they project the

results of the simulations in their principal components, in order to extract the most

representative information and reduce the number of dimensions of their space.

The approach based on a set of eigenmodes of the problem reduces the computa-

tional cost in the sense that the most representative frequencies within a certain

range are obtained directly, and independently of the possible excitations to the

system.

To obtain the normalised energetic contribution to each mode of a certain cluster

element i, first its averaged energy density (the total energy divided by the area of

the cell) is calculated, and a map of energy densities eij is created for every mode

j. This total energy is obtained as the result of adding the kinetic and the strain
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4.2. Methodology for one type of significant modes

energy. The analysis could have also been done in terms of the kinetic or the strain

energy separately, see Lyon (1975), but the total energy has been chosen following

the criterion suggested by Totaro and Guyader (2006). A further discussion on this

topic is provided in Section 4.3.

The analysis, however, is not performed directly on the energy densities. The most

important variable is not the energy itself but the normalised difference between

the energy at each cell and the averaged energy of the system. Therefore, a new

map is produced, computing for each mode j and each cell i the value of ẽij as

ẽij =
eij − Ēj

Sj

√
N

, (4.1)

where

Ēj =
1

N

N∑

i=1

eij (4.2)

is the mean energy density in the domain for mode j,

S2
j =

1

N

N∑

i=1

(
eij − Ēj

)2
(4.3)

is the variance of eij for mode j and N is the number of cells. A vector belonging

to the sample space is associated to a certain cluster element, and has as j-th

component the normalised energy density of that element for mode j.

The magnitude used for defining the sample space is also different in the approach of

Totaro and Guyader (2006). Since they obtain the values of the energies associated

to particular excitations, they choose to perform the cluster analysis based on the

energy transfer functions, in order to consider the effect of the excitation on the

energies. In the strategy presented here, the lack of excitation has led to the

decision of defining the sample space in terms of the energies.

• The distance function:

Once the energy maps are known, the energy vector xi associated to a cell (cluster

element) i is defined as the vector whose j-th component is the normalised energy

density of that cell for mode j, ẽij.
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Then, the distance between two cluster elements m and n is computed as

the Euclidean distance between their energy vectors

d(xm,xn) =

√√√√
nmodes∑

j=1

(ẽmj − ẽnj)
2. (4.4)

• The number of clusters:

The cluster analysis performed here requires the previous definition of the num-

ber of clusters desired. Therefore, several analyses are performed, fixing a

different amount of subsystems for each case. Hence, the cells are arranged

first in two clusters, then in three, four and so on. In typical SEA applications, no

more than ten or twenty clusters should be considered. The remaining step is to

decide which of these subdivisions is more representative of the real problem.

4.2.2 The mutual inertia ratio as the decision variable

As described in Table 1.1, one of the SEA hypothesis is the weak coupling between

subsystems. Once the cluster distribution is known for every fixed number of sub-

systems, the choice of the best one is done in terms of the coupling strength between

subsystems. In this sense, the mutual inertia ratio (mir) is used as an indicator of

this strength. It is defined by Totaro and Guyader (2006) as the ratio of intra-cluster

and inter-clusters inertia of two groups of elements of a given partition. For a couple

of clusters {k, l} it is computed as

mir (k, l) =

∑Nk

p=1 d(xp, gk) +
∑Nl

q=1 d(xq, gl)

Nkd(gk, gkl) +Nld(gl, gkl)
(4.5)

where Nk is the number of elements in cluster k, d(xi, gk) is the distance between the

energy vector xi and the energy centroid gk of cluster k, gk is computed by averaging

the energy vectors of all the elements in cluster k and gkl is the average of the energy

vectors of all the elements of clusters k and l.

The distance between the cluster elements is computed as in Section 4.2.1. That

means that, for a given couple of clusters, the value of the mir between them can be

increased in two ways. On the one hand, if the energetic responses of the elements

within a cluster become more dissimilar to each other for every mode, their intra-

cluster inertia becomes higher, and therefore the numerator of Eq. (4.5) increases,
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4.2. Methodology for one type of significant modes

leading to an increment of the mir. On the other hand, if the global energetic be-

haviour of the clusters becomes more similar to each other for the different modes,

the denominator of Eq. (4.5) (inter-clusters inertia) decreases, leading as well to an

increment of the mir.

As an example, in Fig. 4.1 a simplified analysis with two modes (2D plot) and two

clusters, with nine elements each, is performed. The effect on the mir of making the

behaviour of the clusters more and more similar (reducing the inter-clusters inertia

keeping the intra-cluster inertia constant) is shown from left to right.
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Fig. 4.1: Evolution of the mir with the distance between clusters

Totaro and Guyader (2006) use the MIR (maximum value of the mir) as the de-

cision variable for picking the optimal division into subsystems and an analogous

process is followed here. For a given decomposition, the mutual inertia ratio is com-

puted between each pair of subsystems {k, l}. Then, the maximum of all the mir

values for that subdivision

MIR = max(mir(k, l)) (4.6)

is computed. This process is repeated for all the possible decompositions of the

system (with different amounts of clusters), obtaining a value of the MIR for each

one. The optimal decomposition is the one with the minimum value of MIR, that is,

the one in which subsystems are more dissimilar to each other. In the example of

Fig. 4.2, a simplified analysis with two modes is shown. Two possible decompositions

are analysed: division into two or three clusters. In this case, the optimal subdivision

is the one with only two clusters, because of its lower MIR.
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Fig. 4.2: Computation of the MIR for two different decompositions of the same
system.

4.2.3 Robustness of the decompositions

An important element in the subsystem identification is the robustness of the method

when changing the cluster elements. If the division into subsystems is clear for a cer-

tain problem, a cluster analysis performed with slightly different cells should lead to

the same subdivision. If it does not, it seems logical to conclude that this subdivision

should not be chosen.

The choice of the number of subsystems forming a certain system can be improved

following this idea: if the cluster analysis is repeated with larger cells and the opti-

mal subdivision obtained is the same, then its optimality is confirmed. Otherwise,

the system may have an intermediate behaviour between two options. To deal with

this case, more cluster analyses should be performed changing the cell size, and the

most probable decomposition should be identified. For this subdivision, the coupling

loss factors between each pair of subsystems should be estimated and compared with

their internal loss factors. If the coupling loss factor between two possible subsys-

tems k and l is larger than their internal loss factors, the SEA hypothesis of weak

coupling (Table 1.1) is not fulfilled and, therefore, they should be grouped as a single

subsystem.
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4.2.4 Step-by-step summary of the methodology

The step-by-step strategy proposed here to identify the subsystems within a certain

system is the following:

1. Obtain a representative set of the eigenmodes of the problem.

2. Compute the total energy density in the cells for each mode. These cells should

have a side equal or greater than half the largest wavelength.

3. Compute the normalised energies ẽij at the cells.

4. Do the cluster analysis for different amounts of clusters.

5. Compute the MIR associated to each analysis and choose the subdivision with

a lower value.

6. Repeat the analysis with larger cells and check if the optimal subdivision is still

the same.

7. If the optimal subdivision coincides, the problem is finished. Otherwise, com-

pute the coupling loss factors and base the decision on the fulfilment of the

weak coupling hypothesis.

4.2.5 Other aspects of the analysis

The systematic methodology summarised in Section 4.2.4 provides reasonable results

for the examples in Section 4.2.6. However, when applying it to more complex config-

urations, other aspects may have to be considered. A brief summary of these issues,

and the recommended approach for dealing with them, is presented here:

• The proposed methodology assumes that a unique subdivision of the system

holds for the whole frequency range of analysis. If a particular system is sus-

pected to have a different behaviour (and therefore should have a different dis-

tribution of subsystems) depending on the frequency range, this analysis might

be performed for different groups of modes, corresponding to different frequency

ranges, leading to a new division into subsystems for each range.

• The modal analysis of the problem has been performed without considering any

loss factor in the structures. In general, statistical energy analysis cannot be

55



4. Subsystem identification

performed if the damping levels are too high because it would violate the diffuse

field assumption, but real-life problems usually have some damping. If the sub-

system identification is robust and clear, the addition of some damping should

not affect the final result. If, on the contrary, the subsystem identification is

not clear (due to the lack of robustness of the analysis or to high values of the

MIR), the choice of the subdivision should be done as described in Section 4.2.3.

• In case the strategy leads to an optimal subdivision involving disjoint subsys-

tems, which are non-physical, they must be divided providing a new subdivision

with physical meaning. This is a very exceptional case, only likely in problems

with periodic geometries or consisting of disjoint components with identical

features.

• The proposed method is based on a comparative meaning of the MIR parameter.

The absolute value of this index is not as important as its relative value for

different subdivisions. Therefore, this approach is not appropriate for detecting

the case where the whole system acts as a single subsystem. For this very

specific case, the MIR cannot be computed and thus cannot be compared with

other decompositions.

Totaro and Guyader (2006) provide a relation between the value of mir(k, l)

and the coupling of the subsystems for the case of an L-shaped plate. They

say that values lower than 1.3 correspond to different (weakly coupled) subsys-

tems, and values higher than 2.0 correspond to coupled regions, which should

be treated together as a single subsystem. Values in-between are inconclusive.

The definition of the mir is slightly modified in this work, and therefore this rule

cannot be assumed directly. However an example consisting of a rectangular

homogeneous plate has been analysed. The eigenmodes of the plate have been

obtained and the mir associated to dividing the plate into two identical halves

has been computed, following the expressions of Section 4.2.2. The obtained

value of the mir is 2.4. This value is somehow coherent with Totaro’s indica-

tions and gives a reference value for understanding the meaning of the MIR

absolute value. However, both Totaro’s reference values and this one have been

computed for very specific cases and cannot be extrapolated directly to other

configurations.
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The best option for detecting a system consisting of a single subsystem is fol-

lowing the procedure recommended in Section 4.2.3.

4.2.6 Examples

The methodology summarised in Section 4.2.4 is validated here with the help of some

examples. All of them consist of thin plates connected in different ways. Therefore,

the only significant modes correspond to the flexural waves. These examples have

been chosen for testing the method, because the subsystem distribution is easier to

interpret than in more complex configurations. However, any device consisting of

thin elements such as casings or shells with complex shapes could be approached in

the same way.

In the examples considered here, around thirty eigenmodes associated to frequen-

cies located between 1100 and 1500 Hz are considered. Preliminary numerical tests

indicate that this amount provides a good compromise between computational cost

and representativity of the set of modes. The material properties are the same for all

the examples, and are summarised in Table 4.1.

Variable Symbol Value
Young’s modulus E 3 × 1010N m−2

Density ρ 2400 kg m−3

Poisson’s ratio ν 0.2
Thickness h 50 mm

Table 4.1: Properties of the adjacent plates.

4.2.6.1 Two adjacent plates

The first set of examples consists of two adjacent plates of different thickness made

of the same material, see Fig. 4.3. The displacement of the plates is blocked at the

boundaries ΓD. The thickness of the plate on the left h is always the same, and three

different values of the thickness of the plate on the right δh are considered. The

influence of δ on the optimal subdivision is studied.
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4. Subsystem identification

Fig. 4.3: Sketch of the two adjacent plates.

Thickness ratio δ = 0.1

A thickness ratio δ = 0.1 is considered first. Three different clusters (with two,

three and four subsystems respectively) are proposed both for cells of side λplate and

λplate/2, where λplate is the wavelength of the first mode used in the analysis. The

values of the MIR for each case are shown in Table 4.2. The optimal subdivision

consists of the same two subsystems for both cell sizes, as shown in Fig. 4.4.

MIR
2 subsystems 3 subsystems 4 subsystems

Cell size: λplate/2 0.15 0.59 0.57
Cell size: λplate 0.26 1.01 0.75

Table 4.2: Value of the MIR for different subdivisions. Two adjacent plates of thick-
ness ratio δ = 0.1

The subdivision proposed is robust and, therefore, the conclusion reached by the

method is that the system should be decomposed into two subsystems: one for each

plate.

If other subdivisions are computed for the example of δ = 0.1, fixing larger

amounts of clusters, the value of the MIR either stays constant or keeps increasing,

see Fig. 4.5. Therefore, computing only divisions into two, three and four clusters is

enough.
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Fig. 4.4: Optimal subsystem distribution for two adjacent plates of thickness ratio
δ = 0.1
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Fig. 4.5: Evolution of the MIR with the number of clusters. Example of two adjacent
plates of thickness ratio δ = 0.1

Thickness ratio δ = 0.5

In the second example, the thickness of one plate is half the thickness of the other one.

In this case, the optimal subdivision consists always of 2 subsystems (see Table 4.3),

but the proposed subdivision is not the same for the two cell sizes, see Fig. 4.6.

Therefore, this subdivision should not be considered as optimal, and the result of the

analysis is inconclusive.

In this case, further analyses (with different cell sizes) should be performed and the

coupling loss factor between the two most probable subsystems should be compared
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4. Subsystem identification

MIR
2 subsystems 3 subsystems 4 subsystems

Cell size: λplate/2 0.23 0.39 0.39
Cell size: λplate 0.37 0.78 0.82

Table 4.3: Value of the MIR for different subdivisions. Two adjacent plates of thick-
ness ratio δ = 0.5
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Fig. 4.6: Optimal subsystem distribution for two adjacent plates of thickness ratio
δ = 0.5

with their internal loss factors. This measure of the strength of the coupling would

help to decide if the system must be treated as a single subsystem or as two, as

described in Section 4.2.3.

Equal thickness δ = 1

Finally, the case of two plates with the same thickness is analysed. The values of

the MIR for each case are shown on Table 4.4 and the optimal subdivision (with the

lowest value of MIR) is depicted for each cell size in Fig. 4.7.

MIR
2 subsystems 3 subsystems 4 subsystems

Cell size: λplate/2 0.45 0.49 0.68
Cell size: λplate 0.77 0.73 0.49

Table 4.4: Value of the MIR for different subdivisions. Two adjacent plates of equal
thickness, δ = 1
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Fig. 4.7: Optimal subsystem distribution for two adjacent plates of equal thickness,
δ = 1

The main conclusion is that the subdivision proposed is not robust at all. Chang-

ing the cell size leads to the identification of different subsystems. As commented

in Section 4.2.5, this most probably happens because this system consists of a single

subsystem, as the physical properties of the problem suggest.

Conclusions

The main conclusion extracted here is that two adjacent plates of the same material

can behave as a single subsystem or as two subsystems depending on their relative

thickness. If they are different enough (for instance δ = 0.1), the two plates behave

differently and should be considered as separated subsystems. If the thicknesses are

similar, the associated coupling loss factors should be compared with the internal loss

factors in order to determine the strength of the coupling. In the limit case of equal

thicknesses, the two plates form a single subsystem.

4.2.6.2 L-shaped structure

The second set of examples is based on an L-shaped structure with dimensions defined

in Fig. 4.8. The displacement on the plates is blocked at the boundaries ΓD and the

material properties are the same of Table 4.1. For this case, again three possible

values of δ are analysed, in order to study the influence of this ratio in the subsystem

identification.

61



4. Subsystem identification

Fig. 4.8: Sketch of the L-shaped structure.

Thickness ratio δ = 0.1

If δ = 0.1, both cell sizes lead to an optimal subdivision into two subsystems, Ta-

ble 4.5. Moreover, these subdivisions are equivalent, as shown in Fig. 4.9. Therefore,

a subdivision into two subsystems, coinciding with the two plates of the L-shaped

structure, is recommended by the proposed strategy.

MIR
2 subsystems 3 subsystems 4 subsystems

Cell size: λplate/2 0.13 0.67 0.62
Cell size: λplate 0.18 2.44 2.44

Table 4.5: Value of the MIR for different subdivisions. L-shaped structure with plates
of thickness ratio δ = 0.1

Thickness ratio δ = 0.5

For the case of δ = 0.5, the conclusions reached are similar as for the case of δ = 0.1.

A division into two subsystems coincident with the two plates is proposed by the

method, as shown in Table 4.6 and Fig. 4.10. In this case, the values of the MIR

obtained are higher than those for δ = 0.1, which means that the coupling is stronger

in this case. These results are coherent with the idea that a larger difference between

the subsystems leads to a weaker coupling between them.
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Fig. 4.9: Optimal subsystem distribution for an L-shaped structure with plates of
thickness ratio δ = 0.1

MIR
2 subsystems 3 subsystems 4 subsystems

Cell size: λplate/2 0.29 0.59 0.91
Cell size: λplate 0.41 0.96 1.11

Table 4.6: Value of the MIR for different subdivisions. L-shaped structure with plates
of thickness ratio δ = 0.5
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Fig. 4.10: Optimal subsystem distribution for an L-shaped structure with plates of
thickness ratio δ = 0.5

Equal thickness δ = 1

For the case of two plates with the same thickness, different divisions are proposed

for different cell sizes, see Table 4.7 and Fig. 4.11. The strategy is not robust for this
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case. Therefore, the associated coupling loss factors should be compared with the

internal loss factors in order to decide if the system consists of a single subsystem or

has to be divided into more subsystems.

MIR
2 subsystems 3 subsystems 4 subsystems

Cell size: λplate/2 0.64 0.86 0.86
Cell size: λplate 0.93 0.77 1.59

Table 4.7: Value of the MIR for different subdivisions. L-shaped structure with plates
of equal thickness, δ = 1
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Fig. 4.11: Optimal subsystem distribution for an L-shaped structure with plates of
equal thickness, δ = 1

Conclusions

Perpendicular plates have a more uncoupled behaviour than adjacent plates. The

particular case of equal thickness for both plates is still inconclusive in terms of the

subsystem identification, but larger differences between the thicknesses lead to a clear

division into two subsystems coinciding with the two plates.

4.2.6.3 T-shaped structure

The last set of examples is based on a T-shaped structure like the one in Fig. 4.12.

Again, the displacement on the plates is blocked at the boundaries ΓD and the mate-
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4.2. Methodology for one type of significant modes

rial properties are the same of Table 4.1. Two different combinations of thicknesses

are presented.

Fig. 4.12: Sketch of the T-shaped structure.

Equal thickness

The first case considers equal values of the thickness for all the plates of the T-shaped

structure: h = 50 mm for all of them. As shown in Table 4.8, the optimal subdivision

according to the MIR is three subsystems. This subdivision coincides for the two

cell sizes considered, as can be seen in Fig. 4.13, and therefore can be considered as

the optimal subdivision. However, the similarity between the MIR indexes of the

different subdivisions leads to the conclusion that the coupling may be strong if the

internal loss factor is low, and its effect should be considered in order to guarantee

better results.

MIR
2 subsystems 3 subsystems 4 subsystems

Cell size: λplate/2 0.70 0.69 0.87
Cell size: λplate 1.74 0.96 0.97

Table 4.8: Value of the MIR for different subdivisions. T-shaped structure with plates
of equal thickness
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Fig. 4.13: Optimal subsystem distribution for a T-shaped structure with plates of
equal thickness

Different thickness

The case of three different thicknesses in the T-shaped structure is considered now.

The horizontal plate on the left has thickness h = 50 mm, the thickness of the one

on the right is 0.2h, and for the vertical plate is 0.5h.

In this case, the decomposition into three subsystems is even clearer than for the

one with constant thickness along the plates. The optimal MIR corresponds to the

case of 3 clusters, Table 4.9, and the proposed subdivision is the same for both cell

sizes, Fig. 4.14. Moreover, the difference between the MIR for 3 subsystems and for

other options is larger than in the previous case and the absolute value of the optimal

MIR is lower (weaker coupling).

MIR
2 subsystems 3 subsystems 4 subsystems

Cell size: λplate/2 0.63 0.34 0.57
Cell size: λplate 1.21 0.44 0.60

Table 4.9: Value of the MIR for different subdivisions. T-shaped structure with plates
of different thickness

Conclusions

The proposed methodology leads to the conclusion that a T-shaped structure made of

an homogeneous material must be divided into three subsystems. However, if all the
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Fig. 4.14: Optimal subsystem distribution for a T-shaped structure with plates of
different thickness

plates have the same thickness, attention must be paid to the strength of the coupling,

because the MIR associated to the three-subsystem division is not so different from

those of other subdivisions.

4.3 Global strategy: different types of modes

The case of having dissimilar and significant groups of modes coexisting in the same

physical region is considered here. One of the most typical cases in building acoustics

is the presence of in-plane and transverse waves together in the same area (for instance

in plates or shells). A methodology for identifying SEA subsystems, accounting for

this two types of modes is presented here.

4.3.1 Methodology

To account for the effect of in-plane and transverse modes separately, the analysis

is done in terms of the kinetic energy of the problem eigenmodes. In this sense,

two magnitudes are computed for each eigenmode at every point: the kinetic energy

associated to the normal velocity and the kinetic energy associated to the in-plane

velocity. To do so, the vector normal to the plate or shell is computed at each point

and, for each mode, the vibration velocity is decomposed into its normal and in-plane

components. With them, the normal and in-plane kinetic energies can be computed.
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Once the two kinetic energy maps are known for each eigenmode, every mode

is classified as a normal mode or an in-plane mode. To do so, the averaged value

of each type of energy along the whole domain is computed for every mode. If the

averaged normal energy is larger than the in-plane one, the mode is classified as

normal. Otherwise, it is classified as an in-plane mode.

After classifying the modes in two sets, the size of each set is computed. If one set

is much larger than the other, the modes of the small one do not fulfil the principle

of significance. Therefore they should not be taken into account and the analysis

described in Section 4.2 must be applied only to the largest group of modes.

If, on the contrary, the two sets have a non-negligible size, both of them should be

taken into account, and the analysis described in Section 4.2 should be done separately

for each group of modes. Therefore, two geometric decompositions of the domain are

obtained, one for each set of modes. The global amount of subsystems is obtained

as the sum of the in-plane and transverse subsystems. For these analyses, the same

considerations done in Section 4.2.3 regarding the robustness and the strength of the

coupling still apply.

Since taking a set of modes into account depends on the amount of modes of each

type within the frequency range analysed, it is important to remark that the lack

of modes of a certain type within a particular frequency range does not guarantee

that they will not appear at higher frequencies. If the amount of modes of a certain

set within the frequency range considered is too small (or non-existent), more modes

should be checked for a range of higher frequencies to confirm this fact, before deciding

to ignore the set of modes definitely.

The procedure described here is restricted to systems consisting of plates or shells.

Systems of this kind are very common in vibroacoustic problems. Therefore, it is

interesting to develop a methodology for identifying their SEA subsystems. However,

analogous analyses can be performed for other types of elements, if the directions

governing the main types of waves are known in advance. For instance, for the case

of a system of beams, energies associated to its flexural, axial, and even torsional

waves can be computed separately in order to detect which of these phenomena are

significant within the frequency range considered. Once the significant sets of modes

are identified, the analysis of Section 4.2 is applied to each of them.

Finally, an interesting remark must be done. Even if in Section 4.2 the analy-

sis is performed in terms of the total energy, and here in terms of the kinetic en-
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ergy, this difference should not affect the global result, as discussed by Lyon (1975).

Totaro and Guyader (2006) report that they do not obtain the same results with the

kinetic and the total energy, specially for low frequencies and curved shapes. A pos-

sible reason for this phenomenon is the different response provided by different types

of modes coexisting in the same spatial region. In this work, this effect is eliminated

by classifying the modes before the cluster analysis.

4.3.2 Example

The performance of the methodology presented in Section 4.3.1 is tested here for the

example of the L-shaped structure shown in Fig. 4.15. This example corresponds to a

structure like the one in Section 4.2.6.2, with δ = 1 and the same material properties

and boundary conditions, but twice as thick.

Fig. 4.15: Sketch of the thick L-shaped structure.

For this case, 25 modes are found between 1100 and 2000 Hz. The normal and

in-plane kinetic energy maps are obtained for each of them. After comparing the two

types of energies for every mode, 19 of them are classified as normal modes and 6 as

in-plane modes (24%).
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Once the two types of modes are differentiated, the analysis described in Section

4.2 is performed with the 19 normal modes. The optimal number of subsystems for

the normal modes is 2, as can be seen in Table 4.10 and Fig. 4.16.

MIR
2 subsystems 3 subsystems

Cell size: λplate/2 0.56 1.40
Cell size: λplate 0.17 0.27

Table 4.10: Value of the MIR for different subdivisions. Thick L-shaped structure.
Normal modes.
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Fig. 4.16: Optimal subsystem distribution for the transverse modes of the thick L-
shaped structure

The analysis of Section 4.2 is also done for the 6 in-plane modes. In this case,

again the division into 2 subsystems has a lower MIR than the case with 3, as shown

in Table 4.11, but the identified regions are not the same, see Fig. 4.17. The result

is not robust. Thus, more simulations with different cell sizes should be performed

and the decision of considering one or two in-plane subsystems will be based on the

strength of the coupling.

Therefore, the global system consists of, at least, three subsystems: two for the

normal (flexural) modes of the two plates, and another one (or two) for the in-plane

modes of the system.
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MIR
2 subsystems 3 subsystems

Cell size: λplate/2 0.24 0.59
Cell size: λplate 0.31 0.91

Table 4.11: Value of the MIR for different subdivisions. Thick L-shaped structure.
In-plane modes.
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Fig. 4.17: Optimal subsystem distribution for the in-plane modes of the thick L-
shaped structure

4.4 Concluding remarks

• A strategy for identifying SEA subsystems is presented. It consists in per-

forming different cluster analyses based on the system eigenmodes and uses the

mutual inertia ratio as a decision variable. It provides reasonable results for

systems consisting of plates of different thickness.

• The information provided by the modal analysis gives the possibility of classi-

fying the modes of the system before doing the cluster analysis. In this way,

modes associated to different types of waves can be treated separately. This

preprocessing of the modes allows the detection of different subsystems sharing

the same physical region.

• The use of a set of eigenmodes as samples for the cluster analysis avoids the

need of projecting the results in their principal components. This leads to a

lower amount of calculations and, therefore, a lower computational cost.
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4.5 Future directions

Preliminary results of this research are very promising. However, there are still several

aspects to be considered in order to get a better and more systematic technique:

• An expression relating the mir between two subsystems and their coupling loss

factor is necessary for clarifying those cases where the analysis is not robust.

• The effect of the damping should be incorporated in the analysis, since it may

become important when the coupling between two subsystems is not weak

enough.

• The detection of different types of modes shown in Section 4.3 should be vali-

dated for other types of examples.

• A study on the influence of the set of modes considered on the optimal subdivi-

sion should be done. Two main aspects should be discussed: the importance of

the amount of modes analysed and the possibility of considering random subsets

of modes within a certain frequency range.

• The method should be combined with the strategy proposed in Chapter 2, in

order to verify that the coupling loss factors between the proposed subsystems

are weak.

• An application of this strategy for vibroacoustic problems is planned. For such

a case, the amount of eigenmodes within a certain frequency range will increase

dramatically and a methodology for selecting a random sample of modes within

the desired range should be proposed.
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Part II

Double walls: one problem with

many approaches
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Chapter 5

Introduction: review of methods

for double walls

5.1 Introduction

Lightweight structures are increasingly used in construction, in order to cheaply pro-

vide load-bearing configurations with good acoustic properties and a minimal mass.

One of the most important structural elements in lightweight structures are double

walls, Fig. 5.1: they consist of two thin leaves, a few centimetres thick each, with a

cavity (which might be totally or partially filled with absorbing material) between

them, see sketch of Fig. 5.2. This cavity is typically around 10 cm thick. The leaves

are usually made of light materials such as timber or plasterboard, and the absorbing

filling of the cavity is typically made with a very porous material such as mineral

wool, Arenas and Crocker (2010). Double walls usually consist also of stiffening ele-

ments between the leaves, called studs. They are usually wooden or metallic beams

and can have different cross-sections.

Due to the increasing use of these elements, there is interest in reliable models

of their sound insulation. These models should reproduce the acoustic behaviour of

double walls both for impact and airborne noise.

The analysis of sound transmission through double walls is also interesting be-

cause it is a representative example of the problems that arise when dealing with

vibroacoustic systems. Due to this, an extensive analysis of the different approaches

to this problem is performed along this part of the thesis. Both deterministic and
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(a) (b)

Fig. 5.1: Double walls images. (a) Sketch of the basic elements of a double wall,
source: http://continuingeducation.construction.com. (b) Construction of a double
wall, source: http://www.keepitquiet.co.uk. Both of them retrieved on 2013-08-01.

Fig. 5.2: Sketches of the double wall and its parts.

statistical techniques are shown and compared. In particular, a new numerical ap-

proach is presented and compared with more traditional models in Chapter 6. This

approach combines the finite layer method (FLM) for discretising the acoustic do-

main and modal analysis for the solid domain. Moreover, all the aspects discussed in

Part I are recovered in Chapter 7 to model a realistic double wall with a combination

of SEA and numerical simulations.

Due to its representativity, many authors have dealt with the problem of sound

transmission through double walls. In fact, an extensive review on models for double

walls was done by Hongisto (2006). Most of these models assume the structure as

infinite and use the impedance approach for the propagation of sound in the cavity.

Some examples are the works of Beranek and Work (1949), London (1950) and Fahy

(1985).

Another type of models, more complex than the previous ones, are the wave mod-

els. Kropp and Rebillard (1999) use a wave approach to the problem, with different

behaviours depending on the frequency: when the double wall resonance frequency is
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much lower than the critical frequency, the double wall acts as a single plate; when it

is much higher than the critical frequency, the wall leaves act as independent plates;

and for resonance frequencies close to the critical frequency, the wall has an interme-

diate behaviour. Guigou-Carter and Villot (2003) show a wave model that also takes

into account the structural flanking paths with the help of statistical energy analysis

(SEA). Wang et al. (2005) express the incident waves, the pressure field inside the

cavity and the radiated waves in terms of their velocity potentials.

Some authors have developed impedance models for multilayered structures. They

also assume an infinite size for the leaves, and express the transmission of pressure

and vibrations with the help of transfer matrices. Brouard et al. (1995) combine

transfer matrices with interface matrices in order to take into account the interfaces

between layers. Geebelen et al. (2006) consider layers of poroelastic materials inside

and Dijckmans et al. (2010) compare the results of the transfer matrix method with

those of a wave-based model.

Other authors solve a one-dimensional version of the problem with the help of

numerical techniques. Trochidis and Kalaroutis (1986) use Fourier transforms and

Alba et al. (2004) refine this technique using an iterative method.

To account for the wall size and boundary conditions, different techniques are

employed. Numerical methods can be used for solving the thin plate equation at the

wall leaves and the Helmholtz equation at the cavity. Beyond the use of FEM, whose

cost happens to be extremely high as shown by Panneton and Atalla (1996), other

discretisation techniques can be applied.

One of them is the use of modal bases for solving the differential equations, as done

by Brunskog (2005), Sjökvist et al. (2008) and Chung and Emms (2008). It consists

in expressing the vibration and acoustic fields in terms of the eigenfunctions of the

problem. This approach has less computational cost than FEM but is restricted to

simple geometries, since the eigenfunctions of complex domains cannot be obtained

analytically. However, the typical shapes of leaves and cavities fulfil this requirement.

To simplify the numerical approach, some assumptions on the pressure or vibra-

tion field can be done. Villot et al. (2001) present a technique that relies on the

wave approach and introduces the diffraction effect associated to the finite size of a

structure, using spatial windowing. Kernen and Hassan (2005) express the velocity

field as a function of forced waves (bending nearfields) and free (propagating) waves.

Xin et al. (2010) describe the behaviour of the pressure field with the sound velocity
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potential method instead of solving the Helmholtz equation numerically.

Another simplified numerical approach is the waveguide finite element method

(WFEM). This technique, used by Aalami (1973), Orrenius and Finnveden (1996)

or Brunskog and Davidsson (2004), is particularly suitable for structures where one

dimension is clearly larger than the others. It is based on the FEM discretisation of

the cross-section of the structure, combined with a wave description of the vibration

and pressure fields in the third dimension. It is particularly useful for long structures

with complex cross-sections. The wave length of the solution is imposed along the

extrusion direction in most of the cases. This is not the case of the double wall

cavity where the finite layer method (FLM) is better adapted to the geometry of the

problem.

An approach similar to the WFEM is the finite strip method (FSM). It also com-

bines the finite element discretisation of the cross-section of the structure with a

wave-like description in the third dimension. The main difference with the WFEM

is that the FSM considers a finite size of the structure in the third dimension, ac-

counting for the corresponding boundary conditions, see Cheung and Tham (1997)

and Friedrich (2000).

In Chapter 6, the finite layer method is proposed as an alternative way of dis-

cretising the pressure field in the cavity inside double walls. This method, used by

Cheung and Chakrabarti (1972) and Smith et al. (1992), combines a FEM-like dis-

cretisation in the direction perpendicular to the wall with trigonometric functions in

the two in-plane directions. To the best of the author’s knowledge, this is the first

time a finite layer method is proposed for solving the Helmholtz equation. The idea

is similar to that of the finite strip method but this one is particularly suitable for

multilayered structures because it allows the resolution of the Helmholtz equation at

each layer, taking into account the continuity of the normal velocity at their inter-

faces. Moreover, due to the use of trigonometric functions in the in-plane directions,

its computational cost is significantly lower than that of pure finite element analysis,

see Poblet-Puig and Rodŕıguez-Ferran (2011).

This approach is verified in Section 6.4 by comparing it with experimental data.

It is also compared with existing prediction models in order to check the influence

of common simplifications. Some of these simplifications are: assuming infinite size

of the wall, using interpolation functions with null derivative in the boundary, or

considering the problem as one-dimensional.
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Finally, in Chapter 7 the combination of deterministic and statistical methods is

presented as a possible solution for dealing with vibroacoustic problems consisting of

double walls and other elements.

5.2 Four methods with different level of

complexity

Four different models for the sound transmission through double walls are compiled

in this chapter. They have been chosen as a representative set of the approaches

to this problem, with different level of complexity. The two first models, developed

by Fahy (1985) and Au and Byrne (1987) respectively, are two simple impedance

models. The third approach is a technique based on the model of Xin et al. (2010).

This technique does less assumptions than the impedance models but still has less

degrees of freedom than the purely numerical approaches of Section 5.2.3 and Chapter

6. It uses the same interpolation functions for the velocity potential and the plate

displacement. Finally an approach based on the discretisation of the wall leaves and

cavity in terms of their separate eigenfunctions is analysed. This description is more

realistic than the others. However, the functions used for discretising the pressure

field have a null value of the normal derivative at the fluid-structure interface. This

simplification may affect the continuity of the normal velocity at the interfaces.

5.2.1 Simple impedance equations

The first two techniques are impedance models that assume infinite size of the wall.

They provide explicit expressions for the transmission coefficient of the double walls

for a certain incidence angle, τ(ϕ). These approaches have almost no computational

cost but include a large amount of simplifications. They are based on the 2D sketch

of Fig. 5.3.

In order to obtain regulated outputs such as the sound reduction index R, the

transmission coefficient is computed for several incidence angles and averaged. In

this way a field incidence is simulated

τdiff =

∫ ϕlim

0
τ(ϕ) cos(ϕ) sin(ϕ) dϕ∫ ϕlim

0
cos(ϕ) sin(ϕ) dϕ

. (5.1)
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Fig. 5.3: Angle of incidence of the pressure.

In these examples the value of ϕlim is chosen equal to 78o following the recom-

mendations of Beranek (1988) for a diffuse field.

The sound reduction index is computed as

R = 10 log10

(
1

τdiff

)
. (5.2)

5.2.1.1 Fahy (1985)

Fahy (1985) presents a model for empty cavity and diffuse sound incidence angle.

In this model, the transmission coefficient is computed in terms of the mechanical

impedances of the leaves and cavity, following a one-dimensional analysis of the prob-

lem and taking the lowest eigenfrequency of the leaves into account:

τ(ϕ) =

∣∣∣∣
ptrans
pinc

∣∣∣∣
2

=

∣∣∣∣−
2iZ2

0 sin(kH cosϕ)/ cos2 ϕ

z′1z
′
2 sin

2(kH cosϕ) + Z2
0/ cosϕ

∣∣∣∣
2

, (5.3)

where ptrans is the pressure of transmitted sound, pinc is the pressure of the incident

sound, Z0 = ρairc is the characteristic impedance of the air, k = ω/c is the wavenum-

ber in the air, ηi is the loss factor of layer i,

z′i = zi + Z0
1− i/ tan(kH cosϕ)

cosϕ
and zi = iωρs,i + ηiω0ρs,i − i

ω2
0,i

ρs,iω
.

Here ω0 is the first eigenfrequency of the leaves.

The main limitation of this model is that it does not consider the resonant trans-

mission.
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5.2.1.2 Au and Byrne (1987)

The second impedance model is the one presented by Au and Byrne (1987). This

model assumes that the wavenumber component parallel to the leaf surface is the

same in all the layers. It also enforces the continuity of the acoustical pressure and

particle velocity at the interfaces. It distinguishes between the input impedance ZI ,

the terminal impedance ZT and the specific impedance Zi of each material layer i,

and the calculation starts from the receiving room side, Fig. 5.4.

SENDING

ROOM

RECEIVING

ROOM

Layer 4 Layer 2

Layer 3

C
A
V

IT
Y

Layer 1

Fig. 5.4: Sketch of the mode of Au and Byrne (1987).

In this model the input impedance of the receiving room is defined as ZI =

Z0/ cosϕ. This term is the terminal impedance of the excited leaf. The impedances

of leaves B and A (layers 2 and 4 respectively) are:

Z2 = Z1 + η2B2k
4
x/ω + i (ωρs,2 −B2k

4
x/ω)

Z4 = Z3 + η1B1k
4
x/ω + i (ωρs,1 −B1k

4
x/ω) .

(5.4)

The impedance of the cavity is

Z3 = Zc
Γc

Γcy

(
1 + ZcΓc

Z2Γcy

)
exp (iΓcyH) +

(
1− ZcΓc

Z2Γcy

)
exp (−iΓcyH)

(
1 + ZcΓc

Z2Γcy

)
exp (iΓcyH)−

(
1− ZcΓc

Z2Γcy

)
exp (−iΓcyH)

(5.5)

where Γ 2
cy = Γ 2

c − k2x, kx = k sinϕ, Zc = Z0

√
1− iσ/ρairω, Γc = k

√
1− iσ/ρairω and

σ is the resistivity of the cavity absorbent (σ = 0 for air cavities).

p4 = pi 2Az/(Az+1) is the input pressure for layer 3 (cavity) andAz = Z4 cosϕ/Z0.

The transmitted pressure over an impervious leaf is: p2 = p1Z2/Z1 (leaf B), p4 =
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p3Z4/Z3 (leaf A), and the transmitted pressure over the cavity absorbent is calculated

by

p2 =
p3
2

[(
1 +

ZcΓc

Z3Γcy

)
exp (−iΓcyH) +

(
1− ZcΓc

Z3Γcy

)
exp (iΓcyH)

]
. (5.6)

Therefore, the transmission coefficient is computed as

τ(ϕ) =

∣∣∣∣
p1
pi

∣∣∣∣
2

=
Z1Z3

Z2Z4

Az

Az + 1

[(
1 +

ZcΓc

Z3Γcy

)
exp (−iΓcyH) +

+

(
1− ZcΓc

Z3Γcy

)
exp (iΓcyH)

]
. (5.7)

5.2.2 Adaptation of model of Xin et al. (2010)

A more complex approach is presented in the paper by Xin et al. (2010). This tech-

nique consists in solving the thin plate equation for the leaves and describing the

pressure field in the cavity with the sound velocity potential method.

The thin plate equation

B∇4u(x, y)− ω2ρsu(x, y) = q(x, y) + pint(x, y), (5.8)

is solved with the boundary conditions of a simply supported plate

u(0, y) = u(Lx, y) = u(x, 0) = u(x, Ly) = 0

M(0, y) =M(Lx, y) =M(x, 0) =M(x, Ly) = 0.
(5.9)

In Eq. (5.8), u(x, y) the displacement of the leaf. The term q(x, y) is the applied

excitation pressure and pint(x, y) is the pressure of the cavity fluid at the leaf-cavity

interface. In Eq. (5.9), M(x, y) is the bending moment and Lx and Ly are the

dimensions of the leaf, see Fig. 5.5.

The vibration field solution of Eq. (5.8) is expressed in terms of the eigenfunctions

φr(x, y) of a simply supported plate as

u(x, y) =

nmodes∑

r=1

ar φr(x, y) (5.10)

where nmodes is the number of modal functions used in the interpolation, ar is the

phasor modal contribution of mode φr and

φr(x, y) = sin

(
rxπx

Lx

)
sin

(
ryπy

Ly

)
, rx, ry = 1, 2, . . . (5.11)
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Fig. 5.5: Double wall dimensions.

The pressure field inside the cavity is expressed in terms of the velocity potential

Ψ (x) as

p(x) = iωρair Ψ (x) (5.12)

so there is no need to solve the Helmholtz equation. In Eq. (5.12), x = (x, y, z) and

Ψ (x) =

nmodes∑

r=1

ǫr φr(x, y) exp (−ikzz) +

nmodes∑

r=1

ζr φr(x, y) exp (ikzz) , (5.13)

where, kz = k cosϕ.

Xin et al. (2010) use this description of the pressure field both for the pressure

inside the cavity and for the incident and radiated pressures. However, in this work

the velocity potential is only used for the pressure field inside the cavity. The compu-

tation of the incident and radiated pressures is performed as described in Appendix

B, allowing a better comparison with the other techniques.

For each frequency and couple of modes {rx, ry}, ǫr and ζr are expressed in terms

of the vibration of the plates by means of the leaf-cavity interface conditions

∂Ψ
∂z

= iωuA at z = H
∂Ψ
∂z

= iωuB at z = 0.
(5.14)

In Eq. (5.14) uA(x, y) =
nmodes∑
r=1

ar φr(x, y) is the vibration field in the excited leaf

of the wall, uB(x, y) =
nmodes∑
r=1

br φr(x, y) is the vibration field in the other one and H

is the thickness of the cavity.
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Hence, after replacing expression (5.12) of the pressure field p(x) in the differential

equations of the leaves (5.8), for each frequency and couple of modes {rx, ry} a 2

degree-of-freedom system has to be solved with ar and br as unknowns.

The main drawback of this approach is that the description of the pressure field

implies a null value of the pressure at the cavity contour. This condition is somehow

restrictive, since the contour of finite-dimension cavities is usually purely reflecting

with boundary condition

∇p · n = 0, (5.15)

or absorbing with low values of absorption. In both cases a cosine description of

the pressure field in the cavity is more adequate than the sine based description of

Eq. (5.11). In Eq. (5.15), n is the outward unit normal. The effect of these conditions

is discussed in Section 6.4.

5.2.3 Discretisation with modal bases

The boundary conditions (5.9) and (5.15) can be taken into account if the thin plate

equation (5.8) for each leaf and the Helmholtz equation

∇2p(x) + k2p(x) = 0 (5.16)

for the acoustic domain are solved numerically with the help of a discretisation of the

domain.

This discretisation can be performed in different ways. Here, the separate eigen-

functions of the acoustic and structural equations are used as interpolation bases for

the pressure and vibration fields respectively. Similar ideas have been proposed by

Brunskog (2005) or Chung and Emms (2008).

In this model, the discretisation of the vibration field in the leaves is the same as

in Section 5.2.2. The integral form of the thin plate equation is used for each leaf
∫

Ωxy

(
Bk4r − ω2ρs

)
u v dx dy =

∫

Ωxy

(
q + pint

)
v dx dy ∀v, (5.17)

where v is the test function, Ωxy = [0, Lx]× [0, Ly] is the leaf domain and

k2r =

(
rxπ

Lx

)2

+

(
ryπ

Ly

)2

. (5.18)

The pressure field is expressed through a modal expansion

p(x) =

nmodes∑

s=1

psψs(x). (5.19)
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The cavity eigenfunctions are

ψs(x) = cos

(
sxπx

Lx

)
cos

(
syπy

Ly

)
cos
(szπz
H

)
sx, sy, sz = 0, 1, 2... (5.20)

as if the whole cavity boundary was reflecting, see Vigran (2008).

This modal expansion is replaced in the integral version of the Helmholtz equation

∫

Ωc

p∇2v dΩ + k2
∫

Ωc

p v dΩ +

∫

Ωxy

ρair ω
2v (x, y,H) (uA · n) dx dy+

+

∫

Ωxy

ρair ω
2v (x, y, 0) (uB · n) dx dy = 0 ∀v, (5.21)

where Ωc = [0, Lx] × [0, Ly] × [0, H ] is the cavity domain, uA = (0, 0, uA) and

uB = (0, 0, uB) are the vibration fields in leaves A and B respectively.

All the eigenfunctions of the cavity used in the interpolation are also used as test

functions. The coupling with the leaves is imposed in the third and fourth terms of

Eq. (5.21), connecting the modal contributions of the pressure field with those of the

vibration fields of the leaves.

If the only external excitation is applied to leaf A, the resulting block tridiagonal

linear system is 


A AC 0

CA C CB

0 BC B








a

p

b





=





f

0

0





(5.22)

where a and b are the vectors of modal contributions for the vibration field of leaves

A and B respectively, p is the vector of modal contributions for the pressure field in

the cavity and [f]r =
∫
Ωxy

q φr dx dy.

A and B are diagonal matrices, whose components are

[A]rr , [B]rr = (Bk4r − ω2ρs)

∫

Ωxy

φr (x, y) φr (x, y) dx dy. (5.23)

These matrices are associated to the independent behaviour of each leaf.

Due to the orthogonality of the cavity eigenfunctions, C is also a diagonal matrix,

associated to the behaviour of the cavity alone, whose components are

[C]ss = (k2 − k2s)

∫

Ωc

ψs (x)ψs (x) dΩ, (5.24)

where

k2s =

(
sxπ

Lx

)2

+

(
syπ

Ly

)2

+
(szπ
H

)2
. (5.25)
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The fluid-structure coupling matrices for the leaves are AC and BC, where

[AC]rs = −
∫

Ωxy

φr (x, y)ψs (x, y,H) dx dy (5.26)

[BC]rs =

∫

Ωxy

φr (x, y)ψs (x, y, 0) dx dy. (5.27)

The fluid-structure coupling matrices for the cavity are CA and CB, where

[CA]sr = −ρairω2

∫

Ωxy

ψs (x, y,H) φr (x, y) dx dy (5.28)

[CB]sr = ρairω
2

∫

Ωxy

ψs (x, y, 0) φr (x, y) dx dy. (5.29)

This approach takes into account the boundary conditions of the leaves (5.9) and

the cavity contour (5.15), but has a disadvantage: the eigenfunctions of the cavity

have null normal derivative at the boundaries. Therefore, the continuity of the normal

velocity at the fluid-structure interface can only be enforced weakly.

5.2.4 Summary

In this section four different models of the sound transmission through double walls

have been presented. In Chapter 6 they are compared with the finite layer method.

A summary of the main hypotheses of each method is shown in Table 5.1 .

Fahy
Au and
Byrne

Adapt. of
Xin et al.

Modal
bases

Finite size of the leaves No No Yes Yes
Continuity of normal
velocity at interfaces

No No Yes No

Reflecting boundary
conditions for the cavity

No No No Yes

Thin plate equation
for the leaves

No No Yes Yes

Helmholtz equation
for the cavity

No No No Yes

Dimensionality of
the pressure field

1D 1D 3D 3D

Table 5.1: Hypotheses of four models of the sound insulation of double walls
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Chapter 6

A new deterministic approach: the

finite layer method3

In this chapter the finite layer method (FLM) is presented as a discretisation technique

for the computation of noise transmission through double walls. It combines a FEM

discretisation in the direction perpendicular to the wall with trigonometric functions

in the two in-plane directions. It is used for solving the Helmholtz equation at the

cavity inside the double wall, while the wall leaves are modelled with the thin plate

equation and solved with modal analysis. The main advantage of FLM over other

discretisation techniques is the possibility of extending it to multilayered structures

without changing the interpolation functions and with an affordable computational

cost.

6.1 Bases of the method

The finite layer method is a technique with less computational cost than FEM but still

detailed enough to enforce the interface conditions between fluid and structure. Thus,

it is specially suitable for solving the noise transmission through layered configurations

of finite dimensions.

The finite layer method is used as a discretisation technique for the pressure field

when solving the vibroacoustic problem in the double wall. For the structural part

3Based on reference: Dı́az-Cereceda et al. (2012)
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of the problem, the same modal formulation described in Section 5.2.3 is used.

The weak form of the acoustic problem is

∫

Ωc

∇p · ∇v dΩ − k2
∫

Ωc

p v dΩ −
∫

Ωxy

ρair ω
2v (x, y,H) (uA · n) dx dy−

−
∫

Ωxy

ρair ω
2v (x, y,H) (uB · n) dx dy = 0 ∀v. (6.1)

The pressure field is interpolated by means of layer functions. These can be

understood as standard FEM interpolation functions in the z direction Nj (z), see

Zienkiewicz and Taylor (2000), multiplied by appropriate interpolation functions Φs (x, y)

in the xy plane

p(x) =

nxy∑

s=1

nz∑

j=1

pjsNj (z)Φs (x, y) . (6.2)

In Eq. (6.2), nz is the number of nodes in the z direction as shown in Fig. 6.1, nxy

is the number of interpolation functions considered in the xy plane and pjs is the

pressure phasor value at node j for the interpolation function Φs (x, y). In this work,

Φs (x, y) is chosen such as to provide the same description in the xy plane as in Section

5.2.3

Φs (x, y) = cos

(
sxπx

Lx

)
cos

(
syπy

Ly

)
sx, sy = 0, 1, 2, . . . (6.3)

Therefore, the set of functions Φs (x, y) satisfies orthogonality and also the condi-

tion (5.15) at the cavity contour.

Fig. 6.1: Sketch and notation used in the finite layer method.
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The test functions v are chosen of the same type as the interpolation functions of

Eq. (6.2)

v(x) =

nxy∑

t=1

nz∑

i=1

vitNi (z)Φt (x, y) . (6.4)

Eq. (6.1) must be satisfied for any set of values vit.

With these functions, the operations in Eq. (6.1) can be split among those in the xy

cross-section and those in the z direction. The xy cross-section is treated analytically

in order to reduce the problem to a one-dimensional FEM type calculation in the z

direction. Thus, nxy sets of nz linear equations are obtained.

As an example, the first term of the weak form (6.1) and the test function

v = Ni (z)Φt (x, y) are considered. The contribution to the {i, j} matrix coefficient

corresponding to the layer functions t and s can be written as

[∫

Ωc

∇p · ∇v dΩ
]

ts,ij

=

∫ H

0

N ′
iN

′
j dz

∫

Ωxy

Φt Φs dx dy+

+

∫ H

0

NiNj dz

∫

Ωxy

∇xyΦt · ∇xyΦs dx dy

i, j = 1, 2, . . . , nz t, s = 1, 2, . . . , nxy (6.5)

where N ′
i =

dNi

dz
and ∇xy = (∂/∂x, ∂/∂y)T is the gradient in the xy plane. A similar

substitution can be done for the other terms of Eq. (6.1).

Combining the discretised weak form for the cavity pressure with those of the leaf

equations, the resulting linear system has the same structure as that of Eq. (5.22):




A AC 0

CA C CB

0 BC B








a

p

b





=





f

0

0





(6.6)

where p is the vector with the contributions pjs and a, b and f have already been

defined in Section 5.2.3.

A and B are the same matrices of Eq. (5.23) and C is the FLM discretisation

matrix of the cavity, which is a block-diagonal matrix. Each block {s, s} is

Css = K I1 (s, s) +M I2 (s, s)− k2M I1 (s, s) , (6.7)
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has nz × nz size and a tridiagonal structure. The number of non-zero blocks in the

matrix is nxy. In Eq. (6.7),

I1 (s, s) =

∫

Ωxy

Φs Φs dx dy =

=

∫ Lx

0

[
cos

(
sxπx

Lx

)]2
dx

∫ Ly

0

[
cos

(
syπy

Ly

)]2
dy, (6.8)

I2 (s, s) =

∫

Ωxy

∇xyΦs · ∇xyΦs dx dy =

=

∫ Lx

0

[
−sxπ
Lx

sin

(
sxπx

Lx

)]2
dx

∫ Ly

0

[
cos

(
syπy

Ly

)]2
dy+

+

∫ Lx

0

[
cos

(
sxπx

Lx

)]2
dx

∫ Ly

0

[
−syπ
Ly

sin

(
syπy

Ly

)]2
dy (6.9)

and M, K are the one-dimensional mass and stiffness matrices defined as

[K]ij =

∫ H

0

N ′
iN

′
j dz (6.10)

[M]ij =

∫ H

0

NiNj dz. (6.11)

The fluid-structure coupling matrices for the leaves are AC and BC. They are

also block matrices and each block has 1 × nz size. The j component of block

{r, s} is [ACrs]j = −Nj(H) I3(r, s) and [BCrs]j = Nj(0) I3(r, s), where I3(r, s) =∫
Ωxy

φr Φs dx dy.

The fluid-structure coupling matrices for the cavity are CA and CB. They are

also block matrices and in this case the size of the blocks is nz × 1. The j component

of block {s, r} is [CAsr]j = −ρairω2Nj(H) I3(s, r) and [CBsr]j = ρairω
2Nj(0) I3(s, r).

6.2 Modelling of multilayered double walls

The finite layer method can be applied for dealing with multilayered double walls. A

particular case of this is a double wall partially filled with absorbing material (with

a filling ratio β) as depicted in Fig. 6.2.

The absorbing material is modelled in this work with the equivalent fluid model

suggested by Delany and Bazley (1970) and improved by Miki (1990): it is considered
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6.2. Modelling of multilayered double walls

Fig. 6.2: Sketch of the multilayer double wall.

as a fluid with complex and frequency-dependent wavenumber and density. This

model is specially suitable for fibrous materials with porosity near 1. For dealing with

other types of absorbing materials, more complex models such as those described by

Allard and Atalla (2009) should be used.

The two fluid phases (air cavity and absorbing material) can be modelled with

the finite layer method just by defining two different fluid media (cavity 1 and cavity

2) with the appropriate interface conditions: balance of forces (continuity of the

pressure)
∫
Ωxy

[p1 (x, y, βH)− p2 (x, y, βH)] v1 dΩ = 0
∫
Ωxy

[p1 (x, y, βH)− p2 (x, y, βH)] v2 dΩ = 0
(6.12)

and permanent contact between phases (continuity of the normal velocity)

vn,1 = −vn,2

↓
− 1

iωρ1
∇np1(z = βH) = 1

iωρ2
∇np2(z = βH).

(6.13)

In Eq. (6.13), ρ1 and ρ2 are the densities of the air and absorbing material respectively

(see Fig. 6.2). In that sense, FLM shows an advantage compared to the modal bases

of Section 5.2.3, since the bases of functions allow the enforcement of the interface

conditions.

Combining these conditions with the discretised weak forms of the leaf and cavity

equations (one for each leaf and one for each cavity), the linear system to solve if the
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only external excitation is applied to leaf A is




A AC 0 0

CA C11 C12 0

0 C21 C22 CB

0 0 BC B








a

p1

p2

b





=





f

0

0

0




. (6.14)

Matrices C11 and C22 have the structure of matrix C of Eq. (5.24) plus some extra

terms due to the interface conditions (6.12) and (6.13). Matrices C12 and C21 are

sparse and carry the rest of the information of Equations (6.12) and (6.13). See

Appendix C for more details.

6.3 Truncating the trigonometric series

A key issue in the modal expansions is to decide which and how many functions are

taken into account, see the paper of Gagliardini et al. (1991). This question also

arises regarding the trigonometric functions used in finite layer methods.

In these techniques, the trigonometric series must be truncated at some point. For

simple problems, such as the vibration analysis of a single plate, the modes located in

a range around the frequency of the excitation are enough. However, for the case of

a double wall other considerations must be done. Since the wave speed is different in

the leaves and in the cavity, when considering the pressure field in the cavity, selected

modes are:

• Resonant modes of the cavity: those whose eigenfrequency is around the fre-

quency of the excitation.

• Geometrically coincident modes or critical frequency modes of the cavity: those

with a wavelength in the xy plane similar to the resonant vibration wavelengths

caused in the leaf by the external excitation. These modes are required in order

to reproduce the transmission of sound caused at the critical frequency (joint

acceptance).

For instance, when exciting at a certain frequency f0, the modes considered in the

cavity will be those around f0 and those around f̂i, where f̂i are such that λplate =

cplate/f0 = c/f̂i = λxycav. As an example, in Fig. 6.3 the modal contributions for the

cavity at f0 = 3000 Hz are shown. The figure reflects that in this case f̂i = 1469 Hz.
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The same discussion applies when choosing the modes considered for the vibration

field in the leaves.
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Fig. 6.3: Modal contributions for the cavity at f=3000 Hz.

6.4 Simulations and comparisons

In this section, FLM is compared both with experimental data and with the other

models described in Chapter 5.2. An example of the possible applications of the

finite layer method is also shown: a double wall with the cavity partially filled with

absorbent material.

The two impedance models provide directly the transmission coefficient for every

frequency. However, the other models only provide the vibration field for the leaves

and the pressure field for the cavity. The computation of the impact noise level and

the sound reduction index for these cases is detailed in Appendix B.

6.4.1 Comparison of the FLM with experimental data

The use of FLM for modelling the sound transmission in double walls is tested by

comparing it with available experimental data. Tadeu et al. (2004) show the sound
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6. A new deterministic approach: the finite layer method

reduction index measured in the lab for a double glazing. In Table 6.1 the properties

of the glass leaves are shown. The cavity between them is 12 mm thick.

Variable Symbol Value
Leaf size, x direction Lx 1.2 m
Leaf size, y direction Ly 1.2 m
Thickness h 4 mm
Young’s modulus E 7.2× 1010 N m−2

Density ρ 2500 kg m−3

Poisson’s ratio ν 0.22
Loss factor η 4%

Table 6.1: Properties of the double glazing.

The experimental results shown by Tadeu et al. (2004) are depicted averaged in

1/10 octave bands. For the comparison, their sound energies have been averaged in

order to provide the sound reduction index law in one-third octave bands

〈R〉 = 10 log10

[
1

n

n∑

i=1

100.1Ri

]
. (6.15)

In Fig. 6.4 the comparison between the simulation with FLM and the experimental

results is shown. The good performance of the numerical method is verified, since

the trend of the numerical results coincides with that of the experimental values.

6.4.2 Comparison with other models

All the methods described in Chapter 5.2 are compared here with the finite layer

method. Both the impact noise and the airborne sound are calculated for a wood

double wall with an empty cavity.

In Table 6.2 the main features of the finite layer method have been added to those

of the other four techniques used for the comparison, already shown in Table 5.1.
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Fig. 6.4: Comparison with experimental measurements.

Fahy
Au and

Byrne

Adapt.

of Xin

et al.

Modal

bases
FLM

Finite size of

the leaves
No No Yes Yes Yes

Continuity of normal

velocity at interfaces
No No Yes No Yes

Reflecting boundary

conditions for the cavity
No No No Yes Yes

Thin plate equation

for the leaves
No No Yes Yes Yes

Helmholtz equation

for the cavity
No No No Yes Yes

Dimensionality of

the pressure field
1D 1D 3D 3D 3D

Table 6.2: Hypotheses of the five models of the sound insulation of double walls
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For all the comparisons, the properties of the leaves are defined in Table 6.3. The

cavity is 70 mm thick.

Variable Symbol Value
Leaf size, x direction Lx 2.4 m
Leaf size, y direction Ly 2.4 m
Thickness h 20 mm
Young’s modulus E 1010 N m−2

Density ρ 400 kg m−3

Poisson’s ratio ν 0.25
Loss factor η 5%

Table 6.3: The assumed properties for a wood leaf, used for all the analysis.

6.4.2.1 Comparison for the impact noise

First, the impact noise associated to the wood double wall is computed and shown

in Fig. 6.5. In this case only the models presented in Sections 5.2.2 and 5.2.3 are

compared with the finite layer method. The simple impedance models of Section

5.2.1 are not considered because they only provide the transmission coefficient and,

therefore, only model the transmission of airborne sound.

In Fig. 6.5, the results provided by the FLM and the discretisation with modal

bases are essentially the same. However, the adaptation of the model of Xin et al.

(2010) provides slightly different results.

The main conclusion to be drawn here is that using interpolation functions with

zero derivative at the fluid-structure interface for the air cavity (modal bases) is not a

problem for this example. Not imposing strongly the continuity of the normal velocity

does not affect the result.

Fig. 6.5 also shows that the description of the pressure field of Xin et al. (2010)

provides a slightly different impact noise law. In particular, at the band of 125 Hz,

the effect of the mass-spring-mass resonance is more pronounced due to the use of the

same in-plane functions in leaves and cavity. The conclusion here is that the boundary

conditions at the cavity contour are the main responsibles of the different performance

of the model of Xin et al. (2010). The influence of the boundary conditions at the

cavity contour is larger than that of the interface conditions at the fluid-structure

contact.
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Fig. 6.5: Comparisons of models for the impact noise of the double wall.

A remark must be done here in terms of the computational cost. The number of

degrees of freedom inside the air cavity for the analysis with modal bases at 3400 Hz

(one of the highest frequencies considered) is 4340. If the discretisation is done with

FLM the system has 22 934 degrees of freedom. This value is about six times larger

than that of the modal analysis. This is due to the wave behaviour of the sound: for

that cavity size, at a frequency of 3400 Hz, the wavelength of the pressure field is of

the same size of the thickness of the cavity. Hence, it is reproducible with only one

trigonometric function in the z direction. However, for the same wave, six nodes are

required in that direction in the FEM-like approach of FLM (six times more degrees

of freedom). Finally, if the computation was done with pure finite elements along

the cavity, respecting the rule of six elements per wavelength, the required number of

degrees of freedom would be around 200 000. The quantitative reduction due to the

use of trigonometric functions is significant.

The optimal approach for the acoustic behaviour of double walls with empty

cavities would be the analysis with modal bases.
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6. A new deterministic approach: the finite layer method

6.4.2.2 Comparison for the airborne sound

In Fig. 6.6 the sound reduction index provided by the wood double wall is shown,

computed with all the models described in Section 5.2 and the finite layer method,

and averaged in one-third octave bands.
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Fig. 6.6: Comparisons of models for the sound reduction index of the double wall.

For frequencies larger than the coincidence frequency of the leaves (fc = 616.5 Hz),

the two discretisation-driven techniques, the adaptation of the method of Xin et al.

(2010) and the impedance model of Au and Byrne (1987) provide the same trend

in the results. The impedance model provided by Fahy (1985) captures the shape

of the sound reduction index law but not the values provided by the other models.

For frequencies lower than fc, the discretisation-driven techniques provide different

values than the others. This shows that the assumptions of the other methods, shown

in Table 6.2, are not satisfied at low frequencies. In particular, modelling the fluid

with the Helmholtz equation and respecting the size and boundary conditions of the

wall is more important than enforcing the continuity of the normal velocity at the

fluid-structure interface.
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6.4.3 Modelling of multilayered double walls

The sound reduction index caused by a double wall with different filling ratios of

absorbing material is computed. The properties of the leaves are the same as those

of Section 6.4.2. The resistivity of the absorbing material is σ = 10 000 N s m−4, the

distance between the two leaves is 70 mm and different values of β are simulated: 0,

0.25, 0.5 and 1. Since the equivalent fluid model is not recommended for f < 0.01σ,

in Fig. 6.7 the sound reduction index is only shown for frequencies larger than 100

Hz.
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Fig. 6.7: Effect of the absorbing ratio inside the cavity.

Fig. 6.7 illustrates the insulating effect of the absorbing material. Higher ratios of

absorbing material inside the cavity cause an increase in the sound reduction index,

specially at low frequencies. However, between 1000 and 2000 Hz, the variations in

the sound reduction index caused by the absorbing material are not larger than 10

dB.

The influence of the position of the absorbing layer has also been analysed: the

simulations with the upper half of the cavity filled with absorbing material provide

the same results as those with the absorbing material in the lower part. The position

of the absorbing layer has no influence at all in the sound reduction index. The FLM
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can be used in the same way for any filling ratio and material, just by changing the

size and properties of the cavities. Thus, it is especially suitable for this type of

analyses.

6.5 Concluding remarks

The finite layer method has been presented in this chapter as a discretisation tech-

nique for modelling the sound transmission through double walls. The main conclu-

sions of the research are:

• The finite layer method is a reliable technique to model the sound transmission

through double walls, specially when dealing with multilayer walls with different

fluid-like materials.

• Accounting for the size and boundary conditions of the wall becomes a relevant

aspect when modelling the sound transmission at low frequencies.

• Capturing well the continuity of the normal velocity is not relevant for modelling

the sound transmission through double walls with empty air cavity.
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Chapter 7

A model of double walls combining

SEA and numerical simulations4

In this chapter, an efficient approach for modelling the sound insulation of double

walls is presented. It is based on statistical energy analysis, but uses deterministic

simulations for obtaining SEA parameters. This technique is presented here for the

simplified case of two rooms separated by a double wall, but can be extended to

more complex vibroacoustic problems, with more subsystems or different types of

connections. First, the case of a double wall with an air cavity is simulated with this

technique and compared with a fully deterministic approach. For this case, the effect

on the global result of the excitation used for the estimation of coupling loss factors

(CLF) is analysed. Then, the effect of adding steel studs or absorbing layers between

the leaves of the double wall is studied.

7.1 Basic example: double wall with an air cavity

The sound reduction index between two rooms separated by a double wall (Fig. 7.1)

is computed with SEA in this chapter. To do so, the coupling loss factors required

for the analysis are estimated from numerical simulations, as described in Chapter 2.

In a first stage, the sound reduction index is compared with the one obtained from

the deterministic approach to the same problem.

4Based on references: Dı́az-Cereceda et al. (2013a) and Dı́az-Cereceda et al. (2013b)
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Fig. 7.1: Sketch of the sound transmission through a double wall.

The sound reduction index is obtained from the mean square pressures at the

source 〈p2rms1
〉 and receiving 〈p2rms2

〉 rooms as

R = 10 log10
〈p2rms1

〉
〈p2rms2

〉 + 10 log10
S

A
. (7.1)

where S is the surface of the wall and A =
∑
αjSj is the absorption area in the

receiving room.

The deterministic approach is based on solving numerically the Helmholtz equa-

tion for the rooms and using the analysis described in Section 5.2.3 for the double

wall.

The SEA approach consists of 4 subsystems: sending room, leaf A, leaf B and

receiving room. The internal loss factors of subsystems 2 and 3 are the loss factors

of the leaves (ηii = η = 0.03) and the internal loss factors of subsystems 1 and 4 are

computed as

ηii =
cSroomα

8πfVroom
, (7.2)

where Sroom is the surface of the room boundary and α is the absorption coefficient

at that boundary. The excitation is a sound source in one of the rooms (subsystem

1).

The coupling loss factors between the two leaves η23 and η32 are obtained from

the results of the deterministic computation described in Section 2.4.2. The coupling

loss factors between each leaf and the adjacent room have been computed with nu-

merical simulations too, because the expressions provided by Maidanik (1962) for the

radiation efficiency are only suitable for mechanical excitations. Therefore, they un-
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derestimate the sound transmission when the excitation consists of a diffuse pressure

field, as shown by Vigran (2008).

The leaf-room CLF is obtained with Eq. (2.3), computing the averaged energies

from the numerical simulation of a system consisting of a room in contact with a leaf

(see Fig. 7.2). Since the first SEA subsystem is the sending room and the last one is

the receiving room, the influence of applying the correct excitation when estimating

the coupling loss factor between the room and the leaf is studied.

A B

Fig. 7.2: Sketch of the 2-subsystem vibroacoustic problems solved to obtain the
coupling loss factors.

Two vibroacoustic problems have been solved, with the only difference of the

excitation applied to the system. In problem A, the excitation is a sound source

in the room (left part of Fig. 7.2). In problem B, the excitation is a pressure wave

impinging on the leaf (right part of Fig. 7.2). A natural approach would be to estimate

η12 and η21 from problem A and η34 and η43 from problem B. However, the influence

of this choice is analysed here.

In Fig. 7.3 the sound reduction index between the two rooms is shown from three

different approaches. Two of them correspond to solving the problem with SEA. On

the first one, η12 and η21 are estimated from problem A, and η34 and η43 from problem

B. On the second one, the four coupling loss factors between the rooms and leaves

are obtained from problem B. The third one is the result of a numerical calculation

of the sound reduction index with the full deterministic approach.

In this example, the two rooms are identical, as well as the two GN plasterboard

leaves. Their material properties are enumerated in Table 2.1 and the rest of the
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Fig. 7.3: Comparison of the sound reduction index between two rooms separated by
a double wall.

problem data are described in Table 7.1.

Variable Symbol Value
Plate size, x direction Lx 2m
Plate size, y direction Ly 3m
Plate thickness h 13mm
Cavity thickness H 70 mm
Room dimensions Lx × Ly × Lz 2m × 3m × 5m
Room absorption α 10 %
Cavity absorption αcav 0 %

Table 7.1: Sound reduction index through the double plasterboard wall. Problem
data.

Results in Fig. 7.3 are not shown for the lowest frequencies because SEA hypothe-

ses are not satisfied there. The sound reduction index law computed numerically,

or with SEA and the CLFs obtained from problems A and B, present the same

trend. However, the trend of the results computed only with the CLFs estimated
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from problem B is much different than the other two. This illustrates the importance

of estimating the coupling loss factors from problems with the same excitation at

which the subsystems will be subjected afterwards.

The computation of the sound reduction index with the deterministic approach

could not be performed for the highest frequencies, due to the large number of de-

grees of freedom (more than 65 000) involved in the numerical computation at each

frequency. The improvement of the proposed approach in terms of the computational

cost is remarkable, since the SEA approach only requires solving a 4×4 linear system

at each frequency, and the numerical simulations required for estimating the coupling

loss factors are much smaller than the full coupled approach. Furthermore, once the

coupling loss factors are computed, they can be used in the SEA resolution of any

other problem consisting of repetitions of the same elements (rooms and walls), such

as a whole building.

7.2 Effect of the studs in the sound transmission

through double walls

The acoustic effect of steel studs located between the two leaves of the double wall is

studied with SEA, Fig. 7.4. To do so, the coupling loss factor associated to the stud

connections is computed and added to that of the air cavity to reproduce the global

behaviour of the double wall.

Fig. 7.4: Location of a stud between the leaves, see Poblet-Puig et al. (2009).
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The computation of the coupling loss factor associated to the studs is performed

assuming them to be line springs with frequency-dependent stiffnesses. These stiffness

laws were computed from numerical simulations by Poblet-Puig et al. (2009). If the

connections were more complex and could not be approximated by line springs, a

finite element analysis would have to be performed, see Fig. 7.5, and the CLF would

be computed with one of the expressions described in Section 2.2.

Fig. 7.5: Finite element mesh of a stud.

Given the equivalent stiffness of the stud, the associated coupling loss factor can

be derived as done by Poblet-Puig et al. (2009)

η12 =
nLRe

{
Y L
2 /Ly

}

ωM1|Y L
1 /Ly + Y L

2 /Ly + Y L
c /Ly|2

, (7.3)

where nL is the number of studs.

The line mobilities of the leaves, modelled as thin plates, are obtained with the

expression provided by Sharp (1978)

Y L =
1

2(1 + i)ρscplate (f/fc)
1/2

, (7.4)

and the line mobility of the spring is Y L
c = iω/KL, where KL is its line stiffness.

The coupling loss factor computed with Eq. (7.3) is added to that of the air

cavity in the SEA system. In Fig. 7.6 the sound reduction index of the same example

described in Section 7.1 is shown, both for the simple leaf-cavity-leaf system and for

the same wall with four studs inside. Two types of studs are considered: on the one
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7.2. Effect of the studs in the sound transmission through double walls

hand a conventional S-section stud and on the other hand an acoustic stud (LR),

with the shapes shown in Fig. 7.7. The dimensions of the studs are d1 = 70 mm,

d2 = 40 mm, d3 = 10 mm, d4 = 14 mm, d5 = 14 mm and d6 = 28 mm.
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Fig. 7.6: Effect of the studs in the sound reduction index through the double wall.

Fig. 7.7: Cross-section of the studs.

For the highest frequencies the increment in the sound transmission due to the

extra path added by the studs is negligible. This happens because the transmission
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through the air cavity for these frequencies is already large compared to the one

added by the studs. For the mid-frequency range, however, the presence of the studs

reduces the sound insulation of the double wall. The improvement of the performance

with the acoustic stud in front of the conventional one happens, as expected, for the

mid and high frequencies. As explained by Poblet-Puig et al. (2009), the increase of

flexibility due to stud shape is more relevant around the eigenfrequencies where the

central part of the stud acts as a spring. These eigenfrequencies do not happen in

the low-frequency range.

7.3 Effect of the cavity filling

7.3.1 Single absorbing layer

In order to study the effect of an absorbing filling for the double wall on a real-life

problem, the SEA-like approach suggested in Chapter 3 is used to simulate the sound

reduction index between two rooms separated by a double wall filled with absorbing

material. Four double walls filled with absorbing materials of different resistivities are

compared with one without absorbing material inside. The rooms have dimensions 2

m × 3 m × 5 m. The plate properties are summarised in Tables 2.1 and 2.2.
For the simulation, the system is divided again into four SEA subsystems: sending

room, leaf 1, leaf 2 and receiving room, and the absorbing material is considered as
a non-conservative connection between subsystems 2 and 3. Therefore, the SEA-like
system to be solved is

ω




η11 + η12 −η21 0 0

−η12 η21 + η22 + η23 + γ23 −η32 0

0 −η23 η32 + η33 + η34 + γ32 −η43

0 0 −η34 η43 + η44








〈E1〉
〈E2〉
〈E3〉
〈E4〉





=





Π in
1

0

0

0





.

(7.5)

The internal loss factors and the excitation are the same as in Section 7.1. To

obtain all the parameters ηij and γij required by the SEA-like approach, again three

small deterministic problems have been solved. On the one hand, the coupling loss

factors between each leaf and its adjacent room have been computed as described in

Section 7.1. On the other hand, the double wall itself has been simulated, in order

to obtain factors ηij and γij between the two leaves as described in Section 3.3. The

simulation is done combining modal analysis for the leaves and FLM for the cavity,
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7.3. Effect of the cavity filling

as described in Chapter 6. The absorbing material is modelled with the equivalent

fluid model suggested by Delany and Bazley (1970) and improved by Miki (1990), as

in Section 6.2.

In Fig. 7.8 the effect of the flow resistivity on the sound reduction index between

the two rooms is analysed. The insulating effect of filling the cavity with an absorbing

material is remarkable. However, different values of the flow resistivity only provide

different values of the sound reduction index for high frequencies. This behaviour was

also reported by Stani et al. (2005) and can be explained as a competition between

two opposite effects.
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Fig. 7.8: Effect of the flow resistivity on the sound reduction index.

First, the wavenumber of the equivalent fluid grows with the flow resistivity, lead-

ing to smaller transmissions. Second, the fluid density also increases with the flow

resistivity, causing in this case an increment of the transmission. At low frequen-

cies the increase of the wavenumber compensates the increase of the density and the

sound insulation does not change with the resistivity. However, at high frequencies

the effect of the wavenumber dominates that of the density, and larger resistivities

cause more insulating behaviours.
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7.3.2 Effect of a second absorbing layer

The potential of the technique presented here is further illustrated by computing

the sound reduction index through a triple wall. This wall consists of a leaf-cavity-

leaf-cavity-leaf configuration, where the leaves are identical to those in Section 7.3.1,

and the cavities are 70 mm thick and completely filled with an absorbing material of

resistivity σ = 8000 N s m−4. A 5 × 5 SEA-like system is solved at each frequency,

using the same internal and coupling loss factors of the double wall. The sound

reduction index through this triple wall is compared with that of the classical double

wall on Fig. 7.9.
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Fig. 7.9: Effect of a second absorbing layer on the sound reduction index.

As expected, the sound insulation increases by adding new layers to the wall.

Moreover, the drop in the insulation at 2500 Hz associated to the coincidence fre-

quency of the leaves is considerably reduced by the addition of the extra layers.
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7.4 Concluding remarks

The main conclusions extracted from this chapter are the following:

• The application of the CLF estimated from systems consisting of only two sub-

systems for the simulation of larger problems with SEA shows a good agreement

with the deterministic analysis. However, its computational cost is much lower.

• The CLF estimation must be performed with the same type of excitation of the

problem where it will be applied.

• The effect of studs can be easily considered with SEA if they are treated as line

springs with frequency-dependent stiffness.

• The coupling loss factors associated to the studs do not always involve a signif-

icant increment of the sound transmission. However, the use of acoustic studs

improves the insulation of the double wall in front of the conventional ones for

mid and high frequencies.

• The influence of the flow resistivity of the absorbing material filling a plaster-

board double wall is only relevant for high frequencies. At low frequencies, the

behaviour is different if the cavity is empty or filled with absorbing material,

but the resistivity of the material does not affect the sound insulation.

• The addition of new layers of plasterboard and absorbing material reduces con-

siderably the sound transmission through the wall and dampens the effect of

the coincidence frequency of the plasterboards.

7.5 Future directions

The future lines to be followed in the field of the combination of SEA and deterministic

simulations are the following:

• The combined effect of studs and absorbing materials in a double wall should

be analysed with SEA.

• A combined approach between the strategies proposed in Chapter 4 and this

chapter should be performed. First, the subsystem identification would be done

according to the strategy of Chapter 4, then the coupling loss factor between
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7. A model combining SEA and numerical simulations

each couple of identified subsystems would be computed with the technique

shown in Chapter 2 and, if the weak coupling hypothesis is satisfied for every

couple, the global problem would be solved with SEA.

• The analysis proposed in Chapter 4 might me used to detect those configu-

rations, or those frequencies, at whom the whole double wall acts as a single

subsystem.
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future work

Conclusions and contributions

In this dissertation two main topics in the field of computational building acoustics

have been addressed. For each topic, different conclusions have been reached, as

detailed at the end of the chapters of this thesis. Therefore, in this section only the

main contributions are summarised.

The first part of the document deals with the extension of the applicability of

statistical energy analysis (SEA) by means of numerical simulations. The main con-

tributions made in this field are:

1. A methodology is proposed for estimating SEA coupling loss factors

from small deterministic simulations. In Chapter 2 a study on the op-

timal procedure for obtaining SEA coupling loss factors (CLF) numerically is

presented. These factors are obtained from a small simulation and can be fur-

ther used to solve larger problems with SEA. The way of computing the CLF

once the deterministic problem is solved is very important in order to perform

a good estimation. The values from which the CLF is computed already have a

certain error, and therefore a study of the error propagation is required. Expres-

sions where two similar quantities are subtracted must be avoided. The best

option is to obtain the CLF from the power balance of the unexcited subsystem.

Chapter 2 corresponds to the work presented in Dı́az-Cereceda et al. (2013a).

2. An SEA-like method that accounts for non-conservative connections

is presented. In Chapter 3 an equivalent circuit analogy is used to relate
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the power dissipation at non-conservative couplings with the energies of the

subsystems. The coupling is characterised by means of two factors: the con-

servative coupling loss factor (CCLF) and the non-conservative coupling loss

factor (NCLF), related to the transmitted and dissipated energy respectively.

A methodology for obtaining these parameters from small numerical simulations

is presented. Once these factors are obtained, they can be used to solve larger

problems with SEA where both conservative and non-conservative couplings are

combined.

Chapter 3 corresponds to the work presented in Dı́az-Cereceda et al. (2013b)

and Dı́az-Cereceda et al. (2013c).

3. A strategy for decomposing a vibroacoustic domain into SEA subsys-

tems is proposed. In Chapter 4 a methodology involving a cluster analysis

based on the problem eigenmodes is presented for identifying SEA subsystems

within a given vibroacoustic system. This technique incorporates the mutual

inertia ratio between subsystems as a decision variable, and allows the iden-

tification of SEA subsystems, even if some of them are associated to sets of

modes sharing the same physical region. This is done decomposing the kinetic

energy of the modes in components and classifying the modes according to their

dominant component before performing the cluster analysis.

The second part of the document deals with different approaches for modelling

the sound transmission through double walls. The main contributions made in this

part are:

4. The finite layer method is introduced as a discretisation technique for

modelling the sound transmission through double walls. In Chapter 6

this method is presented and compared with other approaches to model the

sound insulation of double walls. The finite layer method (FLM) combines a

FEM discretisation in the direction perpendicular to the wall with trigonomet-

ric functions in the two in-plane directions. It is used for solving the Helmholtz

equation at the cavity inside the double wall, while the wall leaves are mod-

elled with the thin plate equation and solved with modal analysis. The main

advantage of FLM over the other discretisation techniques is the possibility

of extending it to multilayered structures without changing the interpolation

functions and with an affordable computational cost.
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Chapter 6 corresponds to the work presented in Dı́az-Cereceda et al. (2012).

5. An efficient approach for modelling the sound insulation of double

walls, based on the combination of statistical energy analysis and

deterministic simulations, is developed. In Chapter 7 this technique is

presented for the simplified case of two rooms divided by a double wall. The

application of the coupling loss factors estimated from systems consisting of

only two subsystems for the simulation of larger problems with SEA shows a

good agreement with deterministic analyses and a much lower computational

cost. The possibility of adding the effect of studs or absorbing layers inside the

double wall is also shown. This can be easily done with SEA if their associated

parameters are obtained from numerical simulations.

Chapter 7 corresponds to the work presented in Dı́az-Cereceda et al. (2013a)

and Dı́az-Cereceda et al. (2013b).

Future developments

The research developed in this thesis leaves several topics to be further investigated

in the future:

1. Extending statistical energy analysis with numerical simulations. Dif-

ferent topics have been studied in Part I, in order to extend the SEA applica-

bility. However, there are still many aspects to be improved in this field.

• The combination of deterministic simulations with SEA could be used to

study quasi-SEA systems. Cases of strong coupling or subsystems with low

modal densities might be analysed numerically and an SEA-like approach

could be proposed for modelling them.

• A comparison between the treatment of absorbing materials as SEA sub-

systems or as non-conservative couplings could be done, exploring different

types of absorbing material.

• Simplified expressions for the CCLFs and NCLFs associated to different

dissipative elements, such as absorbing layers, should be developed. These

expressions must provide the coupling loss factors in terms of the properties

of the connection and the subsystems surrounding it.
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• The strategy for identifying SEA subsystems of Chapter 4 could be im-

proved: the influence of the set of modes used for the analysis should be

analysed, an expression relating the mutual inertia ratio (mir) between

two subsystems and their coupling loss factor is necessary, and the effect

of the damping could be incorporated to the analysis. Moreover, it should

be applied to vibroacoustic problems.

• The strategy for the identification of SEA subsystems could be combined

with the methods for the estimation of coupling loss factors from numerical

simulations to provide a full systematic method for analysing vibroacoustic

systems. Besides, the information of the coupling loss factors would help

in the identification of subsystems.

2. Models for double walls. The discussion of the different approaches for

modelling double walls in Part II has left some issues to be further investigated

in the future.

• The advantages of the finite layer method for modelling the acoustic be-

haviour of multilayered structures should be exploited for models of mul-

tilayered walls alternating cavities, absorbing materials and thin plates.

These simulations could be used to estimate the coupling loss factors (ei-

ther conservative or non-conservative) associated to these configurations

as described in Chapter 2.

• The combined effect of studs and absorbing materials in a double wall

could be analysed with SEA.

• The possibility of using the analysis proposed in Chapter 4 for detecting

those configurations, or those frequencies, at which the double wall acts as

a single subsystem should be studied.
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Appendix A

Deterministic approach for

vibroacoustic problems

A.1 Vibroacoustic problem

The energies and powers required for the estimation of coupling loss factors in Chap-

ters 2 and 3 are obtained from numerical simulations of the vibroacoustic problems.

Most of them consist of floors or walls connected by different devices. They are

modelled with the thin plate equation in the frequency domain

B∇4u (x, y)− ω2ρsu (x, y) = q (x, y), (A.1)

expressing the vibration field in the plates in terms of the eigenfunctions of simply

supported plates.

If the plates are connected with a mechanical device, its effect is modelled as

an extra force or moment, connecting the vibrations of both plates as explained in

Dı́az-Cereceda et al. (2011).

If the plates are separated by an air cavity forming a double wall, the coupled

vibroacoustic problem is solved, namely the thin plate equation (A.1) for the plates

and the Helmholtz equation

∇2p (x) + k2p (x) = 0 (A.2)

for the acoustic domain, where p (x) is the pressure field and k is the wavenumber in

the air. Modal analysis is used for solving the acoustic part of the problem, enforcing
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weakly the continuity and equilibrium at the vibroacoustic interface, as described

in Section 5.2.3. This technique exploits the simple geometry of the problem to

achieve an accurate result with less computational cost than a finite element discreti-

sation. However, a more complex problem might be solved with other discretisation

techniques, such as the finite element method, see Panneton and Atalla (1996). In

particular, the case of two leaves divided by a cavity filled with absorbing material is

modelled with the finite layer method described in Chapter 6.

A.2 Energy calculation

The coupling loss factor (CLF) estimations require the computation of the averaged

energy of each plate and also the power exchanged between the connection and the

plates.

Once the displacement field u(x, y) in a plate is known, its velocity is obtained as

v(x, y) = iω u(x, y). Then, the averaged energy of the plate is computed as described

by Hopkins (2007)

〈E〉 =M
〈
v2rms

〉
(A.3)

where M is the mass of the plate and 〈v2rms〉 is the spatial mean square value of its

velocity.

According to SEA hypotheses, the incident field must be diffuse. For instance, if

the excitation is an impact on one of the plates, the spatially distributed and uncor-

related excitation required by SEA is achieved by solving twenty different problems,

each one with the force applied in a different (random) excitation point. The result-

ing energies and powers are averaged to provide the diffuse output. The decision to

use twenty different excitations was motivated by the works of Maxit and Guyader

(2003) and Totaro et al. (2009). Moreover, a convergence study has been performed,

showing that the differences between using 20, 30 or 40 points are barely noticeable.

The computation of the power Π12 transmitted between plates 1 and 2 through a

connection depends on the connection characteristics. Its general expression is

Π12 =
1

2
Re

(∫

Ω

q(x, y) v∗(x, y) dΩ

)
(A.4)

for a translational connection, or

Π12 =
1

2
Re

(∫

Ω

m(x, y)w∗(x, y) dΩ

)
(A.5)
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for a rotational connection; m(x, y) is the moment per unit surface and w(x, y) the

rotational speed, both of them at the connection. The superscript ∗ means the

conjugate of a complex number. This surface integral reduces to a line integral or a

point evaluation for a line or point connection respectively. In case the connection

is conservative, computing this integral on one plate or the other provides the same

result. However, if there is a non-conservative coupling, Π
(1)
12 6= Π

(2)
12 .

The computation of the incoming power to the system is also necessary. If the

excitation is a point force on one of the plates, the associated power is computed as

Π in =
1

2
Re
{
Fpv

∗
p

}
(A.6)

where the subscript p means evaluated at the point where the impact is exerted and

Fp is the value of the applied force.

However, if the excitation is a pressure wave impinging on one of the plates, the

associated power is computed as

Π in =
〈p2rms〉plate LxLy cosϕ

ρairc
, (A.7)

where 〈p2rms〉plate is the mean square pressure exciting the leaf. This value is also

averaged for different incident angles, ranging from 0o to 90o in order to reproduce

the diffuse field excitation.

In some examples of this work, the CLF between a room and an adjacent wall

is also required. It has been computed numerically in order to capture as much

information as possible. For the calculation, the energy of the room is computed

assuming diffuse field as

〈E〉 = Vroom 〈p2rms〉room
ρairc2

. (A.8)

This expression is also used to obtain the value of 〈p2rms〉 required to compute the

sound reduction index with Eq. (7.1) from the averaged energies obtained with SEA.
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Appendix B

Definition of acoustical outputs5

The magnitudes used to compute the airborne sound and the impact noise in Section

6.4 are defined here in terms of the system excitation and the outputs provided by

the discretisation methods defined in Sections 5.2.2, 5.2.3 and Chapter 6.

B.1 Impact noise pressure level

The impact noise is measured with the normalised impact noise pressure level Ln,

averaged in one-third octave bands as defined in ISO 140-6 (1998). For obtaining

this value, the excitation must be exerted by the normalised tapping machine. In

this work, it is modelled with the expressions provided by Brunskog and Hammer

(2003). They suggest that the behaviour of the machine depends on the properties

of the contact surface. There are two limit situations in this behaviour. One of them

is the case of the hammers rebounding with the same velocity of the impact (elastic

behaviour). In the other limit situation the hammers do not rebound at all (damped

behaviour). The formulation takes into account the fact that the floor may have an

intermediate behaviour between these two limits. It provides the spectrum of the

force exerted by the tapping machine F0(f) for a floor of known properties, with

F0(f) =
∞∑

n=−∞

Fnδ(f − nfr), (B.1)

5The meaning of some symbols in this appendix is different from that in the List of Symbols.
For those symbols whose meaning changes, the definition is provided here.
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Fn = F1(nfr)fr, fr = 10Hz and

F1 =





v0KM
K−ω2M+iωKM/Rr

for KM ≥ 4R2
r

v0KM(1+exp(−tcut(iω+K/2Rr)))
K−ω2M+iωKM/Rr

for KM < 4R2
r

(B.2)

where:

• v0 is the speed with which the hammer hits the plate and its value is v0 =

(2gh0)
1/2 = 0.866m s−1 as the hammer is dropped from a height of 0.04 m.

• K = EDh/ (1− ν2) is the stiffness of the local deformation.

• Dh and M are the diameter and the mass of each hammer respectively.

• Rr = 8
√
ρsB is the input impedance of an infinite plate

• tcut = π
√

M
K

is the time of zero-crossing.

The force is located in four different positions and the resulting radiated power,

averaged in each case before computing the impact noise pressure level. With the

(0,0) located at a corner of the plate, these positions are: (0.57 Lx, 0.57 Ly), (0.19

Lx, 0.19 Ly), (0.19 Lx, 0.57 Ly), (0.35 Lx, 0.35 Ly). The noise level is computed in

terms of the power radiated by the unexcited leaf as defined in Eq. (I.3).

As proposed by Williams (1983), the power radiated by the unexcited leaf is

expressed in terms of the leaf surface velocity as

Πrad =
ωρair
4π

∫

Ω′

xy

∫

Ωxy

v̂(x′, y′) v̂∗(x, y)
sin(kr)

r
dx dy dx′ dy′ (B.3)

where v̂ is the velocity field, r =
[
(x− x′)2 + (y − y′)2

]1/2
and Ωxy, Ω

′
xy are used to

denote the double integral over the leaf.

This integral is calculated numerically with the trapezoidal composite rule, using

six nodes per wavelength. However, at large frequencies (f greater than 708 Hz in

the examples of Section 6.4.2), the computation of the power is simplified by means

of the expressions shown by Renji et al. (1998). In them, the radiation efficiency σrad

depends on the excitation frequency, the properties of the structure and the medium

into which sound is radiated. With these expressions, the radiated power is computed

as

Πrad = Rrad

〈
v2rms

〉
, (B.4)
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where 〈v2rms〉 is the spatial mean square value of the leaf vibration velocity and

Rrad = σradρair c S is the radiation resistance (with S the surface of the leaf). This

combination of techniques was used by Dı́az-Cereceda et al. (2011) and reduces sig-

nificantly the computational cost of the calculation.

B.2 Sound reduction index

The airborne sound is measured with the sound reduction index R. Models of Section

5.2.1 provide directly the transmission loss and, with Eq. (5.2), R can be obtained.

In the rest of the approaches, this value is computed in terms of the incident and

radiated powers, Π in and Πrad, of the structure.

The computation of this value requires a pressure wave impinging on one of the

leaves, modelled as

p(x) = |p| exp (−i (kxx+ kyy + kzz)) (B.5)

where kx = k sinϕ cos θ, ky = k sinϕ sin θ and kz = k cosϕ.

This wave may have several orientations, defined by angles θ and ϕ as shown in

Fig. B.1. Four different values of θ, equispaced between θ = 0 and θ = 45o due to

the symmetry of the problem, are considered. If the leaf was rectangular instead of

square, this limit would be 90o. Also ten different values of ϕ have been considered,

equispaced between ϕ = 0 and ϕlim = 90o for the finite size models, and ϕlim = 78o

for the two impedance models, in order to reproduce a diffuse incident field.

Fig. B.1: Incident angles.

The final value of the sound reduction index is computed with Eq. (5.2), where

τdiff =

∫ θ=45o

0

∫ ϕlim

0
τ(θ, ϕ) cos(θ) sin(θ) cos(ϕ) sin(ϕ) dϕ dθ

∫ θ=45o

0

∫ ϕlim

0
cos(θ) sin(θ) cos(ϕ) sin(ϕ) dϕ dθ

(B.6)
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and

τ(θ, ϕ) =
Πrad(θ, ϕ)

Π in(θ, ϕ)
. (B.7)

In Eq. (B.7), Πrad(θ, ϕ) is obtained with the same technique described in Section

B.1 and

Π in(θ, ϕ) =
〈p2rms〉plate LxLy cosϕ

ρairc
. (B.8)
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Appendix C

Finite layer formulation for

multilayer structures

In this appendix, a detailed explanation of the meaning of matrices defined in Section

6.2 is provided.

In system (6.14), matrices C11 and C22 are associated to the air and absorbing

material layers respectively. C11 consists of two types of contributions: the same

matrix C defined in Eq. (6.7) and a term related to Eq. (6.12) that is assembled at

[C11st]ij = [C11st]ij + Ni (βH)Nj (βH) I1 (s, t) , (C.1)

where I1 (s, t) =
∫
Ωxy

Φs Φt dx dy.

Analogously, matrix C22 consists of two contributions: on the one hand, the

matrix defined in Eq. (6.7) adapted with the new value of the speed of sound c2 and,

on the other hand, a term related to Eq. (6.12) that is assembled at

[C22st]ij = [C22st]ij − Ni (βH)Nj (βH) I1 (s, t) . (C.2)

Matrix C12 has the information of the continuity of the normal velocity at the

interface between the two layers as

[C12st]ij =
ρ1
ρ2
Ni (βH)

dNj

dz


z=βH

I1 (s, t) , (C.3)

and also the rest of the information of Eq. (6.12) for cavity 2

[C12st]ij = [C12st]ij − Ni (βH)Nj (βH) I1 (s, t) . (C.4)
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Matrix C21 has the information of Eq. (6.13) as

[C21st]ij = − ρ2
ρ1
Ni (βH)

dNj

dz


z=βH

I1 (s, t) , (C.5)

and also the rest of the information of Eq. (6.12) for cavity 2

[C21st]ij = [C21st]ij + Ni (βH)Nj (βH) I1 (s, t) . (C.6)

Matrices A, B, AC, BC and CA are the same as defined in Eq. (6.6). Matrix CB

is also the same as in Eq. (6.6) but with density ρ2 instead of ρ.
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Poblet-Puig, J. and A. Rodŕıguez-Ferran (2011). The finite strip method for acoustic
and vibroacoustic problems. Journal of Computational Acoustics 19 (4), 353–378.
doi: 10.1142/S0218396X11004456.
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