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Optimizing encounter rates:
Lévy vs. Brownian strategies

3.1 Abstract

An important application involving two-species reaction-diffusion systems
relates to the problem of finding the best statistical strategy for optimizing
the encounter rate between organisms. We investigate the general prob-
lem of how the encounter rate depends on whether organisms move in Lévy
or Brownian random walks. By simulating a limiting generalized searcher-
target model (e.g., predator-prey, mating partner, pollinator-flower), we
find that Lévy walks confer a significant advantage for increasing en-
counter rates when the searcher is larger or moves rapidly relative to the
target, and when the target density is low.

3.2 Introduction

The interest in systems undergoing a reaction-diffusion process has re-
cently experienced a rapid growth due to their intrinsic relevance in many
physical, chemical and biological phenomena, as well as in the social sci-
ences and ecology (Marro & Dickman, 1999). Several models have been
proposed to describe their main features by employing a suitable Marko-
vian process together with a set of local transition rules. Usually, these in-
teracting many-particle systems develop long-range correlations as a con-
sequence of the microscopic mechanisms governing their temporal evolu-
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tion. At high-dimensions, the collective behavior can be well described by
mean field rate equations. However, for low dimensions, local density fluc-
tuations have to be taken into account. Field theoretical methods (Cardy
& Tauber, 1996) as well as Monte Carlo and cellular automata simula-
tions (Marro & Dickman, 1999), among other techniques, have shown that
local fluctuations can dramatically modify the mean field predictions. In
particular, the nature of the diffusion mechanism (Brownian or anomalous
Lévy motion) is known to be a relevant aspect at low-dimensions (Albano,
1996a,b). Within this context, the particles’ encounter rate is an impor-
tant quantity that deserves systematic study, since it ultimately governs
the global reaction rate.

Two-species reaction-diffusion processes are particularly finding appli-
cations in quantitatively modeling of biological phenomena (Viswanathan
et al., 1996, 1999; Catalan, 1999; Fulco et al., 2001; Buldyrev et al., 2001).
One important application relates to the general problem of what is the
best statistical strategy to adopt when searching for randomly located “tar-
gets” (Viswanathan et al., 1999; Buldyrev et al., 2001). Indeed, living or-
ganisms need to interact with individuals of other species (e.g., for obtain-
ing food) or of their own species (e.g., in sexual reproduction). Biological
interactions can be inter-specific, the most common being a trophic inter-
action between a consumer and a consumable, adopting the form of preda-
tion, parasite infection or mutual rewarding (e.g., flowers and pollinators),
but also occur between individuals of the same species, the case of mating
being particularly relevant. Hence, factors conditioning encounter rates
between organisms conceivably play a crucial role in the ecological con-
straints important in the evolution of life. To some extent, similar issues
may potentially arise at the molecular level in a cell, where molecules may
undergo Brownian motion or be themselves motors wandering around or
actively transporting other molecules in search of their targets (Vale & Mil-
ligan, 2000; Porto et al., 2000). The number of potential factors involved in
any kind of interaction is very large and the ecologically possible adaptive
pathways are multiple. However, among them, search strategies occupy
an important place, since energy expenditure in displacement impinges di-
rectly in the energy balance of the individual and, therefore, probably also
in its fitness.

Here, we report the results of our simulation studies on how popula-
tion density and differences in size and velocity between interacting organ-
isms influence the effectiveness of search strategies based on Lévy (super-
diffusive) vs. Brownian (diffusive) random walks. We show, using numer-
ical simulations, that a Lévy search strategy is the best option in some,
but not all, cases for a random search process. In our general approach
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to the problem, we distinguish the two interacting organisms either as a
“searcher” (e.g., predator, forager, parasite, pollinator, male) or a “target”
(e.g., prey, food, female). The searcher “consumes” targets, and we look for
the optimal search strategy to maximize encounter rates. Recently, it was
shown that the optimal strategy for a searcher looking for sparsely and ran-
domly distributed fixed targets that can be visited any number of times is
an inverse square power-law distribution of flight lengths, corresponding to
Lévy flight motion (Viswanathan et al., 1996; Buldyrev et al., 2001). It was
also shown analytically and numerically that the benefits of Lévy search-
ing for fixed targets (Viswanathan et al., 1999; Buldyrev et al., 2001) are
mainly independent of the number d of spatial dimensions (Viswanathan
et al., 2000), for reasons that are analogous to how quantities such as
the mean square displacement of Brownian and Lévy random walks are d-
independent. Hence, we focus here on the theoretically important case of
one dimensional (1-D) systems, in which diffusion induced density fluctua-
tions away from the mean field behavior are more relevant than in the (com-
putationally more expensive) 2-D and 3-D cases. Based on the similarities
between the fixed targets and moving targets cases, we expect that (i) any
observed relative advantage of Lévy searches over Brownian searches will
gently decrease with increasing d for organisms with finite lifetimes, and
(ii) such decreases in the relative advantages of Lévy searches will repre-
sent only quantitative changes, but not qualitative changes that alter the
choice of the best search strategy (Lévy vs. Brownian) in 2-D and 3-D. Fur-
thermore, many organisms perform searches over nearly 1-D space, e.g.,
fish species that search in coastal or river ecosystems, and species that
search in grassland-forest interfaces.

3.3 Methods

Specifically, we perform 1-D simulations of a single searcher and a single
moving target in an interval of size L, under periodic boundary conditions.
By varying the system size, we can effectively vary the target densities.
These “organisms” move with constant scalar velocity, but with random
directions and step lengths /; chosen from a generalized Lévy probability
density distribution with a power law tail: P({;) ~ 6]7” . For y > 3 the
motion is equivalent to Brownian random walks, because the mean square
displacement scales linearly with time, while for u = 2 the scaling becomes
quadratic in time.

Generally the encounter rate is defined as the number of encounters
per unit volume swept. In a 1-D scenario the definition has to be adapted
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such that the encounter rate is the mean number of encounters per dis-
tance swept, which in this case will be the total distance traveled. This
definition of the encounter rate is essentially identical to the definition of
search efficiency used in Viswanathan et al. (1999); Buldyrev et al. (2001).

Model variables are all dimensionless. We study different combinations
of target to searcher velocity ratios v and size ratios r for Lévy (yu; = 2)
and Brownian (y; = 3) targets. For each of these scenarios, we study the
encounter rate for the cases in which the searcher performs Lévy (ys = 2)
and Brownian (ys = 3) random walks. To evaluate the best search behavior,
we define 7y as the ratio between the encounter rates for the Lévy and
the Brownian searchers moving in identical environments and traversing
identical total distances L. A value v > 1 represents a benefit for the
searcher adopting a Lévy strategy.

We now briefly describe the essential features of the simulation method
used. For given values of r, v, us, and p;, we simulate a distance £ of
searcher motion in a system with size L with periodic boundary conditions.
We generate the power-law distributions P(¢;) ~ E;” of the step lengths

through the transformation ¢; ~ x}/(l_y ) of random numbers x; distributed

uniformly in the interval (0,1). Upon completely traveling a distance of step
length /¢;, the “organisms” change direction randomly with a probability
p = 0.5. Whenever the searcher and target come within a distance equal to
the sum of the radii of the two organisms, an “encounter” is registered and
the searcher moves towards the target (a distance equivalent to their added
radii). The found target is destroyed and a new one is created in a viable
random location. To decrease the computational cost of the simulation
algorithms, we analytically solve the equations of motion of the organisms
for given values of their step lengths to find whether or not an encounter
takes place, starting from the initial conditions of the organisms at the
beginning of each step length. We then simulate enough such step lengths
for the searcher to travel a total distance £, to obtain good statistics.

3.4 Results

We find that the larger the system size L, the better the Lévy search strat-
egy becomes compared to Brownian searches (Fig. 3.1), consistent with
earlier findings (Viswanathan et al., 1999; Buldyrev et al., 2001). For Brow-
nian target motion, a Lévy searcher is, in general, more efficient than a
Brownian searcher. Only for the extreme cases of targets almost an order
of magnitude larger (Fig. 3.1 a) and faster (Fig. 3.1 c) than searchers, is
Brownian search as efficient as are Lévy searches. When the targets per-
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form Lévy random walks, the result differs. Lévy motion of targets implies
a wider range of ratios r and v for which Brownian searchers are at least
as efficient or better than Lévy searchers (Figs. 3.1 b,d). Specifically, for
high target densities (e.g., for L = 25), Brownian motion is as efficient or
even better than Lévy motion for r > 1, v > 1. For fixed size and velocity
ratios r and v, and in comparison to Brownian targets, Lévy target mo-
tion diminishes the efficiency of Lévy searches (Figs. 3.1 b,d) in relation to
Brownian searches (Figs. 3.1 a,c) except when searchers move much faster
than targets (Fig. 3.1 d).

Fig. 3.2 is a grey-scale plot of the value of y against r and v for Lévy and
Brownian targets. White corresponds to large o > 2.5 while black to y < 1.
For larger L (i.e., lower target densities), Lévy searching becomes better
than Brownian for a wider range of size and velocity ratio combinations.
High target densities recover Brownian searcher strategies as optimal. For
Brownian target motion (Fig. 3.2, left), the white area expands diagonally
from left-bottom (small r, v) to right-top (large 7, v) as size system increases
(following the set of four graphs). In Lévy target motion scenarios (Fig. 3.2,
right), the white area expands more vertically. Therefore, size and veloc-
ity ratios » and v can both be considered as equally important in order to
define the optimal search strategy for Brownian targets. In contrast, when
searching for Lévy targets, velocity becomes more important than size.

Hence, we uncover a new result with biological implications: the qual-
itative movement of targets is also important for knowing which search
strategy is best. Generally, it is clear that for Brownian targets, searchers
larger and faster than their targets render Lévy searchers more efficient
than Brownian searchers. However, the contrary is true for searchers
smaller and slower than their targets. Lévy targets effectively “screen”
size ratio effects, and, in this case, the best type of searching motion only
depends on velocity ratios: for searchers faster than their targets, Lévy
searching is optimal; while for searchers slower than their targets, Brown-
ian searching is better.

3.5 Discussion

According to optimal foraging theory (Stephens & Krebs, 1986), evolution
through natural selection has led over time to highly efficient strategies.
Since environmental and biological situations in nature are highly variable,
therefore it is conceivable that different optimal foraging strategies should
naturally evolve. From Fig. 3.1 and Fig. 3.2, it is clearly seen that Lévy mo-
tion does not lead to significantly higher encounter rates always, but only
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Figure 3.1: The ratio y between encounter rates with targets of Lévy vs. Brownian searchers,
plotted against the target to searcher size ratio r for the cases where the targets perform
(a) Brownian random walks (y¢ = 3) and (b) Lévy random walks (yy = 2). For v > 1 Lévy
searchers have larger encounter rates than Brownian searchers and vice versa. (c) v vs. the
target to searcher velocity ratio v for yy = 3 and (d) u¢ = 2. In all cases the searchers traversed a
distance of £ = 10° units. Note that Lévy searching is not always beneficial, but only in specific
circumstances: (i) low density (large L), (ii) small r (a,b), and (iii) small v (c,d).
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Figure 3.2: Grey-scale graph showing v as a function of log(r) and log(v) for Brownian tar-
gets (left) and Lévy targets (right). Each set of 4 graphs corresponds to increasing system size
L =25 L =50 L =75 and L = 100 from top-left to bottom-right. The areas in white corre-
spond to the case in which Lévy searching is significantly advantageous (¢ > 2.5) while black
indicates no advantage.

for scarce, small and slow target scenarios. An important consequence of
this result is that we can expect Brownian motion to have evolved naturally
as one possible optimal search strategy. The optimal type of searching mo-
tion depends in a complex (and perhaps hierarchical) manner on variables
such as target density, the type of target movement and the size and veloc-
ity ratios between searchers and targets (r, v). Next, we discuss how these
variables contribute to optimize Lévy or Brownian search strategies, and
how empirical data support our findings.

3.5.1 Target density

As expected, we find that Lévy motion is not beneficial to the searcher
for small L. This situation corresponds to high target density in the real
world, hence our results are consistent with known results for fixed tar-
gets (Viswanathan et al., 1999; Buldyrev et al., 2001) showing that Lévy
searching confers no advantages unless the target density is low. We find
that for a wide range of proposed scenarios (» and v ratios, Fig. 3.1), low
target densities enhance the benefits of Lévy searching. This general result
is consistent with findings of similar search behaviors observed in many
organisms—wide-ranging in size and ecological strategies—which increase
turning and tumbling frequencies (resembling more a brownian motion)
due to increases in prey density (Bell, 1991).
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3.5.2 Brownian vs. Lévy targets

Given a target density, the type of target motion is important in order to
choose the best search strategy (Fig. 3.2). For Brownian targets, velocity
and size ratios between target and searchers are equally important and
have a (more or less) symmetrical effect on the optimal strategy. Hence,
once a target density is fixed, we can define a target-availability kernel
which will depend on both velocity and size relationships between targets
and searchers. As targets become less available (i.e., faster or smaller tar-
gets), a Lévy search strategy becomes better and vice-versa. Nevertheless,
it seems that the kind of target motion can modify this target-availability
kernel.

Lévy targets make size relationships between targets and searchers less
important, therefore the optimal search strategy will be determined only
by velocity relationships and target-availability kernels might be better de-
fined exclusively by velocity relationships, since sizes will not matter (i.e.,
the slower targets, the better the Lévy search strategy and vice-versa).
Lévy motion in targets diminishes what may be called the “target density
effect.” Although a lower target density also improves Lévy searching, this
“density effect” is not as dominant when targets move in a super-diffusive
manner (Fig. 3.2, right, following the set of four graphs). In low density
and Lévy target scenarios, Brownian searchers still have acceptable effi-
ciencies (Fig. 3.2, right). The nonrelevance of size and the reduction of the
“target density effect” for the optimal search strategy when searching for
Lévy targets renders the Brownian search strategy optimal in the specific
situations in which searchers are slower than their targets even for low
target densities (Fig. 3.2, right). This is true even for small searchers (e.g.,
small detection radius). Some examples could be diptera or other par-
asitic insects looking for large herbivores and, in aquatic systems, small
planktonic searchers looking for large cyanobacteria colonies.

3.5.3 Relative size

Prey to predator size ratios are far from being unity in Nature (e.g., in
planktonic organisms (Hansen, 1994)). The “effective size” of the searcher
or target could even be larger than the actual geometrical diameter or max-
imum body length. For the searcher case it can be defined as the distance
up to which a target (or its wake) enters its influential area, defined by dif-
ferent chemical, mechanical or visual types of perception involved in any
searching and detection interaction process, or just the feeding currents
or concentration gradients generated by predators. The “effective size”
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of targets could be any chemical, mechanical or visual wake (or cue) left
by preys. Our simulations studies, with no other energetic considerations
other than the distance traveled by the searcher, show that increasing the
target to searcher size ratio r (e.g., increasing target sizes while keeping
searcher’s size) implies a change from Lévy to Brownian search strategies.
From known energetic arguments (Catalan, 1999; Peters, 1983), it is rea-
sonable to determine the sort of interaction on the basis of searcher-target
size relationships (due to the frequency at which they need to encounter to
compensate metabolic rates). With an increasing target to searcher size ra-
tio it is likely that searchers switch from non-selective grazing to ambush
predation, and finally, to a parasite-like behavior (Catalan, 1999). Thus,
non-selective grazing should be more related to Lévy motion (although the
size-based benefit of Lévy over Brownian searches is decreased if targets
are on a Lévy type of motion), while ambushing and parasite-like behav-
ior should be more related to Brownian motion (Brownian motion has been
observed in viruses and bacteria (Berg, 1983a; Murray & Jackson, 1992)).

3.5.4 \Velocity ratios

The assumption of a more or less constant cruising velocity for real
searchers is realistic and reasonable. In any aprioristic approximation,
any v ratio can be plausible. Our main finding is that the faster and the
more super-diffusive the target motion, the less advantageous it is to adopt
a Lévy strategy, hence the greater the advantage for Brownian and slow
searchers. For such targets, the most efficient search strategy is not to
move at all, because the preys will come by themselves. Hence emerges
the ambushing strategy.

In summary, we have shown under which conditions a maximum en-
counter rate (and consequent global reaction rate) is achieved, using data
presented for the encounter rate of a two-species diffusion-reaction system
in which particles describe either Brownian or Lévy random walk motions.
Moreover, we are able to quantitatively and qualitatively model ecologi-
cal strategies from an evolutionary perspective by analyzing the general
ecological searcher-target problem in terms of Lévy or Brownian scaled
motions. Within this context, a changing tumbling frequency, which will
lead to Brownian or Lévy searching behaviors, is the more direct mecha-
nism for optimizing the search for many different target types and density
scenarios, once a scale is defined. Changing the effective size or velocity
while keeping the tumbling frequency control may indeed create adaptive
pathways to new diets or reproductive behaviors. Most importantly, our
findings point to a complex dependence of the optimal encounter strategy
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on population density, the type of target movement and the size and velocity
ratios between searchers and targets, and reveal relevant aspects regard-
ing the optimization of such strategies, such as the actual effectiveness of
Lévy walks for slow, low density targets.
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Super-diffusion phenomena
and encounter dynamics

4.1 Abstract

Rate limitation due to encounters is fundamental to many ecological inter-
actions. Since encounter rate governs reaction rates, and thus, dynamics
of systems, it deserves systematic study. In classical population biology,
ecological dynamics relay on the assumption of perfectly mixed interact-
ing entities (e.g., individuals, populations, etc.) in a spaceless’world. The
so-called mean field assumption, involves that encounter rates are driven
exclusively by changes in the density of the interacting entities and not on
how they are distributed or move in space. Encounter rate equations quan-
tify, by means of geometrical representations of the encounter, the role
of other factors affecting random encounters such as size and velocity of
particles (organisms). However, such equations do not consider the space
explicitly, and thus do not give any insight on relevant spatiotemporal sta-
tistical properties produced by the trajectories of the movement through
space. In the present study, we develop spatially explicit simulations of
random walking particles (i.e., Lévy walkers) to evaluate encounter rate
constraints beyond the assumptions of mean field and of encounter rate
equations. We show that in certain scenarios encounter rate fluctuations
are shaped by some spatiotemporal statistical properties produced by the
type of motion rather than by physical aspects such as size or velocity. In
particular, super-diffusion phenomena related to movement is relevant at
low densities and/or low spatial dimensionality. Finally, we discuss poten-
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tial adaptive responses of living organisms that may allow individuals to
control how they diffuse through space and/or the spatial dimensionality
employed in the exploration process.

4.2 Introduction

Encounter rates play a central role in population and community dynamics
by determining which and how many individuals, populations, and species
can interact strongly with each other or with abiotic variables at a specific
location. A food item that is not encountered cannot be eaten. Hence the
dynamics of encounter hold a central position in foraging theory (Jumars,
1993a).

Indeed, physical encounters, that is, the meeting of interacting entities
in a space, is the first step of any ecological interaction (i.e., predator-prey,
male-female, pollinization, habitat selection, etc.). The encounter is pre-
ceded by movements of one or the two interacting entities in one, two, or
three dimensions (i.e., 1D, 2D, and 3D). However, too often in ecology, the
existence of rate limitation due to encounter constrains is not considered,
and the possible role of encounter rates in the government of ecological
dynamics is underestimated. Most inferences on ecological dynamics are
based on the assumption of the perfect mixing of populations and no rate
limitation due to spatially explicit constraints (the so-called mean field as-
sumption). Thus, encounter rates are assumed to be driven exclusively
by the relative density of interacting entities (e.g., number of organisms
per unit area, volume, etc.) and its changes through time. The tradi-
tional modeling of population dynamics (i.e., Lotka-Volterra models, SIR
epidemic models, Levins-like metapopulation models, etc.) is founded on
the mean field assumption (Levin & Durret, 1996). In spite of its extreme
simplicity, mean field models provides a successful framework for popula-
tion biology studies. In part, this is due to the fact that in mean field mo-
dels potential deviations from mean field assumptions can be incorpored
by means of interaction coefficients. Aside from post-encounter inefficien-
cies (e.g., pursuit, capture, handling, or digestive processing), interaction
coefficients may also synthesize potential pre-encounter constrains beyond
density-based encounter rates.

Explicit geometrical representations of the encounter scenario (e.g.,
morphology of the interacting particles, morphology and positioning of the
perception regions, etc.) together with some physical insights into the pro-
cess of encounter (e.g., size and velocity of the interacting particles) allow
the development of encounter rate equations. Gerritsen & Strickler (1977)
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developed the first encounter rate equation to analyze predator-prey inter-
action in zooplankton. After Gerritsen & Strickler (1977), encounter rate
equations have been extended and improved conceptually (Rothschild &
Osborn, 1988; Evans, 1989; Jumars, 1993b; MacKenzie & Kiorboe, 1995;
Kiorboe, 1997; Catalan, 1999). The estimation of encounter rates [N T‘l]
by means of encounter rate equations is based on the identification of four
elements: i) a boundary length [L] or area [L?] over which encounter occurs
(i.e., detection length, area, or volume), ii) an effective density of items that
can be encountered [NL~2 or NL73|, iii) a mean encounter speed [LT!]
measured as the relative velocity vector of the body doing the encounter-
ing with respect to the body encountered, and iv) the identification of the
geometry of the encounter situation (i.e., dimensionality, morphology of the
particles, allocation of absorption or perception sites, etc.) (Jumars, 1993a;
Catalan, 1999). In this manner, aside from estimating encounter rates, one
can evaluate how density, relative velocities, detection radius, and specific
geometries of the encounter situation, can alter encounter rates.

The explicit formulation of encounter rate equations depends on the
kind of motion behavior considered in the prey (targets) and the predators
(searchers): Brownian motion, settling, swimming, or motion due to lam-
inar or turbulent shear (for planktonic organisms). Simplifying, there are
basically two main forms: diffusion-like behavior or advection-like behav-
iors (Catalan, 1999). Kiorboe (1997) summarizes particular expressions for
each behavior. Naturally, the movement of the interacting organisms can
include several of the above-mentioned mechanisms at the same time, so
the effective encounter rate will result from combinations of these sim-
plified behaviors (Rothschild & Osborn, 1988; Evans, 1989; Hill, 1992;
Shimeta, 1993). At certain scales, any diffusive process becomes an ad-
vection, and independently from the cause forcing the movement, it should
be taken into account that there are important statistical spatiotemporal
properties emerging from particle’s trajectories (e.g., the chances of cov-
ering different regions of space, the probability of revisiting a site, etc.)
which affect encounter dynamics and rates. Spatial explicit simulations of
random walking particles can account for such statistical properties.

Typically, the diffusion of particles through space has been addressed by
means of random walk models (Okubo, 1980; Berg, 1983a). Random walks
constitute probabilistic discrete step models that involve strong simplifica-
tions of organisms’ movement behavior. They are aimed to characterize the
statistical properties of the movement rather than describing organisms’
movement from mechanistic principles (as it is pursuit in other type of mo-
dels). Different types of diffusion emerge as a function of different classes
of random walk models (Mandelbrot, 1977; Shlesinger et al., 1995). The
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type of diffusion is characterized by the parameter a. For enough large
times, t* quantifies how the random walk root mean square displacement
increases with t (Okubo, 1980; Berg, 1983a; Shlesinger et al., 1995). Brow-
nian motion, whose steps increments have finite variance and no correla-
tions, lead to normal diffusion (« = 1/2). Super-diffusion corresponds to
« > 1/2 and sub-diffusion to & < 1/2.

The purpose of the present study was to elucidate how changes in the
type of motion of particles (organisms) affect the statistical spatiotempo-
ral properties of the trajectories resulting in variations of encounter rates.
We must emphasize that this goal can not be addressed by encounter rate
equations. Our approximation is based on spatially explicit numerical simu-
lations of interacting particles (named searchers and targets) that perform
different types of random walks in a continuous space (i.e., 1D, 2D, and
3D). We employed, a class of random walk models, named Lévy walks, that
can give rise to genuine super-diffusive behavior spanning a whole range
of values for « > 1/2: from Brownian to ballistic (i.e., straight-line) motion.
We evaluated how super-diffusive phenomena provided by different types
of motion affected encounter rates for different densities and dimensions.
In addition, the effect of the type of motion (i.e., super-diffusivity) on en-
counter rates was compared to the one obtained when modifying size and
cruising velocity of particles (organisms). We show that the super-diffusive
phenomena in organisms’ trajectories generated strong fluctuations on en-
counter rates in 1D, 2D, and 3D. These fluctuations were specially relevant
at low resource densities and/or low spatial dimensionality. Changes of sev-
eral folds in size and velocity of particles were needed to obtain encounter
rates equivalent to the ones obtained by different types of motion. Finally,
we discuss potential adaptive responses of living organisms that may allow
individuals to control how they diffuse through space and/or the spatial
dimensionality employed in the exploration process.

4.3 Methods

4.3.1 The model

Lévy walk models are random walks (i.e., probabilistic discrete step mo-
dels) based on the sampling of a uniform distribution for the turning angles
and a power-law distribution for the move lengths (i.e., the so-called Lévy
flights). More precisely, Lévy walk models exploit a broad class of move or
flight length (¢) distributions named Lévy-stable distributions (Mandelbrot,
1977; Shlesinger et al., 1995). These distributions have relevant statistical
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properties related to the Generalized Central Limit Theorem (see Technical
Appendix C). Let us assume some variables with distributions that follow
the power law P(¢) = ¢7#. Sums of such variables converge to the Lévy
stable distribution, with Lévy stable index a;, = u — 1. If the power law
exponent y lies in the interval 1 < p < 3, then the Lévy stable distribution
of the sums of such variables also has a power-law form. For u > 3 the
form of the Lévy stable distribution of the sums converges to a Gaussian
distribution due to the Central Limit Theorem. Thus we recover Brownian
motion for u > 3. The case of y < 1 does not correspond to normalizable
distributions.

In practice, we generate Lévy flights by sampling a power-law distribu-
tion (representing the tail of the Lévy-stable distributions) in the following
way (inversion method, see Technical Appendix A):

0=ty ul=m7", 4.1)

Where u is a uniformly distributed random variable (1 € (0,1)), ¢ denotes
the length of the flights (i.e., move lengths), ¢y the minimum flight length
and u the power-law exponent (i.e., Lévy index). Lévy walk models com-
prise a rich variety of paths ranging from Brownian motion (¥ > 3) to
straight-line paths or ballistic motion (x — 1).

4.3.2 The simulations

We devised a set of simulations in order to explore changes on encounter
rates of Lévy walkers (with varying Lévy indexes 1 < y < 3) due to: (i) spa-
tial dimensionality, (ii) target density, (iii) target size and (iv) target cruis-
ing velocity. We defined the encounter or search efficiency 7 as the ratio
of the number of target sites encountered to the total distance traversed
by the searcher [NL™1]. Encounter efficiency times cruising velocity di-
rectly provides the encounter rate [NL™1]. If velocity is set to one, search
efficiency and encounter rates are exactly the same. In the Lévy frame-
work 7 is a function of the Lévy index p (i.e., ¥ = y(u)). Targets could be
either still and randomly distributed, or mobile. Two types of encounter
dynamics were considered: non-destructive and destructive. In the case
of non-destructive searches, the searcher could visit the same target site
many times. This dynamic accounted for those cases in which target sites
became only temporarily depleted or searchers became satiated and leaved
the area. In the case of destructive searches, the target site found by the
searcher became undetectable in subsequent displacements. The target
site “disappeared” but to keep a constant target density during the search
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a new target site reappeared at random in the searching space. The non-
destructive and destructive encounter scenarios represent the limit cases
of a continuum of possible target regeneration dynamics (Raposo et al.,
2003). In addition, the non-destructive case with uniformly distributed tar-
gets bears a similarity to a destructive case with patchy or fractal target-
site distributions (Viswanathan et al., 1999). Thus, the statistics computed
in these simulations represented a wide range of natural searching scenar-
ios.

The behavior of the searchers was defined as follows:

(1) The searcher walked by successively choosing a direction and a
move length at random from a given probability distribution for the turn-
ing angles and for the displacement lengths respectively. The displacement
during a move length occurred non-instantaneously. Instead the searcher
displaced at a constant speed (i.e., cruising velocity), modelled as fixed dis-
crete displacement steps during a move length. The largest move lengths
involved many move steps while the minimum move length was equivalent
to a displacement step.

(2) If a punctuated target site lied within a direct perceptual range or
detection radius of the searcher R = R; + R;, then an encounter was reg-
istered. R; and R; were meant to represent any “effective” size for targets
and searchers respectively (e.g., body size, perceptual range, maximum
detection radius, etc.), The walking displacement became truncated imme-
diately after the encounter (approximately at a distance R from the target
site) and the searcher selected a new direction and move length according
to (1).

To avoid finite scale artifacts, we represented an effectively infinite
landscape by means of periodic space boundaries (i.e., particles leaving
the landscape on one side emerge from the opposite side).

4.3.3 The scaling of the simulations

To make comparable the encounter rates of diffusive-like searching pro-
cesses at distinct dimensional spaces (i.e., 1D, 2D and 3D) the mean free
path value (i.e., A) was fixed at a constant value. The mean free path has
been identified as a relevant microscopical parameter of particle and quan-
tum physics (Feynman et al., 1963), being defined as the mean Euclidiane
distance between target sites.

For any dimensional system the mean free path was set by the size of
the system L, the target density p, and the size of the particles R. The
relationships between these parameters was given by the equation:



