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Helical Lévy walks in

microzooplankton

5.1 Abstract

The searching trajectories of different animals can be described with a
broad class of flight length (`j ) distributions with P(`j) = `

−µ
j . Theoreti-

cal studies have shown that changes in these distributions (i.e., different µ
values) are key to optimizing the long-term encounter statistics under cer-
tain searcher-resource scenarios. In particular, they predict the advantage
of Lévy searching (µ ≈ 2) over Brownian motion (µ ≥ 3) for low-prey-
density scenarios. Here, we present experimental evidence of predicted
optimal changes in the flight-time distribution of a predator’s walk in re-
sponse to gradual density changes of its moving prey. Flight times of the
dinoflagellate Oxyrrhis marina switched from an exponential to an inverse
square power-law distribution when the prey (Rhodomonas sp.) decreased
in abundance. Concomitantly, amplitude and frequency of the short-term
helical path increased. The specific biological mechanisms involved in
these searching behavioral changes are discussed. We suggest that, in
a three-dimensional environment, a stronger helical component combined
with a Lévy walk searching strategy enhances predator’s encounter rates.
Our results support the idea of universality of the statistical laws in opti-
mal searching processes despite variations in the biological details of the
organisms.
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5.2 Introduction

Random walks based on Lévy flight distributions P(`j) = `
−µ
j in concrete

“Lévy walks” with µ ≈ 2, are the optimal searching strategy for scarce
fixed targets which are randomly located (Viswanathan et al., 1999). A
Lévy walk could be more efficient than the usual Gaussian (i.e., Brownian)
motion as suggested by early works on microzooplankton (Levandowsky
et al., 1988a,b; Klafter et al., 1989), although Brownian motion is gener-
ally assumed in reaction-diffusion predator-prey models. Recently, eco-
logical examples of Lévy walks have been provided for a wide range of
animal species (Heinrich, 1979; Klafter et al., 1989; Levandowsky et al.,
1997; Cole, 1995; Focardi et al., 1996; Viswanathan et al., 1996; Atkinson
et al., 2002). However, the theoretical study of more complex scenarios
has shown that the advantage of Lévy searching over other types of motion
is restricted to a set of prey densities, and mobility and size of the preda-
tor relative to the prey (Bartumeus et al., 2002; Viswanathan et al., 2002).
Therefore, natural selection should favour flexible behaviors, combining
different searching strategies (i.e., searching statistics) under different
conditions. Here, we present experimental evidence that changes occur in
both the short- and long-term searching statistics of a predator (Oxyrrhis
marina), coinciding with density changes of its moving prey (Rhodomonas
sp.). The specific biological mechanisms involved are also identified.

The marine heterotrophic dinoflagellate Oxyrrhis marina has two flag-
ella, one transversal and one longitudinal, providing three types of move-
ment: rotation, translation, and sudden directional changes (Levandowsky
& Kaneta, 1987; Cosson et al., 1988). The flagellar apparatus of O. marina
has been well studied at both the cellular (Cosson et al., 1988) and the ul-
trastructural level (Cachon et al., 1988). Continuous flagellar movements
are responsible for simultaneous rotation and translation of organisms, giv-
ing rise to a helical path during movement. Normal helical motion is inter-
rupted by sudden (60-100 ms) changes in direction in response to direct,
local mechanical stimuli, the so-called “avoidance reaction”. However, this
term does not embrace the wide variety of conditions under which this
behavior is observed. Thus, the term reorientation leaps is preferred.
Reorientation leaps in O. marina are generated by transient arrests of the
longitudinal flagellum beat. These are accompanied by a switch from a
backward to forward orientation (see figure 5 in Cosson et al. (1988)).
Videotape observations of O. marina movements show that the helical path
is usually straight with occasional smooth, albeit significant, changes in
trajectory. These changes are due to momentary changes in the amplitude
and frequency of the gyres in the helical path. Despite this feature, the
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most efficient changes in trajectory are caused by the reorientation leaps.
These specific and discrete reactions govern the long-term searching walk
in O. marina.

To test the hypothesis that changes in the long-term searching behavior
of O. marina occur as a response to resource availability, two independent
experiments were performed by using culture innocula of O. marina at two
different times of the year.

5.3 Methods

5.3.1 Experimental organisms and design

In both experiments, the dinoflagellate was grown in a 1-liter container
under controlled temperature and light conditions using the smaller au-
totrophic flagellate Rhodomonas sp. as food source. Live samples were
withdrawn at 24- or 48-h intervals and immediately videotaped for 2 weeks
in experiment A, and for 1 week in experiment B. The two experiments
were carried out several months apart and are considered replicate ex-
periments. The movement of O. marina in a Palmer cell was videotaped
by using a charge-coupled device camera attached to a stereomicroscope
immediately after withdrawal from incubation containers. Also, samples
were fixed with Lugol’s solution for cell enumeration. Prey and predators
ranged from 101 to 105 individuals per ml; predators increasing and prey
decreasing through time in the two experiments. Random digital movies
of 150 frames (12 frames per s in experiment A, and 8 frames per s in ex-
periment B) were taken from the complete videofilm. The cell 2D positions
Fig. 5.1 were analysed using the NIH IMAGE ANALYSIS software (National
Institutes of Health, USA; http://rsb.info.nih.gov/nih-image). Trajectories,
swimming velocities, and successive turning angles were determined.

5.3.2 Data analysis

The experimental data set comprised individual trajectory series for O. ma-
rina with a sampling length ranging from 10 to 180 walk steps, with usual
values of ≈ 50. Data in each of the experiments were grouped into three
prey-density ranges, covering the three main resource scenarios, i.e., con-
ditions typical of blooms (1 × 104 − 1 × 105 cells per ml), productive areas
(1 − 2 × 103 cells per ml), and open ocean (1 × 101 − 5 × 102 cells per ml).
Included in the analyses were 192 and 372 individual positions and turning
angle series for experiments A and B, respectively. Velocity estimates of O.
marina were computed for each individual series as the Euclidean distance
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between successive 2D positions. Mean velocities were computed for data
series in each of the three prey-density ranges. In Fig. 5.1 the velocities
and the trajectories of cells are shown.

x velocity fluctuation series were obtained by computing changes in
x coordinate positions. A power spectrum analysis (Chatfield, 1984) was
performed on each series. Spectra were averaged for all time series in each
resource scenario and binned at 0.1 frequency intervals (see Fig. 5.2). We
also computed, for each resource scenario, (i) the distribution of turning
angles, measured as changes in direction at fixed time steps (≈ 0.1 s) and
scaled from 0◦ to 180◦ (see Fig. 5.3) and, (ii) the distribution of flight-time
intervals, the periods of time between changes in direction (Mandelbrot,
1982; Shlesinger et al., 1993, 1995). The distribution of flight times in
each of the three resource scenarios (see Fig. 5.4) was taken as indicative
of the average individual behavior. The individual and averaged spectra of
velocity fluctuations were similar, giving support to this assumption.

5.4 Results

5.4.1 Velocity fluctuations

Mean velocities (computed as the Euclidean distances between two suc-
cessive 2D positions) were ≈ 200 µm · s−1. Standard deviations ranged
from 93.18 to 128.58 µm · s−1. No clear pattern of change of mean velocity
was identified with decreases in resource availability. Therefore, swimming
patterns were not related to changes in mean velocity in experiments (see
Fig. 5.1).

The spectral analysis based on continuous x velocity fluctuations
showed both helical path and reorientation leaps of O. marina. A high-
frequency regime (HFR) and a low-frequency regime (LFR) were dis-
tinguishable in each spectrum (Fig. 5.2). HFR reflects the short-term
changes, which include the helical path, while LFR reflects the long-term
searching behavior and, thus, the reorientation leap statistics. As re-
sources became scarce, a gradual and significant increase of a periodical
signal was observed at ≈ 2 Hz (HFR). This periodical signal increased both
in frequency and amplitude (i.e., mean S( f ) value and mean maximum S( f )
value ranging from 1 to 3 Hz, Table 5.1). The LFR of the spectra seemed
to indicate a “1/f noise” (S( f ) ≈ f β,β ≈ −1) scaling persistence (Chat-
field, 1984; Voss, 1989; Middleton et al., 1995), which decreased (lower
LFR slopes) with decreasing resources. However, the influence of the
periodical signal and the shortness of the series makes the interpretation
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Figure 5.1: Representative 2D cell trajectories of O. marina in experiments A and B with varios

densities of Rhodomonas sp. prey: high (1 × 104 − 1 × 105 cells per ml), medium (1 − 2 × 103

cells per ml), and low (1× 101 - 5× 102 cells per ml). The sampling effort has been fixed (i.e., the

same number of walk steps in each resource scenario) to clarify the general searching pattern.

An increase in the helical path as resources decrease is observed. At the scale of observation,

Lévy walks visually result in a combination of short walk clusters with long travels between

them, while Brownian walks look more like straight paths overcrossed. Thus, Brownian walkers

cover the space more homogeneously than Lévy walkers do.
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Figure 5.2: Log-log plots of the sum of power spectra [S( f )] against frequency ( f ), in hertz, in

both experiments and each resource scenario. Vertical, dotted lines distinguish two frequency

regimes: a HFR (log f > 0) and a LFR (log f < 0). A marked periodical signal at HFR (≈ 2

Hz) was observed with decreasing resources. At the LFR we defined the scaling exponent β

by S( f ) ≈ f−β; the least-square fittings are indicated by straight lines transposed upward for

clarity, although the narrow range of the LFR makes the scaling questionable (see Fig. 5.4).
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Table 5.1: Montecarlo randomization tests (n=1000) for mean S( f ) value and mean maximum

S( f ) frequency (MMF) changes in the HFR periodical signal ranging from 1 to 3 Hz at different

resource concentration scenarios.

Experiment A Experiment B

Resource comparison Mean S( f ) P Mean S( f ) P

High vs. low 2.68 vs. 11.48 0.000 1.59 vs. 3.55 0.000
High vs. medium 2.68 vs. 8.15 0.000 1.59 vs. 3.19 0.000
Medium vs. low 8.15 vs. 11.48 0.007 3.19 vs. 3.55 0.341

Experiment A Experiment B

Resource comparison MMF P MMF P

High vs. low 1.69 vs. 1.96 0.004 1.87 vs. 1.91 0.562
High vs. medium 1.69 vs. 1.99 0.004 1.87 vs. 1.99 0.185
Medium vs. low 1.99 vs. 1.96 0.740 1.99 vs. 1.91 0.248

of the LFR scaling questionable. Indeed, any nonscaling spectra could
be approximated to a scaling spectrum at sufficiently narrow frequency
ranges. Results were the same for y velocity-transformed series spectra,
suggesting isometric conditions occurred during the experiment. More-
over, spectra of individual time series showed the same trends and similar
periodical signal variances as the averaged series, indicating that the
amalgamated population series that were analyzed, reflected individual
behaviors.

5.4.2 Turning angles

The frequency distributions of turning angles as resources decreased
(Fig. 5.3) showed a relative increase in intermediate-angle classes as com-
pared with in low angle classes, particularly when resources changed from
high to medium concentrations. In contrast, the distribution tails (large an-
gles) were mostly uniform for the three resource scenarios. The angle class
dividing the two histogram regions of contrasting response was the same
for the three conditions (Fig. 5.3). The helical path involved mainly small
turning angles: the larger the angle, the lower was its frequency, whereas
reorientation leaps due to flagellar strokes usually caused strong cell
reorientations (large turning angles). Therefore, based on data (Fig. 5.3),
we chose 100◦ as the cut-off angle between helical paths and reorientation
leaps. The latter govern the long-term searching walk and, thus, can be
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considered as the effective turning angles. If effective directions were
taken entirely at random, one would expect the mean angular deviation
to be 90◦. Deviations caused by active flagellar reorientation of cells have
also been observed in other microorganisms, such as Escherichia coli, with
an average (effective) turning angle of 103◦ (Berg, 1983b).

To improve the analysis of the long-scale component (i.e., for studying
the macroscopic diffusion patterns), it might be desirable to subtract the
helical path signal. Crenshaw and coauthors (Crenshaw et al., 2000) have
appropriately characterized 3D helical tracks by means of the finite-helix-fit
technique. However, even with a good description of the helical path, it is
not straightforward to subtract the helicoid from the original trajectories of
a number of individuals without significantly compromising the reliability
of the long-term walk statistics. In the future, more accurate approaches
for separating the two scale components may improve the characterization
and understanding of the long-term searching behavior of microzooplank-
ton. Nevertheless, our method (i.e., looking at the distribution of the turn-
ing angles), despite its crudeness, is sufficient to preserve the long-term
signature of the walk.

5.4.3 Flight-time intervals

A statistical quantity characterizing long-term random walk patterns is
flight-time interval, i.e., the period between two changes in direction (Man-
delbrot, 1982; Shlesinger et al., 1993, 1995). Because changes in direction
were mainly due to effective turning angles (> 100◦), the flight-time dis-
tributions were obtained by computing the time spent between them. As
resources decreased from high to medium concentrations, we observed a
change in flight-time distributions from exponential to power law in the
searching behavior of O. marina (Pueyo, 2003). However, no substantial
change occurred in flight-time distributions between medium and low con-
centrations (Fig. 5.4). A single value for the power-law exponents of µ ≈ 2
was found in the two experiments. When we randomly shuffled the data
that gave rise to the power laws, the long-range correlations vanished and
we recovered exponential laws as expected. Moreover, crude estimations
of flight times between observable reorientation leaps on the standard O.
marina movement videotapes gave the same qualitative results and expo-
nents for the powerlaws (µ ≈ 2), showing a good relationship between
real reorientation leaps and our effective turning criteria (turning angles
> 100◦).

The exponential distributions of flight times in high resource scenar-
ios gave rise to autoregressive random walks of order 1 (Chatfield, 1984).
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Figure 5.3: Turning-angle histograms scaled from 0 to 180◦. Ordinate is number of observa-

tions. Asterisks in histograms mark the main discontinuity observed (class 90 − 108◦).
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In these so-called Markov chains, the probability of changing direction
is independent of the time walked. Positions depend on previous walk
steps, but long-range correlations are not expected. Exponential laws,
through the Central Limit Theorem, give rise to asymptotically Gaussian
statistics (Brownian motion), and, therefore, macroscopic normal diffu-
sions are expected, the spreading variance of organisms being proportional
to time (Weeks & Swinney, 1998).

When resources are scarce, power-law distributions of flight times
with scaling exponents µ ≈ 2 give rise to the so-called Lévy walks. Also,
the points where effective turnings occur correspond to the points vis-
ited during a Lévy flight (Shlesinger et al., 1995). These distributions
involve long-range correlations, scale-invariance, and superdiffusion phe-
nomena (Weeks & Swinney, 1998). The probability of long travels while
swimming is higher than for random walks with exponential distribution of
flight times. The slight deviations from pure power laws, observed mostly
when resources were scarce (i.e., low-resource scenario) could be caused
by swimming interference between individuals (videotape observations).
In our experiments, low prey numbers coincided with high predator con-
centrations (104 cells per ml). Interference by predators could modify the
intermediate flight length regime by increasing reorientation leaps while
swimming (da Luz et al., 2001). In these cases, these leaps maybe truly
“avoidance reactions” between predators.

5.5 Discussion

The searching behavior of individuals is, at least in part, genetically
encoded. Therefore, we should expect natural selection to operate on ge-
netic variability in perceptual and motor traits underlying both behavioral
decision-making and response times in the location of resources (Bell,
1991). Thus, the ability of an organism to optimize its encounter rate
in a complex and variable environment should be honed and sharpened
through evolution (Catalan, 1999). In O. marina, searching behavior is ad-
justed in relation to resource concentration by two mechanisms controlled
by flagellar movement: (i) at short scales, by amplitude and frequency
changes in the helical path, involving continuous regulation of energy
investment in the beating of transverse and longitudinal flagella; and (ii)
at long scales, by changes in the statistics of reorientation leaps controlled
by discrete strokes of the longitudinal flagellum.

Our observations suggest that the control of flagellar movement by O.
marina admits two extreme searching behaviors in natural environments
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Figure 5.4: Log-linear (high-resource scenario) and log-log (medium- and low-resource scenar-

ios) plots showing the frequency distribution of flight times at each resource scenario in both

experiments. We used bin widths of 2k for the bin k and geometric midpoints of bins to plot the

results. Straight lines show the least-squares fitted regressions. The first point in experiment

B at medium- and low-resource scenarios was spuriously underestimated due to finite scale

effects and, thus, was not fitted.
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with a multiplicity of intermediate behaviors between them. When re-
sources are readily available, O. marina invests more energy in movement
using the longitudinal flagellum (continuous movement combined with
strokes) than in movement using the transverse flagellum. Thus, the heli-
cal path follows a near-linear axis, due to low amplitude and frequency of
gyres. On the other hand, in medium- and low-resource scenarios, the most
common in nature, O. marina invests more energy in movement using the
transverse flagellum, which results in 3D large helicoid trajectories, and in
changing the statistics of the longitudinal flagellum strokes, determining
the scale-invariant Lévy random searches with scaling exponent µ ≈ 2.

Fig. 5.1 shows that Lévy walks do not consist simply in adding long
walks to a Brownian motion. The two types of motion differ in the whole
flight-time probability distribution (i.e., short and long flight times). Lévy
walks not only involve a fat tailed flight-time probability distribution (i.e.,
long travels), but also a “scaling” of all flight times (i.e., no characteristic
size of flight-time intervals exists). Once an observational scale is fixed, a
power-law distribution of flight times (i.e., a Lévy walk) turns out to be a
combination of “walk clusters” with long travels between them, giving rise
to an heterogeneous multiscale-like sampling effort pattern. On the other
hand, an exponential distribution of flight times (Brownian walks) gives
rise to a mostly spatially homogeneous sampling effort pattern (Fig. 5.1).
In comparing Brownian and Lévy motions with the same sampling effort,
differences in the general searching pattern will appear at any scale of ob-
servation, because these differences are caused by the scaling vs. nonscal-
ing global property of the two flight-time distributions. However, the spe-
cific consequences of the increase in the frequency of long flight times (i.e.,
short vs. fat tailed distributions) will not be observed until sufficiently large
spatiotemporal scales of observation are reached. Thus, at certain scales of
observation, Lévy walks may not be translated into an observational macro-
scopic super-diffusion of cell populations (i.e., the spreading variance of
organisms being “more than” proportional to time) or into an observable
decrease of individual re-sampling of the self-backtrails. Moreover, in O.
marina, both effects caused by the fat tail of the Lévy walk flight-time dis-
tribution are even more difficult to observe because long travels have a
strong helical component. Thus, each long time travel becomes shorter in
terms of path length (i.e., linear distance travelled) than in the Brownian
case (high-resource levels), where the straighter paths determine larger
path lengths.

In a 3D world, and given enough time, the probability for a Brownian
random walker to revisit the same point is only about 0.35, while in one
and two dimensions this probability converges to 1 (Feller, 1968). There-
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fore, in a 3D fluid world, changes from a Brownian to a Lévy walk may
not be caused by the need for the walker to avoid re-sampling his self-
backtrails. Rather, it may be caused by the possibility of sampling a given
region combining different sizes of walk clusters and long travels at differ-
ent scales (i.e., a multiscale, multifractal-like pattern (Jaffard, 1999; Nakao,
2000)). Indeed, theoretical models have shown that even in 2D nonde-
structive foraging (i.e., where resampling could not be so bad to improve
encounter rates) Lévy walks are better than Brownian when resources are
scarce (Viswanathan et al., 1999, 2002). Conversely, they show Brownian
motion not as a null model, which should be improved because of high re-
sampling rates, but as another searching strategy which is optimal under
certain conditions (i.e., high-resource levels (Bartumeus et al., 2002). Our
results confirm the theoretical expectation of a switching behavior between
Brownian and Lévy strategies as an optimal solution in different resource
scenarios.

Then, the question turns out to be, what is the advantage to O. ma-
rina of performing “helical Lévy walks” instead of pure Lévy walks? Why
did O. marina increase its helical movement component as resources de-
creased? Several hypothesis can be suggested, including both statistical
or energetical considerations, in order to explain the observed change of
behavior. A walker in a 3D environment, in comparison with a 2D one,
not only should have less probability of resampling its own self-backtrails,
but it also should have more probability of “missing” near targets. There-
fore, we suggest that larger helical paths should lead to more efficient
3D micro-scale explorations. Given the possibility that dinoflagellates use
their chemosensory abilities (Hauser et al., 1975) to find their prey, the ra-
dius and the pitch of the helicoid (Ricci, 1992) should be larger than the
nearby space covered by organisms’ sensorial structures to have an effi-
cient search. Larger helical paths may also increase the long-term Lévy
walk statistical efficiency of encounters by avoiding midterm curvilinear
biases of long travels (Levandowsky & Kaneta, 1987; Kamykowski et al.,
1992). Moreover, while following large helicoids, O. marina invests more
energy in movement using the transverse flagellum than the longitudinal
one. Experimental reactivation of isolated and permeabilized flagella of O.
marina suggests that energetical requirements for both flagella are simi-
lar (Cosson et al., 1988). Therefore, if some energetic advantage is involved
in performing larger helical paths, it should be related not to the differen-
tial use of flagella but to other factors.

A good 3D search should involve both short- and long-term efficient
searching strategies. Optimal long-term searching strategies are inde-
pendent of the dimension of the foraging space (Bartumeus et al., 2002;
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Viswanathan et al., 2001a) but this independence may not hold for the
short-term component of a searching process which may change with the
number of dimensions used in the exploration. The possibility that, in a 3D
environment, the incorporation of large helical paths (i.e., as a short-scale
searching strategy) improves the statistics of encounters by decreasing the
probability of “missing” near targets and/or by avoiding midterm curvilin-
ear biases, or whether it reduces some energetic costs, remains an open
question that needs further consideration.

In conclusion, we suggest that the chance of finding food in 3D envi-
ronments, depends not only on the path lengths (i.e., linear distances trav-
eled) but also on the whole shape of the walk. Long path lengths mainly
explain the avoidance of resampling back-trails but, as we have argued,
is not necessarily the key aspect for optimizing encounters in a 3D ex-
ploration. Efficient sampling in a low-Reynolds number 3D environment
without cues may be based not on rapidly avoiding regions with scarce re-
sources, but on exploring the whole environment at the largest range of
possible scales while maintaining an efficient local exploration (whether
energetic or statistical) of the 3D environment. Based on these sampling
requirements, we suggest that helical Lévy walks optimize random search-
ing (i.e., number of encounters with prey) in 3D environments with low prey
densities. Helical Lévy walks may be as widely spread among dinoflagel-
lates (Kamykowski et al., 1992) and other microzooplankters (Ricci, 1992),
as pure fractal (Coughlin et al., 1992) and multifractal (Schmitt & Seuront,
2001) random walks are among macrozooplankters. However, a variety
of specific motion mechanisms could be involved in this type of random
searching motion.

Further, our results are consistent with the hypothesis that the expo-
nent µo pt = 2 may be universal, i.e., independent of the dimension of the
foraging space (Viswanathan et al., 2001b; Bartumeus et al., 2002) and ro-
bust with respect to short-scale effects, including effects on the organisms’
behavior and physiology (Peters, 1994; Yamazaki & Kamykowski, 2000; da
Luz et al., 2001). The example given here demonstrates the usefulness
of random search theory for providing a more realistic view of ecological
interactions. We hope our case-study will encourage ecologists to reexam-
ine the hitherto, traditionally applied “mean field” assumption in ecological
theory.
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6
Animal search strategies: a

random walk analysis

6.1 Abstract

Recent advances in spatial ecology have improved our understanding of the
role of large-scale animal movements. However, an unsolved problem con-
cerns the inherent stochasticity involved in many animal search displace-
ments and its possible adaptive value. When animals have no information
about where targets (i.e., resource patches, mates, etc.) are located, differ-
ent random search strategies may provide different chances to find them.
Assuming random walk models as a necessary tool to understand how ani-
mals face such environmental uncertainty, we analyze the statistical dif-
ferences between two random walk models commonly used to fit animal
movement data, the Lévy walks and the correlated random walks, and we
quantify their efficiencies (i.e., the number of targets found in relation to
total displacement) within a random search context. Correlated random
walk properties (i.e., scale-finite correlations) may be interpreted as the
by-product of locally scanning mechanisms. Lévy walks, instead, have fun-
damental properties (i.e., super-diffusivity and scale invariance) that allow
a higher efficiency in random search scenarios. Specific biological mech-
anisms related to how animals punctuate their movement with sudden re-
orientations in a random search would be sufficient to sustain Lévy walk
properties. Furthermore, we investigate a new model (the Lévy-modulated
correlated random walk) that combines the properties of correlated and
Lévy walks. This model shows that Lévy walk properties are robust to any
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behavioral mechanism providing short-range correlations in the walk. We
propose that some animals may have evolved the ability of performing Lévy
walks as adaptive strategies in order to face search uncertainties.

6.2 Introduction

Standard methods in spatial ecology assumed Brownian motion and Fickian
diffusion as two basic properties of animal movement at the long-term limit
(i.e., large spatial scales and long temporal scales). Thus, it is assumed that
animal movements can be modelled (at the long-term limit) as uncorrelated
random walks (Okubo, 1980; Berg, 1983a). The problem of uncorrelated
random walks is that they do not account for directional persistence in
the movement (i.e., the tendency by animals to continue moving in the
same direction). Such limitation was overcome with two different types of
random walks, correlated random walks (CRWs) and Lévy walks (LWs).

CRWs appeared in ecology from the analysis of short and middle-scaled
animal movement data. Experiments with ants, beetles, and butterflies
were performed in less than 25 square meter arenas, or otherwise, in their
natural environments, and usually last less than an hour (e.g. (Bovet &
Benhamou, 1988; Turchin, 1991; Crist et al., 1992)). From these stud-
ies, ecologists promptly became aware of the necessity of adding direc-
tional persistence into pure random walks to reproduce realistic animal
movements (Kareiva & Shigesada, 1983; Bovet & Benhamou, 1988). More
recently, the mathematical properties of CRWs were used to explore the
link between individual animal movements and population level spatial pat-
terns (Turchin, 1991, 1998). Further studies have considered the relative
straightness of the CRW i.e., degree of directionality (Haefner & Crist,
1994), or sinuosity (Bovet & Benhamou, 1991; Bovet & Bovet, 1993; Ben-
hamou, 2004), as relevant properties characterizing animal movement.

The analysis of animal movement at larger spatial scales or at longer
temporal scales has given rise to a new category of random walk models
known as Lévy walks (Levandowsky et al., 1988a; Viswanathan et al.,
1996). Animal paths involving large spatial or temporal scales (i.e.,
large-scale animal movement), turn out to be a combination of “walk clus-
ters” with long travels between them. The heterogeneous multiscale-like
sampling pattern generated by such paths are closely related to fractal
geometries (Mandelbrot, 1977) and better modeled by random walks with
Lévy statistics. LWs have their origin in the field of statistical mechanics
and find wide application in physics (Shlesinger et al., 1995; Klafter et al.,
1996; Weeks & Swinney, 1998) and natural sciences such as geology and
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biology (Metzler & Klafter, 2004). Although they have recently gained
attention in optimal foraging theory (Viswanathan et al., 1996, 1999),
they appeared in an ecological context around the same decade as CRWs.
The first mention of Lévy walks as animal search strategies can be found
in Shlesinger & Klafter (1986) (see page 283). After that, Lévy walks were
formally considered by plankton ecologists (Levandowsky et al., 1988a,b;
Klafter et al., 1989).

CRW and LW models have been adjusted successfully to a wide range
of empirical data (CRWs: Kareiva & Shigesada (1983); Bovet & Ben-
hamou (1988); Turchin (1991); Crist et al. (1992); Johnson et al. (1992);
Bergman et al. (2000); LWs: Viswanathan et al. (1996); Levandowsky et al.
(1997); Atkinson et al. (2002); Bartumeus et al. (2003); Ramos-Fernández
et al. (2004)). Recent works have introduced the idea of hierarchical scale-
adjustments on animal displacements (Fritz et al., 2003), and have fitted
field data of specific species (Marell et al., 2002; Austin et al., 2004) by
using both models. All these studies have shown that CRWs and LWs can
be used as fitting procedures to analyze animal movement. Nevertheless,
there is a lack of an explicative framework for such an approach, which
severely limits the biological interpretation of the obtained results. A better
understanding of random searching processes may help to develop random
walk models with sound explicative power sensu Ginzberg & Jensen (2004).
This knowledge could clarify how animals face environmental uncertainty
and reduced perceptual capabilities in large-scale displacements (Lima &
Zollner, 1996). Further, a solid relationship between animal behavior and
the statistical properties of movement could be established, thus uncover-
ing useful links between the behavioral (Bell, 1991) and the pattern-based
approaches common in spatial ecology (Okubo, 1980; Tilman & Kareiva,
1997).

Although some theoretical studies have already shown the potential role
of CRWs and LWs in the understanding of animal random search strate-
gies (Zollner & Lima, 1999b; Viswanathan et al., 1999), two fundamental
questions about CRW and LW models still need to be addressed. First,
quantifying their efficiency as random search strategies based on their re-
spective statistical and scaling properties. Second, developing adequate
biological interpretations of such properties in a random search context.
The present contribution is a first effort to clarify the above points. For do-
ing so, we have structured our analysis as follows. First, we demonstrate
quantitatively relevant differences in the statistical properties of CRWs and
LWs. Then, we discuss how such properties explain the different efficien-
cies obtained when the models are used as random search strategies in
the ecological context. Finally, we suggest how the present results may
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lead to a better theoretical understanding of some fundamental aspects of
large-scale animal displacements in real ecosystems. We would like to em-
phasize that our goal is not to provide recipes to analyze specific empirical
data and determine which models would lead to a better fitting in a partic-
ular case. Instead, our purpose is to provide general criteria to evaluate
why we should expect one of the models to fit better. Providing explica-
tive power to random walk models is especially necessary if such models
are going to be used as null models, as well as if deviations from such null
models are going to be interpreted biologically.

6.3 Methods

Random walks constitute probabilistic discrete step models that involve
strong simplifications of real animal movement behavior. In relation to
more complex behavioralist models including many parameters, random
walk models ultimately express behavioral minimalism (Lima & Zollner,
1996; Turchin, 1998). Their main basic assumption holds that real animal
movements consist of a discrete series of displacement events (i.e., move
lengths) separated by successive reorientation events (i.e., turning angles).
Discretization of complex movement behaviors will determine (after a large
enough number of successive moves) the statistical distribution of displace-
ment lengths on the one hand, and the statistical distribution of changes of
direction (i.e., turning angles) on the other hand. From successive random
draws of such distributions, we can obtain different movement path real-
izations. All the paths obtained by this method have statistical equivalence.

6.3.1 The models

We have used three random walk models in our quantitative analysis. Cor-
related random walks (CRWs), Lévy walks (LWs), and a new model based
on the previous ones which we have named Lévy-modulated correlated ran-
dom walks (LMCRWs). Each model controls the directional persistence of
the movement (i.e., the degree of correlation in the random walk) in a dif-
ferent way. Below we briefly discuss each model and the simulation proce-
dures, leaving to the Appendix 6.6 all the technical details.

CRW models (see Appendix 6.6.1) combine a Gaussian (or other expo-
nentially decaying) distribution of move lengths (i.e., displacement events)
with a non-uniform angular distribution of turning angles (i.e., reorienta-
tion events). These models control directional persistence (i.e., the degree
of correlation in the random walk) via the probability distribution of turn-
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Figure 6.1: (a) Shape of the wrapped Cauchy distribution used in the correlated random walk,

for different values of the shape parameter ρ. (b) Examples of correlated random walks, gener-

ated by wrapped Cauchy distributions with different shape parameters. (c) Power-law distribu-

tions used in the Lévy walk, for different values of the Lévy exponent µ. (d) Examples of Lévy

walks, generated by power-law distributions with different Lévy exponents.

ing angles. In our study, we have used a wrapped Cauchy distribution
(WCD; Batschelet 1981; Haefner & Crist 1994) for the turning angles. Di-
rectional persistence is controlled by changing the shape parameter of the
WCD (ρ). For ρ = 0 we obtain a uniform distribution with no correlation
between successive steps, thus Brownian motion emerges. For ρ = 1 we
get a delta distribution at 0◦ (Fig. 6.1a), leading to straight-line searches
(Fig. 6.1b).

LW models (see Appendix 6.6.2) involve a uniform distribution for the
turning angles, but a power-law distribution for the move lengths (i.e., the
so-called flights). The exponent of the power-law is named Lévy index (
1 < µ ≤ 3, see Fig. 6.1c) and controls the range of correlations in the
movement. LW models thus comprise a rich variety of paths ranging from
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Brownian motion (µ ≥ 3) to straight-line paths (µ → 1) (Fig. 6.1d).

Finally, the LMCRW model (see Appendix 6.6.3) here introduced gener-
ates a random walk with (i) a WCD for the turning angles within a flight,
(ii) a Gaussian distribution of move steps within a flight, (iii) a uniform dis-
tribution for the turning angles between flights, and (iv) a power-law dis-
tribution of flight lengths. As in the LW model, the directional persistence
of LMCRW is also introduced through a power-law distribution of move
lengths (i.e., flights) but we can also modulate or control the degree of di-
rectional persistence during flight lengths through a WCD of turning angles
(i.e., by changing the value of ρ). This new model can reveal which type
of directional persistence controls the optimization of random searches,
whether the power-law distribution of move lengths or the WCD of turning
angles.

6.3.2 The simulations

The statistical properties of random walk models should be evaluated at the
long-term limit (i.e., large spatial scales and long temporal scales) . When
running simulations, this means that both the turning angle and the move
length probability distributions should be thoroughly sampled (i.e., which
is especially important with long-tailed probability distributions). The long-
term statistical properties of random searches only emerge once included
a minimum amount of time and space in the search. The spatiotemporal
scales required for that are not fixed, but organism specific.

A first group of simulations studied the behavior of a relevant macro-
scopic property of random walks: the mean square displacement (msd),
defined as the squared distance that an organism moves from its starting
location to another point during a given time, averaged over many different
random walkers. Msd is related to the CRW metric of net squared displace-
ment but is not exactly the same (see Appendix 6.6.4 for more details). In
these set of simulations we computed the msd for a set of random walkers
moving in a two-dimensional arena at different times considering different
parameter values for ρ and µ in CRWs and LWs respectively.

We devised a second group of simulations in order to determine the
search efficiencies (λη) of the three types of random walks (i.e CRW, LW
and LMCRW models). The objects that are looked for are named targets.
In general, a target may represent any important resource for a searcher
(i.e., food, mates, breeding habitats, nesting sites, etc.). In our simulations
targets are non-mobile, thus we prefer the term target sites (e.g., static
resources, suitable habitats, etc.). We defined the search efficiency func-
tion η as the ratio of the number of target sites visited to the total distance
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traversed by the searcher. Note that in LWs η = η(µ), in CRWs η = η(ρ),
and in the LMCRWs η = η(µ, ρ). Specifically, the simulations quantified the
average search efficiency of a set of random walkers provided with a radial
detection distance rd, that looked for non-mobile circular items with radius
rt (i.e., target sites) in a two-dimensional space with periodic boundary
conditions. Target sites were uniformly distributed in an otherwise homo-
geneous arena. The scaling of the search scenarios is based on a unique
key parameter: the mean free path (λ), which is defined as the average
distance between two target sites. The mean free path is inversely related
to target sites density and searcher’s detection radius and give us the idea
of how far the searcher moves before “detecting” a target (see Appendix
6.6.5). We defined three different search scenarios with increasing values
of λ representing a decreasing gradient of target site densities (we keep
the same searcher’s detection radius for the three search scenarios). To
represent different search strategies, we run the simulations using differ-
ent parameter values for each random walk model (i.e., LW and CRW). The
product λη allows us to obtain a metric for the search efficiency that is
independent of the target site density.

We considered two kinds of encounter dynamics in the efficiency sim-
ulations: destructive and non-destructive. In the case of non-destructive
searches, the searcher can visit the same target site many times. This
accounts for those cases in which target sites become only temporarily
depleted or searchers become satiated and leave the area. In the case
of destructive searches, the target site found by the searcher becomes
undetectable in subsequent displacements, the target site “disappears.”
In this case, just to make averages always with the same target density,
we generate a new target site at random in the searching space. Both
types of encounter dynamics may represent real ecological situations and
should demand different random search strategies in order to optimize the
rate of encounters (Viswanathan et al., 1999). The non-destructive and
destructive searching scenarios represent the limit cases of a continuum
of possible target regeneration dynamics (Raposo et al., 2003). More-
over, the non-destructive case with uniformly distributed targets bears a
similarity to a destructive case with patchy or fractal target-site distri-
butions (Viswanathan et al., 1999). Thus, these simulations cover a wide
range of natural searching scenarios.
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6.4 Results

6.4.1 On the macroscopical properties of CRWs and LWs

Random walk theory assumes that a particularly relevant macroscopic
property of random walks involves the scaling in relation to time of the
mean square displacement (msd) of the diffusing organisms: 〈R(t)2〉 ∼ tα,
where α characterizes the behavior of diffusive processes. In normal (i.e.,
Fickian) diffusive processes the msd increases linearly with time (α = 1).
The most simple example of this, is when particles (or organisms) move
independently and execute uncorrelated random walks i.e., pure Brownian
motion. On the other hand, processes that lead to a nonlinear dependence
of msd over time, known as anomalous diffusion, typically occur in com-
plex or long-range correlated phenomena (Gefen et al., 1983). Anomalous
diffusion arises due to long-range statistical dependence between steps in
a random walk and can involve a sub-diffusive (α < 1) or a super-diffusive
(α > 1) process. The fastest possible super-diffusion occurs when particles
(or organisms) execute unbroken straight-line paths corresponding to
ballistic motion or dispersal with α = 2.

As stated above, CRW models control persistence (i.e., the degree of
correlation in the random walk) via the probability distribution of turning
angles. However, from the macroscopic point of view, CRWs represent
simple Markovian processes that, by their very nature, cannot generate
long-range correlations in the movement (Johnson et al., 1992). Thus, for
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CRWs the msd can depart from the linear increase with time only over a
particular range of temporal and spatial scales, but at the long-term limit
the relation always becomes linear. Therefore, at the long-term limit CRWs
models appear like uncorrelated random walks: they only can give rise to
Brownian motion. Fig. 6.2a shows the behavior of the msd in a CRW as
we vary the shape parameter ρ of the WCD (used to correlate the steps).
For any value ρ < 1 (even for values close to 1, i.e., ρ = 0.95) the macro-
scopic behavior of movement converges rapidly (t ≈ 100) to the Brownian
motion domain. Only for the limit case of ρ = 1 do we obtain a ballistic
motion. Thus, there is no a smooth way to go from Brownian to ballistic
motion by changing the turning angle distribution parameter of CRWs (ρ).
Instead, only two macroscopic motions emerge in the long term limit: pure
Brownian (ρ < 1) or ballistic dispersal behavior (ρ = 1).

When persistence arises through a power-law distribution of move
lengths instead of Markovian short-range angle correlations, a new prop-
erty emerges because of long-range move length correlations. A gradual
change in the Lévy exponent (i.e., µ) corresponds to a gradual change in
the diffusivity (i.e., α) that does not vanish at the long-term limit. A gradual
transition from normal diffusion (α = 1 for µ ≥ 3) to ballistic motion ( α → 2
for µ → 1) becomes possible for LWs (Fig. 6.2b). Therefore, different Lévy
exponents of the power-law distribution of move lengths provide a whole
variety of super-diffusive behaviors (1 < α < 2 for 1 < µ < 3). Thus, chang-
ing the Lévy exponent implies a qualitative change in the macroscopic and
long-term properties of the movement as a whole.

6.4.2 On the search efficiency of the random walk models

Fig. 6.3 shows the changes in the searching efficiency measured as λη of
both a CRW (η(ρ)) and a LW (η(µ)) when varying the parameters control-
ling the degree of persistence in the walk. We have considered three search
scenarios (λ = 100, 1000 and 5000, see Methods and Appendix 6.6.5) rep-
resenting a decreasing gradient from high to low target densities, and two
encounter dynamics, destructive and non-destructive.

In all cases, LWs are more efficient than CRWs. As density diminishes
(i.e., λ increases), LWs become even more efficient (than CRWs) in both
dynamical types of searches, but with different optimal Lévy exponents
(µopt). In the destructive case µopt → 1 and in the non-destructive case
µopt ≈ 2. These results agree with previous works on Lévy walk random
searches (Viswanathan et al., 1996, 1999). Note the convergence of CRWs
(ρ = 0) with LWs (µ = 3) and CRW (ρ = 1) with LW (µ → 1). In the former,
both models correspond essentially to Brownian motion, whereas in the lat-
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ter they give rise to straight-line motion (i.e., ballistic dispersal behavior).
The relevant differences appear precisely in the transition from Brown-
ian to ballistic motion. Within the whole range of possible random walks
from the Brownian (pure random walk) to the ballistic (straight-line walk),
searchers performing LWs exhibit higher efficiency than searchers per-
forming CRWs in the long-term encounter statistics (i.e., η(µopt) ≥ η(ρopt)
in Fig. 6.3).

In destructive searches (Fig. 6.3), revisiting target sites penalizes the
search efficiency because targets are consumed. Therefore, the larger the
persistence in the movement the larger the search efficiency. Persistence
increases with increasing ρ in CRWs and decreasing µ in LWs. However,
changes in Lévy exponent not only modify short-term persistence of the
walk but also involve concomitant changes in the macroscopic properties of
the movement that the CRWs do not have. As µ decreases super-diffusivity
of movement is enhanced (see Fig. 6.2). Super-diffusion increases the effi-
ciency beyond short-ranged persistence, that is why LWs are more efficient
than CRWs in destructive searches.

In non-destructive searches (Fig. 6.3), revisiting sites is not penalized
because targets are not consumed. Therefore, persistence and super-
diffusivity do not influence search efficiency significantly. Indeed, they are
only useful to avoid empty areas created by destructive encounter dyna-
mics. This fact explains why the efficiency of CRWs in the non-destructive
case is ρ-independent. However, the higher values for the LWs efficiency
(which furthermore remains dependent on µ) maybe due to another par-
ticular LW property not shared with CRWs, namely, scale invariance.
Thus, our results clearly show that scale invariance plays a crucial role in
optimizing encounter rates in the non-destructive cases.

Fig. 6.4 shows the searching efficiency measured as λη for the LMCRW
model η(µ, ρ) and λ = 5000 in destructive and non-destructive searches.
Changes in the ρ and the µ parameters account for different searching
strategies with different searching efficiencies. For the destructive case ρ
must be very close to 1 (i.e., move lengths must be straight lines) in order
to get optimal searches. However, for the non-destructive case a certain
degree of sinuosity during move lengths (i.e., 0.8 < ρ < 1 ) does not dimin-
ish the searching efficiency considerably. In non-destructive searches, as
the degree of persistence within flights diminishes, the overall efficiency of
the search diminishes and the Lévy index giving rise to optimal searching
strategies also decreases.

The LMCRW model results for non-destructive dynamics (Fig. 6.4),
show that reorienting the movement at power-law time intervals have
more influence in the search efficiency than small direction deviations
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during flights. This explains why LWs appear robust in their efficiency
even with sinuous flights due to the embedded CRWs. However, persis-
tence within flights cannot fall too low, (e.g., a proper range 0.8 < ρ < 1
), otherwise the pattern of move lengths will lose fractality (i.e., scale
invariance) due to the highly sinusoidal and looping paths, and so no pure
LWs will arise at the necessary scales. Note that for ρ < 1 a natural upper
cutoff appears for the scale invariance, due to the correlation length of
the embedded CRW, and thus super-diffusive behavior does not occur in
LMCRWs.

6.5 Discussion

Most ecological interactions must necessarily begin with a physical en-
counter (i.e., sensu strictu) which usually takes place after an active or
passive searching process. By a search we mean the process of looking
for the presence of real or suspected objects of interest (i.e., food, mate,
shelter, etc.) which we name “targets”. Random search strategies can only
exist when there is some degree of uncertainty in the behavior of targets.
When there is no search uncertainty, because both spatial and temporal be-
havior of targets are known (Garber, 1988), or because displacements are
dictated by strong external cues (Hauser et al., 1975), the resulting animal
movement cannot be considered a search. Those situations where the over-
all animal movement is mainly driven by strong internal navigation mech-
anisms (i.e., migrations) or environmental constraints (i.e., strong physical
barriers) should also not be considered a search.

In any interactive process between individuals, the search is only a com-
ponent among others. In foraging strategies we also may consider the
handling times, pursuit costs, predation risks, discount decisions, prey se-
lection, etc. These components can be subjected to optimization by natural
selection, the search component being more or less relevant depending
on the cognitive capacities of organisms and the predictability of its envi-
ronment. The optimization of a search strategy involves the selection of
a specific set of “rules of search” that enhances the probability of finding
unknown located items.

6.5.1 Systematic and random search strategies

According to the characteristics of the “rules of search” we can classify
the continuum of search strategies in two main types: systematic and
random searches. In systematic searches, the rules to optimally cover a



102 Animal search strategies: a random walk analysis

given area are based on deterministic algorithms (i.e., fixed and organized
plans), while in random searches these rules rely on stochastic processes
(i.e., the sampling of probability distributions). Systematic search strate-
gies only work when some a priori relevant (although partial) information
about target characteristics or locations at “landscape-level” is available.
The Archimedean spirals represent one of the most common systematic
searching rules in homing behaviors (Bell, 1991; Turchin, 1998). As avail-
able information regarding positional, kinetic, or behavioral characteristics
of targets decreases, systematic searches become less effective. In these
situations, animals must attempt to move in such a way so as to optimize
their chances of locating resources by increasing “the chances of covering
certain regions”, and thus, different optimal solutions arise by merely em-
bracing different random strategies (Viswanathan et al., 1999; Bartumeus
et al., 2002; Raposo et al., 2003; Santos et al., 2004). An interesting exam-
ple that illustrates a switch between the two types of search is provided by
the homing behavior of a desert isopod (Hoffmann, 1983a,b). If an isopod
misses the entrance of its burrow by a few millimeters, it must search for
it. If the excursion has covered only a short distance, it searches following
an Archimedean spiral pattern. If the burrow is not found during this initial
phase, the animal extends its range, and moves in broad loops and mean-
ders, returning repeatedly to the starting point of the search (Hoffmann,
1983a). Therefore, when pure systematic search fails, the isopod uses a
mixture of systematic (i.e., returns to the starting point) and random (i.e.,
meandering) search.

The opposite case, the shift from random search strategies to systematic
searches should reflect an increase in the predictability of the spatiotem-
poral behavior of targets. Foraging scenarios involving non-destructive
searches may enhance the incorporation of systematic rules in relation to
the spatial and temporal pattern of rewards (learned after repeated visits
to the targets). This is the case of trapline foraging in bumble bees (Thom-
son, 1996; Thomson et al., 1997; Williams & Thomson, 1998). Hermit hum-
mingbirds traplining also includes systematic “rules of thumb” to directly
interfere with the search success of competitors (Gill, 1988). In this case,
uncertainty arises in relation to how the others behave, and search rules re-
laying on stochastic processes may become an option (particularly for those
individuals repeatedly “failing” in their interactions). Therefore, in any
given environment there might be a range of search strategies that can be
successful, and individuals may differ in the search strategy used. As is rec-
ognized by authors, the extension to what learned systematic search mech-
anisms work in more complex situations remains uncertain (Gill, 1988;
Williams & Thomson, 1998).
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So far, animal search rules relying on stochastic processes are not con-
sidered in behavioral evolution because it is assumed that sensorial or cog-
nitive improvements override the need of random search in nature. How-
ever, it should be considered that: (i) in some search processes a high de-
gree of uncertainty is unavoidable, and (ii) in such scenarios, the success
of the search can be improved by optimizing random search strategies.

6.5.2 Lévy walks and Correlated random walks

The key assumptions of CRWs involve the presence of directional persis-
tence at certain scales. However, random walk models with short-ranged
correlations, such as CRWs, converge to a Brownian motion (i.e., normal
diffusive process) at certain time scales, not very long (Fig. 6.2b). There-
fore, at large enough spatiotemporal scales when persistence breaks down,
the macroscopic statistical properties of CRWs become the same as in un-
correlated random walks. This fact, which is part of the standard random
walk theory, has been used to justify the usage of uncorrelated random
walks and normal diffusion models in ecology (Okubo, 1980; Berg, 1983a).
However, our results show that their properties do not allow the best op-
timal random searches if large enough spatiotemporal scales are of rele-
vance. This might be the reason why other biological considerations such
as dispersal risks or energetic costs are needed in order to obtain optimal
solutions when these models are used as random search strategies (Cain,
1985; Zollner & Lima, 1999b). Indeed, these studies concluded that with-
out biological constraints any random search strategy should be equally
efficient. Our results show that this is not the case.

The key assumptions of LWs involve super-diffusive and scale-invariant
phenomena and ensure: (1) departures from normal diffusion at all scales
(Fig. 6.2b), and (2) the possibility of optimizing encounter rates just by pure
statistical physics considerations in a wide range of different searching sce-
narios (Fig. 6.3). Commonly, departures from normal diffusion have been
attributed to: (i) “large-scale oriented” movements of individuals (e.g.,
seasonal migration, landscape-cues, cognitive-maps, etc.), or (ii) physical
barriers or corridors in the landscape that alter an organism otherwise
random movement (Johnson et al., 1992). However, to exploit the statis-
tical advantages provided by super-diffusion and scale-invariance is not
necessary to assume cognitive mapping or high spatial memory capaci-
ties of organisms (as some recent models suggest (Gautestad & Mysterud,
2005)). Instead, simple “rules of thumb” in accordance with stochastic
laws may be enough. Consistently, scale-invariant animal movement is a
widespread phenomenon in nature, observed from microorganisms to large
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vertebrates. Thus far, Lévy walk patterns have been observed in soil amoe-
bas (Levandowsky et al., 1997), planktonic organisms (Bartumeus et al.,
2003), bumble bees (Heinrich, 1979), seabirds (Viswanathan et al., 1996),
large terrestrial herbivores (Marell et al., 2002), social cannids (Atkinson
et al., 2002), arboreal primates (Ramos-Fernández et al., 2004), and Arctic
seals (Austin et al., 2004).

6.5.3 Lévy walks as adaptive random search strategies

We can inquire whether situations where random strategies are the opti-
mal solutions to a search problem occur with sufficient frequency (at least
to significantly modify the fitness of the populations). And, if so, whether
there are specific biological mechanisms on which natural selection could
impinge to develop specific behavioral traits. Biological mechanisms op-
timizing the “chances of finding” unknown located items should not nec-
essarily be the same as those allowing for the “detection” of such items.
Probably, the selective pressures and the triggering stimuli are different
in each case, and the combination of both mechanisms can provide a huge
behavioral plasticity to adapt searches to widely different ecological sce-
narios.

Based on the standard theory of random walks (Okubo, 1980; Berg,
1983a), it seems reasonable to think that selective pressure on “local scan-
ning mechanisms” may not influence the statistical macroscopic properties
of the walk, although it can provide short-range correlations with the sta-
tistical properties of CRWs. In contrast, selective pressure on “episodic re-
orientation mechanisms” could modify these macroscopic properties, and
therefore change the chances of finding unknown located items. Our quan-
titative results comparing LW and CRW searching efficiencies show that
the optimization of random searches mainly depends on the optimal tem-
poral execution of reorientation events (Fig. 6.3). Even when directional
persistence within displacements is not really high, the temporal execution
of reorientation events is the key factor controlling the main properties of
the random walk (Fig. 6.4). This result supports previous studies demon-
strating the robustness of LWs against short-scale “memory effects” (da
Luz et al., 2001; Raposo et al., 2003). Therefore, random search strategies
are not incompatible with short-scaled (in time or space) “memory effects”
(i.e., local scanning mechanisms, systematic “rules of thumb”, etc).

Overall, we suggest that scale-free punctuations in animal movement
(i.e stops, strong reorientations, behavioral distinctive interruptions dur-
ing the walk, etc.) could be the basis for a stochastic organization of
the search at landscape level. Some preliminary empirical results point
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towards this hypothesis (Bartumeus et al., 2003). The heterotrophic di-
noflagellate Oxyrrhis marina switches from an exponential to an inverse
square power-law distribution of flight times (that is, from diffusive to
super-diffusive behavior) when its prey Rhodomonas sp. decreases in abun-
dance. The specific biological mechanism involved in this searching behav-
ioral change are transient arrests of the longitudinal flagellum beat, which
are observable by simple visual inspection of the animal’s movement. Thus,
continuous helical motion is interrupted by sudden changes in direction
(i.e., reorientation leaps) that govern the long-term searching walk of this
planktonic predator. Although Lévy walk patterns have been identified for
a wide variety of organisms (Viswanathan et al., 1996; Levandowsky et al.,
1997; Atkinson et al., 2002; Marell et al., 2002; Austin et al., 2004; Ramos-
Fernández et al., 2004), the case study of Oxyrrhis marina is so far the only
example where the biological mechanism generating a Lévy-type walk has
been elucidated. The biological mechanisms generating Lévy walk patterns
in other species remain to be investigated. In this sense, two questions
should be answered first: Are these patterns caused by a random search
strategy or have they emerged from complex behavioral processes, exter-
nal drivers, etc.? Can we identify reorientation mechanisms within animal
behavioral traits? We expect that further investigations about when and
how organisms actively discretize their movements (O’Brien et al., 1990;
Kramer & McLaughlin, 2001) will facilitate the finding of adaptive mecha-
nisms capable of optimizing random search statistics.
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6.6 Appendix

6.6.1 Correlated random walks

Correlated random walk (CRW) models are constructed on the basis of an
exponentially decaying distribution of move lengths with a non-uniform an-
gular distribution of turning angles. The latter distribution controls the
directional persistence, i.e., the degree of correlation, in the random walk.
The circular Gaussian distribution and the wrapped Cauchy distribution
(WCD) are typically used as probability distributions for the turning angles
(Cain, 1985; Zollner & Lima, 1999b; Byers, 2001). By varying the shape
of the non-uniform turning angle distribution one can modify the degree of
correlation or directional persistence of a given path.

In our simulations for CRWs, for each new step of movement we se-
lect the turning angles (i.e., deviations from the previous direction) from a
WCD (Batschelet, 1981; Haefner & Crist, 1994). We sample the WCD dis-
tribution by using the inversion method, i.e., we generate turning angle de-
viations from the WCD by inserting a uniform random variable, 0 ≤ u ≤ 1,
into the inverse of the cumulative distribution function. So, the angle devi-
ation θ from a preferred direction φ is obtained from

θ = φ + 2 arctan

[(

1 − ρ

1 + ρ

)

tan

[

π

(

u − 1

2

)]]

. (6.1)

In the calculations we set φ = 0, so the WCD accounts for the tendency,
observed in many organisms, to go straight forward. ρ is the shape param-
eter of the WCD, which controls sinuosity, and to that extent, diffusiveness.
We can change the relative straightness of the CRW by varying the shape
parameter ρ (Fig. 6.1a). For ρ = 0 we obtain a uniform distribution with
no correlation between successive steps, thus Brownian motion emerges.
For ρ = 1 we get a delta distribution at 0◦ leading to straight-line searches
(Fig. 6.1a,b).

The successive move lengths (`) of the CRWs are randomly drawn from
a Gaussian distribution centered at the minimum move length `0 = 1 and
with fixed standard deviation σ = 1. The visual aspect of CRWs can be
checked in (Fig. 6.1b).

6.6.2 Lévy walks

Lévy walk (LW) models involve a uniform distribution for the turning an-
gles, but a power-law distribution for the move lengths (i.e., the so-called
flights). More precisely, LW models exploit a broad class of move or flight
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length (`) distributions named Lévy-stable distributions (Mandelbrot, 1977;
Shlesinger et al., 1995). These distributions have relevant statistical prop-
erties related to the Generalized Central Limit Theorem. Consider distri-
butions that follow the power law P(`) = `−µ. Sums of such variables
converge to the Lévy stable distribution, with Lévy stable index αL = µ − 1.
If the power law exponent µ lies in the interval 2 ≤ µ < 3, then the Lévy
stable distribution of the sums of such variables also has a power-law form.
For µ > 3 the form of the Lévy stable distribution of the sums converges
to a Gaussian distribution due to the Central Limit Theorem. Thus we re-
cover Brownian motion for µ ≥ 3. The case of µ ≤ 1 does not correspond
to normalizable distributions.

In practice, we generate Lévy flights by sampling a power-law distribu-
tion (representing the tail of the Lévy-stable distributions) in the following
way (inversion method, see CRWs)

` = `0 u(1−µ)−1
. (6.2)

Where u is a uniformly distributed random variable (u ∈ (0, 1)), `0 is the
minimum flight length (in our LW simulations `0 = 0.1) and µ the power-law
exponent. To obtain a LW model, once a move length (i.e., a flight) and a
direction become sampled from the respective distributions, the searcher
then “walks” in a straight-line motion until reaching the specified move
length. In LWs, directional persistence intrinsically occurs because of the
power-law distribution of move lengths (Fig. 6.1c). This feature explains
the existence of ultra-long straight travels in LWs, which are rarely or
never observed in CRWs. As µ diminishes the probability of long travels
increases, thus the directional persistence in the movement also increases.
LW models thus comprise a rich variety of paths ranging from Brownian
motion (µ ≥ 3) to straight-line paths (µ → 1) (Fig. 6.1d).

6.6.3 Lévy-modulated correlated random walks

If we relax the condition of straight-line move lengths of LW models by
introducing a CRW behavior during a LW move length period, we then ob-
tain a new model. We have named this new random walk model the Lévy-
modulated correlated random walk (LMCRW). In the LMCRW model, the
flights consist of a series of steps correlated through a series of turning an-
gles randomly drawn from aWCD. The length of the steps within a flight are
randomly drawn from a Gaussian distribution with `0 = 1 and σ = 1 until
reaching the specified Lévy flight length. Thus, the LMCRW model gener-
ates a random walk with (i) a WCD for the turning angles within a flight,
(ii) a Gaussian distribution of move steps within a flight, (iii) a uniform
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distribution for the turning angles between flights, and (iv) a power-law
distribution of flight lengths. As in the LW model, the directional persis-
tence of LMCRW is also introduced through a power-law distribution of
move lengths (i.e., flights) but we can also modulate or control the degree
of directional persistence during flight lengths through a WCD of turning
angles. Indeed, flight lengths are not necessarily related to a fixed walk-
ing distance because of the existence of turning angles deviations within
flights.

6.6.4 Mean square displacement simulations

In two dimensional systems, the mean squared displacement from a start-
ing reference point (x0, y0) of a population of N random walkers at a given
time t is computed as,

〈

R(t)2
〉

=
1

N

N

∑
i=1

[

(xi(t) − x0)
2 + (yi(t) − y0)

2
]

. (6.3)

where xi(t) and yi(t) are the cartesian positions at time t of individual i. The
scaling behavior of msd with time (〈R(t)2〉 ∼ tα) characterizes the spread-
ing rate of diffusive processes. A value α = 1 indicates normal diffusion
and α 6= 1 indicates anomalous diffusion. Superdiffusion leads to α > 1.

The mean squared displacement (msd) is a traditional metric of random
walk theory (Berg, 1983a; Shlesinger et al., 1995). In the context of sta-
tistical physics and the study of random walk diffusive properties, the msd
involves an “averaging” process over an ensemble of random walking par-
ticles. A measure of α can also be obtained from a single random walk, if
the population average is replaced by a time average, as is done in Hurst
analysis and similar methods. We have computed the msd for LWs and
CRWs by “averaging” over ensembles of Lévy and correlated random walk-
ers respectively. In Kareiva & Shigesada (1983) the msd for correlated
random walkers is calculated analytically and named expected net square
displacement. Under specific sets of parameters, the msd averaged over
an ensemble of correlated random walkers and the expected net square
displacement should coincide.

6.6.5 Search efficiency simulations

We assume that the search is performed in an homogeneous bidimensional
space, with target sites distributed randomly. The searcher moves with
constant speed and with random directions and move lengths chosen from
their respective distributions. During a walking step, if a target site lies
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within a direct detection distance or radius rd, then we register an en-
counter. That walking step is then truncated and the searcher starts a new
displacement by selecting a new direction and a new move length from the
respective probability distributions. As both the searchers and the target
sites can be represented as circles, we should consider both the detection
radius of the searcher rd and the radius of the target sites rt. However, this
is equivalent to consider a detection radius R = rd + rt and the target sites
as points in the space rt = 0.

The whole search process is scaled on the basis of the mean free path
parameter λ. The size of the system (L), the number of target sites (Nt) and
the detection distance or radius (rd) set the mean free path (λ). In a random
searching process, we can express λ as the average distance between two
target sites. This distance is inversely related to the target sites number Nt

and the radius R, and directly related to the search area L2, where L is the
one-dimensional size of the system. For two dimensional systems we have,

λ ≈ L2

2RNt
. (6.4)

Without loss of generality we fixed the minimum step length l0 = rd =

0.5, R = 1 and Nt = 25. Then, we choose λ = 100, 1000, and 5000 to
represent a decreasing gradient in the density of target sites, and we finally
computed L from Eq. 6.4. Note that several combinations of the parameters
rd, Nt, and L leading to the same λ will give the same results. In this sense,
search scenarios are described by a unique parameter λ which is the key
scaling parameter with space dimensional units. Since our interest lies in
long-term search statistics we perform walks of 107 steps and compute the
search efficiency function η as the ratio of the number of target sites visited
to the total distance traversed by the searcher.

Our focus relates to the search efficiency of a free-ranging behavior
within a wide range of scales. Thus, in these simulations, we represent an
effectively infinite landscape by means of periodic space boundaries (i.e.,
organisms leaving the landscape on one side emerge from the opposite
side). Although landscapes with no edges do not exist, the statistics ob-
tained with this procedure has greater precision than with reflecting or
absorbing boundary conditions. In these simulations, reactive behaviors
occur only due to encounter processes but never due to other aspects, such
as landscape barriers or fragmentation, not considered here.

The software has been developed on C++ programming language and
Linux environment. Simulations involve high-computational costs and op-
timization procedures have been used to compute search efficiency aver-
ages. In the simulations several searchers are moving at the same time to
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improve the statistics and optimize computational costs. The searchers do
not interfere between them, and the overall dynamics is also not altered.


