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Gap percolation and dispersal

strategies in rainforests

7.1 Abstract

Rainforests biodiversity is sustained by the three-dimensional structure of
their canopy which provides a wide range of physical microenvironments.
Given the dynamic nature of the forest, the recognition of stable vertical
layers or strata in the canopy is controversial. The spatial characterisation
of potential habitats of understory species is not straightforward due to the
complex structure of rainforest canopies and the wide ecological variability
to which rainforest species can be adapted. Here we present a new descrip-
tion of potential understory habitats that give rise to a well-defined char-
acteristic vertical scale of forest organization hc ≈ 13m. Species living in
microenvironments occurring at canopy heights below this critical height
hc can only experience landscapes with disconnected habitat patches (i.e.,
fragmented habitat landscapes), while those species capable of living also
above hc will experience a fully connected landscape of suitable microen-
vironmental conditions. The possible implications for plant dispersal and
animal colonisation strategies living at the understory or close-to-floor are
discussed in relation to rainforest gap-dynamics, habitat loss and habitat
fragmentation processes. Long-range and directed dispersal strategies
(e.g., plant seed dispersal by animals) are optimal for those species liv-
ing below hc, providing the best exploration of scarce habitats and a major
robustness to habitat changes. On the other hand, dispersal strategies of
those species capable to exploit habitats above hc need not to be based on
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directed long-range mechanisms. Different dispersal strategies may in turn
imply different sensitiveness of species to habitat loss and habitat fragmen-
tation processes in the rainforest.

7.2 Introduction

Vertical organisation of trees and plants is a characteristic feature of rain-
forests. The so-called canopy structure provides the forest with a three-
dimensional structural matrix where a wide range of community functions
must be accomplished. Thus, the comprehension of canopy structure char-
acteristics actually provides an appropriate framework to study the rela-
tionship between structure and function in ecosystems (Richards, 1952;
Whitmore, 1997; Terborgh, 1992).

The canopy height variability of rainforests is a relevant descriptive
factor of the changes in the quantity and quality of light determining
microenvironment temperature, humidity, and soil moisture (Denslow,
1987; Becker et al., 1988). The structure of canopy heights has a very
important role in shaping different microenvironments, that ultimately
determine the threshold conditions that constraint plant growth and phys-
iology (Zagt & Werger, 1996; Leigh, 1999), as well as physiological limits
for many arboreal and terrestrial animals (Shelly, 1984; Leigh, 1999).
These microenvironments strongly influence the competitive outcomes of
different species living in the understory or the rainforest floor (Leigh &
Wright, 1990; Reagan, 1992). Therefore, canopy height structure involves
the three-dimensional organisation in space of a wide range of above-
ground vegetation components (e.g trees, shrubs, herbaceous plants,
lichens, fungi) and animal life forms (e.g., amphibians, small reptiles and
mammals, arthropods and invertebrates) (Parker, 1995; Leigh, 1999).
Overall, canopy height structure shapes and constrains the biodiversity of
understory and close-to-floor species (Gilbert, 1980).

The traditional analysis of vertical forest architecture has been ap-
proached from the study of profile diagrams obtained from measurements
of the trees in narrow strips of the forest (Richards, 1952; Terborgh, 1985).
Since then, the vertical structure of forests is typically defined as layers or
strata. The number of strata in rainforests is supposed to be greater than
in temperate forests (Terborgh, 1985). Moreover, conceptual models exist
to explain the organisation of canopy forests in strata (Terborgh, 1992).
Nevertheless, strata are largely subjective and their exact demarcation
is not obvious as the layers grade into each other. Recent techniques
are making use of remote sensing analysis (such as laser altimetry) that
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allows to obtain well-defined profiles based upon standardised measure-
ments (Weishampel et al., 2001; Drake et al., 2002). The recognition, at
different heights in the rainforest canopy, of different structures, species
or environments to a degree that may define identifiable zones, is a useful
aid to description or analysis but it has seldom received critical examina-
tion during decades (Smith, 1973; Baker & Wilson, 2000; Parker & Brown,
2000). Indeed, stratification can be considered a simplification and an
abstraction given the dynamic nature of the forest. A forest is in a con-
tinuous state of flux, it consists of a mosaic of patches at all stages of the
growth cycle (Whitmore, 1997). The dynamical changes in time and space
of canopy gaps modify the intermingling of tree crowns in their search
for light, therefore screening a possible stratified organisation of plant
species. In this context, the existence of universal and robust properties in
the vertical structure of rainforests is still an unresolved question.

These complementary perceptions of the structure of forest canopy (as
vertically stratified or as a mosaic of growing gaps) give rise to a different
spatial characterisation of understory species potential habitats. On the
one hand, the ’static’ vision is used to delimitate habitats in the vertical
axis. Thus, emphasising the existence of specialist species adapted to live
in certain canopy heights, as well as the existence of vertical competitive
segregation processes of related species (Terborgh, 1992; Reagan &Waide,
1996). On the other hand, the ’dynamic’ vision highlights the existence of
strong relationships between understory species and certain growth cycle
phases of the forest (i.e., gap-phase, building-phase, and mature-phase in
Whitmore (1988)). Thus, potential habitats differentiation is based on the
XY-plane dimension of the forest. The typical light-demandant and shade
tolerant species distinction comes from such a dynamical envision of the
rainforest canopy (Welden et al., 1991; Chesson & Pantastico-Caldas, 1994;
Whitmore, 1997; Schnitzer & Carson, 2000; Molino & Sabatier, 2001).

However, the survival of many species in the understory depends on a
great complexity of intertwined factors that must be sorted within a broad
ecological or environmental range of conditions. Thus, although the life-
history traits of some rainforest species may be related to a very specific
set of ecological conditions, a wider range of survival conditions is also
possible for many species. In particular, the possibility of covering a given
range of conditions by some species might influence their survival on sev-
eral growth cycle phases or on different vertical strata. In these cases, we
need more realistic habitat characterisations based on the integration of
the whole range of microenvironmental conditions in which the species is
able to survive.

To understand how canopy structure is related to habitat availability in
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species adapted to different ecological ranges (or microenvironmental con-
ditions) we propose a new characterisation of rainforest understory habi-
tats that integrates both previous envisions (i.e., static and dynamic) of
rainforests. This characterisation of habitats takes into account the whole
three-dimensional structure of vegetation by considering both the vertical
layered structure on the Z axis, and the XY-plane mosaic structure itself.
The habitat is defined as the whole set of microenvironments that exist
below a maximum canopy height. The higher the maximum height, the
wider the range of potential environmental conditions involved in the habi-
tat. Thus, it is explicitly assumed: i) the capacity of many rainforest species
to exploit different growth cycle phases as well as different canopy layers,
and ii) the complex spatial pattern of understory microenvironments. Such
a definition of habitat allows for the emergence of a well-defined critical
height separating two domains in forest architecture. This critical height
scale is obtained from the analysis of the spatial distribution of low canopy
points (Welden et al., 1991; Condit, 1998) and reveals a threshold in the
vertical organisation of the forest structure which is clearly related to the
gap-dynamical aspects of the forest. The geometrical properties related
to gap connectivity imposed by this threshold might have non-trivial con-
sequences for dispersal or colonisation strategies of animals and plants
within the understory or close to the forest floor. By means of a Lévy flight
model the effect of a percolation threshold on dispersal strategies is illus-
trated.

7.3 Barro Colorado Island plot

We have used data on canopy height taken from the Barro Colorado Island
(BCI) 50-ha plot (Hubble & Foster, 1986; Condit, 1998) that correspond to
annual censuses of 5x5 meters resolution made from 1985 to 1993. Large
forest plot research projects provide large sets of data collected using stan-
dardised techniques. The method used to estimate canopy height is speci-
fied in Hubble & Foster (1986) and Condit (1998). The canopy height data
have already been used to map canopy gaps and their changes through
time (Hubble & Foster, 1986) and as a way to assess light environment for
saplings below (Welden et al., 1991). We have defined low-canopy points
(LCP) as those sites where the maximum canopy height is lower than some
given threshold (h). Thus, a different set of LCP (Ω(h)) will be obtained
using different threshold heights. For each chosen height, we get a set
of canopy sites and a set of low-canopy sites (i.e., LCP). Low-canopy sites
may be named also “gap” sites although we must understand a “gap” in
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a broader sense than commonly used in rainforest studies. A set of gap
sites may represent, in this case, a set of suitable patches conforming a
three-dimensional habitat were a species can survive.

As an example, for arboreal species, low-canopy maps may define a
threshold height below which a range of suitable understory habitats or
environmental conditions are possible, involving both different strata and
growth cycle phases. Moreover, canopy height is a good surrogate of the
behaviour of canopy light transmittance from the top to the bottom of the
canopy in spite of the fact that other structural factors of the canopy such
as the spatial distribution of trees and foliage could provide a potential
source of variability of the understory light levels (Pelt & Franklin, 2000).
As a consequence, low-canopy maps (LCP spatial distribution) could also be
shaping the landscape of potential available terrestrial microenvironments
for some close-to-floor or terrestrial species (i.e., invertebrates and small
vertebrates) strongly dependent on some light-related descriptors such as
quantity and quality of light irradiance, temperature or humidity.

By progressively increasing the low-canopy cutoff by one-meter steps
( from a minimum value of 1 m to the maximum value of 35 m height),
35 different low-canopy maps can be obtained representing habitat avail-
ability landscapes for different species. In Fig. 7.1 examples of LCP maps
are shown for three different cutoff heights (h). Black cells represent suit-
able (available) habitat. White cells represent non-suitable habitat. As
expected, the number of suitable patches Nω(h) grows with h. The set of
LCP grows in size and appears to be correlated in space: the new LCP that
appear as h grows tend to be close to the previous ones.

7.4 Percolation in low-canopy maps

The analysis performed in this study involves the presence of a critical
height at which canopy gaps percolate through the entire forest. Percola-
tion is recognised as a key property in landscape ecology (Gardner et al.,
1987; Turner et al., 2001). When some set of neighbouring, connected
small-scale sites define a cluster spanning the entire system under con-
sideration, such cluster is called a percolation cluster (Peitgen et al., 1992;
Stauffer & Aharony, 1985; Milne et al., 1996; Keitt et al., 1997). Percolation
phenomena influence metapopulation dynamics (Andrén, 1994; Bascompte
& Solé, 1996; Wiens et al., 1997; With & King, 1999; Solé et al., 2004),
invasion processes (Loehle et al., 1996; With, 2002), and are relevant to
conservation biology (With, 1997; Bunn et al., 2000) and ecosystem func-
tion (Gamarra & Solé, 2002).
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Figure 7.1: Low-canopy maps from Barro Colorado 50-Ha plot 1985 census data, see text.

Here black cells are low-canopy points (LCPs) indicating suitable habitat. Non-suitable habitat

is represented by white cells. LCPs are 5 × 5 m square sites such that their canopy is lower than

some given threshold h. Here: Top h = 5m, Middle h = 10m and Bottom h = 15m. Close to

hc ≈ 13m the set of LCPs becomes connected.
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More precisely, let us consider the set of low-canopy points (LCP) Ω(h)

that is defined for a given height h. For each h, a different set will be ob-
tained. Fig. 7.2a shows the monotonic increase of Nω(h), defined as the
number of points in the set Ω(h) ) as h grows. However, the geometrical
properties displayed by Ω(h) are far from monotonous. One key property
is the emergence of percolation at Nω(hc) once a critical canopy height hc

is reached. A very useful characterisation of the transition to percolation
in a lattice is provided by the computation of the time required for a “fire”
to propagate through the system (Schroeder, 1991; Stauffer & Aharony,
1985). Let us assign an integer value S(i, j) = 1 to each LCP on Ω(h), and
S(i, j) = 0 otherwise. A simple burning algorithm is defined as follows: (1)
at step t = 0, the LCP at one edge of Ω(h) are burned, i.e., they take a new
state S(i, j) = 2; (2) at the next step, those LCP that are nearest neighbours
to burned sites are also burned. In this way, the fire propagates until no
new LCP become burned (i.e., fire extinction) . The total time required
to complete the fire spreading Ts (i.e., the time until fire extinction), is
computed for different heights h. At percolation, Ts(h) will present a max-
imum. For the BCI 50-ha plot the maximum Ts(h) is reached at a height
of h ≈ 13 (Fig. 7.2b). The presence of a maximum and the overall profile
obtained in Fig. 7.2b is easily understood in terms of the complexity of the
underlying landscape. For h < hc the fire hardly spreads due to the frag-
mented nature of Ω(h), therefore fire extinction is rapid and Ts(h) is low.
For h > hc, a more or less continuous set of connected gap sites is avail-
able with a rather homogeneous structure, and therefore, the time until
fire extinction is large. Just at the transition h ≈ hc, the landscape Ω(hc)

is a fractal object (Solé, 2000) and the fire no longer propagates through a
simple geometrical system. Instead, the percolation cluster displays com-
plex features at multiple scales and the fire must follow such features over
time. In a way, the transient time is tied to how difficult it is to describe the
object. The divergence in Ts(hc) is characteristic of complex systems at the
phase transition points (Peitgen et al., 1992; Solé, 2000).

In two-dimensional random uncorrelated landscapes, the spanning clus-
ter of connected gaps would appear at a gap fraction pc ' 0.40725 (Stauffer
& Aharony, 1985). However, at the BCI 50-Ha plot, the largest cluster
shows off at a somewhat greater gap fraction (see Fig. 7.2b). We simu-
lated the fire spreading algorithm for both types of landscapes (i.e., the
real BCI landscape and a random landscape with the same LCP). Above hc,
the landscape fractal dimension (box counting method) does not differ that
of a purely random landscape (D ≈ 2). Below it, fractal dimension gradu-
ally diminishes as gap sites become more sparse (Fig. 7.2c). The decrease
in fractal dimension can also be explained in terms of strongest correla-
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Figure 7.2: Percolation in the BCI plot, as measured from the burning algorithm. A maximum

is reached at h ≈ 13m, indicating that a percolation cluster is present. (a) Gap fraction in

relation to forest height. Gap fraction is defined as the fraction of LCPs (or suitable sites) at

every height (i.e., Nω(h)/Ntotal). Dashed lines indicate 95% confidence intervals for a series of

eleven years (1985-1995). The arrow shows the height at which percolation should appear in

a random landscape (lattice) under a Moore neighbourhood (8 nearest neighbours). In these

type of lattices the critical value for the gap fraction is pc ' 0.40725. (b) Fire lifetime (Ts(h)) in

the burning algorithm. Black circles depict the results in the real landscape (1985 census data).

White circles represent the results for 10 different random landscapes with the same number

of LCPs. Dashed lines are confidence intervals for 10 different burning algorithms for every

case. (c) Corresponding average fractal (box-counting) dimension plus confidence intervals

for the whole 1985-1995 series. (d) Fractal behaviour close to the percolation threshold. The

cumulative distribution of gap area sizes is shown for three different heights: h = 8 (squares),

h = 10 (diamonds) and h = 14 (circles). As expected for a fractal, percolating cluster, a power

law is obtained at h ≈ hc , i.e., N>(G) ≈ G−β, with β = 0.79 ± 0.02 and thus, N(G) ≈ G−γ with

γ = β + 1 = 1.79.
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tions in gap spatial distribution below hc. The strong spatial correlations
between gap sites below hc explain why Ts(h) is higher than in random
landscapes for (h < hc) (Fig. 7.2b). The differences between random and
real BCI landscapes point to the greater importance of local connectivities
close to the forest floor, due to greater spatial correlations.

At hc, a very large cluster of connected LCP emerges, allowing for long-
range correlations through all the landscape. Moreover, the distribution
of gap area sizes in the percolation threshold is fractal, that is, no charac-
teristic area sizes are identifiable. In Fig. 7.2d the cumulative distribution
N>(G) is shown, defined as

N>(G) =

∫ ∞

G
N(G)dG, (7.1)

where N(G) is the number of gaps of size G. The shape of this distribu-
tion changes with h, and actually reveals a scaling law

N(G) ≈ G−γ · exp(G/G∗), (7.2)

where G∗ is a given ( h-dependent) cutoff. Once h = hc is reached, a
shift from a set of LCPs with a characteristic length scale to a scale-free
(fractal) pattern is observed. The presence of a power-law is consistent
with the existence of a percolation phase transition.

7.5 Dispersal strategies

Given the previous results, and in relation to species habitat availability, we
aim to know the metapopulation consequences of the percolating geome-
try observed in rainforests architecture. The potential habitat availability
for a species depends on two main factors: i) species biological constraints
(i.e., physiological, behavioural or ecological) and ii) spatial and dynamical
properties of the habitat. Within the biological constraints, both the species
ecological ranges and their dispersal or colonisation strategies are of main
importance in order to properly exploit the habitat (With & King, 1999).
Thus, a good question to be answered is, how does habitat loss and frag-
mentation influence habitat availability in species with different ecological
ranges and different dispersal strategies?

A Lévy flight model has been introduced to study the effect of disper-
sal or colonisation processes in different availability landscapes (i.e., low-
canopy maps) by rainforest plants or animals living in the understory (ar-
boreal) or close-to-floor (terrestrial). Lévy flights are random walks char-
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acterised by the fact that the length of each successive steps or jumps lj
varies according to a power law function of the form:

P(lj) = l
−µ
j (7.3)

with 1 < µ ≤ 3. Values µ ≤ 1 do not correspond to normalisable proba-
bility distributions. Thus, a Lévy flight has no intrinsic jump length scale,
and jumps of seemingly very long length may be observed. The power law
exponent µ describing the jump length distribution is named Lévy expo-
nent or Lévy index defininig a continuum of strategies from long-range to
short-range dispersal. As the Lévy index increases from 1.1 to 3 extremely
long jumps occur with less frequency, and thus a reduction in the overall
dispersal scales is expected (from super-diffusive to gaussian macroscopic
diffusion). In particular, for µ ≥ 3 typical Brownian dispersal strategy is
recovered. Lévy flight patterns are common in large-scale animal move-
ments (Viswanathan et al., 1999; Marell et al., 2002; Bartumeus et al.,
2003), some of them inhabitants of the rainforests (Ramos-Fernández et al.,
2004).

For each of the low-canopy maps obtained, different dispersal or coloni-
sation strategies were simulated by changing the Lévy exponent of Lévy
flight distribution from 1.1 to 3. Thus, the whole gradient from Lévy to
Brownian strategies was covered. The results obtained are the same for
both periodical and absorbent boundaries. The simulations proceed as fol-
lows: (1) An individual (or group of individuals) located in a suitable habitat
is dispersed to another point of the landscape by randomly drawing a move
or jump length from a Lévy flight distribution (i.e., truncated power-law
with a range of jump lengths between 5 and 1000 m) (2) If the cell rep-
resents a suitable habitat, the species occupy the new habitat. If it is a
non-suitable habitat or if it is an habitat already occupied, the individual
(or group) is believed to be non viable in that cell and dies. (3) From the
pool of habitats occupied (both old an new habitats included) an individual
(or group) is chosen at random and a new dispersal/colonisation event is ex-
ecuted. (4) The simulation finishes when a certain dispersal effort has been
made by the whole dispersing population. This dispersal effort is measured
in terms of a total dispersal distance traversed by the population.

In particular, we define the dispersal efficiency function η(µ) to be the
inverse of the total distance traversed by the population (i.e., the inverse
of dispersal effort), so that:

η(µ) =
1

< l > N
(7.4)

where, N is the mean number of flights taken in a Lévy dispersal process
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Figure 7.3: Left panel: Percentage of occupied landscape related to Lévy index exponent

values (µ). Different low-canopy maps obtained at different heights (i.e., 5, 7, 10, and 15 m)

show different optimal Lévy indexes. When higher cutoff heights are chosen, and thus, larger

suitable habitat is being considered, higher is the optimal Lévy index. Right panel: A change

from low to high optimal Lévy indexes (µo), i.e., large-range to short-range dispersal strategies,

is observed as cutoff heights are increased from 1 to 35 meters. The asymptotic behaviour of

this relationship is due to a percolation effect in the landscapes. Average and standard deviation

values are computed from 25 curves obtained.

and < l > is the mean dispersal-jump length of the process. Thus, dis-
persal efficiency is defined as in Viswanathan et al. (1999) but it is com-
puted as a population dispersal efficiency and not as an individual search-
ing efficiency. A low value of η can result from either a large N or a large
< l >, corresponding to large and small µ, respectively. Small µ involves
Lévy dispersal strategies based on few dispersal events but covering long
dispersal distances, while large µ involves Brownian dispersal strategies
that are based on a high number of local dispersal events. Thus, it is as-
sumed that large-range dispersal involves higher time or energetic costs
than short-range dispersal. Defining efficiency in such a way, and given a
certain amount of time (or distance travelled), dispersal strategies based
on Lévy distributions with small Lévy indexes (i.e., µ ≤ 1.5) provide a re-
duced statistical sampling power while those based on large Lévy indexes
(i.e., µ ≥ 2.5) provide a reduced spatial sampling power. For any land-
scape, the optimal Lévy index will always be within the intermediate range
1.5 < µ < 2.5. However, a unique optimal µ value emerges for a specific
landscape configuration.

For a given dispersal efficiency we compute the percentage of new oc-
cupied landscape as the ratio of the number of new occupied landscape



124 Gap percolation and dispersal strategies in rainforests

(i.e., number of suitable occupied cells previously non-occupied) to Nw(h)

(i.e., number of suitable cells). In Fig. 7.3, left different habitat suitabil-
ity landscapes show different optimal Lévy indexes (µ). As higher cutoff
heights are chosen to obtain the low-canopy maps (i.e., from 5 to 15 me-
ters), higher is the optimal Lévy index. Fig. 7.3, right shows the optimal
Lévy indexes (i.e., those indexes showing the maximum percentage of suit-
able habitat occupied provided certain dispersal effort) for each of the 35
low-canopy maps. As higher canopy cutoff heights are considered, more
connected low-canopy maps are obtained, and a change from Lévy to Brow-
nian dispersal strategies can be observed as we increase the cutoff height.
An asymptotic behaviour related to the percolation effect is observed.

7.6 Discussion

Early studies of canopy structure suggested that the vertical organisation
of canopy trees was layered and that some functional processes of rain-
forests should be dependent on this vertical layered structure (Richards,
1952). However, some authors have recently shown some limitations of
’classical’ stratification studies in relation to scale dependence, point of
reference and spatial averaging. They suggest that it may be more fruit-
ful to discard the presumption of stratification entirely (Parker & Brown,
2000). However, it is the lack of objective quantitative measures that has
prevented to rigorously define the presence of well-defined scales in rain-
forest spatial organisation.

In this study, we have shown that one of these possible scales can
be described in terms of the percolation of canopy gaps once a critical
canopy height (hc) is reached. Indeed, when forests height-class distri-
butions are complex (i.e., highly continuous distributions) this percolating
critical canopy height (hc) may provide useful structural and dynamical in-
formation about the forest. On the other hand, if height-class structure is
simple (e.g., savannah forests) it may be better to identify the real strata
(i.e., height classes) of the forest. Strictly speaking, the percolating crit-
ical canopy height (hc) is a topological measure that only depends on the
height-class structure of the forests. We have to look at the physical and
dynamical factors providing a given height-class distribution to understand
the emergence of a specific hc. The most important factors involved in
height-class distributions are density, gap-dynamics and external pertur-
bances. In natural monospecific forests (i.e., single species forests with
complex height-class distributions) this integrative measure may also pro-
vide comparable information on forest general status. Traditionally, the-



Discussion 125

oretical analyses of gap-dynamics has been focused on the processes of
gap formation and canopy recovery (Runkle, 1984; Solé & Manrubia, 1995;
Kubo et al., 1996; Katori et al., 1998; Iwasa, 2000). However, these studies
are typically restricted to gaps defined at some arbitrarily chosen height.

In an early study (involving the analysis of a single-height snapshot) the
loss of spatial gap correlations at some given canopy height was explained
in terms of tree fall dynamics (Solé & Manrubia, 1995). More recently,
the influence of neighboring sites on transition rates (i.e. from non-gap to
gap sites and viceversa) has been studied in detail (Schlicht & Iwasa, 2004;
Satake et al., 2004). It is known that the rate of transition from a non-gap to
a gap site increases with the number of neighbours that are currently in the
gap state (Hubble & Foster, 1986; Kubo et al., 1996; Runkle, 1984; Kubo
et al., 1996). This relationship may cause higher spatial correlations than
expected from a pure random gap-formation process. However, the exact
function relating the number of gap-state neighbours and the transition
rates, as well as its possible dynamic consequences, have just started to be
explored empirically and theoretically (Kubo et al., 1996; Schlicht & Iwasa,
2004; Satake et al., 2004).

Our results for the BCI rainforest, show that below hc there exist higher
correlations than the ones given in a pure random percolation process
(where LCP would show a random distribution). This higher correlations
disappear at h > hc, consistently with a random-like distribution of crowns.
Future models of gap-dynamics should take into account the presence of
this critical height and the presence of non-random landscape correlations
below the percolation height (hc), providing a dynamical explanation for
both.

The network of relationships established by rainforest species to sur-
vive may involve several spectra of microenvironments or growth cycle
phases. Indeed, species are adapted to different ecological and environ-
mental ranges. The understanding of biotic diversity begins with an un-
derstanding of the trade-offs that lead to specialisation. These trade-offs
imply that “jack of all trades is master of none” (Leigh & Wright, 1990).
An ecological continuum of strategies between those species adapted to
very narrow and those adapted to very broad ecological ranges (i.e., spe-
cialists vs. generalists) exists. Within this continuum, the potentiality of
exploiting habitats not only below the critical height hc but also above,
force very different ecological and evolutionary scenarios, in particular, for
the optimisation of dispersal or colonisation rates in new available terri-
tory, either by increasing resource utilisation scale (O’Neill et al., 1988) or
by using different movement strategies (With & King, 1999). The main as-
sumptions involved in the dispersal model used to illustrate this fact, are: i)
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Species habitat definition can integrate both different growth cycle phases
(i.e. gap-dynamics stages) as well as different vertical microenvironments.
Thus, low-canopy point maps can be related to habitat availability land-
scapes. ii) Strong habitat dependencies can be established for the survival
of some species of the rainforests. iii) Random and local conditions trigger
the ultimate dispersal process of the species. And iv) Extinction events are
negligible once the species are settled in a suitable habitat, or similarly, the
rates of colonisation are faster than those of extinction providing an always
growing population. These conditions are general enough to cover a wide
range of species living in the understory rainforest ecosystem.

Interestingly, the observed hc is near 10 meters, which is the height
chosen in field studies to differentiate low-canopy (light-demanding) from
high-canopy (shade-tolerant) species (Welden et al., 1991). Low-canopy
species able to survive in habitats that can only exist below hc represent
specialised species adapted to live in gap-light environments with high sun
irradiance. Percolation theory predicts that in random percolating maps
with a fraction of available habitat above a gap fraction of pc ≈ 0.40725,
species can move freely through the landscape (O’Neill et al., 1988). How-
ever, in more aggregated landscapes (i.e., such as those below hc in BCI)
this value may increase because aggregation diminishes connectivity at
long distances, and thus, more species can potentially coexist below hc

compared to a random landscape with the same Nw(h).

Species with suitable habitats below hc will always experience a
strongly correlated and sparse landscape, and therefore may be very
sensitive to landscape transformations involving both habitat loss and
habitat fragmentation (i.e., loss of aggregation in spatial habitat dis-
tribution). Indeed, temporal fluctuations in gap formation and canopy
recovery are much higher at lower heights in the forest. In such dynamic
landscapes there is a lower survival probability in those species whose
dispersal rate or, consequently, resource utilisation scale (O’Neill et al.,
1988), are not large enough to overcome the changing structure of the
landscape (Keymer et al., 2000; Johst et al., 2002). Therefore, strong evo-
lutive pressures should exist to reinforce those mechanisms allowing the
adaptation of dispersal strategies to a sparse and changeable underlying
landscape. Thus, their dispersal strategies should be of the Lévy type (i.e.,
low Lévy indexes) and some plasticity should be necessary to adapt disper-
sal strategies to landscape changes. Colonisation of new available territory
must involve few dispersal events but with large-distance coverage (i.e.,
long-distance dispersal allows the accessibility to far habitat aggregates).
Moreover, directed dispersal strategies (e.g., animal seed dispersal) al-
lows for a better adjustment of new habitat colonisation to a changeable
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landscape. As an example, dispersal strategies of light-demanding plant
species are commonly directed by animals (Leigh & Wright, 1990). Thus,
below hc, Lévy-type strategies based on directed mechanisms of dispersal
should have a strong adaptive value. Species with such dispersal strategies
should be more sensitive to habitat loss (which is already sparse) than to
local habitat fragmentation.

On the other hand, species covering a sufficiently large range of envi-
ronmental conditions providing some vertical microenvironments or some
gap-dynamic stage with maximum canopy heights above hc, will experi-
ence a fully connected landscape of potential suitable habitats through all
the landscape. For example, shade-tolerant plant species (and associated
fauna) capable of living in habitats not only below but also above hc will
experience a fully connected landscape. Two major consequences may
be derived from this ecological situation: i) Long-distance dispersal and
directed dispersal is not strictly necessary, and ii) Once in a connected
landscape dispersal strategy doesn’t need to be changed. Indeed, opti-
mal dispersal strategies above hc involve: i) a high number of short-scaled
dispersal events (i.e., higher Lévy indexes than for species living in sparse
landscapes (Fig. 7.3, left) and ii) independency from the underlying amount
of available habitat in the landscape. The latter fact is explained becasue of
a percolation effect. Although at increasing cuttoff heights the amount of
available habitat increases, the dispersal strategy does not change. This is
because optimal dispersal strategies mainly depend on the connectivity of
habitat patches and not on the quantity of habitat. Once reached the perco-
lation threshold, all the available habitat becomes connected, and this fact
determines a unique dispersal strategy (i.e., a unique Lévy index) emerging
as optimal for all the low-canopy maps above hc (Fig. 7.3, right).

The evolutive costs of showing a greater physiological or behavioural
plasticity (i.e., larger ranges of environmental conditions for survival) could
be compensated by the fact that in fully connected landscapes, dispersal
strategies should not necessarily be so efficient: short-distance and non-
directed dispersal might be good enough to explore new territories. (e.g.,
dispersal strategies of shade-tolerant plant species are commonly driven by
the wind (Leigh & Wright, 1990)). Generalist species have more available
habitat by definition. Therefore, they should be less sensitive to habitat loss
and habitat dynamical changes than highly specialized species. However,
generalist species within a fully connected landscape could have evolved
short-ranged and non-directed dispersal strategies and as a consequence
could be much more sensitive to local fragmentation processes (i.e., loss of
aggregation in spatial habitat distribution) when spreading to new territo-
ries.
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Changes in the gap-dynamics of rainforests may modify the value of hc

and thus the relative potential number of species that are more sensitive
to habitat loss (below hc) or to fragmentation processes (above hc), impos-
ing important constrains to biodiversity patterns. Moreover, the presence
of a critical height (hc) may influence the competitive outcomes of closely
related species. Competition between philogenetically related species (i.e.,
similar ecological ranges) can promote coexistence only when the less com-
petitive one has evolved dispersal strategies capable to overcome its com-
petitive disadvantage. That seems to be the case in the disjoint vertical
distribution of lizards in Puerto Rico (Reagan, 1992; Leal et al., 1998). In
such cases, the presence of a percolating critical height (hc) should be de-
cisive in the final competitive outcome. Once it is known hc, some other
practical consequences for rainforest biodiversity conservation could be
derived. For example, the control of an invading species in the rainforest
canopy should be managed in a very different way if their potential suitable
habitats are all below hc, or instead some of them are above.

We believe that a more integrative approach to the definition of rain-
forest species habitats, providing a more global and probabilistic approach
to the study of the structure and functioning of rainforests, may be help-
ful to the understanding of some robust regularities at the whole system
level. Such a new approach should allow us to establish new links between
different components of the system (i.e., species, functional groups, etc.)
or to compare different systems (i.e., rainforests) by means of objective
measures. Moreover, we hope that this kind of approach may give fur-
ther insights to the understanding of rainforest understory complexity by
guiding new field studies, or integrating in a more general framework the
already existent huge collection of case studies devoted to concrete rain-
forest species.
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8
The role of the dispersal range

in metapopulation dynamics

8.1 Abstract

Mobility and dispersal ability of individuals result in characteristic spatial
patterns that influence metapopulation’s persistence in a landscape. How-
ever, there is no clear understanding of how different dispersal capacities
may modify extinction thresholds and transient dynamics of metapopula-
tions in fragmented landscapes. On the one hand, mean field metapopu-
lation models assume global dispersal across infinite landscapes. On the
other hand, spatially explicit metapopulation models have focused in a
rather limited number of dispersal strategies, although a wide range of
dispersal capacities exist in natural populations. We have developed a
spatially explicit model, and a pair approximation to the classical Levins
metapopulation model, to study the effects of dispersal capacity (or range)
on extinction thresholds and transient time behavior of metapopulations
in relation to habitat loss. We outline three closed-form analytical solu-
tions. The first one for the transient time duration of metapopulations
when mean-field assumptions are appropriate. The second one expresses
equilibrium patch occupancy in terms of metapopulation parameters (i.e.,
extinction and colonization rates), habitat loss and dispersal range. And
the third one relates critical habitat destruction values for metapopulation
extinction to metapopulation parameters and dispersal ranges. Further-
more, our results are accompanied with exact stochastic realizations of
the analytical model proposed in a spatially explicit system. The results of
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the new model show that: i) increasingly localized dispersal ranges shifts
the extinction thresholds to lower values of habitat loss, ii) transient times
are larger for increasingly localized dispersal ranges and diverge near the
corresponding extinction thresholds, and iii) landscape fragmentation and
habitat destruction impinge in metapopulation colonization rates through
their negative effects within the dispersal range.

8.2 Introduction

Habitat loss is widely considered to be the present principal threat to the
long-term survival of species both locally and worldwide (Andrén, 1994;
Barbault & Sastrapradja, 1995). Furthermore, habitat fragmentation by
human beings is increasing at an alarming rate in many habitats around
the world and has been shown to have detrimental effects on genetic diver-
sity, population survival and ecosystems structure and function (Forman,
1995; Fahrig, 2002, 2003). Years after its introduction by Levins (1969,
1970), metapopulation theory has been recognized as one of the current
paradigms for the conservation of spatially structured populations in frag-
mented landscapes (Hanski & Simberloff, 1997).

The current population ecological theory on habitat loss and fragmen-
tation is largely based on Lande (1987) extension of Levins model (Levins,
1969). These simple analytical models are based on differential or differ-
ence equations that assume homogeneous couplings between entities with
no explicit spatial structure or other types of heterogeneities. Such spa-
tially implicit models, named mean field models (Levin & Durret, 1996)
are adequate to formalize and synthesize the essential mechanisms driv-
ing a given population dynamics in a simple and analytically tractable way.
However, they are unsuitable for understanding the dynamical processes
that occur in spatially heterogeneous environments (Bascompte, 2001). For
example, if the mobility and dispersal ability of individuals are limited, eco-
logical and demographic processes will result in characteristic spatial pat-
terns in which individuals of the same type tend to form clumps. These
clumps cause population phenomena that are qualitatively different from
those expected in well-mixed systems (i.e., mean field approximation) and
can affect species coexistence, invasion, evolution, and species or genetic
diversity (Sato & Iwasa, 2000). An alternative to the shortcomings of mean
field models are spatially explicit models such as lattice models (Bas-
compte & Solé, 1996; Hiebeler, 1997; Bascompte & Solé, 1998; Pascual &
Guichard, 2005).

Spatially explicit (lattice) models of metapopulations have shown that
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landscape structure and landscape patch dynamics, can strongly affect
metapopulation dynamics and persistence (Bascompte & Solé, 1996; Bev-
ers & Flather, 1999), the outcome of species interaction (Dytham, 1994;
Tilman et al., 1994; Dytham, 1995; Tilman & Kareiva, 1997), and the behav-
ior of territorial populations (Lande, 1987). Usually the effects are highly
nonlinear, associated with the existence of critical thresholds determined
by the structural properties of the landscape and the demographic prop-
erties of the metapopulation. In particular, spatial models predict the ex-
istence of “extinction thresholds” in relation to habitat loss and fragmen-
tation (Hanski et al., 1996). An extinction threshold is defined as the min-
imum amount of habitat required for a population of a particular species
to persist in a landscape (Lande, 1987; Lawton et al., 1994; Hanski et al.,
1996). Commonly, spatially explicit metapopulation models are equivalent
to contact processes (Mollison, 1977; Snyder & Nisbet, 2000), where an
empty patch is colonized only from its nearest-neighbor patches. In such
cases, lower extinction thresholds are expected than in spatially implicit
models (i.e., Levins model), suggesting that when dispersal is rather lim-
ited, more habitat is required for population persistence (Adler & Nuern-
berger, 1994; Bascompte & Solé, 1996; Hill & Caswell, 1999; With & King,
1999b). However, a wide variety of dispersal strategies and dispersal
ranges exist in nature (Bullock et al., 2002). An important gap of knowl-
edge in metapopulation theory is related to understanding how this diver-
sity in dispersal capacities modify the persistence of metapopulations in
fragmented landscapes.

The purpose of the present study was to elucidate the effects of habitat
loss and fragmentation on spatially structured metapopulations with differ-
ent dispersal capacities. In our model, dispersal capacity is represented as
a dispersal range or domain (i.e., a subset of landscape over which species
can be dispersed). There are many empirical measures such as mean dis-
persal distance, maximum dispersal range, dispersal area, etc. that can be
directly related to the dispersal parameter of the model. Our approach is
based on spatially explicit (lattice) metapopulation modeling and on pair
approximation methodology. The pair approximation is a technique origi-
nally developed in the physical sciences to correct mean field models, such
as the classical Levins model, when the explicit spatial structure should not
be ignored (Dickman, 1986; Katori & Konno, 1991). Pair approximation was
introduced in ecology and epidemiology as a way of exploring spatial struc-
ture in the contact process and in similar spatially explicit models (Matsuda
et al., 1992; Harada & Iwasa, 1994; Sato et al., 1994; Satulovky & Tomé,
1994; Harada et al., 1995). Subsequently the applications of pair approx-
imation and other moment closure techniques in ecology have quickly in-
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creased (Sato & Konno, 1995; Kubo et al., 1996; Levin & Durret, 1996;
Nakamaru et al., 1997; Takenaka et al., 1997; Pacala & Levin, 1997; Iwasa
et al., 1998; Nakamaru et al., 1998; Levin, 1998; Ives et al., 1998; Bolker
& Pacala, 1999; Dieckmann et al., 2000; Hiebeler, 2000). Pair approxi-
mation has recently been used to analyze the spatial structure of habitat
loss in metapopulation dynamics for both discrete-time (Hiebeler, 2000),
and continuous-time models (Ovaskainen & Hanski, 2002). However, this
method has never been used to explore the effects of dispersal capacity on
metapopulation extinction thresholds and dynamics, in fragmented land-
scapes. Our goal is to present an improved general understanding of how
dispersal capacity modifies metapopulation dynamics by providing: i) new
analytical solutions of an extended version of the classical Levins model
which includes both habitat destruction and dispersal ranges, and ii) exact
stochastic realizations of a spatially explicit version of the model analyzed.

8.3 The classical Levins metapopulation model

A metapopulation can be defined as a set of geographically distinct local
populations maintained by a dynamical balance between colonization and
extinction events. The simplest, first approximation to metapopulation’s
concept is formalized by the model of Levins (Levins, 1969), which captures
the dynamics of a metapopulation:

dp

dt
= cp(1 − p) − ep, (8.1)

where p is the fraction of patches occupied (occupancy), and c and e are
the colonization and extinction rates, respectively.

Thus, Levins expressed this balance as a simple differential equation
with no details on the spatial structure or other types of heterogeneities,
and thus belongs to the class of mean field theories (Levin & Durret, 1996;
Bascompte, 2001). The model assumes constant and uniform patch quality
(i.e., any patch is equally available for colonization by the species under
study and populations inhabiting every patch experience an equal extinc-
tion risk. In spite of its unrealistic assumptions, it provides several critical
insights into metapopulation dynamics. First, since the only non-zero sta-
ble stationary state of Eq. 8.1 is given by p∗ = 1 − e

c , a very simple rule for
metapopulation persistence can be obtained: colonization must be greater
than extinction rate (i.e., c > e). And second, it predicts that equilibrium
metapopulations will never occupy all patches.

Following Lande (1987, 1988) one can easily introduce habitat loss into
the framework of Levins model (8.1). If a fraction D of sites are perma-
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Figure 8.1: (a) Parameter space for the Levin’s model using a local extinction rate e = 0.2. Two

domains are obtained from the transition curve Dc = 1 − e/c (see text). This critical boundary

separates the domain where a stable metapopulation exists from the extinction phase, where

no metapopulation is able to persist. (b) Habitat occupancy predicted by the Levins model (c =

0.6, e = 0.2) in relation to time for different degrees of habitat loss (D). As habitat destruction

increases metapopulation equilibrium values decay through time.

nently destroyed, this reduces the fraction of vacant sites that can poten-
tially be occupied. Eq. 8.1 becomes:

dp

dt
= cp(1 − D − p) − ep. (8.2)

and therefore, the combined effects of demographic parameters and
habitat loss can be analyzed.

8.3.1 Stationary states

Eq. 8.2 has two equilibrium points (to be obtained from dp/dt = 0): p∗ = 0
(extinct population) and

p∗ = 1 − D − e

c
. (8.3)

The two points match through the curve 1 − D − e/c = 0, which gives a
critical destruction level Dc associated to extinction-colonization rates:

Dc = 1 − e

c
. (8.4)

Once we cross this threshold (i.e., if D > Dc) the population gets in-
evitably extinct. This situation is illustrated in (Fig. 8.1a). Here the critical
line separates the two qualitative types of metapopulation allowed. Es-
sentially, as we approach the critical value Dc by increasing the amount
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of habitat destroyed, the frequency of populated patches decays linearly
(Fig. 8.1b) . This frequency becomes zero at the boundary.

The main lesson to be extracted from this model is that (perhaps against
our intuition) no sustainable metapopulation is possible once we reach a
critical amount of habitat loss, in spite that a fraction of 1 − D patches is
still habitable. The interaction between available areas and demographic
parameters (here reduced to two local, average rates) establishes an ex-
tinction threshold for habitat loss known as the Levins rule (Lande, 1987;
Hanski et al., 1996). As can be seen from Eq. 8.4, the interaction between
Dc and e for a fixed c is linear, whereas Dc changes in a nonlinear way with
c (for a fixed e).

8.3.2 Transient dynamics

Transient time in population dynamics refers to the time it takes for a pop-
ulation to return to population-dynamic equilibrium (or close to it) follow-
ing a perturbation in the environment or in population size. Depending
on the direction of the perturbation, transient time may either denote the
time until extinction (or until the population has decreased to a lower equi-
librium level), or the recovery time needed to reach a higher equilibrium
level (Ovaskainen & Hanski, 2002). An additional information can be ob-
tained by looking at the delay time until the steady state is reached. Specif-
ically, let us consider a very small initial population p0 ¿ 1 and the time
required to reach the steady state p∗. The approach to the equilibrium
state takes place in a sigmoidal way: solving the equation for the Levins
model we have:

p(t, D) =
p0Γ

p0 + (Γ − p0) exp(−cΓt)
, (8.5)

where Γ = 1 − D − e/c and therefore Γ = p∗. How fast this approach
occurs can be computed by using the time T(D, η) required to reach a
fraction p = |p∗ − η| of the steady population, where η is considered a
small perturbation from the steady state (i.e., η ¿ Γ). It can be shown that
for D ≤ Dc such delay time is given by (see Appendix 8.8.1)

T(D, η) =
1

cΓ
ln

[

Γ − η

p0

(

Γ − p0

η

)]

. (8.6)

And for D > Dc such delay time T(D, η) is given by

T(D, η) =
1

Ω
ln

(

η

p0

)

, (8.7)
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Figure 8.2: (a) The Levins model (c = 0.6, e = 0.2) predicts lower equilibrium values and

greater transient times (τ) as habitat loss increases. The transient time is the time it takes
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Transient time behavior of the Levins model (c = 0.6, e = 0.2) in relation to habitat loss (D). A

divergence is obtained near the critical threshold Dc = 0.66. For D > Dc a quick decay takes

place, whereas the behavior for D < Dc is highly nonlinear: a divergence actually occurs close

to Dc indicating that the time required in order to colonize the available habitat until reaching

p = η(1 − D − e/c) rapidly increases. Results obtained from equations 8.6 and 8.7 for D ≤ Dc

and D > Dc respectively. In this case we have used p0 = 0.001 and η = 0.95.

where Ω = c(1 − D) − e. As we can easily check in Fig. 8.2, this delay
time involves a discontinuous change (or singularity) for D = Dc. One
important consequence of this result is that the time required to colonize
available habitat sharply increases as we approach the critical destruction
level. This means that a given seed population will be not just small, but
rather slow in spreading through available patches. One prediction from
this observation is that, under stochastic factors such as finite population
size and environmental perturbations, the likelihood of extinction would
actually increase rapidly even at some distance from the critical threshold.

8.4 A spatial explicit model with dispersal

A simple and useful method for modeling population and evolutionary dy-
namics in a spatially explicit way is to use a lattice, or cellular automaton,
model (Durrett & Levin, 1994; Dieckmann et al., 2000). An advantage of
lattice models over traditional population dynamic models that are merely
based on population densities or abundances is the ease and flexibility
with which ecological interactions occurring between nearby individuals
can be incorporated. In this respect, lattice models are closely related



136 The role of the dispersal range in metapopulation dynamics

to a group of models called “individual-based models” (Judson, 1994) or
“agent-based models” (Axelrod, 1997). In the field of applied mathematics
and theoretical physics, lattice models are called “interacting particle sys-
tems” (Liggett, 1985; Levin & Durret, 1996). Finally, lattice models have
the advantage of explicitly considering stochasticity caused by finite num-
bers of individuals (discreteness), so called demographic stochasticity in
population ecology and random drift in population genetics. Such stochas-
ticity is often neglected in traditional models of differential equations in
theoretical ecology (Sato & Iwasa, 2000).

To study the dynamic consequences of dispersal capacity among local
populations (on equilibrium steady states and transient times) we intro-
duce a spatially explicit metapopulation model with local colonization from
neighboring sites. The model is based on the following assumptions:

• Uniform lattice: The metapopulation is established in a lattice-
structured habitat. Each patch occupies one site of the lattice. Thus,
each lattice site is either occupied by a population [+] or empty
[0]. The lattice can be one-dimensional (linear) or two-dimensional
(square, triangular or hexagonal). We assume that the lattice space
is infinitely large, homogeneous and isotropic. All lattice sites have
the same number of nearest neighbors.

• Random destruction: From the very first beginning a given percent-
age of the total lattice sites are destroyed. These sites are not recov-
ered and can not be colonized. Thus, destruction is a static parameter.

• Extinction: Each occupied patch can become empty at a constant ex-
tinction rate (e), which is defined as the expected number of death
events in a unit time interval resulting in a transition from + to 0.
The death rate at a site is independent of the state of neighboring
sites.

• Colonization: Each empty site can be colonized from a set of neigh-
boring sites (z) within a given dispersal range or domain at a given
constant rate. The colonization rate per each neighboring patch is a
constant defined as c/z. Thus, the colonization rate c is the maximum
colonization rate into an empty patch, which is realized when all the
neighbors in the dispersal range are occupied. An empty site will be
filled by a local population at a rate proportional to the number of
occupied neighbors in the dispersal range.

Thus, the dispersal range of a given patch ∆ can be defined as the set of
equivalent potential colonizer patches in its neighborhood. Specifically, we
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define the dispersal range ∆ as a square centered at the empty patch to be
colonized with a maximum side length (lmax, maximal dispersal distance)
so that lmax ≤ L, where L is the one-dimensional size of the whole system.
In a regular square lattice the relationship between the number of neigh-
bors (ocuppied and available) z, and lmax is: z = (2lmax + 1)2 − 1. Both z
(dispersal range or domain) and lmax (maximal dispersal distance) are indi-
cators of the dispersal capacity of the metapopulation. When ∆ involves all
the patches in the lattice, we obtain a spatially implicit model equivalent
to the mean-field model (for large enough lattices). In a spatially implicit
model, such as Levins model, it is assumed that each cell (representing an
individual, patch population, etc.) can interact with all the rest of the cells
conforming the lattice, thus representing well-mixed metapopulations. It
is assumed that the size of the dispersal range does not depend on the lo-
cation of the empty patch. Moreover, within the dispersal range, all the
occupied patches contribute equally to the overall colonization pressure on
the central free site. Therefore, no contact distributions (Mollison, 1977)
or dispersal functions (Minogue, 1986) are assumed within ∆.

The basic dynamical, local processes can be illustrated as follows:

Extinction: [+]
e−→ [0] (8.8)

Colonization:[+, 0]
c/z−→ [+, +] (8.9)

where [+ − 0] indicates a pair of neighbors where one of the two sites (in
this case the right hand one) undergoes a transition. Note that an empty
site cannot be colonized unless a neighboring site from the dispersal range
is occupied. For a given dispersal range, this constraint causes density-
dependent colonization, where the colonization rate is proportional to the
number of occupied potential colonizers. However, when considering dif-
ferent dispersal ranges we have to be aware of the fact that for any disper-
sal range (any set of neighboring sites z) the maximum colonization rate
will be c. This means that the contribution of a neighboring patch to the
overall dispersal range colonization pressure decreases as the dispersal
range increases. In this sense, the spatially explicit Levins model involves
a frequency-dependent colonization, that is, colonization depends on the
fraction of occupied neighboring sites in the dispersal range but not on the
absolute number of occupied sites.
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8.5 Exact stochastic simulations: spatially implicit

model

There are two formalisms for mathematically describing the time behav-
ior of a spatially extended system. The deterministic approach regards
the time evolution as a continuous, wholly predictable process which is
governed by one or a set of coupled ordinary differential equations; the
stochastic approach regards the time evolution as a kind of random-walk
process which is governed by a single differential-difference equation: the
“master equation” (van Kampen, 1992; Gillespie, 1977). Stochastic ver-
sions of the Levins’ model and Levins-like models have been studied (Gur-
ney & Nisbet, 1978; Etienne & Nagelkerke, 2002; Alonso & McKane, 2002;
Alonso, 2003), but unfortunately, the stochastic master equation is often
mathematically intractable. There is, however, a way to make exact numer-
ical simulations within the framework of the stochastic formulation without
having to deal with the master equation directly. Exact stochastic numeri-
cal simulations are based on the “stochastic simulation algorithm”, created
by Gillespie (1976, 1977, 1992) for studying coupled chemical reactions.
The stochastic algorithm has been already improved and used successfully
in metapopulation spatial explicit simulations (Alonso & McKane, 2002;
Alonso, 2003). This algorithm is particularly useful when the master equa-
tion is mathematically intractable or when modeling transient dynamics
of stochastic systems. The stochastic simulation algorithm and the general
simulation procedure used is explained in detail in Appendix 8.8.2 (see also
Technical Appendix D).

By following the simulation strategy of Appendix 8.8.2 we test the ac-
curacy of exact stochastic simulations based on a spatially implicit model
(i.e., well-mixed metapopulations) and compare them with the analytical
solutions obtained for the mean-field model. The system is modeled as a
continuous-time, single-step Markov process where transitions occur asyn-
chronously so that within a short enough time interval only a single tran-
sition can take place. To obtain the equilibrium occupancy values for each
habitat loss level, the metapopulation started with an arbitrary low frac-
tion of occupied sites (randomly scattered in the lattice), and let the sys-
tem evolve toward a stationary probability of occupancy. We have also
computed the exact transient times until reaching an occupancy probabil-
ity very near the equilibrium value. Figure 8.3 shows the results obtained
from the mean field approximation and the exact stochastic spatially im-
plicit simulations of the Levins model with destruction. A very good agree-
ment is found for both stationary states and transient dynamics.



Exact stochastic simulations: spatially implicit model 139

0 0.2 0.4 0.6 0.8 1
Habitat destruction D

10
0

10
1

10
2

10
3

10
4

T
ra

ns
ie

nt
 ti

m
e 

τ

0 50 100 150 200 250
Time

10
�
�

10
�
�

10
�
�

10
0

O
cc

up
ie

d 
ha

bi
ta

t p

0 0.2 0.4 0.6 0.8 1
Habitat destruction D

0

0.1

0.2

0.3

0.4

0.5

0.6

O
cc

up
ie

d 
ha

bi
ta

t p
∗

0 50 100 150 200 250
Time

10
�
�

10
�
�

10
�
�

10
0

O
cc

up
ie

d 
ha

bi
ta

t p

D=0.2
D=0.5
D=0.6

D=0.7
D=0.8
D=0.9

a

c

b

d
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Levins’ model equation (c = 0.6, e = 0.2 therefore Dc = 0.666). Two stochastic exact realizations

are shown for each numerical integration. (a) For D < Dc, and (b) for D > Dc. All simulations
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the analytical approximation (equations 8.6 and 8.7) in solid line, and from the spatially explicit

and stochastic Levins model (dots with standard deviation bars). Simulations were run on a

512 × 512 lattice. For each D value, results were obtained by averaging 25 individual stochastic

realizations. The parameter values chosen are c = 0.6, e = 0.2, η = 0.05 and p0 = 0.001.
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8.6 A pair approximation

A major problem of spatially explicit models, whether lattice models or mo-
dels based on continuous space, is that analysis is often restricted to direct
computer simulation. Mean field approximation, which neglects spatial
structures by assuming complete mixing of individuals, often shows behav-
ior that is qualitatively different from that observed in direct computer sim-
ulations (Dieckmann et al., 2000). Fortunately, there is a useful method for
analyzing lattice models and diminishing the discrepancy between mean
field and explicit simulations. This method was introduced by Matsuda in
an analysis of the evolution of social interaction in lattice-structured popu-
lations (Matsuda, 1987; Matsuda et al., 1987). Since then, the pair approx-
imation method has been widely applied (Matsuda et al., 1992; Harada &
Iwasa, 1994; Harada et al., 1995; Levin & Durret, 1996; Levin, 1998; Ives
et al., 1998; Iwasa, 2000) and improved (Sato et al., 1994; Ellner, 2001).

The importance of considering correlations between interacting indi-
viduals has already been pointed out, for example in the case of insect
population dynamics (Ives & May, 1985), where a spatially clumped distri-
bution creates a conditional density in the neighborhood of an individual
much higher than the density from random samples. This method consists
in constructing a closed dynamical system comprising two components:
first, the overall densities of lattice sites in specified states and, second,
the conditional probability that a randomly sampled nearest neighbor of
a site is in a specified state. Pair approximation is a kind of decoupling
approximation, developed in statistical physics, also referred to as a “mo-
ment closure method” (Sato & Iwasa, 2000). The pair approximation treats
the degrees of spatial clumping as a separate dynamic variable rather than
as a given parameter, since the degree of clumping and nearest-neighbor
correlation are also the result of demographic processes and ecological
interactions (Harada & Iwasa, 1994).

The spatially explicit model with dispersal ranges (expressed in terms
of the number of neighbors z of a given patch) can be described by the pair
approximation method in terms of the following system of equations (see
Appendix 8.8.3 and (Sato & Iwasa, 2000)):

dρ+

dt
= −eρ+ + c(1 − D − q+/+)ρ+

dq+/+

dt
= −q+/+[c(1 − D − q+/+) − e] + (8.10)

+2

{

−eq+/+ + c

[

1

z
+

(

1 − 1

z

)

(1 − D − q+/+)ρ+

1 − D − ρ+

]

(1 − D − q+/+)

}

.
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where ρ+ is the global density of occupied (+) patches, and q+/+ the local
densities defined as the conditional probabilities that a randomly chosen
nearest neighbor of an occupied site is also occupied.

The internal equilibrium of the closed dynamical system given by
Eqs. 8.11 with two variables ρ+ and q+/+ can be calculated by setting
dρ+/dt = 0 and dq+/+/dt = 0. A trivial solution given by ρ̂+ = 0 (ex-
tinction) always exists. In addition there is a non-zero equilibrium state,
satisfying 0 < ρ̂+ < 1 and 0 ≤ q̂+/+ ≤ 1:

ρ̂+ = (1 − D)

[

1 − e(z − 1)

zc(1 − D) − c − e

]

, q̂+/+ = 1 − D − e/c. (8.11)

where the condition D ≤ 1 − e/c must be accomplished for q+/+ ∈ {0, 1}.
By explicitly assuming the effect of habitat loss within dispersal ranges ∆,
the mean “effective” number of neighbors of a given empty patch ze f f is
correctly rewritten as:

ze f f = z(1 − D). (8.12)

Then we get the close analytic expression for ρ+:

ρ+ = (1 − D)

[

1 −
e(ze f f − 1)

ze f f c(1 − D) − c − e

]

(8.13)

These analytic results Eq. 8.11 and Eq. 8.13 allow us to test the improve-
ments introduced by the pair approximation in predicting metapopulation
patterns, with increasing habitat destruction. The analysis can be made
considering the effects of habitat loss within dispersal ranges (Eq. 8.13) or
not (Eq. 8.11). As shown in Fig. 8.4, the similarities between exact and ap-
proximated solutions (Eq.8.11 and Eq. 8.13) are remarkable. In particular,
Fig. 8.4 shows that numerical simulations of the spatial model are always
between the two limiting analytical curves obtained by the pair approxi-
mation method considering destruction within dispersal ranges (i.e., ze f f ,
Eq. 8.13) or not (i.e., z, Eq. 8.11). Depending on the value of z the simula-
tion results fit better with one or the other pair approximated boundaries
(see Fig. 8.4). In particular, as z values become larger, the dynamics is
approximated better with Eq. 8.13 than with Eq. 8.11. In this sense, equi-
librium dynamics of really local coupling (i.e., z = 4) does not need consid-
ering the effects of destruction at the local level. However, the contrary is
true for the transient dynamics (pseudo-equilibrium patch occupancy val-
ues). As short-ranged dispersal (i.e., z = 4) usually involves large transient
dynamics this result should also be taken into account. As it is observed in
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Figure 8.4: Numerical estimates of patch occupancy p in the spatially explicit model are plot-

ted as functions of destroyed habitat D. Mean patch occupancy values (symbols) and variation

(standard error bars) were obtained averaging over 25 realizations in a lattice of size 100 × 100.

Parameters used: c = 0.6, and e = 0.2. All numerical simulations represent equilibrium scenar-

ios 108 iterations, except one representing pseudo-equilibrium patch occupancy values (white

circles, iterations 106). Broken lines represent the pair approximation predictions for z = 4, 8,

and 24 assuming habitat loss effects within dispersal ranges ze f f (Eq. 8.11). Solid lines repre-

sent the pair approximation predictions for z = 4, 8, and 24, when not considering habitat loss

effects within dispersal ranges z (Eq. 8.13). The dotted line represent the mean field solution

for the Levins model with destruction, i.e., p∗ = 1 − D − e/c.

Fig. 8.4 transient behavior for z = 4 is better fitted by the curve obtained
from Eq. 8.13.

Thus, the pair approximation allows an adequate quantitative predic-
tion of the equilibrium abundances and the extinction thresholds (ρ+ = 0)
for metapopulations in uncorrelated, destroyed habitats. These results al-
low us to calculate a relationship between extinction thresholds (ρ+ = 0)
and dispersal capacity z with some confidence. Thus, by making ρ+ = 0 in
Eq. 8.11, we can obtain an elegant analytical relationship between critical
habitat destruction values (those destruction values that lead to metapopu-
lation extinction), the dispersal capacity (expressed as z) and the metapop-
ulation extinction (e) and colonization (c) rates, thus Dc = f (z, e, c). The
exact function obtained is:

Dc = 1 −
( e

c

)

−
(

1

z

)

. (8.14)
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Figure 8.5: Relationship between the critical amount of habitat loss necessary for metapop-

ulation persistence Dc and the dispersal range z obtained from equation 8.14. From top to

bottom colonization (extinction) rates are 0.8(0.2), 0.6(0.2), 0.5(0.25), and 0.3(0.2). Horizontal

dotted lines denote the corresponding mean field solutions Dc = 1 − e/c. At z = 20, divergence

between mean field solutions and Eq. 8.14 solutions is equal to ε = 0.05 (see text).

In Fig. 8.5 the behavior of Eq. 8.14 is shown. As z becomes larger the
third term of the Eq. 8.14 becomes negligible, and Dc can be approximated
by the solution of the mean field Levins model DLevins

c = 1 − e/c. Indeed,
the exact departure (i.e., ε) from the mean field solution due to dispersal z
follows the power law:

ε = [DLevins
c − Dc] =

1

z
. (8.15)

The hyperbolic approach to the mean field solution as z increases can be
observed in Fig. 8.5. For z > 20 the discrepancy (error) between the mean
field solution and Eq. 8.14 would be inferior to ε = 0.05. Therefore, once de-
fined a tolerance error ε, we can always define a dispersal threshold which
would delimitate two differentiated dynamic regimes: Below the dispersal
threshold the critical habitat destruction value for metapopulation to per-
sist (Dc) is subjected to dispersal ranges. Beyond that, Dc and metapopula-
tion persistence should mainly depend on colonization-extinction balances,
therefore, metapopulation dynamics could be approximated by the Levins
(mean field) model.
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8.7 Discussion

Central to spatial spreading of populations is the concept of contact ker-
nel, also known as contact distribution (Mollison, 1977) or dispersal func-
tion (Minogue, 1986): the probability distribution function for the displace-
ment between the source and the point of deposition of a propagule. Based
on empirical data, many models in population biology represent spatial
dispersal as a local or exponentially-bounded process, using for example a
negative-exponential or a step function of distance (Minogue & Fry, 1983;
Zadocks & van den Bosch, 1984; Durrett & Levin, 1994; Filipe & Gibson,
1998). The recognition of an exponentially decaying dispersal function in-
volves the existence of characteristic scales of dispersal (i.e., a mean and
a maximum dispersal distance), and thus, a dispersal range (i.e., a set of
potential colonization sites from a given disperser) can be defined.

There exists a high variability of dispersal distances among species, and
among individuals of a given species, with a few individuals dispersing long
distances relative to the median of the population (i.e., typically dispersal
distance distributions have fat-tailed shapes, see Kot et al. (1996); Bullock
et al. (2002)). Such rare long-distance dispersal events are difficult to ob-
serve but are important for the spread of species (Kot et al., 1996), as well
as for preventing inbreeding in small populations (Mills & Allendorf, 1996).
Simple models based on negative exponential dispersal functions, or simi-
larly, on threshold dispersal ranges, while capturing the average behavior
of the population of dispersers, significantly underestimate the potential
for range expansion in many organisms (Kot et al., 1996). Therefore, the
metapopulation model developed in the present study has heuristic value
in estimating minimum thresholds of the likelihood that dispersing individ-
uals (or species) can move particular distances between suitable habitats.
However, it cannot be used to calculate directly the rates at which species
could expand their ranges (i.e., spreading rates).

8.7.1 Dispersal and metapopulations

Within the metapopulation framework (Hanski et al., 1996; Hanski, 1998;
Hanski & Gaggioti, 2004), dispersal has been considered the “glue” that
keeps metapopulations together (Hansson, 1991; With & King, 2004),
and thus is deemed crucial to metapopulation persistence. In reality, at
any given scale, metapopulation connectivity (the density of such a glue,
whether liquid or viscous (Pen, 2000)) depends on two interacting factors:
landscape spatial structure and dispersal capacity.

When dispersal is rather limited the explicit topology of space becomes
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more relevant. A lot of effort has been devoted to understand the effects
of landscape spatial structure and patch network geometry for popula-
tions where dispersal is local (Dytham, 1994, 1995; Bascompte & Solé,
1996; Bascompte & Solé, 1998; Dieckmann et al., 2000). For example,
the success of area-limited dispersal is enhanced on fractal landscapes due
to the greater spatial contagion of habitat (With & King, 1999a). Also,
the way suitable habitat is progressively lost has large effects on popula-
tions with strong dispersal constraints (Hiebeler, 2000; Ovaskainen et al.,
2002). However, the spatial spreading of organisms is a powerful mecha-
nism capable of modifying the spatiotemporal behavior of populations (Fil-
ipe & Maule, 2004; Law et al., 2003), which in turn, may screen land-
scape spatiotemporal patterns of habitat loss, fragmentation, or recovery.
The interaction of both dynamics (i.e., landscape changes and population
dispersal) should finally contribute (or not) to metapopulation’s connectiv-
ity. The metapopulation capacity approach (Hanski & Ovaskainen, 2000;
Ovaskainen & Hanski, 2001; Ovaskainen et al., 2002) integrates the effect
of dispersal and spatial structure in a single pre-defined metapopulation
connectivity metric. However, such an approach can be considered a mean
field approximation in the sense that it ignores the part of spatial corre-
lation that is generated by population dynamics (Ovaskainen et al., 2002).
The effect of dispersal on metapopulation connectivity through population
dynamics can only be analyzed by means of spatially explicit (lattice) mo-
dels. In our simulations spatial heterogeneities emerge as a direct conse-
quence of population dynamics and spatial spreading (i.e., extinctions, col-
onizations, and dispersal ranges). Specifically, we show that through spe-
cific dispersal ranges, the colonization dynamics of randomly located popu-
lations has direct consequences in the spatial structure of the metapopula-
tion, modifying the long-term metapopulation connectivity and persistence.
Other semi-analytic approaches may implicitly assume the existence of ele-
ments different from colonization-extinction dynamics (Bascompte, 2001).

8.7.2 Dispersal ranges and patch occupancy

The results of our study can be used to develop and assess potential solu-
tions for problems involving habitat management and landscape planning.
Managers must have knowledge of dispersal because it is a critical vari-
able for modelling the effects of landscape change on the long-term via-
bility of metapopulations (Beissinger & Westphal, 1998). The necessity of
evaluating dispersal ranges (i.e., mean or maximum dispersal distances,
home ranging, etc.) of endangered species to generate more accurate
management and conservation policies becomes obvious when consider-
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ing the fact that increasingly localized dispersal ranges shifts extinction
thresholds to lower values of habitat loss (Fig. 8.4, Eqs. 8.11 and 8.13).
For the same reason, the success of reintroductions of endangered species
in fragmented habitats should greatly depend on the species characteris-
tic dispersal range relative to suitable habitats inter-patch distances. In-
deed, the major concerns about habitat fragmentation and landscape de-
sign are based in the ability of wildlife to disperse between blocks of habi-
tat types that they require (Schumaker, 1996; Fahrig, 1997). Furthermore,
the existence of a dispersal threshold could be relevant for managing pur-
poses. Any empirical measure of dispersal capacity (i.e., mean dispersal
distance, maximum dispersal range, dispersal area or domain, etc.) could
be transformed into a value of z in a properly scaled spatially explicit model.
Once made this transformation we could directly know, for the case under
study, if the metapopulation is below or above the dispersal threshold, and
thus, if metapopulation persistence estimates should be done by consider-
ing species dispersal capacities or not, respectively. If dispersal capacity
is above the dispersal threshold) metapopulations’ persistence and extinc-
tion thresholds become independent from dispersal mechanisms. Instead,
they only depend on demographic metapopulation parameters. Note that
the dispersal threshold is independent of the size of the landscape where
the metapopulation survives, the key point is the scaling of the model in
relation to real patch-neighboring distances.

Furthermore, our model also shows that beyond extinction, coloniza-
tion and dispersal parameterization, the metapopulation persistence in a
fragmented landscape depends strongly on “dynamical aspects”. Depend-
ing on the dispersal capacity, the quantity of habitat lost within the dis-
persal range, and the dynamical status (i.e., whether equilibrium or not)
of the metapopulation, habitat loss can have an added negative effect on
metapopulation persistence. For poor dispersers (i.e., dispersal limited to
nearest neighbors) extinction thresholds are low, but the clumped spatial
structures generated by short-ranged dispersal strategies prevent them
from being even lower. In such cases, the metapopulation is “protected”
(at the long-term limit and only to some extent) from added negative ef-
fects due to a dynamical decrease in colonization rates. In these cases,
the effects of habitat loss within dispersal ranges are important only dur-
ing transient dynamics but not for the long-term equilibrium dynamics.
In metapopulations with long-range dispersal strategies species extinction
thresholds are higher. However, the fraction of habitat lost within disper-
sal ranges is larger, ensuring permanent added negative dynamical effects
on colonization rates. In these cases, landscape habitat destruction effec-
tively decreases the mean number of potential colonizers within the dis-
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persal ranges, providing an effective decrease of long-term metapopula-
tion persistence. For intermediate dispersal ranges we may expect inter-
mediate dynamical effects. The long-term metapopulation persistence will
be obtained as a dynamical trade-off between the added positive effects
of a clumped-like colonization process, and the added negative effects of
long-ranged dispersal. Fig. 8.4 shows these dynamical effects on metapop-
ulation persistence. It is observed that for z = 4 (i.e., short-ranged dis-
persal) the spatially explicit simulation equilibrium-results fit better with
the pair approximation without considering habitat loss within dispersal
ranges. On the contrary, when transient or pseudo-equilibrium patch oc-
cupancy is considered, this effect is important. For z = 8, the simulation
results are just between both analytical curves. And finally, for z = 24 (i.e.,
long-ranged dispersal) simulation results fit better with the curve obtained
from Eq. 8.13 (when no destruction is considered within dispersal ranges).
The utilization of both possible solutions, Eq. 8.11 and Eq. 8.13 allow us
to approximate better the spatiotemporal dynamics of the metapopulation
involving both transient and equilibrium states. Whenever uncorrelated
destruction assumption is possible, the area within both analytical curves
may provide an adequate interval estimate of real extinction thresholds. In
non-random fragmented habitats, deviations from such a null model may
help to understand potential effects of landscape’s spatial configurations
to metapopulation connectivity and persistence.

8.7.3 Dispersal ranges and transient times

The transient time, the time it takes for a population to return to
population-dynamic equilibrium following a perturbation in the environ-
ment or in population size, shows a divergent behavior near the extinction
threshold (i.e., when a critical habitat destruction value Dc is reached,
see 8.2b). Our analytical approach for both the time to reach equilibrium
values (D ≤ Dc, Eq. 8.6), and the time to extinction (D > Dc, Eq. 8.7)
is directly derived from considering the Levins model a logistic-growth
model. Different approaches (not so straightforward) have lead to the
same result: that the transient time is expected to be longer for those
species for which perturbed environment is close to the threshold of per-
sistence, suggesting that species extinction due to habitat loss may take a
long time (Ovaskainen & Hanski, 2002). As stated in Hanski & Ovaskainen
(2002) this result is specially noteworthy for conservation biology because
extinction threat is likely to be underestimated in changing environments
in exactly those cases where it matters most.

A new question to be addressed in relation to transient times is: What is
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Figure 8.6: Transient time behavior for different dispersal capacities z in relation to habitat

destruction D. The results are obtained from numerical integration of the pair approximation

system of equations (Eq. 8.11) by Runge-Kutta (order 8) method. Parameters: extinction rate

e = 0.2, colonization rate c = 0.6, initial population fraction p0 = 0.9999, and η = 0.9999 consid-

ered a small perturbation from the steady state computed with equation 8.11.

the effect of dispersal ranging on transient time metapopulation behaviors?
Figure 8.6 shows the transient time behavior of the equation system 8.11
in relation to habitat destruction for different dispersal capacities.

Three results can be highlighted from Fig. 8.6. First, the divergence
observed for the transient time near the extinction threshold in the mean
field model (Fig. 8.3d) is also observed when dispersal capacity is explicitly
included (Fig. 8.6). Therefore, for any dispersal range z, transient times
near extinction thresholds become infinitely large (T → ∞). Close to such
critical points we should expect correlations scaling with the system follow-
ing well-defined power laws (Solé et al., 1999). Second, far from extinction
thresholds and in D < Dc regimes, shorter dispersal ranges involve larger
transient times. While the contrary is true for D > Dc regimes. Thus, dis-
persal capacity makes transitory dynamics shorter in order to reach non-
zero equilibrium values, and larger when the equilibrium solution is the ex-
tinction. And third, given a specific amount of destroyed habitat, dispersal
capacity is a key element to decide whether a species is prone to go extinct
or to survive. From these results, it is derived that when evaluating the
extinction debt accumulated in a given species community (Tilman et al.,
1994; Hanski & Ovaskainen, 2002) dispersal capacity should be taken into
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account. The demographic metapopulation parameters and the degree of
habitat destruction are not enough to positioning the community extinc-
tion thresholds. For example, for D = 0.45 in Fig. 8.6 a species with
the same colonization-extinction parameters (e = 0.2, c = 0.6) should be
included in the extinction debt list if its dispersal range is z = 4, but it
should not be included if dispersal range is z = 6. In this concrete case,
transient times to reach both equilibriums (extinction and non-zero respec-
tively) is exactly the same. Finally, in highly destroyed habitats (D > Dc

regimes) it should be taken into account that, given similar demographic
parameters for the community, those species with large-range dispersal
are more prone to be technically extinct (thus, inflating the extinction debt
list) than short-ranged species. This is so, because for species with large-
range dispersal strategies, transient times to extinction are larger. Overall,
we should be aware that, besides the fact that finite-size effects can lead to
slow stochastic extinction of species (Solé & Goodwin, 2000; McKane et al.,
2000; Hubbell, 2001), dispersal range effects could also be increasing the
number of species in the extinction debt list.

8.7.4 Model extensions

The new mathematical expression for the Levins model (Eq. 8.11) has the
added value of useful closed-form analytical solutions. Equation 8.14, for
example, should enable us to make reasonable risk assessments of extinc-
tion thresholds based on dispersal characteristics. Finally, it should be
noted that with an appropriate interpretation of the dispersal range pa-
rameter z, our analytical results could also be valid in spatially realistic
metapopulation approaches. If possible, these equations could be inter-
preted as the spatially explicit analytical counterpart of the metapopulation
capacity approach (Hanski & Ovaskainen, 2000).

One particularly relevant extension of this approach is to consider
a complex landscape formed by many, perhaps heterogeneous patches.
Specifically, the situation is described by a network defined as a set of
nodes (patches of landscape) coupled through dispersal. Here two nodes
are linked if a given species is able to move from one to the other. If the
dispersal range of such species is η, then the presence of a link is

Aij =

{

1 if
∥

∥Si − Sj

∥

∥ < η

0 otherwise

The matrix Aij defines the overall architecture of the lanscape network,
as seen by the species under consideration.
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A generalized Levins-like model of such network would be defined as
a set of N coupled equations. Now if the degree distribution associated
to the set of patches is indicated as P(k), an average number of links per
patch can be defined as

〈z〉 =
N

∑
k=1

kP(k)

where P(k) is the probability of a given patch to have k links. Given the
local nature of the patch-patch relationship, we sould expect P(k) to be a
Poisson-like distribution. In that case, we could replace z in the previous
models by 〈z〉. If P(k) is not so homogeneous, then analytic approximation
to the full set of equations sould be taken (Pastor-Satorras & Vespigniani,
2001).
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8.8 Appendix

8.8.1 Analytical solutions for transient dynamics

Exact solution for non-null near-steady states: D ≤ Dc

We start the calculation of the time it takes for a population to reach a
population-dynamic equilibrium by noting that the Levins metapopulation
model Eq. 8.1 is identical with the logistic population growth model given
as:

dp

dt
= ap − cp2. (8.16)

where a = cΓ and Γ = 1 − D − e/c.

This is a separable differential equation that can be rewritten as,

∫ p

p0

dr

ar − cr2
=

∫ t

t0

ds = t − t0. (8.17)
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To integrate the function 1/(ar − br2) we resort to partial fractions and
obtain.

∫ p

p0

dr

r(a − cr)
=

1

a

∫ p

p0

(

1

r
+

b

a − cr

)

dr = (8.18)

=
1

a

[

ln
p

p0
+ ln

∣

∣

∣

∣

a − cp0

a − cp

∣

∣

∣

∣

]

=
1

a
ln

p

p0

∣

∣

∣

∣

a − cp0

a − cp

∣

∣

∣

∣

. (8.19)

Thus,

a(t − t0) = ln
p

p0

∣

∣

∣

∣

a − cp0

a − cp

∣

∣

∣

∣

. (8.20)

It can be easily shown that (a− cp0)/(a− cp(t)) is always positive for p0 < p
and hence,

a(t − t0) = ln
p

p0

(

a − cp0

a − cp

)

. (8.21)

For t0 = 0 we have,

t =
1

a
ln

p

p0

(

a − cp0

a − cp

)

. (8.22)

Making the appropriate change in the variables for the Levins model where
a = cΓ we obtain,

T =
1

cΓ
ln

p

p0

(

Γ − p0

Γ − p

)

. (8.23)

where Γ = 1 − D − e/c. If p = Γ − η where η ¿ Γ, then,

T(D, η) =
1

cΓ
ln

[

Γ − η

p0

(

Γ − p0

η

)]

(8.24)

As T(D, η) must be always positive, this equation is only valid for p > p0 ≡
Γ > p0, that is, only when D ≤ Dc (i.e., a non-trivial stable equilibrium
population value).

Approximated solution for time to extinction: D > Dc

Starting from an initial condition p0 ¿ 1 and assuming D > Dc we always
will obtain decayment until reaching extinction. Levins equation,

dp

dt
= cp(1 − D − p) − ep = Ωp − cp2. (8.25)

where Ω = c(1 − D) − e will be dominated only by the first term, because
p0 ¿ 1. Thus, we have

(

dp

dt

)

D>Dc

≈ Ωp (8.26)
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The time required to reach a fraction of the steady population 0 ≤ η ¿ 1
and η < p0 can be computed by rewriting equation 8.26 as follows,

∫ η

p0

dp

p
= Ω

∫ T

t0

dt. (8.27)

Therefore,

ln

(

η

p0

)

= ΩT. (8.28)

and

T(D, η) =
1

Ω
ln

(

η

p0

)

. (8.29)

for D > DC and Ω = c(1 − D) − e.

8.8.2 The exact stochastic algorithm for the spatially explicit

Levins model

The fundamentals of the exact stochastic algorithm were developed in
the context of chemical coupled reaction systems (Gillespie, 1976, 1977,
1992). Simple applications to birth-rate processes are described in Ren-
shaw (1991). More recently, the exact stochastic algorithm has been
generalized to be used in discrete spatially extended systems (Alonso &
McKane, 2002; Alonso, 2003). The simulation procedure is a bit different
from the one described in Gillespie (1976, 1977, 1992). The spatially ex-
tended version of the algorithm includes the rejection method (Press et al.,
1992) which enables a rapid random election of different possible site or
patch events according to their rates, in particular, when these different
rates take comparable values. Indeed, in spatially extended models the
stochastic algorithm involve a three step process decision: i) When will
occur the next event?, ii) Where will occur the next event?, and iii) Which
will be the next event?. In non-spatial models, the stochastic algorithm
only must account for the questions i and iii. The common point in any
exact stochastic simulation strategy is the computation of a total transition
rate for the whole system which is then used to estimate inter-events time,
determining when it will take place the next event.

Here, we will only describe the specific algorithm used for performing
exact stochastic realizations of the spatially explicit (lattice) Levins model.
For a more general view see Alonso & McKane (2002); Alonso (2003).

We must start remembering the basic assumptions underlying the
Levins spatially explicit model: i) patches are distributed uniformly in a
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two-dimensional lattice of N × N sites, ii) Patch dynamics involve two tran-
sition events: extinction and colonization, iii) Given a certain configuration
of the system, the basic dynamical processes underlying patches (i.e.,
patch transition rates) depend on the state of the patch (whether occupied
[+] or available [0]), and the state of the neighboring patches.

The patch transition events can be illustrated as follows:

Occupied patches – Extinction: [+]
e−→ [0] (8.30)

Available patches – Colonization: [+, 0]
c/z−→ [+, +] (8.31)

Each patch in the lattice can be extinct at a constant rate e (i.e., ex-
tinction rate is the same for all the patches, this it is global). Instead, the
colonization rate of an empty patch depends on a neighborhood domain of
occupied patches. The neighborhood domain Z(p) symbolizes the dispersal
range. The size of the dispersal range is given in terms of the number of
neighbors z to be considered for a given patch. The colonization rate per
each neighboring patch is defined as c/z. Indeed, the colonization rate c,
is the maximum colonization rate into an empty patch, which is realized
when all the neighbors in the dispersal range are occupied. Therefore, an
empty site will be filled by a local population at a rate proportional to the
number of occupied neighbors in the dispersal range.

The following definitions of neighborhood colonization pressures will be
needed in the stochastic algorithm:

• Colonization pressure of neighboring patches within Z(p) to an empty
central patch p = x. By definition patch x must be available x = p0 =

0
c(Z)x =

c

z ∑
p∈Z(p)

p+. (8.32)

Colonization pressure of a central patch p = x on empty neighboring
patches within Z(p). By definition patch x must be occupied x = p+ =

1.
c(x)Z =

c

z ∑
p∈Z(p)

(1 − p+). (8.33)

where p+ is the number of occupied patches, (1 − p+) = p0 the number
of available patches, and z is the maximum number of neighbors in the
dispersal range Z(p). Note that if habitat fragmentation is included (and
landscape dynamics is not taken into account), the destroyed patches are
not involved in patch dynamics, thus they need not to be considered in any
of these calculations.

The overview of the algorithm is as follows:



154 The role of the dispersal range in metapopulation dynamics

1. Calculation of the total transition rate of the system R. This is the
probability per unit time that the system changes configuration as a
result of a transition event occurring in any patch within the system.

2. Calculation of the expected time to next transition t.

3. Rejection method. Choose a patch at random and assess whether
this patch will undergo a transition or not. If not, stochastic time is
assumed not to advance and nothing happens. If it can, the inter-
event expected time calculated in the previous step is accumulated
and a particular transition event (compatible with the chosen patch)
takes place changing the configuration of the system.

4. Repeat again starting from step 1.

Here we describe in detail the three main steps enumerated above:
Total transition rate: Sum up all the event transition rates of the system

at time t. This can be done by computing the number of occupied sites
n+ and the number of available sites surrounded with a given number i of

occupied neighbors n0i, where i = 1, .., z and
z

∑
i=0

n0i = n0, where n0 is the

number of available sites. Thus, in the first iteration of the simulation we
have to compute,

R = en1 +
z

∑
i=0

c

(

i

z

)

n0i (8.34)

Inter-event expected time: The expected time to next transition t can
be estimated by sampling an exponential distribution with parameter R,

t =
− log(χ)

R
(8.35)

where χ is a uniformly distributed random variable (Gillespie, 1976,
1977; Renshaw, 1991; Gillespie, 1992) (see also Technical Appendix A).
Thus, in this way we are actually sampling this distribution and estimating
“when will occur the next event”. Accumulating these inter-event times for
every stochastic realization we are able to correctly track the time.

Rejection method: The rejection method allow us to know “where will
occur the next event ” and “which event will occur”. The basic idea is based
on the fact that at each time step we have a different configuration of patch-
states in the lattice. Thus, at each time step, patch transition rates r should
change accordingly. These transition rates depend not only on patch states,
but also on the neighboring patch states within the dispersal range Z(p).
If a patch is occupied, the patch-rate for that patch, is simply e. If available
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the patch-rate must be computed as c( i
z ), where i is the number of occupied

neighbors in the dispersal range, and z the number of total neighbors in the
dispersal range.

Thus, at each time step, we can define a discrete two-dimensional
probability distribution of transition rates emerging from the whole N × N
patch-lattice system. The rejection method allow us to randomly sample
patches or site according to this distribution. First we need to normalize
these patch-transition rates by the maximum patch-rate rmax in the system.
Depending on the system configuration rmax can be either related to an
extinction event or to the colonization event with the largest number of
occupied neighbors.

Then we can apply the rejection method in the following way:

• Choose a patch at random k − patch.

• Compute the following ratio: x = rk/rmax

• Compare x value to a randomly chosen number, χ, belonging to a
uniform distribution lying between 0 and 1. If χ < x this patch is
accepted and undergoes a transition regarding to its state (whether
an extinction or a colonization). If not, the patch is rejected and the
rejection procedure is repeated.

• Once a patch is accepted, we can directly know “what event will hap-
pen” in relation to its state. If the selected patch is one available,
the transition event will be a colonization. If occupied, the transition
event will be an extinction.

To carry out this procedure in the most efficient manner, at the initial
simulation step t0, we should store: First the n+ and n0i values to compute
R. The occupied patches can be stored in a scalar variable. The available
sites may be stored in a vector ~n0 = 0, 1, ..., z, where all available patches
with 0 occupied neighbors will be stored at n0[0], those with 1 occupied
neighbor at n0[1], ..., and those with all the neighbors occupied at n0[z].
Second, the maximum patch-rate rmax. Depending on the system configu-
ration rmax can be either related to an extinction event or to a colonization
event.

Then, in the course of updating the parameter R after the occurrence
of each transition event, we need only to substract or add the new values
obtained from the “neighborhood colonization pressures” calculations in
the following way:

Extinction of x: [+]−→[0] : R1 = R0 + c(Z)x − c(x)Z (8.36)

Colonization of x: [0]−→[+] : R1 = R0 − c(Z)x + c(x)Z (8.37)
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where R0 is the total transition rate at time step t0 and R1 at time step
t1 = t0 + 1. Then, we need to update the value n+ and the vector n0i by
adding or subtracting a unit value accordingly with the transition event oc-
curred: extinction or colonization. In the latter case, we must know which
is the number of occupied neighbors involved in that specific colonization
to update the vector ~n0 correctly). If we are not interested in characteriz-
ing the evolution on time of available sites in relation to their neighborhood
occupancy the vector ~n0 need not to be actualized. Finally, we need to up-
date rmax. This can be done, by comparing the previous rmax to the specific
transition rate event of the selected patch rk. If rk > rmax then rmax = rk,
else rmax = rmax.

Pseudo-code

Initialization

1. Initialize parameter values for colonization c and extinction e rates.
Initialize habitat destruction percentage value D.

2. Initialize lattice configuration (i.e., random placement of occupied,
available and destroyed patches).

3. Compute n+, n0i, R and rmax.

4. Set t = 0

Main Loop

1. Randomly select a patch in the lattice. Generate a discrete uniformly
distributed random number between 0 and N × N (irand).

2. Decide whether the selected patch will undergo a transition. Gener-
ate a continuous uniformly distributed random number (drand):

If r/rmax > drand → NO EVENT. Start at step 1 Main Loop again.

If r/rmax < drand → EVENT. Continue to next step.

3. Compute neighborhood colonization pressures of the selected patch:
c(Z)x and c(x)Z.

4. Generate a continuous uniformly distributed random number (drand2)
and get an inter-event time τ = − ln(drand2)/R.

5. Actualize R and rmax according to the transition occurred.

6. Do t = t + τ.

7. Return to step 1 in Main Loop.
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8.8.3 The pair approximation method

As shown in Appendix A.1, the classical Levins model is in fact a logistic
equation. Therefore, its spatially explicit version can be considered a “lat-
tice logistic model”, also referred as the “basic contact process” (Mollison,
1977). The development of the pair approximation method for a lattice ba-
sic contact process is described in detail in Sato & Iwasa (2000). We have
introduced the habitat destruction effect in the model worked out in Sato
& Iwasa (2000) and followed their analytical development.

The model described (see Section 8.4) assumes the existence of a dis-
persal range ∆ to describe the dynamics of metapopulation densities (frac-
tion of occupied or available sites in the lattice). In particular, the coloniza-
tion rate depends on the number of occupied neighbors in the dispersal
range of a randomly chosen available site rather than on the overall av-
erage occupancy of the lattice. Thus, it is difficult to construct a simple
model of population dynamics as an ordinary differential equation based
only on the overall density of the metapopulation. Instead, it is neces-
sary to distinguish between global (whether singlet or doublet) densities
and local (or conditioned) densities (Matsuda et al., 1992). The state of a
site is denoted by σ, which is either + (occupied) or 0 (available). Global
singlet-densities ρσ, with σ ∈ {+, 0}, are the probabilities that a randomly
chosen lattice site is in state σ. Local densities qσ/σ′ , with σ, σ′ ∈ {+, 0},
are the conditional probabilities that a randomly chosen nearest neighbor
of a site in state σ′ is in state σ. The difference between ρσ and qσ/σ′ , indi-
cates nearest-neighbor correlation. These local densities can be expressed
in terms of global doublet-densities ρσσ′ , which are the probabilities that a
randomly chosen pair of nearest-neighbor sites are in state σσ′. Doublet
densities can be expressed as the products of singlet densities and local
densities:ρσσ′ = ρσ′σ = ρσqσ′/σ = ρ′σqσ/σ′ . Higher-order densities, such as
triplet or quartet densities, can be defined similarly. By definition, global
and local densities satisfy

∑
σ∈{+,0}

ρσ = 1

∑
σ∈{+,0}

qσ/σ′ = 1, ∀ σ′ ∈ {+, 0}. (8.38)

As the initial configuration is uniformly distributed and the processes are
spatially homogeneous and isotropic, the probabilities ρσ and ρσσ′ remain
independent of location. These probabilities change over time t. According
to processes 8.30 and 8.31, global density develops over time as follows:

dρ+

dt
= −eρ+ + c(q0/+)ρ+. (8.39)
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The first and second terms on the right-hand side of the equation corre-
spond to the extinction and colonization processes, respectively. The sec-
ond term includes the local average density of occupied sites adjacent to
available sites q0/+. As we do not assume any assimetry between neigh-
boring sites q0/+ = q+/0 = 1 − q+/+. When habitat destruction D is consid-
ered, we obtain the following expression q0/+ = 1 − D − q+/+.
The doublet density changes according to the dynamics

dρ++

dt
= −2eρ++ + 2

c

z
ρ+0 + 2

c

z
(z − 1)q+/0+ρ+0. (8.40)

This equation includes the extinction term (the first term on the right-hand
side) and the colonization terms (the second and third terms). The first
term describes transitions of pairs in state ++ to either 0+ or +0. Both
transitions occur at a rate e and thus give rise to the factor 2e. In the second
and the third terms of the equation, the factor 2 is needed because we do
not assume any assimetry in the interaction between sites, which means
ρ+0 = ρ0+. So we have to include both transitions from 0+ and +0 to ++.
The second term indicates the case where + occupies the nearest-neighbor
0 site within the pair. The third term correspond to events in which an
empty site of a pair becomes occupied by another neighbor (which is not
part of the pair). Thus, in two-dimensional square lattice and z = 4 we
must consider three sites (in general z − 1 sites) in the dynamics of local
densities. This approach neglect differences in the spatial configuration of
these three connected sites on the two-dimensional square lattice.
Eq. 8.40 is incomplete without knowledge of q+/0+. To overcome this dif-
ficulty, we adopt an approximation, called the decoupling method (or mo-
ment closure), which neglects higher-order correlations (triplet or quartet
densities). Thus, the method is named pair approximation because it traces
pair correlations but neglect three-site correlations (Matsuda et al., 1992;
Sato et al., 1994). Pair approximations focus only on the nearest-neighbor
correlation; correlations between non-nearest neighbors are approximately
reconstructed from nearest-neighbor correlations. In general, qσ/σ′σ′′ is re-
placed by qσ/σ′ . Underlying this assumption is the idea that the correlation
between lattice sites decreases monotonically with the distance between
them. Thus a site is affected less by distant neighbors than by intermedi-
ate neighbors. The higher-order conditional probabilities in Eq. 8.40 thus
can be reduced as follows:

q+/0+ ≈ q+/0 =
ρ+0

ρ0
=

(1 − D − q+/+)ρ+

1 − ρ+
. (8.41)

Because doublet densities are the products of global and local densities, we
can express the local densities as the ratio of doublet densities to singlet
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(global) densities. Hence the dynamics of local density can be written as
follows:

dq+/+

dt
=

d(ρ++/ρ+)

dt
. (8.42)

Such a function d/dtφ(ρ++, ρ+) can be expressed in terms of its partial
derivatives by following the chain rule:

d

dt
φ(ρ+, ρ++) =

∂φ

∂ρ+

(

∂ρ+

dt

)

+
∂φ

∂ρ++

(

dρ++

dt

)

. (8.43)

So we have

d(ρ+/ρ++)

dt
=

∂
(

ρ++

ρ+

)

∂ρ+

dρ+

dt
+

∂
(

ρ++

ρ+

)

∂ρ++

dρ++

dt

= ρ++
∂

∂ρ+

(

1

ρ+

)

dρ+

dt
+

1

ρ+

dρ++

dt
. (8.44)

And therefore,

dq+/+

dt
=

d(ρ++/ρ+)

dt
= −ρ++

ρ2
+

dρ+

dt
+

1

ρ+

dρ++

dt
. (8.45)

Finally, considering the following expressions:

ρ++ = ρ+q+/+.
ρ+0 = (1 − D − q+/+)ρ+.

q+/0+ ≈ q+/0 =
ρ+0
ρ0

=
(1−D−q+/+)ρ+

1−ρ+
.

and substituting Eq. 8.40 into Eq. 8.45, we obtain the following expression
for the local densities:

dq+/+

dt
= −q+/+[c(1 − D − q+/+) − e] +

+2

{

−eq+/+ + c

[

1

z
+

(

1 − 1

z

)

(1 − D − q+/+)ρ+

1 − D − ρ+

]

(1 − D − q+/+)

}

.

So we obtain the following set of equations from Eq. 8.39 and Eq. 8.45:

dρ+

dt
= −eρ+ + c(1 − D − q+/+)ρ+

dq+/+

dt
= −q+/+[c(1 − D − q+/+) − e] + (8.46)

+2

{

−eq+/+ + c

[

1

z
+

(

1 − 1

z

)

(1 − D − q+/+)ρ+

1 − D − ρ+

]

(1 − D − q+/+)

}

.
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Thus, with the pair approximation method we can express the Levins spa-
tially explicit model with habitat destruction and dispersal ranges in terms
of a closed dynamical system (Eq. 8.46) with two variables ρ+ and q+/+,
global occupancy densities and local densities (nearest-neighbors occu-
pancy correlations).


