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A

Sampling probability
distributions

There are two rough classes of methods for sampling probability distribu-
tions: those based on a transformation method, and those based on a rejec-
tion method. The transformation method is very efficient, but it requires
that we can perform a definite integral over the probability distribution
and then invert the results. This is not always that easy. Sometimes we
can perform these step analytically, some times we need to perform the
integral numerically, and then form a table which is "invertible". The rejec-
tion method will always work, but it can be inefficient, especially then the
probability distribution is changing by orders of magnitude. There are also
cases which are build on a hybrid of these two methods.

A.1 The transformation method

The transformation method is based on the fundamental transformation
law of probabilities, which is simply,

dx
dy

lp(y)dy| = |p(x)dx| or p(y)=p(x)

in order to generate random values of some arbitrary desired distribu-
tion from random values with other distributions. When the source distri-
bution is a uniform distribution the transformation method is known as the
inversion method.
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First, to understand the transformation method we must first remember
the definition of an inverse function. Two functions g and f are inverse one
of the other if

f(g(x)) =x and g(f(x)) =x

We denote g as f~! the inverse of f. Not every function f has an in-
verse function f~!. The function f must be monotonic in a given interval
to have an inverse in that interval. We must think in f~! as a function that
unmakes what has been made with function f. For example, a subtraction
will be used to unmake an addition, a division can be used to unmake a
multiplication, and a derivative can be used to unmake an integration. Pro-
vided that it exists, the inverse of a given function y = f(x) can be obtained
by “solving for x in terms of y”: x = ¢(y) = f~!. As an example,

f(x) = \/sz _3)r
y=fx)=+(2x-3),

2
X = y+o 3,
2
2
1 Yy +3
=15
Taking x just as an independent variable we have
2
- x“+3
) =—H— (A1)

Now we can proceed to explain the transformation (inversion) method.
The idea behind the inversion method is that we would like to start out with
a uniform probability distribution:

dx 0<x<1
p(x)dx = { 0 otherwise (A.2)
/ p(x)dx =1 (A.3)

and transform it into a non-uniform probability distribution p(y). (The
proof presented here is from Numerical Recipes). Starting with the Funda-
mental Transformation Law of Probabilities,

dx
@ (A.4)

Now if we want a probability p(y) to follow a function f(y) we can write,

p(y) = p(x)
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dx

fy) =ry) =pk) ay

This allow us to relate a random variable x from the distribution function
p(x) with the random variable y from the distribution function p(y). If x is
from a uniform distribution in [0, 1], the p(x) is constant so we have,

(A.5)

dx
v =g (A.6)
The solution to this is the indefinite integral of f(y),
Y
x=F(y) = / f(z)dz (A.7)

The relationship give us the source random variable x, given the target
random variable y. So we need to be able to invert the relationship. The
desired transformation which takes a uniform deviate into one distributed
as f(y) is therefore,

y(x) = F 1(x) (A.8)
where F~! is the inverse function to F. Whether Eq. A.8 is feasible to
implement depends on whether the inverse function of the integral of f(y)
is itself feasible to compute, either analytically or numerically. Sometimes
it is, and sometimes it isn’t. In short, one can obtain a transformation
function from p(x) € (0,1) to another function if:

* we can perform the indefinite integral, and

* we can invert the result of that indefinite integral.

Thus, the inversion method to generate random variates from a given
probability distribution p(x) (i.e., exponential, potential, etc.) is based in
the following steps:

(i) To calculate the distribution function (normalized) of the function

p(x).

+oo
F(x) = flx)dx =1 (A.9)
(ii) To calculate the cumulative function to a certain value x
X
u(x) = / p(y)dy, (A.10)
Xmin

where x is within the interval xpin <y < x. Note that 0 < u(x) < 1.
(iii) Then, to invert the function u(x), obtaining x = F~1(u).

By generating random values of u we obtain the values x from the original
distribution p(x) in terms of the function F(u).
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A.1.1 Examples
The negative exponential distribution

Imagine we want to obtain random variate values x from a given exponen-
tial function defined as

flx) = (A.11)

where x > 0. First we must consider the distribution function:

R = [ prdy =1

/oo Be “dx =1, P e =1
0 —& o
e? 1

Thus, we have the following normalized cumulative function,
X
F(x) = / we Mdx (A.12)
0

Following,

X

X E*DCX
F(x) = oc/ e dx =a
0

—K
14 —
el [6 xx —6’0}
-

—e T 1 =1—e"", (A.13)

0

Finally, we have
u(x)=F(x)=P@<x)=1-e",
e =1—u(x),
—ax = In(1 — u(x)).

Noting that 1 — u(x)) is statistically identical to u(x) we get,

X=—-——>"" (A.14)
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The potential distribution

To obtain a random variate from a probability function decaying potentially
with exponent p, p(x) = x7# we first must note that such probability func-
tion has a natural inferior cut-off x = 1 (values x < 1 will lead to a growing

potential). Thus we have,

/looﬁxM:1

The distribution function is
o0
/ Bxtdx = 1,
1

x|
—nF1l, L
B [hrn < 1 )} -1
r—eo \—p+1  —p+1 ’
_y+1[%520x‘”+1—1] =t

The limit above can be solved for u > 1. Then, if y > 1,

: —u+1 _ —
—r Mm e =
p
-1 =1
—-u+1 0-1 !
B = —u-1

Thus, we get the distribution function F(x),

R = [-vr = oy [

(A.15)

(A.16)

(A.17)

- (y_n[xly]::’*l_”)hlﬂ—1}:1—xlF(A1&

1—m 1—mn

Finally, we have
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A.2 The acception/rejection method

The rejection method is based on a simple geometrical argument:

Draw a graph of the probability distribution p(x) that we wish to gener-
ate, so that the area under the curve in any range of x corresponds to the
desired probability of generating an x in that range. If we had some way
of choosing a random point in two dimensions, with uniform probability in
the area under the curve, then the x value of that random point would have
the desired distribution.

Now on the same graph, draw any other curve i(x) which has finite (not
infinite) area and lies everywhere above your original probability distribu-
tion. This is always possible, because the original curve encloses only unit
area, by definition of probability. We will call this k(x) the comparison func-
tion. Imagine now that we have some way of choosing a random point in
two dimensions that is uniform in the area under the comparison function.
Whenever that point lies outside the area under the original probability
distribution, we will reject it and choose another random point. Whenever
it lies inside the area under the original probability distribution, we will
accept it. It should be obvious that the accepted points are uniform in the
accepted area, so that their x values have desired distribution. It should
also be obvious that the fraction of points rejected just depends on the ra-
tio of the area of the comparison function to the area of the probability
distribution function, not on the details of shape of either function.

Now the key question is how to choose a uniform random point in two
dimensions under the comparison function /(x). A variant of the transfor-
mation method can be used: We must be sure that the comparison or hat
function h(x) has a an indefinite integral that can be known analytically,
and is also analytically invertible to give x as a function of “area under
the comparison function to the left of x”. Then we pick a uniform deviate
between 0 and A, where A is the total area under /(x), and we use it to
get a corresponding x. Then pick a uniform deviate between 0 and h(x)
as the y value for the two dimensional point. The point (x,y) is uniformly
distributed in the area under the comparison function /(x).

An equivalent procedure is to pick the second uniform deviate between
zero and one, and accept or reject according to whether it is respectively
less than or greater than the ratio p(x)/h(x).

In brief, the principle of the rejection method is that the frequency dis-
tribution f(x) is approximated by another distribution function k(x) which
is easier to calculate, and then a correction is made by randomly accepting
x values with a probability p(x) = % and rejecting x values with proba-
bility 1 — p(x). The constant k is chosen so that kh(x) > f(x) for all values
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of x. Whenever an x value is rejected, the procedure starts over again with
a new x. The accepted x values have the distribution f(x) because the
acceptance probability p(x) is proportional to f(x)/h(x).

This method does not require that the cumulative distribution function
(indefinite integral of p(x)) be readily computable, much less the inverse
of that function -which was required for the transformation method. In
the case of discrete distributions, sometimes it is used as an alternative to
the chop down search. The inversion by chop down search from 0 can be
used when p(x) is a discrete function (i.e., Poisson, binomial, etc.). Then,
the inverse function can be calculated by successively adding p(0) + p(1) +
...+ p(x) until the sum exceeds a random uniform variable u. The advantage
of the rejection method is that the calculation time does not grow with the
mean of x as in chop down searches. It is therefore used when the variance
is so large that the chop down search would be more time consuming.

The disadvantage of the rejection method is that is difficult to find a
good hat function /(x) which is easy to calculate and at the same time ap-
proximates f(x) so good that the rejection rate will be low. A bad hat func-
tion will lead to high rejection rate and hence a long execution time. Vari-
ous improvements of the rejection method by quick acceptance and quick
rejection schemes can be applied (i.e., the patchwork rejection method, the
ratio-of-uniforms rejection method, etc.).
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Random walks and diffusion

A classic problem in science concerns the statistical properties of ran-
dom walks (Brown, 1828; Einstein, 1905). One of particular relevance is
the type of diffusion generated by the underlying dynamics, which can be
characterized by a parameter «. For large enough times ¢, the root mean
squared displacement (which characterizes the spreading rate of random
walkers from a source point) of the random walk scales as t*. For the case
of Brownian motion, whose steps increments have finite variance and no
correlations, « = 1/2, leading to normal diffusion. Anomalous diffusion is
obtained when a > 1/2 (super-diffusion) or & < 1/2 (sub-diffusion).

B.1 Normal diffusion: Brownian motion

The statistical behavior of a random walk can be obtained by mapping the
discrete rules of the walker movement into a continuous diffusion equation.
Consider a particle jumping to left or right on a one-dimensional lattice.
Let us assume that each jump occurs within a time interval (¢,f + 6t). The
probability that the particle performs a jump will be

P(t,t+ 6t) = B 6t + O(5t) (B.1)

where O(Jt) indicates higher order terms. If the length of a jump is
given by a fixed number Jx, then the transition probabilities will be:

P(x —» x+dx) = % (B.2)
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P(x —» x—dx) = % (B.3)

Let us indicate P;(t) = P[x(¢) = i 6x]. From the previous set of hypothe-
ses, we have:

Pt +6) = (1= B SOP(1) + 2B 6t [Pa(h) + P ()] 4O (B4)

We can thus write:

1
Pi(t-+0t) = —P(t) = —B 6tBi(t) + 5B ot [pi,l(t) + Piﬂ(t)} +O(t)  (B.5)
dividing by 4t and taking the limit 6t — 0, we obtain:

dap;(t 1
M0 — BB + 3B [Pa(t) + Praa () (8.6
Now we move into the continuum by removing the dependency in x to
the arbitrary discretization dx. Using the notation P;(f) = f(x,t), we can
write:

af(aa;, t) _ —Bf(x,t) + %ﬁ [f(x —0x,t) + f(x + dox, t)} (B.7)

and performing a Taylor expansion we obtain:

LIS f(x,t)éx +
+§ax Fx, £)ox + §a§ Fx,b) (‘5;)2 ¥ (B.8)

or, after simplification,
of (x,1) B éazf(x,t) n
ot 2 9x2

By defining a new constant D = B(6x)?/2, we finally obtain the diffusion
equation for the random walk:

af(x,t) azf(x f)
ot 0x2

(B.9)

(B.10)
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This equation can be solved and gives a general expression:

x2

flx t) = ~ 1D (B.11)

1
ex
varDt P

which has been obtained by assuming an initial condition f(x,0) = §(0)
(i. e. the initial condition involves all walkers located at a single point, here
the origin of coordinates).

From this distribution, we can compute the moments and their dyna-
mics, using the integral

+00
(x4 (F)) = / P (x, £)dt
—00
It can be shown, for example, that the average (x) remains constant
over time, i.e.
d(x)
dt
consistently with the symmetry of the RW rules. The dispersal, as measured
by the variance, can also be computed. Now we have

=0

d(x*(t))

=2D
dt

which can be easily solved, leading to a linear relation
(x(t)) = 2Dt

Since the variance 0?(x) is defined as

and (x(t))? = 0, we have a standard deviation for the moment of the walk-
ers, o(t), given by

For a population of random walkers, the previous result indicates that their
spatial spreading is limited by a general, simple scaling law
o(t) ~ (Dt)1/?

which can actually be used as a test for diffusive motion in a given popula-
tion of individuals.
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Figure B.1: Paths followed with time by random walkers in one dimension from a small popu-
lation. The parabola describes the standard deviation of the dispersal.



Anomalous diffusion: fractional Brownian motion and Lévy statistics

B.2 Anomalous diffusion: fractional Brownian mo-
tion and Lévy statistics

Anomalous diffusion, that is, root mean squared (rms) displacement de-
partures from the scaling relationship with time rms =~ t1/2 can emerge
by either a time dependence of a process’ variance (Mandelbrot’s Joseph’s
effect), or by the statistics of the random variable (Mandelbrot’s Noah’s
effect) (Mandelbrot, 1977, 1982).

Let us now consider the first case. Imagine a process having a Gaussian
statistics but with variance that is not linear in time. To accomplish this,
consider a random walk process X(t) with the correlation function

(X(HX(t)) =2D|t —t'|*1 (B.12)

This process is simple a Brownian motion for H = 1/2, but is called
anomalous diffusion for other values of H. In terms of the random walk
model for H > 1/2, the walker tends to continue in the direction he or
she has previously been walking. The higher the H value the greater the
tendency to persist in one’s direction of motion. For H < 1/2 the walkers
actively choose to avoid continuing in a given direction, and changes in
direction more frequently than in Brownian motion. The behavior is called
anti-persistence. The statistics of the random walk process are not changed
by the correlation function B.12; they remain Gaussian but their variance
changes, yielding

P(Ax, At) = (4nDAPHY 1 2exp[— (Ax)? /4D AH] (B.13)

where Ax is the change in the displacement of the walker during the
time interval At. Eq. B.13 is the probability density for fractional Brownian
motion (fBm). The variance of fBm, denoted by ¢?, can be expressed as
o « t2H where t is the time over which the process has evolved and H is the
Hurst exponent (H € 0,1). It is worth to pointing out that these anomalous
processes have inverse power law spectra, 1/f2H*1, where f is the fre-
quency. Note the relationship between the exponents in the variance and
the spectrum. Such kind of processes are described by fractional Brownian
motion (fBm).

It is interesting to scale the displacement by A and the time interval by
B so that from Eq. B.13 we obtain

P(AAx, BAt) = B~ P(Ax, At) (B.14)

as long as A = /3H . Fo H = 1/2 the scaling relation is exactly the same
for the probability density of Brownian motion. Thus, we see that the fBm
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is self-affine, with the random variables 8/ X(Bt) and X(t) having the same
distribution.

Often in anomalous diffusive processes there is a change in the statis-
tics of the variable (in comparison to the statistics of the variable given rise
to normal diffusion) rather than a change in the variance, and a Lévy sta-
ble distribution is required to describe the process. Thus, anomalies in the
diffusion emerge because of non-Gaussian statistics. For example, the ran-
dom walker steps may involve power-law distributions of the form Eq. C.7,
and thus we get Lévy-stable distribution statistics (Eq. C.6.

The scaling property of the Lévy distribution is obtained by scaling the
displacement with A and the time with j to obtain

Pu(Ax, Bt) = B~V HPL(x, 1) (B.15)

as long as A = /. Note that Eq. B.15 has the same scaling form
as fBm Eq. B.14 if the Lévy index y is the same as 1/H. Thus the self-
affine scaling results from Lévy statistics with 0 < p < 2 or from Gaussian
statistics with a power-spectrum with 0 < H < 1. The scaling relation is
the same in both cases and therefore cannot be used to distinguish between
the two. Note that Eq. B.15 and Eq. B.14 are equivalent only for2 > u > 1
for which 1/2 < u < 1, indicating that the Lévy processes also give rise to
anomalous diffusion (t*,« > 1). Is for this range of anomaly, that we cannot
distinguish between Gaussian statistics fBm or Lévy statistics underlying
the process, unless we have some knowledge of the causing mechanism,
that is, a well defined variable key on the process to be measured. When
the Lévy index is in the interval 0 < u < 1, the parameter H is greater than
unity, and as unity is the greatest value for H in a diffusive process since
it corresponds to ballistic motion, such scaling indicates a Lévy process
rather than a fBm.

The statistics of intermittence, and more concretely the time between
reorientations in an animal’s movement, is a key variable mastering anoma-
lous diffusion phenomena. Assuming large-scale animal movement as an
intrinsic discrete process, one should try to identify re-orientation mecha-
nisms, and compute the statistics of such variable in order to know if the
underlying statistics giving rise to anomalous diffusion is due to a Lévy
statistics or not.



The Lévy-stable distribution

C.1 The Lévy stable distribution

A collection of measurements or quantities, often called ensemble, can be
described by a distribution function. This function, also called the prob-
ability density, associates a probability with the occurrence of an event
(or quantity). Usually the average value of the quantity of interest has the
greatest probability, and deviations from the average are less probable; the
greater the deviation from the average, the less the probability. This regu-
larity is observed in even the most random processes, for example, in the
error associated with making a measurement. This regularity in the form
of frequency distribution of errors refers to the “Law of Frequency of Er-
ror” or Gauss’ Law of error and the normal (Gaussian) distribution. When
distributions have finite moments to all orders (average, variance, kurto-
sis, etc.), these moments can be used to determine the probability density.
The moments of a distribution f(x) are defined as }_ x" f(x)dx where r is the
moment order.

In some cases, such as for the bell-shaped (normal) distribution, the
second moment (variance) is sufficient to determine the complete behavior
of the ensemble. However, when distributions have sufficiently long-tails,
the first few moments will not characterize the distribution because they di-
verge (they never stabilize, always increasing or decreasing). Distributions
that with infinite moments characterize processes describe by non-integer
exponents and contain surprises that run counter to our intuition.

An example of such distributions are inverse power-law distributions.
Important empirical examples of inverse power-law distributions are the
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Zipf’s Law, where f(n) is the relative frequency of the nth word in the
order of the frequency of usage of that in a given language f(n) ~ 1/n; the
distribution of the frequency of distribution of incomes in western societies,
the Pareto’s Law where N(x) is the number of people with income x or
larger and v is a positive number (Pareto’s exponent) then N(x) ~ 1/n", or
the Latka’s Law, inverse squared distribution of the percentage of authors
publishing exactly »n papers as a function of n (N(n) ~ 1/ n?)

The geometric notion of a fractal carries over into the domain of statis-
tics in that it is the details of the random fluctuations in the process of
interest that are revealed at smaller and smaller scales as the interval of
observation is magnified. Paul Pierre Lévy (1886-1971) studied the gen-
eral properties of such processes in the 1920s and 1930s and generalize
the Central Limit Theorem to include those phenomena for which the sec-
ond moment diverges. Among the varied and interesting properties of the
Lévy stable distribution (process) is the fact that it satisfies a scaling law,
indicating that the statistical fluctuations in the underlying process are
self-similar.

A stable distribution is a distribution obtained by summing up (or av-
eraging) variables with given distributions. The Central Limit Theorem,
demonstrated by Carl F. Gauss, states that the sum (properly normalized)
of many independent aleatory variables with distributions with finite first
(mean) and second (variance) moments converge to the Gaussian distri-
bution (which is a stable distribution). Indeed, in the Generalized Central
Limit Theorem, Paul Lévy demonstrated that the Gaussian distribution is
a particular case of a more general law. In the Generalized Central Limit
Theorem it is stated that the sum of (properly normalized) of many indepen-
dent variables (properly normalized) with any given distribution of either
converging or diverging moments, converge to a family of distributions
named Lévy stable distribution. For the case of variables with distributions
with finite moments the tail of the Lévy stable distribution (the asymptotic
behavior) converges to the Gaussian distribution. For the case of infinite
moment distributions (such as inverse power-laws with exponent «) the
asymptotic behavior of the Lévy stable distribution converges to an inverse
power-law with exponent f = a — 1. The whole probabilistic theory de-
veloped by P. Lévy can be studied from his main books (Lévy, 1925, 1937,
1948).

Here it follows a derivation of the Lévy stable distribution form (West,
1996) (see also (Montroll & Lebowitz, 2002):

Imagine a random walk whose steps become arbitrarily large, resulting
in the divergence of the second moment. We can handle such an eventuality
by changing the normalization on the random walk displacement series as
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follows:
1 N
Yn(t) = W;Xj (C.1)

so that X(t) = NV/H#Yy/(t) is the displacement of the random walk after
N steps, t = N7, and p is a positive parameter. Lévy asked: When is this
distribution of the normalized sum P(y) the same as that of the individual
steps p(x)? Stated differently, this asks when is the character of the whole
the same as that of it parts, which is a statistical form of requiring the
process to be fractal.

One distribution for which the second moment diverges is the hyper-
bolic or inverse power-law distribution.

c

where ¢ is the normalization constant. The characteristic function, the
Fourier transform of the probability density, corresponding to the fractal
distribution Eq. C.2 is determined by using a Tauberian Theorem to be

(k) =1 — clk|P = ekl (C.3)

for small k. The statistics of the random walk process can be determined
by using the convolution theorem to obtain

Pk, N) = e NIKF (C.4)

which is the characteristic function for a random walk consisting of N
steps carried out with the fractal distribution Eq. C.2 for the individual
steps. In the continuum limit we can replace Eq. C.4 with

Pk, t) = e kP (C.5)

so that the probability density, the inverse Fourier transform of the char-
acteristic function, is

Pu(y,t) = €1 / ekl ar 0 < p<2 (C.6)
27T [ _ oo

which is the expression for the centro-symmetric Lévy stable distribu-

tion in one dimension. The Lévy distribution (Eq. C.61 is indeed, a family

of distributions that have all the required properties of a probability dis-

tributions when 0 < B < 2 with the cases f = 1 and B = 2 corresponding

respectively to the Cauchy and Gauss distributions. In Montroll & Lebowitz
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(2002) it is shown that for large values of the random variable, the Lévy dis-
tribution becomes an inverse power-law (Pareto) distribution

Py t) =~ ﬁ, O<pu<?2 (C.7)
which has the same form as the distribution for the individual steps of
the random walk with y = B.

Therefore, asymptotic behavior of Eq. C.6 for large |y| is interesting in
that it has the inverse power (Pareto) form for all 0 < 8 < 2 (PL(y,t) =
1/x"*t1), with the Gauss case B = 2 being singular, having a quadratic
exponential decay (PL(y,t) ~ exz).

In practice, we generate Lévy type of random walks with uniform distri-
butions for the turning angles and power-law distributions for the move
lengths (i.e., P({) = £7#, exponent y named Lévy index). The inverse
power-law distributions for the move lengths represent the tail of the Lévy-
stable distributions with Lévy stable index p = u — 1. If the power-law
exponent y lies in the interval 1 < p < 3, then the Lévy stable distribution
of the sums of such variables also has a power-law form, with exponent
B = u—1. For u > 3 the form of the Lévy stable distribution of the sums
converges to a Gaussian distribution due to the Central Limit Theorem.
Thus we recover Brownian motion for y > 3. The case of u < 1 does not
correspond to normalizable distributions.
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The stochastic time

In physical sciences, the notion of “probability” means quite specifically the
fraction of trials that yield a particular event in the limit of infinitely many
repeated trials. This “frequency interpretation” allows one to straightfor-
wardly derive, not merely postulate, the following three laws of probabil-
ity (Gillespie, 1992):

* Range Law. The probability of an event E is a real number P(E) sat-
isfying 0 < P(E) < 1, with the circumstance P(E) = 0 corresponding
to E never occurring, and the circumstance P(E) = 1 corresponding
to E always occurring.

» Addition law. If P(E) and P(F) are the respective probabilities of two
events E and F, and if these two events are mutually exclusive (i.e.,
they never occur together) then the probability of the event “either E
or F”is P(E or F) = P(E) + P(F)

» Multiplication law. If P(E) is the probability of an event E, and P(F/E)
is the probability of an event F given that event E occurs, then the
probability of the event “both E and F” is P(EF) = P(E) x Pr(F/E). In
the frequency interpretation the conditional probability of F given E
is the ratio of the number of trials yielding both events E and F to the
number of trials yielding event E irrespective of event F, in the limit
of infinitely many trials. When E and F are independent events, the
probability of the event “both E and F” is P(EF) = P(E) x P(F).

In deterministic models time evolution is related to the transition rates
of the specific events governing the system (i.e., parameters of the model
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with dimension [T~ 1]). In stochastic models, events are described as prob-
abilities, and therefore, transition rates describing the dynamics are “tran-
sition rates of probabilities” or “probability rates” with no dimensional-
ity. The fundamental hypothesis of stochastic formulation is that, instead
of transition rates r of specific events, we should consider the probability
rates of specific events in a given interval of time. The only assumption to
be made by this computational method is that there exists a dt-independent
scalar r; such that:

r;dt = probability that a randomly selected element (or combi-
nation of elements) of the system at time t will experience a
transition event i in the next infinitesimal time interval [¢,t + dt)

The above three laws of probability, together with the fundamental
stochastic hypothesis will allow us to relate the probability rates of events
to deterministic rates of events.

Consider a system consisting of N elements. Each element can be in
any one of S possible states {Sj} = 54,..,Ss (for example two states: oc-
cupied or available s = 2). This elements can experience M elementary
transition events {E;} = E1, E, ..., Ep (for example, extinction and coloniza-
tion, M = 2). The specific event depending on their states. The state of
the “whole system” at time t can be characterized by a vector of states
N (t) = N1, Ny, ..., Ns where {Nj} represent the number of elements in state
S, with ) N; = N, while the set of independent events {E;} describes the
dynamics of the system.

The principle theoretical construct upon which this numerical proce-
dure is based is not the temporal evolution of the probability distribution
function of abundances or densities of certain states of the elements of
the system (i.e., occupied/available patches), nor any of its derived quan-
tities (i.e., first and second moments of that distribution) as it is done in
the “master equation approach”. Instead, the approach is based on the
temporal evolution of what should be called a reaction probability density
function, that is, the temporal evolution of the probability that a specific
transition event occurs in a given interval of time.

This quantity is defined as:

p(t,E;/N(t),t)dt = probability that given the state of the sys-
tem N(t), the next event will occur after time 7 in the infinitesi-
mal time interval dt and will be the event E;.

In the language of probability theory, p is the joint density function for
the two random variables “time to the next event” and “index of the next



event”, with the possible values of these two random variables being rep-
resented respectively by the real variable 7(0 < T < o0) and the integer
variable i(1 <i < M).

This probability can be calculated as the product of “the probability at
time ¢ that no event will occur in the interval (¢, ¢+ 7)”, times “the subse-
quent probability that only one event E; will occur on the next differential
time interval (t 4+ 7,t + T+ dT1)".

First, the “probability that exactly one event E; occurs in the system
during the interval (t,t 4 dt)” can be derived in the following way. Imagine
that every element N in the system at time t is assigned a unique label.
Then, we could distinguish a specific class within all the elements that
could undergo the event E;, let us denoted these elements h;. By Eq. D,
each of the elements /; has probability r;dt of undergoing a transition event
in [t,t 4+ dt). And by the range and addition laws, each has probability 1 —
r;dt of non-undergoing a transition event in [t, t + dt). The multiplication law
then implies that the probability that a particular element h; does undergo
a transition event E; during the interval [t, t + dt) while the others do not, is

hi—1
rdt(1—rd) it = rdt1 - Y rdt + q(df?))
i=1
= ridt+o(dt) (D.1)

where we have scooped all the terms involving higher powers of df (i.e.,
(dt being j > 1)) into a single expression o(dt) = 2?511 ridt + q(dt?):
ridt(1 —ridt) i1 = ridt + o(dt) (D.2)

We can now use the addition law to calculate the probability that any of
the h; distinct elements at time ¢ will undergo a transition event alone in
[t,t + dt) as the sum of their separate probabilities (because these events
are mutually exclusive). Since each of the /; terms in this probability sum
is equal to r;dt + o(dt), then the sum is equal to

h; [T’idt + O(dt)] = rih;dt + O(dt) (D.3)

The term o(dt) can be interpreted as the probability of more than one
event occurring in the interval [t, f 4+ dt). From the multiplication law and
Eq. D, we see that the probability for k transition events to occur in [t, t + dt)
must be proportional to (dt)X, and therefore will be o(dt) for k > 1.

Second, to calculate po(t/N(t),t), the probability that no event will oc-
cur in [t,t 4+ T), we start by considering again the fact that each of the
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elements in the set h; has a probability of non experiencing a transition
event in the interval [, t + df) of 1 — r;dt. So by the multiplication law, the
probability that none of the h; sites will undergo a transition even E; in
[t, 4 dt) is

(1 —ridt)i =1 — rhidt + o(dt) (D.4)

Therefore, appealing once again to the multiplication law, the probabil-
ity that no E; transition will occur and no E, transition...and no Ej, transi-
tion will occur in [¢, ¢ + dt), is

M M
H(l —rildt +o(dt)) =1— 2 rihidt + o(dt) (D.5)
i=1 i=1

This is valid for infinitesimal intervals of time [t + dt). However,
po(t/N(t),t) is the probability that no event will occur in the interval
[t,t + 7). To compute py we have to imagine the interval [t,t+ T) to be
subdivided into k subintervals of equal length € = 7/k. The probability that
none of the events E;, ..., Ej occurs in the first subinterval (¢ + €) is,

M M
[T = rihie +0(e)) =1 _rihje + o(e) (D.6)
i1 i1

This is also valid for the subsequent probability that no reaction occurs
in (t+e€,t+2¢), and then in (f + 2¢,  + 3€) and so on. Since there are k such
€ subintervals between (¢ + 7), then

po(t/N(t),t) =1 — %rl-hie+o(e)]k (D.7)
i=1

Finally, we have that the reaction probability density function can be
expressed as,

p(T,Ei/N(t), )dt = [1 — R(M)e + o(€)]¥[r;hidT + o(dT)], (D.8)
where R(M) is the total transition rate at time ¢,
M
R(M) = Zrihi. (D-9)
i=1
Dividing this equation by d7 and taking the limit dT — 0, we get

p(T,Ei/N(t),t) = [1 — R(M)e + o(e)]*r;h;. (D.10)

We can rewrite the first factor on the right as



[1 - R(M)e + o(e))f (1_ w>k

k

k
(1 _ RM)T +kT[o(e)/e]> . (D.11)

where the last step uses the fact that ke = 7. Now letting k — oo, and
noting that o(e€)/e — 0 in that limit, we get

k—o0 k—o00 k

The last limit, is the standard limit formula for the exponential function
SO we can write,

k
lim [1 — R(M)e + o(e)]f = lim (1 - R(M)T) . (D.12)

k
lim (1 - RUf”) — ¢ RM)T, (D.13)

k— o0

Substituting this result in Eq. D.10, and then multiplying and dividing
by R(M), we conclude that the function p defined in Eq. D.8 is given by

p(T,Ei/N(t),t) = e—R<M>TI;(lX/’I). (D.14)
Eq. D.15 provides the mathematical basis for the stochastic simulation al-
gorithm. This equation says that the “time to next reaction” and “what re-
action will be” are statistically independent random variables, the former
having the exponential density function with decay constant R(M), and the
latter having the integer density function r;h;/R(M). So we can express p
as,

p(t,Ei/N(t),t) = p(7) x p(i). (D.15)

To have exact stochastic simulations in “well stirred” systems (non spa-
tial effects are considered), we have to generate only two random numbers
x1 and x,. The first one is used to randomly sample the negative exponen-
tial distribution

p(t) = e RMT, (D.16)

in order to obtain 7, the “time to next reaction” or “inter-event time”. By
using the inversion method to sample probability distributions (see General
Appendix A) we can take T to be
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In X1
R(M)
The second random number is used to obtain i, that is, which specific

event will occur. This can be done by taking i as the smallest integer for
which

(D.17)

r,»hi
R(M)

> x,. (D.18)

M=

Il
_

1

In spatially extended systems the the stochastic algorithm must also
take into account the place “where the next reaction will occur” (Alonso
& McKane, 2002; Alonso, 2003), and thus the reaction probability density
function is not used as defined here. However, as time to next interaction
is independent of “where” and “which” reaction will occur, the spatially
extended versions of the stochastic algorithm also make use of the inter-
event time negative exponential probability distribution originally obtained
by employing the reaction probability density function concept.



