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Abstract

Almost two centuries after the first observations of Robert Brown, the study
of systems ruled by noise has become a significant part of modern physics and
other so diverse situations, such as the stock market, personal networks, ecosys-
tems, etc. In particular, we focus on the so-called small systems, where the
thermal fluctuations determine the dynamics and energetics of the system. Ex-
amples of this scale are biopolymers, such as DNA or RNA, molecular motors,
living cells or colloidal particles in suspension. As the energy exchanges between
a small system and its environment are of the order of magnitude of thermal
fluctuations, apparent violations of the classical laws of thermodynamics appear.

We have studied the role of noise in biological and physical systems. As
the main experimental tool we have used the optical tweezers technique, which
allows one to exert forces in the pN range, as well as to spatially confine the
studied objects improving the accuracy of the experiments. A highly focused
laser beam creates a time and space controllable optical potential profile. This
permitted to investigate noise assisted effects in different scenarios.

Two biological systems were considered, namely, single DNA molecule and
single bacterium. We showed that the motion of the stretched DNA molecule in
the entropic regime (forces below 5 pN) includes an additional noisy component
whose spectral power is proportional to 1/fα. The presence of this noise may be
related with changes of the probability of folding and unfolding events when the
DNA strand is extended. On the other hand, we studied the trajectory of single
bacteria, whose motion includes inherently noisy components. Using a novel
technique with only one optical trap we measured the dynamics of a trapped
single bacterium S. enterica. We found that the trajectory within a single trap
can reveal the different behavior of the samples. In addition to the validation of
our technique, we have characterized the phenotype of mutant cheV in anaerobic
conditions.

In the second part of the thesis, we studied stochastic thermodynamic using
a micron-sized dielectric sphere.The control of the temperature in such experi-
ments has a key importance to understand the energetics of the small systems.
We suggested a novel technique to control the kinetic temperature of a sphere
by applying of an external force with the same power spectral density (PSD)
as one of the thermal noise. We experimentally tested our hypothesis in equilib-
rium, measuring the position histogram and PSD of the microsphere, and out
of equilibrium, implementing a protocole to test Crooks theorem. We conclude
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that our technique allows one to control the kinetic temperature of a Brownian
particle over a wide range of values, from room temperature to several thousand
Kelvin with high temporal accuracy.

The most obvious application of this technique is the realization of non-
isothermal processes. Among them, an adiabatic process is essential although
controversial in small systems. We study its meaning in a colloidal particle
experiment, paying attention to the consequences of the overdamped approx-
imation. Finally, we could realize for the first time the Carnot cycle, using a
colloidal particle in a liquid as a working substance.

The effect of the thermal bath is also present in the thermodynamics of
information. In the last chapter, we considered the derivation of an universal
equivalence between the energetics of a process and the probability of a system
to choose it among other options. The obtained expression can be considered
a generalization of the Landauer limit. We tested our theory in an experiment
where a continuous transition from a single well to a double well potential pro-
duces a symmetry breaking affecting a Brownian particle. Moreover, combining
two of the process, we were able to achieve the first realization of a Szilard
engine based on symmetry breaking and symmetry restoration.
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Resumen

Casi dos siglos después de la observación de Robert Brown, el estudio de
sistemas gobernados por ruido se ha convertido en una parte significativa de la
física moderna. Con el objetivo de obtener información, y de tratar de predecir,
sistemas complejos, se han trazado analogías en situaciones muy diversas, tales
como el mercado de valores, las relaciones interpersonales, los ecosistemas, etc.
En particular, si nos detenemos en los denominados como sistemas pequeños,
podemos observar como las fluctuaciones térmicas determinan su dinámica y su
energética. Al tratarse de sistemas cuyos intercambios de energía con el entorno
son del orden de magnitud de las fluctuaciones, podemos observar aparentes
violaciones de las leyes clásicas de la termodinámica. Ejemplos de esta escala
son las diversas biomoléculas como el ADN o el ARN, los diversos motores
moleculares o una célula en su conjunto, pasando por partículas coloidales en
suspensión.

Para el estudio de los sistemas mesoscópicos, hemos usado la técnica de la
pinza óptica, la cual nos permite ejercer fuerzas del orden de picoNewtons con
resolución nanométrica. Por medio de un haz fuertemente enfocado, podemos
crear un potencial óptico donde objetos con índice de refracción mayor que el
del medio son atrapados.

En esta tesis hemos estudiado el rol del ruido en sistemas biológicos y en
sistemas físicos. En primer lugar, observamos que la dinámica estacionaria de
una molécula individual de ADN en el régimen entrópico (fuerzas por debajo
de 5 pN) muestra una componente espectral que sigue una ley de potencias
1/fα. Por otra parte, también estudiamos la trayectoria de bacterias bajo una
única trampa óptica. La bacteria elegida fue la Salmonella enterica, en diversas
mutaciones para poder fijar su fenotipo. En particular, además de validar la
técnica, caracterizamos el fenotipo del mutante cheV en condiciones anaeróbicas.

El control de la temperatura en experimentos de partículas coloidales es de
una importancia clave para completar la energética de los sistemas pequeños.
A pesar de que existen métodos para variar la temperatura del fluido, estos
cambios están siempre acotados por límites físicos, como evaporación, y sufren
de inconvenientes, como convección y cambios de la viscosidad del fluido, que
impiden un estudio cómodo de los procesos no isotermos. Enunciamos una
hipótesis muy sencilla: nuestra partícula coloidal es incapaz de diferenciar entre
el ruido térmico y un fuerza externa de la misma naturaleza. Comprobamos que
nuestra hipótesis es correcta en equilibrio y no equilibrio, por medio del estudio
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del histograma de posiciones, del PSD e implementando un protocolo donde
poder estudiar el teorema de Crooks.

La aplicación más obvia de esta técnica es la realización de procesos no-
isotermos. Dentro de ellos, es imprescindible la aproximación al concepto de
adiabaticidad, tan presentes en la termodinámica clásica. Siendo imposible
rodear de paredes adibáticas nuestro sistema, desarrollamos los diversos pro-
tocolos sugeridos durante los últimos 10 años en la literatura. Como colofón,
desarrollamos el primer ciclo de Carnot experimental con partículas coloidales.

El efecto del baño térmico también se encuentra presente en la termodi-
námica de la información. En el último capítulo de la tesis, desarrollamos una
expresión analítica que relaciona la probabilidad de llevar a cabo un proceso
con la energía que se puede extraer del baño térmico durante el mismo. Esta
expresión puede considerarse una generalización del principio de Landauer. Gra-
cias a la flexibilidad que nos presta el AOD para generar potenciales ópticos,
comprobamos la relación con un experimento con partículas coloidales. Para
terminar, presentamos un motor de Szilard con partículas coloidales, el cual
permite obtener trabajo del baño térmico a través de la información disponible
sobre el sistema.
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1
Introduction

1.1 Why noise? Why optical tweezers?

Noise can be thought of as a random disturbance added to a principal signal.
Although it is an unwanted contribution in communications [1] or image pro-
cessing [2, 3], it has great importance in Nature. Noisy behavior appears in
many different scenarios, such as city traffic, heart rhythms, the stock market,
molecular motor motion, colloidal physics, etc. [4–6].

Recently, considerable attention has been focused on the constructive role
of noise in Nature. A great deal of experimental evidence in various fields of
science has corroborated the viewpoint that the influence of noise, which always
accompanies all actual systems, is not restricted to destructive and thermo-
dynamic effects. One of the shining examples of such behavior is stochastic
resonance. Stochastic resonance describes processes whereby the addition of a
random function (noise) to a weak information carrying signal can enhance the
signal’s detectability by a nonlinear system or intensify the information con-
tent of the system’s output. The best system performance is achieved with an
optimum noise intensity.

Recent ground breaking technological developments have made possible the
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exploration with high accuracy of the so-called mesoscopic world [7–9]. The
mesoscopic world is defined as the size range between the macroworld, ruled by
classical physics, and the microworld, ruled by quantum mechanics. Within this
range, one can find systems with sizes from a few nanometers composed of just
a few atoms, such as proteins, up to several microns, such as biomolecules or
cells. One remarkable fact in this range is that the energy exchanges between the
system and its environment are of the order of kT , the thermal energy. Here, k
is Boltzmann’s constant and T is the absolute temperature. These energy values
allow the systems to break the classical laws of thermodynamics [10]. This fact,
in itself amazing, can be linked to some open questions such as how can living
cells obtain such a high efficiency when they are ruled by noisy signals? A
good example is kinesin, which apparently works at 60% efficiency during the
conversion to mechanical work of the chemical energy obtained by hydrolyzing
ATP when moves along the cellular microtubules [11]. Such efficiency is twice
the efficiency presented by Curzon in his analysis of power plants [12]. The high
efficiency observed in the motion of kinesin leads to other questions, can small
systems convert thermal energy into useful work? For instance, the possibility
of transforming correlated electrical noise into free energy in the case of specific
enzymes was discussed in [13].

Most theoretical investigations on noise-driven effects have been devoted to
studying systems with a single, usually white, noise source. This formulation is
physically natural and fruitful because every actual system involves an internal
thermal noise whose intensity is determined by its temperature. In many sit-
uations, the time scale of the random perturbations is much shorter than that
of the characteristic time scale of the system. It is then a good assumption to
consider uncorrelated random signals. This assumption considerably simplifies
the problem. However, in the physical world, this idealization is not completely
valid [14]. In order to understand the importance of corrections to white noise
and more generally, in order to investigate the role of noise correlations of ar-
bitrary strength, it is thus necessary to study also nonwhite noise, i.e., colored
noise of small to moderate-to-large correlation strength.

The term colored noise usually refers to noise sources with a frequency-
dependent power spectrum, in analogy to the spectrum of light. In the case
of white noise, the power spectrum does not depend on the frequency and its
Fourier transform, which corresponds to the correlation function of the noise,
is the Dirac delta function. On the other hand, the term correlated noise refers
to spatial dependence. The term used to refer to both the colored noise and
correlated noise is non-Markovian. The presence of non-Markovian noise also
means that the system possesses a hidden memory. When the dependence on
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the frequency is characterized by a power law, fα, we can classified the signal
into different colors. If α = −2 we talk about brown noise, present in the
trajectory of a Brownian particle; if α = −1, we talk about pink noise, etc.

Experimental data indicate that noise in biological processes is non-Markovian.
Examples include currents through voltage-sensitive ion channels in cell mem-
branes, signals from the sensory system of rat skin [15,16], and noise sources in
different biological systems [17]. It has also been observed that biological trans-
port works in the presence of white thermal noise and an internal, generally cor-
related, random noise of biological origin, such as the hydrolysis mechanism of
ATP [18]. A Brownian motor can work not only when time correlations exist in a
periodic but asymmetric potential landscape, but also when out-of-equilibrium,
correlated noise participates in the transitions between two internal states of the
system. Colored noise is again necessary and the average flux depends strongly
on the amplitude of the noise and its spectrum [19]. The understanding of the
exact mechanism of protein motion in the cytoskeleton has led physicists to
study several stochastic ratchet models. The simplest of these models involves
an overdamped particle, representing, for instance, the motor protein kinesin,
in a periodic but not symmetric force field, driven by noise. The periodic forces
are exerted by the asymmetric dimmers on the kinesin while the noise term
represents the fluctuating environment. This model leads to a macroscopic par-
ticle current in a specific direction. In the additive correlated noise, the finite
correlation time corresponds to a kinesin binding event and subsequent energy
release through hydrolysis.

DNA is the basis of life as we know it. Inside the cell nucleus, different fun-
damental processes, such as transcription, replication, and translation, need the
loss of the quaternary structure of the biomolecule. During these processes, the
DNA strand undergoes numerous mechanical entropic unfolding and extension
events that are primarily supported by the polymer-like phosphate backbone,
thus making it critical to have a full understanding of how the DNA structure
responds to forces. On the other hand, as a polymer, DNA tries, in the absence
of external forces, to maximize the number of accesible microstates: it tries to
maximize its entropy [20]. If we apply a low external load to stretch it, we will
exert some work against the so called entropic force. As a small system, the en-
tropy associated to a single DNA is a stochastic quantity, being able to fluctuate
over different trajectories. Even in equilibrium, its value is a changing quantity.
From this hypothesis, the spontaneous changes of entropy can be turned into
fluctuations in the position of the molecule.

Although biomolecules have been studied for the last twenty years with force
spectroscopy [20], the dynamics of DNA is still not completely understood.
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Questions still remain about the force spectrum of conformational fluctuations of
the chemical structure of DNA in the low force regime, where entropy is a driving
factor. It has been shown that the internal modes of a DNA extended up to 80%
are related by a power law, decreasing in intensity with the mode number [21,22].
Internal hydrodynamic effects should raise the polymer friction coefficient as
the molecule extends, causing a sequential increase in the polymer relaxation
time [23, 24]. Extended DNA molecules are characterized by two different sets
of relaxation times and spring constants (longitudinal and transversal), and
the dynamics at high extensions points to yet unexplained nonlinear behavior
[25]. In particular, the correlation functions have super-exponential relaxation,
something that may indicate the presence of new physical effects.

Moreover, the development of nanotechnology is deeply connected with the
understanding of the biological system acting in the mesoscale. Several authors
have pointed out the need to profit from the natural designs of engines to develop
artificial nanodevices, and thus we speak about biology inspired nanotechnology
[26, 27]. One of the most studied examples of engines in nature is the flagellar
motor, which allows bacteria to move in liquid media. We can say that a
molecular motor is efficient if the displacement due to the flagellar movement is
greater than the diffusion itself [27]. This natural engine is composed of several
elements acting together in order to produce a helical rotation. If we observe
the motility of a single bacterium using a microscope, the bacterium will show
a combination of straight line trajectories in, apparently, a noisy combination.
Actually, this motility can be considered as the combination of two different
behaviors: running, i.e., motion along a straight line, and tumbling, a random
motion that changes the orientation of the cell. This combination allows the
bacterium to explore its environment by a kind of trial and error mechanism
where the cell determines a posteriori whether the chosen direction improved
the environmental conditions or not [28]. Both behaviors underlie the process
of chemotaxis: bacteria have transmembrane receptors which can detect the
concentration of chemical products. This mechanism allows the bacterium to
move towards attractants (or escape from repellents).

Since 1993 [10], the study of the thermodynamics of small systems has grown
considerably. As was mentioned before, it is characteristical that the energy of
the system be of the same order of magnitude as the thermal fluctuations,
and so the postulates of classical thermodynamics are no longer completely
correct 1. In order to properly analyze these effects, fluctuation theorems (FTs)
have been developed. FTs are specific tools for studying the probability of

1In fact, Thermodynamics is valid only in the thermodynamic limit
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the system’s reducing or increasing its entropy along a process. Some of the
different FTs have been experimentally tested in colloidal particles [29] and
biological samples [30]. Fluctuations and rare events scale with the thermal
energy. Thus, the management of the temperature of FT experiments is of
the utmost importance for testing and understanding the thermodynamics of
small systems. Although there are techniques that allow this control [31], those
changes are always restricted between physical bounds, such as evaporation or
convection, limiting the possible range of action. This small range is enough
to appreciate changes in the behavior of biomolecules or cells [31], although
it would be desirable to have a broader range to study the FTs along non-
isothermal processes.

The realization of thermodynamic processes follows immediately from this
technique. The problem of a very dilute classical gas has been theoretically
studied for years, with special attention to the so-called adiabatic processes [32].
The importance of these processes lies in their connection with the idea of irre-
versibility, and hence, with the efficiency of thermal engines. In our experimental
scenario, we can find analogies with this kind of study. However, we can iden-
tify one main difference: we can not place adiabatic walls which would avoid
any heat transfer between the system and the bath. This problem is shared
with the thermodynamic processes carried out in biological systems, such as
cells. The total control of the thermal bath may be the key to completing the
experimental work in stochastic thermodynamics, opening up the possibility to
generate adiabatic processes, not achieved as yet, and it can also be applied to
the development of microsized engines, in analogy with those studied recently
in [33].

The effect of a thermal bath is also present in the thermodynamics of infor-
mation. This science was developed to find the physical limits in computing,
analogously to thermodynamics which tried to optimize steam engines. In 1961,
Landauer gave an illustrative example to explain the explicit dissipation of heat
when a bit is erased [34]. The erasure process deletes the state of the bit without
using its information content. The bit was modelled as a double well potential
with a tunable well height, it being possible to apply an external force to reboot
the bit. Landauer’s principle is the solution of the Maxwell demon problem [35].
There is no physical limitation to knowing the state of each molecule or for
managing the door, but each time the demon erases the previous state of the
memory, an amount of heat kT log 2 will be released to the thermal bath. An
example of a gedankenexperiment in which this demon appears is the so-called
Szilard engine [36].

The original vision of Szilard [36], although there are other versions [37],
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Figure 1.1: Description of Leo Szilard’s idea for obtaining useful work from a
thermal bath. a) A cylinder has a gas consisting of a single molecule inside. Its
walls are diathermal, so the unimolecular gas is in thermal equilibrium with the
environment. b) An extra wall is included in the middle of the cylinder. The
extra wall can act as a piston which is subject to the pressure of the molecule.
c) The available volume for the molecule grows in an isothermal process. As the
heat can pass through the wall, the energy from the thermal bath is converted
into useful work against the piston. d) The piston reaches the end of the cylinder,
where it can be extracted to restore the original scheme.

consists in a single molecule gas inside a cylinder made with diathermal walls
in contact with a thermal bath (T ). The cylinder can be separated into two
subvolumes by the addition of an extra wall (if the addition is slow enough, no
work will be needed to perform it). The extra wall can act as a piston which will
be allowed to move to the empty subvolume: the process will be the same as
an isothermal expansion of a unimolecular gas in a cylinder: the gas will exert
work on the piston, which can be put to use. This extra energy will come from
the thermal bath that is equilibrating the molecule with the environment via
the passage of heat from the molecule through the diathermal walls. Finally,
when the piston reaches the end of the cylinder, it is extracted and the initial
configuration is restored. The extra work is kT log 2 when the piston is placed
at the middle of the cylinder. If we position the piston elsewhere, the possible
extracted work will be:

W =
∫ V

αV

kT

V
dV = −kT logα, (1.1)

where α is the percentage of the cylinder which remains empty, in the previous
stage α = 1/2. We see how the useful work is a function of the probability of
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finding the molecule in one of the subvolumes.
Throughout the last decade, different experiments have been made in the

field of the thermodynamics of information. For example, Toyabe et al. de-
signed a microscopic Maxwell’s demon [38]. There, a particle was placed on a
spiral-staircase like potential where the bead could jump between steps using
thermal energy. On the other hand, an experimental demostration of Landauer’s
principle can be found in [39]. They use an optical landscape to model a bit,
and therefore, to study the released heat from an erasure. We asked ourselves if
this principle could have a higher implication, does the process of choosing have
a thermodynamical implication?. This is not just an academic problem, as it is
analogous to one of the challenges of modern molecular biology, i.e., the under-
standing of protein folding, a situation where the system can choose between
different conformations. In fact, there are studies that have shown that the
features of symmetry breaking may be used to understand those systems [40].

In order to manage and interact with objects in the mesoscale, several tech-
niques have been developed [41]. In this thesis, the experimental work was done
with the optical tweezers technique. Briefly, the light has energy and momen-
tum. Although the momentum tranfer due to a light source is quite small, the
laser allows to power its effects. The first evidence of forces applied to small
object were reported by Ashkin in the 1970s [42]. Using a highly focused laser
beam, we are able to micromanipulate objects ranging from cells to dielectric
beads, implementing small forces (∼pN) with nanometric resolution. This tech-
nique is based on the creation of potential well(s) in order to confine small
objects in the range from the Rayleigh regime up to the Mie regime [43–45].
For big particles, the basic principle of the optical trap is based on the conser-
vation of the momentum of the light by propagation through the particle. For a
small particle, another physical phenomena is implied when the incident beam
excites the dipole moment in the particle inducing its attracion to the maximum
of the optical beam intensity. In any case, the applied force can be assumed
to be linear Ftrap = −κ∆x, where κ is the constant of the trap and ∆x is the
distance between the probe and the equilibrium position. Although the ease of
the spring analogy is very useful in a great number of experiments, there are
cases where one must increase the complexity of our system. There are several
methods of generating an optical potential landscape with a dependence on time
and space and with the desired shape. There are different methods of designing
any optical potential landscape in real time [43,46].



Introduction 14

1.2 Aims and workplan. Description of the chap-
ters

Here, we propose the experimental study of noise-assisted effects both in multi-
and mono-stable systems. We mainly concentrate on experiments that may be
used to explain the physical effects observed in bio-systems and the thermody-
namics of small systems. As experimental samples for these studies, we used
single DNA molecules, single bacterium, and colloidal suspensions, i.e., micron-
sized spherical particles suspended in liquids, which provide ideal model systems
suitable for addressing many problems in statistical physics.

Using the optical trapping technique, we generated a potential landscape
with an appropriate time and space evolution. The bead can move both deter-
ministically (due to the gradients of the potential energy) and randomly (due
to the inherent Brownian fluctuations). In specific parts of this thesis, it was
necessary to interact with the sample, in other words, to apply an external
force. The polystyrene beads have an intrinsic superficial charge that can be
used to exert an electric force. Using a couple of electrodes, a difference of volt-
age was applied, transforming our custom made chamber into a capacitor [47].
The combination of optical trapping with electrophoresis permits us to model
practically any noise-assisted effect. In Chapter 2 an overview of the optical
tweezers technique and all the different experimental tools used in the thesis
will be presented. An important issue to be described is the collection of exper-
imental methods used to calibrate the system. At the end of the chapter, two
original contributions to the field are presented, namely, a technique to measure
the whole force map of a trap with a single laser beam and an acousto-optic
deflector and a method to extend the linear detection range of the position of
the bead by the forward scattered light up to several microns.

Schematically, this thesis can be divided into two main parts: biophysics
(Chapters 3 and 4) and stochastic thermodynamics (Chapters 6, 7 and 8). In the
first part of this thesis, we study biological systems such as single biomolecules,
double-strand DNA, and a single bacterium, S. enterica.

The random conformations that a DNA molecule forms in solutions occur in
the presence of the thermal noise, with a white spectrum, of the forces, but also
an important role is played by out-of-equilibrium mechanical activity. These me-
chanical effects are directly related to biochemical reactions in the long polymer
chain. The power spectrum of such force fluctuations is defined by processes that
are different from the thermal noise and therefore may depend on the frequency
of the fluctuations (colored noise). Recent detailed studies of the sources of fluc-
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tuations in some biological systems, in particular in bio-molecular motors [48],
offer strong experimental indications that the noise signals in these systems in-
clude also a non-white component with a frequency-dependent power spectrum.
The effect of colored noise is not restricted to destructive and thermodynamic
effects [49], but also may change mechanical processes in biochemistry [50].
Force studies of single DNA molecules using single molecule force spectroscopy
brought new insight in into various DNA biological functions [20,21,51,52].

Classical experiments have been developed with strong tweezers, with stiff-
ness of the order of hundreds of picoNewton per micron. Our premise is to go
in the opposite direction, trying to maintain one of the beads slightly trapped,
with a low stiffness. Therefore, the fluctuations of the biomolecules can be cor-
related with the fluctuations of the trapped bead and the experimental noise
will not hide the possible effects. By this simple experiment, we noticed the
presence of a colored noise (1/fα) when the molecule is stretched within the en-
tropic regime. Experiments showed that the fluctuations of the DNA molecule
extended up to 80% by a force of 3 pN include the colored noise contribution
with spectral dependence 1/fα with α ∼ 0.75.

The swimming pattern of the bacteria is a key point in the virulence of these
pathogens, the study of a single bacterium being fundamental to understand
its mechanism. This movement is not deterministic, but presents a stochastic
behavior that can be divided into two main phenotypes, namely, running and
tumbling. The term running refers to the straightforward movement of the cell,
while tumbling is the reorientation of the bacterium to another direction. Berg
points out in [28] that the changes in the cell’s swimming are random and the cell
chooses after the change whether the new direction improves its enviromental
conditions. Although the study of a single bacterium with optical tweezers
has been developed in depth [53–60], it is still quite complex in its optical
part compared to the usual biology laboratories. Here, we propose the most
simple configuration of the optical tweezers, whose combination with a robust
data processing based on a previous study by our group [61] allows obtaining
quantitative data from the single bacterium within the optical potential. We
used this method to study the importance of the cheV protein in the swimming
profile, and hence, in the chemotaxis pathway.

In the second part of the thesis, we study noise-assisted effects in simpler
experiments. By the use of colloidal particles within optical landscapes, we are
able to study the energetics of thermodynamical processes in the mesoscale.
Chapter 5 presents a summary of stochastic thermodynamics. This is a key
tool for analyzing and understanding the experimental data. The study of the
mesoscopic world carries out the fluctuations due to the system’s energy having
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the same order of magnitude as the thermal energy. These fluctuations arise
from the stochastic behavior of the thermodynamic quantities such as work,
heat, and entropy, and it is necessary to redefine the thermodynamic laws as
fluctuation theorems. Thanks to this framework, it is possible to calculate the
energy exchanges, work, and heat, from the observables of our system, the
position of the sample and the exerted forces [62].

As we mentioned above, temperature is of key importance in the mesoscale:
the fluctuations scale with the temperature. Therefore, controlling the temper-
ature is of great importance. The Langevin equation models the temperature as
a white noise term. From this starting point we have proposed a novel method
to mimic the temperature in colloidal particle experiments. We add an extra
source of noise with a white spectrum to the trapped microsphere, which can
not distinguish the extra force from an increase in the fluid’s temperature. We
demonstrate experimentally how the temperature increase affects the histogram
of the position of the Brownian particle, its power spectral density, its response
to an external perturbation, and the statistics of the Kramers transitions in
a double-well potential. Effects related to the nonideal character of the white
noise generated experimentally are also analyzed. This experimental technique
allows tuning and controlling the kinetic temperature of the sphere with mil-
lisecond resolution over a wide range and along a single spatial direction. We
checked this equivalence by analyzing the behavior of the bead under stationary
conditions and testing the Crook’s fluctuation theorem.

The realization of thermodynamical processes follows immediately from the
previous technique. Drawing on an analogy between the classical scheme of an
ideal gas within a cylinder with a piston and an optically trapped particle, we
can develop the energetics of the different processes. We define the volume of
our system as a function of the stiffness of the trap κ. The different thermo-
dynamic parameters, such as entropy, Helmholtz free energy, etc., are derived
from the thermodynamic relations [63]. Recently, some authors have pointed
out the non-triviality of using the overdamped approximation, especialy in non-
isothermal processes [64]. We can study the different processes with a large
range of temperature differences. On the other hand, the possibility of synchro-
nizing the temperature with the stiffness allows us to build different processes
that can be candidates for the concept of adiabatic. The final combination of the
processes would lead to the construction of stochastical engines [33], especially
the celebrated Carnot cycle [65,66]. The results are described in Chapter 7.

Chapter 8 presents a universal relation of the energetics of symmetry break-
ing (SB). SB involves an abrupt change in the set of microstates that a system
can explore. This change has unavoidable thermodynamic implications. Ac-
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cording to Boltzmann’s microscopic interpretation of entropy, a shrinkage of
the set of compatible states implies a decrease of entropy, which eventually
needs to be compensated by a dissipation of heat and consequently requires
work. On the other hand, in spontaneous SB, the available phase space volume
changes without the need for work, yielding an apparent decrease of entropy.
Here we show that this decrease of entropy is a key ingredient in the Szilard
engine and Landauer’s principle and report a direct measurement of the entropy
change along SB transitions in a Brownian particle. The SB is induced by a
bistable potential created with two optical traps. The experiment confirms the
theoretical results based on fluctuation theorems, allows us to reproduce the
Szilard engine’s extracting energy from a single thermal bath, and shows that
the signature of a SB in the energetics is measurable, providing new methods
of detecting the coexistence of metastable states in macromolecules.
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1.3 Main contributions
Briefly the main achievements of the thesis are:

• Development of two techniques within the optical trapping framework that
permit improving the accuracy of stochastical measurements.

• Observation of a correlated noise source in a single DNA extended within
the entropic regime.

• Determination of the phenotype of a single bacterium using a single optical
tweezer by a novel approach. Characterization of the role of the protein
CheV in the chemotaxis pathway of the Salmonella enterica serovar Ty-
phimurium under anaerobic conditions.

• Use of an external source of noise to mimic temperatures in colloids up to
3000K.

• Study of non-isothermal thermodynamical processes in the mesoscale. De-
sign and construction of a mesoscopic Carnot cycle.

• Analytical study of the universal features of symmetry breaking and restor-
ing. Experimental test of the relation between energetics and probabilities
by optical tweezers experiments. Study of the differential Landauer ex-
tended principle. We build a Szilard engine with optical tweezers.



2
Optical trapping

The study of systems at the mesoscale represents one of the most beautiful
landscapes in physics. In this scale, the thermal energy is comparable to the
energies involved in many processes occurring at this level, giving to the system
the opportunity to fluctuate along different possibilities, allowing transitions
forbidden in the macroscale. One of the best tools to study this branch of the
modern physics is the optical trapping technique. Laser tweezers can apply
forces in the range of piconewtons to systems with characteristic sizes in the
nanometric scale. Light has energy and momentum, what was observed long
time ago in the comets, whose tails always points in the opposite sense to the
Sun. Thanks to the development of the laser [67], it is possible to use a powerful
source of coherent light. In the 70s, Arthur Ashkin proved that laser beams
could be used to apply forces to a small object [42]. More than forty years later,
the optical tweezers technique has been developed to study from atoms [68], to
eukaryotic cells [55], passing through small dielectric spheres [7], viruses [56],
biomolecules [21, 69, 70] , and a long etcetera. The use of optical tweezers is
clear and successful due a main reason: the easiness of the defined force, the
analogy with a perfect spring is a great advantage in order to study different
problems using the classic Hooke’s law:
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F = −κ∆x (2.1)

where κ represents the stiffness of our trap under this conditions. Obviously,
we have several restriction to this regime: What is the range of linearity of the
force? Is the force profile the same to any particle? What does the stiffness
depend on? In this chapter, we present an overview of the general properties
and the technical aspects of the optical trapping technique, and we then present
two ways to improve its performance.

2.1 Theory: gradient forces, radiation pressures
Light carries energy and momentum. However, while the simple action of placing
the hand under the sunlight, we can feel the heating due to the energy, we
can not feel the pressure of the light in our hand as its momentum is several
order of magnitude lower.In spite of the low amount of carried momentum, it
was appreciate centuries ago by the observation of the comet’s tail: the huge
distances and intensities in astronomy makes its detection possible.

The laser made available high power sources of coherent light, thus increasing
the intensity of radiation pressure effects [67]. By highly focusing a laser, Ashkin
demonstrated the possibility of exerting forces to dielectric objects thanks to the
radiation pressure [42]. Although his first experiments only allowed him to apply
forces, he could later design the confinement of small objects (smaller than the
laser wavelength) due to the presence of gradient forces [7].

What is beyond the radiation pressure? There are two contributions to the
total force exerted by the light to the trapped object: the gradient force and the
radiation pressure. The gradient force is proportional to the spatial gradient of
light intesity and therefore, assuming for example a Gaussian shape, acts in the
three axis (x,y,z) while the radiation pressure acts in the optical axis (z), Fig
2.4. The gradient force is the responsible of the confinement and the stability
of the trap will be related to the ratio between both kind of forces.

Although Ashkin’s first idea was the atom trapping, the optical trapping
technique splashed different branches of Physics. While Steven Chu and col-
leagues were focused in the atom trapping, several groups designed biophysical
experiments with the optical tweezers. From the bacteria to the virus, the com-
bination of low forces and highly accurate optical trapping gave a strong impulse
to the single molecule (bacteria) studies.

The quantification of the optical forces responsible for the optical trapping is
not an easy task. Although such a quantification is not in the core of this thesis,
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Domination of the radiation pressure 

Domination of the gradient force 

Figure 2.1: Schematic description of the forces acting in an optical trap. The
colloidal particle feels the gradient and the radiation forces, this one having to
be compensated by the former to achieve stability. From a certain value of the
bead position in the axial plane, the radiation pressure will always dominate,
pushing the microsphere above. Adaptation from David Grier webpage.

which is rather aimed at the aplication of OT as a tool to study noise assisted
effects, it is important to give a brief overview of the physics underlying.

First of all, it is important to realize that the trap profile is not defined
by a part of the system, as the trapped object or the trapping laser, but it
is determined by the whole system. From the polarization of the light to the
geometry of the trapped object, all the different parameters (refractive index,
wavelength, NA of the objective, etc...) must be present in an analitic depiction
of the force map. Depending on the ratio between the object size and the
trapping laser wavelength, it is identified two limits: i) The Rayleigh limit when
the radius of the microsphere is several times smaller than the laser wavelength
(λ >> r) . ii) If the object is large compared with the laser wavelength (r >> λ),
the problem can be faced in the geometric optics (GO) limit. In any case, if the
laser wavelength is comparable with the probe size the problem must be solved
by the Mie’s scattering.

Ashkin derives in 1992 the equation

~Q =
~F

nmP/c
(2.2)

where nm is the refractive index of the media, P is the laser power, ~F the
total force and c the light speed. By this derivation, it is probed that the force
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map is independent of the trapping laser power, without taking account the
non-linear effects. This equation will be very useful for us along this thesis, see
section 2.6, because allows the experimental characterization of our system for
any laser power.

~Q is called the vector efficiency factor and defines how efficiently the mo-
mentum is transferred to the microsphere. ~Q can be interpreted as the force
map of the tweezers, it doesn’t depend in the optical power, but the shape will
remain constant.

Let be an arbitrary object (defined by its volume V , enclosed inside a surface
S, with a distribution of charges q(~r, t) and currents ~j(~r, t)) in interaction with
an electromagnetic wave ( ~E(~r, t), ~B(~r, t)). The Lorentz law ((2.3)) connects the
mechanical forces acting on the object with the present em field [71].

~FL(~r, t) =
∫

V

[
q(~r, t) ~E(~r, t) +~j(~r, t) ∧ ~B(~r, t)

]
dV (2.3)

Both, the electric and the magnetic fields are the superposition of the inci-
dent and the scattered field. Then, the total change of the momenta is the sum
of the change of the e-m and the mechanical momenta, ~P = ~PM + ~Pem.

d

dt
~P = ~FL(~r, t)︸ ︷︷ ︸

MECHANIC

+
d

dt

∫

V

ε0 ~E(~r, t) ∧ ~B(~r, t)dV
︸ ︷︷ ︸

ELECTROMAGNETIC

(2.4)

Next step is the use of the Maxwell equations in (2.4). The Maxwell stress
tensor is defined as Tαβ ≡ ε0

[
EαEβ + c2BαBβ − 1

2

(
~E ~E + c2 ~B ~B

)
δαβ

]
. There-

fore, the change in total momenta reads as follows:

d

dt

(
~P
)
α

=
∫

V

∑

β

∂

∂xβ
TαβdV =

∮

S

∑

β

TαβsβdS (2.5)

where ŝ defines the normal vector to the surface. In summary, the problem
is reduced to solve (2.5) under the given boundary conditions. Obviously, the
study of this scheme when is particularized to an optical tweezers case is non-
trivial. The characterization of the electromagnetic fields of a highly focused
laser beam is a great problem to measure. One solution was proposed by Mazolli
et al in [72], where they derived an explicit partial wave representation for
the force exerted to a sphere of arbitrary radius. In figure 2.2 is shown the
dependence of the stiffness with the sphere radius. κ is maximum when the
radius is similar to the wavelenght.
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Figure 2.2: Value of the stiffness as function of the ratio between the bead’s
radius and the the wavelenght, by Mazolli et al solution. κ has a maximum value
when the radius is close to the wavelength, where is not valid any aproximation.
Inset figure represents κ as exclusive function of the wavelength. Notice how κ
tends to a constant value in the GO limit. Oscillation are due to intereference
effects [72]. Figure taken from [72]

As we previously commented, the OT characterization can be easily solved
in two determined limits, see Fig. 2.3, the geometrical optics limit and the
Rayleigh limit.

2.1.1 Optical force in the Rayleigh limit (r � λ)

When the probe is much smaller than the light wavelength, the electromagnetic
field ( ~E) is felt uniformly by the object. Then, the particle can be consider as
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Figure 2.3: Schematic vision of the two limits. On the left we have a sphere
much smaller than the wavelenght, hence, much smaller than the focus width
and the Rayleigh limit is valid. On the left, the sphere is trapped under the
geometrical optics interpretation.

a dipole [73]. As the electric field can be considered uniform, the problem is
simplified to the interaction of a dipole with an electromagnetic wave. Under
this hypothesis, the forces exerted on the sphere by the light can be decomposed
in two parts. First, the radiation pressure will produce a force in propagation
axis of the light. This scattering term is written as:

~Frad =
nmσ

c
〈~S〉 (2.6)

where 〈~S〉 is the average of the Poynting vector and σ is the scattering cross-
section of a Rayleigh sphere of radius r :

σ =
8
3
π(kr)4r2

(
m2 − 1
m2 + 2

)2

(2.7)

where ~k is the wavenumber of the light (k = 2πnm/λ), m ≡ ns/nm is the
ratio between the refractive index of the sample (ns) with the refractive index
of the media (nm). On the other hand we have the force due to the gradient of
electric field: the so-called gradient force. This effect corresponds to the Lorentz
force acting on a dipole induce by ligth.

~Fgrad =
α

2
~∇〈 ~E2〉 (2.8)

where α is the polarizability of the particle:

α ≡ n2
mr

3

(
m2 − 1
m2 + 2

)
(2.9)
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While the radiation force will only act in the sense of light propagation, the
gradient force acts along the three axis, always in the sense defined by the light
intensity gradient. Therefore, the more NA used to focus the light, the larger
the gradient force will be, making possible to obtain a situation where the gra-
dient force dominates over the radiation pressure, creating a stable equilibrium
position.

2.1.2 Optical force in the geometrical optics limit (r � λ)

If the size of the object is much larger than the wavelength, the geometric optics
is a suitable tool to study the problem. By definition, the diffraction effects are
negligible. When the light changes from a medium defined by a refractive index
nm to another defined by ns, the light will change its direction according to the
Snell’s law. This change in direction is due to the change in momenta between
the light and the medium. In the particular case of a suspended particle, the
ray will exit again, producing another momentum change.

Figure 2.4: Adapted from [74]: Paths followed by two rays of the laser beam
through a dielectric sphere in the GO limit. Each figure represents a relative
position of the sphere from the focus (red point). Changes in the direction are
compensated by a momentum transfer which points to the focus of the beam.

In this scenario, the beam can be interpreted as a collection of rays with
different intensities. Then, the problem is reduced to a transmission-reflection
scheme through a sphere. Let us suppose a single ray with power P hitting the
sphere at an angle θ. The ray’s associated momentum is nmP/c. Once the ray
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Figure 2.5: Path of a single ray across a dielectric bead in the GO limit. R
and T represents the Fresnel coefficients for reflexion and transmition. Adapted
from [74].

hits the sphere, the ray will be transmitted and reflected endlessly, see fig 2.5,
and each ray will have the different Fresnel coefficients associated to its power
PT 2, PT 2R, PT 2R2, ... The associated ~Q factor to this particular ray will be
defined as follows:

~Q =
{

1 +R cos 2θ − T 2 [sin(2θ − 2r) +R cos 2θ]
1 +R2 + 2R cos 2r

}
k̂

+
{
R sin 2θ − T 2 [sin(2θ − 2r) +R sin 2θ]

1 +R2 + 2R cos 2r

}
l̂ (2.10)

where r is the angle of refraction, k̂ and l̂ are the unitary vector parallel and
perpendicular to the direction of the incident ray, and R and T are the Fresnel
reflection and refraction coefficients. Both R and T depend on the polarization,
thereby spreading the polarization dependence to the trapping forces. Therefore,
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the total force is the summation over all the rays that compose the beam. It is
necessary to remark two main results in the range of validity of this limit. First,
the trapping forces are independent on the size of the sphere, see Fig. 2.2 inset.
Secondly, there are some ranges of NA where the trapping force decreases with
the increasing NA [73].

2.2 Nanodetection

The quatification of the observation in an experiment is a key point in science.
In our experiments two main variables must be known: the exerted force and
the position of the sample. The search for quantitative measurements has de-
veloped several techniques to know where is our sample with an accuracy close
to nanometers, in a range of time shorter than microseconds. Below, we give
an overview of different tracking techniques. In this thesis, the study of the
scattered ligth was the chosen option to detect the probe position [75,76].

2.2.1 Video tracking

By the analysis of the microscope image of the particle by a commercial camera
is possible to track the position of the object by different algorithms [77]. The
image can be registered as a circle in the case of the microspheres whose center
is tracked along time. The intensity of the pixels can be fitted to Gaussian
profiles in order to increase the sensitibity of the method (up to 5 nm).

Although in this case the detection range would not be a problem and the
need of a conversion between volts and nanometers is avoided, the video tracking
lacks a high acquisition frequency compared as with forward scattering method.
The increase of this acquisition frequency would carry on an increase in the cost
of the camera.

2.2.2 Forward scattering: QPD

An auxiliar laser in the visible range is focused at the same point that the
trapping laser 1. The trapped object produces an interference pattern which
is collected by a condenser objective. This interference pattern is recorded by
a quadrant photodetector (QPD). A QPD is an electronic device composed by
four individual cells (i) that transform the light intensity (Ii) in a value of

1A visible wavelength is chosen due to the ease of the alignement.
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voltage (Vi). These four values of voltage can be directly linked to analogous
values in each axis (Vx, Vy, Vz) as follows:

Vx = (V2 + V4)− (V1 + V3)
Vy = (V1 + V2)− (V3 + V4)
Vz = V1 + V2 + V3 + V4

(2.11)

V1 

V3 V4 

V2 

Condenser 

Infrared Filter 

Figure 2.6: The laser peaked in the visible range is scattered by the trapped
dielectric microsphere. This light is collected and collimated by a condenser
objective to be projected in a QPD. The trapping infrared light is removed
by an additional filter placed before the QPD. This device is divided in four
independent cells which transform the incident light in four voltage signals.
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Figure 2.7: Response of the QPD to the scattered light by a 1µm diameter bead
moving along the x-axis. Black line corresponds to the Vx signal, red curve to
the y-axis, normal to x and to the optical axis. Notice how the linear range
of Vx is some nanometers broader than the non-cross-talking range. The linear
range of Vx is fitted to a straight line whose slope corresponds to the calibration
factor SQPD.

Within a certain range, the light intensity is proportional to the displace-
ment, see Fig. 2.6 and Fig. 2.7, making posible to have position detection at
high frequency (in our setup up to 200 kHz). A mathematical demosntration of
this method is given in [78], based in Mie scattering.

Once the voltage is recorded the calibration requires the determination of
two unknown quantities: the conversion factor between volts and nanometers,
SQPD(nm/V), and the stiffness of the system, κ.

2.3 Calibration
When the QPD method is chosen to detect the motion of our system there are
two unknown quantities: the stiffness of the trap and the conversion between
voltage in the QPD and nanometers. The Langevin equation (LE) is written as
follow:

γẋ(t) = −κx(t) + ξ(t) + Fext(t) (2.12)

where γ ≡ 6πrη corresponds to the dissipative term (in Stoke’s regime, with
r the radius of the bead and η the dynamic friction coefficient of the medium)
and ξ is the white force associated to the Brownian motion, defined by 〈ξ(t)〉 = 0
and 〈ξ(t)ξ(t′)〉 =

√
2kTγδ(t− t′).
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From this starting point we can use different ways to find the value of the
stiffness. Below are detailed several techniques to address this determination.

2.3.1 Viscous drag method

If the external force in the LE is induced by a well known flux, within the Stoke’s
regime, then it can be written Fext = γv. In this situation, the trapped bead
will be displaced from its initial equilibrium position a distance ∆x. Neglecting
the brownian effects, the force balance just depends in one unknown parameter
κ:

κ = γ
v

∆x
(2.13)

Notice that SQPD has to be known a priori, and hence, it is an useful method
when it is applied to the video tracking but not to the QPD method.

2.3.2 Time of flight method

Imagine two traps of different intensities close each other, the bead is trapped
in the stiffer trap. If the stronger one is switched off, the bead will fly from
one equilibrium position to the other. The Langevin equation of this system
can be considered as a strongly overdamped oscillator, neglecting the brownian
motion.

γẋ(t) + κx(t) = 0 (2.14)

being κ the stiffness of the weak trap. The solution of (2.14) is:

x(t) = x0 exp
(
− t

τC

)
(2.15)

where τC ≡ γ
κ is the correlation time. Although this method will give us

immediately the value of the stiffness, we will not be able to get the conversion
factor SQPD.

2.3.3 Power Spectrum Density

The analysis of the Brownian motion of the trapped microsphere allows the
determination of the trap stiffness. The LE evaluated in the Fourier space pro-
vides to compute the Power spectra density (PSD), which can be interpretated
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as the energy density along frequencies. In this particular scenario, PSD takes
the shape of a Lorentzian curve:

PSD(f)[m2/Hz] =
kT

2π2γ (f2 + f2
c )

(2.16)

where the corner frequency, fc ≡ κ
2πγ , can be directly fitted to obtain the

value of the stiffness. The physical meaning of the Lorentzian refers to the time
scale of the probe. For frequencies above the corner frequency, the microsphere
does not feel the trap, behaving as a diffusing particle. The characteristic time
of our system will be the correlation time τc ≡ γ/κ ≡ 2π/fc.

The PSD given by the experimental data is evaluated in V2/Hz, if the value
of A (A ≡ kT/2π2γ) from the experiment (Aexp (V2/Hz)) is compared with the
theoretical value, whose values are well defined, it is possible to obtain a value
for the conversion factor, SQPD(m/V ) =

√
Atheo
Aexp

PSDexp(f)[V 2/Hz] =
Aexp

(f2 + f2
c )

(2.17)

fc ≡
κ

2πγ
(2.18)

In the section 2.3.5 is given an example of calibration at three different
optical power. The value of the stiffness must be proportional to this power,
while the value of SQPD remains constant.

2.3.4 Equipartition theorem. Boltzmann statistics

Equipartition theorem is a balance between the kinetic energy of a system and
its potential energy. In the case of an overdamped system in the presence of
a thermal bath, our bead’s kinetic energy can be approximated as a perfect
gas, having kT/2 energy units per degree of freedom. As the three axis are
decorrelated, only one degree of freedom is considered. On the other hand,
the average potential energy is assumed to behave as a perfect spring, only
determined by its stiffness, κ:

1
2
κ
〈
x2
〉

=
1
2
kT (2.19)

where the brackets of 〈x2〉 refers to an ensemble average. In order to measure
κ accurately, a good statistics is needed, which is obtained by a long enough
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measurement time 2. Another path is to solve the Fokker-Planck equation in
stationary state. In this situation, the solution is the Boltzmann distribution,
where the probability is related to the potential landscape and the thermal en-
ergy. As a Gaussian is expected, the shape of the distribution is only determined
by its mean (null) and its dispersion,

〈
x2
〉
, exactly as the equipartition theorem

result.

ρ(x) =
exp −U(x)

kT

Z (2.20)

where Z is the partition function, Z =
∫
< exp U(x)

kT dx. This is very useful
tool due to the posibility of obtaining the potencial, U(x), from the analysis of
the trajectories. In the case of more complicated potentials, as seen in Chapter
8, we will be able to recover the potential from the trajectories, becoming of
great importance. On the other hand, once the potential is known, it is posible
to recover the value of the kinetic temperature, see Chapter 6.

2.3.5 Calibration example

A single microsphere (R= 0.5 µm) is optically trapped with the setup described
in 2.4.3. The interference pattern is recorded by a QPD at a sampling frequency
of 5kHz. Fig. 2.8 a) and b) show the trajectory for different optical powers
(Pred=7.1 mW, Pblue=23.2 mW, Pblack=81.8 mW) and their pdf, ρ(x), respec-
tively. The different ρ(x) are fitted to Gaussian distributions as corresponds to
quadratic potentials.

If the optical power is decreased, the particle will be able to explore further
distances, what is reflected in a broader pdf. The PSD is also shown in the
2.8c. The stiffness can be directly extracted from the Lorenzian fits and used
to obtein values of the QPD conversion factor (SQPD(V/nm)). The conversion
factor is obtain by two independent methods: the equipartition theorem and
the PSD. Both values are compared in the next table:

Power (mW) κ (pN/µm) SPSD(nm/V) SET (nm/V)
7.1±0.1 11.3±0.2 98.3 99.4
23.2±0.1 29.7±0.5 95.6 97.6
81.8±0.1 139.6±0.9 89.3 99.1

2Notice how long or short is refered to the characteristic time of the system, τc = γ/κ.
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Figure 2.8: a) Trajectory, b) histogram and c) PSD of an optically trapped bead
of 1µm diameter. When the optical power is increased, the corner frequency
is shifted to higher values. All the PSD converge to the same curve at high
frequencies, the bead will behave as a free particle for frequencies higher than
fc.

The value of the conversion factor must be conserved for any optical power
as it does not depend on the trap stiffness but on the properties of the QPD
and the detection laser. In this particular example, the values have a dispersion
smaller than 7%.

2.4 Material and methods

2.4.1 Building potential landscapes: Acousto-optic deflec-
tor

Although the use of parabolic potential has a wide spectra of applications, there
are cases where it is needed to build more complicated force scenarios. For
example, the use of an optical beam with angular momentum makes possible
to generate torques in the samples [61], holographic tweezers allow the use of



Optical trapping 34

light interference to produce the desired distribution of optical power, in order
to produce, for instance, ratchet potentials [79]. In this thesis, we focus on the
management of a laser beam through an acousto-optic deflector (AOD), a device
that allows to displace accurately the focal plane at high velocity.

An AOD is an optical device composed by a crystal managed by an acoustic
wave that can change the direction of the light that pass through the crystal.
Based on the acousto-optic effect, a particular case of photoelasticity, the trap-
ping laser can be managed by this device to move the equilibrium position of the
trap with high accuracy in space (nanometric resolution) and with a fast time
response (µs). In order to be able to displace the equilibrium position of the
trap without changing its shape, the AOD must be placed in a plane optically
conjugated to the objective.

One of the multiple options is to create multiple traps in a time-sharing
regime. The time-sharing regime is based on the change of the position of the
laser trap at least one order of magnitude faster than the time response of the
system. In a typical experiment, a dielectric 1µm bead is trapped in water. In
this situation, the relaxation time is of the order of milliseconds. Therefore, the
trap can be switched on-off at 10kHz and the bead will only notice the decrease
of the optical power, but the absence of trap in the off steps will not affect its
dynamic, in other words, the ~Q-factor will not change. At the same time, we can
use the off steps to place this pulse in other position, where another trap will
be created. In summary, by the time sharing technique, we can create potential
landscapes as sum of different Gaussian wells with the same shape (same ~Q) and
different associated power (different stiffness). Time-sharing techniques using
AODs have been described previously in [80, 81]). By a suitable ratio between
the time the laser is in each position, it is possible to build traps with the desire
ratio between stiffnesses. If the time spent by the laser visiting the trap A is
five times longer than that in position B, the trap A will be five times stiffer
than trap B. This feature will be exploted in next section, see epigraph 2.6.

This technique has been broadly explored in the field of optical tweezers
[39, 46]. In this thesis, this tool has been implemented to map the optical
trapping force, see section 2.6, and in the study of the energetics of the symmetry
breaking, see Chapter 8.

2.4.2 Implementing external forces: Electric fields in the
chamber

The application of external forces to trapped beads is a key point in this thesis.
On the other hand, the experiments must be done in an enviroment where the ex-
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Figure 2.9: The laser beam passing through the crystal can be modulated in
its direction by the aplication of an acousto-optic wave, to change the angle φ.
The AOD wmust be in a plane conjugated to the objective to do not change
the shape of the trap when the angle is changed.
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Figure 2.10: Calibration of the position of the trap as a function of the input
voltage of the acousto-optic deflector. The response is linear and allows the
correspondence between the position of the beam, the center of the trap, and
the voltage.

ternal noise is minimized and the possible hidrodynamical flows are neglectibles.
The polystyrene beads acquire surface charge when they are suspended in a po-
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lar liquid like water. Thanks to this charge, we can use an electric field to apply
the desired force [82]. The chamber must be built with a desing that maximizes
the force with the voltage, to obtain the higher forces with a minimal applied
voltage. The chamber depiction is represented in Fig.2.11 where the working
zone is the central channel, where the width is minimum. The representation
is analogous to a resistance circuit where the broader zones correspond to low
resistance and the central thin part has a higher resistance where most of the
voltage drops. Although the electrical field is inversional proportional to the
lenght of the channel, in order to obtain a higher homogenity of the field lines,
the length of the channel is fixed to 5mm.

r r R 

Figure 2.11: Top: Simplified representation of the electric circuit in analogy
with resistances. The width of the channel is related to the resistance. Middle:
Depiction of the custom-made chamber. Bottom: Photograph of the system.

The custom made fluid chamber is built by two coverslips (Deckglässer,
24×60mm). In one of them, two aluminium electrodes (CIFEC Ref. 1630
30 µm) were glued. A parafilm layer (Parafilm R©P7793-1EA) was sandwiched
between the two coverslips. The desired channels were drawn in the parafilm
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by a laser printer and melt at 85oC.
It is crucial to warranty the stability of the signals along time. An easy

experiment is carried out to have this certainty: A 0.5 µm radius polystyrene
bead is optically trapped. A sinusoidal signal is applied to the electrodes and
the position of the bead is tracked for two hours. The amplitude of the particle’s
oscillations is analyzed, see Fig. 2.13, and we observe that the force remains
constant along the whole experiment. This fact must be enough to warranty
the validity of our hipothesis.
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Figure 2.12: Example of electric force calibration. The force exherted in a
1 micron of diameter polystyrene bead when an external voltage is applied.
The force is not only function of the voltage, but of the chamber construction.
Calibration must be done for each experiment.

2.4.3 Optical setups

Along this thesis, depending on the project, different characteristics were re-
quired. Therefore, three setups were built, each one with different properties.
All of them have several common points as the trapping laser, always in the
infrared, or the nanodetection system is always based in the scattered light pro-
jected in a QPD, but the experiments were carried out with some differences.
In the following epigraphs, we show the different optical configurations used in
this thesis, detailing in which chapter they were used. Setups are exposed at
increasing order of complexity.
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Figure 2.13: A sinusoidal signal of low frequency, 1Hz, is applied for two hours.
The amplitude of the microsized sphere is recorded and analized in function
of time. As the force remained constant, it is tested the validity to consid-
erthe system as independent of time, allowing to perform experiments of long
duration.

Single bacteria setup

The study of single bacteria in pure biology laboratories by the use of optical
trapping is not fully implemented. Along 4, we will present a study of the
motility of the Salmonella enterica when different proteins of its chemotaxis
pathway are modified. To carry out this study, we build the simplest possible
setup of optical trapping, a single laser which is used to trap the bacteria and
to take quantitative measurements of its position. This setup is a perfect device
to be implemented in a clasical biological lab, being able to be managed with
a basic knowledgement about optics. Optical trapping was carried out using
a 1064 nm (ManLight, ML10-CW-P-OEM/TKS-OTS, maximal power 3 W)
optical beam from a laser coupled to a single-mode fiber (Avanex) expanded up
to 10 mm and then focused by a 100× NA=1.3 objective (Nikon, CFI PL FL
100X AN 1.30 WD 0.16 mm), as shown in Fig. 2.14. The forward scattered light
of the trapping beam was collected by a 40 × objective, and analyzed using a
quadrant-position detector (QPD) (NewFocus 2911). The resulting signals were
then transferred to a computer software via an analog to digital conversion card
(National Instruments PCI-6120).



Optical trapping 39

Figure 2.14: Simplest optical tweezers setup. Single laser used to trap the
bacteria. Its scattered light is projected to a QPD and analyzed

Noise setup

The previously described application of external force by electric fields is imple-
mented in this setup. To manage the optical potential, the beam is managed by
an AOD, see epigraph 2.4.1.The AOD(ISOMET LS55 NIR) steers a 1060 nm
optical beam from a laser coupled into a single-mode fiber (ManLight, ML10-
CW-P-OEM/TKS-OTS, maximal power 3 W). The AOD modulation voltage
is obtained from an arbitrary waveform generator (TaborElectronics WW1071)
controlled by a LabView program. The beam deflected by the AOD, is expanded
and inserted through a oil-immersed objective O1 (Nikon, CFI PL FL 100× NA
1.30) into a custom-made fluid chamber. An additional 532 nm optical beam
from a laser coupled to a single-mode fiber (OZOptics) is collimated by a (×10,
NA=0.10) microscope objective and passes through the trapping objective. The
forward scattered detection beam is collected by a (×10, NA=0.10) microscope
objective O2, and its back focal-plane field distribution is analyzed by a quad-
rant position detector (QPD) (New Focus 2911) at an acquisition rate of 20 kHz.
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A 532 nm band pass filter in front of the QPD blocks beams with wavelengths
different from the detection beam wavelength. The AOD permits the control of
the position of the beam focus. AOD is also used to map the force distribution,
as described in epigraph 2.4.1. The custom-made fluid chamber, see epigraph
2.4.2, was placed on a piezoelectric-controlled calibrated stage (Piezosystem-
Jena, Tritor 102) allowing the 3D translation. The electrodes of the chamber
were fed by a signal created in a commertial signal generator (TaborElectronics
WW1071). In the particular cases where we would need a higher voltage than
the given by the generator (±10V), the signal was amplified 100 times by a DC
amplifier (TREK 610E).

QPD

CCD

O2

O1

AOD

Trapping

laser

1060 nm

Trapping

laser

1060 nm

Detection

laser

532 nm

Detection

laser

532 nm

Figure 2.15: Setup with noise generator

This setup is used in Chapters 6, 7 and 8

Dual trap setup

The stretching of DNA has been studied for the last 20 years [20]. The different
experiments carried out in biomolecules need high intensities of the trapping
laser due to the need to achieve high forces (up to 100pN). Then, it is important
to do not waste optical power to generate a dual trap, like, unfortunately in the
time-sharing regime. For this purpose, in this setup we used two independent
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lasers which generate an individual trap each. The position of the trapped
object in each trap is individually recorded. As it is described in Fig. 2.16, a 980
nm optical beam from a laser coupled in a single-mode fiber (Avanex, 1998PLM
3CN00472AG HIGH POWER 980nm), expanded up to 10 mm and then focused
by a 100 × NA=1.3 objective (Nikon, CFI PL FL 100X AN 1.30 WD 0.16 mm)
permitted the optical trapping. The additional trap is generated by an expanded
1060 nm optical beam from a laser coupled in a single-mode fiber (ManLight,
ML10-CW-P-OEM/TKS-OTS, RMS noise less than 0.2, maximal power 3W).
The position of this trap can be changed by a computer-controlled mirror. This
mirror was optically conjugated with the input pupil of the trapping objective
using two lenses (L1=10cm, L2=40cm), also responsible for the magnification
of the beam.

635 nm 980 nm

1060 nm

CCD

QPD

Figure 2.16: Dual trap setup

An additional 635 nm optical beam from a low-noise laser (Coherent, ultra-
low noise diode laser LabLaser635, RMS noise less than 0.06 for bandwidths of
10 Hz to 10 MHz) was coaxial to the propagation direction of the trapping beam
and was used as the position detection beam. The forward scattered light of the
detection beam was collected by a 40 × objective, and analyzed by a position de-
tector (Newport, 2931 position-sensitive detector). The forward scattered light
of the trapping beams were blocked by a short-pass filter (Thorlabs FES0700).
The resulting signals were then transferred through an analog-to-digital conver-
sion card (National Instruments PCI-6120) to computer software. This setup is
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used in Chapter 3.

2.5 Breaking the limits of detection: Back-focal-
plane position revisited

2.5.1 Introduction

The main problem of the nanodetection of the position with the scattered light
is the limited range of linearity. In the previously presented scheme in section
2.3.3, the linear range is limited to a region 500 nm width. But there are several
classes of experiments where the probe may be displaced by external forces at a
distance of several micrometers from the probes initial position. Examples are
an extension of a single DNA molecule [21,69,70] or amyloid fibrils [83] produced
by a dual trap optical system. Other experiments make use of optical tweezers in
statistical physics studying thermodynamical parameters of a colloidal particle
pulled by a moving optical trap [84–86], Kramers transitions in a double-well
optical potential [87–89], optical binding [90], non equilibrium steady states
generated by means of a rotating laser beam [91], and artificial Brownian motors
[27].

In all those cases the absolute position of the probe is a relevant measure
together with the relative probe position in the trap focus. At a fixed position of
the QPD the displacement of the probe by moving of the trap or by an external
force produces a unique and linear QPD response only in a restricted region
of the probe displacement, usually several hundreds nanometers. However, for
example, in experiments with a colloidal particle pulled by a moving trap, the
displacement of the probe must occur for distances of several micrometers, and
the traditional back focal plane (BFP) scheme cannot provide the absolute value
of the probe position. Hence, other techniques have to be used in such experi-
ments, such as methods of digital video microscopy [92]. An automated optical
force clamp [93] in which both the trap position (via acousto-optic deflectors)
and the sample position (using a three-dimensional piezo stage) are controlled
by a computer program is a fruitful approach for single molecule studies when
high temporal resolution is not required. During motor-driven movement, both
the trap and the stage are moved dynamically to apply a constant force while
keeping the trapped probe within the calibrated (and linear) range of the de-
tector.

Along this section, we will show how to change the traditional BFP detection
system with QPD to extend the linear range of the QPD response; that is, to
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measure with the same high speed detection system both the probe absolute
position and the probe relative position in the trap for probe displacements up
to several micrometers. Multi-pixel detectors (i.e. CMOS or CCD sensors) to
monitor particle positions are equally precise as quadrant diodes in position
resolution, and they are linear up to much larger displacements. However, the
proposed scheme with quadrant diodes is a more simple solution capable to
provide a high frequency data acquisition rate, which is important specially for
statistical physics applications of PFM.
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Figure 2.17: Schematic of the back-focal-plane position detection system: (a)
the trapping beam introduced by a trapping objective OT is also used to detect
the probe position, (b) an additional beam of other wavelength (or polariza-
tion) introduced through the trapping objective OT is the detection beam. In
both schemes the condenser objective OD collimates the detection beam before
sending it to the QPD. In (c) the detection beam is introduced by the objective
OD. By choosing the NA of OD and the size of a pinhole PH one may tune the
size of the detection spot in the focal plane of OT .

2.5.2 Methods
The two critical parameters of the position detection system are the displace-
ment sensitivity and the linear response range. Both are functions of the inten-
sity distribution that reaches the detector and therefore depend on the sizes of
the focal beam and the probe, as well as the numerical apertures of the trapping
and collimating objectives.
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According to the models of one-dimensional displacement of a spherical scat-
terer in the objective’s focal plane developed in [75,76,94–96] for both Rayleigh
scatterers and Mie scatterers, an expansion of the detection spot extends the
linear range of detection but reduces the position sensitivity.

We consider the restrictions imposed on the BFP position detection system
when it is explored in a specific experiment as optical tweezers. In the detection
scheme usually used for optical tweezers (Fig.2.17a), the parameters of the beam
waist in the focal plane are set to provide the gradient optical force in the axial
direction sufficient to overcome the scattering force [80]. As it is well known
this condition is achieved by using high numerical aperture objectives.

We estimate the beam waist w0 by the strong focusing condition required
for the optical trapping. The field distribution near the focal plane of a linearly
polarized Gaussian beam focused by an aplanatic lens with numerical aperture
NA and focal distance f is described by an integral representation for the elec-
tromagnetic fields [97]. In Fig.2.18a and Fig.2.18b we illustrate the intensity
distribution in the focal plane of the lenses with different apertures NA and
sizes of circular aperture R on the objective’s input pupil. Let us consider the
usual configurations shown in Fig.2.17a. As we mentioned above, the trapping
objectives have high NA (NA>1.0) by definition. The maximal focal beam waist
is 0.18µm obtained without the aperture (Fig. 2.18a. Following [75, 76, 96] it
gives the linear range of the position detection about several hundreds nanome-
ters. The incident beam clipping cannot be useful in this case because it reduces
the axial gradient trapping force and therefore the optical trapping becomes im-
possible.

A possible solution may be the configuration shown in Fig.2.17b. An addi-
tional weak beam of a different wavelength or polarization is used for the position
detection and the optical systems for the trapping and detection beams are un-
coupled. The expansion of the detection focal spot by reducing the incident
beam width by the pinhole (compare the curves (1) and (2) in Fig.2.18a may
increase the linear range without affecting the trapping force. In this configu-
ration the detection beam must also propagate through the high NA trapping
objective. Small focal distances of such objectives do not allow for considerable
expansion of the linear range even with the input detection beam clipping. The
apertures smaller than 500µm can theoretically expand the focal spot of the de-
tection beam. However in experiments configured according to Fig.2.17b there
is always a distance of several centimeters between the aperture and the input
objective pupil. Diffraction effects at small apertures do not allow the beam
width at the objective input to remain the same as the aperture size.

We suggest to change the role of the condenser objective OD: in all previous
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Figure 2.18: Normalized electric field intensity in the focal plane vs. distance
from the focus calculated for the objectives with NA = 1.3 (focal distance
f = 2.7mm (a) and NA = 0.1 (focal distance f = 28.9mm) (b). In both cases
the input Gaussian beam has the waist 0.5 cm. The results are shown for two
radius of the aperture 0.5 cm (1) and 0.05 cm (2). The Gaussian fitting of the
numerically obtained results gives w0 = 0.18µm (curve 1) and w0 = 0.68µm
(curve 2) for the objective with NA = 1.3 and w0 = 0.78µm (curve 1) and
w0 = 7.05µm (curve 2) for the objective with NA = 0.1. The values of the
focal distances are taken from www.edmundsoptics.com. The wavelength in
vacuum is 0.63µm.

experimental setups this objective has been used only to collimate the detection
beam. In our scheme (Fig.2.17c) we introduce the detection beam through the
objective OD. Unlike the conventional detection schemes (Fig. 2.17a and Fig.
2.17b), NA of OD may be chosen at will since it does not affect the trapping
force. Then the combination of such a low NA objective together with a tunable
pinhole permits us to create in the trapping objective’s focal plane the detection
spot of a variable size defined by the full width of the incident detection beam
and NA of OD. As shown in Fig. 2.18b the beam waist w0=7 µ m may be
achieved with the aperture of 0.05 cm. An additional experimental advantage
of this configuration is that the aperture may be located in the vicinity of the
input pupil of OD.

2.5.3 Experimental setup

The experimental setup includes the following principal parts (Fig.2.19). A 1060
nm optical beam from a laser coupled into a single-mode fiber (ManLight, ML10-
CW-P-OEM/TKS-OTS, maximal power 3 W) is steerable by an acousto-optical
deflector/modulator (AOM/D) ( ISOMET LS55 NIR). The AOM/D input volt-
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age is controlled by an arbitrary waveform generator (Tabor Electronics, WW
5062). After the AOM/D the beam is extended and inserted through a ×100
NA=1.3 objective (Nikon, CFI PL FL 100X NA 1.30) into a home-made fluid
chamber permitting the steerable optical trapping of polystyrene spheres of var-
ious sizes. The output plane of AOM/D is optically conjugated to the objective
input pupil. An additional 635 nm optical beam from a low-noise laser (Co-
herent, ultra-low noise diode laser LabLaser635, RMS noise less than 0.06 for
bandwidths of 10 Hz to 10 MHz) is coupled first into a mono mode fiber to im-
prove its spatial distribution. Then the output beam of the fiber is collimated
by a ×10 NA=0.10 microscope objective (EdmundsOptics) and passes through
an iris pinhole. A NA=0.1 objective (EdmundsOptics) focuses the beam at the
trapping objective«s focal plane. The forward scattered detection beam is col-
lected by the trapping objective, and the BFP field distribution is analyzed by
a QPD (New Focus 2911). A 635 nm band pass filter in the front of the QPD
blocks beams with wavelengths different from the detection beam wavelength.
The QPD output signals are being transferred through an analog-to-digital con-
version card (National Instruments PCI-6120) to computer software. A CCD
camera permits to observe images of the probe in the focal plane of the trapping
objective.

CCD

AOD

Detection

laser

635 nm

Detection

laser

635 nm

QPD

Trappinglaser1060 nm

Trappinglaser1060 nm

O
T

O
D

Figure 2.19: Experimental setup.
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2.5.4 Results

To calibrate the position detector, i.e., to obtain a conversion factor between
the probe displacements and QPD output signals we used a standard optical
tweezers calibration technique based on the probe position fluctuation spectrum
[98]. At a given position of the trapped probe (polystyrene spheres of 1 and 2µm
in diameter) inside the detection spot the probe«s Brownian fluctuations were
acquired and their power spectral density are being fitted to the Lorentzian curve
[80]. The fitting parameters gave the stiffness of the trap and the conversion
factor mentioned above.

Afterwards, we calibrated the deflector. We trapped the probe and steered
it applying triangle signals of different amplitudes with a frequency of 0.7 Hz
to the acousto-optical deflector. For small amplitudes (less than 0.02V for
our AOD/M) of the triangle signal such that the probe displacements do not
exceed 100 nm we measured a ratio between the amplitude of the modulation
signal and the probe displacement using the calibration factor obtained from
the Brownian fluctuations analysis. We then confirmed with an image analysis
that the same ratio remains for the modulation amplitudes ±2 V corresponding
to probe displacements ± 3µm. To do this, with the CCD camera we captured
images of the trapped probe for different amplitudes of the modulation signal.
Then knowing the size of the probe we calculated the displacement of the probe
in nm for a given value of the modulation signal.

a) b)

Figure 2.20: (a) 2 µ m sphere trapped inside the spot of the detection beam in
the focal plane of the trapping objective. (b) Interference rings observed at the
plane of the QPD.

Figure 2.20a demonstrates that the trapped sphere size is much smaller than
the detection beam diameter. When the sphere is displaced, the interference
rings at the trapping objective BFP (Fig. 2.20b) shift within the detection
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Figure 2.21: Position detectors output signal (the probe diameter is 1µm, blue
line, and 2µm, red line) as a function of probe displacement shows a nonlinear
character when the probe displacement exceeds the size of the detection spot
8µm. However, at probe shifts less than ±1500nm (the 1µm probe diameter)
there is a linear dependence between the QPD output and the probe position.
The minor deviations from the linear dependence in the linear part of the QPD
response are due to the non uniformity in the detection beam intensity as well as
Brownian fluctuations of the probe position. For the probe with diameter 2µm
the linear range is ±3500 nm. The insets show the images of the interference
rings of the detection beam observed at the plane of the QPD for the 1µm and
2µm probes.

beam; however no shift of the whole detection beam is observed.
Figure 2.21 shows the position detector response vs. absolute position of

the probe for a 1µm probe. As seen the linear detection range was achieved
within ±1500 nm displacement. The nonlinear behavior of the output signal at
higher displacements is due to at least two reasons. First, the probe moves out
of the detection spot. Second, the interference fringes of the forward scattering
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detection spot are limited by the trapping objective pupil. Notice also that at
low modulation frequency of the experiment the Brownian fluctuations of the
probe position are observed on the output signal traces.

Figure 2.21 demonstrates results obtained with a 2 µm probe when the
diameter of the detection spot is extended even more than in 1µm case shown
in the same figure. As seen, the linear range is in this case ±3500 nm.

When the probe shifts achieve the nonlinear range of the position detector
signals an unavoidable cross-talk between QPD output signals occurs. In [99]
this cross-talk was used to extend the linear range of the position detection sys-
tem in the conventional geometry Fig.2.17a) up to one micrometer. Unlike our
technique, this method requires calculations of a special calibration curve that
makes the data processing more computationally expensive and slow. Moreover
it does not in principle achieve the linear range extension up to several microm-
eters since the calibration curve can not be calculated for such large shifts. Our
technique yields the probe position directly without any additional processing
of the QPD data. Also at each given position of the probe its Brownian fluctu-
ations may be acquired with the acquisition rate, which is defined only by the
QPD electronic properties.

2.5.5 Conclusions

The proposed technique is simple, but has several shortcomings. The displace-
ment sensitivity is less than the one in the traditional scheme. In fact, in the
model of Rayleigh scattering, for example, the sensitivity decreases with the
detection beam size as w−3

0 [75,76]. We noticed also that the instrumental noise
of the optical setup affects the electronic output signals strongly than in the
conventional scheme.

2.6 What is beyond the parabolic regime? Map-
ping the force of the whole trap

2.6.1 Introduction

One of the greatest characteristics of the optical trapping technique is the anal-
ogy of its restoring force with a perfect spring. The force can be considered to
linear depend to the distance to the equilibrium position and it will be char-
acterized by a single parameter, namely its stiffness. However, as previous
experiments have demonstrated, the optical restoring force is linear with the



Optical trapping 50

probe displacement only within a restricted range, usually several hundreds of
nanometers. In other words, the optical trapping potential (OTP) is harmonic
only for this range of displacements. There are several experiments where the
probe may be displaced by external forces at a distance of several micrometers
from the probe’s initial position. The probe exhibits larger excursions away from
the trap center and the harmonic approximation for OTP is no longer valid. An
example is an extension of a single DNA molecule [69] produced by a dual trap
optical system. Other experiments make use of optical tweezers in statistical
physics by studying thermodynamical parameters of a colloidal particle pulled
by a moving optical trap [84, 85], Kramers transitions in a double-well optical
potential [88], optical binding [90] or non equilibrium steady states generated
by means of a rotating optical beam [91]. The map of the trap stiffness is a
required part of the calculations of thermodynamic parameters as work and en-
tropy when the probe is pulled by the trap [39]. In these cases the restoring force
for arbitrary distances of the probe from the trap center should be measured.
For a given distribution of the optical beam intensity near the focus, the OTP
varies due to the size of the probe, its refractive index or absorption, and in
situ OTP mapping methods that are not restricted to harmonic potentials are
required.

The OTP is a complex function of the input beam field distribution, power at
the objective focus, beam waist, properties of the focusing objective, and the de-
sign of a fluid chamber for optical trapping experiments, as it defines the optical
system’s astigmatism. The absolute calibration of the optical trapping systems
can be done [100], but it is individual for each system and not straightforward.
Changes of any element in the previously characterized trap system require a
new calibration procedure. Calculations of the trapping force using known algo-
rithms are possible. However, the results are affected by many parameters that
are difficult to measure with high accuracy. For example, experimental results
in [101] had to be linearly scaled by a factor of 4.0 to fit the calculated values
due to uncertainties in some of parameters, such as an infrared transmission of
the microscope objective and an actual input optical beam profile.

Several methods to characterize qualitatively the OTP on its entire range
have been suggested: a time of flight method, where the motion of the probe
after a sudden trap displacement is analyzed [102–105]; a drag force technique,
where the position of the trapped probe is studied by gradually increased known
drag force [106–108].

In [109] a dual-beam optical trapping system was proposed. A strong, sta-
tionary, and previously calibrated trap holds the probe (see Fig.2.22). Its OTP
is deep enough and external forces can not displace the probe out the range
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of the harmonic approximation. The intensity of a trap whose OTP has to be
analyzed is adjusted such that its optical force acts as a perturbation exerting
on the probe a variable force while scanning near the strong trap. Later this
technique was modified and improved considerably in [101,110].

U(x)

x

x0

trap 1 trap 2

Δx

Figure 2.22: A strong trap (1) holds the probe while the trapping force of a
weak trap (2) at a distance x0 shifts the position of the probe to ∆x. The
stiffness of the trap 1 is strong enough such that ∆x does not reach the limit
of the harmonic approximation of its OTP. Therefore the force exerted by the
trap 1 is equal to the stiffness of the trap 2 multiplied by ∆x.

Our approach based on this dual-beam OTP mapping technique. The main
goal is to find a simple technical realization of this method based on the belief
that up-to-date optical traps both in their laboratory and commercial variants
include an acousto-optical deflector (AOD). This procedure can be used in al-
ready existing optical trapping systems with its minimal possible changes when
only a new control protocol of AOD is required.

2.6.2 Methods

The two traps are created with the same laser, hence, the optical path is identi-
cally, also the wavelength and the trapped sphere. The only difference between
the two traps would be the power, that as it was detailed in section 2.1 is sep-
arable from the ~Q-factor of the trap. Then, it is reasonable to start from the
hipothesis of any trap created with the given setup will have the same setup
varying just in a multiply-factor. Once we admit it, the power ratio between one
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trap and the other can be enough to warranty the bead will always stay inside
the parabolic regime of the strongest trap. The strongest trap can be easily
calibrated with its stiffness, being possible to know what is the force exerted in
each displacement (∆x)

The dual-beam technique requires two optical traps with different stiffness.
Acousto-optic deflectors are one of the most frequently used devices for genera-
tion of multiple optical traps. The individual traps are not generated simultane-
ously but a single optical beam is rapidly switched between a number of optical
focuses by changing the frequency of acoustic waves propagating in the AOD.
Multiple optical traps are possible as long as the focused beam is returned to
the same location faster than the time it takes for the probe to diffuse away
from that location, typically on the order of tens of milliseconds. The time
sharing regime of AOD has the greatest additional flexibility because it allows
independent control of both the positions of two optical traps (changing the
frequency of acoustic waves) and their stiffnesses. In fact, since the probe ob-
serves an average intensity, the trapping force at each location may be changed
by a proper choice of the timing ratio between two frequency components at the
AOD input.

Figure 2.23 illustrates how a dual trap with controllable distances between
the traps and ratios between their stiffnesses may be produced with an AOD,
an analogue RF driver, and a generator of modulation signals. The alternation
of trap positions is controlled by timing signals generated by a modulation
generator adjusted to give a low frequency square wave with a controllable duty
ratio. The analogue voltage is transferred to the modulation input of a RF
driver. The drivers’ RF output is then transferred to the AOD. The relative
optical intensity in each trap depends on the duty ratio of the modulation signal,
and the distance between the traps is defined by the amplitude of the square
wave. In order to provide an additional flexibility to the optical trapping system
a DC modulation signal was added to the square modulation wave. It permits
to shift the positions of both traps simultaneously. We used this signal by a
calibration of the traps as it is described below.

2.6.3 Experimental realization

The optical setup used in this epigraph is the same that was described in section
2.4.3, although, by the definition of the technique, it can be done in any optical
tweezers setup whose optical trapping beam is managed by an AOD. Briefly,
in this particular case, a 1060 nm optical beam from a laser coupled into a
single-mode fiber (ManLight, ML10-CW-P-OEM/TKS-OTS, maximal power 3
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Figure 2.23: Protocol of the time sharing regime. Signals of a modulation
generator 1 U1(t) modulate the frequency of a RF generator in such a way that
two traps with a controllable distance between the traps and a ratio of the trap’s
stiffnesses are created in the focal plane of the trapping objective. When the
amplitude of the square signal varies, the position of one of the trap remains
fixed while the position of the other trap shifts. As seen, the duty cycle of the
square wave provides the higher stiffness of the fixed trap comparing with the
stiffness of the movable trap. Signals of a modulation generator 2 U2(t) change
the positions of both traps simultaneously.

W) was steerable by an acousto-optical deflector/modulator (AOM/D ISOMET
LS55 NIR). The input modulation voltage (Fig.2.23) that controlled a RF gen-
erator of the AOM/D is generated by an arbitrary waveform generator (Tabor
Electronics, WW 5062) managed by a custom-made LabView program. Two
lenses L1 and L2 expanded the trapping beam up to 8 mm in diameter and
conjugated the AOD output plane with the input pupil plane of the trapping
objective. The extended beam was inserted through a ×100NA = 1.3 objective
(Nikon, CFI PL FL 100X NA 1.30) into a home-made fluid chamber permit-
ting the steerable optical trapping of polystyrene spheres of various sizes. The
maximal separation between the fixed and the movable traps was 3µm.

A CCD camera provided images of the trapped probe. An additional 532
nm optical beam from a laser coupled to a mono-mode fiber was collimated by
a ×10 NA=0.10 microscope objective (EdmundsOptics) and propagated coaxi-
ally with the trapping beam through the trapping objective. The forward scat-
tered detection beam was collected by a ×10 NA=0.40 microscope objective
(EdmundsOptics), and the back-focal-plane field distribution is analyzed by a
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quadrant position detector (QPD) (New Focus 2911). A 532 nm band pass filter
in front of the QPD blocks beams with wavelengths different from the detection
beam wavelength. The QPD output signals are being transferred through an
analog-to-digital conversion card (National Instruments PCI-6120) to computer
software. These signals provided information of the coordinates of the trapped
probe. The data acquisition rate was 20 kHz. The detection beam permits
the calibration of the optical traps and the detection system using Brownian
fluctuations analysis [80]. The analysis is based on determining the power spec-
trum of the position of a trapped object. For a particle bound in a harmonic
potential the power spectrum for position is a Lorentzian. The trap stiffness
and the calibration factor SQPD between the momentary position of the probe
(in nm) and the amplitude of the QPD output (in V ) may be determined by
fitting the spectrum to a Lorentzian. Polystyrene beads of 1µm and 2µm in
diameter (Keiser) were used in experiments. The duty ratio used in this work
was 5:1. The frequency of the square modulation wave was 20kHz and therefore
the focused beam is switched between two locations faster than the time it takes
for the probe to diffuse away from the locations (around 8 milliseconds in our
experiments).

The system needs two calibration procedures. First at a given whole intensity
of the trapping beam measured before the AOD we varied the modulation signal
U2 (Fig.2.23) and moved the position of the fixed trap with a trapped probe to
the detection beam spot. Using data on the probe’s position obtained from the
QPD during 20 s we calculated the stiffness of the fixed trap and the calibration
factor SQPD as it was described above 2.3.3. The calibration factor was SQPD=
1050 nm/VQPD.

Secondly, the AOD must be also calibrated. In this case, the calibration
is done following the protocole described in 2.4.1. In this particular setup,
SAOD=2800 nm/V. We then confirmed by an image analysis that the same ratio
remains for the modulation amplitudes up to U1=±3 V. To do this, we captured
images of the trapped probe with the CCD camera for different amplitudes of
the modulation signal U1. Then knowing the size of the probe as a scale we
calculated the displacement of the probe in nm for a given value of U1. The
image analysis agrees with the previous calibration.

To chose the ratio of the intensities of two traps we used the following consid-
erations. We knew from previous publications [106, 110] that the trap stiffness
has a constant value only in the range of ±200 nm near the trap center. There-
fore the excursions of the probe in the strong trap due to the force exerted by
the weak trap should not exceed 200 nm in order to use the constant value of
the stiffness found from the thermal fluctuations analysis. We found that with
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the stiffness of the strong trap larger than 20 pN/µm and by the duty cycle of
the square modulation signal 5 : 1 this condition is satisfied.

After the calibration procedure we trapped the probe by the strong trap
with the movable trap being at the distance of several µm from the fixed trap,
and moved the fixed trap to the position of the detection beam spot changing
U2. Then the movable trap was displaced to the direction of the fixed trap and
for each position of the movable trap a new position of the trapped probe was
measured. Multiplying it by the stiffness of the fixed trap we found the force
that the movable trap exerts on the probe at a given distance between the probe
and the movable trap centre.

2.6.4 Results

Below we present examples of application of the technique. Fig. 2.24 a) shows
the radial force component F (r) exerted on the spheres of two diameters, and
the trap stiffness, κ(r) = −dF (r)/dr (Fig. 2.24 b)) obtained by numerical
differentiation of the force. In both experiments the intensity of the movable
trap was equal. As seen a non-monothonic behavior of the trap stiffness near
r = 0 for 2µm spheres is observed as it was previously demonsrated in [104,
106, 110]. The maximal value force changes slightly with the probe’s diameter
but the coordinate of the maximal force changes strongly and it corresponds
approximately to the probe’s diameter.

Figure 2.25 demonstrates the OTP obtained from the experimental depen-
dence F (r) following the formula

U(r) = −
∫ r

−1

F (r′)dr′ (2.21)

The depth of OTP characterizes experimentally the free energy of the system.

As seen in Fig. 2.24 b), which is, in fact, the second derivative of U(r), for
1 µm sphere the OTP may be considered as a harmonic only at a short range
of distances. For 2 µm spheres the harmonic approximation is valid even in a
shorter range.

In [111] the depth of the OTP in the axial direction for a 0.216 µm sphere
was obtained to be 0.12 10−18J with similar beam power. Keeping in mind that
in the axial direction the trapping force is usually several times lower than in
the radial direction and that the stiffness grows with the probe size in the range
between hundreds of nanometer to micrometer (Figure 5 from [72]), our results
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Figure 2.24: (a) Force exerted on 1 µm (red open squares) and 2µm (blue
squares) spheres vs. radial distance. (b) trap stiffness vs. radial distance. The
optical trap has a beam power of 3 mW. We confirmed that the force map is
not affected by further increase of the strong trap stiffness by keeping the same
intensity of the weak trap.

are in agreement with previous observations. Also in [105] a similar OTP depth
was observed experimentally and supported by numerical simulations. However
a comparison with our measurements is difficult due to the absence of data on the



Optical trapping 57

Figure 2.25: Optical trapping potentials for 1µm (red open squares) and 2µm
(blue squares) spheres.

optical power. We also compare our measurements with results obtained in [110].
Fitting the force profile shown in Fig. 2 c) in [110] to F (r) = −a re−(r/d)2

,
where a and d are the fitting parameters, and then integrating this force we
obtained the potential depth value (25× 10−18J) comparable with our results.
An indirect evidence of the OTP depth is the escape time from the potential well
that in our case was so long that its measurement could not be performed. In an
overdamped system, the escape time from a potential well of depth U is given
by τ = τ0e

U/kBT where τ0 = γ/κ [112]. Using parameters of our experiments it
is possible to show that the probability for the probe to escape from the trap is
very low.

2.6.5 Conclusions
In conclusion, we suggest a simple protocol for the force mapping of the optical
trap in an optical tweezers setup that already include an AOD. The application
of this protocol does not require new elements in the existing optical system.
The same protocol may be applied also if high-speed galvo mirrors are used as
the trapping beam deflectors.
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3
Colored noise in the fluctuations of a

single DNA molecule

3.1 Introduction

Deoxyribonucleic acid (DNA) is the basis of life as we know it. It is a biopolymer
that contains all the genetic information needed in the cellular processes, being
found in all living cells. One of the most prevalent forms of DNA is a linear
double-stranded DNA. The double helix provides both bending and twisting
rigidity, making linear DNA a semi-flexible, charged polymer chain. Like any
polymer in solution, DNA forms a random conformation that maximizes its
entropy. The process of stretching a single DNA molecule reduces the number
of accesible microstates that is compensated by the so-called entropic force. The
understanding of the response of DNA to external forces is of a key importance
because nuclear processes, such as transcription, replication and translation,
needs the loss of the quaternary structure. The entropic force, which governs
the mechanical flexibility of DNA, plays a key role in all its cellular functions
and its experimental characterization is being actively developed [20]. A double
strand DNA molecule in solution bends and curves locally. Such fluctuations
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shorten the molecule’s end-to-end distance, even against the applied force. The
elastic behavior of DNA is thus, purely entropic in origin. The entropic elasticity
has been explored in the range from 0.01 to 10 pN [113]. As the DNA extension
reaches its B-form contour length, the force required to stretch it increases
rapidly, because the double helix is straightened out and resists further increase
in length. This regime is called the enthalpic regime. At extension force of 65
pN, very little additional force is required to increase the DNA length to 1.7
times its contour length. This is so called overstretching regime [114], [69].

The dynamics of extended polymers is not fully understood and is in princi-
ple of great interest. The dynamics of a single DNA molecule has been studied
earlier for partially extended states. It was shown that the internal modes of
a DNA extended up to 80% are related by a power law decreasing its intensity
with the mode number [21], [22]. Internal hydrodynamic effects should raise
the polymer friction coefficient as the molecule extends, causing the sequential
increase of the polymer relaxation time [23], [24]. Extended DNA molecules
are characterized by two different sets of relaxation times and spring constants
(longitudinal and transverse), and the dynamics at high extensions points to
yet unexplained nonlinear behavior [25]. Particularly, the correlation functions
have super-exponential relaxation that may indicate the presence of new phys-
ical effects.

Random conformations that a DNA molecule form in solutions occur in the
presence of the thermal noise with white spectrum of the forces, but also an
important role is played by out-of-equilibrium mechanical activity. These me-
chanical effects are directly related to biochemical reactions in the long polymer
chain. The power spectrum of such force fluctuations is defined by processes
that are different from the thermal noise and therefore may depend on frequency
of the fluctuations (colored noise). Recent detailed studies on the sources of fluc-
tuations in some biological systems, in particular in bio-molecular motors [48],
offer strong experimental indications that the noise signals in these systems in-
clude also the non-white component with frequency-dependent power spectrum.
The effect of colored noise is not restricted to destructive and thermodynamic
effects [49], but also may affect mechanical processes in biochemistry [50].

Force studies of single DNA molecules using single molecule force spec-
troscopy brought new insight in to various DNA biological functions [20, 21,
51, 52]. Questions still remain about the force spectrum of conformation fluc-
tuations of DNA chemical structure in the low force regime where entropy is a
driving factor. The DNA molecule acts as a platform for a host of critical bio-
logical functions such as transcription, replication, and other molecular motor
driven processes. During these processes, the DNA strand undergoes numerous
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mechanical entropic unfolding and extension events that are primarily supported
by the polymer-like phosphate backbone, thus making it critical to have a full
understanding of how the DNA structure responds to forces.

The aim of this work is to study experimentally the spectra of fluctuations of
a single thermally excited DNA molecule in different states of extension in the
regime of entropic elasticity. We explore well-known experimental schemes: the
molecule is anchored between two optically trapped dielectric beads, or between
an optically trapped bead and a surface (cover slip or pipette) [52, 69, 70, 115].
The time traces of the bead position are analyzed under a varied load applied
to the molecule. In this work, the power spectral densities (PSD) of the bead
fluctuations for different extensions of the molecule were compared with the
power spectral density for the same bead without the molecule attached. Finally,
we subtracted the spectrum of thermally excited fluctuations of the molecule.
To the best of our knowledge we demonstrated experimentally for the first time
that in the regime of entropic elasticity the random fluctuations of the extended
DNA molecule include also the contribution with frequency-dependent power
spectrum.

3.2 Methods

The main parts of the experimental setup are explained in previous section 2.4.3.
Briefly, a dielectric bead with a DNA molecule attached to it is chemically con-
nected to the surface of a movable cover slip. Another bead connected to the
opposite end of the DNA is trapped by a focused optical beam (980nm). An
additional optical beam (635 nm) is coaxial to the propagation direction of the
trapping beam. Its forward scattering intensity is characterized with a pinhole
and a quadrant position detector in order to measure the bead position and
calibrate the optical trap, see section 2.3.3. The PSD of the bead position is
calculated for different distances between the center of the optical trap and the
center of the bead connected to the cover slip. Unlike previous publications, the
optical trap’s stiffness is kept similar to the DNA stiffness such that the fluctua-
tions of the molecule became significant and are not hidden by the instrumental
noise.

In a second experiment we changed the experimental setup, and we used two
optical traps to extend the molecule (see below inset in Fig. 3.7). The goal was
to find how an additional isolation of the studied system from the instrumental
noise and changes of the detection trap’s stiffness (approximately 7 times) affect
the spectrum of the measured fluctuations. Here, we introduced in the optical
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 DNA noise χ(f)
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Figure 3.1: a) A single DNA molecule anchored between an optically trapped
bead and a bead stucked to the coverslip of the fluid chamber. The optically
trapped bead’s position is monitored by a position detector via scattering of a
detection beam. To stretch the molecule, the cover slip was moved at a distance
x0 by a given position of the trapping beam. b) 1D-mechanical analog of (a):
the bead motion is governed by the trapping beam and the molecule, both
considered as elastic strings with stiffnesses κOT and κDNA, respectively. The
thermal noise with known power spectrum density |ξ(f)|2 = 2kBTγ perturbs
the motion of the bead and the molecule. The fluctuations of the DNA with
unknown power spectral density |χ(f)|2 affect also the bead position.

trapping system an expanded 1060 nm optical beam from a laser coupled in
a single-mode fiber. The position of this trap can be changed by a computer-
controlled mirror. This mirror was optically conjugated with the input pupil of
the trapping objective using two lenses.

The studied molecule was a double-stranded λ -DNA from E. Coli amplified
at 12 kbp using standard polymerase chain reaction (PCR) techniques with
sample concentrations of 40 ng/µL. The molecules were tagged with biotin and
digoxigenin (DIG) at each end to attach to streptavidin and anti-digoxigenin
(anti-DIG) coated polystyrene beads, respectively.

DNA molecules were first incubated with the streptavidin-coated beads (1.87
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µm diameter) for 45 minutes in phosphate buffer solution (PBS) at pH 7.4. Then
the samples were washed and injected along with the anti-DIG-coated beads
(3.15 µm diameter) into a fluid chamber. The final DNA-bead constructs were
assembled in situ [116]: we trapped the streptavidin-coated bead by the optical
trap and then we moved the anti-DIG-coated bead, spontaneously attached
to the surface of the fluid chamber, to the streptavidin-coated bead. After
some time the binding between the DNA and the stuck bead can occur with a
certain probability. This event was verified by moving the anti-DIG coated bead
and observing its behavior. The motion of the surface caused the molecule’s
extension, and the dynamics of the optically trapped bead was measured by the
position detection system.

To verify that a single DNA molecule was present between the beads, force-
extension curves [70] were measured. Fitting the experimental data shown in
Fig. 3.2 to a well established worm-like chain (WLC) model [117] FDNA =
kT
4P ( 1

(1−L/L0)2 −1− 4L
L0

) allows two basic parameters to be extracted: the contour
length (L0) and persistence length (P ). (Here L is the equilibrium extension, k
is the Boltzmann constant, and T is the absolute temperature). In all measure-
ments, the measured contour length at 4.1 µm was consistent and verified our
amplification protocol for this length as well as the rough length estimate found
with electrophoresis and image analysis. (In the experimental data analysis, we
neglected the bead’s motion in z direction resulting from displacements of the
cover slip).

To calibrate the optical trap we acquired the time-traces of the bead position
without molecules connected to the bead. The data acquisition rate was 50 kHz,
the acquisition time was 100 s. The bead was trapped 10µm above the surface.
Histograms of the bead position are shown in Fig. 3.2. The PSD for the motion
along the load direction (x) and in the perpendicular direction (y) are shown
in Fig. 3.3 and 3.4. For calibrating the optical trap we used a well established
procedure [118], fitting the experimental PSD of the free bead to a Lorentzian
curve:

PSD0(f) =
kT

2π2γ(f2
c + f2)

, (3.1)

where γ = 6πηr is the drag coefficient, η is the viscosity, r is the radius of the
bead, f is the frequency, and fc = κOT /(2πγ) is the corner frequency. The
stiffness was found to be κxOT=(4.0±0.1)pN/µm and κyOT=(4.7±0.1) pN/µm,
for the x and y directions, respectively. The difference in stiffnesses is due to
the linear polarization of the trapping beam [119]. (In the case of the bead
attached to the non-stretched molecule the calibration of the optical trap was
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Figure 3.2: An experimental extension curve data (crosses) fitted to the WLC
model (blue solid line). The fitting gives the expected contour length (L0) of
4.1 µm and persistence lengths (P ) that vary between 47 - 57 nm for different
measurements. Error bars are calculated to be far less than the size of the
plotting symbols and are therefore not shown. The PSD measurements were
done for the free bead (1) and for two states of molecular extension (2) and (3).
The insets show histograms of the bead position in the xy plane, perpendicular
to the beam propagation direction, with white lines indicating the scale (25nm).
We studied the histograms of the free bead and then, obtaining the trapping
potential we founded, that it is parabolic in the range of ±400 nm.

not possible because the proximity of the stuck bead scattered the detection
beam and interfered strongly with the scattering on the optically trapped bead).
The values of the stiffnesses were close to those found by using the equipartition
theorem: κOT 〈x2〉 = kT , see below Table 3.1.

Then, we measured the PSD of the bead position with the molecule con-
nected. After confirming the presence of only one molecule between the beads
as was described above, we slowly extended the molecule up to the states of
extension marked as 2 and 3 in Fig. 3.2. A flexible polymer coils randomly
in solution [20]. Therefore, the time traces by a given distance between the
stuck bead and the optical trap center presented a stepwise behavior with a
step duration usually within 10 seconds. We analyzed the position PSD during
the intervals when no steps were observed. Figures 3.3 and 3.4 show the PSD
obtained from raw data using this processing.
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Figure 3.3: PSD of the x-position of the optically trapped bead for the free
bead (pos.1) and for the bead connected to the molecule for two positions of
the molecule extension (pos.2) and (pos.3) given in Fig.3.2 . The solid lines
show the best fit to the Lorentzian function valid when only the random force
with white spectrum acts on the free bead (pos.1), and the curves (pos.2) and
(pos.3) that fit the experimental spectra of the bead position with the DNA
noise included (see below). The experimental data for the free bead are well
fitted to the Lorentzian curve even at frequencies below 1 Hz due to small level
of instrumental noise.

3.3 Experimental results

When the mechanical load grows, the PSD of the x coordinate demonstrates
changes, whereas the PSD of the y coordinate remains almost the same. How-
ever, in order to interpret the observed excess noise one has to consider many
other sources of excess noise that exist in the optical trapping experiments with
single DNA molecules [93], [120]. Special precautions were taken in our experi-
ments to reduce the level of the instrumental noise affecting measurements. In
particular, we shielded the optics with a plastic enclosure, in order to minimize
the airflow in the instrumental chamber. Also, we used an optical table levitated
on pneumatic isolators, and all moving parts (translations stages and mirrors)
were operated by motorized actuators controlled outside of the chamber. The
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Figure 3.4: PSD of the y-position of the optically trapped bead for the same
conditions as in the Fig. 3.3. The labels of the curves have the same meaning
as in Fig. 3.3.

detection laser was a stabilized diode laser (less than 0.1% power instability).
The trapping beam was obtained from a low-noise (0.17% output power insta-
bility during 1 hour) fiber coupled laser. The optically trapped bead’s position
fluctuations generated due to the laser instability were expected to be the same
order of magnitude and therefore the PSD changes due to the trapping beam
instability had to be the same order.

In order to evaluate the drift and the low-frequency fluctuations in the mi-
croscope stage, we measured the PSD of the streptavidin-coated bead stuck on
the cover slip. The stuck-bead spectrum provides an upper bound of the ab-
solute noise detection. The low-frequency spectra of signals from the position
detector are shown in Fig. 3.5 for the stuck bead (4) together with the spectra
for the free optically trapped bead (1) and the bead connected to the molecule
for the values of the molecule extension (3) (Fig. 3.2). As seen, the power of the
instrumental noise at 1 Hz is 10−4 of that in the spectrum of the free bead. At
a frequency of 30 Hz the difference is 5 10−6. When the extended molecule is
attached to the probe, the changes of the spectrum in the same frequency range
are about 10−1. If we assumed DNA is a pure elastic string that connects the
probe with the cover slip surface and transmits 100% of its vibrations to the
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probe, the magnitude of the PSD changes for the free bead and for the bead
with extended DNA would be insignificant in comparison with the changes ob-
served in the experiments. We believe, that the low stiffness of the optical trap
(4 pN/µm) is crucial for our measurements with a single optical trapping. Pre-
vious results on the extended DNA dynamics were obtained for the trap stiffness
of, for example, 100 pN/µm [93], 530 pN/µm [120], 1900 pN/µ m [121]. Such
high values of the stiffness permitted to achieve a sub-nanometer resolution, but
the isolation from the instrumental noise meets more stringent requirements. In
fact, as follows from (3.1), at frequencies lower than the corner frequency, the
PSD is inverse proportional to the square of the trap stiffness. Using the optical
trap with low stiffness, we increased the contribution of low frequency Brownian
components of the trapped probe motion. The extended molecule connects the
surface of the cover slip with the probe, but the observed changes in the PSD
cannot be explained quantitatively by the instrumental noise keeping in mind
its level measured with the stuck bead.
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Figure 3.5: PSD of the signals from the x-position detector for the optically
trapped free bead (pos.1), for the bead connected to the extended molecule
(pos.3)(see Fig. 3.2) , and for the stuck bead (pos.4) within a frequency range
of 0.6-100 Hz.
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3.4 Discussion

We interpreted the results in terms of the hypothesis of thermally excited fluctu-
ations of the DNA with unknown power spectral density |χ(f)|2 that also affect
the bead position (Fig. 3.1b). Below we present a phenomenological description
of the effect that permits us to subtract the spectral dependence of |χ(f)|2 from
the measured spectrum of the probe motion.

As shown in [25] the measured longitudinal 7.6×10−9 Ns/m and transverse
17.3× 10−9 Ns/m friction coefficients of the molecule are independent of exten-
sion over the range of extension less than 80 %. Hence, the observed change of
the PSD corner frequency is explained by higher effective stiffness of system (the
bead and the molecule) rather than changes of the molecule friction coefficients.
Then dynamics of the optically trapped bead connected to the DNA molecule
is given by

γẋ+ κOTx(t) + κDNA [x(t)− x0] = ξ(t) + χ(t). (3.2)

Solving the equation (3.2) and supposing that ξ(t) and χ(t) are not corre-
lated, we have the PSD of the bead position when the molecule is connected to
the bead as

PSDDNA(f) =
|ξ(f)|2 + |χ(f)|2

4π2γ2(f2 + f2
cDNA)

, (3.3)

where fcDNA = (κOT + κDNA)/(2πγ) is the corner frequency corrected for the
elastic properties of the DNA.

The thermal noise spectrum does not depend on frequency | ˜ξ(f)|2 = 2kTγ.
Hence, in order to find a spectrum of the molecule fluctuations using (3.3) we
need to know the stiffness of the molecule κDNA. Experimental data (Fig.3.3
and 3.4) shows that fitting of the PSD to the Lorentzian function cannot be
used to find fcDNA. As an approximation, we found the value of the total
stiffness coefficient κOT + κDNA by proceeding as follows. Supposing, that the
equipartition theorem is still valid even with presence of the additional noise, we
obtained the total stiffness using the histograms of the bead positions (insets in
Fig. 3.2). Table 3.1 presents the results of calculations. The obtained values of
the DNA stiffness agree with those obtained in previous experiments [25,122].

With these values we used (3.3) to calculate the spectrum of the molecular
noise |χ(f)|2. The results of the calculations are shown in Fig. 3.6.

Fitting the experimental power spectrum density |χ(f)|2| to the dependence
1/fα shows that α changes from 0.8 for smaller value of loads to 0.7 for bigger
loads, and the intensity of the noise increases with the load. However, the
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load no load ( κDNA = 0) 2 3
κxOT + κxDNA, pN/µm 4.0± 0.1 11.3± 0.1 30.5± 0.3
κyOT + κyDNA, pN/µm 5.1± 0.1 6.5± 0.1 10.3± 0.1

Table 3.1: The values of the total stiffness κOT + κDNA for two loads and for
the free bead.
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Figure 3.6: The spectrum of the thermally excited noise of the extended DNA
molecule for two loads (2) and (3) (see Fig. 3.2).

accuracy of our measurements does not permit us to make conclusions whether
this difference is significant. The straight horizontal line in Fig. 3.6 shows the
level of the thermal noise |ξ(f)|2 acting on the bead. As seen, the thermal white
noise has less intensity than the colored noise of the molecule for frequencies
below 30 Hz. For frequencies >30Hz the colored noise interferes strongly with
the thermal noise, making its detection difficult.

We also observed changes in the position PSD for the direction perpendicular
to the load direction (see Fig. 3.4). These changes are much smaller due to a
low transversal stiffness of the DNA molecule [25].

Let us consider now results obtained using two optical traps to extend the
molecule (Figure 3.7). Applying the procedure described above to the data
presented in Fig. 3.7 we subtracted the additional noise. As Fig. 3.8 shows, the
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Figure 3.7: PSD of the x-position of the optically trapped bead for the free
bead (pos.1) and for the bead connected to the molecule extended with the
force of 2 pN (pos.3) (see the extension curve in this case in the inset Fig.
3.8). Inset shows the experimental setup with a DNA molecule between two
optically trapped beads. The movable (left) trap that extends the molecule has
stiffnesses κx = 127pN/µm and κy = 143pN/µm. The unmovable (right) trap
has stiffnesses κx = 27pN/µm and κy = 30pN/µm. The detection beam is
coaxial to this trapping beam.

additional noise signal with the spectrum 1/fα with α ∼ 0.75.
These new measurements confirm that the signal-to-noise ratio is indepen-

dent of the trap stiffness at low frequencies. The ability to resolve fluctuations
of the DNA molecule’s length above the Brownian noise of the beads is in-
dependent of the trap stiffness. This result was proved previously by several
groups [120,121,123,124].

The noise behavior as |χ(f)|2 ∼ 1/fα with α < 1 is characteristic of the
system possessing so called 1/f noise, which was previously observed in such
distinct phenomena as a vacuum tube voltage, a resistance of semiconductors,
a traffic flow rate, economic data [125,126], and in ionic current - voltage mea-
surements of nano pores [127]. This noise is also present in statistics of DNA
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Figure 3.8: The thermally excited noise spectrum of the extended DNA molecule
for the load (pos.3) (see Fig. 3.7). Inset shows the extension curve obtained
with the dual-trap extended DNA molecule. The two positions labelled (1) and
(3) correspond the free bead and the bead connected to the molecule extended
with the force of 2 pN.

sequences [128,129], and in temperature fluctuations during thermal denatura-
tion of the DNA double-helix [130]. The colored noise component is a measure
of the memory existing in the system [131].

3.5 Conclusions

Our experiments showed that the fluctuations of the DNA molecule extended
up to 80% by a force of 3 pN include the additional colored noise with spectral
dependence 1/fα with α ∼ 0.75. Below we give an example that illustrates
possible consequences of the presence of the colored noise for the DNA func-
tionality.

The effect of noise, which always accompanies all actual systems, is not
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restricted to destructive and thermodynamic effects, but also the noise is an
integral part of such effects as stochastic resonance and fluctuation driven trans-
port [131]. Being mechanical in nature, many fundamental processes in DNA
occur by discrete physical movements. The size of these displacements may
be dictated by the inherent periodicity of the molecule. Such processes can be
viewed as reactions an energy landscape [50]. The discrete motion in these pro-
cesses originates from the fact, that the states along these reaction pathways
are highly localized minima within this energy landscape. The probability of
the discrete mechanical steps depends on the ratio of the minima depth energy
and the energy of the fluctuations acting on the molecule from the environment,
and is described by the Kramers transition theory [131, 132]. Also, an external
deterministic force may change this probability due to the induced redistribu-
tion of the energy landscape. For DNA in its natural conditions (in liquid), the
Brownian noise stemming from fundamental thermal forces is the main contrib-
utor to the noise acting on the molecule. The Kramers transition theory is valid
only when the thermal noise with white spectrum exists in the system. As we
show here, the component with colored noise spectrum exists in the molecule
and therefore these additional fluctuations may be added to the thermal noise,
causing changes in the probability of noise-induced events. Recent experiments
have shown that, for several proteins, the dependence of folding and unfolding
rates on solvent viscosity does not obey Kramers theory [133]. A theoretical at-
tempt to explain the violation of Kramers theory for the dependence of protein
folding rates on viscosity showed that the presence of the correlated (colored)
noise may be important [134].

One may expect considerable changes in the spectrum of the colored noise
of the fluctuations of a DNA extended up to the enthalpic and overstretching
regimes, where a force-induced melting of the two strands is achieved. These
measurements require more stiffer optical traps and, therefore, the use of optical
setups with eliminated stage drift through, for example, a laser-based detection
and feedback [120,135], and/or dual-optical trap designs [123,136], that circum-
vent stage drift. The comparison of the noise spectra of single stranded and
double stranded molecules is one of our future aims.



4
Study of the dynamics of a single S.

enterica by a single optical trap.

4.1 Introduction

Bacterial motility is associated to a wide range of biological processes and it
plays a key role in the virulence of many pathogens. On efficiency of movement
lies the organism’s ability to survive, it is possible to say that the movement
due to active transport is efficient when its importance is greater that the dif-
fusion of the bacteria itself [27]. The locomotion of unicellular organisms in
aqueous media is mediated by several different mechanisms, among which, the
bacterial flagellum is the most thoroughly studied [137–140]. This complex
structure is composed of several elements that act together to produce heli-
cal rotation [141–143]. As a semi-rigid helical filament, the flagellum consists
of three substructures analogous to an artificial mechanical system: the basal
body, which provides an anchor to the bacterial envelope and contains the mo-
tor; the filament, which acts as the propeller; and the hook, which connects
the basal body to the filament, and acts as a universal joint [138, 143]. Flag-
ella propelled swimming has been thoroughly studied in enteric bacteria such
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as Salmonella enterica serovar Typhimurium (referred to in the following as S.
Typhimurium) [141, 143], the bacterium used to develop the method described
herein. As other peritrichous bacteria, S. Typhimurium have several flagella
over its surface. There are between five and ten flagella several micrometers in
length but only about 20 nm in diameter that can rotate both clockwise (CW)
and counterclockwise (CCW) [144,145].

If we observe the motion of a single bacterium under microscope, its trajec-
tory will not be completely deterministic. Bacterial motion can be described as
a combination of two types of behavior: running and tumbling, Fig. 4.1. During
running, the bacterial flagella rotate CCW and form a bundle that pushes the
cell in straight line [144,145]. The bundle collapse when one or more motors of
the flagella turn in the CW direction, in which case the bacterium tumbles and
reorients itself in another direction [144, 145]. While at the beginning of each
run the cell moves in a random direction, the combination of both movements,
i.e., straight lines (running) and random changes (tumbling), allows the cell to
explore its environment.

1 micron 

Figure 4.1: Frame of a single bacteria swimming in a liquid environment in our
experimental setup. Its motility is composed by two stages, namely running
(black straight lines) and tumbling (red curved lines). The combination of both
movements allows the cell to explore more efficiently its environment.

Running and tumbling underlie the process of chemotaxis [146] and provide
the means by which bacterial cells migrate towards favorable chemicals (attrac-
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tants) or away from unfavorable ones (repellents). The strategy of the cell to
change its direction is stochastic. In other words, the tumbling stage change
randomly the swimming direction, and then it decides if the environment is
getting worse or better [28].

In S. Typhimurium and other bacteria, the presence of chemoattractants/re-
pellents is detected by transmembrane receptors, the methyl-accepting chemo-
taxis proteins (MCPs) [147], which are associated through the adaptor CheW
protein to the CheA kinase [146]. Signal recognition at the chemoreceptor level is
determined by degree of MCPs methylation, which in turn reflects the activities
of CheR and the methylesterase CheB, and modulates CheA autophosphory-
lation activity [148]. The phosphorylated kinase (CheA-P) phosphorylates the
CheY response regulator, with CheY-P then acting on the flagellar motor. In
the absence of CheY-P, the flagella turn CCW and therefore the bacterium runs
whereas in the presence of CheY-P the flagella rotate CW and thereby induces
tumbling (Fig. 4.2). When a bacterium senses an attractant gradient, its runs
become longer as the number of tumbles decreases, such that the cell migrates
up the gradient [149]. Consequently, chemotaxis enables the bacterial cell to
find better environments for growth.

Chemotaxis and swimming are also key to the virulence of many pathogens
[150–152]. In this context, flagellar movement has been intensively studied,
mainly via two different strategies: direct visualization of free-moving bacteria
and investigations of the rotation of tethered cells. The former typically involves
the use of dark-field, differential interface contrast microscopy or, in cells specif-
ically labeled with a fluorescent tag, fluorescence microscopy [145, 153–155]. In
addition, the motile behavior of cells has been directly studied using microflu-
idics assays. [156, 157]. Alternatively, in tethered cells assays, the bacteria are
fixed to a surface via their flagella [154]. In this case, there is CW or CCW
rotation of the basal body depending on the rotational direction of the flag-
ella. Tethered assays normally rely on high-speed video recorders and image
processing software programs that quantify swimming speed, the time between
the running and tumbling steps, etc.

Among the other experimental approaches used to characterize chemotaxis
and flagellar rotation are those based on optical trapping (for example, [53–60]).
This method exploits the fact that the inner refractive index (cytoplasm) of the
bacterium is larger than that of its surrounding medium, such that in the pres-
ence of a tightly focused optical beam a radiation force directed towards the
beam focus is produced. This results in the immobilization of the bacteria,
whose trapped position can be examined using several techniques that provide
a microsecond time and nanometer spatial resolutions. The most detailed in-
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Figure 4.2: The chemotaxis pathway. (a) When the methyl-accepting chemo-
taxis proteins (MCPs) are highly methylated or unbound (yellow), CheA is
activated by phosphorylation. Once activated, it phosphorylates the CheY and
CheB response regulators. CheB-P demethylates the MCPs and the high level
of CheY-P interacts with the flagellar motor, increasing the frequency of clock-
wise (CW) rotation, which causes the cell to tumble. (b) MCPs associated
with a ligand (attractant) or less methylated (orange), maintain the CheA in
a non-phosphorylated, inactive state. Consequently, the CheB methylesterase
is not active and does not demethylate the MCPs. CheR methylation of the
MCPs, decreases the sensitivity of these receptors. In addition, the CheY-P
levels are reduced, leading to an increase in counterclockwise (CCW) flagellar
rotation frequency, causing the cell to run. PE, periplasm; IM, inner membrane;
Z, CheZ; W, CheW. The grey discontinuous arrows indicate non-occurring re-
actions (based on [147,148]).

formation on chemotaxis is obtained when flagellar bundle rotation and the
counter-rotation of the cell body are analyzed simultaneously. However, un-
til now, this was possible only by using the dual optical trap system proposed
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in [59] in which a bacterium is trapped at each end by two optical beams polar-
ized orthogonally. The scattered light of both beams is then analyzed separately
by two position-sensitive detectors. The Power Spectral Density (PSD) of the
output signals from the detectors yields two peaks corresponding to flagellar ro-
tation and body rotation. An analysis of the phase between the detector signals
provides a description of the rotation.

An important step in the simplification of this experimental setup (but with-
out a loss of information) was recently reported by [60] where a single optical
trap was used to capture a bacterium with a single polar flagellum rotating
either CCW or CW. Using a position sensitive photodetector, the authors were
able to detect the characteristic frequencies of the bacterium motion by analyz-
ing the PSD of the cell’s position. In addition, they could measure the flagellar
motor switching rate under different chemical simulations.

In the following we describe the further refinement of this simple but informa-
tive single optical trap technique. We demonstrate that additional information
can be obtained if the analysis of the temporal position of the bacterium also
includes calculations of the cross-correlation function of the cell trajectory in
the plane normal to the optical axis. By applying this approach to a bacterium
that uses the run-tumble swimming pattern to navigate within its environment,
we were able to study the swimming patterns of different mutant strains across
the entire range of bacteria motion within the optical trap. The procedure
was validated in dead, running (cheY , cheW ), tumbling (cheB mutant) and
wild-type strains of S. Typhimurium. It was then used, as an example of its
potential applications, to identify the role of the CheV protein in the rotation
of S. Typhimurium flagella.

4.2 Materials and Methods
One of the goals of this chapter is to develope an experimental setup with
the lowest possible complexity. Briefly 1, an infrarred laser (1064nm, Avanex)
is highly focused by a high NA objective (Nikon, CFI PL FL 100X AN 1.30
WD 0.16 mm). The forward scattered light is collected by a 40× objective
(Nikon, CFI PL FL 100X AN 1.30 WD 0.16 mm) and projected to a quadrant-
photo diode (NewFocus 2911). The optical trapping is not harmless to the
bacteria, even if the optical power is reduced to the minimal able to trap (≈
20mW), the infrarred light interactuates with the chemical reactions in the aer-
obic methabolism of the bacteria [59, 158, 159]. To avoid it, we prepare an

1More details in section 2.4.3
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Figure 4.3: A simplified explanation of the two possible flagellar conformations.
On a) is a cell with all flagella rotating CCW and consequently forming a bundle
that gives a translation velocity to the bacteria, which runs. The motion of a
living bacterial cell is characterized by a body roll with frequency Ω, and by
flagellar bundle rotation ω. On b) is a tumbling cell with the flagella rotating
CW such that no bundle is formed. This process gives extra energy to the cell’s
dynamics, but does not produce any rotation around the optical axis of the
trapping system.

anaerobic media where the experiments were carried out2. In order to test our
technique, we used different well-known mutants whose phenotype is well de-
fined. The S. Typhimurium LT2 cheB mutant derivative is a knockout mutant
of the CheB methylesterase, which in the bacterial chemotaxis pathway controls
the level of MCPs methylation (Fig. 4.2). The cheB mutants are character-
ized by a high frequency of tumbling [160]. The S. Typhimurium LT2 cheY and

2Information about bacterial strains, media included in Appendix A
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cheW mutants are ideal candidates for exploring running motility, because both
present only running pattern of motility (not tumbling), what is also known as
the smooth swimming profile [161]. We also study the behavior of dead cells
within the trap and cells coming from a wild strain. On the other hand, we use
our method to characterize the phenotype of the cheV mutant.

4.2.1 Processing of the experimental data
The different motility phenotypes are classified based on the study of the trajec-
tory, {x(t), y(t)}, of a single cell optically trapped by the optical tweezers. The
starting point of this analysis is the model of the rotation of a solid sphere [61].
Consider a sphere suspended in a liquid medium and confined within a har-
monic potential well, where it moves randomly due to thermal excitation. An
external torque is exerted on the sphere such that in the absence of any trapping
potential the sphere rotates around the z-axis with a constant angular velocity
due to friction. The angular velocity is determined by the balance between the
torque applied to the sphere and the drag torque. The Langevin equations in
the overdamped conditions describe the trajectory (x(t), y(t)) of the sphere as:

γẋ(t) + κx(t) +Hy(t) =
√

2kTγξx(t), (4.1)

γẏ(t) + κy(t)−Hx(t) =
√

2kTγξy(t), (4.2)

where γ is the friction coefficient, κ is the trap stiffness, H is the torque parame-
ter for an arbitrary rotation, k is the Boltzmann constant, T is the temperature,
and ξ(t) is the white gaussian noise term. The autocorrelation functions (ACF)
and the cross-correlation functions (CCF) are calculated from (4.1) and (4.2):

ACF (τ) =
∫ ∞

−∞
x(t)x(t+τ)dt =

∫ ∞

−∞
y(t)y(t+τ)dt =

kT

κ
e−κτ/γ cos

H

γ
τ, (4.3)

CCF (τ) =
∫ ∞

−∞
x(t)y(t+ τ)dt =

kT

κ
e−κτ/γ sin

H

γ
τ. (4.4)

The ACF (τ) and Power Spectral Density (PSD) form a Fourier pair and both
functions can be calculated from the experimental traces of an optically trapped
object.

As seen from (4.3) and (4.4), in the absence of rotational motions of the
trapped objectH = 0, then CCF (τ) = 0 and ACF (τ) is an exponential function
proportional to the viscous force acting on the object.
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To apply this model to trapped cells able to rotate in the optical trap, the
possible types of rotations must be specified. A flagellated bacterial cell has
two main sources of movement: the flagellar rotation and the thermal energy
of the bath. Based on the PSD and the traces, two discrete frequencies can
appear in the motion of living cells [59, 162]: the body roll characterized by
the frequency Ω (around 1-10 Hz), and the flagellar bundle rotation with the
frequency ω (between 70 and 140 Hz) (see Fig. 4.3). From the study of the
PSD we can infer that the dynamics of a flagellated bacterium are governed
more by rotations with frequency Ω than by those with frequency ω, due to a
two orders of magnitude difference in the values of the corresponding peaks in
the PSD. Therefore, in the equations describing bacterial movement (4.1) and
(4.2) rotations with the frequency ω, can be neglected, while in the equations
(4.1), (4.2), (4.3) and (4.4) H is replaced by Ω.

The CCF is studied for a short correlation time of τ = ±50ms, when the
entire expression (4.4) can be approximated by the Taylor series, 〈x(t)y(t +
τ)〉Norm = e−κτ/γ sin Ω

γ τ → Ω
γ τ ≡ Θτ , where the physical meaning of Θ is the

angular velocity of the cell around the optical axis.
Accordingly, bacterial cell dynamics can be classified in terms of three dif-

ferent scenarios: dead, running, or tumbling: In a dead cell, the mean value of
Θ (〈Θ〉) is zero since there is no flagellar movement, but only broadening (∆Θ)
due to thermal fluctuations of the cell. In a running cell, 〈Θ〉 has a non-zero
value due to rotation of the cell body as a whole. This value can be positive or
negative depending on the orientation of the cell inside the trap. As the number
of flagella is small, from 5 to 10, the individual behavior of a single flagellum
can affect the statistical distribution of 〈Θ〉, resulting in a ∆Θ that is larger
than in the case of a dead cell. In a tumbling cell, flagella do not form a bundle,
thus, while the rotation frequency around the z-axis has a zero average, 〈Θ〉 = 0,
the rotation motion with frequency ω is still present (see 4.5), causing a larger
broadening of the histogram Θ than in occurs with a dead cell.

Data for each bacterial strain were obtained from ten different randomly
chosen cells of four distinct biological replicates, and thus a total of 40 cells per
strain. The position of each trapped cell was acquired for 1000 s. The entire
set of acquired data was then divided into 1-s-blocks (i.e., 2×104 points in each
block). For each block of data the CCF was calculated and the dependence
of the CCF near τ = 0 was linearly fit, thereby yielding the value of Θ. By
repeating the protocol for all blocks a histogram of Θ was produced for each
measured cell. Then the next cell was trapped and its corresponding histogram
was obtained. About 80% of the histograms were found to behave in a very
similar manner. All plots shown below for the wild-type, mutant strains, and
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dead bacteria, present the x and y traces, PSD, CCF and Θ histogram of one
trapped cell either from the corresponding bacterial strain or from a dead cell
control. In all cases, the selected histograms were within the above-mentioned
80%.

4.3 Results

In the following, the results obtained using dead bacteria, live wild-type cells,
and the three S. Typhimurium mutant derivatives (cheB, cheY , and cheW ,
whose behavior has been well-characterized [160, 161, 163]) are shown. The
motion profiles obtained with the proposed technique consist of the ACF and
CCF of the trajectories resulting from the different bacterial motility patterns
and they provide a reference for further studies.

4.3.1 Dead bacteria pattern

Figure 4.4 shows the x− and y− trajectories of the dead bacteria, with their
corresponding PSD, ACF, and CCF. For these cells, the PSDs lack the char-
acteristic discrete frequencies seen with live motile bacteria, and they are very
similar to the PSDs of the motion of an optically trapped solid sphere thus, the
Lorentzian curve is that expected from the experimental conditions. A cross-
correlation is also absent from the trajectory since a dead cell does not have
any rotational motion. Therefore, as for an optically trapped bead, the ACF
depends only on the viscous drag coefficient and the trap stiffness and therefore
decays exponentially.

4.3.2 Tumbling pattern: The cheB mutant

The statistical characteristics of the trajectory of this mutant in the optical
trap are presented in Fig. 4.5. Rotations with angular frequencies in a band
near ω = 100 Hz are seen in the PSD, ACF, and CCF, but their presence is
also evident even in the trajectories, see Fig. 4.5 a). As flagella normally rotate
CW, there is no bundle formation. The CCF is not a stable function but instead
gives a fluctuating value of Θ. This behavior is related to the continuous chaotic
movement of the cell inside the trap.
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Figure 4.4: Dynamic characteristics of the motion of a dead bacterium: time-
traces of the x and y positions during 1 s (a) and their corresponding PSD (b),
ACF, and CCF (c). In (a), the y(t) trajectory is shifted in order to improve its
visibility. In (c) the red and blue curves are the ACFs of the x and y positions,
and the green curve is the CCF

4.3.3 Running pattern: The cheY and cheW mutants

In Fig. 4.6, cheY mutant rotations with ω around 100 Hz, and Ω from 5 to
15 Hz are clearly seen, both in the trajectories (Fig. 4.6a) and in the ACF
and CCF (Fig. 4.6c). The differences in the Ω values of the different cells are
due to the size differences, which can vary by as much as 30% of the length of
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Figure 4.5: Dynamic characteristics of the cheB mutant: the trajectories of the
x and y positions during 1 s (a) and their corresponding PSD (b), ACF and
CCF (c). The red and blue curves are the trajectories, PSD, and ACF of the x
and y positions, and the green curve is the CCF.

a typical cell. The same results are observed for the cheW mutants. In both
mutants, the dynamics of the bacterial cells inside the trap, with most of the
flagella rotating CCW, reflect the rearrangement of all the individual flagellum
as a collective bundle positioned at one end of the bacterium. This collective
process generates a forward velocity (without the trap it is represented by a
quasi-straight line [164]) that is responsible for the global bacterial rotation Ω.
The PSD has two peaks, one centered at 5-15 Hz, corresponding to the cell
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body roll (Ω) around the trapping point, and the flagella bundle roll around 100
Hz, indicative of rolling by the flagellar bundle (Fig. 4.6, and data not shown).
Accordingly, in these running mutants the histogram of the slope of the CCF
for short correlation times clearly points to a different type of dynamic profile
from that of tumbling or dead bacteria (Fig. 4.8).

Figure 4.6: Dynamic characteristics of the cheY mutant: the trajectories of the
x and y positions during 1 s (a) and their corresponding PSD (b), ACF, and
CCF (c). The red and blue curves are the trajectories, PSD, and ACFs of the
x and y positions, and the green curve is the CCF.
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4.3.4 Wild-type swimming pattern
As described above, the swimming pattern of the wild-type strain combines both
tumbling and running. In this case, the pattern observed in the representation
of the CCF slope for short correlation times is composite of those of the two
dynamic types, the tumbling mutant and the running mutant.

Figure 4.7: Dynamic characteristics of the S. Typhimurium wild-type strain:
the x (bottom) and y (upper) coordinates of the wild-type bacteria during a
7 s time interval. The switch of the flagellar motor from the running to the
tumbling state is shown. The trace of the y coordinate is shifted in order to
avoid overlap with that of the x coordinate.

Figure 4.7 illustrates the traces of the wild-type bacterium, showing the
switch from a tumbling to a running state. The traces also allow measurement
of the characteristic switching rate of the bacterial motor.

4.3.5 Histograms of Θ

The results obtained for each bacterial strain with known dynamic properties
can now be summarized using the parameter Θ, i.e., the slope of the CCF for
short correlation times. A comparison of the Θ histograms of the four motility
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patterns (dead cell, tumbling, running, and wild-type cells), distinguishes four
types of dynamics (Fig. 4.8). The widths of the histograms indicate contribu-
tions beyond Brownian motion. Accordingly, the histograms from the live cells
are different from those of dead bacteria (Fig. 4.8). In the former, the flagellar
frequency does not remain constant, which implies changes in the translational
direction [59].

Figure 4.8: The slope, Θ, of the CCF near τ = 0 obtained from the trajectories
of single optically trapped dead (black), running (red and brown, corresponding
to cheY and cheW mutants, respectively), cheB mutant tumbling (blue), and
wild-type (green) bacteria. The histograms of the distributions can be classified
into three main groups: (1) The histograms with a single maximum centered
at zero that corresponds to tumbling bacteria (cheB mutant); (2) those with
a single maximum not centered at zero correspond to a deterministic rotation
associated with the rotation of a solid sphere, as is the case for running bacteria
(cheY and cheW mutants); and (3) a combination of both profiles, as occurs in
the wild-type strain.

The Θ histogram for the wild-type strain is shown in Fig. 4.8. The cor-
relation functions of this cell should change with time. In dead cells, just the



Study of the dynamics of a single S. enterica by a single optical trap. 87

Brownian motion contributes to the width of the histogram, whereas in live cells
the contribution of the thermal energy is smaller than that of flagellar motion,
resulting in greater broadening of the histograms. Moreover, considering that
S. Typhimurium has only five to ten flagella per cell, the histograms also reflect
the differential dynamics of a single flagellum since changes therein would affect
overall cell movement.

4.3.6 Identification of the cheV mutant swimming pattern

The function of the CheV protein in the chemotaxis pathway is still not well
understood. Although the swimming profile of S. Typhimurium cheV mutants
has been characterized [165], the description contradicts earlier published results
[160,163,166]. For this reason, we chose to apply our newly developed, validated
technique to study flagellar rotation in the S. Typhimurium cheV mutant.

Figure 4.9: The slope, Θ, of the CCF near τ = 0, obtained from the trajectories
of the optically trapped cheV mutants.

A video analysis as well as examination of the ACF and the slope of the
CCF for short correlation times (Fig. 4.9) showed that the cheV knockout
mutant has a tumbling pattern. The absence of the CheV protein modifies the
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Θ distribution, centering it around zero, with an additional contribution to the
Θ histogram from the random rotations.

4.4 Discussion

The simple single optical trap used in this study to analyze the swimming pat-
tern of S. Typhimurium and several mutants can be broadly applied to measure
the full range of bacterial motility and alterations thereof. The core of the
method is based on our previous study [61], which described the movement of a
sub-micron object confined in an optical trap in the presence of a torque exerted
on or produced by the object. The single optical trap assay can detect differ-
ences in the dynamic properties of cells of the same culture, seen as a change in
the mean value of Θ, expressed as Ω, from one cell to another. Our study of ten
independent cells from four independent cultures showed that the distribution
of the histograms remained very similar, such that the individual phenotype
of a single bacterium could be distinguished. The importance of the different
parameters is more readily appreciated in the case of the running mutants. For
some bacteria, Θ can achieve values close to 100 Hz. It is important to note
that in these cases, the widths of the histogram are similar to those obtained
for running mutants with only 10 Hz.

Photodamage to the trapped bacterium has been considered [167] given that
infrared light in the presence of oxygen produces free radicals inside the cell,
which induce death within a short period of time. In our optical trap sys-
tem, this problem is avoided by including an oxygen scavenging system in the
sample preparation medium, which guarantees a constant low level of oxygen
and, hence, cell survival during the measurements. The obtained results vali-
date the utility of this optical trap setup to characterize bacterial motility. The
analysis of dead cells as well as running, tumbling and wild-type strains of S.
Typhimurium demostrated the possibility to correlate the motility characteris-
tics widely described for these cells with specific Θ distribution profiles. Thus,
the trajectory of the running mutants is characterized by a mean value of Θ
different from zero and that of tumbling mutants by a mean value of Θ near
zero with a certain standard deviation in the latter case due to the random
disposition of the flagella and the absence of an equilibrium position.

Changes in bundle formation, from the tail to the head and vice-versa, must
also be considered [168]. This effect is unlikely to be stable because the bacteria
should work against the radiation pressure in the optical trap, it not being
possible to define a stable equilibrium position.
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In studying the slope of the CCF for the tumbling bacteria, near τ = 0, we
found that the flagella of these cells rotate in the CW direction and that, like
wild-type and running strains, the bacterial dynamics differ from those of dead
bacteria (Fig. 4.4). A dead bacterium behaves as a solid body, therefore, when
an extra force is applied, the entire sphere revolves around the trapping point.
The sum of these torques will be uniform when averaged over a long time. For
a tumbling cell, while the mean value of Θ is close to zero, the histogram will
be wider than those obtained from a dead bacterium, since the motion detected
in the latter case is Brownian motion (Fig. 4.8).

In addition, for a dead bacterium, there is no flagellar rotation, and therefore
neither the ACF nor the CCFs will have a discrete spectrum. The histogram of
Θ for a dead bacterium has a width much smaller than for a live one, due to
the bacterium’s Brownian motion.

Some bacterial species utilize CheV instead of the CheW, whereas in others,
including S. Typhimurium, both proteins are present. In the latter case, the
role of CheV is unknown [167]. Most hypotheses regarding CheV function have
focused on the two different protein domains: a CheW-like domain and a phos-
phorylated receiver domain similar to that of CheY. Accordingly, it has been
suggested that CheV plays a role in receptor coupling and in the adaptation
of the chemotactic response [165,169,170]. Furthermore, a cheV knockout mu-
tant was shown to exhibit the same swimming and chemotactic phenotypes as
the wild-type strain [171]. Nevertheless, our single optical trap analysis clearly
demonstrated the tumbling phenotype of the cheV knockout mutant. It should
be noted, however, that single optical trap experiments are performed under
anaerobic conditions, to avoid cell damage, while in the previously mentioned
work the experimental conditions included the presence of oxygen. This is an
important consideration because expression of the cheV gene is controlled by
the global regulators Fnr and ArcA, both of which are involved in O2 sensing
and adaptation [172, 173]. Thus, when the O2 concentration decreases, ArcA
and Fnr directly activate cheV expression, greatly increasing the concentration
of CheV inside the cell. Therefore, under anaerobic conditions, such as used in
the single optical trap, CheV protein are greatly magnified. In addition, the fact
that the cheV and cheB mutants share the tumbling phenotype suggests that
the role of CheV in S. Typhimurium is more closely associated with adaptation
more than with receptor coupling. However, further work is needed to elucidate
the role of S. Typhimurium cheV expression in the chemotactic pathway and
its relation to the anaerobic metabolism.
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4.5 Conclusions
By analyzing the statistical functions derived from following the trajectories
{x(t), y(t)} of a bacterium trapped by a single optical beam the different dy-
namic properties of different bacteria can be distinguished. The approach de-
scribed herein is based on a model of the rotation of a solid optically trapped
sphere. The optical trap technique can be easily implemented in a biological lab-
oratory, since it requires only a small number of optical and electronic parts to
convert a simple biological microscope into the required analyzer. In a demon-
stration of the utility of this method, we determined the motility profile of the S.
Typhimurium cheV mutant derivative under anaerobic conditions, which case
it exhibits tumbling behavior. This observation will contribute to elucidating
the role of the CheV protein in the bacterial chemotaxis pathway.
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5
Stochastic energetics

The true physical picture includes the possibility that even a regularly going
clock should all at once invert its motion and, working backward, rewind its own
spring at the expense of the heat of the environment. The event is just ’still
a little less likely’ than a ’Brownian fit’ of a clock without driving mechanism
Erwin Schrödinger, What is life? 1944

The energetics of the stochastic processes and its link to its dynamics is a
key point in the study of the mesoscopic world. The thermodynamics of small
systems is a field with increasing interest and huge advances since the end of the
last century [11]. Nevertheless, it is quite contradictory to study the thermo-
dynamics of non-macroscopic systems. Thermodynamics was the science that
favored the Industrial Revolution, during the 19th century. Engineers studied
how to extract useful work from heat baths to build steam engines and improve
their power and efficiency. Indeed, engines are frequently found in nature, and
some of them are strikingly similar to those designed by humans. In the size
range we want to focus, spanning from tens of nanometers to several microns,
we can study the behavior of proteins as kinesin or even more complicated pro-
tein systems as the flagellar motors, trying to answer different questions: what
its efficiency is or how much heat do they dissipate to the environment. In the
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case of kinesin, the average of motion is 8 nm every 10 to 15 ms [174], being this
movement highly linked to the chemical energy conversion: one ATP molecule
is hydrolyzed per each step [11]. This coupling gives an efficiency of about 60 %
of chemical energy converted into useful work. If this efficiency is compared to
the efficiency of the heat engines cited by Curzon and Ahlborn [12], we see that
nature seems to be as twice as efficient. Can this system be studied in the context
of standar thermodynamics? Do the same laws hold here? In fact, the answer
to these questions is not straightforward, and, when dealing with sych small
systems is possible to find violations of the classical thermodynamic laws. For
example, Carberry et al demonstrated that there are individual events where
the second law of thermodynamics is violated [29]. The reason why we can
not observe these violations in the macroworld is the huge number of particles
present in these systems (N ∼ 1023). If we decrease the size of the system of
our interest, thermal fluctuations become important, and it is when this noisy
behavior arises.

Since 1993, experimental and theoretical tools suitable to study small sys-
tems have been developed, thus expanding the validity of classical laws. Indeed,
nowadays, classical thermodynamics is undestood as a generalization of the fluc-
tuating systems when N → NA. Throughout this chapter, a brief overview of
this theoretical framework is presented.

5.1 Classical Thermodynamics
Thermodynamics is the study of the restrictions on the possible properties of
matter that follow from the symmetry properties of the fundamental laws of
physics [175]. The so-called thermodynamic processes are carried out under the
four laws of thermodynamics, that read as follows:

Zero law If two systems are both in thermal equilibrium with a third one, both have
the same temperature.

First law Energy can be transferred between systems under the form of work (W )
or heat (Q). The total energy is conserved, but the internal energy of a
closed system changes as: ∆U = Q+W .

Second law Any non-equilibrium system will evolve to a state which maximizes its
entropy ∆S ≥ 0. An equivalent formulation of this law is the impossibility
to apply less work than the difference of free energy between the initial
and the final state of a process, W ≥ ∆F . The excess of work is released
in the form of heat to the thermal bath.
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Third law When a the temperature of a system goes to zero, the associated entropy
will approach to a constant value. In the particular case of crystals, the
constant value of entropy will be specifically null.

Thanks to these laws, we can predict the evolution of a system when any
parameter is changed1. One of the aims of the classical thermodynamic is the
understanding of the energy transfer between systems in contact. The internal
energy of a macroscopic system is defined as the sum of kinetic and potential
energy over all its components. The energy transfer can be done in two ways:
Heat, transfer from the system to its environment(Q < 0) or to the system
from its environment(Q > 0); and work done by the system to its environment
(W < 0) or to the system from its environment(W > 0).

On the other hand, the kinetic theory of gases was supported by the success
of the Newtonian mechanics. Along the 19th century, the kinetic theory was
developed by Krönig, Clausius and others. It was James Maxwell, who after
reading the manuscripts of Clausius, formulated the first statistical physics law,
stating his well-known distribution of the molecular velocities in a gas:

ρ(v) =
√

m

2πkT
exp

{
−mv

2

2kT

}
(5.1)

This law has implicit the variance of the velocities, the so-called equipartition
theorem:

〈v2〉 =
kT

m
(5.2)

The conexion between the kinetic theory and Thermodynamics had to wait
until 1872, when Ludwig Boltzmann derived his H-theorem, whose importance
lies in its conexion between the irreversible world of thermodynamics and the
reversible laws of micromechanics. Recently, Ken Sekimoto proposed a scheme
that clarifies the state of the art [62], see Fig. 5.1. He presented his stochastic
energetics as the connection between the stochastic dynamics, i.e., Langevin
equation, and Thermodynamics [176]. This framework is of great importance in
the study of the mesoscopic world, particularly in optical trapping experiments,
thanks to its ability to compute the energy transfers, the heat and the work
associated to different processes, as a function of the observables of our system,
for instance, the position of the particle, the applied force, etc. Afterwards,

1Thermodynamics is the science of equilibrium states. Therefore, a change in any param-
eter must be slow enough to define its quasistaticity.
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Udo Seifert proposed the name stochastic thermodynamics to the framework
built from the junction of stochastic energetics and the idea that entropy can
be assigned along a fluctuating trajectory [177].
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Figure 5.1: Scheme of the energetics framework [62]

5.2 Entropy
For centuries, one of the dreams of the engineers has been the perpetual mo-
tion, i.e., a machine with 100% efficiency. In fact, the first law does not forbid
the extraction of useful work from two thermal baths at the same temperature.
Moreover, we could be able to connect a dream machine to an ordinary stone
from the street and extract energy from it: the only effect predicted by the first
law would be that this stone will become cooler. On the other hand, there are
empirical evidences that must be taken in account; for instance, when we intro-
duce ice in a glass of water, the ice will melt and the water will become colder,
but the reverse process will not take place spontaneusly, the formation of ice in a
glass of water. Another example can be the mixing of gases. If we had a volume
divided in two parts by a wall, each one filled with a different kind of molecules,
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and then the wall was removed, we would see how the molecules fill the whole
volume and we would never see the molecules splitting and coming back to the
previous state. To explain these evidences, it is necessary to introduce a new
thermodynamic quantity called entropy, and therefore enunciate the second law
of Thermodynamics.

The entropy is an extensive thermodynamic quantity that points the direc-
tion where processes occur. In other words, the entropy is a physical magnitude
that points out the sense of the arrow of time. This fact is non trivial, as the
definition of entropy itself, and it is linked with the second law of Thermody-
namics, which sets a view of entropy as irreversibility. However, the entropy
is not only a parameter that gives us the idea of irreversibility, but it is linked
to the degree of disorder of a system and, moreover, with the quantification of
our ignorance and information about a system. In the next epigraphs, a brief
overview of each meaning is presented.

5.2.1 Entropy as irreversibility: The arrow of time

At the beginning of the 18th century, steam engines started to be one of the key
points in the research community. One of the first questions that engineers had
to answer was its optimization: How can we obtain the maximum useful work
from two thermal baths? This question was not trivial, taking into account the
fact that the first and the second laws of the thermodynamics were not known.
Nevertheless, Sadi Carnot realized that the key point was to avoid irreversibility
along cycles [178]. An irreversible process is defined as a process after which
it is impossible to return to the initial state without applying external work.
Therefore, considering a process from A to B, the associated entropy will always
obey:

∆S ≡ SB − SA ≥
∫ B

A

δQ

T
(5.3)

where the equality corresponds to the reversible processes. In the case of irre-
versible processes, the extra amount of entropy is called the entropy production
∆Sprod:

∆S ≡
∫ B

A

δQ

T
+ ∆Sprod (5.4)

As ice melting in our drink, entropy production is also present in steam en-
gines. During the process of transferring energy in the form of heat from the



Stochastic energetics 96

hot body and transforming it into useful work, some of this energy is wasted
or dissipated, and this waste of energy increases the entropy of the universe.
The second law has a deeper meaning, as it is pointing the natural sense of
time. Microscopic laws are time reversible2, i.e., they are valid with the time
running forwards or backwards. Then, one physical way to define the sense of
time, what the future is, is using the direction where the entropy is increased.
This interpretation of entropy will be considered in Chapter 7, where we exper-
imentally study how energy is exchanged in the mesoscopic world and how the
irreversibility affects the efficiency of the cycles.

5.2.2 Entropy as disorder: Maxwell’s demon

Let us consider a volume 2V divided in two equal parts V . Assume that there
are N/2 undistinguishable molecules painted in red on one side of the wall, and
other N/2 undistinguishable molecules painted in blue on the other side. The
configurational entropy of the system (neglecting the kinetic part) is:

SUNMIXED = 2k log
{
V N/2

(N/2)!

}
(5.5)

that is twice the entropy of a single part of the system. If we remove the
wall, the particles are allowed to mix. It is necessary to remark that this effect
is not due to a repulsive force between the molecules, but a simple probability
effect. Therefore, the entropy of the system once the wall is removed is written
as:

SMIXED = 2k log
{

(2V )N/2

(N/2)!

}
(5.6)

It can be compared with the previous state’s entropy, giving us a difference
of entropy ∆S = kN log 2. We can increase the difference of entropy in a
quanta k log 2 per each molecule we add to the system. The interpretation
of this increment is that each extra molecule increase the number of possible
microstates of the system.

In 1867, James Maxwell wrote a letter to Peter Guthrie Tait where he pro-
posed an apparent paradox in the second law. He imagined a being, the demon,
able to control a small door between two containers, allowing to pass the hot
molecules to one side and the cold molecules to the other side. The movement

2More correctly, the nature’s laws are invariant under CPT
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of the door did not carry any work, but the process would decrease the en-
tropy of the universe and it would be possible to extract useful work from the
system [35].

Figure 5.2: The demon controls the door and knows the state of each single
molecule. The system evolves, thanks to the demon ability to know the state
of each single molecule and to control the micro-door, to a state with a lower
entropy. This being stores the information of each system’s state.

Although several authors have tried to probe the impossibility of the de-
mon existence, see for example the attempts by Smoluchowski [179] or by Bril-
louin [180], it is necessary to introduce the next epigraph to understand how
the second law is not broken by this being. It is necessary to study the thermo-
dynamics of the information.

5.2.3 Entropy as information: Landauer’s principle

The steam engines motivated the study and the understanding of thermodynam-
ics and its limits. A similar situation occurred in the development of computers
whose study motivated the exploration of the limits of the information science.
The significance of the physical part in the computing science started with
Claude Shannon and his studies in the information entropy [181]. The original
definition was done in the case of discrete systems, S ≡ −∑ ρ(x) log ρ(x). Let
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us consider a simple bit. If we do not know in which configuration it is, the
probability is thus equal to 1/2 for both states p(0, 1) = {1/2, 1/2}. Then, the
associated entropy will be S = −0.5 log 0.5 − 0.5 log 0.5 = log 2. Therefore, if
we measure the bit state, and afterwards, we want to erasure its information
content3, the probability space of the system changes to p(0, 1) = {1, 0}, and its
associated entropy will change to S = −0 log 0− 1 log 1 ≡ 0. The entropy would
be reduced in a term log 2 (k log 2 in physical units). This increase of entropy has
a thermodynamic implication: by the second law of the thermodynamics, each
change of entropy leads to a release of heat, in this case Q = T∆S = kT log 2.
This result is called the Landauer limit and has practical implications in com-
puters design, although nowadays the Landauer limit is still several orders of
magnitude below the dissipation of computers. This limit was the key ingredi-
ent of the solution that Bennett proposed to solve the demon’s paradox [182].
The ability of the demon is not to control the door, but to measure the state
of each molecule and hence to compute if it is hot ot cold. Each measurement
carries an erasure of the previous state of the demon’s memory, therefore, this
reboot liberates heat to the thermal bath compensating the extraction of work
done by the demon [35]. This principle was recently experimentally tested by
Berut et al in a laser-tweezers experiment [39]. Another beautiful experiment
was developed by Toyabe et al in Japan, where they built a demon’s experi-
ment with a spiral-staircase-like potential [38]. The particle jumps by thermal
fluctuations between different steps and, by a feedback process, they made the
particle climb the potential and thus test the information to energy conversion.

In the case of continuous observables, as in our experiments, the definition
of the Shannon entropy reads as follows:

S ≡ −
∫
dxρ(x) log ρ(x) (5.7)

where the position is considered as a continuous variable x, which follows a
pdf ρ(x), always neglecting the kinetic part. This interpretation of entropy will
be considered in Chapter 8 where a generalization of the Landauer’s principle
is analitically derived and experimentally tested.

5.3 Langevin equation
The study of the Brownian motion started in 1827 when the botanist Robert
Brown wrote down his observations of the random motion of Clarkia pulchella

3We define erasure a bit as reboot it to 0.
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pollen grains suspended in water. He observed that a micrometric particle
immersed in a fluid had a random movement that never stopped. Experiments
carried out by G. L. Gouy showed that there was a correlation between the
movement of the bead and its size, the temperature and the viscosity of the fluid.
He also observed independence between the trajectory of different particles of
the same sample. In 1908, P. Langevin published a novel solution of the problem
[183], according to him, much more simple than Einstein’s approach [184]. He
wanted to study the dynamics of the particle with Newton equation:

m
dv(t)
dt

= F (t) (5.8)

where m is the mass of the particle, v(t) is the instantaneous velocity at
a given time t and F (t) is the force exerted to the particle4. The force F (t)
is dominated by the resistance exerted by the fluid to the displacement of the
particle, which within the Stoke’s regime is written as Fdragg = γ dxdt . The
particle can also be subject to an external potential U(x), such as an optical
trap. This term can be expressed as Fext = −∂U∂x . The fluctuations due to the
constant hitting of the fluid molecules to the Brownian particle are included
with in the term ξ(t). Under these assumptions, the equation of motion are:

dx(t)
dt

=
p(t)
m

dp(t)
dt

=
∂U(x)
∂x

− γ

m
p(t) + ξ(t)

(5.9)

The fluctuations are usually understood as occasional impacts of the molecules
of the fluid to the sample, with an equal probability of impact in all direc-
tions. From this feature, we can set up that the stochastic force has zero mean:
〈ξ(t)〉 = 0. On the other hand, the impacts must be independent of each other,
as the thermal bath has no memory. As the frequency of the impacts is large
(�MHz), we can express the autocorrelation as 〈ξ(t)ξ(t′)〉 = 2kTγδ(t − t′),
where δ(t − t′) is the Dirac delta. Under these assumptions we have expressed
the thermal fluctuations as a Gaussian white noise. Note, however, that this
kind of noise does not exist in Nature5, as a complete whiteness would require
an infinite energy [14]. However, this idealization is fundamental for a mathe-
matical approach to many processes. In adittion to likely presence of colored

4We assume along the whole epigraph that the temperature of the fluid is homogeneous.
5For instance, it has been experimentally measured the color of the Brownian motion due

to the inertial term [185]
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thermal noise, the use of an ideal white noise is not harmless. LE was the first
example of stochastic differential equation (SDE), a type of equations with a
random term ξ(t) whose possible solutions are random functions [14]. In SDE,
the usual rules of calculus such as the Riemann integral or the chain rule are
not valid anymore, and it is necessary to use the so-called Stochastic Calculus.
A brief review is shown in Appendix B.

Another important point of the dynamics of a Brownian particle is the pos-
sibility to study it at different time scales. The characteristic time is related
with the inertia of the particle, typically defined as τm ≈ m/γ. This time can
be interpreted as the typical duration of a straight displacement of the particle.
If we consider the samples used in this thesis, polystyrene beads of 1µm of di-
ameter immersed in water, the value of τm is of the microseconds order (τm ≈
10−6s). In our experiments we have a finite sampling frequency, typically up to
50 kHz, what makes imposible to track the sample at enough time resolution
to observe the inertial dynamics. In this case we can neglect the inertia of the
particle, using the so-called overdamped approximation. Thanks to it, we can
rewrite (5.9) as:

γ
dx(t)
dt

+
∂U(x)
∂x

= ξ(t) (5.10)

This approximation is not innocuous. If we try to analitically calculate
the instantaneous velocity of the particle, we will obtain an unbounded value
[62]. Moreover, as we discuss in Chapter 7, the energetics of Brownian particles
along non-isothermal process are not complete if we work in the overdamped
approximation. Therefore, to enter in thermal induced kinetic studies of the
Brownian motion we must always work in the underdamped regime.

5.4 Work and heat in the mesoscopic scale

Work and heat are considered the two ways to interchange energy between
a system and its environment. The view at the macroscopic scale is simple:
work is done to the system or by the system when a controlable parameter
is changed, while the heat is the energy exchanged between the system and
its environment to achieve thermal equilibrium. Both parameters are seen as
functions of macroscopic quantities as volume, pressure, etc., parameters that
are averages of the microscopic parameters. A key question when we want to
apply Thermodynamics in the mesoscale is the following: does it make sense to
apply the same scenario in the mesoscale than in the macroscale?. The main
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inconvenience is the high influence of the fluctuactions at this scale. In fact, the
order of magnitude of the energy is kT , and therefore, the thermal fluctuations
play a fundamental role.

In the macroscale, the temperature is a parameter due to the average of the
components of the system, e. g., in the case of gases it is due to the average
of the velocity of the molecules. Therefore, we can measure the difference of
temperature between two states of a macroscopic system to derive the amount of
heat transferred, and then we can talk about calorimetric heat. Unfortunately,
such a direct measurement is not possible in the mesoworld. To start with,
the notion of separation between system and environment cannot be done with
the classical notion of wall. In fact, we cannot measure the tiny differences of
temperature around the system in a process with an energy exchange of few kT
to derive a value of heat. On the other hand, in the mesoscopic world we must
take into account the description of the system. It is not the same to consider
all the individual water molecules hitting a Brownian particle than to use the
white noise term. Then, we must distinguish between the eliminated degrees of
freedom, as the water molecules dynamic in the Langevin equation, from the
retained ones. From this point, we can define the work as the energy exchanged
due to changes in the retained degrees of freedom, and the heat as the energy
exchange due to eliminated ones [62].

5.4.1 Sekimoto approach

The stablishment of the LE (5.10) leads us to ask how is related to the Thermo-
dynamic laws in equilibrium and non-equilibrium processes. First, the frame-
work must include the posibility to describe reversible processes. Nevertheless,
the construction of the LE includes a term (γdx/dt) that just implies an irre-
versible processes. As it is explained in [176], the structure of the LE can be
rewritten to show the evolution of the internal energy along time:

dU

dt
= −γ

∣∣∣∣
dx

dt

∣∣∣∣
2

︸ ︷︷ ︸
energy dissipation

+ ξ(t)
dx

dt︸ ︷︷ ︸
energy fluctuation

(5.11)

The first addend in the rhs part of this equation is only dissipating energy
to the bath, being iddentically negative, while the other term is giving and
removing energy to the system. The dissipative term is removing the extra
energy of the system, as the derivative of x will be intimately related with the
stochastic force. A good example of the validity of the framework given by
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Sekimoto is the mislead of this interpretation, if so, Kramer’s description [186]
of thermal activation could not be described by Langevin.

Afterwards, in order to link the LE with Thermodynamics, it is possible
to regroup the terms, in order to give a better vision of the energy balance.
First, let us consider a system where the potential does not depend on time,
U = U(x)→ dU(x) = ∂U(x)

∂x dx. Then LE reads:

dU ≡ ∂U(x)
∂x

dx = −
(
−γ dx

dt
+ ξ(t)

)
dx (5.12)

Then, as Langevin dynamics conserves the energy of the system with its
environment, the only flux of energy to change the internal energy of the system
is a heat coming from the thermal bath. Combining eq (5.10) with (5.14) we
can write down the first definition of heat:

dQ ≡ −
(
−γ dx

dt
+ ξ(t)

)
dx (5.13)

The heat has a dissipative contribution that is always negative by definition,
it is always removing energy from the system. The other term is linked to the
thermal fluctuations and it removes and gives energy to the system. Eq. (5.13)
can be written in terms of our observables as:

dQ =
∂U(x)
∂x

dx (5.14)

The next step is to define the relation between LE and work. Let the
potential be also a function of an extra non-eliminated degree of freedom a(t),
U ≡ U(x, a). This free parameter can be the extension of a biopolymer, the
stiffness of an optical tweezers, etc. The Langevin equation will read:

γẋ(t)− ∂U(x, a)
∂x

= ξ(t) (5.15)

and the differential of the internal energy function will be:

dU(x, a) =
∂U(x, a)
∂x

dx+
∂U(x, a)
∂a

da (5.16)

Comparison of (5.16) with the definition of heat in the mesoscopic systems
(5.13) and with the first law of thermodynamics (dU = dW + dQ) leads to the
following definition of work:
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dW =
∂U(x, a)
∂a

da (5.17)

It is called work the changes of energy coming from a change of the potential due
to in a controlable parameter. In summary, the work and the heat in Sekimoto
approach are calculated as:

Q =
∫ xt

x0

∂U(x, a)
∂x

◦ dx (5.18)

W =
∫ at

a0

∂U(x, a)
∂a

◦ da (5.19)

where ◦ represents the integral in the Stratonovich sense 6. Along this thesis,
these formulas has played a key role, as the optical potential can be mapped,
see section 2.6. As we discuss in Chapters 6, 7 and 8, we have all the possible
observables to calculate heat and work along different processes.

In summary, the first idea to keep in mind is that the heat in a mesoscopic
system can be interpreted as the disipation by friction and the work exerted
in the system by the particles of the fluid and the work exerted to the particles
of the fluid by the system. As it is imposible to characterize the dynamics of
the NA molecules which produce the Brownian motion, the brownian effect is
taken into account by an artifitial function, the well studied white noise. On
the other hand, there are some studies [187] where external noisy forces are
applied and the associated work is calculated. Under our point of view, it is
possible to interpret this extra energy as a heat flux, as the system is not able
to differenciate between the work exerted by such forces and an actual flux of
heat. Therefore, these results can be reinterpreted as a double bath systems.
We will come back to this point in Chapter 6.

5.5 Entropy along fluctuating trajectories
The idea of entropy assigned to a single fluctuating trajectory may look contra-
dictory, as a classical description defines the entropy as an ensemble quantity.
The issue was clarified in a recent paper by Udo Seifert [188], where he adapted
the Gavin Crooks definition of stochastic entropy [189]. Let us consider a system
which evolves under the time evolution of a control parameter a(t) embedded
in a thermal bath. The evolution along the given process is described by a

6A brief introduction to the stochastic calculus is shown in Appendix B
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trajectory x(t). The total change of entropy, ∆stotal(t), can be split into two
contributions: on the one hand we have the corresponding entropy associated
to the heat dissipation along the process in the environment, ∆se(t), and on
the other hand, the change of system’s entropy, ∆s(t). The heat along a single
trajectory Q(t) can be calculated within the Sekimoto’s framework previously
described, eq. (B.12). Using the second law of Thermodynamics, the increase
in entropy of the medium will be immediately defined as ∆se = Q/T .

The other contribution is obtained from an analogy with the Gibbs entropy
along non equilibrium processes,

S(t) ≡ −k
∫

<
dxρ[x(t), a(t)] log ρ[x(t), a(t)] (5.20)

From (5.20) the entropy of the system along a single trajectory can be written
as

s(t) = −k log ρ[x(t), a(t)] (5.21)

where ρ[x(t), a(t)] is the position pdf obtained from the corresponding Fokker-
Planck equation. From this definition we can recover eq. (5.20) as an ensemble
over different realizations: 〈s(t)〉 = −k

∫
< dxρ log ρ = S(t). Finally, the total

change of entropy can be written as the sum of both changes:

∆stotal(t) = ∆se + ∆s(t) = Q(t)/T − k log
ρ[x(t), a(t)]
ρ[x(0), a(0)]

(5.22)

Thanks to this formula, if we know the potential U(x, a(t)) at any time, we
will be able to calculate the production of entropy along single trajectories from
experimental data7.

5.6 Fluctuation theorems.
The well known Loschmidt paradox states that if Thermodynamics is obtained
from the micromechanics, then the simmetry in the movement of every molecule
should be conserved in the macroworld [190]. As Schrödinger argued, a clock
could suddenly start working reverse with no violation of the thermodynamics
laws. The effect of reducing the scale, both in time and space, is the posibility of
the machine to work reverse to our intention. The symmetry effects arise when
the number of particles is reduced. When it occurs, thermal fluctuations become

7See Appendix E
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non-negligible and some individual events can break the second law. It follows
that the work associated to certain process can be smaller than the difference
of Helmholtz free energy between the initial and the final states(W < ∆F ).
These phenomena dissapear when we consider a large number of repetitions of
the process, thus taking the mean value of the thermodynamic quantity. Then,
the average work must obey the second law: 〈W 〉 ≥ ∆F .

These effects are properly studied by the Fluctuation Theorems (FTs).
They express universal properties of the probability distribution p(Ω) for func-
tionals Ω [x(t)] (like work, heat or entropy change) evaluated along different
trajectories with well-known initial distributions ρ0(x) [177]. In other words,
these strange behaviors can be quantified and hence, FTs provide the transition
between the microscopic reversibility and the macroscopic irreversibility.

In 1993, Evans and Searles [191] derived an expresion to quantify the im-
portance of the thermal fluctuation in the violation of the second law of the
thermodynamics and how this effect vanishes exponentially with the increase of
the size or the time scale of the system. The probability to disobey the second
law was characterized with the entropy consumed or absorbed along a single
trajectory:

ρ(∆stotal)
ρ(−∆stotal)

= exp(∆stotal) (5.23)

where ∆stotal represents the total change of entropy along a trajectory of dura-
tion t. As the entropy has extensive character, the expansion of the system size
or of the trajectory time will vanish the entropy consuming trajectories, coming
back to the usual second law. This FT was first experimentally tested by Wang
et al with optically trapped colloidal particles in 2002, [85].

In order to introduce the existing FTs, let us define a functional Ω (it can
be the exerted work, the transferred heat or the entropy difference) that follows
a probability density function ρ(Ω). Following [192], the FTs can be clasified
phenomenologically in three groups.

• Integral fluctuation theorems (IFTs)
It is said that Ω is ruled by an IFT when it verifies the following identity:

〈e−Ω〉 ≡
∫
dΩp(Ω)e−Ω = 1 (5.24)

From the Jensen inequality8, we notice that the eq. (5.24) derives into a
thermodynamic law form: 〈Ω〉 ≥ 0. To give an example, the total entropy

8〈ex〉 ≥ e〈x〉 [193]
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change along a process obeys an IFTs. Let us consider the entropy change
defined in epigraph 5.5, this functional ∆stotal = ∆se + ∆s will follow the
next FT:

〈e−∆stotal〉 = 1 (5.25)

which implies the inequality 〈∆stotalT 〉 ≥ 0, one expression of the second
law of Thermodynamics, i.e., the total entropy can never decrease [188].

• Detailed fluctuation theorems (DFTs)

A stronger relation is found in cases ruled by:

p(Ω)
p(−Ω)

= eΩ (5.26)

Under this theorem, the odd moments of Ω can be expressed in terms of
the even ones, and vice versa. DFT implies IFT, as the pdf are normalized∫
p(Ω)dΩ = 1 [194].

• Generalized Crooks’ fluctuation theorems (CFTs)

Consider a protocole composed by a forward process F and a backward
process B. Each process defines a characteristic work pdf: pF (Ω) and
pB(−Ω). The CFT states that:

pF (Ω)
pB(−Ω)

= eΩ (5.27)

As the probabilities are normalized, a CFT leads to a IFT, but not to a
DFT.

5.6.1 Jarzynski’s equality
The second law of Thermodynamics can be presented as an inequality relating
the Helmholtz free energy between an initial (A) and a final (B) state ∆FAB ,
and the average work 〈WAB〉, along the path : 〈WAB〉 ≥ ∆FAB . There, the
difference between both parameters is the dissipated work, thus expressing how
far we are from the quasiestatic regime. The Jarzynski equality (5.28) estab-
lishes an equality between both parameters that does not depend on how fast
the process A→ B is befalling [195]:

〈e−βWAB 〉 = e−β∆FAB (5.28)



Stochastic energetics 107

B 

A 

Backward: ΩB 

Forward:ΩF  

Figure 5.3: Schematic representation of the processes studied by the FTs. We
start in a point of the phase space A to arrive to another point B. The protocol
allows the measurement of the functional Ω (for instance, the associated work)
along the forward and the backward processes. If the system follows a CFT,
we can link both to know an associated equilibrium function difference, as the
difference of Helmholtz free energy in the case of work.

where the equality the brackets (〈〉) represents the average along several
realizations of the same process. Therefore, this equality allows the experimental
estimation of the Helmholtz free energy difference between two states using non-
equilibrium processes. This theoretical results has great importance in the study
of the mesoscopic world because: i) it sets an equality in the formulation of the
second law of thermodynamics, proving that the classical vision is a consequence
of a wider reality. ii) it allows to obtain the parameters which characterize
equilibrium states, such as ∆F , from non-equilibrium processes.

5.6.2 Crooks’ fluctuation theorem

Gavin Crooks derived a particular case of the fluctuaction theorems for the case
of the work [189]. Let a system, characterized by a free parameter a(t), evolve
from an initial state A to a final state B. The process of going from A to B
is called the forward process, while that going from B to A is the backward
process. If this process is repeated several times, we can build two independent
work pdf: ρF (W ) (forward) and ρB(W ) (backward). Both distributions are
linked by the so-called Crooks’ fluctuation theorem:
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pF (W )
pB(−W )

= e−β(W−∆F ) (5.29)

This theorem has been tested along the past fifteen years with simple exam-
ples as colloidal particles or in more complicated systems as biopolymers [196].
A beautiful proof was published in 2005 by Collins et al, where they use the FT
to obtain the difference of free energies in the case of different RNA mutants by
an out-of-equilibrium protocole [30]. Fig. 5.4 shows their results for the work
needed to fold and unfold different mutants, where the forward and backward
work pdf cross in the value of the correspond free energy.

Figure 5.4: Non-Gaussian work distribution in RNA folding (dashed line)-
unfolding (solid line) experiment. Results from two different RNA mutants
are presented. Crossings between distributions are indicated by black circles.
Courtesy of [30].



6
Noise as temperature

6.1 Introduction

The last ten years have seen the dawn of a new branch of physics, the so-
called Stochastic thermodynamics. From the joint of the Sekimoto’s stochastic
energetics [62] with the proposal that the entropy can be assigned to fluctuating
trajectories [188], this new framework should not be considered as such a simple
analogy at the mesoscale of the classical thermodynamics, but a new framework
with its corresponding laws. One of the key parameters in the mesoworld is
the temperature. Due to the small size of the systems, the thermal fluctuations
are of the same order of magnitude than the energy that the system exchanges
with its environment, allowing strange behaviors to appear. Along these years,
several experimental techniques have been used to study systems where the
thermal fluctuations are relevant [11]. Although several methods to control the
temperature have been developed, they are still very limitated to a small range
of temperatures and sample volume (due to physical bounds as evaporation,
convection, etc..). Typically, the temperature has been controlled by heating the
Brownian particle or its surroundings. Spherical colloids [197] or nanorods [198]
were selectively heated by external sources of light that is not absorbed by the
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solvent. In [31, 33], the variation of the temperature in the surroundings of a
dielectric sphere was achieved by an optical beam whose wavelength matches an
absorption peak of the solvent. In all these cases the temperature increase did
not exceed several tens of Kelvin. Response time of several tens of milliseconds
has been achieved due to small volumes of the studied systems’ environments.
Although this range of temperature variation is enough to produce changes
in the behavior of biological systems, such as cells or biomolecules [199, 200],
it is relatively small to test with FTs with large energy exchanges. Besides
the viscosity changes due to temperature modification, represents a barrier to
experimental testing.

In this chapter, we adress the following questions: What would happen if an-
other stochastic force were applied to the Brownian particle?, Would the particle
be able to distinguish it from an increase of the media’s temperature? These
questions were mentioned in [62], where a mechanical shaking was proposed
with the same white spectrum. If the features of the extra noise were the same
than those of the thermal noise, it would mimick thermal fluctuations. This
extra noise would be a great tool in order to study the different fluctuation
theorems along non isothermal processes, as well as produce different processes
not available now, such as adiabatic curves. Let study a microsphere (radius
R) immersed in a liquid (temperature T and kinetic viscosity η) inside an op-
tical trapping potential, U(x, x0) = 1

2κ(x − x0)2, where κ is the corresponding
stiffness and x0 is the equilibrium position of the trap. The system can be
considered as overdamped, obeying the LE as follows:

γẋ(t) = −κ[x(t)− x0] + ξ(t) + ζ(t), (6.1)

Together with the thermal noise represented by ξ(t), we have included an
extra noise force by ζ(t). The properties of the extra force are zero mean,
〈ζ(t)〉 = 0, and a correlation 〈ζ(t)ζ(t + τ)〉 = σ2Γ(τ), where σ is the noise’s
amplitude and Γ(τ) is a normalized function (

∫
< dτΓ(τ) ≡ 1) peaked at zero.

Following the analogy with the thermal noise, the extra noise should have no
memory. Therefore, Γ(τ) should be taken as the Dirac function δ(τ). Under this
assumption, as both noises are uncorrelated, it is possible to define an effective
noise function ξeff (t) ≡ ξ(t) + ζ(t), whose mean is zero by definition and whose
correlation can be written as 〈ξeff(t)ξeff(τ)〉 = 2kTkinγδ(τ), being the effective
temperature defined as:

Tkin = T +
σ2

2kγ
. (6.2)
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As the amplitude of the extra noise is a real positive number, the effective
temperature felt by the particle will always be higher than the environmental
temperature. Notice that the media does not increase its temperature, and
therefore, the value of the viscosity term will remain constant, increasing the
easiness of the system.

On the other hand, the extra source of noise will be applied in a single axis,
from now x-axis, then, the temperature will remain constant along the other
two directions, y-axis and z-axis, therefore we can talk about an anisotropic
temperature in our system. Unfortunately, due to experimental restrictions,
the applied noise cannot be perfectly white, therefore, one of our goals will be
to characterize the limitations of the technique. Along this research, we will
first study the features of the effective temperature in stationary processes (by
the position pdf and the PSD). Later, a double-well potential is implemented
to study the thermally activated transitions in the presence of the extra source
of noise; and finally, a non-equilibrium process is designed to test the Crooks’
fluctuation theorem.

6.2 Experimental details

Various experimental techniques permit exerting controllable forces on an op-
tically trapped sphere, either with magnetic [41] or optical [201–203] fields, or
modulating the position of the trap x0(t) [187]. We have used random electric
fields applied to optically trapped dielectric spheres with electric charges that
remain constant during a long time, as we demonstrated in 2.4.2. The experi-
mental setup is explained in detail in 2.4.3. In summary, it consists of a 1060nm
optical beam (Manlight, ML10-CW-P-OEM/TKS-OTS) which is steered by an
AOD (ISOMET LS55 NIR). The beam is highly focused inside a custom-made
chamber to create the trap by a high NA oil-immersed objective (Nikon, CFI PL
FL 100× NA 1.30). The position of the bead is recorded by an aditional 532nm
laser coaxial to the trapping laser. The scattered light is collected by the mi-
croscope objective (×10, NA=0.10) and projected to a QPD. A 532 band-pass
filter is placed before the QPD to avoid the infrarred scattered light. The studied
sample consists of a diluted suspension of polystyrene microspheres (G.Kisker-
Products for Biotechnology, polystyrene microparticles PPs-1.0 with a diameter
of 1.00± 0.05 µm) in distilled de-ionized water, with a final concentration of a
few spheres per ml.

The sample was injected into a custom-made electrophoretic fluid chamber
with two electrodes connected to a computer-controlled electric generator and
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an amplifier 2.4.2. Electrical signals on the electrodes were produced by the
generator fed with a noisy sequence close to white Gaussian noise. The se-
quence was generated using independently distributed random variables ζnδt,
with 〈ζnδt〉 = 0, 〈ζ2

nδt〉 = A, and 〈ζnδtζmδt〉 = 0 for n 6= m, A being the variance
of the noise. The time interval δt is the clock time of the generator, which is
δt = 0.2 ms in the experiments. Notice that δt is a lower bound to the ac-
tual correlation time of the external force, which also depends on the response
characteristics of the amplifier.

The kinetic temperature of the optically trapped sphere is obtained from
the analysis of the output signals of the position detection system. The system
needs two calibration procedures: calibration of the position detection system
and calibration of the force exerted by the trap on the sphere. Both calibrations
are described in previous sections 2.3.3 2.4.2. Briefly, we will calibrate the
detection system in order to be sure that the bead never scapes the linear range
of the nanodetection system, SQPD, the chosen method was the study of the
PSD over the bead’s Brownian fluctuations, see 2.3.3. The other parameteres
needed to be known is our trap stiffness. In our experiment, κ=(6.0±0.1 pN/µm
and SQPD=1280 nm/V. Secondly, the AOD should be calibrated to know exactly
where the equilibrium position of the trap is when the non-equilibrium process is
executed, see subsection 2.4.1 SAOD=(4267±40) nm/VAOD. Finally, the electric
force must be calibrated Select and analyze the force over a long space of time to
be sure the exerted force is not changing due to Faradaic effects, see subsection
2.4.2. The complete mapping of the force is done following the method described
in 2.6. This technique probed that the bead has never gone out of the parabollic
regime.

6.3 Experimental results

6.3.1 Brownian sphere in a stationary trap with additional
noise

We first analyzed the time traces of the position of the sphere in the optical
trap with a given trap stiffness with and without the external force ζ(t). PSDs
of the position of the sphere are shown in Fig.6.1, while Fig.6.2 illustrates the
histograms of the sphere position. As seen, the maximal sphere Brownian ex-
cursions without the additional noise do not exceed (±50 nm). However with
the additional stochastic force the maximal amplitude may be (±250 nm). Even
in this case the sphere displacements do not exceed the linear ranges of both the



Noise as temperature 113

position detection system and the harmonic approximation of the optical trap-
ping potential. At a given value of the noisy voltage at the electrodes (about
200 V in our experiments) the maximal broadening of the position histogram
depends strongly on the design of the electrophoretic chamber, which defines
the value of the electric field near the optically trapped sphere. For the proof-of-
principle experiments described in this report the absolute values of the sphere
charge and applied electric field can change results only quantitatively. What is
important that 1) the motion of the sphere in the sinusoidal field has the con-
stant amplitude during more than two hours (see 2.4.2) and, 2) the broadening
and compressing of the histograms of the sphere position are reversible when
we switch on and off the noisy electric field.

The parameters of the computer-controlled generator allowed us to obtained
the constant spectrum of the electrical signal for frequencies up to 1 kHz. As
can be seen in Fig. 6.1, the PSD in the presence of the additional force is also
Lorentzian and the corner frequency fc does not change, as expected, since it
is a function only of κ and γ. On the other hand, the whole PSD increases due
to the external force, which can be interpreted as an increase of the effective
kinetic temperature. This increase of temperature can also be observed in the
stationary probability density ρ(x) of the position of the sphere, depicted in
Fig. 6.2. The additional force clearly broadens the histogram.

The following experiment demonstrates how fast one can switch the effective
kinetic temperature of a Brownian particle. We studied the temporal response
of the amplitude of the random motion of the particle when we changed the
amplitude of the additional noise abruptly. Fig. 6.3 shows that the standard
deviation of the sphere position (and hence the kinetic temperature) changes
with the same rate as the electric field amplitude, so that only the relaxation
time of the trap (τc = γ/κ= 1.4 ms in our experimental conditions) is the
limiting factor.

6.3.2 Kramers transitions in the presence of additional
white noise

We now consider the motion of the sphere in the presence of the additional
stochastic force in an optical trap with more complex structure, namely, in a
double-well optical potential. As it is well known, Kramers transitions [186]
- thermally activated escape over a potential barrier - may occur in this case.
Kramers transitions are important ingredients involved in many chemical, phys-
ical, and biological phenomena [131]. To realize Kramers transitions, the optical
traps of the dual-well trapping potential must be close to each other, and thermal
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Figure 6.1: PSD of the position of the sphere without (blue curve, 1) and with
(green curve, 2) the additional stochastic force. Solid black lines correspond
to the Lorentzian fits. The power spectral density of the input noisy signal
measured at the electrodes of the fluid cell is also shown (black line, 3).

energy has to be large enough to drive the sphere over the potential barrier be-
tween neighboring optical traps. The probability distribution of residence times,
i.e., the intervals of time between escape events from trap to trap (the Kramers
transition rate) at the overdamping regime depends on the height of the po-
tential barrier and the absolute temperature of the system [186]. Experimental
results at room temperature are well described by the Kramers theory [87].

In our experiments, we show that the additional noise decreases the resi-
dence time according to a new kinetic temperature. Using a time-sharing pro-
tocol 2.4.1, we created a double-well potential where the distance between the
two equilibrium positions and their depths could be controlled. Fig. 6.4a)
shows a fragment of the time traces of the 1µm diameter sphere moving in
the double-well potential. At a given moment of time, the additional noise
signal was switched on. The spatial probability density of the sphere ρ(x)
is related to the potential energy profile of the trap ,U(x) = ax4 + bx2, as
ρ(x) = Z−1 exp[U(x)/kT ], being Z is the partition function. We measured the
probability density of the position without additional noise from a time series
x(t), and the potential U(x) was found with two wells separated by a barrier
whose energy is above the thermal energy kT , as shown in Fig. 6.4b). Fig. 6.4c)
shows the residence time probability distribution without and with additional
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Figure 6.2: Histograms of the sphere position without (1) and with (2) the
additional stochastic force corresponding to the PSD curves (1) and (2) shown
in Fig. 6.1.
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noise signals. As predicted by Kramers [186], the residence time probability
decays exponentially with the residence time. Notice that in the presence of the
additional noise, the probability distribution decays faster, which is consistent
with an increase of the effective temperature.
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Figure 6.4: a) Position traces (green lines, left axis) of the sphere in the double-
well potential. The black lines (right axis) show the voltage on the electrodes.
The additional noisy signal was switched on at 35.5 s. As seen the frequency of
the Kramers transitions increases. b) Double well trapping potential obtained
as U(x) = −kT log ρ(x). c) Probability of the residence time of the Kramers
transitions at room temperature (green squares) and at 3000 K (blue circles).

6.3.3 Non equilibrium process: Testing Crooks’ fluctua-
tion theorem

For a complete characterization of the effective thermal bath, we have studied
the dynamics of the particle in a non-equilibrium situation. The response of
the Brownian particle to an external driving force is related to the temperature.
The fluctuation–dissipation relation (FDR) is a mathematical identity relating
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the temperature, the response close to equilibrium, and the time correlations
of the unperturbed system. Crooks fluctuation theorem (CFT) goes further,
establishing a relationship between the pdf of the work W along a process arbi-
trarily far from equilibrium, ρF (W ), and the pdf of the work in the time-reversed
process, ρB(W ) [189]. Notice that CFT goes beyond the fluctuation-dissipation
relationship and it is valid not only in the linear but also in non-linear response
limit.

Let the system starts at equilibrium states at temperature T both in the
forward and time-reversed processes. If the free energy difference between the
final and initial states (of the forward process) is ∆F = Ffin − Fini, the Crooks
theorem states that

log
[
ρF (W )
ρB(−W )

]
=
W −∆F

kT
, (6.3)

This relation has been checked both in simulations and experiments for processes
at room temperature [30,85,196].

We have implemented the non-equilibrium protocol depicted in Fig.6.5. In
the first step, the trap centre is moved from x0 = −L to x0 = +L at constant
velocity v = 2L/τ , where L=61 nm and τ=6.3 ms. This is the forward process.
We then let the sphere relax to the new equilibrium position, keeping the trap
centre at x0 = +L for the same time τ=6.3 ms, which is larger than the relax-
ation time of the trap, τc = γ/κ=1.4 ms. Then the trap is moved back from
x0 = +L to x0 = −L with the same velocity −v (reverse process) and it is held
fixed at x0 = −L for the same time τ . This protocol was repeated about 104

times. During the protocol the position of the sphere was monitored, and the
position traces are shown in Fig.6.5. In each cycle we calculated the work in
the forward and backward processes following [62], where the work done by an
external agent in a microscopic system during an arbitrarily far from equilib-
rium process is introduced. If the non equilibrium driving is described by the
evolution of a control parameter λ(t), then the work done along the process is
given by

W =
∫ λ(τ)

λ(0)

∂U(x(t), λ(t))
∂λ

◦ dλ(t), (6.4)

where ◦means that the integral is taken in the Stratonovich sense, and U(x, λ(t))
is the trapping potential. In our case, the control parameter is the position of
the trap centre, λ(t) = x0(t). Notice that the work is a stochastic quantity that
depends on the trajectory followed by the particle, x(t).

Fig. 6.6 shows the experimental values of the probability density of the work
ρF (W ) (ρB(−W )) in the forward (backward) process. We found that they have
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Gaussian distributions intersecting approximately at W = 0 since in our case
∆F = 0.
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Figure 6.5: The position of the centre of the trap (black line) and the positions
of the sphere as a function of time without external electric field (blue curve)
and with noisy electric field (green curve).

6.4 Discussion

Consider first the experimental results on the motion of the sphere in a station-
ary trap with additional noise (Fig. 6.1 and 6.2). We can calculate the effective
kinetic temperature either from the data on PSD or on ρss(x). As we show
below from the theoretical point of view, the temperatures found using these
two sets of data do not equal if the spectrum of the additional noise deviates
from the white spectrum.

From the Langevin equation (6.1), we calculated (see details in the appendix
I) both the PSD and the stationary probability distribution ρss(x) for an external
noise ζ(t) with arbitrary correlation 〈ζ(t)ζ(t′)〉 = σ2Γ(t− t′), with

∫∞
−∞ Γ(t)dt =

1. The PSD is given by:

PSD(f) =
1

4π2γ2

2γkT + σ2Γ̃(f)
f2 + f2

c

, (6.5)
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Figure 6.6: The probability density function of the work obtained in around
7000 realizations of the forward process [ρF (W )], and the probability density
function obtained from the same number of realizations of the reverse process
[ρB(−W )]. The blue (green) solid (dashed) lines represents Gaussian fits to
ρF (W ) and ρB(−W ) without and with external noisy field. The vertical black
lines represent the analytical value of the average work in the forward process
calculated using Eq. (6.11) (solid line) and the average of −W in the reverse
process (dashed line) which is calculated in an analogous way to Eq. (6.11).

where σ2Γ̃(f) is the Fourier transform of the correlation function of the exter-
nal noise. However, if Γ̃(f) is constant for frequencies much higher than the
corner frequency of the trap fc, then the PSD (6.5) is indistinguishable from
a Lorentzian function with the same corner frequency and the effective kinetic
temperature, which we denote as TPSD:

TPSD ≡
2π2γf2

c PSD(0)
k

= T +
σ2

2kγ
. (6.6)

On the other hand, the stationary probability density ρss(x) is Gaussian with
zero mean and dispersion

〈x2〉ss =
kT

κ
+
σ2

γκ

∫ ∞

0

dt e−κt/γ Γ(t), (6.7)
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Figure 6.7: ln [ρF (W )/ρB(−W )] as a function of W/kT without (blue squares)
and with additional noise (green circles) corresponding respectively to the PSD
curves (1) and (2) shown in Fig. 6.1. The solid lines are linear fits of the
experimental data.

which yields the effective temperature Thist

Thist ≡
κ〈x2〉ss
k

= T +
σ2

γk

∫ ∞

0

dt′ Γ(t′)e−t
′/τc , (6.8)

being τc = γ/κ the relaxation time of the particle in the trap. If Γ(t) is peaked
around t = 0 and the correlation time of the noise, given by τΓ ≡

∫∞
0
dt tΓ(t),

is small compared to τc, Thist is approximatively

Thist ' T +
σ2

2kγ

(
1− 2τΓ

τc

)
. (6.9)

Notice that unlike Thist, TPSD defined as (6.6) does not depend on the correlation
time of the noise. The difference between TPSD and Thist is proportional to
τΓ/τc, therefore it vanishes for if the external noise is white. In our experiments,
τc = 1.4 ms and τΓ=0.26 ms, being τΓ obtained experimentally from the spectral
analysis of the voltage at the electrodes (see below).

In our setup we achieved the constant spectrum of the noise only up to
1kHz (Fig. 6.1). We measured the autocorrelation function of the signal on the
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electrodes V (t), defined in [204] Γ̃(t) = 〈V (t′)V (t′+t)〉
〈V (t′)V (t′)〉 , which can be fitted to the

function Γ̃(t) = exp
[
−(t/τΓ)2

]
cos
(
t
τo

)
, being τΓ=0.26 ms and τo= 0.17 ms.

The correlation of the noise is related to Γ̃(t) by Γ(t) = N Γ̃(t), where N is
a normalization constant such that

∫∞
−∞ Γ(t)dt = N

∫∞
−∞ Γ̂(t)dt = 1. The full

expression of the correlation function of the additional noise is

Γ(t) =
etc

2/4t2o
√
π

e−(t/τΓ)2

τΓ
cos(t/to). (6.10)

Figure 6.8 presents a quantitative summary of our measurements performed
by different intensities of the additional noise signal. We have increased the
intensity of the noisy voltage and from (6.6) we found that σ2/(2kγ) is a measure
of the noise intensity in Kelvin. We plot the effective temperatures TPSD and
Thist as functions of Te = σ2/(2kγ). We observed experimentally that Thist and
TPSD coincide within statistical errors.
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Figure 6.8: Effective kinetic temperatures, TPSD (blue squares), Thist (red cir-
cles) and TC (green triangles) (see the definition of this temperature below) as
functions of Te = σ2/(2kγ). Symbols correspond to experimental data, where
error bars only take into account the statistical error of the fits with a statistical
significance of 90%. Lines represent the analytical values obtained for non-white
external noise ζ(t) with correlation function given by Eq. (6.10) for TPSD (6.6)
(blue solid line), Thist (6.8) (red dashed line) and TC (green dotted line), which
was obtained analytically using Eq. (6.12).
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Let us consider now experimental results on the out-of-equilibrium process
(Figs. 6.5-6.7). As seen in Fig. 6.6, the experimental value of the average work
is close to the analytical value of the average of the work done in a time τ over
the ensemble of trajectories [205], which for the forward process is obtained by
integrating the Langevin equation (6.1) (see Appendix C for details):

〈W 〉 = γv2τ
[
1 +

τc
τ

(e−τ/τc − 1)
]

(6.11)

The above result is not affected by the addition of the external noise because
the work depends linearly on the additional noise, whose average is zero. Notice
also that for slow driving (τ/τc � 1) we recover the Stoke’s limit 〈W 〉 ' γv2τ .
The analytical value of the work in the forward process without external field
is 〈W 〉 = 14.34 pN nm whereas the experimental value is Wexp = (15.06±
0.14)pN nm. Notice that we underestimated the actual error of the work since
we only took into account the statistical dispersion of the data but not the
experimental error. An error of 0.1 pN in the force and 1 nm in the position
would yield approximatively an additional error which might be of the same
order of magnitude of the statistical error. We also show in Fig. 6.6 that the
PDFs of the work get wider when we increase the amplitude of the external
noise, as expected.

We introduce a new effective temperature, the Crooks Temperature TC , to
check the consistency of our effective thermal bath for non-equilibrium processes.
We define TC as the inverse of the slope (divided by k) of the linear fit to
ln
[
ρF (W )
ρB(−W )

]
as a function of W , following Eq. (6.3). The work distributions

are Gaussian and in this case Crooks theorem is given by a simple relationship
between the average and the variance of the work,

TC =
σ2
W

2k〈W 〉 . (6.12)

The expression for σ2
W is cumbersome and very sensitive to the specific form

of the correlation of the external noise Γ(t). TC can be obtained analytically
using (6.12) for a particle described by the Langevin equation (6.1) under an
arbitrary external noise with correlation Γ(t) and intensity σ2. Depending on
the shape of Γ(t), we can get TC larger or smaller than Thist, for example. The
full expression of TC in terms of the correlation of the additional noise and all
the physical parameters of our system can be found in Appendix C.

Figure 6.7 shows that ln [ρF (W )/ρB(−W )] depends linearly on W with and
without additional noise. We first test the validity of Crooks theorem in the ab-
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sence of external noise, where σ2 = 0 and it is expected that TC = T . The exper-
imental effective temperatures are in this case Thist = (310± 3)K, TPSD = (297±
7)K and TC=(283±1) K, being the errors purely statistical and therefore a lower
bound to the real error. With external noise, the slope of ln [ρF (W )/ρB(−W )]
as a function of W decreases when increasing the amplitude of the external
noise, indicating an increase of the effective Crooks temperature TC .

We now try to explain the deviation between TC (Fig. 6.8) and the tempera-
tures calculated from the position traces in terms of the finite correlation time of
the noise. We model the motion of the particle by the Langevin equation (6.1)
with the noise correlation that fits the experimental data, given by Eq. (6.10).
For Γ(t) defined in Eq. (6.10), we obtain using (6.8) Thist = T + 0.95 Te which
is slightly smaller than TPSD = T + Te (6.6) and fits the experimental data.
However, the analytical value of TC for different noise intensities (dashed line in
Fig. 6.8), given by Eq. (6.12) is significantly above the experimental value of TC .
We notice that our calculations predict that both for slow driving (t/τc � 1)
and in the white-noise limit (τΓ/τc → 0) all the temperatures collapse to a sin-
gle line of slope unity: TPSD = Thist = TC = T + Te. Both limits were unable
to reproduce with our experimental setup because moving the trap slower, the
relative error of the work increases and the generator of our setup does not allow
to reduce τΓ.

Langevin equation is valid for our system since the PSD of the position
is Lorentzian. Therefore we discard that the deviation between TC and both
Thist and TPSD observed in our experiment is due to the finite bandwidth of
the additional noise. Electrophoretic effects may explain this deviation: in
our system, the particle feels a random force which is not exactly the signal
recorded from the electrodes due to the reordering of the electric charges of
water molecules around the bead. This effect is enhanced when the trap is
driven out of equilibrium. Notice that this represents a difference with the
experiment introduced in [187] where the trap centre is moved randomly and
Crooks temperature tends to the equilibrium temperature when the correlation
time of the external noise tends to zero.
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6.5 Conclusions
In conclusion, we have presented an experimental technique that allows one to
control the kinetic temperature of a Brownian particle over a wide range of
values, from room temperature to several thousands Kelvin. The environment
created by the noisy external force mimics a high temperature reservoir with
the limitations analyzed in this report. Our technique opens the possibility of
implementing a variety of non-isothermal processes. For example, the increase
of temperature affects only one spatial direction. By coupling the coordinate of
the particle along this direction with an orthogonal coordinate, one can effec-
tively couple two thermal baths at different temperature through a Brownian
degree of freedom, as in the Feynman ratchet and other Brownian motors and
refrigerators. Another possible aplication is the calibration of potential land-
scapes with energetic walls much higher than the enviromental thermal energy.
If the extra source of noise is connected, the system will be able to jump across
the barriers to use the Boltzmann equation to map the whole potential. One
could also implement adiabatic processes by designing a protocol where ρ(x),
and therefore the entropy of the system along a stochastic trajectory [188],
S(t) = −k log ρ(x, t), does not change in time. The density ρ(x) can be kept
constant in time with our setup by changing the stiffness of the trap and the in-
tensity of the external random force in a synchronous way. In the next chapter,
this possibility is explored to study non-isothermal processes.
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7
Non-isothermal stochastical

thermodynamics

7.1 Introduction

The small size of the systems in the mesoscale makes the exchanges of energy
be of the same order than the thermal fluctuations. Although the tempera-
ture is a key concept and parameter along thermodynamic processes, its control
lacks a wide range of variability. Moreover, a temperature change in fluids leads
to a change of its viscosity that increases the complexity of the problem. In-
deed, there is only a few number of experiments where the temperature is a
control parameter [31, 33, 206]. However, one of the goals of stochastic ther-
modynamics is its application to the nanotechnology [207], drawing an analogy
with the macroscopic thermal engines. For this purpose, it is necessary to
broaden our knowledge from the deeply studied isothermal processes (both the-
oretically [10, 208, 209] and experimentally [30, 85, 210]) to the non-isothermal
ones. Unfortunately, these troubles reduces the study of system with variable
temperature to simpler systems, such as electric circuits [206].

Thanks to the previously explained technique [211], see Chapter 6, we can
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modify the kinetic temperature of the sample under consideration along differ-
ent protocoles to study energy exchanges {W,Q}. Since the first attempts to
validy FT [85], optically trapped microspheres have offered a mod el system for
experimental studies of stochastical thermodynamics. In this chapter, we do an
analogy between an optically trapped bead and a classical piston. First, we try
to understand the simplest process, where only one parameter (temperature or
stiffness) is changed. Afterwards, we analyzed the effect of heating a sample
in its momenta phase space Γv, i.e., its kinetic energy. From this empirical
observation, we discuss the meaning of adiabatic in our scenario, studying the
previously proposed protocoles [64,188]. Finally, an experimental Carnot engine
is presented, using a trapped bead as working substance.

The object of study in this chapter is a colloidal particle within a parabollic
potential U(x, κ) in contact with a thermal bath Tkin. The energy of the system
can be divided in potential and kinetic energy E(x, p) = U(x, κ) +K(p), where
the potential is defined as U = 1

2κx
2and the kinetic energy as K = 1

2mp
2. Let

us consider a process under which the system evolves from A to B defined by a
protocole λ(t) = {κ(t), T (t)}. The difference of energy can be split as:

dE = dU + dK =
1
2
x2dκ
︸ ︷︷ ︸
δW

+
κ

2
d(x2)

︸ ︷︷ ︸
δQx

+
1

2m
d(p2)

︸ ︷︷ ︸
δQv

(7.1)

where each term can be associated to work or heat. Throughout a real
process, the flux of energy as heat has a kinetic and a potential contribution.
The ensemble average of heat and work is defined as:

〈W 〉 =
1
2

∫

λ(t)

T

κ
dκ (7.2)

〈Qx〉 =
k

2

∫

λ(t)

κd
T

κ
(7.3)

〈Qv〉 =
k

2

∫

λ(t)

dT (7.4)

where both, position and velocity, satisfy equipartition theorem: 〈x2〉 =
kT/κ and 〈v2〉 = kT/m. Next table shows the analitical average values of work
and heat of each process. The calculation is done under quasistaticity assumtion
over the studied protocoles.
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Process Condition 〈W 〉 〈Qx〉 〈Qv〉
Isothermal dT = 0 kT

2 log κ2
κ1

−.kT2 log κ2
κ1

0
Isochoric dκ = 0 0 k

2 ∆T k
2 ∆T

Adiabatic overdamped T = ΛODκ k
2 ∆T 0 k

2 ∆T
Adiabatic underdamped T 2 = ΛUDκ k∆T −k2 ∆T k

2 ∆T

Table 7.1: Average values of thermodynamic quantities over different processes

During an isothermal process, 〈Qv〉 will vanish. This fact can be connected
to the invariance of 〈v2〉, and then, to the invariance of the velocity phase-
space Γv. Nonetheless, let us consider the simplest non-isothermal process. The
potential landscape remains constant, while the temperature changes from T1

to T2. There will not be an exerted work to (by) the system. But two fluxes of
heat will increase (decrease) the total energy of the system, both of the same
value k

2 ∆T . If we study the total phase-space Γ(x, v) = ΓxΓv, both components
increase scaling with T , see Fig.7.1. The usual strategy to measure the energy
exchange in the system is based on the observables of the system, here, the
position and the stiffness [62]. However, the measurement of δQv requires of
the value of the instantaneous velocity, and then, an underdamped description
of the system. Unfortunately, those effects appears in much higher frequencies
(MHz) than the usual adquisition frequency (kHz). Nevertheless, the mean of
the instantaneous velocity in a short enough interval of time shows a variability
that can be linked to the instantaneous velocity.

7.1.1 Searching the adiabatic

When a cycle or an engine is designed in the macroscale, the wasted energy must
be minimized. The meaning of adiabatic is deeply connected with reversibility,
and therefore, with efficiency. There are not reasons to think that this fact is
not conserved when we consider the mesoscale. Nevertheless, there is a main
inconvenience to translate the concept to small systems, namely, there is not an
adiabatic wall to avoid the heat flux between the system and the environment.
Therefore, it is needed to search another way to define adiabaticity in this scale.
Sekimoto seminal work permits measuring heat using the experimental observ-
ables [176]. Hence, we can define a priori a protocole whose associated mean
flux of heat will vanish. For example, Schmiedl and Seifert proposed a coupled
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jump of the temperature and the trap stiffness that conserves the histogram of
position [66]. The overdamped approximation neglects the kinetic energy con-
tribution to the hamiltonian, i.e., HOD(x, κ) = U(x, κ). Therefore, the partition
function and the Helmhotz free energy of the system at a given time read:

Z =
1
h

∫

<
dxe−βH =

√
2π
h2βκ

(7.5)

F = −kT logZ = −kT
2

log
2πkT
h2κ

(7.6)

where h is a constant which makes Z dimensionless. The conformational entropy
follows immediately from eq. (7.6):

S = −∂F
∂T

=
k

2
+
k

2
log

2πkT
h2κ

(7.7)

Entropy allows us to define a process whose change in entropy, and hence,
its realeased heat Qx, is null. Acordingly, parameters must change as T =
ΛODκ. This is the protocole suggested in [66] as adiabatic. As Schmiedl points,
this assumtion neglects the kinetic part, although they took it into account to
calculate the efficiency of a cycle.

Although the OD approximation reproduces the trajectory of the system, the
energetics needs the inertial term. Let us consider a system whose Hamiltonian
does not neglect the kinetic part: HUD(x, p) = U(x, κ) +K(p, T ) = 1

2κx
2 + p2

2m .
Its entropy reads:

S = −∂F
∂T

=
k

2
+
k

2
log

4π2k2T 2m

h2κ
(7.8)

In order to define a protocole where the entropy is fixed, we must change
the temperature and the stiffness in a synchronous way. The temperature must
change following T 2 = Λκ, as it was pointed out in [64]. It is necessary to point
how we cannot recover the overdamped limit even if m→ 0.

Fig. 7.1 gives a visual interpretation of the evolution of Γ through each
process. We draw an elypse which rounds the joint probability ρ(x, v), in the
first instance we can consider its axes as 〈x2〉 and 〈v2 respectively. The area
within the curve can interpretate as the most probable region of the phase space,
being linked to the entropy of the system.
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a) 

c) d) 

b) 

Figure 7.1: Contour plot of the joint probability ρ(x, v) of a one dimensional
system for the different processes. The area within the elypses represents the
most probable values of the phase space. a) Isothermal. Temperature is fixed at
300K while κ={1, 10, 100}pN/µm (dotted, dashed and solid line respectively).
Γ(x, p) remains constant for momenta, while the particle can explore more space
when stiffness is reduced. b) Isochoric. The value of κ is fixed at 10pN/µm,
T = {300, 1000, 3000} K for blue solid line, green dashed line and red dot-
ted line respectively. Both components of Γ(x, p) broads with the tempera-
ture, which represents an increment of the two contribution of the entropy, see
eq.(7.8). c) Overdamped adiabatic. The process conserves the variance of the
position under a protocole where T = ΛODκ. Although the entropy associ-
ated to the position does not change, and therefore 〈Qx〉 = 0, the component
in velocity changes. The picture shows that this process is analogous to the
isothermal one but in the momenta space. The particular values of the pa-
rameters are κ={3, 10, 30} pN/µm and T = {300, 1000, 3000} K for blue solid
line, green dashed line and red dotted line respectively. d) Underdamped adia-
batic. The area within the elypse is constant under the process, i.e., the total
entropy remains constant. Therefore there is not a net flux of heat between
the system and the environment, 〈Qx〉 + 〈Qv〉 = 0. κ={3, 33, 300} pN/µm and
T = {300, 1000, 3000} K for blue solid line, green dashed line and red dotted
line, respectively.
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7.2 Experimental methods

The experimental goal of this chapter is the synchronized control of the trap stiff-
ness (κ) and the kinetic temperature (Tkin). The studied sample is a suspension
of polystyrene beads (G. Kisker-Products for Biotechnology, http://www.kisker-
biotech.com/, polystyrene microparticles PPs-1.0 with a diameter of 1.00 ±
0.05µm) in distilled de-ionized water. The solution is injected in a custom made
chamber, see section 2.4.2, whose electrodes are fed by a voltage produced by
a signal generator (TaborElectronics WW1071). The signal is amplified 1000
times by a voltage amplifier (Trek, Model 610E). The optical trap is gener-
ated by a 985 nm diode laser (Avanex, 1998PLM 3CN00472AG HIGH POWER
985nm, maximal power 300 mW). The position of the bead is tracked by the
projection of the scattered light into a QPD, see section 2.3.3. Adquisition fre-
quency is fixed at 5kHz for the study of the processes and varied up to 200kHz
for the kinetic studies. The spheres were trapped above the bottom surface of
the fluid chamber at the distance about 20µm controlled by the piezoelectric
stage. The value of the viscous friction coefficient γ was corrected due to the
proximity of the chamber surface using the Faxen law as described in [73].

The optical power is managed by controlling the current through the laser.
Optical power grows linearly with the current, what allows us have a linear
relation between the input current and the stiffness κ = CIlaser + ∆κ. Both
parameters, κ and Tkin, are controlled by a custom made Labview program.
Before each measurement, Tkin and κ are calibrated, as shown in Fig. 7.2.

Our aim is the study of non-isothermal processes in the quasistatic regime.
Therefore, parameters must be changed as slow as possible. Unfortunately,
we cannot generate synchronized protocoles with a continuous change in the
parameters but as a combination of steps. Each step is fixed at 200 ms, one
order of magnitude larger than the characteristic time γ/κ. All synchronized
protocoles are generated in order to have a parameter change below the 10% of
previous value.

7.3 Experimental results

The results are arranged in the following way. First, the two control protocoles
are shown, the isothermal (dT = 0) and the isochoric (dκ = 0). As only one pa-
rameter is changed, it is easier to understand the energy exchanges. Afterwards,
we study two different protocoles, one under the assumnption of overdamping
and the other under the assumption of underdamping. Finally, we present a
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a) b) 

Figure 7.2: Experimental calibration of the free parameters. a) Kinetic temper-
ature vs voltage. b) Trap stiffness vs laser current.

combination of different thermodynamic processes to build a Carnot cycle.

7.3.1 Isothermal process

There are several examples of isothermal processes with optical tweezers [85,
187]. In our case, the free parameter is the stiffness of the trap κ. The value of
the stiffness starts at 4.9 pN/µm and finishes at 34.0 pN/µm, see the inset in
Fig. 7.3. The cumulative sum of the released heat is shown in the main panel
together with the analitical curve corresponding to the given parameters. The
experimental value of the potential heat is 〈Qexp

x 〉 = (−0.99 ± 0.15)kTc. The
theoretical value 〈Qtheo

x 〉 = −0.95kTc lies within the error bar.

7.3.2 Isochoric process

The second control corresponds to an isochoric process. The stiffness remains
fixed at 17.9 pN/µm while the kinetic temperature is varied between the temper-
ature of the medium, 300 K, and 1300 K. The effective temperature is changed
linearly with time, following T (t) = Tini + Ct, where C = (Tfin − Tini)/τ . This
protocole defines a heat flux to the system which is stored as internal energy.
Fig. 7.4 shows the cumulative sum of the heat flux over the process. The
value of exchange energy is 〈Qexp

x 〉 = (1.4 ± 0.4)kTc, being the analitical value
is 〈Qtheo

x 〉 = 1.6kTc. As κ is fixed along the process, the exerted work in (by)
the system is iddentically zero.
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Figure 7.3: Isothermal process (forward and backward). System is in contact
with a bath at constant temperature, T=300K, while κ evolves from 4.9 pN/µm
to 34.0 pN/µm. Inset: stiffness (dashed blue line) and 〈x2〉 (black solid line)
evolution over the process. Variance is averaged over 200 cycles. The main
panel shows the cumulative value of 〈Qx〉 and 〈W 〉 along the process, blue and
red solid lines respectively. The values are average over 1000 cycles. Analitic
value for the heat (work) is represented by the black solid (dashed) line.
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Figure 7.4: Isochoric process. The kinetic temperature is varied from 300K
to 1300K while κ is fixed at 17.9 pN/µm (inset). Principal figure shows the
average of the cumulative sum of potential heat, 〈Qx〉, over the process. As
the temperature increases with time, the average of the heat flux is directed
to the system from the environment Qx > 0, viceversa in backward protocole.
The main panel shows the experimental cumulative value of 〈Qx〉 and 〈W 〉
along the process in comparison with the analitical values for the heat (work) is
represented by the black solid (dashed) line., blue and red solid lines respectively.
The values are average over 1000 cycles.
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7.3.3 Adiabatic in the overdamped assumption

The inset in Fig. 7.5 shows the time-evolution of T and κ together with the mea-
sured value of 〈x2(t)〉. The variance remains constant 〈x2〉exp = (765± 89) nm2,
in agreement with the expected value 〈x2〉theo=787 nm2. The cumulative re-
leased potential heat as a function of time is shown in Fig. 7.5, together with the
analitical curve associated to actual values. Experimental mean value of released
heat is 〈Qexp

x 〉 = (−0.1± 0.1)kTc. It agrees with the expected value〈Qtheo
x 〉 = 0.

We want to remark that these values refers only to the potential heat 〈Qx〉.
Although this heat is null on average, the increase of the kinetic temperature
produces a net flux of heat to the system that increases the available total phase
space in the momenta axis, see Fig. 7.1.

7.3.4 Adiabatic in the underdamped assumption

Inset of Fig.7.6 represents the studied protocole. The mean value of potential
heat is 〈Qexp

x 〉 = (−0.3± 0.1)kTc, what agrees with 〈Qtheo
x 〉 = −0.3kTc. Fig 7.6

shows ρ(Q) for the forward process. The decrease of 〈x2〉 is understood as a
compression of Γx. Indeed, this compression is compensated by the expansion
of Γv, while the total entropy of the system does not change along the process.
Therefore, no heat neither kinetic nor potential, is released to the environment
if the protocole is slow enough.

7.4 Discussion

7.4.1 Distribution of potential heat

For any process carried out quasistatically, i.e., the system never goes out of an
equilibrium state, we found the following expression:

ρ(Qx) =
√
β1β2

π
exp

{
β1 − β2

2
(Qx + 〈W 〉)

}
K0

(
β1 + β2

2
|Qx + 〈W 〉|

)
(7.9)

where βi ≡ 1/kTi and K0 is the zeroth-order modified Bessel function of the
second kind 1. Eq. 7.9 is assymetric except for the isothermal case. Analytical
expression is plotted for each distribution of heat, Fig. 7.7-7.8, theoretically, i.e.,
not a fit over the experimental points. The curves are particularized for each

1Eq. (7.9) is derived in Appendix D.1.
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Figure 7.5: Adiabatic process assuming overdamped dynamics. Inset: Parame-
ters evolution over time: temperature (solid blue line) and stiffness (dashed red
line). Black solid line shows empirical value of 〈x2〉. Principal figure shows the
cumulative value of 〈Qx〉 over the process(squares). The value is average over
200 cycles. Analitic value for the given value is represented by the black solid
line.



Non-isothermal stochastical thermodynamics 136

Figure 7.6: Adiabatic process assuming underdamped particle. Inset: Parame-
ters evolution over time: temperature (solid blue line) and stiffness (dashed red
line). Black solid line shows empirical value of 〈x2〉. Principal figure shows the
cumulative value of 〈Qx〉 over the process(squares). The value is average over
200 cycles. Analitic value for the given value is represented by the black solid
line.



Non-isothermal stochastical thermodynamics 137

initial and final state of the process {Ti, κi}. We observe that the asymetry is
shared by all the non-isothermal processes, the most accused asymmetry found
in the case of the isochoric one, due to the larger change of Tkin. The asymmetry
gives a huge importance to the tails of the distributions. In fact, the mode is
always displaced to lower values than the mean. This fact agrees with the mean
values of the thermodynamic quantities, see Table 7.1.
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Figure 7.7: Potential heat distribution in the control processes. Left: Isother-
mal. ρ(Qx) is symmetric peaked at −〈W 〉. Right: Isochoric. The distribution
is peaked at zero but the positive tail dominates the mean value of Qx..

7.4.2 Kinetic study of a Brownian particle
Our experimental setup has a finite adquisition frequency (∼kHz) always below
the inertial regime (∼MHz). The observation of the instantaneous velocity of
a Brownian motion needs a higher frequency to measure it, the inertial time
scales as m/γ ∼ µs. Nevertheless, we can measure the mean value of the
velocity along an interval (∆t = 1/facq) as 〈v(t)〉∆t = 1

∆t (x(t)−x(t−∆t)). The
histogram of velocities is shown in Fig. 7.9 for the two controls, isothermal and
isochoric at different values of κ and Tkin. We observe that in the isothermal
case, a change in the stiffness does not affect the velocity. On the other hand,
when the kinetic temperature increases, the histogram of velocities broadens
significantly. This fact must be taken into account in the definition of the phase
space of the system Γ. Therefore, the overdamped approximation can fail in
non-isothermal processes, as it is pointed in [64], and the underdamped motion
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a) b) 

Figure 7.8: ρ(Qx) of adiabatic processes. a) Overdamped approximation. Mean
value is at zero while the functional is peaked at a negative value. b) Under-
damped approximation. The mean value of Qx does not vanished, but its sum
with 〈Qv〉.

must be considered.
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Figure 7.9: Velocity histograms. On the left, the stiffness is changed while
temperature is fixed at 300K. The histogram remains constant. On the other
hand, the stiffness is kept constant but kinetic temperature is changed (297,
3095 and 8581 K). ρ(v) broadens when Tkin grows. Data is registered at 5kHz.

Moreover, we obtained an extrapolation that connects the observable veloc-
ity with the instantaneous one. In Fig. 7.10, we show the mean velocity in
function of the adquisition time. The experiment is done in absence of external
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field, enviromental temperature, and for different intensities of the white noise.
As we discuss in the previous chapter, the finite whiteness of our noise avoid
the perfect analogy with a kinetic temperature. Under our point of view, the
fail in the Crooks temperature is also deeply connected with the non-whiteness.
Therefore, it is expectable that a better equipment will improve the results.
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Figure 7.10: Experimental values of the mean velocity in function of the adqui-
sition time. Each color corresponds to a different kinetic temperature, blue
Tkin = 297K, green Tkin = 1064K, red Tkin = 3095K, cyan Tkin = 5684K and
purple Tkin = 8581K. Solid lines represent the theoretical prediction, particu-
larized to the corresponding kinetic temperature, while the solid points show
the experimental values. Experiment evidences that the velocity collapse below
adquisition times of 0.2 ms. Dashed line represents the amplificator limit.
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The analytical prediction is also represented in the figure for each value of
the external noise. The expression reads as follows:

〈v2〉 =
2kT
m∆t2

[
1
ω2

0

+
1
ω1

(
e−( γ

2m+ω1)∆t

γ
m + 2ω1

− e−( γ
2m−ω1)∆t

γ
m − 2ω1

)]
(7.10)

where ω2
0 = κ/m and ω1 =

√
γ2

4m2 − ω2
0 . Although we cannot measure the

value of v directly, we can say that the overdamped approximation describes the
dynamics of a Brownian particle but not its energetics along a non-isothermal
process. The goal must be connect the measurable values of the velocity with
the changes of the kinetic energy of the system.

7.5 Carnot Cycle

Classical engines extract useful work (WCycle) from a set of thermal baths at
different temperatures2. Any engine is characterized by its efficiency (η) and
power (P = WCycle/τ , being τ the cycle time). Carnot engine presents the
highest efficiency ηC = 1 − Th/Tc, being considered a theoretical model due to
its reduced power. Trying to avoid irreversibility, Sadi Carnot designed the cycle
as a sequence of an isothermal compression at Tc, an adiabatic compression, an
isothermal expansion at Th and an adiabatic expansion of a piston filled with
an ideal gas, see Fig. 7.11. There is an extensive theoretical bibliography
about Carnot engine in the mesoscale, particulary, with a Brownian particle
as working substance within an optical potential [66, 212, 213]. However, to
the best of our knowledgement, there is not an experimental realization of the
mesoscopic Carnot. The closest approximation is the Stirling engine developed
by Blickle and Bechinger [33]. We combine the previously studied processes
to build a mesoscopic Carnot engine. Unfortunately, experimental results are
restricted to the overdamped energetics, the adiabatic process will not take into
account the kinetic energy.

Fig. 7.11 a) draws an analogy between our mesoscopic cycle and a macro-
scopic Carnot engine. The cycle is composed by four processes. Starting at a
given volume V1, the piston is isothermally compressed up V2 at temperature Tc,
exherting a work to the pistonW1→2. The system never goes out of equilibrium,

2In this section, we define two baths. Hot bath is defined by the temperature Th, cold bath
by Tc
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releasing an amount of heat Q1→2 = −W1→2 to the environment through the
diathermal walls. For process 2 → 3, the piston is surrounded by an adiabatic
wall, what permits compressing it with a null release of heat. The temperature
of the working substance has increased up to Th. Step 3→ 4 allows to expand
the piston to a volume V4, isothermally at temperature Th. The cycle is closed
with an adiabatic process from V4 to initial volume V1.

Our propose is to build a Carnot cycle with an optical trapped microsphere
as working substance. The role of the piston is played by the optical potential.
Therefore, the stiffness of the parabolic potential will be consider analogous to
the volume. As we discuss in the previous sections, the concept of adiabaticity
is non-trivial. In this experiment, we will consider the overdamped expression,
due to the imposiibility to measure the kinetic heat. Fig 7.11 b) shows the
protocole carried out in this experiment. The adiabatic process consists in the
synchronous variation of the temperature with the stiffness, T = Λκ. Hence,
the position variance is conserved.

Each process lasts the same interval of time, giving a total cycle time of
τCarnot=9.6 s. In our particular case, κ1=5.3 pN/µm, κ2=23.2 pN/µm, κ3=41.0
pN/µm, κ4=9.4 pN/µm, Tc= 300K and Th=533 K. Cumulative sum of work
and heat over 100 cycles are represented in Fig. 7.12. Beyond the stochastic
fluctuations, the behavior of the engine shows a negative value of the work, the
system can extract work from the heat baths. The total work along a cycle is
the sum of the work over each process. Considering quasistaticity, it reads:

〈Wcycle〉 =
4∑

i=0

〈Wi〉 = −k
2

(Th − Tc) log
κ2

κ1
(7.11)

The analitic value of the work per cycle assuming quasistaticity is -0.57kTc
per cycle, what agrees with the experimental value of 〈Wcycle〉 = (−0.6±0.1)kTc
3. Hence, the associate power is 6.3 10−2 kTc/s. Efficiency of our engine is
η = 0.43± 0.05, really close to the Carnot efficiency, ηc = 0.44.

Another interesting thermodynamic quantity is the entropy. The represen-
tation of a Carnot cycle in a T- S diagram corresponds to a square. Fig.7.13
shows the experimental values averaged over the 100 cycles. From eq. (7.7),
the difference of entropy between two given states is ∆S = k

2 log T2/T1
κ2/κ1

. By def-
inition, along an adiabatic process, the entropy must be conserved ∆SAD = 0.

3The experimental average values of heat and work in each process are: 〈W1→2〉 = (1.1±
0.1)kTc, 〈Q1→2〉 = (−1.1 ± 0.2)kTc, 〈W2→3〉 = (0.9 ± 0.1)kTc, 〈Q2→3〉 = (−0.3 ± 0.3)kTc,
〈W3→4〉 = (−2.0± 0.1)kTc, 〈Q3→4〉 = (1.4± 0.5)kTc, 〈W4→1〉 = (−0.6± 0.1)kTc, 〈Q4→1〉 =
(0.6± 0.3)kTc,
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Figure 7.11: (a) Depiction of the cycle. Comparison with a gas in a piston.
(b) Experimental protocole, κ(t), T (t) and 〈x2(t)〉 in function of time in our
experiment. Values are normalized with the mean value of each parameter.
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On the other hand, along an isothermal process, the entropy will change an
ammount ∆SIT = −k2 log κ2

κ1
, eq. (7.7). Fig. 7.13 shows the T-S diagram of the

cycle, where the time evolution is clockwise. Experimental points are obtained
as an ensemble average over the 100 cycles, using a time window of 320ms each.
Dashed line represents the analitic value of entropy for the given parameters.
This experiment is a preview of the definitive experimental study of the Carnot
cycle in the mesoscale. Future work will include a deeper study of the efficiency
and the power as function of time cycle [66]. A study of the underdamped adi-
abatic must be also analysed, trying to connect 〈v2〉τ with the kinetic energy,
so then, the kinetic heat.
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Figure 7.12: Cumulative work (blue) and heat (red) over 100 cycles.

7.6 Conclusions

In this chapter we have applied the technique developed in previous chapter to
study non-isothermal processes. As the difference of temperature through a pro-
cess can be of an order of magnitude, the thermal effects are powered, allowing to
amplify the possible effects. We derived an analytical expression for ρ(Q) which
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Figure 7.13: Experimental T-S diagram of the Carnot cycle. Black solid circles
represents the empirical values, averaged within a 320ms time window. The
dashed line shows the analitical values of the difference of entropy along the
cycle..

agrees with our experimental results. We see how the changes of temperatures
along a process are reflexed into an asymmetry of the pdf. On the other hand,
we have studied the effects of the overdamping assumption when T changes.
The kinetic energy must be taken into account to have a complete vision of
the energy exchanges between the system and its environment. Unfortunately
we cannot study the changes of kinetic energy through a direct observation of
the instantaneous velocity but from the mean value of the velocity within our
adquisition frequency. Different processes are combined to generate a Carnot
cycle in the mesoscopic scale. We see how the cycle works at the prediced effi-
ciency, remaining for future work a deeper study of the efficiency at maximum
power [66, 213]. The comparison of the overdamped approximation assuming
kinetic energy as dissipation with the underdamped asssumption must also be
explored in future work.
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8
Universal features in the energetics of

symmetry breaking

8.1 Introduction

The action of choosing between different options is present in several processes of
nature. When we focus our attention in the mesoscopic world, the thermal noise
allows the systems to take choices that are not the most energetically efficient.
For example, consider the protein folding, one of the unsolved challenges in
biochemistry. When the proteins folds, it elects a conformational state between
different options, and therefore, the protein is storing an information [40].

Along the last decade, there have been published several experimental de-
mostrations of the thermodynamics of the information. For example, Toyabe et
al designed a microscopic Maxwell demon where the information is converted
into energy [38]. In 2012, Berut et al tested experimentally the Landauer’s
limit [39]. In the same year, Alemany and co-workers used fluctuation theo-
rems to obtain experimentally the difference of free energy of kinetic molecular
stated [214]. A common point between these investigations is the posibility
of the system to choose between different options, thus, breaking a symmetry
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within the system. A symmetry breaking (SB) involves an abrupt change in the
set of microstates than the system can explore. Under the Boltzmann interpre-
tation of entropy, the shrinkage of the phase space implies a reduction of the
system’s entropy, which must be compensated by a heat dissipation.

p1

p2

p3

hW ia = �Fa

�1

�2 �3

�1

�2 �3

hW ic,1 = �Fc,1

hW ib = 0
�Fb,1 = �kT ln p1

Figure 8.1: A sketch of the proof of Eq. (8.1) for a system that adopts instance
1 among three possibilities i = 1, 2, 3. Before and after the symmetry breaking,
the reversible work is given by the increment of free energy: 〈W 〉 = ∆F . At the
symmetry breaking, a reduction of the phase space volume from Γ to Γ1 occurs
without the need of any external work: 〈W 〉b = 0. This reduction of phase space
volume induces an increase of free energy ∆Fb,1 = kT log(Z1/Z) = kT log p1,
where Z and Z1 are partition functions calculated over Γ and Γ1, respectively,
and p1 = Z1/Z is the probability the system to select region Γ1 when the
symmetry is broken. The total reversible work is 〈W 〉(SB)

1 = 〈W 〉a + 〈W 〉b +
〈W 〉c,1 ≥ kT log p1 + ∆F1, where ∆F1 = ∆Fa + ∆Fb,1 + ∆Fc,1 = Fτ,1 − F0.

In this chapter, we derive an analytic formula which links the produced
entropy along a choosing process with the event’s probability to occur. The
theoretical framework is tested in an optical trapping experiment.Afterwards,
it is studied how the entropy is produced along the process. Finally, a Szilard



Universal features in the energetics of symmetry breaking 149

engine is built. This engine shows the equivalence between information and
energetics.

8.1.1 Symmetry breaking/restoring

Consider a system with Hamiltonian H(x; a) (x ∈ Γ), depending on a control
parameter a, and an isothermal process at temperature T involving a SB, where
the parameter changes in time as at with t ∈ [0, τ ]. The average work required
to complete the process, when the system adopts instance i, is bound by

〈W 〉(SB)
i −∆Fi ≥ kT log pi, (8.1)

where k is the Boltzmann constant and ∆Fi = Fτ,i−F0 is the change in free
energy. The initial free energy is defined as usual, F0 = −kT logZ(T, a0) where
Z(T, a) =

∫
Γ
dx e−βH(x;a) is the partition function of the system. On the other

hand, the final free energy Fτ,i = −kT logZi(T, aτ ) is a conformational free
energy defined in terms of the partition function restricted to the region Γi, i.e.,
Zi(T, aτ ) =

∫
Γi
dx e−βH(x;aτ ). The bound in equation (8.1) is met with equality

if the process is quasistatic. Recalling the relationship between the free energy,
F , the internal energy E, and the entropy S of a system, F = E − TS, and
the first law of thermodynamics ∆E = W + Q, where Q is the heat or energy
transfer from the thermal reservoir to the system, we easily derive a bound for
the entropy production:

〈Sprod〉(SB)
i ≡ ∆Si −

〈Q〉(SB)
i

T
≥ k log pi. (8.2)

A rigorous proof of these bounds follows from fluctuation theorems (see
Appendix E). However, the origin of the term k log pi in Eqs. (8.1) and (8.2)
can be easily understood. A SB comprises a contraction of the set of available
states from Γ to Γi without the need of any extra work. This amounts to an
increase of free energy −kT log(Zi/Z) which is not compensated by work and
heat dissipation. Assuming an instantaneous SB, pi = Zi/Z yielding the extra
term kT log pi in Eqs. (8.1) and (8.2).

This work-free shrinkage of the available phase space is entirely due to the SB
transition and is not in contradiction with the Second Law of Thermodynamics,
because the final state ρi(x) is not in complete equilibrium and the final entropy
cannot be considered as a true thermodynamic entropy. In some contexts, Si
and Fi are called, respectively, conformational entropy and conformational free
energy, but they are not true thermodynamic potentials (they are not state
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functions, for instance). However, both are useful tools to analyze the energetics
of processes involving SB transitions [215]. An alternative interpretation of the
compatibility between the Second Law and the decrease of entropy in Eq. (8.2)
is that the latter is compensated by an increase of the meso- or macroscopic
uncertainty, quantified by the Shannon entropy of the SB outcome, H(pi) =
−∑i pi log pi. Notice that the average of Eq. (8.1) over pi yields precisely
kT H(pi).

Similar inequalities hold for a process where a symmetry is restored. To
assess the energetics of a symmetry restoration (SR) we have to consider the
time reversal of the restoration, which is a SB. Let us call p̃i the probability that
the system adopts instance i in this SB resulting from the time reversal of the
original process. Under time reversal, reversible work and free energy increment
change sign. Therefore (see Appendix E):

〈W 〉(SR)
i −∆Fi ≥ −kT log p̃i, (8.3)

where ∆Fi = Fτ − F0,i is the free energy change of the SR. Notice that now it
is the initial free energy that depends on the instance i. For the entropy:

〈Sprod〉(SR)
i ≥ −k log p̃i. (8.4)

Landauer’s principle follows immediately from Eq. (8.3) applied to a one-bit
memory consisting of a physical system with two stable states, 0 and 1, each
one with the same free energy F0 = F1. The minimal cost of erasing a bit or,
more precisely, to drive bit i = 0 or 1 to the state 0 (restore-to-zero operation)
is 〈W 〉erasure

i ≥ −kT log p̃i−∆Fi = −kT log p̃i for i = 0 or 1, since in both cases
∆Fi = Fi−F0 = 0. If the initial bit is unknown, the best we can do is p̃i = 1/2
and 〈W 〉erasure

i ≥ kT log 2.
The energetics of the Szilard engine [215, 216] can be as well easily repro-

duced from Eqs. (8.1) and (8.3). In the Szilard setup a system undergoes a
SB and chooses between two instances 0 or 1 with probability p0 and p1, re-
spectively. Then we measure the instance that has been chosen and restore the
broken symmetry driving the system back to the original state through some
protocol ait. The time reversal of this protocol is a SB transition with possibly
different probabilities p̃ij . The work necessary to implement the SB is bound by
Eq. (8.1) and the work necessary to restore the symmetry is bound by Eq. (8.3).
Therefore, the total average work that we have to perform to run the whole cycle
obeys:
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〈W 〉 =
∑

i

pi

[
〈W 〉(SB)

i + 〈W 〉(SR)
i

]

≥ kT
∑

i

pi log
pi
p̃ii
, (8.5)

and 〈Sprod〉 = 〈W 〉/T . In the case of the original Szilard engine: pi =
1/2 and p̃ii = 1, yielding 〈W 〉 ≥ −kT log 2, i.e., the extraction of an energy
kT log 2 in a cycle. If the demon does not use information from the measurement
performing always the same protocol, i.e., ait = at, then p̃ij = p̃j normalized to
unity

∑
i p̃i = 1 yielding 〈W 〉 = kTD(pi||p̃i) ≥ 0 where D(p||q) is the relative

entropy between two probability distributions p and q [209, 217]. To build a
Szilard engine, it is enough to find pi and p̃ii such that the average work 〈W 〉 in
Eq. (8.5) is negative; for instance by choosing protocols where p̃ii > pi.

p1

p2

p̃1

p̃2

1� ↵z }| {↵z}|{

|{z}
1� ↵0

| {z }
↵0

Figure 8.2: Breaking and restoring a symmetry: a piston is introduced at a
distance α from the left wall of a box containing a single Brownian particle;
the piston is shifted to position α′ and then removed. In this case, the broken
symmetry is the spatial homogeneity of the box. When the piston is inserted
the system “makes a choice" between the left, i = 1, or right, i = 2, side of the
box with probabilities p1 = α and p2 = 1 − α, respectively. The symmetry is
restored when the piston is removed at position α′. The process of restoring the
symmetry (piston removal) reversed in time is also a symmetry breaking with
probabilities p̃1 = α′ and p̃2 = 1−α′. The work necessary to complete the cycle
when the particle chooses the left side of the container is 〈W 〉 ≥ kT log(p1/p̃1) =
kT log(α/α′). The bound is met when the expansion (moving the piston from
α to α′) is carried out quasistatically, but the result is universal.

In Fig. 8.2 we show an example of symmetry breaking and restoration. We
introduce a piston at position α in a box with a single particle. The particle
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gets trapped in the left or right part of the box with probability p1 = α and
p2 = 1−α, respectively. The piston is shifted to position α′ and then removed.
The removal of the piston is the restoration of the initial symmetry: the spatial
homogeneity. The time reversal of the piston removal is the insertion of the
piston at position α′. In this reversal process the probability that the particle
gets trapped in the left and right part of the box is, respectively, p̃1 = α′ and
p̃2 = 1− α′. For the total work of this process, our inequality yields:

〈W 〉1 = 〈W 〉(SB)
1 + 〈W 〉(SR)

1 (8.6)

= kT log
p1

p̃1
= kT log

α

α′
. (8.7)

and similarly when the particle gets trapped in the right part of the compart-
ment: 〈W 〉2 = kT log 1−α

1−α′ .

8.2 Methods

8.2.1 Experimental methods
The experimental goal of this experiment is to be able to manage an optical
potential which evolves from a single position of equilibrium to a double well
where no thermal transitions are allowed. The potential must be possible to bias
in order to change the probability to choose each possibility. We implement two
optical traps, fixing one at a desired position (from now, fixed trap F, whose
position xTF is fixed at 0 nm) while we can displace the movable trap (M,
whose position is denoted by xTM ) between an initial position (i) to a final place
(f ). The total potential defined by the addition of both traps defines a single
equilibrium position. The final configuration defines two posible equilibrium
states. One of the conditions of the experiment is the quasistaticity, the free
parameter, i.e., xM , must change as slow as possible.

Roughly, the experimental setup consists in a 1060nm optical beam (Man-
light, ML10-CW-P-OEM/TKS-OTS) which is steered by an AOD (ISOMET
LS55 NIR). The beam is highly focused inside a custom-made chamber to cre-
ate the trap by a high NA oil-immersed objective (Nikon, CFI PL FL 100×
NA 1.30). The position of the bead is recorded by an aditional 532nm laser
coaxial to the trapping laser. The scattered light is collected by the microscope
objective (×10, NA=0.10) and projected to a QPD. A 532 band-pass filter is
placed before the QPD to avoid the infrarred scattered light. More details as
well as a scheme of the experimental setup can be found in section 2.4.3.
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Figure 8.3: Experimental protocol of symmetry breaking and symmetry restore.
Left) Positions of the F trap (blue dashed line) and M trap (red dashed line)
as a function of time during the protocol. Ensemble average position of the
trapped bead after implementing the protocol cyclically during t = 2400 s over F
trajectories (blue solid line) and M trajectories (red solid line). Right) Spatial-
temporal mapping of the trapping potential U(x, t) obtained from the statistics
of trajectories of the bead during t = 2400 s in the presence of an external force
such that pF = 0.8. Color bar in the right indicates the depth of the potential
energy (in units of kT ). A single trajectory of the bead when it choses the M
trap is also plotted (white line). Notice that in this case, the bead ends in the
M trap after performing Kramers transitions.

The dual trap is created by the time-sharing regime described in section
2.4.1. Here, we implement a voltage signal to the AOD controller which alter-
nated between the two desired positions. In other words, we combine an square
signal at 20kHz to build the two traps with an extra signal which defined the
separation between the traps, in this case a forward-backward slope at a low
frequency (in the present experiment, two different periods are studied, 5 sec-
onds and 12 seconds). The total voltage signal is applied to the AOD controller,
allowing us to control the protocole by a Labview program.

The detection of the Brownian particle is based in the detection of the scat-
tered light of the extra 532nm laser. The system is calibrated by the PSD
method before each measurement. The optical potential is biased by an electric
force produced by a DC voltage applied in the custom made chamber elec-
trodes1. The force is calibrated in function of the voltage and is changed in
order to explore the different probabilities. We notice experimentally the low

1More details in section 2.4.2
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forces which are necessary to bias it, always less than 2pN, what allow us to use
small difference of voltage between the electrode, what prevent us to undesirable
effects as Faradaic reactions in the metallic surface.

The F trap is held fixed while the M is moved along the x−axis following
the four step protocol depicted in Fig.8.3a: 1) the two traps are initially at rest
during a period of time τ1 = 0.5 s with their centers separated by a distance
Lini = 910 nm; 2) trap M is moved along the x−axis at constant velocity vtrap

during a time τ2; 3) the two traps are again kept fixed for a time τ3 = 0.5 s with
their centers separated by Lfin = 1, 110 nm; 4) trap M is moved back from Lfin

to its initial position Lini with velocity −vtrap in a time τ2. The total duration
of the cycle is τ = 2τ2 + 1 s. By repeating this protocol cyclically, we can study
both the SB (steps 1−2−3) and the symmetry restoration (steps 3−4−1). As it
was mentioned, an uniform electrostatic field allows us to bias the motion of the
bead towards the M or F trap. The protocol can be considered quasi-static for
velocities around 100 nm/s or below, for which heat dissipation due to drag is
of order γv2

trap ≈ 10−22 J/s ≈ 0.02 kT/s, where γ = 6πRη is the drag coefficient,
R = 0.5µm being the radius of the bead and η = 8.9× 10−4 Pa · s the dynamic
viscosity of water at 25oC. We have implemented two quasistatic protocols with
vtrap = 100 nm/s, τ2 = 2 s, and vtrap = 36.36 nm/s, and τ2 = 5.5 s. In our
experiments, the whole cycle is repeated under the same conditions (bead and
electrostatic field) for 5000 s. At the end of the SB protocol (steps 1 − 2 − 3),
Kramers transitions are not observed and one can unambiguously distinguish
two different final meso-states for the bead: F or M . We are able to track
the position of the bead x(t) with subnanometer precision with an acquisition
frequency facq = 1kHz. In Fig.8.3b, we plot the average position of the bead of
both F and M realizations as a function of time, 〈x(t)〉F,M , which is calculated
as an ensemble average over F and M trajectories, respectively. Next step is
to calculate the thermodynamic quantities, in this case, heat and entropy, from
the experimental observables.

8.2.2 Data analysis

One of the problems of measuring thermodynamic parameters is the neces-
sity of knowing with high accuracy the value of the optical potential land-
scape at any moment of the protocole. We solved this challenge by the re-
lation between the potential U(x, t) and the position pdf ρ(x, t), U(x, t) =
−kT log(ρ(x, t)) + kT logZt, where Zt is the partition function. This method
is used in [39] modifying the free parameter step by step and calibrating the
potential by taking data for a long time per each step. This methods lacks a
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huge time of observation when the barrier goes to higher values. We solved
this problem by taking statistics of the trajectories itselves. As the protocole
is slow enough, we can divide each cycle in small windows [t− S/2, t+ S/2],
where S=50ms. By averaging over all the different cycles, and using the sym-
metrical time window of the backward process, as the protocole is symmetrical,
the potential must be iddentical: U(x, t) = U(x, τ − t) → ρ(x, t) = ρ(x, τ − t).
This averaging is crucial to avoid tautological consecuences of using the same
data to calculate the potential and the thermodynamical parameters, having
an independent data set to calculate the potential landscape. The histograms
are developed using a fixed position window width of ∆x =10nm. In order to
calculate the heat dissipation in the different trajectories, the experimental po-
tential landscape must be known for each possible value of the bead’s position.
Therefore, the experimental potential landscape estimation is fitted to a quartic
polynomial: U(x, t) = a0(t) + a1(t)x + a2(t)x2 + a3(t)3 + a4(t)x4, where ai(t)
are time-dependent parameters [39]. As the histograms are done using a slid-
ing window, we have a final potential estimation for any position with a time
resolution equal to the defined by the sample frequency (∆t =1ms). The fit is
weighed as w(x, t) = exp −U(x,t)

kT , so the data from the bottom of the potential
are favored in the fit. All the data points that exceed 10kT are neglected from
the fit due to their low statistics. We show in Fig. 8.5 how the double well
is created from a state with a single minima Fig. 8.5a, to a double well with
unavoidable thermal transitions Fig. 8.5f. The system makes the election when
the potential barrier is small enough to be jumped with the thermal energy Fig.
8.5c-e.

The stochastic entropy has two contributions [188], the change in the state
function, ∆S = Sfinal − Sinitial, corresponding to the reduction of the phase
space, and the increase of the system entropy due to the heat dissipation, ∆Senv.

Sprod = ∆S −Q/T (8.8)

The first term can be calculated from the data interval associated to the
equilibrium positions when the traps are close [0s, 0.5s], which corresponds to
the initial value of the entropy, Sinitial. In this situation the particle can access
to the whole phase-space Γ, see Eq. (8.9). At the end of the SB process, there
is another interval where the potential is static, and the particle is allowed to
go completely to equilibrium, [2.5s, 3s], here, the value of the entropy can be
evaluated as Sfinal taking into account that the particle can explore only a
region of the phase space, Γi, see Eq. (8.10).
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Sinitial = −k
∫

Γ

dxρinitial(x, t) log ρinitial(x, t) (8.9)

Sfinal = −k
∫

Γi

dxρfinal(x, t) log ρfinal(x, t) (8.10)

The other term is evaluated by the calculation of the heat dissipation along
each process. The heat is calculated as it is shown in Appendix E. The heat
interchange between the system and the thermal bath can be considered Gaus-
sian, as we show in Fig. 8.7. If we rewrite Eq. (8.8), we will find an upper
bound to the heat along the process per each possibility:

〈Sprod〉i = ∆Si − 〈Q〉i/T ≥ log pi ⇒
〈Q〉i
T
≤ ∆Si − log pi (8.11)

This bound is respected by all the realizations, in particular for the presented
in Fig. 8.7, where the mean value of the heat is represented by the solid vertical
lines and the dotted lines represent ∆Si − log pi

8.3 Results

8.3.1 Linking probabilities with the energetics

The entropy production in the symmetry breaking (restoring) as function of
the probability is shown in Fig. 8.6. We see that the entropy production is
always larger (smaller in the case of the restoring) than the theoretical bound,
and that we found negative values of the entropy productions, more negative
the less probable is the option. This production of entropy is compensated
by a heat absorption from the environment. In other words, the system takes
energy from the thermal bath to choose between the different options. This
result is a generalization of the Landauer’s principle, relating information with
energetics. Moreover, opposite to the erasement of a bit, what it is done here is
the generation of a bit of information.

Recently, it have been published a study of how heat is released to the
environment when the information is erased in function of time [218]. With the
present data, we can study experimentally an analogous problem, how the heat
is absorbed from the environment when information is generated. In our case,
we have generated different probabilities to achieve the posible final states F,M,
or equivalently, how the entropy is produced when the symmetry is broken.
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Figure 8.4: The F trajectories (blue) and M trajectories (red) obtained using
the experimental protocol corresponding to Fig. 8.3.
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Figure 8.5: Experimental values of the trapping potential in units of kT (blue
open circles) and its fit to a quartic potential (red curve) at different times t
during the SB. a) t = 1.7 s. b) t = 1.8 s. c) t = 1.9 s. d) t = 2 s. e) t = 2.1 s.
f) t = 2.2 s. The data are centered in such a way that the M trap moves from
left to right (the origin in x−axis is set in the average position in the beginning
of the cycle). The global minimum of the potential is set to zero.
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Figure 8.6: Ensemble average entropy production in the SB, 〈Sprod〉(SB)i (top)
and in the SR, 〈Sprod〉(SR)i (down) as a function of the probability pi (p̃i) of
adopting instance i = F,M . Open symbols were obtained using the fast protocol
(τ2 = 2 s), and filled symbols were obtained using the slow protocol (τ2 =
5.5 s). Blue squares represent the ensemble averages over F trajectories, whereas
red circles represent the averages over M realizations. Error bars have only
statistical sense and were obtained using a statistical significance of 90%.
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Figure 8.7: Probability density function of the heat (in units of kT ) for the F
trajectories (blue open squares) and M trajectories (red open circles). Solid
curves are Gaussian fits, with R2 = 0.995 for the F case and R2 = 0.990 for
the M case. Vertical lines are the empirical averages of the two ensembles and
dashed vertical lines correspond to ∆Si − log pi.

In order to neglect the irreversible entropy due to the friction of the bead, we
present the difference of entropy production (∆Sprod ≡ ∆S−Q/T ) between the
events at certain probability (pi) and its symmetric (1−pi). Then, 〈SFprod(pi)〉−
〈SMprod(1 − pi)〉 ≥ k log pi

1−pi . As the protocole is completely symmetric, both
values of the dissipated heat must be iddentical. Fig. 8.8 shows the difference
of the cumulative production of entropy between the two posible choices in a
processes. Each curve represents a different value of pF .

The entropy production remained zero until the moment the double well
was created. Then, the entropy started to be produced until the potential wall
become too high to be jumped by thermal fluctuations. From this moment, the
entropy production stopped. Our experimental data agrees qualitatively with
the previous study [218]. Nevertheless, we have not carry out a quantitative
study yet.

8.3.2 Building a Szilard engine

Using the techniques described above, we constructed a Szilard engine that
extracts energy from a single thermal reservoir. The engine was implemented
with a specific combination of SB and SR processes such that the lower bound
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Figure 8.8: Entropy generation difference between the two posible choices in
some representative cases as function of time: pF = 0.93 (blue), pF = 0.71
(red), pF = 0.15 (green), pF = 0.01 (black)

for the work kT
∑
i pi log(pi/p̃i) is negative, see Eq. (8.5). The minimum work

is attained for pi = 1/2 and p̃i = 1, for i = F,M , as in the original Szilard
cycle. We performed multiple experiments at different conditions, and in three
experiments we could achieve a combination of probabilities that gave us the
negative average work: 1) pF = 0.35, pM = 0.65; 2) p̃M = 0.99; and 3) p̃F =
0.93. Then, our Szilard engine consists on the following feedback protocol. We
start with the external voltage that gave us the first combination (pF = 0.35,
pM = 0.65) and we measure continuously the bead position. If after the SB the
bead is in the fixed trap (blue curves in Fig. 8.9), we change the external field to
the value that gave us the combination (p̃F = 0.93) and continue the protocol at
this value of voltage until the SR is completed. If after the SB the bead is in the
M trap (red curves in Fig. 8.9) we change the external field to the value that
gave us the combination (p̃M = 0.99) and continue the protocol at this value
of voltage until the SR is completed. The cycle should be completed tuning
quasistatically the external voltage back to its initial value for which pF = 0.35
and pM = 0.65. This last step has not been implemented in the experiment,
but in principle it can be realized with arbitrary small entropy production.

Figure 8.9 shows the average heat (solid curves), the change of Shannon
entropy of the probability distribution of the bead position (dashed curves)
and the average entropy production (dotted curves) along the feedback cycle.
The averages are taken over trajectories that end in the F trap (upper plot;
blue curves), the M trap (middle plot; red curves), and over all trajectories
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Figure 8.9: Average heat (solid lines, kT units), Shannon entropy of the trajec-
tory distribution (dashed lines, k units), and average entropy production (dotted
lines, k units) in the Szilard engine. The upper plot (blue curves) corresponds
to the thermodynamic parameters averaged over the F trajectories. The middle
plot (red curves) corresponds to the thermodynamic parameters averaged theM
trajectories, and the lower plot shows the parameters averaged over all trajecto-
ries. The feedback protocol is explained in the text and indicated by the values
of probabilities. The average values of the thermodynamic parameters shown on
the bottom panel are obtained using the SB probabilities along the whole cycle.
We also indicate in the bottom figure the values of information quantities for the
combination of probabilities in the feedback cycle: D(pi||p̃i) =

∑
i pi log(pi/p̃i)

(black dashed line) and −H(pi) =
∑
pi log pi (black solid line).
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(lower plot; green curves). Notice that the average of the thermodynamic pa-
rameters over all trajectories is done using the probabilities in the SB, that is,
〈Sprod〉(SB) =

∑
i pi〈Sprod〉(SB)i for the SB and 〈Sprod〉(SR) =

∑
i pi〈Sprod〉(SR)i

for the SR. The entropy produced in the whole cycle averaged over all trajec-
tories, 〈Sprod〉 = pF 〈Sprod〉F + pM 〈Sprod〉M , is negative, as shown in the lower
plot in Fig. 8.9. Notice that despite negative the average entropy production
along the cycle is above kD(pi||p̃i) = k

∑
i pi (pi/p̃i) (and greater than the min-

imum entropy that can be produced 〈Sprod〉/k > D(pi||p̃i) > −H(pi) [215] ) as
predicted by our formulas [see Eq. (8.5)].

8.4 Conclusions

We derived an universal equivalence between the energetics of a process and
the probability of a system to choose it among other options. This method can
be used to obtain information about the distribution of the phase space (pi)
and the heat released to the environment. This expression can be considered
a generalization of the Landauer’s principle. We have tested our formulas in
an optical tweezer experiment where a continuous transition from a single well
to a double well optical potential produces a symmetry breaking affecting a
Brownian particle (and the time reversal process to implement a symmetry
restoration). Actually, we have a bit generator machine which is showing that
the bit production is energetically more favorable the lower the probability to
obtain the desired state of the bit. If we discart the non-desirable bits, under
a feedback process, the result is inversal to the Landauer prediction. In this
chapter we have shown how the energy to generate a bit of information
can be extracted from the thermal bath energy, the less likely the
event, most favorable being . Nevertheless, in our research we are not taking
into account the energy needed to measure, what obviously will compensate
part of the obtained energy.

The experimental results agrees with the novel theoretical models for the
recording or erasing information processes in a physical memory [218]. The
final result of this research is the construction of an experimental Szilard engine
where the average entropy production along a cycle is negative despite it is
compensated by the information entropy. A potential application of our results
might be the understanding of the energetics in folding and unfolding processes
that appear in biochemistry. In fact, our results could be used to infer the
probability of a protein to adopt a particular metastable conformation from
energetic measurements. By measuring the average work done by a protein to
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change its conformation, we could estimate the probability of the protein to
choose a particular conformation or the free energy change between metastable
states. The advantage of our theoretical approach is that one does not need
to realize the backward experiment to calculate the free energy changes as it is
required to estimate free energy changes using extended fluctuation theorems.

8.5 Acknowdlegements
This chapter was developed in colaboration with Prof. J. M. R Parrondo group
from Universidad Complutense de Madrid.



9
Conclusions

Since Robert Brown’s observation of the motion of a grain of pollen in sus-
pension, the study of the noise in nature has made possible to understand the
behavior of small systems or collective systems. Along this thesis, we have stud-
ied the effect of noise in small systems, applying external sources of noise and
studying the intrinsic noisy behaviour of biological systems.

First, we studied a single DNA molecule at different stretching. In this case,
we have observed the dynamics of different stationary states of the biomolecule.
We observed a power law in the PSD of the trajectory of dielectric bead used to
anchor the DNA. Chapter 4 is related to the dynamics of single bacterium. We
proposed a simple technique to study quantitatively the phenotype of individual
cells, easily implentable in biological laboratories.

In the second part of the thesis, we have developed a technique to mimick
temperature in OT experiments. Thanks to this technique, we could design non-
isothermal processes permitting to check new theoretical models. Afterthat, we
studied the energetics of the symmetry breaking, deriving an universal analytic
expression. This equation was tested experimentally by an OT experiment.

• New tools for optical tweezers technique

The detection of the trapped sample by the analysis of the scattered light
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has a small range if it is compared with other techniques as image track-
ing. We used the objective with lower NA to focused the detection laser.
This allows to have a wider spot in the trapping plane, what increase the
detection linear range up to several microns, ten times larger than in the
traditional configuration. The interference pattern depends in the bead’s
radius, what is reflected in a relation between the size and the linear range.
The technique is simple, but it has several shortcoming. The sensitivity
is less than the obtained in the classical configuration. We noticed also
that the instrumental noise of the optical setup affects stronger than un
the conventional scheme. One of the shortcomings of the OT technique
is the finiteness of its linear regime where F = −κ∆x is valid. To have a
good characterization of the OT force map is essential to compute forces
with high accuracy. Here, we developed a technique to measure the force
map with a single trapping laser, in setups where the beam is managed
by an AOD.

Ignacio A. Martínez and Dmitri Petrov. Back-focal-plane position detec-
tion with extended linear range for photonic force microscopy Applied
Optics 51 (25), 5973-5977 (2012)

Ignacio A. Martínez and Dmitri Petrov. Force mapping of an optical trap
using an acousto-optical deflector in a time-sharing regime Applied Op-
tics, 51 (22), 5522-5526 (2012)

• Colored noise in the fluctuation of an extended single DNA
molecule

Our experiments showed that the fluctuations of the DNA molecule ex-
tended up to 80% by a force of 3 pN include the additional colored noise
with spectral dependence 1/fα with α ∼ 0.75. In our case, the difference
with previous approaches is the comparable stiffness of the OT with the
eleastic constant of the DNA [25]. For DNA in its natural conditions (in
liquid), the Brownian noise stemming from fundamental thermal forces is
the main contributor to the noise acting on the molecule. The Kramers
transition theory is valid only when the thermal noise with white spectrum
exists in the system. As we show here, the component with colored noise
spectrum exists in the molecule and therefore these additional fluctuations
may be added to the thermal noise, causing changes in the probability of
noise-induced events. Recent experiments have shown that, for several
proteins, the dependence of folding and unfolding rates on solvent viscos-
ity does not obey Kramers theory [133]. A theoretical attempt to explain
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the violation of Kramers theory for the dependence of protein folding rates
on viscosity showed that the presence of the correlated (colored) noise may
be important [134].
Ignacio A. Martínez, Saurabh Raj and Dmitri Petrov. Colored noise in
the fluctuations of an extended DNA molecule detected by optical trapping
European Biophysics Journal 41 (1), 99-106 (2012)

• Study of the dynamics of S. enterica by single OT
By analyzing the statistical functions derived from following the trajec-
tories {x(t), y(t)} of a bacterium trapped by a single optical beam the
different dynamic properties of different bacteria can be distinguished.
The approach described herein is based on a model of the rotation of a
solid optically trapped sphere. The optical trap technique can be eas-
ily implemented in a biological laboratory, since it requires only a small
number of optical and electronic parts to convert a simple biological mi-
croscope into the required analyzer. In a demonstration of the utility of
this method, we determined the motility profile of the S. Typhimurium
cheV mutant derivative under anaerobic conditions, which case it exhibits
tumbling behavior. This observation will contribute to elucidating the role
of the CheV protein in the bacterial chemotaxis pathway.
Ignacio A. Martínez, Susana Campoy, Meritxell Tort, Montserrat Llagostera
and Dmitri Petrov. A Simple Technique Based on a Single Optical Trap
for the Determination of Bacterial Swimming Pattern PLOS ONE, 8
(4),e61630 (2013)

• Noise as temperature
We started from the following hypothesis: a brownian particle can not
distinguish the enforcement of an external Gaussian force with white spec-
tra from an increase of the temperature of the media. Using the intrisic
charge of a polystyrene bead inmersed in water, we have presented an ex-
perimental technique that allows one to control the kinetic temperature of
a Brownian particle over a wide range of values, from room temperature
to several thousands Kelvin. We tested our technique in equilibrium, by
the study of ρ(x) and PSD, and out of equilibrium, by a protocole where
the Crooks theorem is checked. We studied the associated temperature to
each section, Thist, TPSD and TC, doing an analitical analysis of the differ-
ences between them. The kinetic temperature is also applied to a double
potential. The residence time in each metastable position is observed,
studying the difference between different kinetic temperatures.
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Ignacio A. Martínez, Édgar Roldan, Juan MR Parrondo and Dmitri Petrov.
Effective heating to several thousand kelvins of an optically trapped sphere
in a liquid Physical Review E, 87 (3), 032159 (2013)

• Non-isothermal processes

Previous technique is implemented to generate different non-isothermal
processes, such as isochoric or adiabatic, and to study the energetics of
each process. Thanks to the large range of temperature, we can study
the different theoretical frameworks. On the other hand, as the kinetic
temperature is ellectronically managed, we can synchronize the changes
of stiffness with the changes of temperature, allowing to study the different
approach to adiabatic processes [64, 65, 188]. The different processes were
developed in the quasistatic regime, therefore, the value of ρ(W ) is peaked
in the average values, not showing a large deviation. On the other hand,
the heat has an intrinsecal broadening, even when the protocole is done
slowly. In our experiments we observe a non-Gaussian distribution of the
ρ(Q) in all the processes where Tkin is varied. We derived an analitic
expresion which validied our experimental observation.

• Universal features of symmetry breaking

We derived an analitic equivalence between the energetics of a process
and the probability to choose it, in other words, a generalization of the
Landauer’s principle. This method can be used to obtain information
about the distribution of the phase space (pi) and the heat released to
the environment. We tested experimentally the relation with an optical
tweezers setup along symmetry breaking and restoring protocoles in the
quasistatic limit. Actually, we have a bit generator machine which is
showing that the bit production is energetically more favorable as lower is
the probability to obtain the desired bit. The final result of this research
is the construction of a Szilard engine where we can transform thermal
energy into useful work.

Édgar Roldan, Ignacio A. Martínez, Juan MR Parrondo and Dmitri Petrov.
Universal features in the energetics of symmetry breaking In preparation
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9.1 Open questions
Under our point of view, this thesis opens the door to several new experiments.
For instance, the implement of the virtual temperature can be applied in the
study of active transport, like Feymann ratchet, or in the study of micro-size en-
gines’ efficiency. Another example is the construction of the Büttiker-Landauer
motor [219], the anisotropic feature of the kinetic temperature can be used to
build to implement two different thermal baths to the system. A similar tech-
nique, but changing the applied noise to colored noise, can be used to study the
thermodynamics of systems where the thermal bath is correlated, trying to real-
ize experimentally the theory proposed by Takahiro Sagawa in the case of shot
non-Gaussian noises [220]. Additionally, the experimental study of the stochas-
tic resonance or the thermal activated transitions in the presence of colored noise
like is proposed in [221], where an analitical study is presented. In the case of
the features of SB, one of the possible applications is the study of the thermody-
namics of the kinetic states in proteins, this field has recent contributions [214],
and our work can be used to explain the dynamics of proteins [40]. The study
of the differential case, analogous to [218], can be expanded to understand the
reversibility of the process.

In the case of biomolecules, the study of the fluctuations at the overstretching
regime can be done. Application of [222] in the study of synchronization effects
and in different mutations, as SOS response, could also be developed.
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9.2 Publications with main results of this thesis
1. Édgar Roldan, Ignacio A. Martínez, Juan MR Parrondo and Dmitri Petrov.

Universal features in the energetics of symmetry breaking, In preparation

2. Ignacio A. Martínez, Susana Campoy, Meritxell Tort, Montserrat Llagostera
and Dmitri Petrov. A Simple Technique Based on a Single Optical Trap
for the Determination of Bacterial Swimming Pattern PLOS ONE, 8
(4),e61630 (2013)

3. Ignacio A. Martínez, Édgar Roldan, Juan MR Parrondo and Dmitri Petrov.
Effective heating to several thousand kelvins of an optically trapped sphere
in a liquid Physical Review E, 87 (3), 032159 (2013)

4. Ignacio A. Martínez and Dmitri Petrov. Back-focal-plane position detec-
tion with extended linear range for photonic force microscopy Applied
Optics 51 (25), 5973-5977 (2012)

5. Ignacio A. Martínez and Dmitri Petrov. Force mapping of an optical trap
using an acousto-optical deflector in a time-sharing regime Applied Op-
tics, 51 (22), 5522-5526 (2012)

6. Ignacio A. Martínez, Saurabh Raj and Dmitri Petrov. Colored noise in
the fluctuations of an extended DNA molecule detected by optical trapping
European Biophysics Journal 41 (1), 99-106 (2012)

9.3 Other publications
Electrophoretic mobility of a growing cell studied by photonic force microscope
Mario Tonin, Stefan Balint, Pau Mestres, Ignacio A. Martínez and Dmitri Petrov
Applied Physics Letters 97 (20), 203704-203704-3 (2010)



A
Salmonella construction

A.1 Bacterial strains, media, and growth condi-
tions

All bacterial strains and plasmids used in this work are listed in Table A.1.
Except when indicated, the bacteria were grown at 37oC in Luria–Bertani (LB)
broth or plates. Ampicillin (100 mg/ml) or chloramphenicol (34 mg/ml) was
added to the culture as necessary. Bacteria used in the optical trapping exper-
iments were grown overnight in 2 ml of LB broth supplemented, when needed,
with the appropriate antibiotic. Each culture was then diluted 1/10 into LB
broth without antibiotic and incubated at 37oC for 1 h. To reduce trap-mediated
oxidative damage to the bacterial cells and ensure that a steady level of oxy-
gen was reached during the optical measurements [59], an oxygen scavenging
system, consisted of glucose oxidase and catalase at final concentrations of 100
µg/mL and 20 µg/ml, respectively, was added at least 2 h before the measure-
ments [158]. The added glucose is a substrate for the oxygen scavenging system
and provides the energy needed for swimming in anaerobic conditions [159]. For
the optical traping measurements, the culture was further diluted 100-fold in
trapping medium (1% Bacto Tryptone, 0.8% NaCl, 2% glucose, 100 mM Tris-
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Cl, pH 7.5). The use of tryptone broth for the optical trapping experiements
is appropriate to obtain reproducible cell motility assays [223]. Dead cells used
as controls were prepared by addition of 2% formaldehyde to the culture, with
subsequent dilution steps carried out following the same protocol used for the
live bacterial cultures.

A.2 Construction of S. Typhimurium LT2 mu-
tant derivatives

The S. Typhimurium LT2 mutant derivatives used in this work were knockout
mutants constructed by the one-step PCR based gene replacement method [224].
All DNA techniques were performed as described elsewhere [225]. The chloram-
phenicol resistance cassette from the plasmid pKD3 was amplified using suitable
100-nucleotide (nt)- oligonucleotides containing 80-nt stretches homologous to
each of the insertion sites, Table A.2 . The PCR product was DpnI digested and
transformated into the S. Typhimurium LT2 electrocompetent cells containing
the pKOBEGA plasmid [226]. Following selection of the transformant clones,
the pKOBEGA plasmid was eliminated by taking advantage of its tempera-
ture sensitivity, growing the clones at 42◦C. Gene substitution was confirmed
by PCR and sequencing. In all cases, the resulting construct was transferred
to a wild type S. Typhimurium LT2 strain by transduction, using the P22 HT
bacteriophage [227]. The absence of the prophage in the selected transductant
clones was determined by streaking them onto green plates as previously de-
scribed [228]. The resulting strains were again verified by PCR and sequencing.

Table A.1: Bacterial strains and plasmids used in this work.

Strain or plasmid Relevant characteristics Source of reference

LT2 S. Typhimurium wild type strain Generous gift of Prof. J. L. Ingraham

UA1902 As LT2 but ∆cheY. CmR This study

UA1903 As LT2 but ∆cheB. CmR This study

UA1905 As LT2 but ∆cheW. CmR This study

UA1906 As LT2 but ∆cheV. CmR This study

pKOBEGA Plasmid AmpR, ts [226]

pKD3 Plasmid AmpR, CmR [227]
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B
Stochastic Calculus

B.1 Introduction: Where the classical calculus
fails

The approximation to a perfect white noise of the Brownian force (ξ(t)) only
has sense if the relevant time scale time is much larger than the correlation time
of the force. In other words, the adquisition time of our experiment 1/facq is
much higher than the inertial time of the sample τm = γ/m. In this situation,
we can replace the correlation function by a Dirac delta δ(t). Brownian force
has the following properties:

〈ξ(t)〉 = 0 (B.1)

〈ξ(t)ξ(t+ τ)〉 = 2kTγδ(t) (B.2)

This idealization carries out some difficulties. The change of usual functions
to functionals induces to the need to take care of all the calculus that we want
to do. Otherwise, the obtained results will be qualitatively different to reality.
To deal with this kind of calculus we must define systematic rules. In summary,
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we must known when the rules of ordinary calculus are valid, how the calculus
rules change when we use this type of functions and where the new results
appears to recognize them. The pioneer of the stochastic calculus was Kiyoshy
Itô in the 50s of the last century [14]. He developed the first mathematical
framework of the Langevin equation. Analogously to other branches of science,
the study of this single problem, i.e, the Langevin equation, open the door of
the development of a new field of analysis called Stochastic Calculus.

B.2 Wiener Processes
In order to study stochastic processes, Norbert Wiener introduced a stochastic
process, named after him Wiener Process (WP), Wt, as the basic object to
interpret white Gaussian stochastic processes such as ξ(t). The definition reads
as follows:

∫ t+dt

t

ξ(s)ds =
√

2kTγdWt (B.3)

where the differential of the Wiener process is dWt = Wt+dt − Wt. The
time interval dt is an infinitesimal positive increment of time. If we link this
definition with the LE we can probe that: x(t) = x(0) +

√
2kT
γ t(Wt −W0). On

the other hand, from the properties of ξ(t) (B.1) (B.2), it is possible to write:
〈
(
dWt

dt

) (
dWt

dt′

)
〉 = δ(t − t′). Another feature of Wt is that being ξ(t) and dWt

dt
mathematically non-treatable as function of time, Wt does.

One possible question is why do not define Wt as ξ(t)dt =
√

2kTγdWt. The
reason is that dWt should be different from dWt+αdt − dWt−(1−α)dt with α

different from 1. In addition, dWt is O(
√
dt) and not O(dt).

The Wiener processes have several useful properties:

• From (B.1), it follows that 〈Wt −Wt′〉 = 0, for any t and t′. It implies
that 〈dWt〉=0. Secondly, using the correlation property of ξ(t) (B.2),
it is possible to derive an analog property of the correlation in Wiener
processes: 〈dWtdWt′〉 = 0, where t 6= t′ implies there is no overlap between
[t, t+ dt] and [t′, t′ + dt′].

• As ξ(t) is ruled by a Gaussian distribution, Wt′ −Wt also does.

• Wiener process is not bounded variation. This property lies in the total
variation ofWs inside s ∈ [0, t] which is characterized by the n→∞ limit
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of
∑n
j=1 | W j

n t
−W j−1

n t |. This limit is divergent with probability 1 for
any Wiener process.

• The limit
∑n→∞
j=1 | W j

n t
−W j−1

n t |2 tends to t with probability 1. As each
interval of time( jn t −

j−1
n t) gives independent contribution, we can write

(dWt)2 = dt with no average over the path.

B.3 Different kind of integrals

In order to have a consistent theory of stochastic calculus, we need to define
how to do integrals in the form of

∫
f(t)dWt. These integrals are linked to the

integrals which appear when we want to solve the LE. The problem appears
due to the non-bounded variation property of the Wiener process, as it includes
ambiguity in the definitions. To avoid this ambiguity, it is necessary to present
strict definitions of the integrals. Let ∆s be a positive interval of time, then
it is possible to define two types of integrals, Itô calculus ((B.4), denoted by ·)
and Stratonovich calculus ((B.5), denoted by ◦)

f(s) [Ws+∆s −Ws]→ f(s) · dWs (B.4)

f(s+ ∆s) + f(s)
2

[Ws+∆s −Ws]→ f(s) ◦ dWs (B.5)

Notice that each kind of integral returns different results from the same in-
tegral. For example:∫ t

0
(Ws −W0) · dW0 = (Wt−W0)2

2 − t
2∫ t

0
(Ws −W0) ◦ dW0 = (Wt−W0)2

2

One of the main differences of both type of calculus is the non anticipating
property of the Itô type, i.e., 〈f(t)·dWt〉 = 0 if f(t) does not depend on anything
happening after t. This is equivalent to write:

〈f(t) · dWt〉 = 〈f(t)〉〈dWt〉 = 0 (B.6)
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B.4 Stochastic Differential Equations (SDE): Itô
lemma.

The Langevin equation can be rewritten in terms of the Wiener process as
follows:

dxt = a(xt, t)dt+ b(xt, t)dWt (B.7)

If we take the average of (B.7) along different trajectories inside a time interval
[t, t+ dt], using the WP properties, we obtain:

〈dxt〉 = a(xt, t)dt (B.8)

〈(dxt)2〉 = b(xt, t)2dt (B.9)

Note that eq (B.9) is the Einstein’s diffusion result (〈x2(t)〉 ∝ t). Next step needs
the use of an arbitrary function (f(xt)), where the differential in an infinitesimal
interval of time (dt) can be defined as df(xt) ≡ f(xt+dt) − f(xt). From the
differential of the function and eq.(B.7), it is defined the so-called Itô lemma:

df(xt) =
[
a(xt, t)f ′(xt) +

b(xt, t)2

2
f ′′(xt)

]
dt+ b(xt, t)f ′(xt)dWt (B.10)

where f ′(z) ≡ df(z)
dz and f ′′(z) ≡ d2f(z)

dz2 . This is the analogous expression of
the chain rule in the stochastic calculus.

The final question is: In physics, shall we use the Itô or Stratonovich con-
vention? As we saw, there are qualitative differences between them, so this is
not a trivial question. In physics, the use of the Stratonovich calculus is widely
accepted. There are several reasons that support this choice. The first one is
the non anticipating nature of Itô calculus, which is not in consonance with our
expectancy to find f(t)ξ(t)dt corresponding to a finite time resolution element.
Secondly, Stratonovich calculus has inhereted the conventional calculus, that is
closer to our intuition. Finally, the energetics of the stochastical processes will
have similar expression to the classical ones just if we use the Stratonovich type
to represent them [62].

B.5 Treatment of experimental data
An optical tweezers experiment will usually give as observables the position of
the particle x, the stiffness of the trap κ and the equilibrium position of the trap
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x0. In order to calculate the energy exchanges W and Q along a given process
described by a protocole λ, we use the Sekimoto approach. For instance, let κ(t)
changes in time, then defined as our control parameter a(t). Sekimoto definition
leads the following definition of heat and work:

W =
∫ κf

κi

∂U

∂κ
◦ dκ =

∫ κf

κi

x2

2
◦ dκ (B.11)

Q =
∫ xf

xi

∂U

∂x
◦ dx =

∫ xf

xi

xκ ◦ dx (B.12)

Therefore, using Stratonovich calculus, the integrals are numerically obtained
as:

W =
N∑

i=1

x[i+ 1]2 + x[i]2

4
(κ[i+ 1]− κ[i]) (B.13)

Q =
N∑

i=1

x[i+ 1]κ[i+ 1] + x[i]κ[i]
2

(x[i+ 1]− x[i]) (B.14)

where i denoted the index of the experimental array of observables. If a(t)
is another observable, an analogous treatment must be done.
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C
Noise as temperature.

C.1 Calculation of Thist

We consider a Brownian particle whose motion is described by the Langevin
equation (C.1),

γẋ(t) = −κx(t) + ξ(t) + ζ(t), (C.1)

where ξ(t) and ζ(t) are Gaussian noises with zero average 〈ξ(t)〉 = 〈ζ(t)〉 = 0
and their correlation functions are

〈ξ(t)ξ(t′)〉 = 2kTγδ(t− t′), (C.2)
〈ζ(t)ζ(t′)〉 = σ2Γ(t− t′). (C.3)

The solution of Eq. (C.1) is:

x(t) = x(0)e−t/τc +
e−t/τc

γ

∫ t

0

ds es/τc [ξ(s) + ζ(s)], (C.4)

where τc = γ/κ is the relaxation time in the trap. If we multiply x(t) by
Eq. (C.1), and we do the average over different trajectories, we get

γ

2
d〈x2〉
dt

= −κ〈x2〉+ 〈ξx〉+ 〈ζx〉, (C.5)
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where 〈ξx〉 and 〈ζx〉 can be calculated using Novikov’s theorem:

〈ζ(t)x(t)〉 =
∫ t

0

ds〈ζ(t)ζ(s)〉
〈
δx(t)
δζ(s)

〉
. (C.6)

Using Eq. (C.4),
〈
δx(t)
δζ(s)

〉
= 1

γ e
−(t−s)/τc , therefore

〈ζ(t)x(t)〉 =
σ2

γ

∫ t

0

ds Γ(t− s)e−(t−s)/τc , (C.7)

whereas for the thermal noise

〈ξ(t)x(t)〉 =
∫ t

0

ds〈ξ(t)ξ(s)〉
〈

δx

δξ(s)

〉
= kT . (C.8)

Using Eqs. (C.7) and (C.8), Equation (C.5) can be rewritten as follows,

γ

2
d〈x2〉
dt

= −κ〈x2〉+ kT +
σ2

γ

∫ t

0

dt′ Γ(t′)e−t
′/τc . (C.9)

In the steady state t → ∞ and d〈x2〉/dt = 0. In this limit, the above equation
yields (6.7)

κ〈x2〉ss = kT +
σ2

γ

∫ ∞

0

dt′ Γ(t′)e−t
′/τc . (C.10)

By using equipartition theorem, we get Thist as a function of the mean square
displacement in the steady state,

Thist =
κ〈x2〉ss
k

= T +
σ2

γk

∫ ∞

0

dt′ Γ(t′)e−t
′/τc , (C.11)

which proves Eq. (6.8).
We notice that Γ(t) has a characteristic timescale given by τΓ, so it can be

expressed as a function of t/τΓ, say Γ(t) = Γ(t/τΓ). The correlation of the noise
decays in this timescale, which makes that the integral in the above equation
can be expressed, by using the change of variable s = t/τc,

∫ ∞

0

dt′ Γ(t′/τΓ)e−t
′/τc = τc

∫ ∞

0

ds Γ
(
τc
τΓ
s

)
e−s. (C.12)

If τΓ � τc, the exponential decays much slower with s than the correlation of
the noise in the units above, therefore it can be approximated by e−s ' 1− s,

∫ ∞

0

dt′ Γ(t′/τΓ)e−t
′/τc ' τc

∫ ∞

0

ds Γ
(
τc
τΓ
s

)
(1− s) =

1
2
− τΓ
τc
. (C.13)
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For the last equality, we have used that Γ(t) is normalized,
∫∞
−∞ dtΓ(t/τΓ) = 1,

that it is symmetric around t = 0 and the definition of the correlation time of
the noise τΓ =

∫∞
0
dt t Γ(t/τΓ). By using Eq. (C.13) into Eq. (C.11), we prove

Eq. (6.9)

Thist '
σ2

2γk

(
1− 2τΓ

τc

)
. (C.14)

C.2 Calculation of 〈W 〉
We now calculate the average of the work done when moving the trap centre
at a constant velocity v for a period of time t. In this situation, the work
done to move a trap that creates a moving quadratic potential U(x(t), x0(t)) =
κ
2 (x− x0)2 is equal to

W =
∫ t

0

−κ(x− vt′)vdt′ = −κv
∫ t

0

y(t′)dt′ (C.15)

where we have used the definition of the work in Eq. (6.4) and x0(t) = v t as
control parameter, and we have introduced the variable y(t) = x(t) − vt. y(t)
satisfies the following Langevin equation

γẏ(t) = −κy(t)− γv + ξ(t) + ζ(t), (C.16)

whose solution is

y(t) = y(0)e−t/τc +
e−t/τc

γ

∫ t

0

ds es/τc [−γv + ξ(s) + ζ(s)]. (C.17)

The average over trajectories is given by

〈y(t)〉 = 〈y(0)〉e−t/τc − vτc
[
1− e−t/τc

]
= −vτc

[
1− e−t/τc

]
, (C.18)

where 〈y(0)〉 = 〈x(0)〉 = 0, since the bead is initially in equilibrium oscillating
around the trap center located in x = 0. The average work reads

〈W 〉 = −κv
∫ t

0

〈y(t′)〉dt′ = γv2t+
γ2v2

κ

[
e−t/τc − 1

]
, (C.19)

which is the expression that we introduced in Eq. (6.11).
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C.3 Calculation of TC

For a process in which a physical system that starts in equilibrium it is driven
out of equilibrium such that the probability distribution of the work is Gaussian,
Crooks temperature is equal to Eq. (6.12)

TC =
σ2
W

2k〈W 〉 , (C.20)

being 〈W 〉 given by Eq. (6.11). We are now interested in calculating the variance
of the work done in the nonequilibrium process consisting in moving the trap at
a constant velocity v during a time t, which we call σ2

W . We first notice that the
work is defined in terms of the variable y(t) = x(t)− vt as shown in Eq. (C.15).
If we introduce the random variables

qξ(t′) =
∫ t′

0

ds e−(t′−s)/τcξ(s), qζ(t′) =
∫ t′

0

ds e−(t′−s)/τcζ(s), (C.21)

y(t) can be rewritten as

y(t) = y(0)e−t/τc − vτc
[
1− e−t/τc

]
+

1
γ

[qξ(t) + qη(t)] . (C.22)

By replacing the above formula in Eq. (C.15), we get

W = −γ v y(0)
[
1− e−t/τc

]
+ 〈W 〉 − κv

γ

∫ t

0

dt′[qξ(t′) + qζ(t′)]. (C.23)

Therefore, the work is a linear combination of random variables that are inde-
pendent each other. This implies that the variance of the work can be expressed
as the following sum

σ2
W = γ2v2

[
1− e−t/τc

]2
σ2
x(0) +

κ2v2

γ2
σ2
qξ

+
κ2v2

γ2
σ2
qζ
. (C.24)

The first term concerns the variance of the position at t = 0 in equilibrium,
σ2
x(0), which is known (C.11).

σ2
x(0) =

kThist
κ

, (C.25)

The calculation of σ2
qξ

and σ2
qζ

is not straightforward. The first can be calculated
analytically whereas the second only for particular correlation functions of the
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external noise. We now show how a closed expression for the term concerning
the thermal noise, σ2

qξ
, can be derived. This variance is defined as

σ2
qξ =

∫ t

0

dt1

∫ t

0

dt2〈qξ(t1)qξ(t2)〉 (C.26)

where

〈qξ(t1)qξ(t2)〉 = σ2

∫ t1

0

dt′
∫ t2

0

dt′′e−(t1−t′)/τce−(t2−t′′)/τcΓ(t′ − t′′). (C.27)

For thermal Gaussian white noise, σ2 = 2γkT and Γ(t′− t′′) = δ(t′− t′′), which
yields

〈qξ(t1)qξ(t2)〉 = kT
γ2

κ

[
e−|t1−t2|/τc − e−(t1+t2)/τc

]
. (C.28)

By replacing the above result into Eq. (C.26), and integrating, we obtain

σ2
qξ = 2kT

γ3

κ2
t+ kT

γ4

κ3

[
4e−t/τc − e−2t/τc − 3

]
. (C.29)

After some algebra, TC can be expressed as a function of Te = σ2/2kγ for any
correlation function Γ(t) as follows:

Tc = T+
L{Γ(t)}(1/τc) + 1

τ3
c

∫ t
0
dt1
∫ t

0
dt2
∫ t1

0
dt′
∫ t2

0
dt′′e−(t1−t′)/τce−(t2−t′′)/τcΓ(t′ − t′′)

t
τc

+ e−t/τc − 1
Te,

(C.30)
where L{Γ(t)}(1/τc) is the Laplace transform of Γ(t) evaluated at s = 1/τc,

L{Γ(t)}(1/τc) ≡
∫ ∞

0

dt′ Γ(t′)e−t
′/τc . (C.31)

For the correlation function that fits the experimental data (6.10), Eq. (C.30)
can only be calculated numerically. In the limit in which the external noise is
white, i.e. σ2 = 2γkTe and Γ(t) = δ(t), we obtain an analogous result to (C.29)
but replacing T by Te. Only in this case TC = Thist = TPSD = T + Te for any
value of the driving time τ .
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D
Non isothermal processes

D.1 Calculation of the heat distribution in a qua-
sistatic process

We now calculate the heat distribution for a quasistatic process in which an
overdamped Brownian particle whose position is labeled by x is trapped with a
quadratic potential of stiffness κ, U(x) = 1

2κx
2. In the protocol, the temperature

changes from T1 to T2 and the stiffness from κ1 to κ2. We assume that the
process is quasistatic and therefore the distribution of the position at any time
t during the process is the equilibrium (Gaussian) distribution

ρ(x, t) = ρeq(x, β(t), κ(t)) =
e−β(t)κ(t)x2/2

Z(t)
, (D.1)

where β(t) = 1/kT (t) and Z(t) =
√

2π/β(t)κ(t).
In a quasistatic process, the work distribution is peaked at its mean value [62]

ρW (W ) = δ(W − 〈W 〉). (D.2)

Taking into account the First Law of Thermodynamics, Q = ∆U −W , the heat
distribution is equal to the distribution of the internal energy change centered
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in ∆U = −〈W 〉
ρQ(Q) = ρ∆U (∆U + 〈W 〉). (D.3)

If the initial position of the particle is x(0) = x1 and the final position is
x(τ) = x2, the shane in internal energy is

∆U =
1
2

(κ2x
2
2 − κ1x

2
1). (D.4)

We now calculate the distribution of ∆U for a quasistatic process where the
temperature and stiffness change from (T1, κ1) to (T2, κ2). The probability
distribution of ∆U being equal to u is

ρ∆U (u) =
∫∫

δ

(
u− 1

2
(κ2x

2
2 − κ1x

2
1)
)
ρeq(x1, β1, κ1)ρeq(x2, β2, κ2) dx1 dx2,

(D.5)
where the integration is done from −∞ to ∞ unless we specify different inte-
gration limits.

We now make the change of variables

yi =
1
2
κix

2
i , (D.6)

with i = 1, 2. The distribution of the random variable yi is

ρ(yi, βi, κi) =
∫
δ

(
yi −

1
2
κx2

i

)
ρ(xi, βi, κi) dxi, (D.7)

where the δ− function in the integrand can be rewritten as

δ

(
yi −

1
2
κx2

i

)
=

1√
2κiyi

(
δ(yi −

√
2yi/κi) + δ(yi +

√
2yi/κi)

)
. (D.8)

By replacing (D.8) and (D.1) in (D.7), and taking into account that yi takes
only positive values, we obtain

ρ(yi) =
√

2
κiyi

1
Zi

e−βiyiθ(yi), (D.9)

where θ(yi) is the step function evaluated at yi, and Zi =
√

2π/βiκi.
The distribution of the internal energy change can be expressed in terms of

the new variables

ρ∆U (u) =
∫∫

δ (u− y2 + y1) ρ(y1, β1, κ1)ρ(y2, β2, κ2) dy1 dy2. (D.10)
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Integrating over y2,

ρ∆U (u) =
∫
ρ(y1, β1, κ1)ρ(u+ y1, β2, κ2) dy1. (D.11)

Using the expression for the distribution ρ(yi) (D.9), we obtain

ρ∆U (u) =
2√
κ1κ2

1
Z1Z2

∫
e−β1y1

√
y1

e−β2(u+y1)

√
u+ y1

θ(y1)θ(u+ y1) dy1 (D.12)

=
√
β1β2

π
e−β2u

∫
e−(β1+β2)y1

√
y1(u+ y1)

θ(y1)θ(u+ y1) dy1. (D.13)

For u > 0, the integral in (D.13) is equal to
∫ ∞

0

e−(β1+β2)y1

√
y1(u+ y1)

dy1 = e
β1+β2

2 uK0

(
β1 + β2

2
u

)
, (D.14)

where K0 is the zeroth-order modified Bessel function of the second kind. For
u < 0, ∫ ∞

−u

e−(β1+β2)y1

√
y1(u+ y1)

dy1 = e
β1+β2

2 uK0

(
−β1 + β2

2
u

)
. (D.15)

Then, for any value of u, we obtain

ρ∆U (u) =
√
β1β2

π
e
β1−β2

2 uK0

(
β1 + β2

2
|u|
)

(D.16)

Given Eq. (D.16), the heat distribution (D.3) equals to

ρQ(Q) =
√
β1β2

π
e
β1−β2

2 (Q+〈W 〉)K0

(
β1 + β2

2
|Q+ 〈W 〉|

)
, (D.17)

which depends on the initial and final values of the temperature but not on
the initial and final values of the stiffness. The distribution is asymmetric with
respect to Q = −〈W 〉 except for the isothermal case (β1 = β2).

D.2 Derivation of the mean value of the velocity
at finite sampling rate

Let us consider a Brownian particle of mass m trapped with a harmonic po-
tential of stiffness κ in a fluid at temperature T and with friction coefficient
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γ. The particle moves in one dimension and its dynamics is described by the
underdamped Langevin equation. The PSD of the velocity in the underdamped
limit is

Sv(ω) =
2γkT
m2

ω2

[
(ω2

0 − ω2)2 + γ2

m2ω2
] , (D.18)

where ω2
0 = κ

m . The mean square velocity can be calculated from the PSD

〈v2〉 =
1

2π

∫ ∞

−∞
dω Sv(ω) =

γkT

πm2

∫ ∞

−∞
dω

ω2

[
(ω2

0 − ω2)2 + γ2

m2ω2
] . (D.19)

The integral in the right hand side, which we denote by I1, can be evaluated
using complex integration techniques. Let us consider the following function of
a complex variable z

f(z) =
z2

[
(ω2

0 − z2)2 + γ2

m2 z2
] . (D.20)

The function f(z) vanishes when the imaginary part of z tends to ±∞. There-
fore, I1 coincides with the integration of f(z) over a contour C that goes along
the real line from −∞ to ∞ and then counterclockwise along a semicircle cen-
tered at 0 from ∞ to −∞ as shown in Fig.D.1.

x

y

z1

z2

z3

z4

C

Figure D.1: Location of the poles of f(z) = z2[
(ω2

0−z2)2+ γ2

m2 z
2
] in the complex

plane and sketch of the integration contour.
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The latter integral can be calculated using the residue theorem,

I1 =
∫

C

dz f(z) = 2πi
∑

k

Res(f(z), zk), (D.21)

where the sum is done over the poles of f(z) that lie within the contour C. f(z)
has four simple poles

z = i
(
± γ

2m
± ω1

)
, (D.22)

where ω1 =
√

γ2

4m2 − ω2
0 > 0. There are two poles that lie within C, z1 =

i(γ/2m+ ω1) and z2 = i(γ/2m− ω1). We also define z3 = i(−γ/2m+ ω1) and
z4 = i(−γ/2m− ω1). The residual of f(z) at z = z1 is

Res(f(z), z1) =
z2

1

(z1 − z2)(z1 − z3)(z1 − z4)
= −i

γ
2m + ω1

4(γ/m)ω1
, (D.23)

and

Res(f(z), z2) =
z2

2

(z2 − z1)(z2 − z3)(z2 − z4)
= i

γ
2m − ω1

4(γ/m)ω1
, (D.24)

yielding

I1 = π
m

γ
. (D.25)

If we replace the value of I1 in (D.19), we obtain the expected result from the
equipartition theorem,

〈v2〉 =
kT

m
. (D.26)

Experimentally, the instantaneous velocity cannot be measured accurately
unless the sampling frequency is of the order of m/γ ∼ MHz. For smaller
sampling frequencies (e.g. of the order of kHz) one can only measure an average
velocity

v(t) =
1

∆t

∫ t+∆t

t

v(s)ds, (D.27)

where ∆t is the inverse of the sampling frequency. We now study the relation-
ship between the correlation of the time-averaged velocity 〈v2〉 and that of the
instantaneous velocity, 〈v2〉, as a function of the sampling time ∆t. The Fourier
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transform of the averaged velocity is

ṽ(ω) =
1√

2π∆t

∫ ∞

−∞
dt

∫ t+∆t

t

ds v(s)e−iωt

=
1√

2π∆t

∫ ∞

−∞
dt

∫ ∞

−∞
ds v(s)rect

[
1

∆t
(t+ ∆t/2− s)

]
e−iωt

=
1

∆t

∫ ∞

−∞
ds v(s)e−iωseiω∆t/2 1√

2π

∫ ∞

−∞
dt rect

[
1

∆t
(t+ ∆t/2− s)

]
e−iω(t+∆t/2−s)

=
1

∆t

∫ ∞

−∞
ds v(s)e−iωseiω∆t/2 ∆t√

2π
sinc

(
ω∆t
2π

)

= eiω∆t/2sinc
(
ω∆t
2π

)
1√
2π

∫ ∞

−∞
ds v(s)e−iωs

= eiω∆t/2sinc
(
ω∆t
2π

)
ṽ(ω), (D.28)

where rect is the rectangular function and sinc(x) = sin(πx)
πx . The PSD of the

averaged velocity can be expressed in terms of the PSD of the instantaneous
velocity,

Sv(ω) = sinc2

(
ω∆t
2π

)
Sv(ω). (D.29)

Therefore, the correlation of the averaged velocity is [cf. Eq. (D.19)]

〈v2〉 =
1

2π

∫ ∞

−∞
dω sinc2

(
ω∆t
2π

)
Sv(ω) =

4γkT
πm2∆t2

∫ ∞

−∞
dω

sin2
(
ω∆t

2

)
[
(ω2

0 − ω2)2 + γ2

m2ω2
] .

(D.30)
Using the property sin2

(
ω∆t

2

)
= 1−cos(ω∆t)

2 , 〈v2〉 can be expressed as a sum of
two integrals,

〈v2〉 = I2 + I3 (D.31)

I2 =
2γkT
πm2∆t2

∫ ∞

−∞
dω

1[
(ω2

0 − ω2)2 + γ2

m2ω2
] =

2kT
mω2

0∆t2
(D.32)

I3 = − 2γkT
πm2∆t2

∫ ∞

−∞
dω

cos(ω∆t)[
(ω2

0 − ω2)2 + γ2

m2ω2
] , (D.33)
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where
∫ ∞

−∞
dω

cos(ω∆t)[
(ω2

0 − ω2)2 + γ2

m2ω2
]

= Re



∫ ∞

−∞
dz

eiz∆t[
(ω2

0 − z2)2 + γ2

m2 z2
]




=
πm

ω1γ

[
e−( γ

2m−ω1)∆t

γ
m − 2ω1

− e−( γ
2m+ω1)∆t

γ
m + 2ω1

]
,(D.34)

yielding

I3 =
2kT

m∆t2ω1

[
e−( γ

2m+ω1)∆t

γ
m + 2ω1

− e−( γ
2m−ω1)∆t

γ
m − 2ω1

]
. (D.35)

Using Eqs. (D.31), (D.32) and (D.35) we obtain the following analytical expres-
sion for the correlation of the averaged velocity

〈v2〉 =
2kT
m∆t2

[
1
ω2

0

+
1
ω1

(
e−( γ

2m+ω1)∆t

γ
m + 2ω1

− e−( γ
2m−ω1)∆t

γ
m − 2ω1

)]
. (D.36)

The above expression reproduces the result for the correlation of the instanta-
neous velocity (D.26). When ∆t → 0, 〈v2〉 → kT/m = 〈v2〉. When ∆t → ∞,
〈v2〉 → 0. For intermediate values of ∆t, the variance of the averaged velocity
lies below kT/m, 〈v2〉 < kT/m, as shown in the experiment.
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E
Universal features of symmetry breaking

E.1 Derivation of equations (8.3) and (8.4)
First, we give a simplified derivation of Eq. (8.1) that illustrates the origin of
the entropy decrease given by Eq. (8.2) in the main text. Suppose that the
symmetry breaking occurs at some stage of a process, when the system crosses
a critical point during a localized and short time interval. Fig. E.1 shows a
sketch of the whole process, for a system that adopts instance 1 among three
possibilities i = 1, 2, 3. Before and after the symmetry breaking we can apply
standard thermodynamics: the minimal work required to drive the system is
the one performed under quasistatic, reversible conditions, and is equal to the
increment of free energy. For instance, the work necessary to drive the system
from the initial state to the equilibrium state right before the critical point is
bound by:

〈W 〉a ≥ Fcrit − F0, (E.1)

where F = −kT logZ, and Z is the partition function Z =
∫

Γ
dqdp e−βH

calculated by integrating the exponential of the Hamiltonian H(q, p) over the
whole phase space Γ, with β = 1/(kT ). The same argument can be used for the
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work done after the symmetry has been broken, when the dynamics is confined
within a region Γi of the phase space:

〈W 〉c,i ≥ Fτ,i − Fcrit,i, (E.2)

where Fi = −kT logZi, but now Zi =
∫

Γi
dqdp e−βH is the partition function

restricted to region Γi. The crucial step in our argument is what happens at
the critical point. The symmetry breaking induces a shrinkage of the available
phase space volume, from Γ to Γi. The dynamical details of this shrinkage
can be rather involved, but we can consider the following rough and simplified
picture: the system fills the entire phase space Γ with probability e−βH(q,p)/Z;
suddenly, the phase space is partitioned in compartments Γi, i = 1, 2, . . . ,m,
and the system gets confined in one of those compartments. The work necessary
to implement this partition and confinement is zero (or arbitrary small) and the
probability that the system becomes confined in compartment i is pi = Zi/Z
or, equivalently:

Fcrit − Fcrit,i = kT log pi. (E.3)

Collecting Eqs. (E.1)-(E.3), we immediately get the bound (8.1) for the total
work 〈W 〉(SB)

i = 〈W 〉a + 〈W 〉c,i.
A more rigorous proof follows from the extended fluctuation relation (EFR)

derived in [229, 230] for processes starting at an equilibrium state restricted to
regions of the phase space. In one of its forms (Eq. (17) in [229] or, equivalently,
Eq. (2) in [230]) the EFR can be written as:

ρF (W |A→ B)PF (B|A) e−βW = ρR(−W |B → A)PR(A|B) e−β∆FA→B , (E.4)

where A and B denote regions of the phase space and the subscripts F
and R refer, respectively, to a process and its time reverse. PF (B|A) is the
probability that the system ends in region B starting at restricted equilibrium
in region A, whereas PR(A|B) is the probability to end in region A in the reverse
process starting in equilibrium in region B. ρF (W |A → B) [ρR(W |B → A)]
is the probability distribution of the work in the forward (reverse) process,
conditioned to trajectories starting at A (B) and ending at B (A). Finally,
∆FA→B ≡ FB − FA is the difference of conformational free energies between
states B and A.

In a symmetry breaking, the system starts in equilibrium all over the whole
phase space, i.e., A = Γ is the phase space. Hence PR(A|B) = 1 and FA is
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p1

p2

p3

hW ia = �Fa

�1

�2 �3

�1

�2 �3

hW ic,1 = �Fc,1

hW ib = 0
�Fb,1 = �kT ln p1

Figure E.1: A sketch of the proof of Eq. (1) for a system that adopts instance
1 among three possibilities i = 1, 2, 3. Before and after the symmetry breaking,
the reversible work is given by the increment of free energy: 〈W 〉 = ∆F . At the
symmetry breaking, a reduction of the phase space volume from Γ to Γ1 occurs
without the need of any external work: 〈W 〉b = 0. This reduction of phase space
volume induces an increase of free energy ∆Fb,1 = kT log(Z1/Z) = kT log p1,
where Z and Z1 are partition functions calculated over Γ and Γ1, respectively,
and p1 = Z1/Z is the probability that the system ends within region Γ1 when
the symmetry is broken. The total reversible work is 〈W 〉(SB)

1 = 〈W 〉a+ 〈W 〉b+
〈W 〉c,1 ≥ kT log p1 + ∆F1, where ∆F1 = ∆Fa + ∆Fb,1 + ∆Fc,1 = Fτ,1 − F0.

equal to the initial equilibrium free energy. On the other hand, we set the final
region as the one corresponding to instance i, B = Γi. With the notation used
in the main text: PF (B|A) = pi, ∆FA→B = ∆Fi, ρF (W |A → B) = ρi(W ) is
the distribution of the work performed on the system when the instance i is
chosen in the SB, and ρR(W |B → A) = ρ̃i(W ) is the distribution of the work in
the reverse process when the initial state is the one given by instance i. Then
the EFR (E.4) applied to the SB reduces to

ρi(W )pi e−β(W−∆Fi) = ρ̃i(−W ). (E.5)

Taking logarithms and averaging over Pi(W ) one finds
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〈W 〉(SB)
i −∆Fi ≡

∫
dw ρi(W )(W−∆Fi) = kT log pi+kT

∫
dW ρi(W ) log

ρi(W )
ρ̃i(−W )

.

(E.6)
The last term is proportional to the relative entropy between the work distri-

bution in the forward and reverse processes D[ρi(W )||ρ̃i(−W )] which is always
positive [217,231] and zero in the quasistatic limit (see below). Therefore,

〈W 〉(SB)
i −∆Fi ≥ kT log pi, (E.7)

which is Eq. (8.1).
The above inequality applied to quasistatic processes can be explored using

the original Crooks work theorem [189] which applies to processes starting at
equilibrium. In those cases, the work is almost a deterministic quantity, except
for the uncertainty associated with the SB. Consequently, the probability density
for the work is peaked around a finite set of values 〈W 〉i (in our case, i = F,M).
Assuming Gaussian fluctuations around these values with variances σi, the work
distribution in the SB is

ρ(SB)(W ) =
∑

i

pi√
2πσi

exp
(
− (W − 〈W 〉i)2

2σ2
i

)
, (E.8)

pi being the probability that the system chooses the path i in the SB process.
Crooks’ theorem expresses the following symmetry relation between the work
distribution in a process and its time reversal (SB and SR processes in this case,
respectively),

ρ(SB)(W )
ρ(SR)(−W )

= exp
(
W −∆F

kT

)
, (E.9)

where ρ(SR)(W ) is the probability density for the work performed in the SR
(backward) experiment and ∆F is the free energy difference between the initial
and the final states of the SB (foward) process. Combining (E.8) and (E.9), one
obtains for the work distribution for the SR:

ρ(SR)(W ) =
∑

i

p̃i√
2πσi

exp

(
− (W + 〈W 〉i − σ2

i

kT )2

2σ2
i

)
. (E.10)

where the probability p̃i in the corresponding time reversal SB satisfies:
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p̃i = pi exp

(
−〈W 〉i −∆F − σ2

i

2kT

kT

)
. (E.11)

Hence,

〈W 〉i −∆F = kT log
pi
p̃i

+
σ2
i

2kT
. (E.12)

The variance σi has no lower bound, and can be even smaller than kT for slow
driving (σi = 0 in the quasistatic limit). Since σi > 0, by replacing p̃i = Zi/Z we
recover the bound given by Eq. (8.1). Equation (E.12) can also be reproduced
by evaluating the relative entropy between Gaussian work distributions in the
equality obtained from the EFR (E.6).

Derivation of Eqs. (8.3) and (8.4)
A similar inequality holds for a process where a symmetry is restored. A SR can
be considered as the time reversal of a symmetry breaking. Let us call p̃i the
probability that the system adopts instance i in the reverse process , i.e., if we
run in reverse the protocol that restores the symmetry, each instance i would
occur with probability p̃i (see Fig. 8.2 for an example). Under a time reversal,
reversible work and free energy increment change their sign. Therefore, we can
apply Eq. (8.1) to obtain

〈W 〉(SR)
i ≥ −kT log p̃i + ∆Fi, (E.13)

∆Fi = Ffin −Finit,i is the free energy change of the SR. The above equation
can be expressed as an inequality for the average entropy production in the
symmetry restoring process:

〈Sprod〉(SR)
i ≥ −k log p̃i. (E.14)

E.2 Explicit calculation of the average entropy
production in a specific symmetry breaking

Consider a Brownian particle at thermal bath at temperature T in a time-
dependent potential U(x, t). The position of the particle at time t is xt. Then,
the change of potential energy in an interval of time [t, t+ ∆t] is:
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∆U(t) = U(xt+∆t, t+ ∆t)− U(xt, t), (E.15)

which can be written as:

∆U(t) = δW (t) + δQ(t), (E.16)

where the work done in the interval of time [t, t+ ∆t] is given by:

δW (t) = U(xt, t+ ∆t)− U(xt, t), (E.17)

and the heat transferred to the particle in [t, t+ ∆t]:

δQ(t) = U(xt+∆t, t+ ∆t)− U(xt, t+ ∆t). (E.18)

These expressions are exact if the potential changes in discrete steps. Sup-
pose that the potential is constant and equal to U(x, t) between t−∆t and t. At
time t the potential changes abruptly to U(x, t+ ∆t) and remains constant up
to t+ ∆t and so on. The change introduces an energy δW (t) = U(xt, t+ ∆t)−
U(xt, t). Then the particle moves from xt to xt+∆t in the constant potential
U(x, t+ ∆t). The change in energy δQ(t) = U(xt+∆t, t+ ∆t)−U(xt, t+ ∆t) is
therefore due to the thermal bath.

t t + �tt��t

U(x, t + �t)

U(x, t)

Figure E.2: The time dependent potential.

If the potential changes smoothly, the expressions above are still a good
approximation for the work and heat. In fact, they can be reduced to expressions
for ∆t→ 0 [176]:

δW (t) =
∂U(xt, t)

∂t
∆t, (E.19)

δQ(t) =
∂U(x, t)
∂x

∣∣∣∣
x=xt

◦∆xt. (E.20)
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If ρ(x, t) is the probability density of xt, the average heat and work up to
time t are given by:

〈δW (t)〉 =
∫
dx ρ(x, t) [U(x, t+ ∆t)− U(x, t)]

'
∫
dx ρ(x, t)

∂U(x, t)
∂t

∆t, (E.21)

〈δQ(t)〉 =
∫
dx ρ(x, t+ ∆t)U(x, t+ ∆t)−

∫
dx ρ(x, t)U(x, t+ ∆t)

'
∫
dx

∂ρ(x, t)
∂t

U(x, t)∆t. (E.22)

We notice that the integral is done from t′ = 0 to t′ = t unless different integra-
tion limits are indicated. The sum of both terms yields the change of internal
energy:

〈δW (t)〉+ 〈δQ(t)〉 =
∫
dx

∂[ρ(x, t)U(x, t)]
∂t

∆t. (E.23)

The average entropy production up to time t is:

〈Sprod(t)〉 = −〈δQ(t)〉
T

− k
∫
dx

∂[ρ(x, t) log ρ(x, t)]
∂t

∆t

= − 1
T

∫
dx

∂ρ(x, t)
∂t

U(x, t)∆t− k
∫
dx

∂ρ(x, t)
∂t

log ρ(x, t)∆t− k
∫
dx

∂ρ(x, t)
∂t

∆t

= −k
∫
dx

∂ρ(x, t)
∂t

[
U(x, t)
kT

+ log ρ(x, t)
]

∆t. (E.24)

If we replace U(x, t) by −kT log ρ(x, t) − kT logZt, Zt being the partition
function at time t, then

〈Sprod(t)〉 = k

∫
dx

∂ρ(x, t)
∂t

Zt∆t = 0, (E.25)

which is identically zero because ρ(x, t) is normalized at any time t. No-
tice that, with the replacement U(x, t) → −kT log ρ(x, t)− kT logZt, the total
entropy production is zero even far from the quasistatic limit.

We analyze how the previous relations change when a SB occurs along the
process. At the end of the SB, the bead follows the F or the M trap. The total
probability distribution can be written as:
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ρ(x, t) =
∑

i=F,M

pi ρi(x, t), (E.26)

where pi is the probability to be in trap i = M,F and ρi(x, t) is the proba-
bility distribution of xt conditioned to be at the end of the process in the trap
i = M,F . The expression for the total entropy production conditioned to the
final trap can be obtained by repeating the previous arguments:

〈Sprod(t)〉i = −k
∫
dx

∂ρi(x, t)
∂t

[
U(x, t)
kT

+ log ρi(x, t)
]

∆t. (E.27)

With the replacement U(x, t)→ −kT log ρ(x, t)−kT logZt, the total entropy
production reads

〈Sprod(t)〉i = −k
∫
dx

∂ρi(x, t)
∂t

log
ρi(x, t)
ρ(x, t)

∆t. (E.28)

We will assume the following scenario for the SB:

For t ≤ t1 : ρM (x, t) = ρF (x, t) = ρ(x, t) (E.29)
For t ≥ t2 : supp ρM (x, t) ∩ supp ρF (x, t) = ∅, (E.30)

i.e., the SB is occurs in a time interval [t1, t2], before which the two probability
distributions ρM and ρF are identical. After t2 the two probability distributions
have non overlapping supports. The total entropy production along the whole
process t ∈ [0, τ ] is obtained by integrating (E.28) over time. From t = 0 to
t = t1, ρi = ρ and therefore the integrand is zero. From t = t2 to τ the
integral over x is limited to the support of ρi(x, t), where ρ(x, t)/ρi(x, t) = pi,
and therefore:

−k
∫
dx

∂ρi(x, t)
∂t

log
ρi(x, t)
ρ(x, t)

= k log pi
∫
dx

∂ρi(x, t)
∂t

= 0. (E.31)

In the interval [t1, t2] after integration by parts:

〈Sprod〉i = −k
∫ t2

t1

dt

∫
dx

∂ρi(x, t)
∂t

log
ρi(x, t)
ρ(x, t)

= k log pi + k

∫ t2

t1

dt

∫
dx ρi(x, t)

∂

∂t
log

ρi(x, t)
ρ(x, t)

= k log pi − k
∫ t2

t1

dt

∫
dx ρi(x, t)

∂

∂t
log ρ(x, t) (E.32)
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where we have used log[ρi(x, t2)/ρ(x, t2)] = − log pi and log[ρi(x, t1)/ρ(x, t1)] =
0 and the fact that

∫
dx ρi(x, t) ∂∂t log ρi(x, t) = 0 for all t due to the normaliza-

tion of ρi(x, t).
If the SB occurs in an interval [t1, t2] where ρ(x, t) does not change, then

〈Sprod〉i = k log pi. Notice that the replacement U(x, t) → −kT log ρ(x, t) −
kT logZt does not ensure now that the total entropy production vanishes.
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