
Bounded Model Checking for
Asynchronous Concurrent

Systems

Manitra Johanesa Rakotoarisoa
Department of Computer Architecture

Technical University of Catalonia

Advisor: Enric Pastor Llorens

Thesis submitted to obtain the qualification of Doctor
from the Technical University of Catalonia

To my mother

Contents

Abstract xvii

Acknowledgments xix

1 Introduction 1
1.1 Symbolic Model Checking . 3

1.1.1 BDD-based approach . 3
1.1.2 SAT-based Approach . 6

1.2 Synchronous Versus Asynchronous Systems 8
1.2.1 Synchronous systems . 8
1.2.2 Asynchronous systems . 10

1.3 Scope of This Work . 11
1.4 Structure of the Thesis . 12

2 Background 13
2.1 Transition Systems . 13

2.1.1 Definitions . 13
2.1.2 Symbolic Representation . 15

2.2 Other Models for Concurrent Systems . 17
2.2.1 Kripke Structure . 17
2.2.2 Petri Nets . 21
2.2.3 Automata . 22

2.3 Linear Temporal Logic . 24
2.4 Satisfiability Problem . 26

2.4.1 DPLL Algorithm . 27
2.4.2 Stålmarck’s Algorithm . 28
2.4.3 Other Methods for Solving SAT 32

2.5 Bounded Model Checking . 34
2.5.1 BMC Idea . 34
2.5.2 Safety Check Example . 34
2.5.3 BMC and Liveness Properties . 35

vi CONTENTS

3 Exixting Techniques 37
3.1 Standard Methods . 37
3.2 Completeness . 39
3.3 SAT with Unbounded Model Checking . 41
3.4 Existing BMC Tools . 42

4 Encoding Methods 43
4.1 Related Work . 44
4.2 Symbolic Representation . 45
4.3 Encoding for Independent Systems . 46

4.3.1 Interleaving Execution . 46
4.3.2 Breadth-First Search Execution . 48

4.4 Encoding for Synchronized Systems . 51
4.4.1 Interleaving Execution . 51
4.4.2 Breadth-First Search Execution . 54

4.5 Expressing Reachability Properties . 56
4.6 Reducing the Bound Using Chaining . 58

4.6.1 Introduction . 58
4.6.2 Application to BMC . 59
4.6.3 Ordering the Events . 61
4.6.4 Chaining Algorithm . 63

5 Leap-Based Approach 65
5.1 Related Work . 66
5.2 Unrolling Method for Deadlock Property 67

5.2.1 Introduction . 67
5.2.2 BMC Equations . 68

5.3 Unrolling Method for Other Reachability Properties 70
5.3.1 Introduction . 70
5.3.2 BMC Equations . 71

5.4 Jumping Methods . 73
5.4.1 Using Logarithmic Functions . 73
5.4.2 Using Interpolation . 76

5.5 Finding the Shortest Counterexample . 77
5.6 Time Performance . 77

6 An Automata-Theoretic Approach 81
6.1 Related Work . 83
6.2 Representation of Büchi Automata . 84

6.2.1 Different Types of Büchi Automata 84
6.2.2 Translating an LTL Formula Into a TGBA 86
6.2.3 TGBA Encoding . 90

CONTENTS vii

6.3 Building the BMC Formulas . 92
6.3.1 Interleaving Execution . 92
6.3.2 Breadth First Search Execution . 94
6.3.3 Chaining . 96

6.4 Discussion . 97

7 Implementation 99
7.1 Different Modules . 99

7.1.1 LTL2BA . 99
7.1.2 BMC Module . 101
7.1.3 CNF translator . 103
7.1.4 Solver . 103

7.2 Input Formats . 104
7.2.1 TS File format . 104
7.2.2 PEP File format . 105

7.3 Important commands . 107

8 Case Studies 111
8.1 Experiments Related to Reachability . 111

8.1.1 Explication of the Benchmarks . 112
8.1.2 Comparison with the Tool NuSMV 113

8.2 Experimental Results Related to LTL . 114
8.2.1 Gas Station . 114
8.2.2 Bakery Algorithm . 114
8.2.3 Readers-writers Problem . 114
8.2.4 Sleeping Barber . 115
8.2.5 Leader Election Protocol . 115
8.2.6 Properties and Instances . 115

8.3 Experiments Related to Leap . 117
8.4 Example of a Leap Execution . 118

9 Conclusions and Future Work 121
9.1 Conclusions . 121
9.2 Future Work . 122

Bibliography 123

Index 151

List of Figures

1.1 Model Checking. 2
1.2 Image computation. 3

2.1 A Transition system. 14
2.2 To and From sets. 15
2.3 Different ways for representing the states. 18
2.4 A Kripke structure model of a simple traffic light controller. 19
2.5 Runs from the traffic light controller. 20
2.6 Computation tree of the traffic light controller. 20
2.7 A Petri net version of the traffic light controller. 22
2.8 An automaton model of a digicode. 24
2.9 A two bit counter. 34

4.1 A Transition system. 45
4.2 Interleaving (1) vs. BFS. (2) . 48
4.3 Synchronized product of TSs. 53
4.4 Typical BFS execution for synchronized systems. 56
4.5 Chaining execution with event order [a, c, b, d]. 59
4.6 Chaining execution for synchronized systems. 60
4.7 BFS with chaining using two different event orders. 61

5.1 Unrolling using leaps. 66
5.2 A synchronized system with idle steps. 67
5.3 Leap methods for deadlock property. 70
5.4 Leap methods for other reachability properties. 72
5.5 Different leap values. 74
5.6 Plot for the base 2 logarithmic function. 74
5.7 The interpolation method with the collected points. 77

6.1 Automata-theoretic approach to BMC. 82
6.2 A Büchi automaton. 85
6.3 A Transition-based Büchi automaton. 86

x LIST OF FIGURES

6.4 TGBA for the LTL formula (Fa^ F a). 88
6.5 TGBA for the LTL formula φ � a R pc_ bq. 91
6.6 A complete example: two TSs and a TGBA. 93

7.1 BMC++ major modules. 100
7.2 The tree representation of the LTL formula Fa^ F a. 101
7.3 Details of the LTL2BA Module (1), and the BMC Module (2). 102
7.4 A transition system. 103
7.5 A Petri net. 107

List of Tables

2.1 Typical CNF Translation for the gates AND, OR, and NOT 33

6.1 Tableau Rules . 87

7.1 LTL operators and their keyboard equivalents 100

8.1 Deadlock detection results . 112
8.2 Comparison with NuSMV . 113
8.3 LTL checking results . 116
8.4 Comparison of leap and standard BMC 117

List of Algorithms

1.1 forwardReachability . 4
1.2 standardBmcAlgorithm . 7
2.1 dpll . 28
2.2 zeroSaturate . 31
2.3 saturate . 32
4.1 Bmc . 63
5.1 JumpByLogarithm . 75
5.2 jumpByInterpolation . 76

Nomenclature

BA Büchi automata

BDD Binary decision diagrams

BMC Bounded model checking

CAD Computer-aided design

CNF Conjunctive normal form

CTL Computation tree logic

DPLL Davis-Putnam-Longeman-Loveland, name of an algorithm for solving SAT

FSM Finite state machine

LTL Linear temporal logic

NuSmv A model checking tool that has BMC capabilities

PN Petri net

SAT Boolean satisfiability problem

TGBA Transition-based generalized Büchi automata

TS Transition system

ZChaff A SAT solver

Abstract

In this thesis we study the verification of asynchronous concurrent systems using a sym-
bolic model checking technique called bounded model checking (BMC). BMC is a method
targeted mainly at finding bugs in a system. It answers the question whether there exists
an execution path, shorter than a given number, that violates a given property. Such an
execution path is known as counterexample. During a BMC operation each execution path
is encoded into a Boolean formula, and the problem is reduced to satisfiability checking of
the formula. Therefore, the operation consists mainly in constructing a Boolean formula
that is satisfiable if and only if such a counterexample exists.

We model our systems with transition systems (TSs). In particular, we are mainly
interested in synchronized product of TSs. Since concurrent systems are formed by a com-
bination of several components communicating between each other, synchronized product
of TSs is well-suited to capture the behavior of such systems. The executions of con-
current systems are commonly modeled using the so-called interleaving execution, which
allows only one single event to fire at each step. However, due to the complexity of such
systems, performing BMC with interleaving will not only require many steps but also
generate long formulas. In this work, we adopt different approaches based on breadth-first
search (BFS). Our methods reduce the necessary steps, and produce smaller formulas. In
a BMC operation, the translation of the model into a Boolean formula is polynomial in
the size of the model, but the solving time of the Boolean formula can be exponential
in the size of the formula. Therefore, our research hypothesis is that we can improve
the efficiency of BMC by generating succinct formula, and by minimizing the number of
necessary steps during an execution.

We introduce several BMC techniques aimed at improving the efficiency of BMC for
asynchronous concurrent systems. The techniques are grouped in two main parts (i) tech-
niques for checking reachability properties and (ii) techniques for checking other proper-
ties written in linear temporal logic (LTL). In addition, we also propose some methods for
minimizing the number of execution steps or bounds.

We implemented all these methods in a BMC toolset. At the end of the dissertation,
we will discuss the experimental results we obtained.

Keywords: bounded model checking, asynchronous concurrent systems, satisfiability
problem, reachability properties, linear temporal logic.

Acknowledgments

This thesis would not have been possible without the support of many people. It is a
pleasure for me to thank all of them.

First, I would like to express my sincere gratitude to my supervisor Enric Pastor who
offered invaluable assistance, support, and guidance throughout my work. With his great
efforts to explain things clearly and simply, he helped make formal verification fun for
me. He also provided encouragement and good company. I would have been lost without
him.

I am indebted to all my colleagues at the Computer Architecture Department for
providing a stimulating and pleasant working environment. Especially, I am grateful to
Marc Solé, Josep Carmona, and Juan Lopez who spent a great deal of their time discussing
with me, and gave sound advice that contributed in many ways to the accomplishment of
this research project.

Special thanks to the external reviewers, Marco Peña and Robert Viladrosa who care-
fully read the preliminary version of this report and provided valuable suggestions and
comments. Thanks also to all the members of the jury for evaluating and judging my
thesis.

I would like to show my gratitude to the following institutions for funding this research:
the Government of Catalonia under the scholarship FI, and the Ministry of Science and
Education of Spain under the contract CICYT TIN 2007-63927.

I wish to thank all my friends, especially Nirina Rakotoarivelo, Rafael Ordonez, Man-
itra Raharijaona, and Fidel Pedregal Pimentel. They encouraged me and supported me
from the beginning until the end, despite the long period of time I spent doing my Ph.D.
thesis.

I would also like to thank my entire family for their unwavering support. Most impor-
tantly, I am very thankful to my mother, Marguerite Ravaoarivelo. She bore me, raised
me, taught me, and has loved me throughout the years. To her I dedicate this thesis.

Last but not least, I would like to express my gratitude to all the people who have
not been cited above but who helped me directly or indirectly with the realization of this
thesis. Thank you so much everyone.

Chapter 1

Introduction

Complex hardware systems become more and more ubiquitous in mission critical appli-
cations such as military, satellite, and medical to name but a few. In such applications,
reliability remains a primary concern because a failure that occurs during their normal op-
erations might produce important catastrophes like loss of life or loss of money. Examples
of these catastrophes include the Pentium bug [Gep95, Ade97], space launch disasters like
the Mariner I [HL05] or the Ariane 5 [Har03], the Warsaw A320 crash [Lad95, CMMM95],
not to mention the AT&T telephone switching failure [Ste93, Har00].

All these failures are often caused by minuscule bug1 that exists inside the software
which controls the systems, or within the hardware itself. In addition, most of these
systems cannot be interrupted while working, even for a few seconds a year, making it
difficult to repair bugs found during their normal operations.

Therefore, manufacturers of such systems have to validate their designs, before ship-
ping them to ward off disasters caused by undetected errors. Appropriate validation
techniques are then necessary to discover bugs that would affect the use of such systems.

In general, design validation can be performed using two groups of methods: (i) sim-
ulation and testing (ii) formal verification.

In simulation and testing, the main purpose is to carry out some experiments before
getting the product on the market. This involves introducing series of inputs into the
design and checking whether the produced outputs correspond to the expected ones.
Simulation and testing explore only some system behaviors and they take time to find the
slightest bugs in a system. Hence, they can overlook considerable errors if the system has

1Bug is a computer jargon referring to an undesirable property that makes the computer misbehave
or crash. The first recorded bug was a real insect. In 1947, American mathematician and computer
scientist Grace Murray Hopper (1906-1992), known also for inventing the programming language COBOL,
was working on the Harvard University’s Mark II computer. One day, the machine crashed. Hopper
investigated and found that a moth has squeezed into one of the 17,000 relays in the machine. She
removed the moth and the machine worked perfectly [Kid98, Nor05]. This is not, however the origin of
the term “bug” since this term has already been used long before by other scientists, but Hopper’s was
the “first actual case of a bug being found” according to a note she put on her log book.

2 Introduction

Property Finite state system

Model Checker

Yes : the property is

satisfied by the model

No : the property is

not satisfied by the model

Counterexample

System correct System Incorrect

Figure 1.1: Model Checking.

huge state number. Nonetheless, many industries nowadays still use these techniques as
standard ways to validate their designs.

Formal verification [Das06, Kro99], on the other hand, does not rely on direct experi-
ments. Instead, it uses mathematical formalisms to check whether the model of a system
satisfies a given property. The system is correct if this property is satisfied, otherwise it
is incorrect. Formal verification offers exhaustive coverage of all system behaviors, which
makes it more suitable for detecting bugs in extremely concurrent systems. There exist
two main approaches to formal verification. Namely, theorem proving and model checking.

Theorem proving is a more theoretical approach. It uses mathematical axioms and
proof rules to prove the correctness of a system. Hence, it can only be performed by people
who have solid experience in logical reasoning. In this method, both the system and the
desired property are expressed as formulas in some mathematical logic. The system is
correct if a proof for the property can be constructed from the axioms of the system. The
whole process is rather time-consuming, yet it is proven to be more effective for detecting
software bugs in case the source code contains thousands of lines with complex logical
operations [Ros05]. In addition, it has the ability to verify infinite state systems.

Model checking [CGP99, CK96, QS82] is used to verify finite state systems. It is
fully automatic, terminates with true if the system is correct, or alternatively provides an
execution path known as counterexample that shows how the system violates the given

1.1. Symbolic Model Checking 3

S0 S1 S2
. . . Sk

Figure 1.2: Image computation.

property (see Figure 1.1). Counterexamples often correspond to subtle design errors and
can therefore be used for debugging the system. In symbolic model checking [BCM�90],
the system’s state space is represented symbolically with Boolean encoding rather than
with explicit representation.

1.1 Symbolic Model Checking

1.1.1 BDD-based approach

Binary decision diagram (BDD) [Bry86], which offers a compact and canonical repre-
sentation of functions, is traditionally used in symbolic model checking to represent the
system’s state space. Numerous studies, coupled with successful practical experiments,
have been done so far to exploit the performance of this technique. In particular, the
model checking tool called system model verifier (SMV) [McM93], developed by McMil-
lan in 1993, was one of the efficient tools which showed the potentiality of BDD-based
approaches, and became a touchstone for other implementations. This tool has been
successfully used to verify industrial designs, see e.g. [CYLR01, BLP95].

In general, BDD-based model checking relies on the approach known as reachability
analysis which involves computing all the reachable states in the system starting from a
given set and analyzing the results. Basically, there exist two fundamental variants of this
approach: forward and backward methods.

Forward Reachability Analysis

In forward reachability analysis, the goal is to determine whether a state violating an
invariant property can be reached from the initial states. To achieve this goal, a reacha-
bility procedure performs repeatedly image computation. That is, it computes the image
of the newly reached states from one iteration using a transition relation, and repeat this
process until no more new states can be generated. In this case, a least fixpoint (lfp)
is reached and the procedure stops (see Figure 1.2). The transitions and the states are
represented using BDDs. The reached states are analyzed later on to determine whether
any of them violates the property of interest. Formally, these images are computed as
follow. Let S0 be a set of initial states and T pv, v1q be a transition relation, where v and v1

4 Introduction

denotes the current and next state variables respectively. Let us use Spvq and T pv, v1q to
denote the propositional formulas related to the set of states and transitions respectively.
Then, the image of Spvq through T pv, v1q is given as:

ImgpSpv1qq � Dv.T pv, v1q ^ Spvq (1.1)

Now, starting from the initial states, the least fixed point can be computed by repeat-
edly applying the following equation in which the final results of the set R contains all
forward reached states:

R � lfp R.pS0 _ ImgpRqq (1.2)

For instance, assume we want to check whether a system satisfies a safety property
expressing that something should be true at every state of the system. In this case, the
model checker applies repeatedly image computation to determine if there is an execution
path from an initial state to a state where this property fails. If such a path does not
exist, then the system is correct, otherwise the system is incorrect and the path found by
the model checker corresponds to a counterexample.

Algorithm 1.1 illustrates the forward reachability procedure. The set R contains all
reachable states, while Si contains the newly discovered states in each iteration. The
function img() perform the image computation from Si. The algorithm stops when Si is
empty.

Algorithm 1.1: forwardReachability
input : S0 a set of initial states
output: R a set of reachable states

RÐÝ H ;1

iÐÝ 0 ;2

while (Si � H) do3

RÐÝ RY Si ;4

Si�1 ÐÝ img(Si) zR ;5

iÐÝ i� 1 ;6

end7

return R8

Note that, for large systems, the final set R may become too big. To avoid this
situation, some people perform on-the-fly check of the invariant property. That is, at each
iteration the newly reached states is checked whether any of them violates the property.
If the answer is positive, then the algorithm stops. This method prevents exploration
through the entire state space.

1.1. Symbolic Model Checking 5

Backward Reachability Analysis

Backward reachability is mainly used to perform diagnostic of a failure in a system.
As its name suggests, it is the opposite of forward reachability. The aim in here is to
know whether a specified set of target (i.e violating) states is reachable from any of the
initial states. To do so, the procedure starts from the set of violating states and perform
preimage computation repeatedly until a fixpoint is reached. Then, it checks if the reached
set contains one of the initial states. As before, all states and transitions are encoded
with BDDs. Formally a preimage computation is performed as follow. Let T pv.v1q be a
transition relation and St a set of target states. The preimage of Spv1q through T pv, v1q
is given as:

PreImgpSpvqq � Dv1.T pv, v1q ^ Spv1q (1.3)

and the least fixed point is obtained by repeatedly applying the following equation from
the target set:

R � lfp R.pSt _ PreImgpRqq (1.4)

The algorithm for backward reachability is similar to Algorithm 1.1. We need only
to start from St instead of S0. On-the-fly methods can also be applied to backward
reachability in order to handle large systems.

State Explosion Problem

Although successful, BDD-based approaches are subject to the so-called state explosion
problem, or the situation where the size of the state space grows exponentially beyond
the available computer resources. This situation arises if the system being checked has
many components that can make transitions in parallel. For that reason, certain types of
designs cannot be handled efficiently with BDD-based approaches. Below, we will review
briefly some interesting techniques for dealing with the state explosion problem. Namely,
partial order reduction, compositional reasoning, abstraction, induction, and symmetry.

Partial Order Reduction This technique is designed for concurrent systems with
communicating processes [GW94, Pel93, WW96, NG02]. With this technique, when con-
current events are independent, it suffices to consider one of them since, in this case, they
all lead to the same state. Therefore, during state space exploration, only a subset of the
enabled transitions is considered in each state rather than all of them. This decreases
the size of the state space while preserving the properties of interest. The chosen subsets
are called ample sets [God96, HP95], or stubborn sets [Val90], or sleep sets [God90], or
persistent sets [God90], or also stamper sets [PVK01].

Compositional Reasoning This technique applies to large systems composed of par-
allel processes. For such systems, it is possible to divide up a given property into local

6 Introduction

properties, each of them relates to a specific component of the system. Compositional
reasoning methods [CLM89, GS90, SG90] abate the state explosion problem in the fol-
lowing way. Check first whether each system’s component satisfies its local property, then
make sure the conjunction of all local properties yields the property of interest. If all the
above are verified, then the whole system satisfies the given property as well.

When the interconnections between the system’s components are too complicated, a
variant approach called assume-guarantee reasoning [GL94] is more appropriate. In this
case, the behavior of one component hinges upon the other components’ behaviors. Thus,
when verifying one component, the user must make assumptions about the properties of
other components. If these assumed properties are satisfied, the correctness of the entire
system could be verified, in a suitable way, without generating the whole state graph.

Abstraction In this technique, the goal is to simplify the verification process by re-
ducing the model of the system into a much simpler representation [CGL92, DGG97].
In general, the reduction consists in excluding some features of the model, by forbidding
some behaviors, for example, or by merging some identical states, or by removing some
data. This technique is useful especially when the original model is too large to handle
by the verification tool at hand. But doing abstraction may result in a reduced model
that no longer has the same behavior as the original one. Hence, the user must ensure
beforehand that the chosen abstraction technique will preserve the property of interest.

Induction This method deals with parametrized systems, that is systems whose config-
uration depends on a certain parameter [KM95, CGJ95, WL89]. For instance, a network
of n computers, or a mutual exclusion involving n processes. Here, the goal is to gen-
eralize the result, i.e. to check whether a property is satisfied by all systems in a given
class. This is a hard problem. Still, in some cases, it could be resolved by generating first
an invariant that represents the behavior of an arbitrary member of the class. Then, use
this invariant to check the property of all class members.

Symmetry This technique is relevant for systems containing replicated components.
It consists in replacing the system’s states with different structure known as orbit repre-
sentatives [CJEF96]. Unfortunately, finding orbit representatives also constitutes a hard
problem, hence this method remains impractical in most cases.

1.1.2 SAT-based Approach

Combining model checking with the Boolean satisfiability problem (SAT) is another ef-
ficient way to avoid the state explosion. Known as bounded model checking (BMC)
[BCCZ99, CBRZ01, BCC�03], this approach is mainly targeted at finding bugs in a
system. More precisely, it consists in finding a counterexample of a fixed bound, say k,
for a given property and constructing a Boolean formula that is satisfiable if and only if
such a counterexample exists. To achieve this goal, a typical BMC algorithm works in the

1.1. Symbolic Model Checking 7

following way. It first unrolls the system k times. Then, it combines the unrolled system
with the negation of the given property, and encodes the whole as a Boolean formula. Fi-
nally, it calls a SAT-solver to check whether this formula is satisfiable. If the SAT-solver
returns a satisfying assignment, then the system is incorrect and this assignment corre-
sponds to a counterexample of length k. Otherwise, the SAT-solver can provide a proof of
unsatisfiability. The unrolling process is polynomial in the size of the system, whereas the
satisfiability check can be exponential in the size of the formula. This technique has also
been successfully applied to real-world designs (see e.g. [BCRZ00, BLM01, CFF�01]).

BMC overcomes the state explosion problem because it does not use canonical repre-
sentation of the state space. Furthermore, it consumes much less space than BDD-based
techniques because typical SAT-solvers, used for determining the satisfiability of the con-
structed formula, require no more than polynomial amount of memory. Hence, it can
handle huge systems with thousands of state variables, in contrast to BDD-based ap-
proaches which can only be applied to systems with, at best, hundreds of variables.

Apart from overcoming the sate explosion problem, BMC also has the following ad-
vantages: (i) The Boolean formula translation from a single unrolling can be replicated
without additional analysis, thus it can be done in linear time. (ii) Due to this replication
possibility, incremental learning is possible and is helpful in many cases. (iii) Due to the
advances in SAT-solving techniques, many fast SAT-solvers are now available.

Algorithm 1.2: standardBmcAlgorithm
input : M a system model

maxL maximum BMC length
φ a property

output: true if a counterexample has been found
false otherwise

boundÐÝ 1 ;1

isSatÐÝ false ;2

while (bound ¤ maxL) and (isSat � false) do3

F ÐÝ unroll(M,φ, bound) ;4

isSatÐÝ solve(F) ;5

boundÐÝ bound� 1 ;6

end7

return isSat8

In practice, a standard BMC algorithm works by increasing the bound progressively
to search for a deep counterexample up to a certain maximum number. At each step,
the algorithm calls a SAT-solver to determine whether a counterexample exists or not for
the current bound. Algorithm 1.2 illustrates this operation. It starts at bound 1 and
stops when the maximum BMC length is reached or the formula becomes satisfiable. F
corresponds to the formula generated at each bound by the unrolling operation. The

8 Introduction

function solve() calls the SAT-solver to determine whether F is satisfiable.
The speed of the SAT-solver is crucial during the execution because it affects the

performance of the whole BMC operation. When the bound is increased, the number of
variables in the formula increases linearly, whereas the solving complexity increases expo-
nentially. For example, when moving from a bound k to k1, with k k1, the complexity
increases 2n.k to 2n.k

1

, where n is the number of gates in the circuit. This situation implies
that the deeper the exploration goes, the slower the execution.

During a BMC session, if the maximum number is reached without finding any coun-
terexample, no conclusion can be drawn concerning the correctness of the system since the
counterexample may exists at a bound beyond the maximum number. This inability to
draw conclusion makes BMC somewhat incomplete compared to BDD-based approaches.
Nevertheless, many techniques have been proposed so far to work around this complete-
ness issue. We will review some of them in Chapter 3.

The standard BMC method mentioned above is well suited for synchronous systems,
a kind of system in which the execution is coordinated by a clock and all variables change
together at the same time. But if we apply it to asynchronous concurrent systems, a kind
of system composed of many components that can communicate and work concurrently,
it will fare badly. Due to the inherent interleaved nature of these systems, the number of
times we have to invoke a SAT-solver will be much larger—maybe an order of magnitude.
In addition, some of them tend to produce large formulas sooner. Therefore, the above-
mentioned execution slowdown may appear at an early stage because not only the SAT-
solver will be invoked many times, but it may also handle large formulas. Hence, these
systems need more elaborate methods for handling them.

1.2 Synchronous Versus Asynchronous Systems

In this section we will discuss the main differences between synchronous and asynchronous
systems. We will start with the synchronous ones.

1.2.1 Synchronous systems

The synchronous methodology has been used successfully for the design and implemen-
tation of safety-critical embedded systems such as flight control systems in flight-by-wire
avionics and antiskidding or anticollision equipment on automobiles. They are also present
in other applications such as trains, nuclear plants, and cell phones.

Basically, a synchronous circuit contains the following components:

- circuit inputs,

- gates,

- latches.

1.2. Synchronous Versus Asynchronous Systems 9

The operation in such a circuit is controlled by a global clock. All values in its storage
components change simultaneously following the clock signals. During a clock cycle, each
circuit input receives a random value true or false. The output of a gate is formed by a
Boolean combination of its inputs. A latch corresponds to a memory unit with one input
and one output. The inputs of gates and latches are connected to the inputs and outputs
of other gates and latches. Consequently, the output of a latch in a given clock-cycle is
a Boolean combination of inputs and outputs of latches in the previous clock-cycle. The
behavior of the whole circuit is entirely predictable because each input reaches its final
value before the next clock occurs. In practice, some delay may be needed for each logical
operation in order to limit the speed at which the system can run. To determine the
maximum safe speed, static timing analysis is often used.

Advantages of Synchronous Systems

Here are some of the most important advantages of synchronous systems.

Easier to model Synchronous systems are often modeled with finite state machine
(FSM). To model concurrency correctly, it is sometimes necessary to use a combination
of several FSMs for one system. Since synchronous models are deterministic, it is much
more easier to formally reason about the models and check certain properties, especially
in case of safety-critical systems.

Easier to design A synchronous circuit can be designed easily in an improvised fashion.
For instance, a designer can simply define the combinational logic to compute a given
function, and surround it with latches. In addition, nearly all of the most important
design-related operations for synchronous systems exist in many of today’s computer-
aided design (CAD) tools.

Drawbacks of Synchronous systems

In the synchronous paradigm, time is defined as a sequence of instants between which
nothing interesting happens. In each instant, some events (inputs) occur in the environ-
ment, and a reaction (output) is computed instantly by the modeled design. Therefore,
despite of all the advantages we discussed above, reasoning and verification based on
synchronous models are meaningful only if a completely synchronous implementation of
the whole system is possible, and if we are sure that for the implemented system the
reaction time (including internal communications) is negligible compared to the rate of
external events. Furthermore, it is practically impossible to model a large system using
synchronous models.

10 Introduction

1.2.2 Asynchronous systems

Asynchronous systems can be found in many applications, ranging from CD players to
avionics systems. Their features meet the necessary requirements for assembling large-
scale heterogeneous and scalable systems. Typically, they are constructed by combining
several hardware components together to form a correct working system. Communication
between these components is assured through channels, which are used both to synchronize
operations and to pass data. Like their synchronous counterparts, asynchronous systems
also use binary signals. However, they do not use a global clock. Instead, their components
work concurrently using handshaking between them in order to perform the necessary
synchronization, communication, and sequencing of operations. This mechanism results
in a behavior similar to local clocks that are not in phase.

Advantages of Asynchronous Systems

Asynchronous systems have numerous advantages. We will describe some of the them.

Low power dissipation Basically, the clock in a synchronous circuit has to control all
parts of the circuit including those that are not used in the current computation. For
instance, even though a floating point unit on a processor may not be used in an ongoing
instruction stream, the clock still has to control the unit. By contrast, for asynchronous
circuits, the components are activated only when needed, so they make signal transitions
only when performing some work or communicating. Because of this feature, they work
fast, yet have low power dissipation.

No clock skew Clock skew refers to the difference in arrival times of the clock signal
at different parts of the circuit. The absence of a global clock in synchronous circuits
prevent them from having clock skew problems.

Less electromagnetic interference Electromagnetic interference (EMI) is a kind of
interference caused by the high speed clock switching all over a chip at approximately the
same time. Asynchronous systems generate less emission of EMI because they use local
handshaking whose signals are not correlated in time.

Easing of global timing issue In systems such as synchronous microprocessors, most
portions of the circuit must be carefully optimized in order to obtain the highest clock rate
and to achieve better performance. On the other hand, for asynchronous systems, rarely
used portions of the circuit can be left unoptimized without affecting system performance.

Easier technology migration Basically, integrated circuits are built using different
technologies during their lifetime. For instance, early systems may be built with gate ar-
rays, while later production may migrate to custom ICs. For asynchronous systems, there
is no need to migrate all system components in order to achieve a greater performance.

1.3. Scope of This Work 11

Migrating only the most critical parts is sufficient. In addition, components with different
delays can be substituted without altering other elements.

Automatic adaptation to physical properties The delay in a circuit can be affected
by many factors including variations in fabrication, temperature, and power-supply volt-
age. Asynchronous systems can adapt themselves to these different factors, and will run
as fast as the current physical properties allow.

Drawbacks of Asynchronous Systems

Asynchronous systems have their drawbacks, nonetheless. First of all, due to their com-
plexity, they are more difficult to design. Next, the ordering of operations is too difficult
to handle, especially for complex systems. Finally, there are not too many CAD tools de-
voted to asynchronous circuits. Many of the most essential operations existing in today’s
CAD tools such as placement, routing, partitioning, logic synthesis are either need special
modifications for asynchronous systems, or are not applicable at all.

1.3 Scope of This Work

The main purpose of this work is to build efficient verification techniques for asynchronous
concurrent systems. Because of the pivotal roles these systems assume in a given appli-
cation, designers of such systems must keep development and maintenance costs under
control and meet nonfunctional constraints on the design of the system, such as cost,
power, weight, or the system architecture by itself. But most importantly, they must
assure their customers as well as the certification authorities that both the design and its
implementation are correct. Otherwise, they may end up shipping unsafe systems to the
market, and the consequences of this action would be catastrophic. To achieve this goal,
designers need efficient methods and tools to assist them in verifying the correctness of
the design. These methods should be built on solid mathematical foundations in order to
be able to reason formally about the operation of the system.

We focus our study on BMC. We aim at developing BMC methods supported by
tools for analyzing the behavior of asynchronous concurrent systems and verify their
correctness, considering all the benefits and challenges in this area. BMC is traditionally
used for verifying synchronous systems because the characteristics of these systems match
well a BMC operation. However, in this work, we apply it to asynchronous systems. The
following points explain our choice.

- There exist already numerous BDD-based methods and tools for asynchronous con-
current systems. Most of them have been successfully applied in the industry. Still,
the state explosion problem limits the size of the problem they can solve. On the
other hand, SAT-based methods do not have this kind of problem, thus can handle
much bigger systems.

12 Introduction

- With the success story of BMC with synchronous systems, we believe that with a
little effort, it is also possible to repeat this success for asynchronous systems. For
this reason, we are interesting in building verification methods and tools, based on
BMC, for asynchronous systems.

- SAT-solving methods and tools continue to improve. Not only they become faster,
but the size of the formulas they can handle continues to grow. Therefore, we
believe that even though asynchronous systems are complex, using these state-of-
the-art solvers will help to tackle the problems.

To handle asynchronous concurrent systems properly, and to tackle all the BMC prob-
lems explained in the previous section, two main related tasks should be considered. First,
developing encoding techniques that provide compact Boolean formulas to be solved by a
SAT-solver. Second, building efficient unrolling techniques to minimize the bound needed
for finding a counterexample.

We propose in this thesis several encoding techniques for systems modeled as transition
systems: methods for checking reachability properties as well as for checking properties
expressed in linear temporal logic (LTL). We also propose methods for minimizing the
bound during the BMC operation. We have implemented all these methods in a BMC
toolset for asynchronous systems.

1.4 Structure of the Thesis

The rest of this thesis is structured as follows. In Chapter 2 we give all the definitions
we need throughout the report. In Chapter 3 we review most of the important BMC
techniques that exist in the literature. We introduce our approaches in Chapters 4 and 6.
In Chapter 7, we describe our BMC toolset. Case studies with experimentation results
are shown in Chapter 8. We conclude the thesis in Chapter 9 and give some possible
future directions.

Chapter 2

Background

In this chapter, we present the definitions and notations to be used throughout the report.
We will first describe the transition system model, along with other popular formalisms
for modeling concurrent systems. Next, we will explain what a property is and how to
express it formally. After that, we will discuss the satisfiability problem, and review some
of the most effective methods for solving it. Finally, we will show, with an example, how
to use BMC to verify safety properties.

2.1 Transition Systems

In order to verify the correctness of a system, it is necessary to use an appropriate formal-
ism that can describe clearly the system’s behavior. Furthermore, the model should be
able to capture the properties of interest. For finite concurrent systems, the behavior is
mainly determined by three elements: states, transitions, and computations. A state cor-
responds to a group of variables needed for describing the system at a particular instant.
When an action or event occurs, the system changes from one state to another, and the
values of the state before and after such an event determine a transition. A computation
or also execution path is formed by an infinite sequence of states, in which two consecutive
states are connected via a transition. In this section, we discuss a well-known model called
transition system (TS) [Arn94], which is also the one we use in our study.

2.1.1 Definitions
Definition 2.1.1 (Transition system)
A transition system is tuple A � pS,Σ, T, s0q where

- S is a non-empty set of states;

- Σ is a non-empty set of events;

- T � S � Σ� S is a transition relation whose elements are called transitions;

14 Background

s0

s1 s2

s3 s4 s5 s6

(A)

a

d bd

d

c

Figure 2.1: A Transition system.

- s0 is the initial state.

A transition from a state s to a state s1 is written s e
ÝÑ s1 or ps, e, s1q where e denotes

the event associated to the transition.

A transition system can be represented as a directed graph whose nodes correspond
to the states, and the edges to the transitions. The transitions are labeled with their
associated events.

Example 2.1.1 Figure 2.1 depicts an example of TS. We have A � pS,Σ, T, soq where
S � ts0, s1, s2, s3, s4, s5, s6u; Σ � ta, b, c, du; T � ts0

a
ÝÑ s1, s0

d
ÝÑ s2, s1

d
ÝÑ s3, s1

d
ÝÑ

s4, s2
b
ÝÑ s5, s2

c
ÝÑ s6u.

Definition 2.1.2 (Enabling)
Let A � pS,Σ, T, s0q be a transition system, and e an event in Σ. e is enabled at state
s if D s e

ÝÑ s1 P T . If e is enabled, it can fire. The set of enabled events at state s is
denoted by Epsq.

Definition 2.1.3 (Run)
Let A � pS,Σ, T, s0q be a transition system. A run or execution from a state s is a
sequence of transitions

σ � s0
e0ÝÑ s1

e1ÝÑ . . .
ek�1
ÝÑ sk (2.1)

such that s0 � s and @i ¥ 0, si
eiÝÑ si�1 P T . A state sk is reachable if there exists a

run from the initial state s0 to sk.

It is, therefore, possible to construct a run from a set of states S0 to a set of states Sk
denoted as S0

E0ÝÑ S1
E1ÝÑ . . .

Ek�1
ÝÑ Sk, where Ei designs the set of events that fire from

Si.

Definition 2.1.4 (To Set)
Given a transition system A � pS,Σ, T, s0q. Let s P S be a state. We define the set Topsq
as follows:

2.1. Transition Systems 15

FrompSi�1q

s1 s2 s3 s4 s5 s6

TopSiq

s7 s8 s9 s10

Si

Si�1

Figure 2.2: To and From sets.

Topsq � ts1 P S | De P Σ, s
e
ÝÑ s1 P T u (2.2)

Likewise, given a set of states P � S the set TopP q is a set P 1 � S such that
@s1 P P 1, Ds P P such that s1 P Topsq.

Definition 2.1.5 (From Set)
Given a transition system A � pS,Σ, T, s0q. Let s1 P S be a state. We define the set
Fromps1q as follows:

Fromps1q � ts P S | De P Σ, s
e
ÝÑ s1 P T u (2.3)

Likewise, given a set of states P 1 � S the set FrompP 1q is a set P � S such that
@s1 P P 1, Ds P P, s P Fromps1q.

Note that in a given run S0
E0ÝÑ S1

E1ÝÑ . . .
Ek�1
ÝÑ Sk, we always have TopSiq � Si�1,

but sometimes we may have FrompSi�1q � Si. This situation happens when some of the
states in Si has no outgoing transitions (see Figure 2.2).

2.1.2 Symbolic Representation

To represent transition systems symbolically, we use Boolean algebras [Kop89]. The rep-
resentation is needed when we construct the Boolean formulas during the BMC unrolling
operation. We will start this section by describing Boolean algebras, then show how to
use them for representing a transition system.

Definition 2.1.6 (Boolean Algebra)
A Boolean algebra is a tuple pB,�, ., 0, 1q, where B is a set; � an . are binary operators on
B satisfying the commutative and distributive law; 0 and 1 are elements of B representing
the neutral element for � and . respectively. i.e., @ b P B, b� 0 � b and b . 1 � b.

Each element b P B has a complement b P B such that b � b � 1 and b . b � 0.

16 Background

Definition 2.1.7 (Boolean Function)
A Boolean function is an n-variable logic function f : Bn Ñ B, where B � t0, 1u, and f
transforms each element pv0, . . . , vn�1q P B

n into an element of B.
A Boolean function f is a zero function if fpv0, . . . , vn�1q � 0, @pv0, . . . , vn�1q P B

n.
Likewise, a Boolean function f is a one function if fpv0, . . . , vn�1q � 1, @pv0, . . . , vn�1q P

Bn.
Each element of Bn is called vertex. A literal is either a variable vi or its complement

vi. A cube c is a set of literals, such that if vi P c then vi R c and vice versa.

Example 2.1.2 Below are some interesting examples of Boolean algebras.

- pB,_,^, 0, 1q, where B � t0, 1u; _ and ^ correspond to the logical operators OR
and AND respectively.

- pFnpBq,�, ., 0, 1q, where FnpBq is the set of n-variable logic functions on B; � and .
represent the addition and multiplication of n-variable logic functions respectively;
0 and 1 correspond to the zero and one functions respectively.

- p2S ,Y,X,H, Sq, where S is a set; Y and X correspond to the set operators union
and intersection respectively.

We will now give a symbolic representation of a transition system using Boolean alge-
bra. Given a TS A � pS,Σ, T, s0q. We can then build a Boolean algebra p2S ,Y,X,H, Sq
from the set of states S. However, since in BMC, we are dealing with Boolean variables
rather than sets, we need to find a way to map each state in S into Boolean variables. In
this way, we will have an encoding that reasons in terms of logic operators such as _ and
^, rather than set operators such as Y and X.

The mapping can be done as follows. We represent each state s P S by en encoding
function Q : S Ñ Bn such that n ¥ rlog2p|S|qs and B � t0, 1u. That is, given a
set of Boolean variables V � tv0, . . . , vn�1u each state s P S is encoded into a vertex
pv0, . . . , vn�1q P B

n. We choose n � |S|, and for each state, all variables in its associated
vertex equal zero except for the one which has the same index as the state. i.e. given a
state si, we have:

si Ø pv0 � 0, . . . , vi � 1, . . . , vn�1 � 0q (2.4)

Example 2.1.3 Assume |S| � 4. Then, we have n � 4, i.e V � tv0, v1, v2, v3u,
and each state is mapped as follows s0 Ø p1, 0, 0, 0q, s1 Ø p0, 1, 0, 0q, s2 Ø p0, 0, 1, 0q,
s3 Ø p0, 0, 0, 1q.

Any set of states P � S can be represented by a characteristic (Boolean) function
XP : Bn Ñ B that evaluates to 1 for those vertices in Bn that correspond to states in P ,
encoded using Q.

2.2. Other Models for Concurrent Systems 17

Using the state encoding above, the characteristic function of a set of states P can be
expressed by the product of those variables that evaluate to 1 for each state in P .

Formally, we have:

XP �
©
siPP

vi (2.5)

This kind of characteristic function is much common in Petri net-based methods such
as the one in [OTK04], but in this work, we apply it to transition systems.

Example 2.1.4 As a an example, consider the TS A depicted in Figure 2.1. We have:

Xts0,s1,s2u � v0 ^ v1 ^ v2; Xts3u � v3;

It is also possible to represent each state using the binary number equivalent to the
state’s index. This representation requires at least log2p|S|q Boolean variables. For in-
stance, assume |S| � 8, then we need n � log2p8q � 3 variables to represent each state,
i.e. V � tv0, v1, v2u. In binary number with three variables, we have 0 � 000, 1 � 001,
2 � 010, 3 � 011, etc. Thus, each state is mapped as follows s0 Ø p0, 0, 0q, s1 Ø p0, 0, 1q,
s2 Ø p0, 1, 0q, s3 Ø p0, 1, 1q, etc. For each state, the number of variables that have the
value 1 varies from 0 to n. Therefore, the characteristic function XP given in equation
(2.5) does not apply for this representation. Rather, it is defined as follows. Assume
we have a set of states P � ts0, s1, s2u, and n � 3. Then the function XP is given as
XP � pv0^ v1^ v2q _ pv0^ v1^ v2q _ pv0^ v1^ v2q. As we can see, the derived Boolean
formula is larger than the one in Example 2.1.4. Hence, this representation is not quite
appropriate for SAT-based approaches because it will give extra work to the solving pro-
cess. It is much more common in BDD-based methods (see e.g. [Pen03]). Figure 2.3
depicts the difference between these two representations.

2.2 Other Models for Concurrent Systems

In this section, we discuss other important formalisms for modeling concurrent systems.
Namely, Kripke structure, Petri nets, and automata.

2.2.1 Kripke Structure

A Kripke structure [CGP99] is a formalism used for describing the behavior of reactive
systems, i.e. systems that interact frequently with their environment. It is a graph-
based model, whose nodes represent the system’s states and whose edges represent the
transitions between states. This formalism also uses a labeling function that maps each
node with a set of properties that are true in the corresponding state (See Figure 2.4).
Below is a formal definition of a Kripke structure.

18 Background

p0, 0, 0q

p0, 0, 1q p0, 1, 0q

p0, 1, 1q p1, 0, 0q p1, 0, 1q p1, 1, 0q

Representation appropriate for BDD.

a

d bd

d

c

p1, 0, 0, 0, 0, 0q

p0, 1, 0, 0, 0, 0q p0, 0, 1, 0, 0, 0q

p0, 0, 1, 0, 0, 0q p0, 0, 0, 1, 0, 0q p0, 0, 0, 0, 1, 0q p0, 0, 0, 0, 0, 1q

Representation appropriate for SAT.

a

d bd

d

c

Figure 2.3: Different ways for representing the states.

Definition 2.2.1 (Kripke Structure)
A Kripke Structure is a tuple M � pS, I, T, `q where:

- S is a finite set of states;

- I � S is the set of initial states

- T � S � S is a transition relation between states;

- ` : S Ñ 2AP is a labeling function that labels each state with the set of atomic
propositions (AP) true in that state.

Definition 2.2.2 (Paths, Runs)
A path from a state s is an infinite sequence of states π � s0s1s2 . . . such that s0 � s and
psi, si�1q P T for all i ¥ 0. The set of all paths starting from a state s is denoted Πpsq.

A run is a path that starts from an initial state. The set of runs of M is defined as
ΠpMq �

�
sPI Πpsq.

A run constitutes a possible behavior of M and ΠpMq is called the linear-time
behavior of M.

Definition 2.2.3 (Computation Tree)
A tree rooted at a state s is the infinite tree T psq obtained by unfolding M from s.

2.2. Other Models for Concurrent Systems 19

r1, y2

g1, r2

y1, r2

r1, g2

Figure 2.4: A Kripke structure model of a simple traffic light controller.

A computation tree is a tree starting from an initial state. The set of computation
trees of M is defined as T pMq � tT psq | s P Iu, it shows all possible executions in M
starting from an initial state. T pMq is also called the branching-time behavior of
M.

Example 2.2.1 To illustrate the Kripke structure model, let us take a simple and
typical example: a controller that operates the traffic lights at an intersection between a
busy highway and a farm road. The controller is designed as follows. A sensor detects
the presence of a car on the farm road in either direction. By default, the highway light
remains green and the farm light remains red until a car is detected by the sensor on the
farm road. In this case, the light on the highway turns yellow, for a short period of time,
before switching into red. Once the highway light becomes red, the light on the farm
road changes into green to allow its traffic to move, and the sensor is disabled. After a
time interval long enough for a few cars to pass on the farm road, its light turns yellow
momentarily. Then both lights switch back to the default position, and the sensor is again
enabled.

Let us associate the highway with a variable called road1 and the farm road with
road2. Assume that for each roadi we have a set of atomic propositions Li � tgi, yi, riu
such that:

- gi : the light is green on roadi,

- yi : the light is yellow on roadi,

- ri : the light is red on roadi.

20 Background

g1, r2 y1, r2 r1, g2 r1, y2 . . .

g1, r2 g1, r2 g1, r2 g1, r2 . . .

Figure 2.5: Runs from the traffic light controller.

g1, r2

g1, r2

g1, r2

. . .

y1, r2

y1, r2

y1, r2

r1, g2

r1, g2

. . .

r1, y2

.

Figure 2.6: Computation tree of the traffic light controller.

Since we are only concerned with the changes of lights on both roads, we will neglect
the notion of time. Now, according to the design of our controller, we can build the Kripke
structure M � pS, I, T, `q where:

- S � L1 � L2

- I � tpg1, r2qu

- T � tppg1, r2q, py1, r2qq, ppy1, r2q, pr1, g2qq, ppr1, g2q, pr1, y2qq, ppr1, y2q, pg1, r2qq,

ppg1, r2q, pg1, r2qqu

- `pg1, r2q � tg1, r2u, `py1, r2q � ty1, r2u, `pr1, g2q � tr1, g2u, and

`pr1, y2q � tr1, y2u

- From the initial state pg1, r2q the model has a path π defined as:

π � pg1, r2q py1, r2q pr1, g2q pr1, y2q pg1, r2q pg1, r2q . . .

The graphical representation of the model is depicted in Figure 2.4. Examples of runs
and a computation tree are shown in Figure 2.5 and 2.6 respectively.

2.2. Other Models for Concurrent Systems 21

2.2.2 Petri Nets

A Petri net [Pet81, Rei85, Mur89] is a graphical as well as mathematical modeling tool
invented in 1962 by A. Petri [Pet62, Pet66]. It has a simple, yet powerful representation
comparable to flow charts, block diagrams, and networks. Moreover, through its mathe-
matical nature, it is possible to generate state equations that represent the system’s behav-
ior. Petri nets can be used for describing numerous classes of systems, including software
[BE77], computer systems [ACA78, KL82], communication networks [BT82, Dia87], pro-
cess control systems [BM86, DS83], and manufacturing systems [Des89, ZDR92, BK86],
just to name a few.

To model all these systems efficiently, Petri nets exist in different types including
colored Petri nets [Jen97], high level Petri nets [JR91], timed Petri nets [Zub80, Wan98],
and Stochastic Petri nets [MBC�98, BK02, Haa02]. In this report, we are concerned only
with “classical” Petri nets. It is defined formally as follows.

Definition 2.2.4 (Petri Net)
A Petri net is a tuple N � pP, T, F,M0q where:

- P is a set of places;

- T a set of transitions;

- F a function pP � T q Y pT � P q Ñ t0, 1u;

- M0 is the initial marking.

The sets P and T are disjoint, and their elements are called nodes. An arc exists
from node x to node y if F px, yq � 1. The set
x � ty P P Y T | F py, xq � 1u denotes
the preset of a node x. The set x
 � ty P P Y T | F px, yq � 1u denotes the postset of
a node x.

For a Petri net N we have:
MinpN q � tx P P |
x � Hu and MaxpN q � tx P P | x
 � Hu.

Definition 2.2.5 (Marking)
A marking M of a Petri net N � pP, T, F,M0q is a mapping of P to the natural numbers
N, i.e. M : P Ñ N. M can be identified with the multiset containing Mppq copies of p
for each p P P .

Graphically, transitions and places are represented with rectangles and circles, respec-
tively. Tokens inside places indicates that they hold a marking.

Example 2.2.2 Figure 2.7 depicts a Petri net version of the traffic light controller de-
scribed in Example 2.2.1. Formally, this Petri net can be represented asN � pP, T, F,M0q,
where:

- P � tg1, y1, r1, g2, y2, r2u,

22 Background

g1

y1

r2

r1

y2

g2

tb

tc

ta

td

Figure 2.7: A Petri net version of the traffic light controller.

- T � tta, tb, tc, tdu,

- M0 � tg1, r2u.

2.2.3 Automata

Automata [Hro04, Sip97, HMU01, Koz97, Kel95] is the simplest computing model in
computer science. It is used for describing finite state machines, i.e. a system that, given
a set of input symbols, evolves through a series of states following a transition function.
The automaton reads the input symbols one by one until there is nothing left. The next
state is determined by the current symbol as well as the current state. When all the
symbols are read, the automaton stops. If it stops in one of the states called accepting
states, it is said to accept the input. Otherwise, it rejects the input.

As in the Kripke structure model, states are represented graphically with circles, while
transitions are depicted as arrows. Each transition is labeled with the current symbol.
An incoming arrow without origin identifies the initial state. Accepting states are marked
with a double circle (see Figure 2.8).

Automata can be classified into different types depending on the kind of input they
accept. We will only focus on finite automata. For the other classes, see e.g. [AD94] and
the references cited above. Applications of automata to model checking can be found in
[BBF�99, CGP99].

Definition 2.2.6 (Finite Automata)
A finite automata is a tuple A � pQ,Σ, δ, q0, F q such that:

- Q is a finite set of states;

2.2. Other Models for Concurrent Systems 23

- Σ an alphabet called, the input alphabet;

- δ : Q� Σ ÝÑ Q is the transition function;

- q0 P Q is the initial state;

- F � Q is the set of accepting states.

Definition 2.2.7 (Language Accepted by an Automaton)
Let A � pQ,Σ, δ, q0, F q be an automaton and w � e1e2...en a word (i.e. a sequence of
symbols) over Σ�.

The automaton A accepts w if there exists a sequence of states r0, r1, ..., rn in Q

satisfying the following three conditions:

- r0 � q0,

- δpri, ei�1q � ri�1, for 0 ¤ i ¤ n� 1, and

- rn P F .

The language LpAq accepted by A is defined as

LpAq � tw P Σ� | A accepts wu (2.6)

which corresponds to the set of all words accepted by A.

Example 2.2.3 To illustrate the use of automata let us take a typical example: a
digicode that controls the opening of building doors. This example is a simplified version
of the one in [BBF�99]. We assume that only two keys are available, a and b. The door
opens upon keying in the sequence aab, regardless of any previous try. We can model the
digicode using an automaton with 4 states and 8 transitions as in Figure 2.8.

The automaton can be described formally by writing A � pQ,Σ, δ, q0, F q, where

- Q � t1, 2, 3, 4u

- q0 � 1

- δp1, bq � 1; δp1, aq � 2; δp2, aq � 3; δp2, bq � 1; δp3, aq � 3; δp3, bq � 4;

δp4, aq � 4; δp4, bq � 4;

- F � t4u.

A accepts all inputs containing the string aab.

24 Background

1 2 3 4

a

b

a b

b a a, b

Figure 2.8: An automaton model of a digicode.

2.3 Linear Temporal Logic

Temporal logic [Eme90, CW96] is a form of logic used for describing the behavior of con-
current systems. It is aimed at expressing succession of events without mentioning time
explicitly. It uses simple and clear notations, called temporal operators, that correspond
roughly to words in a natural language such as until, next, and eventually. To express
properties of states, the logic also uses atomic propositions combined with Boolean con-
nectives such as , ^, and _.

In this section, we will focus on a temporal logic called linear temporal logic (LTL)
[GPSS80, Lam80, BBF�99] which uses the following temporal operators:

- X (“next”) indicates that the next state satisfies a property;

- F (“in the future or eventually”) specifies that a future state on the path will satisfy
a property;

- G (“globally or always”) implies that a property will hold at all the future states in
the path;

- U (“until”) relates two properties. It states that a property holds along the path
until a second property is verified.

- R (“release”) is the logical dual of U. It requires that the second property holds along
the path up to the first state where the first property holds (or forever if such a state
does not exist).

Let P be a set of atomic propositions. The syntax and semantics of an LTL formula
is given by the following definitions.

Definition 2.3.1 (Syntax)
The set of LTL formulas on the set P is defined by the grammar ψ � p | ψ |ψ1 ^

ψ2 |ψ1 _ ψ2 |Xψ |ψ1 U ψ2 , where p ranges over P .

Definition 2.3.2 (semantics)
Let ξ � u0u1u2 . . . be an infinite word over the alphabet 2P . Let ψ be an LTL formula.
In the semantics below, ξ (ψ means ξ models ψ. We also define ξpiq � ui and ξi �

uiui�1 . . . for i P N. The semantics of LTL is then given as follows:

2.3. Linear Temporal Logic 25

- ξ (p iff p P ξp0q, for p P P

- ξ (ψ1 ^ ψ2 iff ξ (ψ1 and ξ (ψ2,

- ξ (ψ1 _ ψ2 iff ξ (ψ1 or ξ (ψ2,

- ξ (X ψ iff ξ1 (ψ,

- ξ (ψ1 U ψ2 if Di rξi (ψ2 and @j, j i we have ξj (ψ1s,

We will also use the abbreviations true � p _ p and false � true. The temporal
operators F, G, and R are derived from the above definition as follows:

Fψ � trueUψ (2.7)

Gψ � falseRψ (2.8)

ψ1 R ψ2 � p ψ1 U ψ2q (2.9)

Example 2.3.1 Let us give some examples of LTL formula:

- GpbarOpenUmidnightq reads “it is always true that the bar opens until midnight,”

- XpourTrainq reads “our train will come just next,”

- G pcritSec1^ critSec2q reads “both processes will never be in their critical section
at the same time,”

- GpReq Ñ FSatq reads “any request will eventually be satisfied.”

For concurrent systems, the next-time operator X does not have significant meaning
because, in these types of systems, it is not really important to make a distinction between
one execution step and two or more subsequent steps. These steps are considered to be
observationally equivalent, especially for high level abstract specifications. For that rea-
son, some researchers do not include this operator when they study LTL with concurrent
systems (e.g. [Sor02]). The resulted logic is often known as LTL-X. In [Lam83], Lamport
gives a detailed explanation as to why the next-time operator can be omitted in temporal
logic.

Some people also focus their study on the logic known as PLTL which is a type of
LTL combined with past operators such as Y (yesterday), O (once), and H (historically)
[BC03, BHJ�06]. In theoretical point of view, there is no big difference between PLTL
and future-only LTL since they both have the same degree of expressiveness. In practice,
however, past operators can be more useful as they keep specifications short and simple.
Hence, they can help model checker users to formulate the desired properties in a more
succinct and natural way.

26 Background

Negative Normal Form

Many LTL-based model checking methods require the formula to be written into negative
normal form (NNF)—i.e. a formula in which every negation appears only before a literal—
using the operators _,^ X, U, and R. NNF formulas can be obtained by applying the
following equivalences:

true � p_ p (2.10)

false � true (2.11)

ψ1 ^ ψ2 � p ψ1 _ ψ2q (2.12)

ψ1 R ψ2 � p ψ1 U ψ2q (2.13)

F ψ � true U ψ (2.14)

Gψ � F ψ (2.15)

Logic for Nondeterministic Choices

The logic LTL can only describe events along a single computation path. Therefore, it
cannot express the possibility of nondeterministic choices that may exist along an execu-
tion (run) at some instants. Because of this feature, LTL formulas are also called path
formulas. To express nondeterministic choices, one can use the logic known as compu-
tation tree logic (CTL) [EH86, CES86] whose formulas may contain the following path
quantifiers:

- A, known as universal path quantifier, suggests that a property is satisfied by all the
computation paths starting from the current state;

- E, known as existential path quantifier, illustrates that there exists a computation
path from the current state that satisfies a property.

Example 2.3.2 To see the difference between CTL and LTL representations, let us
take again one of the formulas from Example 2.3.1. In LTL, the statement “both processes
will never be in their critical section at the same time,” is expressed as AG pcritSec1 ^
critSec2q

More examples of properties expressed in temporal logic can be found in [BBF�99,
Pnu77]. The complexity of temporal logic with model checking is discussed in [Shn02,
Sa85].

2.4 Satisfiability Problem

The Boolean satisfiability problem (SAT) is a decision problem of finding if there exists
some assignment of the values 0 and 1 to the variables in a Boolean formula that makes
it evaluate to 1 (true). If this assignment exists, the formula is said to be satisfiable.

2.4. Satisfiability Problem 27

The formula to be solved is often written in conjunctive normal form (CNF), that is
a conjunction of clauses with disjunctive literals as in the following example.

Example 2.4.1 The CNF formula px1_ x2_x3q^ px1_x3q^ p x2_ x3q has the
satisfying assignment x1 � 1, x2 � 1, x3 � 0.

SAT has been applied to many fields in computer science including problems in elec-
tronic design automation (EDA) [FDK98, CG96, DKMW93, SSA91], microprocessor ver-
ification [VB01], field-programmable gate array (FPGA) layout [NASR04], automatic test
pattern generation (ATPG) [SBSV96, TGH97], to name but a few. (See [GPFW97] for a
complete list of applications that can be formulated as SAT.)

Although, SAT belongs to the class of NP-complete problems [Coo71], numerous stud-
ies have been conducted to find better algorithms and methods for it. Some of them are
software-related approaches [GPD97], while others consist in customizing the hardware
itself to match the requirements of SAT [AS97, SYSN01, SdBF04]. As a result, many
practical SAT instances can now be solved in minutes, or even seconds on a regular com-
puter. But since no one has ever proven that all SAT problems can be solved in polynomial
time, there must be out there some SAT instance which takes huge amount of time to
solve. Note that, interesting SAT benchmarks are available online at [Vel, DIM, SAT].
Benchmarks designed especially for BMC can also be found in [Zar05, Zar04].

In practice, there exist two classes of algorithms for solving SAT: incomplete and
complete algorithms. Based on heuristic search algorithms, incomplete algorithms can
provide results very fast. Still, they cannot prove unsatisfiability and, in some cases,
terminate without giving any result at all. For that reason, most state-of-the-art SAT
solvers use complete algorithms which can always lead to a result and are able to prove
unsatisfiability. We will describe two well-known algorithms for solving SAT. First, a
complete algorithm known as DPLL . Second, an incomplete one invented by Stålmarck.

2.4.1 DPLL Algorithm

Invented by Martin Davis, Hilary Putnam, Goerge Longeman, and Donald Loveland in
1962 [DLL62, DP60], DPLL accepts as input Boolean formulas written in CNF. It is a
backtracking search that relies on the following rules: unit clause rule, implication, and
Boolean constraint propagation.

Unit Clause Rule A Clause in which there is only one unassigned literal is called unit
clause. If the rest of the literals in that clause have the value 0, then the unassigned literal
must take the value 1 to make the clause satisfiable.

Implication A variable is forced to be 1 (true) or 0 (false) depending on the previous
assignment. The term conflict refers to the situation where both 1 and 0 are implied to
the same variable.

28 Background

Algorithm 2.1: dpll
input : formula in CNF
output: sat or unsat

while 1 do1

decide() ;2

while 1 do3

statusÐÝ bcp() ;4

if status � conflicts then5

blevelÐÝ analyzeConflict() ;6

if blevel � 0 then7

return unsat ;8

else9

backtrack(blevel) ;10

end11

else if status � satisfiable then12

return sat ;13

else14

break ;15

end16

end17

end18

Boolean constraint Propagation (BCP) It refers to the task of applying the unit
clause rule iteratively until there is no unit clause available.

Algorithm 2.1 depicts a simplified version of DPLL. The function decide() chooses
an unassigned variable to branch and gives it a value. bcp() carries out BCP operation
until a satisfying assignment is found, or until a conflict occurs. When conflict occurs,
analyzeConflict() determines the level at which to backtrack. This level corresponds
to a variable that has not been assigned both ways (1 and 0). If no such a variable exists,
the formula is unsatisfiable. A new clause, known as conflict clause, which describes the
conflicting branch can also be added during the conflict analysis in order to avoid searching
the same path again in the future. backtrack (blevel) flips the branching variable at
blevel, and undoes all implications up to that level.

DPLL is implemented in many solvers such as ZChaff [MMZ�01], Berkmin [GN02],
Sato [Zha97], and Grasp [SS99] to name but a few.

2.4.2 Stålmarck’s Algorithm

Stålmarck’s k-saturation algorithm [SS00] is based on the so-called dilemma proof system,
which is used for proving whether a propositional logic formula is a tautology. Here, k

2.4. Satisfiability Problem 29

represents a natural number called saturation level. The algorithm exhaustively searches
for a proof of depth k for a given formula. It runs fast with a time complexity Opn2k�1q,
where n corresponds to the size of the formula. This method is known to be useful for
verifying properties of industrial designs, in which, k ¤ 2 appears to be enough in most
cases. Unlike DPLL, Stalmårck’s algorithm can take non-CNF formulas as input. In
addition, implication (ñ), and equivalence (ô) are also allowed. Before describing the
algorithm, we will first review some terminologies used in the dilemma proof system.

Triplets A triplet is a compound formula of the form x � y o z, where x represents the
compound formula itself, y and z are literals, and o a binary operator. It has been proved
that all Boolean logic formulas can be reduced into triplets.

Example 2.4.2 As an example, the formula F � px1_px2^x3qq ô px1_x2q^px1_x3q

can be reduced to the following triplets:
a � x1

b � x2

c � x3

d � x2 ^ x3

e � a_ d

f � x1 _ x2

g � x1 _ x3

h � f ^ g

i � eô h

Formula Relation, Equivalence Class Let F be a Boolean formula, and SubpF q a
set containing all subformulas in F along with their complements. A formula relation on
F is an equivalence relation � over the domain SubpF q, with the constraint that if P � Q,
then P 1 � Q1, where P 1 and Q1 correspond to the complement of P and Q respectively.

If P � Q holds, this means P and Q belong to the same equivalence class, and have
the same truth value.

Association Let R be a formula relation, and P, Q subformulas of R. The relation
RrP � Qs denotes the least formula relation containing R and relates P and Q. The
notation P � Q is called an association on R. If ψ is the association P � Q, then ψ1

denotes the complementary association P � Q1.

Propagation Rules A propagation rule or a simple rule for a binary operator is a rule
for assigning a truth value, i.e. J (true) or K(false), to a formula, given that the truth
value of some of its subformulas are known. In some cases, the formula may be assigned
to another formula or complement of another formula.

For example, if the conjunction of two subformulas P ^Q is true, then P must be true
and Q must be true. This statement is expressed with the pair of rules below:

30 Background

P ^Q � J

P � J

P ^Q � J

Q � J
(2.16)

Other interesting rules for ^ include:

P � J

P ^Q � Q

Q � J

P ^Q � P
(2.17)

P � K

P ^Q � K

Q � K

P ^Q � K
(2.18)

P � Q

P ^Q � P

P � Q

P ^Q � Q
(2.19)

Dilemma Rule The dilemma rule is a branching rule for deriving new equivalence
relation from a formula relation. It has the form below:

R

RrP � Qs RrP � Qs

π0 π1

R0 R1

R0 XR1

(2.20)

The dilemma rule can be interpreted as follows: first, two subformulas P and Q are
taken from a formula relation R. P and Qmust be from different, but non-complementary,
equivalence classes in R. Then, two derivations π1 and π2 are built from the relations
RrP � Qs and RrP � Qs respectively. This leads to new equivalence classes R0 and
R1. Finally, all common associations in R0 and R1 are combined in order to form the
intersection R0 XR1.

The Dilemma Proof system

Recall that the dilemma proof system is used for proving whether a given formula is a
tautology. Briefly put, it works in the following way. At the beginning, the formula is
assumed to be false. It is first decomposed into set of triplets. Then, the propagation
rules are applied to its subformulas to determine if a contradiction exists. If yes, then the
formula is a tautology. Otherwise, the formula is false. The dilemma rule is used only if
none of the propagation rules can be applied. If still a contradiction is found from the
left and right branch of the dilemma rule, then the formula is a tautology. More detailed
explanation about the dilemma proof system can be found in [SS00].

To implement the dilemma proof system, Stålmarck introduced the k-saturation al-
gorithm which has two parts: 0-saturation, used for implementing the propagation rules,
and k-saturation (with k ¥ 1), used for the dilemma rule. The formula to be proved
is represented as a set of triplets. Starting from a given relation, the algorithm tries to
derive a new relation by applying some rules related to the triplets. The given relation
corresponds to the one obtained after assuming that the formula is false. This is often

2.4. Satisfiability Problem 31

done by assigning the value false (or zero) to the top of the formula tree and then put this
assignment as initialization of the relation. A contradiction exists if no new relation can
be derived, and this also means that the formula is a tautology. For instance, in Example
2.4.2 the top of the formula tree corresponds to the variable i in the set of triplets. Thus,
if we want to assume that F is false, we could simply assign the value false (or zero) to
the variable i.

Once the result of a tautology checking is known, the satisfiability of the formula can
also be concluded. For instance, it has been proved that if a formula is not a tautology,
its negation will be unsatisfiable (see e.g. [WBCG00]). In [CG05], Cook et al. describe a
class of formula for which 1-saturation is sufficient to prove unsatisfiability.

We will now describe the saturation algorithm.

Algorithm 2.2: zeroSaturate
input : R a formula relation

T a set of triplets
output: a formula relation

while T � H do1

tÐÝ retrieve(T) ;2

R1 ÐÝ propagate(R,t) ;3

if R1 � R then4

return R ;5

else6

T ÐÝ TY affected(R1,R) ;7

R1 ÐÝ R ;8

end9

end10

return R ;11

0-saturation algorithm

0-saturation, depicted in Algorithm 2.2, takes as input a formula relation R, and a set
of triplets T . Here the goal is to apply propagation rules to the relation until no more
new associations can be obtained. The function retrieve(T) chooses one triplet from
T and removes it from the set. propagate(R,t) checks whether any rules corresponding
to the chosen triplet t can be applied to R, and applies it. If no rules are applicable,
or inconsistency was found, propagate(R,t) simply returns R and the algorithm stops.
Otherwise, affected(R1,R) identifies all triplets affected by the rules and put them back
into T for further exploration. These steps continue until T is empty.

32 Background

Algorithm 2.3: saturate
input : R a formula relation

T a set of triplets
k a number ¥ 1

output: a formula relation

if k � 0 then1

return zeroSaturate(T,R)2

end3

foreach x P var(T) do4

R0 ÐÝ saturate(k � 1, T, RY tx � 0u);5

R1 ÐÝ saturate(k � 1, T, RY tx � 1u);6

RÐÝ R0 X R17

end8

return R ;9

k-saturation algorithm (k ¥ 1)

k-saturation, with k ¥ 1, implements the dilemma rule. The algorithm computes itera-
tively (k�1)-saturation, (k�2)-saturation, etc., until k � 0. Logically, it calls 0-saturation
when k � 0. The version of k-saturation, depicted in Algorithm 2.3, takes each triplet
variable x, and branches over the two possible values of x (i.e true or false). The two
branches produce new relations R1 and R0 respectively. Then, R0 X R1 is computed to
form a new relation R, as in the dilemma rule.

2.4.3 Other Methods for Solving SAT

Methods for non-CNF Formulas

To solve non-CNF formulas (also known as non-clausal formulas), the typical way involves
translating them into CNF, and then applying DPLL-based solvers. Although many
CNF translation techniques have been developed, they are largely based on the Tseiting
encoding [Tse83], which consists in introducing new variables for every subformula, along
with new clauses to define the relation between the new variables and the subformula.
The addition of these variables and clauses must not, in any case, change the truth value
of the original formula. This method produces a CNF representation linear in the size of
the original formula. Table 2.1 depicts a typical CNF translation of the gates AND, OR,
and NOT.

But this translation technique causes some problems nonetheless. Namely, it may
introduce too many variables, hence increasing greatly the size of the formula to be solved
by the DPLL procedure. Furthermore, a large amount of structural information can be
lost during the translation process. For example, in a translated CNF formula, there is
no difference between primary input variables, flip-flops, etc. Nevertheless, there exist in

2.4. Satisfiability Problem 33

Gate CNF clauses

oÐ ANDpi1, i2, ..., inq pi1 _ oq^

pi2 _ oq^

...

p i1 _ i2 _ ..._ in _ oq

oÐ ORpi1, i2, ..., inq p i1 _ oq^

p i2 _ oq^

...

pi1 _ i2 _ ..._ in _ oq

oÐ NOTpiq p i_ oq^

pi_ oq

Table 2.1: Typical CNF Translation for the gates AND, OR, and NOT

the literature several techniques for restoring structural information from a CNF formula
[RMB04, FM07, OGMS02]. Such information might be useful for a SAT solver in order
to make more appropriate decisions.

Methods for coping with the above problems include optimizing the translation in order
to have more compact CNF formulas as in [NRW98, Vel04b, She04, dlT92], adapting the
DPLL procedure to work with non-CNF formula [GS99, TBW04], creating SAT solvers
devoted to non-CNF formulas such as NoClause [TBW04] and BcSat [JN00], or hybrid
solvers such as CirCUs [JS04] and Pueblo [SS06] which work by combining CNF clauses
with other formalisms, or also adapting the CNF translation in order to preserve much of
the structural information as in [PG86].

Note that it is also possible to generate the proof of unsatisfiability from a SAT-solver
[MA03]. The set of clauses from the original SAT-instance needed to generate such a
proof is called unsatisfiable core [LMS04, ZM03].

SMT-based Methods

Recently, as an effort to improve the DPLL procedure, some researchers have developed
a method called DPLL(T) [GHN�04] which is mainly used to determine the satisfiability
of quantifier-free formulas composed of linear equalities or inequalities. The DPLL(T)
method combines solvers based on DPLL with arithmetic solvers capable of deciding the
satisfiability of conjunctions of linear constraints. Existing tools that use this approach
often integrate in their implementations some well known algorithms such as Fourier-
Motzkin elimination [DE73] (used by CVClite [BB04], CVC [SBD02], SVC [BDL96]),
Simplex methods [CLRS09] (used by MathSAT [BBC�05], ICS [FORS01], Simplics, Yices
[DdM06a, DdM06b], ARIO [SS05]), and graph algorithms (e.g. Barcelogic [NO05], Slice
[WIGG05]). These tools are collectively known as satisfiability modulo theory (SMT)-
based solvers. A comparison of some of them can be found at [BdMS07]. Obviously, there

34 Background

s0

tp0, 0qu

s1

tp0, 1qu

s2

tp1, 0qu

s3

tp1, 1qu

Figure 2.9: A two bit counter.

also exist BMC approaches based on SMT solvers (see e.g. [GG06, GG08a, GG08b]).

2.5 Bounded Model Checking

2.5.1 BMC Idea

The idea behind BMC can be described as follows. Given a system M, a temporal logic
formula φ, and a bound k, build a propositional formula that is satisfiable iff there is a
counterexample of length k. More precisely, the BMC problem M |ùk φ is equivalent to
the satisfiability problem on the following formula:

vM, φwk � vMwk ^ v φwk (2.21)

where

vMwk � Ips0q ^
k�1©
i�0

T psi, si�1q. (2.22)

and
v φwk � p φps0q _ . . ._ φpskqq (2.23)

In the above formulas, Ips0q corresponds to the characteristic function of the initial state,
T psi, si�1q denotes the transition relation, and vMwk expresses the unrolling of the tran-
sition relation up to the bound k. v φwk corresponds to the negation of the property
φ. It states that φ holds along the execution path from bound 0 to k. Therefore, if
the formula (2.21) is satisfiable, a counterexample has been found, which means that the
model violates the property φ. In practice, the bound is increased progressively to look
for longer possible counterexample up to a given maximum length.

2.5.2 Safety Check Example

The following example explains how to use BMC to check safety property in a two-bit
counter. We use Kripke structure as a model of the system (see Figure 2.9).

2.5. Bounded Model Checking 35

Let pa, bq be the Boolean variables that represent the value of bits at each state. The
initial state and the transition relation are given as follows:

- initial state IpS0q : p a0 ^ b0q,

- transition relation T psi, si�1q : pai�1 � pai � biq ^ bi�1 � biq.

The safety property to be checked is φ � AGp a _ bq, which means “it is always
true that either of the two bits is false (or 0).” To determine whether a counterexample
exists, we are more concerned with the negation of φ, that is EF pa^ bq, which means “it
is possible to reach a state where both bits are true (or 1).”

By applying the equations (2.22), (2.21), and (2.23) for k � 2, we obtain the following:

vM, φw2 � IpS0q ^ T ps0, s1q ^ T ps1, s2q ^ v φw2

that is,

vM, φw2 � p a0 ^ b0q^

pa1 � pa0 � b0q ^ b1 � b0q^

pa2 � pa1 � b1q ^ b2 � b1q^

ppa0 ^ b0q _ pa1 ^ b1q _ pa2 ^ b2qq.

The formula vM,φw2 is unsatisfiable. Thus, unrolling the transition relation up to
k � 2 provides no counterexample. On the other hand, if we continue with k � 3, we
could see that vM,φw3 provides a satisfiable formula that violates the safety property.

2.5.3 BMC and Liveness Properties

While it is straightforward to check safety properties with BMC (see e.g.[PICW04]), live-
ness properties are quite complicated. For example, to check whether the liveness property
AG EFP holds, we need to verify that all paths from the initial state lead to P . This is
typically done in the following way: first, check if a state satisfying P can be reached
within bound 1. If yes, then P does not hold in all existing paths within bound 1, thus
we need to increase the bound to 2. We continue the process for bound 2 while asserting
that P holds for bound 1. If we still find a state satisfying P in bound 2, we can keep
going by increasing the bound. However, if we obtain an unsatisfaiable assignment at any
given bound, we can conclude that the liveness property holds. More details on how to
use BMC for checking liveness properties can be found in [BCCZ99, GGA05].

Note that, when Biere et al. first presented the BMC idea in [BCCZ99], they used
Kripke structures to model their system. Subsequent works on BMC adopt alternative
modeling techniques. Still, the idea which underlies these works remains the same as
the original one. For instance, timed automata is used in [WZP03, Sor02], Petri nets in
[Hel01, WLP04], and transition systems in [JHN03, Jus04]. As mentioned before, we will
also use transition systems in this work.

Chapter 3

Exixting Techniques

At first, research on BMC was largely revolved around synchronous systems. The charac-
teristic of these systems, in which all variables change their values simultaneously, matches
perfectly a BMC operation. More recently, however, a great deal of work on BMC for
asynchronous systems has been published. In this chapter we will review some of the
most interesting BMC techniques that exist in the literature. Analyses and comparisons
of most of these techniques can be found in [PBG05, AKMM03, ADA�05]. We will also
discuss briefly how to deal with the completeness issue, and how to combine SAT with
unbounded model checking.

3.1 Standard Methods

In general, all BMC techniques fall into two categories: (i) techniques related to the
SAT solving and (ii) techniques related to the BMC process itself. The goal, though, is
always the same in every technique: to find a counterexample as fast as possible, if it
exists. These techniques include reduction of the BMC problem into another problem,
tuning SAT solvers for BMC, learning and preprocessing, incremental SAT solving, and
strengthening and encodings of properties.

Reduction to Another Problem Some techniques consist in reducing the BMC prob-
lem into a different kind of problem. For instance, the technique in [HN01a, HN01b] use
the logic programming known as answer set programming [MT99] to reduce the BMC
problem for 1-safe Petri nets into computation of stable models of logic programs. An-
other approach for 1-safe Petri nets, introduced in [Hel01], consists in reducing the problem
into Boolean circuit satisfiability checking, using three semantics known as process, step,
and interleaving semantics. In [ACKS02], BMC has been applied to timed system. In
this technique the BMC problem is reduced into satisfiability problem of a math-formulas,
that is a Boolean combination of propositional variables and linear mathematical relations
over real variables.

38 Exixting Techniques

Tuning SAT Solvers for BMC Other researches focus on modifying some features
in the SAT solvers to match the requirements of a BMC operation [Sht00, JAS04, SZ03].
These solvers are mainly based on the DPLL algorithm, which solves a formula by
traversing a search tree as described in Section 2.4.1. The structure of a BMC for-
mula makes it possible to use alternative branching methodologies during the traversal
[WJHS04, Zar04], or to extend the default algorithm so that more conflict clauses can be
added [Sht00, Str04]. In addition, the formulas can be simplified using different methods
such as the ones in [Kue04, Vel04a] before feeding them to the solvers. These techniques
enable the solvers to speed their execution. Therefore, the performance of BMC using
them will also improve.

Learning and Preprocessing Using learning mechanisms to extract information from
a circuit can improve both SAT solving and BMC. For example, [CNQ03, GGW�03] add
some information learned from a BDD-based analysis to the SAT engine to speed its
execution. The method in [CNQ03] performs first a BDD-based approximate reachability
analysis, then converts the BDD at each step into clauses to constrain the SAT solver,
whereas the one in [GGW�03] extracts clauses dynamically or statically, and limits the
learning process only to local regions to prevent excessive computational and memory
costs.

For every unsatisfiable CNF formula, it is possible to generate a proof of unsatisfiability
from the solver. The set of clauses from the original formula needed for generating such
a proof is called unsatisfiable core. Extracting such information is proven to be useful
especially in an abstraction-refinement process because it gives an explanation as to why
the formula is unsatisfiable and can guide the refinement. [MA03] suggests a method for
generating such a proof. [McM03, ZPHS05, GS05, CCK�02] show how to use it in BMC.

The authors in [AH04] introduce a preprocessing engine called SIMP2C, which converts
indirect implications learned via logic simulation into constraint clauses. These clauses
are replicated throughout the whole BMC run and provided to the SAT solver to speed up
its decision process. This reduction technique is also adopted in the Hypre preprocessor
[BW03], which, in addition, can perform equality reduction.

The preprocessing engine called NiVER introduced in [SP05] uses a variable elimina-
tion technique that does not increase the size of the CNF formula. Though not directly
related to clause learning, this technique also improves SAT solving. Hypre and NiVER
are designed for general purposed SAT-solver, yet they can also be used for a BMC oper-
ation.

Incremental SAT Solving As it turns out, a CNF formula generated at a given
BMC step is, in fact, an extension of the one generated immediately before it. Con-
sequently, all propositional formulas obtained during a BMC operation maintain the
same structure. Many SAT solvers exploit this feature to perform incremental solving
[Een03, JS05, ZPH04, WKS01, Str01]. That is, the possibility of reusing some conflict
clauses learned during one SAT check when solving the next instance. These learned

3.2. Completeness 39

clauses prevent the solver from examining some regions in the search space that contain
no solution. As a result, the solving speed improves, and so does the entire BMC oper-
ation. BMC encodings, built especially for incremental SAT such as the one in [HJL05],
will improve even more the whole process. The authors in [JS05] use a general crite-
rion for filtering the clauses to be reused, and a distillation technique for preventing the
exploration of unneeded regions in the search space.

Property Strengthening While incremental learning can improve the speed of SAT
solving, it does not reduce the depth needed to prove a property. On the other hand,
property strengthening allows a property to be falsified or verified within small depth. It
does so, by enlarging the property so that a counterexample can be detected at an earlier
depth. For example, the framework for proving a property via structural analysis, intro-
duced in [BKA02], combines a BDD-based backward unfolding with a target enlargement
mechanism in order to make unreachability proof much more easier. It computes first an
overapproximation of the so-called system diameter. Then, performs a mix SAT-based
forward unfolding and the BDD-based backward one from the target states. In [dMRS03],
Moura et al. strengthen the property by adding to it a counterexample generated from
a failed induction step. In this BMC-induction combination, the strengthening power
depends largely on the generated counterexample.

Encodings of Properties It is also possible to improve the performance of BMC
by finding a better way to encode the properties. For LTL properties, some meth-
ods use encodings that allow direct translation of the formula into propositional for-
mula [CPRS02, LBHJ04], while others encode the LTL property using Büchi automata
[dMRS02, CKOS04]. Some works also deal with CTL properties such as the ones pre-
sented in [PWZ02a, PWZ02b].

3.2 Completeness

Numerous techniques have been developed so far in order to make BMC complete, that
is, allowing it not only to look for a counterexample, but also to provide a “yes” or “no”
answer, just as in standard model checking (see Figure 1.1). These techniques include
computing the completeness threshold, temporal induction, interpolation, ATPG-based
method, and abstraction.

Computing the Completeness Threshold The idea consists in computing the value
of a bound known as completeness threshold [CKOS04] or also termination length [AS06],
within which a counterexample is expected to be found, if it exists. However, computing
this bound is not trivial. Furthermore, its value depends on the property, the model, and
the termination criterion. For reachability properties, for example, completeness threshold
coincides with the system diameter [BCCZ99, BK04] which is the longest shortest path

40 Exixting Techniques

between two states. Thus, to check whether these properties hold, it is enough to increase
the bound up to the system diameter, and if no counterexample appears within this
limit, then the system is correct. But determining the diameter is no easy task, and its
value can be too large to handle. For this reason, Biere et al. propose in [BCCZ99] an
overapproximation called recurrence diameter which corresponds to the longest loop-free
path between two states. This number, while big, is proven to be much easier to compute
than the diameter [KS03].

Temporal Induction Here, the goal is to prove the following two conditions which
constitute the base case and the induction step respectively. Given a bound k, (i) the
property holds in all paths of length k from the initial states and (ii) for any path of
length k where the property holds in all states, it is not possible from the last state
of the path to reach a state where the property does not hold. In addition, to ensure
completeness, all states of the paths in the base condition must be distinct [SSS00, Een03].
Induction algorithms increase the value of k until the two conditions above are proven or
a counterexample is found.

Interpolation An interpolant for the pair pA,Bq is a formula P such that (i) A ñ P

(ii) P ^B is unsatisfiable and (iii) P refers only to the common variables of A and B.
If a BMC formula is unsatisfiable, it can be partitioned into conjunction of two for-

mulas A and B, such that A represents the initial states with the first transition, whereas
B encodes the rest of the transition up to an initial bound k along with the property.
In [McM03, McM05] McMillan introduces an algorithm that computes the interpolant of
these two formulas. This interpolant corresponds to an overapproximation of the set of
states reachable from an initial state in one step. Using this interpolant, McMillan’s algo-
rithm can determine whether a fixpoint is reached at bound k, or a real counterexample
occurs. If it reaches a fixpoint, then the property holds and the algorithm stops. If no
real counterexample appears, the algorithm increases the value of k until either it finds a
real counterexample or reaches the system diameter. If it reaches the diameter without
finding a real counterexample, then the system is correct.

ATPG-based Method In [IPC03], Iyer et al. suggest a quite different approach based
on the technique known as automated test pattern generation (ATPG). Their algorithm
performs an ATPG-based backtracking traversal from states where the property is false.
If it reaches an initial state during the traversal, then it generates a counterexample.
Otherwise, the property is proven to be true and the algorithm stops. To guarantee
completeness, it uses additional Boolean constraints to mark already visited states, thus
avoiding searching them again in future iterations.

Abstraction Completeness can also be achieved through abstraction-refinement tech-
niques, most of which use the unsatisfiable core to refine the model. The algorithm in

3.3. SAT with Unbounded Model Checking 41

[CCK�02], for example, starts with an initial abstraction of the model. Using a BDD-
based procedure, it checks first whether the property holds in the abstract model. If yes,
then the system is correct. Otherwise, it runs a BMC session on the concrete model,
taking the length of the abstract counterexample as a BMC length. If the BMC op-
eration still returns a counterexample, then the system is incorrect. Otherwise, it uses
the unsatisfiable core to refine the abstract model and restart again with the BDD-based
procedure.

The proof-based method introduced in [MA03], on the other hand, starts with a BMC
session with an initial length k. If the formula is unsatisfiable, the algorithm uses the
unsatisfiable core to create a new abstraction of the model. Then, it runs a standard
BDD-based model checker on the abstract model to determine whether it is correct or
not. If it is correct, the algorithm terminates. Otherwise, the BDD-based model checker
produces a counterexample whose length k1, which is always greater than k, is used later
on as the next BMC bound.

The algorithm in [Kro05] creates an abstraction by using a method known as cut-point
insertion. That is, it removes some parts of the design and replaces them with nonde-
terministically chosen inputs. The result is an abstract model that overapproximates the
concrete one, and preserves safety properties. This algorithm also uses the unsatisfiable
core to refine the model, and to ensure completeness, it can identify reasonably small
completeness threshold.

3.3 SAT with Unbounded Model Checking

Adapting SAT to work with unbounded model checking (UMC) makes the image compu-
tation process more tractable. SAT-based UMC performs the image computation using
all-solution SAT-solvers. That is, solvers that compute all satisfying solutions (see e.g.
[LHS04]), as opposed to general-purposed SAT-solvers which provide only a single solu-
tion if it exists. In contrast to BDD-based approaches, this technique stores the set of
reached states as set of clauses, and adds some Blocking clauses in order to avoid reaching
the same solution space in the future. The clauses generated at each iteration can be used
as the starting states for the next iteration.

For example, [GYA�01] exploits the strengths of both SAT and BDDs in order to
improve the image computation during a model checking operation. This is achieved by
decomposing first the image computation problem into many sub-problems using a SAT-
based algorithm. Each of these sub-problems is handled later on by a conventional BDD
approach. This allows the state space to be represented as BDDs, and the transition
relation as a CNF formula. The same authors also introduce in [GYAG00] a CNF parti-
tioning technique which, combined with the previous method, improves the efficiency of
the associated SAT algorithm. In [CCK03], Chauchan et. al show how to perform an
image computation with a pure SAT procedure. Unlike the method in [GYA�01], they
use clausal form to represent both the state space and the transition relation.

42 Exixting Techniques

The method in [ABE00, BC00], on the other hand, adapts existing BDD-based algo-
rithms to work with SAT-solvers. This adaptation increases the class of systems that can
be verified using traditional symbolic methods. In [GGA04], the main purpose is to use
some special features from SAT-based algorithm for tackling the quantifier elimination
problem, which is one of the most important operations in symbolic model checking.

SAT procedure is also used in [Cla02] to determine whether a counterexample obtained
from an abstract model is real or spurious. In case the counterexample is spurious,
the algorithm refines the model using integer linear programming and machine learning
techniques.

3.4 Existing BMC Tools

Many BMC-related tools have been developed so far. While some of them are built
especially to perform BMC operation, others can also handle BDD-based model checking.
The most widely used is the one called NuSmv [CCGR99] which has incorporated BMC
implementation since its version 2.0. This tool uses reduced Boolean circuits [ABE00] as
an intermediate representation for the propositional formulas.

The BMC feature has also been included in Vis [BHSV�96] since its version 2.0.
Unlike NuSmv, it does not use intermediate representation for generating formulas.

Chapter 4

Encoding Methods

In this chapter, we introduce our BMC encoding methods for systems modeled as syn-
chronized product of transition systems. Recall that BMC is performed by increasing the
bound progressively to look for a longer possible counterexample up to a given length
(see Algorithm 1.2). The objective is mainly to generate a Boolean formula out of the
unrolling operation, and doing so in a way to obtain a formula easily manageable by a
SAT-solver. Normally, when we increase the bound, the size of the generated Boolean
formula grows as well. This situation, combined with the possible huge number of steps
needed for finding a counterexample in concurrent systems, constitutes a major hurdle
in BMC. To cope with this issue, it is then necessary to use an encoding that not only
generates succinct formula, but also reduces the bound required for finding a counterex-
ample. In this way, the SAT-solver’s task will be alleviated, and the execution will go
faster. With this end in view, we based our method on the following fundamental points.

Fire multiple events at once Traditionally, concurrent systems are unrolled using
the so-called interleaving execution. However, interleaving allows us only to fire one event
at a time, which is not quite helpful for concurrent systems, especially when dealing with
synchronized product ones. In our method, we provide a way for firing several events
together. The idea is to unroll the system using breadth-first search approaches and
provide an encoding that can capture all reachable states in a given step.

Reduce the bound using chaining traversal We can reduce the bound by combining
the above approach with the method known as chaining traversal. This method allows
consecutive enabled events to be fired together in one step, thus creates a domino effect
that substantially reduces the bound. In order to work properly, however, this method
requires a well-established event order. For that, we also provide some event ordering
techniques to be used with the chaining operation.

The rest of the chapter is organized as follows. In Section 4.1 we review some work
in the literature related to this topic. In Section 4.2 we describe how to represent a

44 Encoding Methods

transition system symbolically. In Section 4.3 we introduce a BMC encoding devoted
for single independent systems. In Section 4.4 we detail the encoding for synchronized
transition systems. In Section 4.5 we show how to express reachability properties. We
end the Chapter with the chaining method in Section 4.6.

4.1 Related Work

We will now review some BMC encodings in the literature related to asynchronous con-
current systems. In [Jus04, JHN03] Jussila et al. introduce a BMC technique for systems
modeled as labeled transition systems (LTSs). Their idea consists in translating LTSs into
Boolean formula using some predefined translation predicates. This technique allows sev-
eral independent actions to happen simultaneously. As a result, it can shorten the bound
needed to detect a property violation. The encoding in [Hel01] also adopts a similar idea
for Petri net models. It uses some translation rules to obtain a Boolean circuit (BC)
from the unrolling operation, and uses a BC-based solver to check the satisfiability of the
generated circuit. By using translation rules, as in the above approaches, the Boolean
formula is not constructed directly from the model itself. Instead, it is derived from the
newly obtained representation after applying the rules.

By contrast, the methods in [OTK04] and [Sor02], which apply to Petri nets and
timed automata respectively, derive the Boolean formula directly from the definition of
the system itself rather than relying on transformation rules. In addition, the authors of
[Sor02] show how to make BMC for timed automata complete by setting up a lower and an
upper bounds for the length k of counterexample. On the other hand, while the method
in [OTK04] has produced interesting results, its performance depends on a preprocessing
algorithm that computes a total order of the transitions.

In [GG08b], Ganai et al. apply BMC to multi-thread concurrent systems with shared
memory, such as multi-processor computers. They use their method to check safety prop-
erties such as data races for these types of systems, which they model using extended
finite state machine (EFSM). In their approach, they first create independent models for
each individual thread in the system, then, to ensure synchronization, explicitly add addi-
tional synchronization constraints into the model. To reduce the size of these constraints
they do not allow local wait cycles (i.e. there are no self-loops in local read/write blocks
with shared accesses.) They also transform the model using some property preserving
techniques, which further reduce the size of concurrency constraints. They check the
satisfiability of the generated formula with SMT-based solver instead of a standard one.

The methods most closely related to ours are the ones introduced in [Jus04, JHN03],
which also deal with synchronized product of transition systems. However, the principles
are quite different since, in our work, we do not use transformation rules. The method
in [OTK04], while using direct transformation, differs from ours in the type of system to
which it applies—Petri net vs. transition system. The method in [Sor02] also use direct
transformation but it is for timed systems.

4.2. Symbolic Representation 45

s0

s1 s2

s3 s4 s5 s6

(A0)

a

d bd

d

c

Figure 4.1: A Transition system.

4.2 Symbolic Representation

Representing a Single Transition

A transition system A is usualy represented as A � pS,Σ, T, s0q (see Section 2.1). We can
extend this representation as A � pV, V 1, S,Σ, T, s0q, where V and V 1 denote respectively
the set of current and next-state Boolean variables for A, such that for each current-state
variable v P V , there exists a corresponding next-state variable v1 P V 1 and vice versa.

Now, let sp and sq be two states such that sq P Topspq. We define T psp, sqq, the
transition from sp to sq, as follows:

T psp, sqq �

$'&
'%

Xtspu ^ v1p ^ v1q ^
�
vkPV ztvp,vqu

pvk Ø v1kq if sp � sq and Epsqq � H
Xtspu ^ v1p ^ v1q ^

�
vkPV ztvp,vqu

pvk Ø v1kq if sp � sq and Epsqq � H
Xtspu ^ v1p ^

�
vkPV ztvpu

pvk Ø v1kq if sp � sq
(4.1)

In practice, to express a transition between two steps i and i � 1, we encode the
current-state variable using the index i and the next-state variable using i � 1. Thus,
assuming that sp is reached at step i and sq at step i� 1, equation (4.1) above becomes:

T psp,i, sq,i�1q �

$''''''''&
''''''''%

Xtsp,iu ^ vp,i�1 ^ vq,i�1

^
�
vkPV ztvp,vqu

pvk,i Ø vk,i�1q if sp � sq and Epsqq � H
Xtsp,iu ^ vp,i�1 ^ vq,i�1

^
�
vkPV ztvp,vqu

pvk,i Ø vk,i�1q if sp � sq and Epsqq � H
Xtsp,iu ^ vq,i�1

^
�
vkPV ztvp,vqu

pvk,i Ø vk,i�1q if sp � sq

(4.2)

Example 4.2.1 For the TS A0 in Figure 4.1, the equation for T ps0,0, s1,1q is given as:

T ps0,0, s1,1q � v0,0 ^ v0,1 ^ v1,1 ^ pv2,0 Ø v2,1q ^ pv3,0 Ø v3,1q ^ pv4,0 Ø v4,1q

^pv5,0 Ø v5,1q ^ pv6,0 Ø v6,1q

46 Encoding Methods

Representing Multiple Transitions

Given two sets of states Sp and Sq such that TopSpq � Sq. Assume Sp is reached at step
i and Sq at step i� 1. To capture the execution of multiple transitions together from Sp,
we define T pSp,i, Sq,i�1q as follows:

T pSp,i, Sq,i�1q �
©

spPSp;sqPSq

T psp,i, sq,i�1q (4.3)

Equation 4.3 is useful for capturing the firing of multiple events together from the
states where they are enabled.

Example 4.2.2 For the TS A0, assume that at step 0, we start with S0 � ts0u, and
at step 1 we reach S1 � ts1, s2u. Then T pS0,0, S1,1q is given as:

T pS0,0, S1,1q � v0,0 ^ v0,1 ^ v1,1 ^ v2,1 ^ pv3,0 Ø v3,1q ^ pv4,0 Ø v4,1q

^pv5,0 Ø v5,1q ^ pv6,0 Ø v6,1q

Note that, the example above may appear incomplete as it concerns only a transition
between two consecutive steps as described in equation (4.3). We will see in the next
section how to encode a complete BMC execution starting from the initial state up to a
given bound.

4.3 Encoding for Independent Systems

In this section, we will discuss how to encode a BMC operation for a single independent
TS. We will start with the standard interleaving execution, and continue with a method
based on the so-called breadth-first search.

4.3.1 Interleaving Execution

Introduction

To capture the behavior of concurrent systems it is not uncommon to use the method
known as interleaving execution [CGP99], which allows only one event, within one tran-
sition, to fire at each step. As a result, with this technique, we can reach at most one
single state at each step, and can only obtain an execution path formed by succession of
single transitions from bound 0 to k. The events in this path follow a linear order known
as interleaving sequence.

Application to BMC

Given a TS A � pS,Σ, T, s0q, a property φ, and a bound k. The BMC formula for A,
defined in terms of interleaving execution, is given as

intvA, φwk � intvAwk ^ v φwk (4.4)

4.3. Encoding for Independent Systems 47

where

- intvAwk defines the unrolling of A up to bound k using interleaving execution, i.e.

intvAwk � Ips0q ^
k�1©
i�0

T psi, si�1q (4.5)

- Ips0q denotes the characteristic function of the initial state, and is defined as

Ips0q � Xts0,0u ^
©
sp�s0

 vp,0 (4.6)

- T psi, si�1q � T psp,i, sq,i�1q such that sp is a state reached at step i, and sq is one
reached at step i� 1.

- v φwk corresponds to the negation of the property at bound k.

For the moment we are only interested in the unrolling part of the BMC formula.
Hence, we will not detail v φwk until Section 4.5.

Example 4.3.1 For the system A0 in Figure 4.1 we can obtain the following inter-
leaving execution for bound k � 2

intvAw2 � Ips0q

^T ps0,0, s1,1q

^T ps1,1, s4,2q

�
�
v0,0 ^ v1,0 ^ v2,0 ^ v3,0 ^ v4,0 ^ v5,0 ^ v6,0

�

^
�
v0,0 ^ v0,1 ^ v1,1 ^ pv2,0 Ø v2,1q ^ pv3,0 Ø v3,1q

^pv4,0 Ø v4,1q ^ pv5,0 Ø v5,1q ^ pv6,0 Ø v6,1q
	

^
�
v1,1 ^ v1,2 ^ v4,2 ^ pv2,1 Ø v2,2q ^ pv3,1 Ø v3,2q

^pv5,1 Ø v5,2q ^ pv6,1 Ø v6,2q ^ pv0,1 Ø v0,2q
	

Theorem 4.3.1
Given a transition system A, a property φ, and a bound k. If intvA, φwk is satisfiable,
then A * φ.

Proof Assume that intvA, φwk is satisfiable. From the equation (4.5) we have T psi, si�1q �

1 iff si�1 is reachable from si in one step. Obviously, this implies that T ps0, s1q ^ . . . ^

T psk�1, skq � 1 iff s0, . . . , sk represents a run from the initial state. Since intvA, φwk �
Ips0q ^ T ps0, s1q ^ . . . ^ T psk�1, skq ^ v φwk is satisfiable, we can conclude that a state
violating the property φ is reachable in k steps or less from the initial state.

48 Encoding Methods

Interleaving paths
s0

s1 s2

s3 s4 s5 s6

p1q

a

d bd

d

c

BFS Step 0

BFS Step 1

BFS Step 2

s0

s1 s2

s3 s4 s5 s6

p2q

a

d bd

d

c

Figure 4.2: Interleaving (1) vs. BFS. (2)

Theorem 4.3.2
Given a transition system A, a property φ, and a bound k. A * φ implies Dk P N such
that intvA, φwk is satisfiable.

Proof Assume that A * φ, i.e. there exists a path from the initial state to a state where
φ is violated. Assume that k is the length of that path. Since φ is violated at execution
step k, its negation is thus satisfied at that step. Therefore, we have intvAwk ^ v φwk is
satisfiable, which means intvA, φwk is satisfiable.

With the interleaving method, we need to analyze all possible paths in the system
between bound 0 and k in order to ensure that no counterexample has been missed.
Doing so is onerous, however, and time-consuming for concurrent systems. One way to
deal with this issue is to use breadth-first search method as we will explain in the next
section.

4.3.2 Breadth-First Search Execution

Introduction

Breadth-first search (BFS) is a kind of algorithm for searching a graph. It systematically
explores the edges of the graph to “discover” all reachable vertices from a given source. It
also computes the distance—smallest number of edges—from the source to each reachable
vertex.

A vertex is discovered the first time it is encountered during the search. The BFS algo-
rithm expands the search frontier between discovered and undiscovered vertices uniformly
across the breadth of the frontier. That is, it discovers all vertices at distance k from the
source before discovering any vertices at distance k � 1. To do so, BFS works as follows.
Starting at the source, it visits all the adjacent vertices. Then for each of those new
vertices, it visits their undiscovered adjacent ones, and so on, until every vertex has been
visited. Detailing the BFS algorithm is out of the scope of this work, though. Interested
reader is invited to check [CLRS09].

4.3. Encoding for Independent Systems 49

Using BFS allows us to fire multiple events together at once. This implies that, at each
step, we reach a set of states rather than a single state as in the interleaving execution.
Hence, from bound 0 to bound k we obtain an execution path formed by sets of states. In
addition, since BFS can discover all reachable states from the initial one, using it ensures
us that no counterexamples will be missed during the BMC operation.

Example 4.3.2 Figure 4.2 shows the difference between interleaving and BFS execu-
tion. With the interleaving execution (Figure 4.2 (1)) we have to analyze all the following
paths:

(P1) s0
a
ÝÑ s1

c
ÝÑ s3

(P2) s0
a
ÝÑ s1

c
ÝÑ s4

(P3) s0
c
ÝÑ s2

b
ÝÑ s5

(P4) s0
c
ÝÑ s2

d
ÝÑ s6

If we omit the path (P2), for instance, and a counterexample appears at s4, then we
will miss it. On the other hand, with BFS (Figure 4.2 (2)) we only need to analyze the
following path.

ts0u
ta,cu
ÝÑ ts1, s2u

tc,b,du
ÝÑ ts3, s4, s5, s6u

The real hurdle with the BFS method, however, is to determine the exact state in
which the property violation occurs. For instance, in Example 4.3.2 above, if a property
is violated at bound 2, the encoding we use should be able to tell us in which of the states
in the set ts3, s4, s5, s6u this property violation really occurs. We will see how to cope
with this problem later in this chapter.

Application to BMC

To unroll the system using BFS, we proceed as follows. We apply equation (4.3) which
describes the transition between From and To sets. At each step, we put into the From
set all states reached at the current step, and we construct the To set by firing all the
events that are currently enabled. We initialize the From set with the initial state.

Now, given a TS A � pS,Σ, T, s0q, a property φ, and a bound k. The BMC problem
A |ùk φ, defined in terms of BFS execution, is equivalent to the satisfiability problem of
the following formula:

bfsvA, φwk � bfsvAwk ^ v φwk (4.7)

where

- bfsvAwk defines the unrolling of A up to bound k using BFS execution, i.e.

bfsvAwk � IpS0q ^
k�1©
i�0

T pSi, Si�1q (4.8)

50 Encoding Methods

- S0 � ts0u

- IpS0q � Ips0q,

- T pSi, Si�1q � T pSp,i, Sq,i�1q such that Sp is the set of states reached at step i, and
Sq is the one reached at step i� 1.

Note that, at each step we have Si
EiÝÑ Si�1, where Ei denotes the set of events that

fire at step i. For a single independent system we have Ei � Ei, where Ei corresponds to
the set of events that are enabled at Si (see Definition 2.1.2).

Example 4.3.3 Let us take again the TS A0 in Figure 4.1. The BMC formula bfsvAw2
for bound k � 2 is given as,

bfsvAw2 � IpS0q

^T pS0,0, S1,1q

^T pS1,1, S2,2q

�
�
v0,0 ^ v1,0 ^ v2,0 ^ v3,0 ^ v4,0 ^ v5,0 ^ v6,0

�

^
�
v0,0 ^ v0,1 ^ v1,1 ^ v2,1 ^ pv3,0 Ø v3,1q

^pv4,0 Ø v4,1q ^ pv5,0 Ø v5,1q ^ pv6,0 Ø v6,1q
	

^
�
v1,1 ^ v2,1 ^ v1,2 ^ v2,2 ^ v3,2 ^ v4,2 ^ v5,2 ^ v6,2

^pv0,1 Ø v0,2q
	

where,
S0 � ts0u; S1 � ts1, s2u;S2 � ts3, s4, s5, s6u;

E0 � ta, du;E1 � tc, b, du

Theorem 4.3.3
Given a transition system A, a property φ, and a bound k. If bfsvA, φwk is satisfiable,
then A * φ.

Proof T pSi, Si�1q can be seen as a combination of several individual transitions of
the form T psi, si�1q between two steps i and i � 1. This assumption applies for all
T pSi, Si�1q, i P r0, ks. We can, therefore, obtain many runs s0, . . . , sk formed by these
individual transitions from step 0 to k. It follows that, we also have a run S0, . . . , Sk

formed by the combination of these individual runs. Applying Theorem 4.3.1, we have
T ps0, s1q ^ . . . ^ T psk�1, skq � 1 for each of the individual runs. Hence, we also have
T pS0, S1q ^ . . . ^ T pSk�1, Skq � 1 since the run S0, . . . , Sk is obtained by combining all
s0, . . . , sk runs. Therefore, since bfsvA, φwk � IpS0q^T pS0, S1q^. . .^T pSk�1, Skq^v φwk

is satisfiable, a state violating the property φ is reachable in k steps or less from the initial
state.

4.4. Encoding for Synchronized Systems 51

Theorem 4.3.4
Given a transition system A, a property φ, and a bound k. A * φ implies Dk P N such
that bfsvA, φwk is satisfiable.

Proof The proof of this theorem is similar to the one for Theorem 4.3.2 except that
here, we are dealing with set of states rather than a single state. Assume that A * φ.
This means there exists a reachable set of states containing a state that violates the
property φ. This set is reached from the initial state through a run formed by all the
reachable states at each execution step. Assume k is the length of the run. Since φ
is violated at step k, its negation is thus satisfied at that step. Therefore, we have
IpS0q ^ T pS0, S1q ^ . . . ^ T pSk�1, Skq ^ v φwk is satisfiable, which means bfsvA, φwk is
satisfiable.

4.4 Encoding for Synchronized Systems

Asynchronous concurrent systems are composed of many components that communicate
between each other. We model them using synchronized product of transition systems.
The approach in Section 4.3 allows us only to encode the BMC execution of a single
component—considered independent—without taking into account the synchronization.
Starting from now on, we will always work on synchronized systems.

In this section, we introduce some encoding methods for these systems. As before, we
will start with the interleaving execution and continue with the BFS one.

4.4.1 Interleaving Execution

Introduction

Let us first start by defining the synchronized product of TSs in terms of interleaving
execution.

Definition 4.4.1 (Synchronized Product of TSs)
Let A0, . . . ,Am be TSs. Their synchronized product defined in terms of interleaving
execution, denoted pA0, . . . ,Amq is the TS A � pS,Σ, T, s0q such that,

- Aj � pS
j ,Σj , T j , sj0q, j P r0,ms

- S � S0 � . . .� Sm

- s0 � ps
0
0, . . . , s

m
0 q

- Σ �
�m
j�0 Σj ,

- T � S � Σ� S

52 Encoding Methods

The firing of an event at each step i should respect the following synchronization condition:
given a transition t � pps0

i , . . . , s
m
i q, ei, ps

0
i�1, . . . , s

m
i�1qq, for all 0 ¤ j ¤ m if ei P Σj then

psji , ei, s
j
i�1q P T

j otherwise sji�1 � sji . That is, we can fire an event only if it is a local
event—an event that exists only in one component—or it is synchronized, and is enabled
in all components that have it in their alphabets. sji denotes the state reached at step i
for component j.

To respect the rules in interleaving execution, we have to fire only one event at each
step. In addition, each component of the system must execute at most one transition
related to the enabled event at a time. However, since we are dealing with synchronized
product of TSs, we need to take into account the fact that the event may be enabled in
several components. Thus, we have to fire it in each of these components to guarantee the
synchronization. All this means that, at each step, we fire only one event, but possibly,
many transitions from different components.

Example 4.4.1 In Figure 4.3, we combine the system A0 with another one A1. We
then obtain a synchronized systemA � pA0,A1q. We can obtain the following interleaving
execution for bound k � 2:

ps0, s7q
a
ÝÑ ps1, s8q

d
ÝÑ ps4, s8q

Application to BMC

Now, consider a synchronized TS A � pA0, . . . ,Amq, a property φ, and a bound k. We
define the BMC formula for A, in terms of interleaving execution, as follows.

IntvA, φwk � IntvAwk ^ v φwk (4.9)

where

- IntvAwk defines the unrolling of A up to bound k using interleaving execution, i.e.

IntvAwk � IIntps0q ^
k�1©
i�0

TIntpsi, si�1q (4.10)

- IIntps0q denotes the characteristic function of the initial state, such that

IIntps0q � Xts00,...,sm0 u ^
©

spP
�m

j�0 S
jzts00,...,s

m
0 u

 vp,0 (4.11)

- TIntpsi, si�1q defines the transition between two steps i and i� 1 such that

TIntpsi, si�1q � T pts0
i , . . . , s

m
i u, ts

0
i�1, . . . , s

m
i�1uq (4.12)

Recall that the firing of an event at each step should respect the synchronization
criterion given in Definition 4.4.1.

4.4. Encoding for Synchronized Systems 53

s0

s1 s2

s3 s4 s5 s6

(A0)

a

d bd

d

c

s7

s8

s9

(A1)

a

b

c

Figure 4.3: Synchronized product of TSs.

Example 4.4.2 For the system A � pA0,A1q depicted in Figure 4.3, we can generate
the following interleaving execution formula from bound 0 to 2.

IntvAw2 � IIntpps
0
0, s

1
0qq

^TIntpps
0
0, s

1
0q, ps

0
1, s

1
1qq

^TIntpps
0
1, s

1
1q, ps

0
2, s

1
2qq

�
�
v0,0 ^ v7,0 ^ v1,0 ^ v2,0 ^ v3,0 ^ v4,0 ^ v5,0 ^ v6,0 ^ v8,0

^ v9,0

�

^
�
v0,0 ^ v7,0 ^ v0,1 ^ v7,1 ^ v1,1 ^ v8,1 ^ pv2,0 Ø v2,1q ^ pv3,0 Ø v3,1q

^pv4,0 Ø v4,1q ^ pv5,0 Ø v5,1q ^ pv6,0 Ø v6,1q ^ pv9,0 Ø v9,1q
	

^
�
v1,1 ^ v1,2 ^ v4,2 ^ pv0,1 Ø v0,2q ^ pv2,1 Ø v2,2q ^ pv3,1 Ø v3,2q

^pv5,1 Ø v5,2q ^ pv6,1 Ø v6,2q ^ pv7,1 Ø v7,2q ^ pv8,1 Ø v8,2q

^pv9,1 Ø v9,2q
	

where
s0

0 � s0; s1
0 � s7; s0

1 � s1; s1
1 � s8; s0

2 � s4; s1
2 � s8;

e0 � a; e1 � d

Theorem 4.4.1
Given a synchronized system A � pA0, . . . , Amq, a property φ, and a bound k. If
IntvA, φwk is satisfiable, then A * φ.

Proof Assume IntvA, φwk is satisfiable, i.e. IIntps0q^TIntps0, s1q^. . .^TIntpsk�1, skq^

vφwk is satisfiable. We have TIntpsi, si�1q � T pts0
i , . . . , s

m
i u, ts

0
i�1, . . . , s

m
i�1uq. Each

TIntpsi, si�1q is then of the form T pSi, Si�1q, where Si � ts0
i , . . . , s

m
i u. Since IntvA, φwk

is satisfiable, we can therefore say that IpS0q^T pS0, S1q^ . . .^T pSk�1, Skq^vφwk is also
satisfiable. Using the results from the proof of Theorem 4.3.3 we conclude that a state
violating the property φ is reached in k steps of less from the initial state.

54 Encoding Methods

Theorem 4.4.2
Given a synchronized transition system A, a property φ, and a bound k. A * φ implies
Dk P N such that IntvA, φwk is satisfiable.

Proof Assume A * φ is satisfiable. This means there is a path from the initial state to
a state violating the property φ. Assume k is the length of that path. In a synchronized
system using the interleaving execution, a path of length k is a succession of transitions
TIntpsi, si�1q, 0 ¤ i ¤ k � 1. Since φ is violated at step k, then its negation is satisfied a
that step. Therefore we have IIntps0q^TIntps0, s1q^. . .^TIntpsk�1, skq^ φ is satisfiable,
i.e. IntvA, φwk is satisfiable.

4.4.2 Breadth-First Search Execution

Introduction

As before, we first start with the definition of synchronized product of TSs in terms of
BFS execution.

Definition 4.4.2
Let A0, . . . ,Am be TSs. Their synchronized product, defined in terms of BFS, denoted
pA0, . . . ,Amq is the TS A � pS,Σ, T, s0q such that,

- Aj � pS
j ,Σj , T j , sj0q, j P r0,ms,

- S � 2S
0

� . . .� 2S
m

,

- s0 � pS
0
0 , . . . , S

m
0 q, where S

j
0 � ts

j
0u, j P r0,ms,

- Σ �
�m
j�0 Σj ,

- T � S � 2Σ � S.

The firing of an event at each step i should respect the following synchronization
condition: given a transition t � ppS0

i , . . . , S
m
i q, Ei, pS

0
i�1, . . . , S

m
i�1qq, for all 0 ¤ j ¤ m

if Dei P Ei such that ei P Σj then Dpsji , ei, s
j
i�1q P T

j such that sji P S
j
i and sji�1 P S

j
i�1

otherwise Sji�1 � Sji . That is, we can fire an event only if it is a local event—an event that
exists only in one component—or it is synchronized, and is enabled in all components that
have it in their alphabets. Sji denotes the set of states reached at step i for component j

The above synchronization condition is similar to the one in Definition 4.4.1, except
that here we are firing a set of events rather than a single event. Using BFS allows us
to fire not only synchronized events but also independent ones, all together in one step.
However, because of the above condition, and unlike the BFS method for independent
systems, not all enabled events could be fired. Once we know the set of fireable events,
we fire them using a standard BFS procedure as explained earlier.

4.4. Encoding for Synchronized Systems 55

Example 4.4.3 From the synchronized system A � pA0,A1q shown in Figure 4.4 we
can obtain the following BFS execution from bound 0 to 2 (each dashed line in the figure
corresponds to one step):

pS0
0 , S

1
0q

E0ÝÑ pS0
1 , S

1
1q

E1ÝÑ pS0
2 , S

1
2q

where

S0
0 � ts0u; S

1
0 � ts7u; S

0
1 � ts1, s2u; S

1
1 � ts8u;S

0
2 � ts3, s4, s5u; S

1
2 � ts9u;

E0 � ta, du; E1 � td, bu

Application to BMC

Now, given a synchronized system A � pA0, . . . ,Amq, a property φ, and a bound k. We
define the BMC formula for A, in terms of BFS execution, as follows.

BfsvA, φwk � BfsvAwk ^ v φwk (4.13)

where

- BfsvAwk defines the unrolling of A up to bound k using BFS execution, i.e.

BfsvAwk � IBfsps0q ^
k�1©
i�0

TBfspsi, si�1q (4.14)

- IBfsps0q corresponds to the characteristic of the initial state, such that

IBfsps0q � X�m
j�0 S

j
0
^

©
spP
�m

j�0 S
jz
�m

j�0 S
j
0

 vp,0 (4.15)

- TBfspsi, si�1q defines the transitions between step i and i� 1 such that

TBfspsi, si�1q � T p
m¤
j�0

Sji ,
m¤
j�0

Sji�1q (4.16)

Example 4.4.4 To illustrate this representation, let us continue the Example 4.4.3
and apply BMC for bound k � 2. The formula BfsvAw2 is given as:

BfsvAw2 � IBfsppS
0
0 , S

1
0qq

^TBfsppS
0
0 , S

1
0q, pS

0
1 , S

1
1qq

^TBfsppS
0
1 , S

1
1q, pS

0
2 , S

1
2qq

�
�
v0,0 ^ v7,0 ^ v1,0 ^ v2,0 ^ v3,0 ^ v4,0 ^ v5,0 ^ v6,0 ^ v8,0^

 v9,0

�

^
�
v0,0 ^ v7,0 ^ v0,1 ^ v7,1 ^ v1,1 ^ v2,1 ^ v8,1 ^ pv3,0 Ø v3,1q

^pv4,0 Ø v4,1q ^ pv5,0 Ø v5,1q ^ pv6,0 Ø v6,1q ^ pv9,0 Ø v9,1q
	

^
�
v1,1 ^ v2,1 ^ v8,1 ^ v1,2 ^ v2,2 ^ v8,2 ^ v3,2 ^ v4,2 ^ v5,2

^v9,2 ^ pv0,1 Ø v0,2q ^ pv6,1 Ø v6,2q ^ pv7,1 Ø v7,2q
	

56 Encoding Methods

Step 0

Step 1

Step 2

s0

s1 s2

s3 s4 s5 s6

(A0)

a

d bd

d

c

s7

s8

s9

(A1)

a

b

c

Figure 4.4: Typical BFS execution for synchronized systems.

Theorem 4.4.3
Given a synchronized system A � pA0, . . . ,Amq, a property φ, and a bound k. If
BfsvA, φwk is satisfiable then A * φ.

Proof AssumeBfsvA, φwk is satisfiable i.e. IBfsps0q^TBfsps0, s1q^. . .^TBfspsk�1, skq^

vφwk is satisfiable. From equation (4.16) we can say that each TBfspsi, si�1q is of the form
T pSi, Si�1q where Si �

�m
j�0 S

j
i . Using the result of the proof of Theorem 4.3.3 and 4.4.1,

we can conclude that a state violating the property φ is reachable in k step or less from
the initial state.

Theorem 4.4.4
Given a synchronized transition system A, a property φ, and a bound k. A * φ implies
Dk P N such that BfsvA, φwk is satisfiable.

Proof To prove this theorem, we only need to follow the reasoning in the proof of
Theorem 4.3.4 by replacing Si into

�m
j�0 S

j
i .

Remark 4.4.1 In our encoding, each state is encoded into two variables—current and
next-state variables, thus we need at most two Boolean variables to represent each state.
Still, the resulted formula is compact with a size OpΣjp|Sj |q.kq where Sj and Σj represent
the set of states and the alphabet for component j respectively, and k is the bound.

Remark 4.4.2 The trace is built on the fly. That is the algorithm keeps track on
the states it has visited. Then, once the formula becomes satisfiable the counterexample
trace can be output right away. Therefore it does not add more complexity to the whole
operation.

4.5 Expressing Reachability Properties

So far, we have been interested only in the unrolling part of the BMC formula. In this
section, we will show how to define the property φ. The proposed encoding can be used

4.5. Expressing Reachability Properties 57

for checking reachability properties, which express that some particular situation can be
reached. Checking such properties is equivalent to determining whether there exists an
execution path leading to a state satisfying the property. These properties can be simple,
for instance “we can enter a critical section,” or conditional, for instance “we can enter
a critical section without passing through n � 0,” or also in negative form such as “we
cannot have n 0.”

In particular, we use our method to check if there is a deadlock in a system, i.e. if there
exists a reachable state with no firing events. Formally, a deadlock run in a transition
system is defined as follows.

Definition 4.5.1
Let σ � s0

e0ÝÑ s1
e1ÝÑ . . .

ek�1
ÝÑ sk be a run of a TS A. σ is a deadlock run iff the state sk

does not have any outgoing transitions.

For synchronized systems, two cases should be considered in order to express deadlock
conditions:

- the deadlock state is reached after firing a local event,

- the deadlock state is reached after firing a synchronized event and each synchronized
counterpart of that event also reaches a deadlock state.

Let R be the set of reachable states for all components at a given bound k. R can
be divided into two subset Rl and Rs which correspond to the states reached by local
events and the synchronized ones respectively. Rs can still be divided into several subsets
L1, . . . , Ln such that each Li contains states reached by related events—i.e. events with
their synchronized counterparts.

The deadlock condition for a system can be expressed by the negation of the following
“live” condition, which expresses that at each step we can always fire some events from
each reachable state:

vLivewk �
� ©
siPRl

vi,k ^
©
L�Rs

ª
sjPL

vj,k
�

(4.17)

The negation of the property above expresses that we can obtain a reachable state with
no firing events, which means a deadlock appears in that state. The deadlock condition
at a bound k is thus given as follow:

v Livewk �
� ©
siPRl

vi,k ^
©
L�Rs

ª
sjPL

vj,k
�

(4.18)

Example 4.5.1 Let us take again our running example depicted in Figure 4.3. The
deadlock condition for this system at bound 2, using the BFS execution (see Figure 4.4),
is given as:

v Livew2 �
�
v3,2 ^ v4,2 ^ pv5,2 _ v9,2q

�

58 Encoding Methods

such that

Rl � ts3, s4u; L1 � ts5, s9u; Rs � L1.

To verify whether a deadlock appears in the systemA � pA0,A1q using the BFS approach,
we only need to combine the equation above with the one obtained from Example 4.4.4.
We can use the same principle with the interleaving execution.

Theorem 4.5.1
Given a synchronized system A � pA0, . . . ,Amq and a bound k, such that the formulas
IntvAwk, and BfsvAwk are satisfiable. Let v Livewk be the deadlock condition for A at
bound k. If v Livewk is SAT, then A * live.

Proof Assume that IntvAwk, and BfsvAwk are satisfiable. Then all we need to do is
replace φ in the proof of Theorem 4.4.1, and 4.4.3 into live.

4.6 Reducing the Bound Using Chaining

4.6.1 Introduction

We have seen that BFS methods are more advantageous compared with the interleaving
ones. We can still improve the performance of BFS methods by combining them with the
mechanism known as chaining traversal whose main objective is to reduce the number
of execution steps. Chaining is much more common in BDD-based approaches (see e.g.
[SP02]), but in this work, we apply it to BMC.

Briefly put, chaining is performed as follows. We first define an event order. Then,
at each step, we fire the events respecting the chosen order. After firing one event, we
add to the From set the newly reached state. Then we fire the next event in the order
provided it is enabled at the states in the new From set. The procedure thus produces a
sort of chain in the execution, hence its name. Only when all the fireable events at one
step have been fired will we move to the next step.

Example 4.6.1 An example of a chaining execution is shown in Figure 4.5. Assume
we chose the following event order ra, c, b, ds. At step 0, we have From � ts0u because s0

is the initial state. Events a and d are enabled at s0, thus we can fire them both at this
step. But respecting the event order, we have to fire a first. We reach the state s1 after
firing a, and update the From set accordingly. We then obtain a new set From � ts0, s1u.
Now, we can fire d which is enabled at both s0 and s1. Firing d from these states leads
us to s2, s3, and s4. There is no more event to be fired, so we arrive at step 1 with the
following final sets From � ts0, s1u and To � ts2, s3, s4u.

4.6. Reducing the Bound Using Chaining 59

Step 0

Step 1

s0

s1 s2

s3 s4 s5 s6

(A0)

a

d bd

d

c

Figure 4.5: Chaining execution with event order [a, c, b, d].

4.6.2 Application to BMC

The BMC formula related to chaining is slightly different from the one given in equation
(4.13) because we need to take into account the fact that the From set is updated at each
iteration. To perform this update we define two sets To1 and S1ji as follows.

To1pSji q � ts
1
i P TopS

j
i q | @si P S

j
i , Epsiq X Eps1iq � Hu (4.19)

S1ji � Sji Y To
1pSji q (4.20)

S1ji is the new From set obtained after adding into Sji the states recently generated.
We have Sji � S1ji and To1pSji q � TopSji q for all 0 ¤ j ¤ m.

Now, given a synchronized system A � pA0, . . . ,Amq, a property φ, and a bound k.
The BMC formula for A using chaining is defined as:

ChainvA, φwk � ChainvAwk ^ v φwk (4.21)

where

- ChainvAwk defines the unrolling of A up to bound k using chaining execution, i.e.

ChainvAwk � IChainps
1
0q ^

k�1©
i�0

TChainps
1
i, si�1q (4.22)

- s1i � pS10i , . . . , S1mi q,

- IChainps10q defines the characteristic function of the initial state, such that

IChainps
1
0q � X�m

j�0 S
1j
0
^

©
spP
�m

j�0 S
jz
�m

j�0 S
1j
0

 vp,0 (4.23)

- TChainps1i, si�1q defines the transition between step i and i� 1 such that

TChainps
1
i, si�1q � T p

m¤
j�0

S1ji ,
m¤
j�0

Sji�1q (4.24)

60 Encoding Methods

s0

s1 s2

s3 s4 s5 s6

(A0)

a

d bd

d

c

Step 0

Step 1

s7

s8

s9

(A1)

a

b

c

Figure 4.6: Chaining execution for synchronized systems.

Obviously, when applying chaining for synchronized products of TSs, we also have to
respect the synchronization criteria described in Definition 4.4.2. This means, chaining
can be performed if the chosen event is either a local event, or it is enabled in all its
components at the current step.

Example 4.6.2 If we apply the chaining operation described in Figure 4.5 to the
synchronized systems A � pA0,A1q in Figure 4.4, we obtain the following BMC formula
ChainvAw1 for bound k � 1 (the execution is depicted in Figure 4.6):

ChainvAw1 � IChainppS
10
0 , S

11
0 qq

^TChainppS
10
0 , S

11
1 q, pS

0
1 , S

1
1qq

�
�
v0,0 ^ v1,0 ^ v7,0 ^ v2,0 ^ v3,0 ^ v4,0 ^ v5,0 ^ v6,0 ^ v8,0 ^ v9,0

�

^
�
v0,0 ^ v1,0 ^ v7,0 ^ v0,1 ^ v1,1 ^ v7,1 ^ v2,1 ^ v3,1 ^ v4,1 ^ v8,1

^pv5,0 Ø v5,1q ^ pv6,0 Ø v6,1q ^ pv9,0 Ø v9,1q
	

where,

S0
0 � ts0u; S

10
0 � ts0, s1u; S

1
0 � ts7u; S

11
0 � ts7u; S

0
1 � ts2, s3, s4u; S

1
1 � ts8u;

E0 � ta, du

We then have the following chaining execution:

pS100 , S
11
0 q

E0ÝÑ pS0
1 , S

1
1q

Comparing the formula above with the one in Example 4.4.4 for k � 2, we can see
that the equations for the transitions which lead to the states s3 and s4 can already be
expressed at bound 1. Therefore, a counterexample that exists in those states can be
found at bound 1 instead of bound 2, if we choose the right order of events. In addition,
the formula we obtain in here is clearly smaller than the one in Example 4.4.4.

Theorem 4.6.1
Given a synchronized system A � pA0, . . . ,Amq, a property φ, and a bound k. If
ChainvA, φw is satisfiable then A * φ.

4.6. Reducing the Bound Using Chaining 61

Step 0

Step 1

Step 2

s0

s1 s2

s3 s4 s5 s6

p1q

a

d bd

d

c

Step 0

Step 1

s0

s1 s2

s3 s4 s5 s6

p2q

a

d bd

d

c

Figure 4.7: BFS with chaining using two different event orders.

Proof The proof is straightforward from the one for Theorem 4.4.3. We need only to
change BfsvA, φwk with ChainvA, φwk.

Theorem 4.6.2
Given a synchronized transition system A, a property φ, and a bound k. A * φ implies
Dk P N such that ChainvA, φwk is satisfiable.

Proof The proof follows similar arguments to the proof of Theorem 4.4.4. We need only
to change BfsvA, φwk with ChainvA, φwk.

Some event orders may fare badly compared to others, even though they are applied
to the same system. To illustrate this situation, we show in Figure 4.7 two different
chaining executions applied to the same system. First, we fire the events following the
order rd, c, b, as. The execution progresses much the same as in a typical BFS, and it takes
two iterations to reach the states s3 and s4, for instance, from the initial state s0 (see
Figure 4.7 (1)). On the other hand, when we fire the events with the order ra, d, b, cs, only
one iteration is enough to reach s3 and s4 (see Figure 4.7 (2)). Choosing the right order
of event is then crucial in order to make BFS with chaining effective.

In BMC, fewer iterations means smaller formula in most cases. In addition, the speed
of a BMC operation depends to a large extent on the speed of the SAT-solver, which in
turn depends on the length of the formula. Therefore, since smaller formula takes shorter
time to solve, choosing the right order of events can speed up the whole BMC operation.
However, this situation may not be true if the chaining operation adds many states in
one iteration. In our case, we limit the number of states to be included in one iteration
by applying chaining only to those events that are enabled at the current step.

4.6.3 Ordering the Events

One way of ordering the events is by taking into account the causality relations between
them. In this section, we will give a heuristic that computes the causality between two
events and show how to use this information for ordering them. Taking into account the

62 Encoding Methods

causality gives us a higher probability of obtaining the right order. Still, as we will see
later in the experimental results in Section 8.1, there might be some cases in which this
situation is not always true. This heuristic is a simplified version of the one in [SP02].

Let Tei and Tej be the transitions associated to the events ei and ej respectively. We
define Topeiq as

Topeiq � ts
1 P S { Ds P S, s

eiÝÑ s1 P T u (4.25)

it gives the set of states reached after firing the event ei.

The heuristic causalitypei Ñ ejq is defined as

causalitypei Ñ ejq � |Topeiq X FRpejq| (4.26)

it indicates the number of states where ej becomes fireable after firing ei.
Intuitively, big values of causalitypei Ñ ejq show that the activation of transition Tei

will tend to produce states in which the application of transition Tej is possible. Therefore,
in a chaining operation, if ei and ej are all enabled at the current step, firing ei before ej
will generate more new states than firing ej before ei.

To order the firing of the events using the above heuristic, we proceed as follows. First,
before starting the BMC operation, we compute the causality between each pair of events
in the system and store the result in a causality matrix. Next, at each step, we check the
matrix to determine the causality between all executable events for this step. We then
build a list of events in which they are arranged in the following way: given two pairs of
events ei and ej , if causalitypei Ñ ejq ¡ causalitypej Ñ eiq, then ei will go before ej in
the list. Obviously, if both causalities are equal, there is no restrictions between the two
events. This procedure is carried out for the rest of the executable events, it ensures that
the event which stays at the top of the list has higher probability to generate states where
the rest of the executable events are fireable. When the list is built, we fire the event at
the top and remove it from the list, and we continue that way until the list is empty.

Example 4.6.3 To illustrate this event ordering method, consider the systemA0. The
causality matrix for this TS is given as follows.

a b c d

a 0 0 0 1

b 0 0 0 0

c 0 0 0 0

d 0 1 0 1

At step 0, the events a and d are enabled. Looking at the above matrix, we can see that
causalitypa Ñ dq � 1 whereas causalitypd Ñ aq � 0. Therefore, we obtain the following
list ra, ds that is, we will fire a before d. In fact, we used this event order for the execution
depicted in Figure 4.7 (2).

4.6. Reducing the Bound Using Chaining 63

4.6.4 Chaining Algorithm

Algorithm 4.1 shows the BMC procedure related to chaining. computeFireableEvents()
creates a list of fireable events an orders them using the heuristic above. The function
selectEvent() chooses an event from the list. chainFire() fires the chosen event, taking
into account all conditions described in this section, and building the BMC formula F in
the process. The function solve() calls the SAT-solver. It returns true if F is satisfiable,
false otherwise. The algorithm stops whether the iteration reaches the maximum BMC
length maxL or F is satisfiable.

Algorithm 4.1: Bmc
input : A � pA0 . . .Anq synchronized TSs

maxL maximum BMC length
output: true if a counterexample has been found

false otherwise

boundÐÝ 1 ;1

isSatÐÝ false ;2

while (bound ¤ maxL) and (isSat � false) do3

for Aj P A do4

listÐÝ computeFireableEvents(Aj) ;5

while list � H do6

eÐÝ selectEvent(list) ;7

F ÐÝ chainFire(e) ;8

end9

end10

isSatÐÝ solve(F) ;11

bound�� ;12

end13

return isSat14

Remark 4.6.1 Note that, to check a deadlock property with chaining we will also use
the formulas in equations (4.17) and (4.18).

Chapter 5

Leap-Based Approach

In this Chapter, we will present a method for increasing the speed of a BMC operation.
Normally, in a typical BMC algorithm (see Algorithm 1.2), we call a SAT solver at each
execution step. However, due to the possible huge number of steps needed for exploring
concurrent systems, we may need to perform many calls to a SAT solver during the
whole BMC operation. In addition, since solving SAT instances occupies a great deal of
time during the BMC operation, calling a solver too often will probably slow down the
execution, especially when dealing with sizeable formulas at a time.

One obvious way to cope with this problem is to use a fast SAT solver. But this solution
is helpful only for Boolean formulas with small sizes. For most of today’s solvers, the
problem still remains when they are called repeatedly to solve large formulas. The solution
we propose consists in reducing the number of solver calls during a BMC operation,
especially when the formulas become large. In this way, the speed will increase because
the solver has to solve only few SAT instances.

Basically, our technique is performed as follows. When we move from one bound to
another, we do not carry out a simple one by one incrementation as in a standard BMC
algorithm. Instead, we use leaps. That is, we combine several unrolling steps together in a
single iteration before calling a SAT solver. One single bound in our method is, therefore,
equivalent to several consecutive steps in a standard BMC algorithm.

The leap-based technique also applies to reachability properties. In order for it to
work properly, it is important to ensure that we can catch all failure states occurring
between BMC bounds even though we do not run a solver at the exact points where these
failures occur. Otherwise, we would miss some counterexamples along the execution. The
unrolling methods we propose in this Chapter can handle this situation. They generate at
each bound a BMC formula that contains all necessary information needed for identifying
failure states from earlier steps.

Figure 5.1 depicts the different steps for a leap execution. We have two types of
iterators, namely i and j, related to the BMC bounds and the steps needed between
bounds respectively. All states sj correspond to the ones reached during the unrolling

66 Leap-Based Approach

µ0 µ1 µ2 µk�1 µks1 s2 sl0�1 sl0�2.

l0 l1 lk�1

Figure 5.1: Unrolling using leaps.

iterations between two bounds i and i� 1. In a standard BMC algorithm, we would call
a solver at every step j. By contrast, for the leap method, we call a solver only when
we reach a bound i. Each leap value li determines the number of unrolling iterations
required between i and i� 1. For instance, assume l0 � 3, then to move from 0 to 1, we
allow the unrolling to iterate three times before calling the SAT solver. We do so for all
i P r0, k�1s. Each state µ corresponds to the one reached at each bound i. Obviously, we
have µ0 � s0, and µi � sn @ 1 ¤ i ¤ k�1 with n �

°i�1
j�1 lj for 1 ¤ i ¤ k�1. We will use

this notation when we formalize the unrolling executions related to the leap approach.
The rest of the Chapter is organized as follows. In Section 5.1 we will review some of

the existing work related to this topic. In Section 5.2 and Section 5.3 we will introduce
the leap-based unrolling methods related to deadlock and other reachability properties
respectively. In Section 5.4 we describe two jumping strategies that apply with the leap
approach. In Section 5.5 we show how to find the shortest counterexample. An finally, in
Section 5.6 we discuss the time performance for the leap approach.

5.1 Related Work

There exist many BMC techniques in the literature designed especially for reducing the
number of solver calls. In a mechanism known as lazy satisfiability check, Ábráham et al.
exploit the conflict clauses generated by the solver [ÁBKS05]. They optimize the SAT
formula in order to solve it efficiently with solvers designed for linear hybrid systems. At
a given BMC bound, if the formula is unsatisfiable, the algorithm analyzes and memorizes
the conflicts returned by the solver so that, in a future bound, the solver will not be called
again if the same conflicts ever appear. This technique is further explored in [ÁHBS06]
where, combined with parametric data structures, it not only minimizes the number of
solver calls, but also reduces the amount of memory needed by the solver.

The proof-based technique introduced in [MA03] also relies on the information gener-
ated by a SAT solver. Designed for synchronous systems, it combines BMC with standard
BDD-based model checking, which allows it not only to look for a counterexample, but
also to determine that the system is actually correct if no counterexample has been found.
In this technique, the algorithm starts with a length k. If the formula is unsatisfiable, the
proof of unsatisfiability provided by the solver will be used for creating a new abstraction
of the system. Then, a standard BDD-based model checker is ran on the abstracted model
to determine whether it is correct or not. If it is correct, the algorithm will terminate.
Otherwise, the BDD-based model checker will produce a counterexample whose length

5.2. Unrolling Method for Deadlock Property 67

s0

s1 s2

s3s4

s5
(A0)

a d

d

cc

be
τ

s6

s7

s8

(A1)

a

b

c

Figure 5.2: A synchronized system with idle steps.

k1, which is always greater than k, is used later on as the next BMC step. Since k1 is not
necessarily equals k � 1, this technique also reduces the number of calls to a SAT solver.

In a method called path compression the idea is to compress a chain of transitions into
a single jump transition [KLY02, KM99, Yor94, dSU96]. These transitions are irrelevant
to the property to be checked so they can be safely skipped during the traversal. This
method constitutes an improvement to partial order reduction techniques, and suitable
to properties written with nexttime free temporal logics (i.e. temporal logics without the
nexttime operator such as LTL�X and CTL�X). The method known as local transition
merging presented in [Jus05], adapts similar ideas to BMC.

In a sense, the underlying idea in our approach is much the same as in the path
compression method, in which a long jump transition is comparable to a leap in our
method. However, both approaches differ in the way of how to safely skip transitions
so that no counterexample would be missed. With the path compression, transitions
can be skipped based on their relevance to the property to be checked. We use a quite
different approach that relies on the model’s structure itself. In addition, unlike the ones
in [ÁBKS05, MA03], we do not analyze the conflict clause provided by a SAT solver.

5.2 Unrolling Method for Deadlock Property

5.2.1 Introduction

Our principle is based on the following observation. Normally, concurrent systems change
from one state to another when at least one event occurs. However, any concurrent system
may remain at a given state for an unbounded period of time. These idle steps are often
represented with τ -labeled transitions in a TS graph. This behavior is usually excluded
from models but it will work to our advantage. By including such behavior in a BMC
model, once a state is reached at a step j it will repeat itself at steps j � 1, j � 2, etc.

Because a deadlock state has no outgoing transitions, it will behave as an idle state if
it ever occurs in-between BMC bounds, and will remain so until the next call for a SAT
solver. Therefore, once a deadlock state is reached, our unrolling algorithm will consider

68 Leap-Based Approach

it as an idle state, and will repeat it over the execution. As a results, the state will keep
its characteristics, and even though we do not call the SAT solver at the exact step where
the deadlock occurs, we would not miss it at the next solver call.

For instance, assume a deadlock appears at the state s2 in Figure 5.2. If idle steps were
not allowed, then s2 would only be reachable by traces of length 1: s0

b
ÝÑ s2, or length

5: s0
a
ÝÑ s1

b
ÝÑ s4

d
ÝÑ s5

d
ÝÑ s0

b
ÝÑ s2, or length 9 etc. But if idle steps are allowed,

we can reach s2 with traces of any length above 1, e.g. s0
b
ÝÑ s2

τ
ÝÑ s2

τ
ÝÑ s2 We

express formally this key observation in the next theorem.

Theorem 5.2.1
Let vAwk be the SAT formula related to the unrolling of the model A up to the bound
k. If the unrolling allows idle steps, then there is a satisfying assignment of vAwk iff there
is a reachable state in A, reachable through sequence of steps of length i ¤ k (once idle
steps have been removed).

Proof The proof of the theorem is straightforward as it is clear that given any valid
unrolling, if a step is allowed to be idle, then all possible executions of length k include
all possible executions of some smaller length. For instance, all valid executions of length
k � 1 can be obtained from the executions of length k by changing the last step by the
idle step.

5.2.2 BMC Equations

Let us now give the BMC equations related to this deadlock checking method. As usual,
we consider interleaving, BFS, and Chaining executions. The big difference between these
equations and the ones in Section 4.4 can be seen in the transitions used. Here, we need
to take into account the fact that we repeat each deadlock state over and over, until the
next solver call. Note that, there is no change for the deadlock conditions. We will still
use the equations (4.17) and (4.18).

Given a synchronized model A � pA0, . . . ,Amq, a property φ, a bound k, and natural
numbers li ¡ 1 with i P r0, k� 1s. The BMC formulas for A related to deadlock checking,
defined in terms of the leaps li, is given as follows.

Interleaving Execution

lIntvA, φwk � lIntvAwk ^ v φwk (5.1)

where

lIntvAwk � IIntps0q ^
k�1©
i�0

TIlipµi, µi�1q (5.2)

TIl0pµ0, µ1q �
l0�1©
j�0

TlIntpsj , sj�1q (5.3)

5.2. Unrolling Method for Deadlock Property 69

TIlipµi, µi�1q �
n�li�1©
j�n

TlIntpsj , sj�1q (5.4)

TlIntpsi, si�1q � T pts0
i , . . . , s

m
i u, ts

0
i�1, . . . , s

m
i�1uq ^

©
sdPts0i�1

,...,sm
i�1
u; Epsdq�H

 vd,i (5.5)

Recall that n �
°i�1
j�1 lj for 1 ¤ i ¤ k � 1.

BFS Execution

lBfsvA, φwk � lBfsvAwk ^ v φwk (5.6)

where

lBfsvAwk � IBfsps0q ^
k�1©
i�0

TBlipµi, µi�1q (5.7)

TBl0pµ0, µ1q �
l0�1©
j�0

TlBfspsj , sj�1q (5.8)

TBlipµi, µi�1q �
n�li�1©
j�n

TlBfspsj , sj�1q (5.9)

TlBfspsi, si�1q � T p
m¤
j�0

Sji ,
m¤
j�0

Sji�1q ^
©

sdP
�m

j�0 S
j
i
; Epsdq�H

 vd,i (5.10)

Chaining Execution

lChainvA, φwk � lChainvAwk ^ v φwk (5.11)

where

lChainvAwk � IChainps
1
0q ^

k�1©
i�0

TClipµi, µi�1q (5.12)

TCl0pµ0, µ1q �
l0�1©
j�0

TlChainps
1
j , sj�1q (5.13)

TClipµi, µi�1q �
n�li�1©
j�n

TlChainps
1
j , sj�1q (5.14)

TlChainps
1
i, si�1q � T p

m¤
j�0

S1ji ,
m¤
j�0

Sji�1q ^
©

sdP
�m

j�0 S
1j
i

; Epsdq�H

 vd,i (5.15)

Figure 5.3 shows a sketch of an unrolling execution between two bounds i and i � 1

using the leap method described above. φ corresponds to the deadlock property, while

70 Leap-Based Approach

µi µi�1sn�1 sn�2 sn�3 . . .

SAT piq SAT pi� 1q

v φwi v φwi�1

Figure 5.3: Leap methods for deadlock property.

SAT piq indicates that we call the solver at bound i. We put the constraints related to
the negation of φ only at each bound i. Yet, by allowing idle steps, we could catch any
counterexample occurring at sn�1, sn�2, sn�3, etc.

Example 5.2.1 Given the system depicted in Figure 5.2. As we can see, the state
s2 has no outgoing transitions. Therefore, the algorithm assumes there is an idle step
in this state, which is then repeated over and over until the next solver call. Using the
BFS unrolling formulas from equations (5.6) and (5.9), we have the following formula for
a leap execution between i � 0 and i � 1, with l0 � 3:

lBfsvAw1 �
�
v0,0 ^ v6,0 ^ v1,0 ^ v2,0 ^ v3,0 ^ v4,0 ^ v5,0 v7,0 v8,0

�

^
�
v0,0 ^ v6,0 ^ v6,1 ^ v0,1 ^ v2,1 ^ v1,1 ^ v7,1 ^ pv3,0 Ø v3,1q

^pv4,0 Ø v4,1q ^ pv8,0 Ø v8,1q ^ pv5,0 Ø v5,1q
	

^
�
v1,1 ^ v7,1 ^ v2,1 ^ v1,2 ^ v2,2 ^ v7,2 ^ v3,2 ^ v4,2 ^ v8,2

^pv0,1 Ø v0,2q ^ pv6,1 Ø v6,2q ^ pv5,1 Ø v5,2q
	

^
�
v4,2 ^ v3,2 ^ v8,2 ^ v2,2 ^ v4,3 ^ v3,3 ^ v2,3 ^ v5,3 ^ v6,3

^pv1,2 Ø v1,3q ^ pv7,2 Ø v7,3q ^ pv0,2 Ø v0,3q
	

^
�
v1,3 ^ v2,3

�

5.3 Unrolling Method for Other Reachability Proper-
ties

5.3.1 Introduction

In a BMC operation, the normal way is to add the constraints related to the negation of a
property only when we call a SAT solver. This means that, in a leap-based unrolling, we
should put these constraints only at each bound i. As we have seen before, this approach
works perfectly for deadlock detection combined with idle step. But doing so with other
reachability properties would result in missed counterexamples because the information
related to these properties could not be maintained even though we repeat idle states over
and over, so we would never know if any of the states in between BMC bounds violates
the property to be checked. Therefore, to deal with other types of reachability properties,
we need a different approach.

5.3. Unrolling Method for Other Reachability Properties 71

Our idea consists in putting the constraints related to the negation of the property
not only at each bound i but also at each step j. In this way, even though we call the
solver at a later step we would not miss the counterexample. For sure, this method will
increase the size of the resulted formula, which would normally slows down the execution.
However, we still can avoid this situation experimentally, by using the jumping methods
introduced in Section 5.4. Figure 5.4 depicts an unrolling operation performed using this
approach.

5.3.2 BMC Equations

Now, given a synchronized model A � pA0, . . . ,Amq, a property φ, a bound k, and natural
numbers li ¡ 1 with i P r0, k�1s. The BMC formulas for A reachability checking, defined
in terms of the leaps li, is given as follows.

Interleaving Execution

RlIntvAwk � IIntps0q ^
k�1©
i�0

RIlipµi, µi�1q (5.16)

where

RIl0pµ0, µ1q �
l0�1©
j�0

TIntpsj , sj�1q ^ v φwj�1 (5.17)

RIlipµi, µi�1q �
n�li�1©
j�n

TIntpsj , sj�1q ^ v φwj�1 (5.18)

TIntpsi, si�1q has been given in equation (4.12), and as usual, we have n �
°i�1
j�1 lj for 1 ¤

i ¤ k � 1.

BFS Execution

RlBfsvAwk � IBfsps0q ^
k�1©
i�0

RBlipµi, µi�1q (5.19)

where

RBl0pµ0, µ1q �
l0�1©
j�0

TBfspsj , sj�1q ^ v φwj�1 (5.20)

RBlipµi, µi�1q �
n�li�1©
j�n

TBfspsj , sj�1q ^ v φwj�1 (5.21)

The relation TBfspsj , sj�1q has been given in equation (4.16).

72 Leap-Based Approach

µi µi�1sn�1 sn�2 sn�3 . . .

SAT piq SAT pi� 1q

v φwi v φwi�1v φwn�1 v φwn�2 v φwn�3

Figure 5.4: Leap methods for other reachability properties.

Chaining Execution

RlChainvAwk � IChainps
1
0q ^

k�1©
i�0

RClipµi, µi�1q (5.22)

where

RCl0pµ0, µ1q �
l0�1©
j�0

TChainps
1
j , sj�1q ^ v φwj�1 (5.23)

RClipµi, µi�1q �
n�li�1©
j�n

TChainps
1
j , sj�1q ^ v φwj�1 (5.24)

The relation TChainps1j , sj�1q has been given in equation (4.24).

Example 5.3.1 Consider again the system depicted in Figure 5.2. As we are no
longer verifying deadlock properties, idle steps do not apply anymore. Therefore, we put
the constraints related to the property at each step j. Using the BFS unrolling from
equations (5.19), (5.20), and (5.21), we have the following formula for a leap execution
between i � 0 and i � 1, with l0 � 3:

leapvA, φw1 �
�
v0,0 ^ v1,0 ^ v2,0 ^ v3,0 ^ v4,0 ^ v5,0

�

^
�
v0,0 ^ v0,1 ^ v1,1 ^ v2,1 ^ pv3,0 Ø v3,1q ^ pv4,0 Ø v4,1q

^pv5,0 Ø v5,1q
	
^ v φw1

^
�
v1,1 ^ v2,1 ^ v1,2 ^ v3,2 ^ v4,2 ^ v2,2 ^ pv0,1 Ø v0,2q

^pv5,1 Ø v5,2q
	
^ v φw2

^
�
v4,2 ^ v3,2 ^ v2,2 ^ v4,3 ^ v3,3 ^ v2,3 ^ v5,3 ^ pv1,2 Ø v1,3q

^pv0,2 Ø v0,3q
	
^ v φw3

Obviously, each v φwj should be replaced with the formula related to the property to
be checked.

Remark 5.3.1 Although, we express all the equations in terms of synchronized tran-
sition systems, we will see in Chapter 8 that the leap approach can also be applied to
other types of models such as Petri net.

5.4. Jumping Methods 73

5.4 Jumping Methods

The efficiency of the leap approach depends to a large extent on the value of a leap li.
Obviously, a big value of li indicates that the unrolling operation performs a long jump
at bound i. Similarly, a small value means a short jump. It is therefore, crucial to choose
the right value of each li. We will present in this section two heuristic algorithms used
for choosing resoanable leap values.

5.4.1 Using Logarithmic Functions

As explained in Section 1.1.2, the size of the BMC formula is relatively small at an earlier
stage of the execution and, consequently, the solver will run fast during this period. It is,
therefore, beneficial to perform bigger jumps at the beginning in order to avoid calling a
SAT solver frequently just for solving a small formula at a time.

Based on the above observation, we want the leaps to be bigger when the BMC exe-
cution starts, and we want them to become smaller at upper bounds. When we increase
the bound, the formula grows in size as well, hence the solver will need more time and
resources for solving it. Therefore, by performing short jumps at upper bounds, we can
ensure that the BMC formula will not be too big to handle by the solver.

The growth of base 2 logarithmic function log2pq, depicted in Figure 5.6, matches
exactly our above-mentioned scenario. If we construct a graph showing the execution
time of a BMC session, by associating the x axis to the CPU time spent at each bound,
and the y axis to the bound value, we will obtain a graph similar to Figure 5.6. For that
reason, we choose the log2pq function as a way of determining the leaps.

We determine the leap in the following way. We set up various CPU time thresholds,
each of them corresponds to the one consumed by a SAT solver at each execution step.
When the value is really small, i.e. below a given minimum threshold, or when it is too
big, i.e. beyond a given maximum threshold, we use a small constant leap. We also set
up another middle value between the minimum and maximum time interval. In order to
go deep faster, we multiply the logarithmic function with the small constant leap before
we reach the middle value.

When the maximum value is reached, we use only the small constant in order to have
smaller leaps up to a certain huge CPU time limit. This limit is reached when the formula
becomes too big to be solved by a SAT solver. In this case, we backtrack to the previous
step, recompute the leap by dividing the latest one by two, and rejump accordingly.

Using the above method allows us always to obtain a BMC formula manageable by
the solver even though we put several steps together in a single SAT check.

These different leap values are depicted in Figure 5.5, where k is the constant leap,
log2 is the base 2 logarithmic function, and b is the bound.

Note that in this jumping strategy we assume the BMC execution to follow the general
case, that is, the deeper you go, the slower the execution. However, in certain situations,
the solver may run faster at a very deep depth value.

74 Leap-Based Approach

minC midC maxC limC
CPU Time

k k*log2(b) log2(b) k k/2

Figure 5.5: Different leap values.

1 2 3 4 5 6 x

y

1

2

�1

�2

�3

�4

Figure 5.6: Plot for the base 2 logarithmic function.

Algorithm 5.1 illustrates the above method. The jumping strategy starts from line 7
to line 17. fixLeap holds the small constant leap. The variable minC, midC, maxC,
and limC determine the CPU time thresholds. The function backtrack() performs the
backtrack operation when limC is reached. maxL corresponds to the maximum BMC
length. The function unroll() is used for calling any unrolling technique for reachability
that implements one of the techniques in Section 5.2 and Section 5.3. F contains the
formula obtained after the transformation process. The function solve() calls the SAT
solver. It returns true if F is satisfiable, false otherwise. updateCpuTime() computes
the CPU time consumed at each step, which is stored into solvingT ime. The variables
bound and leap are initialized by the constant leap, and the algorithm stops when maxL
is reached or F is satisfiable.

Remark 5.4.1 For clarity purposes, the jumping strategy in Algorithm 5.1 illustrates
only our basic idea. However, there are some implementation details we have taken into
account, that are not mentioned in Algorithm 5.1.

1. In the first situation, i.e. solvingT ime minC, we also count the number of
iterations in the main loop. If this number exceeds a given value, we move to the
next condition, that is minC ¤ solvingT ime midC.

5.4. Jumping Methods 75

Algorithm 5.1: JumpByLogarithm
input : P a 1-safe Petri net

maxL maximum BMC length
minC,midC,maxC, limC time thresholds
fixLeap fixed constant leap
idleMethod unrolling method with idle step

output: true if a counterexample has been found
false otherwise

boundÐÝ fixLeap ;1

isSatÐÝ false ;2

while (bound ¤ maxL) and (isSat � false) do3

F ÐÝ unroll(P, bound, idleMethod) ;4

isSatÐÝ solve(F) ;5

solvingT imeÐÝ updateCpuTime () ;6

if solvingT ime minC then7

leapÐÝ fixLeap ;8

else if minC ¤ solvingT ime midC then9

leapÐÝ fixLeap � log2(bound) ;10

else if midC ¤ solvingT ime maxC then11

leapÐÝ log2(bound) ;12

else if maxC ¤ solvingT ime limC then13

leapÐÝ fixLeap ;14

else if solvingT ime ¤ limC then15

leapÐÝ leap { 2 ;16

backtrack(bound) ;17

boundÐÝ bound� leap ;18

end19

return isSat20

2. We restrict the fixLeap value to be a very small integer, but greater than 1. In
this way, we could avoid the problem discussed at the beginning of this Chapter
related to the speed of the whole leap operation. So far the values we used for our
benchmarks are around 4, i.e. 3, 4, or 5.

3. When limC is reached, we also count the number of backtrack operations, and the
algorithm stops when it comes back to the latest bound the solver was able to check.
In addition, dividing the leap by 2 may yields a value equals 1. In this case, the
algorithm stops.

4 For the the CPU time thresholds minC, midC, maxC, and limC, there are no
standard values that work for all benchmarks. These constants are chosen while

76 Leap-Based Approach

performing the experimentations. In addition, some of those constants may not be
used at all. For instance, if the formula is satisfiable between midC and maxC,
then we will not reach the constant maxC and limC. The important thing here
is to understand the idea behind the method, but one should performs a couple of
tests in order to know which values work best for each benchmark.

5.4.2 Using Interpolation

In this heuristic we use interpolation-extrapolation methods instead of the base 2 loga-
rithmic function as explained below.

In many cases, SAT solving times steadily increase throughout the BMC execution
until we reach a point where the circuit becomes satisfiable. Therefore, we want to
estimate, for each benchmark, the bound at which the CPU time limit could be reached.
We also prefer not to spend too much time in smaller bounds and try to use the available
resources to go as deep as possible. All this can be achieved by jumping directly to the
estimated bound just after a few execution steps.

To perform the estimation, a number of data points containing the bounds and the
CPU time spent for each bound have to be collected during the initial phase of a BMC
execution. A fix constant leap is used while collecting the data points, and the collection
process stops when a given CPU time is reached. A curve is then constructed out of
these points, and extrapolated to reach the CPU time limit. However, for the extrap-
olation function to work properly, these data points need to be smoothed. We use the
smoothing method introduced in [Rei67] and the well-known Newton polynomial for the
extrapolation. When all these operations are finished, the algorithm jumps directly to the
estimated bound obtained by the extrapolation function. However, the generated bound
value is merely an estimation. That is, it doesn’t necessarily mean that the CPU time
limit is actually reached at this bound. But, in case this limit is really reached we do the
same procedure as in the previous jumping method. Figure 5.7 explains the interpolation
method.

Algorithm 5.2: jumpByInterpolation

. . .1

dataÐÝ addPoint (bound, solvingT ime) ;2

if solvingT ime ¤ midC then3

leapÐÝ fixLeap ;4

else if midC solvingT ime limC then5

leapÐÝ interpolate (data) ;6

. . .7

Now, if we use this jumping scheme, the lines 7 to 14 in Algorithm 5.1 will be replaced
by the lines 2 to 6 in Algorithm 5.2. Here, the points to be interpolated are stored in
the variable data. These points consist of the bounds with their corresponding solving

5.5. Finding the Shortest Counterexample 77

1 2 3 4 5 6 bound

CPU Time

4

3

2

1

Figure 5.7: The interpolation method with the collected points.

times. The function addPoint() adds a point into data , while interpolate() performs
the interpolation/extrapolation. The rest of the variables are the same as in Algorithm
5.1.

5.5 Finding the Shortest Counterexample

Once a SAT formula derived from a Boolean circuit is proved satisfiable, a counterexample
is found. However, since our heuristics skip some bounds, this counterexample may not
be the shortest unless the bound was increased by one since the last nonsatisfiable bound.
Therefore, to find the shortest counterexample, we proceed as follows. If k was the last
nonsatisfiable bound and n is the bound for which a counterexample has been found, the
shortest counterexample must be of length i with k i ¤ n. This can be further restricted
by removing any idle steps found in the counterexample. For instance, suppose that two
idle steps appear in the counterexample, then the bound for the shortest counterexample
can be restricted to k i ¤ n � 2. From this point on, we proceed as in dichotomic
search. That is, take the bound in the middle of the possible range of i and check again.
If at this new bound, say n1, the formula is not satisfiable, then the range for i will be
updated as n1 i ¤ n � 2. Otherwise, idle steps will be removed from n1 (assume there
are j idle steps) and the next range will be updated as n i ¤ n1 � j. This procedure
continues until the range reduces to a single number and the shortest counterexample is
found. The whole operation requires at most log2pn� kq steps.

5.6 Time Performance

For the leap approach, we normally obtain at each bound a formula bigger than the
one generated from a single step in a standard BMC. Which also suggests that the leap
approach may take longer time to solve than the standard one. To evaluate the time
performance of the leap approach, the following two cases need to be considered.

78 Leap-Based Approach

Case 1 The formula is satisfiable in a bound between leaps and there is a big distance
between that bound and the next leap. In this case, standard methods might go faster,
especially if it happens at an earlier stage of a BMC execution. More precisely let SAT pjq
be the time spent by a SAT solver for solving the formula at a step j. Assume that we have
a leap l � 10. If the formula is satisfaible at step j�2, then we have SAT pjq�SAT pj�lq ¥
SAT pjq�SAT pj� 1q�SAT pj� 2q, which simply means standard methods win over the
leap one. The jumping methods we introduced in Section 5.4 allow us to always have
reasonable leap values, and help us avoid this situation.

Case 2 The formula is unsatisfiable in all the bounds between leaps. In this case the
leap method will always go faster. We have the following theorem to prove this assertion.

Theorem 5.6.1
Given a natural number l ¥ 1. Let SAT pjq be the time spent by a SAT solver for solving
the BMC formula generated at a step j. If the formula is unsatisfiable in each step j with
0 ¤ j ¤ l, then we have SAT pjq�SAT pj� lq ¤ SAT pjq�SAT pj�1q� . . .�SAT pj� lq.

Proof The size of a BMC formula is usually polynomial in the number of its variables.
Assume we have a Boolean formula φ with n variables. If the size of φ is polynomial in n,
then the time complexity for solving φ is Ωp2nq, which means 2n is the lower bound time
for solving φ (see [CLRS09]).

Now, assume that nj is the number of variables at a state sj for 0 ¤ j ¤ l, we then
have

2nj ¤ SAT pjq

Therefore,

2nj � 2nj�1 � . . .� 2nj�l ¤ SAT pjq � SAT pj � 1q � . . .� SAT pj � lq.

Obviously, we can also state that

2nj � 2nj�l 2nj � 2nj�1 � . . .� 2nj�l

and
2nj � 2nj�l ¤ SAT pjq � SAT pj � lq.

The previous two inequalities imply that

SAT pjq � SAT pj � lq ¤ 2nj � 2nj�1 � . . .� 2nj�l .

Combining everything, we have

2nj � 2nj�l

¤ SAT pjq � SAT pj � lq

¤ 2nj � 2nj�1 � . . .� 2nj�l

¤ SAT pjq � SAT pj � 1q � . . .� SAT pj � lq.

5.6. Time Performance 79

We then conclude that

SAT pjq � SAT pj � lq ¤ SAT pjq � SAT pj � 1q � . . .� SAT pj � lq

We should also mention that many of today’s BMC tools also include a switch to
allow the user to specify a (fixed) increment size. Our heuristics may sound a little
complicated, but the advantage of using them is that, they allow the incrementation
to be done automatically and not in fixed size, especially for the interpolation method.
In addition, these methods can be very helpful when the user is first attacking a new
problem since it is not always evident to start directly with a fixed increment size unless
one knows what to expect from the system. Hence, using a method that allows automatic
incrementing can be helpful in this situation. Moreover, the learning and incremental
mechanisms that exist in today’s SAT solver help to maintain the information from the
previous check. Thus, it helps as well to speed up the execution.

Chapter 6

An Automata-Theoretic
Approach

Even though they are efficient, all the encodings discussed in Chapter 4 and Chapter 5
apply only to reachability. In this chapter, we improve the methods in order to check other
types of properties. Here, we adopt the logic LTL as a specification formalism since it can
express a broad range of properties including safety, liveness, and fairness. Furthermore,
it has a path-like structure well suited for a BMC operation.

To perform the unrolling, we do not construct a Boolean formula directly out of an
LTL specification. Rather, we apply the technique known as automata-theoretic approach,
in which the LTL formula is first translated into an automaton on infinite words, known
as Büchi automaton, before encoding it into a Boolean formula [VW86, WVS83]. The
objective is to associate each LTL formula with a Büchi automaton that accepts exactly
all infinite words modeling the formula. This approach reduces the LTL model checking
problem into known automata-theoretic problems. In this way, some existing automata-
related algorithms can be used to solve the model checking problem. Translating the LTL
formula into an automaton may appear to add extra cost to the model checking process,
but it has been shown experimentally that for most of the LTL formulas regularly used
in formal verification, the resulting automata is often small [Wol02]. Consequently, the
size of the Boolean formula constructed from the automaton can be small as well, which
is really helpful especially for a BMC operation. Moreover, creating a Boolean formula
from an automaton is often simpler than creating it directly from the LTL formula itself.

Automata-theoretic approaches are performed in the following way: build first the
automaton representing the state graph of the system, next translate the negation of
the LTL formula into a Büchi automaton, then build a new automaton formed by the
synchronized product of the two, and finally conduct an emptiness check of the product,
i.e. check if there is an infinite word accepted by the new automaton. If such a word
exists, it corresponds to a counterexample.

The above-mentioned steps are commonly used to deal with unbounded model check-

82 An Automata-Theoretic Approach

System A LTL formula φ

Buchi automaton for φ

Unrolling of the Buchi automaton

Unrolling of A

Conjunction of the unrollings

Solver

Result

Counterexample No counterexample

Figure 6.1: Automata-theoretic approach to BMC.

ing. Since our focus is on BMC, our technique is quite different, especially in the last
step. We do not build a new product automaton. Rather, we translate separately the two
automata into Boolean formulas, and then construct the conjunction of the two formulas.
The whole operation is divided in four principal tasks (see Figure 6.1):

1. build the unrolling of the system up to a bound k;

2. translate the negation of the LTL formula into a Büchi automaton;

3. build the unrolling of the automaton up to k;

4. compute the conjunction of the two unrollings.

We apply our technique to synchronized product of transition systems. The LTL
specifications we are checking concern the events of the system. Therefore, to perform
the unrolling of the TSs, we extend the encodings introduced in Chapter 4 by including
into the formulas some information concerning the enabled events.

We are mainly interested in the type of Büchi automata known as transition-based
generalized Büchi automata (TGBA). There are two main reasons for this choice. First,
in theoretical viewpoint, the TS model and TGBA are graph-based formalisms that have
roughly the same structure. As a result, it is much simpler to build the conjunction
between the TS unrolling and the one constructed from the automata. Second, practically,

6.1. Related Work 83

it has been proven that translating LTL formulas into TGBA yields smaller automata (see
e.g. [DLP04]).

The rest of the chapter is organized as follows. In Section 6.1, we review some work
in the literature related to this topic. In Section 6.2, we will discuss the Büchi automata
encodings. In Section 6.3, we will introduce the BMC encodings.

6.1 Related Work

Automata-theoretic approaches are much more common in unbounded model checking
[DLP04, AEF�05, She05, Var95, VW86, Var06]. Some people also apply it to on-the-fly
model checking, in which the principal steps consist in building on demand the automaton
related to an LTL formula, and then performing an on-the-fly emptiness check on the
product automaton [CVWY92, GH93, Hol88, CDLP05]. This approach can be combined
with Tarjan’s algorithm as discussed in [JV04, GH93]. In [Cou99], Courveur proposed
another variant of this algorithm, which can perform fairness checking without needless
overhead.

The most closely related to ours is the BMC approach introduced in [Sor02], which
also generates the Boolean formula by constructing the conjunction of the two formulas
obtained from the LTL transformation and the system model respectively. However,
the big difference is that the method in [Sor02] applies to timed automata rather than
transition systems.

The BMC method in [dMRS02, CKOS04], by contrast, is performed by searching for
fair loop counterexamples in the product system. Although the search can sometimes
go deeper than in other methods, it does not produce linear sized Boolean formulas.
Combining this method with other encodings such as the ones in [CPRS02, LBHJ04]
could possibly improve the results.

A method for translating an LTL formula into a symbolic Büchi automaton is also
introduced in [CGH94]. The translation produces a result ready to be used for symbolic
model checking, and it runs in time Op|φ|q, where φ is the LTL formula. Nevertheless,
the number of states in the automaton may sometimes blow up exponentially. Shneider
suggested a way to go around this problem in [Sch99], while Schuppan et al. discussed a
possible application of this method to BMC in [SB05].

Note Most early work on BMC with LTL is based on the encoding introduced by Biere
et al. [BCCZ99], in which they translate LTL specifications directly into Boolean formulas.
They also encode loop and nonloop executions differently, whereas subsequent techniques
use the same encoding for both (e.g. [CPRS02, FSW02]).

84 An Automata-Theoretic Approach

6.2 Representation of Büchi Automata

A Büchi automaton (BA) [AD94] is a finite state automaton that accepts infinite inputs.
Invented by the Swiss mathematician Julius Richard Büchi in 1962, it is useful for speci-
fying the behavior of nonterminating systems, such as hardware or operating systems.

We start this section by describing different types of Büchi automata, especially those
frequently used in formal verification. The definitions given here is slightly different from
the one in [AD94] because we need to adapt them to match the requirements of an LTL
formula.

6.2.1 Different Types of Büchi Automata

Let P be a finite set of atomic propositions, and BoolpP q the set of Boolean formulas
over P . Rather than defining the label of an automaton over the alphabet 2P , we are
interested in using the set BoolpP q.

Definition 6.2.1 (Büchi Automata)
A Büchi Automaton is a tuple B � pQ, δ,Q0, F q, where

- Q is a finite nonempty set of states,

- δ � Q�BoolpP q �Q is the transition relation,

- Q0 � Q is the set of initial states,

- F � Q is the set of accepting states.

A transition from a state qi to a state qj is denoted qi
σ
ÝÑ qj or xqi, σ, qjy, where

σ P BoolpP q determines the label of the transition.
A run of B is an infinite sequence ρ � q0

σ0ÝÑ q1
σ1ÝÑ q2

σ2ÝÑ . . . such that q0 P Q0, and
@i ¥ 0, xqi, σi, qi�1y P δ.

Let σ be an element of BoolpP q. For each p P P , we say that p P σ if p appears in the
terms of σ. Likewise, for each u P 2P , we say that u P σ if @p P u, p P σ.

Definition 6.2.2 (Accepting Run for BA)
Given a Büchi automaton B � pQ, δ,Q0, F q. A run ρ � q0

σ0ÝÑ q1
σ1ÝÑ q2

σ2ÝÑ . . . of
B is accepting if and only if there exists qi P F that appears infinitely often in ρ. The
automaton accepts an infinite word ξ � u0u1u2 . . . over 2P if there exists an accepting
run ρ such that for all transitions xqi, σi, qi�1y in ρ, with i ¥ 0, we have ui P σi. The set
of words accepted by B is denoted LpBq.

A Büchi automaton can be represented as a graph, in which the nodes correspond
to the states, and the edges to the transitions. Nodes with double circles indicate the
accepting states, while a single incoming arrow—not coming from another state—identify
each initial state.

6.2. Representation of Büchi Automata 85

q0 q1

 c

 a

Figure 6.2: A Büchi automaton.

Example 6.2.1 Figure 6.2 depicts an example of a Büchi automaton. Formally, we
have B � pQ, δ,Q0, F q where Q � tq0, q1u; Q0 � tq0, q1u; and F � tq1u.

There exist other variants of Büchi automata. The most interesting ones, in terms of
verification, are generalized Büchi automata (GBA) with multiple acceptance conditions
defined in terms of states, and transition-based generalized Büchi automata (TGBA) with
acceptance conditions on the transitions. We give below the definitions of these two types.

Definition 6.2.3 (Generalized Büchi Automata)
A generalized Büchi Automaton is a tuple B � pQ,L, δ,Q0,Fq, where

- Q is a finite nonempty set of states,

- L : QÑ BoolpP q is a state labeling function,

- δ � Q�Q is the transition relation,

- Q0 � Q is the set of initial states,

- F � 2Q is the set of sets of accepting states.

Definition 6.2.4 (Accepting Run for GBA)
Given a generalized Büchi automaton B � pQ,L, δ,Q0,Fq. A run ρ � q0q1q2 . . . of B
is accepting if and only if @ Fj P F there exists qi P Fj that appears infinitely often
in ρ. The automaton accepts an infinite word ξ � u0u1u2 . . . over 2P if there exists an
accepting run ρ � q0q1q2 . . . such that @i ¥ 0, ui P Lpqiq.

Definition 6.2.5 (Transition-based Generalized Büchi Automata)
A transition-based generalized Büchi Automaton is a tuple B � pQ, δ,Q0, T q,
where

- Q is a finite nonempty set of states,

- δ � Q�BoolpP q �Q is the transition relation,

- Q0 � Q is the set of initial states,

- T � 2δ is the set of sets of accepting transitions.

86 An Automata-Theoretic Approach

q0 q1

 c

 a

Figure 6.3: A Transition-based Büchi automaton.

Definition 6.2.6 (Accepting Run for TGBA)
Given a transition-based generalized Büchi automaton B � pQ, δ,Q0, T q. A run ρ �

q0
σ0ÝÑ q1

σ1ÝÑ q2
σ2ÝÑ . . . of B is accepting if and only if @ Tj P T there exists ti P Tj that

appears infinitely often in ρ. The automaton accepts an infinite word ξ � u0u1u2 . . . over
2P if there exists an accepting run ρ such that for all transitions xqi, σi, qi�1y in ρ, with
i ¥ 0, we have ui P σi.

Lemma 6.2.1
Given a generalized Büchi automaton, one can build an equivalent transition-based gen-
eralized Büchi automaton, and vice versa.

Proof (ñ) All we need to do is move the labels and the acceptance conditions from
states to transitions. An accepting transition in a TGBA is simply one that leads to an
accepting state in the corresponding GBA. Therefore, assume that we have a GBA with an
accepting set F � tF1, F2, . . . , Fnu, we can build a TGBA with an accepting set T , such
that |T | � |F |, and the elements of a set Ti P T correspond to all incoming transitions
of the states in Fi. i.e. for all t � qa

σ
ÝÑ qb P Ti in the TGBA, we have qb P Fi in the

corresponding GBA.
(ð) Follows by similar argumentation.

Example 6.2.2 Figure 6.3 depicts a TGBA version of the automaton in Example 6.2.1.
Accepting transitions are represented as dashed lines. Formally, we have B � pQ, δ,Q0, T q
where, Q � tq0, q1u; Q0 � tq0, q1u; and T � ttq0

 a
ÝÑ q1uu.

6.2.2 Translating an LTL Formula Into a TGBA

Translating an LTL formula into a Büchi automata is a whole independent topic that
has already been investigated thoroughly by many researchers (see e.g. [DGV99, SB00,
DLP04, Tau03, EH00, GO01]). In our work, we use the technique introduced in [GPVW95].
With this translation, the labels and acceptance conditions are defined in terms of states
rather than transition. Therefore, to obtain a TGBA, we simply push the labels into the
transitions after the translation, and adjust the acceptance conditions accordingly.

The translation is performed using the tableau rules shown in Table 6.1. The rules
are applied to a formula φ until it becomes an expression composed only of elementary

6.2. Representation of Büchi Automata 87

Table 6.1: Tableau Rules

φ α1pφq α2pφq

φ1 ^ φ2 tφ1, φ2u H

φ1 _ φ2 tφ1u tφ2u

φ1 U φ2 tφ2u tφ1,X pφ1 U φ2qu

φ1 R φ2 tφ2, φ1u tφ2,X pφ1 R φ2qu

subformulas—i.e. a constant, or an atomic proposition, or a formula starting with the
X operator. These subformulas put in disjunctive normal form (DNF) constitute an
elementary cover of φ. Each term of the cover corresponds to a state of the automaton.
The atomic propositions in the term, as well as their negations are used to construct the
label of the state. The other subformulas in the term define the transitions out of the
state, its next part, along with the acceptance conditions.

The translation process is applied to the next part of each state until no more new
covers can be generated, that is, until we obtain a closed set of elementary covers. The
automaton is obtained by connecting each state to its next part. The states in the
elementary cover of φ correspond to the initial states. Acceptance conditions are added
to each elementary subformula of the form Xpφ1 U φ2q. The acceptance condition concerns
every state s whose label does not imply φ1 U φ2, or whose label implies φ2. Then we
move the labels and acceptance conditions into the transitions, in order to obtain a TGBA.

Before translating an LTL formula, we usually transform it into NNF, as explained
in Section 2.3. During the translation, if there are more than one atomic proposition in
a term of an elementary cover, we combine them with the logic operator ^ to form the
label. Thus, ^ will be the only operator that may appear in each label.

Example 6.2.3 As an example, consider an LTL formula φ � Fa ^ F a. After ap-
plying the NNF transformation rules and the ones in Table 6.1, we obtain the following
three-term elementary cover:
�
true^ X ptrue U aq ^ X ptrue U aq

	
_
�
a^ X ptrue U aq

	
_
�
 a^ X ptrue U a

	

We thus obtain three initial states, which we call q0, q1, and q2 respectively. We could
see, for instance, that the state q1 has a label a, and next part ptrue U aq. If we apply
the rules to the next part of q1 we obtain the following cover:

�
true ^ X ptrue U aq

	
_
�
 a
	

Hence, q1 generates two new states, say q3 and q4, labeled as true and a respectively.
The state q4 has no next part, while q3 has again ptrue U aq. Therefore, from q3, no
more new covers could be generated, which means we do not obtain new states anymore.
Instead, we have two outgoing transitions which go to q3 (a self-loop) and q4 respectively.

88 An Automata-Theoretic Approach

q0

q1 q2

q6q5q4q3

true

true true

 aa

 atrue a true

 a a

Figure 6.4: TGBA for the LTL formula (Fa^ F a).

After pushing the labels on the transitions and adapting the acceptance conditions
accordingly, we obtain the TGBA depicted in Figure 6.4. The states q5 and q6 are obtained
from q2 using the same mechanism as before. Formally, we have B � pQ, δ,Q0, T q where,
Q � tq0, q1, q2, q3, q4, q5, q6u; Q0 � tq0, q1, q2u; and T � tT1, T2u, such that T1 � ttq0

a
ÝÑ

q1u; tq2
a
ÝÑ q5u; tq6

a
ÝÑ q5uu and T2 � ttq0

 a
ÝÑ q2u; tq1

 a
ÝÑ q4u; tq3

 a
ÝÑ q4uu.

Definition 6.2.7 (TGBA Associated to an LTL Formula)
Given an LTL formula φ. Let us denote Subpφq the set of subformulas of φ, and Acc the
set of until subformulas of φ, i.e. Acc � tφ1 U φ2 P Subpφqu. We define Bφ, the TGBA
associated to φ, as follows:

- Q � 2Subpφq,

- δ � Q�BoolpP q �Q,

- Q0 � tφu,

- T � tT1, T2,, Tnu, such that @t � qa
σ
ÝÑ qb P Ti we have qa P Q and qb P 2Acc.

After the translation, the resulted automaton should accept all infinite words modeling
a given LTL formula. The following theorem formalizes this assertion.

Theorem 6.2.2
Let φ be an LTL formula, and Bφ � pQ, δ,Q0, T q the TGBA associated to φ. Then LpBφq
corresponds to all infinite words over 2P that models φ. Formally, we have LpBφq � tξ P
p2P qω | ξ (φu.

Proof (ñ) The idea is to show that @ϕ P Subpφq, the language accepted by Bφ with
Q0 � ϕ is equal to tξ P p2P qω | ξ (ϕu.

Let ϕ be a element of Subpφq, and ξ � u0u1u2 . . . an infinite word accepted by Bφ
with Q0 � ϕ. One of the cases below will arise:

6.2. Representation of Büchi Automata 89

(1) ϕ � p with p P P . Since Q0 � tpu, and p is the only proposition that appears in
Qo, then we have p P σ0, thus p P ξp0q. As a result, ξ (p (see Definition 2.3.2).

(2) ϕ � g^h with g P P and h P P . We then have Q0 � tg^hu, i.e. g P σ0 and h P σ0,
which implies g P ξp0q ^ h P ξp0q. Thus, ξ (g and ξ (h. As a result, we conclude
ξ (g ^ h.

(3) ϕ � g _ h with g P P and h P P . We then have Q0 � tg _ hu, i.e. g P σ0 or h P σ0,
which implies g P ξp0q _ h P ξp0q. Thus, ξ (g or ξ (h. As a result, we conclude
ξ (g _ h.

(4) ϕ � Xg with g P P . We have Q0 � tXgu and Q1 � tgu. This implies that g P ξp1q.
We then can say that ξ1 (g. Hence, ξ (Xg (see Definition 2.3.2).

(5) ϕ � gUh with g P P and h P P . Applying the tableau rules, we have gUh �
h _ pg ^ XpgUhqq. Therefore, proving ξ (gUh is then equivalent to proving
ξ (h_ pg ^ XpgUhqq.
We have

Q0 � th_ pg ^ XpgUhqqu,

thus �
h P ξp0q

	
_
�
g P ξp0q ^ g P ξp1q ^ h P ξp1q

	
.

i.e. �
ξ (h

	
_
�
ξ (g ^ ξ1 (g ^ ξ1 (hq

	
.

We then found i � 1 such that ξi (h and @j i, ξi (g. Hence, following Definition
2.3.2, we conclude that ξ (gUh.

Note that if g and h are elements of 2subpφq the proof can still be constructed recursively
using the above results. The proof of all derived operators can also be obtained from
these results.

(ð) Let ξ � u0u1u2 . . . be an infinite word modeling the formula φ. We will prove
that ξ is accepted by Bφ. To do that, we need to show that @Tj P T , there exists ti P Tj
that appears infinitely often in a run of the form ρ � q0

σ0ÝÑ q1
σ1ÝÑ q2

σ2ÝÑ . . ., such that
@i ¥ 0, ui P σi.

Let Tj be a set of transition in T . The following two facts can be established.

(i) We have seen before that if ξ (φ, then for a subformula ϕ � gUh we will also have
ξ (ϕ with Q0 � ϕ.

(ii) By definition of Bφ, each element t P Tj is of the form qa
σ
ÝÑ qb where qb P Acc i.e.

qb P tgUh P Subpφqu.

Combining the facts (i) and (ii), we can say that any element of Tj will appear infinitely
often in the run ρ, which means ρ is accepted by Bφ. Thus, ξ is accepted by Bφ.

90 An Automata-Theoretic Approach

6.2.3 TGBA Encoding

Consider a TGBA B � pQ, δ,Q0, T q. The encoding of B at bound k is given as:

vBwk � IpQ0q ^ T pQ0, Q1q ^ . . .^ TAccpQk�1, Qkq (6.1)

where

- Qi is the set of states reached at step i,

- IpQ0q is the characteristic function for the set of initial states,

- T pQi, Qi�1q encodes the transitions between steps i and i� 1, @i P r0, k � 2s,

- TAccpQk�1, Qkq encodes the transitions between steps k � 1 and k, as well as the
acceptance conditions for bound k.

We denote the Boolean variable related to a state qn at step i as qn,i. The characteristic
function for a set of states Qj , denoted as XQj , is formed by the product of the Boolean
variables related to the states in Qj . The characteristic function for the set of initial
states is given as:

IpQ0q � XQ0 ^
©

qnPQzQ0

 qn,0 (6.2)

For example, for the TGBA depicted in Figure 6.4 we have:

IpQoq � q0,0 ^ q1,0 ^ q2,0 ^ q3,0 ^ q4,0 ^ q5,0 ^ q6,0

Let qn be a state. The equation of a transition t from a state qn to another state qm
between two steps i and i� 1 is given as:

tpqn,i, qm,i�1q � qn,i ^ σ ^ qm,i�1 (6.3)

where σ corresponds to the label of the transition t. In practice, we give an index i

to all the variables in σ. For instance, given a transition t � q0,0
 a
ÝÑ q2,1, we have

tpq0,0, q2,1q � q0,0 ^ a0 ^ q2,1.
Recall that ^ is the only operator that may exists in a label σ. Therefore, we treat the

constant true as a neutral element if it ever appears among the operands in σ. For exam-
ple, assume σ � true^a, this means σ � a, and we have tpqn,i, qm,i�1q � qn,i^ ai ^qm,i�1.

We then define T pQi, Qi�1q, i P r0, k � 2s as:

T pQi, Qi�1q �
©
qnPQi

ª
tPTqn

tpqn,i, qm,i�1q (6.4)

where Tqn is the set of all outgoing transitions from qn, and qm P Qi�1.

6.2. Representation of Büchi Automata 91

q0

q1 q3q2

b

c

a^ c
a^ b c

a^ c

a^ b

b

Figure 6.5: TGBA for the LTL formula φ � a R pc_ bq.

Let qn be a state. The equation of an accepting transition tA from a state qn to
another state qm between two steps i and i� 1 is given as:

tApqn,i, qm,i�1q � qn,i ^
�
σA _

ª
tPTqn zAqn

 σ
�
^ qm,i�1 (6.5)

where Aqn is the set of accepting transitions from qn, σA is the label associated to tA,
and σ the one associated to t.

We define TAccpQk�1, Qkq as:

TAccpQk�1, Qkq �
©

qnPQk�1

� ª
tPTqn zAqn

tpqn,k�1, qm,kq _
ª

tAPAqn

tApqn,k�1, qm,k1q
	

(6.6)

where qm P Qk.

Example 6.2.4 Consider the LTL formula φ � a R pc_ bq. The TGBA obtained from
this formula is depicted in Figure 6.5. The Boolean equation for this automaton at bound
k � 2 is given as:

vBw2 � IpQ0q ^ T pQ0, Q1q ^ TAccpQ1, Q2q

where

92 An Automata-Theoretic Approach

IpQ0q � q0,0 ^ q1,0 ^ q2,0 ^ q3,0

T pQ0, Q1q �
�
pq0,0 ^ b0 ^ q0,1q _ pq0,0 ^ pa0 ^ b0q ^ q1,1q _ pq0,0 ^ pa0 ^ c0q ^ q2,1q

_pq0,0 ^ c0 ^ q3,1q
�

^
�
pq3,0 ^ pa0 ^ b0q ^ q1,1q _ pq3,0 ^ pa0 ^ c0q ^ q2,1q _ pq3,0 ^ b0 ^ q0,1q

_pq3,0 ^ c0 ^ q3,1q
�

TAccpQ1, Q2q �
�
pq0,1 ^ ppa1 ^ b1q _ c1 _ b1q ^ q1,2q

_pq0,1 ^ ppa1 ^ c1q _ c1 _ b1q ^ q2,1q

_pq0,1 ^ b1 ^ q0,2q _ pq0,1 ^ c1 ^ q3,2q
�

^
�
pq3,1 ^ ppa1 ^ b1q _ b1 _ c1q ^ q1,2q

_pq3,1 ^ ppa1 ^ c1q _ b1 _ c1q ^ q2,2q

_pq3,1 ^ b1 ^ q0,2q _ pq3,1 ^ c1 ^ q3,2q
�

In this example, Q0 � Q1 � Q2 � tq0, q1, q2, q3u. This situation happens mainly because
of the self-loop on q0 and q3.

6.3 Building the BMC Formulas

The BMC formulas are obtained by building the conjunction of the TS unrolling and the
TGBA one. To unroll the TS, we extend the techniques introduced in Chapter 4 by also
including into the formulas the enabled events at each step. As before, we will take into
consideration the three unrolling executions. Namely, interleaving, BFS, and Chaining.

6.3.1 Interleaving Execution

Consider a synchronized TS A � pA0, . . . ,Amq, a bound k, and an LTL property φ such
that B is its corresponding Büchi automaton. We define the BMC formula for A, in terms
of interleaving execution and LTL as follows.

LIntvA, φwk � LIntvAwk ^ vBwk (6.7)

where

LIntvAwk � IIntps0q ^
k�1©
i�0

TLIntpsi, si�1q (6.8)

and
TLIntpsi, si�1q � TIntpsi, si�1q ^ ei ^

©
el�ei

 el (6.9)

Example 6.3.1 To illustrate the interleaving execution, let us take the synchronized
system A � pA0,A1q depicted in Figure 6.6, and an LTL formula φ � c R a which means
the event a is always enabled along the execution until the first position where c is enabled,
or forever if such a position does not exist.

6.3. Building the BMC Formulas 93

s0

s1 s2

s3

(A0)

b

ce

a

a

e
ce

c

e
s4

s5 s6

s7 s8 s9 s10

pA1q

a

d bd

d

c

q0

q1

(B)

 c

 a

Figure 6.6: A complete example: two TSs and a TGBA.

The encoding of A at bound k � 2 is given as:

LIntvAw2 � IIntpps
0
0, s

1
0qq

^TLIntpps
0
0, s

1
0q, ps

0
1, s

1
1qq

^TLIntpps
0
1, s

1
1q, ps

0
2, s

1
2qq

�
�
v0,0 ^ v4,0 ^ v1,0 ^ v2,0 ^ v3,0 ^ v5,0 ^ v6,0

	

^
�
v0,0 ^ v4,0 ^ v0,1 ^ v4,1 ^ v5,1 ^ v2,1 ^ pv1,0 Ø v1,1q ^ pv3,0 Ø v3,1q

^pv6,0 Ø v6,1q ^ pv7,0 Ø v7,1q ^ pv8,0 Ø v8,1q ^ pv9,0 Ø v9,1q

^pv10,0 Ø v10,1q ^ a0 ^ b0 ^ c0 ^ d0 ^ e0

	

^
�
v2,1 ^ v2,2 ^ v1,2 ^ pv0,1 Ø v0,2q ^ pv3,1 Ø v3,2q ^ pv4,1 Ø v4,2q

^pv5,1 Ø v5,2q ^ pv6,1 Ø v6,2q ^ pv7,1 Ø v7,2q ^ pv8,1 Ø v8,2q

^pv9,1 Ø v9,2q ^ pv10,1 Ø v10,2q ^ a1 ^ b0 ^ c0 ^ d0 ^ e0

	

where

s0
0 � s0; s1

0 � s4; s0
1 � s2; s1

1 � s5; s0
2 � s1; s1

2 � s5;

e0 � a; e1 � e

The negation of the formula φ is c U a. The translation of this formula into a
TGBA yields the one shown in Figure 6.6 pBq. Formally, we have B � pQ, δ,Q0, F q where,
Q � tq0, q1u, Q0 � tq0, q1u, and T � ttq0

 a
ÝÑ q1uu.

The translation of the automaton into Boolean formula yields

94 An Automata-Theoretic Approach

vBw2 � IpQ0q

^T pQ0, Q1q

^TAccpQ1, Q2q

�
�
q0,0 ^ q1,0

	

^
�
pq0,0 ^ c0 ^ q0,1q _ pq0,0 ^ a0 ^ q1,1q

	

^
�
pq0,1 ^ c1 ^ q0,2q _ pq0,1 ^ p a1 _ c1q ^ q1,2q

	

Here again we have Q0 � Q1 � Q2 � tq0, q1u because of the self-loop on q0.
The BMC equation is obtained by the conjunction of the two formulas. We have,

LIntvA, φw2 � LIntvAw2 ^ vBw2.
Using a SAT solver one can find a satisfying assignment for the formula at bound

k � 2. We then have the following counterexample:

ps0, s4q
a
ÝÑ ps2, s5q

e
ÝÑ ps1, s5q

Theorem 6.3.1
Given a synchronized system A � pA0, . . . ,Amq, an LTL formula φ, and a bound k. If
LIntvA, φwk is satisfiable, then A * φ.

Proof Assume that LIntvA, φwk is satisfiable, i.e. LIntvAwk ^ vBwk is satisfiable. This
also means that IIntps0q ^ TLIntps0, s1q ^ . . .^ TLIntpsk�1, skq, which represents the en-
coding of the execution from step 0 to step k, is satisfiable. Since vBwk, which represents
the encoding of the negation of the property φ at bound k, is also satisfiable, we can
therefore say that we found a path of length k from the initial state to a state where the
LTL property is violated, which means we have A * φ.

Theorem 6.3.2
Given a synchronized system A � pA0, . . . ,Amq, an LTL formula φ, and a bound k.
A * φ implies that Dk P N such that LIntvA, φwk is satisfiable.

Proof To prove this theorem, all we need to do is use the results from the proof of
Theorem 4.4.2 and replace φ into B.

6.3.2 Breadth First Search Execution

Given a synchronized system A � pA0, . . . ,Amq, and a bound k, and an LTL formula φ
such that B is its corresponding Büchi automaton. We define the BMC formula for A, in
terms of BFS execution and LTL, as follows.

LBfsvA, φwk � LBfsvAwk ^ vBwk (6.10)

6.3. Building the BMC Formulas 95

where

LBfsvAwk � IBfsps0q ^
k�1©
i�0

TLBfspsi, si�1q (6.11)

and
TLBfspsi, si�1q � TBfspsi, si�1q ^

©
eiPEi

ei ^
©

elPΣzEi

 el (6.12)

Recall that Σ �
�m
j�0 Σj , while Ei corresponds to the set of events that fire at step i

(see Definition 4.4.2).

Example 6.3.2 As an Example, consider the synchronized system A � pA0,A1q de-
picted in Figure 6.6, and the LTL formula φ � c R a. The unrolling of A using the BFS
method for k = 2 is given as:

LBfsvAw2 � IBfsppS
0
0 , S

1
0qq

^TLBfsppS
0
0 , S

1
0q, pS

0
1 , S

1
1qq

^TLBfsppS
0
1 , S

1
1q, pS

0
2 , S

1
2qq

�
�
v0,0 ^ v4,0 ^ v1,0 ^ v2,0 ^ v3,0 ^ v5,0 ^ v6,0

	

^
�
v0,0 ^ v4,0 ^ v0,1 ^ v4,1 ^ v2,1 ^ v5,1 ^ v6,1 ^ pv1,0 Ø v1,1q

^pv3,0 Ø v3,1q ^ pv7,0 Ø v7,1q ^ pv8,0 Ø v8,1q ^ pv9,0 Ø v9,1q

^pv10,0 Ø v10,1q ^ a0 ^ b0 ^ c0 ^ d0 ^ e0

	

^
�
v2,1 ^ v5,1 ^ v6,1 ^ v0,1 ^ v0,2 ^ v1,2 ^ v2,2 ^ v3,2 ^ v7,2 ^ v8,2

^v10,2 ^ pv4,1 Ø v4,2q ^ pv9,1 Ø v9,2q

^ a0 ^ b0 ^ c0 ^ d0 ^ e0

	

where

S0
0 � ts0u; S

1
0 � ts4u; S

0
1 � ts0, s2u; S

1
1 � ts5, s6u; S

0
2 � ts0, s1, s2, s3u; S

1
2 � ts7, s8, s10u;

E0 � ta, d, eu; E1 � tc, d, eu

To verify whether the system satisfy the property φ we simply build the BMC equation
LBfsvA, φw2 � LBfsvAw2 ^ vBw2, where vBw2 is the same as in Example 6.3.1.

We then obtain the following counterexample at bound k � 2:

pts0u, ts4uq
ta,d,eu
ÝÑ pts0, s2u, ts5, s6uq

tc,d,eu
ÝÑ pts0, s1, s2, s3u, ts7, s8, s10uq

Theorem 6.3.3
Given a synchronized system A � pA0, . . . ,Amq, an LTL formula φ, and a bound k. If
LBfsvA, φwk is satisfiable, then A * φ.

Proof Assume that LBfsvA, φwk is satisfiable. This means LBfsvAwk ^ vBwk is satisfi-
able. This implies that IBfsps0q^

�k�1
i�0 TLBfspsi, si�1q is satisfiable (see equation (6.14)).

96 An Automata-Theoretic Approach

Hence, there exists a path of length k from the initial state. Since vBwk represents the
negation of the property, and since the product LBfsvAwk ^ vBwk is satisfiable, we con-
clude that we found a path leading to a state where the property φ is violated. Therefore,
we have A * φ.

Theorem 6.3.4
Given a synchronized system A � pA0, . . . ,Amq, an LTL formula φ, and a bound k.
A * φ implies that Dk P N such that LBfsvA, φwk is satisfiable.

Proof Assume A * φ. This means that, using the BFS execution, we can construct a
path from the initial state to a state where the property φ is violated. Assume that k
is the length of that path. We then have a path s0, . . . , sk. Since si�1 is reachable from
si in one step, we can say that TBfspsi, si�1q � 1. Therefore, we also have IBfsps0q ^

TBfsps0, s1q ^ . . . ^ TBfspsk�1, skq � 1. Hence LBfsvAwk � IBfsps0q ^ TLBfsps0, s1q ^

. . . ^ TLBfspsk�1, skq � 1 because each TLBfspsi, Si�1q is an extension of TBfspsi, si�1q

by simply adding the transition label into the equation, and adding the label will not
change the satisfiability of the formula. The property φ is violated at step k. Therefore,
we conclude that LBfsvAwk^, vBwk is satisfiable as B represents the negation of the
property φ.

6.3.3 Chaining

Given a synchronized system A � pA0, . . . ,Amq, and a bound k, and an LTL formula φ
such that B is its corresponding Büchi automaton. We define the BMC formula for A, in
terms of chaining execution and LTL, as follows.

LChainvA, φwk � LChainvAwk ^ vBwk (6.13)

where

LChainvAwk � IChainps
1
0q ^

k�1©
i�0

TLChainps
1
i, si�1q (6.14)

and

TLChainps
1
i, si�1q � TChainps

1
i, si�1q ^

©
eiPEi

ei ^
©

elPΣzEi

 el (6.15)

Example 6.3.3 Let us take again the synchronized system A � pA0,A1q depicted in
Figure 6.6 and the LTL formula: φ � c R a. The unrolling of A at bound k � 2 using the
chaining execution is given by the following equation:

6.4. Discussion 97

LChainvAw1 � ILChainppS
10
0 , S

11
0 qq

^TLChainppS
10
0 , S

11
1 q, pS

0
1 , S

1
1qq

�
�
v0,0 ^ v2,0 ^ v4,0 ^ v5,0 ^ v1,0 ^ v3,0 ^ v6,0 ^ v7,0 v8,0

^ v9,0 ^ v10,0

	

^
�
v0,0 ^ v2,0 ^ v4,0 ^ v5,0 ^ v4,1 ^ v2,1 ^ v5,1 ^ v0,1 ^ v1,1 ^ v6,1 ^ v7,1 ^ v8,1

^pv3,0 Ø v3,1q ^ pv9,0 Ø v9,1q ^ pv10,0 Ø v10,1q

^a0 ^ b0 ^ c0 ^ d0 ^ e0

	

where,

S0
0 � ts0u; S

10
0 � ts0, s2u; S

1
0 � ts4u; S

11
0 � ts4, s5u; S

0
1 � ts0, s1u; S

1
1 � ts6, s7, s8u;

E0 � ta, d, eu

In this example we use the chaining order ra, d, es.
As before, the BMC equation is obtained with the conjunction LChainvA, φw2 �

LChainvAw2 ^ vBw2, where vBw2 is the same as in Example 6.3.1.
We obtain the following counterexample:

pts0, s2u, ts4, s5uq
E0ÝÑ pts0, s1u, ts6, s7, s8uq

Theorem 6.3.5
Given a synchronized system A � pA0, . . . ,Amq, an LTL formula φ, and a bound k. If
LChainvA, φwk is satisfiable, then A * φ.

Proof To prove this theorem, all we need to do is use the reasoning from the proof of
Theorem 6.3.3 and change LBfs into LChain.

Theorem 6.3.6
Given a synchronized system A � pA0, . . . ,Amq, an LTL formula φ, and a bound k.
A * φ implies that Dk P N such that LChainvA, φwk is satisfiable.

Proof The proof of this theorem is also similar to the one for Theorem 6.3.4. All we
need to do is change LBfs into LChain.

6.4 Discussion

An automata-theoretic approach offers numerous advantages when it is combined with
model checking in general. However, it also has its drawbacks. We will discuss some of
them in this section.

First, since the transformation algorithm itself may presents some errors, it can be
difficult sometimes to know whether the obtained automaton correctly represents the

98 An Automata-Theoretic Approach

given LTL formula. Therefore, it may be necessary to verify the transformation algorithm
beforehand or, alternatively, test several transformation techniques on the same formula
and compare the results. The work in [TH00] demonstrates how to conduct such tests.

Second, an automaton transformation algorithm has an exponential time complexity
in the worst and best case [Wol02]. Still, it is practically feasible because, as mentioned
earlier, most of the LTL formulas used in verification produce small automata. One
solution of this problem is to use alternating automata [GO01], which can be generated in
linear time. It has been pointed out that finding the optimal size for a Büchi automaton
is a PSPACE-hard problem [EH00].

Despite the problems mentioned above, automata-theoretic approaches have been suc-
cessfully implemented into numerous model checking tools including Java PathFinder
[VHBP00] developed at the NASA Ames Research Center, and SPIN [Hol97] developed
by Bell Labs.

Chapter 7

Implementation

We have implemented our methods in a toolset written in C++. The tool accepts as
input transition systems and Petri nets. Although all the BMC methods we described
in Chapter 4, Chapter 5, and Chapter 6 are devoted to TS models, we have integrated
in the tool some options allowing the user to perform deadlock detection for Petri nets.
We have also implemented the heuristic algorithms discussed in Chapter 5 for Petri nets.
Concerning the TS models, the tool can perform deadlock detection using the method
described in Chapter 4, and LTL verification using the method in Chapter 6. Basically,
all the major functions in the tool are initiated through command lines entered by the
user. We call the tool BMC++. We will describe it in this chapter, and show with some
examples the different tasks it can accomplish.

7.1 Different Modules

The tool has four major modules: LTL2BA, BMC, CNF translator, and solver (see Figure
7.1).

7.1.1 LTL2BA

Description

If the user enters an LTL specification, it will be first translated into a Büchi automaton,
as explained in Chapter 6. The LTL2BA module assumes this task. The module negates
the formula, transforms it into NNF, and stores it as a tree structure. Then it uses the
generated tree to build the BA.

Implementation Details

The core of this module is formed by four principal functions. Namely, a parser, an NNF
translator, a function that builds the tree structure, and the one which generates the BA.

100 Implementation

TS PN LTL

LTL2BA Module

BMC Module

CNF Translator

Solver

Result

CEX NO CEX

Figure 7.1: BMC++ major modules.

Once the formula has been entered, the parser will parse it. If the formula is correct,
then the parser will negate it. Otherwise, the process stops and the tool prompts the
user to reenter the formula. To simplify the task of the parser, the formula should be
entered without space in between. Parentheses are allowed if the user prefers to put more
emphasis on the operators. Table 7.1 shows the list of the most used LTL operators and
how the user should enter them.

Table 7.1: LTL operators and their keyboard equivalents

Operator Keyboard Equivalent

 !
^ &
_ |
ñ >
� =

After parsing the formula, the parser will give its negation to the NNF translator,
which simply applies the rules in equations (2.11) to (2.15) to create an NNF formula.
Then, another function will receive the generated NNF formula and translate it into tree
structure. This step is necessary because it is much more easier to handle the formula if

7.1. Different Modules 101

^

F F

a

a

Figure 7.2: The tree representation of the LTL formula Fa^ F a.

it is represented as a tree. As an example, Figure 7.2 shows a tree representation of the
LTL formula Fa^ F a.

The final step in this module is assumed by the function which actually performs the
BA translation. It takes the tree structure and repeatedly apply the algorithm described
in Section 6.2.2 until the final BA is formed. All the above steps are summarized in Figure
7.3 (1).

7.1.2 BMC Module

Description

This is the core of the tool. It performs all the unrolling techniques described in Chapters
4, 5, and 6. For a BMC session involving a TS, if the user entered an LTL specification, this
module takes the BA generated by the LTL2BA module, and build a Boolean formula out
of it. Obviously, the module also generate a Boolean formula from the unrolling operation.
It ends its parts after generating these formulas.

Implementation Details

All operations involving this module are launched through command lines. It begins
its tasks after receiving an input file from the user. If it receives a TS file, then all
subsequent commands and operations will be devoted only for TSs. The same applies
for PNs. Obviously, the first thing it does is fetch the file from the disk and parse it. If
there is no errors in the file, then the tool waits for the next command from the user.
Otherwise, it prompts an error message. To deal with synchronized TSs, the user must
enter the file one by one, and the tool will make the necessary synchronization.

When all the input files have been entered, the user can choose among several options
concerning the unrolling operation. Or alternatively, he or she can accept the default
options. In case of a TS, the available options are: interleaving execution, BFS execution,

102 Implementation

LTL Formula

Parser

NNF Translator

Tree� builder

BA translator

BA

(1)

TS PN

BAParsers

Unrollers

Boolean Formulas

(2)

Figure 7.3: Details of the LTL2BA Module (1), and the BMC Module (2).

and chaining execution. Of course, they can also choose whether to check an LTL formula
or perform a deadlock detection. If the user chooses LTL formula, then the module calls
a function that takes the BA generated by LTL2BA and builds a Boolean formula out
of it. For the PN, the options are: interleaving execution, step execution, and process
execution. The latest two options are functions we integrated inside the tool based on
the method described in [Hel01]. Briefly put, step execution is similar to a standard BFS
but adapted to work for Petri nets, while process execution is a version of the step one
that takes only into account the shortest path among all possible step executions leading
to the same marking. Most importantly, the user can also choose whether to adopt the
leap execution or not. Only deadlock detection can be performed with PNs. Figure 7.3
(2) summarizes all the above steps.

Inside the tool, each TS, PN, and BA are mainly stored using a graph-like data struc-
ture. The only difference is that the edges and nodes carry more information than a
standard graph.

Note that, once the unrolling operation has been launched, no more input files can be
entered.

7.1. Different Modules 103

s0

s1 s2

s3

b

ce

a

a

e
ce

c

e

Figure 7.4: A transition system.

7.1.3 CNF translator

This module serves as an intermediate step between BMC module and the solver. It
translates the Boolean formulas generated by the BMC module into conjunctive normal
form (CNF). This step is necessary because we use a CNF-based solver.

Implementation Details

The translation is performed using Tseiting encoding [Tse83] as explained in Section 2.4.3.
To generate a CNF formula, the algorithm applies recursively the rules in Table 2.1. We
also combined the translation with the reduction techniques described in [Vel04b]. In case
of an LTL check, we transform separately the Boolean formulas from the unrolling and
the one from the BA, then put the conjunction of the two to form one single CNF.

7.1.4 Solver

The solver module performs the last step of the whole operation. In fact, we did not build
our own solver. Instead, we integrated into our tool a state-of-the-art CNF-based SAT
solver called ZChaff [MMZ�01]. This module takes the formula generated by the CNF
translator and gives it to the solver, which determines whether the formula is satisfiable
or not.

The reason why we chose ZChaff can be explained as follows. After conducting
numerous experiments with different SAT-solvers, we observed that ZChaff produces
the more stable results in terms of speed. We tried five SAT-solvers: ZChaff, SATO,
Grasp, Berkmin, MiniSat, and BCSat. We observed that the running time of those
solvers, including ZChaff, varies a lot even though they were run on the same benchmark.
Nevertheless, the CPU time consumed by ZChaff is more stable compared to those of
the others.

104 Implementation

7.2 Input Formats

7.2.1 TS File format

The TS file format has three parts named header, action_names, and transitions. Inside the
header, we define the following variables: State_cnt, Transition_cnt, Initial_states which
correspond to the number of states, number of transitions, and initial state id respectively.
Each event id and its associated name is described in the action_names part. Each line
in the transitions part identifies the source, destination, and event related to a transition.
Below we formalize the TS format.

Begin TS

Begin Header
State_cnt = number of states ¡

Transition_cnt = number of transitions ¡

Initial_states = id of the initial state ¡;
End Header

Begin Action_names
 event id1 ¡ = “ event name1 ¡”
 event id2 ¡ = “ event name2 ¡”
. . .
End Action_names

Begin Transitions
 source id ¡: destination id ¡, event id ¡ . . . destination id ¡, event id ¡;
. . .
End Transitions

End TS

Example 7.2.1 As an example, bellow we give the file for the TS depicted in Figure
7.4, which is, in fact, the same as the system (A0) depicted in Figure 6.6.

Begin TS

Begin Header
State_cnt = 4

Transition_cnt = 10

Initial_states = 0;
End Header

7.2. Input Formats 105

Begin Action_names
1 = “a”
2 = “b”
3 = “c”
4 = “e”
End Action_names

Begin Transitions
0: 0,4 2,1;
1: 0,2 1,4 2,1;
2: 2,3 3,3 1,4;
3: 1,4 3,3;
End Transitions

End TS

7.2.2 PEP File format

For a Petri net model, we adopt the format used by the PEP tool [GB96]. Briefly put,
the PEP format consist of seven principal parts. Namely, header, some default values,
list of places, list of transitions, list of transition to place arcs, list of place to transition
arcs, and list of some additional information.

The PEP tool can handle many types of files, so the header is used for specifying the
type of the current file (a PEP file is identified by the keyword “PEP” in the header).
Since the PEP tool is also a graphical one, some default values specifying the positions of
certain nodes of labels in the graph are needed (e.g. position of the initial marking or the
place name). Each line in the list of places are constructed with the place identification
followed by some description, which may include the name of the place and its position
in the graph. The same applies for the list of transitions. Each transition to place arc is
defined by both transition and place identifications separated by the character “ ”. The
place to transition arcs are constructed in the same way using the character “¡”. The last
part, which is an optional one, is needed mainly for putting some graphical information
such as the caption of the graph. Below we formalize the PEP format.

PEP
PetriBox
FORMAT_N

PL
 place id ¡“place description”
 place id ¡“place description”

106 Implementation

. . .
TR
 transition id ¡“transition description”
 transition id ¡“transition description”
. . .
TP
 transition id ¡ place id ¡

 transition id ¡ place id ¡

. . .
PT
 place id ¡ ¡ transition id ¡

 place id ¡ ¡ transition id ¡

. . .
TX

Example 7.2.2 The following is a PEP file related to the Petri net in Figure 7.5.

PEP
PetriBox
FORMAT_N

PL
1“g1”M1m1
2“g2”
3“r1”
4“r2”M1m1
5“y1”
6“y2”
TR
1“ta”
2“tb”
3“tc”
4“td”
TP
1 1

1 4

2 5

3 3

3 2

4 6

PT

7.3. Important commands 107

g1

y1

r2

r1

y2

g2

tb

tc

ta

td

Figure 7.5: A Petri net.

1 ¡ 2

2 4

3 1

4 3

5 3

6 1

TX
“Example net”

The notation “M1m1” next to the description of places g1 and r2 means that these
places have the initial markings and each of them has one token. The keyword TX identifies
the last part in the file.

7.3 Important commands

Almost all the major operations in the tool are launched through command lines. These
operations includes reading the input files, the BMC itself, reading the LTL formula. In
this section, we will briefly describe the most important commands available in the tool.

read_pn

Usage: read_pn PN filename ¡

Description: Opens the PN model given as argument.

108 Implementation

read_ts

Usage: read_ts TS filename ¡

Description: Opens the TS model given as argument.

enable_leap

Usage: enable_leap leapMethod ¡

Description: Enables the leap options during a BMC operation for Petri nets.
This command should have, as an argument, one of the leap methods listed below.

Arguments: interpolation ¡ use the interpolation method
 log ¡ use the logarithmic method.

enable_chaining

Usage: enable_chaining roptions
Description: Enables chaining during a BMC operation.
Options: �c use causality for ordering the events.

If no option is given the event will be chosen randomly.

go_bmc

Usage: go_bmc rbmcLengths
Description Perform a BMC computation. If no length is given, the tool will stop at

length 10. By default, chaining is not used for TS models.

help

Usage: help rcommandNames
Description Gives a description of the command given as argument. If no specific

command is given, the tool will simply list all available commands

set_default

Usage: set_default
Description: Resets the tool to the default configuration.

source

Usage: source filename ¡

Description: Runs all commands written inside the file given as argument.

reset

Usage: reset
Description: Resets the BMC session and reinitialize all variables.

A BMC session launched after this command will start from bound 1.

7.3. Important commands 109

Note that, there exist other commands than the ones listed above. To know them the
user needs only to issue the command help.

Chapter 8

Case Studies

8.1 Experiments Related to Reachability

We have conducted several tests with a set of deadlock checking benchmarks. The main
purpose of our experiments is to show the difference between using chaining or not during
a BMC operation. The experiments were conducted on a machine with 2.4 Ghz Intel Pen-
tium processor, 1 GB memory, and Linux Red hat 9 operating system. In all experiments
in this thesis, we use ZChaff as SAT solver. The following points explain the columns
shown in Table 8.1.

- Model: the name of the model.

- |Σ|: number of events in the model.

- No Chain: results obtained using standard BFS.

- Chain: results obtained using chaining.

- CEX: the smallest bound at which a counterexample has been found.

- TotalTime: running time, in seconds, for the whole BMC computation. We call
the C++ function getrusage() to obtain these times.

Some of the benchmarks are taken from [JHN03]. They are TSs versions of the dead-
lock checking benchmarks collected by Corbett [Cor96]. The rest of the benchmarks
are from [MR90]. We used the deadlock condition described in Section 4.5 during the
experiments.

For each benchmark, we incremented the bound until a counterexample was found.
The running times shown in Table 8.1 are the total time for the entire BMC session
starting from bound 1 until the CEX bound and including the solver time, as opposed to
the ones reported in [JHN03] which show only the times obtained for the CEX bound.

As we can see from Table 8.1, using chaining decreases the number of bound required
for finding a counterexample. This decrease is manifested clearly for the keys and mmgts

112 Case Studies

Table 8.1: Deadlock detection results

NoChain Chain

Model |Σ| CEX TotalTime CEX TotalTime

DARTES 205 32 6.8 31 6.1
KEY(2) 34 52 5.8 25 1.16
KEY(3) 47 54 8.28 24 1.28
KEY(4) 60 31 2.75 23 1.55
KEY(5) 73 31 3.69 25 2.41
MMGT(3) 19 9 0.6 4 0.1
MMGT(4) 24 11 1.31 4 0.1
HART(25) 50 51 3.82 44 3.34
HART(50) 100 101 29.29 92 26.95
HART(75) 150 151 99.17 142 92.71
HART(100) 200 201 239.7 192 228
SENTEST(25) 34 33 2.3 31 2.23
SENTEST(50) 59 58 12.38 56 11.91
SENTEST(75) 84 83 36.66 81 35.54
SENTEST(100) 109 108 81.96 106 80.02
SPEED(1) 10 3 0.04 1 0.01

benchmarks. For the chaining operation, we allowed the computer to order the events
randomly at each step.

In some cases, there is no big difference between the running time obtained with the
two methods. As explained in Section 4.6.2 this situation occurs when many states must
be added in one iteration for the chaining operation. Still, the experiments show that the
chaining method performs faster than standard BFS.

8.1.1 Explication of the Benchmarks

Dartes Program (DARTES) The communication skeleton of a complex Ada program
with 32 tasks.

Keyboard Program (KEY) The communication skeleton of an Ada program that
manages keyboard/screen interaction in a window manager. The program is scaled by
making the number of customer tasks a parameter (m). The size (m) means there are
m� 5 tasks.

Distributed Memory Manager (MMGT) The communication skeleton of a com-
plex Ada program implementing a memory management scheme with m users. The size
m version has m� 4 tasks.

Hartstone Program (HART) The communication skeleton of an Ada program in
which one task starts and then stops m worker tasks.

Sensor Test Program (SENTEST) The communication skeleton of an Ada program
that starts up m tasks to test sensors. The size (m) means there are m� 4 tasks.

8.1. Experiments Related to Reachability 113

Table 8.2: Comparison with NuSMV

Chain NuSMVpBMCq

Model |Σ| CEX TotalTime CEX TotalTime

DARTES 205 31 6.1 32 1111
KEY(2) 34 25 1.16 60 4076
KEY(3) 47 24 1.28 64 4498
KEY(4) 60 23 1.55 64 5446
KEY(5) 73 25 2.41 64 2960
MMGT(3) 19 4 0.1 10 922
MMGT(4) 24 4 0.1 12 1107
HART(50) 100 92 26.95 >100 117
HART(100) 200 192 228 >200 986

Speed Regulation Program (SPEED) The communication skeleton of an Ada pro-
gram with 10 tasks that monitor and regulate the speed of a car.

8.1.2 Comparison with the Tool NuSMV

We have also conducted some experiments comparing the results we obtained above with
the state-of-the-art model checking tool NuSMV. The tool can perform BDD-based model
checking and BMC. We compared our results using the BMC option in the tool. Since
the best performances we obtained in the experiments in Table 8.1 are related to the
chaining execution, we compared only the NuSMV results with the chaining execution as
seen in Table 8.2. The time reported for the NuSMV BMC operations are the sum of
each execution time from bound 0 to the CEX bound. We were not able to perform the
comparison with all the benchmarks because only a few of the Corbett benchmarks are
available in the NuSMV format. However, we believe that the results shown in Table 8.2
gives an idea on how the missing benchmarks would perform with the tool NuSMV. To
perform the NuSMV BMC operations we use the following commands:

set input_file filename ¡;
set sat_solver zchaff;
go_bmc;
check_ltlspec_bmc -p “G (Live)” -k 50 -l X;
quit;

The command set input_file provides the input file related to the current benchmark.
set sat_solver defines what SAT solver to use during the BMC operation. In our case,
we use ZChaff. The command go_bmc configures the systems for BMC. The command
check_ltlspec_bmc -p “G (Live)” -k 50 -l X checks whether the given property holds along
the execution up to the given bound which is 50 in this particular example. In our case,
the property is defined as an LTL formula “G (Live)” where live is a predicate that evalu-
ates to true iff some action can be executed in the reached state. The last portion of the

114 Case Studies

command -l X says we are interested only in non-loop executions during the search for
counterexample.

In Table 8.2 NuSMVpBMCq gives the results from NuSMV BMC. For all of the
HARTs benchmarks, we did not find a counterexample using the NuSMV tool. We report
only the results from HART(50) and HART(100) for which we limit the search respectively
at bound 100 and 200.

8.2 Experimental Results Related to LTL

We took five problems from the literature, namely gas station, bakery algorithm, readers-
writers, sleeping barber, and leader election protocol. As explained in [ACL05, GG08b],
choosing what benchmarks to use is no easy feat, especially when it comes to asynchronous
concurrent systems. Furthermore, the tasks become much more complex if we try to com-
pare the method with other implementations. We will describe each of these benchmarks
in the following subsections.

8.2.1 Gas Station

The gas station problem [PDH99, HL85] consists of simulating a self-service gas station
with an operator, a number of pumps and customers. When a customer arrives, she first
prepays the operator to be able to fill from a specific pump. The operator then activates
the pump, assigned an ID to the customer, and pass it through a queue associated with
the pump. Only after successful ID verification can a customer start using a pump. When
the customer is done, the pump passes the charge back to the operator, who charges the
customer and returns the change, if any. The whole service is performed in a first-in-first-
out manner.

8.2.2 Bakery Algorithm

The bakery algorithm [BGR95, Bul00, BB06, BGP99] deals with the mutual exclusion
problem for n processes P1, . . . , Pn that want to access a shared critical section of a code.
Each process Pi has a shared register readable by the other processes but writable only
by Pi. A natural number ni is associated to each register. Initially, all ni p1 ¤ i ¤ nq are
set to zero. When a process Pi wants to access the critical section, it gives its ni a value
greater than all nj pj � iq. Then Pi keeps reading the registers of the other process Pj
and wait until nj � 0 or nj ¡ ni or nj � ni ^ j ¡ i. Then Pi enters the critical section.
Once it leaves the critical section, Pi resets the value of ni to zero.

8.2.3 Readers-writers Problem

The readers-writers problem [Bul00, CHP71] is a typical problem in concurrency. It
concerns the situation in which many processes must access a shared memory at the same

8.2. Experimental Results Related to LTL 115

time. Multiple readers can read the memory together, but when a writer is writing no
other readers or writers are allowed to share access to the memory.

8.2.4 Sleeping Barber

The sleeping barber problem [Bul00, BB06] is a synchronization problem between multiple
processes waiting to access a single resource. It is analogous to a barber shop with one
barber, a barber chair, and a number of chairs in a waiting room. The barber works
when there are customers, but sleeps in his chair when there are none. When a customer
arrives, he either awakens the barber and gets a haircut, or if the barber is busy, he sits in
one of the vacant chairs in the waiting room. If there is no vacant chair, the newly arrived
customer simply leaves. After cutting a customer’s hair, the barber serves the next one
in the waiting room, or goes back to sleep if the room is empty.

8.2.5 Leader Election Protocol

The leader election protocol [LLEL02, ERKCK91, KKM90, KKK95, SK91, Sin92] is nec-
essary for the election of a leader in a distributed system formed by several autonomous
computing nodes working on a joint task and can communicate with each other. When a
failure appears, all the nodes should be able to adapt themselves to the new condition so
that they may continue on their joint task. The reorganization is managed by a special
node called the leader which is elected by all the active nodes as a first step in any re-
organization procedure. After the election, the leader starts reorganizing the system and
normal operation resumes.

There are many ways for electing a leader. As an example let us describe the one
introduced in [ERKCK91]. The system consists of a unidirectional ring of n processors
P1, . . . , Pn. The processors are numbered in counter-clockwise order, while communication
is carried out clockwise. The processors need not to be awake at the same time, but no
processor is allowed to wake after receiving a message from an awakened processor. When
a processor Pi wakes up, it sends a message with its own ID to its neighbor Pj . If it is a
participating processor, Pj checks the ID of the received message. If j ¡ i it forward the
message to the next processor, but if j i the message is killed at node j. If Pj is not a
participating processor, it just passes along the message to the next node.

Any message sent should eventually meet all other processors in the ring before it
comes back to its sender. A message that returns back to its sender causes the sender to
become elected leader.

8.2.6 Properties and Instances

The properties we checked for these benchmarks are listed below.

- Gas station: “If customer 2 prepays while customer 1 is using the pump then the
operator will activate the pump for customer 2 next”

116 Case Studies

Table 8.3: LTL checking results

Models Bound Time CEX

4g 120 4.45 No
2b 120 3.1 No
4b 120 4.9 No
2rw 1 0.01 Yes
4rw 1 0.01 Yes
8l 36 4.15 Yes
10s 120 6.22 No

LTL: GppfillCustomer1^prepayCustomer2q Ñ p activate1U pactivate2_G activate1qq

- Bakery: “Only one process can enter the critical section”

LTL: G pcriticalSection1^ criticalSection2^ . . .q

- Readers-writers: “At any time, there must be at least one writer writing and at least
one reader reading.”

LTL: Gppw1_ w2_ . . .q ^ pr1_ r2_ . . .qq

- Leader election: “If process 1 is the elected processor then it will be the only one
that enter into the elected state”

LTL: GpleaderP1 Ñ pleaderP2_ leaderP3_ . . .qq

- Sleeping Barber: “The barber cut one person at a time”

LTL: G pcustomer1^ customer2^ . . .q

For the gas station problem we used an instance with four customers, one pump and
one queue (g4). For the bakery algorithm we used a version with two processors (2b) and
another with four processors (4b). We did the same with readers-writers (2rw and 4rw).
We used a ring with eight nodes for the leader election (8l), and finally a model with ten
customers for the sleeping barber (10s).

As before, the experiments were conducted on a machine with 2.4 Ghz Intel Pentium
processor, 1 GB memory, and Fedora 10 operating system. The following points explain
the columns shown in Table 8.3.

- Models: the model instances as explained above,

- Bound: the deepest bound used for the tests,

- Time: running time, in seconds, for the whole BMC computation starting from
bound 1 including the solver time.

8.3. Experiments Related to Leap 117

Table 8.4: Comparison of leap and standard BMC

Leap BMC

Model |P| |T| Max L. Standard BMC Log. Inter.

KEY(2) 94 92 36 836.95 6.49 13.52
KEY(3) 129 133 36 2458.89 5.64 17.36
KEY(4) 164 174 36 4231.53 9.96 26.71
DEMUX(16) 352 258 ¡80 153.58 16.89 20.86
REG(4) 77 96 ¡50 490.72 29.33 11.93
REG(8) 153 184 ¡20 342.61 57.45 100.32
SDL-ARQ 163 96 ¡44 5313.13 1446.14 1423.41
FIR-4-
A1M1

1394 1131 ¡80 8043.52 1526.8 690.7

FIR-4-
A2M2

1444 1158 ¡80 9478.42 2067.2 972.18

IIR-A1M1 576 476 ¡80 1513.35 188.71 188.09
IIR-A2M2 544 437 ¡80 1534.71 277.99 221.1
LF2 315 267 ¡90 11131.23 4037.65 3618.57

- CEX: a “yes” or “no” column that indicates whether a counterexample has been
found or not at the current bound.

For each benchmark, we incremented the bound little by little. We limited the search at
bound 120 for this experiments. For the properties we checked we found counterexamples
only for the readers-writers and leader election problems.

8.3 Experiments Related to Leap

As usual, the experiments were conducted on a machine with 2.4 Ghz Intel Pentium
processor, 1 GB memory, and Linux Red hat 9 operating system. As mentioned in Remark
5.3.1 we conducted the leap experiments using Petri net models. The Keys benchmarks
are taken from the Petri net versions of Corbett’s case studies [Cor96]. Demux, Regs,
and sdl-arq are converted from STG benchmarks, while firs, iirs, and lf belong to the
STG benchmark family used in [YOM04]. We performed deadlock detection using the
deadlock condition described in [Hel01]. For the standard BMC the method used is similar
to a standard BFS execution but adapted to work for Petri nets. The following points
explain the columns shown in Table 8.4.

- Model: the name of the model.

- |P|: number of places in the model.

- |T|: number of transitions in the model.

- Max L.: maximal length of a BMC session. A number preceded by “¡” indicates
that no counterexample has been found up to this bound.

118 Case Studies

- Standard BMC: total CPU time, in seconds, for the whole BMC computation
for standard BMC, starting from bound 1 until the maximal length, including the
SAT-solver’s time. We call the C++ function getrusage() to obtain these times.

- Leap BMC: the same as in Standard BMC but for the leap approach. Here the
bound starts from fixLeap.

- Log.: results obtained when using the logarithmic jumping method.

- Inter.: results obtained when using the interpolation/extrapolation method.

Our goal is to show the efficiency of the big leap approach compared with standard
BMC. Table 8.4, shows the results we obtained from the comparison. We report the
running time obtained using the two jumping methods. As you can see, in general, the
interpolation method runs slower than the logarithmic one. Still, both methods outper-
form the standard BMC approach.

8.4 Example of a Leap Execution

Below is a detailed explanation of a big leap execution using Algorithm 5.2. It consists of
the result obtained in Table 8.4, column 6, last line, with the lf2 benchmark.

We used the following parameters:

- Model: lf2

- BMC method: big leap

- Jumping method: logarithmic

- Fix leap = 4

- minC = 1 sec.

- midC = 60 sec.

- maxC = 150 sec.

- limC = 1 hr.

- Maximum iteration for minC = 9

- Maximum BMC Length = 90

We obtained the following results. (Explanation is given after the whole results.)

- leap = 4

Solving time: 0

No counterexample found with bound 4

8.4. Example of a Leap Execution 119

- leap = 4

Solving time: 0.01

No counterexample found with bound 8

- leap = 4

Solving time: 0.04

No counterexample found with bound 12

- leap = 4

Solving time: 0.06

No counterexample found with bound 16

- leap = 4

Solving time: 0.12

No counterexample found with bound 20

- leap = 4

Solving time: 0.17

No counterexample found with bound 24

- leap = 4

Solving time: 0.41

No counterexample found with bound 28

- leap = 4

Solving time: 0.44

No counterexample found with bound 32

- leap = 4

Solving time: 0.68

No counterexample found with bound 36

120 Case Studies

- leap = 20

Solving time: 3.04

No counterexample found with bound 56

- leap = 24

Solving time: 140

No counterexample found with bound 80

- leap = 6

Solving time: 291.6

No counterexample found with bound 86

- leap = 4

Solving time: 3601.08

No counterexample found with bound 90

- Total CPU time: 4037.65

The execution starts with leap � 4 and continues this way until bound 36. During this
period, we have solvingT ime minC. At this bound, the algorithm computes a new leap
value because the maximum iteration forminC is reached (see explanation in Section 5.4).
The leap becomes leap � 4 � log2p36q � 20, which corresponds to the formula used for
the second condition in the algorithm. At bound 56, the algorithm still uses this formula
because the solving time is still less than midC, so we have leap � 4 � log2p56q � 24.
At bound 80, we reach the situation where midC ¤ solvingT ime maxC, then the
algorithm computes another new leap value, which is leap � log2p80q � 6. maxC is
surpassed at bound 86, and the leap becomes 4 again. The algorithm stops at bound 90
because the maximum BMC Length is reached.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this dissertation, the research goal has been to develop efficient verification techniques
for asynchronous concurrent systems. We focused on BMC using synchronized products
of transition systems (TSs) as a model. Our idea is to replace the standard interleaving
technique with techniques based on the breadth-first search (BFS) execution. While
interleaving techniques allow us only to fire one event at a time, with breadth-first search
we can fire multiple events together, which is really helpful when dealing with concurrent
systems because it reduces the number of paths to be explored during the operation.

We have shown that combining BFS with chaining traversal can improve the BMC
performance. The main objective in chaining is to reduce the number of the execution
steps by firing the enabled events following a predefined order. The efficacy of chaining
depends to a large extent on the chosen event order. It is, therefore, important to use the
right event order during a chaining operation.

To increase the speed of a BMC operation, we have proposed a method based on leap.
That is, we do not call the SAT solver at every single bound but at intervals. The number
of bounds to be skipped is determined by the leap values. Normally, skipping bounds
suggest that some counterexamples could be missed if they appeared in some of those
bounds that have been skipped. To cope with this problem, we introduced a method that
allows us to catch all errors if they exist all along the execution. We also introduced two
jumping heuristics that can be used for selecting the bounds to be skipped. Experience
have shown that the leap approach greatly improve the speed of the operation.

All the methods above are built for checking reachability properties. We have also pro-
posed a method for verifying other properties written with the logic LTL. The method is
based on the so-called automata-theoretic approach in which the LTL specification is first
translated into Büchi automata before creating a Boolean formula. The advantage of us-
ing an automata as an intermediate step is that it is simpler to generate a Boolean formula
from the automata and to combine it with the one generated form the TS unrolling.

122 Conclusions and Future Work

We have implemented all these methods in a BMC toolset that can perform deadlock
detection, and also can check LTL specifications. We conducted some experiments using
the tool and compare our results with the state-of-the-art NuSMV tool. The methods
show promise in the experimental results conducted using the tool.

9.2 Future Work

The following points summarizes possible future research directions related to this work.

Path compression For the methods devoted to reachability properties, combining
them with path compression techniques such as the one in [KLY02] may bring some
improvements. This idea could be interesting, because it will diminish the path to be
searched, thus making the BMC formula even smaller.

Event ordering To improve the chaining method, the focus should be on the event
ordering since a good event order is key to the success of the operation. In this work, we
have used only one event ordering technique which works better for some kinds of systems.
However, it is crucial to use a method guaranteed to work with any type of system.

Reduction techniques For the leap approach, integrating some reduction techniques,
such as the ones in [Ber85, PRCB94, ES01], prior to the actual BMC computation could
be interesting. This is useful especially when dealing with large systems since this reduces
the size of the model, thus reduces the number of bounds to be explored, and decreases
even further the execution time during search for counterexamples.

Checking CTL formulas It is also interesting to improve the encoding so that it can
be used not only for checking LTL formulas, but other types of temporal logic such as
CTL for instance.

Bibliography

[ABE00] P.A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on
SAT solvers. In S. Graf and M. Schwartzbach, editors, Proc. of the 6th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), volume 1785 of LNCS, pages 411–425, Berlin, Germany, March
2000. Springer-Verlag.

[ÁBKS05] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen. Optimizing bounded
model checking for linear hybrid systems. In R. Cousot, editor, Proc. of the
6th Int. Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI 2005), volume 3385 of Lecture Notes in Computer Science, pages
396–412, Paris, France, January 17-19 2005. Springer-Verlag.

[ACA78] T. Agerwala and Y. Choed-Amphai. A synthesis rule for concurrent systems.
In Proc. of the 15th conf. on Design Automation, pages 305–311, Las Vegas,
Nevada, United States, June 1978. IEEE Press.

[ACKS02] G. Audemard, A. Cimatti, A. Kormilowicz, and R. Sebastiani. Bounded
model checking for timed systems. In Proc. of the 22nd Joint Int. Conf. on
Formal Techniques for Networked and Distributed Systems (FORTE 2002),
volume 22 of LNCS, pages 243–259, Houston, Texas, U.S., November 2002.
Springer-Verlag.

[ACL05] D-A. Atiya, N. Catano, and G. Lüttgen. Towards a benchmark for model
checkers of asynchronous concurrent systems. Technical report, University
of Warwick, U.K., 2005.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[ADA�05] N. Amla, X. Du, A.Kuehlmann, R.P. Kurshan, and K.L. McMillan. An anal-
ysis of SAT-based model checking techniques in an industrial environment.
In D. Borrione and W. J. Paul, editors, Proc. of the 13th Int. Conf. on Cor-
rect Hardware Design and Verification Methods (CHARME 2005), volume
3725 of Lecture Notes in Computer Science, pages 254–268, Saarbrücken,
Germany, October 2005. Springer-Verlag.

124 BIBLIOGRAPHY

[Ade97] A. Adelman. The mathematics of the pentium bug. SIAM Review,
39(March):54–67, 1997.

[AEF�05] R. Armoni, S. Egorov, R. Fraer, D. Korchemny, and M. Vardi. Efficient
LTL compilation for SAT-based model checking. In Proc. of the Int. Conf.
on Computer-Aided Design (ICCAD’05), pages 877–884. IEEE Computer
Society, November 2005.

[AH04] R Arora and M. S. Hsiao. Enhancing SAT-based bounded model checking
using sequential logic implications. In Proc. of the 17th Int. Conf. on VLSI
Design, pages 784–787, 2004.

[ÁHBS06] E. Ábrahám, M. Herbstritt, B. Becker, and Martin Steffen. Bounded model
checking with parametric data structures. In Proc. of the 4th Int. workshop
on Bounded Model Checking (BMC’06), Seattle,Washington, U.S., August
15 2006. Elsevier Science B.V.

[AKMM03] N. Amla, R. Kurshan, K. McMillan, and R. Medel. Experimental analysis of
different techniques for bounded model checking. In H. Garavel and J. Hat-
cliff, editors, Proc. of the 9th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03), volume 2619 of LNCS,
pages 34–48. Springer-Verlag, April 2003.

[Arn94] A. Arnold. Finite Transition Systems. Masson, Paris, 1994.

[AS97] M. Abramovici and D.G. Saab. Satisfiability on reconfigurable hardware. In
Proc. of the 7th Int. Workshop on Field-Programmable Logic and Applica-
tions, volume 1304 of Lecture Notes in Computer Science, pages 448–456.
Springer-Verlag, 1997.

[AS06] M. Awedh and F. Somenzi. Termination criteria for bounded model check-
ing: extensions and comparison. Electronic Notes in Theoretical Computer
Science, 144(1):51–66, 2006.

[BB04] C. Barrett and S. Berezin. CVC Lite: A new implementation of the coop-
erating validity checker. In Proc. of the 16th Int. Conf. on Computer Aided
Verification (CAV’2004), volume 3114 of Lecture Notes in Computer Science,
pages 515–518, Boston, Massachusetts, U.S., July 2004. Springer-Verlag.

[BB06] C. Bartzis and T. Bultan. Efficient BDDs for bounded arithmetic constraints.
Int. Journal on Software Tools for Technology Transfer, 8(1):26–36, 2006.

[BBC�05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,
S. Schulz, and R. Sebastiani. The MathSAT 3 system. In Robert
Nieuwenhuis, editor, Proc. of the 20th Int. Conf. on Automated Deduction
(CADE’05), volume 3632 of Lecture Notes in Computer Science, pages 315–
321, Tallinn, Estonia, July 2005. Springer-Verlag.

BIBLIOGRAPHY 125

[BBF�99] B. Bérard, M. Bioit, A. Finkel, F. Latoussinie, A. Petit, L. Petrucci, Ph.
Schnoebelen, and P. Mckenie. Systems and software verification. Springer-
Verlag, 1999.

[BC00] P. Bjesse and K. Claessen. SAT-based verification without state space traver-
sal. In W.A. Hunt Jr. and S.D. Johnson, editors, Proc. of. the 3rd Int. Conf.
on Formal Methods in Computer-Aided Design, volume 1954 of Lecture Notes
in Computer Science, pages 372–389. Springer-Verlag, November 2000.

[BC03] M. Benedetti and A. Cimatti. Bounded model checking for past LTL. In
H. Garavel and J. Hatcliff, editors, Proc. of the 9th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’03),
volume 2619 of LNCS, pages 18–33, Warsaw, Poland, April 2003. Springer-
Verlag.

[BCC�03] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in computer sciences, 58, 2003.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proc. of the Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’99), volume 1579 of Lecture
Notes in Computer Science, pages 193–207. Springer-Verlag, March 1999.

[BCM�90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proc. of the 5th Annual IEEE
Symposium on Logic in Computer Science, pages 1–33, Washington, D.C.,
1990. IEEE Computer Society Press.

[BCRZ00] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a
PowerPC using symbolic model checking without BDDs. In Proc. of the Int.
Conf. on Formal Methods in Computer Aided Design, volume 1633 of Lecture
Notes in Computer Science, pages 60–71. Springer-Verlag, November 2000.

[BDL96] C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of
theories with equality. In M. Srivas and A. Camilleri, editors, Proc. of the
1st Int. Conf. on Formal Methods in Computer Aided Design (FMCAD’96),
volume 1166 of Lecture Notes in Computer Science, pages 187–201, Palo
Alto, California, U.S., November 1996. Springer-Verlag.

[BdMS07] C. Barrett, L. de Moura, and A. Stump. Design and results of the 2nd an-
nual satisfiability modulo theories competition (SMT-COMP 2006). Formal
Methods in System Design, 31(3):221–239, 2007.

[BE77] J. Baer and C.S. Ellis. Model, design, and evaluation of a compiler for a
parallel processing environment. IEEE Transaction on Software Engineering,
3(6):394–405, 1977.

126 BIBLIOGRAPHY

[Ber85] G. Berthelot. Checking properties of nets using transformation. In Advances
in Petri Nets, covers the 6th European Workshop on Applications and Theory
in Petri Nets, volume 222 of Lecture Notes in Computer Science, pages 19–
40, Espoo, Finland, June 1985. Springer-Verlag.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems
with unbounded integer variables: symbolic representations, approxima-
tions, and experimental results. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 21(4):747–789, 1999.

[BGR95] E. Börger, Y. Gurevich, and D. Rosenzweig. The bakery algorithm: yet
another specification and verification. pages 231–243, 1995.

[BHJ�06] A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, and V. Schuppan. Linear
encodings of bounded LTL model checking. Logical Methods in Computer
Science, 2(5:5):1–64, 2006.

[BHSV�96] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S.T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy, and T. Villa.
VIS: a system for verification and synthesis. In R. Alur and T.A. Hen-
zinger, editors, Proc. of. the 8th Int. Conf. on Computer Aided Verification
(CAV’96), volume 1102 of Lecture Notes in Computer Science, pages 428–
432, New Brunswick, NJ, U.S., July 1996. Springer-Verlag.

[BK86] C.L. Beck and B.H. Krogh. Models for simulation and discrete control of
manufacturing systems. In Proc. of the IEEE Int. Conf. on Robotics and Au-
tomation, pages 305–310, San Francisco, U.S., 1986. IEEE Computer Society
Press.

[BK02] F. Bause and P. Kritzinger. Stochastic Petri nets – An introduction to the
theory (2nd edition). Vieweg Verlag, 2002.

[BK04] J. Baumgartner and A. Kuehlmann. Enhanced diameter bounding via struc-
tural transformation. In Proc. of. the Conf. Design Automaton and Test in
Europe (DATE’2004), pages 36–41, 2004.

[BKA02] J. Baumgartner, A. Kuehlmann, and J. Abraham. Property checking via
structural analysis. In E. Brinksma and K. G. Larsen, editors, Proc. of the
14th Int. Conf. on Computer Aided Verification, (CAV 2002), volume 2404 of
Lecture Notes in Computer Science, pages 151–165, Copenhagen, Denmark.,
July 2002. Springer-Verlag.

[BLM01] P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in Alpha micropro-
cessor using satisfiability solvers. In Proc. of the 13th Int. Conf. on Computer

BIBLIOGRAPHY 127

Aided Verification (CAV’2001), volume 2102 of Lecture Notes in Computer
Science, pages 454–464. Springer-Verlag, 2001.

[BLP95] J. Bormann, J. Lohse, and M. Payer. Model checking in industrial hardware
design. In Proc. of the 32th Int. Conf. on Design Automation (DAC’95),
pages 298–303, San Fransisco, California, U.S., June 1995.

[BM86] G. Bruno and G. Marchetto. Process-translatable Petri nets for the rapid
prototyping of process control systems. IEEE Transaction on Software En-
gineering, 12(2):346–357, 1986.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulations.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[BT82] G. Berthelot and R. Terrat. Petri nets theory for the correctness of proto-
cols. In C.A. Sunshine, editor, Proc. of the IFIP WG6.1 2nd Int. Workshop
on Protocol Specification, Testing and Verification (PSTV), pages 325–342,
Idyllwild, CA, U.S., 1982. North-Holland.

[Bul00] T. Bultan. Bdd vs. constraint-based model checking: an experimental evalu-
ation for asynchronous concurrent systems. In S. Graf and M. Schwartzbach,
editors, Proc. of the 6th Int. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’00), volume 1785 of LNCS, pages
441–455, Berlin, Germany, March 2000. Springer-Verlag.

[BW03] F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution
and equality reduction. In E. Giunchiglia and A. Tacchella, editors, Proc. of
the 6th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT
2003), volume 2919 of Lecture Notes in Computer Science, pages 341–355,
Santa Margherita Ligure, Italy„ May 2003. Springer-Verlag.

[CBRZ01] E.M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking
using satisfiability solving. Formal methods in system design, 19(1):7–34,
July 2001.

[CCGR99] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new
symbolic model verifier. In N. Hallbwachs and D. Peled, editors, Proc. of.
the 11th Int. Conf. on Computer Aided Verification (CAV’99), volume 1633
of Lecture Notes in Computer Science, pages 495–499, Trento, Italy, July
1999. Springer-Verlag.

[CCK�02] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang. Au-
tomated abstraction refinement for model checking large state spaces using
SAT based conflict analysis. In M. Aagaard and J. W. O’Leary, editors, Proc.
of the 4th Int. Conf. on Formal Methods in Computer Aided Design (FM-
CAD’02), pages 33–51, Portland, Oregon, U.S., November 2002. Springer-
Verlag.

128 BIBLIOGRAPHY

[CCK03] P. Chauhan, E. Clarke, and D. Kroening. Using SAT based image computa-
tion for reachability analysis. Technical Report CMU-CS-03-151, Carnegie
Mellon University, School of Computer Science, 2003.

[CDLP05] J-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness
checks for generalized Büchi automata. In P. Godefroid, editor, Proc. of the
12th Int. SPIN Workshop on Model Checking of Software, volume 3639 of
LNCS, pages 169–184, San Francisco, CA, U.S., August 22-24 2005. Springer-
Verlag.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 8(2):244–263,
1986.

[CFF�01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M.Y. Vardi. Benefits of bounded model checking at an industrial setting. In
G. Berry, H. Comon, and A. Finkel, editors, Proc. of the 13th Int. Conf. on
Computer Aided Verification, (CAV 2001), volume 2102 of Lecture Notes in
Computer Science, pages 436–453, Paris, France, July 18–22 2001. Springer-
Verlag.

[CG96] C.-A. Chen and S.K. Gupta. A satisfiability-based test generator for path
delay faults in combinational circuits. In Proc. of the 33rd annual conference
on Design automation, pages 209–214, Las Vegas, Nevada, U.S., 1996. ACM
Press.

[CG05] B. Cook and G. Gonthier. Using stålmarck’s algorithm to prove inequalities.
In K. Lau and R. Banach, editors, Proc. of 7th Int. Conf. on Formal Engi-
neering Methods (ICFEM 2005), volume 3785 of Lecture Notes in Computer
Science, pages 330–344, Manchester, UK, November 2005. Springer-Verlag.

[CGH94] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. In David L. Dill, editor, Proc. of the 6th Int. Conf. Computer Aided
Verification (CAV’1994), volume 818 of LNCS, pages 415–427, Stanford,
California, U.S., June 21-23 1994. Springer.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Veryfying parameterized networks
using abstraction and regular languages. In I. Lee and S.A. Smolka, editors,
Proc of the 6th Int. Conf. on Concurrency Theory (CONCUR ’95), volume
962 of Lecture Notes in Computer Science, pages 395–407, Philadelphia, PA,
U.S., August 21–24 1995. Springer-Verlag.

[CGL92] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.
In Proc. of the 19th ACM SIGPLAN-SIGACT symposium on Principles of

BIBLIOGRAPHY 129

programming languages (POPL), pages 342–354, Albuquerque, New Mexico,
U.S., 1992. ACM Press.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT Press,
1999.

[CHP71] P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent control with ”read-
ersÂťÂť and ”writersÂťÂť. Communications of the ACM, 14(10):667–668,
1971.

[CJEF96] E.M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry in tem-
poral logic model checking. Formal Methods in System Design, 9(1/2):77–
104, 1996.

[CK96] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spec-
trum, 33(6):61–67, 1996.

[CKOS04] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and
complexity of bounded model mhecking. In Proc. of the 5th Int. Conf. on
Verification, Model Checking, and Abstract Interpretation, (VMCAI 2004),
volume 2937 of Lecture Notes in Computer Science, pages 85–96, Venice,
January 11–13 2004. Springer-Verlag.

[Cla02] E.M. Clarke. SAT-based counterexample guided abstraction refinement. In
Proc. of the 9th Int. SPIN Workshop on Model Checking of Software, page 1,
Grenoble, France, April 2002. Springer-Verlag.

[CLM89] E.M. Clarke, D.E. Long, and K.L. McMillan. A language for compositional
specification and verification of finite state hardware controllers. In J. A.
Darringer and F. J. Ramming, editors, Proc. of the 9th Int. Symposium on
Computer Hardware Description Languages and Their Applications, pages
281–295, North Holland, 1989.

[CLRS09] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithm.
The MIT Press, third edition, 2009.

[CMMM95] A. Coombes, J. McDermid, J. Moffett, and P. Morris. Requirements analysis
and safety: a case study (using GRASP). In G. Rabe, editor, Proc. of the 14th
Int. Conf. on Computer Safety, Reliability and Security (SAFECOMP’95),
Belgirate, Italy, October 1995. Springer-Verlag.

[CNQ03] G. Cabodi, S. Nocco, and S. Quer. Improving SAT-based bounded model
checking by means of BDD-based approximate traversal. In Proc. of. the
Design Automaton and Test in Europe (DATE), pages 898–903, March 2003.

130 BIBLIOGRAPHY

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Proc. of the
3rd annual ACM symposium on Theory of computing, pages 151–158, Shaker
Heights, Ohio, U.S., 1971.

[Cor96] J.C. Corbett. Evaluating deadlock detection methods for concurrent systems.
IEEE Transactions on Software Engineering, 22(3):161–180, 1996.

[Cou99] J. Couvreur. On-the-fly verification of linear temporal logic. In J. M. Wing,
J. Woodcock, and J. Davies, editors, Proc. of the World Congress on Formal
Methods in the Development of Computing Systems FM’99, volume 1708 of
LNCS, pages 253–271, Toulouse, France, September 1999. Springer.

[CPRS02] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the encod-
ing of LTL model checking into SAT. In Proc. of the 3rd Int. Conf. on Ver-
ification, Model Checking and Abstract Interpretation VMCAI’2002, volume
2294 of Lecture Notes in Computer Science, pages 196–207. Springer-Verlag,
2002.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal Meth-
ods in System Design, 1(2/3):275–288, 1992.

[CW96] E.M. Clarke and J. M. Wing. Formal methods: state of the art and future
directions. ACM Computing Surveys, 28(4):626–643, December 1996.

[CYLR01] H. Choi, B. Yun, Y. Lee, and H. Roh. Model checking of S3C2400X in-
dustrial embedded SOC product. In Proc. of the 38th Int. Conf. on Design
Automation (DAC’01), pages 611–616, Las Vegas, Nevada, U.S., June 2001.

[Das06] P. Dasgupta. A roadmap for formal property verification. Springer, The
Netherlands, 2006.

[DdM06a] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T).
In T. Ball and R. Jones, editors, Proc. of the 18th Int. Conf. Computer Aided
Verification (CAV’2006), volume 4144 of LNCS, pages 81–94, Seattle, WA,
U.S., August 2006. Springer.

[DdM06b] B. Dutertre and L. de Moura. Integrating simplex with DPLL(T). Technical
Report SRI-CSL-06-01, SRI International, 2006.

[DE73] G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. Journal
of Combinatorial Theory, 14(3):288–297, 1973.

[Des89] A. A. Desrochers. Modeling and control of automated manufacturing systems.
IEEE Computer Society Press, 1989.

BIBLIOGRAPHY 131

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reac-
tive systems. ACM Transactions on Programming Languages and Systems
(TOPLAS), 19(2):253–291, 1997.

[DGV99] M. Daniel, F. Giunchiglia, and M Vardi. Improved automata generation for
linear temporal logic. In N. Halbwachs and D. Peled, editors, Proc. of the
11th Int. Conf. on Computer Aided Verification (CAV’1999), volume 1633
of LNCS, pages 249–260, Trento, Italy, 1999. Springer.

[Dia87] M. Diaz. Petri net based models in the specification and verification of
protocols. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets:
Applications and Relationships to Other Models of Concurrency, Advances
in Petri Nets 1986, Part II, Proceedings of an Advanced Course, volume 255
of Lecture Notes in Computer Science, pages 135–170. Springer-Verlag, 1987.

[DIM] DIMACS. Challenge SAT benchmarks. Available at
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/.

[DKMW93] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Computation of floating
mode delay in combinational circuits: practice and implementation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
12(12):1924–1936, December 1993.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. JACM, 5(7):394–97, 1962.

[DLP04] A. Duret-Lutz and D. Poitrenaud. Spot: An extensible model checking li-
brary using transition-based generalized Büchi automata. In Doug DeGroot,
Peter G. Harrison, Harry A. G. Wijshoff, and Zary Segall, editors, Proc. of
the 12th Int. Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2004), pages 76–83, Vollen-
dam, The Netherlands, October 2004. IEEE Computer Society.

[dlT92] T. Boy de la Tour. An optimality result for clause form translation. Journal
of Symbolic Computation, 14(4):283 – 301, 1992.

[dMRS02] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded
model checking over infinite domains. In A. Voronkov, editor, Proc. of the
18th Int. Conf. on Automated Deduction (CADE’02), volume 2392 of Lecture
Notes in Computer Science, pages 438–455, Copenhagen, Denmark, July 27–
30 2002. Springer-Verlag.

[dMRS03] L. de Moura, H. Rueß, and M. Sorea. Bounded model checking and induction:
From refutation to verification. In W.A. Hunt Jr. and F. Somenzi, editors,
Proc. of the 15th Int. Conf. on Computer Aided Verification, (CAV 2003),

132 BIBLIOGRAPHY

volume 2725 of Lecture Notes in Computer Science, pages 14–26, Boulder,
Colorado, U.S., July 2003. Springer-Verlag.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory.
JACM, 7(3):201–215, 1960.

[DS83] D. Dubois and K.E. Stecke. Using Petri nets to represent production pro-
cesses. In Proc. of the 22nd IEEE Conference on Decision and Control,
volume 3, pages 1062–1067. IEEE, 1983.

[dSU96] H.V. der Schoot and H. Ural. An improvement on partial order model check-
ing with ample sets. Technical Report TR-96-11, University of Ottawa,
Canada, 1996.

[Een03] N. Een. Temporal induction by incremental SAT solving. In Proc. of the
Int. Workshop on Bounded Model Checking (BMC’2003), July 2003.

[EH86] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. Journal of the ACM, 33(1):151–
178, 1986.

[EH00] K. Etessami and G.J. Holzmann. Optimizing Büchi automata. In
C. Palamidessi, editor, Proc. of the 11th Int. Conf. on Concurrency Theory
(CONCUR’2000), volume 1877 of LNCS, pages 153–167, University Park,
PA, U.S., August 2000. Springer.

[Eme90] E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pages 995–1072.
1990.

[ERKCK91] M. El-Ruby, J. Kenevan, R. Carlson, and K. Khalil. A linear algorithm for
election in ring configuration networks. In Proc. of the 24th Annual Hawaii
International Conference on System Sciences (HICSS 1991), volume i, pages
117–123, Kauai, HI, U.S., January 1991.

[ES01] J. Esparza and C. Schröter. Net reductions for LTL model-checking. In
T. Margaria and T. F. Melham, editors, Proc. of the 11th IFIP WG 10.5
Advanced Research Working Conf. on Correct Hardware Design and Verifica-
tion Methods (CHARME’ 2001), volume 2144 of Lecture Notes in Computer
Science, pages 310–324, Livingston, Scotland, UK, September 4–7 2001.

[FDK98] F. Fallah, S. Devadas, and K. Keutzer. Functional vector generation for
hdl models using linear programming and 3-satisfiability. In Proc.of the
35th annual conference on Design automation, pages 528–533, San Francisco,
California, U.S., 1998. ACM Press.

BIBLIOGRAPHY 133

[FM07] Z. Fu and S. Malik. Extracting logic circuit structure from conjunctive
normal form descriptions. In In Proc. of the Int. Conf. on VLSI design
(VLSI Design 2007), pages 37–42, Bangalore, India, 2007. IEEE Computer
Society.

[FORS01] J-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer
and solver. In Proc. of the 13th Int. Conf. on Computer Aided Verification
(CAV’2001), volume 2102 of Lecture Notes in Computer Science, pages 246–
249. Springer-Verlag, 2001.

[FSW02] A. Frisch, D. Sheridan, and T. Walsh. A fixpoint based encoding for bounded
model checking. In M. Aagaard and J. W. O’Leary, editors, Proc. of the 4th
Int. Conf. on Formal Methods in Computer Aided Design (FMCAD’02),
pages 238–255, Portland, Oregon, U.S., November 2002. Springer-Verlag.

[GB96] B. Grahlmann and E. Best. PEP - more than a petri net tool. In T. Margaria
and B. Steffen, editors, Proc. of the 2nd Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems(TACAS’96), volume 1055 of
LNCS, pages 397–401, Passau, Germany, March 1996. Springer-Verlag.

[Gep95] L. Geppert. Biology 101 on the internet: dissecting the pentim bug. IEEE
Spectrum, (February):16–17, 1995.

[GG06] M.K. Ganai and A. Gupta. Accelerating high-level bounded model checking.
In Proc. of the Int. Conf. on Computer-Aided Design (ICCAD 2006), pages
794–801, San Jose, CA, U.S., November 2006. ACM.

[GG08a] M.K. Ganai and A. Gupta. Completeness in SMT-based BMC for software
programs. In Proc. of the Design, Automation and Test in Europe Conference
and Exhibition (DATE’08), pages 831–836, Munich Germany, March 2008.
IEEE.

[GG08b] M.K. Ganai and A. Gupta. Efficient modeling of concurrent systems in BMC.
In K. Havelund, R. Majumdar, and J. Palsberg, editors, Proc. of the 15th
Int. SPIN Workshop on Model Checking of Software, volume 5156 of LNCS,
pages 114–133, Los Angeles, CA, U.S., August 10-12 2008. Springer-Verlag.

[GGA04] M. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based unbounded sym-
bolic model checking using circuit cofactoring. In Proc. of the Int. Conf. on
Computer-Aided Design (ICCAD 2004), pages 510–517, San Jose, California,
U.S., November 2004. IEEE Computer Society / ACM.

[GGA05] M. Ganai, A. Gupta, and P. Ashar. Beyond safety: customized SAT-
based model checking. In Proc. of the 42nd Design Automation Conference
(DAC’2005), pages 738–743, San Diego, CA, U.S., June 2005. ACM.

134 BIBLIOGRAPHY

[GGW�03] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar. Learning from BDDs
in SAT-based bounded model checking. In Proc. of. the 40th Design Au-
tomation Conference (DAC’03), pages 824–829, Anaheim, California, U.S.,
June 2003.

[GH93] P. Godefroid and G. J. Holzmann. On the verification of temporal proper-
ties. In A.. Danthine, G. Leduc, and P. Wolper, editors, Proc. of the IFIP
WG6.1 13th Int. Symposium on Protocol Specification, Testing and Verifica-
tion (PSTV), pages 109–124, Liège, Belgium, 1993. North-Holland.

[GHN�04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): fast decision procedures. In Proc. of the 16th Int. Conf. on
Computer Aided Verification (CAV’2004), volume 3114 of Lecture Notes in
Computer Science, pages 175–188, Boston, Massachusetts, U.S., July 2004.
Springer-Verlag.

[GL94] O. Grumberg and D. E. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems, 16(3):843–871,
1994.

[GN02] E. Goldberg and Y. Novikov. Berkmin: a fast and robust SAT-solver. In
Proc. of the Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE’02), pages 142–149, Paris, France, March 2002. IEEE Computer
Society.

[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
G. Berry, H. Comon, and A. Finkel, editors, Proc. of the 13th Int. Conf.
on Computer Aided Verification (CAV’2001), volume 2102 of LNCS, pages
53–65. Springer, 2001.

[God90] P. Godefroid. Using partial orders to improve automatic verification meth-
ods. In E.M. Clarke and R.P. Kurshan, editors, Proc. of the 2th Int. Conf.
on Computer Aided Verification (CAV’90), volume 531 of Lecture Notes
in Computer Science, pages 176–85, New Brunswick, NJ, U.S., June 1990.
Springer-Verlag.

[God96] P. Godefroid. Partial-Order methods for the verification of concurrent sys-
tems - An approach to the state-explosion problem, volume 1032 of Lecture
Notes in Computer Science. Springer, 1996.

[GPD97] J. Gu, P. M. Pardalos, and D. Du, editors. Satisfiability problem: theory
and applications (DIMACS) series in discrete mathematics and theoretical
computer science), volume 35. American Mathematical Society, October
1997.

BIBLIOGRAPHY 135

[GPFW97] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. Algorithms for the sat-
isfiability (SAT) problem: A survey. In D. Du, J. Gu, and P. M. Pardalos,
editors, Satisfiability Problem: Theory and Applications, volume 35 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 19–150. American Mathematical Society, 1997.

[GPSS80] D.M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Proc. of 7th ACM symp. Principles of Programming Languages
(POPL’80), pages 163–173, Las Vegas, Nevada, U.S., 1980.

[GPVW95] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly auto-
matic verification of linear temporal logic. In Proc. of the 15th IFIP WG6.1
Int. Symp. on Protocol Specification, Testing and Verification, pages 3–18,
Warsaw, Poland, 1995. Chapman & Hall.

[GS90] S. Graf and B. Steffen. Compositional minimization of finite state systems.
In E.M. Clarke and R.P. Kurshan, editors, Proc. of the 2th Int. Conf. on
Computer Aided Verification (CAV’90), volume 531 of Lecture Notes in
Computer Science, pages 186–196, New Brunswick, NJ, U.S., June 1990.
Springer-Verlag.

[GS99] E. Giunchiglia and R. Sebastiani. Applying the Davis-Putnam procedure to
non-clausal formulas. In AI*IA 99: Advances in Artificial Intelligence: 6th
Congress of the Italian Association for Artificial Intelligence, volume 1792 of
Lecture Notes in Computer Science, pages 84–93, Bologna, Italy„ September
1999. Springer-Verlag.

[GS05] A. Gupta and O. Strichman. Abstraction refinement for bounded model
checking. In Proc. of the 17th Int. Conf. on Computer Aided Verification
(CAV’2005), volume 3576 of Lecture Notes in Computer Science, pages 112–
124. Springer-Verlag, 2005.

[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. Infor-
mation and Computation, 110(2):305–326, 1994.

[GYA�01] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik. Partition-based
decision heuristics for image computation using SAT and BDDs. In Proc.
of. the Int. Conf. on Computer Aided Design (ICCAD’01), pages 289–292,
San Jose, California, U.S., 2001. IEEE Press.

[GYAG00] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based image computation
with application in reachability analysis. In W.A. Hunt Jr. and S.D. Johnson,
editors, Proc. of the 3rd Int. Conf. on Formal Methods in Computer Aided
Design (FMCAD’00), pages 354–371, Austin, Texas, U.S., November 2000.
Springer-Verlag.

136 BIBLIOGRAPHY

[Haa02] P. Haas. Stochastic Petri nets: modelling, stability, simulation. Springer-
Verlag, 2002.

[Har00] D. Harel. Computers ltd. What they really can’t do. Oxford University Press,
2000.

[Har03] B. Harvey. Europe’s space programme: to ariane and beyond. Springer-
Verlag, Praxis Publishing, 2003.

[Hel01] K. Heljanko. Bounded reachability checking with process semantics. In
K.G. Larsen, editor, Proc. of the 12th Int. Conf. on Concurrency Theory
(CONCUR’2001), volume 2154 of LNCS, pages 218–232, Aalborg, Denmark,
2001. Springer-Verlag.

[HJL05] K. Heljanko, T. Junttila, and T. Latvala. Incremental and complete bounded
model checking. In Proc. of the 17th Int. Conf. on Computer Aided Verifica-
tion (CAV’2005), volume 3576 of Lecture Notes in Computer Science, pages
98–111. Springer-Verlag, 2005.

[HL85] D. Heimbold and D. Luckham. Debugging ada tasking programs. IEEE
Software, 2(2):47–57, 1985.

[HL05] D.M. Harland and R.D. Lorenz. Space systems failures: disasters and rescues
of satellites, rockets and space probes. Praxis, 2005.

[HMU01] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation (2nd Edition). Addison Wesley, 2001.

[HN01a] K. Heljanko and I. Niemelä. Bounded LTL model checking with stable mod-
els. In Proc. of the 6th Int. Conf. on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’2001), pages 200–212, Vienna, Austria, Septem-
ber 2001.

[HN01b] K. Heljanko and I. Niemlä. Answer set programming and bounded model
checking. In Proc. of the AAAI Spring 2001 Symposium on Answer Set Pro-
gramming: Towards Efficient and Scalable Knowledge Representation and
Reasoning, pages 90–96, Stanford, U.S., March 2001. AAAI Press.

[Hol88] G.J. Holzmann. An improved protocol reachability analysis technique. Soft-
ware, Practice & Experience, 18(2):137–161, 1988.

[Hol97] G. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23:279–295, 1997.

[HP95] G. J. Holzmann and D. Peled. An improvement in formal verification. In
Proc. of the 7th IFIP WG6.1 Int. Conf. on Formal Description Techniques
(FORTE’94), pages 197–211, Berne, Switzerland, 1995. Chapman & Hall.

BIBLIOGRAPHY 137

[Hro04] J. Hromkovič. Theoretical computer science. Introduction to automata,
computability, complexity, algorithmics, randomization, communication, and
cryptography. Springer-Verlag, 2004.

[IPC03] M. Iyer, G. Parthasarathy, and K. Cheng. SATORI - a fast sequential SAT
engine for circuits. In Proc. of the Int. Conf. on Computer-Aided Design
(ICCAD 2003), pages 320–325, San Jose, California, U.S., November 2003.
IEEE Computer Society / ACM.

[JAS04] H. Jin, M. Awedh, and F. Somenzi. CirCUs: A satisfiability solver geared to-
wards bounded model checking. In Proc. of the 16th Int. Conf. on Computer
Aided Verification (CAV’2004), volume 3114 of Lecture Notes in Computer
Science, pages 519–522, Boston, Massachusetts, U.S., July 2004. Springer-
Verlag.

[Jen97] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and prac-
tical use. Volume 3. Springer-Verlag, 1997.

[JHN03] T. Jussila, K. Heljanko, and I. Niemelä. BMC via on-the-fly determinization.
In Proc. of the 1st Int. Workshop on Bounded Model Checking (BMC’2003),
pages 197–206, Boulder, Colorado, U.S., July 2003.

[JN00] T.A. Juntilla and I. Niemelä. Towards an efficient tableau method for
Boolean circuit satisfiability checking. In Proc. of the 1st Int. Conf. on Com-
putational Logic (CL 2000), volume 1861 of LNCS, pages 553–567, London,
UK, 2000. Springer-Verlag.

[JR91] K. Jensen and G. Rozenberg, editors. High-level Petri nets. Theory and
application. Springer-Verlag, 1991.

[JS04] H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solver. In Proc. of
the 7th Int. Conf. on Theory and Applications of Satisfiability Testing, SAT
2004, Vancouver, Canada, May 10–13 2004.

[JS05] H. Jin and F. Somenzi. An incremental algorithm to check satisfiability for
bounded model checking. Electronic Notes in Computer Science, 119(2):51–
65, 2005.

[Jus04] T. Jussila. BMC via dynamic atomicity analysis. In Proc. of the 4th Int.
Conf. on Application of Concurrency to System Design (ACSD’04), pages
197–206, Hamilton, Ontario, Canada, June 2004.

[Jus05] T. Jussila. On bounded model checking of asynchronous systems. PhD the-
sis, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, 2005.

138 BIBLIOGRAPHY

[JV04] J. and A. Valmari. Tarjan’s algorithm makes on-the-fly LTL verification
more efficient. In K. Jensen and A. Podelski, editors, Proc. of the 10th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), volume 2988 of LNCS, pages 205–219, Barcelona, Spain, March
29 - April 2 2004. Springer-Verlag.

[Kel95] D. Kelley. Automata and Formal Languages. An Introduction. Prentice Hall,
1995.

[Kid98] P.A. Kidwell. Stalking the elusive computer bug. IEEE Annals of the history
of computing, 20(4):5–9, October-December 1998.

[KKK95] T.w. Kim, E.H. Kim, and J.K. Kim. A leader election algorithm in a dis-
tributed computing system. In Proc. of the 5th IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS 1995), page 481. IEEE
Computer Society, 1995.

[KKM90] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of
efficient distributed leader finding algorithms. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 12(1):84–101, January 1990.

[KL82] W.E. Kluge and K. Lautenbach. The orderly resolution of memory access
conflicts among competing channel processes. IEEE Transactions on Com-
puters, 31(3):194–207, 1982.

[KLY02] R.P. Kurshan, V. Levin, and H. Yenigün. Compressing transitions for model
checking. In Proc. of the 14th Int. Conf. on Computer Aided Verification
(CAV’2002), volume 2404 of Lecture Notes in Computer Science, pages 569–
581. Springer-Verlag, 2002.

[KM95] R.P. Kurshan and K.L. McMillan. A structural induction theorem for pro-
cesses. Information and Computation, 117(1):1–11, 1995.

[KM99] S. Katz and H. Miller. Saving space by fully exploiting invisible transitions.
Formal methods in system design, 14(3):311–332, May 1999.

[Kop89] S. Koppelberg. General theory of Boolean aAlgebras, volume 1 of Handbook
of Boolean Algebras. 1989.

[Koz97] D.C. Kozen. Automata and Computability. Springer-Verlag, 1997.

[Kro99] T. Kropf. Introduction to formal hardware verification. Springer, 1999.

[Kro05] D Kroening. Computing over-approximations with bounded model checking.
In Proc. of the 3th Int. workshop on Bounded Model Checking (BMC’05),
volume 144 of Electronic Notes in Theoretical Computer Science, pages 79–
92, Boulder, Colorado, U.S., July 2005. Elsevier Science B.V.

BIBLIOGRAPHY 139

[KS03] D. Kroening and O. Strichman. Efficient computation of recurrence diame-
ters. In L.D. Zuck, P.C. Attie, A. Cortesi, and S. Mukhopadhyay, editors,
Proc. of the 4th Int. Conf. on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2003), volume 2575 of Lecture Notes in Computer
Science, pages 298–309, New York, NY, U.S., 2003. Springer-Verlag.

[Kue04] A. Kuehlmann. Dynamic transition relation simplification for bounded prop-
erty checking. In Proc. of the Int. Conf. on Computer-Aided Design (ICCAD
2004), pages 50–57, San Jose, California, U.S., November 2004. IEEE Com-
puter Society / ACM.

[Lad95] P. Ladkin. Analysis of a technical description of the airbus A320 braking
system. High Integrity Systems, 1(4):331–349, 1995.

[Lam80] L. Lamport. “Sometimes” is sometimes “Not Never” – On the temporal
logic of programs. In Proc. of the 7th ACM Symposium on Principles of
Programming Languages (POPL’20), pages 174–185, 1980.

[Lam83] L. Lamport. What good is temporal logic? In Proc of the 2th IFIP Congress,
pages 657–668, 1983.

[LBHJ04] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple bounded ltl model
checking. In A. J. Hu and A. K. Martin, editors, Proc. of 5th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD 2004), volume 3312
of Lecture Notes in Computer Science, pages 186–200, Austin, Texas, U.S.,
November 2004. Springer-Verlag.

[LHS04] B. Li, M.S. Hsiao, and S. Sheng. A novel SAT all-solutions solver for efficient
preimage computation. In Proc. of. the Conf. Design Automaton and Test
in Europe (DATE’2004), pages 272–277, 2004.

[LLEL02] A. Lluch-Lafuente, S. Edelkamp, and S. Leue. Partial order reduction in
directed model checking. In Proc. of the 9th Int. SPIN Workshop on Model
Checking of Software, volume 2318, page 1, Grenoble, France, April 2002.
Springer-Verlag.

[LMS04] I. Lynce and J.P. Marques-Silva. On computing minimum unsatisfiable cores.
In Proc. of the 7th Int. Conf. on Theory and Applications of Satisfiability
Testing, SAT 2004, Vancouver, Canada, May 10–13 2004.

[MA03] K. McMillan and N. Amla. Automatic abstraction without counterexamples.
In H. Garavel and J. Hatcliff, editors, Proc. of the 9th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’03),
volume 2619 of LNCS, pages 2–17, Warsaw, Poland, April 2003. Springer-
Verlag.

140 BIBLIOGRAPHY

[MBC�98] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modelling with generalized stochastic Petri nets. SIGMETRICS Perform.
Eval. Rev., 26(2):2, 1998.

[McM93] K.L. McMillan. Symbolic model checking. Kluwer Academic Publisher, 1993.

[McM03] K. McMillan. Interpolation and SAT-based model checking. In W. A. Hunt
Jr. and F. Somenzi, editors, Proc. of the 15th Int. Conf. on Computer Aided
Verification, (CAV 2003), volume 2725 of Lecture Notes in Computer Sci-
ence, pages 1–13, Boulder, Colorado, U.S., July 2003. Springer-Verlag.

[McM05] K.L. McMillan. Applications of craig interpolants in model checking. In
N. Halbwachs and L.D. Zuck, editors, Proc. of the 11th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’05),
volume 3440 of LNCS, pages 1–12, Edinburgh, UK, April 2005. Springer-
Verlag.

[MMZ�01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proc. of the 38th Int. Conf. on Design
Automation (DAC’01), pages 530–535, Las Vegas, Nevada, United States,
June 2001.

[MR90] S.P. Masticola and B.G. Ryder. Static infinite wait anomaly detection in
polynomial time. In Proc. of the Int. Conf. on Parallel Processing, volume 2,
pages 78–87, Urbana-Champaign, IL, U.S., August 1990. Pennsylvania State
University Press.

[MT99] V. Marek and M. Truszczyński. Stable models and an alternative logic pro-
gramming paradigm. In K. Apt, W. Marek, M. Truszczyński, and D. Warren,
editors, The Logic Programming Paradigm: a 25-Year Perspective, pages
375–398. Springer-Verlag, 1999.

[Mur89] T. Murata. Petri nets: properties and applications. In Proceedings of the
IEEE, volume 77, pages 541–580, April 1989.

[NASR04] G. Nam, F. Aloul, K.A. Sakallah, and R.A. Rutenbar. A comparative study
of two boolean formulations of FPGA detailed routing constraints. IEEE
Transactions on Computers, 53(6):688–696, June 2004.

[NG02] R. Nalumasu and G. Gopalakrishnan. An efficient partial order reduction
algorithm with an alternative proviso implementation. Formal Methods in
System Design, 20(3):231–247, 2002.

[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propa-
gation and its application to difference logic. In Proc. of the 17th Int. Conf.
on Computer Aided Verification (CAV’2005), volume 3576 of Lecture Notes
in Computer Science, pages 321–334. Springer-Verlag, 2005.

BIBLIOGRAPHY 141

[Nor05] A.L. Norberg. Computers and commerce: a Study of technology and man-
agement at Eckert-Mauchly Computer Company, Engineering Research As-
sociates, and Remington Rand, 1946-1957. The MIT Press, 2005.

[NRW98] A. Nonnengart, G. Rock, and C. Weidenbach. On generating small clause
normal forms. In Proc. of the 15th Int. Conf. on Automated Deduction:
Automated Deduction, volume 1421 of Lecture Notes in Computer Science,
pages 397–411. Springer-Verlag, 1998.

[OGMS02] R. Ostrowski, E. Grégoire, B. Mazure, and L. Sais. Recovering and exploiting
structural knowledge from CNF formulas. In In Proc. of the 8th Int. Conf.
on Principles and Practice of Constraint Programming (CP 2002), Lecture
Notes in Computer Science, pages 185–199, Ithaca, NY, U.S., 2002. Springer-
Verlag.

[OTK04] S. Ogata, T. Tsuchiya, and T. Kikuno. SAT-based verification of safe Petri
nets. In Proc. of the 2nd Int. Conf. on Automated Technology for Verifica-
tion and Analysis (ATVA 2004), volume 3299 of Lecture Notes in Computer
Science, pages 79–92, Taipei, Taiwan, ROC, October 31–November 3 2004.
Springer-Verlag.

[PBG05] M.R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-
based formal verification. International Journal on Software Tools for Tech-
nology Transfer, January 2005.

[PDH99] C.S. Pasareanu, M.B. Dwyer, and M. Huth. Assume-guarantee model check-
ing of software: a comparative case study. In Proc. of the 5th and 6th Int.
SPIN Workshops on Theoretical and Practical Aspects of SPIN Model Check-
ing, volume 1680 of LNCS, pages 168–183. Springer-Verlag, 1999.

[Pel93] D. Peled. All from one, one for all: on model checking using representatives.
In C. Courcoubetis, editor, Proc. of the 5th Int. Conf. on Computer Aided
Verification (CAV’93), volume 697 of Lecture Notes in Computer Science,
pages 409–423, Elounda, Greece, June 28–July 1 1993. Springer-Verlag.

[Pen03] M. Pena. Reletive timing-based formal verification of complex timed systems.
PhD thesis, Technical University of Catalonia, 2003.

[Pet62] C.A. Petri. Kommunikation mit automaten. Ph.D. dissertaion. University
of Bonn, 1962.

[Pet66] C.A. Petri. Communication with automata. Technical Report RADC-TR-
65-377, Griffiss Air Force Base, New York, 1966.

[Pet81] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
1981.

142 BIBLIOGRAPHY

[PG86] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form trans-
lation. Journal of Symbolic Computation, 2(3):293 – 304, 1986.

[PICW04] G. Parthasarathy, M.K. Iyer, K.-T. Cheng, and L.-C. Wang. Safety prop-
erty verification using sequential SAT and bounded model checking. IEEE
Transactions on Design & Test of Computers, 21(2):132–143, 2004.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. of the 8th Annual
Symposium on Foundations of Computer Science (FOCS’77), pages 46–57,
Providence, Rhode Island, U.S., October 31–November 2 1977. IEEE.

[PRCB94] E. Pastor, O. Roig, J. Cortadella, and R.M. Badia. Petri net analysis using
boolean manipulation. In Proc. of the 5th Int. Conf. on Application and
Theory of Petri Nets, volume 815 of Lecture Notes in Computer Science,
pages 416–435, Zaragoza, Spain, June 20–24 1994. Springer-Verlag.

[PVK01] D. Peled, A. Valmari, and I. Kokkarinen. Relaxed visibility enhances partial
order reduction. Formal methods in system design, 19(3):275–289, November
2001.

[PWZ02a] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the
universal fragment of CTL. Fundamenta Informaticae, 50:1–22, 2002.

[PWZ02b] W. Penczek, B. Wozna, and A. Zbrzezny. Towards bounded model checking
for the universal fragment of TCTL. In Werner Damm and Ernst-Rüdiger
Olderog, editors, Proc. of the 7th Int. Symp. on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT 2002), volume 2469 of LNCS,
pages 265–288, Oldenburg, Germany, September 2002. Springer-Verlag.

[QS82] J-P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In Proc. of 5th Colloquium on International Symposium on
Programming, volume 137 of LNCS, pages 337–351. Springer, 1982.

[Rei67] C. H. Reinsch. Smoothing by spline functions. Numerische Mathematik,
10(3):177–183, 1967.

[Rei85] W. Reisig. Petri nets: an introduction. In EATCS Monographs on Theoretical
Computer Science, volume 4, Berlin, 1985. Springer-Verlag.

[RMB04] Jarrod A. Roy, Igor L. Markov, and Valeria Bertacco. Restoring circuit
structure from SAT instances. In Proc. of the 6th Int. Workshop on Logic
and Synthesis (IWLS 2004), Temecula, California, U.S., June 2004.

[Ros05] P.E. Ross. The exterminators. IEEE Spectrum, 42(9–INT):30–35, September
2005.

BIBLIOGRAPHY 143

[Sa85] A. Sistla and E. Clarke and. The complexity of propositional linear tem-
poral logics. Journal of the Association for Computing Machinery (JACM),
32(3):733–749, July 1985.

[SAT] SATLIB. Benchmarks problems. Available at
http://www.cs.ubc.ca/�hoos/SATLIB/benchm.html.

[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In
E.A. Emerson and A.P. Sistla, editors, Proc. of the 12th Int. Conf. Com-
puter Aided Verification (CAV’2000), volume 1855 of LNCS, pages 248–263,
Chicago, IL, U.S., July 2000. Springer.

[SB05] V. Schuppan and A. Biere. Shortest vounterexamples for symbolic model
checking of LTL with past. In N. Halbwachs and L.D. Zuck, editors, Proc.
of the 11th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’05), volume 3440 of LNCS, pages 493–509,
Edinburgh, U.K., April 4-8 2005. Springer-Verlag.

[SBD02] A. Stump, C. Barrett, and D. Dill. CVC: a cooperating validity checker.
In E. Brinksma and K. G. Larsen, editors, Proc. of the 14th Int. Conf. on
Computer Aided Verification, (CAV 2002), volume 2404 of Lecture Notes
in Computer Science, pages 500–504, Copenhagen, Denmark., July 2002.
Springer-Verlag.

[SBSV96] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combina-
tional test generation using satisfiability. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 15(9):1167–1176, Septem-
ber 1996.

[Sch99] K. Schneider. Yet another look at LTL model checking. In L. Pierre
and T. Kropf, editors, Proc. of the 10th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification Methods
(CHARME’99), volume 1703 of LNCS, pages 321–325, Bad Herrenalb, Ger-
many, September 27-29 1999. Springer.

[SdBF04] I. Skliarova and A. de Brito Ferrari. Reconfigurable hardware sat solvers:
a survey of systems. IEEE Transactions on Computers, 53(11):1449–1461,
November 2004.

[SG90] G. Shurek and O. Grumberg. The modular framework of computer-aided
verification. In E.M. Clarke and R.P. Kurshan, editors, Proc. of the 2th
Int. Conf. on Computer Aided Verification (CAV’90), volume 531 of Lecture
Notes in Computer Science, pages 186–196, New Brunswick, NJ, U.S., June
1990. Springer-Verlag.

144 BIBLIOGRAPHY

[She04] D. Sheridan. The optimality of a fast CNF conversion and its use with SAT.
In Proc. of the 7th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT’05), Lecture Notes in Computer Science, Vancouver, Canada,
2004. Springer-Verlag.

[She05] D. Sheridan. Bounded model checking with SNF, alternating automata, and
büchi automata. Electr. Notes Theor. Comput. Sci., 119(2):83–101, 2005.

[Shn02] Ph. Shnoebelen. The complexity of temporal logic model checking. Advances
in Modal Logic, 4:1–44, 2002.

[Sht00] O. Shtrichman. Tuning SAT checkers for bounded model checking. In Proc.
of the 12th Int. Conf. on Computer Aided Verification (CAV’2000), volume
1855 of Lecture Notes in Computer Science, pages 480–494. Springer-Verlag,
2000.

[Sin92] S. Singh. Expected connectivity and leader election in unreliable networks.
Information Processing Letters, 42(5):283–285, 1992.

[Sip97] M. Sipser. Introduction to the Theory of Computation. PWS Publishing
company, 1997.

[SK91] S. Singh and J.F. Kurose. Electing leaders based upon performance: the
delay model. In Proc. of the 10th Int. Conf. on Distributed Computing Sys-
tems (ICDCS 1991), pages 464–471, Arlington, Texas, U.S., May 1991. IEEE
Computer Society.

[Sor02] M. Sorea. Bounded model checking for timed automata. Technical Report
SRI-CSL-02-03, SRI International, 2002.

[SP02] M. Solé and E. Pastor. Traversal techniques for concurrent systems. In Proc.
of Formal Methods in Computer-Aided Design (FMCAD 2002), volume 2517
of LNCS, pages 220–238, Portland, Oregon, U.S., November 2002. Springer-
Verlag.

[SP05] S. Subbarayan and D. K. Pradhan. NiVER: non-increasing variable elim-
ination resolution for preprocessing SAT instances. In E. Giunchiglia and
A. Tacchella, editors, Proc. of the 7th Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT 2004), Revised Selected Papers, volume 3542
of Lecture Notes in Computer Science, pages 276–291, Santa Margherita
Ligure, Italy„ May 2005. Springer-Verlag.

[SS99] J.P. Silva and K. Sakallah. GRASP: a search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

[SS00] M. Sheeran and G. Stålmarck. A tutorial on Stålmarck’s proof procedure for
propositional logic. Formal Methods in System Design, 16(1):23–58, 2000.

BIBLIOGRAPHY 145

[SS05] H. Sheini and K. Sakallah. A scalable method for solving satisfiability of
integer linear arithmetic logic. In F. Bacchus and T. Walsh, editors, Proc.
of the 8th Int. Conf. on Theory and Applications of Satisfiability Testing
(SAT’05), volume 3569 of Lecture Notes in Computer Science, pages 241–
256, St. Andrews, Scotland, 2005. Springer-Verlag.

[SS06] H.M Sheini and K.A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 2,
2006.

[SSA91] V. Sivaramakrishnan, S.C. Seth, and P. Agrawal. Parallel test pattern gen-
eration using Boolean satisfiability. In Proc. of 4th CSI/IEEE Int. Symp. on
VLSI Design, pages 69–74, New Delhi, India, 1991.

[SSS00] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using
induction and a SAT-solver. In W.A. Hunt Jr. and S.D. Johnson, editors,
Proc. of the 3rd Int. Conf. on Formal Methods in Computer-Aided Design,
(FMCAD 2000), volume 1954 of Lecture Notes in Computer Science, pages
108–125, Austin, Texas, U.S., November 2000. Springer-Verlag.

[Ste93] B. Sterling. The hacker crackdown: law and disorder on the electronic fron-
tier. Bantam, 1993.

[Str01] O. Strichman. Pruning techniques for the SAT-based bounded model check-
ing problem. In T. Margaria and T. Melham, editors, Proc. of the 11th
Int. Conf. on Correct Hardware Design and Verification Methods (CHARME
2001), volume 2144 of Lecture Notes in Computer Science, pages 58–70, Liv-
ingston, Scotland, UK, September 2001. Springer-Verlag.

[Str04] O. Strichman. Accelerating bounded model checking of safety properties.
Formal Methods in System Design, 24(1):5–24, 2004.

[SYSN01] T. Suyama, M. Yokoo, H. Sawada, and A. Nagoya. Solving satisfiability
problems using reconfigurable computing. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 9(1):109–116, February 2001.

[SZ03] O. Shacham and E. Zarpas. Tuning the VSIDS decision heuristic for bounded
model checking. In Proc. of the 4th Int. Workshop on Microprocessor Test
and Verification: Commomn Challenges and Solutions, pages 75– 79, 2003.

[Tau03] H. Tauriainen. On translating linear temporal logic into alternating and
nondeterministic automata. Research Report A83, Helsinki University of
Technology, Laboratory for Theoretical Computer Science, Espoo, Finland,
December 2003.

146 BIBLIOGRAPHY

[TBW04] C. Thiffault, F. Bacchus, and T. Wash. Solving non-clausal formulas with
DPLL search. In Proc. of the 7th Int. Conf. on Theory and Applica-
tions of Satisfiability Testing (SAT’04), Vancouver, BC, Canada, May 2004.
Springer-Verlag.

[TGH97] P. Tafertshofer, A. Ganz, and M. Henftling. A SAT-based implication engine
for efficient ATPG, equivalencechecking, and optimization of netlists. In Proc
of Int. Conf. on Computer-Aided Design (ICCAD’97), pages 648–655, San
Jose, CA, U.S., 1997.

[TH00] H. Tauriainen and K. Heljanko. Testing SPIN’s LTL formula conversion into
Büchi automata with randomly generated input. In K. Havelund, J. Penix,
and W. Visser, editors, Proc. of the 7th Int. SPIN Workshop, volume 1885 of
LNCS, pages 54–72, Stanford, CA, U.S., September 2000. Springer-Verlag.

[Tse83] G.S. Tseitin. On the complexity of derivation in propositional calculus. In
J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2: Clas-
sical Papers on Computational Logic 1967-1970, pages 466–483. Springer-
Verlag, 1983.

[Val90] A. Valmari. A stubborn attack on state explosion. In E.M. Clarke and R. P.
Kurshan, editors, Proc. of the 2th Int. Conf. on Computer Aided Verification
(CAV’90), volume 531 of Lecture Notes in Computer Science, pages 156–65,
New Brunswick, NJ, U.S., June 1990. Springer-Verlag.

[Var95] M. Vardi. An automata-theoretic approach to linear temporal logic. In
F. Moller and G. Birtwistle, editors, Proc. of 8th Banff Higher Order Work-
shop on Logics for Concurrency - Structure versus Automata, volume 1043
of LNCS, pages 238–266. Springer, August 27–September 3 1995.

[Var06] M. Y. Vardi. Automata-theoretic techniques for temporal reasoning. In
Handbook of Modal Logic, pages 971–989. Elsevier, 2006.

[VB01] M.N. Velev and R.E. Bryant. Effective use of boolean satisfiability proce-
dures in the formal verification of superscalar and vliw microprocessors. In
Proc. of Design Automation Conference, pages 226–231, 2001.

[Vel] M. Velev. SAT benchmarks collection. Available at
http://www.ece.cmu.edu/�mvelev/sat_benchmarks.html.

[Vel04a] M. N. Velev. Exploiting signal unobservability for efficient translation to
CNF in formal verification of microprocessors. In Proc. of. the Conf. Design
Automaton and Test in Europe (DATE’2004), pages 266–271, 2004.

[Vel04b] M.N. Velev. Efficient translation of boolean formulas to CNF in formal
verification of microprocessors. In Proc. of the 2004 conf. on Asia South

BIBLIOGRAPHY 147

Pacific design automation: electronic design and solution fair, pages 310–
315, Yokohama, Japan„ 2004. IEEE Press.

[VHBP00] W. Visser, K. Havelund, G.P. Brat, and S. Park. Model checking programs.
In Y. Ledru, P. Alexander, and P. Flener, editors, Proc. of the 15th IEEE
Int. Conf. on Automated Software Enginneering (ASE’2000), pages 3–12,
Grenoble, France, September 2000. IEEE Computer Society.

[VW86] M. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proc. of the first Symp. on Logic in Computer Science
(LICS), pages 332–344, Cambridge, Massachusetts, U.S., June 1986. IEEE
Computer Society.

[Wan98] J. Wang. Timed Petri nets, theory and application. Kluwer Academic Pub-
lishers, 1998.

[WBCG00] P.F. Williams, A. Biere, E.M. Clarke, and A. Gupta. Combining decision
diagrams and SAT procedures for efficient symbolic model checking. In Proc.
of the 12th Int. Conf. on Computer Aided Verification (CAV’2000), volume
1855 of Lecture Notes in Computer Science, pages 124–138. Springer-Verlag,
2000.

[WIGG05] C. Wang, F. Ivancic, M. Ganai, and A. Gupta. Deciding separation logic
formulae by SAT and incremental negative cycle elimination. In G. Sutcliffe
and A. Voronkov, editors, Proc. of the 12th Int. Conf. on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR 2005), volume 3835 of
Lecture Notes in Computer Science, pages 322–336, Montego Bay, Jamaica,
December 2005. Springer-Verlag.

[WJHS04] C. Wang, H. Jin, G. D. Hachtel, and F. Somenzi. Refining the SAT decision
ordering for bounded model checking. In Proc of th 41st annual Conf. on
Design Automation, pages 535–538. ACM Press, 2004.

[WKS01] J. Whittemore, J. Kim, and K. Sakallah. Satire: A new incremental sat-
isfiability engine. In Proc. of the 38th Int. Conf. on Design Automation
(DAC’01), pages 542–545, Las Vegas, Nevada, U.S., June 2001. ACM.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes
with network invariants. In J. Sifakis, editor, Proc. of the Int. Workshop
on Automatic Verification Methods for Finite State Systems, volume 407 of
Lecture Notes in Computer Science, pages 68–80, Grenoble, France, June
12-14 1989. Springer-Verlag.

[WLP04] B. Woźna, A. Lomuscio, and W. Penczek. Bounded model checking for reach-
ability testing in timed Petri nets. In Proc. of the Int. Workshop on Con-
currency Specification and Programming (CS&P’04), volume 170(1), pages
124–135, Potsdam, September 2004.

148 BIBLIOGRAPHY

[Wol02] P. Wolper. Constructing automata from temporal logic formulas: a tutorial.
pages 261–277, 2002.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computa-
tion paths. In Proc. of the 24th Annual Symp. on Foundations of Computer
Science (FOCS), pages 185–194, Tucson, Arizona, U.S., November 1983.
IEEE.

[WW96] B. Willems and P. Wolper. Partial-order methods for model checking: from
linear time to branching time. In E.M. Clarke, editor, Proc. of the 11th
Annual IEEE Symp. on Logic in Computer Science (LICS) 1996, pages 294–
303, New Brunswick, NJ, U.S., July 1996. IEEE Computer Society Press.

[WZP03] B. Woźna, A. Zbrzezny, andW. Penczek. Checking reachability properties for
timed automata via SAT. Fundamenta Informaticae, 55(2):223–241, 2003.

[YOM04] T. Yoneda, H. Onda, and C. J. Myers. Synthesis of speed independent
circuits based on decomposition. In 10th Int. Symp. on Advanced Research in
Asynchronous Circuits and Systems (ASYNC 2004), pages 135–145, Crete,
Greece, April 19–23 2004.

[Yor94] K. Yorav. Exploiting Syntactic Structure for Automatic Verification. PhD
thesis, Israel Institute of Technology, 1994.

[Zar04] E. Zarpas. Simple yet efficient improvements of SAT based bounded model
checking. In A. J. Hu and A. K. Martin, editors, Proc. of 5th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD 2004), volume 3312
of Lecture Notes in Computer Science, pages 174–185, Austin, Texas, U.S.,
November 2004. Springer-Verlag.

[Zar05] E. Zarpas. Benchmarking SAT solvers for bounded model checking. In
F. Bacchus and T. Walsh, editors, Proc. of the 8th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT’05), volume 3569 of Lecture
Notes in Computer Science, pages 340–354, St. Andrews, Scotland, 2005.
Springer-Verlag.

[ZDR92] M. Zhou, F. DiCesare, and D. Rudolph. Design and implementation of a
Petri net based supervisor for a flexible manufacturing system. IFAC Journal
Automatica, 28(6):1199–1208, 1992.

[Zha97] H. Zhang. SATO: an efficient propositional prover. In Proc. of the 14th Int.
Conf. on Automated Deduction (CADE’97), volume 1249 of LNCS, pages
272–275. Springer-Verlag, July 1997.

[ZM03] L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formula. In Proc. of the 6th Int. Conf. on Theory and Applications

BIBLIOGRAPHY 149

of Satisfiability Testing, SAT 2003, S. Margherita Ligure, Portofino, Italy,
May 5–8 2003.

[ZPH04] L. Zhang, M.R. Prasad, and M.S. Hsiao. Incremental deductive & induc-
tive reasoning for SAT-based bounded model checking. In Proc. of the
IEEE/ACM Int. Conf. on Computer Aided Design (ICCAD’2004), pages
502–509, November 2004.

[ZPHS05] L. Zhang, M.R. Prasad, M.S. Hsiao, and T. Sidle. Dynamic abstraction
using SAT-based BMC. In Proc. of the 36th ACM/IEEE conf. on Design
Automation DAC, pages 754–757, San Diego, California, U.S., 2005. ACM
Press.

[Zub80] W. Zuberek. Timed Petri nets and preliminary performance evaluation. In
Proc. of the 7th annual symposium on Computer Architecture, pages 88–96,
La Baule, U.S., 1980. ACM Press.

Index

A
abstraction, 6
Airbus A320, 1
answer set programming, 37
Ariane 5, 1
asynchronous systems, 10
automata, 22
automata-theoretic approach, 81

B
Büchi automaton, 81
binary decision diagrams, 3
Boolean algebras, 15
Boolean satisfiability problem, 6
bounded model checking, 6, 34
breadth-first search, 48
bug, 1

C
completeness threshold, 39
compositional reasoning, 5
computation, 13
computation tree, 19
conjunctive normal form, 26
CTL, 26
cut-point insertion, 41

D
diameter of the system, 39
dilemma proof system, 30
dilemma rule, 30
DPLL, 27

E
execution path, 13

F
fixpoint, 3
formal verification, 1

I
image computation, 3, 41
incremental learning, 7
induction, 6
interleaving, 43, 46
interpolation, 76

K
Kripke structure, 17, 18

L
leap, 65
LTL, 24

M
Mariner I, 1
model checking, 2

P
partial order reduction, 5
Pentium bug, 1
Petri net, 21
preimage computation, 5
propagation rules, 29

R
reachability properties, 57
reactive systems, 17
recurrence diameter, 40
reduced Boolean circuits, 42

S
SAT, 26

152 INDEX

satisfiability modulo theory, 33
saturation, 30
simulation and testing, 1
state, 13
state explosion, 5
Stålmarck, 28
symmetry, 6
synchronous, 8
synchronous system, 8

T
temporal logic, 24
termination length, 39
transition, 13
transition systems, 13
triplets, 29

U
unbounded model checking, 41
unrolling, 34
unsatisfiable core, 33, 38

	Abstract
	Acknowledgments
	Introduction
	Symbolic Model Checking
	BDD-based approach
	SAT-based Approach

	Synchronous Versus Asynchronous Systems
	Synchronous systems
	Asynchronous systems

	Scope of This Work
	Structure of the Thesis

	Background
	Transition Systems
	Definitions
	Symbolic Representation

	Other Models for Concurrent Systems
	Kripke Structure
	Petri Nets
	Automata

	Linear Temporal Logic
	Satisfiability Problem
	DPLL Algorithm
	Stålmarck's Algorithm
	Other Methods for Solving SAT

	Bounded Model Checking
	BMC Idea
	Safety Check Example
	BMC and Liveness Properties

	Exixting Techniques
	Standard Methods
	Completeness
	SAT with Unbounded Model Checking
	Existing BMC Tools

	Encoding Methods
	Related Work
	Symbolic Representation
	Encoding for Independent Systems
	Interleaving Execution
	Breadth-First Search Execution

	Encoding for Synchronized Systems
	Interleaving Execution
	Breadth-First Search Execution

	Expressing Reachability Properties
	Reducing the Bound Using Chaining
	Introduction
	Application to BMC
	Ordering the Events
	Chaining Algorithm

	Leap-Based Approach
	Related Work
	Unrolling Method for Deadlock Property
	Introduction
	BMC Equations

	Unrolling Method for Other Reachability Properties
	Introduction
	BMC Equations

	Jumping Methods
	Using Logarithmic Functions
	Using Interpolation

	Finding the Shortest Counterexample
	Time Performance

	An Automata-Theoretic Approach
	Related Work
	Representation of Büchi Automata
	Different Types of Büchi Automata
	Translating an LTL Formula Into a TGBA
	TGBA Encoding

	Building the BMC Formulas
	Interleaving Execution
	Breadth First Search Execution
	Chaining

	Discussion

	Implementation
	Different Modules
	LTL2BA
	BMC Module
	CNF translator
	Solver

	Input Formats
	TS File format
	PEP File format

	Important commands

	Case Studies
	Experiments Related to Reachability
	Explication of the Benchmarks
	Comparison with the Tool NuSMV

	Experimental Results Related to LTL
	Gas Station
	Bakery Algorithm
	Readers-writers Problem
	Sleeping Barber
	Leader Election Protocol
	Properties and Instances

	Experiments Related to Leap
	Example of a Leap Execution

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Index

