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Abstract 

Firm-level productivity and efficiency analyses have important implications for the evaluation 

of their economic viability and sustainability. The assessment‎ of‎ a‎ firm’s‎ performance‎

requires the use of an adequate methodological approach to derive sound efficiency estimates. 

By targeting economic sectors not previously investigated and using new methodological 

approaches, this thesis contributes to the literature both from a methodological and empirical 

point of view. 

Three specific objectives have been pursued in three papers that constitute the main 

body of the present thesis. The main purpose of the first paper is to compare the efficiency 

ratings of organic and conventional grape farms in Catalonia. To do so, we fit a stochastic 

production frontier to cross sectional, farm-level data collected from a sample of 141 Catalan 

farms that specialize in grape growing. Results show that organic farmers, on average, are 

more efficient than their conventional counterparts (efficiency ratings are on the order of 0.80 

and 0.64, respectively). Apart from adoption of organic practices, experience is also found to 

improve technical efficiency. Conversely, technical efficiency tends to decrease with the 

relevance‎of‎unpaid‎family‎labor,‎farm‎location‎in‎less‎favored‎areas,‎and‎farmers’‎ concerns 

for environmental preservation. 

In the second paper, local maximum likelihood (LML) methods, recently proposed by 

Kumbhakar et al. (2007), are applied to assess the technical efficiency of a sample of arable 

crop Kansas farms. LML techniques overcome the most relevant limitations associated to 

mainstream parametric and nonparametric frontier models. Results suggest that Kansas farms 

reach technical efficiency levels on the order of 91%. These results are compared with data 

envelopment analysis and stochastic frontier analysis efficiency estimates. 

The last paper focuses on the assessment of technical and environmental efficiency of 

Catalan arable crop farms. Specifically, we apply the methodology recently developed by 

Coelli et al. (2007) and extend it to a consideration of the stochastic conditions under which 

production takes place, as proposed by Chambers and Quiggin (1998 and 2000). Results 

suggest that sample farms reach technical and environmental efficiency levels on the order of 

93% and 74%, respectively. 
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Resumen 

El análisis de la productividad y la eficiencia tiene importantes implicaciones para la evaluación 

de la viabilidad económica y la sostenibilidad de las empresas. Dicha  evaluación requiere el uso 

de un enfoque metodológico adecuado que produzca estimaciones de eficiencia no sesgadas. 

Mediante el estudio de sectores económicos no analizados con anterioridad y la adopción de 

nuevos enfoques metodológicos, esta tesis contribuye a la literatura, tanto desde el punto de vista 

metodológico como empírico. 

La tesis estudia tres cuestiones principales que se reflejan en tres artículos científicos 

independientes, que constituyen el elemento central de la misma. El principal objetivo del primer 

artículo es el de comparar la eficiencia técnica de las explotaciones de uva ecológicas y 

convencionales en Cataluña. Para ello utilizamos el modelo de la frontera de producción 

estocástica. El análisis se basa en datos de corte transversal de una muestra de 141 explotaciones 

catalanas especializadas en la producción de uva. Los resultados sugieren que los agricultores 

ecológicos son, de promedio, técnicamente más eficientes que los convencionales (los ratios de 

eficiencia son 0,80 y 0,64, respectivamente). Además de la adopción de técnicas ecológicas, la 

experiencia también incrementa la eficiencia técnica. En cambio, las explotaciones con una mayor 

proporción de trabajo no remunerado, que se encuentran en una zona desfavorecida y/o que 

tienden a tener fuertes preferencias por preservar el medio ambiente, son generalmente menos 

eficientes.  

En el segundo artículo, se utilizan los métodos de máxima verosimilitud  local (LML) 

propuestos recientemente por Kumbhakar et al. (2007) para estimar la eficiencia técnica de una 

muestra de explotaciones agrícolas especializadas en la producción de cereales, oleaginosas y 

proteaginosas en Kansas. Las técnicas LML permiten superar muchas de las limitaciones 

asociadas a los modelos de frontera paramétricos y no paramétricos. Los resultados sugieren que 

las explotaciones de Kansas son técnicamente eficientes, con niveles de eficiencia del orden del 

91%. Estos resultados se comparan con los ratios de eficiencia obtenidos a través del análisis de la 

envolvente de datos y de la frontera de producción estocástica.  

El último artículo se centra en la estimación de la eficiencia técnica y medioambiental de 

una muestra de explotaciones Catalanas especializadas en la producción de cereales, oleaginosas y 

proteaginosas. Para ello se aplica una versión ampliada de la metodología desarrollada 

recientemente por Coelli et al. (2007), la cual se extiende para considerar explícitamente las 

condiciones estocásticas bajo las cuales tiene lugar la producción. Para ello se utilizan los 

métodos estado-contingente propuestos por Chambers y Quiggin (1998 y 2000). Los resultados 

sugieren que las explotaciones presentan niveles de eficiencia técnica y medioambiental del orden 

del 93% y 74%, respectivamente. 
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 3 

Technical efficiency is a prerequisite for economic efficiency, which in turn ensures the 

economic‎ viability‎ and‎ sustainability‎ of‎ a‎ firm.‎ In‎ being‎ a‎ useful‎ tool‎ to‎ diagnose‎ a‎ firm’s‎

economic problems, assessment of technical efficiency has drawn broad research interest. 

Efficiency requires rational input allocation to achieve the desired output levels, which is 

important for producers who try to optimize their production decisions, and strengthens the 

firms’ capacity to face changing market conditions, increasing input costs, economic 

hardships and rapid technological progress. It is also relevant for policy makers interested in 

enhancing‎ firms’‎ economic‎ performance‎ and‎ competitiveness,‎ promoting‎ economic‎

development and sustainable economic practices.  

The analysis of technical efficiency assesses to what extent firms are able to maximize 

their output levels with minimum use of inputs. Since the pioneering work by Farrell (1957), 

the scientific community has proposed a wide array of techniques to derive firm-level 

efficiency measures. Two main approaches namely, parametric (Stochastic Frontier Analysis - 

SFA) and nonparametric approaches (Data Envelopment Analysis - DEA), have emerged as 

alternatives and have been extensively used in the efficiency literature (see, for a few 

examples, Tzouvelekas et al., 2001, 2002; Oude Lansink et al., 2002; Sipiläinen and Oude 

Lansink, 2005; Lohr and Park, 2006).  

The‎ assessment‎ of‎ a‎ firm’s‎ performance‎ requires the use of an adequate 

methodological approach to derive unbiased efficiency estimates.  Several studies have shown 

that technical efficiency estimates are sensitive to estimation methods and functional form 

specifications (Ferrier and Lovell, 1990; Coelli and Perelman, 1999; Ruggiero and Vitaliano, 

1999; Chakraborty et al., 2001). Inadequate representations of the production frontier and 

error distributions can lead to misleading results (Kumbhakar et al., 2007; Martins-Filho and 

Yao, 2007; Serra and Goodwin, 2009). The efficiency measurement literature has 

progressively evolved to incorporate new advances, refinements and extensions. This thesis 

focuses on a few of the most recent methodological developments. 

Both parametric (SFA) and nonparametric (DEA) techniques have been shown to 

suffer from different shortcomings. The stochastic parametric approach addresses the main 

shortcomings of the deterministic approach and permits to distinguish between inefficiency 

and‎exogenous‎shocks‎ that‎are‎outside‎ the‎firm’s‎control‎ (Aigner et al., 1977; Meeusen and 

Van den Broeck, 1977). However, it requires specification of a parametric frontier function to 

capture production characteristics (e.g: Aigner et al., 1977; Meeusen and Van den Broeck, 

1977). In this regard, SFA relies on two strong assumptions: the specification chosen to 

represent the deterministic frontier and the distributional assumption of the composite error 
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term. In contrast, the nonparametric approach (DEA), through which all firms are compared 

with the “best‎practice”‎or‎“benchmark‎performance”‎frontier,‎does not rely on the definition 

of a functional form characterizing the underlying technology and therefore avoids 

misspecification problems. A disadvantage of this technique is the ignorance of the stochastic 

error term which implies that all deviations from the frontier are attributed to inefficiency.  As 

a result, TE ratings obtained from the nonparametric approach are generally lower than those 

obtained under the parametric alternative (SFA) (Sharma et al., 1999; Puig-Junoy and Argiles, 

2000; Wadud and White, 2000).   

To overcome the limitations of both aforementioned approaches without foregoing 

their advantages, a new methodological approach based on local modeling methods has been 

recently proposed by Kumbhakar et al. (2007). In contrast to parametric models, this method 

does not require strong assumptions regarding the deterministic and stochastic components of 

the frontier: the parameters characterizing both production and error distribution are localized 

with respect to the covariates. As opposed to nonparametric approaches, local modeling 

methods allow for stochastic variables and variable measurement errors when estimating 

efficiency scores. The local modeling approach by Kumbhakar et al. (2007) is based on local 

maximum likelihood (LML) principles (Fan and Gijbels, 1996).  

Recent advances in the efficiency literature not only refer to methodological but also 

conceptual issues. Traditional performance measures focus almost exclusively on the efficient 

use of conventional inputs and outputs. However, as the environmental sustainability of 

economic activities has become of increasing interest, firm-performance studies have evolved 

to include environmental concerns and conventional efficiency measures have been extended 

to include both technical and environmental dimensions. Late developments within the 

literature on environmental efficiency have stressed the necessity to consider the materials 

balance condition in order to provide sound measures of firms’‎environmental performance. 

Based on this principle, Coelli et al. (2007) suggest a new approach which, in contrast to 

previous modeling approaches, does not require the introduction of an extra pollution variable 

in the production model.  

This thesis employs both local production frontier estimation techniques to derive 

production frontier parameters, as well as environmental efficiency measures to extend 

technical performance measures with environmental considerations. Its scientific contribution 

is both methodological and of an empirical nature, and is organized in three main core 

chapters that constitute three independent scientific articles. The analysis of the efficiency 

with which agricultural holdings operate is the guideline of this thesis. The first article uses 



 5 

well-known SFA techniques to conduct a comparative study of technical efficiency ratings for 

organic and conventional grape farms in Catalonia, Spain. The assessment of organic Spanish 

farms’‎ economic‎ viability‎ has‎ received‎ scant‎ attention‎ by‎ the‎ literature and this work 

contributes to fill this gap. This first article is also pioneering in that it measures the 

contribution of farmers’‎ preferences‎ regarding‎ environmental‎ preservation‎ and‎ economic‎

performance to efficiency. The analysis is conducted on cross sectional, farm-level data 

collected from a sample of organic and conventional Catalan farms that specialize in grape 

growing, and based upon a stochastic production frontier in which inefficiency effects are 

assumed to be a function of firm-specific characteristics.  

The second article implements local estimation techniques to study efficiency of 

Kansas farms that specialize in the production of cereals, oilseeds and protein (COP) crops. 

The relevant role of Kansas in US arable crop production justifies the decision to study 

technical efficiency of Kansas arable crop farms. The analysis is based on farm-level data 

obtained from farm account records from the Kansas Farm Management Association (KFMA) 

dataset. In spite of the interesting features of local estimation methods, its use has been 

limited to a few empirical studies due to implementation complexities. Further, while the 

existing literature on technical efficiency has broadly compared parametric (SFA) and 

nonparametric approaches (DEA), no study had previously compared semiparametric 

techniques with mainstream methods. The second article in this dissertation sheds light on this 

issue.  

The third research article focuses on environmental efficiency measurement of a 

sample of Spanish arable crop farms. Since very few proposals to measure environmental 

efficiency based on the materials balance principle have been proposed and empirically 

implemented, there is scope for significant literature contributions. The third paper builds on 

the proposal by Coelli et al. (2007), expands it to allow for production risk and makes a 

twofold contribution to the literature. To date, there are no published studies that have focused 

on the assessment of technical and environmental efficiency of Spanish agriculture using this 

methodology. Furthermore, environmental efficiency studies have failed to explicitly consider 

the stochastic conditions under which production takes place. We do so by implementing the 

recently developed state-contingent methods as proposed by Chambers and Quiggin (1998 

and‎ 2000),‎which‎ represents‎ a‎ relevant‎ extension‎ to‎ Coelli‎ et‎ al’s‎ (2007)‎ proposal.‎ To‎ our‎

knowledge, no previous published work has studied environmental efficiency using state-

contingent methods. To the extent that the use of environmentally damaging inputs affects 

production risk, a model that ignores risk will produce biased efficiency estimates. The 
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analysis is based on farm-level data collected using a questionnaire distributed among 190 

Catalan arable crop agricultural holdings. 

In addition to this general introduction and the concluding remarks section, this 

present thesis is organized into three chapters containing the three research articles 

summarized above.‎The‎first‎paper‎(chapter‎2),‎entitled‎“The‎productive‎efficiency‎of‎organic 

farming:‎the‎case‎of‎grape‎sector‎in‎Catalonia”‎has‎been‎published‎in‎the‎Spanish Journal of 

Agricultural Research.‎The‎second‎paper‎(chapter‎3),‎entitled‎“Technical‎efficiency‎of‎Kansas‎

arable crop farms: a local maximum likelihood approach”,‎is‎under review in the Agricultural 

Economics journal.‎ The‎ third‎ paper‎ (chapter‎ 4),‎ entitled‎ “Technical‎ and‎ environmental‎

efficiency‎ of‎ Catalan‎ arable‎ crop‎ farms”,‎ is‎ under‎ review‎ in‎ the‎ Applied Economic 

Perspectives & Policy journal. The final chapter synthesizes the main findings achieved in the 

three previous chapters. Based on these results, some policy implications as well as 

recommendations for future studies are derived.   
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Chapter 2  
 

The productive efficiency of organic farming: 

the case of grape sector in Catalonia
1
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 Publication Information: Guesmi, B, Serra, T., Kallas, Z., Gil, J.M., 2012. The productive efficiency of organic 

farming: the case of grape growing in Catalonia. Spanish Journal of Agricultural Research 10: 552-566. 
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2.1. Introduction  

 

Intensive agricultural systems have caused several negative externalities on humans, animals 

and the environment. Impacts on human health, pollution of underground and surface water, 

loss of biodiversity, or overutilization of natural resources are just a few examples of these 

externalities. Social concerns regarding the negative externalities derived from conventional 

agriculture have been growing. Over the last few years, there has also been an increase in 

consumer awareness pertaining to the consequences of food choices on their health and the 

environment. These concerns have led to changes in European Union (EU) agricultural 

policies that have progressively incorporated environmental considerations. Interest in 

alternative agricultural practices that are more environmentally friendly has also been 

growing. Organic farming, which replaces chemical inputs with organic fertilizers and non-

chemical crop protection inputs, has received substantial attention within the EU. 

Since the beginning of the 1990s, the EU has made a significant effort to enhance and 

develop organic agriculture. In order to increase the supply of organic products, EU countries 

have provided financial assistance for organic producers. Conversion subsidies have been 

introduced to compensate for the lower incomes obtained during the early stages of 

conversion. As a result, organic farming has quickly grown within the EU-27 countries from 

0.70 million hectares in 1993 to 7.20 million hectares in 2007 (Eurostat, 2007; Willer and 

Kilcher, 2009). The organic area share over the total utilized agricultural area is around 4% in 

the EU-27, which is among the highest in the world. Organic farming in Spain has grown 

faster than in other EU-27 member states. While Spain ranked 10
th

 in‎the‎EU’s‎organic area 

distribution with 4,235 ha in 1991, it currently ranks second with almost one million ha 

(Lampkin, 1996; MARM, 2008; FiBL, 2009). Spain was the first contributor to the increase in 

the‎ EU’s‎ organic‎ area‎ in‎ 2006‎ (FiBL, 2009). The rapid and substantial increase is mainly 

explained by economic strategies adopted by farmers who consider organic production to be 

profit maximizing when accounting for subsidies received and price premiums for their 

produce (Armesto-López, 2008).  

Despite the prominent position of Spain in the EU, the share of organic farming in the 

Spanish utilized agricultural area (UAA) (3.70%) is still below the EU-27 average (4%). As in 

Europe, more than 60% of the Spanish organic area is devoted to grassland, while arable 

crops are the most important organic crop with almost 275,823 ha, representing more than one 

third of the organic crop area. Olive groves are the second most common organic crop (22%), 

followed by dried fruits (15%) and grapes (7%) (MARM, 2008). 



 12 

Grape is a perennial crop that, compared to other crops, has relatively low nutritional 

needs and adapts well to marginal soils (Winkler et al., 1974; Pongracz, 1978). This feature is 

considered very relevant to produce organically and makes conversion easier than for other 

crops. While other crops suffer many problems over the period of transition from 

conventional to organic, grape cultivation does not as long as the minimum level of nutrient 

needs is guaranteed to avoid productivity loss. These features make organic grape production 

a technically feasible, economically attractive and sustainable activity. Selection of resistant 

varieties in organic viticulture plays a vital role in ensuring high immunity against pests and 

diseases, high adaptation to the environmental conditions (rainfall, temperature, frost, 

humidity and soil quality), high productivity and profitability. Other operations are considered 

important to guarantee an excellent growing season for organic grape. Organic vineyard 

requires correct training operations to facilitate pruning (a critical practice), spraying and 

harvesting.  

By the end of the 2000s decade, 70% of the worldwide organic grape production area 

was located in the EU-27, where Italy, France and Spain were the main producers. Within the 

EU-27, Spain represented 33% of the total (organic and conventional) vineyard area 

(Eurostat, 2008) and 15% of the organic vineyard area, behind Italy (32%) and France (17%). 

The Spanish organic grape area represented 1.70% of total grape area. In terms of production, 

Spain generated 23% of total grapes produced in the EU-27 and 9% of worldwide production.  

 Catalonia plays a significant role in organic farming in Spain, recording an average 

annual growth rate of 37% since 1995 (CCPAE, 2009). While the major organic producer in 

Spain is Andalucía (with around 60% of total area), Catalonia ranked fourth with 62,331 ha 

farmed by 909 producers in 2008. Further, 19% of the total Spanish organic food industry was 

concentrated in Catalonia. The Catalan organic vineyard area represented around 7% of the 

total organic grape area in Spain (being the fourth most relevant share). Since 1995, this area 

rapidly grew with an average annual growth of about 21%. The area increased from 207 ha in 

1995 to 2,241 ha in 2008 (CCPAE, 2009). In terms of production, Catalonia contributes 7% to 

total Spanish vineyard production. We aim to study the technical efficiency (TE) with which 

Catalan grapes operate.  

While conversion subsidies are useful in promoting organic conversion, they do not 

guarantee that converting farms will be economically viable in the future. An important first 

step towards economic viability is to ensure that organic production processes are technically 

efficient. TE is a prerequisite for economic efficiency, which is also a necessary condition for 

economic sustainability (Tzouvelekas et al., 2001). Knowledge about productivity and 
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efficiency differences between conventional and organic farms is important for policy makers 

who are interested in promoting sustainable farming practices, farmers who try to optimize 

their production decisions, as well as other economic agents such as food processors and 

retailers who process and sell organic food. In the following lines a literature review on 

organic farming is presented. 

The relevance of the organic farming movement has led many authors to evaluate the 

current situation and expectations on the future development of organic farms. Among these 

studies, the analyses on the adoption of organic farming practices have gained special 

relevance. Different methodologies, ranging from descriptive qualitative analyses to highly 

sophisticated econometric exercises, have served this purpose. Within the adoption literature, 

a first group of studies has been interested in understanding the determinants that motivate 

farmers to adopt the organic technology (Fairweather, 1999; Lohr and Salomonson, 2000; 

Pietola and Oude Lansink, 2001; Acs et al., 2007). A second group has focused on the amount 

of time it takes a farmer to adopt organic practices (Padel, 2001; Parra et al., 2007).  

Despite the development of organic farming worldwide and especially in Europe, the 

literature on the TE performance of organic farming is sparse, which is mainly due to data 

scarcity on organic farms (Oude Lansink et al., 2002). In recent years there have been a few 

attempts to study this issue. Different approaches have been used to estimate the differences 

in TE between conventional and organic farms and different results have been derived. While 

some authors have utilized a parametric approach, specifically a Stochastic Frontier Analysis 

(SFA), others have relied on non-parametric methods, specially the Data Envelopment 

Analysis (DEA). 

Oude Lansink et al. (2002) used DEA to compare organic and conventional crop and 

livestock farms in Finland and found that organic producers have higher efficiency than 

conventional farms (efficiency ratings for organic and conventional producers were 0.96 and 

0.72, respectively), but use a less productive technology. In another recent DEA-based study, 

Bayramoglu and Gundogmus (2008) suggested that conventional raisin-producing households 

in Turkey are superior to organic producers in terms of TE (0.90 vs. 0.86). Both studies 

assumed variable returns to scale in order to compute TE. 

Tzouvelekas et al. (2001; 2002a,b) used the Stochastic Production Frontier (SPF) 

approach to evaluate the TE ratings achieved by Greek organic and conventional farms. They 

found organic producers to be more efficient than conventional ones. In contrast with this 

finding, Madau (2007) applied a SPF model and found that Italian conventional cereal farms 

were significantly more efficient than organic farms (0.90 vs. 0.83). Serra and Goodwin 
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(2009) is the only study that compares the efficiency ratings of organic and conventional 

arable crop farming in Spain. In this analysis, the SPF model was estimated by a local 

maximum likelihood approach. Results showed that organic farms have efficiency levels that 

are slightly below conventional farms (0.94 vs. 0.97). The output-oriented measure of 

efficiency is the most widely used method to determine TE levels. 

In spite of the recent relevant growth of organic farming in Spain, the literature on the 

TE of organic farming in this country is very thin. Our work contributes to the scarce 

literature on organic farming in Spain by carrying out a comparative study of TE ratings for 

organic and conventional grape farms in Catalonia. Additionally, we attempt to identify the 

factors that affect TE levels. SPF methodology is used for this purpose. By measuring 

efficiency we can assess whether economic agents use their resources optimally to reach their 

production objectives. Productivity differences between the two agricultural practices are also 

assessed by means of computing the output elasticity of different inputs and the productivity 

measure proposed by Kumbhakar et al. (2009). 

 

2.2. Material and methods  

 

The assessment of farm TE and the factors that explain TE provides valuable information to 

improve farm management and economic performance. In the presence of technical 

inefficiencies, farmers can increase their production levels without the need to increase the 

use of inputs that are usually scarce, or to adopt new technologies or practices. Avoiding 

sources of inefficiency and waste of resources is a requisite for economic sustainability. 

Generally, a farmer who operates with a high TE level obtains better economic results than a 

farmer who does not. In this regard, productive efficiency studies have important implications 

for economic performance, technological innovation and the overall input use in the 

agricultural sector.   

There are two main approaches widely used in the literature to estimate TE: 

parametric (SFA or deterministic frontier analyses) and non-parametric methods (data 

envelopment analysis, DEA). Non-parametric techniques are more flexible than parametric 

approaches in that they can be implemented without knowing the true specification of the 

functional form characterizing the production technology. However, they do not allow the 

researcher to isolate inefficiency effects from random noise or random shocks.  

To overcome the identification problem posed by non-parametric models, an 

alternative method can be used: SFA. This approach, that was introduced simultaneously by 
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Aigner et al. (1977) and Meeusen and Van den Broeck (1977), distinguishes between 

exogenous‎ shocks‎ outside‎ the‎ firm’s‎ control‎ and‎ inefficiency.‎ Contrary to DEA and 

deterministic frontier analyses, SFA accounts for random noise and can be used to conduct 

conventional tests of hypotheses. On the other hand, SFA requires the specification of a 

distributional form for the inefficiency term and a functional form for the production function. 

Results of SFA are sensitive to these assumptions. Since agricultural production outcomes are 

stochastically determined due to random climatic influences, and since agricultural production 

studies are likely to be affected by measurement and variable omission errors (Coelli, 1995; 

Chakraborty et al., 2002; Oude Lansink et al., 2002), it is necessary to choose a robust model 

that reflects and accounts for these issues. In this regard, we select SFA as a method to 

correctly and consistently estimate TE. 

The SPF proposed by Aigner et al. (1977) and Meeusen and Van den Broeck (1977) 

can be specified as: 

 

  ( ; )exp ;  ,   =1,2,...,i i i i i iy f e e v u i N  X   (1) 

 

where 
iy  denotes the level of output for the i-th observation (firm); 

iX  is the vector of input 

quantities used by the i-th firm in the production process;   is the vector of parameters to be 

estimated; and ( ; )if X   is a suitable functional form for the frontier. The error term 
ie  in 

equation (1) can be decomposed into two components, 
iu  and 

iv ; it is assumed that 
iu  and 

iv  

are independently distributed from each other. The first component, 
iv , is a standard random 

variable capturing the random variation in output due to statistical noise that arises from (a) 

the unintended omission of relevant variables from vector 
iX ; (b) from measurement errors 

and approximation errors associated with the choice of the functional form; (c) unexpected 

stochastic changes in production (weather influences, for example); and (d) other factors that 

are not under the control of the farm. Component 
iv  is usually assumed to be symmetric, 

independent and identically distributed as N(0, 2

v ). The second component 
iu  N

+
(μ, 2 u

), is 

a one-sided, non-negative random variable representing the stochastic shortfall of the i-th 

farm output from its production frontier, as a result of the existence of technical inefficiency.  

The output oriented measure of TE can be expressed as the ratio of observed output to 

the corresponding stochastic frontier output, a measure that takes a value between 0 and 1: 
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Reifschneider and Stevenson (1991), Huang and Liu (1994) and Battese and Coelli 

(1995) proposed stochastic frontier models in which the inefficiency effects (
iu ) are 

expressed as a linear function of explanatory variables reflecting farm socio-economic and 

demographic characteristics and a random error. Following Battese and Coelli (1995) we used 

the following TE effects model: 
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where Zmi
 are farm-specific variables associated with technical inefficiencies; 

0  and 
m  are 

parameters to be estimated; and 
i  is a random variable with zero mean and finite variance 

2

 , defined by the truncation of the normal distribution such that 0
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mean of 
iu , 
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

 
M

m mi

m

, is farm-specific and the variance components are assumed to 

be equal ( 2 2

u   ).  

Following Battese and Coelli (1995), we estimate the parameters of the model defined 

in equations (1) and (3) by maximum likelihood procedures. The log likelihood function and 

the derivation of TE estimates followed the approach used in Battese and Coelli (1995). The 

estimation was carried out using the parameterization by Battese and Corra (1977) who 

replace 2

v  and 2

u  with 2 2 2

u v     and 2 2 2/( )u u v     . The next section is devoted to 

present research results. 

 

2.3. Results 

 

2.3.1. Characteristics of farms and farmers  

 

Our analysis uses cross sectional, farm-level data collected from a sample of Catalan farms 

that specialize in grape growing. This research focuses on Catalonia because of the important 

role played by the Catalan vineyard sector within the Spanish organic agriculture and the 
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exponential growth that this sector has experienced since 1995. It is thus relevant to 

investigate the characteristics of this type of farming and compare them with the 

characteristics of the conventional sector. Data were collected by face-to-face questionnaires 

during the period from March to June 2008 in the major Catalan organic grape-growing areas. 

These areas were identified based on organic farming systems certification by the Official 

Certification Organism in Catalonia (Consell Català de la Producció Agrària Ecològica, 

CCPAE).  

Geographically, our sample farms are concentrated in three different Catalan 

provinces (Barcelona, Tarragona and Lleida). For each organic farm, at least three 

neighboring conventional farms were also selected. This neighboring criterion allows for two 

subsamples (organic and conventional) with an analogous composition (Tzouvelekas et al., 

2001; Madau, 2007). Our final sample consists of 26 organic farmers and 115 neighboring 

conventional farms. The following lines provide a description of sample farms both from an 

agronomic and economic perspective, as well as the demographic characteristics of sample 

farmers. Summary statistics for sample farm and farmer characteristics are presented in Table 

2.1. 

Based on a scale from 0 to 10, farmers were asked to grade soil quality and erosion. 

Although both groups have similar perceived soil quality and erosion, a large number of 

organic farms (53%) are located in a less favored area or in an area with specific difficulties 

that limit agricultural productivity (Council Regulation EC 1257/1999). In contrast, only a 

quarter of conventional farms are located in these areas. On average, organically farmed soil 

is steeper (9%) than conventionally farmed soil (3%). The difference in slope is statistically 

significant. Although both farm types strongly rely on rainfed agriculture, irrigation practices 

are relatively more important within the organic group (16% vs. 7%). 

Land use patterns do not differ greatly between organic and conventional farms. On 

average 64% of conventionally cultivated land is devoted to produce grapes. Arable crops are 

the second most common conventional crop (19%), followed by fruits (10%) and olive groves 

(9%). Organic farms devote, on average, 69% of their land to grape production, mainly at the 

expense of arable crops that now represent 11% of cultivated land. Many different cultivars, 

with different abilities to withstand climatic conditions and diseases, are used within organic 

and conventional farms. However, both farm types use a similar range of grape varieties. The 

most common varieties spread among all farmers are ‘Macabeu’ (69.50%), ‘Parellada’ 

(58.87%), ‘Ull de llebre’, (42.55%), ‘Xarello’ (37.59%), ‘Merlot’ (30.50%), ‘Cabernet’ 

(22.70%) and ‘Garnatxa’ (18.44%).  
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Contrary to conventional farms that have, on average, 45 ha of agricultural land, 

organic farms are mainly small holdings with only 19 ha. The land tenure status is similar 

between farm types, with owned land representing 46% (45%) of total organic (conventional) 

land. Farm output is defined as the quantity of grapes produced and expressed in physical 

units (kg). Conventional‎ farms’‎ total‎ output‎ averages‎ 120,364‎ kg,‎ which‎ is‎ twice‎ organic‎

farms’‎ total‎ output‎ (59,969‎ kg).‎ However,‎ organic‎ farms’‎ yields‎ are‎ only‎ 16%‎ lower‎ than‎

conventional‎farms’‎yields.‎The‎difference‎in‎total‎output‎and‎yields‎is‎statistically‎significant. 

The average price received by organic farms more than doubles the average 

conventional price, suggesting statistically significant organic price premiums. The proportion 

that‎agricultural‎revenue‎represents‎within‎total‎farmers’‎revenue,‎which‎measures‎the degree 

of diversification in income sources, is 68% (77%) for organic (conventional) farms. Hence, 

organic farmers have more diversified income sources. Subsidies (almost 70% of organic 

farms receive public subsidies) and price premiums compensate for the low yields and high 

costs‎ in‎ organic‎ farming,‎ leading‎ to‎ substantially‎ higher‎ incomes‎ on‎ a‎ per‎ hectare‎ basis:‎ €‎

4,004 vs. €‎2,670. 

Consistent with previous research, statistically significant differences regarding input 

use are found between the two groups: our organic sample farms are more labor intensive 

than conventional farms. Both types of farms strongly rely on unpaid family labor which 

represents 69% (73%) of total labor in organic (conventional) farms. On a per hectare basis, 

expenses in fertilizers and crop protection products are much higher in organic farms (381‎€‎

ha
-1

 vs. 294‎€‎ha
-1
).‎Total‎costs‎per‎hectare‎are‎€‎1,814‎(€‎1,509)‎for‎organic‎(conventional)‎

farms. Consistently with higher per hectare input costs borne by organic farms, this group 

uses 0.66 agricultural machines per hectare (machines include any farm equipment: tractors, 

manure spreaders, pre-pruning, cultivators, shredders, etc.), while conventional farms use 

0.50 machines. Organic farmers appear to have less access to bank loans than conventional 

counterparts. A 50% of the latter are able to get credit, while less than 30% of the former have 

access to bank loans. Farmers mainly use the loans for operation and investment.  

The‎difference‎between‎income‎and‎costs‎per‎hectare‎leads‎to‎profits‎per‎hectare‎of‎€‎

2,435‎for‎organic‎farms‎and‎€‎1,283‎for‎conventional‎ones.‎Hence,‎organic‎profits‎per‎hectare‎

almost double conventional profits. Regarding the marketing of agricultural output, both 

organic and conventional farms strongly rely on sales to processing companies and 

cooperatives. These sales represent around 71% and 73% of conventional and organic 

production sales, respectively. Conventional and organic farmers are members of different 

agricultural‎ associations‎ such‎as‎ cooperatives,‎ farmers’‎ associations‎ and‎ syndicates,‎ organic‎
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farming associations and protected designations of origin (PDOs). PDOs constitute the most 

attractive form of association: 68% and 60% of conventional and organic farmers 

respectively, engage with these organizations which increase the market outlets for their 

production. 

There is a predominance of 45 years old male farmers. While organic farmers have an 

average of 15 years of experience managing the farm, conventional farmers have typically 

been managing the farm for about 18 years. Primary and unfinished secondary education is 

the most common educational profile characterizing both organic and conventional farmers. 

The family size for both groups is similar and between 3 and 4 members. Organic and 

conventional farmers differ in terms of their preferences
2
, which helps to better understand 

production and adoption decisions. When it comes to production decisions, conventional 

farmers are more worried about farm economic performance (profit), whereas the organic 

group is more concerned about protecting the environment. 

 

2.3.2. Model specification and research results 

 

In order to study productivity and efficiency of our sample of organic and conventional 

Catalan grape farms, we specify our SFA as follows: 

 

       
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        X X X  (4) 

 

where the subscript 1,2,........,i N denotes the firm number and , 1,2,........,j k J  agricultural 

inputs. The dependent variable (
i

y ) represents grape production (in kg) by the i-th farm. 

Inputs included are: (
1

X ) total land devoted to grape, measured in hectares; (
2

X ) total labor 

(both hired and family labor), expressed in hours; (
3

X ) total amount of capital, measured as 

the number of machines used in the farm; and (
4

X ) the expenditure in fertilizers and crop 

protection‎products‎ (in‎€).
3
 

/c o
D  is a dummy variable that reflects the agronomic technique 

                                                 
2
 Farmers were asked to rate their preferences for economic profit and environmental preservation from 1 to 10 

(1 = not important, 10 = very important). The median of the responses is used to define a dummy variable for 

each type of preferences. The first dummy takes the value of 1 if the farmer rated the relevance of economic 

profit with the highest punctuation, i.e., 10 and zero otherwise, while the second dummy is one if the punctuation 

was above 8.  
3
 To keep the model size manageable and due to the limited number of observations available, most of the inputs 

considered are aggregate inputs. 
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(1=organic; 0=conventional). Summary statistics for the variables used in the analysis are 

presented in Table 2.2. 

The inefficiency model is specified as 
0

1

Z  


  
M

i m mi i

m

u , with 10M  . The 

selection of Zmi
 variables is based on previous literature, data available and our knowledge of 

the sector studied. Since previous research has widely shown that organic practices differ 

from conventional ones regarding efficiency ratings, (
1Z ) is defined as a dummy variable that 

reflects the agronomic technique (
/1 c o

DZ  ).‎ Farmers’‎ experience,‎ usually‎ included‎ in‎ TE‎

studies (either as age or years of experience), is considered as the number of years dedicated 

to agriculture (
2Z ). In line with Karagiannias et al. (2006) who shows that TE of both organic 

and conventional milk farms depends on specialization, the degree of specialization measured 

as the proportion of vineyard revenue to total agricultural revenue is reflected in (
3Z ). Madau 

(2007) advocates that farms located in less favored areas or in mountain areas have lower TE 

scores than the rest. A dummy variable that indicates whether the farm is located in a less 

favored area or not (
4Z ) is used. In line with Karagiannias et al. (2006) findings, debt is also 

considered through (
5Z ), defined as a dummy variable equal to 1 if the farmer has financial 

debt and zero otherwise. Tzouvelekas et al. (2002b) conclude that organic farming subsidies 

tend to negatively affect efficiency levels. A dummy variable equal to 1 if the farm receives 

subsidies and zero otherwise is thus included (
6Z ). Tzouvelekas et al. (2001) show that 

family-operated organic and conventional olive-growing farms tend to be less efficient than 

farms with strong dependence on hired labor. We thus define (
7Z ) as the proportion of family 

labor to total labor.‎ The‎ two‎ dummy‎ variables‎ described‎ above‎ that‎ reflect‎ farmers’‎

preferences for economic profit and for environmental preservation (
8Z and

9Z ) are also 

considered.‎Farmers’‎preferences‎have‎not‎been‎used‎by previous literature when explaining 

efficiency, which represents a contribution of our analysis. The proportion of owned land to 

total land (
10Z ) is also included as previous research has shown that the share of rented land is 

related to TE (Larsen and Foster, 2005). The model is estimated using Frontier 4.1 software 

(Coelli, 1996).  

A series of specification tests were carried out to ensure that the model specification 

correctly represents our sample farms (see Table 2.3). In being a parametric approach, SFA 

requires specification of the functional form representing the production technology. Since 

this form is unknown, we have selected a flexible functional form (a translog - see equation 
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(4)) and compared it against another more restrictive and parsimonious specification: the 

Cobb-Douglas. At the 5% level of significance, we reject the null hypothesis ( 0 : 0ijH   ), 

which suggests that the translog form is the suitable specification for our data. This implies 

that output elasticities and substitution elasticities depend on input levels. Further it also 

involves the relevance of input interactions when explaining production. The second test 

(
*

0 : 0jkH   ) indicates that the neutral stochastic frontier model (Huang and Liu, 1994) is the 

adequate representation, i.e., that input use does not interfere with the variables found to 

explain inefficiency. Concerning the nature of the inefficiency effects, we test whether these 

are stochastic or not. We reject the null hypothesis (
0 : 0H   ) implying that the technical 

inefficiency effects are stochastic and farmers are not fully technically efficient. The fourth 

test (
0 : 0mH    ) that aims to assess whether inefficiency effects are absent from the 

model or not, is also rejected. In addition, through the fifth test (
0 : 0mH   ), we study the 

influence of firm characteristics on TE levels. The null hypothesis is rejected, indicating that 

the variables included in the inefficiency‎ effects‎ equation‎ significantly‎ influence‎ farms’‎

efficiency.  

Another specification test carried out concerns geographically induced differences 

among farms. Differences among areas not only refer to rainfall but also to winter freeze and 

spring frost patterns, diseases brought during hot seasons, sunlight exposure, land quality and 

slope, crop varieties used in different regions, etc. In order to capture these geographical 

differences, a set dummies representing provinces is included. Since our sample farms are 

concentrated in three different provinces of Catalonia (namely, Barcelona, Tarragona and 

Lleida), two dummies, one representing Barcelona and the other for Tarragona are included 

and a likelihood-ratio test is used to determine whether the two dummies are statistically 

different from zero. Results show that we cannot reject the null hypothesis 

(
0 : ; 0Barcelona TarragonaH D D  ), which involves that the model without regional dummies in the 

production equation adequately fits our data. Results of the estimation of the stochastic 

frontier are reported in Table 2.4.  

Production function results are best interpreted by means of input elasticities. Contrary 

to the Cobb-Douglas functional form in which coefficients have a direct interpretation as 

input elasticities, deriving the marginal influence of inputs on output in a translog form is not 

straightforward. Input elasticities are computed for our translog model as follows: 

   ln / ln ln lnk k kk ki kj ji

j k

Y X X X  


     . Elasticities are computed at 
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the data means and their standard deviations derived using the delta method (Snedecor and 

Cochran, 1989) (Table 2.5).  

In conventional farming,  land has the highest elasticity estimate. Land is followed by 

fertilizers and crop protection products, capital and labor. In organic farming, the highest 

elasticity is achieved by fertilizer and crop protection inputs. Land area and capital display 

similar contribution to output increases, while labor presents the lowest contribution to 

organic grape output.  

The high elasticity of the expenditures in fertilizers and crop protection products in 

organic farming contrasts with the relatively low elasticity of the equivalent inputs in 

conventional production methods (0.69 vs. 0.22). This implies that grape output is more 

responsive to fertilizers and crop protection inputs in organic production than in conventional 

technology. Land area elasticity is higher in conventional farming, which is compatible with 

conventional yields being above organic ones. The elasticity of conventional grape output 

with respect to land is above one half, indicating that a 1% increase in agricultural land would 

lead to approximately a 0.56% increase in output. Given the restrictions faced by organic 

farmers to use chemical inputs, mechanical methods are likely to become relevant, which is 

reflected in the higher elasticity of capital in organic farms relative to conventional ones.
4
 

Regarding the average scale elasticity, organic farms exhibit increasing returns to scale while 

conventional farms operate under decreasing returns to scale. The small size of organic farms 

relative to conventional ones makes it especially beneficial to increase organic farm size and 

take advantage of economies of scale. The global productivity index proposed by Kumbhakar 

et al. (2009) suggests that conventional farms are, on average, 12% more productive than their 

organic counterparts. However, as will be seen below, the latter group of farms operates 

closer to their production frontier than the former. 

In Table 2.4, we observe that the estimate of   is close to one and highly significant, 

indicating that inefficiency effects explain most of residual variation. As noted above, ten 

explanatory variables are used as determinants of the inefficiency effects. Parameter estimates 

of the inefficiency effects model are shown in Table 2.4. Apart from adoption of organic 

practices, our results identify experience, family labor share in total labor, farm location and 

farmer environmental preferences as the variables that are more relevant in explaining 

technical inefficiencies. Our analysis reveals that holdings located in less-favored areas are 

                                                 
4
 While variable input use was collected distinguishing between grape and non-grape activities, capital was not. 

As a result, capital is not grape-specific. An alternative model weighting capital by the proportion of grape land 

on total land was estimated and results, available upon request, changed very little. 
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less efficient compared to the other farms.  As expected, farmers with more experience tend to 

reach higher efficiency scores. This implies that TE increases‎ with‎ farmer’s‎ skills‎ and‎

practice. Farms that rely on a higher proportion of unpaid labor are found to be less efficient. 

Farms, whose manager has strong environmental preservation preferences, tend to be less 

efficient. Our results also show that the level of farm debt, subsidies, degree of farm 

specialization, tenure regimes of land and the preferences regarding economic profit do not 

have a significant impact on efficiency ratings. The dummy variable that reflects the 

agronomic technique by identifying organic farms has a negative and statistically significant 

sign, indicating that inefficiency decreases with the organic technology.  

Technical efficiency scores for both farming methods are calculated as an output-

oriented measure and results are presented in Table 2.6 with decile ranges from the computed 

frequency distribution. The histogram and kernel distributions of efficiency are plotted in 

figure 2.1. The average TE score is 80% for organic farms and 64% for conventional ones. In 

other words, organic (conventional) farmers reach 80% (64%) of their maximum potential 

output. Moreover, these TEs range from a minimum of 17% (10%) to a maximum of 100% 

(100%) for organic (conventional) farmers, indicating a lower dispersion in organic farming. 

Almost 54% of organic farmers have efficiency ratings above 90%, whereas only 16% of 

conventional farmers show these high performance levels. Therefore, our results indicate that 

if organic (conventional) farms effectively used available resources and maintained current 

technology, they would be able to increase their output by 20% (36%) on average. Improving 

TE levels can reduce production costs and improve the economic viability of farms.  

 

2.4. Discussion and concluding remarks  

 

The present study aims to compare technical efficiency of organic and conventional grape 

farms in Catalonia. Consistent with previous studies looking at the performance of organic 

farming (Offerman and Nieberg, 2000; Oude Lansink et al., 2002; Oude Lansink and Jensma, 

2003), we find that organic farming is on average 90% more profitable, on a per hectare basis, 

than conventional farming. However, organic farms face higher production costs per hectare 

and require more labor than conventional farms. This finding is compatible with previous 

research on organic farming in Spain (Serra et al., 2008).  Organic farms also exhibit 

increasing returns to scale, while conventional farms operate under decreasing returns to 

scale, meaning that organic farms could become more profitable with larger operations. 
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However, in line with previous literature (Tzouvelekas et al., 2001), conventional farmers are 

found to be more worried about farm economic performance (profit), whereas the organic 

group is more concerned about protecting the environment. 

Our empirical findings suggest that organic farmers, on average, reach higher TE 

ratings than their conventional counterparts (80% and 64%, respectively). Our results differ 

from the findings by Bayramoglu and Gundogmus (2008), who assessed the efficiency of the 

Turkish‎ grape‎ sector,‎ and‎ are‎ consistent‎ with‎ Tzouvelekas‎ et‎ al.’s‎ results‎ (2002a),‎ who‎

focused on the Greek grape sector. Higher efficiency scores attained by organic farms should 

warrant their economic viability in the agricultural sector. Several reasons may explain the 

higher average level of TE observed in organic farming. The higher costs per hectare 

supported by organic farming are likely to motivate farmers to effectively use their inputs and 

improve their agricultural performance. As noted by Tzouvelekas et al. (2001), information 

on how to adequately apply organic farming techniques may be expected to improve 

production performance. In this regard, the EU and national regulations concerning organic 

farming may help organic farmers to be more efficient relative to their conventional 

counterparts. Moreover, attractive organic price premiums can also explain the higher efforts 

by organic farms to increase TE, given the high marginal income derived from production. 

An interesting finding is the high elasticity of the expenditures in fertilizers and crop 

protection products found in organic farming. Since organic farms cannot use non-authorized 

chemical fertilizers and pesticides, organic fertilizers and biological controls are important 

factors in organic grape production. Organic farms usually make a more rational and less 

arbitrary use of these inputs relative to conventional farms. A more restricted and well-

managed use of these inputs contributes to explain the higher elasticity that they display in 

organic farming.
5
 

The low elasticity of labor in both types of farms can be explained by the high share of 

family labor and the usual lack of qualified labor in this sector. Tzouvelekas et al. (2001, 

2002a) found that family-operated farms are less efficient than farms with stronger 

dependence on hired labor. Larsen and Foster (2005) also suggested that the share of hired 

labor has a positive effect on TE for both organic and conventional farms. Another study 

conducted by Lambarraa et al. (2007) concluded that a higher level of inefficiency may be 

associated to a higher proportion of unpaid labor. More recently, Serra and Goodwin (2009), 

                                                 
5
 The main difference between organic and conventional farms relies on the use of chemical inputs (mainly 

fertilizers and pesticides), which is controlled by different regulations. The legal framework of organic farming 

contributes to a rational use of these inputs. 
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found a negative labor elasticity characterizing the conventional technology indicating an 

overuse of this input. The authors associated this result to the relevance of unpaid family labor 

in their sample of farms. As we have seen in the descriptive analysis of sample farms, organic 

farms are much more labor-intensive (on a per unit of land) than conventional farms. In spite 

of this intensive use, labor elasticity is higher in organic than in conventional farming, which 

is compatible with organic methods being more labor demanding than conventional practices. 

Both types of farms (organic and conventional) suffer from relevant technical 

inefficiencies. As suggested by previous findings (Tzouvelekas et al., 2001; Madau, 2007), 

farms that are located in a less favored area tend to be less efficient. The finding is not 

surprising given the environmental and production constraints faced by the first group. A 

farmer who holds additional experience is more likely to have higher efficiency levels. This 

implies‎ that‎ TE‎ increases‎ with‎ farmer’s‎ skills‎ and‎ practice.‎ In‎ line‎ with‎ the‎ findings‎ of‎

Tzouvelekas et al. (2001), farms with a higher proportion of unpaid labor are found to be less 

efficient than farms with a stronger dependence on hired labor. Another interesting finding is 

adoption of organic practices can improve technical efficiency under which farmers are 

operating. However, organic farms show a lower productivity than conventional ones which is 

compatible with Oude Lansink et al. (2002) results. TE‎ can‎ be‎ affected‎ by‎ farmers’‎

preferences regarding the need to preserve the environment. Producers that place a higher 

value on preserving the environment through their production tend to be more inefficient.  

Organic subsidies usually compensate organic farmers for reduced yields and adoption 

costs. Though subsidies have been often criticized for making economic agents less 

responsive to changing market conditions and increasing inefficiencies, our results show no 

statistically significant effect of subsidies on efficiency. There are, however, a number of 

things that policy makers can do to improve efficiency in grape farming. First, better 

promoting extension services providing detailed information to farmers may be expected to 

improve production performance. Second, since family labor is found to generate 

inefficiencies, promoting a more professionalized management of agricultural holdings by 

decreasing non-specialized family labor in favor of a more specialized labor force may 

enhance the performance of organic farming.  

Improving TE allows for a reduction in production costs and increases 

competitiveness, which can help farmers face changing market conditions and economic 

hardships. Farm margins can be squeezed when market conditions change, consumers become 

more and more demanding and unwilling to pay higher price premiums, or middlemen in the 

marketing chain and retailers increase their marketing power. In this regard, improving TE 
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can help farmers endure times of economic distress. Increasing profit levels can be achieved 

by means of increased organic price premiums and subsidies, or alternatively, by means of 

reduced production costs. A strategy based on cost reduction is especially relevant in the 

organic sector.  
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                 Table 2.1. Sample‎farms’‎agronomic, economic and demographic characteristics 

Variable name  
Unit of 

measure 

Organic Conventional T-test of mean 

difference 

Significance level
2
 Average SD

1
 Average SD

1
 

Agronomic characteristics 

Total land ha 18.90 12.82 45.33 75.68 0.00* 

Proportion of land devoted to grape  % 68.48 28.49 63.48 30.43 0.43 

Proportion of land devoted to arable 

crops 
% 10.58 16.94 19.11 29.03 0.05* 

Proportion of land devoted to fruits  % 10.76 18.78 10.12 14.75 0.87 

Proportion of land devoted to olive 

groves 
% 10.18 15.33 8.61 11.93 0.63 

Total output kg 59,969.04 45,217.33 120,364.27 8,2454.49 0.00* 

Soil quality 
(0 low, 10 

high) 
6.71 1.47 6.38 1.44 0.31 

Erosion  
(0 low, 10 

high) 
3.23 1.96 3.67 1.94 0.31 

Soil slope % 8.93 9.41 3.13 3.05 0.03* 

Proportion of irrigated land % 15.62 30.26 7.15 19.78 0.18 

Farms in LFA
3
 

(1 yes, 0 

no) 
0.53  0.25  0.00** 

Economic, structural and other characteristics 

Output € 33,933.52 28,062.50 36,613.27 24,474.25 0.67 

Price €‎kg
-1

 0.75 0.58 0.33 0.19 0.00* 
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Table 2.1. Sample‎farms’‎agronomic,‎economic‎and‎demographic‎characteristics (continued) 

Variable name  
Unit of 

measure 

Organic Conventional T-test of mean 

difference 

Significance level Average SD
1
 Average SD

1
 

Share of agricultural income in total 

income 
% 68.65 27.66 77.32 24.10 0.15 

Share of output sold to processing 

companies and cooperatives 
% 73.08 42.51 70.70 42.82 0.80 

Proportion of owned land % 46.31 45.81 44.56 37.94 0.86 

Family labor share % 68.85 29.71 73.02 25.48 0.51 

Subsidy 
(1 yes, 0 

no) 
0.69  0.58  0.30 

Credit  
(1 yes, 0 

no) 
0.27  0.50  0.03** 

PDO
4
 association 

(1 yes, 0 

no) 
0.60  0.68  0.47 

Economic profit preferences 
(1=10, 0 

otherwise)  
0.46  0.54  0.47 

Environmental preservation 

preferences 

(1‎if‎≥8,‎0‎

otherwise) 
0.92  0.70  0.02** 

Demographic characteristics 

Age  year  43.31 13.78 44.56 10.66 0.67 

Years of experience year 15.42 9.90 18.16 11.63 0.23 

Family size 
number of 

person 
3.35 1.35 3.85 1.36 0.09 

Statistics on a per hectare basis  

Yield kg ha
-1

 6,848.31 3,261.73 8,173.19 3,177.51 0.02* 

Revenue €‎ha
-1

 4,004.43 2,478.48 2,670.09 1,971.22 0.00* 
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Table 2.1. Sample‎farms’‎agronomic,‎economic‎and‎demographic‎characteristics (continued) 

Variable name  
Unit of 

measure 

Organic Conventional T-test of mean 

difference 

Significance level Average SD
1
 Average SD

1
 

Total revenue (revenue from grape 

and other farm activities) 
€‎ha

-1
 4,232.73 2,314.79 2,791.54 1,985.31 0.00* 

Labor hours ha
-1

 458.93 240.41 285.76 303.34 0.00* 

Machinery N ha
-1

 0.66 0.53 0.49 0.71 0.18 

Other variable inputs (farming 

overheads and young vine plant 

expenditures) 

€‎ha
-1

 860.51 751.98 834.94 1822.24 0.91 

Fertilizers and crop protection €‎ha
-1

 380.92 579.56 294.12 399.34 0.48 

Total cost (specific grape production 

costs, farming overheads, labor 

costs) 

€‎ha
-1

 1,813.93 1,421.67 1,508.55 1,922.69 0.38 

Profit (total revenue minus total 

cost) 
€‎ha

-1
 2,435.07 2,293.04 1,282.99 2,805.43 0.04* 

1SD: standard deviation. 2 *,** indicate statistical significance at the 5%, and chi-square statistical significance at the 5%, respectively. 3LFA: less favored areas.  
4PDO: protected designations of Origin.  
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Table 2.2. Summary statistics for the variables used in the analysis 

Variable name  

 
Unit of 

measure 

Organic Conventional T-test of mean 

difference 

Significance level
2
 Average SD

1
 Average SD

1
 

Output y kg 59,969.04 45,217.33 120,364.27 8,2454.49 0.00* 

Grape land X1 ha 8.44 4.94 14.22 7.55 0.00* 

Labor X2 hours 3,084.52 1,109.65 2,891.92 1,461.70 0.46 

Capital X3 machines 4.38 2.45 4.77 2.21 0.47 

Fertilizers and crop protection X4 € 3,520.42 6,638.52 3,776.70 3,930.05 0.85 

Agronomic technique  Z1 
(1 organic, 

0 non-org.) 
0.18  0.82   

Experience  Z2 year  15.42 9.90 18.16 11.63 0.23 

Specialization  Z3 % 72.19 29.76 74.41 26.43 0.73 

Farms not in LFA
3
 Z4 

(1 yes, 0 

no) 
0.46  0.75  0.00** 

Credit  Z5 
(1 yes, 0 

no) 
0.27  0.50  0.03** 

Subsidy Z6 
(1 yes, 0 

no) 
0.69  0.58  0.30 

Family labor share Z7 % 68.85 29.71 73.02 25.48 0.51 

Economic profit preferences Z8 
(1=10, 0 

otherwise)  
0.46  0.54  0.47 

Environmental preservation 

preferences 
Z9 

(1‎if‎≥8,‎0‎

otherwise) 
0.92  0.70  0.02** 

Owned land share Z10 % 46.31 45.81 44.56 37.94 0.86 
1SD: standard deviation. 2 *,** indicate statistical significance at the 5%, and chi-square statistical significance at the 5%, respectively. 

3
LFA: less favored areas.  
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Table 2.3. Model specification tests 

Restrictions Model λ 2

0.95  Decision 

0 : 0ijH  
 

Cobb-Douglas 79.76 31.41 Reject  

*

0 : 0jkH  
 

Neutral Stochastic frontier 50.56 55.76 Accept  

0 : 0mH   
 

No inefficiency effects 31.44 20.41 Reject  

0 : 0H  
 

No stochastic factor 90.27 5.14 Reject  

0 : 0mH  
 

No firm- specific factors 39.90 19.67 Reject  

0 : ; 0Barcelona TarragonaH D D 

 

No regional dummies 2.00 5.99 Accept 
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Table 2.4.  Maximum likelihood estimates for the stochastic production frontier model  

Variable
1
 Parameter Estimate SE

2
 

Frontier production function 

Constant β0 0.524 0.021*** 

Constant
o
  β0

o
 -0.060 0.082 

Land area  β1 1.199 

 

0.033*** 

Labor  β2 0.080 0.043* 

Capital  β3 0.054 0.010*** 

Fertilizer and crop protection β4 -0.205 0.009*** 

Land area
o
  β1

o
 0.335 0.186* 

Labor
o
  β2

o
 -0.369 0.238 

Capital
o
 β3

o
 0.018 0.084 

Fertilizer and crop protection.
o
 β4

o
 -0.338 0.245 

(Land area) × (Land area) β11 -0.264 0.074*** 

(Labor) × (Labor) β22 -0.210 0.067*** 

(Capital) × (Capital) β33 -0.389 0.088*** 

(Fertilizer and crop protection) ×  

(Fertilizer and crop protection) 
β44 -0.133 0.022*** 

(Land area) × (Labor) β12 -0.236 0.084*** 

(Land area) × (Capital) β13 0.535 0.104*** 

(Land area) × (Fertilizer and crop 

protection) 
β14 0.191 0.031*** 

(Labor) × (Capital) β23 -0.066 0.042 

(Labor) × (Fertilizer and crop protection) β24 -0.018 0.099 

(Capital) × (Fertilizer and crop protection) β34 -0.224 0.031*** 

(Land area) × (Land area)
o
  β11

o
 0.628 0.189*** 

(Labor) × (Labor)
o
  β22

o
 2.027 1.776 

(Capital) × (Capital)
o
  β33

o
 -0.437 0.326 

(Fertilizer and crop protection)
 
× (Fertilizer 

and crop protection)
 o

 
 β44

o
 -0.474 0.211** 

(Land area) × (Labor)
o
  β12

o
 -1.334 0.685* 

(Land area)
 
× (Capital)

 o
  β13

o
 0.563 0.231** 

(Land area)
 
× (Fertilizer and crop 

protection)
 o

 
 β14

o
 -0.043 0.099 

(Labor)
 
× (Capital)

 o
  β23

o
 -0.126 0.525 

(Labor)
 
× (Fertilizer and crop protection)

 o
  β24

o
 0.684 0.304** 

(Capital)
 
× (Fertilizer and crop protection)

 o
  β34

o
 -0.586 0.251** 



 37 

Table 2.4. Maximum likelihood estimates for the stochastic production frontier model 

(continued)  

Variable Parameter Estimate SE
2
 

Inefficiency effects model 

Constant δ0 -0.523 0.941 

Dc/o δ1 -1.180 0.315*** 

Experience δ2 -0.020 0.010* 

Specialization δ3 -0.450 0.560 

Farm is not located in a less favored area δ4 -0.534 0.286* 

Credit δ5 0.035 0.248 

Subsidy δ6 0.402 0.297 

Family labor share δ7 0.961 0.513* 

Economic profit preferences δ8 0.007 0.260 

Environmental preservation preferences δ9 0.712 0.285*** 

Owned land δ10 -0.648 0.394 

2 2 2

v u   
 

2  0.590 0.107*** 

2 2

u  
 

  0.999 4E-08*** 

log likelihood function -24.607 
1 Superindex o represents the interaction of the variable with the organic farming dummy variable. 2  SE: standard error. ***, 

** and * indicate statistical significance at the 1%, 5% and 10% respectively. 
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Table 2.5. Production and scale elasticities 

Elasticities with respect to  
Conventional Organic 

Estimate SE
1
 Estimate SE

1
 

Land area 0.558   0.024*** 0.323 0.138** 

Labor 0.041   0.026 0.075 0.003*** 

Capital 0.165   0.017*** 0.323 0.024*** 

Fertilizer and crop protection 0.219 0.028*** 0.686 0.083*** 

Returns to scale 0.983 1.407 

Productivity differential 

(Kumbhakar et al., 2009) 
0.12 

   1 SE: standard error. *** indicates that the parameter is significant at the 1%. 



 39 

Table 2.6. Frequency distribution of technical efficiency (TE) for the conventional and 

organic farms 

TE: Range(%) Conventional (%) Organic (%) 

<20 2 1.74 1 3.85 

20-30 8 6.96 2 7.69 

30-40 11 9.57 0 0.00 

40-50 10 8.70 0 0.00 

50-60 18 15.65 2 7.69 

60-70 16 13.91 1 3.85 

70-80 21 18.26 5 19.23 

80-90 11 9.56 1 3.85 

90-100 18 15.65 14 53.84 

Sample size 115 100 26 100 

Mean 64.25 79.63 

 
SE

1
 22.64 

 

25.68 

 
Minimum  9.69 

 

17.36 

 
Maximum 99.99 

 

99.98 

 
1
SE: standard error 
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Figure 2.1. Histogram, normal and nonparametric densities of technical efficiency 
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Chapter 3  
 

Technical efficiency of Kansas arable crop farms: 

a local maximum likelihood approach
6
 

 

 

 
 

 

 

 

 

 

 

 

                                                 
6
 Publication information: Guesmi, B., Serra, T., Featherstone, A.M., 2012. Technical efficiency of Kansas 

arable crop farms: a local maximum likelihood approach. Agricultural Economics (first-round review). 
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3.1. Introduction 

 

Technical efficiency is a prerequisite for economic efficiency, which in turn ensures the 

economic viability and sustainability of a firm. Assessment of firms’‎ technical‎ efficiency‎

levels has drawn broad research interest. Such study is important for producers, as it assists 

rational‎input‎allocation‎to‎achieve‎desired‎output‎levels,‎which‎strengthens‎a‎firms’‎capacity‎

to face changing market conditions, increasing input costs and economic hardships. It is also 

relevant‎ for‎ policy‎ makers‎ interested‎ in‎ enhancing‎ firms’‎ economic‎ performance‎ and‎

competitiveness, and promoting economic development.  

As is well known, the analysis of technical efficiency assesses to what extent firms are 

able to maximize their output levels with minimum use of inputs. Two main approaches have 

been widely used in the efficiency literature namely, parametric (Stochastic Frontier Analysis 

- SFA) and nonparametric approaches (Data Envelopment Analysis - DEA) (Tzouvelekas et 

al., 2001, 2002; Oude Lansink et al., 2002; Sipiläinen and Oude Lansink, 2005; Lohr and 

Park, 2006). While both encompass several advantages, they are also characterized by a 

number shortcomings. An important difference between these two approaches lies on the fact 

that the stochastic production frontier (SPF) allows for the stochastic component of 

production. This makes SFA suited to assess performance of production processes involving 

random variables. Most agricultural technologies are stochastic in nature, due to unexpected 

production changes resulting from weather influences and other factors that are not under the 

farm control. Also, agricultural production studies may be affected by measurement and 

variable omission errors, further emphasizing the relevance of stochastic approaches (Coelli, 

1995; Chakraborty et al., 2002; Oude Lansink et al., 2002). The SFA further facilitates 

inference, as it permits to conduct conventional statistical tests of hypotheses. However, this 

approach presents important drawbacks: it relies on the assumption of a parametric functional 

form representing the production frontier, as well as on a distributional assumption for the 

random noise and inefficiency error components. Several studies show that technical 

efficiency results are sensitive to estimation methods and functional form specifications 

(Ferrier and Lovell, 1990; Coelli and Perelman, 1999; Ruggiero and Vitaliano, 1999; 

Chakraborty et al., 2001). Inadequate parametric representations of the frontier and the error 

distributions can lead to biased efficiency estimates (Kumbhakar et al., 2007; Martins-Filho 

and Yao 2007; Serra and Goodwin, 2009).  

Nonparametric DEA techniques overcome the most relevant limitations of SFA: they 

do not rely on specific functional forms. However, nonparametric approaches do not allow for 
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stochastic variables and measurement errors, which precludes separating inefficiency effects 

from random noise or random shocks, i.e., all production shortfalls are attributed to the 

inefficiency term. As a result, technical efficiency ratings obtained from the nonparametric 

approach (DEA) are generally lower than those obtained under the parametric alternative 

(SFA) (Sharma et al., 1999; Puig-Junoy and Argiles, 2000; Wadud and White, 2000). Both 

methods however have been found to lead to similar rankings of technical performance of 

decision making units (DMUs).   

Recently, a new methodological approach based on local modeling methods has been 

developed (Kumbhakar et al., 2007) to overcome the limitations of parametric and non-

parametric approaches, without foregoing their advantages. In contrast to parametric models, 

this method does not require strong assumptions regarding the deterministic and stochastic 

components of the frontier: the parameters characterizing both production and error 

distribution are allowed to depend on the covariates through a process of localization. As 

opposed to nonparametric approaches, local modeling methods allow for stochastic variables 

and variable measurement errors when estimating technical efficiency scores. Furthermore, 

these techniques accommodate the heterogeneity in the data by deriving observation-specific 

variances of the inefficiency and noise components of the error term (Serra and Goodwin, 

2009). The local modeling approach by Kumbhakar et al. (2007) is based on local maximum 

likelihood (LML) principles (Fan and Gijbels, 1996).  

In spite of the interesting features of this approach, the complexity of implementing 

the method has limited its use to a few empirical studies.
7
 The work by Serra and Goodwin 

(2009) constitutes a notable exception. The present study focuses on estimating technical 

efficiency ratings of a sample of cereals, oilseeds and protein crop (COP) farms in Kansas 

using flexible LML methods that are compared with the results of DEA and SFA techniques. 

Our article contributes to the scarce literature on the use of local modeling techniques to 

assess technical efficiency. While the existing literature on technical efficiency has broadly 

compared parametric (SFA) and nonparametric (DEA) approaches, to date, there is no study 

that compares technical efficiency scores under DEA, SFA and LML. In addition, ours 

constitutes the first study that assesses the efficiency of Kansas arable crop farms using local 

modeling approaches (Rowland et al., 1998; Cotton et al., 1999; Serra et al., 2008). The 

relevance of Kansas as a leading US producer of arable crops makes the analysis especially 

interesting. In 2010, Kansas generated almost 20% and 50% of total wheat and sorghum 

                                                 
7
 The software code to estimate the model is available upon request. 
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produced in the US, respectively. Kansas is also a leading corn and soybean producer, with 

around 5% of the global US production. The relevant role of Kansas in US arable crop 

production justifies our decision to study technical efficiency of Kansas arable crop farms. 

The paper is organized as follows. In the next section we describe the methodology 

used in our empirical analysis. The third section presents the data and results from the 

empirical implementation. We finish the paper with concluding remarks. 

 

3.2. Methodology 

 

Several approaches have been used in the literature to assess firm-level performance. SFA and 

the DEA constitute two mainstream techniques that have their intrinsic drawbacks and 

advantages. One attractive advantage of the nonparametric DEA is that it does not require an 

aprioristic specification of the frontier functional form and error distribution. However, DEA 

methods ignore the stochastic component of production that may arise from unobserved 

heterogeneity and measurement errors. This may lead to biased and misleading technical 

efficiency measures. While this problem is addressed by the SFA, the major drawback of the 

latter is that it relies on strong assumptions regarding specification of the production frontier 

and the error distribution. The parametric approach is thus likely to be influenced by 

misspecification issues and yield biased efficiency estimates. These shortcomings have been 

widely discussed in the technical efficiency literature and several methodological 

improvements have been proposed.  

The nonparametric techniques by Cazals et al. (2002), Aragon et al. (2005), or Daouia 

and Simar (2007)‎ are‎ robust‎ to‎ outliers,‎ but‎ still‎ rely‎ on‎ the‎ so‎ called‎ “deterministic”‎

assumption intrinsic of DEA (Kuosmanen et al., 2009). Kuosmanen (2006) proposed another 

approach namely Stochastic Nonparametric Envelopment of Data (StoNED) which allows 

combining stochastic frontier and a deterministic, nonparametric approach. However, this 

method still requires a priori assumptions on inefficiency and noise distribution. The same 

limitation can be attributed to Fan et al. (1996), who proposed a semiparametric method based 

on a two-step pseudo-likelihood estimator. An alternative technique recently proposed by 

Kumbhakar et al. (2007) overcomes the limitations of SFA and DEA, without foregoing their 

advantages. Based on the LML principle proposed by Fan and Gijbels (1996), this new 

approach localizes the parameters of the stochastic and the deterministic components of the 

frontier model (flexibilized) with respect to the covariates.  
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Since our analysis is based on a large number of Kansas farms over a broad 

geographic region with different climatic conditions, heterogeneity is likely to characterize 

the sample (different farm sizes, uneven skills, etc). The LML approach is suited to deal with 

heteroscedasticity in both noise and inefficiency, as it localizes the standard errors 

characterizing the distribution of efficiency and noise components of the error term. Based on 

this approach, we seek to assess the technical efficiency with which COP Kansas farms 

operate and compare efficiency ratings with scores derived from the DEA and SFA 

alternatives. In the following lines, a description of the theoretical framework of the LML 

stochastic frontier is presented.  

The stochastic frontier models proposed by Aigner et al. (1977) and Meeusen and Van 

den Broeck (1977) can be specified as follows 
0

T

i i i iY X u v     , where 
iY  and 

iX  are 

independent and identically distributed random variables. 
iY  represents output produced by 

firm 1,...,i N  and the vector representing input use is d

iX  . The betas are unknown 

parameters. As usual, the stochastic frontier has a composite error term,  i iu v , where 

0iu   is the inefficiency term and 
iv  is the random noise term. The parametric estimation of 

stochastic frontier models requires definition of the joint probability density function (pdf) of 

 ,Y X , which is decomposed into a marginal pdf for ,X  = ( )pdf x p x and a conditional pdf 

for Y given x ,     | ,pdf y x g y x , where   kx   is the localized vector of parameters 

to be estimated, and g  is a function assumed to be known. 

The LML is built upon the anchorage parametric model proposed by Aigner et al. 

(1977). The conditional pdf for Y given X x  is defined as:  Y r X u v   .  Following 

Kumbhakar et al. (2007), the inefficiency term u  is assumed to follow a half normal 

distribution    2| 0, uu X x N x , the error term v  is assumed to have a normal 

distribution (   2| 0, vv X x N x ) and u  and v  are assumed to be independently 

distributed, conditional on X . The local polynomial approximation is used to estimate the 

three dimensional local parameter vector         2 2, ,
T

u vx r x x x   . The conditional log-

likelihood function is written as     
1
log ,

N

i ii
L g Y X 


  and can be locally approximated 

using an mth order local polynomial fit:  
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        0 1 0 1

1

, ,..., log , ...
N

m

N m i i m i H i

i

L g Y X x X x K X x     


         (1) 

 

where x  represents a fixed interior point in the support of the pdf  p x ,  1,...,
T

j j jk   for 

0,1,...,j m , and    
1 1

HK u H K H u
  , being K  a multivariate kernel function and H  a 

positive definite and symmetric bandwidth matrix. The local polynomial estimator  ˆ x is 

given by    0
ˆ ˆx x  where  

 

      
0

0 0 1
,...,

ˆ ˆ,..., arg max , ,...,
m

m N mx x L
 

      (2) 

 

The LML estimator can be derived using a local linear fit (Kumbhakar et al., 2007). 

To do so, the random noise and inefficiency components are assumed to follow a local normal 

and a half normal distribution, respectively. The conditional pdf of v u    is specified as: 

 

 
   

 

 
2

|
x

f X x
x x x


  

  

   
         

   
, (3) 

 

where      2 2 2

u vx x x    ,      u vx x x   and  . and  . represent the 

probability and the cumulative distribution functions of a standard normal variable, 

respectively. The local linear parameter is given by         2, ,
T

x r x x x   and the 

conditional pdf of Y given X  is expressed as: 

 

  
 

 

 
  

 

 
2

;
y r x x

g y x y r x
x x x


 

  

   
         

   
 (4) 

 

Therefore, the approximation of the conditional local log-likelihood function is specified as: 

 

   
  
 

  
 

 

2

2

2 2
1

1 1
log log

2 2

N
i i i

i i i

i i i

Y r X X
L X Y r X

X X


 

 

 
       
 
 

  (5) 
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In the present study, a local linear model for the frontier  ir x  and a local constant model for 

the parameters of the error term is used that allows rewriting expression (5) as: 

 

 
  

    

2

0 12 0
0 1 0 0 12 2

1 0 0

1 1
, log log  

2 2

T
N

i i T

N i i H i

i

Y r r X x
L Y r r X x K X x


 

 

    
            

  
  


 

(6) 

 

where  2

0 0 0 0, ,
T

r   and 
1 1

Tr  . The local linear estimator of the model is given by 0̂ : 

 

      
0 1

0 1 0 1
,

ˆ ˆ,..., arg max ,Nx x L


 


   . (7) 

 

The local likelihood function (6) does not differ substantially from the conventional 

likelihood function used in SFA (8). Observations in the former are weighted using the 

multivariate kernel function (
HK ). 

 

2 2 0
0 2 2

1 10 0

1 1
 log log

2 2  

 
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 
 

N N
i

i

i i

Ln L
 

 
 

                                                  (8) 

 

The choice of the order of the local polynomial being fit may affect the quality and robustness 

of the estimation. There exists a trade-off between bias and variance. While higher order fits 

may be used with the purpose of reducing bias, variance in estimates may increase which may 

lead to numerical instability. This is not optimal in the sense of minimizing the kernel 

function, promoting the efficiency of the estimates and selecting the true bandwidth 

(Cleveland and Loader, 1996; Hengartner et al., 2002; De Brabanter et al., 2013). Further, as 

explained by Fan and Gijbels (1996), since the modeling bias is primarily controlled by the 

bandwidth, the order of the local polynomial is less crucial. As a result, Fan and Gijbels 

(1996) recommend the use of the lowest odd order polynomial determined as 1 p  , 

where   represents the order of the derivative required, or occasionally 3 p  . Hall and 

Racine (2013) and Fan and Gijbels (1996) consider local linear regressions as one of the best 

bias correction methods, specially in the boundary areas. Furthermore, several authors prefer 
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to choose a polynomial of order 1p  for computational ease considerations (Cleveland, 

1979; Heij et al., 2004; Wu and Zhang, 2006; Hassouneh et al., 2012).  

As noted above, LML allows deriving observation-specific estimates taking into 

account the heterogeneity in inefficiency and noise terms. Following Jondrow et al. (1982), 

the efficiency measure for a particular point can be obtained from the following expression: 

 

   

 
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i
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X X XX X X X
u

XX X X X

      

   

 
  
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 

                                     (9)  

 

where    0
ˆ ˆ

i i iX Y r X   . In the case of variables measured in logs, the efficiency score is 

given by    ˆ ˆexp 0,1i ieff u   . Since LML allows deriving local parameter estimates based 

on‎ kernel‎ regression,‎ each‎ farm’s‎ reference‎ set‎ is‎ more‎ homogeneous‎ relative‎ to‎ other‎

alternative efficiency-measurement techniques, which is likely to lead to higher efficiency 

levels.  

Finding a solution to the maximization problem in (7) requires specifying starting 

values. To do so, we follow Kumbhakar et al. (2007) and start with the local linear least 

squares estimator of  0̂r x  and  1̂r x and the SFA estimators of 2̂  and  . The local 

intercept   0̂r x
 
is corrected for the moment condition along the lines of the parametric 

Modified Ordinary Least Squares (MOLS) estimator. Kumbhakar et al. (2007) recommend 

using the following expression for such purpose     2

0 0
ˆ ˆ ˆ2MOLS

ur x r x    , 

where  2 2 2 2ˆ ˆˆ ˆ 1 .u      Hence, initial values for solving (7) are obtained from 

 2

0 0
ˆˆ ˆ, ,

T
MOLSr  

 
and  1 1̂

T
r x  . 

The product kernel chosen is   1

1

dd

jj
h K h x 


 , where  .K  represents the 

Epanechnikov Kernel and d  represents the number of covariates. Fan (1993) suggested that 

using the Epanechnikov Kernel maximizes estimated efficiency. The bandwidth is adjusted 

for different variable scales and sample sizes and is defined as: 1 5

base xh h s N  ; where xs  

represents the vector of empirical standard deviations of the covariates and N  represents the 

number of observations. The choice of the optimal value for baseh is based on the cross 
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validation criterion (CV) proposed by Kumbhakar et al. (2007). The CV, for a given value 

of
baseh , is computed by minimizing the following expression: 

 

         
2

0

1

1
ˆ

N
i i

base i i

i

CV h Y r x u
N 

   
   ,                                                                               (10) 

 

where 
 

0̂

i
r  and 

 i
iu  are the leave-one-out versions of the local linear estimators defined above. 

The cross-validation procedure, which involves estimating the model several times, leaving 

one unit out at a time, allows controlling for the unobserved characteristics of observations 

which in turn ensures the efficiency of estimates (Beck, 2001).   

 As‎ noted‎ above,‎ apart‎ from‎Kumbakar‎ et‎ al.’s‎ (2007)‎ LML‎ proposal,‎ efficiency‎ of‎

Kansas farms is also assessed by DEA and SFA approaches. The random parameter approach 

is used to derive SFA estimates. Following Greene (2002), the simulated log-likelihood 

function assuming normal and half normal distributions can be defined as: 
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     (11) 

 

where r represents the number of replications and t indicates time period. The DEA linear 

programming model can be expressed as (Färe et al., 1994): 
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 (12) 

 

where 1   , N  is the number of farms, X  is a d N  matrix of inputs, Y  is a 1 N  

matrix of outputs. Technical efficiency scores are given by 1  . The constraint 1 1N    is 

included to allow for variable returns to scale (VRS). As is well known, without such 

constraint, constant returns to scale (CRS) are assumed (Charnes et al., 1994). To test for 
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divergence between the efficiency distributions obtained from LML, SFA and DEA methods, 

the standard Kolmogorov-Smirnov (KS) two-sample (two-tail) test statistic is conducted:  

 

max ( , ) ( , )a bD F x N F x N                                                                                                 (13) 

 

where ( , )aF x N  represents the empirical distribution function for a sample a  with total 

observations N . 

 

3.3. Data and results 

 

3.3.1. Data 

 

The empirical application focuses on a sample of Kansas farms that specialize in the 

production of COP crops. Farm-level data are obtained from farm account records from the 

Kansas Farm Management Association (KFMA) dataset and cover the period 2000-2010. 

Data available include farm production and input use, financial and socio-economic 

characteristics, as well as farm structural characteristics. To ensure that COP is the main farm 

output, farms whose COP sales represent at least 90% of total farm income were selected. 

This criterion allows obtaining a relatively homogeneous sample of farms. The dataset is an 

unbalanced panel that contains 1,258 observations.  

We define farm output (
iy ) as an implicit quantity index that is computed as the ratio 

of production in currency units to the output price index. Since information on market prices 

is unavailable at the farm-level, a Paasche price index is built on the basis of state-level cash 

unit prices and production data. Output iy  includes the predominant crops in Kansas 

(Albright, 2002): wheat, corn, soybean and sorghum. The inputs considered as explanatory 

variables are COP land (
1x ) measured in acres, total labor input (

2x ), mainly composed of 

family labor, and expressed in annual working units (AWUs), as a fraction of 10-hours per 

day, chemical inputs ( 3x ), other inputs ( 4x ) and capital ( 5x ). Chemical inputs are defined as 

a quantity index that includes the use of fertilizers and pesticides, and is obtained by dividing 

input expenditures by its corresponding price index. Other inputs, also defined as a quantity 

index, include fuel and seed expenses. Capital input ( 5x ) aggregates the value of machinery, 

other equipment and buildings used in the production process, and is determined by dividing 
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capital value by its corresponding price index. Input prices are measured using national input 

price indices. Monetary values are measured at constant 2000 prices. Data unavailable from 

the Kansas database include country-level input price indices and state-level output prices and 

quantities and are obtained from the United States Department of Agriculture (USDA) and the 

National Agricultural Statistics Service (NASS).   

Table 3.1 provides summary statistics for the variables used in the analysis. Sample 

farms use, on average, 293 AWUs, of which 82% represents unpaid family labor. In contrast 

to the European Union (EU) arable crop farms that are mainly small holdings with around 116 

acres (Farm Accountancy Data Network, FADN 2012), Kansas farms devote 1,278 acres on 

average to COP production. More than 80% of the COP area is allocated to wheat, soybeans, 

sorghum and corn production. The average value of farm production (around 154 thousand 

dollars) almost doubles the EU value (about 84 thousand dollars). However, per acre statistics 

suggest that EU farms are much more intensive than Kansas farms: while EU farms have an 

average‎income‎of‎441‎dollars‎per‎acre,‎Kansas‎income‎is‎122‎dollars‎per‎acre.‎Sample‎farms’‎

investments in machinery and buildings are on the order of 163 thousand dollars. On per acre 

basis, Kansas farms are less intensive in capital use (150 dollars per acre) relative to the EU 

farms with investment ratios on the order of 1,666 dollars per acre (FADN, 2012). To ensure 

immunity against pests and diseases and to avoid productivity loss due to pest infestations, 

Kansas farmers spend around 38 thousand dollars annually on chemical inputs. On a per acre 

basis, expenses in fertilizers and crop protection products are much higher in EU farms (178 

dollars per acre versus 29 dollars per acre). Expenses in other inputs, seeds and energy is 

rather low compared to chemical input costs, and on the order of 24 thousand dollars. 

 

3.3.2. Empirical results 

 

Using the aforementioned variables and following Kumbhakar et al. (2007), we specify the 

anchorage parametric model as a Cobb-Douglas function: 

 

5

1

0 loglog


   j j

j

XY u v                                                                                                  (14) 

 

It is relevant to note that rigidities associated to this production frontier are overcome by 

estimating the frontier for each observation in the sample, i.e., flexibility is achieved through 

varying parameter estimates. To select the bandwidth required to derive the LML estimator of 
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(14), we use the CV procedure described above. It is worth noting that with multiplicative 

multivariate kernels, an observation i  will only be considered in the LML estimation if all 

covariates 
ix  fall into the interval  , )i i i ix h x h  ; where 

1 5

ii base xh h s N  . If even one of the 

components fails to fall into this interval, the observation will not be considered for the 

estimation. Such procedure requires relatively large values for 
baseh in order to have a 

sufficiently large subsample of observations to locally estimate the stochastic production 

frontier.
8
 The more important the sample heterogeneity is, the bigger the required bandwidth. 

We start with a crude grid of values to then focus on a finer grid for the selection of the 

optimal 
baseh  according to (10). Final results show that at the optimal 11baseh  , the 

bandwidths 
1h , 

2h , 
3h , 

4h and 
5h take values of 2.38, 2.34, 3.37, 3.47 and 2.86, respectively. 

The number of observations at each data point is, on average, is 1,041. The distribution of the 

number of observations at each data point is presented in figure 3.1 below. Once we select the 

adequate bandwidth for our data, we then derive local parameter estimates.
 9

 

 Descriptive statistics for the variation of local estimates of 2

u and 2

v are shown in 

table 3.2. These statistics confirm the presence of heteroscedasticity and indicate an important 

degree of variation among observations regarding the shares of the inefficiency term to the 

noise term ( 2 2/u v   ).  Figure 3.2 illustrates the variation of the parameters of the 

deterministic component of the frontier. Since we use a Cobb–Douglas functional form, 

coefficients represent input elasticities. Variation of the localized estimates suggests that 

assuming the same input elasticities for all observations may not be reliable. Variation is 

specially relevant for land, with an elasticity that ranges from 19% to 43%, followed by 

chemical inputs, labor and capital, that have an elasticity fluctuating from 26% to 42%, 2% to 

14% and 21% to 33%, respectively. Input elasticities indicate that the average farm operates 

under constant returns to scale with a mean scale elasticity equal to 1.005 and a standard 

deviation of 0.089.  

                                                 
8
 A minimum of 9 observations is required and this was imposed. 

9
 The monotonicity condition of production functions implies that production should monotonically increase in 

all inputs, and is certainly an important concept in efficiency analyses (Henningsen and Henning, 2009). While 

DEA implicitly imposes monotoncity, we impose it in SFA and LML techniques. Technical efficiency 

measurement generally assumes that producers maximize output given input quantities, but not that producers 

maximize their profit. Thus, in contrast to monotonicity, there is not necessarily a technical motivation for a 

production function to be quasi-concave (Henningsen and Henning, 2009). 
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Production elasticity estimates show, on average, that chemical input use has the 

highest potential to increase output, followed by land, capital, other inputs and labor (table 

3.3). The low contribution of labor to farm production increases can be attributed to the high 

share of family labor. Since this labor type usually involves an opportunity cost but not an 

actual cost, incentives to use it efficiently may be weaker than for other inputs. The fact that 

capital, land and other inputs have lower elasticities than chemicals suggests that the latter are 

used less intensively. Input cost shares can be used as a reference for estimated elasticities. 

Under perfect competition and constant returns to scale assumptions, output elasticity with 

respect to input should equal the input cost share (Shumway and Talpaz, 1980; Krishnapillai 

and Thompson, 2012). Table 3.3 shows that there is no substantial difference between shares 

and elasticities, which provides supporting evidence of the reasonability of our findings, i.e., 

our empirical findings suggest that Kansas farms are likely to be operating under perfect 

competition and constant returns to scale.  

Small differences between estimated output production elasticities of inputs and 

observed factor shares can be attributed to production spillovers, excess returns, omitted 

variables, or measurement errors (Stiroh, 2002). Average estimated elasticities of chemical 

inputs (0.293), other inputs (0.199) and labor (0.048) are slightly below average factor shares 

(0.334, 0.241, 0.053, respectively). In contrast, land area and capital input elasticities are 

higher than factor shares (0.248 and 0.217 vs. 0.173 and 0.197, respectively). This suggests 

that land and capital productivity outweighs marginal costs and that these two inputs are 

under-used.  

Table 3.4 illustrates the distribution of LML efficiency estimates. The same table also 

presents the distribution under the alternative DEA and SFA approaches. A translog 

production function
10

 is defined as the anchorage model for SFA (equation 15), which is 

estimated using the random parameter technique. 

 

5 5 5

1

2

1 1 1

0log log log log
  

     j j jk j k

j j k

Y X X X u v                                                  (15) 

 

Localized technical efficiency estimates show a high average score, on the order of 0.905, 

indicating that farmers reach about 91% of their maximum potential output. Therefore, our 

                                                 
10

 To economize space, parameter estimates of the translog are not presented. However, results are available 

upon request. 
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sample farms could increase their output by a further 9% by simply using their inputs more 

efficiently, without incurring extra input costs or adopting new technologies. In the presence 

of inefficiencies, the use of existing technologies is more cost effective as a means to improve 

output than adopting new technologies (Shapiro, 1977; Belbase and Grabowski, 1985).   

Average DEA-CRS efficiency scores (0.808) are lower than LML ratings. Under VRS, 

however, efficiency evaluations are much closer to LML results (0.917).
11

 Average SFA 

technical efficiency scores (0.804) are also below LML scores. At the 5% level of 

significance,‎the‎KS‎test‎indicates‎that‎DEA‎and‎SFA‎score‎distributions‎differ‎from‎LML’s‎

(table 3.5). Given the fact that LML overcomes the most relevant limitations of DEA and 

SFA methods, its robustness should be higher.
12

 Reliable information about farm efficiency 

performance is relevant to identify inefficient farms and define adequate policy and 

management strategies. Defining these strategies based on DEA or SFA estimates, may lead 

to targeting the wrong farms, while overlooking inefficient farms that need to improve their  

performance levels. As shown in table 3.4, more than a half and 40% of Kansas farms are 

assigned efficiency scores below 80% when using DEA-CRS and SFA estimates, 

respectively, while only 6% of total observations exhibit this performance under LML. 

Hence, both DEA-CRS and SFA approaches are likely to overestimate inefficiency.  

In the following lines, we compare the results derived in our analysis with findings by 

previous research. Following Balcombe et al. (2006), the purpose of this comparison is to 

check the confidence and robustness of our findings, i.e., whether they concur or not with 

other results derived from different methods and whether they are or not within the range of 

existing estimates in the literature. Our results differ from those in Serra et al. (2008) who 

used the same database, but focused on the period 1998-2001.‎ Through‎ Kumbhakar’s‎

stochastic frontier model (2002), Serra et al. (2008) obtained mean technical inefficiency 

levels‎ of‎ 0.30,‎ versus‎ 0.09‎ in‎ our‎ analysis.‎ The‎ use‎ of‎ different‎methodologies‎ or‎ farmers’‎

performance improvement over time can explain differences in efficiency scores across 

studies. However, our results are closer to other findings by Rowland et al. (1998) for a 

sample of Kansas swine operations from 1992 through 1994, or Cotton et al. (1999), for a 

sample of multi-output Kansas farms during the period 1985 to 1994. Both authors used 

                                                 
11

 DEA results suggest that Kansas farms do not operate at optimal scale. 

12
 Robustness assessment requires simulation exercises. Kumbhakar et al. (2007) show how LML outperforms 

parametric frontier methods in a number of situations and conclude that LML should always be preferred to 

traditional MLE techniques with anchorage models. Formal comparison (robustness assessment) between DEA 

and LML has not been conducted, which offers scope for future research.  
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nonparametric DEA techniques to derive efficiency estimates and obtained mean efficiency 

scores of 0.89 and 0.91, respectively.  

Under the LML approach, technical efficiencies range from a minimum of 0.095 to a 

maximum of one, indicating important dispersion and heterogeneity within Kansas farms. 

Using LML technical efficiency levels to identify cluster membership, cluster analysis 

classifies Kansas farms into three distinct groups. In order to characterize the groups, 

differences in farm and farmer characteristics across clusters are assessed using anova and 

cross tabulation analyses, depending on the quantitative or categorical nature of the data. 

These characteristics include farm size (categorically defined through three dummy variables 

representing farms that cultivate less than 500 acres, between 500 and 1000 acres, and more 

than 1000 acres); proportion of irrigated land (share of irrigated land to total land); rented 

land share (proportion of rented land to total land); unpaid labor share (proportion of family 

labor to total labor); farm output (defined as a quantity index as explained above) and yields; 

farm manager age; education expenses; public subsidies and non-agricultural income 

measured in dollars. Results of this analysis are presented in table 3.6. On average, the first, 

second and third groups have an efficiency level of 0.78, 0.88 and 0.96, respectively.  

Anova and cross tabulation analysis results (table 3.6) show that increased farm size, 

measured as the extension of cultivated land, brings higher efficiency, which is compatible 

with the presence of increasing returns to scale in small farms. Farm size differences across 

efficiency groups are statistically significant and lead to different output indices and yields. 

Efficiency is further positively related to output and yields, being differences across groups 

statistically significant. 

Although all farm types strongly rely on rainfed agriculture, irrigation practices are 

relatively more important among medium and high efficiency groups. While all three farm 

types mainly use unpaid family labor, a higher relevance of family labor is associated to 

poorer performance. Hence, it seems that actual costs of paid labor exert a positive influence 

on farm performance, relative to the opportunity costs of unpaid workforce. Along the same 

lines, those farms with better efficiency levels are the ones that can afford higher land rental 

costs.  

Farmers with higher education expenses tend to be more efficient. However, the 

difference across groups is not statistically significant. An interesting finding is that younger 

farmers are likely to be more technically efficient. Subsidies received from government differ 

across clusters and have a positive relationship with efficiency, which may be due to the fact 

that subsidies are paid based on farm size. Non-agricultural activities show a significant 
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negative relationship with efficiency, suggesting that farmers who diversify their income 

sources by conducting off-farm activities tend to be less efficient.  

Improving efficiency performance may require actions at the farm, policy and 

academic levels. Academically, further research could be conducted so as to identify 

additional inefficiency causes, as well as their marginal impact on efficiency. Those elements 

with higher marginal impacts on efficiency should be the ones receiving further attention by 

farm managers and policy makers. Refined methods including risk and risk attitudes may 

allow more accurate efficiency estimates. We find evidence that higher education and 

professionalized labor force may lead to higher efficiency. As a result, any action aimed at 

promoting high-quality‎and‎skilled‎work‎is‎likely‎to‎increase‎farms’‎economic‎sustainability.‎

At the policy level this could be achieved through information campaigns and extension 

services. Similar results should be obtained through skilled labor force development 

initiatives adopted by the farm manager (education and training actions). Efficiency is also 

positively‎ related‎ to‎ a‎ farm’s‎ size.‎ Increased‎ farm‎ size‎ may‎ be‎ pursued‎ through land 

acquisitions and rental. To the extent that land market rigidities are relevant, land rental may 

offer a flexible alternative that may even result in higher profits than purchasing own land 

(actual rental costs induce higher efficiency relative to the opportunity costs of own land). 

Adopting irrigation practices or promoting farm specialization constitute other efficiency 

improving alternatives. Generational change in farming may also prove to be very useful. 

 

3.4. Concluding remarks 

 

The relevance of deriving‎ reliable‎ technical‎ efficiency‎ scores‎ to‎ assist‎ firms’‎ management‎

decisions as well as policy design, makes it essential to use methodologies that produce farm-

level non-biased efficiency ratings. The parametric SFA and the nonparametric DEA 

approaches have focused the attention of mainstream efficiency literature. Both approaches 

have been widely criticized for their shortcomings that may lead to biased efficiency 

estimates.  

Recently, Kumbhakar et al. (2007) proposed a new approach, namely the LML 

method. The method estimates the parameters of the deterministic and stochastic components 

of the frontier locally. LML methods overcome the shortcomings of SFA and DEA without 

foregoing their advantages. However, some of the major drawbacks of this approach are the 

“curse‎of‎dimensionality”‎and‎the‎estimation‎convergence‎issues‎that‎are‎likely‎to‎arise.‎These‎

drawbacks do not allow estimating too many parameters, thus restricting the alternative 
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functional forms that can be considered. In any case, rigidities associated to simple production 

function specifications are overcome through varying parameter estimates. Another LML 

limitation is the selection of the order of the local polynomial, as there is a trade-off between 

bias and variance of the estimation. High order polynomials will reduce the bias, but at the 

cost of the variance of fitting. In spite of the complexity of this approach, it is highly 

recommended to derive reliable and unbiased estimates. LML techniques are used in this 

article to assess the efficiency levels achieved by Kansas farms specialized in cereals, oilseeds 

and protein crop production and compares them with those obtained from DEA and SFA 

models. Farm-level data obtained from farm account records from the KFMA dataset 

covering the period 2000-2010 are used.  

Empirical results support the relevance of using the LML approach through the 

variation in the localized parameter estimates, representing the variance of the composite error 

term and input elasticities. Results show high mean efficiency scores (0.905) indicating that 

farmers could increase their output by 9% keeping their input bundle constant. Technical 

efficiency scores derived from the LML approach are higher than those of the DEA-CRS and 

SFA models, but close to DEA-VRS ratings. According to the KS test, the efficiency score 

distributions obtained from DEA and SFA differ from LML distribution ratings. Since LML 

allows both for stochastic error terms, as well as for flexibility in the functional form 

representing the frontier function, efficiency scores derived under LML should be more 

reliable and less biased than efficiency ratings under nonparametric DEA and SFA 

alternatives.  

One limitation of our analysis is the use of a single output instead of a multi-output 

technology (in which sorghum, wheat, soybean and corn output would be considered 

separately). However, Nauges et al. (2011) suggested that using multiple outputs can conduct 

to biased estimates due to the endogeneity problem. Our research can be extended in many 

different ways. Different methodological innovations to assess efficiency have been recently 

introduced in the literature. Noteworthy are the refinements regarding the measurement of 

technical efficiency in the presence of uncertainty through state-contingent techniques 

(Chambers and Quiggin, 2000). Failure to properly allow for risk can lead to biased efficiency 

estimates‎ (O’Donnell‎ et‎ al.,‎ 2010).‎ Extension of LML methods to a consideration dynamic 

issues constitutes another area that merits further attention. This is left for the near future 

research as a means to improve the specification of the frontier technology. 
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Table  3.1. Summary statistics for the variables of interest 

Variable  
N=1258 

Mean Standard deviation 

Total output (index)  154,193.14 164,521.51 

Capital (index) 162,547.25 158,754.89 

Land (acres) 1,277.89 1,103.34 

Labor (AWU) 292.68 252.84 

Chemicals inputs (index) 38,296.45 41,985.78 

Other inputs (index) 24,398.16 25,388.22 

Statistics on a per acre basis 

Total output (dollars/acre) 122.50 66.52 

Capital (dollars/acre) 150.36 131.49 

Labor (AWU/acre) 0.24 0.14 

Chemicals inputs 

(dollars/acre) 
29.11 16.98 

Other inputs (dollars/acre) 19.48 12.68 
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Table  3.2. Summary statistics for the local estimates of 2

u  , 2

v  and   

 2

u  2

v    

Maximum 

(100%) 
1.14 0.26 22.20 

Third quartile 

(75%) 
0.03 0.10 0.59 

Median (50%) 0.02 0.09 0.48 

First quartile 

(25%) 
1.93E-5 0.09 0.01 

Minimum (0%) 6.93E-7 7.59E-4 0.30E-2 
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Table ‎3.3. Estimated LML production elasticities and observed input share for Kansas  

farms 

Variable   Estimated elasticities Observed input share 

Land area 0.248 (0.070) 0.173 (0.129)      

Labor 0.048 (0.066) 0.053 (0.084)      

Capital 0.217 (0.050) 0.197 (0.118)     

Chemical inputs 0.293 (0.047) 0.334 (0.132) 

Other inputs 0.199 (0.041) 0.241(0.106)        

Note: standard deviation in parenthesis  
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Table  3.4. Frequency distribution of technical efficiency scores 

TE: Range (%) 
Observations    (%)  

LML
1
 

VRS 

DEAVRS
2 

DEACRS
3 

SFA
4
 LML DEAVRS DEACRS SFA 

<80 71 2 645 508 5.64 

6 

0.16 51.27 40.38 

80-85 132 31 449 419 10.49 2.46 35.69 33.07 

85-90 431 363 103 297 34.26 28.86 8.19 23.61 

90-95 244 657 31 37 19.40 52.23 2.46 2.94 

95-100 380 205 30 0 30.21 16.30 2.38 0 

Mean 0.905 0.917 0.808 0.804 

 
Standard deviation 0.084 0.035 0.047 0.073 

Minimum  0.095 0.779 0.678 0.046 

Maximum 1.000 1.000 1.000 0.941 

1LML: local maximum likelihood. 2VRS: variable returns to scale. 3CRS: constant return to scale. 4SFA: Stochastic Frontier 

Analysis. 
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Table  3.5. Kolmogorov-Smirnov test 

Test  Value p-value 

LML vs. DEA VRS 0.264 0.000 

LML vs. DEA CRS 0.713 0.000 

LML vs. SFA 0.607 0.000 
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                        Table  3.6. Cluster analysis results 

Farm TE 

Cluster Test of  

difference 

between means 

(significance 

level) 

Low 

0.78 

(0.10) 

 

(0.10) 

 

Medium 

0.88 

(0.01) 

High 

0.96 

(0.04)  

Farm size 

Small <500 acres  64% 22.3% 12.7% 

0.000** Medium (500- 1000 

acres)  
18.7% 24.8% 28.7% 

Big >1000 acres 17.2% 52.9% 58.7% 

Irrigated land share (ratio) 0.05 

(0.15) 

0.09 

(0.19) 

0.09 

(0.19) 
0.007* 

Rented land share (ratio) 0.49  

(0.41) 

0.62 

(0.33) 

0.57 

(0.33) 
0.000* 

Unpaid labor share (ratio)  0.92  

(0.23) 

0.79 

 (0.29) 

0.81 

(0.29) 
0.000* 

Output (index) 55,404.96 

(78,526.86) 

160,623 

(140,915.8) 

181,890 

(186,897.4) 
0.000* 

Yields (dollars/acre) 91.81 

(54.18) 

119  

(47.14) 

134.89 

(77.29) 
0.000* 

Age (year) 63.28  

(15.12) 

56.88 

 (13.37) 

58.23 

(13.52) 
0.000* 

Education  (dollars) 194.05 

(1,203.36) 

573.11 

(2,462.07) 

641.53 

(3,109.10) 
0.112 

Subsidies  (dollars)  10,450.91 

(15,610.36) 

24,986.47 

(34,302.09) 

27,443.01 

(29,764.41) 
0.000* 

Non agricultural income 

 (dollars) 

17,535.24 

(41,322.00) 

11,938.25 

(19,712.15) 

9,653.33 

(19,518.52) 
0.000* 

Number of observations 203 431 624  

                    Standard deviation in parenthesis. *,** indicate F-statistical and chi-square statistical significance at the 1%, respectively.  
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 Figure  3.1. Distribution of the number of observations at each data point. 
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Figure  3.2. Distribution of localized estimates of input elasticities and returns to scale 
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Chapter 4  
 

Technical and environmental efficiency 

of Catalan arable crop farms
13

 

 
 

 
 

 

 

 

 

 

 

 

 

 

                                                 
13

 Publication information: Guesmi, B., Serra, T., 2013. Technical and environmental efficiency of Catalan 

arable crop farms. Applied Economic Perspectives & Policy journal (first-round review). 



 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 75 

4.1. Introduction 

 

Intensive agricultural systems have several harmful impacts on humans, animals and the 

environment. This has increased social and political concerns regarding agriculture-related 

negative‎externalities.‎At‎the‎political‎level,‎these‎concerns‎have‎led‎European‎Union’s‎(EU)‎

agricultural policies to increasingly focus on environmental considerations. Interest in 

promoting agricultural practices that minimize pollution has been growing. Consistently, 

different policies have been devised to encourage farmers to use less chemical inputs and to 

adopt environmentally friendly practices. These alternative practices however, can affect the 

productivity and efficiency with which farms are operating, which in turn can influence their 

economic viability.  

Since‎ its‎ inception,‎ the‎ EU’s‎ Common‎ Agricultural‎ Policy‎ (CAP)‎ has‎ been‎

continuously reshaping itself. While initial objectives focused on farm income support, policy 

scopes have been widened to embrace environmental preservation. Late CAP reform 

proposals made by the European Commission aim at aligning the CAP with the targets of the 

“Europe‎ 2020‎ framework”‎ and‎ call‎ for‎ environmental‎ sustainability,‎ higher‎ efficiency,‎

effectiveness and equitability. Noteworthy among the reform proposals is the aim to 

redistribute CAP direct payments on the basis of both economic and environmental criteria. In 

light of current CAP reform debates, it is important to develop tools to support monitoring the 

impacts of policy and to assist in better targeting policy measures.  

 Derivation of farm-level technical and environmental efficiency (TE and EE, 

respectively) indices should be a relevant tool for improved CAP payment redistribution. 

While high TE measures are a pre-requisite for economic sustainability, high environmental 

performance indicators should contribute to environmental sustainability of agricultural 

practices. Recent literature on efficiency has been debating on the adequate methods to derive 

these measures. 

Farm-level transition to environmentally sustainable practices can be regarded as a 

three-stage process involving different degrees of environmental impact reduction. The three 

stages are efficiency, substitution and redesign (Wossink and Denaux, 2007). Our analysis 

focuses on the first phase, which aims at minimizing the use of polluting inputs and 

optimizing input allocation to achieve the desired output levels. A farm can be considered as 

environmentally inefficient, if pollution per unit of input is above an ideal minimum. On the 

other hand, technical inefficiencies arise when firms are unable to maximize their output 

levels with minimum use of inputs (Farrell, 1957). While privately-run farms are likely to 
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achieve a high level of TE regarding conventional input/output use, they are less likely to be 

environmentally efficient due to a lack of economic incentives and information, bounded 

rationality, or lack of external competitive pressure regarding environmental performance 

(Wossink and Denaux, 2007).  

During the last decades, the scientific community has produced several research 

studies that attempt to evaluate the aggregate external costs of modern agriculture (Pimentel 

et al., 1992 and 1995; Evans, 1995 and 1996; Bailey et al., 1999; Tiezzi, 1999; Pretty et al., 

2000; Le Goffe, 2000). Tegtmeier and Duffy (2004) place the value of the negative impact of 

agriculture on water, land, air and human health around 29.44 - 95.68 dollars per hectare in 

the USA. In another study, Pretty et al. (2000) obtained a greater value of 325
14

 dollars for the 

United Kingdom, being the most relevant sources of environmental damage: contamination 

by pesticides, greenhouse gas emissions, damage to wildlife and habitats, as well as food 

poisoning by bacteria and viruses and other disease agents.  

In contrast to most sustainability indicators that have been defined at an aggregate 

level, farm-level efficiency measures are directly linked to firm management decision making. 

While aggregate-level studies can be very useful for politicians and society at large, and can 

help designing suitable agricultural and environmental policies, they do not provide useful 

information for decision making units (DMU) who are more concerned about the economic 

and environmental performance of their holdings. Thus, unlike many environmental 

performance measures that have been defined at the aggregate level, our study focuses on 

estimating combined measures of TE and EE at the microeconomic level. To achieve this 

objective‎ Coelli‎ et‎ al.’s‎ (2007)‎ efficiency‎measures‎ are‎ extended‎ to‎ a‎ consideration‎ of‎ the‎

stochastic environment in which production takes place.  

The paper is organized as follows. In the next section, a literature review and the 

contribution of this work to previous literature is presented. Then, we describe the 

methodology used in our empirical analysis. The fourth section presents the data and results 

from the empirical implementation. We finish the paper with concluding remarks. 

 

 

 

 

 

                                                 
14

 Pretty et al. (2000) express this amount in GBP. The exchange rate used is 1GPB=1.56 US, which was 

obtained from http://www.measuringworth.com/. 
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4.2. Literature review 

 

The first attempts to measure firm-level‎EE‎considered‎a‎firm’s‎environmental‎impacts‎either‎

as an input or an output. Färe et al. (1989), using Data Envelopment Analysis (DEA) 

techniques, incorporated pollution into productive efficiency analyses as a weakly disposable 

bad output, which implies the assumption that the reduction of pollution is expensive. The 

latter implies that, for a given technology, reducing pollution comes at the cost of reducing 

the amount of the good output. The authors developed a hyperbolic productive efficiency 

model that treats desirable and undesirable outputs asymmetrically, i.e., while producers get 

credit for providing desirable outputs, they are being penalized for generating undesirable 

outputs.‎This‎“enhanced”‎efficiency‎measure‎was‎compared‎with‎the‎conventional‎efficiency‎

index where, by holding inputs fixed, one expands desirable outputs and ignores pollution. 

The comparison of these two efficiency measures shows the extent to which ignoring 

undesirable outputs distorts the magnitude of efficiency. Färe et al. (1996) decomposed the 

overall factor productivity for US fossil-fuel-fired electric utilities into an environmental 

index (under the weak disposability assumption for the undesirable outputs) and a productive 

efficiency index. They demonstrated that ignoring pollution leads to significant divergence in 

the rankings of the electric utilities. In another study, Färe et al. (2001) used Malmquist-

Luenberger productivity index as a measure to weight the relative importance of bad outputs. 

They found that ignoring bad outputs leads to underestimate the annual productivity growth 

of US manufacturing sectors for the 1974-1986 period (on average, 1.7% vs. 3.6%).  

 Piot-Lepetit and Vermersch (1998) studied the TE and EE of a sample of French 

farms specialized in pig production. They considered pollution caused by organic nitrogen as 

an undesirable output. Using DEA techniques and assuming weak disposability of organic 

nitrogen, the authors found a limited ability to reduce nitrogen pollution for given output 

levels. Nitrogen surplus has also been treated as an environmentally detrimental input rather 

than as undesirable output (Reinhard et al., 1999). The authors provided separate estimates of 

output-oriented TE and input-oriented EE of Dutch dairy farms. They found that the latter 

achieve high levels of TE (0.89) and low levels of EE (0.44).  

The work conducted by Arandia and Aldanondo (2007) constitutes an exception to 

published literature on TE and EE of Spanish farms. They focused on a sample of wine farms 

and studied their TE by means of a directional distance function that is fit to data by using 

DEA methods. Two bad outputs were considered: nitrogen and pesticide pollution. Under the 

strong disposability assumption, the average inefficiency was around 25%. If the weak 
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disposability was imposed, inefficiency levels were reduced to 4%, the difference being 

caused by the opportunity costs of pollution reduction. 

Another EE measure different from other approaches proposed in the literature was 

developed by Reinhard et al (2002). This methodology is based on two stages. While the first 

stage estimates both TE and EE using Stochastic Frontier Analysis (SFA), the second stage 

uses SFA to regress EE obtained from the first stage on explanatory variables that may 

explain EE. Conditional EE is then derived from the one sided error component of this second 

stage. Relatively low conditional environmental (0.57) and environmental (0.43) efficiency 

levels of Dutch dairy farms were found.  

Asmild and Hougaard (2006) used a DEA model to estimate TE and EE of a sample of 

Danish pig farms. Unlike other studies that consider pollution as an undesirable output or 

input, Asmild and Hougaard (2006) disaggregated the nutrient surpluses into two flows: input 

and output. They suggested that, assuming variable returns to scale (VRS), EE levels are 

around 34-56%, which shows an important margin to improve the environmental performance 

of these farms.  

While previous literature has paid considerable attention to adjusting efficiency and 

productivity measures by considering negative externalities associated to production, a few 

recent analyses have incorporated the provision of environmental goods in the vector of 

farms’‎ good‎ outputs‎ (Omer‎ et‎ al.,‎ 2007;‎Areal‎ et‎ al.,‎ 2012).‎Areal‎ et‎ al.‎ (2012)‎ used‎ SFA‎

based on Bayesian procedure to assess TE of dairy farms in England and Wales and found 

efficiency scores and ranking according to these scores to change with incorporation of 

environmental outputs in the output vector. As a proxy for the provision of environmental 

goods, they used the share of permanent and rough grassland to total agricultural land area. 

Average efficiency scores changed from 0.91 to 0.83. 

Førsund et al. (2008) and Murty et al. (2011) have shown that reduced-form 

technologies that consider pollution either as an input or as a weakly disposable output, have 

serious weaknesses. The materials balance principle, that represents the key role of inputs in 

residual generation, is proposed as an appropriate method to model pollution. Reinhard and 

Thijssen (2000) used the shadow cost approach to assess environmental performance of Dutch 

dairy farms, based on the materials balance condition. They found that mean technical and 

nitrogen efficiency are on the order of 0.84 and 0.56, respectively.  

Based on materials balance principle, Coelli et al. (2007) suggested a new approach 

which, in contrast to previous research, does not require the introduction of an extra pollution 

variable in the production model. Coelli et al. (2007) illustrate their proposal by studying the 
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environmental performance of a sample of farms specializing in pig-finishing in Belgium 

using DEA techniques under constant returns to scale (CRS) assumption. Results suggest that 

farms can produce their current output level with 15.7% fewer nutrient pollution. Thus, by 

improving‎ farm’s‎ efficiency‎ performance,‎ and‎ based‎ on‎ a‎ cost‎ reducing‎ strategy,‎ farmers‎

avoid adopting expensive pollution abatement technologies. 

While the production economics literature has heavily debated on the proper 

specification of technologies that involve both intended and unintended outputs such as 

pollution, less attention has been paid to the incorporation of the fundamentally stochastic 

nature of production into efficiency and productivity analyses. Productivity and efficiency 

analyses have often ignored‎the‎stochastic‎nature‎of‎production.‎Even‎the‎“stochastic‎frontier”‎

model is typically grounded on the assumption that the underlying technology is non-

stochastic. In industries such as agriculture where uncertainty is more the norm than the 

exception, this can lead to biased efficiency and productivity estimates, because effects due to 

uncertainty can either be attributed to productivity or efficiency differences. For example, a 

bad production outcome due to a stochastic factor beyond the control of farmers may be 

misconstrued as an inefficient production choice. An important challenge in production 

economics is thus to appropriately model the stochastic environment under which production 

takes place.  

In line with mainstream efficiency analysis, Coelli et al. (2007) rely on the assumption 

that the underlying production technology is deterministic. The state-contingent approach 

proposed by Chambers and Quiggin (1998 and 2000) and built upon the theory developed by 

Debreu (1959), is based on the assumption that production under uncertainty can be 

represented by differentiating outputs according to the state of nature in which they are 

realized. This leads to a stochastic technology based on a state-contingent input 

correspondence. Under conventional representations of stochastic technologies, input-output 

relationships are studied conditional on the realized state of nature. Chambers and Quiggin 

(2000) have shown that while these representations are an extension of conventional non-

stochastic representations of technology and can be easily empirically implemented, they 

impose relevant restrictions on the interaction between stochastic outputs and variable inputs. 

For example, non-substitutability between state-contingent outputs is imposed, i.e, it is 

assumed that producers can only respond to random shocks by modifying their input bundle, 

but not by re-allocating state-contingent outputs. This representation is known as the output-

cubical technology (Chambers and Quiggin, 2000), and has been shown to potentially lead to 

important‎biases‎in‎efficiency‎estimates‎(O’Donnell‎et‎al.,‎2010).‎ 
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Ex-ante measures of the random variables are required to overcome the output-

cubicality assumption. Since historically, efforts have been focused on collecting ex-post 

production data, ex-ante measures are usually unavailable. Our work is innovative in that it 

relies on data collected by means of a survey that elicited information on ex-ante state-

contingent outputs. When such measures are on hand, the methods used to study deterministic 

technologies can be easily applied to evaluate state-contingent technologies. By using the 

Arrow-Debrew-Savage framework, Chambers and Quiggin (2000) show that, in the presence 

of‎risk,‎the‎firm’s‎cost‎and‎input‎demand‎functions‎depend‎on‎the‎outputs‎in‎all‎possible‎states‎

of nature. Further, recognition that individuals with monotonic preferences minimize cost 

permits evaluation of production decisions independently on any specific assumption on risk 

attitudes. 

Despite the relevance of state-contingent techniques, there are very few empirical applications 

based on this methodology.‎ O’Donnell‎ and‎ Griffiths‎ (2006)‎ use‎ Bayesian‎ techniques‎ to‎

estimate a state-contingent production frontier. Chavas (2008) develops a state-contingent 

cost function and an econometric method to recover the ex-ante technology from the ex-post 

production data. Following Chavas (2008), Serra et al. (2010) apply state-contingent 

techniques to assess production decisions in US agriculture over the last century. Previous 

empirical approaches have not relied on survey-elicited ex-ante production data. This is a 

relevant contribution of this article to previous research. 

 

4.3. Methodology 

 

Recently, traditional measures of TE have been extended to integrate pollution considerations. 

Late developments within this literature have stressed the necessity to consider the materials 

balance‎condition‎in‎order‎to‎provide‎sound‎measures‎of‎farms’‎environmental‎performance.‎

Coelli‎et‎al.’s‎(2007)‎proposal,‎based‎on‎this‎principle,‎is‎extended‎to‎allow‎for‎the‎stochastic‎

conditions of production.    

Consider a firm that uses a vector of 1,2,...,k K  inputs, 
K

x  to produce a state-

contingent output,  1,...,
S

Sy y 
 y . The set of states of nature is represented 

by  1,2,...,S , and sy  represents the output realized under state of nature s . The feasible 

production set under the state-contingent approach, T , can be derived as follows: 
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  ,  can produce ; ,K ST    y x x y x y ,                                                                         (1) 

 

where the production technology is defined to be convex, non-increasing in inputs, non-

decreasing in outputs, and strongly disposable in inputs and outputs. Let 
S

z represent a 

surplus measure calculated using a materials balance equation, which is specified as a linear 

function of input and output vectors: 

 

    z a x b y ,                                                                                                                           (2) 

 

where a  and b  represent vectors of known non-negative constants. The optimization problem 

seeks to determine the optimal combination of inputs for a given amount of output that 

minimizes the amount of the surplus (pollution caused in the production process).  

Under the assumption that the output vector y  is fixed or that the output vector is not 

capable of converting the polluting input into a usable form (i.e., b  equals the zero vector), 

the first component of the surplus in equation (2) will be minimized when the aggregate 

pollutant content of inputs  M  a x
 
is minimized. For a given vector of 1,2,...,k K  

pollution contents, 
K

a , the minimum pollution associated with producing a specified 

amount of output, can be expressed as: 

 

   , min ,M T 
x

y a a x y x ,                                                                                                  (3) 

 

Denote ex
 
the solution to the minimization problem in (3). e

a x  and a x  represent the 

minimum and the observed environmental damage, respectively. Following Farrell (1957), 

the technically efficient input vector 
tx
 

can be determined by solving the following 

optimization problem: 

 

   TE , min , T


  y x x y , (4) 

 

where   is a scalar that takes a value between zero and one. tx  is determined by t x x  and 

the corresponding amount of pollution can be approximated by t
a x . 
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Under the state-contingent approach to modeling risk, the production function is 

transformed from an ex-post to an ex-ante representation of technology (Chambers and 

Quiggin, 2000). Since ex-ante production is conditional upon the state of nature, each ex-post 

output quantity has a multivariate ex-ante representation (  1,...,
S

Sy y 
 y ). The increase 

in the output vector size under the state-contingent approach may bring dimensionality issues 

that are specially relevant under SFA, as the number of parameters to be estimated grows 

substantially. Further, ex-ante state-contingent outputs tend to be strongly correlated with 

each other (Chavas, 2008), which is associated to potential multicollinearity issues in 

econometric model estimation. Overcoming multicollinearity problems in parametric 

approaches usually involves working with a reduced version of the actual state space. As is 

well known and in contrast to SFA, nonparametric DEA techniques neither rely on specific 

functional forms, nor on the covariance among input and output variables, which reduces the 

risk of misspecification issues that may lead to biased efficiency estimates. Gong and Sickles 

(1992) suggest that DEA techniques become more attractive as potential SFA 

misspecification issues grow. Following Färe et al. (1994), the DEA linear programming 

model to assess input-oriented TE levels can be expressed as: 

 

,

i

min

s.t.

0

0

N1 1

0

 




 





  

 

 



i

y Y

x X

         (5) 

   

where N  represents the number of farms. The constraint 1 1N    is included to allow for 

VRS. Efficiency scores derived under VRS are compared with those obtained under CRS. 

The EE measure proposed by Coelli et al. (2007) is expressed as a ratio of minimum pollution 

over observed pollution: 

 

EE e
  a x a x   (6) 
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where EE  takes a value between zero and one, the latter indicating that the firm is fully 

environmentally efficient. The EE scores for observation i , using the DEA method (Coelli et 

al., 2007), are obtained from the following minimization problem: 

 

                                                                                                                                          

                                                                                                                 

                                                                                                                 (7) 

 

 

 

 

According‎ to‎Coelli‎ et‎ al.’s‎ (2007)‎model,‎ environmental‎ inefficiencies‎ are‎ caused‎ both‎ by‎

technical inefficiencies that imply an excessive use of polluting inputs, and by allocative 

inefficiencies involving an inappropriate input mix given the observed a  vector. Hence, EE is 

decomposed into two components: TE and environmental allocative efficiency (EAE):  

 

 TE t       a x a x a x a x , (8) 

 

and  

 

EAE e t
  a x a x ,  (9) 

 

Allocative efficiency is thus defined as the ratio of minimum pollution to the amount of 

pollution generated by the technically efficient input vector. All these efficiency measures 

(TE, EE, and EAE)
15

 take a value ranging from zero to one and can be related through the 

following expression: 

 

EE TE EAE  .  (10) 

 

Though a generalization of research results is difficult to make and data and 

methodologies used by different analyses are rather heterogeneous, damages derived from 

pesticide use are found to be one of the most relevant agriculture-related externalities. This 

                                                 
15

 See Coelli et al. (2007) for a graphical representation of the approach to measuring EE, TE and EAE. 
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study focuses on pollution derived from pesticide use. In line with Morse et al. (2006), 

Wossink and Denaux (2007) and de Koeijer et al. (2002), we build an index of pesticide 

contamination that accounts for the amount of pesticide applied and its toxicity. Through a 

farm-level survey, we collected detailed information on the quantities of active ingredients 

applied through herbicides, fungicides and insecticides. The total quantity of active 

ingredients, expressed in liters, was considered as a polluting input. As well known, different 

active ingredients have different environmental and health effects. To derive a single measure 

of pesticide pollution, we used a weighting procedure.  

While different indices have been elaborated to measure the impacts of different active 

ingredients on the environment, animal and human health, they usually focus on a limited list 

of active ingredients. The Acceptable Daily Intake (
i ), obtained from the Footprint (2012) 

dataset, is the only index covering the full range of active ingredients used by our sample 

farms. 
i  

measures the quantity of active ingredients that can be daily ingested over a 

lifetime, without implying a significant health risk for humans.
16

 This index is usually 

measured in mg per kilos of body weight per day (mg/kgbw/day). The vector of  
i ’s can be 

represented as: 

 

 
1 2 n' = ( , , ..., )  α ,                                                                                                              (11) 

 

the vector of weights applied to each active ingredient is expressed as: 

 

  1 2 ', ,...,a na a a . (12) 

 

where 
i

min( )


α
ia


. The vector of weights was scaled so that their sum be equal to one. 

Pesticide, insecticide and herbicide pollution is approximated by: 

n

=1

i i

i

a AI , being 
iAI  the 

quantity of active ingredient i applied.  

  

 

 

                                                 
16

 While the use of Acceptable Daily Intakes offers a first approximation to toxicity, a more relevant measure of 

aggregate environmental impact should include the number of people affected by pollution.  
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4.4. Data and Results  

 

4.4.1. Data 

 

Our analysis uses cross sectional, farm-level data collected using a questionnaire that was 

distributed among 190 agricultural holdings specialized in the production of cereals, oilseeds 

and protein (COP) crops. The survey was conducted during the planting season in 2011 and 

includes detailed information on planned input use. We also obtained data on ex-ante outputs 

for three alternative states of nature: bad, normal and ideal growing conditions 

 1 2 3, ,y y y y .  

Since‎farmers’‎responses‎regarding‎crop‎yield‎distribution‎are‎likely‎to‎be‎subjective,‎

eliciting ex-ante output information is a complex process. Subjective opinions about what 

characterizes a bad, normal or ideal crop yield can lead to biased responses. To reduce 

subjectivity, one could provide farmers with detailed information on each crop-growing 

scenario (rainfall, temperature, frost, etc.). This, however, would increase survey complexity 

and cost, as a full characterization of crop-growing scenarios would require provision of a 

relevant amount of data during the interview. For example, providing the number of frost days 

during the growing season would render an incomplete picture if not accompanied by the 

distribution of these days over time. Incomplete scenarios would lead to highly inaccurate 

responses.  

Final survey design was a trade-off between complexity and subjectivity, and was 

conditional upon feedback with technicians from Unió de Pagesos, which constitutes the 

largest farmer association in Catalonia. Unió de Pagesos was in charge of administering the 

survey. Highly qualified technicians from this institution recommended to obtain point 

estimates of yields under bad (
1y ), normal (

2y ) and ideal (
3y ) growing conditions, without 

projecting specific scenarios. Yields under normal conditions usually represent average yields 

realized during a sufficiently long period of time. Once normal yields are identified, it is 

relatively easy for‎farmers‎to‎provide‎yields‎under‎bad‎and‎ideal‎conditions.‎Unió‎de‎Pagesos’‎

technicians based their recommendation to obtain these point estimates on the argument that 

the more complex scenario-based alternative, would not provide substantially different results 

if designed correctly. 

Chambers and Quiggin (2000) and Rasmussen (2003) defined state-allocable inputs as 

inputs that, ex-ante, can be allocated to different states of nature. To include these inputs in 
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the production representation, the authors expanded the input vector to allow identifying the 

different impacts that inputs have on different states of nature. Budget restrictions, as well as 

the need to keep the survey short, precluded obtaining information on state-allocable inputs. 

This is left for further research as a means to improve the representation of the stochastic 

technology.  

Output  sy  represents farm COP production in Euros‎(€)‎under‎state 1,2,3s  . Inputs 

included in the analysis are:  1
X  total hectares (ha) of land planted to COP;  2

X  hired and 

family labor, expressed in hours;  3
X  capital input that aggregates the replacement value (in 

€)‎ of‎machinery,‎ other‎ equipment‎ and‎ buildings‎ used‎ in‎ the‎ production‎ process;‎  4
X  the 

expenditure‎in‎fertilizers‎expressed‎in‎€;‎  5
X  pesticide, herbicide and insecticide use (liters 

of active ingredients);  6
X

 
seed‎expenses,‎expressed‎in‎€;‎  7

X  energy input including fuels 

and‎lubricants,‎expressed‎in‎€;‎  8
X contract‎work,‎expressed‎in‎€.‎ 

Table 4.1 provides summary statistics for the variables used in the analysis. Sample 

farms cultivate, on average, 75 hectares, a farm size above the national and the EU arable crop 

farms’‎average,‎of‎around‎52‎and‎46‎hectares,‎respectively‎(Farm‎Accountancy‎Data Network, 

FADN 2012). More than 95% of the COP area is devoted to wheat (36%) and barley (60%) 

production. Sample farms devote, on average, 552 hours to COP production during the 

growing season, of which more than 90% represents unpaid family labor.  

Depending on crop growing conditions, farmers expect to obtain different output 

levels. While under bad conditions the average value of COP production is around 31 

thousand‎€‎per‎farm,‎under‎ideal‎conditions‎average‎output‎is‎on‎the‎order‎of‎70‎thousand‎€.‎

Under normal conditions, the value of COP production (51‎ thousand‎ €) generated by our 

sample‎farms‎almost‎doubles‎the‎EU‎farms’‎average‎output‎(28‎thousand‎€). Per ha statistics 

suggest our sample farms are more intensive than both national and EU farms: while EU and 

national‎farms‎have‎respectively,‎an‎average‎income‎of‎627‎and‎428‎€‎per‎ha,‎670‎€‎per‎ha‎is‎

the average income of our sample farms under normal growing conditions.  

Machinery‎and‎buildings‎used‎by‎sample‎farms‎amount‎to‎134‎thousand‎€,‎or‎2,304‎€‎

per‎ha,‎above‎EU’s‎average‎investment‎ratios‎on‎the‎order‎of‎1,497‎€‎per‎ha‎(FADN,‎2012)‎

and‎it‎is‎much‎higher‎than‎the‎national‎average‎(536‎€‎per‎ha).‎While‎sample‎farms‎cultivate‎

more land than EU arable crop farms, they spend less money in fertilizer than the latter (5,315 

vs.‎ 9,279‎€‎ annually).‎Total‎ quantity‎ of‎ active‎ ingredients‎ used‎by‎ our‎ sample‎ farms‎ is,‎ on‎

average,‎ on‎ the‎ order‎ of‎ 85‎ liters.‎ Expenses‎ in‎ pesticides‎ amount‎ to‎ 2,975€,‎ below‎ EU’s‎
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average‎crop‎farms‎(5,120€).‎Annual‎expenses‎in‎seeds and energy are on the order of 3,866 

and‎4,913‎€,‎respectively. 

 

4.4.2. Empirical results 

 

The DEA results are presented in table 4.2. Results show mean TE scores on the order of 0.93 

and 0.87 under VRS and CRS, respectively, suggesting that our sample farms could use on 

average 7% (13%) fewer inputs to produce the same level of their current output. Returns to 

scale were studied to find that farms operate under increasing returns to scale. More than 70% 

of the observations have efficiency ratings greater than 0.90, showing relatively high 

performance levels. However, under CRS, only about one half of farms exhibit this 

performance. Under VRS (CRS) assumption, technical efficiencies range from a minimum of 

0.57 (0.18) to a maximum of one, suggesting that our sample farmers present different skills 

to manage their holdings. 

Our TE findings are consistent with previous studies looking at the performance of 

crop farms (Mathijs et al., 2001; Oude Lansink et al., 2002).  Mathijs et al. (2001) compared 

the efficiency of family farms and partnerships with large-scale successor organizations of the 

collective and state farms (LSOs) using DEA methods. For crop farms and for the periods 

1991-1992 and 1994-1995, they showed that, under CRS, partnerships display higher average 

TE (1.00 and 0.97, respectively) than do family farms (0.82 and 0.81) and LSOs (0.93 and 

0.93) in 1991-1992 and 1994-1995, respectively. When VRS were assumed, partnerships and 

family farms were found fully technically efficient, while LSOs’s‎TE‎was‎on‎the order of 0.97 

in 1991-1992. However, in 1994-1995 LSOs became more efficient than family farms and 

partnerships (1.00, 0.98 and 0.97, respectively). In another study, Oude Lansink et al. (2002) 

used DEA to compare organic and conventional crop and livestock farms in Finland and 

found that organic crop producers have higher efficiency than conventional farms under CRS 

(VRS) : 0.91 (0.96) and 0.67 (0.72), respectively. In contrast, our results are far from the 

findings by Latruffe et al. (2005), who used DEA to assess the technical and scale efficiency 

of crop and livestock farms in Poland for two periods 1996 and 2000. They found scores 

under CRS (VRS) for crop farms on the order of 0.66 (0.70) and 0.57 (0.67) in 1996 and 

2000, respectively.  

Comparison with other studies that use different methodologies does not aim at   

recommending one particular methodology over another. Instead, we aim at checking the 
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confidence and robustness of our findings, whether they concur or not with other results 

derived from different methods and whether they are or not within the range of existing 

estimates (Balcombe et al, 2006). Serra and Goodwin (2009) used a local maximum 

likelihood approach to assess technical efficiency of Spanish conventional and organic arable 

crop farms. Mean efficiency scores of 0.97 and 0.94 for conventional and organic crop farms 

were derived, respectively. These values are relatively close to our findings for VRS. In 

contrast, our findings are far from those found by Hadley (2006) and Zhu and Oude Lansink 

(2010). Hadley (2006) used SFA to estimate farm-level TE in England and Wales for the 

period 1982-2002 and found a mean TE of 0.75 for crop farms. Zhu and Oude Lansink (2010) 

used an output distance SFA function to analyze the impacts of CAP reforms on TE of crop 

farms in Netherlands, Germany and Sweden for the period 1995-2004. They found an average 

TE level of 0.64 in Germany, 0.76 in the Netherlands and 0.71 in Sweden. 

The average EE scores are 0.74 (0.58) under VRS (CRS) assumption, indicating that 

farmers should be able to produce their current output with 26% (42%) fewer pesticide, 

herbicide and insecticide use. Results suggest that farmers who are environmentally efficient 

tend to be more technically efficient (high positive correlation of around 0.90 between the two 

measures has been found), supporting that an efficient use of chemical inputs improves both 

environmental and technical performance. As opposed to previous studies that found an 

adverse effect of environmental regulations on productivity (Färe et al., 2001), the high 

correlation between TE and EE for our sample farms implies complementarity between 

economic and environmental sustainability. Environmental efficiencies range from a 

minimum of 0.02 to a maximum of 1, suggesting important variability within sample farms.
17

  

Environmental efficiency ratings imply that there is substantial scope to reduce 

chemical input use leaving current output levels unaltered. This reduction is likely to alleviate 

the negative environmental impacts of chemical inputs (contamination of surface and 

groundwater,‎loss‎biodiversity,‎etc…).‎If‎sample‎farms‎were‎environmentally‎efficient,‎around‎

26 % of current use of pesticides, insecticides and herbicides would be avoided (around 4,200 

liters of active ingredients for our sample farms).
18

 This reduction in pollution levels would 

take place at no cost and would not require the adoption of pollution abatement technologies. 

A more rational input use would suffice. Since environmental allocative inefficiency (EAE) is 

                                                 
17

 While previous analyses have modeled environmental efficiency, to our knowledge, none of them has focused 

on arable crop farms. Since comparing environmental efficiency across different types of farming (pig farming 

versus arable crop farming, for example) is not adequate, comparison with previous research results is not made 

here. 
18

 Pesticide use savings would be above 40% under constant returns to scale assumption. 
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found to be the main source of environmental inefficiency, it looks like farmers are not using 

the correct input mix, given the observed level of riskiness associated to each active 

ingredient. Improvements in technical efficiency performance will also lead to higher 

environmental efficiency levels of our sample farms. 

 

4.5. Concluding remarks 

 

The productive efficiency literature has paid very little attention to environmental 

performance issues. Growing social and political concerns for the environmental impacts of 

agriculture make it necessary to study environmental and technical performance using robust 

methodologies that enable to derive reliable indicators. Recently, Coelli et al. (2007) proposed 

a new approach based on the materials balance concept that represents the relevant role of 

inputs in generating residuals.  

This‎study‎contributes‎to‎the‎literature‎by‎extending‎Coelli‎et‎al.’s‎(2007)‎proposal‎to‎

allow for the stochastic environment in which production takes place. The extension is based 

on the state-contingent methods (Chambers and Quiggin, 2000). The model is applied to 

derive combined technical and environmental efficiency levels achieved by 190 Catalan farms 

specialized in cereals, oilseeds and protein crop production. To our knowledge, this is the first 

empirical application that derives TE and EE measures using both the materials balance and 

state-contingent frameworks.  

Our empirical findings suggest that our sample farms, on average, reach technical 

efficiency scores of 93% and thus that they can reduce input use by 7% while leaving output 

levels unaltered. The average environmental efficiency score, on the order of 74%, indicates 

ample scope to improve environmental performance and reduce pesticide use and pollution. 

These inefficiencies are, to a large extent, caused by allocative inefficiencies that involve an 

inappropriate input mix.   

Some policy recommendations to increase the relatively low EE levels are as follows. 

First, since chemical input is partly applied out of habit (farmers tend to do what they have 

done in the past), information and training courses on how to adequately apply chemical 

inputs‎ may‎ improve‎ the‎ agricultural‎ sector’s‎ environmental‎ performance.‎ Second,‎ CAP‎

subsidy redistribution on the basis of environmental criteria, may act as an effective tool to 

motivate farmers to adopt environmentally friendly practices. Finally, since environmental 

inefficiencies are mainly due to allocative issues, providing farmers with better information 

on the environmental impacts of different pesticides, herbicides and insecticides, should 
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improve environmental performance. Besides economic incentives penalizing the use of those 

chemicals with stronger harmful effects, encouraging farmers to produce environmental 

goods should further ensure better environmental efficiency levels. 

One limitation of this analysis is that budget restrictions, as well as the need to keep 

the survey short, precluded obtaining information on state-allocable inputs, as well as on 

possible sources of inefficiency. This is left for future research as a means to improve the 

representation of the stochastic technology. 
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Table 4.1. Summary statistics for the variables used in the analysis 

Variable  Mean Standard deviation 

Output‎(€)‎ 

(
1y )

1 
30,576.97 33,155.16 

(
2y )

2 
50,958.65 51,672.67 

(
3y )

3 
70,431.86 74,793.60 

Land (ha)                      (
1

X ) 74.81 72.68 

Labor (hours) (
2

X ) 552.10 656.46 

Capital‎(€)‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎ (
3

X ) 133,721.63 126,557.95 

Fertilizers‎(€) (
4

X ) 5,314.76 7,352.18 

Pesticides (liters of 

active ingredients) 
(

5
X ) 85.34 117.19 

Seeds‎(€) (
6

X ) 3,866.07 3,750.11 

Energy‎(€) (
7

X ) 4,912.87 5,334.41 

Contract‎work‎(€) (
8

X ) 2,916.54 4,018.97 

Statistics on a per hectare basis 

Output‎(€/ha) 

(
1y )    391.31 131.76 

(
2y ) 669.85 144.29 

(
3y ) 912.83 214.04 

Capital‎(€/ha)  2,303.74 2,785.71 

Labor (hours/ha)  6.88 4.86 

Fertilizers‎‎(€/ha)  71.75 63.61 

Pesticides  (liters of 

active ingredients /ha) 
 1.04 0.72 

Seeds‎(€/ha)  52.46 16.98 

Energy‎(€/ha)  66.97 43.68 

Contract‎work‎(€/ha)  63.17 68.42 

1

1y : bad growing conditions. 2 2y : normal growing conditions. 3 3y : ideal growing conditions. 
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Table 4. 2. Summary statistics for DEA results 

Efficiency 

measures 

TE EE EAE 

VRS  CRS VRS  CRS VRS  CRS 

Mean  0.93 0.87 0.74 0.58 0.76 0.61 

Standard  deviation 0.11 0.16 0.37 0.41 0.35 0.40 

Minimum 0.57 0.18 0.02 0.00 0.04 0.00 

Maximum 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 4.3. Frequency distribution of DEA efficiency scores 

Efficiency scores: 

Range (%) 

VRS   CRS 

TE
 
 

VRS 

EE
  

EAE
 

TE
 
 

VRS 

EE
 
 EAE 

<60 2  63 57 17 96 88 

60-70 9 2 5 14 4 8 

70-80 19 3 3 23 3 4 

80-90 25 4 6 34 3 4 

90-100 134 117 118 101 83 85 

Mean 0.93 0.87 0.74 0.58 0.76 0.61 

Standard deviation 0.11 0.16 0.37 0.41 0.35 0.40 

Minimum  0.57 0.18 0.02 0.00 0.04 0.00 

Maximum 1.00 1.00 1.00 1.00 1.00 1.00 
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Farm-level productivity and efficiency analyses have important implications both for firm 

management decisions and policy design. By targeting firms not previously investigated and 

using new methodological approaches, this thesis contributes to the literature both from a 

methodological and an empirical point of view. The thesis is integrated by three independent 

research articles. The first article’s‎scientific‎contribution‎is‎mainly‎of‎an‎empirical‎nature,‎as‎

it targets organic farms in Spain that have received little attention by the efficiency and 

productivity literature. More specifically, it focuses on assessing productivity and technical 

efficiency differences between organic and conventional grape farms in Catalonia, as well as 

the factors that affect technical efficiency levels. The second article, with a strong 

methodological orientation, uses recent innovative techniques to study technical efficiency of 

Kansas farms specialized in arable crop production. Finally, the third research paper extends 

recent proposals to derive combined environmental and technical efficiency measures, and 

applies them to study performance of Catalan arable crop agricultural holdings. 

In spite of the significant recent growth in organic farming in Spain, the literature on 

the performance of Spanish organic farming is still insignificant. The first research paper 

contributes to fill this gap. The methodological approach adopted in the first paper consists of 

a stochastic frontier model in which inefficiency effects are assumed to be a function of firm-

specific characteristics. Our research is pioneer in that it measures the contribution of farmers’‎

preferences regarding environmental preservation and economic performance to efficiency. 

The analysis is based upon a sample of 141 organic and conventional Catalan farms that 

specialize in grape growing.  

Our empirical findings suggest that organic farmers, on average, display higher 

technical efficiency scores than their conventional counterparts (80% and 64%, respectively). 

However, organic farms show lower productivity than conventional ones. Our results identify 

adoption of organic practices, experience, family labor share in total labor, farm location and 

farmer environmental preferences as the variables that are more relevant in explaining 

technical inefficiencies. Holding more experience and/or using organic practices leads to 

higher efficiency levels. Conversely, farms that rely on a higher proportion of unpaid labor, 

are located in a less favored area, or whose manager has strong environmental preservation 

preferences, tend to be less efficient.   

In the second research article, local maximum likelihood methods, recently proposed 

by Kumbhakar et al. (2007), are used to assess Kansas farms efficiency levels. The analysis is 

based on farm-level data obtained from farm account records from the Kansas Farm 

Management Association dataset covering the period 2000-2010. In spite of the interesting 
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features of local estimation methods, its use has been limited to a few empirical studies due to 

implementation complexities.  

Empirical results support the relevance of using the LML approach through the 

variation in the localized parameter estimates representing the variance of the composite error 

term and input elasticities. Results show that Kansas farms reach 91 % of their maximum 

potential output indicating that farmers could increase their output by 9% without the need to 

increase input use and without changing current technology. Technical efficiency scores 

derived from the LML approach [0.905] are higher than those of the DEA model under CRS 

[0.808] and SFA [0.804] and close to DEA-VRS [0.917] ratings. According to the KS test, the 

efficiency score distributions obtained from DEA and SFA differ from LML distribution 

ratings. Since LML allow for both stochastic error terms, as well as for flexibility in the 

functional form representing the frontier function, LML efficiency scores may be more 

reliable and less biased than those derived under nonparametric DEA and SFA alternatives.  

In the third research paper, we use the recent Coelli‎et‎al.’s‎(2007)‎method‎based‎on‎

the materials balance concept to assess both technical and environmental efficiencies. We 

expand this method to allow for the stochastic environment in which production takes place. 

The extension is based on the state-contingent methods proposed by Chambers and Quiggin 

(1998 and 2000). To our knowledge, no previous published work has studied environmental 

efficiency using state-contingent methods. This constitutes our major contribution to the 

literature. On the other hand, to date, no studies have previously focused on the assessment of 

technical and environmental efficiency of Spanish agriculture using this methodology.  

The analysis is based on farm-level data collected using a questionnaire distributed 

among 190 Catalan arable crop agricultural holdings. Our empirical findings suggest that 

sample farms present high average technical efficiency scores of 93%, indicating that they can 

reduce input use by 7% while leaving output levels unaltered. The average environmental 

efficiency score, on the order of 74%, indicates ample scope to improve environmental 

performance and reduce pesticide use and pollution by 26%. These inefficiencies are, to a 

large extent, caused by allocative inefficiencies.   

As well known and also shown in this thesis, efficiency estimates are very sensitive to 

the method used to estimate the frontier (parametric or non-parametric), to the functional form 

representing the production frontier and the distribution of the error term. The use of 

improved techniques is thus key for meaningful efficiency analyses. This thesis implements 

different methodologies in the analysis of farm performance, from well-known methods to 
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very innovative approaches, providing credible case studies in applying different approaches 

and providing evidence for their value.   

Improving technical efficiency allows for a reduction in production costs and increases 

competitiveness. This is specially useful to agricultural sectors where consumers are generally 

unwilling to pay higher prices and the marketing power of middlemen and retailers becomes 

more and more relevant. Firm management and policy implications are proposed along the 

thesis that are based on the obtained results. According to these, promotion of extension 

services that transfer knowledge to farmers is expected to improve production performance 

through added education and experience. Enhanced efficiency levels may also be pursued 

through more professionalized management of agricultural holdings by using more 

specialized labor force. Information and training courses on how to adequately apply chemical 

inputs could enhance the‎ agricultural‎ sector’s‎ environmental‎ performance.‎ Similar results 

might be achieved by redistributing CAP subsidies on the basis of environmental criteria, or 

by promoting economic incentives that penalize the use of harmful chemicals. Providing 

better information on the environmental impacts of different pesticides, herbicides and 

insecticides and how to adequately use them may also lead to improved environmental 

performance. 

Several shortcomings affecting our analysis as well as proposals for future research 

can be pointed out. One limitation is the small number of organic farms used in the first 

research paper. Collecting additional farm-level organic farming data would increase the 

reliability and the number of farms represented by our results. The curse of dimensionality 

affecting local maximum likelihood techniques used in the second article makes it difficult to 

use more sophisticated representations of production technology. Further, panel data 

techniques are not taken into account when estimating the model. Developing local maximum 

likelihood methods applicable to panel data techniques is another pending research issue. 

Different methodological innovations to assess efficiency have been recently introduced in 

the literature that could be applied to our data. Noteworthy are the innovations regarding 

dynamic efficiency measurement that do not‎rely‎on‎the‎assumption‎of‎firm’s‎ability‎to‎adjust 

instantaneously and that allow for the dynamic linkages of production decisions (Tsionas, 

2006; Silva and Stefanou, 2007; Rungsuriyawiboon and Stefanou, 2007; Serra et al., 2010; 

Emvalomatis et al., 2011;Serra et al., 2011). Extension of local maximum likelihood methods 

to a consideration dynamic issues constitutes another area that merits further attention. In the 

third article, budget restrictions, as well as the need to keep the survey short, precluded 

obtaining information on state-allocable inputs, as well as on possible sources of inefficiency. 
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This is left for future research as a means to improve the representation of the stochastic 

technology. Allowing for the impacts of other pollution sources such as fertilizers, will allow 

deriving more reliable environmental performance estimates. 
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