3. SÍNTESIS DEL NAKAMUROL A

3.1 Introducción

El desarrollo de una aproximación sintética para el nakamurol A a partir de la decalona (-)-3, cuya síntesis hemos referido en el capítulo 2, requiere la introducción de cadenas alquílicas en C10 y C9, esta última con una funcionalización adecuada para poder elaborar el sustituyente 3-hidroxi-3-metil-4-pentenilo, y una metilenación en C8. En este proceso se generarían 2 nuevos centros estereogénicos, formándose un núcleo bicíclico con cuatro centros quirales consecutivos.

La secuencia lógica de introducción de los grupos alquílicos parece a priori que sería mediante una adición conjugada sobre la enona (-)-3, atrapado del
enolato y posterior alquilación en C9. En el esquema adjunto se indica la vía de acceso a precursores del nakamurol A: (i) reacciones de adición conjugada sobre la enona (-)-3 e introducción de sustituyentes en C9 ya sea a través de reacciones in situ o sobre enolatos atrapados, que se comentarán en el apartado 3.2 (página 38). (ii) transformación de la cadena introducida en C9 y metilenación de C8, que se comentarán en el apartado 3.3 (página 44).

Esquema 13. Retrosíntesis del nakamurol A

3.2 Síntesis de decalonas C9 y C10 disustituidas para la síntesis del nakamurol A

De acuerdo con nuestro plan de síntesis, para construir la todo cis decalona tetrasustituida requerida a partir de la decalona 3, era necesaria la introducción del grupo metilo C20 mediante adición conjugada ${ }^{54,55} \mathrm{y}$ atrapado del enolato ${ }^{56}$ mediante un reactivo que proporcionase la funcionalización que permitiera su posterior elaboración a la cadena lateral requerida en C9, obteniéndose así el intermedio avanzado I (Esquema 13).
Nuestros primeros ensayos se encaminaron hacia la modalidad de dos pasos de reacción: primero un ataque con dimetilcuprato de litio y posterior atrapado del enolato con clorotrimetilsilano ${ }^{57}$; posteriormente se regeneraría el enolato para proceder a la alquilación de éste.

[^0]El ataque del organometálico transcurrió con un rendimiento moderado dando lugar al sililenoléter 22. La estereoquímica del producto obtenido es ($4 \mathrm{a} S, 5 R, 8 \mathrm{a} S$), es decir todo cis, punto que comprobamos más tarde, sobre la cetona 23.

El sililenoléter 22 se trató con metil-litio regenerando el enolato que se hizo reaccionar con acrilato de metilo o con 2-(2-bromoetil)-2-metil-1,3-dioxolano (Esquema 14). En los dos casos se obtuvieron mezclas de productos complejas. El estudio de estas mezclas indica que se ha producido en cada caso la alquilación del enolato pero que son mezclas de regioisómeros y diastereómeros debido a la equilibración del enolato ${ }^{58}$. Hipótesis basada en la interpretación de los espectros de RMN de ${ }^{1} \mathrm{H}$ y ${ }^{13} \mathrm{C}$ de los crudos de reacción ya que en ningún caso se logró aislar ningún compuesto puro al cromatografiar dichas mezclas.

Esquema 14. Alquilación del enolato de 22

También se intentó la reacción del sililenoléter 22 con acrilato de metilo catalizada por $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}^{59}$. En estas condiciones el enolato no reaccionó y el

[^1]único producto aislado fue la cetona que se obtiene de la protonación del enol durante el final de reacción.

Los datos espectroscópicos de RMN de ${ }^{13} \mathrm{C}$ de la decalona trimetilada 23 permiten la asignación estereoquímica de forma unívoca ${ }^{60}$.

[^2]

En la figura 6 se muestran los valores de RMN de ${ }^{13} \mathrm{C}$ de la cis-4a, 8 a -dimetilnaftalen-3-ona en sus dos posibles conformaciones ${ }^{61}$ y los correspondientes al compuesto 23 en su conformación preєict (par a una mejor visualización comparativa se ha representado la estructura de ent-23). La correlación de 23 con la conformación esteroidal del derivado dimetilado es excelente, observándose el apantallamiento en C6 debido a la interacción 1,3diaxial con el nuevo grupo metilo en C4 y el desapantallamiento de los carbonos C3 y C5 (numeración biogenética).

Conformación no esteroidal

Conformación esteroidal

ent-23

Figura 6. Conformación preferida de 23

[^3]Posteriormente exploramos el uso del complejo $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CuLi} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}^{62}$ para generar el centro cuaternario en $\mathrm{C} 10^{55}$ seguido del tratamiento con bromopropionato de metilo, pero en todos los casos se obtuvo la trimetildecalona 23^{60}.

Así que para conseguir la α-funcionalización pensamos en el uso de un reactivo más electrófilo y de menor requerimiento estérico tal como el formaldehído con el fin de atrapar el enolato ${ }^{63}$ generado tras la β-adición a la cetona α, β-insaturada (-)-3. Aunque el alcohol deseado 11 fue aislado, usando $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CuLi} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ en el primer paso, el resultado no fue siempre reproducible (el rendimiento osciló entre $15-60 \%$) y además se observó la formación de aducto $1,2^{64}$ en algunos ensayos.

En cambio, la reacción de la enona bicíclica (-)-3 con $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Zn} / \mathrm{Ni}(\mathrm{acac})_{2}{ }^{65}$ proporcionó el alcohol 11 de manera reproducible con un rendimiento del 52% tras capturar el enolato con formaldehído gas. El proceso fue estereoselectivo y se obtuvo 11 como único diastereómero, cuya estereoquímica se infiere de sus

[^4]datos espectroscópicos, así como la configuración absoluta de los cuatro centros estereogénicos presentes y la conformación preferida de esta decalona. Los datos más relevantes en el espectro de carbono 13 de 11 fueron los desplazamientos químicos del C2 ($\delta 21,4$), que es un valor de diagnóstico en decalonas con anillos con fusión cis ${ }^{61}$ y el desplazamiento químico del C 1 (δ 31,8), que se encuentra apantallado por la presencia del sustituyente hidroximetilo dispuesto ecuatorialmente en C 9 con una relación 1,3 con el $\mathrm{H} 1_{\text {ec }}$ (en el derivado no sustituido en C9, 23, el carbono 1 resuena a $\delta 35,9$.

(-)-11

3.3 Transformación de la cadena del cetol 11

3.3.1 Primera síntesis del nakamurol \mathbf{A}^{25}

La única naftalenona sustituida en C9 y C10 que pudimos obtener fue el cetol 11. Así pues, decidimos su utilización como intermedio clave en la síntesis del nakamurol A mediante la transformación de la cadena de hidroximetilo en una de 3-oxobutilo que sería precursora de la requerida de 3-hidroxi-3-metil-4pentenilo.

Nos planteamos dos vías para llevar a cabo la modificación del grupo hidroxilo. Una primera posibilidad era la sustitución por una cadena de malonato. Se preparó el mesilderivado 12 por reacción del cetol 11 con cloruro de mesilo con un rendimiento prácticamente cuantitativo. Éste se hizo reaccionar con la sal sódica del malonato de dimetilo ${ }^{63}$ para obtener una mezcla del producto de sustitución y la lactona de enol derivada de éste, con un rendimiento total moderado.

Antes de intentar la optimización de este resultado e insistir en la vía de sustitución del grupo hidroxilo decidimos sacrificar temporalmente el centro estereogénico en C9, trabajando con la enona 15 para acceder a la cadena de 3-oxobutilo. Para ello, el mesilato 12 se sometió al proceso de eliminación inducido por tratamiento con DBU y rindió la α-metilencetona 15 con buen rendimiento.

La enona 15 debe purificarse inmediatamente después de su obtención, ya que el almacenamiento de muestras no destiladas induce la dimerización ${ }^{66,67}$ de la enona para dar un aducto, cuya estructura no ha podido ser caracterizada hasta el presente. Se trata de un dímero no simétrico ya que muestra duplicidad de señales para la mayoría de los carbonos del sistema de decalina en el espectro de ${ }^{13} \mathrm{C}-$ RMN. Sus datos más significativos son la presencia de un solo grupo carbonilo a $\delta=214,2$ y de cuatro señales de carbonos cuaternarios a $\delta=87,112,126$ y 145,5 que sugieren la presencia de un éter de enol. En el espectro de ${ }^{1} \mathrm{H}-\mathrm{RMN}$ no aparece ninguna señal atribuible a protones vinílicos; la única señal aislada, aparte de las correspondientes a los grupos metilos, aparece a $\delta=3,10$ en forma de triplete de dobletes.
La reacción de Sakurai sobre la enona exocíclica 15 en condiciones estándar ${ }^{68}$, aliltrimetilsilano (2,5 equiv.) y TiCl_{4} (1 equiv.) funcionó con buen rendimiento (94%), cuando las condiciones de reacción fueron estrictamente anhidras para rendir las decalonas 16 y 17 (2:3).

[^5]Este resultado nos hizo descartar el producto de sustitución con malonato de dimetilo y optamos por estudiar la reactividad del butenil derivado.
La duplicidad de señales en el espectro de ${ }^{13} \mathrm{C}-\mathrm{RMN}$ de la decalona obtenida pone de manifiesto que se ha obtenido una mezcla de epímeros en C9, proveniente de la protonación no diastereoselectiva del enolato de titanio en el final de la reacción en medio acuoso (el análisis por cromatografía de gases también revela la presencia de dos compuestos en una relación 2:3).

Es de reseñar que la estereoselectividad del proceso es sensible a las condiciones del trabajo final de reacción ya que los porcentajes de ambos isómeros 16 y 17 oscilaron según los ensayos. Además si se utiliza un exceso de TiCl_{4} también se aísla el éter de enol representado, resultante del ataque en el medio de reacción del enolato al alqueno de la cadena lateral activado por el titanio.

Esquema 15. La alilación de Sakurai de la enona 15

A fin de optimizar el rendimiento del isómero 17, la mezcla de epímeros se trató con KF en el seno de etanol a reflujo durante 72 h para inducir la epimerización en C9 de 16 y obtener así en mayor proporción el isómero deseado, 17. El resultado fue altamente satisfactorio ya que se aisló una mezcla 9:1 de 17 y 16 con los que se prosiguió el proceso de síntesis. El compuesto 17, mayoritario tras el proceso de epimerización, dispone la cadena de butenil en posición ecuatorial. La señal del protón $\mathrm{H} 9_{\mathrm{ax}}$ permitió la asignación estereoquímica de

17, tanto su multiplicidad (doblete) y sus constantes de acoplamiento, como por sus acoplamientos NOESY, concretamente con otros protones en disposición axial H2, H4 y H7. Además, el hecho de que la señal de H 9 aparezca de forma aislada en el espectro de RMN de protón, puede utilizarse para evaluar de forma rápida la relación de isómeros tras la reacción de alilación de Sakurai.

17

16

Esquema 16. Epimerización de C9

Sobre el compuesto 17 era necesario llevar a cabo la metilenación del C8 y la oxidación del alqueno terminal. Para dichas transformaciones nos planteamos el uso de las reacciones de Wittig y Wacker respectivamente.

Como muestra el esquema 17, cuando se sometió 17 a las condiciones de oxidación de Wacker ${ }^{69,70}$ se obtuvo la dicetona 28 con un rendimiento excelente. La adición de bromuro de vinilmagnesio selectiva al carbonilo terminal debía generar un precursor inmediato del nakamurol A. Lamentablemente, estos ensayos no dieron los resultados esperados, ya que en lugar del producto de adición se obtuvo un compuesto tricíclico resultado de la enolización de la metilcetona y posterior proceso aldólico.

[^6]

Esquema 17. Las reacciones de Wittig y de Wacker

La estrategia que nos planteamos entonces fue la inversión del orden de las reacciones llevando a cabo en primer lugar la metilenación de Wittig sobre la cetona 17 para tener el dialqueno 18 y sobre éste estudiar si era posible una reacción de Wacker quimioselectiva sobre el alqueno terminal. Posteriormente se ensayaría la adición de bromuro de vinilmagnesio para obtener el nakamurol A.

El estudio de la bibliografía revela la buena quimioselectividad de la reacción de Wacker frente a dos alquenos diferentemente sustituidos. Esta reacción es bastante sensible al impedimento estérico y es posible oxidar selectivamente alquenos monosustituidos terminales a metilcetonas, frente a alquenos disustituidos ${ }^{71}$.

La síntesis del dialqueno 18 se llevó a cabo por tratamiento de la decalona 17 con un exceso de iluro de fósforo con un rendimiento del 79%.

La oxidación de Wacker del doble enlace terminal del dialqueno 18 en las condiciones de reacción usuales $\left(\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{O}_{2}\right)$ proporcionó la metilcetona 19 con rendimiento ligeramente inferior al obtenido anteriormente sobre 17.

La metilcetona 19 así obtenida se trató con bromuro de vinilmagnesio para obtener finalmente el nakamurol A. La reacción, como era de esperar,

[^7]proporciona una mezcla del nakamurol A y su epímero en el carbono hidroxílico, el compuesto 20, en una relación 1,2:1. (Esquema 18) ${ }^{72}$.

Esquema 18. Etapa final de la primera síntesis del ent-nakamurol A y su epímero

La síntesis descrita es unívoca en lo referente a la estereoquímica de los productos obtenidos excepto en la última etapa de adición de bromuro de vinilmagnesio sobre la cetona 19, que da lugar a una mezcla prácticamente equimolecular de los dos epímeros. Esta primera síntesis conduce a nakamurol A y a su epímero en C13 en una secuencia de ocho pasos desde la naftalenona (-)-3 con un rendimiento global del 11,8\%. En este punto nos planteamos diversas estrategias con el fin de disponer de nakamurol A puro. Nuestros primeros esfuerzos se dirigieron a la separación cromatográfica convencional. Por ello la mezcla de diastereómeros se eluyó usando como æe estacionaria gel de sílice SDS 60 (230 - 400 mesh ASTM) (25 gramos para 100 mg de crudo) y como eluyente una mezcla de hexano y acetato de etilo en el gradiente: 100/0 a 96/4. La mezcla eluyó al 3% de acetato de etilo en hexano, detectándose algunas fracciones enriquecidas. Por ello se insistió en este sentido sustituyendo el hexano por ciclohexano, esperando con ello una mayor resolución. Lamentablemente no fue así y se recuperaron ambos compuestos juntos

Llegado este punto se pensó en resolver la mezcla mediante cromatografía líquida de alta presión (HPLC-MS), y empleamos inicialmente una columna analítica aquiral; (Nucleosil $\mathrm{C}_{18} 120250 \times 4,6 \mathrm{~mm}$, Teknokroma). Se ensayaron

[^8]distintos eluyentes en modo isocrático y en distintos gradientes. En ningún caso se consiguió la separación de ambos compuestos, observando siempre como pico molecular m/z 273, correspondiente a $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, \mathrm{m} / \mathrm{z} 217$ y pérdidas sucesivas de 14 unidades.

Los datos espectroscópicos del nakamurol A sintético son totalmente coincidentes con los descritos por Umeyama ${ }^{14}$ para el nakamurol A natural.

Desafortunadamente dicho autor nos indicó que no disponía de muestra del producto natural que nos hubiese permitido otras comprobaciones de identidad como sería su comportamiento frente a diversos tipos de cromatografía.

Nakamurol A

Epímero, 20

Aunque los datos de resonancia magnética nuclear de protón del isómero mayoritario formado, eran consistentes con los datos descritos para el producto natural, no fue posible asignar evidentemente la configuración absoluta del nakamurol A ni tampoco la configuración en el C13 de forma inequívoca a partir del componente mayoritario de la muestra epimérica, pero si llevar a cabo una asignación tentativa de la misma.
El análisis cuidadoso del los datos de RMN de la mezcla de 1 y 20 nos permitieron llevar a cabo una asignación tentativa de la configuración en C13 para ambos compuestos y consecuentemente proponer la configuración relativa del nakamurol A.

La asignación estereoquímica del C13 para 1 y su epímero 20 se basó específicamente en el desplazamiento químico de los protones vinílicos en C17 en ambos epímeros. Estos protones se observan a campos más bajos y con menor $\Delta \delta$ entre ellos en el compuesto 1. Esta tendencia se observa
repetidamente en diterpenos de tipo labdano con una relación (S, S) entre los centros estereogénicos de C9 y C13, cuando se comparan con los correspondientes epímeros de configuración $(13 R)^{72,73,74}$ (véase tabla 1, página 52). Consecuentemente, considerando que el compuesto 1 posee configuración (9R), ya que estamos trabajando en la serie enantiomérica con respecto a manool y a los diterpenos de tipo labdano, la configuración (13R) fue asignada para 1.

Resumiendo, teniendo en cuenta los datos espectroscópicos descritos para diterpenos de tipo labdano que incorporan una unidad de 3-hidroxi-3-metil-4pentenilo en C9 y un grupo metileno en C17, los datos de RMN de los protones vinílicos pueden utilizarse para asignar la configuración en C13 de compuestos naturales, cuando se dispone de los datos de ambos epímeros.

Tal como se refleja en la tabla adjunta para una serie de diterpenoides de tipo labdano para los que se dispone de sus valores de RMN de ${ }^{1} \mathrm{H}$ de epímeros en C13, se constata, en la serie enantiomérica representada, que los isómeros de configuración $13 S$ muestran un mayor desapantallamiento para ambos protones vinílicos en C 17 y a su vez la diferencia de desplazamiento químico $\left(\Delta \delta \mathrm{H}_{17 \mathrm{~A}}-\mathrm{H}_{17 \mathrm{~B}}\right)$ es menor que la correspondiente a la pareja de protones vinílicos del isómero de configuración $13 R$.

[^9]Tabla 1. Desplazamiento químico de los protones vinílicos en C17 en compuestos con la subunidad estructural C8-C17 / C20 común

Compuestos con configuración $9 S, 13 R$

Compuestos con configuración $9 S, 13 S$

$=\mathrm{CH}_{2}$	$\Delta \delta$	Ref.	$=\mathrm{CH}_{2}$	$\Delta \delta$	Ref.
13-epi-nakamurol A (20)			Nakamurol A (1)		
4,45 / 4,80	0,35	*	4,50 / 4,82	0,32	14, *
Manool			13-epi-manool		
4,46 / 4,80	0,34	73	4,50 / 4,80	0,30	73
3α-hidroximanool			3α-hidroxi-13-epi-manool		
4,49 /4,82	0,33	74	4,53 / 4,83	0,30	71
3α-OTBS manool			3α-OTBS 13-epi-manool		
4,46 / 4,79	0,33	71	4,50 / 4,80	0,30	71
33-hidroximanool			33-hidroxi-13-epimanool		
4,50 / 4,83	0,33	75		0,30	75
4,49 / 4,82	0,33	76		0,30	73
4,50 / 4,82	0,32	77			

[^10]En nuestro caso, el nakamurol A se acopla al patrón de comportamiento de un isómero $13 S$ considerando la configuración relativa $9 S, 10 R$. Así pues, la configuración relativa del nakamurol A queda establecida como $4 R S, 5 S R$, $9 R S, 10 S R, 13 R S$. En la figura 7 se propone la configuración relativa del nakamurol A y su enantiómero ent-nakamurol A.

[^11]

4S,5R,9S,10R,13S

0

4R,5S,9R,10S,13R

Figura 7

3.3.2 Diseño de una vía unívoca de para la configuración $13 R$

3.3.2.1 A través de la sulfona 27

Ante la imposibilidad de resolver la mezcla epimérica decidimos encaminar nuestros pasos hacia la síntesis estereoselectiva del isómero $(4 R, 5 S, 9 R, 10 S, 13 R)$, el cual en base a nuestra teoría debía ser nakamurol A o bien su enantiómero. En esta nueva aproximación se pretendía controlar la estereoquímica de la cadena lateral mediante una reacción que proporcionara exclusivamente 1. Por ello pensamos en el empleo de una sulfona tal como 27. El α-carbanión de 27 podría adicionarse ${ }^{78}$ provocando la apertura del óxido de $(3 R)$-isopreno ${ }^{79}$ y ello nos proporcionaría un solo isómero. Tras la etapa de adición al epóxido, debíamos ser capaces de eliminar el grupo fenilsulfonilo.

El procedimiento se ensayó sobre un modelo sencillo a fin de comprobar la bondad del mismo. Así el sulfuro de etilo y fenilo se oxidó a la correspondiente sulfona. Ésta se sometió a las condiciones descritas por Cane ${ }^{78}$ para adicionarse al epóxido indicado para proporcionar la correspondiente sulfona.

[^12]Finalmente la desulfuración ${ }^{80}$ se logró aunque con rendimiento moderado, mediante el uso de la amalgama $\mathrm{Na}(\mathrm{Hg})$ al 5%.

En vista de estos resultados decidimos aplicar esta secuencia a la sulfona para acceder al nakamurol A. Para la preparación de 27, exploramos paralelamente tres vías sintéticas que se comentan a continuación.
i. La primera aproximación para acceder a 27, parte del mesilato 12. En éste caso en primer lugar se llevó a cabo la metilenación de la posición C8, accediendo al intermedio 21^{81}. Sobre 21 se llevaron a cabo diferentes ensayos a fin de transformar el grupo mesilo en el grupo fenilsulfonilo. El tratamiento de 21 con $\mathrm{PhSO}_{2} \mathrm{Na}$ en DMF a temperatura ambiente proporcionó el producto 21 inalterado. Los intentos de transformar 21 en el correspondiente yoduro, también fueron infructuosos.

ii. Decidimos entonces iniciar la secuencia con la adición conjugada de tiofenol ${ }^{82}$ sobre la cetona α, β-insaturada 15.

[^13]

El sulfuro 24 fue también accesible según la ruta que figura a continuación, y que desde la decalona (-)-3, supone una etapa menos de reacción.

Tras la obtención de 24, se ensayó sobre dicho sustrato la metilenación de Wittig que proporcionó 26. La transformación del sulfuro a sulfona habría de aumentar la acidez de los protones en α, hecho que facilitaría su abstracción en el siguiente paso de reacción. Además el grupo fenilsulfonilo podría eliminarse ${ }^{78,83}$ tras la adición mediante el tratamiento con amalgama de sodio en metanol. La oxidación quimioselectiva de 26 se llevó a acabo utilizando Oxone ${ }^{\circledR}\left(2 \mathrm{KHSO}_{5} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4} \cdot \mathrm{KHSO}_{4}\right)$ como agente oxidante en el seno de metanol y agua y proporcionó el intermedio clave deseado 27. Estas tres etapas que conducen de 15 a 27 tienen un rendimiento global del 49\%.

[^14]iii. Alternativamente, se preparó 27 siguiendo el esquema 19.

Esquema 19. Preparación de 27

En este caso se invirtieron los pasos de reacción llevando a cabo primero la oxidación de 24 seguida por la metilenación ${ }^{84}$ en condiciones no básicas de la cetona presente en 25. Esta secuencia tiene un rendimiento global inferior (30\% para las tres etapas) y por tanto no representó ninguna mejora.

Desafortunadamente la sulona 27 resultó inerte frente al tratamiento con distintas bases y en presencia del epóxido adecuado. En todos los ensayos se recuperó el material de partida inalterado. Así por ejemplo, al tratar la sulfona 27 con n-butil-litio en presencia de HMPA, seguido de tratamiento con el oxirano adecuado y triltor uro de bor o et eto en el seno de tetrahidrofurano durante 12 horas, se obtuvo el producto de partida inalterado en un 84% (véase tabla 2).

[^15]En la siguiente tabla se resumen las condiciones experimentales ensayadas:

Tabla 2. Condiciones ensayadas para la alquilación de la sulfona 27

entrada	base (equiv.) aditivo	ácido Lewis (equiv.)	(T)	tiempo	$\begin{aligned} & \text { A o B } \\ & \text { (equiv.) } \end{aligned}$
1^{78}	$n-B u L i(1,3)^{\text {a }}$	---	t.a	3 h	A (1,3)
2	$n-B u L i(1,3)^{\text {a }}$	---	t.a	3 h	A (2)
3^{85}	$n-B u L i(1,3)^{\text {a }}$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1,5)$	t.a	2,5 h	A (1,5)
4^{86}	$n-\operatorname{BuLi}(1,3)$, HMPA $^{\text {b }}$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1,5)$	t.a	48 h	A (2)
5^{84}	$n-\operatorname{BuLi}(1,3)$, HMPA $^{\text {b }}$	$\mathrm{Ti}(i-\mathrm{PrO}){ }_{4}(1,5)$	t.a	48 h	A (2)
6	$n-\operatorname{BuLi}(1,3)$, HMPA $^{\text {b }}$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(5)$	t.a	12 h	A (5)
7	$n-\operatorname{BuLi}(1,3)$, HMPA $^{\text {b }}$	$\mathrm{TiCl}_{4}(1,5)$	$-78{ }^{\circ} \mathrm{C}$	3 h	A (2)
8	n-BuLi (4), HMPA ${ }^{\text {b }}$	---	$-20^{\circ} \mathrm{C}$	3 h	B (2)

${ }^{\text {a }}$ La reacción se llevó a cabo utilizando THF como disolvente.
${ }^{\mathrm{b}}$ La reacción se llevó a cabo utilizando THF:HMPA (4:1) como disolvente.

[^16]Por ello tratamos de aprovechar la metodología de Cohen ${ }^{87}$ que ha aplicado a diversos sustratos la litiación en α al grupo tiofenil mediante el uso de anión radical del 4,4'-di-terc-butilbifenilo.

Cuando tratamos de generar el anión en α del etilenacetal del sulfuro 24 se recuperó el sulfuro de partida en todos los ensayos.

Otro sustrato susceptible de proporcionar el producto de adición es 26. En este caso tampoco conseguimos formar el litio derivado.

Debido a las dificultades y la imposibilidad de generar el anión deseado decidimos abordar la síntesis por otro camino.

[^17]
3.3.2.2 A través del compuesto tricíclico 30

Otra aproximación potencial al compuesto 1 se refleja en el esquema sintético 20. La secuencia tiene como pasos claves la adición al carbonilo en el sistema tricíclico y la posterior apertura del ciclo formado mediante una ROM (ring opening metatesis) ${ }^{88}$.

30
1

Esquema 20

El producto resultante de la reacción de alilación de Sakurai, 17, se sometió a las condiciones estándar de oxidación de Wacker ${ }^{69}$. La oxidación del metileno terminal transcurre con rendimiento elevado. A continuación se induce la ciclación en medio básico que transcurre mediante la enolización de la metilcetona y la posterior reacción aldólica y deshidratación del alcohol resultante.

La siguiente etapa consistió en la adición de yoduro de metilmagnesio sobre la enona tricíclica. Esperábamos en este caso observar una selectividad en el ataque al carbonilo, en la etapa que generaría la estereoquímica relativa en C13.

[^18]Desafortunadamente, el producto de adición evolucionó rápidamente al producto de deshidratación 31, posiblemente durante el tratamiento acuoso en el final de reacción. Éste hecho nos hizo abandonar ésta aproximación.

3.3.2.3 Mediante el uso de la reacción de Sharpless

En este punto pensamos que quizás una buena estrategia para llegar a 1 podría ser el empleo de la reacción de epoxidación de Sharpless para controlar la estereoquímica del C13. Con el fin de familiarizarnos con esta metodología y la posterior transformación del epóxido generado en el correspondiente alcohol alílico, ensayamos primero la ruta sobre un análogo simplificado de nuestra estructura de partida.
Así el Geraniol se sometió a las condiciones descritas por Sharpless ${ }^{89}$ y se obtuvo el epoxigeraniol ${ }^{90}$ 33, con buen rendimiento. Esta reacción que fue descrita en 1980 por Sharpless implica la transformación de un alcohol alílico al correspondiente epoxialcohol con elevada pureza enantiomérica. En dicha transformación se utiliza terc-butilhidroperóxido; y en cantidades catalíticas Ti($i-$ $\mathrm{PrO})_{4}$ y como inductor de quiralidad un tartrato. En particular, al utilizar L-(+)tartrato de isopropilo en condiciones experimentales optimizadas, que incorporan el uso de tamiz molecular de $4 \AA$, se obtuvo 33 en un 95%. El epóxido 33 se transformó en el correspondiente tosilato, 34, según muestra el esquema 21 a continuación.

[^19]

(41\%)

Esquema 21. Síntesis de (S)-Linalool a partir de Geraniol

Sobre el epoxigeraniol 34 ensayamos las dos rutas representadas en el esquema 21. La primera consta de dos etapas: primero la formación del yoduro que sin posterior purificación experimentó la apertura del époxido en condiciones ácidas. Estas dos etapas tuvieron un rendimiento global del 38\%. La segunda vía consiste en el empleo del teluro metal en presencia de rongalite $\left(\mathrm{HOCH}_{2} \mathrm{SO}_{2} \mathrm{Na}\right)$. Este procedimiento genera Te^{2-}, que induce una sustitución nucleófila sobre el tosilato seguida por la apertura del epóxido y pérdida concomitante de Te elemental ${ }^{91,92}$. En éste caso el rendimiento fue del 41% y la transformación requiere una sola etapa operacional.

Con estos resultados, finalmente dirigimos nuestros esfuerzos hacia la síntesis de 1 en forma enantiopura usando como etapa clave ${ }^{93}$ la apertura reductiva del epóxido presente en 41. Con este fin retomamos la síntesis del nakamurol A a partir de la cetona 19, cuya síntesis habíamos descrito en la primera

[^20]aproximación (3.3.1, página 44). La transformación de la cadena lateral se llevó a cabo por tratamiento de 19 con la sal sódica de trimetilfosfonoacetato en tetrahidrofurano y rindió una mezcla de diastereómeros 38:37 en relación 5:1 que no pudo separarse mediante cromatografía en columna.

Esquema 22. Obtención enantioselectiva de 41

Siendo el isómero mayoritario 38, el favorable a nuestros intereses, se llevó a cabo la etapa de reducción sobre la mezcla diastereomérica usando como agente reductor DIBALH ${ }^{94}$. Esta reducción proporcionó el alcohol alílico 40^{95} (60% de rendimiento desde 19) necesario para la epoxidación asimétrica de Sharpless, junto con el isómero minoritario 39, que pudo separarse mediante cromatografía en columna.
El compuesto 40 se sometió a las condiciones descritas por Sharpless ${ }^{89}$. En nuestro caso utilizamos el D-(-)-dietil tartrato (DET), que en presencia de isopropóxido de titanio y terc-butilhidroperóxido y tamiz molecular, proporcionó

[^21]0

el epóxido de configuración (13R, 14R) - 41 en un 53% de rendimiento como isómero mayoritario 9:1. El epóxido diastereómero pudo separase sin dificultad. La estereoquímica de 41 se asignó en base a los datos espectroscópicos de correlación protón-protón (NOESY 600 MHz), teniendo en cuenta la correlación directa prevista teóricamente entre el uso de un determinado tartrato y la configuración del producto resultante ampliamente estudiada en la bibliograía ${ }^{96}$ (véase figura 8).

Figura 8

Para obtener el producto deseado 1 a partir de 41, éste se transformó en el correspondiente tosilato, que se trató con teluro metal en presencia de rongalite $\left(\mathrm{HOCH}_{2} \mathrm{SO}_{2} \mathrm{Na}\right)$ en medio acuoso. Tras este proceso estereocontrolado se aisló el compuesto 1, que mostró idénticos datos espectroscópicos de ${ }^{1} \mathrm{H}$ y ${ }^{13} \mathrm{C}$ al producto natural, nakamurol A descrito por Umeyama ${ }^{14}$ en 1996.

Esquema 23. Obtención enantioselectiva del ent-nakamurol A mediante apertura reductiva del epóxido presente en 41

[^22]Para establecer la estereoquímica absoluta del producto natural nakamurol A sólo fue necesario medir la rotación óptica del producto sintetizado 1, cuya configuración absoluta es: $(4 R, 5 S, 9 R, 10 S, 13 R)$. El poder rotatorio del producto sintetizado 1 fue $[\alpha]_{D}=-36,3\left(c=0,02, C H C l_{3}\right)$, valor de signo opuesto al descrito por Umeyama para el producto natural $[\alpha]_{D}=+39,1\left(c=1,6, \mathrm{CHCl}_{3}\right)$. Con ello se pone de manifiesto que el producto sintetizado es el ent-nakamurol A. Además se concluye que la configuración absoluta del diterpeno natural nakamurol A es: $(4 S, 5 R, 9 S, 10 R, 13 S)$.

3.4. Conclusiones

La primera síntesis del ent-nakamurol A consta de dieciséis etapas a partir de la (-)-3-metilciclohexanona con un rendimiento global del 3,4\% (Esquema 24, página 66). Sólo se obtiene un ligero control estereoquímico en la génesis del estereocentro en C13 que se basa en el control efectuado por la estructura del sustrato. La reacción del bromuro de vinilmagnesio sobre la cetona 19 tiene lugar de manera más rápida por la cara Si que por la cara Re.
Es de resaltar que se ha establecido una regla empírica para la elucidación de la configuración relativa del C13, siempre que se disponga de los espectros de ${ }^{1} \mathrm{H}-\mathrm{RMN}$ de ambos epímeros en C 13 , en productos con la misma subestructura C8 - C17 presente tanto en el nakamurol A como en los diterpenos de tipo labdano, manool y derivados. La diferencia de desplazamiento químico entre los protones vinílicos en C17 tiene un valor $\Delta \delta$ menor en los epímeros de configuración $13 S$ que en los opuestos de configuración $13 R$, cuando la configuración en C 9 sea S . En la serie enantiómera en la que C 9 sea R, el menor valor para $\Delta \delta$ entre los protones en C17 será para el compuesto con configuración $13 R$ (véase tabla 1, página 52) ${ }^{97}$.

[^23]

Esquema 24. Primera síntesis del ent-nakamurol A

Se ha llevado a cabo la síntesis unívoca del ent-nakamurol A, que permite establecer inequívocamente la configuración relativa del carbono 13 y la configuración absoluta del diterpenoide de origen marino nakamurol A^{98}. En la síntesis de segunda generación el control en la estereoquímica del centro en C13 se establece en base a un proceso de epoxidación asimétrica de Sharpless, o sea que el control proviene del reactivo. Aunque el proceso de síntesis es algo más largo en número de etapas que el precedente, conduce enantioselectivamente al ent-nakamurol A sin que se on me quírero en d 3.

La síntesis total consta ahora de 20 etapas con un rendimiento global del $0,32 \%$ desde la (-)-3-metilciclohexanona. Las dos síntesis descritas en esta Tesis para el nakamurol A son las primeras que se han establecido para un diterpenoide de tipo telepogano.

Esquema 25. Segunda síntesis del ent-nakamurol A

[^24]
[^0]: ${ }^{54}$ Para la formación de cis-4a,8a-dimetildecalinas mediante adición de organometálicos sobre enonas, véase: (a) Marshall, J. A.; Bundy, G. L.; Fanta, W. I. J. Org. Chem. 1968, 33, 39133922. (b) Piers, E.; deWaal, W.; Britton, R. W. J. Am. Chem. Soc. 1971, 93, 5113-5120.
 ${ }^{55}$ Para estudios de organocupratos con sistemas rígidos de cetonas α, β-insaturadas, véase: Vellekoop, A. S.; Smith, R. A. J. Tetrahedron 1998, 54, 11971-11994 y referencias citadas.
 ${ }^{56}$ Para reacciones en tándem de difuncionalización de sustratos carbonílicos α, β-insaturados, véase el siguiente review: Chapdelaine, M. J.; Hulce, M. Org. React. 1990, 38, 225-653.
 ${ }^{57}$ Bertz, S. H.; Smith, R. A. J. Tetrahedron 1990, 46, 4091-4100.

[^1]: ${ }^{58}$ Smith, A. B., III; Nolen, E. G. Jr.; Shirai, R.; Blase, F. R.; Ohta, M.; Chida, N.; Hartz, R. A.; Fitch, D. M.; Clark, W. M.; Sprengeler, P. A. J. Org. Chem. 1995, 60, 7837-7848.
 ${ }^{59}$ Danishefsky, S. J.; Simoneau, B. J. Am. Chem. Soc. 1989, 111, 2599-2604.

[^2]: ${ }^{60}$ El compuesto 23 se halla descrito en la literatura (Cory, R. M.; Burton, L. P. J.; Chan, D. M. T.; McLaren, F. R.; Rastall, M. H.; Renneboog, R. M. Can. J. Chem. 1984, 62, 1908-1921) como intermedio de una síntesis terpénica pero no se caracterizó inequívocamente. En el espectro de RMN de ${ }^{1} \mathrm{H}$ solamente se hace ree enci a a ds señal \Subset : un ma ltiplete a $\delta=0,88 \mathrm{ppm}$ y un doblete ancho a $\delta=3,05 \mathrm{ppm}$.

[^3]: ${ }^{61}$ Para estudios de RMN ${ }^{13} \mathrm{C}$ de cis-10-metil-2-decalonas, véase: (a) Browne, L. M.; Klinck, R. E.; Stothers, J. B. Org. Magn. Reson. 1979, 12, 561-568. (b) Gramain, J. C.; Quirion, J. C. Magn. Reson. Chem. 1986, 24, 938-946. (c) Di Maio, G.; Migneco, L. M.; Vecchi, E.; lavarone, C. Magn. Reson. Chem. 2000, 38, 108-114.

[^4]: ${ }^{62}$ Kingsbury, C. L.; Sharp, K. S.; Smith, R. A. J. Tetrahedron 1999, 55, 14693-14700 y referencias citadas.
 ${ }^{63}$ Para un proceso en tandem relacionado, véase: Tokoroyama, T.; Fujimori, K; Shimizu, T; Yamagiwa, Y.; Monden, M.; lio, H. Tetrahedron 1988, 44, 6607-6622.
 ${ }^{64}$ Para un resultado análogo, véase: Cory, R. M.; McLaren, F. R.; J. Chem. Soc., Chem. Commun. 1977, 587-588.
 ${ }^{65}$ Para el uso de estos reactivos en procesos relacionados, véase: (a) Luche, J. L.; Petrier, C.; Lansard, J. P.; Greene, A. E. J. Org. Chem. 1983, 48, 3837-3839. (b) Smith, A. B., III; Leenay, T. L. Tetrahedron Lett. 1988, 29, 2787-2790. (c) Fox, M. E.; Li, Chi; Marino, J. P.; Overman, L. E. J. Am. Chem. Soc. 1999, 121, 5467-5480.

[^5]: ${ }^{66}$ Theocharis, C. R. "Dimerization and polymerization of enones in the fluid and solid states" en "The chemistry of enones" Patai, S.; Rappoport, Z. eds., Wiley, Chichester, 1989, vol. 2, cap. 22.
 ${ }^{67}$ Para ejemplos de dimerización de enonas en el campo de los esteroides; véase: (a)
 Romann, E.; Frey, A. J.; Stadler, P. A.; Eschenmoser, A. Helv. Chim. Acta 1957, 40, 1900-1917.
 (b) DellaGreca, M.; Monaco, P.; Previtera, L.; Zarrelli, A.; Fiorentino, A.; Giordano, F.; Mattia, C. A. J. Org. Chem. 2001, 66, 2057-2060.
 ${ }^{68}$ Heathcock, C. H.; Kleinman, E. F.; Binkley, E. S. J. Am. Chem. Soc. 1982, 104, 1054-1068.

[^6]: (a) Tsuji, J.; Yamada, T.; Shimizu, I. J. Org. Chem. 1980, 45, 5209-5211. (b) Tsuji, J.; Nagashima, H.; Hori, K. Tetrahedron Lett. 1982, 23, 2679-2682.
 ${ }^{70}$ Tsuji, J. Synthesis 1984, 369-384.

[^7]: ${ }^{71}$ Para una aproximación sintética similar en la síntesis del copalol, véase: Toshima, H.; Oikawa, H.; Toyomasu, T.; Sassa, T. Tetrahedron 2000, 56, 8443-8450.

[^8]: ${ }^{72}$ La misma proporción de epímeros se observa en el curso de la síntesis del diterpeno manool y otros diterpenos de tipo labdano: Yasui, K.; Kawada, K.; Kagawa, K.; Tokura, K.; Kitadokoro, K.; Ikenishi, Y. Chem. Pharm. Bull. 1993, 41, 1698-1707.

[^9]: ${ }^{73}$ Barrero, A. F.; Sánchez, J. F.; Alvarez-Manzaneda, E. J.; Muñoz Dorado, M.; Haidour, A. Phytochemistry 1993, 32, 1261-1265.
 ${ }^{74}$ Kagawa, K.; Tokura, K.; Uchida, K.; Kakushi, H.; Shike, T.; Kikuchi, J.; Nakai, H.; Dorji, P.; Subedi, L. Chem. Pharm. Bull. 1993, 41, 1604-1607.

[^10]: * Este trabajo

[^11]: ${ }^{75}$ Shiojima, K.; Suzuki, M.; Aoki, H.; Ageta, H. Chem. Pharm. Bull. 1995, 43, 5-8.
 ${ }^{76}$ Lu, T.; Vargas, D.; Franzblau, S. G.; Fischer, N. H. Phytochemistry 1995, 38, 451-456.
 ${ }^{77}$ Torrenegra, R.; Reiner Waibel, J. R.; Löwel M.; Achenbach, H. Phytochemistry 1994, 35, 195199.

[^12]: ${ }^{78}$ Cane, D. E.; Yang, G. J. Org. Chem. 1994, 59, 5794-5798.
 ${ }^{79}$ Ohwa, M.; Kogure, T.; Eliel, E. L. J. Org. Chem. 1986, 51, 2599-2601.

[^13]: ${ }^{80}$ Demont, E.; Lopez, R.; Férézou, J-P. Synlett 1998, 1223-1226.
 ${ }^{81}$ Cambie, R.; Clark, G.; Goeth, M. E.; Rickard, C.; Rutledge, P.; Ryan, G.; Woodgate, P. D. Aust. J. Chem 1989, 42, 497-509.
 ${ }^{82}$ Tamura, R.; Watabe, K.; Kamimura, A.; Hori, K.; Yokomori, Y. J. Org. Chem. 1992, 57, 49034905.

[^14]: ${ }^{83}$ Trost, B.; Arndt, H. C.; Strege, P. E.; Verhoeven, T. R.; Tetrahedron Lett. 1976, 39, 34773478.

[^15]: ${ }^{84}$ Hibino, J.; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, 5579-5580.

[^16]: ${ }^{85}$ Marczak, S.; Wicha, J. Synth. Comm. 1990, 1511-1520.
 ${ }^{86}$ Scherkenbeck, J.; Barth, M.; Thiel, U.; Metten, K.; Heinemann F.; Welzel, P. Tetrahedron 1988, 44, 6325-6336.

[^17]: ${ }^{87}$ Cohen, T.; Zhang, B.; Cherkauskas, J. P. Tetrahedron 1994, 50, 11569-11584.

[^18]: ${ }^{88}$ Connon, S. J.; Blechert, S. Angew. Chem. Int. Ed. 2003, 42, 1900-1923.

[^19]: ${ }^{89}$ Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765-5780, y referencias citadas.
 ${ }^{90}$ Rodríguez, C. M.; Martín, T.; Ramírez, M. A.; Martín, V. S. J. Org. Chem. 1994, 59, 44614472.

[^20]: ${ }^{91}$ (a) Dittmer, D. C.; Discordia, R. P.; Zhang, Y.; Murphy, C. K.; Kumar, A.; Pepito, A. S.; Wang, Y. J. Org. Chem. 1993, 58, 718-731. (b) Kumar, A.; Dittmer, D. C. Tetrahedron Lett. 1994, 35, 5583-5586.
 ${ }^{92}$ Para ver un procedimiento alternativo, trabajando con el correspondiente yoduro, para convertir epoxi tosilatos en alcoholes alílicos terciarios, véase: Nicolaou, K. C.; Duggan, M. E. Tetrahedron Lett. 1984, 25, 2069-2072, y ref. 90.
 ${ }^{93}$ Para un procedimiento alternativo para la transformación de la cadena de 3-oxobutilo a 5-hidroxi-3-metil-3-pentenilo en el campo de los terpenos, véase: Barrero, A. F.; ÁlvarezManzaneda, E. J.; Chahboun, R.; Rodríguez Rivas, A.; Linares Palomino, P. Tetrahedron 2000, 56, 6099-6113.

[^21]: ${ }^{94}$ Ohba, M.; Kawase, N.; Fujii, T. J. Am. Chem. Soc. 1996, 118, 8250-8257.
 ${ }^{95}$ El alcohol alílico 40 es un precursor avanzado para la síntesis de otro producto natural, cuyo aislamiento se describe en la ref. 15:

[^22]: ${ }^{96}$ (a) Pfenninger, A. Synthesis 1986, 89-116. (b) Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1-299.

[^23]: ${ }^{97}$ En relación a esta conclusión es de interés un artículo de muy reciente aparición sobre síntesis de labdanos: Justicia, J.; Rosales, A.; Buñuel, E.; Oller-López, J. L.; Valdivia, M.; Haïdour, A.; Oltra, J. E.; Barrero, A. F.; Cárdenas, D. J.; Cuerva, J. M. Chem. Eur. J. 2004, 10, 1778-1788.

[^24]: ${ }^{98}$ Díaz, S.; Cuesta, J.; González, A.; Bonjoch, J. J. Org. Chem. 2003, 68, 7400-7406.

