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Resum de la tesi

l Introducció

L'objecte d'aquesta tesi és l'estudi dels fenòmens d'adsorció en suspensions col.loidals.
Aquests sistemes formen en moltes situacions una única capa de partícules adsorbidas
degut a l'existència d'interaccions atractives amb la paret i l'absència de tais interac-
cions entre les pròpies partícules, la qual cosa assegura l'estabilitat de la suspensió.
A més, aquestes interaccions atractives entre els col.loids i la superfície fa que les
parícules, un cop adsorbides, no es moguin. Es parla, per tant, d'adsorció localitzada.
Degut a això, el procés d'arribada de les partíales a la superfície té una memòria llarga,
en el sentit que la posició a la qual s'adsorbeix una partícula depèn de les posicions
a les quals s'han adsorbit les anteriors. Així, aquest procés és intrínsecament de no
equilibri, i nous mètodes, diferents dels usuals de la mecànica estadística d'equilibri
han de ser desenvolupats. En aquest sentit, hom normalment dedueix equacions
cinètiques que permeten predir el comportament de les partícules adsorbides. En el
cas de col.loids, però, la forma específica per la qual arriben a la superfície, és a dir,
els mecanismes de transport, juga un paper important que determina la forma en què
les partícules poden adsorbir-se.Tanmateix, els estudis duts a terme s'han centrat,
bé en una desc.ripció detallada del moviments de la suspensió i la seva influència en
l'arribada a la superfície, bé en el tractament acurat dels efectes de volum exclòs lligats
a la fixació de les partícules a la paret. L'objectiu de la present tesi és comprendre
la interrelació entre ambdós processos, i els seus efectes sobre la capa de partícules
adsorbides.



2 Resultats

Al primer capítol hem introduit els models cinètics bàsics que han estat emprats a la
literatura per descriure els efectes de volum exclòs a la superfície. Són el model "Ran-
dom Sequential Adsorption" (RSA), que reprodueix algunes de les caraterístiques
pròpies de l'adsorció de col.loids que es comporten com a partícules Brownianes, i el
model "Ballistic Deposition" (BM), que ha estat proposat per descriure la deposició
de col.loids pesants, quan el procés de transport està caracteritzat per un mombre de
Péclet elevat.

Al segon capítol hem estudiat l'efecte de la inclusió d'una força externa paral·lela
a la superfície en els models precedents. Encara que aquests models no incorporen
el transport d'una forma acurada, l'objectiu ha estat veure la dependència del volum
exclòs amb els efectes cinètics propis del transport, posant de manifest que no són
deguts a efectes purament geomètrics, o que poguessin venir descrits per propietats
d'equilibri del sistema. Dins d'aquesta descripció, un camp de forces paral·lel serveix
també per descriure el comportament del sistema quan hom aplica un gradient de
velocitat. La característica bàsica d'aquests models és que, a més del diàmetre de
les partícules, apareix una nova longitud mínima a la qual dues partícules poden
trobar-se a la superfície. Una partícula incident no pot adsorbir-se a una distància
més petita que aquesta nova longitud a la dreta d'un col.loid prèviament adsorbit,
amb la qual cosa la cinètica esdevé asimètrica. Associat a aquesta nova longitud
mínima, que creix amb la magnitud força externa imposada, s'observa una dismin-
ució del recobrinient màxim de la superfície , l'anomenat jamming limit. Aquesta
dependència de les propietats dinàmiques amb la intensitat del camp extern no havia
estat predit abans per cap model. Hem estudiat clos models unidimensionals, on
es pot desenvolupar un estudi analític força complet, que hem complementat amb
simulacions numèriques. D'una banda, hem desenvolupat un model que segueix les
idees del model RSA amb aquesta nova característica ja esmentada. En aquest cas,
el model té solució analítica, la qual cosa ens ha permès fer un estudi de la cinètica,
veient que té un comportament similar al model RSA pel que fa al règim assimptòtic,
on l 'amplitud depèn de cr, i a temps curts hern deduït que la desviació respecte de
les prediccions d'equilibri apareix abans degut a que l'asimetria permet diferenciar
configuracions que a l ' equ i l ib r i són equivalents quan hi ha dues partícules adsorbides,



mentre que en RSA, és necessari esperar que n'hi hagi tres per començar a distingir
configuracions equivalents a l'equilibri. D'altra banda, també hem estudiat un model
que utilitza les idees de BM. En aquest cas, només és possible trobar una solució
analítica quan la força aplicada és feble (quan a < — 1 + 2/\/3). Per valors més
grans, un nou fenomen apareix: una partícula pot rodar per sobre d'un cert nombre
de partícules adsorbides abans d'arribar a adsorbir-se o ser refusada. Això implica
que uuna esfera incindent interaccionarà amb un nombre indeterminat de partícules,
tot i que l'adsorció és localitzada. En els models introduïts fins ara, la interacció de
la partícula adsorbent amb les adsorbides ha estat considerada sempre local, en el
sentit que l'acceptació o refús de la partícula incident només depèn de les posicions de
les partícules veïes, mentres que ara depèn d'un nombre indeterminat de partícules,
segons quina sigui la configuració a la superfície. A més, degut a l'atracció que existeix
sempre entre les partícules i el substrat, quan a > 1, un altre mecanisme apareix, pel
qual les partícules incidents poden girar a l'esquerra de parells que estan separats una
distància 1 + a. Això provoca un salt en el recobriment màxim, perquè posicions que
estaven prohibides, ara queden permeses. La funció de distribuciói radial presenta
més pics que la usual degut a les noves distàncies mínimes que apareixen, que implica
que són possibles nous mecanismes de rodament. En particular, quan la distancia a
esdevé múltiple del diàmetre, aleshores apareix una ressonància entre els mecanismes
de gir associats a les dues distàncies mínimes presents al model, i un substrat amb
una forta ordenació local apareix.

Al tercer capítol hem estudiat l'efecte del transport en adsorcions col.loidals en
les quals l'adsorció té lloc en presència d'un camp gravitatori, a un nombre de Péclet
elevat, la qual cosa implica que la difusió pot ser menyspreada. Corn a nou mecan-
isme respecte dels tractaments anteriors de l'adsorció tenint en compte el transport,
hem incorporat les interaccions hiclrodinàmiques (HI) , que existeixen sempre entre
partícules que es mouen en el si d'un fluid. En el nostre cas hem considerat que la
suspensió és diluïda, i que per tant, aquestes interaccions fan que el moviment de
la partícula incident depengui només de les posicions de les partícules adsorbides.
Primer hem estudiat configuracions molt simples de partícules adsorbides. En el
cas més senzill hem pogut dur a terme un estudi analític, encara que la resta del
treball ha estat fet amb l'ajut de simulacions numèriques. Aquestes situacions sim-
plificades han permès posar de manifest i quantificar l'efecte de les III a l'adsorpció



de col.loids pesants. Hom a trobat que les HI introdueixen una repulsió efectiva
entre la partícula incident i l'adsorbida, que pot arribar a donar resultats quanti-
tativament diferents respecte a les prediccions de BM, i que té un llarg abast. Un
cop establertes les característiques bàsiques, hem estudiat la cinètica d'emplenament
d'un substráete unidimensional. L'estudi ha estat fet mitjançant simulacions, on es
resolen numèricament les trajectòries de les partícules, on les HI apareixen de forma
implícita perquè afecten l'expressió dels coeficients de fricció, i expressions aproxi-
mades d'aquests són introduïts dins del que hom anomena hipòtesi d'adiiivitat,ja. que
no existeixen expressions analítiques d'aquests coeficients per configuracions generals
de partícules. Per aquest model unidimensional, la geometria és senzilla, així que la
hipòtesi que la partícula incident només interactua amb els primers veïns és raonable,
fet que alleuja el temps necessari per dur a terme les simulacions. Hem trobat que,
malgrat que les magnituds globals com el recubriment com a funció del temps, el
recobriment màxim o la fracció de línea accessible, no depenen fortament de les HI,
l'estructura local difereix de la predita per BM. Tot i que la funció de distribució de
parells ve caracteritzada per uns pics a distàncies múltiples del diàmetre, el decaïment
després d'aquests pics és sustancialment més lent en el model amb HI , la qual cosa
indica que degut a la repulsió efectiva, la distància entre partcícules tendeix a ser més
gran. També hem estudiat la deposició sobre un substrat bidimensional. .En aquest
cas, la descripció ha de fer-se amb més detall perquè la repulsió efectiva fa que la
trajectòria de la partícula incident canviï de direcció. En particular, aquesta repulsió
efectiva tendeix a crear triplets allargats a la superfície, allà on el model BM prediu
l'aparició de "clusters" isòtrops. Novament, la funció de distribució radial de parelles
mostra un decaïment més suau de la funció després dels pics. Per aquest model més
realista hem estat capaços de comparar les prediccions del nostre model amb resul-
tats experimentals recents sobre l'adsorció de partícules de melamina. Comparant les
corbes per la funció de ditribució radial obtingudes experimentalment, amb III i amb
BM, hom observa que l'acorde entre els experiments i HI és notablement millor que
amb BM. En particular, el decaïment més suau després del primer pic és observat
experimentalment. Així, hom ha provat que el model BM, que havia estat introduït
com un bon model per descriure l'adsorció de partícules pesades, només és vàlid a la
regió on el transport al fluid ve dominant pels termes inercials, en lloc dels viscosos
(que és on les HI són importants). Tanmateix, el transport de partícules col.loidals
ve controlat pels termes de dissipació viscosa, ja que el nombre de Reynolds és molt
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petit. D'altra banda, hi ha magnituds físiques de la capa adsorbida, com ara la per-
meabilitat elèctrica, que depenen de la distribució relativa de partícules. Per tant, el
mecanisme d'adsorció influirà en general en les propietats físiques de la superfície que
es crea.

Finalment, al capítol quatre, hem desenvolupat una teoria termodinámica del
procés d'adsorció. Ens hem centrat en l'anàlisi de les situacions en les quals l'adsorció
ve controlada per una barrera d'energia a la superfície. Una descripció termodinámica
acurada exigeix tenir en compte que la difusió a través d'una barrera de potencial és
un fenomen que indueix relacions no lineals entre el nombre de partícules que poden
atravessar la barrera i la força termodinámica que origina el traspàs de partícules. Per
això, hem introduït una nova variable a la superfície, anomenada variable interna, i
que està relacionada amb les diferents configuracions internes de les partícules a la su-
perfície. En aquest cas en què el transport des del volum ve controlat pel pas de la bar-
rera, hem estat capaços de deduir una equació de Langmuir generalitzada que és vàlida
localment. En els models del tipus RSA, hom ha obtingut equacions de Langmuir
globals, per l'evolució del recubriment mig de la superfície. L'obtenció d'equacions for-
malment equivalents al nivell local resulta d'interès, ja que dóna generalitat a aquest
comportament, alhora que el desenvolupament de la teoria termodinámica permet en-
tendre l'origen d 'un tal comportament. Si el transport a la superfície no ve controlat
per una barrera d'energia, hem mostrat la plaussibilitat d'una equació de Langmuir
generalitzada global per descriure la cinètica del recubriment global, encara que a
hores d'ara encara no és clara la relació entre aquest comportament global i la ter-
modinámica local del sistema. El comportament global és produït en aquest cas per
l'aparició de barreres entre-piques degut a la dificultat, per les partícules incidents, de
trobar una posició accessible a la superfície. L'única limitació dels resultats obtinguts
amb una teoria termodinámica és que hom introdueix la hipòtesi d'equilibri local en
un procés de no equilibri. De tota manera, la pròpia teoria no pot predir la seva lim-
itació, i no deixa de ser remarcable que una equació de tipus Langmuir sigui trobada
per tot el procés. D'altra banda, la formulació termodinámica presenta l'avantatge
que, degut a la seva estructura estándar, permet introduir de forma sistemàtica les
fluctuacions en les equacions de les magnituds físiques. D'aquesta manera, hom pot
estudiar l'evolució de les fluctuacions al voltants d'estats de referència. Hem deduït
els teoremes de fluctuaciò-dissipació pertinents quan existeix un grau de llibertat in-



tern, i hem aplicat els resultats a l'estudi de les (Uictuacions de densitat en un model
on hom permet la difusió superficial. Degut a l'intercanvi de massa entre el volum i
la superfície, un decaïment més lent de les correlacions, respecte l'esperat en sistemes
purament difusius, es observat.

3 Conclusions

En aquesta tesi hem dut a terme una sèrie d'estudis per entendre la relació que existeix
entre els processos de transport i els efectes geomètrics de volum exclòs en l'adsorció
de suspensions col.loidals. La motivació ha estat que, degut a la seva complexitat,
hom ha tendit a valorar només la importància d'un del elements. Mitjançant l'estudi
detallat de dos casos diferents, hem mostrat la interrelació entre ambdós elements, i
la necessitat de procedir a un estudi global de l'adsorció, malgrat resultí costós. En
aquest sentit, la utilització de simulacions numèriques esdevé un mètode indispens-
able. També hern mostrat que el transport introdueix nous mecanismes a l'aclsorció,
que poden resultar qualitativament diferents dels considerats fins al moment, i que
tenen una forta influència tant en les magnituds globals, com en l'estructura de la
capa adsorbida. D'altra banda, hem desenvolupat un formalisme termodinàmic per
descriure apropiadament l'adsorció. El marc. natural ha estat la termodinámica de
processos irreversibles, i hem discutit com incorporar les no-linealitats pròpies del
procés mitjançant una descripció acurada de la difusió prop de la superfície. La for-
mulació termodinámica ha permès poder obtenir les equacions d'evolució apropiades
també per les fluctuacions al voltant d'estats de referència.



Introduction

The study of the dynamics of model colloidal suspensions in the presence of solid sur-

faces is of great fundamental and applied interest. It provides an understanding of the
basic principles which control the behavior of the colloids such as macromolecules, la-

tex particles, ferromagnetic particles, etc., and bioparticles such as proteins, enzymes,

viruses or bacteria, near interfaces and their interaction with them. Of special impor-

tance is the understanding of mass exchange between the suspension, in particular the
adsorption process, which has applications ranging from biophysics (for example, the

study of the dental enamel as affected by suspensions of bacteria) to filtration tech-

niques, besides its general interest in polymer-colloid science. A quantitative analysis

of adsorption phenomena is also relevant in biophysics, polymer-colloid science and
medicine since it enables a better understanding and controlling of protein and cell

separation processes, enzyme immobilization, biofulding of transplants and artificial

organs, etc.

Model colloidal systems are particularly important because their well defined sur-

face properties and monodispersity allow their use also for predicting molecular ad-

sorption phenomena, as well as for testing various aspects of statistical-mechanics
theories[lj. Nonetheless, colloidal adsorption also involves more complex processes

taking place during their adsorption compared to molecular adsorption. On the one
hand colloids are more sensitive to external force fields and hydrodynamic flows than

molecules, and on the other, at the surface they can either deform or recornbine, and

there may exist short-range attractive forces related either to the reconstruction of

the electrical double layer when the colloids are polarizable, to van der Waals attrac-



live forces, or even to chemical reactions with the substrate occuring at the contact

point. All these différent phenomena at the surface lead to localization of the particles

at the interface because they create effective attractive particle-surface interactions.

Then, colloids are partially or totally immobilize at the interface. Moreover, except
in the case that adsorption occurs from unstable or marginally stable suspensions[51]
or that the colloidal suspension be unstable, colloids form a monolayer adsorbed

on the solid surface. The immobilization of colloids upon adsorption implies that

adsorption becomes an irreversible process which has a finite memory because the

arrival of one particle will depend on the positions at which previous colloids have

been adsorbed, and since the particles are not allowed to fluctuate at the surface,

non-equilibrium configurations of adsorbed colloidal particles are then generated[19].

As a consequence, the theoretical treatment of colloidal adsorption has been based

on non-equilibrium methods, basically consisting on the appropriate formulation of
kinetic evolution equations.

Langmuir was the first who introduced a kinetic equation in order to describe

the adsorption process when only one layer of particles adsorb on a surface[21]. He

studied the molecular adsorption of gases on solid surfaces hydrogen on platinum and,
therefore, he did not had to consider those complications characteristic of colloidal

adsorption. He considered that determining factor of the adsorption kinetics was

that the incoming particles could not adsorb on regions already occupied by adsorbed

molecules. Then, if we call 0 the fraction of the surface covered by particles, he as-
sumed that the rate of adsorbing particles should be proportional to the fraction of

the surface not yet covered by adsorbed molecules, while the desorbing rate, if ad-

sorption is not completely irreversible, was assumed to be proportional to the amount

of adsorbed particles. Therefore,

. = kacb(\ - 0) - kdO (1)

where ka and kj are the adsorption and desorption constants, respectively, and c¡, is

the concentration of atoms in the vicinity of the surface. This equation has also been

used to describe the adsorption kinetics of colloids. However, its extension to these
systems should be done with care, because in its derivation none of the peculiarities

of colloidal adsorption have been taken into account. Two major features have to
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be incorporated to study the temporal evolution of the surface covered by colloidal
particles:

• Eq.(l) assumes that the surface not covered by particles equals the area acces-

sible to new incoming ones. This is true if the adsorbing particles are small
enough, as is the case of molecular adsorption. When the size of the adsorbing
particles becomes relevant, the, the geometrical surface excluded by adsorbed

particles becomes more complex, as shown in fig.0.1 for the case of disks.

• In the derivation of eq.(l) the specific transport of particles from the bulk to
the surface has been neglected. In general, different forces act on colloids, and

they are more sensitive to the external conditions under which adsorption takes

place. In particular, the transport mechanism can also influence the available

surface area for incoming particles.

At low coverages, the Langmuir equation can provide reasonable results in colloidal

adsorption because particles will not influence each other. The Langmuir equation
has been generalized to take into account phenomenologically the new features which

affect colloidal suspension. A new function $(0) is introduced, which accounts for the

fraction of the surface at which the center of an incoming particle can adsorb as a

result from the particle interactions, either due to their finite size or to the existence
of attractive or repulsive forces between them. In general, it is a non-linear function
of the coverage, although at low coverages it coincides with the free surface fraction

area, 1 — 0. One can then write down the generalized Langmuir equation

^ = iaci*(0) - kdO (2)

which can be understood as an evolution equation for a surface concentration 0. In

general, the combined action of transport and geometric effects at the surface deter-
mine the specific form of both the constant ka and the available function <j>. However,
this fact has only been recently recognized, and in fact, most of the studies carried

out to describe properly the bulk transport phenomena have concentrated on the ob-

tention of ka or its equivalent, as a function of the different relevant parameters of the

adsorption process, while the the detailed description of the volume exclusion effects



a) b)

Figure 0.1: Surface exclusion effects in adsorption of spherical colloidal particles. Top
view of the surface, a) If the adsorbed particles are far apart, the area excluded to the

center of an incoming one (stripped and black regions) is proportional to the area of
each particle (black region), b) When some adsorbed particles are close enough (the

center-to-center distance is smaller than two diameters), then excluded areas overlap

(double and triple striped areas). Then, the excluded area to the center of an incoming
sphere (total stripped and black regions) is no longer proportional to the areas of the
adsorbed particles.



controlling the arrival of particles at the surface have been based on the geometry,

neglecting the way in which particles arrive from the bulk.

1 Transport and adsorption

1.1 Macroscopic description

At a macroscopic level of description, the colloidal suspension is regarded as a con-

tinuum, characterized through the corresponding fields, which satisfy appropriate
balance equations. The specific transport coefficients may, in principle, be functions
of the colloidal concentration, keepig track of their interactions, as well as on the

distance of the colloids to the surface. However, most of the studies performed at

the macroscopic level disregard the spatial dependence of the transport coefficients.

Smoluchowski[5] was the first to study the adsorption from a suspension in order to
describe fast coagulation of colloids. He simplified the boundary condition assuming

the so-called "Smoluchowski-Levich" boundary condition or "perfect sink", accord-

ing to which all particles arriving at a small distance of the surface are irreversibly
captured in an infinite energy sink, allowing further particles to be adsorbed at the

same position. Much work on the study of collectors in a variety of hydrodynamic
conditions have been carried out using this asstimption[6][24], incorporating different

kinds of interactions. When this boundary condition constitutes a good approxima-

tion, such a procedure has allowed to have a good idea about the effects of electric

and hydrodynamic interactions, dispersive forces, gravity field and shear flows on the

adsorption rates[8]-[12].

The formulation of a general expression for the boundary condition describing the

behavior of the system at the surface is difficult due to the existence of short range

interactions and dependence on hydrodynamic conditions, besides the ignorance of
the specific properties of the surface. It seems to suggest that the specific behav-

ior of the solution in the neighboehood of the surface may depend on many factors,

therefore being difficult to derive general functional relations between the different hy-

drodynamic fields being present at the interface. The theoretical studies oriented to
rigurously derive more general boundary conditions wi th in this macroscopic descrip-
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tion have relied upon the fact, on the one hand, that short range forces have often

proved to be the determining factor of the rate of particle transfer and adsorption

on collector surfaces and, on the other, that such forces are confined to a very small

region close to the collector surface, in comparison to the extension of the diffusion
boundary layer thickness. Taking into account that then two different length scales

appear, convectiva transport can be decoupled from surface force effects, the latter

arising either from dispersive van der VVaals forces or double layer forces. When the

combined action of the different surface forces create an energy barrier[22][14], it can
be shown that the effective boundary condition for the convective region outside this

thin layer around the surface corresponds to a first order chemical reaction which, in

the absence of diffusion, is equivalent to eq.(l) if desorption is allowed. Furthermore,

the different parameters characterizing electric, dispersive and hydrodynamic forces

modify the different multiplicative constants without modifying the functional de-
pendence at the small coverage at which these theoretical analysis have been carried

out. The existence of reaction-like boundary conditions have also been introduced in

the adsorption on a fluid interface[15]. Subsequently, Dabros ei a/.[16] have studied

both theoretically and numerically the global transport equations in the presence of

a surface energy barrier together with the perfect sink boundary condition as a func-
tion of the different climensionless relevant parameters and in particular, they have

shown when the energy barrier is large compared to kgT that the results of Refs.[22]

and [14] are recovered. More recently, in order to take into account more realistic

surface kinetics, boundary conditions of the type of a chemical reaction have been

phenomenologically introduced, and its effect on the adsorption kinetics has been

taken as a first order chemical reaction[17]. Although in this last reference the mass

distribution close to the surface is studied, basically all the theoretical efforts have

been devoted to the analysis of the adsorption kinetics. Moreover, since they are

only valid at low surface coverages, the distribution of mass at the surface is always

assumed to be homogeneous. A number of studies have also been performed in order
to analyze the evolution of the bulk mass concentration when the surface kinetics is

given by a Langmuir equation (1) and the coupling between the bulk and the surface

is taken into account[25].

At this macoscopic level of description, however, the formulation is based on in-

tuitive arguments, and therefore it is diff icult to devise general mechanisms to derive



general boundary conditions which take into account all the different mechanisms

which take place at the surface. Moreover, it cannot give a foundation to the phe-
nomenological boundary conditions which are proposed to describe different kinds of

interfacial behavior.

1.2 Mesoscopic description

In order to obtain a general expression for the surface kinetics keeping track of all

possible couplings between the bulk and the surface properties, a mesoscopic descrip-

tion of the system should be performed. The starting point for such a mesoscopic

description consists of the evolution equations for the colloidal particles, taking into

account the friction forces with the solven. Then, by performing the appropriate aver-
ages, one can deduce balance equations describing the evolution of the hydrodynamic

fields, in the same spirit in which the hydrodynamic equations for simple fluids can

be obtained from its microscopic dynamics[18]. The intuitive approximation on the

separation between convection and adsorption can be avoided and expressions for the

different constants appearing in Langmuir-like boundary conditions can be expressed
in terms of microscopic parameters. The dynamics of the colloids is given by the

Kramers equation[19] and, from it, the adsorption dynamics can be studied as done

by Peters[20] who also includes hydrodynamic interactions between particles[21]. He

but always assumes, however, that the perfect sink boundary condition applies at this

level of description. Such an approximation has enabled him to study the effects of

the particle-particle interactions in the diffusivity of the bulk suspension and its effect

in the rates of adsorption and he is able to compare with the predictions of the macro-

scopic theory, obtained by solving the appropriate convection-diffusion equation (see

Levich[6]), but a detailed study of the appropriate boundary condition is lacking. In
order to carry out a detailed analysis of the transport processes at the solid surface
at the mesoscopic level, it is necessary to consider two basic features of the process:

• The existence of surface forces in the vicinity of the surface makes it necessary

to distinguish a new length scale /, in general much smaller than the length L

associated with the length scale of change at the bulk phase[22];



• Sufficiently close to the surface there will exist Born-type repulsive forces, which

prevent the particles from entering into the surface. Therefore, the appropriate

boundary condition to be imposed upon the colloidal concentration at the wall

is one of particle impermeability, that is, a vanishing component of the mass
flux normal to the surface.

This second condition implies that the mass is conserved in the system, while

the perfect sink condition assumed that mass was disappearing from the system. In

particular, it means that the particles will eventually attain an equilibrium Boltzmann
distribution close to the wall. On the other hand, due to this conservation law, the

accumulation of mass towards the surface will be an essentially unsteady process[8].

Then, in order to properly derive the macroscopic boundary conditions from this
megascopic dynamics, it is crucial to take into account the length scale separations,
/ « L. Shapiro ct al.[S] have shown, using singular perturbation techniques[24], that

by appropriate describing the concentration of particles at distances smaller than /

from the surface and at distances of order L, it is possible to derive balance equations

for the bu lk phase and for the adsorbed phase. Moreover, they can derive the relation
between both phases depending on the specific surface potential. In particular, if

this last quantity is characterized by a deep minimum compared to the thermal en-

ergy, then this boundary condition is equivalent to the one derived by Ruckensteine/

a/.[22]. In this case, the steady state is quickly achieved in the bulk phase, recovering

the description obtained from the macroscopic description. As shown in ref.[8] this
situation describes the adsorption of aerosols. For a shallow minimum there exists a

coupling between the diffusion close to the wall and the flux coming from the bulk,

leading to a global unsteady process. If the surface potential exhibits a maximum

besides the energy minimum, the previous results are also derived, although in this
case the conditions upon which the perfect sink boundary condition is recovered also

depends on the height of the energy barrier.

In order to avoid the simplifications involved in the theoretical analysis both at

the macroscopic and mesoscopic level, numerical simulations have been performed. In

particular these techniques have alloed to study the trajectories of individual particles

in the host fluid, and it has been useful for predicting collector efficiencies[24][26][27]

as a function of its geometry and of the different forces acting on the colloids.



New simulation techniques have been used to study the dynamics of Brownian

particles in the presence of a wall, accounting for hydrodynamic effects, such as Brow-

nian dynamicsf'20]. More recently, the Stokesian Dynamics[18] has also been applied
to study the dynamics of suspended spheres close to a wall. However, all these meth-
ods have focused more on the surface effects on the bulk dynamics, rather than in the

adsorption process itself[30][3ij.

All these transport studies have been limited to study the low surface coverage

regime of the adsorption process. However, although the bulk suspension is diliute,
large concentrations can be achieved at the surface. In this regime, then geometric

exclusion effects become dominant. We will next summarize the main approches

which have been followed to describe these effects.

2 Volume Exclusion Effects and Adsorption

When the adsorption is irreversible, in the sense that particles, once adsorbed at the

surface can no longer move, as particles arrive at the surface, they start to exclude

part of the surface for the arrival of other particles. If the coverage is small, this

excluded area is proportional to the number of particles on the surface. If the number

increases, then the excluded area of the different particles will interact, as shown in
fig.0.1. If only one layer of particles is formed on the surface, this process will end at

the jamming limit, beyond which no more colloids can be adsorbed at the surface.

The experimental observation that the jamming coverage obtained adsorbing fer-
ritin proteins on a glass surface[l] coincided with the one predicted by a simple kinetic

model called Random Sequential Adsorption (USA), together with the subsequent

study of the structure of the adsorbed layer[2], suggested that excluded surface ef-

fects, which have to play a major role at large coverages, could be described in terms

of some simple kinetic models. More recent experiments on the jamming obtained
from the adsorption of latex spheres[3] have further confirmed this idea.

Radom Sequential Adsorption models were introduced for the first time by Flory[8][7]

in order to describe cyclation processes in polymers. Cohen el a/.[9] noticed that
Flory's problem is equivalent to the random sequential filling of a lattice line by
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dimers. Subsequently, the continuum limit of this lattice problem was studied (the

so-called car parking problem)[lS\[l3], which is the version of relevance for colloid,
because colloidal particles are large compared with the sites at which they can adsorb

on the surface. This model is irreversible, because after a particle has been placed on
the line, it does not move, and it has an infinite memory because the place at which

one particle can adsorb depends on the places at which the previous ones have arrived.
Moreover, it also describes the excluded volume effect, because it takes into account

the size of the particles on the line. Feder compare his results wih this model[2], and

more recent experimental results on the adsorption of proteinsfl] also show a good
agreement on the jamming coverage with the two dimensional RSA prediction[ll].

Generalizations of RSA have been introduced to take into account the different

forces which may act on the colloids. In this sense, electric double layer forces for

charged colloids have been considered in this context[42]-[44] and it has also been

argued whether a Boltzmann distribution of the particles on the surface can be ob-

served or not. The gravity field has also been introduced in an approximate way

by appropriately modifying the kinetic rules, giving rise to the monolayer version of

the Ballistic Model (BM)[34]. Experimental results on the adsorption of melamine
particles[26] have made possible to compare both the jamming limit and the pair

distribution functions obtained experimentally with the predictions of DM. While the

jamming was seen to agree with BM's result, discrepancies in the pair distribution
functions were observed. In fact, similar results have been reported later on with
respect to RSA, as discussed in the next paragraph. This fact shows that when com-

paring experiments with kinetic results care should be taken, since there are physical

quantities which are not very sensitive to the different forces acting on the adsorbing

particles, while in others, the specific conditions upon which adsorption takes place

can introduce significant modifications.
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3 Transport and Volume Excluded Effects in Ad-

sorption

Although the generalizations presented at the end of the previous section introduce
in an approximate way the effects of particle-particle interactions and transport in

a specific regime, more recently it has been clear that a detailed treatment of both

transport mechanisms and volume excluded effects were necessary.

To this end, computer simulations have been performed under different condi-
tions considering both the memory and surface exclusion effects, characteristic of the

adsorption kinetic models, in order to elucidate the effects of transport of the col-

loids in the adsorption process, together with its interplay with the different colloidal
and/or external forces. The first attempt to incorporate the diffusion of the particles

from the bulk to the surface was performed by Senger el a/.[32], with the so-called

Diffusion Random Sequential Adsorption model (DRSA), being able to show that

the same jamming limit as the one predicted by RSA was obtained. The pair dis-
tribution function, however, always differed with respect to the RSA ones, except
at the jamming. On the other hand, the asymptotic kinetics towards the jamming

was different from the one predicted by RSA[31j. They considered a scalar constant

diffusion coefficient, although it should be taken as a position-dependent tensor due

to hyclrodynamic interactions[24]. The effect of these interactions on the adsorption

kinetics has been studied using the ideas of Brownian Dynamics [20] considering the

effects of other external fields by Adamczyk et al.[l]. A Brownian Dynamics simula-

tion describing hydrodynamic interactions in a more precise way has been performed

by Bafaluy el a/. [24], with the aim of studying its effect on the relative distribution of

adsorbing spheres. It was shown that, at least at low coverages, the differences in the
pair distribution function between RSA and DRSA disappear when hydrodynamic
interactions are considered, due to a cancellation of effects. Thus, this result explains

why a simple k ine t ic model was able to compare so well with experimental results.
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4 Purpose and Objectives of this Thesis

Our objective in this thesis is to study the effects of transport and external fields on the

kinetics of the adsorption process as well as the structure of the adsorption aggregates,

pointing out the new mechanisms which appear as a result of the diifernt condition

under which adsorption takes place. We will take appropriately into account both the

irreversible character of the adsorption process associated to its infinite memory and

the surface exclusion effects due to the finite size of the particles. We have subdived

this work in four chapters:

• In the first chapter we present a summary of the RSA and BM models in order
to stablish clearly their basic properties and predictions. They will be used in

the next chapters to elucidate the effects on adsorption of external fields and

interactions;

• We then study in the second chapter the modifications in surface exclusion

effects of the kinetic models when an external field parallel to the adsorbing

surface is applied. A physical example constitutes the case in which an external
shear flow is applied. Up to now, the kinetic adsorption models have been

studied for quiescent f luids , although experiments on the adsorption of colloids

in the presence of applied shears have been performed[50].

• In the third chapter we wil l concentrate on the effects of hydrodynamic in-

teractions in the adsorbed layer when diffusion is irrelevant. We will include
these interactions in a more detailed description than that used in the standard

Brownian dynamics method. Results are obtained both on the adsorption on

a 1-d and 2-d solid substrate. In this last situation, we have compared with

experimental results on the adsorption of colloidal particles[26] and we are able

to understand some discrepancies observed when those experimental data are
compared with BM results.

• We present in the fourth chapter a deduction of a generalized Langmuir equa-

tion within the framework of non-equilibrium thermodynamics in the presence

of interfaces[2], which serves to understand the coupling between surface kinet-
ics and bulk transport processes. This formalism makes it easy to incorporate

12



fluctuations to the different hydrodynamic fields. We introduce a simple ad-

sorption model with diffusion to study the effect of the coupling between bulk

and surface transport processes on the fluctuation dynamics, and therefore on
the scattering functions of the surface.

Finally, we conclude making clear the principal results of the thesis, and discuss

new perspectives opened by the present work
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Chapter 1

Basic Kinetic Models

Feder and Giaever[l] and Feder[2] were the first who pointed out that the irreversible
adsorption of proteins on solid surfaces, when neither desorption nor surface diffusion

were observed, could be described in terms of a sequential kinetic model. This model

took into account the excluded volume effects related to the irreversibility of the

process, although neglected the fact that particles arrive from a suspension. Therefore,

this analogy seemed to indicate that these geometric effects where the dominant in

the adsorption process, and that the specific conditions of arrival from the suspension
affected only the rules of the kinetic model.

We present, in this chapter the properties of the two basic kinetic, models which have

been used to describe the adsorption of Brownian particles, the random sequential
adsorption model (RSA), and for heavy particles, the ballistic deposition model (DM).

They constitute the basic theoretical decription which is assumde to describe colloidal
adsorption. Therefore, in chapters 2 and 3 we will have to compare our results with

these basic models.
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1.1 The Random Sequential Adsorption Model

RSA is a model in which objects are placed in a d-dimensional volume. Sequentially, a

position for a trial object is chosen uniformly random within the volume. If the object

overlaps either totally or partially with a previously placed one, the trial particle is
rejected and a new position is randomly chosen for a new object. If it does not

overlap with any previously placed object, the trial particle is irreversibly fixed at

that position, without any further movement, and the process continues with a new

trial object. This sequential filling process usually starts with an empty volume, and

ends when no more objects can be placed in the given volume, reaching the so-called

jamming limit. Although some studies exist on the RSA of spheres in a cube[6], most
of the studies have been performed on the adsorption of two or three dimensional

objects on a 2-d substrate, essentially a planar surface, and of one or two dimensional

objects on a one dimensional substrate, basically a linear segment, both for simplicity
in the analysis and for its physical applications{7]. For the same reasons, much work

has been performed on the study of the adsorption on a lattice, although we will be

interested on the adsorption on a continuum substrate.

The first RSA model was introduced by Flory[8] to study ciclation processes on

a polymer. In fact, the reacting parts of the linear polymer chain were considered

as sites of a one dimensional lattice. The polymer was considered as a line along

which reactants were pendant. Flory studied the particular process in which adjacent

groups randomly l ink, leaving a few isolated unreacted ones. The role of exclusion

volume is introduced in these problems since, given a certain reaction rules, not all

the pendant groups are able to react, and the aim is to determine both the kinetics

and the structure of the polymer chain (the distribution of reacted and unreacted
units). The process has an infinite memory because once linked, the groups cannot

separate. The irreversibility and infinite memory which characterizes this kinetic
process makes that the final state cannot be described by a Gibbs measure, making

clear the difference between these lattice models and standard lattice-gases. Flory's

problem is equivalent to the random sequential coverage of a lattice line by dimers[9].
The empty sites in this latter case are equivalent to the unreacted groups in the

former, and the jamming consists of a set of isolated vacant sites. More complex

reaction rules are given, for example by González et o/.[13]. This kind of models, in
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its lattice version, has also been applied extensively to the study of chemisorption

and reaction on crystal surfaces[7]. In this case, the surface structure of the crystal
forms a lattice upon which adatoms can deposit. In general, however, the basic RSA

rules are modified to account for the possibility that the adsorption rates depend on
the neighbors. These generalize models are called cooperative sequential adsorption

models (CSA), especially in their lattice version. These sequential adsorption models

have been typically applied, besides to chemical reactions, to model chemisorption and

two dimensional single-crystal surfaces, ecological and sociological systems, deposition

of particles, and multilayer and grain growthfT]. All these RSA and CSA are kinetic
models, in which one is interested in the evolution of the number of objects in the

volume as a function of time, as well as on the distribution of objects on the volume,

which may also be a function of time. Then, one usually focuses on physical quantities
such as the jamming limit, the asymptotic and short time kinetics related to the global
evolution of the adsorbed particles, and the spatial and temporal correlations, as well

as the structure of the aggregates at different coverages to study the short-scale and

structural properties of the process.

Initially, it was thought that RSA configurations could be used as equilibrium
realizations of hard sphere systems. However, the absence of fluctuations associated

to the irreversible character of the process leads to intrinsically different configurations

respect to those of equilibrium[10]. In particular, in RSA not all the configurations are
equally likely, and the jamming coverage is always smaller than close packing, which

the maximum density accessible in equilibrium[ll] (see fig.1.1). Nonetheless, at low

coverages RSA configurations are equivalent to the equilibrium ones. As Widom

showed[19], the thermodynainic properties of RSA are equivalent to the equi l ibr ium

ones unt i le terms squared in the coverage.

Analytic solution for the evolution of the coverage of RSA exists for its 1-d ver-

sion. Both the lattice and the continuum model make use of the shielding property,

according to which the evolution of an unoccupied segment of the line limited by two

adsorbed particles, hereafter referred to as a gap, is independent of the evolution of
the neighbouring ones, since it only depends on the probability that a new incoming

particle destroys it, and the incoming probability is uniform[l 1][7]. In higher dimen-

sions the shielding property is lost, and no exact solutions are known. However, in
difference with respect to many other parts of statistical mechanics, the 1-d models
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Figure 1.1: Maximum coverage of disks on a surface, a) RSA configuration; b)

Equilibrium hard disk configuration.
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already exhibit many of the non-trivial features of the higher dimensional versions of

the model.

Regarding the continuum RSA 1-dimensional model, which is also referred to as
the car-parking problem, although it can be obtained from the corresponding lattice

version by appropriately rescaling the size of the incoming particles respect to the

lattice separation[10][13][ll][14] , it was solved the first time by Renyi[13], who found

the time evolution of the coverage as a function of time, and expressed the jamming

limit as a quadrature. We will solve now the 1-d continuum RSA model, writing
evolution equations for the number density of gaps[25]. This formalism will be useful

to study BM afterwards, and will be used in chapter 2.

Let us consider the adsorption of rods of length a on an infinite 1-d line. Rods

arrive uniformly random at the line at a rate ka per unit length and per unit time. Let
G'(/, t)dl denote the number density of gaps with length between / and / + dl at time

t. The natural time, T and length A units are T = (afco)"1 and A = a, respectively.

Therefore, we can define dimensionless length / and time t variables, as / = I/a and

t = akai, and a dimensionless gap density function as G(l,t) = aG(l,t).

We can derive the evolution equations for the gap density functions making use of

the shielding property, according to which the gaps evolve independently from each

other. Therefore, we should determine how gaps are created and destroyed. To this
end, one should take into account that in RSA, particles are adsorbed if the trial

position for their center does not produce an overlap of the incoming particle with

a preadsorbed one. In terms of the kinetics of the gaps, this means that if one tries

to locate the center of a particle on a gap of length smaller than one, it will overlap
with one of the limiting rods. Therefore, gaps smaller than one cannot be destroyed.

On the other hand, gaps larger than one are destroyed at a rate proportional to the

fraction of the gap in which the center of an incoming particle does not lead to overlap

with any of the rods which delimit the gap, which is /— 1 for a gap of length /. When a

gap of length / > 1 is destroyed, two new gaps appear, one of length /', with /'f [0, /-1],
and another one of length / — /' — 1. The new created gaps can be either greater or

smaller than one. According to these creation and destruction mechanisms, we can

write the evolution equations

21



2
7/+

) + 2 f°° G(l',l)dl' / > ! (1.1.1)
.//+1

c,(l',t)dl' l<\ (1.1.2)

The first term at the right hand side of eq.( 1.1.1) indicates that gaps of length /
are destroyed proportionally to its number, G ( l , t ) , and to the length available for the
adsorption of an incoming particle in such gaps, which is / - 1 as indicated above.
The second term of the first equation accounts for the fact that gaps of length / are
created by destruction of any larger gap, proportionally to the number of such larger
gaps, G(l',t). The factor 2 in front of it indicates that there are two symmetrical
ways to create a gap of a given length from a larger one. The second equation
indicates that gaps of length smaller than one cannot be destroyed, but they are
appear through the same mechanism as the large ones. Note that the function G in
the integrals take values of/' which are always greater than one. Then, eq. (1.1.1) is an
integro-differential equation for G in the range / > 1, while eq.(1.1.2) is a differential
equation for G in the range / < 1, once eq.( 1.1.1) has been solved. In order to solve
the system of eqs. (1.1. !)-(!. 1.2) we should take into account that initially the line is
empty, which implies that initially there density of gaps is zero. According with this
initial conditions, we introduce the "ansatz" for the gap distribution function

(/,0 (1.1.3)

where Frsa(l,t) satisfies

9Fr,a(i,t) = 2 r» dxe-(,-i)tF(x + ¡ + l t t ) (1 14)
(It JQ

Since initially, Frta cannot depend on / because the line is empty, the structure of
eq.(1.1.4) implies that none of its derivatives will depend on / either. Then, if Fr>a

is analytic, it will not depend on / afterwards. In this case, eq.(1.1.4) reduces to the
ordinary differential equation

¿£~!a = sî±^.TO(1) (U.5,
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which has as solution

[-2 £ (J-¿—Frta(t) = exp -2 -¿— du = e-^W (1.1.6)

compatible with the initial condition, where 7 = 0.57721... is the Euler constant, and

E\(x) the exponential-integral function[28]. Once the solution for / > 1 is known,
substitution of expression (1.1.3) in the integral of eq. (1.1. 2) gives

/ ,< ) = / 2
Jo

G(l,t)= '2re-tTFr,a(r)dT l<l (1.1.7)
Jo

Eqs.(1.1.3) and (1.1.7) completely define the gap distribution function. They give a
regular function at any time, except at jamming, where there exists no gaps of length
larger than 1, as can be easily seen from eq.(1.1.3), and there exists a logarithmic
divergent concentration of gaps of vanishing length. If we look at the gap distribution

function at jamming, eq.( 1.1. 7) reads

T -
Jo t

where we have singled out the divergent contribution in the limit / — » 0. The first
and second terms at the right hand side do not diverge, although in the first one the
integrand can be expanded in a power series of /, the second should be worked out
with care. Then, the leading behavior when / — * 0 is determined by the third integral,

and therefore[18][ll]

G°°(/)~-2e-2 l rlog(/) + 7 + 0(/), / < ! (1.1.9)

Once the gap distribution is known, it is possible to calculate the number density

of gaps per uni t length during the filling process. Since there is only one adsorbed
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particle for each gap, then we can also know the fraction of line covered by particles,

also referred to as the density of adsorbed particles 6 ( t ) , as the process evolves. We

can write

0 ( t ) = rc(l,t)dl= í Frsa(t')dt'
Jo Jo

(1.1.10)

where we have used the properties of the function G(l, t) to arrive at a simpler expres-

sion in the second equality. If we let the time go to infinity, we obtain the jamming

coverage of the line, 0rja(oo) = 0.74759. ..[13].

From the expression for the coverage as a function of time it is possible to deter-

mine the line available function 0, because it gives the rate of increase of the coverage,

/

OO Jß

(l-l)G(l-l,t)dl=— ( 1 . 1 . 1 1 )

and using both eqs.(l.l.lO) and (1.1.11), one can derive the available line fraction as

a function of the coverage, 4>(0), leading to an equation for the covergae evolution

equivalent to eq.(2) in the absence of desorption.

Although some analytic results have been obtained for the density on RSA of

climers in a square lattice[20], no exact results are known for the coverage in contin-

uum RSA in two or higher dimensions, and most of the results, as for example the

jamming coverage of disks in a two dimensional substrate, are determined from com-

puter simulationsfl 1], However, a general theory has been developed making use of the

distribution function theories of liquid theory, and hierarchies of Kirkwood-Salsburg

type have been derived[21], and also a geometrical analysis of the structure at jamming

based on Voronoi tesselations has been performedfll]. More generally, perturbative

schemes have been carried out to obtain quantitative predictions of the process. Us-

ing scaled particle theory ideas['22], perturbative expressions for the available surface

function as shown in eq.(2) are deriveci[20], showing that until the third power in the

coverage, the same behavior that equi l ibr ium configurations is recoverecl[19] . Sim-

ilar expansions follows by analogy wi th lattice perturbative methods[24], and also

introducing an operator formalism[25]. There also exist a number of asymptotic ex-

pansions to determine the way in which coverage approaches its jamming value. While
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in the lattice models this approach is exponential[7], in continuum RSA a power-law
approach is observed. The first experiments[2] and analytical calculations[10] on the

adsorption of disks predicted a power-law behavior, with exponent —l/d, d being the

dimension of the system. Swendsen[18] conjectured that the same behavior should be
obtained for continuum RSA of objects of any shape. More detailed studies for RSA

of non spherical particles[27][28][29] showed that the general law was

(1.1.12)

with p being the number of degrees of freedom per adsorbed object. When the

objects do not have a proper area, such as needles, more complex irrational powers
are obtained[30). The analytic solution for the 1-d case, eq.(l . l . lO), makes it possible
to verify this power law, as shown in Appendix A and obtain the corresctions to the

leading asymptotic behavior.

Besides the study of the kinetics of global physical quantities, in order to charac-

terize RSA in more detail, it is also important to study local properties during the

coverage of the substrate. The basic quantity of interest here is the pair correlation

function, which has been studied basically through computer simulations even in the

1-d model[31], although there exist recent calculations[37] based on the relationship

between the pair correlation function and the gap distribution function[18]. According

to this relationship, both functions coincide for distances smaller than one, because

only one particle can be closer than two to a given particle. This fact leads to the

result that at jamming, the pair distribution function has to exhibit a logarithmic

divergence upon contact, as shown in eq.(1.1.9)[2]. A characteristic feature of the
pair correlation function of RSA is its faster decay compared to the equilibrium ones
and exhibit less oscillations after the first peak, which indicates a faster decay of cor-

relations (see fig. 1.2) and that a less structured system is formed on the surface. In

particular, when calculated on a lattice, it exhibits a faster-than-exponential decay

at all times[7], and the results for the continuum model exhibit a decay faster than

the one obtained in the lattice models[37]. Closely related to the pair correlation

function, there has also been pursued a study of the global fluctuations of the process

as a way to characterize it[37][34].
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Figure 1.2: Pair correlation function for a system of hard disks obeying: (—) RSA
kinetics at jamming, ( ) equilibrium at the same coverage at a) 1-D, b) 2-D.
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1.2 Ballistic Deposition Model

BM was introduced as a new kinetic model which solved some of the deficiencies of

RSA with respect to real systems. In particular, the strict rejection when the incoming

particle overlaps a preadsorbecl one, does not correspond to a realistic situation. In
principle, this model should take into account the effects of an attracting force towards

the substrate besides the geometrical blocking effects characteristic of RSA, and can

be thought as the monolayer version of the more general rain model for random

deposition[35].

As in RSA,this is a sequential model, but it has been introduced for spherical

objects adsorbing on a continuum 2-d or 1-d surface. The position for an incoming

particle is chosen uniformly random over the substrate. A particle arrives along a
linear trajectory. If it does not overlap with a preadsorbed object, it remains fixed

at the same initial position on the surface. Otherwise, it rolls over the preadsorbed
sphere it has touched, trying to reach the surface following the steepest descent path.

Only if the incoming particle gets trapped before reaching the substrate, it is rejected.

The process continues with a new trial object. This sequential filling process usually

starts with an empty surface, and, again, a jamming state is attained when no more

particles can reach the substrate[34]. BM can be defined entirely in terms of motion of
the incoming particles along the substrate; if a particle overlaps a preadsorbed one it

will move one diameter apart along their line of centers, and if it overlaps again, then

it is rejected (in 1-D). The corresponding rules for the 2-D case are shown in app.??

of chapter 3. In this way, this model can also be extended to three dimensions[34].

The one dimensional version of BM can be solved analytically using the same

techniques we have developed in the previous section for RSA, since here also there

exists a shielding property implying that the evolution of each the gap is independent

of its neighbors[25].

We will use the same notation as in the previous section, and will derive the

appropriate evolution equations for the dimensionless gap distribution functions. If

one tries to locate the center of a disk in a gap of length smaller than 1, the incoming

particle will be trapped by the two particles limiting the gap before reaching the

surface (see fig.l.3a). Therefore, gaps smaller than one can only be created. None of
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Figure 1.3: Illustration of the 1-d ballistic deposition process for disks of diameter 1.
a) gap / > 1, b) gap / < 1.
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the particles whose center arrives at a gap of length / > 1 will be rejected. Therefore,

these gaps are destroyed at a rate proportional to their number and to / + I since

the incoming sphere can roll over the ones which delimit the gap (see fig.l.3b). What
regards the creation of gaps, we should distinguish those particles which arrive directly
at the line and those which arrive after rolling over a preadsorbed particle. The first
ones lead to the same rate of gap creation as we have already discussed in RSA, that is,

two new gaps are created, one of length /'e[0,/ — 1] and another of length / — /' — I, and

this may happen for two equivalent positions in each gap. The second one is related

to the fact that a finite fraction of the adsorbing particles will roll over preadsorbed

disks, and arrive at the surface in contact with them, forming clusters, the simplest

of which is a pair. Then, only one gap is created, of length / — I . Therefore, there will

exist a finite fraction of pairs in the adsorbed layer during the filling of the substrate.

According to these creation and destruction mechanisms, the evolution equations are

dC (l, t) _ o , M ß ( / £ ) + 2(7(/+1 í) + 2 / G (l1 t) dl' / > 1 ( 1 2 13)
dt ' ~

^M = 2C7(/+1,0 + 2 7 G(l',t)dl' , / < ! (1.2.14)

The first term at the right hand side of eq.(1.2.13) indicates that gaps of length

/ are destroyed proportionally to its number, G(l,t), and to the length available for

the adsorption of an incoming particle in such gaps. The second term incorporates

the new singular mechanism according to which a gap of length / + 1 can originate

one of length / by rolling, with a rate equal to the diameter of the spheres. Finally,

the third term of the first equation tells that gaps of length / are created by direct

adsorption of any gap larger than /-f 1, proportionally to the number of such larger
gaps, G(/',<). The factor 2 in front of the last two terms indicates that, due to the

symmetry, there are two postions at which a gap of length / can be created. The

second equation indicates that gaps of length smaller than one can only be created,

and that there exist no new creation mechanisms for them. Note that the function G

in the integrals take values of /' which are always greater than one. As before, once

we solve the integm-differential equation (1.2.13), eq.(1.2.14) becomes a differential

equation for G in the range / < 1. We will consider the same initial condition as used

in RSA, i.e. that initially there are no gaps. In order to solve eq.(1.2.13) we introduce
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an "ansatz" equivalent to eq.(l.l.S),

(1.2.15)

Substituting it in eq.(1.2.13), leads to an ordinary differential equation for H(t) which
can be solved, giving

2(1-e">Frja(0 / > ! (1.2.16)

where Fr3a(t) is given in eq. (1.1.6). Substituting this expression for the gap distribu-
tion function in eq.(1.2.14), and solving the differential equation leads to

C7(U)= rfT2T(l + r)e-('+2>rc2(I-e"r>F„<I(r) , / < ! (1.2.17)
Jo

In the jamming limit it is easy to verify that there are no gaps of length larger than
one, and that there is a finite fraction of gaps at contact, although with no logarithmic
behavior. The function C ( l , t ) does not take into account the formation of pairs, and
therefore, cannot describe the évolution of the gaps of length zero. These gaps exhibit
a singular behavior because a finite fraction of adsorbed disks are forming pairs. In
chapter 2, we will describe the evolution of both the regular and singular part of the
gap distribution function, along the lines of Ref. [3 7],

Once we know the gap density function, we can determine the coverage of the line
as a function of time. We should take into account, however, that since now pairs of
particles are formed, one gap does not necessarily corresponds to one particle. Then,
we have to use the fact that the fraction of covered surface is one minus the fraction
of uncovered surface, which is directly related to G(l,t). We have then

,00

0*m(0 = l- / lG(l,t)dl (1.2.18)
Jo

Upon substituting the expression for G, eqs.(1.2.16) and (1.2.17), in eq.(1.2.18)
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and simplifying it, one arrives at

0*m(0 = / (1 + 2r)e'-<1-T-e")FrJa(r) dr (1.2.19)
Jo

Letting the time going to infinity, we obtain the jamming coverage, 0^ = 0.80865...[25],

which is larger than the RSA value, due to the appearance of clusters of connected

patríeles. An analysis of the asymptotic kinetics in eq.(1.2.19) gives

y)^— (1.2.20)

which is faster than the power-law approach characteristic of RSA. This is due to the

fact that, because of the rolling mechanism, the fraction of the area which leads to

adsorption does not go to zero in the jamming for BM, while it vanishes for RSA[34].

As for the RSA model, there exist no analytic solutions of BM for a two dimen-
sional substrate. In this case, basically numerical simulations have been performed[34][38][33]
to study the coverage and its asymptotic behavior, the pair correlation function and

the cluster formation and evolution, as well as its percolation properties[40]. One finds

the same qualitative behavior showed in the 1-d model. Perturbative expansions at

low coverage for the pair correlation function and the available surface function[38]
have been performed, and also the distribution function approach has been applied to

find general hierarchies of equations generalizing methods used in equil ibrium statisti-

cal mechanics[52]. At the end of chapter 3 we present in detail the rolling mechanisms

for the 2-d BM. What regards the radial pair distribution function, the singular ad-
sorption mechanism related to the rolling leads to the appearance of a delta function at
distances multiples of the diameter, producing a local structure quite different from

the RSA one. Moreover, in 2-d more peaks in the radial pair correlation function

appear, due to rolling on connected clusters with different geoinetries[33].
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1.3 Generalized RSA and BM Models

A series of generalizations of these standard kinetic models have been performed to
try to accommodate some of the mechanisms which are relevant in the adsorption of
colloids and which have been neglected in their formulation. For example, the effect
of diffusion has been incorporated to study the asymptotic kinetics[31] and a model
has been developed in which the adsorption rate depends on the length of the gap[32],
taking into account in an effective way the results of simulations on the adsorption
with constant diffusion which showed that adsorption rate is not homogeneous[43].
More recent studies have also been performed to incorporate the possibility of a non-
homogeneous adsorption rates, which enables one to compare more realistically with

the diffusion-adsorption process[7]. Since in experimental situations polydispersity

cannot in general be avoided, generalization of RSA to deal with adsorption of mix-
tures has been considered[45][46][47].

The effect of desorption has also been introduced, giving then a rate equation for
the coverage closer to those proposed in the generalized Langmuir equation, (2). In
this case, an equilibrium state is finally reached. Both the low-to-intermediate cover-
age regime, through the development of equations for the distribution functions[48],
and the asymptotic behavior[49] have been studied, basically using one dimensional

models. Surface diffusion and its interplay with adsorption kinetics has also been
addressed[50]. The restriction that there exists only one adsorbed layer has also
been removed, and the blocking effects of RSA incorporating multilayering have been
considered[51].

From a formal point of view, a generalized adsorption model has also been studied

in which a new parameter is introduced, which is a quotient between the probability
of arriving after rolling over one preadsorbed sphere relative to that of arriving at the
surface directly[37]. This model contains as special cases RSA (when the parameter

is zero) and BM (when it is one). Again, an analytic solution exists in l-d[37], and
in 2-d a distribution function theory has been developed[52].

In order to describe the adsorption of proteins, generalizations of RSA have also

been considered. On one hand, some models have been developed for adsorption on

non-uniform substrates[53][54]. On the other hand, more detailed kinetic models have



been carried out to include the fact that upon adsorption, the protein change their

structure even in a completely irreversible adsorption process. Both a lattice[55] and
a continuum l-d[57], where an analytic solution exists, and 2-d models[58] have been
developed.

Appendices

l.A Asymptotic behavior of 1-d RSA

In this appendix we will derive the asymptotic behavior of the density in 1-d RSA,
using the exact expression for the fraction of covered line given in eq.(l . l . lO), which
we express

T ̂Jt T

where we have used eq.(l.l.o). In order to obtain the leading behavior of the previous

equation, we rewrite it as

*~ (1.A.22 )

where we have taken into account that the exponential-integral vanishes at infinity.

Since 2Ei(t) < 1 for í > 1, we can expand the integrand in powers of E\, leading to

1.A.23)

and, for the same reason, the inequality

•in yoo i on-l

IS L ÎE""<T^



is fulfilled, which ensures that the series in eq.(l.A.23 ) is convergent. This means

that \/t is the leading asymptotic behavior, in agreement with the result (1.1.12),

and that corrections to this behavior can be calculated systematically. In particular,
the first correction gives

-2'
(1.A.25

Now, using the asymptotic expansion of £7i(<)[28], we can derive the first correction

to the power-law behavior,

(1.A.26

whereas Pomeau obtained as the first correction to the powar-law leading behavior, a

function log(<)e~' /£2[10]. In fact, it can be verified that this term does not correspond
to the next term in the asymptotic expansion performing the limit

f00 «E! (e-iBl(t')_
t "* ( I .A.27)
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Chapter 2

Adsorption in the Presence

of External Fields

In the previous chapter we have introduced the kinetic models which are considered

representative to model the essentials of colloid adsorption. However, in them the

transport from the bulk is incorporated in a simplified way. If Brownian motion of

colloids is dominant, then RSA is used to predict the kinetics of the process, while

if adsorption takes place at large Péclet numbers, and then the external force drives

the particles to the surface, then BM is used. However, the effect of more genral

transport situations has not been addressed, and, for example, RSA is still used to

explain the kinetics [1] and stricture[2] of the adsorption of suspensions under shear.
In this case, if the diffusion boundary layer is large RSA can be expected to give
a reasonable description of the process, but if convective terms become important

close to the surface, then it is not clear whether RSA is still a good model o not.

The objective of the present chapter is to understand whatare the implications of

an external field in the standard kinetic models introduced previously, in particular

how excluded volume effects wi l l be modified by these external constraints. Though

the gravity field can be considered as an external field, it acts as a driving force

which allows the adsorption process to take place, since otherwise particles would

39



not come to the surface in the absence of diffusion. Hence, it seems interesting to

address the effect of external forces which modify the bulk transport processes of the

colloidal suspensions, but which is not directly related to the adsorption. An example

of practical interest would then be the case of polarizable particles in the presence
of an electric field parallel to the surface. This situation would correspond to the

experimental study of capillary electrophoresis, in which adsorption on the walls of

a capillary is studied. The electric field will introduce a new kinetic mechanism, e.g.

the possibility for adsorbed particles to clesorb, which will compete with the usual

adsorption kinetics mechanisms.

We will focus on how surface exclusion effects are modified by the presence of
an additional force. The first part will be devoted to generalize the kinetic models

introduced in chapter 1 to account for the new external field, although we will not
take into account, the possibility of an enhanced desorption, despite its potential

experimental interest[3]. We will concentrate on the changes which will introduce

the additional applied force on the adsorption probabilities and in the kinetics of the

process, and will consider the appropriate generalizations of RSA and BM. As already
noted, while the first one seems to reproduce appropriately the adsorption of colloids

when diffusion is important, and its generalization could be of interest to describe the

experiments on protein aclsorption[l], the second constitutes a first step to understand
the effects of external fields on the adsorption of heavy particles. In this last case,

however, in order to have a more detailed description of the layer structure, a more

realistic description of the bu lk transport is needed, as discussed in chapter 3.

In the previous paragraphs, we have referred to different physical situations. In

principle, the existence of an external field acting parallel to the substrate, or the
shearing of the solvent are quite different situations which cannot be expected to be

described by the same model. However, the essential common feature of both situa-

tions from the point of view of adsorption is that incoming particles cannot adsorb

at any available position on the surface. Rather, they are drifted along the direction

of the force, before reaching the wall. Then, in the absence of a detailed description
of the transport, both a shear and an applied force parallel to the substrate produce

the same behavior. It is also worth noting that the adsorption from a quiescent liquid

in the presence of gravity field on a substrate which is not horizontal will be also

described w i t h i n the same framework.



We will concentrate on the one-dimensional version of these models. Although a

2-D model will be necessary to perform comparisons with experimental results, the

1-D version is simpler to deal with and, as we will see, analytic solutions can be
obtained. Moreover, as it is usual in these kinetic models, their 1-D versions already
contain the basic features of the process at higher dimensions, and therefore, no new

qualitative properties are expected. In particular, a new rolling mechanism in the

generalized BM model already appears in 1-D.

2.1 One-Dimensional Generalized Deposition Mod-

els

We will consider the one dimensional version of a kinetic adsorption model in which

particles do not arrive perpendicularly to the substrate. Rather, as shown in fig.
2.la), disks of radius one arrive at the line forming an angle a with the normal to the

wall. This angle will be the only free parameter of the model. If a constant external
field, Fe, parallel to the surface is applied besides the usual gravitational force Fg,

and neglecting hydrodynamic effects, then cv is related to the physical parameters of

interest by tancv = jf-. An equivalent relation is satisfied if the host fluid is subject

to a plug flow. If instead, a Couette flow is applied, then more care should be taken,
because in this case the incoming particle will describe a parabola. A relationship

with the case of straight trajectories can be found if one takes into account that

there is a minimum distance at which an incoming particle following a parabola can

land in the nearby of a preaclsorbed disk. Suppose an adsorbed disk is at the center

of a coordinate system. If the motion takes place in a shear /?, the trajectory of
the incoming particle can be written as x = XQ — |¿2, with x being the horizontal

distance away from the sphere at the center, while z represents the height from its

center. Finally a.'o will be the distance at which the incoming sphere will land. One can

calculate the minimum allowed value for XQ at the right hand side of the preadsorbed
particle, giving XQ = (ß -f ß~l)/'2. Then, one can calculate which angle a gives

incoming straight trajectories which end at a minimum separation at the right of a

preadsorbed sphere of value XQ. Such an angle satisfies cosa = 4/?/(l -f ß2). Finally,

if adsorption takes place in a quiescent fluid, in the presence of a gravity field, on a
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substrate which is inclined an angle 7 with respect to the horizontal, then, obviously

a = 7. The three different physical situations are described by a single parameter a,

which gives an idea of the distance from the standard kinetic models. For simplicity's

sake, in the rest of the chapter we will use the ¡mage corresponding to the last physical
situation introduced.

We will analyze separately the situations in which incoming particles are not

allowed to roll over preaclsorbed ones, corresponding to RSA type rules, and when

they are allowed, within the framework of BM rules.

2.2 Inclined Random Sequential Adsorption Model

As shown in fig.2.la), for disks arriving along inclined straight lines to the surface,

there is a minimum distance of approaching to the right hand side of a preadsorbed

particle, <r, which is related to a through 1 + a = l/cos(a). We will not consider
the actual mechanisms which control the transport of the particles to the surface.

Rather, we will determine the position of the incoming particle on the surface on the

basis of the corresponding geometric rules, according to the basic method of RSA to

accommodate adsorbing particles. Though the rules are general for any dimension,
we will focus on its 1-D version, since we will only deal with this case, and we will
consider all spheres being of the same size. Positions for the center of trial particles are

chosen uniformly random along the line. In usual RSA, the particle sticks irreversibly

at that position if no overlap exists with a preadsorbed sphere, with overlap meaning

that the distance from the center of the incoming particle to any of the preadsorbed
ones is smaller than the diameter of the spheres; otherwise the trial particle is rejected

and a new position is tried. In this model, we should change the concept of overlap

according to fig.2.la). Now, a particle is irreversibly located at the position if the

distance from its center to the center of any of the preadsorbed spheres at its right

hand side is longer than unity, and larger than 1+cr to any of the preadsorbed spheres
at its left hand side; otherwise, the incoming particle is rejected. It is worth noting

that this description of the model in terms of the excluded length makes it possible

to consider the system as if we had incoming particles of length one which, upon
arrival at the surface, deformed a length 1 + a towards the right. This asymmetry
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Figure 2.1: a) Trajectory of an incoming particle of diameter unity forming an angle

a with the normal to the adsorbing line, in the presence of two adsorbed disks,! and

2, at a distance /. I +ff represents the minimum distance between a preadsorbed disk

and the incoming particle on the line to its right, b) New gaps appearing when an

incoming particle lands at distance /«' from the preadsorbed disk at right.

in the deformation makes these models different from the restructuring-particle USA

proposed in the literature to study the adsorption of certain proteins which undergo
structural changes at the surface[8j.

2.2.1 Analytic Study

It is possible to obtain an analytic expression for the gap density functions, using

the methods developed in chapter 1, since here, again, the evolution of a given gap
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is independent of its neighbors, which enables one to derive a closed equation for

the one gap distribution function. Such evolution equations can be deduced once we
know the different mechanisms by which particles can arrive at the line, creating and

destroying gaps. We will use the same dimensionless unities and notation introduced

in chapter 1.

Let us consider a gap of length /. According to the rules introduced in the previous

section, an incoming particle should be at a minimum distance cr at the rigth of the

particle which delimits the gap at its left hand side. Then, if / < 1 + cr, any incoming

particle in this gap will overlap with the sphere which delimits the gap at its right, and

will therefore be rejected. Then, gaps of length smaller than l+cr can only be created.

Otherwise, it can be destroyed by direct adsorption of an incoming particle. Since

initial positions are chosen uniformly along the substrate, the previous fact means
that a gap of length / > 1 + cr will be destroyed at a rate proportional to / — cr — 1,

which is the length of the available part of the gap where the center of an incoming

particle can arrive without overlapping with the disks which delimit it. When a gap

of length / is destroyed, two new gaps are created, one of length /' at the right of the

incoming particle, which can have any value smaller than I — cr — I , and another one
of length I — I' — I at its left, which can have a minimum value of a and a maximum

one of / — 1, as shown in fig.2.1 b). Note that the new gaps may be either larger or
smaller than 1 + cr.

We can now derive the appropriate evolution equations for the gaps. Let us

consider first the case / > 1 -f cr. These intervals are destroyed at rate proportional to

the available fraction of the length at which an incoming particle can arrive, I —a— 1,

and to the number of such gaps. On the other hand, a gap of length / may be created
by destruction of a gap of length /' > /. Sucli creation rate will be proportional to the

number of gaps of length /', and one should take into account that if the gap of length
/ is created at the left hand side of the incoming particle, the length of the initial gap
should be at least /-f 1, while if it created at the right of an incoming disk, then the

minimum possible length is / + cr + 1. Therefore, the evolution equation for the one
gap distr ibution function, (.1(1,1) when / > l+cr corresponds to the integro-differential
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equation

i i \
' ;

r0

'+
Jl+Í+1 l+a+l

On the otlier hand, if we consider the behavior of a gap of length / < 1 +<r, we should
take into account that it can only be created. In principle, the creation mechanisms
are the same that originate the gaps in the previous regime. However, when a particle
arrives, it should be at a minimum distance cr at the left of a preadsorbed particle.
This implies that gaps smaller than a will only be created at the right hand side of
the incoming disks. Therefore, the appropriate kinetic equations read

/•OO y»CO

= / G(i',t)dl' + í G(l', t)dl' , 1 + <T > / > <r (2.2.2)
Jl+l Jl+o + l

r00

= / G(l',t)dl' , < r > / (2.2.3)
Jl+a + l01

Eqs.(2.2.1)-(2.2.3) constitute a set of integro-difierential equations which com-
pletely determine the function G ( l , t ) , once the appropriate initial conditions are pre-
scribed. To avoid confusion in the notation, we will write down Gi(l,l) when we refer
to the gap distribution function for / > i+a, G?(l,t) when cr < I < l+cr, and Gy(l,t)
when / < a.

We will again consider that in i t ia l ly the l ine is empty, which implies that G(/,0) =
0. Then, we try the same "ansatz" for the gap distribution function already proposed
to solve the RSA model, eq.(1.1.3). Therefore,

Gi(U) = <2
e-

( '-ff-1)( F(t) (2.2.4)

where the factor ¿2 lias been introduced for convenience. This leads us to an ordinary
differential equation for the new function F ( t ) ,
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which has as solution,

( r» l _e-u /"' 1 -e^1*")" 1
F(0 = exp \ - I - — — du - / - — - - du \ (2.2.6)

I Jo u Jo u )

Here tlie lower limit in the integral has bee» taken to satisfy the appropriate initial
condition. It can also be written in terms of exponential integral functions, £"1, as

F ( t ) = , e - . « ) - . ( ( » + « ) « ) (2.2.7)
(1 + cr)t-

Once the function Ci(l,l) has been determined, eqs. (2.2.2) and (2.2.3) become
differential equations for Gi(l,t) and Ga(/, t) which can be expressed as quadratures,

G2(U) = / TF(r)e-'T {l+e"T}dr (2.2.8)

-F(r)c-'rf/r (2.2.9)

where, again, the lower l imit of the integrals has been chosen according to the condi-
tion that initially there are no gaps of length smaller than 1 + a. It is worth noting
that Gî(l,t) can be expressed in terms of C73(M), giving

Cn(l, t) = G3(l, t) + G3(l - <r, t) (2.2.10)

which can be understood as an adilitivity property. It tells that gaps larger than a
originating at the left of an incoming particle follow the same kinetic that the gaps
smaller than cr, because in fact, there exists an exclusion length a. Gaps created at the
right of the incoming particles are created through the same mechanism which contrits
the appearence of smaller gaps, but taking into account that we are now interested in
larger gaps. Eqs.(2.2.4), (2.2.8) (or its equivalent eq.(2.2.10)) and (2.2.9) completely
define the one-gap number density at any time.
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Moreover, we have used to normalization property, at any time

,00

/ (l + l)G(l,t)dt = l (2.2.11)
Jo

associated to the fact that the total length of the substrate does not change during

the filling process.

At jamming, the distribution of gaps is gives

Cf(/) = 0 , l > l + f f (2.2.12)

G~(/) = 6'S°(0 4- 6'ST(/ - <r) J+(T>i>cr (2.2.13)

¡<<r (2.2.14)
1 +

showing that only those gaps which cannot be destroyed can survive in the jamming.

We can now study if in this modified RSA model there exists also a logarithmic

divergence of the gaps of vanishing length at jamming, as the one observed in USA,

eq.(1.1.9). To this end, we have to study the asymptotic behavior of G^(l) for / — » 0.
We rewrite eq.(2.2.14) in order to explicitely separate the divergent contribution of

the integral, which appears due to the slow decay of the integrand when / — » 0

1 + ff o

/

oo „-</ . . ^
£_ ^e-£ l (o-ß,((i+»)«) - l) d/ 1 (2.2.15)

and, to first order in /

o
/•t» -e,((n-<7)«)-£;,(í) _ i

+ J - - -t - A + 0 ( / ) (2.2.16)
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showing the existence of the same logarithmic of divergence as in usual RSA. In order

to compare in more detail with RSA, it is more convenient to write the previous

equation as

- l dí+0(/)(2.2.17)

with G~a given through eq.(1.1.9). This behavior shows that the divergence's ampli-

tude is modulated by a factor 1 + a. Moreover, it is half the RSA value even in the

limit of small a due to the fact that gaps of length smaller than a can only be created
at the right of an incoming disk, instead of being created at both sides. In fact, if

we make a — > 0 before studying the behavior of the one-gap distribution function,

then the form of this function for gaps of vanishing length is controlled by Gi(l,t)

because Ga(/, < ) disappears, and, as can be seen in eq.(2.2.2), gaps in this region can
be created at both sides of the incoming disk. On the other hand, for a finite value of

<T, the function (1^(1,1) also exhibits a logarithmic divergence at jamming for / = cr,

as can be deduced from eq.(2.2.10), which shows that G>2(/,i) behaves as (7a(/, t).

This means that, unl ike standard RSA, two logarithmic divergences appear related
to the fact that now there are two minimum distances at which disks can approach.

Moreover, the divergence associated to the two minimum distances 1 and 1+cr exhibit

the same divergent behavior, being both half the value of the one corresponding to

RSA. In the limit a — • 0 the two peaks coalesce into a single one, which becomes the

one obtained in RSA.

Once we know the gap density function, we can derive the coverage of the line

as a function of time. We wil l make use of eq . ( l . l . l l ) , according to which the rate

of incoming particles is proportional to the fraction of the line at which incoming
particles are accepted. Then, we can construct, the available line fraction function

4>(t), which in this case has the form

- [-ff)Cn(l,t)dl = F(0 (2.2.18)

where we have inserted eq.(2.2.4) which gives the corresponding one-gap distribution

function. In fig.2.2a), we show the available line fraction as a function of time for
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Figure 2.2: a) Available line fraction function as a function of the coverage for different
inclination angles, b) Time evolution of the fraction of covered line for different values
of the exclusion length a.

different values of the parameter er, recovering the standard RSA function for <r = 0.

The last term of eq.(2.2.18) allows us to identify the function F ( t ) , introduced so far

as a way to find the gap distribution function, with the available line fraction. It is
curious to note that eq.(2.2.18) has the same form that the one obtained in standard
RSA, as shown in eq.(l . l . l l) . In respect to the global coverage, the differences be-

tween the two models lies on the fact that the function F ( l ) is different. Eq.(2.2.18)
enables one also to express the coverage as a function of time as a quadrature,

0(t) = í F(r)dr (2.2.19)
Jo

and in fig.2.2b) we show the time evolution of the coverage for different values of a.
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The jamming coverage, O°°(<T) as a function of cr is then obtained from eq.(2.2.19)

letting the time go to infinity. In fig. 2. 3 we show the jamming coverage as a function

of the angle of incidence or normalized with respect to 7T/2. It is seen that as this

parameter increases, a drastic decrease in the maximum number of particles that

can be accommodated on the line is observed, since only gaps larger than 1 + a are

destroyed. We will use eq.(2.2.19) to study the dependence of the maximum coverage

on a perturbatively. If a « 1, the jamming limit is found to be

-2-r /-ou -2£,(!)-2-r /-o

= ^ - /1 + 0 Jo
dt (2.2.20)

'

Then, we may expand the second factor in the integral in powers of cr, leading to

aoo

Ö00 = C« - %^
¿

In fig. 2. 3 one can see that this expansion, when expressed appropriately in terms
of the incident angle a, up to third order in powers of the angle agrees reasonably

well with the exact results up to angles of the order of 30°. In order to have an idea
of the behavior for incident trajectories almost parallel to the substrate, we should

expand the appropriate limit of eq. (2. 2. 19).

Although it is not possible to express the integral as a combination of known

functions, eq.(2.2.19) is of great help when trying to understand the filling kinetics.

For example, we can analyze both the short time and the asymptotic behavior of 0

in time. For short times the integral can be developed in powers of the time because
F(t) is a regular function. One obtains

0(0 = t - (1 + |)í2 + (5 + 5<T + |<r2)^ + 0(i4) (2.2.22)

indicating that at short times 0 evolves as a power law, and differences with respect

to standard USA start in the second power of time. This is reasonable, because one

should wait to have at le<vst to particles adsorbed in the line to start to detect the

effects of the new restrictions on the deposition of particles.
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Figure 2.3: The maximum coverage of the line as a function of the incident angle,
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The asymptotic approach to the jamming can be studied using the technique
introduced in the Apèndix A of chapter.3. One obtains

(2-2-23)

which exhibits a power-law decay to leading order due to the fact that the target
areas for incoming particles in the neighborhood of the jamming limit go to zero, and
again, there appears a prefactor 1 + a . Due to the asymétrie deposition of disks, the
correction to the asymptotic behavior is half the one obtained in RSA, as shown in
eq.(l.A.26 ).

As a final point regarding global quantities, from the knowledge of the fraction of
the line covered as a function of time, eq.(2.2.22), and the available line fraction as
a function of time, it is possible to contruct.by a perturbative analysis, the available
line fraction as a function of the coverage, which is of interest, since it is more directly
related to the properties of the filling process[19]. One arrives at

4(0) = 1 - (2 + (7)0 + (1 + o + y) j + 0(0*) (2.2.24)

Note that at zero coverage this quantity is equal to one since initially the line is empty,
and then any incoming particle is adsorbed. The second term simply shows that one
adsorbed disk excludes an area equal to its diameter plus the additional exclusion
length a, as shown in fig. 2. la. The next term is the first which takes into account
that the total exclusion length produced when two disks are adsorbed becomes more
complex since their exclusion lengths overlap. In fact, the available fraction of the
line up to order 0" can be constructed by looking at the différent ways in which n
disks overlap, as has been clone for RSA [20] [6]. Wiclom showed that the functions 4>
for RSA and equilibrium coincided up to the third power in 0. We can also compare
eq.(2.2.24) with the equil ibrium available line fraction. However, in our model one
particle excludes a length 2 + sigma, instead of 2 in the usual equilibrium situation
for the same kind of particles. In order to compare our results with the equilibrium
ones, we should rescale the length of the disks by a factor (2-f cr)/2 in the equilibrium
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result, which implies that the concentration used by Widom[19] for rods of length one

should be multiplied by a fcator 2/(2 -f- cr). One than obtains

¿e,(0) = 1 - (2 + <r)0 + T^-rtf2 + 0(03) (2.2.25)
(¿ + a)

which shows that the available function in the inclined RSA model deviates from the

equilibrium one already in the second power in 0, while in standard RSA differences
appear in the third power of 0. This is due to the asymetry introduced in the kinetics

by the inclined direction of arrival. In standard RSA, the configurations generated

by two particles are equivalent to the equilibrium ones, in the sense that one cannot

discern which one has been adsorbed first. In inclined RSA, however, the appearence

of a new minimum length at which two particles can adsorb, imply that even with

two adsorbed particles, not all the configurations are equivalent to the equilibrium

ones. If the distance between them is smaller than 1 -f er, the one at the right has

to have arrived before. Then, this asymetry in the kinetics induce faster deviations

from equilibrium.

2.2.2 Structure of the adsorbed layer

In the previous section we have studied the behavior related to global quantities of
the adsorption process. Now, we will focus on the analysis of the local structure of the

adsorbed disks, which will be described by the pair distribution function. To this end,

we have carried out numerical simulations for the deposition of disks of diameter one

on a line of length 100Ü, using periodic boundary conditions in order that finite size
effects become less important. Westart the simulations with an empty line, which will

be filled according to the rules introduced in this chapter until the jamming coverage

is reached. In fig.2.4 we show the pair distribution functions at jamming obtained

for four different values of er, er = 0., 0.16,0.43,1.015, and 2.86, which correspond
approximately to values of the incident angles « = 0°, 31", 45.5°, 60°, and 75".

As shown in chapter 1 (see fig.1.2), in RSA the pair distribution function is char-
acterized by a fast decrease of correlations after a peak at a distance of about one

diameter,the peak appearing because disks cannot adsorb closer than one diameter.
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Tliis peak becomes a logarithmic singularity at jamming. The most characteristic

feature in the pair correlation functions for this new model is the appearance of a

second peak. It is induced by the adsorption mechanism, which forbids that an in-

coming particle get closer than 1 +a at the right hand side of a preadsorbed disk. In
fig. 2.4a, the second peak for 1 + ff, is hardly recognizable due to resolution of the

plot. For a = 1, this new peak should appear at a distance r = 2 from the reference

disk, and then it coincides with the second rounded peak which exists in RSA. The

interference of both peaks leads to a slower deay of the global peak in this region. On

the other hand, the irreversible character of the deposition process leads to a decay
of the correlations faster than in equilibrium, as already discussed for RSA)[37].

The behavior of the peaks in the pair distribution function, g(r), at jamming

can be understood from the analytic solution of the previous section. We will use
the fact that, due to the new kinetics rules, if a particle is at a distance r < 1 -f a

from the reference one, there can not be a second one in between. We have shown

in chapterl that in this case g(r) coincides with the one-gap distribution function

G(r +1) , which implies that the peaks originate from the distribution of nearest
neighbors of the reference disk. The divergence of the peak at distance 1 has the form
given in eq.(??), until r = 1+cr. Eq. (2.2.16) indicates that it diverges logarithmically,

as in RSA[10][11], although with half its height (see eq.(1.1.9). The new peak at a
distance 2 + a is given by the limiting value of £?2(r). We have shown that it can

be expressed in terms of the one-gap distribution function corresponding to smaller
gaps, as shown in eq.(2.2.10). This implies that the second peak will exhibit the same

divergent behavior as the peak at contact. On the other hand, this last equation

shows that the peak is shifted by the density of gaps of length 1 + a. This explains

why the second peak is always higher than the one at r = 1. If ff > 11 then the

pair distribution function is not equal to the one gap distribution function, but the
singularity of g(r) in the second peak has to be described by it, since the rest of the

function is analytic.
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2.3 Inclined Ballistic Deposition Model

As a second case, we will proceed to analyze an analogous model to the one introduced

in the previous subsections (see fig.2.la), in which adsorption obeys BM's rules[7]. As

in BM, disks arrive sequentially to the line following straight trajectories. If they touch
a preadsorbed particle, they are allowed to roll over it trying to reach the substrate,

instead of being directly rejected. The difference of the model we will introduce in this

section with respect to BM lies on the fact that now the trajectories of the incoming

particles will not be perpendicular to the substrate. Rather, they will form an angle
a with the normal, as shown in fig.2.5.a). BM is intended to describe the adsorption

of heavy colloids in he presence of gravity fields[7], at leat in respect to its kinetics.

Analogously, this model can describe the adsorption of the same suspension when an

additional force parallel to the surface acts on the suspended particles.

Disks are sequentially launched at a certain height alomg an inclined trajectory.

They move ballistically towards the substrate. If during its motion, the incoming

disk does not overlap any preadsorbed particle, then it is irreversibly located at the
corresponding position on the line. Otherwise, it will roll over the preadsorbed disk

trying to reach the substrate along the steepest descent path. Only if it gets trapped

during this motion and is unable to reach the line, it will be rejected.

In order to understand how particles will roll, let us focus on an incoming particle
as the one depicted in fig.2.5a). We will consider that through the center of each

adsorbed disk passes a straight line forming an angle a with the normal. In fig.2.5a,

we call F the line associated to the adsorbed disk 1. If the trajectory of the incoming

particle is at the left of line F upon touching disk 1, then the particle will roll towards

the left hand side of particle 1, trying to reach the line keeping at contact with disk
1. If overlap is detected with a second adsorbed particle at the left of disk 1, the

adsorbing particle cannot reach the substrate and is rejected. If the center of the
incoming disk is at the right hand side of F when touching disk 1, it will roll towards

the right hand side of particle 1, until its trajectory becomes tangent to the adsorbed
disk. At that point, it will continue its motion towards the line along the straight line

F' trying to reach the line. Note that F' is parallel to F, and is the first line at the

right of disk 1 such that an incoming disk with its center moving along it will not be



Figure 2.5: a)Disk arriving at the line in the presence of an adsorbed particle, b) and

c) Different rolling mechanisms when two a particle arrives at the line in the presence

of two preaclsorbed disks separated a distance /.
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modified by disk 1. In standard BM, a particle rolls to the rigth over the preadsorbed

one until it reaches the line, while here, at some point the incoming disk leaves the

contact with the adsorbed one. If no overlap is detected with a second disk, it will

be irreversibly adsorbed on the line at a distance 1 -4- a from particle 1, as shown in
Fig.2.5a. If overlap occurs with a second adsorbed disk at the right of particle 1, then

one should look again if F' is at the right or left hand side of the line F corresponding

to the second particle.

The lines F will be also referred to as separation lines since they will determine

towards which side of the overlapping adsorbed disk the incoming particle will roll.

Note that in standard BM half of the incoming particles which overlap with an ad-

sorbed disk wil l try to reach the substrate at its right hand side and half at its left

hand side. Now, due to the fact that the separation line is inclined, a fraction l/(2-t-cr)
of the incoming particles that overlap a preadsorbed disk will roll to its left hand side,

while a fraction (1 + f)/(2 + ff) will do it to its right. As we will see, this asymmetry
in the deposition around a preadsorbed particle will influence both the coverage and

the structure of the adsorbed layer.

Now, we will consider that the adsorbing disk arrives at the line in the presence

of two adsorbed disks , separated by a gap of length /. As we will see, depending

on their distribution, the incoming disk can roll towards the right hand side of both

adsorbed particles, which constitutes a new adsorption mechanism appearnot present

in BM.

We will concentrate on the situation of interest, in which the incoming disk rolls to

the right of disk 1. If the gap / is larger than l+<r, then the incoming disk will arrive at
a distance 1+cr at the right of disk 1 without touching disk 2. If the gap is smaller, the

incoming particle will overlap disk 2 before reaching the line. However, as shown in

figs.2.5b and 2.5c it can either leave disk 1 before touching disk 2, or can overlap disk 2

before arriving at the line F'. When the incoming disk leaves its contact with particle

1, the distance between their centers is 1, and its direction is normal to the direction

of F' at which the incoming disk will move thereon. The most unfavorable situation

is when the incoming disk also touches particle 2, so that the distance between their

centers is also 1. This implies that the incoming disk wil l overlap disk 2 after leaving

its contact wi th diskl for gaps of length min(0,-r^) < / < 1 + a, and that it wil l
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Figure 2.6: a) and b) Disk rolling to the left and to the right of the second disk,

respectively, after having left the contact with disk 1. c) and d) Disk rolling to the

left and to the right of the second disk, respectively, when it overlaps at the same

time with both adsorbed disks.

touch both disks for gaps smaller than min(0, jqpf )• This means, that the screening of

disk 1 over disk 2 increases with er, and that, in particular, for incident angles greater

than 60° (er > 1) an incoming particle cannot overlap two adsorbed disks at the same
time.

If the incoming particle leaves disk 1 before touching disk 2, then it would arrive

at the line at a distance 1 + a from disk 1, after moving along a straight line. Since

this trajectory is by construction parallel to the line F of disk 2, the incoming disk
will roll to the left of particle 2. Then, this will happen when / > a. Otherwise, it

will roll to the right of disk 2. However, it is important to note that we also have
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the restriction that / < (1 - a ) / ( I +ff), which implies that rolling to the right is only

allowed for a > 1 (or a > 45°). Figures2.6a) and 2.6b) show both situations.

On the other hand, if the incoming disk overlap both disks at the same time, then
its motion depends on the relative location of the center of the incoming disk with

respect to the separation line F of particle 2 (see figs.2.6c and 2.6d). One way to
know how it will roll is to assume that the incoming disk reaches the wall following

a straight line from the point in which it touches both disks. If the final point is at

the right of the center of disk 2, then it rolls to the righ; otherwise, it rolls to the
left. In terms of the gap length, one obtains that the incoming disk rolls to the right

of particle 2 whenever / < —1 + j^V0'2 + 2<r. Again, there exists the restriction
that this kind of situation may appear as long as / < {iff, which implies that for

a > — 1 + \/2 (or o > 45°) all particles touching two adsorbed disk at the same time

will roll necessarily to the right hand side of disk 2. In this case, we should also take

into account that / > 0, which implies that for <r < -1 4- 2/\/3 (or « < 30°) all

particles in this situation will try to reach the line to the left of particle 2. Since they
will not be able to reach it, will be rejected.

We have shown that for arrival angles cv > 30°, depending on the relative dis-

tribution of the adsorbed particles, the incoming disk may roll to the right of two
consecutive disks. This mechanism is not present in BM and implies that the ad-

sorption of a particle may depend on the distribution of three particles (or two gaps).

Depending on the distance between the second and the third adsorbed disk, the in-

coming particle may also roll to the right of this third particle. This means that

incoming disks may roll over a number of adsorbed particles before reaching the sub-

strate, or being rejected. Then, for « > 30" the adsorption kinetics becomes non-local
in the sense that the final position of a particle on the line is not restricted to the

initial gap tried. In fig-2.7 we show a summary of the different rolling mechanisms

for an incoming disk after having rolled at the right of a preadsorbed particle, when

a second one is at the right on tha line at a distance / + 1 from the first adsorbed

particle. One can see that, when « < w/Q, all particles will roll to the left of disk
2. For larger angles, depending on / particles will be allowed to roll either to the left

or to the right of disk 2. On the other hand, if a > 1, ( a > Tr/3) the center of all

particles rolling to the right of disk 1 will reach F' before touching disk 2.
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Figure 2.7: Différent rolling mechanisms for a particle arriving along a direction

forming an angle a with the normal, overlapping disk 2 at the right of disk 1 with

which has interacted before. Disks 1 and 2 are separated a distance 1 + /. In the
figure, right and left means particle trying to reach the line at the right or left hand
side of disk 2, respectively, and rolling means that it overlaps disks 1 and 2 at the

same time, while leaves contact with disk 1 means that at the right of that limiting

curve, it rolls sequentially over both. If / < 1 the incoming particle is rejected if it

rolls to the left (see text).



It is important to realize that due to this new non-local mechanism , when a > 1

(a > 60"), all incoming particles will be able to reach the line (see fig.2.7). This
implies that there will be no rejected particles, and that the coverage will increase

linearly until jamming. Then, in this case, the function $, interpreted as the available
line fraction is simply <¿>(0,cr) = H(OM((T) — 0), with H ( x ) being the Heaviside step

function.

So far, we have not specified what happens to those particles which arrive along

the separating line F of disk 1. In standard BM this is neither specified, because it is
irrelevant since only a fraction of zero measure of the incoming disks will follow this

trajectory. In our models, the situation is more involved because a finite fraction of

the particles overlapping a sphere will roll to its right trying to reach the line F'. If

there is a second disk at a distance / = tr, then the line F' of the preadsorbed particle
at the left will coincide with the line F of disk 2, which means that a finite fraction

of overlapping particles will arrive along that separating line. Therefore, we have to

decide whether those particles will turn to the right or to the left of disk 2. Since

there will always exist an attractive interaction between the disks and the substrate,

which makes it possible that the particles are irreversibly adsorbed at the positions
at which they arrive, we have taken the convention that such particles arriving along

the separating line will roll to the left of the second disk.

2.3.1 Analytic Solution

As in the inclined USA, it is possible to find an analytic expression for certain physical

quantities in this one-diinensional version of the model. The same tools used in

standard BM[7] by introducing the distribution function of gaps can be applied now.
However, these techniques make use of the shielding property of the kinetic 1-d models.

The non-local adsorption mechanism introduced in the previous paragraph breaks

down the shielding property, and, therefore, it is not possible to find an exact analytic

expression for a > 30°. We will restrict our analytical study to the inclined BM
neglecting the non-local adsorption mechanisms, and we will compare these exact

results with computer simulations to have an idea of the effect of these mechanisms

in the overall behavior of the system. In order to account for the non-local kinetic

mechanisms, new theoretical techniques should be introduced, and, in principle, only
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approximated solutions can be expected.

Let us introduce the one-gap distribution function G(l,t), expressed in the ap-

propriate dimerisionless variables introduced in chapter 1. In that chapter we have
shown that there exists a singular contribution to G(i, t) due to the rolling mechanism.

Therefore, we expect that here the same contribution will exist. Instead of deriving

equations for the global one-gap distribution function, we will write separately the

evolution equation for the regular and the singular gaps. To this end, we decompose

G(l,t) as[12]

, t) = g(l, Í) + g0(t)6(l) + 9l (t)6(l -<r) + g2(t)6(I -<r+l )0(<r - 1) (2.3.26)

where g ( l , t) refers to the regular contribution to the gap distribution function, and

<7o(0 and g\(l) to the fraction of gaps of lengths 0 and ff, respectively. Note that
the singular contributions are related to the minimum gap lengths, and that in our
model, besides the fact that disks cannot overlap, we should take into account that

an incoming particle cannot be closer than 1 -f ff at the left of a preadsorbed disk.

Finally, «72(0 wil l only appear when cr > I . This term takes into account that there

exists a finite fraction of disks which will roll to the left of an adsorbed disk which
has previously rolled to the right of an older adsorbed particle. This is due to our

last assumption of the last paragraph referring to the particles which arrive along a

separation line. It only appears for « > 60° because for smaller angles there is no

room for them at the left of the disk.

We will follow the same scheme followed to solved the generalized RSA model.

Then, in order to derive the evolution equation for the one-gap distribution functions,

we have to identify the different ways in which gaps of length / are created and

destroyed, according to the mechanisms introduced before.

Gaps of length smaller than max(l , tr) can only be created, as in the previous

model. For the particular case I = v and ff > I they can be destroyed by particles

rolling to the right of a second disk at a distance 1 + cr from another disk. In this

case, a gap of length 0 at the right of the adsorbing particle and another of length
ff — 1 at the left are created at a rate proportional to 1 + cr.

Gaps of length rnax( l ,<r) < / < a + 1, can be destroyed by rolling of incoming



partides over adsorbed disks at rate proportional to 1 + /. Two new gaps are created

as a result.one of length 0 at the right of the adsorbing disk, and the other of lengt

/ - 1 at the left.

Finally, gaps of length / > 1 + a can be destroyed either by rolling or by direct

adsorption. An incoming disk can roll over the disk which delimits the gap at its left.
Then, at rate proportional to 1 -f <r, two new gaps appear, one of length <r at its left,

and a second of length / — 1 — a at its right. An incoming particle may also roll to

the left of the disk which delimits the gap at its right. Then, at a rate proportional
to 1, two new gaps appear, one of length U at its right, and a second of length /— 1 at

its left. Direct destruction of the gap will happen at a rate proportional to / — 1 — <r,

produncing a gap of length I'c[0, / — a — 1] at its rigth, and a second of length / — /' — 1

at its left. All these processes give a total rate of destruction / — 1 for a gap of length
/.

Note that in this model an incoming particle will touch 0, 1 or 2 disks before

adsorbing. Then, we can also consider that the analytic model we present is an

approximation to the real kinetics in which interactions with more than two disks are
neglected. Then, this approximation is exact for a < 30°, where interactions with

more than two particles are forbidden.

We can now proceed to find the evolution equation for the one-gap distribution

functions. The dynamics will depend on whether a is greater or smaller than one.

We have seen that in the first case a new singular adsorption mechanism appears.

Let us first consider the adsorption kinetics when a < 1. In this case we will obtain

an exact expression for small values of a. We can write the evolution equations looking
how a gap of length / is destroyed and created from larger gaps. Each term accounts

for one of these mechanisms, and is multiplied by the corresponding relative rate. We

arrive at the set of equations

dt
f dl'gi(l',t)+ f" dli'gi(l',l) / > ! (2.3.27)

Jl+l Jl+l+a
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í"0 dl'g,(l1, t)+ í dl'gi(l', t) a < l < 1 (2,3.28)
Jl+l Jl+l+a

dgiu(l,t)

rfí

J" dl'g,(l',t) l «T (2.3.29)

l',t)dl' + f (¡'+ l)g,(l',t)dl' (2.3.30)

y00

= (l+ff) m(l',t)dl' (2,3.31)
J l+<7

where the first three equations define the regular contribution to the gap distribution

function, according to the separation introduced in eq.(2.3.26), and the last two the
singular component. Note that in this case <ji(t) does not exist. As in the previous
model, we have introduced the subscripts /, // and /// to distinguish the regular
contribution in the three domains in which the kinetic mechanisms are different.
Eq.(2.3.27) takes into account that such gaps may be destroyed either by rolling

over any of the limiting disks or directly, and that they can be created from larger
ones either at the left or right of the incoming disk. Eq.(2.3.29) considers that gaps
smaller than 1 and larger than er cannot be destroyed, but are created through the
same mechanisms as the larger gaps. Finally, eq.(2.3.30) indicates that these gaps
cannot be destroyed, and cannot created at the left of an incoming disk which adsorbs

directly. It also considers that they can be created by rolling over the two disks which
delimit the gap. The equations for the singular contributions take into account that
gaps of length 1 + a can only be created by rolling at the right of a disk.

Eqs.(2.3.27)-(2.3.31) can be solved following the procedure we have introduced to

solve the previous models. We should solve first the integro-differential equation for
GI(/, t), and from it the rest of the equations become differential equations which can
be solved. We always start from an empty line, and then the same initial condition
for the one-gap distribution function applies here as well. To solve eq.(2.3.27) we

introduce the "ansatz"

gI(l,t)=t3a(t)F(l)e-«+l>t (2.3,32)
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where F ( t ) is the function obtained in the RSA model, eq.(2.2.7), and the dependence
in a is implicit in both F ( t ) and a(t). Introducing this expression for gi(l,t) in
eq.(2.3.27), we derive an ordinary differential equation for a, which has as solution

a(t, ff) = exp (2 - 2i - e-' - e^"^ (2.3.33)

satisfying the initial condition that the line is empty. We can now also determine
GÏ(/, t) and gffi(l,t), as well as the singular contributions, as quadratures, by substi-
tuting eq.(2.3.32) in eqs.(2.3.28)-{2.3.31). One obtains

gn(l,t) = / a(r)F(7·)e-'T[r2+r + (r2(l + o·) + r)e-<'T] dr (2.3.34)
Jo

gm(l,t) = í a ( r ) F ( T ) e - l T [ ( l + 2)T2 + e-aT(r + (l + a)t-)} dr (2.3.35)
Jo

go(t) = / dra(r)F(r)[l + 2r -e-" ' ( l+( l+<T)r ) ] (2.3.36)
Jo

g i ( t ) - ¡ dr(\ + 0)Ta(T)F(r)e-ar (2,3.37)
Jo

Note that in the limit a —* 0, the singular contributions go and g\ will coincide.
The sum of both will then give the delta function characteristic of DM. On the other
hand, the function gui dissapears when performing this l imit. Therefore, the behavior
for / —» 0 will differ depending on whether ff vanishes or not. By letting the time go
to infinity, one can see that in the jamming there are no gaps larger than 1.

We can now derive an expression for the time evolution of the coverage d. In
chapter 1 we have pointed out that, due to the singular contributions to the one-gap
distribution function of BM, the coverage cannot be calculated using the same method
employed to obtain the coverage in RSA[7], However, if the whole G(l, t ) , including its
singular points, is considered, then one gap corresponds to one particle[12]; therefore,
using the first equality of eq.(1.1.10), and eq.(2.3.26) for the gap distribution function,
we arrive at

(l +2r)«(r)F(r) dr (2.3.38)
o
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which has the same form as the one obtained in standard DM, eq.(1.2.19), the depen-

dence on <r being now introduced through the definitions of a(t) and F(t). Again,
one can study the at short and long time behavior, giving

0(0 ~ I + (4 + 2<r + <r2) *- + O(t4) (2.3.39)

Note that the effects of the inclination appear in the third power, since three particles
are needed to make clear the rolling mechanisms. Note that the second power is
missing because if only one particle is adsorbed on the substrate, all particles can
reach the line. The asymptotic approach to the jamming is exponential, as in standard

BM, its amplitude depending on the incident angle,

0°°-0(i)~^ --— + O(e-3t) (2.3.40)
1 -f ff t

The maximum fraction of the line covered with particles can be expressed as a
quadrature,

= /
Jo

00

-216°°(ff)= (l +'2t)a(t)F(t)e--t dt (2.3.41)

which can be calculated perturbatively as a power series of a. To first order one
obtains

0°° = Cu- fe, + e2~27 r l+3<2+<2
e-3.-3e-'-2E.(o J (T+Ö/((T2)(2.3.42)

L Jo ' l

We will now study analytically the same model in which non-local effects have
been neglected for arrival trajectories such that a > 1. The results we will obtain

will not describe all the processes that can take. We wil l concentrate in the jamming
coverage in order to compare the result of this approximation with the results we have

obtained from computer simulations.

We will follow the same analysis we have done for a < 1. The only new thing
we have to take into account is that there appear new adsorption mechanisms, as
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explained at the beginning of this section. The decomposition (2.3.26) still holds,
with a new singular contribution with respect to the previous region. One can derive
again the evolution equations,

dl'gi(l',t)+ í dl'g,(l',t) l>ff (2.3.43)
1+1 Jl+l+a

dgu(l.t)
—fr— = (i + ')gf(l-

/

oo
dl'gi(l',t) a - 1 < / < a (2.3.44)

fl+CT

= f0 dl'g,(l',t)
Jl-l+l+a

H(l+l + ff,t) l «T-I (2.3.45)

g,(l',l)dl'+ f \l'+l)gf(l',t)dl' +
Ji

(2.3.47)

\+a
( l + < r ) g i ( t ) (2.3.46)

dt = (l+«r)í , (0 (2-3.48)

which, as before, have been constructed by looking which processes contribute to
create and destroy gaps in the different intervals. Note that eq.(2.3.43) is equal to
eq.(2.3.27), which means that the form of G\(l, t) is the same for all the values of a,

varying only its domain of validity. Then, we can substitute eq.(2.3.32) in eqs.(2.3.44)-
(2.3.48), and by solving the differential equations, we can obtain the whole one-gap
distribution function. As before, integrating G(l,t) in /, we can know the evolution

of the fraction of the line covered by particles,

0(1) = í e-O+'X [«(r)F(r)(l + (1 + <r)r)+
Jo
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Jo

')F(r')e-T'dr' dr (2.3.49)

It is worth pointing out that in this region, the kinetics predicted by this solvable

model is not consistent. As we have mentioned at the beginning all incoming disks

will be able to roll over all the disks it needs until it finds room on the line. In these
kinetics models the scale of time is the arrival of particles to the substrate, and it

is fixed. Therefore, the coverage will increase linearly in time until jamming. The

jamming coverage in this model is obtained as a quadrature from eq.(2.3.49) by letting

the lime go to infinity. Then, this limit, together with eq.(2.3.41), gives the jamming
coverage as a function of the incident angle a, for the solvable model.

We have performed numerical simulations of the adsorption of disks of diameter
one on a line of length 1000, using the rules of the inclined BM introduced in this

section, in which incoming disks may roll over as many disks as they are allowed

before either reaching the substarte or being rejected. We start with an empty line,

which is sequentially filled until jamming is achieved. In fig.2.8 we show the jamming

coverage as a function of the angle of arrival of disks, and we compare with the

analytic expressions, eqs.(2.3.41) and the limit of eq.(2.3.49).

As a major feature, one can see that despite the approximate character of the

analytic solution for a > v/6, it reproduces quite well the jamming coverage, except

in the neighborhood of a = 1. When increasing the incident angle cv from 0, initially
one observes a decrease of the jamming, indicating that a finite fraction of particles

roll at the right of preadsorbed spheres, creating gaps of length ff which cannot be

covered by further particles. For angles greater than ?r/6, particles can roll over

preadsorbed spheres. This mechanism increases the probability that a gap of length

<r is produced, and this fact explains that the jamming coverage obtained from the
simulations are systematically smaller than the ones obtained from the approximate
analytic expression. Close to a — 1_, the jamming has decreased a 20% with respect

to standard BM. At a = 1 + , a jump in the jamming is observed. The jump in the

coverage is reproduced properly by the analytic model, which means that the increase
is basically due to the possibility of the incoming particles to adsorb at a distance a

at the right of a disk, given that a doublet of particles preadsorbed at a distance 1 +<r

exists. Therefore, the magnitude of the jump equals the fraction of particles which

have reached the line according to this mechanism.lt is (1/2)/0°° ua(u)F(u)e~3udu
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0.0

Figure 2.8: Jamming l imi t of the inclined BM. The line corresponds to the analytic

solution, which is approximate for » > TT/Ö, and the dotted line to the simulation
results, in which all possible processes affecting the arrival of spheres at the substrate

have been taken into account. In the inset, an enlargment of the region where the
discontinuity takes place.
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for the analytic model, and the difference in the magnitude of the jump between the

simulations and the analytic model is equal to the fraction of particles which have

rolled over more than one preadsorbed sphere before reaching the line. For angles

larger than 60" a fast decrease of the coverage is observed. In this region all incoming
particles reach the line, and moreover, rolling at the right of an adsorbed disk is the

most favourable event, which tends to create larger gaps.

We have also observed in the simulations which has been the average last move-

ment of the incoming disks. In fig.2.9 we show the fraction of particles which arrive at

the line directly, after having rolled the last time to the right, and those which have

done it to the left of a preadsorbed particle. For a < 30°, the variations are simply

due to the fact that rolling to the right is a factor If cos a most probable than doing it

to the right. At a = 30°, the non-local mechanism starts to appear, favouring rollings
to the right, and both mechanisms are equivalent. Since more particles arrive at the

line rolling, the fraction which do it through direct adsorption decreases. At a = 60°,
particles rolling at the left on a pair are now accepted. This produces a large increase

in the fraction of particles which arrive rolling to theleft, which is directly related to

the fraction of pairs present on the substrate. The change in the structure also favors

that particles arrive rolling to the right.

2.3.2 Structure of the Adsorbed Layer

The numerial simulations we have performed to study the kinetic process unti l jam-

ming enable us to study also the pair distribution function of disks on the substrate.

As in BM, now the pair distribution function consists of a regular part and a series

of delta functions. In BM, these delta functions appear at distances multiple of the

diameter, indicating the formation of clusters. In fig.2.10a, we have depicted the
function at jamming for two values of cr = 0.165, 1.015, which correspond approxi-

mately to inclination angles of a — 30° and a = 60°, respectively. It can be seen

that, besides the peaks at multiples of the diameter, a number of new peaks appear.
The peaks observed correspond again to clusters of particles, which originate from

the rolling mechanisms. The separation between disks in a given cluster is 1 or 1 + cr.

Therefore, the number of peaks increases at distances in multiples of the diameter,

since particles can be distributed in two different sets of lengths which are incommen-
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surable when er is irrational. For example, for ff = .165, we observe two peaks near

r = 1, corresponding to separations r = 1 and r = 1 + a, three peaks near r = 2,

corresponding to distances r = 2, r = 2 + er and r = 2(1 -f ff), and so on. The relative

areas under the peaks are equal to the relative probability for each configuration of
disks. A qualitative different structure is observed when a = I . In this case, both

kinds of distances are commensurable, so when two particles are separated by 1 + a,

there is exactly enough room for another particle. Then, an ordered sequence of peaks

is obtained, showing a much inore locally ordered substrate. Note that due to the

instrinsically stochastic nature of the process, the height of the peaks decay with the

distance. One expects to have locally higly ordered structures separated by some sort

of domain walls.

In fig.2.10b) we have shown the pair distribution function for <r > 1. In this
case the number of peaks increases also due to the new singular contribution, which

introduces a new singular length, <r, for particles which roll in a doublet. It should be

noted that the larger the value of ff, the more ordered the structure of the adsorbed

layer, the reason being that when increasing ff, the probability of being at a distance
1 + a increases relative to that at a distance 1 from a preadsorbed disk.

Appendices

2.A Generalized RSA inclined model

An obvious way to generalize the inclined RSA model developed in this chapter is to

introduce a new exclusion length a1', Then, an incoming disk of diameter one overlaps

with an adsorbed disk if the distance between their centers is smaller than 1 + a if

the incoming disk is at the right hand side of the adsorbed particle, and if it smaller

than 1 + ff' otherwise. To be specific, we wil l assume ff > ff'.

We can deduce the evolution equations for the one-gap distribution functions in

a way analogous to the RSA model solved in the main text. We have to take into

account that now gaps smaller than 1+cr+cr' cannot be destroyed because an incoming
disk whose center lies in such a gap is bound to overlap with one of the disk which
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î

oj

,

a=60,2 "

—
J J • •

, 1 , 1 , 1 , 1 , 1 ,

0 1 2 3 4 5 6 7 8 9 K

g(r)

o

7

6

5

4

3

2

1

Q

-

-

t;

f

b;

tr=45.5°

'Ï

1

1

1- IÍLjL·ÍiJU--A -̂A__-.
^LJ'-'

1 , 1 , 1 , 1 ,

0 1 2 3 4 5 6

r
I c.
1 o

14
13
12
11
10
9
8
7
6
5
4
3
2
1
Q

1.

-

-

'-

'_

-

'-

'-

-

-

'-

-
_

^

ií—

d)

0

ff=75.2

, I
-. _ , l l i .

~f—f i . i . i . i . i

0 2 4 6 8 10 12 14

r

Figure 2.10: Pair distribution function at jamming for the inclined BM for différent
values of the arrival angle, a) (—) a = 30°, ( ) « = 60". b) (—) a = .

74



delimit the gap. Moreover, there are no gaps smaller than a1 because 1 + cr' is the

closest distance at which two disks are allowed to approach. Finally, gaps of length /

larger than 1 + a + cr' are destroyed at a rate proportional to / — 1 — a — a' and two
new gaps are created in such a process, one of length l'í [ff', l — l — ff] at the right, and

another of length I — I' — I. According to these mechanisms, the evolution equations

for the one-gap distribution function are

9Gi(l,t)
dt Jl+l+a

rJi+ .
(2.A.50 )

n+l+a'

^M = r G(i',t)di'+r c(i',t)di'
V* Jl+l + a Jl+l+a'

ff<l<l+cr + ff' (2.A.51 )

^(M) - j G(l',t)dl' a'<l<a (2.A.52)
W Jl+l + a

where the notation /, II, II has the same meaning as in the previous sections. We

will be interested in the kinetics of this system when initially the line is empty. Then,

we can solve the integro-differential equation (2.A.50 ) making the "ansatz"

(2.A.53 )

Substituting this expression in eq.(2.A.50 ), and solving the ordinary differential equa-

tion for F ( t ) gives

(2.A.54

Once G'i(/, t) is knwon, it can be used to determine the gap distribution function of

the smaller gaps. In this case we get

= /'
JO

(2.A.55)
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Ga(l,t) = f *¥lle-('—">r dr (2.A.56)
70 r

(2.A.57 )

As expected, C^(l,t) can be expressed in function of Gs(l, t), similarly to the
additivity property eq.(2.2.10). In this case

G2(/, t) = G3(l, t) + C73(/ - a + <r', í) (2.A.58 )

This means that, again, at jamming both (?,•;,•(/, t) and G-¿(l,t) will exhibit the
same logarithmic divergence at / = a and / = a'.

The coverage as a function of time can be obtained by using the fact that one gap
corresponds to one particle. One arrives at

B(t) = f
Jo

F(r) dr (2.A.59 )

which is formally equivalent to eq.(2.2.19), and expresses the fact that in this model
F(t) is the available line fraction.
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Chapter 3

Hydrodynamic Interactions

and the Adsorption Process

The models presented in the previous chapters allows one to obtain precise results on

the behavior of the model, with a thorough understanding of the essentials controlling

the different aspects of the adsorption process. However, we have shown in the previ-

ous chapter that there exists a close connection between the adsoprtion mechanisms

and the imposed conditions on the bulk transport. These effects, however, have to be

introduced in a simplified way in these models and therefore, it is not clear a priori

that some of the features which are not considered may have a significant influence

in the adsorption. Only through a detailed study of the transport mechanisms, incor-

porating appropriately the behavior of the particles at the solid surface, it is possible

to elucidate which are the different aspects which will be important.

In this chapter we will analyze in detail the influence of the bulk transport to the

surface, taking into account the effects of hydrodynamic interactions on the adsorption

colloidal particles when diffusion is negligible, considering both the rate of arrival of

particles to the surface, and the local structure of the adsorbed layer which is formed

as a result of this process. We will show how these interactions affect the transport

of suspended objects when they come close to the surface or other particles, and will
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compare the results with the predictions of the kinetic model BM, which only takes
into account the geometric aspects of the adsorption process.

3.1 Nature of hydrodynamic interactions

The motion of small particles suspended in a viscous incompressible fluid depends on
the viscous transport of the host fluid. Moreover, due to the viscosity, the fluid exerts
a friction force on the suspended particle so that a moving particle attains almost
instantaneously a terminal velocity. This resistive force is linear with respect to the
instantaneous particle velocity if the Reynolds number characterizing fluid motion
is vanishingly small1. This kind of fluid typically describes the motion of particles
of sizes not larger than a few microns in common solventsfl]. In this situation, the
fluid velocity field obeys the linearized Navier-Stokes equation, a linear diffusion-like
differential equation. This linearity ensures that the velocity of the moving particles
will be proportional to the force exerted on it.

Then, in general, the frictional force that the fluid exerts on a particle which moves

at velocity t7 is written as £ • i*. The proportionality constant is called the friction

coefficient, £, and it depends not only on the mass of the particle, but on its particular
geometry. For a sphere of radius a in a fluid of viscosity i), one has the well-known

Stokes law, £ = 67n;al, but there exists no exact expression for the friction coefficient
of an object of a general shape. As a consequence of this friction force, if we want
that a particle moves in a fluid at constant velocity, we have to exert an force in the
direction of the motion of the particle, which, due to the absence of inertial effects, is
equal in magnitude and opposite in sign to the frictional force. The external force is
necessary in order to maintain the transport of momentum towards the fluid induced
by the motion of the particle. For an incompressible fluid, a force acting on a point
induces a velocity field which decays slowly, as a power law with the distance from
the point where the force is applied. This slow decay is clue to the fact that velocity
perturbations have no particular (enguíscale when the Reynolds number is zero.

'Non zero Reynolds numbers appear when inertial motion in the host fluid is not negligible in
front of the viscous relaxation of the perturbations caused by the presence of the particles
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If a second particle is suspended in the fluid, its motion will be influenced by

the perturbations in the velocity field induced by the motion of the first particle.

This means that even in the absence of any other interaction forces, both particles

interact through the host fluid. This interaction mediated by the solvent and due
to the motion of the particles is called hydrodynamic interaction. The friction force

is again in this case proportional to their velocity, but now the friction becomes a

tensor which depends both on the geometry of both particles and on their relative

position in space[2]. Moreover, new crossed friction tensors appear because the force
on particle 1 wil l not only depend on its velocity, but also on the velocity of particle

2. According to these ideas, if we consider two equal spheres, in order that they move

with center of mass velocities U\ and U-¿, and rotating with angular velocities u\ and

W2, respectively, forces F\ and F^ and torques T\ and TI should be applied such that

/ A \
/2

F3

\ FA 1

( *"
¿n

en
V ¿12

An

112

f 12

¿22

en

f 11
?"
^ia

5 \

1,2

¿!2

¿22 >

/ Oí \

\ W2

(3.1.1)

where the matrix is called the generalized resistance matrix, whose wlwments are

the matrices, AJJ, Bij,andCij, which depend on the relative distance between the
two spheres. These equations are valid only for a quiescent fluid. If there exists

an external homogeneous flow, however, replacing in the last equation the velocities

of the particle by its relative velocity respect the unperturbed ones, then it is still

valid. We have also used the symmetry properties between. The different elements

of the friction tensors satisfy symmetry properties derived from Onsager's relations,

which permit to relate the crossed terms[l|. For general geometries of the objects,

analytic expressions for the friction tensors are not known. In fact, the determination

of these coefficients requires in principle the solution of the flow field equation with the

appropriate boundary conditions on the surface of the objects. For the special case

of two spheres, Jeffrey and Oaishi[3] have given analytic expressions for the different

friction tensors for any separations between the spheres, but for many spheres, the

corresponding expressions are only known in series form. For example, in the specific
case of interest in this chapter in which sphere 2 is kept at rest by applying forces
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and torques, and on particle 1 no external torques are exerted, its motion is governed
by the equation

-A = n - En • n • „ l = fj • Í/, (3.1.2)

which has been obtained by combinig the appropriate equations of (3.1.1). C means
that the inverse of the matrix is considered. The whole combination of tensors can
be interpreted as if sphere 1 was alone, but moving with an effective friction tensor,

Cejj- Note that due to linearity, translational motion is decoupled from rotational ,
which in this case simply reads

¿i =-(?„ -ou -Oi (3.1.3)

The explicit expressions for the friction tensors are given explicitly in appendix 3.A,
after Jeffrey and Onishi[3], The inverse of the friction tensor, called the mobility

tensor, ft, satisfies fl •£ = £ • ß = 1, and is the proportionality factor relating the
velocity of the particle to the external force imposed.

Hydrodynamic interactions are not additive as a consequence of the slow decay of
perturbations of the velocity field. Then, if a third particle is suspended in the f lu id ,
the expressions obtained for the friction tensors in the two-particle case cannot be
used to construct the new friction tensors. Rather, the global problem including the
three particles should be solved at once. Due to the complexity that this treatment
requires, there exists no analytic expression for the friction tensors for more than
two spheres. Basically all the analytic results up to date consist of perturbative
calculations for far apart spheres. Expressions for the friction tensors, or their inverse
mobility tensors, have been obtained either using the method of reflections[2], which
require the knowledge of the velocity field everywhere, or using the so-called induced
force method[4], where an appropriate inclusion of the boundary conditions can avoid
the calculation of the f lu id velocity field everywhere in space. This method has been
applied frut iful ly to determine the friction coefficients of cylinders[5] and of general
axisymmetric objects[6], and has been used to describe the motion of drops in the
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presence of external gradients, when the fields at the surface of the drop are coupled

through general linear lavvs[7], although always in the low density regime.

These expressions for the frictions obtained for distant particles, however, cannot
be applied when two spheres come close, and therefore, they are then of restricted
use when applied to the study of the dynamics of suspensions. When two spheres are

close together, their relative motion is controlled by the fluid flow in the gap between

them giving rise to strong lubrication forces, because they cannot overlap. This is

basically a two-body problem, even in the presence of more suspended spheres, and it
is described by lubrication theory[8]. There exist, however, no perturbative analytic

expressions for the whole range of separations for more than two spheres, which are the

kind of expressions of interest in the study of the dynamics of non-dilute suspensions.

We will be interested in the motion of spheres close to a wall. From the point
of view of hydrodynamic interactions, a wall plays an analogous role as a second

spherem, in the sense that it will modify the friction tensors of the moving sphere.

However, clue to the different geometry, also different techniques have been developed
to find explicit expressions for the corresponding friction tensors. In principle, a set
of equations equivalent to (3.1.1) can be written, where now the subíndex 2 will refer

to the wall. However, since it will not move, it is usually directly rewritten in terms

only of the forces and velocities acting on the sphere, by defining effective friction

tensors. In the absence of external torques one simply has

(3.1.4)

where the superscript w in the effective friction tensor is introduced to avoid confu-

sion with the tensor introduced in eq.{3.1.2). In appendix 3. A we give the analytic
~*u

expressions of the different functions entering £f^
 wl'¡cli W¡H ''e llsecl later on. There

exists no exact solution for the effective friction tensor at any separation except for

the perpendicular motion of a sphere relative to a plane wall[9]. For the parallel

motion, there are perturbative solutions very close[10] and far away from the wall[2].

More recently, Perkins and Jones[ll] have obtained expressions for the mobility ten-

sor perturbatively for a sphere away from the wall. However, they have calculated

enough terms in the series so that their expressions are valid up to almost touching.
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Beenakker and Mazur[12], using the induced force method, have also obtained

perturbative expressions for the mobility of N spheres in the presence of a wall. Their

approach, however, is only valid if all the spheres are far away from it, and then these

results are more useful in the study of sedimentation than to consider the dynamics
close to a surface. Vasseur and Cox[13] have also analyzed the sedimentation of two

spheres parallel to a wall. We are interested, however, in the motion of a sphere close

to a substrate when a second one is already fixed at the surface. Up to now, there

exists no analytic, expression for the friction tensors of this three body problem. Only

numerical studies based on the boundary element method have been performed to
study the trajectories of an incoming sphere close to an adsorbed one[14].

We have started to implement the induced force method to obtain expresions for

the friction coefficients of spheres in the presence of a wall. If the sphere is far from
the wall, we have recovered the results by Brenner[9]. We have incorporated the

velocity field propagator which incorporates the boundary condition of stick at the

wall. In this way, the problem reduces to the study of a single sphere, instead of being

a two body problem, involving both the sphere and the wall. In order to obtain the

corresponding expression for the friction coefficient when the sphere is close to the
wall, we have to take into account that the force which the fluid exerts on the particle

is not homogheneous, and has a singularity in the region closest to the wall. An

accurate description of the force distribution in this region, which can be obtained

from lubrication theory, is crucial to obtain consistent expressions for the friction

coefficients^ 5]. The advantage of this method is that, once developed, would allowed

to deal also with the problem of two spheres close to the wall, where there is a lack

of analytic results.

Besides the numerical methods used to evaluate friction coefficients of different

kind of objects[16], in the last decade a number of simulation techniques have been
developed to study the dynamics of suspended particles incorporating hydrodynamic

interactions in a more or less exact fashion. Bossis and Brady[17] introduced a method

analogous to molecular dynamics to simulate the trajectories of colloidal particles, in

which the global friction tensors are constructed assuming pairwise addit ivi ty of hy-

drodynamic interactions. Later, they coined the term Stokesian dynamics to denote

a generalized simulation technique in which the non-additive character of hydrody-

namic interactions was introduced to some extent as well as cl i (fusión [18], and have



applied it to study the rehology of suspensions[19]. The dynamics of colloids when

Brownian motion is relevant has also been considered wi th in the framework of Brown-

ian Dynamics[20], although hydroclynamic interactions here are introduced in a more

simplified way, without considering lubrication effects. More recently, Lattice Gas
Cellular Automata and Lattice Boltzmann techniques, which are more powerful com-

putationally, have been combined with the method introduced by Brady and Bossis

to study the sedimentation of interacting spheres[21]. Hybrid methods in which the

singular part of the friction tensor associated to the lubrication forces is included an-

alytically, have been developed to simulate highly concentrated suspensions[22][23].
Bafaluy el al. have studied the effect of hyclrodynamic interactions on the adsorption

of Brownian particles at low coverages, using a refined version of Brownain dynamics

[24]. Then, the effect of hydroclynamic interactions in the diffusion coefficient should
be considered.

Due to the absence of exact analytic expressions for the friction tensors when a

number of particles are close to the wall, we will make use of numerical simulations in

order to study the effects of hydroclynamic interactions on the adsorption of colloidal

particles, by implementing them in an appropriate approximate way.

3.2 Hydrodynamic Effects in the Adsorption of

Large Colloidal Particles

We will center our attention in the case of large or heavy hard spheres, whose motion

is characterized by a large Peclet number, Pe, comparing gravitational and thermal
energies, Pe — 47rA/5a4i//(3fcßT), where A/J is the difference between the density of

the object and that of the host f luid, a the typical size of the particle, and g the

gravity acceleration. This study is interesting because it allows to study the effect

of transport in an adsorption situation in the opposite case of that considered up to
know[24]. Moreover, in the l imit of heavy particle adsorption, BM has been introduced

as an adequate model to describe these adsorption proc,esses[25], and there exist

recent experimental result on the adsorption of melamine particles which have shown

discrepancies wi th BM results[26]. Finally, we wil l consider hard spheres to avoid
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other interactions which could mask the role played by hydrodynamic interactions on

adsorption kinetics.

We are interested in the process in which initially the wall is empty. Particles
come to the wall due to the action of an external force which acts perpendicular to

the substrate, to which we will refer to as the gravity force, and when they touch the

line are irreversibly adsorbed at that position, without allowing any further movement.

This adsorbed particle will influence the motion of the spheres which arrive later at the

substrate, and in this way the exclusion volume effects at the interface will interfere
with the transport mechanism of the spheres to the substrate.

We will first study the adsorption on a line. Although this corresponds to an

unrealistic experimental situation, this idealized model will be useful to introduce in
a simpler way the techniques we have used, and will serve to show the characteristic

features introduced by hydrodynamic interactions, and compare in detail with the

kinetic model. Afterwards, we will on its two dimensional version, and will compare

with experimental results.

3.2.1 One-dimensional Model

In this model, the substrate is one-dimensional, and a dilute quiescent suspension is

in contact with it. The particles suspended in the fluid will move through it due to

the presence of an external field perpendicular to the line and, if dur ing their motion

they touch the surface, they will irreversibly adsorb at that position as a result of

strongly attractive short-range substrate-particle interactions. We wil l restrict our-

selves to the case of high Péclet number particle motion for the reasons explained at
the beginning of the section, which implies that the Brownian motion of the particles

in the fluid can be neglected with respect to the effect of the external field. However,
due to the fact that the typical particle size is of a few tens of microns, the Reynolds

number associated to their motion is negligible. Although the bulk solution is con-
sidered dilute, and therefore the motion of suspended particles will not depend on

their relative distribution, the interactions with the adsorbed particles are relevant

when the suspended colloids move close to the wall. Moreover, high concentrations

are achieved in the substrate.
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In order to describe the adsorption of particles which move in the bulk according

to the mechanisms explained in the previous paragraph, we have to solve the evolution

equation for the dilFerent particles subject to the boundary condition that the motion

ceases when the particle touches the substrate. For all purposes, it is enough to
consider the motion of a single sphere, due to the low concentration of the suspension

in the bulk. In the absence of Browninan motion, the dynamics of a suspended sphere

at position f in the bulk is governed by the equation

})-Fex, (3.2.5)

where {r}} refers to all the vectors pointing from all the preadsorbecl spheres to the

incoming one, as well as the vector position of the suspended particle, and flejj 's

the inverse of the effective friction tensor defined in eq.(3.1.2). In this case, Fext —

— niappg¿ with mapp the apparent mass of the suspended sphere. We have assumed
that the line ¡s perpendicular to the z direction, and that the fluid in which the

colloidal particles are suspended ¡s above the line, geometry which will be assumed

hereafter.

We have to implement an appropriate expression either for the friction or mobility
tensor if we want to look at the particle trajectories in the presence of the line, and its
effect on adsorption kinetics. As we have shown in the previous section, however, there

exist no general analytic expression for the friction of a number of suspended spheres

in the presence of a wall. We need expressions for the friction in the whole range of

separations, because the adsorption will be composed of regions where the incoming

sphere is far both from the adsorbed particle and from the wail, regions where it will

be close either to the wall or to the adsorbed particle, and intermediate regions where

the distance between the incoming particle and the interfacial objects is of the order of
the diameter of the spheres. Then, neither the exact expressions for two spheres in an

unbounded fluid[3] and one sphere in the presence of a wall[9][l 1], nor the expansions

in powers of the inverse of the distance for a number of spheres in the presence of a

wall[12] are completely satisfactory to describe the effect of hydrodynarnic interactions

in this process.

As a result, .some approximation has to be introduced in order to obtain an ho-

mogeneous analytic expression for the friction tensor. Due to the high dilution of the
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suspension, the fact that the gravity force drives the particles towards the substrate

because diffusion can be neglected, and also that the incoming sphere interacts with

immobile particles[27], the non-additivity effects of hydrodynamic interactions are not

expected to play a major role in the dynamics of the incoming particles. On the other
hand, lubrication effects, which essentially constitute two-body interactions, wil l play
a dominant role when the adsorbing sphere comes close either to the wall or to a

preadsorbed sphere. In accordance with these ideas, we have assumed that the total

friction tensor can be constructed as the sum of the friction tensors of the différent

pair of objects as if they were isolated in the host fluid from the rest of particles. The
global friction tensor for a situation in which a particle adsorbs on a substrate in the

presence of in preadsorbed particles is expressed as

£ £.<*' ) - (3.2.6)

where £jp(r) refers to the friction tensor for a configuration made up of a sphere and

a plane, with r being the position vector of the particle, because we have taken the

origin of coordinates on the line. (,,(r¿i) is the friction tensor for two spheres sus-

pended in an unbounded f lu id . Here, rn refers to the position vector of the suspended

particle relative to the i-th adsorbed sphere. Finally, £0 = 67rr/al is the Stokes friction

tensor, with ;; being the viscosity of the solvent, a the radius of the particle, and 1 the

identity matrix. One should subtract the Stokes' friction to ensure that the overall

friction tensor reduces to the usual Stokes law when the colloidal sphere is far from

any other object. Expressions for both £ and C33 are known exactly, and are given

in appendix 3. A. This aclclitivity assumption was introduced by Bossis and Brady[17].

They showed that it is equivalent to assume that the forces acting on the incoming
particle are additive. They showed that with this approximation lubrication forces

are properly incorporated. Moreover, they constructed the global mobility matrix

directly from the mobilities of two isolated spheres and a sphere and a plane. This

second approximation is equivalent to assume aclclitivity of velocities, and the lubri-

cation forces are not properly incorporated. They observed that overlapping between

particles was not. prevented within this second approximation scheme.

Within our approximation scheme, the effective mobility matrix is determined in-
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verting the effective friction tensor obtained using the force additivity approximation,

eq.(3.'2.6). Note that the fact that the order in which the inverse of the friction tensor
is performed leads to different mobility matrices indicates that, to some extent, the

non-aclditivity ofhydrodynamic interactions is taken into account when inverting the

effective friction tensor.

Finally, note that the expressions of the friction tensors that we are using corre-

spond to three dimensional hydrodynamics, although adsorption takes place on a line.

We will consider three dimensional spheres, and from the point of view of hydrody-

namic interactions the line will be considered as a plane. In the absence of diffusion,

one can see this restriction as if one had some symmetry in the solution which limited

the motion of the suspended particles to a line.

The non-linear dependence of the friction tensors as a function of the distance

between the particles, together with the fact that the friction tensors associated with

the sphere-sphere configuration have a spherical symmetry different from the cylin-

drical one of the sphere-plane friction tensors, make it impossible to find an analytic

solution for eq.(3.2.6) even in the simplest case in which a single sphere is adsorbed
on the line. In the general problem of adsorption kinetics one has to take into account

that besides this problem, the number of particles on the line increases with time.

Therefore, a numerical simulation study has to be performed.

We have integrated numerically the trajectories of the incoming particles, de-

scribed by eq.(3.2.5) and the expression for the friction tensor eq.(3.2.6), with the

appropriate functions given in appendix 3.A, implementing a 4th order Runge-Kutta

algorithm [28] with variable time step. In the numerical integration is important to
take into account that the behavior of the friction changes qualitatively along the

trajectory of the particle. When the sphere is far from any other object, the mobility

is of order unity, and changes slowly. However, when it comes close to an adsorbed

sphere, the mobility becomes anisotropic. Then, while the component associated to

the displacement, along their lines of centers vanishes linearly with the clearance be-
tween the spheres (see eq.(3.A.21 ), the component related to the displacement at

constant separation goes to zero as the inverse of the logarithm of the clearance (see

eqs.(3.A.22 )-(3.A.24 )). In this region, the mobility changes rapidly, and in a differ-

ent fashion depending on the direction. In fact, the displacements in this region will

88



consist basically on angular displacements at practically constant distance between
the spheres. The variable time step is chosen to ensure that the displacement is never
larger than a tenth of the clearance. Moreover, to take the anisotropic behavior of the
mobility properly into account, eq.(3.2.5) is solved in spherical coordinates centered
in the closest adsorbed sphere to the incoming one.

The fact that the mobility goes to zero when the spheres come into contact, due
to the stick boundary condition, introduces an additional computational difficulty,
because the velocity in that region can become so small that the computer time
needed to describe the trajectory becomes exceedingly large. We have decided to
stop a trajectory when the distance between the incoming and an adsorbed sphere
becomes smaller than 10~4 times the diameter of the particles, and place the particle
in contact with the adsorbed sphere along the steepest descent path. This motion
seems reasonable because at that point, the trajectory is basically controlled by the
geometrical constraints, and the external force drives the particle to the line. In the
next section, however, we wil l comment on the limitations introduced by this loose of
precision in the analysis of the relative distribution of spheres on the line.

When the sphere comes close to tiie line, again the mobility becomes anisotropic
and exhibits the same behavior explained in the previous paragraphs (see eqs.(3.A.28
) and (3.A.29 )). Again, the time step allows displacements up to a tenth of the
clearance, and since the mobility goes to zero, if the simulation is not stopped, the
particle would need an infinite amount of time to actually touch the line. We have
considered that when the gap between the sphere and the plane is smaller than 10~2

diameters, the particle is placed at that position. Due to the driving force, this
approximation is reasonable. The situation would be completely différent in case the
diffusion was present. In that case, the sphere would have a large tendency to diffuse
parallel to the line, leading to deslocalization in the final adsorption position[24].This
truncation procedure can be seen as an effective way to account for the attractive
short-range particle-surface potential, which binds the sphere to the substrate. In all
the simulations the diameter of the spheres is taken as the unit length, and OTri]/(2mg)
is the uni t of time.

We will start by considering the distribution of incoming spheres around a single
adsorbed sphere. This simpler situation will help to understand the basic, effects of



hydrodynamic interactions in the adsorption, which will be necessary to understand
afterwards the results obtained from the simulation of the whole kinetic process.

Relative Distribution Around a Preadsorbed Particle

We consider the specific geometry in which one sphere has been adsorbed on the line,
whose center is taken as the coordinates origin. We will first analyze at which position
on the line an incoming particle which is initially at a certain distance from the fixed
sphere will be adsorbed. To this end, initial positions are chosen at a height 50, where
the influence of hydrodynamic interactions are negligible, and the eq.(3.2.5) is solved
numerically until the particle reaches the line. As shown in fig. 3.1, initial positions
of the incoming spheres are characterized by the distance off-centers x¡.

In fig.3.2 we show the final position from the fixed sphere, xj, as a function of
the initial displacement x¡. It can be seen that for initial separations larger than
0.3 diameters, the incoming sphere is not in contact with the preadsorbed particle.
According to BM, the particle has to roll and end on the line in contact with the
adsorbed sphere while the initial displacement is smaller than one diameter, and the
final and initial positions coincide for larger separations. Therefore, hydrodynamic
interactions introduce an effective repulsion between the incoming and the adsorbed
particles. This effective repulsion, which introduces significant deviations with respect
to BM, depends on the init ial displacement. In the inset of fig. 3.2, the difference
in the final positions when hydrodynamic interactions are considered (HI) and when
the motion is ball ist ic, relative to the ball ist ic prediction are depicted. One can see
that the difference in the final position is up to an 18% when the initial separation is
of one diameter. When the initial displacement grows, the final position obtained in
HI tends to the value of BM. However, from fig. 3.2 one can see that differences are
still observed for initial separations for x¿ ~ 5, which is a feature of the long-range
character of hydrodynamic interactions.

One can extend the previous analysis to the case where there are two preadsorbed
particles on the line at a given distance /. In fig. 3.3 we show the behavior for
/ = 5 and / = 10. One can see that when a second sphere is present on the line,
the differences with respect to BM in the nearby of the adsorbed particles is not
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Figure 3.1: The inc ident sphere is located at a separation Xj from the preadsorbed
one (at the origin), at a height /¡o = 50; x¡ the final adsorbed position on the line.
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Figure 3.2: a) Example of the trajectory for an incoming particle initially separated
one diameter. b)Final distance to the fixed sphere, x/, as a function of the initial
displacement, x,. (—) with hyclrodynamic interactions (HI) , ( ) BM prediction.
Inset, the relative différence between BM and HI.
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Figure 3.3: Final distance , x j , as a function of the initial displacement, x¡. Com-
parison of BM model with Hi when one particle is in the substrate (HI lp ) , and when
two adsorbed particles are on the substrate (HI2p) when the gap between them has
a length: a) 5 diameters, b) 10 diameters.
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substantially modified. In fact, the final position is a little bit closer to the adsorbed

sphere, but the differences with DM remain of the order of 15%. This deviation

is due to the repulsion produced by the distant sphere, and diminishes for larger

gaps. On the other hand, the convergence of HI to BM is faster now, than in the
one-particle geometry, screening the long-range effects of hydrodynamic interactions.

For gaps larger than 10, the overall curve can be constructed from an appropriate

superposition of curves of the kind shown in fig. 3.2.

We have also checked the effect of the wall in the final positions of the particle. To

this end, we have considered the geometry of fig. 3.1 in which there is one particle,

and we have compared the predictions both when the wall is present and absent.

In this last case, the expression for the friction coefficient is not given by eq.(3.2.6).

Rather, the exact result of Jeffrey and Onishi[3] can be used. In fig. 3.4a) we compare
the final positions obtained when the wall is present and absent. One can see that

the differences are small, which shows that the wall introduces small perturbations in
the motion of the spheres, clue to the driving introduced by the external field.

This last result indicates that we can study some of the properties of HI disre-
garding the wall. In this case, the adsorption reduces to the settling of a sphere in
the presence of a fixed one. The mobility matrix in this case has spherical symmetry,

and is given by the inverse of eq.(3.A.25 ). Then, if we take polar coordinates cen-

tered in the fixed sphere, and the origin of angles coincides with the vertical direction,

eq.(3.2.5) reduces to

C\<)7\
( 'sino

where &. = X&, and & = Yfi - (Vu )2/(3y/i ) (see appendix 3.A). If the trajectory
of the incoming spheres starts at an infinite distance but at finite displacement XQ,

the final position at the height of the fixed particle is obtained from the previous
equation,
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Figure 3.4: a) Final position as a function of the initial displacement of a single

adsorbed sphere with hydrodynamic interactions and (—) a wall, ( ) no wall, b)

Final position as a function of initial displacement from the sphere at the origin when

there is a second at a distance 5 ( ) and when there is a second at a distance 5 and
a third sphere in contact with the second (—).
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We can now use the expressions for the friction coefficients near contact to obtain the
behavior of the final position near contact. From eqs.(3.A.21 )-(3.A.25 ) one gets

which, upon substitution in eq.(3.2.8), gives

x/~l+e~($) (3.2.10)

with A' an integral of the quotient of frictions. This equation indicates that the
incoming particles will never touch a preaclsorbed one. This is in contrast with the

numerical result shown in fig. 3.1, where, the incoming particle touches the adsorbed
one until the initial displacement becomes of order 10"1. This spurious consequence of
numerical limitations, however, introduces small changes in the distribution, because
the function obtained in eq.(3.2.10) shows that the departure from touching is very
smooth.

We have also addressed the effect of a third adsorbed sphere on the line by consid-
ering the situation in which one sphere is taken as the origin of coordinates, a second
one is placed at a distance /, and a third is located in contact with this second one.
In Fig 3.4b), we show the differences with respect to the results obtained in fig. 3.3a)

when only two spheres are present on the line. The relative differences observed in
the final position are always smaller than 1%. This means that in the one dimensional
model, the geometrical restrictions tend to cancel the effects of many particles, and
that the interaction is properly taken into account considering the interaction with a
limited number of particles. Moroever, we expect that the geometrical distribution
discussed above wil l keep the largest deviations with respect to the results obtained
for two adsorbed spheres. When more particles are adsorbed, they will tend to cancel
each other's effects.

Finally, we have also checked the effect of the interactions with the wall on the final

location of the incoming sphere. There will exist an attractive interaction between
the adsorbing spheres and the wall, which keep the particles fixed to the substrate.

Although the interactions at the surface can be of different kinds, we have considered
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that it is of van der Waals type. For the case of an isolated sphere in the presence of

a plane, it is characterized by an energy í/U(¿u,[29]

6

with Ah being the Hamaker constant, with a typical value of Ah = 10~20J[30], z the

minimum distance between the sphere and the surface. Van der Waals forces play

a significant role in the adsorption of Brownian particles when hydrodynamic inter-

actions are considered[24]. Then, one may think that also if gravity is present, this

attractive interaction may have some importance. We have included this new force

in eq.(3.2.5) besides gravitational force, and we have studied the final position on the

line around a preadsorbed one as a function of the initial displacement. The differ-

ences observed in the final positions are practically equivalent to the ones obtained
for a hard wall. Despite the power-law decay of van der Waals potential, the force

is significant only at distances of the order of a fraction of the radius of the particle,

when the adsorbing sphere is already very close to the substrate. The opposite case

in which there exists an attractive potential between the adsorbing spheres has been

considered in réf.[31]. In that case, larger deviations with respect to the hard sphere

situation are found, and the particles tend to end closer.

If we choose the init ial displacements x¡ with a certain probability distribution

P(XÍ) along the line at a height AQ, and we consider that there is a single adsorbed

sphere on the substrate, then we can use the previous study on the trajectories of

incoming particles to obtain the relative distribution of particles around a fixed ad-
sorbed sphere, that is, the probability of having a second one at a distance Xf, P(xj).

It satisfies the equation

P(xi)dxi - P ( x j ) d x j (3.2.12)

with P(xi)dx{ being the probability of having initially a particle between z,- and

X{ + dx{, and, accordingly, P(xj)dx¡ is the probability of having a sphere on the

line between x¡ and xj + dxj. An interesting feature of the probability P¡ is that
it is equivalent to the pair distribution function at low coverages. We will consider
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Figure 3.5: Relative distribution of particles around a fixed adsorbed sphere: (—)
HI, (•) BM. It coincides with the pair distribution function at low coverages, once
normalized.
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that the probability distribution of initial positions is uniform, which constitutes the

standard assumption in the kinetics sequential adsorption models. In this case, the

probability distribution for the final positions can be written as

IÍT-

P(xj) oc i (3.2.13)

which can be obtained by numerically differentiating fig. 3.2, and its result is shown in

fig.3.5b), without being normalized. We also compare with the predictions of BM. In

that case, the initial position coincides with the location on the substrate for r > 1,

and therefore the relative distribution is homogeneous. One only has to take into

account that a delta function appears at r = 1 because all trajectories which start at

\XQ\ < 1 end at contact with the sphere on the line.

An estimate of the behaviour of Pf near contact can be carried out by using the

fact that the substrate produces small changes in the location on the line. If we

consider that the incoming sphere moves in the presence of a single fixed sphere, we

have calculated the distance when both are at the same height, eq.(3.2.8). If we

differentiate it, we will obtain a function proportional to the probability distribution

function, Pj,

(3.2.14)

and, although a general expression cannot be obtained, using the expressions of the

friction coefficients close to contact, eq.(3.2.9), we can estimate the asymptotic be-

havior. Performing the integrals, and disregarding various normalization factors, one

obtains

which clearly shows that the effective repulsive interaction induced by hydrodynamic

interactions prevent particles from touching, and therefore, destroy the delta function
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characteristic of BM. On the other hand, the fast decay obtained in eq.(3.2.15), in-
dicates that a large fraction of the particles will be extremely close to the adsorbed
particle. As we will see in the next section, the intrinsic limitations of numerical
simulations will induce delta functions in the pair distribution functions. These can
be thought as averages of the actual logarithmic decay in a small gap close to the
adsorbed particle.

Introducing in eq.(3.2.14) the expression for the friction coefficients when incoming
particle is far from the fixed one,

i i i C Î L /*? o i ß\Çr ~ 1 + 7-0 ' Ç< ~ 1 + T7~2 (.3.2.10)4r¿ 16 r*

gives the asymptotic behavior

P ( X J ) ~ l + _HZ_ (3.2.17)

which shows the slow decay associated to the slow decay of hydrodynamic interactions.
Although qualitatively interesting, this slow decay will not be of great interest from
the point of view of adsorption kinetics.

The Adsorption Process: Kinetics and Structure

The previous section has served us to understand the new features that the incorpora-
tion of hydrodynamic interactions, when the detailed transport of particles from the
bulk to the substrate is considered, in t roduce in the distr ibution of adsorbed particles.
We will now study the adsorption process, taking hydrodynarnic interactions into ac-
count, and following the basic, ideas of the adsorption kinetics models introduced in
chapter 3. The line is initially empty. Adsorbing spheres are chosen sequentially, in
such a way that there is only one sphere adsorbing at a time. Initial positions for
the incoming spheres are chosen uniformly random at a height 50, to be sure that
initially hydrodynamic interactions can be disregarded. The particle evolves accord-
ing to eq.(3.2.5), and the appropriate boundary conditions are implemented: If the
particle touches the wall, then it is irreversibly adsorbed at that position, with no
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further motion; if it is trapped on the top of two adsorbed particles, and is unable
to reach the line, it is rejected. This last boundary condition ensures that only one

layer of adsorbed particles is formed. Then, the kinetic process will reach a jamming

limit, when no more particles can be added to the line.

The study of this kinetic, process has to be performed with the aid of computer

simulations. We have considered a line of length 800. Initial positions are chosen

using a standard uniform random generator. Then for each trial particle, eq.(3.2.5)

has to be integrated numerically. In view of the results of the previous section, and
also in order to save computer time, the incoming sphere is assumed to interact only

with its nearest neighbors. As we have seen, in the most unfavorable case, differences

of 1% are expected. Then, the expression for the friction tensor, eq.(3.2.6) simplifies

considerably, and has a constant structure along the simulation. Note, however,
that the neighbors may change along the trajectory of the incoming sphere. Periodic

boundary conditions have been considered to diminish finite size effects, and a number

of configurations of the order of 1000 have been simulated in each situation to have a

reasonable statistics.

In order to be able to compare our results with BM predictions, simulation of

BM of the same system explained in the previous paragraph have also been carried

out, following [25]. Positions are chosen uniformly random on the line. If no overlap
occurs with a preadsorbed particle, the incoming sphere is irreversibly located at that

position. Otherwise, its position is shifted one diameter to the right or the left of

the corresponding preadsorbed particle, depending on whether the incoming sphere

is at its right or left hand side, respectively. If at the new position there is an overlap

with another preadsorbed particle, the incoming one is rejected and a new position is
chosen randomly.

In fig. 3.6 we show the fraction of covered line as a function of time, and compare

with BM results. The unit time in both cases is the number of particles which have

tried to reach the wall. In this sense, we follow the kinetic models, which do not
have a characteristic time scale, instead of counting the time from the differential
equation. In the absence of Brownian motion, however, both time scales will be

practically equivalent, except perhaps near the jamming. The differences observed

in the figure are small, and relative differences do not exceed 1% along the whole
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Figure 3.6: Coverage as a function of time. (—-) with hydrodynamic interactions, (-
- -) ballistic model. Inset, differences in the asymptotic regime.

process, leading to a difference in the jamming limit of a 1.3%. The jamming limit we

have obtained is O'^1 - 0.797±.001, while BM predicts 6™ = 0.808±.001, therefore

the differences are small, and almost impossible to be detected from an experimental
point of view. Nonetheless, they are larger than the ones observed in the jamming

limit when comparing USA and D US A [32],

In the inset of fig. 3.6, the asymptotic kinetics for both HI and BM is shown. It is

the same, due to the fact that the asymptotic regime is controlled by the available area

of isolated targets, and in both models these areas do not go to zero since incoming
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particle can roll on preadsorbed ones. This means that the asymptotic kinetics is not

sensitive to the actual transport process from the suspension to the line. We have

computed the number of trials needed to succeed in adding a sphere to the line, as

a function of coverage. The mean value of its inverse gives us the available fraction
of the line as a function of the coverage, which we have plotted in fig. 3.7. Again,

the differences between HI and BM are at most of 1%. These results show that in

these systems, global quantities are not very sensitive to hydrodynamic interactions,

although small deviations are observed, which suggests that other physical properties

may be more sensitive to the transport mechanisms.

We will next focus our interest on the local structure of the adsorbed layer, that

is, on the relative distributions of the particles on the line. Most of the structure

information is contained in the pair distribution function, g ( r ) . In appendix 3.B we
introduce it and explain how it can be numerically computed.

We have studied the pair distribution function of both III and BM as a function of

the coverage, using the method described at the end of appendix 3.B. To determine

this quantity, it is necessary to introduce a spatial resolution 6r, and take the average

number of particles in boxes of such a width. On the other hand, the numerical method

used to simulate the adsorption process produces a finite fraction of adsorbed spheres

at contact, and a large fraction of pairs of particles separated at a distance close to

contact. Then, the specific form of the curve in the vicinity of distances a multiple
of the diameter, will depend strongly on the value of ¿r considered. In principle, the

smaller the value of é;-, the more accurate the description of the curve, which consists

on a delta function, which appears as a pronounced peak, and a smooth curve. On

the other hand, the smaller its value, the least smooth the curve. A compromise has
been reached by taking or = 0.05. By varying ¿r around this value, we have verified

that the form of the curve is stable, and only the precise value of the height of the

peak changes.

In fig. 3.8 we show g(r) at low, 0 = 0.25, intermediate, 0 = 0.5, and close

to jamming, 0 = 0.79, coverages. Peaks are obtained at distances multiple of the

diameter, which are followed by a slow decay. The peak is due both to the existence

of particles at contact, and the existence of a singular contribution due to the fact

that the repulsion induced by hydrodynamic interactions favors the appearance of
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Figure 3.7: Available line fraction as a function of coverage. (—) with hydrodynamic

interactions, ( ) ballistic, model.
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Figure 3.8: Pair distribution function for H! at coverages 6 = 0.25( ), 0.5( ),

and close to jamming (- -).

small gaps between spheres. In fact, from the results of previous section, we know
that the pair distribution function in the absence of substrate has to decay after the

peak at contact as the product of the clearance times a power of its logarithm (see

eq.(3.2.15)). The decay of y ( r ) is not sensitive to coverage, because it is basically a

two-body effect. As the coverage increases, the relative distances tend to be smaller,

as expected, concentrating in values around the multiples of contact. The height of
the peaks, which are not shown in the figures except for the third, also increase with

coverage, indicating that the fraction of particles forming clusters increase, as well as
the fraction of particles at distances close to multiples of diameters, forming dense

structures, although without touching. Due to finite size effects, no peaks at distances

larger than 6 have been obtained, even close to jamming.

We have also compared the pair distribution functions obtained in HI with those

of BM, as shown in fig. 3.9. The peaks obtained in BM are always higher than the
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corresponding ones for HI. This can be expected, since from fig.3.2, one can predict

that the fraction of particles at contact in HI will be a around a third of the fraction

obtained in BM. The decay of the curves after the peak is faster in BM, because in this

case the interaction is only by contact. After the first peak, differences for the values
of g(r) up to a 40% are observed. At higher coverages, the differences in the height of
the peaks remains, but the convergence of HI to BM curve is faster, indicating that

the possible positions on the line become progressively dominated by the geometrical

restrictions, and that the relative distances decrease in average. Note that the g(r)

obtained in HI is always larger than the one obtained with BM, except at the peaks.
This can be seen as another feature of hydrodynamic interactions, which prefer to

move the incoming spheres away from the adsorbed ones.

From this one-dimensional analysis one can see that, while the averaged global
quantities, are not sensitive to the precise transport process, the structural local

properties are more sensitive to the specific transport mechanism of the particles
towards the line, and its interaction with surface exclusion effects. The results we

have obtained from the g(r) agree qualitatively with the ones observed experimentally

on the adsorption of melamine spheres on a glass surface[26j. However, in order to
be able to perform precise comparisons, one should consider the adsorption on a real

two-dimensional substrate, which constitutes the topic of the next section.

3.2.2 Two-dimensional Model

In this section we will proceed to analyze a more realistic situation in which particles

adsorb on a planar bklimensional surface. As happened in the one-dimensional case,

the study of the adsorption will have to be carried out numerically. Again, particles

will be launched at. a certain height over the plane, and its trajectory, eq.(3.2.5) will

be numerically integrated u n t i l they reach the surface. The expression for the effective

friction tensor, eq.(3.2.6) using the force addit ivity approximation, is still valid. The

same expressions for the friction coefficients, given in Appendix 3.A, can still be used,
because three-dimensional spheres have considered in the previous model. The Runge-

Kutta algorithm is analogous to the one used in the previous section, and a variable

time step has also to be introduced to take properly into account the trajectory in

the regions where the mobility components go to zero. Finally, the trajectories that
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Figure 3.9: Pair distribution function for HI (—), and BM ( ). a) At B = 0.25; b)
at O = 0.79.
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go too close to a preadsorbed sphere need such an amount of time to be performed,

because the velocity goes to zero in those regions, that the program has to be stopped,

and the particles then try to reach the wall rolling over the preadsorbed sphere, as in

BM.

Relative distribution

However, before studying the global kinetic process, we will concentrate on the basic

features introduced by hydrodynamic interactions, which are better understood by

considering the simplified situation in which a sphere arrives at the plane in the

presence of one or two spheres.

Let us consider first an adsorbing sphere in the presence of a single adsorbed

particle. In this case, and due to the symmetry, we reproduce the behavior discussed

in the previous section.

However, new phenomena appear when adsorption takes place in the presence of

two adsorbed particles. In fact, we will study the adsorption in the presence of a

doublet of adsorbed particles. One is at the center of coordinates, and the other one

in contact with it, as shown in fig. 3.10. Initial positions for the incoming sphere, r,-,

are chosen as shown in fig. 3.10, for values which correspond to contact with particle

1 if sphere 2 would not be present. In fig. 3.lla) we present the final angle on the

plane for initial displacements from sphere 1, for different initial orientations. As a

general feature, the incoming sphere has a tendency to move apart from sphere 2 due

to the effective repulsions induced by hydrodynamic interactions, ending at angles

smaller than the init ial one. This effect is specially pronounced when the initial

separation from sphere 1 is smaller, and for smaller values of the initial angle. Note

that BM predicts no change in the orientation, because if the incoming sphere touches

sphere 1, it will reach the surface through the steepest descent path. This deviation

shows a tendency to form aligned triplets on the surface, where BM would predict the

appearance of isotropic clusters. From the point of view of the deposition process,

this tendency to align would affect only a small part of the incoming spheres, because

they should arrive close to one of the particles forming a doublet. In fact, the study

of the structure of the clusters remains as an open subject also experimentally.
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Figure 3.10: Top view of the geometry considered. Sphere 1 and 2 are adsorbed, and
sphere 3 (continuous line) is at a height 50, while the discontinuous sphere corresponds
to its final position on the surface.
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For if>i > 90", the incoming sphere will move to the intermediate region between

the adsorbed spheres. In this case, due to the symmetry, the particle will end in

contact with both spheres, in agreement with BM. However, as shown in fig. 3.lib),

if the initial positions are chosen tpo — 0°, the mutual repulsion and its long range

produce important differences in the final position, with respect to BM.

In the adsorption on a line, because of the geometrical restrictions, the effect of a

second sphere is a shadowing of the effective repulsion produced by the nearest pread-

sorbed sphere. Now, due to the angular degree of freedom, the combined repulsion

effects of the two adsorbed spheres can also change the direction of movement of the

incident sphere, leading to more complex interaction of the transport process with

the surface exclusion effects.

The radial distribution function

We will generalize the basic principles introduced in the previous one-dimensional

model, to this system. We will consider again that spheres approach the planar surface

one at a time in a sequential way, which corresponds to the situation when the bulk

concentration is small. Again, the boundary conditions are introduced considering

that as soon as a sphere touches the surface, it is irreversibly located at that position,

and that if it touches a preaclsorbecl particle, it will try to reach the surface following

the steepest descent path2. If during this motion, it is trapped on the top of some

adsorbed particles, then it is rejected. Now, there exist more trapping possibilities

than in 1-D. In order to know when a particle is unable to reach the surface, the 2-D

BM algorithm[33] has been implemented. In app. 3.C, we show the different rolling

mechanisms, and which ones leads to trapping.

In the 1-D model, we have further argued that, because of the geometric restric-

tions, the effective friction tensor could be constructed by considering only the nearest

neighbours of the adsorbing particle. We have seen now that the angular dependence

becomes very important. Then, a particle which is not nearest neighbor, but which

is in a direction different from the nearest neighbours may cause significant changes

^Remember tli.it in the simulations, if the distance between the particles is smaller than 10~4,
the incoming spheres starts to move according to BM

1 1 1



in the direction of the incoming trajectory. Therefore, a more general scheme for the

interactions has to be introduced. Although in principle, we would have to consider

the interaction of the adsorbing sphere with all the adsorbed particles, the computer

time increases rapidly with the number of interacting particles. As a compromise, we
will consider that the adsorbing sphere, as it approaches the surface, is located in the

center of an imaginary cylinder of a certain radius R. The particle wil l then interact

with all preadsorbed spheres located in the interior of such cylinder, which will be

referred to as interaction cylinder. On the other hand, we have seen that if a single

sphere is adsorbed, the incoming one ends practically at the same initial position for
initial displacements larger than 10. This fact suggests that 72=10 is a reasonable

choice for the radius of the interaction cylinder. If there are no adsorbed particles in

the cylinder, the particle adsorbs at the in i t i a l position.

However, even with this restriction, the time that a particle needs to reach the

surface is too large. In order to speed up the simulation, we have considered that,
as the particle approaches the surface, the radius of the interaction cylinder initially

decreases linearly with the height. In fact, if one observes the trajectory of one

particle in the presence of a preadsorbed one, as the one shown in fig. 3.2a), one
can see that initially the trajectory is controlled by gravity, and the displacement

parallel to the surface is a small correction of its initial value. The major part of
the parallel displacement takes place when the distance to the adsorbed particle is of

the order of 2 or 3. Though these trajectories are obtained with a small number of
particles on the surface, it seems reasonable that this behavior holds in more complex

situations. Therefore, in this region the trajectory of the particle wil l not be especially

sensitive to the local enviroment. When the sphere approaches the surface, then the

previous assumption is no longer valid. For this reason, when the height is smaller

than 5, we then take the radius of the interaction cylinder constant and equal to 5.
The introduction of this radius-varying interaction cylinder, saves an order 10 the

computer time needed to perform the simulation.

We have checked the errors induced by the use of such a varying cylinder by cover-

ing a surface both using a constant-radius and a varying-radius interaction cylinder,

as shown in fig. 3.12. At an intermediate coverage, as shown in fig.3.l2a)3, all the

3the jamming value of BM in 2-D is 0.6105 [34]
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partides end at the same positions on the plane using both methods, although at

higher coverages a small fraction of the particles are placed at different positions, as

seen in fig. 3.12I>). This is due to the fact that if an incoming sphere arrives close

to an aggregate, a small initial deviation may lead to a completely different final po-
sition. Then, due to the infinite memory of the adsorption process, all the particles

arriving afterwards will be sensitive to this difference, leading to a completely differ-

ent configuration. From the point of view of average quantities, it is doubtful that

this change may lead to a significantly différent results.

Finally, the initial height at which particles are left has also been changed with

respect to the 1-D model. We have checked that if it is taken 10 diameters using
the same argument exposed to choose the interaction radius 10, then the changes in

the configurations on the surface relative to the ones obtained upon choosing it for
example 12 diameters, are smaller than the ones produced by taking a constant or

varying cylinder. Now, the possibility of taking 10 as the initial height is important,

since it is related to the initial value of R and therefore to the minimum value of

the sides of the studied surface, because, obviously, the diameter of the interaction

cylinder cannot be larger than the system size.

We have performed numerical simulations of the adsorption process on a rectangu-

lar surface, of sides 23.5 and 24.7, up to a coverage of 0 — 0.5. The size of the system

has been chosen for convenience in order to compare with experimental results[26].
We have focused on the study of the radial distribution function, since we expect,

from the results obtained in the 1-D model, that both the jamming and the kinetics

will be similar to those of 2-D DM. Note, in particular, that this means that in our

simulations we wi l l arrive at a 18% away from jamming. At this concentration, we
can already obtain an idea of the behavior of the system near jamming. From the

computer time point of view, it is diff icul t to reacli higher coverages.

We have covered 200 surfaces, and from them, we have constructed the radial

distribution function, according to the procedure explained in app. 3.A. We do not

need as many surfaces as lines in 1-D to obtain reasonably smooth y ( r ) , due to the
additional angular average which is performed in a 2-D model. As in the previous

model, simulations of the deposition of BM have also been carried out, under the same

conditions exposed in the previous paragraph, in order to compare both models. The
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algorithm simulated follows the one in Ref.[33], and which is outlined in app. 3.C.

In fig. 3.13 we compare with the results obtained from BM. Again, we will focus

our attention on the curves after the first peak. One can see that the effective repul-

sion introduced by hydrodynamic interactions produces a curve which decay slower

than the one of BM due to the fact that a portion of the particles that according to

BM should be in contact, now will be at slightly larger distances. Now, at a separa-
tion around one and a half diameter, both curves cross, while in the 1-D model the

probability was always higher for I I I . As expected, the second peak is higher for BM,

and again, the decay after the second one is slower for HI. This peak appears due

the rolling on an aligned tr imer, but it is not a delta peak as the ones produced by
rolling over connected clusters. It is due to the behavior of the angular probability

distribution, which exhibits a maximum when the three particles are aligned. At high

coverages a third peak at a distance \/3 can be observed. Such a peak appears due to

the rolling on a connected trimer. The strength of the divergence in g(r) at r=2 will
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Figure 3.14: Photograph of the adsorbed layer of melamine latex spheres.

be sensitive to the fact that there is a tendency to form aligned clusters because of
hydrodynamic interactions. Looking at the figures, however, one can see that there

is a lack of resolution to distinguish to what extent the difference is due to this align-

ment or it is clue to the effective repulsion which decreases the number of particles at

contact. As in the 1-D model, the behavior right after the peaks is quite unsensitive

to the coverage, but at higher coverages, a faster convergence between both models
is observed after the peak regions, where differences are always observed.

We have also compared our results with recent experimental results by Woj-

taszczyk et al. on the deposition of melamine particles on a silicon surface [26]. These

authors used an optic microscope which allowed them to actually see the melamine

spheres on the surface. In fig. 3.14 a photograph of a surface of glass covered with

melamine spheres of diameter 4.2/im is shown. In order to see them they should fo-
cus appropriately, having to determine which particles are actually adsorbed on the

surface. In order to compute the g ( r ) , it is necessary to digitalize the images, which
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introduces a certain rounding error in the evaluation of the function, which has a
significant influence in the specific form of the peaks of </(r). As mentioned for the

1-D model, the form of the curve in the region around the peaks is very sensitive to

the specific way in which g(r) is constructed, which means that if we want to com-

pare our results to theirs, we should proceed exactly in the same way in his way to
determine g ( r ) . To this end, our simulation data have been digitalized exactly in the

same way in which the data files for the positions of the particles are obtained from

the experimental photographs. In this way, we can compare the results, although

both are not reliable in the peak region. In fig. 3.15 we show a comparison of the
experimental and computer results for two different coverages[35]. One can see that

the agreement behind the first peak is quite good, and in general, one obtain a better

agreement than comparing the experiments to BM. From the experimental point of

view, the suspension of melamine particles is not completely monodisperse, and then
it was thought that the discrepancies observed between the experimental g(r) and the

BM one could be due to this fact. Simulations of BM introducing the same degree of

polydispersity as in experiments have also been performed[36], and the comparison

of the pair distribution function still showed basically the same discrepancies, as the

ones shown in fig.3.15.

3.3 Discussion

In this chapter we have studied the effects of hydrodynamic interactions in the ad-

sorption of colloidal particles at high Péclet numbers, and compared with BM, which

has been used up to now to compare with experimental results. This model disregards
the transport process of the colloids to the surface, and, as described in app. 3.C, the

arrival at the surface only depends on the local geometry of the previously adsorbed

particles.

We have developed numerical studies for both 1-D and 2-D models including
hydrodynamic. interactions. From the study of the first model, which is simpler to

implement, we have shown that hydrodynamic interactions introduce an effective

repulsion between the incoming and the preadsorbed colloids, which is long ranged

and starts to produce a distortion of the trajectory of the incoming sphere for distances
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between particles of the order of a few diameters, which means that the interactions
are not short ranged. This result shows that a detailed knowledge of the transport

mechanism is necessary because it changes the structure of the adsorption layer.

In our analysis we have first considered the effect on the relative distribution

of adsorbing particles around a single particle, as well as around two preadsorbed

spheres. The first study has shown the effective repulsion introduced by hydrodynamic

interactions. When two spheres are considered, while in 1-D a screening effect is

shown, which limits the long range effect of III on the final positions on the line, a
new effect appear associated to the angular variation of the incoming particle in 2-D,

leading to a tendency to form aligned clusters, a qualitative difference with respect

to BM. We have then studied both the kinetics and the structure of the kinetic

process. On one hand, the effect of hydrodynamic interactions on the kinetics is

small, producing corrections which are never larger than 1%. On the other hand,
when considering the pair distribution function, larger effects are observed. As a

consequence of the effective repulsion, after the first peak which corresponds to the

existence of a finite fraction of dimers, differences in the probability of adsorption

up to a 40 % are observed both in 1-D and 2-D. The results obtained from both
models show the same qualitative differences with respect to g(r) predicted by BM
that the ones observed when comparing the experimental results on the adsorption

of melamine particles with BM[26]. Moreover, quantitative comparisons have been

carried out of our 2-D results with their experimental data, obtaining a quite good

agreement for the whole function, specially after the first peak.

In the literature, BM had been introduced as the limiting case when the deposition

is controlled by gravity instead of diffusion[25j. However, from the above analysis one
can conclude that in the regime when gravitational effects become important, HI

introduces significant effects with respect to the kinetic model. BM will represent
a good model of the deposition process only when inertial effects become dominant,

since in this regime the friction term in the dynamics of the particle is negligible. Note

that if damping dominates the inertial terms, the results presented in this chapter are
the same for any value of the density in this regime, due to the structure of eq.(3.2.5),

in which we have been able to find an dimensionless time scale incorporating the

details of the system. Therefore, by appropriately rescaling the time we will always

obtain the same results. The inertial contribution to the motion of the colloidal
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partides will dominate when the deposition of one sphere takes place during a time

interval not larger than the inertial decaying time r = m/£ = 2a2A/>/(9í'p/). In

usual experimental situations, as the one reported in ref.[26] for melamine particles,

r~ 10~6s, while the experimental time scale is of the order of minutes. Consequently,
in this situation inertial effects are negligible, which explains the disagreement between

the radial distribution function obtained experimentally and the one calculated from

BM, and justifies the validity of eq.(3.2.5). Therefore, the applicability of BM is

severely restricted in experimental situations.

Finally, it is also interesting to note that the fact that HI affect the local dis-

tribution of adsorbed particles implies that these interactions will be relevant when

studying other physical properties of adsorbed layers which depend on the local struc-

ture of the deposits, as for example the dielectric susceptibility of adsorbed particles

[37].

Appendices

3.A Expressions for the friction tensors

For the two-sphere problem, Jeffrey and Onishi[3] computed the corresponding friction

tensors. We will follow the notation of eq.(3.1.2), and we concentrate on the tensor

components of interest. The two spheres have a radius a and are separated a distance

r. We will call c the unit vector of the center-to-center direction. Then, due to the

symmetry, the matrices appearing in eq.(3.1.2) can be expressed as

(3.A.18 )

(3.A.19)

(3.A.20 )

with the different functions being given by
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(3.A.21 )

(3.A.22 )

(3.A.24 )

In these expressions the radius has been taken as the unit length, and the friction
unit is 67r»;a, with ij being the viscosity of the solvent. The effective friction tensor
given in eq.(3.1.2) can be expressed in terms of these functions, giving

(3.A.25 )

For the situation of a single sphere in the presence of a plane wall, due to the cylin-
drical symmetry, the effective friction tensor given in eq.(3.1.4) can be decomposed

as

(3.A.26 )

where z is a unit vector perpendicular to the wall. The function £1 is related to
the motion of the sphere perpendicular to the plane, its exact expression found by

Brenner[9], is

, = s
3

2sinh((2n+l) t t) + (2n+l)s inh(2nr)
sinh2((n+l/2)«)-(2n+l)2sinh2a
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where a = arccosh(z), with z the distance from the center of the sphere to the wall

measured in units of te radius of the sphere. Although this function is expressed as

an infinite series, in the simulations it was never necessary to compute more than 20
terms of the series to get a good estimate of its value. Close to the wall, the dominant

contribution diverges as the inverse of the distance of the bottom of the sphere to the

surface,

*-»! (3.A.28)
~ z - 1 '

The function £|| is not known exactly. There exist expressions of the function for

small and large distances. We have used those given in ref.[10],

£,, = s-—, L, ¡— (3.A.29 )
16.:

for z > 1.1, and

= - ln(r - 1) + 0.9588 + ... (3.A.30 )
5

when z < 1.1.

3.B The pair distribution function

Let us consider a system composed by ./V particles. One can define the »i—particle

density function, p(n)(tri, ...r,,)< such that p(n)(ri,...r„)dri...dr„ gives the probability
to have the center of a first particle in the volume element dr¡ centered at fi, the

center of a second particle in the volume element df^ centered at rj,... and the center

of an n—th particle in the volume element drn centered at fn, irrespective of the

positions of the remaining N — n particles. The simplest function of this family is

p ( l ^ ( r ) , which represents the probability density of having the center of one particle of
the system in the volume element dr centered at ?, and is related to the local density

of the system.
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If there exist no correlations between the different particles of the system, then

the probability to find the center of one particle in the volume element centered in r2

will be independent of that of finding another particle in the volume element centered

at f j . Then,

/ / n>(f i rn)dr, ... drn = />(1)(n)(/n ... p(n)(r„)cfr,, (3.B.31 )

In general, the probabilities will not be independent, since correlations between

the particles will usually exist, the most obvious one due to the excluded volume

associated to the finite size of the particles. Then, one way to account for such
correlations is to introduce an »i-particle distribution function, g^"\ri, ...,rn) such
that

Then, the deviations of </l«) from unity will account for the existence of correla-

tions in the system, indicating to what extent the structure of the fluid deviates from
completely randomness. For homogeneous systems, eq.(3.B.32 ) simplifies to

^"'(T!, ...rrl) = p"<j^n\r\, ...,r„) (3.B.33 )

with p being the average density of the system. From the above definition, it is clear
that, in the absence of long-range order, all the functions g^ — 1 when the mutual

separations become large in the thermodynamic limit. Of particular physical relevance

is the pair distribution function <^2>(r,, r2). For isotropic systems, it will only depend

on the relative distance r12 = j r j - f2|. Then, it is more useful to consider the radial
distribution function 0(r12). In equilibrium, the thermodynamics of the system can
be deduced from it in the case that the interactions between the particles be pairwise

additive. Anyway, this is not our case because we are dealing with nonequilibrium
systems.

Nevertheless, the probabilistic interpretation of </(r) relates it with the fluctuations
in the number of particles of the system, irrespectively of the fact that the system is
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in equilibrium or out of it. Specifically, one has,

< N2 > - < N >><
/

< N2 > - < N >2

[fl(r> - l}dr = >N< (3.B.34

where at the r.h.s.one can recognize <r, which in equilibrium is related to the isothermal
compressibility [38].

Despite the formal definition given above, the pair distribution function can be
easily thought of as giving us the number of particles at a distance r from a given one,
relative to the number of particles at the same distance in an ideal gas at the same
density. This point of view is closer to the way in which #(r) is calculated from a
computer simulation[39], and which we have used in the present chapter to calculate

9(r).

Once N surfaces (lines) are covered by Np spheres (disks), and their center po-
sitions have been recorded, the minimum separations of all the pairs of particles are
calculated in turn up to a maximum distance for each surface (line), which we take
as half the size of the system. Then, we introduce a step 6r which allows us to group
these minimum separations into an array. Therefore, we can compute an histogram,
nh"(i), i — 1,2,. . . , which is related to the distance r by i — int(r/¿r), int(x) refer-
ring to the integer part of x. Once we have constructed the histogram, the average
number of particles at a distance b from a given one can be known, since it is given
by n(6) = nAls(&)/(./V * A), where A is the size of the system. The average number
of particles in the same volume in an ideal gas at the same density p — NP/A is
n'd(b) = xp((r + er)2 — r2) for a surface, and n*d(b) — 2p6r for a line. Finally, the
radial distribution function is obtained as the quotient of these two quantities, that
is, g(r + ^er) = n(b)/n'd(b), and it is evaluated at half the space interval to avoid
fluctuations[39].

3.C The 2-D Ballistic Model

We will describe in this appendix the two dimensional version of BM[33], since it is
used in the III algorithm when the incoming particle is almost touching a preadsorbed
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Figure 3.16: Different rolling mechanisms in 2-D BM. The dashed circle is the initial

trial position, and the arrows the consecutive movements trying to reach the substrate.

Only the last process leads to rejection.

one. It is also employed to simulate BM in order to compare the results with HI. An

initial position, roí f°r the center of an incoming sphere is chosen randomly over

the area of the adsorbing surface. A greater variety of configurations appear when

compared to 1-D BM. The particle may roll over up to five preadsorbed spheres before

reaching the surface, existing also the possibility that it gets trapped before arriving

at the wall, as shown in fig. 3.16.

If no overlap with a preadsorbed sphere is detected, the incoming particle is ir-

reversibly located at the same position, FQ (process a). If an overlap occurs, then it

will roll over the adsorbed one following the path of steepest descent, that is, moving
radially apart from the adsorbed particle, unti l being at a distance of one diameter.

This results in a new position 7r[. If no overlap occurs, it adsorbs at this new position

(process b). If overlap occurs wi th a second preadsorbed sphere, a new position on the
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surface, r-¿ is chosen as the nearer of the two possible points which are one diameter

away from the center of the two preadsorbed particles (process c). If overlap occurs at

r*2 with a third preadsorbed particle, and the triangle formed by the three preadsorbed

spheres is acute, then the particle is trapped, and it has failed to reach the surface,
being rejected (process f). If the triangle is obtuse, a new position r-j is tried as the

point outside the triangle that is one diameter from the pair of preadsorbed particles

which determine the longest side of the triangle (process d). If again, overlap occurs

with a fourth particle, if the triangle formed by the center of this fourth one and

the two previous ones which determined the longest side of the previous triangle is
acute, the particle lias been trapped before reaching the wall and is therefore rejected

(process f). If the triangle is obtuse, again the new position, £4 is chosen as the point

outside the triangle that is one diameter from the particles which lie on the extremes

of the longest side (process e). If at this new position overlap occurs with a fifth
sphere, the particle has got trapped and is rejected (process f).

This constitutes the basis for the computer algorithm of the filling of the surface

according to DM rules, which then circumvents the need to explicitly follow the par-

ticle trajectory by making small steps along the path of steepest descent, and it is
able to locate the incoming particle by looking at its environment.

126



References

[1] S. Kim and S.J. Karrila, Microhydrodynatnics: Principles and Selected Applica-

tions, Butterworth-Heinemann, Boston 1991.

[2] J. H appel and H. Brenner, Low Reynolds Number Hydrodynamics, Kluwer Aca-
demic Publishers, Dordrecht, 1991.

[3] D.J Jeffrey and Y. Onishi, J. Fluid Mech 139, 261 (1984).

[4] P. Mazur and W. van Saarloos, Physica A 115, 21 (1982).

[5] J. Bonet-Avalos, J.M. Rubí and D. Bedeaux Macromolecules 26, 2550 (¡993).

[6] J. Bonet-Avalos, J.M. Rubí, D. Bedeaux and G.Z. van der Zwan, Physica A211,

\M(1994).

[7] J. Bafahiy, I. Pagonabrraga, J .M. Rubí and D. Bedeaux, Physica A213, 277

(1995).

[8] G.K. Batchelor Fluid Mechanics, Oxford University Press, Oxford 197S.

[9] H. Brenner, Chern. Eng. Sei. IG, 242 (1961).

[10] A.J. Goldmann, R.G. Cox and II. Brenner, Chem. Eng. Sei. 1C, 637 (1967).

[11] G.S. Perkins and R.B. Jones, Physica A 189, 447 (1992).

[12] C.W.J. Beenakker and P. Mazur, Physica A 120, 398 (1983).

[13] P. Vasseur and R.G. Cox, J. Fluid Mech. 80, 561 (1977).

127



[14] T. Dabros and T.G.M. Van de Ven, Int. J. Multiphase Flow 18, 751 (1992).

[15] I. Pagonabarraga and J.M. Rubí, in preparation.

[16] S. Weinbaiim, P. Canatos and Z.Y. Van, Annu. Rev. Fluid Mech. 22, 275 (1990).

[17] G. Bossis and J.F. Brady, J. Chern. Phys. 80, 5141 (1984).

[18] J.F. Brady and G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988).

[19] G. Bossis and J.F. Brady, p.119 in Hydrodynamics of Dispersed Media, eds. J.P.
Hulin, A.M. Cazabat, E. Guyon, F. Carmona, Eisevier Sei. Pubis., North Hol-
land, 1990.

[20] D.L. Ermak and J.A. McCammon, J. Chem. Phys. 69, 1352 (1978).

[21] A.J.C. Ladd, J. Chem. Phys. 95, 3484 (1990); A.J.C. Ladd and D. Frenkel, Phys.
Fluids, 2, 1921 (1990)

[22] A.S. Sangani and G. Mo, Phys. Fluids G, 1653 (1994).

[23] X.F. Yuan and R.C. Ball, J. Chem. Phys. 101, 9016 (1994).

[24] F.J. Bafaluy, B. Senger, J.C. Voegel and P. Schaaf, Phys. Rev. Lett. 70, 623
(¡993).

[25] J. Talbot and S. Ricci, Phys. Rev. Lett. 68 958 (1992).

[26] P. Wojtaszczyk, P.Schaaf,B. Senger, M. Zembala and J.-C. Voegel, J. Chem.
Phys. 99, 7198 (1993).

[27] C.W.J. Beenakker, J. Chem. Phys. 85, 1581 (1986) (see réf. 6).

[28] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover
Publishers, New York 1972.

[29] Hamaker, Physica (1940)

[30] J. Israelaclivilii, Forces, Academic Press, London 1992

[31] Joosten, J. Chem. Phys. , (1992).

[32] B. Senger, P. Schaaf, Europh. Lett. , (1992).

128



[33] A.P. Thompson and E.D. Glandt, Phys. Rev. A 46, 4639 (1992); H.S. Choi, J.
Talbot, G. Tarjus and P. Viot, J. Chem. Phys. 99, 9296 (1993).

(34] R. Jullien and P. Meakin, J. Phys. A 25, L189 (1992).

[35] I. Pagonabarraga, P. Wojtaszczyk, M. Rubí, B. Senger, P. Schaaf and J.-C.
Voegel, (in preparation).

[36] P. Wojtaszczyk, PhD dissertation CNRS Strasbourg (1995).

[37] M.T. Haarnians and D. Bedeaux, Thin Solid Films 224, 117 (1993).

[38] J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press,
London 1991; T.L Hill, Statistical Mechanics Principles and Selected Applica-
tions, Dover ().

[39] M.P. Allen and D.J. Tilclesley, Computer Simulations of Liquids, Clarendon
Press, Oxford ( 1987).

129



Chapter 4

Continuum Description of

the Adsorption Process

In the previous chapters we have studied the adsorption of colloids from a micro-

scopic scale, so that we were able to follow the movement of the colloidal particles

themselves. We employ the word microscopic to emphasize that in adsorption there

are basically two length scales of interest: on the one hand, the characteristic length

of the interaction potential between the wall and the particles (which is also of the

order of the size of the colloids), /,and on the other hand the macroscopic length scale

L, at which bulk gradients change.

When describing the transport and configurational processes associated with a
liquid-solid interface at this microscopic scale, it is not necessary to introduce any

specific property associated to the interface. Apart from introducing an attractive

potential close to the wall, one can use the same concepts as for unbounded fluids.

For example, if diffusion is considered, the dynamics can be expressed in terms of the
appropriate Sinoluchowski equation, and the behavior close to the interface is enough

to characterize the properties of the system near the interface.

On the contrary, in a thermodynamic theory, one is interested in describing the
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system at the macroscopic scale L. In this case, one is forced to treat the interface as
a new phase. Then, one has to introduce new physical quantities, such as adsorption
or surface diffusion, which are specifically associated with the interface, as distinct
from the bulk phase[l].

Consider, as a simple example, a suspension of Brownian spheres of radius a in
the presence of a wall, neglecting excluded-volume effects for the moment. From a
microscopic point of view, it is clear that the attractive surface force will produce a
non-homogeneous distribution of particles as we move perpendicular to the interface.
Let us focus in more detail on the variation of the local number density of particle
centers, which we will call c, as a function of the distance to the interface, y. For
y < a, obviously c = 0, and far from the wall the bulk concentration CTO should be
reached. In fact, since the interaction potential is of order /, deviations from c^ will
be observed for y ~ O(l). Note, however, that in the absence of Brownian motion,
eventually all the particles will finish their motion at the minimum of the attractive
wall potential, ym, yielding a concentration profile,

c~%-y m ) (4.0.1)

Brownian motion wil l smooth out this sharp profile, producing a Boltzmann-Iike dis-
tribution with a large peak at y = ym, which relaxes to its bulk value at distances
large compared to the attractive potential decay length. Then, from this microscopic
point of view, there is no new phenomenon which can be identified with adsorption.
At this level of description, there is a continuous variation in the solute number den-
sity c(y) with distance, although with a large maximum at ym. Therefore, this implies
that adsorption, as a new physical phenomenon, can only have a meaning when the
system is viewed at a macroscopic or continuum length scale L.

At such macroscopic level of description, the bulk concentration at a point in the
bulk is measured experimentally averaging a probe of a length k, small compared to
L, but large enough to retain statistically a large number of particles in the probe.
It is clear that such a probe will not resolve the very local concentration variations
near the wall. Only the bulk value c^ will be obtained for any y. Then, it is only
through the discrepancy between the actual number of solute particles initially put
in the system, and the number obtained taking c = c«, for all y, which is called the

131



excess density, that information on the adsorption can be obtained. Therefore, this
"excess" quantity is introduced merely in order to account for the total solute number
of particles solely in terms of the point concentration values which are relevant at the
macroscale. Finally, the inability to distinguish between the wall and the region of
extent O(l) close to it, when the whole system is viewed with resolution O(L), leads
to adscribe the "excess" of solute to the bounding surface.

Alternatively, one can consider the surface effect as accounting for discrepancies
that would otherwise be observed between experiments on real bounded systems,
which, at the thermodynamical level of description, would give a value of the density
d(f,t), and the predicted outcome of such experiments based upon the assumption of
physicochemically inert boundary, giving d+(r,t). The "excess" density can be then
expressed as the difference of both quantities, dex(r,t) = d(r,t)—d~*'(r,t)Q(r, t), where
d + ( f , t ) accounts for the "bulk" density for an inactive interface, and Q(r, í) is the
characteristic function of the bulk phase, which is 1 in the bulk fluid, and 0 otherwise.
Bedeaux et al. [2] showed that an alternative description of the interfacial phenomena
at the thermodynamical level, would be to consider the interface as a surface of
discontinuity (in our case the wall) in equilibrium with the bulk phase. Then, d(r,t)
at any point of the space can be written as d ( r t t ) = d+(f,t)Q(f,t) + d ' ( f , t ) 6 ' ( r , t } ,
where d * ( r , t ) the value of the density at the new phase, and S'(f,t) the characteristic
function for the surface of discontinuity. Albano et al. [3] later showed that the
formulation in terms of excess quantities was equivalent to the latter one, where the
contributions appearing in the surface of discontinuity can be expressed as integrals
of the excess ones.

Our purpose in this chapter is to address the adsorption phenomena at the contin-
uum level. Instead of particles, we will talk now of concentration profiles, where the
relevant transport process are diffusion in the bulk and in the surface. Moreover, due
to the existence of attractive forces between the wall and the suspended particles, we
should take into account that diffusion takes place in the presence of a potential field
close to the interface. Different qualitative situations will be found depending on the
nature of this attractive potential. In the case of suspensions, London-van der VVaals
forces give rise to an attractive potential, but there also exists a repulsive contribution
at very short distances due to Born forces, whereas at larger distances double layer
forces must be considered. If the first two contributions dominate, then the potential
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can be regarded as purely attractive, as shown in fig. 4.la), and it is usually the

case for aerosols[8]. In this situation, adsorption from the bulk is controlled by usual

diffusion[4][5]. On the contrary, if double layer forces are present, there will be a

maximum in the energy potential, as usually found in hydrosols[8]. Therefore, the
diffusing particles will have to overcome a potential barrier before being adsorbed at

the wall[4][6][7], see fig.4.1b). In this last case, depending on the balance between

the repulsive and attractive forces, there may appear a secondary minimum near the
wall before overcoming the energy barrier, and two adsorbed states will coexist in the

interface.

We wil l use non-equilibrium thermodynamics formalism to deduce the mass bal-

ance equations for the adsorbed phase, as well as its coupling to the bulk phase, in

the case in which the transport to the interface is controlled by the attractive energy
potential, which exhibits a maximum. We will generalize the standard formalism to
take into account non-linear relations between the thermodynamic flux and force. We

will then take advantage of the thermodynamic formalism to derive the appropriate

fluctuation-dissipation theorem, and we will see which applications can have in the

study of steady adsorbed states.

4.1 Adsorption as an Activated Process

Non-equilibrium thermodynamics provides a general framework which allows to iden-

tify the relevant thermodynamic fluxes and forces, once the appropriate expression for

the local entropy production is formulated, and then obtain general linear relations

between them. Such relations are appropriate to describe transport processes, such

as diffusion. However, in relaxation processes, non-linear relations between fluxes and
forces are known to hold, as for example the law of mass action in chemical reactions.

Prigogine and Mazur[10][12] devised a general method to obtain non-linear relations

between fluxes and forces w i t h i n non-equi l ibr ium thermodynamics by introducing an
additional degree of freedom to the system.

Let us consider the particualr case of the unimolecular chemical reaction A ;=* B.

They considered that the chemical reaction should be regarded as a series of coupled
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Figure 4.1: Examples of interfacial potentials, a) Purely attractive potential b) Ap-

pearence of a potential harrier clue to the competition between attractive and repulsive
forces (—) a single interfacial minimum exists, and (- - -') appearence of a secondary
minimum in the interfacial region.
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intermediate reactions A\ —• A? —> ... — » An, where A¡ describe intermediate prod-
ucts i, and where AI corresponds to the actual reactant A, and An to the actual
product B. In the image of the activated complex theories of chemical reactions[15]
the intermediate reactions can be thougth of as different internal configurations of the
activated comptes. If we denote c,- the mass fraction of the component A¡, its corre-
sponding mass balance equation, as deduced from non-equilibrium thermodynamics

gives

pt = -V • Ji + Ji.l - Ji (4.1.2)
at

with Ji being the mass diffusion flux, and J¡ refers to the reaction rate associated to
reaction i. If one lets now the index í vary continuously1, indicating that there exists
an infinite series of intermediate reactions between A and B, the balance eq.(4.1.2)
becomes

A new variable 7 is introduced, referred to as an internal variable, and the flux along
this new variable can be interpreted as a diffusion flux for going from A to B, In
appendix4.A, we describe the formulation of non-equilibrium thermodynamics in the

presence of an internal variable, and show how in general, non-linear relations between

fluxes and forces are obtained, and in the particular case of a chemical reaction, it
leads naturally to the law of mass action.

Note that, according to our previous interpretation in which the different "chemi-
cal" constituents of the coupled chemical reactions correspond to the different states

of the activated complex when going from the reactant to the product state, passing
through an intermediate state with a maximum energy, which corresponds to the "ac-

tivated state" , this limit of taking an infini te number of intermediate chemical species
can be thought as if the chemical reaction is characterized by very smooth activated

complex configurational changes.

' This technique lias also been applied to describe the kinetics of the liquid—»vapor phase transition
in its relation to nucleation theory[11]
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Kramers[9] showed that a chemical reaction could be treated as the thermally

activated passage of an energy barrier. We are interested in describing the diffusion

across an energy barrier, of the type shown in fig.4.1b). As we have seen in the previous

chapters, we expect to obtain non-linear relations between the flux of particles across
the energy barrier and the concentration of adsorbed particles. Therefore, we will

use Kramers' analogy in the opposite sense, and we will consider the diffusion in the

presence of an energy barrier as a chemical reaction. This will allow us to use a

thermodynamic formalism in which general non-linear relations between fluxes and

forces can be obtained.

The basic difference we will found in the adsorption with respect to what has

been explained for chemical reactions is that now the activated process is localized

at the interface. As explained in the introduction, at the thermodynamic level, the
interfacial phenomena should be introduced carefully. We will follow the formalism

developed by Bedeaux et a/.[2], hereafter referred to as BAM, in which the interface is

located at the surface of separation between the two bulk phases, and in appendix4.B
we summarize the basic, assumptions of BAM.

4.1.1 Thermodynamic description of the system

We will consider a bulk phase in contact with a wall. The suspension of colloidal
particles is described as a binary mixture, which is characterized by the local concen-

tration of particles, p ( r ) , or its mass fraction c(r. According to BAM's formalism,

these quantities have a buk and a surface component, accounting for the existence of

a wall in contact with the bulk.

We have shown in the previous section that an internal variable has to be intro-

duced to describe properly the chemical reaction which takes place at the interface,as

a model of the diffusion across an energy barrier. However, we will derive explicitely

the internal variable again, because now new couplings between the bulk and the in-
terface will appear. Then, in order to deal with the chemical reaction at the interface
we will follow the method described in the previous section, in which an mixture con-

stituée! by n species is considered, characterized by the mass fractions c,-, i = l,,..,n,

and where only c\ and rn correspond to actual mass fractions of suspended and ad-
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sorbed particles. We will now decompose all the physical quantities in their bulk and

surface component. For example, the mass fractions will be expressed as[2]

(4.1.4)

For simplicity's sake, the wall will be assumed to be flat, and its position will coincide

with the origin of heights, z = 0. Additionally, it will be assumed at rest. In this

conditions, 9+(F, Í) = 0(z), and 6*(r, t) - 6(z), 0(r), and 6(r) being the Heavisicle

and the delta functions, respectively. Moreover, c¡ refers to the mass fraction of

component i in the bulk phase, while c\ gives the mass fraction of the same component
on the interface.

As we have already explained, the chemical reaction is localized in the interface.
According to this idea, we will take cj^r", t) = 0 for i > 1, but c\ is in principle

different from zero. Regarding the dynamics at the surface, according to the previous

picture, a chain reaction c\ — <• c| — » ... — » c* will exist.

We can now derive the corresponding mass balance equation for this system. Ac-

cording tp B AM 's formalism the global balance equations have the same form that the

ones for unbounded systems. In particular, the mass balance equation for a mixture

of » components, where » — 1 reactions take place is of the form

ri-l

(4.1.5)

where p^ stands for the density of the Jk-th component, Vk its velocity, VkjJj refers to

the rate of production of component k in reaction j, i/;-<t divided by the molecular mass
of component ¿- being proportional to the corresponding stoichiometric. coefficient with

which k appears in reaction _;'. From the global balance equation one can derive the

balance equations for the bulk and the interface, if the different physical quantities

are decomposed in thei bulk and interface contributions, as in eq.(4.1.4. Both[13]

and [14] derived such balance equations for the case in which chemical reactions are

present in the bulk and the interface. In our case, one arrives at
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=-V.(p+Sf(r-,0) (4.1.6)

= -V . 5 ? , - n -

The first equation is the usual balance equation valid in the bulk[12], while the inter-

facial balance equation contains an additional term accounting for the flux of mass
arriving from the bulk to the surface. The subscript — indicates that one should

evaluate the quantity in brackets at both sides of the interface at contact with it,
and substract them. In this case, since one of the bulk phases is the solid, where the
relevant thermodynamic fields are assumed constant, this term reduces to the value
of the magnitude in brackets in the fluid phase, evaluated at the interface. Moreover,

in our case the interface does not move, and then, according to eq.(4.B.123 ), t>* = 0.
In this case, the term in brackets gives directly the component of the bulk mass flux
perpendicular to the interface, evaluated at contact with it, accounting for the mass
interchange between the bulk and the wall.

After summing over all í, eqs.(4.1.6)-(4.1.7) give the balance equation for the total
volume and surface densities, p+ and p' ,

p + + V . ( / - f f ) = 0 (4.1.8)

p> + V . (p'v) + p+(v+ - v'n) = 0 (4.1.9)

where tT1" and v* are the surface and fluid baricentric velocities, respectively, which
in our case are. zero, since we are assuming for simplicity that the both bulk and
interfacial fluid are at rest.

It is more useful to write the mass balance equations (4.1.6)-(4.1.7) in terms of
the mass fractions c*, introduced above, and which are defined as

ci = ,4 = . (4.1-10)
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If we introduce the bulk and interfacial diffusion fluxes

JÏ=PÍ(*Ï-^) JispiW-?) (4.1.11)

then, after using eqs.(4.1.8)-(4.1.11) and the above definitions in eqs.(4.l.6)-(4.1.7)
one arrives at

p+^-cf + V- /^ =0 (4.1.12)

(f J«* + V - ft + »• /+ = ¿VkiJ¡ (4.l. 13)
j= i

where ^- is the baricentric time derivative in the corresponding phase, the super-

script indicating which baricentric velocity should be considered. For fluids at rest,
this derivative coincides with the partial time derivative. In eq.(4.1.12) we have ex-

plicitely expressed the fact that in the bulk there is a single diffusing species, while
in the surface there is an ensemble of species, which will be related later on with the
interfacial coupled chemical reactions. Note that due to the definition of the diffusion

fluxes and that of baricentric. velocity, £3fc=i f£ = ]Ct = i J l = 0» which implies that
in the bulk and interfacial phases there are oniy 1 and n — 1 independent diffusion
fluxes, respectively.

Non-equilibrium thermodynamics lies on the basis that out of equil ibrium, locally
equilibrium is ful l f i l lec l , and that therefore, a Gibbs relation can be locally formulated.
BAM's formulation also relies on the fact that out of equil ibrium, a Gibbs relation
is satisfied locally both in the bu lk and in the interface, as shown in appendix 4.B,

eqs.(4.B.129 )-(4.B.130 )). If both thermal and viscous effects can be neglected and
the surface density is assumed constant, the Gibbs relations read
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where s+ is the entropy per unit mass in the fluid, and s' the entropy per unit mass

in the surface. The entropy per unit mass at the bulk and at the interface will satisfy

balance equations of the same kind that eqs.(4.B.121 ) and (4.B.122 ). Therefore,

P+-- = -V- <//+*+ (4.1.16)

with J, and a being the entropy flux and entropy production, respectively.

Substituting eqs. (4. 1.12) and (4.1.13) in eqs.(4.1.14) and (4.1.15), and comparing
their form with the one predicted by the balance equations (4.1.16) and (4.1.17), one
can identify the entropy fluxes,

(4.1.19)

as well as the terms of entropy productions

(4.1.20)

. n — 1 - n — 1 - n — 1

(4.1.21)

where A' = 5Z}'=i /<j//;> ls ''le affinity of reaction r, and S0it is the Kronecker delta
function. The entropy production accounts for all the irreversible processes taking

place in the system, namely, diffusion, surface diffusion, surface chemical reactions,
and diffusion from the bulk to the interface. The entropy production and Curie's

140



symmetry principle, according to which only those quantities having the same tenso-
rial character can be coupled, applied both at the bulk and interface, allows to derive

the phenomenological equations, relating linearly the fluxes and forces,

— «-i-

Jf = -L -V/Í+ (4.1.22)
n-l

J t = -£>«V/i? (4.1.23)
1=1

j; = - L - - / ' ' ) * . ! (4.1-24)
1=1 1=1

-^) (4.1-25)

where L^, L'ki, and L\j,p = 1, ...,4 are phenomenological coefficients which, due to

Onsager's symmetry principle, satisfy the relations Z/J = L^, L'j = Lj¡, L\j — Lj¡ ,

Ljj — Lji , and L\¡ = ¿j-t- , although only a fraction of them appear in the previous
equations because différent number of species are present in the bulk and the interface.

While eqs.(4.1.'22) and (4.1.23) correspond to Pick's law in the solution and at the
surface, respectively, eq.(4.1.24) relates the reaction rate both to the corresponding

affinities and to the mass flux from the bulk at the interface. Note that such a coupling

can only appear at the interface, because in the bulk the mass flux and the reaction

rate have different tensorial character. Finally, eq.(4.1.25) can be interpreted as the

boundary condition for the perpendicular component of the mass flux of the fluid at

the interface.

4.1.2 Non-equilibrium thermodynamics of the adsorbing sur-
face

In order to describe the diffusion across the surface energy barrier we have to let the

number of intermediate interfacial chemical species go to infinity. As explained at the

beginig of the chapter, then the chemical reaction is equivalent to the diffusion across

141



an energy barrier. Note that the formalism we are formulating does not depend

too much on the specific form of the potential. The only requirement is that it

has an barrier large compared with kgT, to ensure that it controls the diffusion

towards the adsorbed state. Note that since the interfacial potential is characterized

by a maximum, the density will be concentrated at the minima, which constitute
the significant thermodynamic states[12]. If there is only one relative minimum,

then there will be only one thermodynamic phase. If it has a secondary relative

minimum before crossing the barrier, then two thermodynamic adsorbed states will

exist. Obviously, the state appearing due to the secondary minimum will lead to a

more mobile adsorbed phase.

In this cont inuum l imi t , the label identifying the chemical species, k, becomes the

internal degree of freedom, 7, which is a continumm variable. This internal variable
will be defined in a finite interval. However, due to the form of the potential, we know

that the thermodynamic properties will be controlled by the values of the magnitudes

around the energy minima. Therefore, we may restrict the values of 7 to a segment

in which its initial value, which we will call 7,-, corresponds either to the secondary

minimum, or to a certain initial configuration, and its final value, 7/, will be taken

equal to the value corresponding to the minimum close to the surface.

We should reformulate then the results of the previous section in this continuum

limit. Both the balance equations for the density and the entropy in the bulk phase are
not affected by this modification. The balance equation for the surface concentration

eq.(4.1.13) will now read

where J+" is the component of the bulk diffusion f lux normal to the surface evaluated

on it. For the chemical reaction we are considering in which only two species are

involved in each reaction, the stoichiometric coefficients are v±T — — ¿i,r + ¿t-i,r-
Then, for the component k the contribution of the reactions to its balance equation
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can be expressed as

- ' M <«•••»>

which corresponds to the last term appearing in eq.(4.1.26). The surface Gibbs equa-
tion (4.1.17) is now

ds ts

After substituting eq.(4.1.27) in eq.(4.1.28) one then obtains

els' 1 rs - 1 f1' d
P'~dt = T J tl'MV-J'MdT + Tj (''Mg^

d
'

JI-ÎT f J' ("ï)

- 7.) (4.1.29)

in which we have used the fact that the total density p' does not depend on 7 and

that J ' ( f ) vanishes at the extrema of the definition domain of 7 [12]. Moreover, we
have used the expression of the entropy flux in terms of the diffusion fluxes eq.(4.1.19)

in the continuum limit

Jl=-^ fV(7)/J(7)<<7 (4.1.30)
1 J-1,

Despite the entropy balance equation is obtained as a global quantity in the in-

ternal space, eq.(4.1.17), we will assume that local equilibrium is satisfied also locally
in the internal configuration space, on the basis that the introduction of such a con-
tinuum variable was related with the idea that configurational changes had to be
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smooth. Then, we introduce both an entropy flux and entropy production local in
the space of internal configurations

P'^= f {-V,, • Jl(t) - 7+¿(7 - 7i) + cr'(7)} dj (4.1.31)

Comparing then the balance eq.(4.1.31) with Gibbs eq.(4.1.29), and using the
idea that equi l ibr ium holds locally in the space of configurations2, as expressed in
eq.(4.A.97 ), we can identify both a local surface entropy flux

•/?(7) = ™/''(7)/'(7) (4.1-32)

and a local surface entropy production

y.«n ir >• V / / J "(7-7.) > O (4.1.33)

instead of eq.(4,1.21). Again, use of Curie's principle for isotropic system allows us
to obtain the corresponding phenomenological equations in the internal space

(4.1.34)

7<) (4.1.35)

J+ = - ¿ 2 1 ( 7 ) / ^ 7 ) - ¿22(7) [/<+-V(7)] ¿(7 -7.') (4.1.36)

instead of eqs.(4.1.22)-(4.1.24). The phenomenological coefficients L,-;- may in general

depend on the internal coordinate, and due to Onsager's symmetry principle, they

satisfy the corresponding relations showed in the previous section.

2Tliis is tantamount assuming that a local Cibbs relation in internal space can be fonnulated
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Using the fact that r//i'(7) = j£$ dc' (7) . we can write eq.(4.1.34) as the Pick's
law at the interface

(7) (4.1.37)

where the diffusion coefficient is given by

(4.1.38)

and, although it may, in general, depend on position and configuration, it is assumed

to be constant, as usual[12].

Having obtained explicit expressions for the different fluxes, eqs.(4.1.34)-(4.1.36), we

can rewrite the surface mass fraction balance equation (4.1.26) as

¿(7-7.) (4.1.39)

where Onsager's symmetry principle lias been used. This equation describes the evo-

lution of the surface concentration for an unspecified value of the internal coordinate
7, reflecting the fact that the variation in time of the 7-particle surface concentration

is the result of three clifTusion processes, namely, diffusion along the surface, diffusion

through the internal configurational space, and mass exchange with the bulk. For an

ideal system, one usually has a constant diffusion coefficient D* , but we leave it yet as

an unspecified function. Although with this formalism general balance equations are
derived for the evolution of any internal variable, only the quantities corresponding

to the minima of the attractive potential will be thermodynamically relevant.
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4.1.3 Derivation of the kinetic adsorption equation

The results obtained in the previous section are quite general, in the sense that they
can be applied even if the energy barrier is not too large. We have emphasized this
feature because we are interested in the adsorption controlled by the surface energy

potential. If the barrier is large, equilibrium between the bulk phase and the state at
•fi will be achieved faster than any other equilibrium within the surface[5]. Then, we
can set

H+ =/í I(7 = 7,·) (4.1.40)

which reduces the phenoinenological equations (4.1.35)-(4.1.36) to

J'(l) = —Ln(i)—-u*(i) (4.1.41)
f/7

,-\

J+ = -¿21(7)1-V'(1)6(1 -n) (4.1.42)

Note that for 7 = 7¿ these equations imply that the flux of mass from the bulk is
proportional to the f lux of mass disappearing from the state 7 = 7,- due to diffusion
through the energy barrier. This can be intrepeted by saying that, once equilibrium

between the bu lk phase and the internal configuration in closer contact with it has

been achieved, then the mass coming from the bulk is determined by the amount that
disappears from this surface state diffusing to the more bounded state, closer to the
solid surface.

In reaction-rate theory[9] [18], it is well-known that when diffusion takes place
through a potential barrier large compared with kgT, a quasistationary state is
reached in which the flux becomes practically constant, its value being controlled
by the dynamics of the system in the neighborhood of the potential maximum. This
implies that, in our case, the diffusion flux through the energy barrier can be expressed

as

J ' ( f , t ) = J ' ( t ) [ 0 ( y - 1) -0(y - m)} (4.1.43)
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where, as we have already used, we take into account that the flux should vanish

at the limits of the configurational space[12]. J " ( t ) is a reaction rate, showing that

due to quasistationarity, mass is transported uniformly along the internal space. In

this case, the phenomenological equations (4.1.41)-(4.1.42) show that the flux of mass
coming from the bulk is proportional to the reaction rate, thus indicating that the

mass diffusing through the energy barrier is supplied by the bulk, which is able to

achieve equilibrium with the initial configuration at any time.

In this quasistationary situation, the diffusion equation at the surface, eq.(4.1.39),
reduces to

(4.1.44)

It is possible to obtain an explicit expression for J'(t) using the quasistationary

property, and the fact that eq.(4.1.41) can be rewritten as

(A I A*\exp — - r - «p - (4.1.45)

where m is the mass of the diffusing particles. After integration in 7, eq.(4.1.45) gives

(4-L46)
/

Ln(l)kBT

To proceed further, we should introduce an explicit expression for the chemical

potential of the system in the interfacial region. In the bulk, and even in a fluid

interface, one can assume that the binary mixture or suspension behaves as an ideal

system. However, we have seen in the previous chapters that when a solid surface is

considered, if particles are localized when adsorbing, due to large attractive potentials,

then exclusion volume effects become important, which from a macroscopic point of
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view implies that the system exhibits a non-ideal behavior. We will then express the

chemical potential

/<'(7) =^ + ~ 1M7) + ¿f (7) (4.1-47)

where /<5 's a reference value, ^(7) is an activity and U(j) the attractive potential
energy per unit mass, which stands for the effective potential acting on the suspended

particles characterized by a large maximum. Widom[19] studied the problem of se-

quentially adding spheres to a volume, forbidding fluctuations of the spheres around

their positions. For this kinetic process, which is controlled by excluded vol u me effects,
he argued that it was possible to define what he called a non-equilibrium chemical

potential of the form (4.1.47) with the non- equilibrium activity satisfying

z = y (4.1.48)
<p

where <£ is the function accounting for the excluded volume effects, which in his case

coincided with the surface available function of RSA. We will assume that such an

expression holds locally. For the time being, we do not need to specify the form of <t>.

If we substitute eq.(4.1.48) in the expression for the flux, eq.(4.1,46), we arrive at

v ;

where D ( j ) ¡s a kind diffusion coefficient associated to the diffusion through the

potential barrier, and is given by, D — LkßT/(mcs). When 4> is constant (ideal

system), eq.(4.1.49) is equivalent to the reaction rate of a thermally activated process
deduced by Kramers[9]. Moreover, we have used the equilibrium property eq.(4.1.40),
introducing the bulk chemical potential. The bulk phase can be regarded as an ideal

system, because the non-idealilities we are interested in are due to the exclusion

effects peculiar of the interface, which implies that we can describe it by the chemical

potential of an ideal system

C+ (4.1.50)
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Substituting it in eq.(4.1.49) leads to

J'd) = -/exp OM C,(T;) + /exp c^(T/) (4.1.51)

where we have also used the fact that the value of the constant in the denominator of

eq.(4.1.49) will be controlled by the behavior og the integrand around the maximumof

the attractive potential U(y), Since, in principle, volume excluded effects will affect

practically all the adsorbed phase at any configuration, we approximate the factor

0(7) appearing in the integrand by its value in the more bounded state, <j>(y/). We
have defined the coefficient / as,

which, as been approximated by Laplace's method using the fact that the integral

is dominated by the region around the maximum of U ( j ) , with 7,n being the value

of the internal variable at which the potential has its maximum, and U" means the
second derivative of the potential U evaluated at that position. Since the system is

non-ideal, / will in general depend on the surface concentration, while for an ideal

system, / is constant [12].

In order to compare our results with previous ones, it is convenient to rewrite the

expression for the mass rate across the barrier, eq.(4.1.51), as

J'(t) = _¿dc«(7/) + ¿„c+<¿(7/) (4.1.53)

where we have introduced the adsorption and desorption constants

,4.1.5.)
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and, according to eq.(4.1.52), the common prefactor is given by

(4.1-56)

The desorption and adsorption coefficients, k¿ and ka, have the form of Arrhenius
laws, characteristic of the activated processes. Analogous expressions for the ad-
sorption rates, and the adsorption and desorption constants, have been obtained by
Laidler et a/.[7] using the absoulte activation rate theory to the adsorption of ideal
systems, and by Baret[4] for an ideal gas. In both cases, they were able to give the
prefactors of the exponentials of the adsorption and desorption constants a molecular
interpretation since they use equil ibrium statistical mechanics theories.

Once we have determined the adsorption rate, we can derive the appropriate mass
balance equation of the adsorbed phase, using eq.(4.1.44). Looking at the different
values of 7, one sees that the more bounded state yj behaves different from the rest,
since it receives the mass coming from the bu lk , after having diffused through the
different intermediate surface states through the barrier,

P'~ = V.(D-'(7)Vc'(7)) ,-fïlj (4-1.57)

P'(^f = V ' (ö ' (7)Vc'(7)) + J' .7 = 1! (4.1.58)

If surface diffusion can be neglected, then the concentration is constant in all the sur-
face states except in the one corresponding to the minimum of the potential energy,
where the mass fraction increases according to the flux of mass which arrives after
crossing the energy barrier. This behavior corresponds to the one expected in a qua-
sistationary regime. However, as already pointed out before, only the mass fractions
corresponding to minima of the energy barrier will have thermoclynarnic relevance.
In this sense, two different situations can be found, as shown in fig.4.1b). When only
one minimum is present, then only the balance equation for 7 = 7/ wil l be relevant,
indicating that there exists a unique adsorbed state bounded to the surface. If the
potential exhibits a secondary minimum, then two adsorbed states will coexist on
the surface. Besides the one corresponding to 7 = jj, the existence of a secondary
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minimum produces a second adsorbed state at 7 = 7,-, which is less bounded to the

surface, and which attains a faster diffusion-like equilibrium with the bulk phase.

If surface dif fus ion can be also neglected in the more bounded state, then its mass
balance equation reads

(4.1.59)

which has the form of a local generalized Langmuir equation , similar to the one

cliscused in eq.(2), proposed by some authors to describe the irreversible adsorption

of large particles[20). At low coverages, the function <j>, can always be linearizecl[19],

leading to

dt a ' '

which is the local Langmuir adsorption equation[21] (see eq.(l), introduced at the

beginning of the century to describe the adsorption of hydrogen on platinum.

Therefore, we have shown that local generalized Langmuir adsorption equations

can be obtained generally if the transport from the bulk to the interface is controlled

by an energy barrier. The validity of these results wi l l obviously depend on the

validity of the basic assumption of non-equil ibrium thermodynamics, namely, local

equilibrium in the internal space. Since it is a phenomenological theory, it cannot

assess up to whichh point such an assumption will hold, although from the formal

point of view, eq.(4.1.59) lias the correct functional dependence for the whole kinetic

adsorption process.

The right hand side of eq. (4. 1.59) gives the incoming flux of particles. Therefore,

this equation can be regarded as the boundary condition needed to solve the bulk

concentration evolution equation. Solving the ensemble of differential equation gives

then the evolution of the concentration on the surface as well as the diffusive profdes

appearing the b u l k as a consequence of the adsorption kinetics. Varoquie/ a/[25] have
studied the low coverage regime, when the Langmuir equation eq.(4.1.60) applies. In

fact, if 4> — 1 so t h a t excluded effects are neglected, the Langmuir equation becomes a
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first order chemical reaction. As we have discussed in chapter 3, this sort of boundary
conditions have been obtained from the study of the bulk transport equations[22][24].
Even, higher order chemical reaction-like boundary conditions have been proposed
phenomenologically[23], but without clarifying its origin.

Up to know we have considered the situation in which adsorption is controlled by
an energy barrier. However, there exist situations in which adsorption is controlled
by simple diirusion[4][5] (see fig.3.la). In this case, adsorption kinetics is qualitatively
different from the one described so far. If we apply the formalism developed before
to this case in which no localized energy barriers are present, the corresponding mass
balance equations are

= D+V2c+ (4.1.61)

^ = V - ( L , V ^ ) + J+ (4.1.62)

J+ = L2 (,<+-/,') (4.1.63)

where L\ and Lo are the corresponding Onsager coefficients, and the appropriate
expression for the chemical potentials have to be supplemented. Again, eq.(4.1.63) is
the boundary condition for the bu lk dif fusion eq.(4.1.62), and in order to know it, the
evolution equation for the interfacial density, eq.(4.1.62) has also to be solved[13][14).

In the previous chapters we have considered adsorption processes in the absence
of localized potentials. Then, eqs.(4.1.61)-(4.1.63) constitute the thermodynamic de-
scription of their interfacial dynamics. In order to arrive at explicit expressions,
however, a specific expression for the chemical potential has to be formulated. A
diferent situation is found if one is interested on the kinetics of the global surface.

Jacobs[27] proposed an approximated diffusion equation for a region with varying
cross section in which the geometrical constraints appeared as an entropie contribu-
tion, and Zvvangig[28][29], later on, considered in more detail the problem of diffusion
along a tube with a varying cross section. Starting from the three dimensional diffu-
sion equation, he showed that averaging in the plane normal to the axis of the tube
leads to an effective one-dimensional diffusion equation for the averaged density in
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which, to first approximation, the geometrical constraints appear as if the diffusion
takes place in the presence of an entropie potential.

In the adsorption dynamics we have considered in the previous chapters there exist
no surface energy potentials, but as the particles arrive at the surface, the geometric
constraints determine the rate of arrival of particles at later times. Therefore, if the

dynamics of the global surface is studied, it seems reasonable that we can consider
that diffusion of the averaged density of particles to the surface takes place in the
presence of a certain entropie potential, which takes into account the specific way in
which adsorbed particles exclude certain regions for the arrival of further ones. For

the effective one-dimensional diffusing system, we can then consider that the system

is described by a chemical potential of the form

'

instead of eq. (4. 1.47). The last term represents the entropie potential. If the entropy
barrier is large compared to fcßT, the formalism developed for the energy controlled
adsorption can be used. In fact, one arrives at the same formal equations for the flux
across the barrier, that is

J * ( t ) = -kac'(-ff) + kdc
+4> (4.1.65)

instead of eq. (4. 1. 53), and where now the adsorption and desorption constant have

the form

(4.1.66)

and we have assumed that the maximum of the entropie barrier is at the adsorbed
state. We have again, assumed that the state at 7; is in equilibrium with the bulk, and
that in that state the geometric constraints can be neglected. Therefore, generalized
Langmuir equations can be seen to describe also the adsorption in the absence of
surface energy potentials, al though only for the dynamics of the global concentration.
For RSA, an entropie potential for simple geometries has been calculated by Tarjus el
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al. [32], and it exhibits the properties we have used to derive the previous equations.

Up to now, it remains an open question the relationship between the entropie potential

proposed in eq.(4.1.64), and the chemical potential which describes the system in
a local description, and which is needed to solve the local dynamics, eqs.(4.1.61)-

(4.1.63).

Recently, the aetivated-st.ate-theory has been started to be applied to describe

adsorption taking these entropie effects into account. However, up to now, only mean

field approaches have been adclressed[30].

From the experimental point of view, unless a detailed knowledge of the interfa-

cial potentials is available, there is a priori no reason to prefer energy-controlled to

diffusion-controlled adsorption.

Note that in order to derive the generalized Langmuir equation, it has been

necessary to introduce an internal degree of freedom. If we have treated the dif-

fusion through the barrier as an ordinary chemical reaction in the framework of non-

equilibrium thermodynamics, identifying the reactants with the bu lk phase in contact

with the wall, and as products the adsorbed mass fraction, then we had arrived at a

rate across the barrier linear in the chemical potentials, namely

(4.1.67)

loosing the non-linear features of the adsorption process.

Finally, it is worth noting that we have considered during the whole section, that
the diffusion through the energy barrier can be dealt with in the spirit of Kramer's

work[9]. The validity of this assumption lies in the height of the energy barrier. If it

is large compared with kgT, the conclusions we have derived are correct. Otherwise,

a more detailed analysis of the diffusion process in the surface should be undertaken.
In this sense, for the adsorption on a liquid interface, where adsorbed surface phase

can be regarded as ideal due to its mobility, Simonin et al.[2G] have shown the range

of validity of reaction rate theory in the adsorption processes depending on the profile

of the energy barrier.
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4.2 Fluctuating Hydrodynamics and Internal De-

grees of Freedom

One of the advantages of formulating the adsorption dynamics in terms of a thermo-
dynamic theory is that it provides a solid scheme which allows us to understand other
features of the process. In particular, the dynamics of the fluctuations of the thermo-
dynamic fields can be derived systematically from non-equilibrium thermodynamics
along the ideas of f luc tuat ing hyclrodynarnics[33].

In this section, we will study the fluctuation dynamics in the adsorbed layer when
a steady state is reached. We will first show how to generalize fluctuating hydro-
dynamics when an internal degree of freedom is present, afterwards we will apply
the result to formulate the evolution equations for the fluctuations of the adsorbed
mass fractions, and finally we will illustrate these results studying the mass fraction
fluctuation dynamics around a particular steady state.

4.2.1 Fluctuating hydrodynamics of a chemical reaction

As we have done when deducing the balance equations, we present the basic ideas
of fluctuating hydrodynamics in the presence of an internal degree of freedom for
the simpler case of a chemical reaction. In appendix4.A we summarize the essentials
of non-equilibrium thermodynamics in the presence of an internal degree of freedom
applied to a chemical reaction.

The basic idea is that, since local equil ibrium has been assumed in the internal
space, this space becomes the natural place where fluctuations should be introduced.
According to f luc tua t ing hydrodynamics, one splits up the dissipative currents into
systematic and random contributions. In particular, the diffusion flux in the internal
space reads

) = J 1 ( 7 , t ) + J'(7tt) (4.2.68)

where the superscript .s refers to the systematic, and r to the random contributions
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to the total diffusing flux. The systematic part is given by eq.(4.A.107 ), while the
random contribution constitutes a gaussian white noise stochastic process with zero
mean and fluctuation-dissipation theorem given by[33]

( J ' ( y , t)Jr(7', t')) = 2kBL(f)6(7 - y')6(t - t') (4.2.69)

according to tlie fact that the diffusion in the configurational space is a linear process,
and ¿(7) defined through eq.(4.A.104 ), is related to the diffusion constant by ¿(7) =
Dc(-f), The value of 0(7) corresponds to the mass fraction of constituents evaluated
at the steady state which serves as a reference state to study fluctuations.

If we insert eq.(4.1.3) in the mass balance equation (4.A.101 ), and use the ex-
pression for the systematic contribution, eq.(4.A.107 ), we can write down the cor-
responding stochastic differential equation which describes the whole behavior of the
density in the internal space

dt dy 07 d' _

-j-Jr(j,t) (4.2.70)

Note that, since the diffusion coefficient has been assumed constant, (4.2.70) is a
linear stochastic differential equation for ("(7).

We have already seen that if a large energy barrier exists, the diffusion reaches a
quasistationary state almost immediately. If fluctuations are present, we can corre-
spondingly express the total diffusing flux as being homogeneous. If we split it into
the systematic and random contributions, this fact allows us to write ¡t as

(4.2.71)

with A being the affini ty, ami / has been defined in eq.(4.A.109 ). Moreover, we have
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introduced the quasistationary random flux, which satisfies

exp

which indicates that the global flux is controlled by the evolution of the system around

the energy barrier, as could be expected in the quasistationary regime. The stochastic
properties of J r ( t ) follows from those of Jr(j,t). In fact, we can derive the corre-

sponding generalized fluctuation-dissipation theorem in the quasistationary regime,

by using the expression for the quasistationary random flux, eq.(4.2.72), and the

fluctuation-dissipation theorem in the configurational space, eq.(4.2.69),

< J r ( t ) J r ( t ' ) > = - - 2*°D r exp -^- c(7) dj (4.2.73)

where we have used the relation between the diffusion coefficient and the phenomeno-

logical coefficient L, which depends on 7. Since the quasistationary regime is achieved,
the density profile is that given by the Boltzmann distribution at the right and left

of the energy maximum. We can then write the generalized fluctuation-dissipation

theorem as

í' exp f y^-) dj] 6(t - t') (4.2.74)
Jym \K[)TJ j

where c(f¡, t) is the mass fraction at the left minimum of the potential, and c ( j f , t )

at the right minimum. Moreover, we have introduced the forward, k¡, and backward,
kt, rate constants, related to the diffusion constant through
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Since the energy barrier is very high, the integrals appearing in the generalized
fluctuation-dissipation theorem, eq.(4.2.74) can be computed using Laplace's method.
One can then show that the three are proportional, which leads to

(4.2.77)

If the stationary state is an equilibrium state, then detailed balance is satisfied, and
one has kfc(-fi)e<l = ki,c(jf)eg = kgl[l'2}. Consequently, (4.2.77) becomes

(Jr(t)Jr(t')) = '2kBl6(t - I') (4.2.78)

which corresponds to the fluctuation-dissipation theorem consistent with the linear

law eq.(4.A.99 ).

We have to relate now the concentration of activated complex at the minima
with the concentrations of reactants and products, which are the physical quanti-
ties of interest. For an unimolecular reaction, both quantités coincide, as noted in

appendix4.A. At the end of that appendix, we also derive the law of mass action for

a general reaction, ]>3<=i f¿B¿ ^ £Z¿-i "t'C¡. According to the relationships between
the mass fractions in the internal space, and those of reactants and products (see

eq. (4. A.I 11 )), the generalised fluctuation-dissipation theorem is

( k j -\
< J r ( t ) J r ( t ' ) >= k} ft «£ + kb J] "c. ¿(< - O (4-2.79)

which coincides with the corresponding result obtained by Keizer[34]obtained using a
statistical-mechanical theory. Note that, according to the basic scheme of fluctuating

hydroclynamics[33], the densities of reactants and products appearing in eq.(4.2.79)
correspond to the values of the concentrations at the reference state around which
fluctuations have to be computed. This is equivalent to consider that linearization
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of the fluctuation dynamics around such reference state has been performed. Gener-

alization to non-linear fluctuations should be carried out with care[35]. Finally, let
us mention that the more general situation of having a set of coupled unimolecular
chemical reactions can be also derived within the same formalism[36j.

4.2.2 Fluctuating hydrodynamics of the adsorbing interface

The same scheme of the previous section introduced to deal with fluctuations in a
chemical reaction can be applied to study fluctuations in the adsorbing interface, due
to the analogy between both processes. As we have done when deriving the adsorbing
mass flux, we will have to generalize the formalism of the previous subsection, because
now the activated process is restricted to the interface, and there will exist more fluctu-
ating fluxes. We will then follow the standard scheme of fluctuating hydrodynamics
in the presence of an interface[13] to derive the appropriate fluctuation-dissipation
theorems corresponding to the fluctuating interfacial fluxes. In the absence of fluctu-
ations, we have seen that in the bu lk phase the usual balance equations are obtained.
Correspondingly, fluctuations do not differ from those known for unbounded systems.
At the interface, we have to consider three difTusion fluxes, namely the usual surface
diffusion flux, the flux of mass along the energy barrier, and the normal component
of the bulk mass flux in contact with the interface. As Bedeaux ei a/.[13] proved, the
interfacial fluctuation fluxes satisfy fluctuation-dissipation theorems equivalent to the
ones obtained for bulk phases. Then, we apply the same expressions in the internal

space, which is now confined to the interfacial region, which allows us to write

< J l ( f , f , t ) f : ( f ^ ' , t ' ) > = 2kBL6(r- f ) 6 ( t - t')6(y - j') (4.2.80)

ir(f,y,t)f+r(f,y,t')> = 2AB¿22í(i r-f ')¿(í-O*(7-7') (4.2.81)

J+r(r,·ï,t)J
r(f',y,t')> = •2kBLn6(?-?)6(t-t')6(T-j') (4.2.82)

- f ) 6 ( t - t')0(j - 7') (4.2.83)

where use has been made of the fact that fluxes of tiie same tensorial character are
coupled, according to Curie's principle. Moreover, Onsager symmetry principle has
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been used in eq.(4.2.82). Note that the delta correlation in 7 is obtained due to

the special chemical reaction process which is considered to model the crossing of
the energy barrier, which has led to a local coupling in internal space3. As usual,
the fluctuation-dissipation theorem can be rewritten in terms of the diffusion coeffi-
cients, which allows to make explicit the dependence on 7 and r", since the diffusion

coefficients can be considered constants. H is important to remember that two diffu-
sion coefficients exist at the interface; the usual surface diffusion coefficient, and the
diffusion coefficient associated to the activated process.

In the quasistationary regime, we know that the fluctuations of the flux across

the energy barrier become uniform, and that, according to the results of the previous
section, its stochastic properties are defined by their second moment, which is the
equivalent of eq.(4.2.77),

< Jr(r,t)Jr(f, t1 >= (kac
+ + kdc°)6(r- 7)6(1 - t') (4.2.84)

and if two adsorbed states are present at the interface, instead of c"*" the corresponding
mass fraction should be inserted. Once the stochastic properties of the random fluxes
have been determined, we can study the dynamics of the mass fraction .'luctuations,
which are driven by the fluctuating fluxes. When considering the thennodynami-
cally relevant adsorbed states, the approperiate values of 7 have to be evaluated in
eqs.4.2.80)-(4.2.82).

4.2.3 Fluctuations around Adsorption Steady States

Let us now analyze the case in which there exist a single adsorbed state. The balance
equation for the global fluctuating mass fraction will then read

= DVV + kac+4>(c>) - kdc> + V • f; + Jr (4.2.85)

''This correlation can l>e derived along the same lines used in the previous section to derive the
law of mass action, starting from k coupled chemical reactions, and letting k become a continuous
variable at the end
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where we have used eq.(4.1.58), assumed that diffusion is allowed, and decomposed

the total fluxes in their deterministic and fluctuating parts. Eq.(4.2.85) constitutes

a Langevin equation for the fluctuating concentration c', in which the properties of
the fluctuation fluxes is determined by eqs.(4.2.80) and (4.2.83). It is worth pointing
out that eq.(4.2.85) will enable us to study the fluctuation dynamics to linear order
on the deviation to the reference steady state, because the properties of the random
fluxes have also been determined up to that order.

The steady states are the solutions of the equation

DVV + L-ac
+4>(c*) - kdc' = 0 (4.2.86)

and the specific solution will be fixed by the initial and boundary conditions cor-
responding to the process to be considered. The adsorption process we have been

describing is characterized by an initially empty surface which is progressively filled
with particles arriving from an homogeneous suspension. Then, it is reasonable to
consider an homogeneous steady state as a good reference to study fluctuation dy-
namics. Such a steady state is the solution of

c3 = -2-c+<j>(c') (4.2.87)
Kd

where the qualities .'.. their values in the steady state. The specific value of c3 will

depend on the expression for the function <j>. The equation for the dynamics of
the fluctuations around this homogeneous steady state can be obtained, linearizing
around such a state, consistently witli the way in which the random fluxes have been
determined, leading to

— = DV'fic3 + kac+ — \ ,6c3 + ka<i>(c')6c+ - kd6c' + Jr + V • 7T (4.2.88)
at Or"

where we have decomposed the total mass fraction into its steady and random con-

tributions, c3 = c3 + 6c3, and we have use the fact that c3 satisfies eq.4.2.86). Note

that the fluctuation in the adsorbed state depend also on the bulk mass fluctuations
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in contact with the substrate. Since eq.(4.2.88) is linear in the fluctuations, it can be

solved. In particular, if we transform both space and time to Fourier space, it gives

6c, = *.«*•) Jc+ + _ r _ _ __ a- f:

where we have introduced the new characeristic time scale/"1 defined as / = — kajfr +

kd, and k and u> refer to the two-dimensional vector in spatial reciprocal space and

frequency space, respectively. » is the imaginary unity. This new time scale is associ-

ated to the exchange of mass between the surface and the bulk phase, indicat ing that,

although the interface is a bklimensiona! system, it is coupled to the bu lk phese, and

can dissipate energy through mass exchange with it.

In order to find an expression for the correlations of the interface mass fluctuations,

we should know the dynamics of the correlations of the bulk concentration fluctuations

in contact with the interface. As we have pointed out in the rêvions subsection,

they satisfy the usual fluctuation dynamics for a diffusive process in an unbounded

fluid, and will be decoupled from the interfacial fluctuating quantities. Then, the

correlations have the form,

>=
D'k'"2

(-íw + D'k- + /)(-tcj' + D'k'- + 1)

(-iu + D'í:- + /)(-tw' + D'í:'2 + /)
(4.2.90)

The correlations for the surface (luxes are obtained from eqs.(4.2.80) and (4.2.82).

For the surface diffusion flux we will also use the fact that the phenoinenological

coefficient can be written as L = D'c'I, and that we are considering only the ther-

modynamically relevant adsorbed state. The correlations for the bulk mass fraction

are the ones corresponding to a diffusive unbounded system. We should simply take
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care that we are interested in the fluctuations in contact with the wall. Hence,

/

°°

.„ «' +

Subsituting the expressions for the corresponding correlation functions in eq.(4.2.90),
we arrive at

>=

- a - - - _ _ ^ - ( J b + jfc 'U(w + u , ' ) (4.2.92)
(w2 + D'P + /)2

 W2 + (D'F + / ) 2 J l ; i ; V ;

which give tlie general expression for the density correlation functions in the adsorbed
state. We will now study in more detail the behavior of this correlation function, in
the particular case of the equal time, or stationary, correlations. After integration in
frequency, one arrives at the simpler expression,

<oc'(k1t)6c'(k',t)> = kaè* + kd?-D·c'Í) - - - . + (4.2.93)
D'L·i + l Ds

in which the coupling with the bulk phase disappears. Transforming back to real
space, one has

< ¿c3(x,/)íc'(i- ' , í) > = c'6(x-x')

+ (kac
++kdc' - D'c'i)—^-1*-*'1 (4.2.94)

< 6 c ' ( r < l ) 6 c t ( f f , t ) > = c'6(r-f)

+ (kac+ + kdc> - D ' c ' / ) - - A -
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for a one dimensional and a two dimensional substrate, respectively, and where KO is

the second order modified Bessel function.

The static correlation function for an unbounded system in equilibrium exhibits
a delta function behavior. We can see that now, due to the mass exchange with the

bulk, an slower decay of the correlation functions is observed. This decay is given by

the characteristic length scale, \lD'/i, which considers the mass transport from the

bulk to the surface, relative to the transport in the surface. The fluctuation dynamics

in a steady state is qualitatively different from the one obtained during the adsorption

filling of the substrate. In that case, diffusion can be neglected,and a faster decay of

the correlations is observed[37].

4.3 Discussion

In this chapter we have developed a thermodynamic theory to describe the adsorption

process at a macroscopic level. The basic assumption in the formulation of such a
theory has been to consider that the transport near the wall is controlled by an

energy barrier. Then, in order to account for the non-linearities inherent to the

transport, we have introduced an internal degree of freedom at the wall, which takes

into account the diffusion process along the enrgy barrier. Following the spirit of

non-equilibrium thermodynamics, local equi l ibr ium is assumed to hold in the internal

space, associated to this new internal variable. In this way, we have been able to

derive an expression for the flux rate of particles arriving at the adsorbed state. In

the absence of an energy barrier, the adsorption is controlled by diffusion, and the

non-ideal character of the sysem is introduced through the appropriate interfacial

chemical potential. If the dynamics of the total coverage is considered, we have also

shown that an equivalent expression for the rate of particles to the one obtained

when an energy barrier is present can be obtained, because an entropy barrier can

be developed as a result of the geometric constraints that the incoming particles
have to fulllill due to the previously adsorbed ones. Again, it is necessary to assume

that the arrival at the surface is controlled by this entropie barrier. Therefore, the

usual generalized Langmuir equations which are obtained in the kinetic adsoprtion

models for the global coverage, can be obtained from a thermodynamic formalism.
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The relationship between the global description, and the local balance equations for

these systems where the transport is controlled by entropie bariers, remains unclear
so far.

The formulation of the adsorption in terms of a thermodynamic theory, has allowed

us to obtain the fluctuation-dissipation theorems for the different fluxes which appear

at the adsorbing surface. Again, the formalism in the presence of an internal degree

of freedom has been developed, and the results have been applied for adsorption.

Finally, we have considered the mass fluctuation dynamics of an adsorbed phase
around a homogeneous steady state. The mass exchange with the bulk has introduced

a new length scale when surface diffusion is present, leading to a slower decay of the

correlations with respect to diffusing equil ibrium systems.

Appendices

4.A Internal Degrees of Freedom in Non-Equilibrium Ther-
modynamics

It is well-known that the second law of thermodynamics states that[12]

ff(S)doV > O (4.A.96 )

where ff(S) is the entropy production per uni t of time and volume of a macroscopic

volume SV, being V the total volume of the system. However, non-equilibrium ther-

modynamics is based on the assumption that not only eq.(4.A.96 ) holds, but that at
every subvolurne the entropy production is positive, that is

ff(S) > O (4.A.97 )

Therefore, a precise definition of the space in which the therinodynamic processes

take place becomes also of crucial importance. Hence, if the particles which constitute
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the system posses some internal degree of freedom, they should be introduced in the

description of the system, as is the case of a system made of dipoles where the their

orientation with respect with a reference axis is relevant when an external field is

applied.

A chemical reaction constitutes another example where an additional degree of

freedom should be introduced. For simplicity's sake, let us consider the unimolecular

reaction 1 — » 2, 1 being the reactant and 2 the product. In the standard descrip-

tion of chemical reaction within non-equilibrium thermodynamics, one considers a
homogeneous process, which leads to an entropy production of the form

I A
<r = - — (4.A.98 )

with A — /*2 — [ii the affinity, / i j and /<2 the chemical potentials of the reactant and

product respectively, J the flux of mass, and T the temperature. Since the reaction

takes place in all the volume, eq.(4.A.98 ) is an homogeneous relation, which leads to

a linear relationship between the (lux and the affinity,

(4.A.99 )

/ being a phenonienological coefficient. However, it is well known that, except very
close to equil ibrium, the relation between the flux and the affinity is non-linear, being

defined through the law of mass action[12]. In this case, the additional degree of

freedom is not related to additional degrees associated with either molecules of the

reactant or product. Rather, one should realize that in a reaction, the molecules of
reactant should form an activated complex, which pass through a series of energy
states until reaching the product molecules. A more detailed description of the reac-

tion at the thermodynnmic level would then be to introduce an additional variable

which would characterize the state of evolution along this "energy" space[15).

In general, let us assume that we have a closed uniform system, characterized by

its density p(y) which depends on a certain internal variable y which can take an

infinite sequence of values. For constant energy and volume, the total differential of
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the entropy per unit mass, «5s is given by

6s = -- !— / tt(y)6p(y)dy (4.A. 100 )
ptotT J

where f.i(y) is the chemical potential per uni t mass for configuration y, and pt„t the to-
tal density. As expected, at equil ibrium the chemical potential is constant. Assuming
that the density is conserved in this internal space, we can write

. .
dt dy

which defines the (lux in the space of the internal coordinate J(y). Using eq.(4.A.101
) in eq.(4.A.10Q ), we can derive the corresponding expression for the entropy pro-
duction of this system, which gives

= -- ~ IPtotT J
(4.A.102)

leading, in general, to phenomenological relations for the thermodynamic forces and
fluxes of the form

= - J L(y,y'f-^dy'J(y) = - L(y,y')-^r^'ly' (4.A.103)

As indicated at the beginnig of this appendix, however, non-equilibrium thermo-
dynamics assumes that not only the global entropy production should be positive, but
that at each point it should be positive defined. In this case, this assumption indicates
that the internal coordinate changes in a continuous way, and therefore finite changes
at a time are forbidden. In this case, by demanding that he integrand of eq. (4. A. 102
) be positive, one obtains, instead of relations like eq.(4.A.104 ),

(4.A.104
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indicating that the flux now does not depend on the whole distribution along the inter-

nal variable. At this point, once supplied the appropriate expression for the chemical

potential in this internal space from equilibrium thermodynamics, one can deduce the

corresponding expression for the flux and also, after inserting it in eq.(4.A.101 ) gives
the corresponding evolution equation for the density, once the appropriate initial and

boundary conditions are prescribed. For, example, for an ideal system

(4 .A.105)

where U(y) stands for a potential which affect the motion of the internal degree- of

freedom, and m is the mass of the system. When substituted in eq.(4.A.104 ) leads

to

J (y) = D~^ + p(y)bU(y) (4.A.106 )

with D — L ( y ) k T / ( m p ( y ) ) a diffusion coefficient, which can be considered constant
as usual, and b = L/(pm) a mobility coefficient. Note the similarity of eq.(4.A.106 )

with the expression of the f lux for a diffusing system in the presence of an external

field. In general, by choosing the appropriate density and internal variable, this

formalism has been applied to study the diffusion of dipoles on an external field and

in a shear flow[10][12], and has been also applied to obtain the Fokker-Planck equation

for the case of Brownian motion in velocity space[12] and for diffusion in a thermal

gradient[16].

The chemical reaction

In the case of a chemical reaction, U(y) represents the energy of the activated complex,

which has a maximum in the internal space and two minima, corresponding to the

reactant and product states. As the maximum is usually quite pronounced, one
usually arrives at a quasistationary state, in which the flux of mass is constant in all

the space and is controlled by the behavior of the system at the maximum. We use
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the fact that eq.(4.A.104 ) as

J(y) = -¿TDexp - -exp (4.A.107 )

and since J is constant, after integrating along the internal space, gives

I) \ n* ¡t i m f i i I

J = -- - - - - e-rr-e-irH (4.A.108)

where y,- and y¡ correspond to the limits of the domain where y is defined, and

which coincides with the values at which the density is at the initial and final stage

of the reaction. For unimolecular reactions, the activated complex is formed by one
molecule of the reactant. Therefore, in this case the density of the activated complex

at the initial and final states coincide with the density of the reactants and products,

respectively. By defining the constant / as

(4.A.109)
Hi nexDt ¿ " « P T

f»/ ex» ííí f/t*Jj/i ' kT
V kT

one arrives at

which constitutes the law of mass action, a nonlinear relation between J and A.

Therefore, although the entropy production can be expressed as a bilinear form in J

and A, a non-linear relation between them can be derived in the appropriate regime.

Although we have derived the law of mass action for an unimolecular reaction, it
is possible to the derive the corresponding law of mass action for a general reaction

23í-: v\Bi ^ 2Z¿=[ v\Ci. In this case, the same technique used for the unimolecular

reaction can be applied to study the rate of reaction. Now, the reaction starts when

the appropriate number of molecules of reactants, according to their stoichiometry,
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meet together to form the activated complex. Once they meet, they start to diffuse
in the configuration space, passing through the activated state, until they reach the
second minimum in configuration space, corresponding to the products. Then, as
before, the internal space is carachterized by an internal continuous variable, diffusing
through a potential which has a maximum and two minima. Therefore, eq.(4.A.108 )
is still applicable. The only difference with the unimolecular reaction is that now, the
mass concentration of the activated complex is not equal to the mass concentration
of reactant, because í/,- molecules of BÍ should meet together to form the activated
complex. Then,

1=1 1=1

where riß, is the mass fraction of reactant B¡ and »c¿ is the mass fraction of product
d. Therefore, the law of mass action eq.(4.A.110 ) is correct if these relations are
appropriately introduced.

Note that by the use of the internal degrees of freedom, we are able to derive
the kinetic equation for the ensemble of reactants, and the one corresponding to the
ensemble of products. Finally, it is worth pointing out that, by choosing an internal
degree of freedom indicating the state of advance of the activated complex, one finds
that the appropriate thermodynamic force is the derivative of the chemical potential
defined in this space, instead of the affinity, as is obtained in usual non-equilibrium
thermodynamics.

4.B BAM Thermodynamic Formalism for Interfaces

In this appendix we wi l l show the basic principles underlying the formulation of
non-equilibrium thermodynamics of surfaces introduced by Bedeaux, Albano and
Mazur[2][13] (BAM). The objective of such formalism is to derive the appropriate
balance equations for the different relevant physical magnitudes both in the bulk
phases and in the interfacial region, as well as to provide the appropiate boundary
conditions relating the bulk fields at the interface with the interfacial magnitudes.
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Consider a physical system composed of two coexisting phases, separated by a

moving surface of discontinuity. The presence of a surface does not mean that the

discontinuity is sharp, nor that it can located with absolute precision. It is taken

to identify the nonhomogeneous region which separates the two bulk phases, and
which has a width of the order of the bulk correlation length. The thermodynamic
level of description describes the dynamics of the system such that the details of what

happens on length scales smaller than the bulk correlation length are negligible. In the
bulk phase this implies that one may replace the molecular density by a continuous

field obtained after averaging over cells with a diameter of the order of the bulk
correlation length. The surface of discontinuity is a two dimensional layer of cells in

which the variables change rapidly in one direction over a distance of the order of

the bulk correlation length from the value in one phase to the value in the other, but

which change slowly in the other two directions. We now choose a time-dependent
dividing surface in this two dimensional layer of cells such its radii of curvature are

large compared to the bulk correlation length. The uncertainties in the location of

this surface lead to differences in the physical magnitudes of the order of the bulk

correlation length if the system can be assumed to be in local equi l ibr ium.

In order to describe the time-dependent evolution of the dividing surface, a set of

time-dependent orthogonal curv i l inear coordinates, £,-(F, í), i = 1 ,2 ,3 , is chosen, such

that the location of the dividing surface is given by

The dynamic properties of the system are described using balance equations for

the thermodynamic quantities. For one of such quantities d(r, / ) , we will then write

^d(r,l) + ^ - J d ( r , t ) = f f d ( r , t ) (4. B.I 13 )

where J¿(r,t) is the current of (/, and ffj(r,l) stands for the production of d in the

system. All the quantities introduced, will behave smoothly in the bulk phases, and

will exhibit large deviations from the expected bu lk values in the interfacial region.

BAM's procedure consists of assigning all the deviation of the magnitudes in the
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interface with respect to the bulk values to the surface of discontinuity. Therefore,

such quantities can be written as

d(r,t} = d~(r,t}Q-(r,t) + d+(r,t)Q+(r,t) + d'(r,t)8'(r,t) (4 .B.114)

fj(f,t) = f¿(rti)Q~(r,t) +fj(r,t)Q+(r,t) + f j ( r , t ) 6 * ( r , l ) (4.B.115)

with 0~ and 0+ being the characteristic functions of the two bulk phases (character-
ized by the superscript + and -), which are 1 in one phase and 0 in the other. These
characteristic functions can be expressed in terms of the Heaviside function,

(4. B.I 17)

and, correspondingly, 6' is the surface delta function,

f,t)) (4. B.I 18)

Note that, according to this formulation, the surface quantities do not depend
on £1, and then, their derivatives normal to the surface are zero. If one proceeds to
introduce expressions (4. B.I 14 )-(4.B.116 ) in the balance equation (4. B.I 13 ), one
obtains

«Tir, 0 + V - J J ( f , t ) - ffj(r, í) 6-(f, í) + +(>" 0+

V -

+Jd,n(ff' 0 - J7.n(r, 0 - <(r, t)(d+(r, t) - d - ( f , í))] í'(r, <) +

[J|n(r, í) - <(r, t)d*(r, t)] u(f, t) • Vi'(r, t) = O (4.B. 1 19 )

where properties of the derivatives of the distributions have been applied[13]. The
subscript » indicates the normal component to the diving surface, il(r, t) being its
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normal vector, and the normal components of the bulk phases which appear in the
third term are evaluated at contact with the dividing surfaceand the velocity field of

the dividing surface. In the previous expression, w(£) is the velocity of the curvilinear
coordinates

tS(í) = ^rtt,<) (4.B.120)

and the velocity field iiï'(&,Ç3,t) can be expressed in terms of this velocity field

through «>*(£2i&Ji ' ) = '<>(£i = O.&j i&J iO- There is a freedom to choose the curvilinear
coordinates which define the interface, and we have considered that the velocity of

the interface equals its barycentric velocity, i.e. tZJ5 = v'. Since the four distributions
appearing in eq.(4.B.I 19 ) are independent[2], then it splits in four equations. The
first two terns give

which describe the balance in the bulk phases. They have the same expression as for
unbounded systems[12]. The third term describes the balance equation for the excess
density

•jjd* + V - J'd + Jd,n,. - w'nd. = <r'd , fc(r, t = 0) (4.B.122 )

The subscript — means that the difference of the bulk values of the corresponding
quantity at both sides of the dividing surface is taken. In this surface balance equation,
one can see that, besides the usual terms, a contribution due to flow from the bulk
appears, as well as a second new contribution standing for the fact that during its
motion, the interface should "push" the field at one side, and the space left behind it
should be "occupied" with the field coming from the bulk. Finally, the fourth term
in eq.(4.B.l 19 ) gives

J j i n - u > X = 0 (4. B.I 23)
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expressing that the surface f lux is parallel to the interface in a comoving frame, as

could be expected.

This procedure is then applied to all the thermodynamic fields of the particular
system, e.g. density, momentum and energy for a two phase simple fluid. In the text,

we work out in more detail the case of mass fraction field in a mixture.

In order to formulate a thermodynamic theory, we have to deduce also the balance

equations for the entropy in the different phases. They give

± ± _ _v . /± + (T± (4.B.124)
at

p'— s* - -^7·J3-i1·\(v-v')p(s-st) + J\ +ff' (4.B.125)
dl l J -

The first equation gives the usual entropy balance equation, showing that the balance

equations for the bulk phases look like the ones obtained for unbounded phases[12].

The subscript s which should appear in the flux and production term to indicate
that they are the entropy (lux and production is dropped to avoid confusion with

the superscript .s labell ing the excess contributions. According to the principles of

non-equilibrium thermodynamics, one knows that the entropy production ¡s locally
positive defined,

ff^^O , ff'>0 (4.B.126)

In standard non-equilibrium thermodynamics[12], in order to derive an explicit
expression for the entropy production, one uses the fact that from thermodynamics,
the entropy of a system in e q u i l i b r i u m is a well-defined function of the thermodynamic

variables which define macroscopically the state of the system, and that its total

differential is given by the Gibbs relation. Gibbs showed that this is also the case for

a system with two phases separated by an interface[I7]. Then for an ;j- mixture of
simple f lu ids , it is determined by specifying, for example, the internal energy, u, the

specific volume, v, and the mass fractions, ct. The Gibbs relations corresponding to

the bulk and surface phases are then written as
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T±ds± = du* + p±dv± - /í^cjf (4. B. 127 )

T'ds' = du' - ydv' - J]/isrf4 (4.B.128 )
¿t=i

where T are the temperatures, and /< the chemical potentials in the différent phases,

p is the pressure, and 7 the surface tension. The basic idea of non-equilibrium ther-
modynamics is that even if the system is not in global equil ibrium, CJibbs relations

are locally satisfied. BAM assumes that Gibbs relations apply both for the bulk and

the interface. Again, this assumption restricts the description to situations where the

change of variables is small over distances of the order of the bulk correlation length.
Then, the rate of change of the entropy will be given by

«•"•'»>

for the local thermodynainic fields. Comparing eqs.(4.B. 129 ) and (4.B.130 ), which

are given by equl ibr i iun thermodynamics, wi th the balance equations (4.B.124 )-

(4.B.125 ), and after insertion of the balance equation for u, v, and c* obtained from

the general eqs.(4.B.121 )-(4.B.122 ), lead to expressions for the entropy fluxes and

entropy productions both in the bulk and interface phases. Regarding the internal

energy, one should take into account that the balance equation should be written for
the total energy of the system, which is composed by a kinetic, potential and internal

part, and the first two contributions should be substracted. The kinetic contribution

is deduced once the balance equation for the momentum has been obtained. The

potential part can be constructed taking into account that it derives from conservative
forces.

Once the entropy production is known, using Curie's principle after identifying
the thermodynamic fluxes and forces, it is possible to derive linear relations between
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them. From the bulk term one derives the usual constitutive equations for the fluxes
(Pick's law, Fourier law, etc.). The surface entropy production couple more terms
because, due to the brekdown of the translational symmetry, not only surface fluxes
and forces appear, but also normal components of bulk fluxes evaluated at the inter-
face. These terms have a different tensorial character at the interface that in the bulk
phase, allowing for couplings which are forbidden in the bulk. Some of the relations
obtained are surface constitutive relations, giving the equivalent of Fick's or Fourier
law, whereas the remaining ones are the boundary conditions for the bulk fields at
the interface.

Let us consider tiie surface entropy production for an »—mixture in which r chem-
ical reactions take place, but in the absence of external fields, if the fluid is at rest,
and the temperature is homogeneous. Then, the interfacial entropy production has
the form [13]

k=\ ' j-\ k=\

and using Curie's principle one obtains the linear phenomenological relations

(4.B.132 )

(4.B.133 )
k=i

/,>,+ = . —¿ßi-J^-¿ !>'-.*+(>'*-''*) (4.B.134)

j= i t= i

The first equation is the equivalent of Fick's law for a mixture at the interface, and
expreses the fact that there exist » — 1 independent diffusion fluxes in an »—component
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mixture. The second one is the linearized version of the law of mass action, but one

can see that an additional term appears, associated to the fact that incorporation

of mass to the surface may affect the chemical reaction. Similarity, eqs.(4.B.134 )

and (4.B.135 } constitute boundary conditions for the normal components of the bulk
mass fluxes, which depend on the difference of chemical potential between the bulk
and the surface, but which is also affected by the rate at which surface mass appears

or disappears due to surface chemical reactions. Note that, since mass diffusion is

a vectorial process, while chemical reactions are scalar ones, in the bulk there is no
coupling between such processes.
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Conclusions and Perspectives

In this thesis we have studied the influence of transport mechanisms on the adsorption
kinetics of colloidal suspensions, as well as in the distribution of colloidal particles in

the adsorbed layer. Adsorption of colloidal particles is controlled by the geometric

exclusion effects at the surface originated by the finite size of the particles and by

the irreversible character of the adsorption in these systems, and is also influenced

by the specific transport mechanisms which determine the arrival of the colloids from

the bulk to the interface. Our main objective has been to elucidate the effects of
each contribution, as well as their relative importance and mutual influence in some

specific situations.

After a first chapter in which we have introduced the basic kinetic models which

have been proposed in the literature to take into account the surface exclusion effects,

in the second chapter we have studied the adsorption in the presence of an external

field parallel to the substrate. Our objective has been to study how surface exclu-

sion effects are sensitive to the imposed external conditions upon which adsorption
takes place, showing that they do not arise from purely geometric constrains, as had

been already pointed out iu BM. Therefore, instead of describing carefully the actual

transport process, we have modified conveniently the usual kinetic models. Then,

the external field we introduce can model either an external field parallel to the sub-
strate or an adsorption from a fluid subject to a shear. The basic feature of this

new model is that it introduces a new minimum length at which two particles can

approach once on the substrate, and the kinetics becomes asymétrie in the sense that

this minimum distance depends on the side at which the incoming particle adsorbs.
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We have observed a decrease of the jamming limit in the strength of this imposed

force, and also a tendency to form more locally ordered aggregates when the force

increases. A model using RSA rules has been solved exactly in 1-D, and a second

one using BM rules has also been introduced. In this last model, new adsorption
mechanisms are induced by the external field: a particle may roll over a number of

preadsorbed spheres before being adsorbed or rejected. This new mechanism implis

that adsorption in a 1-D substrate becomes non-local in the sense that the incoming

particle can interact with many disks. The pair distribution function exhibits a richer

structure than in standard BM, in which a number of delta functions appear, related
to the different minimum distances at which particles can be found. If the exclusion

distance is a multiple of the diameter, then a resonance is observed, and a higly locally

ordered substrate is formed. The generalization of the previous models to the more

realistic 2-D model is under study. While the RSA generalization is standard, new
rolling situations are met in BM. However, similar features can be expected to hold.

The inclusion of desorption in these adsorption models with shear is also of relevance,

because it is now that an imposed shear favors desorption. In this case, it would be

interested to elucidate how surface exclusion effects are modified.

In chapter 3 we have studied the effect of the transport on the adsorption of

colloidal particles at high Péclet number in the presence of a gravity field, when their

diffusion can be neglected. As a new mechanism with respect to previous studies, we

have incorporated the hydrodynamic interactions (HI) existing between the incoming
particle and the adsorbed ones clue to the fact that the particles are suspended in a

fluid. We have shown that the basic efiect of HI is to introduce an effective repulsive

interaction between the incoming particle and the preadsorbed ones. Some analytic

results obtained in very simplified conditions have helped us to understand how HI

show up, computer simulations of the adsorption have been carried out to study the

general adsorption process. Simulations of BM have also been performed, in order to

compare the results. We have studied both the 1-D and 2-D models. On the first case,

which is simpler to deal with due to its simpler geometry, we have seen that, although

the global quantities obtained with HI do not differ quantitatively from the ones
obtained for BM, as for example the coverage as a function of time, the jamming limit,

or the available fraction of the line, the local structure differs significantly from the

one obtained wi th BM. The pair correlation function is characterized in both models
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by having a series of peaks due to the rolling of incoming spheres over preadsorbed

ones. The behavior after the peaks, however, is different, showing a slower decay with

HI, indicating that because of the effective repulsion that they introduce larger gaps

between the spheres are prefered. In 2-D we have shown that the effective repulsion
introduced by HI favor the formation of elongated triplets on the surface where BM
would predict an isotropic cluster. The radial distribution function again differs from

the BM one behind the peaks due to the same reason explained in the 1-D case. In this

model, we have compared with experimental results on the adsorption of mellamine

particles. The curves obtained with HI agrees better with the experimental ones than
those obtained with BM, explaining therefore some of the discrepancies observed

when comparing with BM. In particular, the slower decay behind the first peak can

be thought to be due to the effect of HI. This has served to show that BM, which was

thought to be a good model to describe the adsorption of heavy colloidal particles,
is restricted to situations where inertial effects dominate the transport to the wall.

A more detailed study of the structure of the adsorbed layer is in progress. It will

help us to elucidate the statistical importance of the elongated clusters that we have
observed in our simulations, and also a more clear kinetics of the cluster evoultion

will be obtained. Experimental results for the adsorptioon of systems ranging from
RSA to BM are starting to be obtained. We also plan to generalize our simulation to

finite Péclet number in order to understand new experimental situations. It is also

of interest the inclusion of I I I in a fluid subject to a shear. This study would help to

elucidate the competition between interactions and excluded effects, which have been

addressed in chapter 2.

Finally, in chapter 4 we have developed a thermodynamic theory of the adsorp-

tion process. We have focused our analysis on the situation in which adsorption
is controlled by a surface energy barrier. This is more realistic for the adsorption
of small particles. In this case, the transport to the interface is controlled by the

diffuison through the energy barrier. In order to describe it properly, we have in-

troduced an additional internal variable for the thermodynamic fields at the surface.

The surface exclusion effects within this description are introduced considering that
the system at the surface is not ideal. In this way we have derived a local generalized

Langmuir equation for the evolution of the surface concentration. If the adsorption

is not controlled by an energy barrier, as is the case in the kinetic models, then
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the local thermodynamic description is different. We have shown how it is possible
to obtain global generalized Langmuir equation which describe the evolution of the
global surface concentration, using the fact that entropical barriers appear for the
incoming particles. The relationship between this global descritpion and the local
one in this case, however, remains as one of the open questions to be answered. The
therniodynamic formulation allows to introduce in a systematic way the study of the
fluctuations around steady states. We have shown how to deduce the correspond-
ing fluctuation-dissipation theorem when an internal degree of freedom is introduced,
and we have applied the results to study the density correlation funct ion to a simple
adsorption model wi th d i f fus ion .

We can conclude that there exists a close interplay between the transport mecha-
nisms whihch control the arrival of colloids to the surface, and the exclusion volume
produced by the immobile particles. Moreover, new transport phenomena induce new
adsorption kinetics, which in f luence both the rate of arrival of particles and the dis-
tribution of the colloids on the substrate. Therefore the physical properties of the
interface w i l l depend on the transport mechanisms.
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