UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Multiscale techniques in turbulence:
application to geophysical fluids
and operational oceanography

Verodnica U. Nieves Calatrava

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a I'acceptacidé de les segients
condicions d'Us: La difusi6 d’aquesta tesi per mitja del repositori institucional
UPCommons (http://lupcommons.upc.edu/tesis) i el repositori cooperatiu  TDX
(http://www.tdx.cat/) ha estat autoritzada pels titulars dels drets de propietat intel-lectual
Unicament per a usos privats emmarcats en activitats d’investigacié i docencia. No s’autoritza
la seva reproduccié amb finalitats de lucre ni la seva difusié i posada a disposicié des d’'un lloc
alié al servei UPCommons o TDX. No s’autoritza la presentacié del seu contingut en una finestra
o marc alie a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentacio
de la tesi com als seus continguts. En la utilitzacio o cita de parts de la tesi és obligat indicar el nom
de la personaautora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusion de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
Unicamente para usos privados enmarcados en actividades de investigacion y docencia. No
se autoriza su reproduccion con finalidades de lucro ni su difusién y puesta a disposicion desde
un sitio ajeno al servicio UPCommons No se autoriza la presentacion de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentacion de la tesis como a sus contenidos. En la utilizacion o cita de partes
de la tesis es obligado indicar el nombre dela persona autora.

WARNING On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the institutionalrepository UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it's obliged to indicate the name of the author.



http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

MULTISCALE TECHNIQUES IN TURBULENCE:
APPLICATION TO GEOPHYSICAL FLUIDS
AND OPERATIONAL OCEANOGRAPHY

Verénica U. Nieves Calatrava - 2008



UNIVERSITAT POLITECNICA INSTITUT DE CIENCIES
DE CATALUNYA DEL MAR DE BARCELONA
(C.SI1C)

APPLIED PHYSICS PROGRAM

MULTISCALE TECHNIQUES IN TURBULENCE:
APPLICATION TO GEOPHYSICAL FLUIDS

AND OPERATIONAL OCEANOGRAPHY

Veronica U. Nieves Calatrava

Thesis report for the European Doctor Degree, Applied Physics specialization, Univer-
sitat Politecnica de Catalunya, under the supervision of Dr. Antonio Turiel Martinez,
Institut de Ciencies del Mar (C.S.1.C.).

Barcelona, 2008






Ibergekumene tsores 1z gut tsu dertseylin.
Troubles overcome are good to tell.
Yiddish proverb






Contents

1 Introduction 1
1.1 My research . . . . . . . ... 6
1.2 Materials and methods . . . . . .. . ... oo 8

1.2.1 Kolmogorov’s theory and MMF . . . . .. .. ... ... ... .. 8
1.2.2  MMF on satellite images . . . . . . . .. ... ... .. .. .... 12
1.2.3 Coherent Vortex Extraction . . . . . ... ... ... ... .... 15
1.2.4 Satellite products and their application in oceanography . . . . . 16

2 Tracking oceanic currents by singularity analysis of Microwave Sea
Surface Temperature images 19
2.1 Imtroduction . . . . . . ... 25
2.2 Singularity analysis . . . . . .. ..o 26
2.3 Description of thedata . . . . . . . ... ... ... ... .. ... ... 30
2.4 Results and Discussion . . . . . . . ... .. o 32
25 Conclusion . . . . . ... 37

Obtaining and monitoring of global oceanic circulation patterns by

multifractal analysis of MicroWave Sea Surface Temperature images 47



3.1 Imntroduction . . . . . . . . . 53

3.2 Singularity analysis . . . . . .. ..o 54
3.3 Examples of application . . . . .. .. ... o000 56
3.4 Conclusion . . . . . . .. 57

Técnicas multifractales para la extraccion de la funcion de corriente a

partir de imagenes de la superficie del mar 63
4.1 Introduccién . . . . . . . ..o 69
4.2 Método de la funcién de corriente maximo singular . . . . . .. ... .. 70
4.2.1 Analisis de singularidades . . . . . . ... ..o 70
4.2.2  Construccién de la FCMS . . . . .. .. ... ... ... ... 71
4.3 Extensiones y lineas futuras . . . . . . ... ..o oL 72
4.3.1 Calibracion de la FCMS . . . . . .. .. ... .. ... ... ... 72
4.3.2 Detecciéon de estructuras oceanicas . . . . . .. ... ... 72
4.4 Conclusiones . . . . . . . . . 72

Common turbulent signature in sea surface temperature and chloro-

phyll maps s
5.1 Imtroduction . . . . . . . . . 83
5.2 Data employed in thisstudy . . . . . .. ... .. ... ... ... .... 84
5.3 Singularity analysis . . . . . .. ... 85
5.4 Validity of MMF for SST and CC images . . . . . . . ... .. ... ... 86
5.5 Comparison between SST and CC multifractal structures . . . . . . . .. 87

5.6 Conclusions . . . . . . .o, 88



6 Analysis of ocean turbulence using adaptive CVE on altimetry maps 93

6.1 Introduction . . . . . . . . . 99

6.2 Microcanonical Multifractal Formalism . . . . . . . . . . . .. ... ... 100
6.3 Coherent Vortex Extraction . . . . . . . . . . . . ... ... 105
6.4 Data description . . . . .. .. 108
6.5 MMF on altimetric data . . . . . . . . . . 109
6.6 Adaptive CVEon SLAmaps. . . . . .. . ... .. ... 112
6.6.1 Global and local thresholds . . . . . . . .. . ... .. ... ... 112

6.6.2 Singularity threshold . . . . . . ... ... ... ... ... 114

6.6.3 Beyond locally orthogonal criteria . . . . . . ... ... ... ... 115

6.7 Conclusions . . . . . . . 117

7 Discussion 125
8 Conclusions 129
List of Figures 132

List of Tables 138






CHAPTER 1

Introduction

Turbulent flows are of major interest for scientists and engineers, playing an essential
role in fluid dynamics. Even though a precise definition of turbulence does not exist,
it is generally assumed that turbulence is a flow regime characterized by instabilities at
large Reynolds numbers. The Reynolds number is a measure of the ratio of inertial forces
to viscous forces. In the ocean, Reynolds number are of the order of 10°, and so ocean
dynamics is strongly nonlinear involving a large spectra of processes across all space and
time scales. However, the ocean seems to be very active at around 30-300 Km, which is
known as mesoscale. A schematic diagram of the spatial and temporal scales of various
oceanic phenomena is shown in Figure 1.1.

Instabilities in the ocean explain the meandering nature of oceanic currents, which
can isolate and shed eddies when the meanders reach large amplitudes [3]. Examples
of such flows are high- and low-pressure systems that are formed in the Gulf Stream
area (see Figure 1.2). These systems have been related to coherent structures, which
are a combination of the geometrical and dynamical properties of the flow, i.e., regions
containing most of the surviving vorticity [56, 47]. As it occurs in the ocean, a turbulent
flow self-organizes into a collection of coherent structures [91, 140]. The smaller eddies
are exposed to the strain-rate field of these coherent structures [123]. In recent studies,
coherent structures not only have been identified with vortices, but also their presence
has been connected with non-Gaussian Probability Density Functions (PDFs) of velocity
fields from the ocean [17, 40, 54, 51, 139]. In addition to this characteristic, a near
Gaussian component is expected for the background flow. These statistical distributions
of ocean velocity fields have similar characteristics to the ones of numerical simulations
of bidimensional turbulence.
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Fig. 1.1: Physical processes vary over a continuum of space and time scales [21].

In general, dynamics of geophysical flows at mid-latitudes and at mesoscale fits well
in the quasi-geostrophic approzimation [111]: horizontal motions are in balance with
the pressure gradient force. As soon as the horizontal extension of the motion reaches
few kilometers, oceanic turbulence can be considered nearly bidimensional. Under these
circumstances, two processes related to the flow energy and enstrophy can take place:
the enstrophy cascade process and the inverse energy cascade. Both of them explain the
presence and the long-lived character of the observed coherent structures. Energy is the
eddy kinetic energy, and enstrophy is a quantity expressed in terms of flow vorticity that
gives an idea about the tendency of the system to maintain the maximum number of
vortices. This kind of “rotational energy” is observed to remain locked in mesoscale scales
of oceanic flows, where eddies are very active, and it is relatively immune from the smaller
scales [108]. However, for a large Reynolds number the enstrophy decreases through the



dissipation of vorticity filaments that are generated by close interaction of eddies. These
filaments are stretched to ever-smaller scales, until they reach scales small enough to be
affected by viscosity. In fact, turbulent flows are always dissipative [11, 123], and eddies
encompass a wide range of scales: from centimeters, where molecular viscosity mainly
contributes dissipating energy, to kilometers. As a result of vortex-stretching mechanism
and viscous dissipation of energy, there are energy transfers between all motion length
scales. The complete process is known as enstrophy cascade process, which has been
important in the conceptual development of turbulence [37]. Analogously, there exists
also an inverse energy cascade that drives energy from smaller scales toward larger scales.
Nevertheless, the inverse cascade in the ocean becomes ineffective beyond a length scale
called Rhines scale, which is at most about hundreds of kilometers.
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Fig. 1.2: Infrared satellite picture from Gulf Stream (NOAA). Meandering activity and well
defined eddies are visible. The size of the domain is about 600 km square. Image from [3].

Understanding how inertial forces tend to produce random eddies and other velocity
fluctuations is fundamental in oceanography. Many studies of physical-biological inter-
action are associated with coherent structures in the open ocean and coastal regions.
Due to their long lifetimes and spatial extent, coherent structures strongly influence the
exchange of heat, nutrients, etc. between different locations and scales. Traditionally in
turbulence, the evolution of the combined effect of ocean stratification and Earth rota-
tion has been assessed by the Navier-Stokes equations or Direct Numerical Simulation
(DNS). All spatio-temporal scales of a turbulent flow are resolved without averaging
or approximating; the main errors come from numerical discretization. In the ocean,
this idea is as easy in theory as an extremely tough task in practice due to the com-
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putational cost involved. In view of the computational needs that exceed the current
super-computational architectures, oceanic turbulence cannot be exclusively described
from computational predictions. The combination of experimental data together with
mathematical models is convenient to deal with such a complex problem. Based on
this idea, turbulence can also be faced through semi-deterministic methods, e.g., Un-
steady Reynolds Averaged Navier-Stokes equations (URANS) or Large Eddy Simulation
(LES). These methods rely on the observation that, from all spatio-temporal range of
scales existing in a turbulent flow, great scales are the most effective in the transport of
properties, while small scales are weaker. In spite of this, this kind of simulation is still
very demanding regarding computational resources and calculation time.

There are other strategies that adopt the same core concept as URANS or LES. They
are based either on (i) the statistical properties of the velocity fluctuations or on (ii) the
idea of a system of interacting coherent structures. Both methods also suggests some
sort of filtering operation that would low-pass the equations of interest and suppress the
higher frequency motions - lower frequency variability in the sea [101, 3]. The success
of a low-pass filtering procedure depends in part on the existence of a “spectral gap” in
the energy spectrum. This concept is illustrated in Figure 1.3.

In the spatial Fourier decomposition, a signal f depending on the space 7 is smoothed
at the length scale of [ = K !, i.e., scale of the filtering, in the following way:

f@) = fz(@) + fR(&) (1.1)

with f2(7) = Yp  fee'® 7 and f2(7) = Y,p foe'™ 7.

The (spatial) energy spectrum is defined by using the same concept, where the signal
is a random velocity field ¥ and vk the low-pass filtered velocity field - containing
information at a wave number less or equal to K:

where €(K) = 3 ([vi(2)]?)

It is important to keep in mind that a certain eddy size [ is related to a certain wave
number k. Each eddy can be understood as some disturbance containing energy in the
vicinity of k. However, eddies cannot be thought as identities due to the interactions
with each other. An eddy is associated to many Fourier coefficients. Therefore, the
contribution of an eddy to the spectrum is a broad spike. Moreover, the basis functions



of a Fourier transform are localized in wave number space, but not in the physical
space. Thus, more sophisticated transforms such as wavelet transforms are needed to
decompose the velocity field. The coefficients of the wavelet transform allow tracking
the size and location of features of a signal, e.g., intense vortices.

ffnw

Red
spectrum Freak

n
\
\

|

Energy/unit frequency

Spectral
gap

\‘jj/

Log frequency

!

]

I

/ | Peaked
i‘ V< spectrum
ol

/

Fig. 1.3: Three types of energy spectra for oceanic motions [3]. Solid line: typical “red”
spectrum showing monotonic increase toward lower frequencies up to the spectral maximum
at flow. Dashed line: spectrum showing a gap at fgqp, which divides slow from fast motions.
Dotted line: spectrum showing a peak response at fpeqr, characterizing narrowband processes
such as tides and swell.

Some filtering-based models and techniques are shortly reviewed next:

i) The statistical branch was initially introduced in 1941 by Kolmogorov and settled
the foundations of the modern theory of turbulence [62, 61]. This approach makes
use of probabilistic tools to decompose a turbulent flow into mean, and fluctuating
quantities. The fluctuating part is represented by velocity increments (5@(le) =
v(Z) — v(Z + 1). Kolmogorov found that the moments of the velocity increments
at the smallest scales are universal, i.e., independent of the particular flow under
consideration. This theory implied far-reaching consequences, but their predictions
were not observed until many years later, e.g., [65]. In fact, the scaling properties
of these rapidly varying portions of a turbulent flow could not be analyzed locally
until recent years at mesoscale. Singularity Analysis (SA) is a novel technique that
encourages the local analysis of turbulent flows by detecting spatial transitions in
velocity or any advected passive scalar field [132, 129]. Advection refers to the
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transport of some property of the ocean, e.g., sea surface temperature, submitted
to the velocity field. The key difference between SA and Kolmogorov’s theory is
that these quantities (and hence flow dynamics) can be now estimated point-by-
point. In addition, SA track transitions independent of their amplitude, so even
subtle structures can be detected. Notice that one of the long-standing challenges
in oceanography is an accurate estimation of the velocity field. For the first time,
instantaneous fields of sea surface currents have been recently inferred, e.g., from
satellite scalar variables, by using SA [132, 129]. In the ocean, however, SA-derived
maps had not been validated, and this was one purpose of my research.

ii) Coherent Vortex Extraction (CVE) is a technique that selects the most dynami-
cally relevant structures from the vorticity field [33, 35, 34, 13, 128]. Similar to
the traditional picture, CVE uses spectral analysis of the turbulent motion, but
supported by a refined multiscale (local wavelet-based) method. Wavelets bases are
local and so the spatial localization of vortices does not become uncertain. Further-
more, wavelets allow to represent complex signals without fixing the observation
scale [83]. CVE role lies on a flow patterns description considering vortices as the
dominant part of flow evolution, which correspond to only few degrees of freedom.
The vorticity field is partitioned into two parts: the self-structured component
(coherent part), and the background energy (incoherent part). The first is char-
acterized by the greatest amplitudes; the second is the remaining flow. However,
the inhomogeneous character of ocean turbulence is not contemplated, e.g., the
contribution due to the interaction of structures is neglected. Thus, CVE deserved
improvement particularly on satellite data. Further research within my PhD shed
light on this issue.

1.1 My research

SA and CVE techniques, and different kinds of satellite products were employed to carry
out five studies that are reported herein. All of them have been developed through the
multifractal properties of oceanic flows.

The use of satellite data was motivated by the fact that remote detection has con-
tributed to the acquisition of oceanographic information in a greater scope than in-situ
observations. Field measurements require a costly effort because of the technology some-
times needed, e.g., instruments specially designed with particular materials for specific
purposes. An intrinsic-yet-costly difficulty is the maintenance of a ship in an operative
way and the crew support. Additionally, in-situ sampling is scarce and spatio-temporal
disperse; yet it is the most precise. On the contrary, satellite data offers a synoptic view
of extensive areas with high temporal reiteration despite the initial cost that the sen-
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sor design, construction and launching involve. However, satellite data are exclusively
limited to the sea surface, and there are many physical processes that occur on spatial
scales that are not fully resolved by the satellite sensors. Even so, it has been possi-
ble to prove straightforwardly the existence of eddies and other structures from almost
global coverage images, instead of inferring them from incomplete and non-simultaneous
field measurements. The long data record provides the first opportunity for operational
applications to predict mesoscale ocean circulation.

During my research SA has been applied to satellite images with the aim to provide
a new perspective of mesoscale ocean dynamics, and a verification of the existence of a
cascade process. According to theory [1, 129], it is known that the scaling properties
(scaling exponents) of spatial differences of a given magnitude, e.g., satellite-derived
scalars, are related to relevant dynamical information. Each value of singularity exponent
should be associated to a group of streamlines, as singularity manifolds are dragged by
the flow [55]. It has been shown that singularity fields provide a detailed description of
the global oceanic circulation scheme. This is under the assumption of strong advection,
although this does not need to be the most important effect. Two key points needed
further investigation, and both of them have been analyzed in the course of my PhD:

e Validation of streamlines with geostrophic velocity fields derived from altimetry.

e Comparison of singularity maps derived from different satellite data.

Another major development of my research concerns an improved procedure for CVE
[128]. The standard criterion threshold that was used in CVE to separate a flow into
coherent and incoherent parts is based on its global properties [27]. However, the par-
ticularities of the flow at each point have to be considered because they contain an
important part of the most energetic structures needed to describe ocean dynamics.
Throughout my work CVE has been modified after demonstrating various aspects of the
linkages between the different scales of satellite information and hence of oceanography,
i.e., the cascade process in ocean turbulence:

e Introduction of the multifractal properties of satellite variables in an iterative
procedure on CVE by means of a cascade-based description.

This research led to the following publications (see Chapters 2-6 or [136, 137, 131,
98, 99]):

i) Tracking oceanic currents by singularity analysis of MicroWave Sea Surface Tem-
perature images.
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ii) Obtaining and monitoring of global oceanic circulation patterns by multifractal
analysis of MicroWave Sea Surface Temperature images.

iii) Técnicas multifractales para la extracciéon de la funcién de corriente a partir de
imagenes de la superficie del mar.

iv) Common turbulent signature in sea surface temperature and chlorophyll maps.

v) Analysis of ocean turbulence using adaptive CVE on altimetry maps.

In Chapter 7, a discussion is included. Conclusions are detailed in Chapter 8.

1.2 Materials and methods

1.2.1 Kolmogorov’s theory and MMF

Kolmogorov found that the hydrodynamic equations for incompressible fluids show a
scaling symmetry at infinite Reynolds number [62, 61]. Kolmogorov also defined a range
of scales for which this symmetry is valid: the inertial range. The symmetry is not
conserved for large scales where turbulence is generated and for dissipative scales where
molecular viscosity is important.

In this framework, turbulent flows are analyzed using its statistical moments S, given

by

Sp(l) = () (1.3)

Typical choices for ¢ are linear increments of the modulus of the velocity along a

-

given direction, ¢(Z) = |v(&) — v(Z +1)| or local energy dissipation on balls of radius

l, Gl(f) = Zij fBl(aE) dx (@vj(a?) + (3]1)@(9?))2

In the inertial range, the statistical moments are scale invariant with respect to the
scale scope [ at any order p. This is manifested in a power-law scaling function:

Sp(l) o< I Ikl (1.4)

where 7, = Hp + (3, H and (3 coefficients derived from ¢ properties.
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Kolmogorov gave the first theoretical explanation that supports such a statistical for-
malism - also referred to as Canonical Multifractal Formalism (CMF) [138] - to explain
the concept of an injection mechanism for Fully Developed Turbulence (FDT). Never-
theless, it is known that the linear scaling predicted by Kolmogorov is not accomplished
experimentally. Experimental results show “anomalous scaling” for 7, [2, 105, 6]. This
phenomenon is related to strong fluctuations of the energy flow in the cascade, i.e.,
energy dissipation is intermittent.

The first to propose an explanation for dissipation-range intermittency was Kraichnan
[64]. He showed that fluctuations are tremendously amplified in the dissipation range.
He also stressed that dissipation-range intermittency does not imply inconsistency with
K41. Other attempts to properly fit intermittency within turbulence were made by
Mandelbrot from 1968 on [84]. According to his model (the S-model), with each step
in the cascade process the eddies become less and less space filling in a scale-invariat
fashion. Mandelbrot defined such basic structures with self-similar properties as fractals,
as they only occupy a fraction of the total volume (fractal Hausdorff dimension) [85]:
“A fractal is a shape made of parts similar to the whole in some way”. This means that
in nature several objects are composed of parts that look like the whole, see Figure 1.4.
This model led Parisi & Frisch to find that there are multiple fractal components with
different dimensions: the multifractal model in terms of velocity increments [105].
Multifractality was also defined in terms of fluctuations of the local energy dissipation
based on Obukhov’s and Kolmogorov’s contributions in 1962 [102, 63]. With these
reformulations the idea of a multiplicative cascade was introduced to explain this complex
picture of multiscaling exponents.

Fig. 1.4: From left to right and from top to bottom: Ammonite, Water Lily, Colorado
Snow, Spider Web, Rings of a Cottonwood Tree, and Brassica Oleracea. Image from:
http://scienceblogs.com/chaoticutopia,/2007/01/friday_fractal nostalgia.php
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The fractal dimension associated to a scaling exponent h is calculated for each sta-
tistical moment. Then, the fractal manifold (the set of fractal components) is defined
as the Singularity Spectrum (SS):

D(h) = inf {ph + d — 7,} (1.5)

It has been used that p;(h) oc ¢ P whose exponent is related to the usual Holder
exponent. p;(h) is the distribution of scaling exponents h at a given scale [, d represents
the domain space dimension. Hence 7, = inf {ph + d — D(h)} [32].

SS should correspond to a convex function of i (multiplicative cascade), see Figure 1.5.

D(h) /‘;: \

Fig. 1.5: Geometrical construction of the fractal dimensions.

In the recent years it has been shown that the value of the local scaling exponent
h(Z) of a given turbulent signal s could be calculated point-by-point #. Singularity
Analysis is a signal processing technique that makes possible this analysis [132, 129].
SA classifies the points in a given turbulent flow according to the value of its local
singularity exponent. Singularity exponents are a measure of the degree of regularity
or irregularity of the function at each point. Therefore, maps of singularity exponents
provide information about the geometrical properties of the flow, which is related to
its underlying physics [129, 127, 55]. Examining scaling theory considering the local
properties of the flow is also known as Microcanonical Multifractal Formalism (MMF)
[138].
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Importantly, MMF is a new field of fluid dynamics that complements theory and
experimentation to describe turbulent flows. This is possible through the following
equation that links the statistical properties of a FDT flow with the geometrical ones:

1 - .
Zls(@+1) = s(@)] ~ 1" (1.6)

where h(Z) is the local singularity exponent given the field s(Z) at the point ¥ and
resolution scale [ for any vector [ small enough.

The family of dimensions is again characterized by the multifractal spectrum [5]
(Equation (1.5)). However, SS is calculated now from the distribution of the scaling
exponents associated to each point

(h)
log (magé () )

D(h) = d —
() log(

where d is the signal domain dimension (d = 2), p;(h) is the empirical histogram of
singularities at scale (.

Three requirements are fundamental to apply MMF"

i) Each fractal component is scale-invariant: for any point ¥, Equation (1.6) is verified
over a large enough range of scales [.

ii) The whole multi-fractal hierarchy is scale-invariant: the distribution of singularities
at any valid scale [ follows Equation (1.7), for the same function D(h).

iii) The function D(h) derived from Equation (1.7) is convex.

For an extensive discussion of this topic the reader is referred to [138, 99] and to
Chapter 6.
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1.2.2 MMF on satellite images

One of the aims of my PhD research was to demonstrate that techniques developed in
the frame of MMF like SA could also be applied to satellite images to extract information
about ocean dynamics (see Figure 1.6 and [136, 98]). This is based on the idea that the
flow agitation state is transmitted to the singularities observed in satellite-derived scalars
in such a way that they act as tracers of fluid dynamics [1, 129]. The scaling properties
of these scalar variables are more accessible than the ones of the flow. However, satellite
data should be first filtered due to the fact that flow long-range correlations can affect
the detection of the finest structures. For this reason, a wavelet-based method has been
used. Continuous wavelet transforms have been shown to be the most adequate filter
for this purpose [23, 83]. Additionally, wavelets preserve scale-invariance and hence they
make possible to work with a wide range of scales. Nevertheless, the available range of
scales is subjected to the resolution limits of the satellite images.

After applying wavelet transform, the tracer s is represented at the point 7 and scale
[ as

Tos(7.1) = /dgs(g)lld@ (f; g) (1.8)

where ® is the wavelet basis and d is the domain space dimension.

Hence the wavelet expression equivalent to Equation (1.6) is:

Tes(Z,1) ~ " (1.9)

A noteworthy fact is that Equation (1.9) leads to the same singularity exponents as
Equation (1.6) [5, 132]. In previous works, however, it was found that Equation (1.9)
has some numerical problems that can be solved by computing the modulus of the signal
gradient [138]. In this way, the spatial resolution is not reduced, and the new measurable
quantity still presents a multifractal behavior [132, 43]:

T|Vs|(Z,1) ~ IM"@ (1.10)

The exponents are related in the way: h(z) = h (Z) — 1.
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Fig. 1.6: Singularity exponents map associated to a MicroWave Sea Surface Temperature image
[136].

Similar results can be obtained by using different wavelets, but not all of them perform
equally well on real data. The most appropriate family of wavelets for this kind of
problems is the Lorentzian one [125, 138]:

} 1
@) = = EE (1.11)

In some cases, it is more convenient to obtain punctual estimates of the singularity
exponents h at each location on account of the limited resolution of some data and the
small size of the studied areas [135, 109]. For this reason, dyadic wavelet basis have
also been employed. The discrete wavelet transform has been found to be well suited
to analyze intermittent signals and systems containing localized features such as intense
structures [35].

The representation of the signal in a dyadic wavelet basis is given by

s(T) = Z ZZO‘ME b, x(T) (1.12)

r=123 j=1 }
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where ¢_#(7) = 2 4.(2 77 — k) are the mother wavelets, r is the mother wavelet

orientation, 27 is the dyadic scale (pixels), 27 k represents the spatial location with k=
(k1,ko); and j, k1, ko are integer numbers. Wavelet coefficients are obtained by projection

Qg = wrﬂ%’ s) [23].

In this context, Equation (1.7) reads:

log (magcrj(h? >

i (R)
D,.;(h) = d — Prs 1.13
i(h) (j — J)log2 ( )

with p,;(h) as the distribution of singularity exponents hrjE for the orientation r and
scale 7.

The empirical estimate of the distribution of the singularity exponents at any scale
can be obtained, and a convex function is expected in all cases. This would validate the
hypothesis of a turbulent origin flow driving the satellite-derived scalar and the statistical
symmetry prescribed by theory. Even though satellite images are often contaminated,
isotropy can be found because of the local character of the singularity exponents.

Once the multifractal character of a scalar variable is verified, some concepts such
as the multiplicative cascade process can be used to link the information among the
different scales. Under the assumption of turbulent cascading [37], the distribution of
singularity exponents derived at a given scale is in equilibrium with the distribution of
exponents, as observed at any other scales:

Ok = Mk ar,j+1,[§] (1.14)

E
2

a iy [ E] are the wavelet coefficients at the immediately coarser scale j + 1 and about
9 b 2

the same position as that of coefficient i

E
3 and

where [ } is the vector with components equal to the integer part of those of

Attention must be paid to the fact that this expression can be verified for the wavelets
coefficients derived from any scalar, and for any intermediate stage. This implies that
kinetic energy and/or enstrophy is distributed in such a way that it guarantees a con-
tinuous transfer between larger and smaller scales. This process is analogously valid for
both downscaling and upscaling developments.
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1.2.3 Coherent Vortex Extraction

In a large number of cases, the best compromise between realistic Reynolds numbers,
good resolution of coherent structures, and low computational cost can be reached us-
ing a method based on a vortex extraction algorithm - Coherent Vortex Extraction -
for calculating two-dimensional turbulent flows [33, 35, 34, 13|, i.e. Coherent Vortex
Simulation.

CVE analyzes turbulence by only using the most energetic structures from the vor-
ticity field w. The vorticity field is appropriate to detect areas of strong gradient, which
are associated to the nonlinear interactions. In order to select the scales of interest, CVE
uses a nonlinear filter - that depends on each flow realization - following a multiresolu-
tion analysis: dyadic wavelet transforms of mother wavelets {¢,},—1 23 are applied to
the signal w(Z).

As in Equation (1.12), the signal is given by

= > Zzamk t,7(Z) (1.15)

r=1,2,3 j=1 [

where 1 (7) = 2 79, (2 77— k), r is the mother wavelet orientation, 27 is the dyadic
scale (pixels), 27k represents the spatial location with k = (k1,k2); and j, kq, ko are
integer numbers. j = 1 is the finest scale, and j = J is the coarsest (integral) scale.
Wavelet coefficients are obtained by projection a,;z = (¢, 7, w) [23].

The retained structures are selected by using the Donoho & Johnstone’s criterion [27],
and they are considered as the coherent contribution to the flow w.. The remaining flow
is associated to the incoherent part w; (see Figure 1.7):

W= W, + w; = Z i wmk Z amk wwk z) (1.16)

Qi >0

where © = 2vZInN, Z the total enstrophy, Z =
data points at the studied resolution.

${w,w), and N is the number of

This technique has been initially developed to study 2D turbulent flow simulations.
Nevertheless, in a real context such as the ocean, a more complex level of physics is
needed. Comparing ocean turbulence with 2D turbulence is a subject of intense research
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91, 57, 54]. However, lately it has been shown that CVE applied to altimetry maps needs
some additional improvements to describe ocean dynamics [128]. CVE is not able to
produce a fully incoherent part, i.e., Gaussianly distributed and spatially incoherent
flow. A more efficient design of CVE on experimental data was one of the main points
I have been developing during my PhD research (see [99] or Chapter 6).

(Vorticity )
CVE: WV Transform -

Inverse WV Transform ———»

Incoherent part = Total field - Coherent part

l

Fig. 1.7: Diagram outlining Coherent Vortex Separation.
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1.2.4 Satellite products and their application in oceanography

For the studies developed during my PhD different kinds of satellite data have been used.
First, velocity fields derived from Sea Level Anomaly (SLA) maps. Second, Optimally
Interpolated (OI) MicroWave Sea Surface Temperature (MWSST) as well as Pathfinder
(version 5.0), MODIS Terra L2, and Aqua-MODIS Sea Surface Temperature (SST)
data. Finally, Chlorophyll Concentration (CC) images like SeaWiFs and Aqua-MODIS.
An accurate description of all products can be found in the next chapters.

Recently, some of the above products have been steadily improved from the needs of
understanding the wide variety of Earth system phenomena with better spatio-temporal
resolutions. Nowadays space centers generate products that almost fulfill our goals. For
instance, SST and CC data have been adapted to fit this new role. These images are not
affected by environmental conditions, aerosol corruption, orbital gaps, etc. This has been
possible by combining selected satellite images. Thus, these gridded merged products
open the way to reanalyze all these data with the applications shown through my PhD
research. In the future, how data-merging methods affect oceanic information should be
carefully analyzed. Interpolation techniques applied to these data may affect the value
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of the singularity exponents. This limitation has to be suitably overcome in order to
select only those values that are physically meaningful. Obviously, further significant
improvements to these new data will be made through better error specification, and
the addition of data from other satellites/sensors. Some examples of integrated data
products are described next.

The GlobColour project has been initiated by the ESA to develop a satellite-
based ocean colour data service to support global carbon-cycle research and opera-
tional oceanography. In this context, a chlorophyll product has been derived from
MERIS, MODIS, and SeaWiFS sensors. This product is distributed daily with a nomi-
nal resolution of 1/24 degrees (http://www.globcolour.info/products_description.html).
Concerning SST, MWSST and OSTIA images are other examples of blended prod-
ucts that offer an improved coverage of global ocean data. MWSST data are ob-
tained from AMSR-E and TMI images, and OSTIA system data from AMSR-E,
TMI, Pathfinder, and MODIS images. MWSSTs are updated several times daily
in NRT at 25 km resolution. OSTIA images are mainly sponsored by Met Office
and ESA, and produced daily at a resolution of 1/20 degrees. For more information
http://www.remss.com/sst/microwave_oi_sst_data_description.html, and http://ghrsst-
pp.metoffice.com/pages/latest_analysis/ostia.html, respectively.

In Figures 1.8 and 1.9 there are some examples of the mentioned products, i.e.; al-
timetry data, SST, and CC images.
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TIME : 13—5EP-2006 Q0:00 DATA SET: <dt_upd_global_mearged_mala_h
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Fig. 1.8: Sea Level Anomalies Topex/Poseidon map, CLS, AVISO server.
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Fig. 1.9: Top: SST products. Bottom: CC data. From left to right: MODIS, MWSST, and OSTIA; MODIS, SeaWiFs, and
globcolour images, respectively.
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Tracking oceanic currents by
singularity analysis of Microwave
Sea Surface Temperature images






The difficulty lays not so much in developing new ideas
as in escaping from old ones.
John Maynard Keynes






Tracking oceanic currents by singularity analysis
of Microwave Sea Surface Temperature images

ABSTRACT

In the recent years, the power of employing singularity analysis of scalar variables to
perform pattern recognition in complex images has been evidenced. This approach is
particularly useful when the image under study corresponds to a scalar variable submit-
ted to a turbulent flow because, in that case, the arrangement of singularity manifolds
corresponds to the multifractal hierarchy from the underlying turbulent flow. In this pa-
per we will show how this intimate connection between Image Processing and Physics,
when applied to Microwave Sea Surface Temperature images, allows to uncover global
circulation patterns in the ocean at a daily basis with the resolution of 1/4 of degree.
Using this technique, details not evidenced in the non-processed image are revealed.
The emerging patterns provide a description of the global oceanic currents much richer
than the usual global circulation scheme; in particular, instabilities, eddy generation
and filamentation are distinctly identified. A pattern extraction of this kind is useful
in order to measure and track mesoscale oceanic phenomena, opening the way to many
operational and reanalysis applications.

Published in Remote Sensing of Environment, 112 (2008) 2246-2260.
A. Turiel , J. Solé, V. Nieves, J. Ballabrera-Poy, E. Garcia-Ladona
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2.1 Introduction

Earth observation satellites are unique measurement devices, offering synoptic informa-
tion over large areas at an almost constant rate, with unprecedent space and time reso-
lutions. Besides the constraints imposed by data acquisition and processing techniques,
current remotely sensed datasets offer an appropriate framework to address the complex-
ity of ocean variability. A typical infrared image shows an ocean surface characterized by
the presence of eddies, with diameters ranging from tens to hundreds of kilometers, and
filamental structures reaching hundreds of kilometers in length but whose width is of the
order of 10 km only, all of them interacting and evolving in time. Such complexity arises
from atmosphere forcing, irregular boundaries and from the ocean intrinsic dynamics
which, at these scales, is in close resemblance to a fully developed turbulent flow regime.

Statistical studies using satellite datasets have improved our knowledge on the rele-
vant scales and characteristics of ocean properties [24, 121, 89, 26, 71]. Recent studies
from altimetry and oceanic float measurements show that the statistical distributions of
ocean velocity fields have similar characteristics to that of 2D turbulence, in which vor-
tices and filaments play a major role [17, 40, 54, 139, 53]. Although coherent structures
can be easily detected from geometrical properties of the velocity field, the synoptic es-
timation of sea velocity fields is still a key problem in oceanography. Presently, surface
geostrophic horizontal velocities fields may be derived through the combination of several
altimeter passes with spatial resolutions of ~ 25 km for mid-latitudes [29]. However, the
smallest wavelengths that these maps are able to successfully reproduce are of order 100
km, and this strongly limits the range of phenomena that can be studied. In addition,
the temporal resolution of present altimetric products is of about 10 days, which is not
adequate to sample some faster oceanic processes (for instance, eddies generated by the
instabilities of strong currents).

Higher-resolution, large-area maps provided by infra-red sensors have already been
used for estimating velocity fields at finer time and spatial scales. This has lead to
the development of different methodologies, as the widely used Maximum Cross Cor-
relation, to infer motion from the relative translation of patterns through sequences of
images [31, 38, 124, 49, 58, 22, 25, 16]. The velocity fields obtained from these sequen-
tial methodologies can be used to retrieve coherent structures and patterns. However,
while the derived velocity fields have some drawbacks (e.g. sophisticated preprocessing
and correction, smaller resolution than that of the original infra-red maps), they can
sometimes be improved through a previous detection of structures if they are limited by
sharp gradients.

A different conceptual approach to the identification of flow patterns from satellite
images has recently been issued [129, 55], namely the application of singularity analysis
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to SST images. Here, singularity analysis should be understood in a wide sense, as a
technique to characterize the scaling properties (scaling exponents) of time or spatial
differences of a given magnitude. The roots of singularity analysis lie on the multifrac-
tal properties of turbulent flows. It is naturally extended to geophysical flows by the
introduction of the Multifractal Microcanonical Formalism (MMF) [132, 109, 55]. Ac-
cording to this formalism, the spectrum of scaling exponents of a given magnitude has
a distinguished set of points, the so-called Most Singular Manifold (MSM), straightly
connected with the underlying dynamics. In a wider context, the MSM is interpreted
as the most informative set, from which the most relevant dynamical properties can be
extracted [126, 134].

An interesting application of the MMF, relevant for ocean analysis through remote
sensing, rises when the data under study correspond to the values of a tracer submit-
ted to the action of a turbulent flow as, for instance, the SST. Using the appropriate
hypotheses [1, 129], the MSM is identified with the dominant streamlines, which can be
used to deduce the oceanic motion. Such an approach has been applied to the Pathfinder
SST images to deduce the quasi-geostrophic streamfunction [129]. More recently, this
approach has been generalized to integrate additional information about the flow dy-
namics [55]. Furthermore, singularity analysis can be used, in any instance, as an edge
detection technique as has been recently demonstrated in the extraction of large-scale co-
herent ocean wave fronts from Meteosat images, even if this imagery was not specifically
designed for ocean observation [130]. In this paper a new forward step is introduced as
it is shown that advanced SST datasets can be used to monitor dynamical features using
singularity analysis. We will see that this new satellite product, for the scope of this
paper named Microwave Sea Surface Temperature (MW SST) imagery, has enough qual-
ity to allow tracking circulation patterns across uninterrupted weeks when singularity
analysis is applied.

The paper is organized as follows. First, the basics of singularity analysis and the
dataset are briefly introduced. Then, we show the results of the singularity analysis
applied to microwave images at a global scale and for some selected regions. Finally we
conclude summarizing the potential use of the singularity technique applied to MW SST
images.

2.2 Singularity analysis

Singularity analysis of scalar variables was introduced in the context of wavelet analysis
twenty-five years ago [80]. The goal of singularity analysis is to obtain, at each point of a
given image, a dimensionless measure, known as the singularity exponent, of the degree of
irregularity at that location. The singularity exponent is a continuous extension of more
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classical concepts such as continuity or differentiability. In the classical formulation,
the degree of regularity of a signal s at a point 7' is measured by the Holder exponent,
H(Z), of the signal at that point. Roughly speaking, the Holder exponent is the (not
necessarily integer) exponent of a pseudo-Taylor expansion of the function around &,
namely:

s(Z+7) —s(7) = a@rf® | r<i1 (2.1)

for any displacement 7 small enough. Notice that all the dependence on the size r of
the displacement (the scale scope or resolution) is controlled by the power-law defined
by the singularity exponent H(Z). A value of H(Z) equal to 1 means that the function
is once differentiable; a value of 2 implies double differentiability; a value of 0 means
that the function is only continuous. Values between 0 and 1 imply that the function is
more regular than a continuous function but it is not so regular to allow differentiation,
and so on. Negative values are also possible: they imply some degree of divergence of
the function at , from simple step discontinuities to divergences up to infinity.

To obtain the singularity exponent from observations is not trivial because the pres-
ence of noise and long range correlations that distort the value of the exponent [96, 5, 4].
On the other hand, discretely sampled data must be interpolated on the continuum of
scales to give rise to the correct power-law scaling in Equation (2.1) [132]. The use
of wavelet projections of the data allows to circumvent both issues [83]. The wavelet
projection of the function s on the wavelet ® at a point ¥ and with a scale scope r is
defined as:

Tos(Z,7) = /dgs(g) %cp (5” - y) (2.2)
where d is the dimension of the signal domain (d = 2 for images, as they are bi-
dimensional objects). According to the definition above, a wavelet projection is just
the convolution of the signal with a re-sized version of the wavelet ®, for which the
parameter r regulates the actual scope. Notice that wavelet projections are continuous
wavelet transforms (i.e. the point Z under study and the scale parameter r varies contin-
uously), in opposition to discrete wavelet transforms as the ones used in multiresolution
analysis (for which Quadrature Mirror Filters as Haar or Daubechies bases are typical
examples). Discrete wavelet transforms are used to produce efficient representations of
discretized data arrays and hence their primary use is for coding. On the contrary, con-
tinuous wavelet transforms convey redundant information but are well adapted to detect
transitions in the data, and hence their primary use is for analysis. Defining an efficient
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representation of data is a more exigent task than just assessing some of its properties.
Thus, additional constraints are required when wavelets are used for discrete transform
coding. In opposition, wavelet analysis can be accomplished with few requirements on
the wavelet ®, and sometimes even positive wavelets (which will not be admissible for
coding purposes [23]) can be used [132].

From a theoretical point of view, if a function s has a Holder exponent H(Z) at a
given point 7 as in Equation (2.1), and if the wavelet is such that the wavelet transforms
of any polynomial of order large enough vanishes, then the wavelet transforms of the
function s lead to the same exponent [5], namely:

Tos(Z,7) = ao(@)rf® + O(TH(I)) (2.3)

where the notation o (r®) means a term which is negligible compared to r7® when r

is small enough. In fact, Equation (2.3) is valid under more general circumstances than
Equation (2.1); in particular, it is well adapted to filter long-range correlations and just
detecting the local structure [5], to filter noise and to interpolate discretized data to the
continuum of scale changes [132]. Hence, wavelet processing allows to extend the concept
of Holder exponent to the more robust one of singularity exponent. As for Holder expo-
nents, singularity exponents also characterize the regularity of the function at the points
under study, but in a more robust (functional) way. Thus, singularity exponents are
also dimensionless quantities which can be used to track transitions independent of their
amplitude, so even subtle structures can be detected [130]. Wavelet-based singularity
analysis of signals has represented an important step forward in the understanding of the
structure of real signals of different kinds [81, 80, 82, 96, 8, 59]. However, as discussed
in [135], singularity exponents obtained by the direct applications of wavelet projections
of signals have a rather rough resolution when applied to real, discretized data (see
examples and discussion in [125]). It has been observed that the wavelet projection of
the modulus of the gradient leads to a more precise determination of the singularity
exponents, with improved spatial resolution [132, 125]. The wavelet projections of the
modulus of the signal gradient lead to a similar power-law scaling,

To|Vs|(Z, 1) = ae(@)r"® + o(rh(f)) (2.4)

where the singularity exponents h(Z) can be trivially related with the exponents H (%)
in Equation (2.3): h(¥) = H(Z) — 1 [132, 59]. In Figure 2.1 we give an sketch of the
algorithm employed for the obtaining of singularity exponents from an arbitrary signal.
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The use of gradient moduli is naturally driven by the introduction of the MMF. A
full discussion on MMF exceeds the scope of the present work and we will just introduce
here some concepts useful for this paper (the reader is referred to [132, 125, 55] for an
extensive discussion of this topic).

The MMF allows to decompose any signal as a collection of fractal sets (known
as fractal components or singularity manifolds) forming a hierarchy. Each singularity
manifold is associated to one and only one value of singularity exponent; that is, they are
the level sets of the function h(Z). As the function h(Z) is extremely irregular because of
the high intermittency of the gradient [100, 132], its level sets are highly irregular and in
fact of fractal nature: this is the reason for their second name, “fractal component”. The
fractal dimensions of the fractal components usually range from dimension 1 associated
to the most singular values (which are curve-like) to dimension 2 of smoother, less
definite areas, passing through all possible intermediate values. In any instance, the
observed dimensions are greater than 1 [132, 129], which is consistent with having fractal
components composed by lines. Decomposing a signal as the union of the different fractal
components is called a multifractal decomposition of the signal.

In all this paper, the wavelet ® of choice is a numerical implementation of the
Lorentzian wavelet,

() = 1 +1|f|2 (2.5)

As discussed in [125], this wavelet leads to a very fine spatial resolution when applied to
the gradient modulus, Equation (2.4), although it tends to truncate the largest values.
We correct such a truncation by introducing a finite-size numerical implementation of
the wavelet (compact support wavelets never truncate singularities, see [125]). In any

instance, we will apply Equation (2.4), so the singularity exponents shown in the figures
are h(Z).

Concerning the numerical values of h(Z), these are always contained in the theoretical
range (—1,2), as discussed in [129, 55]. The theoretical lower bound —1 is a consequence
of working on finite variation signals (see discussions in [125] and in [135]). In other
words, singularities below —1 would lead to images having divergences to infinity at
some points (which is rather unphysical for a variable as liquid water temperature in the
Earth). The theoretical upper bound +2 is a consequence of the existence of a theoretical
lower bound of —1 and translational invariance, at least for log-Poisson models: for a
general lower bound h , the upper bound hy is hy =h  —log(1 —h ) [132], hy(h =
—1) &~ 1.7 < 2. In practise, the singularities contained in the range (-0.5,0.5) represent
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more than 90% of the all singularity exponents [129, 55]. We will use the range (-0.5,0.5)
for representation purposes in the figures of this paper.

An interesting property of multifractal decomposition has to do with the relevance (in
terms of information content) of the detected structures. When wavelets were introduced
almost twenty ago, it was soon recognized that the points comprising the largest wavelet
amplitude convey the largest part of the total information of the system [83]. In the
context of the MMF there is a distinguished set, the MSM, which plays a similar role.
This set is associated to the smallest values of the singularity exponents h (which are
typically negative) and comprises the most obvious contours and some other transitions
[132]. In addition, an efficient deterministic algorithm for the reconstruction of signals
from the values of its gradient on the MSM has been devised [126], so proving that the
MSM is the most informative set.

When the signal of interest is a scalar stirred by a turbulent flow, some additional
facts must be taken into account. The fractal components have strong links with the
dynamics of the underlying processes; in fact, they can be identified with the different
stages of energy dissipation in the energy cascade [118]. Besides, it has been shown
that the statistical structure of multifractals is not modified by the chaotic stirring of
mesoscale surface-ocean flows [1]. It was then proposed that singularities are advected
by the flow. This was experimentally verified for the first time by [129], where the
MSM obtained from Pathfinder SST images was compared with altimetry data. It was
observed that there was a good correspondence between the structures evidenced by the
MSM and those given by altimetry, and also that their gradients align, so at least the
most singular exponents were advected by the flow. So far there is no theoretical proof
stating the conditions on a scalar to have advected singularities. For the context of this
paper, we will show some comparisons with independent data from altimetry satellites.

2.3 Description of the data

Our main source of data for this study are Optimally Interpolated (OI) SST images
from Microwave (MW) Radiometer SSTs. Microwave OI SST data are produced by
Remote Sensing Systems and sponsored by National Oceanographic Partnership Pro-
gram (NOPP), the NASA Earth Science Physical Oceanography Program, and the
NASA REASoN DISCOVER Project. Data are available through the following web
site: http://www.remss.com.

As SST images contain irregularly spaced data (in time and space) due to orbital gaps
or environmental conditions, an interpolation of the data onto a regularly sampled grid
is needed to make up for this missing data. MW SST products accurately resolve some
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features that could be missed due to data gaps or weather condition. This is possible
by blending TMI and AMSR-E SSTs, providing nearly complete global coverage each
day. Near real time OI SST products are created daily, even if no new observations
exist. However, the product is 0.25 x 0.25 degree gridded, which is a coarse resolution
in comparison with the standard infrared SSTs one. Processing details can be found in
[110] and at the following website:

http://www.ssmi.com/sst/microwave_oi_sst_browse.html

In order to compare the results of the singularity analysis technique applied to the
MW SST images, infrared images have also been used in this study. Daily Pathfinder
SST data version 5.0 have been used; these data can be downloaded from the Physical
Oceanography DAAC at JPL (http://podaac.jpl.nasa.gov, product number 216). This
dataset is a new reanalysis of the AVHRR data stream developed by the University
of Miami’s Rosenstiel School of Marine and Atmospheric Science (RSMAS), the NOAA
National Oceanographic Data Center (NODC) and NASA’s Physical Oceanography Dis-
tributed Active Archive Center (PO.DAAC). This reprocessing uses an improved version
of the Pathfinder algorithm [60] and processing steps to produce twice-daily global SST
and related parameters back to 1985, at a resolution of approximately 4 km, the high-
est possible for a global AVHRR dataset from NOAA 7, 9, 11, and 14 polar orbiting
satellites.

In addition, we have also used MODIS Terra L2 daily and weekly data, down-
loaded from the Goddard Earth Sciences Distributed Active Archive Center (GES-
DAAC,http://daac.gsfc.nasa.gov/MODIS/). In particular, long wavelength (11-12pm)
SST product (MOD28L2) that combines brightness temperatures from channels 31 and
32 has been used. No cloud mask was applied in order to have a situation as close as
possible to Pathfinder data.

In order to provide a qualitative validation of the currents detected from SST maps,
they are compared against altimetry-derived sea surface height maps. Given the direct
relation between altimetric data and sea state dynamics, at least in the geostrophic
approximation, sea level maps can be used to obtain sea surface velocity fields except at
areas too close to the equator. In this study we have used Sea Level Anomaly (SLA) maps
produced by Collecte Localisation Satellites (CLS) in Toulouse (France), which combine
the signal of FRS and TOPEX/Poseidon (T/P) altimeters. These maps are processed
including usual corrections (sea-state bias, tides, inverse barometer, etc.) and with
improved ERS orbits using TOPEX/Poseidon as a reference [9, 72]. SLA are regularly
produced by subtracting a four-year mean value (1993-1996); this allows to suppress
the systematic deviations in the sea level signal due to errors in the determination
of the geoid. However, proceeding in such a way the signal of permanent currents is
removed from SLA maps. Permanent currents could be taken into account by adding
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an accurate estimate of the Mean Dynamic Topography (MDT) to SLA. Nevertheless,
available MDTs include important artifacts due to the uncertainties in the mean sea
level, specially due to bathimetric features. For that reason, in spite of its limitations
we have preferred to work with SLA maps.

Correcting high-frequency biases and subtracting the 4-year mean are not the only
processes applied to SLA maps. Prior to the analysis, data are low-pass filtered using a
35 km median filter and a Lanczos filter with a cutoff wavelength of 42 km in order to
reduce altimetric noise [70]. The repeat periods for the ERS-1 and T /P are 35 and 10
days respectively, and the cross-tracks distances are 0.7° and 2.8°. SLA maps are built
for 10-day periods, using an improved space/time objective analysis method, which takes
into account long wavelength errors, on a regular grid of 0.2 x 0.2 degrees [73, 10]. Thus,
the use of altimetric data limits the phenomena that can be studied. On one side, the
sampling periodicity of altimeters aliases frequencies below 20 days and 70 days in T /P
and ERS-1 data respectively. On the other side, satellite track separation and time
sampling limits the capability of altimetric maps to observe fast propagating structures
or short-lived ones. Furthermore, recently it has been demonstrated that a two-satellite
scenario may underestimates an important portion of the signal variance and may deform
the shape of some eddies [106]. However, previous studies have demonstrated that
sampling characteristics of altimetric maps are able to capture mesoscale variability,
including the largest and more energetic eddies [29, 107, 69]. For the purpose of this
paper, we have restricted the use of SLA maps to provide a visual assessment of the
SST-derived currents.

2.4 Results and Discussion

Figure 2.2 presents a typical global MW SST image. As previously mentioned, singular-
ity analysis aims to determine the spatial distribution of the scaling exponents of a given
magnitude. Figure 2.3 shows the singularity analysis of the MW SST image mentioned
above. When applied to infrared images, singularity analysis offers new information on
the circulation. The singularities reveal a rich structure of filamentary and eddy-like
patterns in a detailed way. Although the signature of many physical patterns in areas
where strong mesoscale dynamics exist have already been evidenced using infrared SST
images [129], with the application of this technique a more detailed picture emerges.
Among the revealed mesoscale patterns, the main oceanic currents are clearly identified.
Note that the largest singular values of scaling exponents closely map the areas with
the highest surface kinetic energy [41]. Thus, the figure highlights the western bound-
ary currents in the north as the Gulf Stream and its spreading over the North Atlantic
and the Kuroshio extension over the Pacific. The analysis allows to manifest the rich
internal structure of the spreading of these currents, particularly in the case of Kuroshio
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extension. The traces of important currents as the Labrador and the Brazil currents are
easily seen; the later is clearly apparent at the Malvinas confluence area. The South
Tropical Front has a neat signature from the Malvinas to the Agulhas confluence re-
gions and also between South Africa and Australia, with many filaments of singularities.
Over the rest it appears as a wide band of dispersed faint filaments. Despite the data
mask on MWSST at polar areas, clear signatures of the Antarctic Circumpolar Current
(ACQC) are still easily identified. The singularity analysis reveals a rich fine structure of
multiple fronts, in agreement with the description by [104] on the Southern Ocean. We
can distinguish in the singularity image three different regions particularly populated
by singularity fronts. First, a band between 40 — 50°S starting south of the Aghulhas
retroflection area and extending eastward and southward reaching 50°S south of Aus-
tralia. A second band almost conected with the previous one going from south of New
Zealand between 50 —60°S, very close to the ice-cover mask. Finally, a very clear frontal
line which could be identified with the Subantartic Front (SAF) at the Drake Passage,
that finally merges with several frontal lines in the Malvinas confluence area. The rich
structure of these bands containning many filamentary structures, associated to highly
singular values, is in agreement with the multijet character of the ACC and the patterns
reproduced in high resolution numerical simulations of the Southern Ocean [46].

Figures 2.4 and 2.5 display a zoom for the equatorial Pacific 10°S — 10°N east of the
dateline and the area of the Gulf Stream between 90 — 30°WW and 10 — 55°N respectively.
These are examples of the potential use of the singularity analysis on MW SST images.
Both regions are large areas with very noticeable thermal contrast and a major source
of mesoscale eddies. The tropical region displays the anticyclonic wave-like patterns
characteristic of the Tropical Instability Waves (TIW). The analysis capture both the El
Nino and the seasonal cycle modulation of TIW, as well as its characteristic lenghtscales
of these instabilities. Figure 2.5 identifies the path of the Gulf Stream with its complex,
undulated shape, wave-like instabilities and several eddy-like patterns. The animated
sequences of consecutive images (see the associated webpages) are examples of the ability
of the method to detect and track mesoscale features worldwide when applied to the
appropriate dataset. Until now, numerical modelling has been the best tool for studying
the characteristics of the evolution of these structures. However, due to the pervasive
effect of the large viscosity required for the stability of coarse simulations, numerical
simulations require high-resolution, low-viscosity model configurations.

In a previous application of singularity analysis on infrared images [129, 55|, it was
argued that according to MMF' the results of singularity analysis should be independent
of the analyzed tracer, because the patterns are mostly a consequence of the advection
by the flow. Figure 2.6 compares four different processed SST products corresponding
covering the region at south of Africa between 13.5° — 39.5°F and 24° — 46.5°S. The
thermal signature of the Agulhas Current (AC) flowing southward along the African
coast is clearly seen. The temperature contrast between warm waters carried by the
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AC are clearly delineated in the AVHRR Pathfinder and daily MODIS images. In the
weekly MODIS image and particularly in the MW SST the fronts appear smoothed and
the structures are much more diffused mainly as a result of some aliasing in the weekly
composite of MODIS and in the interpolation and lower resolution of the MW SST
products. In Figure 2.7 we show the corresponding singularity analysis to illustrate that
the results presented here are not particular to MW radiometers or an artifact of the
processing technique, but reflect the actual dynamics acting on SST.

All four singularity analyses reveal a rich content of continuous frontal and filamentary
structures over long distances delineating the trace of the AC until the retroflexion loop
around 40°S and between 15 — 20°F. Other subtle filamentary and eddy-like patterns
which are not apparent in the original images are revealed. Singularities derived from
daily SST images of AVHRR Pathfinder and L2 MODIS show similar results to what
was found for the same area in previous works [55]. Although better resolved than those
singularities derived from MW SST, IR images are masked at cloud cover regions which
contaminate the analysis, as evidenced by the black areas at the southernmost part of
both images; and also in the northeast corner where small cloud patterns in the MODIS
image appears as a noisy region in the Pathfinder image. This is precisely the main
drawback of these kind of images compared with the MW SST product. The problem
can be partially circumvented by the use of composite products as MODIS weekly SST
images. On such kind of images the most singular values still correspond to the strongest
gradients seen in the daily images but the patterns and the distribution of singularity
exponents are more blurred (Figure 2.7, bottom left). This is specially evident in the
borders of the core of the AC which is less defined and the signal seems to be lost south
of 36°S. Also their geometry and shape have slightly changed in some cases, probably
due to the frontal evolution at the week time scale. The greater uniform distribution
of singularity exponents is probably a spatial aliasing of the smaller, rapidly evolving
thermal features for which seven days is a too long period. In contrast, although MW
SST maps are also obtained by temporal interpolation, the interpolation has a more
reduced time extent and structures are less blurred.

In spite of the relatively poor resolution of MW SST maps, they seem adequate to
detect and track mesoscale and large scale patterns. Although not affected by clouds, the
most singular exponents from MW SST images delineate coarser structures than those of
the previous images due to the limited resolution of this type of data. Nevertheless, the
main features detected in Pathfinder and MODIS daily data are also detected in the MW
SST image and, as it was mentioned before, the main drawback with infrared derived
SST, i.e. the lack of acquisitions when clouds are present, is avoided and the structures
are well defined over the entire image. Notice however that the streamlines delineated by
the singularities may sometimes be interrupted because of the interpolation algorithms
applied to the MW SST maps (interpolation tends to smooth the field so weakening
or even eliminating some more singular values). Besides, due to the reduced resolution
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streamlines become quite rough and in some instances seem to cross each other. In fact
what happens is that the structures in the MW SST image appear as an averaging or
smoothing of those obtained in SST infrared images.

The correspondence between singularity exponents derived from MW SST images
and flow streamlines is shown Figures 2.8 and 2.9. We have used SLA maps obtained
from AVISO covering the same areas as in Figures 2.5 and 2.7 . As discussed in the
description of data, SLA maps have smaller spatial and temporal resolution and are
more difficult to interpret, as they do not account for persistent main currents; however,
SLA can be used to identify the most intense vortices and eddy-like patterns [52, 94]. As
shown in the figures, there is a good correspondence between the most intense vortices
in SLA maps and the structures detected by singularity analysis. As expected on both
areas the SLA fails to represent adequately the Gulf Stream and the Agulhas currents
while the singularity analysis show long coherent filamentary structures delineating their
paths. This is evident for the Gulf Stream up to Cape Hatteras where the SLA does
not indicate the presence of the current. The same happens for the Aghulhas current
along the African coast and its progression to the south until 38°S, similar to what is
found by other authors [14]. Meandering parts are captured in the SLA as a sequence of
cyclones and anticyclones, probably due to a temporal aliasing of the strong variability.
In contrast, singularity fronts clearly show a well defined and rather continuous structure.
In the Aghulhas confluent area it can be clearly seen a meandering structure towards the
west, associated to the separation of South Atlantic surface waters and cold subantartic
waters. Similar patterns has been detailed described from hydrographic measurements
and sequences of satellite images [78, 77] and are better captured in products as MODAS-
2D sea surface height fields [14, 15].

On the other hand, an inspection on the areas outside the influence of the main cur-
rents show a rather good visual correspondence between the geometry of the singularity
fronts and the SLA field. As it can bee seen in the Atlantic image (Figure 2.8) the
central part is populated by a rich structure of eddy-like filamentary patterns that are
in good correspondence with the sea surface field.

To quantify the degree of similitude between the streamlines delineated by SLA and
those derived from singularity analysis is not an easy task: as a matter of fact, we need
to compare geometrical sets, not functions. We can nevertheless provide a quantitative
measurement, of the mutual closeness of the two types of streamlines using a quantity
introduced in [129], namely the variance of SLA conditioned by the streamlines derived
from the singularity exponents. We explain how to calculate it in the following.
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Let us denote by F},, the level set of the singularity exponent field associated to the
value hgy, namely:

Fy, = {& such that h(Z) = hy} (2.6)

According to our hypothesis, Fj, consists of streamlines. Notice that it is not on itself
a streamline in general, but a union of streamlines,

(ho)
Fy = st (2.7)
a=1

where the different sj are the singularity streamlines associated to Fj,. We obtain
these singularity streamlines by recursively separating the connected components of
Fj,. Indeed, the number of connected components N (hg) in which each level set Fj, is
decomposed depends on the value of hy and on the particular SST map from which the
singularity exponents were derived.

If the streamlines of SLA and those derived from the singularity exponents coincide,
the value of SLA on each singularity streamline sj, must be constant. Hence, the variance
of SLA along each one of those streamlines, denoted by V;, must be zero. We compute
Vi as follows:

VX = (SLA?)p, . — (SLA);, (2.8)

ho,a

where the symbol (SLAP),, , means to compute the p-moment of SLA considering points
on sy only.

So, we have computed the sum of the variances of SLA along each one of the sin-
gularity streamlines, weighting each streamline by the amount of pixels representing it.
We call the result the conditional variance of SLA, C'V:

1 N(ho)
CV = =D > miVi (2.9)
ho a

where nj is the number of pixels on the streamline sj, and N =}, > nj , which
coincides with the total number of sea pixels in the image as the decomposition is exhaus-
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tive. The conditional variance of SLA, C'V, is compared to the total (or unconditioned)
variance of SLA, Vsr4, which is calculated in the standard way. The ratio CV/Vspa
gives us an idea about how constant is SLA along the singularity streamlines. Of course,
this ratio cannot be smaller than the known error in SLA, which is about 10% [72]; hence
CV/Vspa > 0.10. Taking into account that SLA maps have smaller spatial and time res-
olutions than those of singularity maps, we will consider that the degree of coincidence
between singularity streamlines and SLA streamlines is reasonably good when the ratio
is at most of the order of two instrumental errors, namely when C'V/Vsr4 < 0.20.

For the experiences shown in this work, we have considered the isolines of singularity
with an experimental uncertainty +Ah with Ah = 0.05 around the reference values
of h, = —1.0,—-0.9,—-0.8,...,2. We summarize our results in Table 2.1, for different
regions and seasons of a single year; we also show two particular examples in Figures 2.8
and 2.9. Experiences show that conditional variance of SLA is between the 10% and the
20% of the total (unconditioned) SLA variance in all the examples we have calculated
it. This indicates a reasonable correspondence between the streamlines given by the two
types of maps.

2.5 Conclusion

In this paper it has been shown that the use of advanced image processing tools as
wavelet singularity analysis allows to characterize the oceanic circulation patterns from
Microwave Sea Surface Temperature (MW SST) images. Singularity analysis assigns
a singularity exponent to each point in the image, which is a measure of the local
degree of regularity or irregularity of the image at that point. Singularity exponents
are dimensionless quantities which can be used to track transitions independent of their
amplitude, so even subtle structures can be detected, while areas with large gradients
but with slow spatial variation are not considered as singular. Due to their impact in the
three dimensional structure of oceanic waters, the possibility of precisely determining
the position of oceanic fronts is of the highest relevance [36]. Furthermore the analysis
does not depend on the sensor, only on its resolution, accuracy and/or representativity.
In this sense singularity analysis acts as a powerful tool as a frontal detector being much
more objective than other proposed alternatives [116, 117, 122, 74].

Because singularities are induced by the dynamics of the underlying turbulent flow,
they must be in equilibrium with it and so they are passively advected. Singularity man-
ifolds are dragged by the flow so they delineate its streamlines at each time instant; for
that reason, this technique allows to detect the main currents which are not always well
reproduced by altimeter maps. Hence, singularity manifolds can be used to recognize
the streamlines of main oceanic flows, so complementing other dynamic information.
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Certainly, singularity analysis does not furnish a valid estimation on the velocity mod-
ulus or the flow sense, but the flow direction at each point is known with precision.
Combined with some extra information (from different sensors, in situ data, other track-
ing methods or some geographical knowledge) singularity analysis has the potential of
furnishing detailed velocity maps for the ocean surface. Although some attempts to
reconstruct a streamfunction from singularity analysis of infrared images has already
been proposed [129, 55|, the results here presented show that MW SST images are ideal
for the purposes of unveiling ocean streamlines at global scale: they are acquired almost
weather-independently and in a daily basis, which is an appropriate acquisition rate to
describe oceanic circulation at the mesoscale.

The potential of microwave SST images for operational purposes has recently been
recognized, using a different approach, the Surface Quasi Geostrophy (SQG) theory
[48]. According to SQG, the 3D streamfunction vector U can be well approximated,
at least on some regions and under appropriate conditions [114, 115], by a dominant
mode obtained after assuming constant stratification and vanishing relative potential
vorticity at surface. In spite of the coarse simplification, SQG velocity fields derived
from microwave SST images have been shown to acceptably describe the surface velocity
field (as derived from altimetry maps), at least over open-sea areas and for regions
with strong SST gradients [51]. The present work shows that, under more relaxed,
self-consistently verifiable conditions we could correctly describe surface streamlines at
almost any location and time. Hence, a pre-processing of SST data with singularity
analysis could probably help to improve the SQG streamfunction and extend its range
of validity. The only objection to MW SST images is their relatively poor resolution (1/4
degree for the Level 2 dataset that we have employed in our study). Thus information
obtained with singularity analysis can be of further potential use for operational purposes
as data assimilation in ocean circulation models.

Singularity exponents can probably be connected with other methods employed in the
characterization of ocean dynamics, as finite-size and finite-time Lyapunov exponents
[139, 39]. Both types of exponents have many differences. Lyapunov exponents have
dimensions (inverse of time) while singularity exponents are dimensionless. To obtain
Lyapunov exponents the velocity field must be known, while singularity exponents can
be derived from any quantity. Besides, Lyapunov exponents are of Lagrangian character
(they are obtained letting two close points to evolve following the flow trajectories) while
singularity exponents are Eulerian (in particular, they are obtained instantaneously).
Nevertheless it seems that both of them can be used to delineate circulation patterns
and are thus probably strongly connected; in some sense, Lyapunov exponents are some
kind of time average of singularity exponents. Further work on this topic is required.

The information given by the singularity analysis can be used to improve our knowl-
edge about some structures like current waves, filaments or eddies, which have a great
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Gulf Stream Kuroshio Agulhas
Longitude 90°W - 30°W | 120°E to 180°E to | 13.5°E to 36°E
range
Latitude 10°N to 55°N 20°N to 70°N 46.5°S to 24°S
range
Jan-Feb-Mar 2003
Vsra 117 154 364
cv 17 15 67
min CV 14 13 49
max CV 21 17 93
Apr-May-Jun 2003
Vsra 136 146 374
cv 18 18 64
min CV 15 14 53
max CV 23 23 84
Jul-Aug-Sep 2003
Vsra 147 175 370
cv 18 18 60
min CV 16 14 48
max CV 22 27 79
Oct-Nov-Dec 2003
Vsra 143 183 371
cv 17 17 60
min CV 14 13 47
max C'V 21 21 80
2003
Vsra 136 165 370
cv 18 17 63
min CV 14 13 47
max CV 23 27 93

Table 2.1: Study on the correspondence of SLA and singularity streamlines for three
different regions. Results are obtained for different seasons of the year 2003, and for the
whole year. All variances (Vspa and C'V) are in cm?.

impact on ocean transport processes regulating global climate (like C'O5 absorption [93]),
ocean biochemistry (as the DMS production [120]) or ocean ecology (as the relation be-
tween primary production and the presence and persistence of physical structures like
filaments or eddies [86, 88]). The patterns obtained by singularity analysis on MW
SST images would be useful for improving our knowledge on some open problems in
oceanography and climatology. The accuracy and clarity of details shown in the struc-
ture of mesoscale variability of main currents in key areas of the Earth oceans, as for
instance the Equatorial zone, the North Atlantic or the Antarctic Ocean, will undoubt-
edly help oceanographers and climatologists. All those currents are active parts of the
main oceanic gyres, which are the physical expression of the mechanisms that control
Earth’s global heat budget or deep-water formation. Among the phenomena that will be
better described, we highlight ENSO, as the effects of current perturbations in the main
oceanic gyres are strongly related to climate variability. We hope that the potentialities
of this kind of images for oceanic monitoring presented in this paper will be a convincing
evidence for stimulating the design of future satellite missions.
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Fig. 2.1: Schematic representation of the algorithm employed to calculate the singular-
ity exponents associated to a given signal. Although not indicated in the algorithm, the
quality in the determination can be assessed by means of the regression coefficients in
the last step. The scales used in the regression typically range from 1 pixel to the 10%
of the total length; the number of sampled scales are typically between 7 and 20. A
C program implementing this algorithm with several simple wavelets can be downloaded
at http://www.icm.csic.es/oce/people/turiel/SUPP_INFO/MF-analyzer.html; please respect
terms of use.
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Fig. 2.2: MW SST image for October 1st, 2005. Temperatures in the color bar are expressed
in Celsius degrees. Ice-covered are masked with dark orange.

—0.50 —-0.25 0.00 0.25 0.50

Fig. 2.3: Singularity exponents obtained from MW SST images for the whole globe. Results
for October 1st, 2005 (see Figure 2.2). A full-resolution animation for the whole month is at
http://www.icm.csic.es/oce/projects/imagen/mssm/.


http://www.icm.csic.es/oce/projects/imagen/mssm/
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Fig. 2.4: Singularity exponents obtained from MW SST images on the Equatorial Pacific
area. Results are for August 1st, 2002 (top) and August 1st, 2005 (bottom). Full-resolution
animations for the whole month are at http://www.icm.csic.es/oce/projects/imagen/mssm/.

Fig. 2.5: Singularity exponents obtained from MW SST images on the Gulf Stream area.
Results are for October 1st, 2005. A full-resolution animated sequence for the whole month is
at http://www.icm.csic.es/oce/projects/imagen/mssm/.


http://www.icm.csic.es/oce/projects/imagen/mssm/
http://www.icm.csic.es/oce/projects/imagen/mssm/
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Fig. 2.6: SST images corresponding to November 26th, 2002 from several products: Top:
AVHRR Pathfinder SST (left) and L2 MODIS daily SST (right). Bottom: L2 MODIS weekly
SST (week going from 25 November to 2 December) (left) and MW SST (right). Temperatures
in the color bar are expressed in Celsius degrees.
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Fig. 2.7: Singularity exponents derived from SST images corresponding to November 26th,
2002.Top: AVHRR Pathfinder SST (left) and L2 MODIS daily SST (right). Bottom: L2
MODIS weekly SST (week going from 25 November to 2 December) (left) and MW SST
(right).
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Fig. 2.8: Top: Singularity exponents derived from a MW SST image of the Gulf Stream area
in January 1st, 2003. Middle: Contour levels of SLA derived for the period January 1st to
January 10th, 2003. Bottom: Contour levels of SLA overimposed on MW SST singularity
exponents. The total variance of SLA on this area and time is 108.83 e¢m?; the variance of
SLA conditioned to the singularity streamlines is 15.20 cm? (14.58% of the total variance).
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Fig. 2.9: Top: Singularity exponents derived from a MW SST image of the Agulhas area in
July 3rd, 2002. Middle: Contour levels of SLA derived for the period July 3rd to July 12th,
2002. Bottom: Contour levels of SLA overimposed on MW SST singularity exponents. The
total variance of SLA on this area and time is 287.97 e¢m?; the variance of SLA conditioned to
the singularity streamlines is 40.12 em? (13.93% of the total variance).
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by multifractal analysis
of MicroWave Sea Surface Temperature images

ABSTRACT

Recent advances in the theory of turbulence, with the introduction of the Micro-
canonical Multifractal Formalism has favored the development of new techniques for the
analysis of remotely sensed data, particularly of scalars as SST. In this work we show
that these techniques allow to uncover a fascinating picture in which many features of
global ocean circulation patterns emerge in a distinct way. Applications include the
characterization of transport, estimation of eddy-mediated mixing, the characterization
of the coupling of ENSO perturbation with the equatorial instabilities and a long etc.
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3.1 Introduction

The advances in the acquisition of Sea Surface Temperature (SST) images, with the
introduction of new sensors and merged/interpolated products is giving rise to an un-
precedented capability for the constant monitoring of oceans at very different ranges of
dynamic scales, synoptically and with very good sampling rate [95]. Data from passive
MicroWave (MW) sensors are particularly useful, as nowadays Level 2 MW SST images
are produced under almost any weather condition, with global coverage and daily; their
main drawback lies on their relatively limited resolution.

It is well-known that SST images are composed by coherent features, which are the
result of coherent circulation patterns [91]. For that reason, since long ago SST images
have been used in order to derive the surface velocity field from them. However, solving
the inverse problem (i.e., determining which velocity field has lead to the observed tem-
perature patterns) is extremely complex due to the non-linear interactions in the flow
evolution and also because the temperature distribution is the result of an accumulated
(integrated) time evolution. Nevertheless, some techniques based on tracking of SST
patterns on sequences of images (the most important one being Maximum Cross Cor-
relation, MCC) have been applied to derive sea surface velocity fields, with remarkable
results [31, 30, 141]. The main drawbacks of this methodology lie on its limited resolu-
tion, in the problems caused by data gaps and in the necessity of properly identifying
and tracking patterns in chaotic and complex signals such as SST. In fact, the pervad-
ing character of oceanic turbulence leads to a very complex structure in the fluctuation
part (i.e., after subtracting long-rage correlations) of SST field [50], which rends pattern
recognition and tracking very difficult.

The Microcanonical Multifractal Formalism (MMF) [55] is a new formalism to deal
with data obtained under conditions of turbulence with high Reynolds number. MMF
represents the step from the more classical statistical characterization of the turbulence
(by means of energy spectra, order-two correlations, etc [37]) to a new geometrical
approach, in which the signal is decomposed in a hierarchy of fractal sets characterizing
the different rates of turbulent dissipation - this is the reason for the name “multifractal”.
This decomposition is performed in a scale-invariant fashion which imitates the physical
process of turbulent cascading (in turbulence, energy is injected from the largest to the
smallest scales as a cascade, [100, 20, 76]) and so a good spatial resolution of oceanic
structures can be attained [129, 55]. Not only that: it has been argued [16] that the
multifractal structure of a scalar is preserved by flow advection, what would imply that
each fractal component is at each time instant composed by streamlines. This has been
checked in [129] by comparing fractal components and altimetry-derived velocity fields,
finding a good correspondence. Hence, it seems that the multifractal decomposition
allows recognizing the streamlines with the use of a single SST image.
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The presence of data gaps is still a problem in MMF, although less critical than in
pattern-tracking methodologies as MCC. The effect of gaps is local and so the pertur-
bation does not extend far ago their locations, although they lead to artificial boundary
currents which circulate around the area affected by missing data. It is hence convenient
to work with different data types in order to infer the correct streamlines by comparison,
or even trying to obtain signals with few missing data. This is precisely the case of MW
SST, and so we have performed an study on the capabilities of MMF applied to MW
SST data in order to produce steady tracking of the oceanic current lines.

3.2 Singularity analysis

Let us first start by a small introduction to the MMF techniques, and more particularly
to singularity analysis, which is the fundamental ingredient to perform the multifractal
decomposition. The interested reader can find more details in [132, 129, 127, 55].

The applicability of MMF relies on the existence of local scaling exponents (known as
singularity exponents). The singularity exponent of a point is a scale-invariant, dimen-
sionless measure of the degree of regularity or irregularity of the image at that location.
The obtaining of singularity exponents allows to detect relevant structures in the flow
organization, even subtle structures with very small amplitude [130]. To obtain the sin-
gularity exponent of a point, the image must be filtered by means of wavelet projections,
in order to reduce the influence of noise and to provide a controlled continuous interpo-
lation over some range of scales. A procedure to assign a singularity exponent to each
point in the image is known as a singularity analysis, and is one of the basic ingredients
in MMF.

In our case, singularity analysis is performed by a wavelet analysis of numerical es-
timates of the modulus of the gradient. Let 6(Z) the value of SST at a point Z of the
image; its gradient will be denoted by VO(Z). Given a wavelet ¥, we define the wavelet
projection Ty |VO|(Z,r) of its gradient modulus of § at the point Z and with scale r as:

1 T

Ty|VO|(Z,7) = /dg\ve(g) v (4_?;) (3.1)

r
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The signal 6 will have a singularity exponent h(¥) at the point 7 is the following
equality holds:

Ty|VO|(Z,7) = ag(D)r"® + O(Th(f)) (3.2)

where the symbol “o (rh(f))” means a quantity which decays to zero if divided by r"®)
when r — 0. If a signal # admits singularity exponents at all its points we will say that
this signal is multifractal [132]. The conditions which allow applying the MMF are a bit
more restrictive although rather technical and not essential for the course of this paper;
the interested reader can find the precise framework in [109], and the verification of its
validity on SST images in [55].

The accuracy and resolution capability in the determination of the singularity ex-
ponents depends on the wavelet used. As discussed in [125], the wavelets leading to
the best results are positive functions with adjusted tail decay. Notice that although
properly speaking a positive function cannot be a wavelet (they do not verify the admis-
sibility condition, [23, 83]), this fact does not prevent their use for singularity analysis
(admissibility is required to represent signals, not to analyze signals).

The other ingredient in MMF' is the presence of a particular arrangement of singu-
larities in variables dominated by turbulence. When turbulence is well developed, all
the variables for which the stirring by the flow is important enough develop a multifrac-
tal arrangement of singularity exponents [65, 37]. In those cases, singularity exponents
are arranged in accordance with the multiplicative cascade predicted by the theory
[100, 28, 20]. Besides, for those scalars for which advection is dominant enough, the
singularity exponents are plainly advected by the flow, at least in a first-order approx-
imation. For that reason, the singularity exponents on SST images allow to delineate
the instantaneous streamlines of the motion.

For the experiences shown in this paper, we have used a numerical implementation of
the order-1 Lorentzian wavelet (see [132, 125]). This wavelet is defined by its numerical
weights and has been designed to optimize reconstruction from the most singular values
[126]. The exponents are obtained by a linear regression of log Ty |V6|(Z, ) vs logr for
r =1 to r = 8 pixels sampled uniformly in the logarithmic domain.

As discussed in [132, 129, 55], the values that the experimental singularity exponents
can take is contained in the interval (—1,2), although a narrower range, as (—0.5,0.5)
usually contains around 99% of the total values. For that reason, we are more interested
in taken this range as the dynamic range for the variable A(Z), in order to enhance de-
tails. Besides, the smallest values (i.e., those closest to -0.5) delineate sharp structures,
while the greatest values (closest to 0.5) represent smooth behaviors and are associated
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to areas without any distinguishable structure. Something which is a bit surprising when
singularity analysis is applied is the large amount of emerging singular structures (see
figures in the following). In fact, this should be expected as the exponent h(Z) obtained
from Equation (3.2) is a measure of the sharpness or smoothness of the transition (that
is, the speed of the change) but it is independent of its absolute amplitude (which is con-
tained in the factor ag(Z)). So, singularity analysis always gives access to all transitions
in the data, even the subtlest ones, and in the case of scalars submitted to turbulence
these transitions must be the response of the scalar to the action of the flow shear, so
they follow the streamlines.

3.3 Examples of application

In Figure 3.1 we present a typical MW SST image for the whole globe. Some circulation
patterns are obvious by visual inspection on this image (as the Gulf Stream and Kuroshio
sharp thermal signatures), but over the majority of the areas temperature appear to
change rather smoothly and no pattern is recognized. On the contrary, singularity
analysis of this image, Figure 3.2, reveals a complex system of currents, with strong
filamentation, eddy creation and propagating waves.

Let us study in detail some specific geographical areas. In Figure 3.3 we present
a MW SST image for the Gulf Stream area in the North West Atlantic basin. As
mentioned above, the thermal signature of this western boundary current is plainly
evident in the image, and some close eddies can be guessed. The presence of these
eddies is confirmed after the application of singularity analysis, see Figure 3.4. Not only
that, but many filaments spawning from the Gulf Stream and other currents lines now
become evident. Such stirring patterns and filaments have great impact in biological
aspects as for instance primary production [86].

A different kind of study is posed when analyzing phenomena such as the Tropical
Instability Waves (TIW) in the Eastern Equatorial Pacific; see Figure 3.5.

Here, the propagation speed of TIW and their evolution can be evaluated by com-
paring the singularity exponents at different days. In addition, several motion modes
can be recognized: observe the double wave front at about -135 degrees in Longitude
in August 1st, 2005, which finally merges, interfering in a constructive way in August
15th. The resulting patterns are to Kelvin-Helmholtz instabilities, which are produced
in the interface between two horizontal parallel streams of different velocities and den-
sities; the improved detection capability furnished by singularity extraction would allow
to improve our underdtanding on TIW generation and evolution.
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The study of TIWs is also important in order to characterize some of the effects
associated to El Nino-Southern Oscillation (ENSO): it is well-known that the presence
of ENSO interferes with the generation of TIW, which become of less amplitude and
smaller spatial frequency. With this technique, the phenomenon can be studied in greater
detail.

3.4 Conclusion

In this paper, we have seen the potential of the Microcanonical Multifractal Formalism,
and particularly of the so-called singularity analysis, for the study of oceanic processes
in a steady-basis. An essential ingredient to assess these process is the use of MicroWave
Sea Surface Temperature (MW SST) images as starting data, as this kind of images are
less affected by cloud cover and strong weather conditions.

With this approach we can study the filamentation of the stronger jet currents, as
Gulf Stream, the Kuroshio extension, the Agulhas current, the Malvines current, the
Antartic Circumpolar current, etc. The analysis of the structure of the main currents
has two main implications. First, the geometry of currents gives information about the
way in which the energy of such currents is propagated towards small scales (i.e. if the
energy is disipated mainly through vortices or waves), and what is the time sequence
of such phenomena. On the other hand these currents are active parts of the main
oceanic gyres, which in turn are the physical expression of the mechanisms that control,
between others, the global heat budget in the Earth or the deep water formation. On
the other hand, many mesoscale eddies are revealed, and the path of their evolution can
be tracked; the propagation and characteristics of equatorial instabilities are also neatly
evidenced. Particularly important is the possibility of precisely determine the position
of oceanic fronts due to their impact in the three dimensional structure of the oceanic
waters. This later point would be crucial in studying the upwelling zones, which have a
great impact, for instance, in the fisheries.
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Fig. 3.1: MW SST image for October 1st, 2005 (cylindric projection). Temperatures in the color bar are expressed in Celsius
degrees.
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Fig. 3.3: MW SST image for February 1st, 2003 at the Gulf Stream area (cylindric projection).
Temperatures in the color bar are expressed in Celsius degrees.

Fig. 3.4: Singularity exponents obtained from MW SST images at the Gulf Stream area.
Results for February 1st, 2003.
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Fig. 3.5: Singularity exponents obtained from MW SST images at the Eastern Equatorial
Pacific. Results for August 1st (top), 8th (middle) and 15th (bottom), 2005.
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ABSTRACT

One of the greatest challenges in the remote sensing of the ocean is the obtention of
relevant dynamical quantities from satellite images of different tracers (e.g., SST, chloro-
phyll concentration, etc). In this paper we will discuss how the use of new techniques
on singularity analysis allow to retrieve the main instantaneous streamlines, and how
these can be used, in the context of the geostrophic approximation, to deduce the asso-
ciated stream function, with better spatial and temporal resolution than other methods.
Besides, we will discuss some of the potential applications of this method.

Uno de los grandes retos de la teledeteccion ocednica es la obtencién de magnitudes
dindmicas relevantes a partir de iméagenes de satélite de trazadores de diversos tipos
(e.g. temperatura superficial, concentracién de clorofila, etc). En este articulo discuti-
mos como el uso de nuevas técnicas de andlisis de singularidades permiten recuperar las
principales lineas de corriente instantaneas, y como éstas pueden ser usadas, dentro de la
aproximacién geostrofica, para deducir la funciéon de corriente asociada, con mejor res-
olucién espacio-temporal que otras técnicas similares. Asi mismo, discutiremos algunas
otras aplicaciones potenciales de este método.
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4.1 Introduccion

La obtencién de imégenes de satélite adquiridas en diversos rangos de frecuencias nos
permite acceder a estimaciones razonables del valor de determinadas variables intensi-
vas (como la temperatura superficial del mar -SST-) sobre dreas determinadas por la
capacidad resolutiva de la malla de captores utilizada. Estas variables proporcionan in-
formacion sobre el estado termodindmico del mar, pero no dan informacion directa sobre
el movimiento de las masas de agua. Sin embargo, la estructura y distribucion de estas
variables no es completamente aleatoria, sino que viene determinada por la evolucién
pasada y movimiento presente del océano, ya que se comportan como trazadores mas o
menos pasivos. Con todo, extraer el campo de velocidades a partir de estas variables
es un problema inverso muy complejo e irresoluble en la practica sin las aproximaciones
convenientes. La estimacion mas directa del campo de velocidades es conseguida por
los satélites altimétricos, los cuales nos proporcionan mediciones del nivel de elevacion
del mar, a partir del cual se puede deducir el campo de corrientes en la aproximacion
geostrofica. Sin embargo, los satélites altimétricos solo proporcionan informaciéon a lo
largo de la traza del satélite, asi que se debe combinar la informacién de diversas trazas
por medio de técnicas de anélisis objetivo [72] para obtener verdaderos mapas de al-
timetria. Dado que las trazas son adquiridas de modo no simultaneo, los mapas asi
construidos sélo podran considerarse sinopticos a escalas suficientemente grandes. En
latitudes medias y con la red actual de satélites altimétricos se puede conseguir con-
struir mapas de resolucién razonable para el tamano de la mesoescala (~ 30 Km) cada
10 dias, aproximadamente. Atn cuando la resolucion espacial y temporal de los mapas
altimétricos es adecuada para el estudio de muchos fenémenos de interés oceanografico,
ésta dista mucho de lo que seria deseable para aplicaciones més operacionales. Hace ya
mas de 20 anos se han propuesto multiples aproximaciones para extraer el campo de
velocidades directamente de las imagenes de trazadores. Todos los métodos se basan
en el seguimiento de estructuras observables en los trazadores a través de secuencias
de imégenes; citemos aqui el método MCC [31, 38] y el Optical Flow (OF) [12]. Estos
métodos implican una pérdida en resolucién espacial y temporal, lo que conduce a cam-
pos de velocidad resueltos sélo ligeramente mejor que los altimétricos. Recientemente,
se ha propuesto un nuevo método - denominado Método de la Funcién de Corriente
Méximo Singular, FCMS - para la evaluacion de la funciéon de corriente a partir de
imagenes de trazadores [129]. Dicho método se basa en las propiedades de multifrac-
talidad inducidas en el trazador por la estructura turbulenta del campo de velocidades
subyacente. El método permite hacer una obtencién muy fina de estructuras y garan-
tiza la mejor resolucion espacial y temporal posible: los campos de velocidad tienen la
resolucién espacial de las imagenes de partida, y son instantaneos. Sin embargo, los
campos necesitan ser recalibrados localmente, ya que el método sélo proporciona ve-
locidades adimensionalizadas. En este articulo haremos una revisiéon de este método y
discutiremos sus aplicaciones potenciales y extensiones futuras.
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4.2 Meétodo de la funcion de corriente maximo sin-
gular

4.2.1 Analisis de singularidades

El analisis de singularidades se basa en que, en un fluido turbulento, todas las variables
dominadas por la mecanica del fluido acaban siendo dominadas por la intermitencia.
Esto implica que sus valores, aiin cuando son extremadamente cadticos, han de seguir
una estadistica caracterizada por una distribucién infinitamente divisible, con modas
pequenas y colas largas y pesadas (elevada curtosis) [28]. Esto implica, en anadidura,
que la relevancia de una estructura en la organizacion del fluido es local y por tanto
no se han de buscar umbrales globales, sino locales y adaptados al seguimiento de la
cascada multiplicativa predicha por la teoria estandar de la Turbulencia Completamente
Desarrollada. Esta relevancia local de cada punto viene medida por el exponente de
singularidad local, h(Z), que se calcula por proyeccién de wavelets a diversas escalas. Si
la senal a analizar es s(Z), dada una wavelet (para nosotros, funcién escalable) ® (%),
definimos la proyeccién de s sobre @ a la escala r y el punto x € R? como:

Tos(@r) = 1 2 /dgcp (f_g> s(7) (4.1)

r

La proyeccion en wavelets permite hacer un zoom local - regulado por el parametro
de escala r - sobre el comportamiento de s alrededor del punto z, y por eso es tutil
para determinar su estructura. En sistemas dominados por la turbulencia del fluido
subyacente se ha podido comprobar [37, 5] que las proyecciones en wavelet del gradiente
de la senal dependen del parametro de escala » como una ley de potencias, esto es,

To|Vs|(Z,7) = ag(Z)r"® (4.2)

El exponente de singularidad local h(Z), que no depende de la wavelet [5], nos permite
caracterizar localmente la regularidad o irregularidad de la funcién en ese punto; valores
menores de h(Z) (tipicamente negativos) indican un comportamiento maés irregular y
singular, mientras que a medida que h(Z) crece la funcién se vuelve més suave y se
aproxima mas a su desarrollo de Taylor. Una senial que posee exponentes de singularidad
en todos sus puntos se dice multifractal, debido a que los conjuntos asociados a cada
valor del exponente se organizan como fractales de diferentes dimensiones [37]. Los
escalares en el océano suelen presentar estructura multifractal (Figura 4.1).
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4.2.2 Construccion de la FCMS

Indicios tedricos y experimentales de datos ocednicos [1] y resultados tedricos recientes
(sin publicar) muestran que las singularidades son advectadas por el fluido. La inter-
pretacion fisica de esta conservacién es que, cuando la turbulencia esta completamente
desarrollada, las singularidades h(Z) estdn en equilibrio dindmico con el campo de veloci-
dades. Podemos usar esta propiedad para derivar un campo de velocidades 2D, lo que
puede aplicarse también en el caso del océano cuando la hipdtesis cuasi-geostrofica es
valida. Diseniamos a este fin un algoritmo que se basa en construir la funciéon de corriente
U a partir de informacién sobre las lineas de corriente principales. [126] demostraron
que se puede reconstruir una senal multifractal a partir de su gradiente restringido a
un subconjunto fractal particular, la llamada Variedad Mas Singular (VMS en lo que
sigue). El algoritmo para la generacion de la funcién de corriente (Funcién de Corriente
Méximo Singular (FCMS), denotada por WM ) procede en dos pasos: 1. Se calculan
los exponentes de singularidad de todos los puntos, y se separan aquellos asociados al
valor méas singular (con cierta dispersién experimental). Esto determina la VMS (lineas
de corriente principales; ver Figura 4.2). 2. Se asigna un valor consistente al gradiente
de WM sobre la VMS. Como WM es una funciéon de corriente, VUM ha de ser per-
pendicular a las lineas de corriente de la VMS; pero nos falta determinar su moédulo
y sentido. Como carecemos de esta informacién dindmica, tomamos VWM de mdédulo
constante, adimensional, y con el mismo sentido del gradiente de la senal original, Vs.
A contiuacién, reconstruimos como en [126]; ver Figura 4.3.

Esta construccién nos permite obtener una funcién de corriente adimensional que
posee propiedades importantes; en particular, posee las mismas lineas de corriente de
la funcién de corriente original si las singularidades son advectadas. Comparaciones
directas con mapas de altimetria muestran una buena correspondencia en la mesoscala
(ver Figura 4.4). Sin embargo, para poder dar un uso operacional a la FCMS, ésta ha de
ser calibrada para retornar valores de velocidad con dimensiones adecuadas. Ademas,
la hipétesis de celeridad constante sobre la VMS puede fallar localmente y, lo que se
muestra como mas importante en los experimentos, el sentido puede estar invertido si el
gradiente del escalar original no apunta en la misma direccion del gradiente de densidad.
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4.3 Extensiones y lineas futuras

4.3.1 Calibracién de la FCMS

El mayor punto débil de la FCMS son las hipétesis de celeridad constante y coalineacion
con el gradiente de la senal. Sin embargo, si alguna informaciéon dindmica adicional esta
accesible es muy sencillo implementarla en la construcciéon: simplemente, se sustituye
VUM en la VMS por el valor apropiado y se reconstruye de la misma manera que
antes. Resultados preliminares integrando datos altimétricos muestran una gran calidad
y buena correspondencia con la funcién de corriente real [53].

4.3.2 Deteccion de estructuras oceanicas

El anélisis de singularidades en si mismo es una poderosa herramienta para la extraccion
de estructuras, dado que los exponentes h(Z) permiten detectar transiciones que son
localmente importantes aunque sean globalmente irrelevantes; ademas, por construccion,
estos exponentes proporcionan una medida que es invariante de escala, por lo que no
se prefija el tamano de la deteccién. Como un caso particular de interés oceanografico,
recientemente se ha aplicado esta técnica a imagenes del satélite MeteoSat para detectar
frentes de ondas internas de varios cientos de kilémetros propagandose en mar abierto
cerca de la Cresta de Mascarene [135]; ver Figura 4.5. El interés de este trabajo es
que permitiria reanalizar bases de datos de imagenes buscando indicios semejantes; se
ha de notar que la presencia de estos frentes de ondas internas era desconocida en la
zona observada, ya que se pensaba que la cresta actuaba como un muralla y no habia
propagacién al lado oeste.

4.4 Conclusiones

En este articulo hemos visto que la técnica del analisis de singularidades para el
tratamiento de datos en teledeteccion ocednica es una herramienta primordial para la
obtencion de magnitudes fisicamente significativas. El analisis de singularidades resulta
especialmente apropiado ya que los datos poseen una estructura caodtica determinada
por la turbulencia de alto nimero de Reynolds del océano, y por tanto toda la teoria
de turbulencia es aplicable. Es precisamente esta teoria la que predice la organizacion
del fluido en frentes de singularidad, los cuales forman variedades materiales y por tanto
conservadas por la evolucion. Gracias a esas propiedades de conservacién, hemos visto
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que se pueden derivar facilmente aproximaciones instantaneas de la funcién de corri-
ente geostrofica. Ademas, el método es facilmente escalable para integrar informacion
dinamica adicional cuando ésta estd disponible. La técnica de clasificacion de singu-
laridades, aunque adaptada para el tratamiento de variables termodinamicas donde la
adveccion domina, es también de utilidad para el tratamiento de imagen en general, y
asi su enorme sensibilidad (ya que se basa en una caracterizacién local e independiente
de la escala) la hace apropiada para detectar ondas que modulan sélo sutilmente la senal
percibida por el satélite; asi, hemos visto que se puede usar analisis de la singularidad
para detectar ondas internas en imagenes del espectro visible.

Fig. 4.1: Izquierda: Imagen de concentracién de clorofila en niveles de gris en escala
logaritmica, obtenida del satélite SeaWiFS (procesamiento OC4). Derecha: Singularidades
locales obtenidas; los colores mas brillantes corresponden a exponentes mas singulares. Las
lineas de costa y transiciones océano-nube son muy singulares, asi como las lineas frontales; sin
embargo, otras estructuras méds sutiles, corrientes y meandros también aparecen destacados.



Fig. 4.2: Variedad Més Singular, derivada de una imagen de SST analizada del 14 de Abril de
2006 (Fuente: http://www.ifremer.fr/las/servlets/dataset).

Fig. 4.3: Funcién de corriente maximo singular derivada.
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Fig. 4.4: Superposicién de las curvas de nivel de un mapa altimétrico sobre la FCMS derivada
de SST analizada en la zona de cabo Hatteras. La imagen de SST original fue obtenida el 31
de Diciembre de 2003.

¥

Fig. 4.5: Izquierda: Singularidades de una imagen del MeteoSat del 26 de Diciembre de 2004, en
la cresta de Mascarene (NE de Madagascar; el drea mostrada va de 57.5°F a 62.5°E en longitud,
y de 14.75°S a 8.25°S en latitud). Las singularides frontales del centro de la imagen son frentes
coherentes de ondas internas. Derecha: Superposicién de los frentes sobre la batimetria. El
frente se amplifica en el canal entre mesetas.
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Common turbulent signature
in sea surface temperature and chlorophyll maps

ABSTRACT

Oceans and 2D turbulence present similar characteristics, as for instance the dominant
role played by eddies in energy and matter transport. However, providing a complete
justification of this analogy is difficult, as it requires knowledge of the ocean’s dynamic
state at different instants and over large scales. Recently, new techniques coming from
the Microcanonical Multifractal Formalism have made it possible to infer the streamlines
from the analysis of satellite images of some scalar variables. In this paper, we will show
that this information is enough to characterize the scaling properties of the energy cas-
cade, which is manifested as a multifractal signature; further, the multifractal signature
is obtained at each location in a local basis. Different scalars obtained from satellite
measurements such as Sea Surface Temperature or Surface Chlorophyll Concentration
present essentially the same multifractal structure, which is interpreted as a consequence
of the pervading character of the turbulent advection at the scales of observation.
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5.1 Introduction

The spatial variability of surface ocean tracers is characterized by patchy distributions,
resulting from the interplay and balance between advection, diffusion and source and
sink processes [42, 87]. Observational evidence of sea surface patterns has stimulated the
investigation of which processes dominate and ultimately are the responsible for such
complexity. For a tracer such as the Sea Surface Temperature (SST) it has been argued
that stirring by the horizontal flow may account for the mesoscale surface signatures
seen from satellite images [1]. At such scales ocean dynamics is almost two-dimensional,
in quasi-geostrophic equilibrium with low values of the Rossby number (Rossby defor-
mation radii from 10 to 100 km). Theoretical arguments on the stirring of tracers by
2-dimensional time-dependent flows have led to explanations of many of the observed
features in SST patterns [139]. In the particular case of chlorophyll pigments, some stud-
ies on the spatial variability of remote sensing images did not find significant differences
between the spectra of CZCS and SST from AVHRR images [24]. This fact led to the
conclusion that phytoplankton cells in dynamic areas such as upwelling systems behave
largely as passive scalars. Similar trends were found by studying SeaWiF'S imagery [26],
although recent analyses of MODIS images in the Arabian Sea have shown that the
variability of SST and Chlorophyll are different [79].

Analysis of variance or second order moments poorly characterizes the variability of
intermittent fields, so multifractal analysis is much more appropriate [76, i.e]. Very
recently the introduction of the Microcanonical Multifractal Formalism (MMF), and
in particular the application of singularity analysis to SST images has confirmed the
existence of a multifractal structure of surface spatial patterns over a range of scales
that includes the mesoscale [129]. One of the most relevant results of this analysis
is the observed correspondence between the multifractal patterns in SST and the flow
structure at these scales [55]. The correspondence is a consequence of the establishment
of a multiplicative cascade of the scalar, analogous to the energy cascade of the flow
owing to the fully developed turbulence regime [105]. In fact, a passive scalar for which
advection dominates should inherit the multifractal character of the flow [129].

In this paper, we will present some new experimental confirmation of the correspon-
dence of the multifractal structure of scalars with the one coming from the flow. We
will show that, as for SST, surface Chlorophyll Concentration (CC) maps also exhibit
multifractality over a range of scales including the mesoscale. More importantly, the
geometrical and statistical structure of the multifractal singularities in CC maps is very
close to that of SST images. Further, when different regions are considered the spectra
of singularities are coincident. This is evidence that, at the scales resolved by the data,
common underlying mechanisms account for the spatial variability of both tracers, and
hence their intrinsic dynamics is decoupled from their structure at those scales.
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5.2 Data employed in this study

For the present work, 47 couples of satellite images derived from Aqua-MODIS ocean
color sensor have been processed. MODIS (Moderate Resolution Imaging Spectrora-
diometer) is a key instrument on board the Terra (EOS AM) and Aqua (EOS PM)
satellites from NASA. Two different geographical regions were considered. The first
one, “North Atlantic Area”, extends from 65 to 30 degrees W in longitude, and from 45
to 60 degrees N in latitude. The second region, “South Africa Area”, extends from 5 to
25 degrees E in longitude and from 40 to 10 degrees S in latitude. North Atlantic Area
includes part of the Labrador peninsula and of East and West Greenland currents; in
addition, on its Southeast side it encompasses a portion of the limit of the North At-
lantic gyre delimited by the North Atlantic Current, which transports warm waters from
the Gulf Stream poleward. South Africa Area covers the Benguela current, which is the
eastern boundary current of the South Atlantic subtropical gyre advecting cool waters
to the tropics; it is a region characterized by a richly productive marine ecosystem due
to an important upwelling coastal system [45]. At each time and location, Aqua-MODIS
images of two different types have been considered: chlorophyll concentration (CC) and
daytime sea surface temperature (SST) images, spatially averaged (Level 3 products)
over a 4x4 km? pixel grid (resolution at the equator). Processing details can be found
here:

http://oceancolor.gsfc.nasa.gov/DOCS /modis_sst/.

We have processed daily-derived SST images only, in order to have SST and CC
images as simultaneous as possible. The images are affected by noise and are spatially
discontinuous due to several effects, including cloud cover, aerosol corruption, orbital
gaps and aberrant values in the SST/CC algorithms. A single image can be the result
of the merging of two or m, so evidencing that singularity analysis serves to isolate a
universal mechanismore satellite passes, which partially diminishes errors and data loss;
however, the merging process also blurs to some extent the sharpest transitions and tends
to produce slightly mislocated singularity fronts. This blurring does not equally affect
both types of images, so any image comparison should be based on regional comparisons
instead of point to point comparisons. For each area, we tried to generate two ensembles
with similar numbers of coupled SST-CC images, selecting those images with as few lost
data as possible. We thus chose twenty-four images corresponding to South Africa Area,
captured during 2005 and twenty-three images from the North Atlantic, captured in a
period extending from 2003 to 2006 and almost evenly representing all seasons.
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5.3 Singularity analysis

Recently [129, 55], a new approach to turbulence analysis, based on the explicit geomet-
rical organization of the flows, has arisen. This approach intends to characterize local
scaling properties at each point (geometrical or microcanonical approach), instead of
global properties of the statistical ensemble (statistical or canonical approach).

In MMF, the key concept is that of the singularity exponent: each point in the flow
can be characterized by a singularity exponent, which is a dimensionless, scale-invariant
measure of the regularity or irregularity of the flow in the neighborhood of that point
[129]. The local singularity exponent h(x) of a given field s(x) at the point x can be
obtained, for any vector r small enough, from the following scaling

Hs(xt ) = 5]~ P (5.1)

where 7 is a given resolution scale. The singularity exponent h(x) is a measure of the
degree of regularity of s at x: negative values correspond to sharp transitions (brighter
colors in the figures), while positive exponents represent smooth, regular structures
(darker colors in the figures). The values of h(x) typically fall in the range (-1,2) [129, 55].
Expressions such as Equation (5.1) are generically known as Singularity Analysis for the
function s(x) [129]. The scaling properties of the velocity field are in general difficult to
quantify, but they can be connected to the scaling properties of related variables much
more accessible and easier to observe. A typical case is that of scalar variables. If a
multifractal hierarchy sensu Parisi & Frisch [105] is evidenced for a given scalar, we will
accept that its most plausible origin is the turbulent flow driving the scalar. That is,
the flow transmits its singularity exponents to any scalar for which advection is strong
enough [1, 129]. As a consequence, the obtaining of singularity exponents starting from
any scalar quantity reveals properties of the flow motion. Experimental evidences [1, 129]
indicate that singularities are advected by the flow. Hence, the spatial distribution of
singularities should trace the instantaneous streamlines of the motion and therefore, the
velocity field can in principle be retrieved [129].

Equation (5.1) is very appealing and easy to relate to the properties of the flow.
However, long-range correlations can mask the largest singularity exponents [129]. Thus,
s(x) has to be filtered. Continuous wavelet transforms, defined as projections of the
signal at different resolutions, are appropriated to filter multiscaling functions without
disturbing scale invariance properties. In addition, it is convenient to work with the
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gradient modulus of the signal, |Vs|(x), to improve the spatial resolution of the results
[135]. Equation (5.1) has a wavelet-transformed counterpart:

Ty|Vs|(x,7) ~ 7™ (5.2)

where Ty|Vs|(x,7) is the wavelet projection of |Vs| over the wavelet ¥ at the point x
and the scale r > 0, defined as:

To|Vs|(x,7) = /dx IVs|(x ) %\IJ (X_X). (5.3)

r

(see, for instance, [129]). A family of wavelets has been shown [129, 55] to be the most
efficient to attain good discrimination and resolution capabilities, the Lorentzian family:
U, (x) =1/(14 |x|?)7, for v > 1. We have used a numerical implementation of W.,_; for
the analyses shown in this paper.

5.4 Validity of MMF for SST and CC images

An extensive presentation of MMF is given in [55]. Let us summarize here the three
conditions for MMF":

i) Each fractal component is scale-invariant: at any point x, a well-defined local
power-law scaling of exponent h(x), according to Equation (5.2), must be observed
for a large enough range of scales r. We have verified that the equation holds with
good accuracy (using the criterion introduced in [55]) up to 149 pixels ( 596 km)
for both SST and CC.

ii) The whole multifractal hierarchy is scale-invariant: the probability distributions
of singularities obtained at different scales r lead to the same singularity spectrum
curve D(h). From the empirical histogram p,(h) obtained at the scale r we can
obtain the singularity spectrum [135, 55], according to

log <ma§<r(h) )
r(h)
(h) log r (5-4)
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We have evaluated the histograms at the original resolution and after a reduction
by a factor 4 (curves not shown). We conclude that this property is well satisfied
by SST and CC images.

iii) The curve D(h) is convex, which implies that the cascade is actually developed in
the flow (see [55]). The curves shown in Figure 5.3 are convex, so validating this
condition.

So, both SST and CC are multifractal signals in the sense of MMF. We hypothesize
that this structure is a consequence of oceanic turbulence.

5.5 Comparison between SST and CC multifractal
structures

In Figure 5.1 we show a couple of SST-CC Aqua MODIS images and their associated
singularity exponents according to MMF in the South Africa Area. Singularity analysis
puts in evidence main frontal regions with an unprecedented quality but also many
subtle non-trivial structures, revealing the presence of eddies and flow lines that passed
almost unnoticed in the original images. Remarkably enough, there is a good visual
correspondence between the features detected in SST and CC, reinforcing the assumption
of a common dynamical origin for the two multifractal structures.

The cascading processes associated to each type of scalar can be compared by study-
ing the statistics of the corresponding singularity spectra; in this case, MMF allows
a derivation of the structure of the turbulent cascade with relatively reduced datasets
leading to experimental values of D(h) with a typical uncertainty of about 0.05 [135]. As
shown in Figure 5.3 a good correspondence of the turbulent cascades is found over the
two regions under study for both scalars. All singularity spectra are defined on about
the same range of values, and differences in D(h) are less than 0.1, compatible with the
experimental uncertainty. For both types of data, SST and CC, the good correspon-
dence of the singularity spectra obtained for two distant geographical regions indicates
that the underlying mechanisms which gave rise to the multifractal structures should be
similar.

We arrive at the same conclusion when comparing the singularity spectra of SST and
CC. Although theoretically granted if advection induces the multifractal structure, a
point-by-point coincidence between singularities is hard to verify on data, as singularities
appear slightly mislocated due to differences in acquisition processes and the own spatial
and functional uncertainty of the singularity analysis. We will thus define a local degree
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of closeness between the singularity maps. The proposed measure is given by a weighted
local regression coefficient. Our measure of closeness between hp and h¢ is given by

pro(x) = =7 where o2 (x) = (12)x— (hr)2, 0(x) = (B2« — (hc)? and oro(x) —
<hThC>x - <hT>x<hC>x

At any point x, we will define the weighted average of any function of hy and h¢,
F(hr, he), in the following way:

1 Flhr(x),he(x))
Ne 2= b{hr(x))b(ho(x )

(F(hy, he))x = w(x —x) (5.5)

where Ny = >, m w(x — x) is a normalization constant which takes
into account the points x actually available; b(h) is a positive function measuring the
uncertainty in the value of h; and w(x) is an appropriate weighting function, used
to define the relative importance of the points on the region centered around x. A
reasonable choice for w(x) is an isotropic function (that is, only depending on |x|) that
decays with distance. Good weighting functions are those in the scale-invariant family,
namely: w(x) = — for @ = 2 in our case. With respect to the h-uncertainty, measured
by the function b(h), we have used an heuristic estimate, based on the observations
reported in singularity analysis of images of different types [129]. We have used b(h) =
0.1 for h < 0.1 and b(h) = h for h > 0.1.

As the distributions of A7 and h¢ are identical (see Figure 5.3), the only possible linear
transformation is hy = he. Hence, when pre is close to 1, both types of singularity
exponents can be considered as identical over that region. Due to all the processing
effects, the coincidence is not perfect, although remarkable. Looking at the maps of
local regression coefficients, Figure 5.2, we can confirm the closeness between the maps
of SST and CC exponents, specially over free areas. This, together with the coincidence
of spectra, evidences the existence of a similar turbulent-like cascading process acting on
SST and CC. We conclude that we are certainly extracting information on a dominant
mechanism, the advective mode of the flow acting on both scalars.

5.6 Conclusions

The evidence shown in this paper can be summarized by saying that over a rather broad
range of scales, including the mesoscale, ocean turbulence has a strong influence on the
geometrical arrangement of tracers of very different nature. This is supported by the
remarkable similarity between the spectra of singularity exponents over distinct regions
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for both tracers. Then the spatial arrangement for the most singular exponents, which
basically identify the places with strong enough advection of the scalars, gives informa-
tion on the streamlines. This has two relevant consequences. First, as an added value
we are in fact inferring a large amount of instantaneous information on the dynamics
of ocean flows. The obtaining of singularity exponents from images may allow to deter-
mine a first estimate of the instantaneous field of sea surface currents [129]. Systematic
and extensive re-analysis of recent satellite imagery data bases, covering up to twenty
years of SST and ten years of CC, opens the way to assess at a global scale the effects
of climate variability and change over the past two decades. Furthermore, the local
correspondence of SST and CC singularities due to the existence of a common cascade
process may make it possible to use SST data (which are more abundant than CC data)
for helping the inference of reasonable distributions of CC at those locations where CC
data are lacking. On the other hand analyzing the areas in which the correspondence of
both tracers fails may help to identify where the intrinsic dynamics of the tracer is in
competition with flow advection which in turn would serve, in the case of CC, to improve
our knowledge on ocean phytoplankton communities and improve our understanding of
biological processes.



-36 -32 28 -24 -20 -16 -12

-40

-24 -20 -16 -12:

-28

-32

40 36

8

12

16
1

16

20

20

20

24

2

24

oy~ 9g- 2¢-

2e- 82~ ve- 02- 9l- 2l

9€e-

v2- 02- 91- ZI-

8e-

-36 -32 -28 -24 -20 -16 -12_

.

-32 28 -24 -20 -16 -12

-36

-40

8 12 16 20 24

9e- @2e- 82 ¥¢- 02 91 2I-

ob-

8¢- V¥e- 0g- 9I- ZI-

4>

og-

O

46 50 54 58

46 50 54 58

46 50 54 58

46 50 54 58

-64 -60
oA i ‘

-56 -52

9 05 +S 8§

-64 -60 -56 -52 -48 -44 -40 -36 -32
-64_-60 -56 -52

9% 05 +5 8S

-64 -60 -56 -52 -48 -44 -40
-64 -60 -56 -52 -48 -44 -40 36

9y 0S5 +S B85

-64 -60 -56 -52 -48
-64 -60 -56 -52 -48

-44 -40 -36 -32
-44 -40 -36 -32

9% 05 #S 85

-64 -60 -56 -52 -48

-44 -40 -36 -32

Fig. 5.1: Figures from left to right and from top to bottom. Vertical maps: data obtained in the
South Africa Area in April 28, 2005, which correspond to SST and CC; singularity exponents
associated to SST and CC images for the same area and period. Horizontal maps: images
from North Atlantic Area in April 25, 2006, showing both scalars as well as their respective

singularity exponents.



5.6 Conclusions

91

-0.4

-1.d

3 12

16 20 24

0e- 9L- ¢l-

Ze- Bg- ve-

og-

)y

8 12 16 20 24

52 -48 -44

Fig. 5.2: Local correlation coefficients between SST and CC singularity exponents shown in

Figure 5.1.

D(h)

N
T
o mmn.-.mmn-’n

D(h)

i

2
2
3
3
2
3
3
2
2
3
k)
2

] 1.8r

2.0

1.6

D(h)

141

1.2¢

1.0

PN g,

LT XA

(o]
—_

h

Fig. 5.3: From left to right: comparison of the singularity spectra D(h) derived from SST in the
North Atlantic (dotted line) and the South Africa Area (dashed line); the same for the spectra
derived from CC, with identical conclusions; comparison of singularity spectra obtained from

the whole dataset of SST images (dotted line) and CC images (dashed line).






CHAPTER 6

Analysis of ocean turbulence using
adaptive CVE on altimetry maps






It 1s better to be “roughly” right
than to be “precisely” wrong.
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Analysis of ocean turbulence
using adaptive CVE on altimetry maps

ABSTRACT

It has been often argued that oceanic turbulence is similar to 2D turbulence; they
share many properties and more particularly they seem to be driven by the dynamics of
coherent vortices over large scales. For this reason, the application of techniques based
on the extraction of coherent vortices as the Coherent Vortex Extraction (CVE) seems
a natural choice for the description of ocean data. In this paper we will discuss on the
properties of oceanic turbulence under the perspective of the Microcanonical Multifractal
Formalism (MMF), specifically for the description of altimetry data. We will see that
MMEF gives a good description of the geometry and statistical properties of altimetry
data. We will show that a direct application of CVE on altimetry data has a rather
low performance in comparison to other systems, which we justify as a consequence of
the inhomogeneous character of ocean turbulence. We also show that a MMF-based
separation criterion improves the standard CVE and allows to mitigate these problems.
The results are discussed in the perspective of a cascade-based description of ocean
turbulence.

Accepted in Journal of Marine Systems.
V. Nieves and A. Turiel
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6.1 Introduction

Since the early years of remote sensing significant developments in the understanding of
ocean processes at the mesoscale have been made; however, there is still a considerable
room to improve our processing capability of satellite observations. So far, our insight
on ocean dynamics has been gained mainly through the assessment of simple quantities
with dynamic meaning either using altimeter-derived data [70, 107, 52, 53, 106] or some
estimates of surface currents derived from sequential SST imagery [31, 141, 16]. Never-
theless, these techniques cannot be used to explain ocean behavior from an instantaneous
image and at different scales, in contrast with other approaches that are embedded in the
framework of turbulence like the Microcanonical Multifractal Formalism (MMF) [55].

Mainly due to the difficulties to obtain precise estimates of the velocity fields in
experimental situations, there are quite few accurate characterizations of the scaling
properties of velocity fields and related quantities at mesoscale [4]. This is particularly
problematic for ocean data [103, 90, 140, 4, 18]. In spite of this fact, during last decades
there have been some advances in the understanding of the complexity of ocean tur-
bulence, based on relating the scaling properties of the velocity field with the scaling
properties of other variables that are more accessible by means of satellite data such as
tracers [75, 79, 67]. As evidenced in statistical studies, ocean dynamics at the mesoscale
and 2D turbulence have similar characteristics [91, 57, 54]. MMF uses this resemblance,
and gives a step forward going from the classical statistical approach to a geometrical
characterization. MMF provides an estimation of the spatial arrangement of any scalar
for which advection is important enough. It has been shown that the organization of a
turbulent flow presents a hierarchy of fractal sets [105, 4, 129]. By extracting these frac-
tal components from tracer data it is possible to infer sea surface currents from satellite
images of some scalar variables such as surface temperature or chlorophyll concentration
[129, 55]. Moreover, we can obtain information of the energy injection process from the
largest to the smallest scales and the opposite - which explains the production of the
hierarchy of eddies [92, 90, 76]. Now, with MMF we can go beyond and prove that
Sea Level Anomaly (SLA) maps have a multifractal structure own to Fully Developed
Turbulence (FDT). This is precisely one of the goals of the present work.

Another goal is to provide a compact description of oceanic turbulence by means
of an appropriate multiscale representation which mimics the known features of the
multiplicative cascade. For doing so, we have taken a technique used to represent Direct
Numerical Simulations (DNS) of 2D homogeneous turbulence, namely the Coherent
Vortex Simulation technique (CVS). This technique analyzes vorticity fields by means
of orthogonal wavelet filtering. Wavelets supply a description, which is both local and
multiscale, so they are a good tool to describe 2D-turbulence signals. In this way, the
flow is broken down into coherent regions (dominated by eddy-like vorticity parcels), and
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incoherent regions of random movements. Turbulence causes the formation of eddies of
many different length scales that interact with each other, although most of the kinetic
energy and enstrophy of the turbulent motion is contained in the large scale structures.
This is the reason why CVS is not only capable of recognizing the main ocean circulation
patterns, but also of stressing those regions for which rotation is dominant [33, 13]. Tt
has been reported that in DNS the modes corresponding to the coherent part represent
only about 2% of the total number of modes, and they lead to a description which is
accurate up to 99% of the total enstrophy of the flow. However, in a previous work it
has been shown that CVS in the framework of physical oceanography - there named as
Coherent Vortex Separation - is less efficient than on DNS [128]. This lower performance
is thought to be a consequence of the way in which the method is conceived, namely,
it is centered on some assumptions on the statistics of the flow (Donoho & Johnstone’s
criterion [27]) that are not accurate in the context of real, non-homogeneous turbulence.
Some physical conditioning according to the properties of the underlying flow has to
be introduced, as the statistics of general turbulent flows are strongly non-Gaussian,
even for the incoherent part. The incoherent part cannot be considered as noise, but
represents the unsolved scales. Once the multifractal character of altimetry images is
demonstrated from the study shown in the first part of the article, these properties will
be used to adapt CVS for satellite data and presented straight afterwards. From now
on, to avoid misunderstandings, we will use CVE (Coherent Vortex Extraction) instead
of CVS when no simulation is involved.

The outline of this paper is structured as follows. First, MMF and the consequences
of having a multiplicative cascade established on scalar variables are described in the
theoretical Section 6.2. Second, CVE technique is presented in Section 6.3. Then, a
description of the data employed for the empirical part of this study is given Section 6.4.
Section 6.5 is devoted to the presentation of the experimental validation of MMF on our
data, while Section 6.6 discusses different implementations of CVE which take MMF
into account. Finally, conclusions are given in Section 6.7.

6.2 Microcanonical Multifractal Formalism

MMEF arises from the general theory of FDT and more specifically from Kolmogorov’s
theory, as a way to provide a precise geometrical representation of turbulence. In many
statistical studies on turbulence, flow organization has been analyzed based on the char-
acterization of its structure in terms of global quantities. They are statistical averages
of some dynamical variables. This is generally performed with the study of the local
structure functions of order p and size [, which is denoted by S,(!). These functions are
just the order-p moments of an intermittent, positive, intensive variable ¢,(Z), where &
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denotes a point in the domain space. Common choices for ¢ in the classic literature
include linear increments of the modulus of the velocity along a given direction,

(@ = |v(@) — o(@+1)| (6.1)

or local energy dissipation on balls of radius [,

a(7) = Z /B - dit (00;(Z) + du,(a))? (6.2)

but many other definitions are also possible. Of particular interest is the case of scalar
variables (tracers) submitted to the action of a turbulent flow. It has been argued that
the scaling properties of some scalars can be related to those of the underlying flow [66],
although sometimes important differences may be found depending on the type of tracer
considered [68]. For a tracer s(¥), the simplest type of tracer-derived scaling variable ¢
is given again by its linear increments,

—

a(@) = |s(@+1) — s(2)] (6.3)

However, linear increments are ill behaved in many practical situations due to the pres-
ence of noise (which would mask short-range scaling) and of long-range correlations (like
sunglint or large area wind-effects, which would mask long-range scaling). For this rea-
son, it is convenient to work with continuous wavelet projections of the tracer, which
allow to filter out long-range correlations [5, 4] and to provide a stable interpolation
scheme [132, 138]. Hence, the variable ¢, will be given by:

a(r) = |Tes(Z,1)] (6.4)

where the continuous wavelet transform Ty s(Z, [) of the tracer s projected on the wavelet
® at the point ¥ and the scale [ is given by:

Tos(@.l) = [df s (’“" ;?7) (6.5)
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where d represents the dimension of the domain space (d = 2 in 2D scalars). In general,
the wavelet ® must verify some requirements in order to be valid to assess the scaling
behavior of the system. This discussion exceeds the limits of this paper; the interested
reader is referred to [5, 4, 132, 135] for the details. The use of tracers and, more
specifically, of wavelet transforms of tracers in order to assess the scaling properties
of a turbulent flow is the most common situation, because direct measurements of the
velocity vector are difficult to obtain in general; in contrast, direct measurements of
many tracers are usually available.

Once the variable ¢ of choice has been defined, its associated structure functions are
given by:

Sp(l) = () (6.6)

According to Kolmogorov’s theory [62, 61] in the inertial range these statistical station-
ary quantities must depend on the scale [ as a power law. Assuming this relation, the
multi-scaling exponents 7, are defined according to the following relation:

Sp(l) o< I Ik 1 (6.7)

Kolmogorov also pointed out that all the scaling exponents 7, must have a linear
dependence on the order p, the linear scaling:

w»=Hp+p (6.8)
where the coefficient H is given by the scaling properties of the maximum of ¢,
max (%) o 17 ; <1 (6.9)

and the coefficient 3 is related to the behavior of the support of ¢ (i.e., the set where ¢
is different from zero), in the way:

l/B X So(l) = /df 161(9_5/)20 (610)
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According to Kolmogorov’s model of linear multi-scaling exponents, all the energy is
concentrated in a set, of fractal character, to which all the points contribute exactly the
same amount of energy, namely [7. It follows that for any two scales | < L, the variable
¢ results from:

€ = 1NLeL (6.11)

where the symbol = means that both sides have the same distribution, and the factor
un works at a constant rate that depends on the ratio of scales %: N = (%)H

The process in which there are energy transfers from larger toward smaller scales is
called the down-scaling cascade, while in the other sense we can speak about up-scaling
cascade process. We will concentrate our discussion on the down-scaling process, but
the mechanisms that describe the up-scaling process are essentially the same. They only

depend on the convexity of 7, [44].

Equation (6.10) implies that the support of ¢, must have a fractal character; in fact,
we can easily relate the scaling exponent 3 with the fractal dimension D of the support.
When observed at a scale [, the fraction of space occupied by the support scales as (¢ P
[32]. Hence, comparing with Equation (6.10) we have D = d — 3. Hence, we conclude
that Kolmogorov’s linear scaling implies having a single fractal energy interface.

Unfortunately, Kolmogorov’s linear scaling is not in accordance with experimental
results. Experiments [6] show that in general 7, presents anomalous scaling (in opposi-
tion to the normal Kolmogorov’s regime) [2, 37]. The curvature of 7,, as a function of
p, can only be explained in terms of a multiple fractal model. In order to describe this
curvature, the cascade variable n L cannot be any longer considered as a constant, but as
a random variable independent from ¢;, that follows a distribution completely defined by
7,. In order to obtain a consistent definition, the cascade variable must verify the cas-
cade relation, formulated as follows: for any arbitrary intermediate stages [, [ <[ < L,
the following identity must hold:

nLo= iy (6.12)

This means that the cascade process leads to the same result independently of the
number of intermediate stages taken to go from scale L to scale [. In essence, Equa-
tion (6.12) implies that all the scales involved by the cascade must be in dynamical
equilibrium.
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Thanks to Parisi & Frisch’s contribution in 1985 we can now interpret the scaling
of the cascade in turbulence in terms of a composite of scaling fractal objects with
more physical meaning. Parisi and Frisch [105] established a link between the statistical
formalism and an underlying geometrical arrangement of multiple fractal components.
Their key hypothesis is that the points in the support of the studied dynamical variable
do not share a single value of scaling exponent H as in Kolmogorov’s theory. Instead, the
support has to be broken in different singularity components F},, each one associated to a
particular value h of scaling exponent. These components (also called fractal manifolds)
will have different (Hausdorff) fractal dimensions D(h). When the dimensions D(h) of
the components are represented as a function of A, we will talk about the singularity
spectrum of the multifractal. The singularity spectrum D(h) can be easily calculated
from the distribution of scaling exponents h obtained when the variable ¢; is processed
at a given scale [ [32]:

pi(h) oc ¢ P (6.13)

According to Parisi and Frisch’s derivation, the multiscaling exponents 7, are imme-
diately related to the singularity spectrum, in the way:

7, = inf {ph + d — D(h)} (6.14)

The multiplicative cascade given by n L is a consequence of the existence of a hierarchy
of fractal components, which is described by its singularity spectrum. Assuming that
D(h) is convex, the Legendre transform in Equation (6.14) can be inverted and the
singularity spectrum is calculated from the multi-scaling exponents; namely:

D(h) = inf {ph + d — 7} (6.15)

Although geometrically appealing, Parisi and Frisch’s derivation is in fact a statistical
derivation and hence it is at the root of many statistical studies on the multifractal
properties of different systems [96, 8, 7, 97]. All these approaches can be included in the
so-called Canonical Multifractal Formalism (CMF). MMF supposes an important step
forward, as it offers a way to assign to each point  in the domain space a value of local
scaling exponent h(Z) of a given scaling variable ¢,(Z), in the way:

a() = A@) 1"® + o (") (6.16)
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where the notation o (lh(f)) means a term which is negligible in comparison to {"# when
[ goes to zero. Not all the possible definitions of ¢/(Z) would lead to a local singularity
exponent, as the one given in Equation (6.16), and so an appropriate definition must
be searched. This is one of the requirements of MMF'; let us enunciate here the three
requirements for having MMF in a system [55, 138]:

i) Each fractal component is scale-invariant: for any point #, Equation (6.16) is
verified over a large enough range of scales .

ii) The whole multi-fractal hierarchy is scale-invariant: the distribution of singularities
at any valid scale [ follows Equation (6.13), for the same function D(h).

iii) The function D(h) derived from Equation (6.13) is convex. So that, Equa-
tion (6.14) can be inverted to retrieve D(h) and so the Canonical approach is
also valid. We can thus conclude that the multiplicative cascade is developed in
the flow. This would validate the hypothesis of a turbulent origin flow driving the
scalar.

We will show the validity of MMF on our dataset in Section 6.5.

6.3 Coherent Vortex Extraction

Coherent Vortex Simulation, CVS, is a method developed by Marie Farge and co-workers
(33, 35, 34, 13] for analyzing FDT flows and describing them in a compact manner. To
do so, the vorticity field is split into two contributions: a coherent part, which own to
the organized flow, and a incoherent part that is associated to a random background
flow. This method is based on the vortex extraction algorithm, CVE. The vorticity
field is appropriate to detect areas of strong gradients - that are associated to the non-
linear interactions - as well as for its topological and Galilean invariance properties.
The separation is done in terms of wavelet coefficients in which the vorticity field is
decomposed. A multi-scale scheme is necessary to extract all the active scales of coherent
structures. A wavelet basis, optimal for the particular data under study, must be chosen.
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In order to decompose vorticity in terms of a multiscale, wavelet representation,
vorticity has been represented in a 2D dyadic orthonormal basis of mother wavelets

{¢r}r:1,2,31

wE) = DY apv (@) (6.17)

r=123 j=1

where 1, z(%) = 2 iy (2 9% — k), r is the index which characterizes the orientation of

the mother wavelet, 2/ is the dyadic scale (measured in pixels or resolution points), 29k
represents the spatial location with k = (ki, k2); and j, kq, ko are integer numbers. The
sum on scales goes from the finest, best resolving scale j = 1 to the coarsest, worse
resolving integral scale j = J. As the wavelet basis is assumed to be orthonormal, the
wavelet coefficients are obtained by simple projection «, ;7 = (1,7, w) [23].

The computation of CVE is centered on the selection of those coefficients retained
according to Donoho & Johnstone’s criterion [27], which are supposed to represent those
regions with the most significant vorticity values. The threshold value © is established
as:

© = 2VZInN (6.18)

with Z the total enstrophy, 7 = %(w,w) and N is the number of data points at the

studied resolution (the total number of pixels).

Once O is known, the vorticity field can be broken in two terms, the coherent part
w. and the incoherent one wj:

W = We + wi = Z arjE 77/}7‘]12(‘,?) + Z arjE ¢T]E(f) (619)

Oérjfé >0 Oé'rjl; (€]

Farge et al. reported that for DNS of homogeneous 2D turbulence the coherent part
only contains a small number of degrees of freedom of the system (less than 2%). This
way, the compression is noteworthy and the computational cost is significantly reduced.
On the other hand, the effect of the discarded modes comprised in the incoherent part
was observed to be statistically distributed according to a Gaussian PDF with small
standard deviation, and thus they were regarded as negligible.
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By construction, as a consequence of the orthogonality of the wavelet basis, the
vorticity field becomes divided into two orthogonal components, i.e., (w.,w;) = 0. Due
to Parseval’s identity, the total enstrophy can be also separated in the same way as the
vorticity: Z = Z. + Z;.

The associated coherent and incoherent velocity fields can be retrieved by applying
Biot & Savart’s kernel:

7= Vx(A ') (6.20)

The decomposition of the velocity field is only approximately orthogonal because Biot
& Savart’s kernel projected on an orthonormal wavelet basis is almost diagonal. Then,
we have (v., v;) # 0 despite the fact that v = v. +v;. Thus, the coherent and incoherent
energies are not additive: E # E, + E; , where E = $(v?), E. = $(v2) and E; = $(v).

CVE was initially applied to filter DNS data, for instance, of a 2D turbulent
homogeneous and isotropic flow [33, 13]. However, only recently CVE has been applied
to altimetric data [128] with significant results. The reason supporting the application
of CVE to geophysical data is the frequently argued similitude of 2D and geophysical
turbulence. Notice that CVE has also been applied to laboratory data, e.g., [112],
and the results confirm the adequacy of this approach as well. In [33, 13], different
Reynolds numbers were considered depending on the number of retained modes. By
using 256 x 256 grid points and a kinematic viscosity of about 10 5m?s 1, the Reynolds
number does not take values larger than few thousands. In those experiences, around
99% of the total energy and enstrophy are represented by selecting only 2% of the
total wavelet modes for the coherent field. However, in the more realistic case of a
altimetry-derived ocean vorticities, about 1/3 of the energy and 15% of the enstrophy
were lost. In this context, 36 x 36 grid points (separated about 1/3 of degree) were
used and Reynolds numbers was about 10%. This number is obtained after assuming
characteristic velocities and lenght scales of 0.1ms ' (open ocean) and 40 km (1/3 of
degree), respectively, as well as a kinematic fluid viscosity of 10 m?s . The lost of
energy and enstrophy is mainly due to the fact that coherent structures are defined as
local condensations of the vorticity field, and vortices are something more than vortex
cores. Vorticity concentrations cannot be just considered as simple separable "atoms’.
Vortices are sometimes elongated - stretched and folded - during the interaction with
other structures. Therefore, there is a significant part of the eddy field that is contained
in the incoherent component. Furthermore, by only taking vortices, we are loosing
some other coherent structures like streams and filaments that are not directly related
to eddies. This is consistent with the observation that the presumed incoherent back-
ground field does not present a Gaussian distribution in the case of altimetry-derived
oceanic flows for any percentage of selected modes in the coherent part [128]. In sum-
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mary, there is a part of ocean motion that cannot be explained by the naive CVE picture.

It is hence evident that some aspects in CVE need to be developed in order to
better approximate the particularities of SLA maps. First of all, an improvement of the
criterion to fix the threshold used in the separation is mandatory, taking into account
the strong deviation from Gaussianity of oceanic flows [54]. A criterion with physical
significance should be implemented. Another point that requires some study concerns
the influence of boundary conditions represented by coastlines, which produce sharp
transitions in data. In order to avoid this problem, open sea areas have been chosen
for the present study, but coastal regions will be analyzed in future works. Finally,
the performance of the different wavelet bases are not the same, so we have tested
different representation bases in order to decide which wavelet basis best adapts to the
particularities of oceanographic data.

6.4 Data description

In this study we have used about 50 Delayed-Time maps of Sea Level Anomaly
from TOPEX/Poseidon altimeter corresponding to several months in 1997 produced
at intervals of 10 days by CLS, Toulouse, and available through AVISO server
(http://las.aviso.oceanobs.com/las/servlets/dataset). These images are regularly pro-
duced by subtracting a temporal average (1993-1999) and gridded into 1/3 x 1/3 degrees
by using a suboptimal space/time objective analysis that considers long wavelength er-
rors [72]. They have been pre-processed including usual corrections (sea-state bias, tides,
inverse barometer, etc.) and improved in combination with ERS orbits, which has a re-
peat cycle of 35 days. Data are also filtered using a 35 km median filter and a Lanczos
filter with 42 km of cutoff to reduce noise. Filtering data is convenient in order to obtain
regularly shaped maps, but can cause a lost of information. There is a limitation in the
capabilities of our study to describe the cascade toward smaller scales despite SLA maps
are really useful to determine mesoscale structures and their spatio-temporal variability.
We will discuss this issue in the next section.

If we denote by h the SLA map, the velocity field has been estimated from these
data under the geostrophic approximation:

_ _goh 9O
u = 7oy v o= e (6.21)
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where g the gravity and f the Coriolis parameter. The vorticity & associated to the
velocity field is then:

G =Vxiu (6.22)

with only one non-null component w = w, = 9,v — dyu in a 2D flow.

For the purposes of the present study, we have concentrated on an open sea area in
the North Atlantic. The scenario under study is located surrounding the Gulf Stream
area, which covers from 60 to 17.5 degrees West in longitude, and from 9.5 to 46 degrees
North in latitude. Due to the limited resolution of SLA data, this defines a relative
small grid of 128 x 128 points.

6.5 MMF on altimetric data

To verify the validity of MMF on altimetric data, the three conditions presented in
Section 6.2 must be checked. Our local intensive variable ¢; will be defined as the wavelet
transform of SLA-derived vorticity, according to Equations (6.4) and (6.5) where s is
substituted by w. We will not consider all the possible continuous wavelet projections
of w, but just those given by the pyramidal dyadic scheme. This is, [ = 27 pixels and
T = 23'];, where 7, ki, ks are integer numbers. According to the notation introduced
in Section 6.3, these projections correspond to the variables o defined in eq. (6.17).
Notice, however, that in order to apply the formulas presented in Section 6.2 we need
to express all the distances and scales in physical units, not in resolution-dependent
(i.e., pixel) units. Conventionally assigning a unit physical scale to the scale J (which
represents the integer scale in our system), we have that [ =2 ¢/ 9 and # =2 / Nk
when expressed in physical units.

Due to the limited resolution of SLA data and the small size of the studied areas,
having a large enough range of scales to determine the accuracy of condition i) is very
difficult in our case. This problem can easily be evidenced by the power spectrum of the
vorticity. As the vorticity is the derivative of the velocity, if the power spectrum of the
velocity scales with the spatial wave number k as k 2T (where €= 1/3 in fully developed
turbulence), then the power spectrum of the vorticity must scale as k . In Figure 6.1 we
present three log-log plots of the velocity and the vorticity power spectra. As intended,
the plot scales linearly for small frequencies, but at high frequencies (small scales) the
spectrum decays very fast. This is a consequence of the low-pass filtering applied to the
data, which makes the effective resolution of the data coarser than the nominal one. So,
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as discussed, we are limited to very few scales. In addition, the interpolation scheme
applied to the maps seem to have also affected the slope at low frequencies, so €= 1 in
contrast with the €= 1/3 predicted for turbulence.

Due to this constraint, we have preferred to obtain punctual estimates of the singular-
ity exponents h at each location, following previous works [135, 109]. Punctual estimates
are obtained by taking logarithms on Equation (6.16) and neglecting the terms on the
right hand side other than h(Z)logl. So that, we define the punctual estimate of the
singularity exponent h, - along the orientation r at the scale j and position k as:

log (—Z”f )
h - = ———~ "7 6.23
rik (j — J)log2 ( )

where (a,;) means the average of a; across all the possible values of k with fixed
orientation r and scale 7 obtained from a given vorticity field w. As punctual estimates
are obtained considering a single scale only, they are less affected by the upper and lower
cutt-offs of the inertial range. However, the validity of Equation (6.23) lies on having a
scale [ =2 (' 7) small enough so that the correcting terms could be neglected; besides,
the validity of Equation (6.16) cannot directly be verified. So, we must plainly accept
that i) is verified as far as the other two conditions are verified.

To verify ii) and iii), we will obtain an estimate of the singularity spectrum at each
scale j, as in [135, 109]. Let p,;(h) be the distribution of singularity exponents h, for
the orientation r and scale j. Given that there is always a fractal component Fj, of
maximal dimension d, it corresponds to the maximum of p,;(h). Hence, normalizing the
distribution by its maximum value p,;(h;) and applying Equation (6.13), we can derive
an estimate for the singularity spectrum as:

pr'(h)
d — log <Pw‘]<h1>)

PDrlh) =& = G ) logo

(6.24)

As shown in Figure 6.2, the functions D,;(h) obtained for the different orientations
r, scales j and wavelet bases correspond to the same convex function D(h). For a given
orientation and wavelet basis and varying j, the fact that the different D, (h) give rise
to the same function D(h) proves that condition ii) holds. Besides, as D(h) is convex,
condition iii) also holds. The fact that the different orientations lead to the same
D(h) evidences that the multiplicative process is isotropic. We have also tried different
wavelets bases (Daubechies p = 3, Daubechies p = 6, Haar, Coiflet p = 1, Symmlet
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p = 4, and Battle-Lemarié p = 3). However, any of them leads to the same D(h), what
proves that this function is a universal property. The parameter p here refers to the
degree of derivability or the interpolation order of the wavelet. Notice that projecting
on Haar bases is equivalent to taking finite increments. Thus, the correspondence of
spectra obtained with this basis implies that the results using more classical approaches,
as structure functions [37], are equivalent to those obtained with more sophisticated
wavelets.

From here on, it can be concluded that SLA verify all the requirements of the micro-
canonical multifractal formalism in a good extent.

Having demonstrated the existence of a multifractal hierarchy, the cascade expression,
Equation (6.11) can be used to relate the wavelet coefficients of the signal from the
different scales. For the discretized dyadic coefficients this relation reads [133]

Wik = Tk @ [£] (6.25)

where the notation [g} means the vector with components the integer part of those of g

The wavelet coefficients « represent the contribution to the wavelet projection

rg+1, 5]
at the immediately coarser scale j + 1 and about the same position as that of coefficient
a7 1t is hence called the father coefficient [19] associated to oz, which it is one of its

children coefficients. In 2D, each father has four children; see Figure 6.3.

Although Equation (6.25) is only a statistical equality and hence does not imply a
point-by-point correspondence, in general, it can be assumed that such a correspondence
is a good approximation for many wavelets. We will then define the ratio between a child
and its father 7,z by simply isolating in Equation (6.25), as if it holds point-by-point,

Oér'lz
Mg = —— (6.26)

o TR
T+, [g]

This will be a good approximation for the purpose of this study if the wavelet chosen is
almost optimal. Notice that the scale ratio [/ L is always 1/2 for any two compared scales.
This implies that all the variables 7, % must be equally distributed. They should also be
independent from the variables a g [ g] . In fact, this property will be only approximate
except for a particular wavelet, known as optimal wavelet, if it exists [133]. We will apply
this knowledge in order to improve the results from CVE in the oceanographic context.
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6.6 Adaptive CVE on SLA maps

In Section 6.3 we have seen that a direct application of CVE for the analysis of ocean
dynamics, and particularly on altimetry maps, is rather unsatisfactory. As discussed,
although D&J’s threshold is objective because it only depends on the total enstrophy
and the resolution, this has to be improved so that it could take into account some
physical properties of the flow. Our attempt will be centered on the implementation
of a new criterion based on the multiplicative cascade and thus adapted to the local
properties of the flow

For either of the methods we are going to introduce, we have used Battle-Lemarié
basis because this wavelet basis is the best adapted to altimetry data, as shown in [128],
although it has not a compact support and some unwanted neighborhood influence could
occur. Anyway this basis behaves particularly well for data that need to be smoothly
interpolated, e.g., altimetric products. Notice that the same choice was made in [33] and
in [128]. Let us also remark that the main methodological improvement of this work is
not related to the kind of wavelet we choose, but to the adaption of the threshold to
local variability. The key point is finding a threshold adapted to the local properties of
vorticity and physically meaningful. The global criterion does not work in systems in
which the vortices are presented in a wide range of scales, so a local criterion must be
searched.

6.6.1 Global and local thresholds

According to the standard formulation of the CVS technique [33], the incoherent part
should be a random, Gaussianly distributed field. As a refinement, if D & J’s criterion
leads to a non-Gaussian incoherent part the threshold may be reduced until the obtained
incoherent part verifies some tests proving its Gaussian character [13]. However, as was
shown in [128], when considering altimetry-derived vorticity fields the incoherent part
is never Gaussian, so the threshold would decrease to zero and no coherent-incoherent
separation will be produced. This means that, disregarding the value of the threshold,
dynamics is never well described for a moderate number of modes in the coherent part.
To avoid this problem and at the same time to fix a reference able to compare the
different methods, we have decided to fix the amount of number of wavelet modes to be
kept with the different methods. Hence, we have fixed the fraction f of retained wavelet
modes for each method.

The simplest extension of D & J’s criterion under this constraint is to search for
a constant threshold 67 such that a fraction f is kept. As usual, only those wavelet
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coefficients v,z which are greater in absolute value than 67 will be selected by the
coherent part. We call this criterion Global Threshold. The value f = 0.01 roughly
corresponds to the value of D & J’s threshold, and so similar percentages of enstrophy
and kinetic energy are obtained. However, a Global Threshold has the same global
character as D & J’s threshold and hence it does not take the local influence of structures
into account; as a consequence, at some areas deviations are important.

To define a local criterion is a bit more complex. For each fixed scale j, orientation
r, and fraction of selected modes f, a local threshold ijE must be obtained at each

position k. In this way, it is taken into account the influence of the neighbour wavelet
coefficients leading to the given fraction f of selected wavelet coefficients. We take a
local surrogate of D & J’s threshold as starting point: for each position k at the layer of
scale j and orientation r, we define a local neighbourhood of size IV; and we evaluate
the local enstrophy Z,gonit. In analogy to the standard D & J’s criterion, we take the

value 2, /Z pIn N,; as reference for that point. The local threshold (97’;]; is defined as:

0/ . = N2,/Z InN, (6.27)

rjk rjk

where )\ is a global variable with the appropriate value such that only a fraction f of
wavelet coefficients is selected. Recall that a wavelet coefficient iR will be selected as

: f
coherent if |ay 7| > erE‘

We have defined two different types of local threshold. We call the first one Windowed
Threshold. With this criterion we take the window of size (2A + 1) x (2A + 1) centered
around each point k in the layer of scale j and orientation r, and the local enstrophy

Z,i% 18 obtained by a uniform weighting of all the points in the window:

A
1 75, k417
7 = 2 6.28
E (28 41)2 Z_ L2 (6.28)

mi,ma=

and the value of N,; to be substituted in eq. (6.27) corresponds to the window size,
N, = (2A +1)%

The expression above can be generalized to the case in which a non-uniform weighting
is introduced. As before, we take a (2A + 1) x (2A + 1) window centered around each
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point k in the layer of scale j and orientation r, and the local enstrophy Z ;- is obtained
by a weighting of all the points in the window, in the way

1 r',EJrﬁ
i = DL wa (6.29)

A= > ws (6.30)

and the weights w,; are non-negative values. We have studied a particular case of
weighting, similar to the one used in [43]: the multiscale weighting, given by

Wy, = (631)

i[>

when m # 0, and wg = 0. We have implemented the local threshold associated to this
weighting that we have called Multiscale Threshold.

In Figure 6.4 we show examples of the application of the Global Threshold, Win-
dowed Threshold, and Multiscale Threshold, for f = 0.10 using a p = 3 Battle-Lemarié
basis and 31-pixel wide windows for the two local thresholds. The coherent enstrophies
and energies, expressed as percentages of the total enstrophy and energy, are presented
in Table 6.1. Results for windowed and multiscale thresholds show slightly smaller
percentages of explained energies and enstrophies than global threshold. However,
looking at Figure 6.4 we can notice how small scales are better represented with the
local definitions.

6.6.2 Singularity threshold

The next step was to design a criterion related to the existence of a cascade and to the
pertinence of MMF to describe SLA data. In both algorithms the separation is done
iteratively scale by scale and differentiating each orientation (the horizontal, vertical and
diagonal details).
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It has been argued that the most singular events in the multifractal hierarchy (i.e.,
smallest values, which correspond to the greatest values of (o due to the sign inversion
in Equation (6.23)) carry enough information to retrieve the signal completely [118, 119];
in fact, an explicit geometric algorithm to reconstruct a signal from the set of most singu-
lar points was designed in [126], with good performance in practical situations [129, 127].
Hence, we have designed a threshold intended to retain only the most singular punctual
singularity exponents h, . To select these exponents, a threshold exponent iy must
be chosen; hence, this kind of threshold acts similarly to the global D & J’s threshold.
However, as follows from Equation (6.23), the value of the exponent is normalized at
each scale and orientation with respect to its average reference level, and the absolute
value of the singularity decays when the resolution increases, i.e., when j decreases. This
gives a more balanced interplay among the different scales.

The Singularity Threshold criterion is defined as follows: a wavelet coefficient Ok

will be selected for the coherent part if the associated value of singularity A, % is smaller
than a threshold value h/; as before, the value of A/ is fixed according to the fraction
f of wavelet modes that will be selected. Results of the application of this criterion are
shown in Table 6.1 and Figure 6.5.

In Figure 6.6 a comparison of the global performances of all the presented methods
for different values of f is given. Global Threshold gives the best global results. Nev-
ertheless, it is not based on any physical criterion or gives a balanced representation
of the fields. Only the strongest structures are well represented and many areas with
important structures of medium intensity appear empty. Local thresholds (Windowed
and Multiscale) give the best balanced geometrical representation of the fields, but at
the cost of noticeably diminishing the global performances: the global enstrophies and
energies of the coherent parts obtained with this methods are always below those of the
global threshold. Only the Singularity Threshold attains a good local representation of
structures and a global performance almost as good as the one by Global Threshold,
except for very small values of f in which the global enstrophy is considerably lowered.
We hence conclude that the singularity threshold is the method with the best balanced
performance.

6.6.3 Beyond locally orthogonal criteria

All the methods presented so far lead to coherent and incoherent parts that are orthog-
onal in a strong sense, i.e., for each r, j and k£ we have:

af .ol . =0 (6.32)
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which is quite obvious, because if a wavelet coefficient is included in the coherent part
it is not included in the incoherent part and vice-versa. Consequently the coherent and
incoherent vorticities are mutually orthogonal:

(We,w;) = /dfwc(f)wi(f) = Z ZZaijE.aiﬂ =0 (6.33)

r=1,2,3 j P

Although orthogonality between the coherent and the incoherent parts is a desirable
property of a properly designed separation scheme, it could be formulated as a weaker
property. It is not necessary that the coherent and the incoherent wavelet modes are
orthogonal at each r, j and lg, but just as a combination. A separation of this kind will
also be more physically reasonable, because if the incoherent part behaves like noise it
should affect all wavelet modes equally and hence attributing the whole wavelet mode to
the coherent part, while there is a contribution by noise, can be justified if the amplitude
of the “noise” is small enough. However, if the noise-like incoherent component is not of
so-small amplitude or has significant spatial correlations or we want to extract relatively
weak coherent structures which may become stronger later on, we need to improve the
separation scheme and just retain the part of the wavelet mode which can exactly be
attributed to the coherent part.

The separation scheme could be based on the properties of the multiplicative cascade
discussed in Section 6.2 and its explicit realization in a wavelet representation presented
in Section 6.5. The idea will be trying to filter the variables ik associated to the
coherent contributions and substituting the others by some trivial proxy values. The
idea is selecting the 7 iE with greatest value, reasoning out in a similar way to what was
done in the previous criterion. The new variables associated to the coherent cascade,
nﬁjg will be given by:

_— { i el 2 (6.34)
rik nsign(n. ;) el < e

where the proxy value 1 must be defined in order to produce a coherent part with an
energy as close as possible to that of the original signal, and ensuring that the cascade
process is stable. Notice that the coherent wavelet modes ozij]; can be retrieved from
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the cascade variables by the recurrent application of Equation (6.25); in fact, all the
coefficients can be derived through a cascade from the integral wavelet modes «;. jo,

J
ik = Hnrj/[zj—j’;;] Q0 (6.35)

J'=j

Once the coherent wavelet coefficients a“ 7 are generated using the expression above,
Ty

we build the coherent vorticity w.(#). The incoherent vorticity is derived by subtracting
it from the original field: w; = w — w.. This criterion is simple, takes profit of the
cascading processes in oceanic turbulence and is physically sound. However, determining
the correct value of the proxy 7 is a hard task. The coherent part represents the main
component of the total vorticity, but not the whole. For this reason,  cannot be
adjusted just requiring that the coherent enstrophy equals the total enstrophy, because
that choice of 7 leads to divergent cascades and an infinite coherent vorticity. Otherwise,
too small values of 77 lead to decaying cascades which tend to produce vanishing coherent
parts. Maybe the determination of 7 could be directed by enforcing the orthogonality
between the coherent and the incoherent part. Additionally, assuming that the wavelet
representation leads to an explicit cascade is just an approximation, as discussed in
Section 6.5. In addition, due to the low-pass filters applied to SLA data the obtaining of
the cascade variables N, using Equation (6.26) may lead to divergences which should
be treated. Work in these directions is still in progress.

6.7 Conclusions

In this article we have shown that the influence of ocean turbulence on SLA maps
guarantees the validity of many symmetries which allow to simplify their study. All
these properties, related to scale invariance and the existence of underlying cascade
processes, can be summarized under the Microcanonical Multifractal Formalism (MMF).
When an appropriate multiscale representation of SLA data is applied, as with wavelet
decompositions, the microcanonical multifractal properties can be easily expressed in
terms of equations relating the behavior of the wavelet modes across the different scales.

We have also reviewed the fundamentals of the Coherent Vortex Extraction technique,
introduced to describe the behavior of homogeneous turbulence. In previous works [128]
the standard CVE applied to oceanic turbulence, and particularly to altimetry data,
was shown to have a considerably lower performance than for the study of laboratory
experiments and computer simulations [33, 34, 13]. We have shown that the properties
derived from the study of MMF on SLA maps can be combined with CVE, so giving
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rise to new adaptive schemes in which some of the problems of standard CVE can be
mitigated.

The essence of CVE consists in separating the vorticity field associated to a turbulent
flow in two parts: the coherent part, dominated by the presence of mesoscale structures,
and the incoherent part, in which no distinguished feature is observed and which behaves
like noise. The coherent part is constructed by selecting the wavelet modes with an
amplitude larger than a given threshold. The separation scheme is linear, so the total
vorticity field can be retrieved as the sum of its coherent and incoherent parts. However,
as oceanic turbulence is not homogeneous, it seems that a significant part of unsolved
coherent modes are arbitrarily assigned to the incoherent part when the standard CVE
is applied. In fact, even for low values of the threshold the problem persists and the
incoherent part never becomes noise-like, what is evidenced for instance by the study
of their PDF's, which are never Gaussian. These non-Gaussian components found using
CVE are also not surprising considering that the data is low resolution, which implies
underesolved Reynolds number, and that filtering and interpolation are applied. The new
separation schemes, on the contrary, take into account the importance of local structures
despite the poor quality of the data. For the more sophisticated of these criteria the
value of a purely microcanonical multifractal variable, the local singularity, is used to
determine if the wavelet mode should be considered coherent or incoherent. Results
show that singularity-based thresholds attain the best balance between global and local
description of flows within CVE. In this way, we could gather better the complexity
of ocean turbulence, and describe circulation patterns with few degrees of freedom and
using universal parameters.

The research line developed in this article opens the way to new studies on oceanic
processes. For instance, CVE method could be applied to other kind of satellite data,
even if they cannot be dynamically interpreted as straightforwardly as vorticity. Other
satellite products such as Sea Surface Temperature (SST) or Chlorophyll Concentration
(CC) offer the advantage of having higher resolution and greater accuracy. This means,
dealing with variables less affected by filtering problems we could explore the information
over a wider range of scales.

The strategy we expose is interesting to obtain valuable oceanographic information
from satellite images. Nevertheless, this new methodology is also of application to
other types of data as, for instance, numerical models of the ocean circulation. In fact,
although our wavelet-based approach has been focused on satellite images, the proposed
methods are flexible and valid for a 3D scope. Further analysis should be done in the
future, and results could be compared with, for instance, 3D mixing layers [113]. All this
combined could possibly help to effectively localize the most active parts of the main
oceanic gyres, so simplifying our perception of the majority of the mechanisms taking
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place in the ocean that control the physical-biologic processes and that at the same time

respond to and affect the climatic system.

] Criterion H D& J \ Global \ Windowed \ Multiscale \ Singularity ‘

% Zc

58.41 | 94.33

81.85

77.12

81.24

% Ec

49.69 | 95.37

77.76

76.81

95.48

Table 6.1: Percentages of global coherent enstrophies and coherent energies obtained
with the different criteria for the January 150 SLA map.
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Fig. 6.1: Left: Velocity spectrum; Right: Vorticity spectrum. Both spectra are radial aver-
ages, and they have been obtained after processing all the dataset of SLA maps. The horizontal
axes are given in inverse of wavelengths, expressed in km~!; the vertical axes are given in m?/s?
for the velocity spectrum and in s~2 for the vorticity spectrm. The slopes of the guide straight
lines are -1 and +1, respectively.



Fig. 6.2: Singularity spectra derived from the wavelet coefficients at the different scales and
orientations. From left to right: Horizontal, Vertical, and Diagonal orientations. From top to
bottom: j =1, j = 2 and j = 3. The lines correspond to Daubechies p = 3 (solid), Daubechies
p = 6 (dotted), Haar (dashed), Coiflet p = 1 (dash dot), Symmlet p = 4 (dash dot dot), and
Battle-Lemarié p = 3 (long dashes).
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Fig. 6.3: Wavelet multi-resolution decomposition of the vorticity-derived field from SLA map
(January 1St, 1997, 64 x 64 pixels) decomposed on 2 levels (j = 1,2), distinguishing vertical
(r = 1), horizontal (r = 2), and diagonal (r = 3) details. The orientation r = 0 corresponds

to the approximation of the image at each scale j. The wavelet used in this case was order 3
Battle-Lemarié basis.
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Fig. 6.4: Results of the different thresholds on a map (January Hmﬁ 1997). Vorticity fields given as background color. Top:
Original field (left) and coherent field for D&J’s threshold (right).
using p = 3 Battle-Lemarié basis. Figures correspond to Global Threshold (left), Windowed Threshold (middle), and Multiscale

Threshold (right).

Bottom: Coherent fields retaining 10% of wavelet modes
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Fig. 6.5: Results of the application of singularity threshold on the January 1St, 1997 map using
p = 3 Battle-Lemarié basis. Vorticity fields are represented in the same way as in Figure 6.4.
Left: Original vorticity and velocity fields. Right: Coherent vorticity and velocity fields for
10% of the wavelet modes.
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Fig. 6.6: Left: Coherent enstrophy percentages vs f for the January 1St,1997 map. Right:
The same for the coherent kinetic energy. In both cases, lines represent the Global Threshold
(dash dot), Windowed Threshold (solid), Multiscale Threshold (dotted), and the Singularity
Threshold (dashed).






CHAPTER 7

Discussion

In this chapter, a discussion about the results from my ongoing research on ocean dy-
namics through Microcanonical Multifractal Formalism is presented using the same pub-
lication order described in Section 1.1.

In “Tracking oceanic currents by singularity analysis of MicroWave Sea Surface Tem-
perature images” [136] we investigated how to effectively use MMF and local wavelet-
based Singularity Analysis to extract physically significant structures from MicroWave
Sea Surface Temperature images. It has been found that SA is useful in structure recog-
nition from satellite-derived variables. In addition, the behavior of such structures has
been shown to be connected to the known global picture of ocean circulation, but offering
a much richer description than the usual oceanic circulation scheme. Hence, it has been
possible to extract the streamlines that delineate ocean dynamics. Among other uses,
SA-based pattern extraction is useful in order to measure and track mesoscale structures.
SA behaves like a sophisticated edge detector, but it provides physical information about
current waves, filaments or eddies. These structures are active parts of the mechanisms
that control ocean and climate variability. From the standpoint of its application, the
chief advantage of using MW SST images lies in their almost global coverage. Typical
limiting factors, as clouds, orbital gaps, aerosol corruption, etc. do not interfere in this
case. However, there are some drawbacks due to interpolation algorithms applied to this
kind of data: spatial resolution is reduced, and some singular values may be smoothed.

Two of my published works, “Obtaining and monitoring of global oceanic circulation
patterns by multifractal analysis of MicroWave Sea Surface Temperature images” [137]
and “Técnicas multifractales para la extracciéon de la funcién de corriente a partir de
imagines de la superficie del mar” [131], sketch the possibility of obtaining a dynamical
stream-function applying SA to satellite images. Typically, the most direct estimation
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of velocity fields from satellite variables is achieved by using altimetry products [70,
107, 52, 53, 106] and the geostrophic approximation. Thus, we were previously able to
detect only structures limited to 30 km and to a time resolution of 10 days. However,
a better spatio-temporal resolution is guaranteed employing SA. Some techniques based
on tracking SST patterns from sequences of images, e.g., Maximum Cross Correlation
(MCC), succeeded deriving surface velocity fields [31, 38, 30, 141, 16]. Yet, MCC suffers
two limitations in contrast with SA: the spatial resolution is still coarse, and it does not
offer estimates of surface currents from an instantaneous image or at different scales.
Alternatively, Surface Quasi Geostrophy theory can be applied on the bases of MW SST
images [48, 114, 115, 51]. However, their validity is restricted to specific regions and
strong SST gradients conditions. Considering that the analyzed data shows a chaotic
structure defined by Fully Developed Turbulence, high Reynolds numbers, turbulence-
based theories seem to be also very appropriate to explain flow organization. In this
context, finite-size and finite-time Lyapunov exponents can be employed to characterize
ocean dynamics, but for this purpose velocity field must be known [39, 139]. Differently,
singularity exponents can be obtained from any quantity dragged by the flow. Despite
the above-mentioned advantages of using SA, the obtained fields should be locally re-
analyzed, as the supplied velocities are dimensionless. From a single image, SA does
not provide a valid estimation on the velocity modulus or the flow sense, but the flow
direction at each point is known precisely.

The key goal in “Common turbulent signature in sea surface temperature and chloro-
phyll maps” [98] was to show that scalars dominated by advection should inherit the
multifractal properties of the flow. Once the singularity maps obtained by applying SA
to SST images were validated with altimetry data in the first work, in this study the
same method was applied to different satellite products in order to measure the degree of
correspondence of their multifractal structures [129]. SST has been previously used as a
tracer of sea surface patterns [139]. Other studies also analyzed the passive behavior of
chlorophyll pigments in very dynamic areas [24, 26]. Thus, we undertook a comparison
between SST and Chlorophyll Concentration patterns. In this study we show that there
is a tight fitting between the two, in spite of all limitations associated to these images
and the intrinsic uncertainty of the SA. This result reinforces the assumption that there
is common dynamical mechanism acting on the different scalars. Additionally, we ana-
lyzed if there was the same statistical turbulent signature in both of the images through
the singularity spectrum. Once more, we found evidence that there is a connection be-
tween the multifractal properties of such variables and the turbulent advection of the
flow. The latter is the underlying cause of flow complexity. A major finding of my re-
search is that the close matching between image processing and physics is independent
of the particularities of any scalar tracer and at any scale or specific region of study.
These conclusions open the way to complement CC maps with SST ones, which offer a
wider coverage, at those points where CC information is missing. This analysis offers the
appealing perspective to understand, e.g., the biology of phytoplankton communities.



127

After demonstrating the geometrical organization of some satellite scalars as SST and
CC, it was natural to apply the same kind of analysis to Sea Level Anomalies (SLA) to
investigate the possibility of using their multifractal properties for an improved descrip-
tion of mesoscale ocean circulation. In “Analysis of ocean turbulence using adaptive
CVE on altimetry maps” [99], Coherent Vortex Extraction technique was applied to
SLA maps and improved by means of a multifractal scheme [19, 132, 133] to get dynam-
ical information about the ocean in a more realistic way. An essential result is that this
adaptive version of CVE was physically more meaningful, and anyway able to separate
coherent and incoherent parts of the flow in such a way that lower scales were better
resolved and the coherent contribution was defined by using a reduced number of degrees
of freedom. In this way, the compression is noteworthy and the computational cost is
significantly reduced. By using the standard global threshold of separation [27] and 10%
only of the retained modes for the coherent part, around 60% of the total enstrophy and
50% of the total energy can be effectively represented. This threshold does not consider
the local structures of the flow at each point. In fact, there is still a relevant part of the
eddy field that is contained in the incoherent part after decomposition. This limitation
was overcome by introducing geometrical properties of the flow after proving the exis-
tence of a multifractal hierarchy in SLA maps. This novel procedure using 10% only of
the coherent modes allows recovering 81% of the total enstrophy and 95% of the total
energy. Moreover, we show that smaller scales are better represented with this method.

The research presented shows that a 2D turbulent flow, as it is the case of the ocean,
can be described by satellite-derived scalars characterized by multifractal properties
and/or by those structures that are self-organized in coherent vortices after complex
flow evolution. These structures are subjected to the velocity field - due to long-range
interactions, each vortex feels the influence of the mean field due to many others - and
they play an important role in ocean dynamics.






CHAPTER 8

Conclusions

Microcanonical Multifractal Formalism offers a new perspective of turbulent flow events
far from the mechanicistic view that has been dominating our models to capture flow
organization. In a world in which phenomena cannot be completely understood in
terms of causal relations, different theories are required. From this need, MMF in
conjunction with wavelet analysis has emerged to achieve the goal of predicting scenarios
and behavior of real flows using more reliable approximations. To successfully deal with
the application of multi-resolution analysis to satellite products, techniques such as
Singularity Analysis and Coherent Vortex Extraction have been used.

Instead of starting from the evolution equations of microscopic entities, i.e., water
packages in the Navier-Stokes equations, these novel techniques start from macroscopic
entities (mesoscale eddies, fronts, jets, zonal gyres, etc.) that, by means of validated
and more realistic equations, are easier to be observed and described. The flow can
be partitioned into a part that is coherent and a remainder that is incoherent. This
up-down approach is particularly convenient for short-term mesoscale prediction (oper-
ational models) and experimental data assimilation purposes. On the contrary, down-up
simulations are affected by the noise at small scales, so that numerical dissipation needs
to be introduced. In this way, mesoscale structures of low amplitude are somehow re-
moved; but these structures should be considered to avoid distorting the real picture of
ocean circulation, as these structures are the best ones defining oceanic behavior because
of their energy and mass transport capacity. Furthermore, by using the methods pro-
posed in this document the evolution of the system can be followed with lower number of
degrees of freedom, which implies a reduced computational cost with respect to numeri-
cal models. There is, however, a lot to be gained by exhaustively comparing results from
MMF on satellite data with results obtained in the traditional and classical mechanics
framework. Since these new methods are scale-invariant, their results can be adapted to
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a given resolution scale, and results obtained from data at other resolutions are directly
comparable. Progress has been steadily advancing concerning different theoretical and
numerical approaches. However, there are still fundamental questions that cannot be
answered, and turbulence is far from being fully understood. Thus, combination of both
models will help to reach an even better dynamical description of non-linear systems
and also of their causal relations. Further studies on this issue will be fundamental.

These new techniques not only apparently succeeded in obtaining a new picture of
today’s ocean system and a better understanding of the processes taking place in the
ocean; but these techniques also have allowed to tackle turbulence problems realisti-
cally, in spite of all problems associated with satellite imagery. In particular, it has
been possible to infer a large amount of instantaneous information on the spatial mul-
tiscale view of ocean flows, e.g., satellite-derived detailed velocity maps for the ocean
surface at any location and time, which are not a valid estimation of the velocity field
but instead identify correctly the flow direction at each point. What is more, it has
been shown that, according to the principles of turbulent cascading, the distribution
of singularity exponents derived at a given scale is in equilibrium with the distribution
of exponents as observed at any other scales. This implies that kinetic energy and/or
enstrophy is distributed in such a way that it guarantees a continuous transfer between
larger and smaller scales. The multiplicative cascade of the scalar is analogous to the en-
ergy cascade of the flow owing to the Fully Developed Turbulence regime. Studying the
statistics of the corresponding singularity spectra, one can compare the cascading pro-
cesses associated to each type of scalar. It has been proved that the singularity spectra
of different satellite-derived scalar tracers coincide at any scale or specific region under
study. The cascade is also preserved when discrete-wavelet representations are used, as
they are scale-invariant by construction. On the bases of a well-adapted wavelet-based
method, CVE has been also improved over real data to extract coherent structures for
all available scales - going from the children coefficients to the parent coefficient in the
pyramidal wavelet decomposition.

These contributions open the way to many operational and reanalysis applications as
well as to future merging and interpolation techniques. The recovery of flow structures
where information is lacking should be possible by examining adequate scalars and cal-
culating their singularity exponents. In this way, as the local information is available
for almost all the scales from an instantaneous image, spatial and temporal resolutions
of those maps of poor quality could be improved. Despite the fact that the proposed
methods have been applied to satellite images, they are flexible as well as valid for other
type of data, and for a 3D scope. Moreover, the application range of these techniques is
not restricted to the ocean; they comprise many dynamical systems with non-linear cou-
pling. This obviously includes turbulent and chaotic flows in general, and more globally
dynamical systems with non-linear and scale-invariant character. In any of the presented
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studies, scale invariance symmetry of satellite scalars has been the key point and this
evidences the dominant role of turbulence in oceanic flows.
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