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Introduction

The original interest in sandwiched singularities comes from a natural ques-
tion posed by J. Nash in the early sixties to H. Hironaka: does a finite
succession of Nash transformations or normalized Nash transformations
resolve the singularities of a reduced algebraic variety? In 1975, A. No-
bile [47] proved that, in characteristic zero, a Nash transformation is an
isomorphism only in case the original variety is already non-singular. It
turns out, in particular, that curve singularities are resolved by a succes-
sion of Nash transformations. Rebasoo proved in his Ph. D. thesis that
Nash transformations also resolve certain kinds of quasi-homogeneous hy-
persurface singularities in C3. In 1982, G. Gonzalez-Sprinberg proved that
normalized Nash transformations resolve rational double points and cyclic
quotients singularities of surfaces [23]. Then, H. Hironaka proved that af-
ter a finite succession of normalized Nash transformations one obtains a
surface X which birationally dominates a non-singular surface [30]. By
definition, the singularities of X are sandwiched singularities. Some years
later, in [58], M. Spivakovsky proves that sandwiched singularities are re-
solved by normalized Nash transformations, thus giving a positive answer
to the original question posed by Nash for the case of surfaces over C.

Since then, a constant interest in sandwiched singularities has been
shown, and they have been deeply studied from the point of view of defor-
mation theory by de Jong and van Straten in [13], and also by Stglen [28]
and Mohring [43]. Sandwiched singularities have been also studied as a nice
testing ground for the Nash and the wedge Problem by Lejeune-Jalabert
and Reguera in [40], where the main idea is to extend combinatorial argu-
ments for toric surface singularities to sandwiched ones.

Sandwiched singularities are the singularities obtained by blowing-up
a complete ideal in the local ring of a regular point on a surface. They
are rational surface singularities (roughly speaking, isolated singularities
whose resolution has no effect on the arithmetic genus of the surface) and
among them are included all cyclic quotients and minimal surface singular-
ities. Therefore, the following chain of inclusions between classes of surface
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2 Introduction

singularities does hold:
cyclic quotients & minimal & sandwiched ¢ rational.

Sandwiched singularities are Cohen-Macaulay, but are not complete in-
tersections and in general, there are no simple equations for them. The
purpose of this memoir is to study sandwiched singularities through their
relationship to the infinitely near base points of the complete ideals blown-
up to obtain them!.

As said in the preface of [11], infinitely near points are a nice and old
idea for describing singularities. Their use and their properties, such as
proximity, satellitism, etc. give a very enlightening picture of the behaviour
of singularities of plane curves and it seems to be a very promising approach
in the study of singularities in a wider context. They appear in the work of
M. Noether and their geometry was extensively developed by F. Enriques
[16]. Besides the book of Enriques and Chisini, other classical references
are the survey in the first chapter of Zariski’s book on surfaces [62], chapter
XTI of the classical book on curves by Semple and Kneebone [57] or section
5 of Zariski’s paper on saturation [63]. The theory of infinitely near points
has been revised and developed in a modern account by Casas [11].

Complete ideals were introduced by Oscar Zariski twenty years after the
publishing of [16]. In [61] he develops his theory of complete ideals as an
arithmetic theory parallel to the geometric theory of linear systems of plane
curves going through an assigned set of base points with multiplicities. One
of the central points of the theory is that any complete ideal in the local ring
of a surface at a regular point has a unique factorization into irreducible
complete ideals. Relevant to our purposes is the fact that any complete
ideal has a cluster of infinitely near base points that in turn determines the
ideal.

As basic results relating a sandwiched surface X and the base points
of the complete ideal I blown up to produce X, we determine the singular
points of X, as well as their multiplicities and fundamental cycles in terms
of the base points of I, which are also used to determine the multiplicities
of the points of curves on X.

These facts allow us to study the existence of local equations for curves
on X. We derive consequences relative to their orders of singularity and
make explicit computations concerning the existence of Cartier divisors on
X with prescribed properties. In particular, we show that the tangents
to the exceptional curves of X going through a sandwiched singularity are
linearly independent. All of this leads to studying complete ideal sheaves
" with finite cosupport on X, from which we infer results relative to the

! A similar viewpoint has been used by Mahring in his thesis [43] to study deformation
theory and the Kollar conjecture for sandwiched singularities



Introduction 3

factorization (or semi-factorization) of complete ideals in the local ring of
a sandwiched singularity.
We also obtain some results concerning the Nash Problem of arcs through
a sandwiched singularity. In a 1968 preprint later published as [46], Nash
" introduced arc spaces and jet schemes as a new way for understanding the
singularities. The main question of [46] is to know whether each essential
component of a resolution of a singular point gives rise to an irreducible
component of the space of arcs through it. Nash conjectured that there is
a bijection between the sets of irreducible components of the space of arcs
through a singularity and the set of essential components of it. In a recent
paper [33], Ishii and Kollar prove that the Nash question is true for toric
singularities of any dimension, but false in general. More recently, Reguera

has proved the Nash problem for a large class of singularities, including the
sandwiched singularities [55].

Throughout this work and unless otherwise specified, the base field is
the field C of complex numbers. Standard references for most of the mate-
rial treated here are the book of Casas [11] and the papers of Spivakovsky
[58] and Lipman [41].

Before giving an outline of the different chapters, we introduce some
definitions and notations and set the framework where the study of sand-
wiched singularities is developed. Most of the notations concerning clusters
and infinitely near points are taken from [11]. We take a smooth surface 3,
a point O € § and write R = Og o for the local ring at O and mp for the
maximal ideal of R. By blowing-up a complete mo-primary ideal I con-
tained in R, we obtain a surface X = Bl;(S) with sandwiched singularities.
If we write K = (K, v) for the cluster of base points of I and 7y : Sg — S
for the blowing-up of all the points of K, we have a commutative diagram

SK"—f-;-X

N

S

where 7 is the blowing-up of I and the morphism f : Sx — X, given
by the universal property of the blowing-up, is the minimal resolution of
the singularities of X. We write {Ep}pexi for the irreducible exceptional
components on Sk and K, for the set of dicritical points of K. Then, the
exceptional irreducible components of X are {L,}pex, , where each Ly is
the direct image of E, by f. We denote by Fx the set of all infinitely near
points not in K and which are in the first neighbourhood of some point
in K. Given a weighted cluster 7 = (T, 7), the equations of the curves
going through 7 describe the set of non-zero elements of an ideal Hy of
R. We say that 7; and T are equivalent if Hy; = Hp,. If 7 = K(p) is
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the irreducible cluster determined by some point p infinitely near to O, we
write I, for the simple complete ideal Hy(p)-

Now, we briefly summarize the main contents of each one of the chap-
ters.

Chapter I is of preliminary nature and gives references to the lit-
erature for proofs. Concepts and well-known facts about infinitely near
points, weighted clusters, complete ideals and rational and sandwiched sur-
face singularities are reviewed and some consequences that are needed in
the memoir are derived. In sections I.1 and 1.2 definitions related to point
blowing-ups on a regular surface and weighted clusters are recalled from [9]
and [11]. In subsection 1.2.1 we describe the unloading procedure due to
Enriques, which will play an essential role throughout this work. Section
1.3 is devoted to recall some well-known facts concerning rational surface
singularities that will be used along this memoir; the main references are
(3] and [41]. Section I.4 introduces sandwiched singularities and reviews
the most relevant facts for our study. Finally, in section 1.5 we recall some
facts and elementary definitions concerning dual graphs.

In Chapter IT we establish the main link between the study of sand-
wiched singularities and the theory of Enriques diagrams of weighted clus-
ters and we derive some results on sandwiched singularities by using the
unloading procedure. Enriques diagrams are combinatorial data associated
with clusters of infinitely near points and proximity relations. In section
I1.1 and for rational surface singularities in general, we prove the following
theorem.

Theorem 1. [Theorem II.1.7] Let Ogp be a local ring with a rational
surface singularity, let I C Ogp be a complete mp-primary ideal and X
the surface obtained by blowing-up I. Given Q € X, write Mg for the
ideal sheaf of Q). By associating to each point Q in the exceptional locus
of X the complete ideal Ig = m,(MgIOx), we get a bijection between the
set of points on the exceptional divisor of the surface X and the set of the
complete ideals J C I of codimension one. The inverse map associates
to each complete ideal J the only point Q all the virtual transforms of the
curves C : h=0, h € J are going through.

As a consequence of this result, we recover the fundamental cycle on any
resolution of a singularity on X as the difference between the exceptional
divisors on that resolution corresponding to I and I (see Corollary I1.1.10).
These facts allow us to study the points lying in the exceptional locus of
X and, in particular the singularities of X, from the point of view of linear
subsystems of codimension one in the linear system defined by I. This is
one of the key facts of this chapter. Section II.2 uses these results to study
the connection between sandwiched singularities and clusters of infinitely
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near points and shows how to obtain information of the surface X from
the Enriques diagram of K and its virtual multiplicities. We describe a
procedure to compute the cluster K¢ of base points of the complete ideal
I associated to Q by the above theorem, and we characterize the singular
- points of X in terms of the consistency of the cluster K4, obtained by adding
to K some point ¢ € Fg (depending on Q) counted once (Proposition
11.2.5). Then, if Q@ € X is singular, we denote by Tg the set of (non-
dicritical) points p € K such that f contracts the exceptional component
Ep to Q. We show that there is only one minimal point (relative to the
natural ordering) in T, denoted by Og, and we prove

Corollary 2. [Corollary 11.2.10] We have that

(a) the number of singularities of X equals the number of non-equivalent

clusters Kq, for g € F, not already in K and p € K a non-dicritical
point of K.

(b) Ifp1,p2 € Tg for some singularity Q € X, the exceptional components
Ep, and E,, intersect on Sk if and only if p1 is mazimal among the
points of K proximate to ps or viceversa.

(c) Let Q € X be singular and let ¢ € Fx be such that Hi, = Ip.
Write Zg = Z%T 2By the fundamental cycle of Q. Then, for each

u € Ty, zy is the number of unloading steps performed on u in the
unloading procedure of K.

After this, we describe the Enriques diagram of a complete mo-primary
ideal verifying the conditions 1. and 2. of Corollary 1.14 of [58] and we
give a formula for the multiplicity of a point Q in the exceptional locus of
X in terms of the virtual multiplicities of X and Ko:

Theorem 3. [Theorem 11.2.14] Let Q be any point in the ezceptional locus
of X. Then the multiplicity of X at Q is

muth(X) = /CQZ - K2

The section IL.3 is technical and devoted to study the effect of unloading
multiplicities after adding some simple point q € Fx as explained above.
Lemma 11.3.1 shows that by unloading, the multiplicity at Og has been
increased by one and the multiplicities at the others points either remain
unaffected or decrease by one. This fact suggests defining the multiplicity
relevant points (M R-points for short) of K relative to a sandwiched singu-
larity as those points of K where the multiplicity decreases by one after
unloading. The set of these points is denoted by Bg and its interest will
be clear in the forthcoming section II.5. Theorem II.3.8 relates the coeffi-
cients of the fundamental cycle of a sandwiched singularity to the proximity
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relations of the point in K. As a consequence of some of these facts, in
subsection I1.3.1 we give a description of the Zariski factorization of any
complete ideal J of codimension one in I in terms of the Zariski factoriza-
tion of I and the point @ in the exceptional locus of X corresponding to J
by Theorem 1. Namely,

Theorem 4. [Theorem 11.3.13] Let I = [[ec, I;7, with op > 1, be the
Zariski factorization of I and let J be a complete mo-primary ideal of codi-
mension one in I. Let Q be the point in the exceptional locus of X corre-
sponding to J by Theorem 1. Then

J=H; [ =" I "

pex? pek\k9

where KZ% ={pe Ky | Q€ Ly} and Hy C R is a complete mp-primary
ideal whose factorization shares no simple ideals with that of I. Moreover,
Hj is simple if and only if Q is non-singular and in this case, Hy = I,
where ¢ € Fg is the unique point such that Hy, = Ig. If Q is singular,
then the simple ideal Io, appears in the factorization of Hy.

It follows in particular that the factorization of H; determines if @ is singu-
lar or not. The aim of section 11.4 is to study the resolution of sandwiched
singularities in terms of chains of complete ideals in R (Theorem I1.4.5).
In particular, in Proposition I1.4.4 we see that the blowing-up of some sin-
gularity @ € X is the birational join of X and the surface obtained by
blowing-up the complete ideal Ig C I. In section IL.5 and once a curve
C on S has been fixed, we give a formula for the multiplicity of the strict
transform C of C on X at any point in the exceptional locus of X:

Theorem 5. [Theorem I1.5.1 and Corollary I1.5.4] Let Q be a point in the
ezceptional locus of X. If C is a curve on S, then

multo(C) = e0o(C) — Z ep(C).

peEBY
In particular, multg(X) =1+ ﬁBg.

From this, we obtain formulas for the number of branches of hypersurface
sections of sandwiched singularities and infer the well-known fact that mini-
mal singularities are those rational surface singularities whose fundamental
cycle is reduced (this fact was already stated by Kollr in [34] without
proof). In Proposition I1.5.17, we prove that the number of exceptional
components going through a sandwiched singularity is bounded by its em-
bedding dimension and characterize when this bound is attained. Section
11.6 is technical again and uses some previous results already seen to derive
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that any two exceptional curves of X going through the same sandwiched
singularity are not tangent.

We conclude the chapter by using techniques and results of the previous
sections to derive consequences concerning adjacent complete ideals, i.e.
pairs of ideals J C I with dim¢ § = 1. We answer some of the questions
posed by S. Noh in the last section of [49] related to the existence of adjacent

ideals right above or below of given complete ideals in a regular local two-
dimensional ring

Chapter III deals essentially with the principality of divisors going
through a sandwiched singularity. It is well known that Weil divisors going
through a singularity (X, Q) are not Cartier divisors in general. We inves-
tigate this fact for the case of sandwiched singularities and we obtain the
following criterion.

Theorem 6. [Theorem IIL1.1] If u € Ky denote Loy = 3 e, Vp(lu)Lp
and fized a curve C on S, write Lc for the exceptional component of 7*(C)
on X. The following four assertions are equivalent:

(i) The strict transform C on X is a Cartier divisor;

(iii) There exists a curve Co C S such that Lc, = Lc¢ and the strict
transform Cp goes through no singularity of X;

(iv) HH% = {g € R | vp(g9) > vp(C),Vp € K1} and if ¢ € Ty is not a
dicritical point of K, then ¢ is not a dicritical base point of Hg either.

As a consequence of this theorem, we see in Corollary II1.1.6 that if C is

Cartier, then
Q
(< I I [op

peEl4

is the (Zariski) factorization of HZ into simple ideals, where a, = IC -Lp|x
for each p € K4+. In Remark II1.1.10 we propose a procedure based on
unloading to determine if the strict transform on X of a curve on S is
Cartier or not. In section III.2 consequences are derived: writing Sk, for
the minimal embedded resolution of C C X, a formula is given for the
exceptional component of the total transform of C on Sk in terms of
the values of C and HY, relative to some divisorial valuations (Proposition
I11.2.1). From this, we derive a formula for the intersection multiplicity of
effective Cartier divisors and effective Weil divisors on X in terms of the
intersection numbers of some curves on S:
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Corollary 7. [Corollary I11.2.3] Let C and Cy be curves on S and assume
that C is Cartier. Then,

Ié'a;lX = [C, CI]O - [’C%,Cﬂo,
where K& = BP(HZ.).

In the following two sections we propose algorithms to give effective Cartier
divisors on X with prescribed conditions. In section II1.3 we give a proof
of the following result:

Theorem 8. [Corollary II1.3.5] Let Q = {Q1,...,Qn} be points (singular
or not) in the exceptional locus of X and for each Q;, let {alzf'}pelch be
+

posttive integers. Then, there exists a cluster 7§ such that if C is a generic

curve going through 75, then C is a Cartier divisor on X going through
Q1,...,Qn and for each Q; and each p € K&,

[C7LP]Q1Z = a]io'
Moreover, if Q; is regular or such that Og, is free or Og, = O, C is
wrreducible as a principal divisor near Q;.

The proof of this result is constructive and allows us to describe a procedure

to compute the cluster 7§. Moreover, from Theorem 8 we infer that the

tangents at @ to the exceptional curves {Lp}p cic@ are linearly independent.
+

A v-minimal Cartier divisor containing a given effective Weil divisor
C on X is a Cartier divisor such that its exceptional part in the minimal
embedded resolution of C' is minimal relative to the order given by the co-
efficients of the exceptional components. In section 1114, after introducing
a little modification of the unloading procedure (partial unloading), we give
an algorithm to compute the v-minimal Cartier divisors containing a given
WEeil divisor C' on X. In Proposition I11.4.15 we describe the singularities
of these curves, and in section IIL.5 we use the tools and results developed
in this chapter to compute the order of singularity of an effective Cartier
divisor on X:

Theorem 9. [Theorem IIL5.1 and Corollary 111.5.5] Let C' be a curve on
S such that C is a Cartier divisor on X. Then,

50(C) = 6x(C) + 6o (K2).

Moreover, if for every p € K we write 7y for the virtual multiplicity of K&
at p and ny = ey(C) — 77, then

5x:(0) = 3 Blle= D),

2
pEKc
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For the general case, when C is not necessarily Cartier, we propose a less
explicit formula for the order of singularity of C on X in terms of some
clusters, 7,° and 7§, obtained by applying the algorithm of section 1114 to

- C.

Proposition 10. [Proposition IIL5.8] Let C be a curve on S. Then,

~ . Hype
§x(C) =[1,Clo — [15’, Clo — dlmc(H; )-

In subsection II1.5.1 we use this result to compute the semigroup of a branch
going through a sandwiched singularity, we give some examples and show
that in general, this semigroup is not symmetric.

In Chapter IV we use the results of Chapter III to explore the con-
nection between the ideal sheaves on X with finite cosupport contained in
the exceptional locus and the complete mp-primary ideals in R. In virtue
of Theorem 6, the principality of the strict transform on X of a generic
curve C going through some cluster 7 only depends on {vg }pex, - In sec-
tion IV.1 we introduce the Cartier ideals for X as those complete ideals for
which the strict transforms on X of curves defined by generic elements of
them are Cartier divisors. Given a complete mp-primary ideal H C R, we

denote by H° = {g € R | vp(g9) > vp(H),Vp € K;}. Then we prove the
following result.

Theorem 11. [Theorem IV.1.3] Let J be an ideal sheaf on X with finite
cosupport {Q1,...,Qn} contained in the exceptional locus of X and such
that for each @, the stalk J; = Jg, is a complete mg,-primary ideal of
Ox,o,. There exists a complete mo-primary ideal Hz in R with

Z dlmc ’Ql

and such that:
(a) Hg is a Cartier ideal for X;

(b) the sheaf Hy = H7Ox tis locally principal except precisely at the
points Q;,i1 =1,...,n and we have

(c) if C is a curve defined by a generic element of Hy, then its strict
transform C on X is a Cartier divisor and intersects the exceptional
locus of X exactly at the points {Q1,...,Qn}.
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Moreover, with these requirements, the ideal H gz is uniquely determined.

This result allows us to generalize Theorem 1 to complete ideals H C I of
any codimension provided that their exceptional support on X equals that
of I,i.e. Ly = L;. Namely,

Corollary 12. [Corollary IV.1.11] Fized m > 0, there is a one-to-one cor-
respondence between the set of ideal sheaves J on X with finite cosupport,
say {Q1,...,Qn}, contained in the exceptional locus of X and such that
for each Q;, the stalk J; = Jg, is a complete mg,-primary ideal of Ox g,
and )_,dimc(Ox q,/J;) = m and the set of Cartier ideals H C R for X of
codimension m. '

This correspondence maps each ideal sheaf J on X to the complete mo-
primary ideal Hgy of Theorem 11. The inverse map associates to each H C
R the ideal sheaf on X generated by the equations of the virtual transforms
on X (relative to H®) of the curves defined by elements of H.

In section IV.2 we give a procedure to compute a minimal system of gener-
ators for Hy. Finally, in section IV.3 we investigate the factorization and
semifactorization of complete ideals in the local ring of a sandwiched singu-
larity in terms of the factorization of complete ideals in R. First, we prove
that the bijections of Corollary 12 define an isomorphism of semigroups
(Proposition IV.3.1). Then, given Q € X, if J is a complete mg-primary
ideal in Ox g and J is the ideal sheaf generated by it, we show that the
factorization of the complete ideal H; induces the semifactorization of J.
Namely,

Theorem 13. [Theorem IV.3.5] Let Sy be the minimal resolution of X
such that JOs, is invertible. For an infinitely near point p, write my for
the least positive integer such that I;n ?is a Cartier ideal for X. Then, if

Hy =[] 5"
r

is the (Zariski) factorization of Hy C R into simple ideals, then

&

is the semifactorization of J.

In particular, the above factorization of H 7 gives rise to a factorization
of J into simple complete ideals of Ox ¢ if and only if oy € (myp) for every
p such that ap > 0.

Then, we prove that the factorizations of J into simple ideals of Ox0
induce and are induced in turn by the factorizations of H 7 into irreducible
Cartier ideals for X.
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Theorem 14. [Theorem IV.3.7] Given a complete mg-primary ideal J C
Ox,g, each factorization of J into complete mg-primary tdeals

J= H e
=1

induces a factorization of Hy into Cartier ideals for X, Hy = | | H‘%’,
and each factorization of Hz into Cartier ideals for X has this form. More-
over, Hg, is irreducible as a Cartier ideal for X if and only if J; is a simple
complete mq,-primary ideal.

Chapter V is devoted to derive consequences related to the Nash con-
jecture of arcs for sandwiched singularities. In section V.1 we recall some
facts and set the framework for our study of the spaces of arcs. Given a
rational surface singularity (X, Q), write {Eu}ueng the exceptional com-
ponents of the minimal resolution S’ of (X, Q). For each u € Ag, write
Fe (respectively, N& ) for the space of arcs through (X, Q) whose lifting
on Sk intersects (resp. intersects transversally) the exceptional component,
Ey. Fixed i > 0, write T'r(z) for the space of i-truncations of arcs, and
F9 (¢) and NG (i) for the spaces of i-truncations of arcs in F¢ and N2 ,
respectively. Sections V.2 and V.3 are aimed to prove that the reduced
components of the fundamental cycle of a sandwiched singularity give rise
to irreducible components of the space of arcs: section V.2 is essentially
technical and in it, we prove an inequality between the intersection num-
bers at O of the projections on S of arcs of different families provided that
one of them is contained in the other (Theorem V.2.1). In section V.3 an
accurate and somehow tedious study of the dual graph and the proximity
relations among the points of K gives the wanted result:

Theorem 15. [Theorem V.3.1] Let Q be a sandwiched singularity. Then
every reduced component of the fundamental cycle of Q is associated to a
Nash family of arcs. In other words, if there exists p,q € Tg such that

N}Q(i) - J\qu(z) for i >>0, then z, > 1.

In particular, Theorem 15 gives an affirmative answer to the Nash con-
Jecture for minimal singularities. This was already proved by Reguera in
[53]. Finally, in section V.4 we prove that a positive answer to the Nash
conjecture for sandwiched singularities would follow from a positive answer
for primitive singularities. Recall that primitive singularities are those sin-
gularities that may be obtained by blowing up a simple complete ideal. The
proof requires a result that is worth mentioning here:

Proposition 16. [Lemma V.4.1] Let (X, Q) and (X1,Q1) be rational sur-
face singularities, g : X — (X1,@1) a birational dominant morphism and
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Ep, p € Ag an exceptional component of Q such that E, also appears in
the minimal resolution of Q1 modulo birational equivalence. Assume that
for some i > 0, f;? (?) c qu (7) and that the projection by g of any element
ofﬁ?(i) is in FO! (2), for some u € Ag,. Then,

FELG) € F).

If a sandwiched singularity is primitive, the structure of the cluster of
base points is much simpler as the set of points in the cluster K is completely
ordered, which is not the case in general. From Proposition 16, we deduce
the wanted result.

Corollary 17. [Corollary V.4.4] If the Nash conjecture is true for primitive
singularities, then it is also true for sandwiched singularities.

In Appendix A, we provide the listings of three programs in language
C implementing some of the algorithms proposed. These programs have
been used to compute some of the examples presented throughout the mem-
oir.

Part of the results of this thesis has been published or will be published in

e J. Fernandez-Séanchez, On sandwiched singularities and complete ide-
als, J. Pure Appl. Algebra 185 (2003), no. 1-3, 165-175. [19]

e J. Fernandez-Sénchez, Nash families of smooth arcs on a sandwiched
singularity, To appear in Math. Proc. Cambridge. Philos. Soc. [18]

¢ J. Ferndndez-Sanchez, Equivalence of the Nash conjecture for primi-
twe and sandwiched singularities, To appear in Proc. Amer. Math. -
Soc. [17]



Chapter 1

Preliminaries

In this chapter we review some concepts and well-known facts to be used
throughout this memoir. All algebraic varieties are assumed to be defined
over the field C of complex numbers, point means closed point and surface
means irreducible algebraic surface.

I.1 Blowing-ups

In this section and the next one, we introduce some concepts on blowing-
ups and infinitely near points, and their relations with complete ideals in
a local regular two-dimensional C-algebra. The main reference is [11} and
the reader is referred to it for the proofs of the facts presented here.

Definition L.1.1. Let S be a smooth surface and fix a point O € S.
We will denote by R = Ogp the complete local ring of O on S and by
mo its maximal ideal, i.e. R = C[[z,y]] for any pair of generators (local
coordinates) x,y of mp. We denote the blowing-up of O on S by 7o :
S0 — §. The restriction of the morphism 7o to 75(S — {O}) is an
isomorphism onto S — {O}. E := n;'(0) is isomorphic to P! and is called
the exceptional divisor of mo. It can be identified with the set of the tangent
directions on S at O.

Definition I.1.2. If C is a curve on S and f € R is a local equation for C
at O, then the multiplicity of C' at O, denoted by ep (C) is defined as the
maximal integer e such that f € m§,.

Clearly, eo(C) > 0 if and only if O belongs to C.

Definition 1.1.3. The pull-back 7}(C) of C by 7o is called the total
transform of C. It has the form

75(C) = C + eo(C)E

13
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where C is defined as the closure of 75H(C \ {O}) and so, it has finitely

many intersections with E. C is called the strict transform of C (after
blowing up O).

Definition I.1.4. We call the exceptional divisor E of blowing up O on S
the first (infinitesimal) neighbourhood of O (on S) and denote it by Fop .
Its points are called the points in the first neighbourhood. If ¢ > 0, we define
by induction the points in the i-th neighbourhood of O as the points in the
first neighbourhood of some point in the (i — 1)-th neighbourhood of O.
The points which are in the ¢-th neighbourhood of O for some ¢ > 0 are
also called infinitely near points to O. The point O is a proper point of S
in order to distinguish it from the infinitely near ones.

Let q,p be two points in § infinitely near or equal to O. We say that
q precedes p, denoted q¢ < p, if and only if p is infinitely near to q. We
denote by ¢ < p if p is infinitely near or equal to q. The relation < is a
partial ordering of the set of all points, proper or infinitely near; it is called
the natural ordering. Every infinitely near point p has a unique immediate
predecessor, which is the point in the first neighbourhood of which p lies.

Now we will deal with the blowing-up of a finite set of proper or infinitely
near points in the surface S.

Definition I.1.5. A cluster in S is a finite set K of points equal or inﬁnitely'
near to O such that for every point p € K, K contains all points preceding
p. The point O is called the origin of the cluster. A subcluster K’ of K is
a subset of K which is also a cluster in S. By a mazimal point in K we
mean a maximal point in K relative to the natural ordering in K. A total
ordering = in K is said to be admissible if for any pair q,p € K so that
q < p, we have g < p.

We denote the blowing-up of (all the points in) K by 7x : Sg — S.
See [11] §3.4 and §4.3 for a detailed construction of 7y and its basic proper-
ties. An important feature is that fixed an admissible ordering < on K, mx
is the composite of the sequence of blowing-ups of the points in K following
this ordering, and so the surface Sk and the morphism 7x do not depend
on the order < chosen in K.

Given a point p of a cluster K, take the subcluster K? = {g€ K | ¢ <
_p}. Then, p is a proper point on the surface Sg». Let 7, : S, — Sk» be the
blowing-up of p and write Eg C Sp for the exceptional divisor obtained. We
can identify the points of K not yet blown up to their corresponding ones on
the surface .S,. Blowing up these points gives a morphism 71';, :Sg — Sp
and we have mx = 7r;, O Tp O TKP.
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Tp K

Definition I.1.6. The divisor Ex = 75" ({O}) on the surface Sk is called
the exceptional divisor of my. Each irreducible component of Ef is the
strict transform of some Eg , p € K by the corresponding morphism 'n';,, and

hence it is isomorphic to P'. We denote it by Eg" and write Eg K for the
total transform of EJ by =,

Definition 1.1.7. The strict transform CSx of C on Sk is the iterated
strict transform of C by the blowing-ups of the points in K. Equivalently,
it is the closure of 7%'(C \ {O}) on Sk.

We define the multiplicity of C at p € K, denoted by e,(C), as the
multiplicity of CSk? at the proper point p € Skp. Once an admissible total
ordering on a cluster K has been fixed, we may take the cluster K as a set
of indexes. Then, the vector ex (C') = (e,(C))pek Will be called the vector
of effective multiplicities of C at the points of K.

We will say that q belongs (as an infinitely near point) to C if eq(C) > 0.

Definition 1.1.8. Let C be a curve on S. The total transform of C on Sk
is the pull-back 73 (C) of C by mg. It has the form

5 (0) = O + ) up(C)E;*,
peK

where each v,(C) is a non-negative integer called the effective p-value of

C. We put vic(C) = (vp(C))pek and call it the vector of effective values of
C at the points of K. We write

Sk S
EZ = v(C)Ey
pEK
for the exceptional part of 73 (C).
Definition 1.1.9. Let g, p be a pair of proper or infinitely near points on S.
The point p is said to be prozimate to ¢ if and only if p is infinitely near to

g and belongs as a proper or an infinitely near point to Eg. We will write
p — ¢ to mean p is proximate to q.
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Note that an infinitely near point is always proximate to its immediate
predecessor. In fact, any infinitely near point p is proximate to either one
or two preceding points. An infinitely near point proximate to two points
is called a satellite point; otherwise, it is called a free point.

Definition 1.1.10. Let C C S be a curve and p a point of S, infinitely near
or equal to O. We will say that p is a singular point of C, or equivalently,
C is singular at p, if either

1. e,(C) > 1, 0r
2. ep(C) =1 and p is satellite, or
3. e,(C) =1 and p precedes a satellite point belonging to C.

Proposition 1.1.11. (Proximity equalities, [11] 3.5.3) For every point q
(proper or infinitely near) and every curve C' on S,

eq(C) = Z ep(C).

p—q

The next definition introduces a diagram due to Enriques that encodes
the proximity relations between the points of a cluster K.

Definition 1.1.12. ([16] Book 4, Ch. 1 and also [9] and [11] 3.9) Let K
be a cluster with origin at O. The Enriques diagram D(K) of K is a tree-
graph where each vertex represents a different point in K and the vertex
representing O is taken as the origin of the graph. Each edge joins a pair of
vertices that represent points one of which is in the first neighbourhood of
the other. We name each vertex as the point it represents. The edges are
of two different kinds, straight or curved, according to the following rules:

1. If p is a free point in the first neighbourhood of g, the the edge joining
p and ¢ is smooth curved and if ¢ # O, it has at ¢ the same tangent
as the edge ending at q.

2. If p is a point in the first neighbourhood of ¢, then the edges con-
necting all points proximate to ¢ in the successive neighbourhoods of
p are shaped into a line segment which starts at p and is orthogonal
to the edge gp at p.

The proximity relations between the points of a cluster K can also
be encoded in a K x K matrix Pk, called the prozimity matriz of K
and introduced by Du Val in [14] (see also [11]). It is defined by taking
Py = (mq,p) with

1 ifp=gq

mgp =14 —1 if pis proximate to ¢
0  otherwise.
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The proximity matrix P relates the multiplicities and the values of a curve
C at the points of K.

Lemma 1.1.13. For any curve C on S,
vi(C) = P;—leK(C’).

Thus, for eachp € K,

up(C) = (C) + Z vg(C).

p—q

Notation I.1.14. (see [29] V. §1 ot [5] I) If X is a surface and C,C’
are curves on X having no common irreducible components, we denote by
|C-C'|x the intersection number of C and C' on X. We denote by C? the
self-intersection (number) |C-C|x of C on X. If P € X, [C,C']p is the
intersection multiplicity of C and C' at P.

Proposition I.1.15. (Proposition V.1.4 of [29]) If C and C’ are curves on
X having no common irreducible components, then

cCllx = > [C,C'p.
PeCnC’

Proposition 1.1.16. Let K be a cluster with origin at O.

1. If K={p1,...,ps}, there is an isomorphism

Pic(S)®2° = Pic(Sk)
(D,n1,...,n5) — wx(D)+mEK 4+ +nESK.

2. Let C and D be divisors on S. Then

|7T;(C-7T;<DISK = [C, D]o,

|7k C-Ep sy =0,
|nkC-E5¥|s, =0,
for any point p in K.
3. For any couple p,q € K, |E5K-E§KISK =1 ifE;,gK ﬂngK # 0, i.e if

one of the points q or p is mazrimal among the points in K that are
prozimate to the other, and lE;fK -EEK lsx =0, otherwise. Moreover,

|E{§K'E5K|SK = —rp — 1, where v, is the number of points in K
proximate to p.



18 I. Preliminaries

4. If C is a curve on S, for allp € K,

IC9-ES% s, =ep(C) = Y eg(C).
qE K,q—p

5. Projection formula: if C is a curve on S and D is a curve on Sk,
then
|7xC-Disy = [C, (7x)+Dlo-

Definition I.1.17. The intersection matriz A g of the cluster K isa K x K
matrix defined by taking |E5%-E>%|s, as the entry on the g-th row and
p-th column.

An easy computation using Proposition 1.1.16 gives the relation:
Lemma L1.18. Ag = —P4{ Pg.

Definition I.1.19. A pair K = (K, v) where K isaclusterand v : K — 7
is an arbitrary map will be called a weighted cluster. The map v is called a
system of virtual multiplicities for K and K is called the underlying cluster
of K. We usually write v, = v(p) and call it the virtual multiplicity of K
at the point p. We take vx = (1p)pek as a column vector indexed by K.

Definition I.1.20. Let p be a point of a weighted cluster K = (K, v). The
ercess pf of K at p is defined as

K _
== D v
g€ K ,g—p

The cluster K is said to be consistent if all the excesses pf, p € K are
non-negative and strictly consistent if moreover, there are no points in K
having virtual multiplicity zero. We will say that p is a dicritical point of
K if p}’f > 0, and denote by K, = {p € K | p§ > 0} the set of dicritical

points of K. '

From now on and if there is no danger of confusion, we write pp (instead

of p?) for the excess of K at a point p.

Definition I.1.21. For each p € K, the value v, given recursively by
=1+ Y v

is called the virtual value of K at p . The vector v = P}lv;g is called the
system of virtual values of K = (K, v).

The excess vector px = (pp)pek of K = (K,v) can be computed from
the system of virtual values in the following way:
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Lemma 1.1.22, P = —AKVK; = Pft{V}C-

Remark 1.1.23. Fixed a weighted cluster X, the system of virtual multi-
plicities, the system of virtual values and the excess vector are equivalent
data and any of them determine the others.

Notation I.1.24. Given a curve C on S, we denote by So(C) the cluster
of the singular points of C, taking the effective multiplicities of C' as virtual
multiplicities. If py, ..., pn are the first points on the branches of C' which
are not singular, we write S(C) for the cluster obtained from So(C) by
adding p1,...,pm counted once.

Definition 1.1.25. If C is a curve on S and K = (K,v) is a weighted

cluster in S, we say that the curve goes (virtually) through K if the divisor
on the surface Sg

o Sk
C* i=7C— Z vpEp
peEK

is effective. CK is called the virtual transform of C relative to the virtual
multiplicities of K. We denote

Hx = {g € R| C : g =0 goes virtually through K} U{0} C R

which is an mo-primary ideal of R. Given two weighted clusters K and K,
we say that they are equivalent if Hx = Hy, and we write K < K’ and say
that X' contains K if Hx D Hxr.

Note that the virtual transform CX can be written in the form

é’c = 53}( + z UP(C)EPSK,
peK

where the vector ug(C) = (up(C))pek is obtained as
ug(C) = P (ex(C) — vk).
Definition 1.1.26. If we have the equality of vectors
ex(C) =vk

then we say that C goes virtually through the weighted cluster K with
effective multiplicities equal to the virtual ones. If moreover, C' has no
singular points outside of K we say that C goes sharply through K.

Lemma 1.1.27. With the notation as above:

1. The curve C goes virtually through K if and only if ug (C) > 0.
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2. The following three assertions are equivalent:

(a) the curve C goes through K with effective multiplicities equal to
the virtual ones.

() ug(C) =0.

(c) the strict transform CSk equals the virtual transform CX relative
to the virtual multiplicities of K.

Theorem 1.1.28. ([11] Theorem 4.2.2) If there is a curve C going through
K = (K,v) with effective multiplicities equal to the virtual ones, then K is
conststent.

Conversely, assume that K is consistent. Then, fized a set T of points
infinitely near to O and not in K, there exists a curve C C S going through
K with effective multiplicities equal to the virtual ones and missing all the
points in T '

It follows that the curves going through K with effective multiplicities
equal to the virtual ones share no points other than those in K.

Proposition 1.1.29. ([11] Proposition 4.2.6) Let K = (K,v) be a consis-
tent cluster. Then

1. All curves going sharply through K are reduced.

2. IfC goes sharply through K, then for allp € K, C has just pp branches
through p missing all points after p in K. Hence, C has a total of
>_pck Pp branches.

3. The germs at O of any two curves going sharply through K are equi-
singular.

Now, we want to define a topology in R to give a precise meaning to
the phrase generic element of a linear system or ideal in R. To this aim,
define the closed sets of this topology as the sets of the form

{f =>_aija'y’ | P(ai;) =0,P € P}
4
where P is a subset of the ring of the polynomials in the (infinitely many)
variables X;;,4,7 > 0. This topology is called the Zariski topology of

R = Clz,y] and its closed sets are the sets of all series whose coefficients
satisfy certain given algebraic relations.

Theorem I.1.30. (Corollary 4.2.8 of [11]) Let K = (K, v) be a consistent
cluster and T a finite set of points so that TN K = (. Then there is an
non-empty Zariski-open set U C Hy such that for any f € U, the curve
C': f = 0 goes sharply through K and no point in T belongs to C.
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The infinitely near points also give a geometrical idea of the intersection
multiplicity of two curves at O by means of a formula due to M. Noether.

Theorem 1.1.31. (Noether’s formula, [11] Theorem 3.3.1) Let C and D be
two curves on S. The intersection multiplicity [C, D)o is finite if and only
if C and D share finitely many points infinitely near to O, and in such a

[C, Dlo = e(C)ep(D)
14

the summation running for p infinitely near or equal to O.

Definition 1.1.32. We define the intersection multiplicity of K = (K,v)
and a curve C at O as being

[K,Clo = 3 mes(C).
peEK

As it is clear, [K,Clo equals the intersection multiplicity of C' with any
curve going through K with effective multiplicities equal to the virtual ones
and sharing no points with C outside of K.

The self-intersection of K is

K% = Zug.

peT

Obviously, K2 = [C,D]o for any couple of curves C, D going sharply
through X and sharing no points outside of it.

I.2 Complete ideals and weighted clusters

Next we recall some standard notions from commutative algebra. Let R be
a two-dimensional local domain.

Definition 1.2.1. (Appendiz 4 of [65]) An ideal I C R is said to be com-
plete (or integrally closed) if it can be defined by valuations in R, that is, if
there exists a set of valuations {v;};cp of R and for each [ € A, an element
oy in the value group of v; so that

I'={feR|u(f)2a,VleA}=my(IRNR)

where the intersection runs over all valuations rings R; containing R and
with the same function field.

It is clear from the definition that the maximal ideal mp of R is a com-
plete ideal and that arbitrary intersections of complete ideals are complete
too. Hence, if I is an ideal in R, the intersection I of all complete ideals
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containing [ is also complete: it is called the completion or the integral
closure of I. Obviously, I is complete if and only if I = I. The elements of
T are said to be integral over I.

Remark: One may equivalently define an element to be integral over I
as an element f € R that satisfies a relation (integral dependence relation)
of the form

f"+(1ifn-l+“'+an:0

where n > O and a; € I' for i = 1,...,n (see App. 4 in Vol.II of [65] for
details). Then, the completion T of I is the set of all the elements of R
integral over I.

Now, we come back to the case R = C[[z, y]].

Lemma 1.2.2. ([11] Lemma 8.3.1) For any weighted cluster K = (I, v),
the ideal Hy: C R is complete and mo-primary.

Remark 1.2.3. If K = {p;,...,ps}, then Hy is the stalk at O of the ideal
sheaf

Sk Si
WI\’)*(“Vplng!\ - VPsE ;\ )

We will see in Theorem 1.2.5 that if I is a complete mp-primary ideal, then
there exists a weighted cluster K with origin at O so that I = Hy.

Definition 1.2.4. A linear system is a set of curves defined by the non-zero
elements of an ideal I C R. A linear system has thus the form

Lr={C:f=0]|feI\{0}}

where I is an ideal of R. The irrelevant linear system is the linear system
defined by the ideal (1).

Given an ideal I C R, or its corresponding linear system £ = £, set
eo(I) = eo(Ly) = min{eo(C) | C : h = 0,h € I}. In other words, I
is contained in mgo(l') but not in mgo(f)-%l. Now, if p is any point in the
first neighbourhood of O, the virtual transforms of the curves of £; relative
to eo(I) as virtual multiplicity of O define a linear system £,. Notice
that if Oy is the local ring at p and ¢, : O — O, the morphism induced
by blowing-up, £, is the linear system defined by the ideal generated by
s (I). This linear system is called the transform of £ with origin
at p, and we set e,(L) = €,(Lp) and call it the multiplicity of £ at p. We
-extend these definitions to all points in the successive neighbourhoods by
using induction.

Now, we define the (weighted) cluster of base points, BP(I) by taking
the points p infinitely near or equal to O for which £, is not irrelevant, each
p taken with virtual multiplicity e,(<). From the definition, if T # (1) it
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follows that BP(I) is strictly consistent. Given an ideal I C R, a generic

curve in £; (or in I) means an element in a non-empty Zariski-open set
in I.

Theorem 1.2.5. ([11] Theorem 8.3.5 and Corollary 8.3.6) Let I be an mp-
primary ideal of R. If C : g = 0 goes through BP(I), then for any valuation
v of R, v(g) = min{v(f) | f € I}. In particular, I = Hgp(y).

Now, we recall the theorem of Zariski about the factorization of com-
plete ideals of R as a product of irreducible ones. The original paper on
the subject is [61] and a later version appeared in Vol. II App. 5 of [65].

Theorem 1.2.6. (Zariski [61]) Let I be a complete mp-primary ideal of
R. Then I has a unique decomposition as a product of irreducible complete
mgo-primary ideals
n
=1
i=1

Now, we will translate this decomposition to weighted clusters. From
Theorem 1.2.5, we know that any complete ideal is just the ideal defined by

the equations of the curves going through a consistent cluster. Conversely,
we have

Proposition 1.2.7. IfK is a strictly consistent cluster, then K = BP(Hy).

Given two weighted clusters K = (K,v) and K' = (K, 1), define the
sum K + K’ as the weighted cluster whose set of points is K U K’ and
whose virtual multiplicities are v, + v, for p € KL U K’. The set of strictly
consistent clusters with this operation is a semigroup that we will denote
by W. A strictly consistent cluster is irreducible if it is so as an element
of the semigroup W. It is immediate to see that any irreducible cluster
consists of a point p and all points preceding it and has excesses p, = 1
and pg = 0 for g # p. We denote such a cluster by K(p).

Proposition 1.2.8. If K is a strictly conststent cluster and p = (pp)pek
15 its excess vector, then

K= Z ppK(p).

peEK

The next theorem states the main link between weighted clusters and
complete ideals.

Theorem 1.2.9. ([11] 8.4.11) The set I of the complete mp-primary ideals
of R equipped with the product of ideals is a semigroup and the maps

BP : I- W
I— BP(I)
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and

H : W1
K +— Hyg

are reciprocal isomorphism between I and W.

Irreducible complete ideals are also called simple ideals for short. They
correspond to irreducible clusters by the isomorphisms of the above theo-
rem.

Notation I.2.10. We denote by I, the simple ideal corresponding to the
cluster K(p), i.e. I, = Hi(p).-

Notation 1.2.11. Let J C R be a complete mp-primary ideal and 7 =
BP(J). Then, if K is a cluster, we denote by Eﬁ“ (or Ei—K) the exceptional
divisor on Sk given by

> vp(J)ES¥

peEK

where v,(J) = min{v,(g) | g € J}. In particular, if C goes sharply through
T = BP(J), then
EZJK = E3X = ESX.

1.2.1 Unloading

Next we will describe a procedure due to Enriques [16] called unloading (see
also [9] or §4.6 of [11]) that given a non-consistent cluster K = (K, v) allows
to compute the effective multiplicities of a generic curve going through it.
At the i-th step of the procedure we get a new cluster K; by unloading some
amount of multiplicity on a point p € K at which the excess pj’fi < 0 from
the points that are proximate to it. Unloading may be described in terms of
either the virtual multiplicities of the virtual values, and both descriptions
are equivalent by means of Lemma 1.1.13.

Unloading multiplicities: if X = (K,v) is a weighted cluster and
p§ < 0 for some p € K, define n as being the least integer non-less that
X
—é’f’ﬁ. Then, define a new cluster X' = (K, /) by taking
vpt+n ifg=p
vy=4 vg—n ifg—p

Q

Vg otherwise.

We say that K’ is the cluster obtained by unloading multiplicities on p.
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Unloading values: Denote by 1, the column vector indexed on K all
whose components are zero but for the one corresponding to p, which is
one. If pp’C < 0, then by Lemma 1.1.22, we have

1;AKVIC > 0.
Denote by n the least integer such that
1Ak (ve +nlp) <O0.

Then, vj = vi + nl, is a new system of virtual values for K and defines

a new weighted cluster K’, that is called the cluster obtained by unloading
values on p.

Notation 1.2.12. From now on, if K is not a consistent cluster, we will

denote by K the consistent cluster equivalent to it obtained by unloading
multiplicities.

Definition 1.2.13. Unloading on a point of excess equal to —1 is called
tame unloading.

Remark 1.2.14. From the description of unloading using values it fol-
lows that if tame unloading is performed on p, then the virtual value on p
increases by one while that of the other points of K remain unaffected.

Both procedures give rise to the same weighted cluster K’ and we have:

Theorem 1.2.15. (Theorem 4.6.1 of [11]) Let K be a weighted cluster and
assume that pp'C < 0 for some p € K. Then, K and the weighted cluster K’
obtained by unloading on p are equivalent.

Theorem 1.2.16. (Theorem 4.6.2 of [11]) Assume that K is a non-consistent
weighted cluster. Put K = K° and, inductively, as far as K~ is not con-

sistent, define K from K=1 by unloading on a suitable point. Then, we
have:

(o) There is an m so that K™ is consistent, has the same underlying
cluster than K and Hx = Him.

(b) K™ is the only consistent cluster equivalent to K having the same
points as K. Therefore, it does not depend on the choice of the points
on which the unloading are performed.

To close this section we state some definitions and results that will be
useful throughout this memoir.
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Definition 1.2.17. [56] If C is a reduced curve, the order of singularity of
C at Pis

O
5p(C) = dimg —=22-,
Oc.p
where O¢ p is the integral closure of Oc p in its full quotient ring.
If C is contained on a (not necessary regular) surface X, we denote
5x(C) =Y 6p(C)
PeX

and call it the order of singularity of C on X.

Theorem 1.2.18. With the notation as above, assume that C C S goes
through O. Then

50(0) — Z 69(0)(63;2(0) - 1),

P
the summation running on all points p infinitely near or equal to O.
If K = (K, v) is a weighted cluster, we write
vp(vp — 1)
0n(K) = AN A
oK) =Y 5

peK

Note that if K is consistent, o (K) equals the order of singularity of any
curve going sharply through K.

Definition 1.2.19. Let K = (K, v) be the weighted cluster on S. We define
the virtual codimension of K as

(K) = Z vp(vp + 1)‘

A 2
peK

Remark 1.2.20. For any weighted cluster,
K% = 60(K) + ¢(K).

Proposition 1.2.21. If K = (K, v) is a consistent cluster, then

oK) = dimc(%).
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Corollary I1.2.22. (Corollary 3.2 of [42]) If I C R is a complete mp-
primary ideal and K = (K, v) is the cluster of base points of I, then

I
dimg — =vp + 1.
moI

Proposition 1.2.23. (Corollary 4.7.3 of [11]) If K = (K, v) is not consis-
tent and K s the consistent cluster obtained from K by unloading multi-
plicities, then

c(K) > dimc(%)

and the equality holds if and only if all unloading steps leading from K to
K are tame.

Definition 1.2.24. [10] A sequence of weighted clusters {K;};=o,..n such
that

Hy, D Hx, D -+ D Hg,

and dimg Hriciy 21 fori = 1,...,n is called a flag of clusters with ends
Hg,
Ko and K,,.

I.3 Rational singularities
The main references for this section are [3] and [41].

Definition 1.3.1. A normal surface singularity (over C) is a pair (X, Q)
consisting in the spectrum X = Spec(R) of a noetherian normal complete
two-dimensional C-algebra R, and the closed point Q.

Definition 1.3.2. A normal surface singularity (X, Q) is said to be a ratio- .
nal surface singularity if there exists a desingularization f : S’ — X such
that H*(S',Os/) = 0. We also say that Oy g has a rational singularity.

Note that if Ox ¢ is regular, then it has a rational singularity (it is
enough to take S’ = Spec(Ox,)). The next result says that the condi-
tion for a normal surface singularity to be rational is independent of the
resolution.

Proposition 1.3.3. (Proposition 1.2 of [41]) Let (X, Q) be a rational sur-
face singularity and let m: S’ — X be a birational map of finite type.

(1) If P € 8’ is a normal point, then the local ring Og/ p has a rational
singularity.

() If §' is normal and & is proper, then H*(S', Og/) = 0.
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Let (X,Q) be a normal surface singularity and fix a desingularization
f 18 — X of (X,Q). Note that by Zariski’s main theorem (see Corollary
I11.11.4 of [29]) and since X is normal, the exceptional locus E = f~1(Q)
is connected. We will denote by {F;}1<i<s the irreducible components of
E.

The following result is important.
Proposition 1.3.4. ([45] §1 or [15]) The intersection matriz
A = (B Ejls)1<ij<s
18 negative definite.

Definition I.3.5. An exceptional cycle is a non-zero effective divisor on S’
with exceptional support. An exceptional cycle has thus the form

8
D= TiEi
iz=1
withr; > O forall i€ {1,...,s} and some r; > 0.

If D is an exceptional cycle, we will denote by O}, the sheaf whose
sections over an open set U are the units in the ring T'(U, Op) with multi-
plication as the group operation. Then, we have that H*(S’, 03) ~ PicD
(see exercise I11.4.5 of [29]). If L is an invertible sheaf of D, write d;(£) =
deg(L|E;). Then the map £ — (d1(L),...,ds(£)) defines a homomorphism

d: HY(S',0%) — Z°

which is surjective if r; > 0 for all 4.

The following lemma plays a basic role in the characterization of the
rational surface singularities. Recall that given a projective scheme D of .
dimension 1, the arithmetic genus of D is

9(D) =1~ x(Op) = dim H(D,0p).

Lemma 1.3.6. ([2], Theorem 1.7) Let D = Y°;_, r;E; be an exceptional
cycle with r; > 0 for alli. The following conditions are equivalent:

- (i) HY(D,0p) =0
(i) for all exceptional cycle D' such that 0 < D' < D, g(D') =0
(iii) d : HY(S', O%) — Z° is an isomorphism.

As a consequence we obtain the following proposition
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Proposition 1.3.7. ([3], Proposition 1) Let (X,Q) be a normal surface
singularity and f : 8’ — X a resolution of X. Then, (X,Q) is a ratio-

nal surface singularity if and only if for every exceptional cycle D > 0,
g(D) <0.

The criterion of Proposition 1.3.7 gives information concerning the in-

tersection of the exceptional components of the minimal resolution of a
rational surface singularity.

Corollary 1.3.8. ([7], Theorem 1.7) Let f : S’ — X be the minimal
resolution of a rational surface singularity (X, Q) and let {E;}1<i<s be the
irreducible components of the exceptional locus of f. Then,

(i) for every i, E; is a smooth rational curve,

(it) if i # j and E; N E; # 0, E; and E; intersect transversally,
(iii) EsNE;NE, =0 ifi,5,k are different,
(tv) E has no cycles.

Back to the general case, the following result allows us to introduce the
fundamental cycle of a normal surface singularity (X, Q).

Proposition I.3.9. ([3], Proposition 2) Let (X, Q) be a normal surface sin-
gularity and fir a resolution f : 8" — X of (X, Q). There exist exceptional
cycles D > 0 such that

|D-Ejlsr <0

for-all i. Moreover, among all these cycles, there exists a unique smallest

one. We call this cycle the fundamental cycle of (X,Q) on S’ and denote
it by Zg .

The fundamental cycle of (X,Q) on S’ can be computed in a recurrent
way as follows (see Proposition 4.1 of [36]): let Z; = Ej,, for any Ej,.
Having defined Z; = 3"7_, af E, if there exists an E;; such that

|Ei;-Z3|s = 15,A8 Z; > 0,
let Zjy1 = Z; + Ejj; if |E;-Zj|er <0 forallie{l,...,s}, then Zg = Z;.

Remark 1.3.10. Compare this procedure with the description of unloading
using virtual values in 1.2.1.

Definition 1.3.11. From now on, when talking about the fundamental
cycle of a rational surface singularity (X, Q) we will mean the fundamental
cycle of its minimal resolution; we will denote it by Zg.
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Following the terminology of Lipman in [41], we denote by ]Eg, the set
of divisors D on S’ with exceptional support for f such that |D-E;|¢ < 0
for all ¢ € {1,...,s}. Note that each D € Ef, is an effective divisor: if
D = A — B with A and B effective without common components, then

0>|D-B|=|A-B| - |B-B|

where |A-B| > 0 and —|B-B| > 0 since the intersection matrix is negative
definite. Therefore, |[A-B| =0 and |B-B| = 0, and it follows that B = 0.

The following theorem gives another characterization of rational surface
singularities.

Theorem 1.3.12. ([3], Theorem 3) Keep the notation as in Proposition L.3.9.
Then, g(Zq) 2 0 and g(Zg) = 0 if and only if (X, Q) is a rational surface
singularity.

The following result is due to Artin and has great importance in the
study of the intersection theory on rational surface singularities.

Proposition I1.3.13. ([3], Proof of Theorem 4) Keep the notation of Propo-
sition 1.3.9 and assume that (X, Q) is a rational surface singularity. Let D
be an effective divisor on S’ such that |D-E;ls: = 0 for each i. Then there
exists an element h in the mazimal ideal mg of Ox,g such that D = f*(C),
where f*(C) is the total transform on X of the divisor C defined by h = 0
on (X, Q).

Notation 1.3.14. If I is an ideal in Oxq and f: 8 — X is a dominant
morphism, we will denote by IOg the inverse image ideal sheaf of I on
S’ ie. if T =T is the ideal sheaf generated by I on X, IOy is the ideal
sheaf in Og generated by the image f~17 (see II §5 of [29] for details), or
equivalently, IOg is the image of the natural map f*Z — Og.

Theorem 1.3.15. ([3], Theorem 4) Let (X, Q) be a rational surface singu-
larity, let f : §' — X be the minimal resolution of (X,Q) and let Zg be
the fundamental cycle of Q. Then, for everyr € Z~o,

OS/(—TZQ) = mQrng.
Moreover,

Ox.0
H°(rZp,O & >
(r Q ""ZQ) mg"

and
,

. Mq
dlmk(_ﬂ.‘i) =-r|Zo-Zgls + 1.
e
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Therefore, the Hilbert-Samuel polynomial of (X, Q) is
1
p(X) = —‘2‘IZQ'ZQ|S'(X2 -X)+X.

In particular, the multiplicity of (X, Q) ts —-Zé = |Zq-Zg|s' and the di-
mension of the Zariski tangent space of (X, Q) is ~Z?;, +1.

Corollary 1.3.16. If m is the multiplicity of (X,Q), then the embedding
dimension of (X,Q) ism+ 1.

Denote by R be the local ring of X at Q. An important feature of ra-
tional surface singularities is the finiteness of the divisor class group CI(R),
i.e. the group of Weil divisors of (X, Q) modulo linear equivalence (recall
that two Weil divisors D and D’ on X are said to be linearly equivalent if
D — D' is principal). Although this fact is presented in Lipman [41] in a
more general case, we state here for rational surface singularities.

Keep the notation as in Proposition 1.3.13. Denote by E the group of
divisors on S’ with exceptional support. Since no non-zero principal divisor
has exceptional support, the canonical map

E — Pic(9)

is injective, where Pic(S’) ~ H(S’,0%,) is the group of divisor classes on
S'. If U = Spec(R) \ {mg}, the cokernel of this map is Pic(U), which
is isomorphic to CI(R) ([29] Proposition I1.6.5). The restriction map p :
Pic(S") — Pic(U) is clearly surjective and its kernel consists of the classes
of divisors D on S’ which come principal on U. Thus we have an exact
sequence

0 — E — Pic(S") — Pic(U) — 0.

On the other hand, we have a group homomorphism
6 : Pic(S") — EY = Hom(E, Z)

defined by
(0(D))(E:) = |D-Eils

The kernel Pic®(S’) of 6 is the subgroup of divisor classes whose intersec-
tion number with every E; is zero, and since we are assuming (X, Q) is
a rational singularity, it is zero (because of Lemma 1.3.6 and Proposition
1.3.7). Moreover, since R is complete Lemma 14.3 of [41] says that 6 is
surjective. Hence,

9 : Pic(S") — EY
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is an isomorphism. Now, the cokernel H of the restriction of 8 to E is an
abelian group generated by elements ey,...,e, satisfying

8
> |EiEjlse; =0
j=i
for each ¢ € {1,...,s}. Therefore, H is a finite group with order equal to

det(Ag) and we have the following commutative diagram with exact rows
and columns (see §14 of [41] for details):

0 0
0 E 0(E)
0 — Pic(§') 2> gV 0
P
0 — Pic(U) H 0
0 0

Since CI{R) =2 Pic(U), we deduce as already announced

Proposition 1.3.17. (Proposition 17.1 of [41]) Let (X, Q) be ¢ rational
surface singularity. Then, CI(R) is finite and so, for any Weil divisor C
on (X,Q), there exists an integer v > 0 such that rC is a Cartier divisor

on (X,Q).

Definition 1.3.18. If C' is a Cartier divisor on X, the total transform of
C on §' is the pullback of C by f. We write

£1(C)=C% +3 w(C)E;
i=1

where C'%" is the strict transform of C on S’ and each v;(C') is a non-negative
integer which will be called the (effective) E;-value of C.

More in general,

Definition 1.3.19. [Mumford [45] ILb] If C is a Weil divisor on X, the
total transform of C on S’ is the Q-Cartier divisor on S’

s
55 = 55’ -+ ZaiEi
i=1



1.8. Rational singularities 33

where the {a;}i=1,.. s are rational numbers such that

S
ICS"Ejls + > ai| Ei-Ejlsr = 0

i=1

for all j € {1,...,s} (by Proposition 1.3.4, the intersection matrix Ag is
negative definite and so the {a;}i=1,.,s are unique). We will write Dg/ =
Y i_i i E; and call it the exceptional part of the total transform of C.

—
Note that, in general, CS is not a divisor on 5’.

Remark 1.3.20. If C is a Cartier divisor on (X, @), the previous definition
applies and we get the usual pullback f*(C). Moreover, by Proposition
1.3.17 we know that if C is a Weil divisor on (X, Q) there exists a integer
r > 0 such that rC is Cartier. Then,

ff(rC)y= oall

Notation 1.3.21. By abuse of notation, whether C is a Cartier or a Weil
divisor, we will write f*(C) to mean the total transform of C.

In virtue of Remark 1.3.20 is is possible to define an intersection mul-
tiplicity for Weil divisors on (X, Q) that extends the usual intersection
multiplicity defined for the intersection of a Cartier and a Weil divisor (see

[45], Example 7.1.16 of [20]). If f : S’ — X is a resolution of (X, Q) and
C1,C5 are Weil divisors on X, it is enough to take

[C1,C2lq = |f*Cr-f*Cals

where f*C; and f*Cs are the total transforms of Definition 1.3.19. Note
that in general, [C, D]g is a non-negative rational number and if C; or Cs
is a Cartier divisor, we recover the usual intersection multiplicity.

From this and Definition 1.3.19, it follows that

7

—~ 8 ~5 ’
IC1-Calx = |C1 «(Ca” + Dg)ls (3.2)

We call this equality the projection formula for f.

1.3.1 Complete ideals on a rational surface singularity

Let (X, Q) be a rational surface singularity and write R = Ox . In this

section we recall some facts concerning complete ideals in R (see Definition
1.2.1).

Definition 1.3.22. A coherent sheaf on X is complete if for each open
affine U C X, I'(U,J) Cc I'(U, Ox) is complete.



34 I. Preliminaries

Lemma 1.3.23. (Lemma 5.3 of {41]) Let f : 8" — X be a birational
projective morphism (so that if J is a coherent sheaf on S’, then f.J is
so). Then, if J is a complete coherent sheaf, so is fiJ .

Connected with complete ideals are the contracted ideals:

Definition 1.3.24. (Definition 6.1 of [{1]) Let f : S’ — X be a morphism
of schemes such that f.(Og/) = Ox. Let @ € X and let I be an ideal in
Ox,o. We say that I is contracted for f if I is the stalk at O of f.(J) for
some ideal sheaf 7 on §’.

Complete ideals may be characterized in terms of contracted ideals.

Proposition 1.3.25. (Proposition 6.2 of [41]) The ideal I C Oxg is
complete if and only if it is contracted for every proper birational map
f:8—X. ‘

It can be proved that if (X,Q) is a normal surface singularity, the
product of contracted ideals in Ox o is again contracted (Theorem 7.2
of [41]). This follows from the next result that we state here for future
reference:

Lemma 1.3.26. let (X,Q) be a normal surface singularity and let f :
S’ — X be a proper morphism such that f«(Og) = Ox and R'f,(Og/) =
0. If I and J are contracted ideals for f, so is I.J:

f*(IJOS’) = f*(IOS/)f*(JOSI) =1IJ.

In particular,
(S, IJOg) = IJ.

From this and Proposition 1.3.25, the following result for rational surface
singularities is derived.

Theorem 1.3.27. (Theorem 7.1 of [41]) Let (X, Q) be a rational surface
singularity. If I and J are complete ideals in Ox g, then IJ is also com-
plete.

An important consequence of the preceding theorem is

Corollary 1.3.28. (Proposition 8.1 of [41]) Let (X, Q) be a rational surface
singularity and I C Ox,q a complete ideal. Then, the blowing-up Blj(X)
of I in X is normal.

Fixed a desingularization f : S’ — X, to each complete mg-primary
ideal I C R such that IOg is invertible we can associate the unique divisor
Dy e IE;, such that

10g: = Og(—~Dy).
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. by taking
8
Dr =Y w(I)E;.
=1

Since I is complete, I is the stalk at @Q of the sheaf of ideals f,Og/(—Dy).
Conversely, given D € ]Eg,, we define the ideal Ip of R to be the stalk

at O of f,Ox(—D). If D = 3" ngFEq, an element g of R is in Ip if and

only if v4(g) > ng for all a, where v, is the discrete valuation defined by

E,. Thus, Ip is defined by valorative inequalities and hence, it is complete.
Using Proposition 1.3.13, we have

Proposition 1.3.29. Let D be a divisor on IE‘_’S',. Then

1. For each point P in S’, there ezists an effective Cartier divisor C
such that f*(C) = C5' + D and C%' does not go through P.

2. (Lipman) IpOgsi = Og(—D), i.e. Ogi(—D) is generated by global
sections.

Now, following Lipman [41], denote by ]Eﬁs, the set of divisors D € E,
D # 0, such that O(—D) is generated by its sections over X. Eg, is
a semigroup (with the addition) and, for rational surface singularities, it
equals IE;, because of Proposition 1.3.29 (for normal surface singularities in
general, it is contained strictly in IE;,)

Because of the discussion above and Proposition 1.3.29, the maps D —
Ip and I — Dy are reciprocal bijections between IE';I, and the set Jg of
complete mp-primary ideals I in R such that IOg is invertible. Since the
product of two complete ideals is again complete (Theorem 1.3.27), JSI isa
semigroup and the correspondences above are isomorphism of semigroups.
Note that the sets {Jg | S is a desingularization of (X, Q)} together with
the inclusions Jg C JSI when S’ dominates S form a direct system of
semigroups whose direct limit is the semigroup Jg, of all complete mg-
primary ideals of R. Hence, in order to study factorization in J7,, it suffices
to study it in the semigroups Jx, or equivalently, in Eg‘,.

Definition 1.3.30. A complete mg-primary ideal I C R is simple if it is
irreducible as an element of J 22

A well-known result due to Lipman establishes that the unique rational
- surface singularities for which unique factorization for complete ideals holds
are the singularities of type Eg and the nonsingular germs of surface (see
Theorems 20.1 and 25.1 of [41]). Related with factorization and as a weaker
notion, Géhner introduces the semifactorization [22]:

Definition 1.3.31. Let (G, +) a commutative semigroup. An element g #
0 of G is extremal if g has no opposite in G and if ng = g1 + g2 with



36 1. Preliminaries

n € N,g1,92 € G then a;g; = B1g and asgs = Pag for suitable positive
integers oy, G;, 1 =1, 2.

The semigroup G is semifactorial if every g € G can be formally ex-
pressed in a unique way as g = Y ._; ¢;g; where the g; are positive rational
numbers and the g; are extremal elements of G.

From the fact that the divisor class group is finite (Proposition 1.3.17)
and the work of Gohner, it follows that J’é is semifactorial. In fact, fixed
a desingularization 8’ — X, the extremal elements of ]Eg, are all multiple
integers of the divisors D; = m;Dj, where D} € @;_; QE; is the unique
Q-Cartier divisor on S’ such that |D}-E;|ss = —~6; ; (Kronecker §) and m;
is the smallest integer such that m;D] is a divisor. From this, we have that
the semigroup ]Eg?, is semifactorial and also

Theorem 1.3.32. (Corollary 1.6 of [12]) The semigroup Jo of mg-primary
complete ideals of R is semifactorial: given I € JG; then I can be formally
expressed in a unique way as

m
1=]]#
=1

with ¢; € Q4.

To close this section, we give a formula for the codimension of complete
ideals in a ring having a rational surface singularity. It follows directly from
Corollary 23.3 of [41] and the adjunction formula (see Proposition V.1.5 of
(29]).

Proposition 1.3.33. Let I be a complete mp-primary ideal in a ring R
with a rational surface singularity and let f : S — X be a birational
dominant morphism such that IOg is invertible. Then,

. R 1
dlm(c —I— = —§|D]'(D[ -+ KS’)!S"

I.4 Sandwiched singularities

In this section we introduce sandwiched singularities. From now on R
will mean a regular two-dimensional ring as in Definition I.1.1. The main
reference for the definitions and facts of this section is [58].

Definition 1.4.1. Sandwiched singularities are normal surface singulari-
ties which birationally dominate a non-singular surface. More precisely, a
normal two-dimensional complex-analytic local ring is said to have a sand-
wiched singularity if there exists a non-singular algebraic surface S over C,
an ideal sheaf J on S and a point @ in the blowing-up X of S along J
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- such that (Ox g)an = O. A normal local ring O which is a localization of a
finitely generated C-algebra is said to have a sandwiched singularity if Ogy,
has one.

Remark I1.4.2. If O has a sandwiched singularity, we may assume that the
ideal sheaf 7 has cosupport at one point O € S and since O is normal, we
may also assume that the stalk Js o is a complete ideal in Og o (see Corol-
lary 1.3.28). Note that by (i) of Proposition 1.3.3, sandwiched singularities
are rational surface singularities.

The following results relates sandwiched singularities to clusters of base
points.

Proposition 1.4.3. (Remark 1.4 of [58]) Let I C R be a complete mo-
primary ideal and let K = BP(I) be the cluster of base points of 1. If
wy: X — S is the blowing-up of I (X = Bl;(S)) and 7k is the blowing-
up of all the points in K, we have a commutative diagram

SK-£—>X

K

S

where the morphism f, given by the universal property of the blowing-up,
is the minimal resolution of the singularities of X.

Definition 1.4.4. Let Zy,...,Z, be reduced and irreducible algebraic va-
rieties with the same function field K. The birational join of Z1,...,Zy, is
the minimal birational model of K (minimal with respect to domination)
which dominate Zi,...,Z,. It thus consists of a reduced and irreducible
algebraic variety Z birational to the Z; together with birational morphisms -
pi: Z — Z; for each i € {1,...,n}.

The construction of the birational join is as follows: if ¢;; : Z; & Z;
are the birational correspondence between Z; and Z;, there are open sets
U; C Z; and U; C Z; such that ¢;; induces an isomorphism between Uj;
and Uj;. Denote by U the image of any U; in Uy X - -- X U, via the diagonal
morphism, where we identify U; with Uy, j # ¢ via ¢; ;. Then, the birational
join of Z3,...,Z, is the closure of U in Z; X -+ X Z, together with the
. restrictions of the projections p; : Z1 X -+ X Z,, — Z; to it (this closure
does not depend on the choice of the U;).

From Proposition 21.3 of [41] and since unique factorization for complete
ideals holds in the regular ring R (Theorem 1.2.6), we have

Theorem 1.4.5. The exceptional divisor of blowing-up a simple complete
ideal in R is irreducible.



38 I. Preliminaries

Note that by the universal property of the blowing-up, if I is as in
Proposition 1.4.3 and I = [Ti_; I{* is its factorization into simple complete
ideals, then I;Ox is invertible and consequently, there are birational mor-
phisms 0; : X — X = Bl},(S) for each i. On the other hand, it is clear
that o0 f : S — X is a resolution of X; and hence, it factorizes through
the minimal resolution of X;, f; : Sir;, — X; where K; = BP(I;). There-
fore, and for each i, there exists a birational morphism 7; : S — Sy,

doing the following diagram commutative

-
SI\'i -~ SK

fil lf

. O .
Xi<——X

A

S

(mr, + X5, — S is the blowing-up of I;). The next proposition says
that in fact, (X, 0;) and (Sk,7;) are the birational join of X1,..., X, and
SKys. .., Sk, respectively.

Proposition 1.4.6. (Corollary I1.1.5 of [58]) We have that

(a) X together with the birational morphisms o; : X — X; is the bira-
tional join of Xy,...,X,.

(b) The correspondence
I; — strict transform of ﬂ;il(O) on X

is a bijection between {I;}i=1,. » and the set of irreducible components

of i 1(0).
(c) Sk together with the birational morphisms 7; : S — Sk, 1is the
birational join of Sk,,...,Sk,.

Remark I.4.7. One may think of sandwiched singularities in the follow-
ing way. We take a cluster K with origin at O and choose exceptional
components Ei."', t = 1,...,m on Sk such that (EziK)Q < =2 for all
i € {1,...,m} and the exceptional cycle i EziK on Sk is connected.
Then, the intersection matrix (|E5if< 'E;i-K|SK)1Si,j§m is negative-definite
and so, > .1°4 Ezi-K can be contracted to a singularity Q lying on a surface
X. The precise meaning of ”can be contracted” is the following: there
exists a singularity (X, Q) and a resolution f’: &' — (X, Q) such that the
exceptional divisor on S’ is isomorphic to 37 | ESx (see [27]) To prove this
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fact, it is necessary to work in the complex-analytic category. However, as
explained in Remark 1.12 of 58], the morphism f’ can be algebraizable (see
also the proof of Théoréme 4.3 of [37]).

On the other hand, since 7j is a birational morphism and Sy is normal,
there exists a complete mp-primary ideal J C R such that Sy is obtained
by blowing-up J (Theorem IIL. 7.17 of [29]). Then, K is the set of base points
of J. By (b) of Proposition 1.4.6, the simple ideals in the factorization of
J correspond one-to-one with the exceptional components E;f’\' on Sk, i.e.
keeping the notation of 1.2.10, I, appears in the factorization of J if and
only if p € K. By Proposition 1.4.6, it follows that X is isomorphic to the
blowing-up of the ideal

I= I &

peK\{p1,..pm}

and by Theorem 1.2.9, p € K is a dicritical point of the cluster K = BP(I)

if and only if p € {p1,...,Pm}-
In particular, we see that the correspondence p — f, (ESK) is a bijection

between the set Ky = {p € K | pp > 0} and the irreducible components of
the exceptional locus of X.

To close the present section, we fix some notation and conventions and
prove a technical lemma that will be needed in the future.

Notation 1.4.8. If p € K4, we denote by L, the exceptional component

on X equal to f*(EI;gK ). Hence, {Lp}pex, is the set of the irreducible
components of the exceptional locus of X.

Given a curve C on S, we denote by C and C* = C + L¢ the strict and
the total transform of C' on X. Clearly,

Lo= ) v(C)Ly.
peEX+

If ¢ is any point infinitely near or equal to O, we write Cy for a curve going
sharply through K(g) and missing the points after q in K, and

Lq=Lc, = Z vp({g) Lyp
peXy

for the exceptional component of C;. If T = BP(J), Lt (or L;) means

the exceptional part of the total transform on X of any curve going sharply
through 7.

Lemma 1.4.9. (Projection formula for ) If Cy,Cs are curves on S,

[C1,Calo = |(C1 + Le, )-Calx.
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Proof. Since wy = o f, we have that
75 (C1) = f1(C1 + Lay).
Hence,
~ Sk . =Sk e
O+ EF =0 " +Dg{‘ +f(Lay)
and so

Egi = DE + f*(Lcy) (4.2)

Now, from the projection formula for mx (5. of Proposition 1.1.16), we
know that

~8 ~5
[C1,Calo = |(Cr * + EZF)-Ca “|s =
~ S} ~ 8 -8
= @+ DE)Cy s + 1/ (Le)) G s (4b)
the last equality by (4.a). Applying the projection formula for f (see equal-
ity (3.a) above) we deduce that
Sy Sk N SK o

(Cr " + DgE)Co 7 sy = |C1-Calx

and
* ~ Sk ~
If*LeyCo sk = Loy Calx

and the claim follows from (4.b). O

Convention Throughout this memoir, once a complete mp-primary ideal
I C R has been fixed, we denote by K = (K,v) the cluster of base points
of I and by {Ep}per (instead of EgK ) the exceptional components on Sk.

1.5 Dual graphs

If Ey,..., Es are irreducible curves on a surface S, we associate to them a
weighted graph I" with s vertices: one vertex for each curve. Two vertices
are connected by an edge in I if and only if the two corresponding curves on
S have a non-empty intersection. I is called the dual graph of Ey,. .., E,.
The weight of a vertex u is

wr(u) = —Ej = ~|By-Eyls € N,

A chain is a connected graph with no vertex belonging to more than two
edges. |I'| denotes the set of vertices of T and if u,v € IT'|, the distance
distr(u,v) between u and v is the number of edges in the minimal chain con-
taining u and v. This chain is denoted by ch(u,v) and we write ch®(u, v)for
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ch(u,v) \ {u,v}. We say that u and v are adjacent if distr(u,v) = 1. For
each u € |T'| define

yr(u) = #{v € || | distr(u,v) = 1}.

Dual graph of a cluster

Let K be a cluster and D = D(K) its Enriques diagram (see Definition
1.1.12). The dual graph ' of K is the weighted dual graph associated
to the exceptional components {E,},crc on Si. These graphs are called
non-singular. From 3. of Proposition 1.1.16, we know that the incidence
of the {Ep}pek is determined by the proximity relations of the points of
K, and hence, by D. Conversely, from a weighted non-singular graph it
is possible to recover the natural ordering and the proximity of the points
of K (see §4.4 of [11] for details and more facts concerning the connection
between dual graphs and clusters).

Remark 1.5.1. We have seen in 8. of Proposition 1.1.16 that

er(P) =Tp + 17

where rp, = ti{qg € K midg — p}.

Dual graph of a rational surface singularity

If (X,Q) is a rational surface singularity and f : $' — (X,Q) is a
resolution of (), we can take the (weighted) dual graph associated to the
exceptional locus f~1({Q}) C S’. In case f is the minimal resolution of
(X, @), we denote this graph by I'g. By Corollary 1.3.8, the dual graph I'g
is connected and simply connected. .

Note that the information contained in the dual graph I'g and in the
intersection matrix Ag are equivalent. Therefore, the fundamental cycle of
a rational surface singularity (X, @) can be computed from the dual graph
I'g. From this and by using Theorem 1.3.12, the condition for a graph I" to
correspond to a rational surface singularity is purely combinatorial.

Now, let I C R be a complete mp-primary ideal in R, X = Bl;(S) and
Sk the surface obtained by blowing up all the points in K = BP(I). We
have already pointed out that one may think of X as the surface obtained
by contracting the exceptional components E, of Ex corresponding to the
simple ideals I, not appearing in the factorization of I. If we denote by
Ey the exceptional divisor on Sk composed of these components, each
singularity Q € X is the contraction by f of a connected component Eg of
FEo. Hence, the dual graph I'g of Q is the subgraph of I'x composed of the
vertices corresponding to the components of Eq.
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Definition 1.5.2. A graph I is said to be sandwiched if there exists a
non-singular graph I'* containing I' as a weighted subgraph.

Proposition 1.5.3. (Proposition I1.1.11 of [58]) The following three con-
ditions are equivalent:

(i) Any singularity having a resolution with dual graph T is sandwiched.

(it) There exists a sandwiched singularity having o resolution with dual
graph T.

(iii) T is sandwiched.



Chapter 11

Sandwiched singularities and
the unloading procedure

This chapter essentially deals with the relationship between the (sand-
wiched) singularities of the blowing-up of a complete ideal in a regular local
two-dimensional ring and the Enriques diagram of the cluster of base points
of this ideal. We shall see that the configuration of the exceptional curves
on the blown-up surface, the number of singularities on it, their multiplici-
ties as well as the fundamental cycles can be read easily from the Enriques
diagram by means of the unloading procedure. Most of the methods used
here come from the equisingularity theory of plane curve singularities and
the proofs given often need an accurate study of the proximity relations
between the base points of the ideal.

In section II.1, once fixed a complete ideal I in a local two dimensional
ring having a rational singularity, we associate to every complete subideal
J C I of codimension one a point in the exceptional locus of the surface
obtained by blowing-up I. We shall show that this correspondence is in
fact a bijection and as a corollary, we shall recover the fundamental cycle
of any singularity from the values of the blown-up ideal and the subideal
associated to the singularity by this bijection. In section 2.2 and for the rest
of the chapter, we take complete ideals in the local ring of a non-singular
. surface S at some point O. Then, we relate the study of the singularities
obtained by blowing-up such an ideal to the Enriques diagram of the cluster
of its base points and the unloading procedure. Section I3 gives a more
accurate analysis of the unloading procedure and studies the relationship
between the coefficients of the fundamental cycle of a sandwiched singu-
larity and the proximity relations between some base points of the ideal.
We introduce also the multiplicity relevant (infinitely near) points relative
to a (sandwiched) singularity (M R-points for short). Section IL4 relates

43
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the resolution process of any sandwiched singularity to the complete ideals
in Ogo and the unloading procedure. Then, from the results seen in the
preceding sections we obtain information on the singularities appearing in
the resolution process. Section IL5 gives easy formulas for the multiplicity
of sandwiched singularities and Weil divisors going through them in terms
of the M R-points. A formula for the number of branches (i.e. analyti-
cally irreducible components) of a transverse hypersurface section is also
given, we recover the characterization of minimal singularities as those for
which the fundamental cycle is reduced and we prove that the number of
exceptional components going through the same sandwiched singularity is
bounded by the embedding dimension of the singularity and characterize
when this bound is attained. In section II.6 we give some results concerning
dual graphs of an Enriques diagram and the proximity relations between
their points that will be of great use in the forthcoming chapters. As a
consequence, we prove that the exceptional components going through a
sandwiched singularity are not tangent. Finally, in section IL.7, and as a
consequence of some of the results of this chapter, we answer some questions
posed by Noh in [49] relative to adjacent complete ideals.

II.1  On the blowing-up of complete ideals on a
rational surface singularity

In this section, we take a rational surface singularity (S, 0), i.e § = Spec(R)
is the spectrum of a Noetherian normal complete two-dimensional local ring
(R,mo) containing an algebraically closed field k isomorphic to the residue
field of R and we assume that there exists a desingularization g:5— 8
such that the stalk at O of ng*((’)g) is zero (see Definition 1.3.2). We
denote by O the closed point of S. Fixed a complete me- primary ideal in R,
denote by X the surface obtained by blowing-up I and by L the exceptional
divisor on X relative to the blowing-up of I, i.e. IOx = © x(—Ly).
First of all, we need a definition and a lemma.

Definition I1.1.1. Given a curve C on S with equation h = 0, h €I, the
virtual transform of C relative to I on X is the effective Cartier divisor

C = 7n*(C) — L; obtained by removing L; from the total transform of C
on X.

Lemma I1.1.2. Let J C I be a complete mp-primary ideal of codimension
one. Then for alln > 1, JI"™! has codimension one in I™.

Proof. Leta € I\J. Then, § is generated by @ the classof a and I = J +(a).
It follows that

"= gt 4 oI (1.a)
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for all n € N. Now, take Vn > 1 the morphism induced by the multiplication
by a,
Y In+1
L T S T

1y, is well-defined and surjective by (1.a). Thus,

In+1 n
dim¢ (=) < dim

I
<) S c(5pamg)y ¥ 2 1.

Since I and J are complete ideals, they are defined by valorative inequalities
and so, there exists some valuation v such that

v(J) > v(I).

Thus,
v(a) = v(I) < v(J)
and
v(a™) = nv(a) < v(J) + (n — Nv(I).

Therefore,

a™ ¢ JIt.
Hence, 7}:71- # 0 for all n > 1 and so the claim. O

Notation I1.1.3. We will denote by Mg the ideal sheaf of the point Q €
X.

Proposition 1L1.1.4. Let J C I be a complete mp-primary ideal of codi-
mension one. Then there exists a point Q in the exceptional locus of X
such that JOx = MglOx.

Proof. The surface X is the blowing up of a complete ideal and hence it
is normal and 7 : X — S is birational and proper (Corollary 1.3.28). By
Proposition 1.3.3, H'(X, Ox) = 0 and since § is affine, R, (Ox) = 0.

The inclusion J C I induces an inclusion of ideal sheaves JOx C IOx
- and thus, an exact sequence of sheaves on X

0— JOx — I0Ox — N — 0

and since complete ideals are contracted for any proper birational map (see
Proposition 1.3.25), by applying 7. we get the exact sequence

0— J — I — m(N) — R7,(JOx).
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The sheaf JOx is the homomorphic image of O for some t. Since the
fibres of 7 have dimension < 1, R?r, vanishes for all coherent sheaves on X .
From this and from the fact that R'm.(O%) = 0, we infer that Rlr, (JOx)
is zero. Now, since J # I, m(N) # 0 and V cannot be zero and thus there
exists at least one point Q € X in the support of AV. Therefore, we have

JOx,0 CmglOxo C Oxg
and the following inclusions of sheaves
JOx C MgIOx C IOy
This clearly induces for every n € N
JI"Ox € MoI™Ox C IOy

Now, as JI™™! and I" are complete ideals in R, they are contracted for 7
(Proposition 1.3.25) and so, by applying =,,

JI" C m(MoI™Ox) C I

On the other hand, by means of Theorem 1.3.27, we have that MoI"Ox
is a complete Ox-module and by Lemma 1.3.23, =, (M@I™Ox) is complete,
too. Moreover, since I"Ojy is invertible, =, (MoI™Ox) ¢ I, Now, JI»1
is complete and by Lemma I1.1.2, it has codimension one in I™. Therefore,

JI" = 1, (MoI™Ox)

and so

I(X, JI"'0x) = D(X, MoI"Ox),
for every n € N. Thus, by Proposition 5.15 II of [29],

JOx = MgIOx.

O

‘According to Proposition II.1.4, we can map each complete mp-primary
ideal J C I of codimension one to the point @ in the exceptional locus of
X such that JOx = MgIOyx. Since J is complete, it is contracted for 7
(see Proposition 1.3.25) and

J=7,(JOx) = ﬂ'*(MQIOX),

so it is clear that this map in injective. The following proposition shows
that it is also surjective.
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Notation I1.1.5. Throughout this chapter, we denote by L the exceptional
locus in X of m. Given a point Q € L, we write Ig = m,(MgIOx).

Proposition II.1.6. If Q € L, Ig is a complete ideal contained in I and
of codimension one. Moreover, we have IgOx = MgIOx.

Proof. First of all, according to Theorem 1.3.27 and Lemma 1.3.23, the ideal
Ig C Iis complete. From Theorem 3.15 of [54], we know that there exists a
complete mp-primary ideal J such that Ig € J C I and J has codimension
one in I. Let Q' € L be the point associated to J in Proposition II.1.4, so
J = Ig. Then, for all n € N, we have that IoI™ C I/ I" and equivalently,

(X, MoI™0x) Cc T'(X, Mg I" 1 Ox).
Therefore, if we write I'v(F) = @,cnT(X, F(n)), then
I'(Mg) C Tu(Mg),
and by [29] II Proposition 5.15, there are natural isomorphism,
[.(M@)™ & Mg

and
P*(MQI)N & MQ’
where ~ means the sheaf associated to (see §IL5 of [29]). Thus,

Mg C Mgy,

which obviously implies that Q = Q' and so, that Ig = Iy C I has
codimension one as claimed. In particular, IoOx = MgIOx. 0

By means of Propositions I1.1.4 and I1.1.6 we obtain the following result,
as already announced.

Theorem I1.1.7. Let I C R be a complete mp-primary ideal, X the surface
obtained by blowing-up I and L the exceptional locus in X. By associating
- to each point Q) € L the complete ideal Ig, we get a bijection between the
set of points on the exceptional divisor of the surface X and the set of the
complete ideals J C I of codimension one. The inverse map associates
to each complete ideal J the only point Q) all the virtual transforms of the
curves C : h =0, h € J are going through.

Remark II.1.8. A similar result has been proved by Watanabe in a more
algebraic context (see Proposition 3.1 of [60]).
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Remark II.1.9. If Q € X, a hypersurface section of (X, Q) is a Cartier
divisor on X given by a local equation h = 0 for some h € mqg. From
Theorem 11.1.7 we infer that if @ is in the exceptional locus of X , the
virtual transform C relative to I of any curve defined by an element of I
is a hypersurface section of (X, Q). Moreover, the equations of these virtual
transforms generate the maximal ideal mQ.

Given a singularity Q € X, the following corollary states the link be-
tween its fundamental cycle and the values of I and Iy by the divisorial
valuations relative to the exceptional components of the minimal resolution

of Q.

Corollary I1.1.10. Let J C I be a complete ideal of codimension one and
let Q@ € X the point associated to it by Theorem IL1.7. Let f:8 —
X be the minimal resolution of the singularities of X and {Ea}aca the
ezceptional components of mo f: 8" — X and {Eo}aca, the exceptional
components on S’ contracting to Q.

g1 x

WIA im

S

For each a € A, write v, for the divisorial valuation associated to E,.
Then:

(a) JOg is an invertible sheaf if and only if Q is singular.
(b) If Q is regular, then

va(I) = va(J), for each a € A.
(c¢) If Q is singular, then

va(J) =valI) + 2o if a€lg
val(J) = vo (1) otherwise

where Zg = ZaeAQ ZaEq is the fundamental cycle of Q.

Proof. By Proposition I1.1.4 we know that JOx = M@IOx and so, that
JOx is not invertible. Since the minimal resolution f 18 — X of the
singularities of X induces an isomorphism in a neighborhood of any regular
point in X, it is clear that JOg is not invertible if Q is regular. If Q is



II.2. Enriques diagrams and sandwiched singularities 49

singular, then f factors through the blowing-up of @ and hence JOg is
invertible. This proves (a).

Part (b) follows immediately from (a) and the equality JOx = MgIOx.

Finally, if @ is singular, we have seen that JOg is invertible. Let Ef =
Y acaVa(I)Eq and Ej =Y ca va(J)Eq be the divisors on S associated
to IOg and JOg, ie. [0y = Ox(--E]) and JOg = OX(—EJ). Since
JOgs = MgIOg and MgOg = Og/(—Zg) (Theorem 1.3.15), we deduce
that Ej = Zg + Er and this proves (c). O

I1.2 Enriques diagrams and sandwiched singular-
ities

From now on, the situation we shall deal with is the following: O € S is
a closed point of a non-singular algebraic surface over C and mp is the
maximal ideal of R = Og . We shall take complete mo-primary ideals in
R. In this section, we begin the study of the connection between clusters
of base points of complete mp-primary ideals in R with origin at O and the
sandwiched singularities obtained when blowing-up these ideals.

The aim is to show that, fixed a complete mp-primary ideal I, the
(weighted) Enriques diagram of BP(I) encloses a lot of information about
the configuration of the exceptional components on X = Bl;(S) and their
singularities. In particular, we will be able to read from the Enriques
diagram of BP(I) and by means of the unloading procedure, the number
of singularities of X as well as their fundamental cycles and multiplicities.

Let K = (K, v) be the weighted cluster BP(I) and keep the notation
introduced in Chapter 1. Write

Fx=||F
peK

the disjoint union of the first neighbourhoods of the points of K and Fg =
Fg \ K the set of all points lying in the first neighbourhood of some point
of K and not in K. If ¢ € Fg, we denote by K4 the weighted cluster
(K U{q},v®) where (9 is the system of virtual multiplicities defined by

Jo = w ifp#Fg
P 1 ifp=gq

Note that if ¢ € F},, the excess pp, = 0 if and only if the excess of Ky at p is
—1 and hence, in this case, K, is not consistent.

The following lemma will allow us to connect the results of the preceding
section with the theory of clusters.
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Lemma IL.2.1. If q € Fy, then

=1.

dimc
Kq

Moreover, every complete mp-primary ideal of codimension one in I has
the form Hy, for some g € Fg.

Proof. By computing the virtual codimension of Ky (Definition 1.2.19), we
obtain ‘

(@), (@)

vy (vp +1 vplv, + 1

c(Kq) = Z ___—p(p2 )=Z-——p(p2 )+1:c(IC)+1.
peKU{q} PEK

Hence, by Proposition 1.2.23,

dimg < C(IC) +1

q

and since K is consistent,
R
c(K) = dim¢ T

Thus,

R R R
On the other hand, since K is consistent, there are germs of curve going
through K and going not through ¢ (Theorem 1.1.30), and so I # Hg,.
Because of this,

dim(c —IIE 75 dimc ﬁR’;—q
d
and so . ' R
dim¢ = dimg¢ T + 1.

K:q
This proves the first claim. The second follows from [10] §1; we sketch here
the idea of the proof. If J C I has codimension one, write X’ = BP(J) and
1/]’, for its virtual multiplicity at p. By Theorem 1.2.9, we have J = Hj.
By adding points with virtual multiplicities zero, we can assume that K
and X’ have the same points. Since X < K’ and they are consistent, there
exists some point p such that v, > v, and v/, = v, for every u preceding
p- Then, take some g € F}, not already in K and take the cluster K Itis
immediate to see that Hxr C H K, and since both have codimension one in
I, they are equal. Hence, J = Hy,. O
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Corollary I1.2.2. If K, is not consistent, all the unloading steps leading
from Ky to Kq are tame

Proof. Tt follows immediately from Proposition 1.2.23 and the equality
c(Kq) = dimc R/Hg, seen in the proof of Lemma IL.2.1. O

Remark I1.2.3. Lemma II.2.1 suggests that we can map any point ¢ € Fx
to the point in the exceptional locus of X corresponding by Theorem II.1.7
to the complete ideal Hx,, C I, and that this correspondence is surjective.
Note that it is not injective, since if p € K has excess zero and q,¢’ € F}, are
different points not in K, then Ky and Ky are equivalent clusters (for they
are not consistent and after the first unloading step, which is performed on
p, we obtain the same cluster) and thus, Hx, = H Ky 804G and ¢’ correspond
to the same point in X.

Before going further and for future reference, we state the following

result concerning the strict, virtual and total transforms (on X and on Sk)
of curves on S.

Lemma I1.2.4. Let C be a curve on S.

(a) The strict transform CSx equals the strict transform by f of the strict
transform C.

(b) The total transform 73, (C) equals the total transform by f of the total
transform n*C.

(c) If C goes through K, the virtual transform C* C Sk relative to the

(virtual) multiplicities of K equals the total transform by f of the
virtual transform C C X relative to I.

(d) If C goes through K, then the strict transform C equals the virtual
transform C relative to I on X if and only if v,(C) = vp(I) for every
dicritical point p of KC. In this case, C goes through no singularities of
X if and only if the virtual transform CK equals the strict transform

CS%, or equivalently, if and only if C' goes through IC with effective
multiplicities equal to the virtual ones.

Proof. Since m = mwo f, parts (a) and (b) are immediate from the definition
of strict and total transform.

Now, if Cy is a curve going sharply through K, we have 7*(Cp) = Co+L;

~  ~8k ~8
and f*(Co) = Co " E}gK . From Proposition 1.1.29, we know that Cy "
intersects (transversally) each component E, at p, points and, by Remark
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1.4.7, f contracts E, to some singularity of X if and only if p is a non-
dicritical point of K. It follows that Cy goes through no singularity of X

and so, f*(a)) = 'CVOS"' and
A (Lr) = Ef%. (2.a)
Now, assume that C' goes through K. Then, C = C + Lo — Ly and

Lo—Li= 3" (u(C) - v(I)Ly > 0.

pEX

From this, the first claim of (d) is clear. Moreover, f*(C) = f*(C + L¢ —
L;) = f*(C + L¢) — E}gK , which is the virtual transform of C relative to
the multiplicities of K (see Definition 1.1.25). This proves (c).

Finally, assume that v,(C) = v,(I) for every dicritical point p of K.
Since f is the minimal resolution of X, C goes through no s1ngular1t1es if
and only if f *(C) contains no exceptional component. In our case, C = C'
and by part (c), we have

FH(C)=CF =% + EZF — E7%.

It follows that f*(C) = f*(C) has no exceptional support if and only if
Eg" ESK i.e. ifand only if C goes through K with effective multiplicities
equal to the virtual ones. O

Proposition I1.2.5. For each point Q in the exceptional locus of X, there
exists some q € Fx such that Igp = H;cq.
Moreover, Q is singular if and only if K4 is not consistent.

Proof. We already know that f : Sy — X is the minimal resolution of .
all the singularities of X (Proposition 1.4.3). Each component of Ej is the
iterated strict transform of the exceptional divisor of one of the blowing-ups
composing 7x and hence, it may be identified with some F,, withp € K.
If g € F,, \ K, we denote by ¢(q) € Sk the point on E, corresponding to ¢
by the former identification. This gives a map

QOZFK—>EK

which is exhaustive: if P € Ey let pp be the maximal point in K such that
P is proximate to it, and let ¢ € F},, be the point corresponding to P by
the identification of Fy, with Ej,,. By the maximality of Do, q is not in K

and p(q) =
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Now, if Q is in the exceptional locus of X, let p € f~1(Q) and q € Fg
such that P = ¢(g). From Theorem I1.1.7, we know that if C' is defined by
an element of Ig, then its virtual transform C on X goes through Q. Since
the total transform of C by f is the virtual transform of C relative to the
virtual multiplicities of K (see (c) of Lemma 11.2.4), we see that C* goes
through P and so, C goes through K;. Therefore, Ig C H, and also

Q = f(P) = f(e(2)) (2.b)

Both ideals having codimension one in I (Lemma I1.2.1), they are equal.

For the second claim, recall from Remark 1.4.7 that if p € K, E, con-
tracts to a point of X (necessarily a singularity) if and only if p, = 0. Let
q € F}, be such that Hx, = Ig. The excess of the cluster Kq at p is pp — 1,
and so K4 is not consistent if and only if p, = 0. Therefore, X, is not
consistent if and only if E, contracts to some singularity Qo of X. Since
P = ¢(q) € E,, it is clear that Qo = f(P), and from equality (2.b), we
infer that E, is contracted to () and we are done. O

Remark I1.2.6. Let Q be a singularity of X. By Proposition I1.2.5, there
exists some g € Fg such that H, x, = I, and moreover, K, is not consistent.
Since there are no points in K, infinitely near to g, the virtual multiplicity
of ¢ in the consistent cluster I/C\; obtained from X, by unloading is zero. It
follows that g is not a base point of Iy.

From now on, if @ € X, we will write

To ={p e K| fu(Ep) = Q}.

Hence, {Ep}peTQ are the exceptional components of S contracting to Q.
Clearly, Tg = 0 if and only if Q is non-singular. In particular, we have that

{peKlp=0t= |J To (2.c)
QeSing(X)

" Remark I1.2.7. By Zariski’s Main Theorem (see for example Theorem V
5.2 of [29]), the union of the exceptional components { Ep},er, is connected.

Thus, if p1,p2 € Tp, then also u € Tg for all u € ch(pi,p2) (see section
1.5).

The following corollary says that if @ € X is singular, p1,p2 € Tg and

@1 € Fp, and g2 € Fp, are not in K, then the clusters Ky, and Ky, are
equivalent.
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Corollary 11.2.8. If q1,q92 € Fx are different, then Z;; = E‘; if and only
if 1 € Fpy,q2 € Fp, and p1,p2 € T for some singularity QQ € X.

In particular, Q is non-singular if and only if there is only one q € Fg
such that Hy, = Iq.

Notation I1.2.9. If Q is a singular point in the exceptional locus of X
and g € Fg is such that Hy, = I, we denote by K¢ the cluster obtained
by unloading K, and dropping ¢; if @ € X is regular, then we write Kg to
mean K4, where g is the (only) point such that Hx, = Ig. It is clear that
in any case, Hx, = Ig.

Note that after Corollary 11.2.8, in order to obtain the cluster Kg it
does not matter where the point g € Fg is added, provided that q € Fy, of
Proposition 11.2.5 and p € T. Note also that if () is singular, then Kg is
consistent but not strictly consistent in general.

The following corollary summarizes some of the information about the
surface X and its singularities that can be read off from the Enriques di-
agram of K = BP(I). In particular, we show that the coefficients of the
fundamental cycle of any singularity Q) € X at E,, p € Tg equals the num-
ber of unloading steps performed on p in any unloading procedure of K,
with Hx, = Ig, thus giving an easy way to compute the former.

Corollary I1.2.10. Keep the notation as above. Then:

(a) the number of singularities of X equals the number of non-equivalent
clusters Kgq, for ¢ € Fp, not already in K and p € K a non-dicritical
point of K.

(b) Ifp1,p2 € Ty for some singularity Q € X, the exceptional components
Ep, and E,, intersect on Sy if and only if p1 is mazimal among the
points of K prozimate to py or viceversa.

(c) Let Q@ € X be singular and let ¢ € Fg be such that Hy, = Iqg.
Write Zg = EuETQ 2y By the fundamental cycle of Q. Then, for each
u € Ty, 2z, ts the number of unloading steps performed on u in the
unloading procedure from K4 to IE;_

Proof. Part (a) follows immediately from the second claim of Corollary
I1.2.8 and part (b) follows from 3. of Proposition 1.1.16. By Remark I11.2.6,
we know that ¢ is not a base point of I and thus, the base points of I are
contained in K. Hence, (c) of Corollary I1.1.10 says that for each u € K,

v(I)+ 2z if ueTy
ul L =
vullQ) { vu(I) otherwise.

(2.d)
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Now, we have already pointed out that the unloading procedure from X, to
IE; is tame (Corollary I11.2.2). Therefore, by Remark 1.2.14, each unloading
step on a point of K increases by one its virtual value, while the values
of the others points remain unaffected. We derive that in the unloading
procedure from X, to IE;, zy equals the number of unloading steps on each
u € T while if u € K \ T, no unloading is performed on w. O

Remark 1I.2.11. In Corollary I1.1.14 of [58], Spivakovsky proves that
once a sandwiched singularity (X' , Q) is fixed, a complete mp-primary ideal
I C R can be chosen so that (X,Q) is analytically isomorphic to (X, Q)
for some point Q in X = Bl;(S) and

1. (X, Q) is the only singularity of X

2. the strict transforms on the minimal resolution of X of the irreducible

components of the exceptional locus of X are curves of the first kind
(i.e. have self-intersection equal to —1).

The following lemma describes the clusters of base points of such ideals in
terms of proximity and excesses.

Lemma II.2.12. Assume that I C R is a complete mp-primary ideal such
that (X,Q) is analytically isomorphic to some singularity in X = Bl;(S).
Then, the above conditions 1. and 2. are equivalent to the following two:

(i) BP(I) has positive excesses at its mazimal points only
(ii) these mazimal points are free

Proof. By Remark 1.5.1, we know that the self-intersection of the strict

transform of the exceptional component L, is —w(p) = —f{qg € K | ¢ —
p} — 1. Since the exceptional components on X are the direct image of
the components F, where K has positive excess, the condition 2. above is
equivalent to saying that the only points where K has positive excess (see
Remark 1.4.7) are the maximal ones. On the other hand, if X has only one
- singularity, the union Ep of the components £, such that K has excess 0 at
p is connected. If some maximal point p € K is proximate to two points,
say g1 and g2, then 3. of Proposition 1.1.16 says that E, intersects F,, and
E,,, and hence, E4 and E,, are not in the same connected component of
Ey against the connectedness of Ey. N

Example I1.2.16 at the end of this section presents a cluster with these
requirements.
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.

Figure I1.1: Enriques diagram of K(p) = BP(I,) and its corresponding (un-
weighted) dual graph when p is free.

Remark I1.2.13. Keep the notation as in 1.2.10. Recall that by Theorem
1.4.5,if I = I, is a simple ideal in R, the exceptional divisor on X = Bl 1,(S)
is irreducible and the self-intersection of E, C S K(p) (its strict transform
on the minimal resolution of X) is —1, for there are no points in K (p)
proximate to p (see 3. of Proposition 1.1.16). In fact, X has one singularity
if p is free and two singularities if it is satellite. Figure II.1 shows how the
Enriques diagram of the cluster K(p) = BP(I,) looks like and also the dual
graph I' when p is free (see section 1.5). Following Spivakovsky (Definition
I1.3.1 of [58]), primitive singularities are those sandwiched singularities that
may be obtained by blowing-up a simple ideal verifying the assumptions of
(i) and (ii) above, or equivalently, a simple ideal whose maximal base point -
is free.

From Remark I1.2.11 and Proposition 1.4.6 it follows that every sand-
wiched singularity is a birational join of finitely many primitive ones (Propo-
sition I1.3.6 of [58]). More precisely, once a sandwiched singularity (X, Q)
has been fixed, choose a complete mp-primary ideal T verifying (i) and (ii)
of Lemma I1.2.12 and let I = [[_, I,, be its decomposition into simple
ideals. Since each p; is free, Lemma 11.2.12 says that the blowing-up of I,
gives rise to a surface X; with only one singularity, say Q;. By definition,
the Q;,1 < i < n are primitive singularities, and (X, Q) is the birational
join of (Xl, Q1), ey (Xn, Qn)

This decomposition of a sandwiched singularity (X, Q) as the birational
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join of primitive ones is not unique as it depends not only of (X,Q) but
also of the germ of the map 7 : X — § at Q (see II §3 and Example 11.4.3
of [58] for details).

Now, we present a formula for the multiplicity of a sandwiched singu-

larity @ € X in terms of the self-intersections of the clusters K and Kq
(see Definition 1.2.19).

Theorem I1.2.14. Let Q be any point in the exceptional locus of X. Then
the multiplicity of X at Q is

muth(X) = )CQ2 — ’CQ.

Proof. By Proposition I1.2.5, there exits some ¢ € Fx such that K is
equivalent to Kg. If Q is regular, then K is consistent and hence, Kg =
BP(Ig). Tt is immediate to see that kg% — K2 = 1.

Assume now that Q is singular. Then, write Kg = (K,v/) and Z for
the K-vector whose p-entry is

=1 % ifpelg
P71 0 otherwise.

Recall that A g = —P% P is the intersection matrix of Ex (Lemma 1.1.18)
and denote by A the intersection matrix of the exceptional divisor of the
minimal resolution of Q). By Theorem 1.3.15,

multo(X) = —Z5AqZo = —Z AxZ. (2.e)

Write v = {vp} and vi = {v,} the virtual values of K and Kq, respec-
tively. Since vx = Pxvik (Lemma 1.1.13), we have that

K? = vhvx = (Prve) (Prvi) = ViPLPrve = —VviAgvk

and similarly, (Kg)? = —(vi)!AgVi. Now, from (c) of Corollary I1.1.10

we know that vi. = vx + Z. Hence,

(K@)’ —K* = viAgvk — (vi)'Ak(vi) =
viAgve — (v + Z)' Ak (v + Z) =
= —27tAKV)C - 7tAK7 = —27tAKV;c + muth(X),

the last equality by (2.e) above. Since Agvk = —px (see Lemma 1.1.22)

and Tg C {p € K | pp = 0}, we infer that 7tAKv,C = 0 and we are
done. 0
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ps

Figure I1.2: On the left, the Enriques diagram of the cluster X = BP(I) of Exam-
ple I1.2.15; on the right, we represent the exceptional components and singularities
of X = Bl;(S). ’

By means of Corollary 11.2.10 and Theorem I1.2.14 we obtain an easy
procedure to compute the number of singularities of X as well as their fun-
damental cycles and multiplicities from the data contained in the Enriques
diagram of K. First of all, the number of singularities equals the number
of non-equivalent clusters Kq for q in the first neighbourhood of some non-
dicritical point of K. Any of these clusters is clearly non-consistent and
the number of unloadin/g/ steps performed on each p € K in the unloading
procedure from K, to K, equals the coefficient of E, in the fundamental
cycle of the singularity Q € X such that Iop=H K, Finally, the multiplic-
ity of (X, Q) can be computed as the difference of the self-intersections of
the clusters Kq and K, i.e. multg(X) = Kg2 — K2. We will come back to
the fundamental cycle and the multiplicity of a sandwiched singularity in
the forthcoming sections of this chapter.

Next we illustrate the results of this section by means of some examples.

Example I1.2.15. Take I = (z(y* — %), (z + ¥ (x +9)3, (= + ) (z +
v, (@ +y°)(@ +y)*y). We have I = I, I, where I, = (z,y(z +y*)) and
Ins = (v%,2°,2%y) are simple complete ideals. The cluster K of base points
of I consists of the origin p1 = O, the points py € Fy and p3 € Fp, on
the z-axis with virtual multiplicities 3,1 and 1, plus the point py € Fp on
the y-axis and the point p5 € Fp, and proximate to O, both with virtual
multiplicity 1. The Enriques diagram of K is shown on the left of Figure
II1.2.

The points of X with positive excess are p3 and ps. Therefore, there are
two exceptional components Ly, and L,, on the surface X = Bi;(S) and
the components Ej,, E,, and E,, on Si contract to singularities of X (see
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Remark 1.4.7). Moreover, since p2 is maximal among the points proximate
to O, the components Ep, and Ep contract to the same singularity of X,
say Q1. Hence, Tp, = {O,p2}. By adding a free point ¢ with virtual
multiplicity one in the first neighborhood of p3 or ps, we get a consistent
cluster K4 and by Corollary I11.2.5, Hi, corresponds to a regular point of
X lying on Ly, or Ly,.

By Corollary I1.2.8, if we add a free and simple point ¢ not already
in K in the first neighbourhood of O or ps and unload multiplicities, we
get a consistent cluster Ivaq, which does not depend on the choice of g (see
Corollary 11.2.8). Figure I1.3 shows the unloading procedure from K, to IE;
when g is in F},. The cluster Kg, is obtained by dropping ¢ in IE; and, by
Corollary 11.2.8 and since I,, = mg and I, = (z,y?), the complete ideal of
codimension one associated to (1 by Theorem I1.1.7 is Ig, = Igl I,, C I

unloading

Figure I1.3: Unloading from K, to IE; in Example 11.2.15.

Now, Theorem 11.2.14 provides the multiplicity of Q;:

multg, (X) =17-13 = 4.

Analogously, by adding a free and simple point ¢’ in F}, and not in K,
we obtain a non-consistent cluster, and by Corollary 11.2.8, the point of X
corresponding to H, Ky by Theorem I1.1.7 is singular. This point is just the
singularity Q> is obtained by the contraction of E,,, and so Ty, = {p4}.

As before, drop the point ¢’ of IE;/ to get Kg,. The multiplicity of Q2
is

multg,(X) =15—-13 =2.
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unloading

Figure II.4: Unloading procedure from Ky to 75;7 in Example I1.2.15.

If I, = (y,2%), the complete ideal of codimension one associated to Q2 by
Theorem I1.1.7 is I, = fpsfji -y

Example II.2.16. Take a complete mo-primary ideal I = I I, in R
with base points as shown in Figure IL5. The dicritical points of K are pg
and pia. The exceptional components E, for p # pe, p1o contract by f to
points of X = BI;(S). Moreover, if we add some free and simple point ¢ in
the first neighbourhood of any of these points and unload multiplicities, we
obtain the same consistent cluster after dropping q. In virtue of Corollary
11.2.8, this means that all the exceptional components E, for p # ps,p1o
contract to the same singularity, say @, and that this is the only singular
point in X. The Enriques diagram of K¢ is shown in Figure IL6. As in the
previous example, Theorem I1.2.14 gives that

multg(X) = 187 — 179 = 8.

Moreover, if we compute the unloading steps performed at each point, we
obtain in virtue of (c) in Corollary I1.2.10,

2Q = Epy + Ep, + Epy + 2Ep, + Ep, + 2Ep, + Ep, +2E,, + 2E,,, + Epyy.

I1.3 On the fundamental cycle of a sandwiched
singularity
From Corollary I1.1.10, we know that each coefficient of the fundamental

cycle of a sandwiched singularity Q@ € X is the difference between the
values of Ig and I by the divisorial valuation relative to the corresponding
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Figure I1.5: On the left, the Enriques diagram of X = BP(J) in Example 11.2.16;

on the right, we represent the exceptional components and the singularity of X =
Bl (S).

Figure I1.6: Enriques diagram of the cluster K¢ in Example I1.2.16.
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exceptional component. Then, in Corollary I1.2.10, we have reinterpreted
these coefficients as the number of unloading steps on the points of T =
{r € K| fi(Ep) = Q} in any unloading procedure giving rise to BP(Ig).
In this section, we will see that these coefficients are closely related to the
proximity relations of the points of Tg and we introduce the multiplicity
relevant points (of K) relative to a sandwiched singularity, which will be
of great use in section 2.5. The results given here will be very useful in the
forthcoming chapters as they will allow us to deduce from the dual graph of
a sandwiched singularity Op some proximity relations for the base points
of any complete ideal giving rise to Og.

Let @ € X be a sandwiched singularity and Ko = (K, ') the cluster
introduced in Notation 11.2.9. Denote by p;, the excess of K¢ at p € K.

Lemma II1.3.1. We have that

(a) by taking the partial order relation of being infinitely near to, there
ezists a unique minimal point in Tg. We will denote this point by
Og.

(b) ué)Q =vo, + 1.
(c) fp €K and p# Oq, then v, > v, > v, — 1.

Proof. (a) Assume that g,g2 € Tg are different and minimal among the
points of Tp. Let ug € K be such that ¢, and g2 are infinitely near to wug
and maximal with this property. Then, ug € ch(g1,q2). By the minimality
of g1 and g2, up ¢ Ty and Remark I1.2.7 leads to contradiction.

To prove (b), keep the notation of Chapter I and denote S(@) the surface
obtained by blowing up the points preceding Og ($(® = § if Og = 0),
so that Og is a proper point of $(@). Denote by vo, : R — Os@ 0 o
the morphism induced by blowing up. From Corollary I1.1.10, we infer
that v,(Ig) = vp(I) for each p preceding Og. Therefore, the exceptional
component of the total transform on @ of curves going sharply through
K and Kg are equal. Write z an equation of this exceptional component
at Og. Then, the ideals generated kiy 270, (Ig) and 2o, (I) are
complete mp,-primary ideals Ig and I in OS(Q),OQ as they are the stalks
at Og of the ideal sheaves IgOgq) and I Og(@), which are complete. Since
Ig C I, we have

fQ C IU .
Moreover, note that the base points of [ (resp. fQ) are the base points of
I (resp. Ig) infinitely near or equal to Og. Since Ogq is the minimal point
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of Tg, no unloading steps are performed on any point p preceding Oq, and
so v}, = vp. It follows that

P
' I v, +1) (v, +1)
dimg(=) = Z(Pg - pp2 )=
Iq p20q
v, +1)  u(vp,+1 . I
— Z(p P )_ P(P ))Zdlmc(—-—)=1.
2 2 Io
pEK

Then, from Corollary 1.2.22, we know that

w

dimg( )= Vo, t+1

mo Q I
and
/

dimg( < ) =vo, + 1.
moQIQ

Thus, we infer that
Vé) o = YOq +1

and (b) is proved.

To prove (c), let ¢ € Fx be such that Hx, = BP(Ig) (see Proposition
I1.2.5). Let KO = K, KM, ..,L(™ = K’ be any sequence of weighted
clusters obtained by unloading, where K = (K U {q},v(™) is the cluster
obtained after performing the n-th step. Note that by (c) of Corollary
I11.2.10 all the unloading steps are performed on points of T. We will see
that vy —1 < ™ < y, for any u # O and any n € {0,...,m}. Then, part
(c) follows by taking n = m.

First, we show that

M <, (3.2)

by induction on n. For n = 0, there is nothing to prove. Assume n > 0
and let © € K be the point on which the n-th unloading is performed. By
Corollary 11.2.2, we know that the unloading procedure is tame and thus
Y = Yp—u V;,(,n_l) — 1. Then,

V&n_l) +1 ifp=u

V,(,n) = VI(,n_l) -1 ifp—ou

1/1(,”_1) otherwise



64 I1. Sandwiched singularities and the unloading procedure

For p # u, the inequality (3.a) above is obvious by the induction hypothesis
and for u,

A=A 1= T T =

p—u p—u

the last equality because u € Ty and so, the excess of K at u is 0.
Now, to prove that l/l(tn) > v, —1 we will also use induction on n. Assume
that there exists some n > 0 such that ufun) < vy — 2 for some point w € K.

We may assume that n is minimal with this property and hence

v =y, — 1 (3.b)
(n)

and therefore, vy, = vy — 2. Then it is clear that the n-th unloading step

has been performed at some point u € K such that w is proximate to wu.

Thus, pl(,"—l) = —1. By the induction hypothesis, we have
v >, — 1. (3.c)
Then,
Pu = Uy — Z vp < by (3.a) above
p—u
S vy — vy — Z VZ(,”"l) < by (3.0)
p—u,pFw
<UD 41 -0y, — Z Vz(,"_l) = by (3.b)
p—upFw
— 1) Z o S
p—u
against the fact that K is consistent. Hence the claim. O

Remark I1.3.2. If Q is non-singular in X, we denote by Oq the infinitely
near point of Fx that corresponds to Q by the map ¢ (see the proof of
Proposition I1.2.5). This is well defined by the second assertion of Corollary
I1.2.8.

From the above lemma, if Q is singular and q € Fg is such that Hy, =
Iq, then the virtual multiplicities of K cannot decrease more than one unity
in the unloading procedure from Kqto K.

Next we introduce subsets of points of K associated to each singularity
of X that will play a basic role in section IL5.



I1.3. On the fundamental cycle of a sandwiched singularity 65

Definition I1.3.3. If @ € X is singular, we write
Bf={peK|vy=v,-1}

and call it the set of the multiplicity relevant points (of K) relative to Q
(M R-points for short). For every p € K we shall also write 6,(,2 = v, — Up,
and clearly,

1 ifp=0g
ed=<S 0 ifp¢BS (3.d)
-1 ifpe Bg

If no confusion may arise, we will simply write ¢, instead of 5,?. In case Q
is non-singular, we take Bg = 0.

Remark I1.3.4. By (c) of Corollary I11.2.10, the points on which unloading
is performed are the points of Tg. Thus, if u ¢ Tg, u is proximate to some
point in Ty if and only if u € BS (see Subsection 1.2.1).

Example I1.3.5. In Example 11.2.15, Og, = p; and the M R-points rela-
tive to (@1 are

B§, = {ps,pa,p5}
(see Figure IL.3). Similarly, Og, = p4 and Bgz = {ps} (see Figure 11.4).
Example I1.3.6. In Example I1.2.16, Og = p; and the M R-points relative
to Q are B = {ps, P6, P8, P9, P10, P11, P12}
We state the following corollary of Lemma II.3.1 for future reference.
Corollary IL.3.7. vo, = ZpGBS Up.
Proof. 1t is clear that
R

dimg¢ E = dim¢ -};- +1.

Then, by Proposition 1.2.21,

Z V;)(l/z/,z-i- 1) B Z I/p(l/p2+ 1) _ 1L (3.0)

pEK peK

From this and (3.d) above, it is immediate that

vy +1) (v + 1)
z( P pz _p 7’2 ) = 1+ Vog — Z Vp
peK peBE

Q
and the claim follows by the equality (3.e) above. O
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The main result of this section is the following theorem which will be
very useful in the forthcoming Chapters III and IV. It shows that the
variation of the coefficients of the fundamental cycle at the points of T
is closely related to their proximity relations and the distribution of the
M R-points relative to Q.

Theorem I1.3.8. Let Q be a singular point of X. Then

(a) if p € Tg verifies one of the following conditions:

(1) p=0Oq
(1t) K has positive ezcess at some point prozimate to p

(ii) p is prozimate to some point not in Ty
then, zp = 1.

(b) For all p € Ty,

Zp=¢€p+ Z Zq-

9€Tq,9—p

Proof. Let Z = (Z)pek be as in the proof of Theorem I1.2.14. By Lemma
1.1.13, we know that '
v =Pgvi(l)
and
I/IK = PKVK;(IQ)
and hence, by (c) of Corollary I11.1.10,

V{K — Vg = PK(V)C(IQ) - V/c(I)) = PKZ.

Therefore, for any v € K,

Za = (y{l—-yu)—{—Zz_qzau-{—ZEE. (3f)
u—q u—q
Ifu € T, (3.f) and the definition of Z, gives the equality claimed in (b) (see
page 57). If Og is proximate to some ¢, then Zg = 0 and so, the equality
(3.f) applied to u = Ogq gives the case (i) of (a).
Now, if u is a dicritical point of K proximate to P, then u ¢ Ty and so,
Zw = 0 and by Remark I1.3.4, u € BS. Then, 0 = Z, and the equality (3.f)
says that

g
I

su+§:%2

u—q

> &u+1
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and from this, £, = —1 and also, Zu——»qz = 1. In particular, z, =%, =1
and this gives (ii) of (a).

It remains to prove that if p € Ty is proximate to some point ¢ € K\Tg,
then z, = 1. We have already shown that this is true for p = Og, so we
assume that p € Tg is not minimal. Then, p is proximate to some po € Tq
besides q. If p is minimal among the points proximate to ¢, then ¢ is
proximate to pp and we have already seen that then, z,, = 1. Then, we
infer from (3.f) that

1SG=cp+5+Tm=5p+1<1

the last inequality since p # Og, and hence, Z; = 2, = 1.

If po is not minimal, then it is also proximate to ¢ and we can assume
by induction that z,, = 1. The argument used above shows similarly that
Zp = zp = 1. This gives the case (iii) and completes the proof. g

The following result is a corollary of the proof of Theorem I1.3.8 and
we state it here for future reference.

Corollary I1.3.9. If p € Ty is prozimate to some point not in Tg, then,
pé BS.

Proof. Keep the notation of the proof of Theorem 11.2.14. By (a) of The-
orem II.1.10, we have that 2, = 1. If p € Bg, then ¢, = —1, and by the
equality (3.f), we have

L=-1+1=0
against the fact p € Tp. g

Remark I1.3.10. By (b) of Corollary I1.3.8, if p is satellite, proximate to
g1 and g2, and z, = 1 then z4, =25, =l and p € BS.

1I.3.1 On the factorization of complete ideals of codimen-
sion one in /

Fixed a complete mp-primary ideal I in R, we study here the factorization
of the complete mp-primary ideals of codimension one in I in terms of the
factorization of I. To this aim, and bearing in mind Theorem 1.2.9, we give a
formula the excesses of the clusters K’ obtained from K = BP(I) by adding
some point not already in K counted once, and unloading multiplicities if
necessary (by Lemma I1.2.1, any complete mp-primary ideal of codimension
one in I has the form Hy- for such a cluster K').

As before, write X = Blj(S). The following proposition is the first
result in this direction and gives a formula for the excesses of Ko when Q
is a singular point of X (see Notation I1.2.9).
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Proposition I1.3.11. Let Q € X be a sandwiched singularity. If p € K,
the excess of Ko at p is

Pp=ppteg = e
q—p

If moreover p € T, then

ph=c3+#{q€ B |q— p} (3.8)
and, in particular, p’OQ > 0.

Proof. By Definition 1.1.20, pj, = 15, — >~ v, and by Lemma IL.3.1, we

have

ly = p+ed) =D (y+ed) =
q—p

= =D v+ (g - 2. (3.h)
9=—p 9—p
This proves the first claim.
Now, if p € T, pp = vp — 34—, ¥g = 0 by (2.c). Moreover, if g is
proximate to p, then 5qQ € {-1,0}. Thus, by 3.h,

Py =63 +t#{qg€ BS | g~ p}

as claimed, and if p = Og,
Pp=1+HqgeBS|qg—p}>1.
a

Remark I1.3.12. Note that since Kg is consistent, (3.g) says that every
M R-point relative to Q in Tg has another M R-point relative to Q proxi-
mate to it (but this point may not belong to Tp).

{p € K | pp > 0}, and that given a point Q) in the exceptional locus of X ,

IC_? ={p €K+ | Q € Lp}. The next result relates the Zariski factorization
of the complete mo-primary ideals of codimension one in T in terms of the
factorization of 1.

Recall that we write K for the set of dicritical points of K, Ky =
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Theorem 11.3.13. Let I = Hpe,c+ Ig", with ap > 1, be the Zariski factor-
ization of I and let J be a complete mp-primary ideal of codimension one in
I. Let QQ be the point in the exceptional locus of X = Blj(S) corresponding
to J by Theorem II.1.7. Then

J=H ][ " I &

pelc$ pEK \Kig

where H C R is a complete mp-primary ideal whose factorization shares
no simple ideals with that of I. Moreover, H is simple if and only if Q is
non-singular and in this case, H = I; where q € Fx is the unique point
such that Hx, = Ig (see Corollary I1.2.8). If Q is singular, then the simple
ideal Io, appears in the factorization of H.

Proof. First of all, recall from Theorem 1.2.9 that the exponent of a simple
ideal I, in the Zariski factorization of J = I is the excess of BP(Ig) at p.

If Q is regular, by Corollary I1.2.8, there is only one q € Fg such that
J = Hg,, and in virtue of Proposition I1.2.5, K, is consistent. From the
definition of the excess, if p € K,

Kq pp — 1 if g is proximate to p
pp = .
Pp otherwise

Now, if g is proximate to some p € K (necessarily, p € K4 since K, is
consistent) then ¢ is maximal among the points proximate to p and so,
Q@ € Lp. Therefore, ICE = {p € K+ | ¢ — p} and the claim follows in this
case. .

Assume now that @ is singular and let p € K \ Tg. Clearly, if p is not
infinitely near to Og, then p ¢ Ty and it is proximate to no point of Tg. In
this case, p € IC? if and only if there is some point ¢ € T being maximal
among the points in K proximate to p, and by its definition, Og is also
proximate to p. Moreover, by Remark 11.3.4, p ¢ Bg and from Corollary
11.3.9, no M R-point relative to Q) is proximate to p. From this,

-1 ifpe K9
ap—zng{o +

otherwise.

Now assume that p is infinitely near to Og. Then, by Remark II1.3.4,
p € Bg if and only if it is proximate to some point u € T, and so,

-1 if p is maximal among the points proximate to some u € Tg
Ep— D Eq=

0 otherwise.
q—p
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To sum up, we see that if p ¢ Tg, then

PR P22
P pp—1 ifpeKS

and hence, we obtain that

J=H [ " [I =&~

pek? pek\KT

where the complete ideal H has a factorization

=] 1",

;DGTQ

with B, > 0. Now, from (a) of Proposition 11.3.11, we know that Io,
actually appears in the factorization of Ig. Since Io, is not a factor of
I, it follows that it appears in the factorization of H. Finally, we know
from Remark I1.1.9 that the strict transform C of a generic curve C' going
through BP(Ig) is a hypersurface section of (X, Q). Thus, the germ of C
at @ is principal. If H was simple and equal to Io,, we would have that
a general hyperplane section of (X, Q) consists of a unique branch against
the assumption that @ is singular. O

I.4 Resolution of sandwiched singularities

Keep the notation as above. We already know that if Sx is the surface ob-
tained by blowing-up all the points of K, then the morphism f : Sx — X
given by the universal property of the blowing-up is the minimal resolu--
tion of (all) the singularities of X (Proposition 1.4.3). The surface Sy can
also be understood as the blowing-up of the complete mo-primary ideal
I' =Tl,ex Ip in R (see Remark IL.1.4 of [58]). The aim of this section is to
describe the resolution process of X in terms of the complete mo-primary
ideals of R = Og0 and the unloading procedure. More precisely, take a
sequence of blowing-ups from X to Sk,

Sk = X Lo X 22 Lx By x (4.2)

where f; is the blowing-up with center Q; € X;_;, Q; = Qand f = fo...0
f1. Since each surface X; is normal and birational to S, it is the blowing-

up of some complete mo-primary ideal in R (Theorem I1.7.17 of [29]),
which is determined up to the exponents of the simple ideals appearing
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in its factorization provided that they are positive (i.e. the surface X;
only determines the simple ideals in the factorization of any complete ideal
giving rise to X;).

Using the results of the previous sections, we will be able to determine
the exceptional components appearing after the blowing-up of each singu-

larity in a resolution process as (4.a) as well as their fundamental cycles
and multiplicities.

First of all, we introduce some notation and definitions. The exceptional
fiber f71(Q) C X1 has a natural scheme structure given by the inverse
image ideal sheaf mgOx,. Write Zx, for the codimension one component

of this scheme and |Zx| for its support, which is not empty since f1 is not
finite.

Definition I1.4.1. We say that a hypersurface section H : g = 0 of (X, Q)
is transverse if g & sz and the strict transform of C' on X; intersects
transversally the maximal cycle |Zx,| at regular points of X3 and of |Z;].

REMARK: This notion of transverse hypersurface section is equivalent to
that of general hypersurface section given in [26] in a more general context.

In Remark I1.1.9, we have pointed out that the virtual transform C on

X relative to I of any curve C going through Kq is a hypersurface section
of (X, Q). Now, we have that

Proposition 11.4.2. The virtual transform on X relative to I of a curve
on S going through K is a hypersurface section of (X, Q) if and only if C
goes through Kq. If moreover, C goes through Q, then C is o transverse
hypersurface section if and only if C' goes sharply through ]CQ, and in this
case, the virtual transform C equals the strict transform C.

Proof. The first claim is a direct consequence of Theorem I1.1.7. Now, by
Lemma I1.2.4, we have that C* is the total transform by f of the virtual
transform C relative to I, and if C goes sharply through K’, by Corollary
I1.1.10, we have that C5% = CSx 4 Zg. This proves the “if” part.

For the converse, assume that the virtual transform of C relative to
I is a transversal hyperplane section of (X, Q) and that C intersects the
exceptional locus at @ and no other point. Then, f*(C) = C3x + Zg and

CSX intersects transversally ng‘ = E}?ETQ E,. Since ng = weo f and using
(2.a) and (2.d), it follows that

T(C) = [@(C)=f(C+Lr)=C% + Zg + Ef¥ =
= O + EjX
Q
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So C goes through K¢ with effective multiplicities equal to the virtual ones.
Moreover, from the assumption, it is clear that CS¥ intersects (transver-
sally) the exceptional divisor E}g"' only at regular points of the exceptional
locus of f. Only remains to show that CSK does not go through the points
where Eg’( intersects the strict transform by f of some L, for p € K.

Now, by Lemma I1.2.4, we have that CX is the total transform by f
of the virtual transform C on X relative to I, and if CSx goes sharply
through Kg, by Corollary I1.1.10, we have CK = CSx + Zg. This proves
the “if” part.

Now, for the converser, assume that the virtual transform of C on X
relative to I is a transverse hypersurface section of (X, Q), f*(C) = CSx +
Zgo and CS¥ intersects transversally Eg =3
7o f, we have .

peTo E,. Then, since 7y =

% (C) = f*(n*(C)) = f*(C + Ly) = O + Zg + B3,

the last equality by equality (2.a). Now, by 2.d, we have Zg + E}g K= E*I'SC‘?I< .
Thus, we see that C goes through K¢g with effective multiplicities equal
to the virtual ones. Moreover, from the assumption, it is clear that C'S¥
intersects (transversally) the exceptional divisor E}qK only at regular points
of the exceptional locus of f. Only remains to show that CS¥ does not go
through the points where Eg“ intersects the strict transform by f of some
L, for p € K. Assume that CSK goes through the point g where EgK
intersects Ep with p a dicritical point of K. Then, e,(C) > 0. Clearly, ¢ is
proximate to p and since p ¢ K, we have from Proposition 1.1.11 that

p(C)=e(C)+ Y elC)> Y =y,

U—p,uFq u—puck N

against the fact that C' goes through K¢ with effective multiplicities equal
to the virtual ones. m

To state the following proposition, we need a definition and to introduce
some notation.

Definition I1.4.3. Let (X,Q) be a rational surface singularity and let
S’ — X be the minimal resolution of (X, Q). An irreducible component
E of the exceptional divisor of &’ is said to be non- Tjurina if |Zg-E|s < 0,
where Zg is the fundamental cycle of Q on S’. The Tjurina components
of Zg are the maximal connected components of f ~1(Q) composed of ex-
ceptional components £ such that |Zo-E|g = 0.
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If J=1I;., I;‘j C R is a complete mp-primary ideal of R (each a; > 0,
ji=1,...,s), we write
s
J, = H Ij.
i=1

Notice that by the discussion above, Bl;(S) is isomorphic to Blj/(S).

Proposition I1.4.4. Let Q € X be a sandwiched singularity and keep the
notation as in (4.a).

(a) Let fO = fro-- 0 fn: Sx — X1. The non-Tjurina components
of Zg are the components E, where p € Tq is a dicritical point of
Kq. In particular, Eo, is a non-Tjurina components of Zg and the
ezceptional component Egé already appears in the blowing-up of Q.

Therefore, any exceptional components of X is either the strict trans-

form of some {Lp}pex, or the direct image by A of some non-
Tjurina component of Zg.

(b) The surface X' = Bl (S) obtained by blowing up Iy = (Ilg) is
~ isomorphic to X1. Hence, X1 is the birational join of X and Blj,(S)
(see Definition 1.4.4)

f1

X1 X = BI;(S)
~
oy
BlIQ(S) i S

Proof. By Proposition 11.4.2, if C' is a curve going sharply through Kgq,
then C is a transverse hypersurface section of (X, Q) and hence,

1(0) = C% + Zq.
From this and the projection formula, we have that for each u € Tg,
|BuwrC%¥ |5 = —| Bu-Zqlsyc

and it is well known that E, does not contract by f!) to a point of X if
and only if |Ey-Zg|s, < 0 (see [59] Proposition 1.2). On the other hand,
since C goes sharply through Kq, part 4 of Proposition 1.1.16 implies that
pr = 16512 -Eylsg . Therefore, the non-Tjurina components of Zg are the
Ei,"l, where p € T is a dicritical point of Kg. This gives (a).
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By (b) of Proposition 1.4.6, the exceptional components on X Ip =
Bl,(S) are the strict transform of 7T1_p1 (O) where I, are the simple ide-
als appearing in the factorization of I, or equivalently by Remark 1.4.7,
the ideals I, where p is a dicritical point of Kg. Now, if p is a dicritical
point of Kg and p € T, part (a) says that the exceptional components E,
is a non-Tjurina components of Zg and so, it appears after blowing-up Q.
On the other hand, if p € K \ Ty, then p was already a dicritical point of
K. From this, it follows that X; dominates X Iy, and it is clear that it also
dominates X. Therefore, X; dominates the birational join of X and X I
and from part (a), we infer that actually, they are isomorphic. n

Next, in order to give a complete idea of the resolution process of the
singularities of X in terms of the complete ideals of R, take a sequence of
complete mp-primary ideals

hchc.clybaicl, (4.b)
defined inductively as follows:
e for i =0, take Iy = I’

e once defined I; for ¢ > 0, let Q; be any singularity of X; = BI 1,(S);
then, if (I;)o, is the complete mo-primary ideal of codimension one
in I; corresponding to Q; by Theorem I1.1.7, define I;,; = (Ii(Ii)g,) -

We stop when we obtain the first ideal I,, such that X,, has no singularities.
Note that for each 7 > 0, I; is a factor of I;+1. Note also that the sequence
4.b is not unique, as it depends at each step on the choice of the singularity

Q.
The following theorem follows from the previous results.

Theorem I1.4.5. For each i > 1, the surface X; is tsomorphic to the
surface obtained from X;_, by blowing-up the singularity Q;_y1 chosen to
define I;. In particular, we have that X, = S.

SK_—_Xn~f7—>Xn_1f"—l .13 X, f2 XILX

TIn—1 Ty

n

Moreover, each X; is the birational join of X,_1 and Bl(I, Do (S).
=1)Q;
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Example I1.4.6. Take the complete mp-primary ideal I = (2:(y? —3), (z—
¥)W? — 2 — 2 (@ - y),2(y? — 2 — 2h)(z — y),2(y? - 2 - %) (2 — p))
in R. The Enriques diagram of X = BP(I) is shown in Figure IL.7. The
dicritical points of K are ps and pg and the surface X = BI;(S) has two
exceptional components L, and Ly,, and only one singularity @, obtained
by the contraction of the exceptional components {Ep} ptpapo of the surface
Sk. Hence, Tg = {p1 = O, p2,p3,Ps, p6, p7,ps}. The dual graph of Q, Lo,
is shown in Figure I1.7.

Note by the way that the ideal I satisfies the conditions (i) and (ii)
of Lemma I1.2.12). In particular, the minimal point of T @» Og equals the
origin O of K.

We describe the resolution process of Q in terms of a chain of complete
mo-primary ideals as in Theorem 11.4.5. As explained in section I1.2, add
a free and simple point ¢ in Fo, = Fo, not already in K, and unload
multiplicities to get K¢, see Figure I1.8. Kq has positive excess at p; =
O, p3 and p7. Thus, in virtue of Proposition I1.4.4, the exceptional divisor
of blowing-up @1 has 3 components, which are the direct image by f{U) of
FEo, Eyy and E,,.

Write K3 for the cluster of base points of Iy = (IIg)'. The surface
X1 = Bl (S) has three singularities, which are resolved by blowing them
up:

® Let Q2 € Xj be the singularity obtained by the contraction of Ey,.
‘Thus, Tg, = {p2}. Asbefore, if I = (I;(I1)g, ), add a free and simple
point g, € Fp, to Ky and unload multiplicities in the resulting cluster
(K1), D1 in Figure I1.8 shows the Enriques diagram of (K1)g,. The -
unloaded cluster has positive excess at ps and thus, if I = (Ii(I1)gq,),
the surface Xy = Bl,(S5) is the minimal resolution of Qs.

e X» has two singularities. Write Q3 € X5 the singularity correspond-
ing to the contraction of Ep,, and E,,. The excess of the cluster
obtained by unloading multiplicities after adding a new free point
g2 € Fp, is positive at p; and pg. Write Ko for the cluster of base
points of Ir. D in Figure IL8 is the Enriques diagram of (K2)g,-

Hence, if I3 = (I2(I2)g,)’ the surface X5 = Bl (S) is the minimal
resolution of Q3.

® Now, if K3 = BP(I3), Ds in Figure IL8 is the Enriques diagram of
(K3)gs- There is only one singularity Q4 in X3 corresponding to the
contraction of Ep,. Once again add a simple free point in g3 € Fp,
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X
LP4
Q
LPQ
Ps
-2
PQ p_, p_) pl p6 p7 pg
2 -2 -4 2 -2 -2
Ps Ps
Fg,: ® P, : -2 g, : *
2 -2
Ds
-2

Figure I1.7: On the top, the Enriques diagram of the cluster BP(I) and the
configuration of exceptional components and singularities of X. On the bottom,
the resolution graphs of Q, Q1, Q» and Q5.
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unloading = 0°%s

Do :Enriques diagram of Kq
To={p1,p2,p3,ps,ps,p7:ps} q,

unloading

p1=0 7

D1 :Enriques diagram of (K,)q,
To={pz} 2

unloading

p=0"7

D: :Enriques diagram of (K,)q,
To={ps,ps}

unloading

Ds :Enriques diagram of (K)q,
Ta={ps) S

Figure I1.8: Unloading in the resolution process of the singularity Q € X of
Example 11.4.6. In the Enriques diagrams on the left, we represent by grey-filled
circles the points in Tp,, where Q; is the singularity to be resolved. In those on
the right, we represent by dark grey-filled circles the minimal point of T, and by
light grey-filled circles the M R-points relative to Q;_1.
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and unload multiplicities. The resulting cluster has positive excess at
Ds.

Finally, the blowing-up of the ideal Iy = (I3(I3)g,) is (isomorphic to) Sk,
the minimal resolution of X.

IL.5 On the multiplicity of curves through a sand-
wiched singularity

Keep the notation as in the preceding sections. Here and in the forthcom-
ing sections, a curve will always mean an effective Weil divisor. Fixed a
sandwiched singularity @@ € X, we give a formula for the multiplicity at
Q of a curve containing no exceptional components on X in terms of the
multiplicities of its projection on S at the M R-points (of K) relative to Q.
As a consequence, we deduce a formula for the multiplicity of a sandwiched
singularity different from the formula of Theorem I1.2.14.
The main result of this section is the following.

Theorem IL5.1. Let Q be a point in the exceptional locus of X. If C is
a curve on S, then

multo(C) = €0, (C) = Y &,(C).

K
pe BQ

Remark I1.5.2. Note that Theorem I1.5.1 gives actually the multiplicity
at @ of any curve on X containing no exceptional components: if C is
such a curve, then C = Cg where Cp = 714+(C) and it is enough to apply
Theorem I1.5.1 to Cop.

Remark II.5.3. Theorem IL.5.1 reveals that Og and the M R-points rela-
tive to () are somehow distinguished points (hence the name!) of K as the
multiplicity of any curve C' at them determines the multiplicity of C at Q.
In particular, if eg, (C) = 0, then C does not go through Q.

Proof of Theorem I1.5.1 In case @ is non-singular, Theorem II.5.1 gives the
effective multiplicity of C' at Og as one might expect, and there is nothing
to prove. Hence, we assume that () is singular. By the projection formula,
applied to f, we know that

multo(C) = |C%-Zgls, = |C% (B — E§¥)|s,  (5.0)

the last equality by Corollary I1.1.10. Now, since the sheaves Iq0s, and
IOs), are invertible (also by Corollary II.1.10), we can take two curves Cr .
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and CIQ going sharply through K and Kg, respectively and such that CI

and C 1, shares no points with CSx on Sk. Then, by the projection formula
applied to 7,

[C,Crlo = |C%,(CF¥ + E{¥)|s, = |C% -E7% |,

and similarly,

C,Crolo = |C%(CPX + E;F)|s, = IO Ep¥ sy
Hence, by (5.a) above,
multo(C) = [C,Crlo - [C,Cilo,
and by Noether’s formula (Theorem 1.1.31), we have
[C.Cllo = Y e(C)p
P
and
[C.Cllo = D e(C)y,
P
Therefore,
multg(C) = Z ep(O) (v — vp)-
P

Finally, by (b) and (c) of Lemma I1.3.1, we obtain

muth(é) = €0, (C) — Z ep(C)
PEB

as claimed.
O
As a corollary of the previous result, we get an easy formula for the
multiplicity of a sandwiched singularity.

Corollary I1.5.4. If Q is a point in the exceptional locus of X, then

multg(X) =1+ §Bg.
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Figure I1.9: On the left, we represent the Enriques diagram of K in Example
IL.5.5 and the singular points of C;; O and the M R-points relative to Q are
represented by grey-filled circles. On the right, the exceptional components of the
surface X and the strict transform of C;

Proof. 'To compute the multiplicity of X at @ it is enough to compute the
multiplicity of a transverse hypersurface section of (X, Q), that is, of the
strict transform of a curve C going sharply through BP(Ip) (see Proposi-
tion I1.4.2). Then, Theorem II.5.1 says that

multo(X) = eoy(C)— Z ep(C) = vp, — Z v, =

PEBS PEBS
= vog+1— > (vp = 1) = 1+ 4B + (vo, — > )=
pEB PEBS
= 1+4Bg
the last equality in virtue of Corollary I1.3.7. a-

Example I1.5.5. Take again a complete mo-primary ideal as in Exam-

ple I1.2.16. Since Bfj = {ps, ps, ps, Po, P10, P11, P12} (see Example 11.3.6),
Corollary I1.5.4 says that

muth(X)=1+ﬁBQ=1+7=8

as we have already seen in Example I1.2.16.
Now, if p € K, write C, for a curve on S going sharply through K(p)
and going through no point of K after p. Then, Theorem IL5.1 says that

multq(Cps) = €0g (Cps) — Z ep(Cpg) =2~1=1

K
PGBQ
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Similarly,
multg (Cp, ) = multg(Cp,) = multg (Cps) = multg (Cps) = multg(Cpy) = 1,

multg(Cp,) = multg(Cp,) = multg(Cp,) = 2
and clearly,

multg(Cpe) = multg(Cpy,) = 0.

Now, take a curve C; on S having the multiplicities shown in Figure I1.9:
C1 is a generic branch going through the point g7 9 where the exceptional
components E,, and E,, on Sk intersect. Again, by Theorem IL.5.1, we
obtain that

multg(C) = €0, (C1) — €pg(C1) — €py(C1) =6 —1— 1 =14.

Example I1.5.6. Take a complete mp-primary ideal I in R having base
points as shown in the Enriques diagram on the top of Figure I1.10. The
dicritical points of KX = BP(I) are ps3, ps, P9, P11, P12 and p1s. There are two
singularities in the surface X = Bl;(S5), say Q1 and @2, where

Tg, = {p1 = O, p2,p4, P13, P14}
and

To, = {ps, p7, P8, P10}-

The dual graph of Q; and Q3 are represented in Figure I1.10. As explained
in section I1.2, by adding a point ¢ in the first neighbourhood of some point
of Tg, and Ty, and unloading multiplicities, we obtain the clusters g, and
Kg,. The I R—points relative to Q1 are ng = {p3, p5,p6, P15} and Og, =
p1. Similarly, the I R—points relative to Q)2 are ng = {ps, P9, P11, P12} and
Ogq, = ps. Then, by Corollary 11.5.4,

multg, (X)=14+4=5

multg,(X) =1+4 =5.

Now, if C is a curve on S as shown in Figure I1.11, in virtue of Theorem
I1.5.1 the multiplicities of C at Q1 and Q5 are

muth1(5)=9-—4—3—0:2

multg,(C) =4-3-0-0-0=1.
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Figure 11.10: On the top, the Enriques diagram of base points of I in Example
11.5.6 and the exceptional components and singularities if the surface X = Bi;(S).
The dual graphs of @J; and Q2 are represented on the bottom.

Figure I1.11: On the left, the Enriques diagram of C in Example I1.5.6; on the
right, the strict transform C on X goes through the singularities Q; and Q- of X.
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By means of Corollary I1.5.4, we get an easy bound for the multiplicity
of all the sandwiched singularities of X. Following [32], if Q@ € X, we say

that R = Qg0 is mazimally regular in Ox g if there are no regular rings
Ry # R such that R C Rp & Ox .

Corollary I1.5.7. If Q is a point in the exceptional locus of X, then
multo(X) <1410

and the equality holds if and only if R is mazimally regular in Ox o and
all the M R-points relative to () are simple.

Proof. The claim is clear if Q) is regular, so we assume that is singular. By
Corollary I1.5.4 and Corollary I1.3.7, we have that

multg(X) = 1+ﬁBS < 1+ZP€B§ vp=1+vo, < 1+vo

and the equality holds if and only if the virtual multiplicity of all the points
in BS is one and vo = vg,. Now, if Og # O, let ¢ € K be the point
preceding Oq. If p; > 0, then it is clear that v, > v, and so, vo > vo,.
If p; = 0, there exists some point w € K with p,, > 0, proximate to Og
and ¢ for otherwise, Og would be maximal among the points proximate to
g and thus, ¢ would be also in Tj, against the minimality of Og. Then,
Vo 2 Vg 2 Voo + Vw > Vo,- In any case, we see that vo > vo,. Therefore,
Og = O and this completes the proof. (|

Now we want to compute the number of branches of a transverse hy-
persurface section of a sandwiched singularity in terms of the M R-points
of Q. First, we need a definition.

Definition IL.5.8. A point ¢ € K is said to be T-satellite if it is proximate
to two points p1,p2 € Tgp.

Note that any Tg-satellite point is necessarily in Tp.

Proposition I1.5.9. Let Q be a singularity of X. Then the number of
branches of a transverse hypersurface section g = 0 of (X, Q) at Q is

nx,q = {q € BS | q is Tg-satellite} + H(B§\Tg) + 1.

Proof. From Proposition 11.4.2, we know that if C goes sharply through
K' = BP(Ig), its strict transform is a transverse hypersurface section of

(X, Q). Then, the number of branches of a transverse hypersurface section
is given by

nx@ =103 Byls = ) |C Byls
peTy peTy
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and by 4. of Proposition I1.1.16 and the equality (3.g) in Proposition I1.3.11,

nxg = Y Pp=) e+ > HaeB5la—p}).  (5b)

p€Tg pETg peTy

Clearly, ZpeTQ ep=1-— ﬁBS -} ﬁ(BS \ T) and note that

> t{eeBSlg—pt= > #HpeTola—p}

pEIq geBfS

Thus, by (5.b), we have

nx@=1+1Bg\To+ > (WH{peTolq—p}-1).
qug

Finally, if ¢ € Bg, then q is proximate to one point or two of Tg and so,
H{p € Tg | ¢ — p} — 1 is one if ¢ is Tyy-satellite and zero, otherwise. This
completes the proof. |

From Proposition I1.5.9 we infer that

Corollary 11.5.10. If the ideal I verifies the conditions (i) and (ii) of
Lemma 11.2.12, we have

nx,o =#{qg € Bg | q is satellite} +nx +1 > nx + 1,
where ni 1s the number of irreducible subclusters of K.

Proof. 1t is enough to note that if I satisfies (i) and (ii) of Lemma I1.2.12,
then ji(Bg \Tg) equals the number nx and that the notions of Tg-satellite
and satellite agree. |

Corollary I1.5.11. The following conditions are equivalent:
(i). the fundamental cycle Zg is reduced;

(1) The number of branches of a transverse hypersurface section of (X, Q)
equals the multiplicity of X at Q;

(iii) B NTg C {p € K | p is Tg-satellite}.

Moreover, if these conditions hold, the inclusion of (iii) is an equality.
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Proof. We will prove that (i)=-(ii)=>(iii).

(i)=>(ii) By the projection formula, we have

nxQ = |5 Z Eplsy = Z |5'EPlSK <

peTg p€Tg
< Z zplé’-EplsK = multg(X). (5.c)
pGTQ

From this, it is clear that if the fundamental cycle is reduced, then nx g =
multg (X).

(i)=(ii) By (5.c) above and Corollary I1.5.4, we have that nx o < 1+4Bg
and by Proposition I1.5.9, there is an equality if and only if every point in
Bg NTg is Ty-satellite.

(i))=-(iii) In case Zg is not reduced, take p € T to be maximal among the
points such that the coefficient in the fundamental cycle is bigger than one.
If g is the point next to p, then by (b) of Theorem I1.3.8 applied to g,

l=zi=gg+ >  2Zu>&q+2
q—u,ueTg

and we derive that ¢, = —1 and that p is the only point of Ty such that

q is proximate to. Thus, ¢ € Ty is a M R-point relative to () but it is not
To-satellite.

Finally, to prove the last claim, assume that p is proximate to gq1,q2 €
Tg. Then, by (b) of Theorem I1.3.8, we have that z, = ep+24, +24, > €p+2.

Therefore, if Zg is reduced, necessarily every Tg-satellite point is a MR-
point. g

Remark I1.5.12. In Definition 3.4.1 of [34], Kollar introduces the concept
of minimal singularity of a variety V over C of any dimension: P € V has
a mintmal singularity if Oy p is reduced, Cohen-Macaulay,

multp(V) = emb.dimp(V) — dimp(V) + 1

and the tangent cone of V' at P is reduced. Kollar himself claims that for
rational surface singularities, minimal singularities are those having reduced
fundamental cycle (Remark 3.4.10 of [34]).

Sandwiched surface singularities are Cohen-Macaulay and reduced. Since
they are rational (see (i) of Proposition 1.3.3), we know that multg(X) =
emb.dimg(X) — 1 (Theorem 1.3.15). Now, from Corollary I1.5.11 we infer
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: ”',_1
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u, .
q e

U

n

Figure II.12: Detail of an Enriques diagram: the point ¢ € Sto is proximate to
P1,p2 € T and all the points uy,...,u, € K proximate to g are free and they are
also in Tg.

that if Og is sandwiched, then it has reduced tangent cone if and only if its
fundamental cycle is also reduced. Since any normal minimal surface singu-
larity is sandwiched (see Proposition 2.4 of [58]), we recover the well known
fact that any normal minimal surface singularity has reduced fundamental
cycle.

Corollary I1.5.13. A normal surface singularity (X, Q) is minimal if and
only if is sandwiched and any of the conditions of Corollary II.5.11 holds.
In this case, {p € K | p is Tg-satellite} = Bg NTg.

Non-minimal surface singularities may be characterized by the existence
of some special points in Tg.

Definition IL.5.14. We say that p € Tg is a star of Ty if —wp,(p) +
1o (p) = 1, and write Stq for the set of stars of T. of Tp.

By Remark 2.3 of [58], (X, Q) is minimal if and only if Stg = . The
following lemma gives information concerning the proximity relations of
these points and how they look like in the Enriques diagram of K (see
Figure 11.12).

Lemma IL5.15. If q € T, then q € Stg if and only if
(1) q is To-satellite
(i) all points proximate to q are in Ty and free.

Proof. By Remark 15.1, w(p) = #{u € K | v — p} + 1 and 7(p) is the
number of maximal points among those proximate to p in K, plus the
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number of points of Ty to which p is maximal among the points proximate
to them. Since p is proximate to at most two points in Ty, we have

#{u € K | u maximal among the points proximate to p} + 2 <

v(p) <
< HueK|lu—pt+2=wp)+1

and the equality holds if and only if p is Tg-satellite and all the points
proximate to p are maximal. To close, it is enough to observe that this
condition is equivalent to asking these points to be free. X

Corollary I1.5.16. Let Q € X be a sandwiched singularity such that Stg #
0. Then maxpeTQ{zp} = maXpest, {zp}

Proof. By (b) of Theorem I1.3.8, if p is Tp-satellite and proximate to g;
and g2, then 2z, > max{z,,, 2¢, } while if p is proximate to only one point
in Tg, say q, then z, < z4. From this and Lemma I1.5.15, the claim easily
follows. O

To close this section, we prove that the number of exceptional com-
ponents going through a sandwiched singularity (X, Q) is bounded by the

embedding dimension of (X,Q) and characterize when this bound is at-
tained.

Proposition I1.5.17. Let (X,Q) be a sandwiched singularity end write
mx ) for the embedding dimension of (X,Q). Then,

1S < mx ),
and the equality holds if and only if the following conditions hold:
(1) Og is Tg-satellite;
(i) no point p € BS \Tq has another point q € BS \ T prozimate to it.

(i) for every q € Tg, there are at most one point in Tg and one point in
BS \ Tg prozimate to g and in the same branch of K.

In particular, a necessary condition for jile = myx,qQ) 1S that (X,Q) has a
mintmal surface singularity.

Proof. First of all, note that if p € /Cg, then either p is proximate to some

u € T or there is some u € Tg maximal among the points of K proximate
to p.
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In the first case and in virtue of Remark 11.3.4, p € BS. Therefore,

Hpe ICE | p is proximate to some u € Tp} < ﬁ(Bg \ To).

We will prove the following claim: the above inequality is an equality if and
only if no point p € BS \ To has another point ¢ € Bg \ T proximate to
it. Indeed, assume that p € Bg \ Tp is not in ICE. Then, p is proximate
to some u € Tg. Now, let ¢ € K be the point proximate to u and p, and
w € K the point proximate to p, infinitely near to ¢ and maximal with this
property so that the exceptional components E, and E,, on Sk intersect.
Hence, if w € Ty, we have that p € }C_CE against the assumption. Therefore,
w & To. Write v1 = g, v2,...,v, = w the points proximate to p, infinitely
near to u and each v; with 7 > 2 proximate also to v;;. Take i € {1,...,m}
such that vy, € Tp and minimal with this property. Then, v;, is proximate
to vi—1 if ip > 2 or u if ip = 1. In any case, v;, is proximate to some point
in T and by Remark I1.3.4, v;; € Bg. This proves the claim.

Now, assume that p € ng is not proximate to any point of T. Then,
there exists some point in Ty proximate to p. Let gy € T be proximate to
p and minimal with this property. If go # Og, then qq is proximate to some
point, say p/, of Tg. Then, either p’ is proximate to p or p is proximate
to p’. The first case is not possible by the minimality of gy and neither is
the second, because of the assumption. Hence, go = Og. It follows that if
pE ICE is not proximate to any point of Ty, then Og is proximate to p. If
follows that

2 if Og is satellite

#H{p € ICg | p is not proximate to any point of Tp} = Ll if Oq is free
0 ifOg=0
Therefore,
13 < §(BS \ To) +2 (5.d)

and the equality holds if and only if Og is satellite and no point p € BS \To
has another point q € Bg \ T proximate to it.

On the other hand, recall from Corollary I.3.16 that mx gy = multg(X)+
1. By Proposition 11.5.9, we have that

ﬁ(Bg \Tg) = nxo-f{ge BS | g is To-satellite} ~ 1 <
< multg(X)+1-t{qg e BS | g is Tgp-satellite} =
= mxg —t{q € Bg | g is Tp-satellite} — 2 < mx,g) — 2,
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and the equality holds if and only if the following conditions holds: (1)
multg(X) = nx g and (2) no M R-point is Tp-satellite. In virtue of Corol-
lary 11.5.13, these two conditions are equivalent to (1) (X, @) has a minimal
singularity and (2’) there are no Tp-satellite points in K.

Summing up and using (5.d) above, we infer that tileg < ﬁ(Bg \ Tp) +
2 < m(x ) and the equality holds if and only if Og is satellite, no point
pE BS \ T has another point g € BS \ Tg proximate to it and for every
g € Tg, there are at most one point in Ty and one point in Bg \ To
proximate to ¢ and in the same branch of K. This completes the proof. O

In the forthcoming section I11.3, we will prove that once a sandwiched
singularity (X , Q) is fixed and if 7 is a complete mp-primary ideal in R
such that (X, Q) is analytically isomorphic to (X, Q) for some Q € X =
Bl1(S), then the tangents to the exceptional components going through Q
are linearly independent.

I1.6 On the exceptional components of X = Bl;(S)

This section is devoted to prove that any two exceptional components on X
going through the same sandwiched singularity are not tangent. To prove
this, some technical results concerning dual graphs of clusters are needed

(see section L5 for basic facts concerning dual graphs). This results will be
used also in chapters 3 and 5.

Let K be a (non-weighted) cluster with origin at O € S and 'k its dual
graph.

Remark I1.6.1. Recall from section 1.5 that given two points ¢,p in a
graph 'k, the chain ch(q, p) is the subgraph of Iy of all vertices and edges
between ¢ and p, ¢ and p included, and d(g,p) is its length. Unless some
confusion may arise, we will identify the infinitely near points p € K (or the
vertices of the Enriques diagram of K) with the vertices in I"x representing
the exceptional component {E,},ex. Hence, we shall write for instance
K = |I'k| or we shall say that a point of ', say p, is infinitely near to
some other point, say ¢ and it must be understood that the infinitely near
point represented by p is infinitely near to that represented by gq.

Proposition I1.6.2. Let p,q € K, p infinitely near to q.
(a) If u € ch(p,q), u is infinitely near or equal to q.

(b) All the points of ch(q,p) are in the same branch of K.
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(c) If u € ch(p,q) and u # p, either p is infinitely near to u or u is
infinitely near to p.

(d) Write ch(q,p) = {uo = q,u1,...,Un,Unsy1 = p}. There exists some
i0 € {0,...,n+ 1} such that

Uk — Uk41 ika{O,...io——l}
Uk — Uk41 ifk e {’io,...,n}.

Moreover, if j 2 10, u; is prozimate to some u,(;) with o(j) < io— 1.

Proof. To prove (a), we use decreasing induction on the length from the
vertex u to g. For u = p there is nothing to prove. Assume u € ch(p,q) and
let u’ be the vertex in ch(p,u) adjacent to u. Then, d(v’,q) = d(u,q) +1
and by the induction hypothesis, v’ is infinitely near to ¢. Since v and «’ are
adjacent vertices, either v is maximal among the points of K proximate to
u’ or vice versa (see 3. of Proposition 1.1.16). The first case being obvious,
assume v’ is proximate to u. Notice that the set of all points in K preceding
v/ (as infinitely near points) is a totally ordered sequence and that u and q
are in it. Hence, if u is not infinitely near or equal to g, then q is infinitely
near to u. Since v’ is infinitely near to q and proximate to u, we deduce
that ¢ must be also proximate to u. Moreover, since u’ is maximal among
the points proximate to u, v’ € ch(u,q) and so, d(v/,q) < d(u,q), against
the choice of the vertex u’.

Notice by the way that we have seen that all points of ch(p, q) are in the
same branch and hence, part (b) is proved. Part (c) follows immediately
from this fact.

Now, we prove (d). If every u;y; is proximate ‘to u;, the first claim
is obvious by taking io0 = n + 1. Hence, assume that there exists some .
i € {0,...,n} such that u; is proximate to ui+1, and take u;, to be minimal
among the points of ch(g, p) with this property. Now, we claim that

Uk < Ukt ika{O,...io—l}
Uk — Uk41 ifke {io,...,n}.

To prove this, assume that there exists some j > 49+ 1 such that Uj = Uiyl
and take uj,, with jo > %o + 1 minimal. Then, both Ujo—1 and wuj,41 are
proximate to uj, and, since they are adjacent to it, they are maximal among
the points of K proximate to uj,. Since they are in the same branch of the
cluster ((b) of Proposition 11.6.2), we derive that they must be equal which
is impossible. Note by the way that u;, is the maximal point of ch(g, p).
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Now, for each j € {io,...,n}, write u,(;) to mean the point maximal
among the points of ch(q, uj,—1) u; is infinitely near to. Clearly uy(;)41 €
ch(ug(j), uj) and, by (a) of Proposition I1.6.2 again, us(j)+1 is proximate to
Uy (;)- Moreover, by (c) of Proposition 11.6.2 and the maximality of us(j),
necessarily uq(;)41 is infinitely near to u; and so, u; is proximate to u, )
as claimed because uy(j)+1 is so. This completes the proof. d

Now, fix a complete mp-primary ideal I C R and keep the notations
introduced in the preceding sections. In particular, write X = Bl;(S) and
K = BP(I). If Q € X is a singular point, write pj, for the excess of Kq at

pe K. Write K¢ = {pe K4 | L, goes through Q}.

Proposition I1.6.3. Let Q be a singular point of X and p,q € ICE. Then,
there exists some u € ch®(q,p) such that p), > 0.

Proof. Write ch(g,p) = {uo = q,u1,-..,Un, Unt1 = p}. We will distinguish
two different cases.

CASE 1. p is infinitely near to g.

In this case, we know by (d) of Proposition 11.6.2 that p is proximate
to some u;, j > 0.

Case 1.1 If j > 1, then u; € T and hence, p € BS by Remark 11.3.4.
Applying the formula (3.g) of Proposition I11.3.11 to u;,¢ € {0,...,n}, we
deduce that there exists some ¢ > 0 such that p,, > 0 or u; € BS for all
j€{1,...,n+ 1}, but in this case, Corollary I1.3.9 applied to u; leads to
contradiction.

Case 1.2 If j = 0, then p is proximate to q. Take w the point in F,
proximate to ¢. Then, w € K for otherwise, p would be maximal among the
points of K proximate to ¢ and ch(q,p) = {q,p}. Moreover, w € ch(q,p)
and it is proximate to ¢ and to p. Since w cannot be proximate to any

further point, is is the minimal point Og of Tg. From Proposition I1.3.11,
we infer that pf, > 0.

CASE 2. p is not infinitely near to gq.
Let zo € K be the maximal point p and ¢ are both infinitely near to.
Then, zo € Tp and ch(q, p) = ch(q, zo) U ch(zo,p). Write

ch(zo,q) = {vo =0, .., Vn, Uny1 = ¢}

and

ch(zo,p) = {wo = o, - . ., Wm, Wm+1 = P}.
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b, P; D b, Dy P Ds Dy

-1 2 2 4 2 2 2 -1

Figure I1.13: Dual graph T'x of K = BP(I) in Example I1.6.4; the grey-filled
dots of 'k, py and pg represent the exceptional components on Sg which are the
strict transform by f of the exceptional components of X.

By (a) of Proposition I1.6.2, all the points v; and w; are infinitely near to
zo. Thus v; and w; are proximate to zo. By Remark I1.3.4, p and ¢ are
M R-points relative to ). The same analysis of Case 1 can be done for
ch(xo, q) and ch(zo,p) to deduce that if p), = 0 for each u € ch(q,zo) and
each u € ch(zo, p), then u; and v; are M R-points relative to Q. Hence, by
the formula (3.g) in Proposition I1.3.11 applied to zo, we infer that

Py = —1+2=1
and we are led to contradiction. .

Example I1.6.4. In Example I1.4.6, the exceptional components of X are
Ly, and Lp,, which go through the sandwiched singularity (X,Q). The
exceptional divisor of the blowing-up X7 of Q is

Zx, = Ep + Ep, + Ep,
and, as shown in Figure I1.13, p1, p3 and p; belong to ch(py, pg).

Theorem I1.6.5. Let I C R be a complete mp-primary ideal and let Q be ,
a singularity in X = Bl[(S). If L, and Ly are two exceptional components
on X going through Q, then they are not tangent at Q.

Proof By Proposition I1.6.3, there exists some u € ch®(q,p) such that
py > 0. Therefore, by Proposition 11.3.11, the simple ideal I, appears
in the factorization of /g, and in virtue of Proposition I1.4.4, we infer
that fil)(Eu) is an exceptional component for fi : X; — X. Since u €
ch®(q, p), it follows that the strict transforms of L, and L, on X; intersect
the exceptional divisor of the blowing-up of Q in different points. Hence,
L, and L, are not tangent at Q). O



II.6. On the exceptional components of X = Blj(S) 93

As a corollary of the forthcoming Theorem II1.3.1, we will obtain a
stronger result, namely that regardless of the complete mp-primary ideal
chosen to obtain a sandwiched singularity, the tangents to the exceptional
components on X = Bl(S) going through it are linearly independent.
Nevertheless, the results of this section as well as the following technical
result will be needed to prove Theorem I11.3.1.

Lemma I1.6.6. Let u € Tg and p1,p2,p3 € ICQ. Assume that pl, =0 for
w € ch®(u,p;) and i € {1,2,3}. Then, pl, > 2.

Proof. First of all, note that any w € ch(p;, u) with w # p; is in Tp. We
distinguish different cases according to the number of p;’s being infinitely
near to u.

CASE 1 Assume that p1,ps and ps are infinitely near to u. Then, by
(d) of Proposition I1.6.2, each p; is proximate to some u; € ch(p;,u) and
by Remark II.3.4, we have that p; € Bg. Applying the formula (3.g) of
Proposition I1.3.11, we infer that there is some u* € ch(p;, u)ﬁBS proximate
to u. Therefore, #{q € BS | ¢ — p} > 3 and also that p}, > 2.

Now, we deal with the case where there is some p; which is not infinitely
near to u. In this case, write z; € K for the maximal point p; and u are
both infinitely near to. By the assumption, x; # u. By (d) of Proposition
I1.6.2 and the argument of case 1, we see that p € Bg and hence, that there
is some v; € ch(z;, p;) N Bg proximate to x;, and also that x; € BS.

CASE 2 Assume that p;, p2 are infinitely near to u, but not p3. Assume
also that u € Bg. Using the formula (3.g) of Proposition I1.3.11, that
u € BS and p}, = 0 if w € ch®(zxs3,u), we infer that there is some v €
ch(zs,u) N Bg proximate to x3. If x3 # ps, the same argument used in
Case 1 shows that there is some u® € ch(xsz,p3) N Bg proximate to 3.
Hence, #{q € Bg | ¢ — z3} > 2 and g, > 1, against the assumption. If
x3 = p3, Corollary 11.3.9 leads to contradiction.

CASE 3 Assume that p1,p2 are not infinitely near to u. We have that
u is infinitely near that to z; and x9 and hence, z1,22 and u are in the
same branch. We assume that x5 is infinitely near to x; and, by d of
Proposition II.6.2, we infer that zs is proximate to some w € ch(x1,x2).
We already know that if 2o # p2 or &2 = p2 and 1 # p1, then x5 € BS.
By using inductively the formula (3.g) of Proposition I1.3.11, there is some
w € ch(zq,z3) N BS proximate to z3. If x; # p1, then we have that there
are two different points of Bg proximate to zy, one in ch(xq,x3) and the
other in ch(x3,p3). Hence, o}, > 1, against the assumption. If x; = py,
Corollary I1.3.9 leads to contradiction.
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It only remains to prove the case when z2 = ps is proximate to 7 = p;.
Write ch(z1,2z2) = {uo = p1,...,Un,Uny1 = p2}. The same argument
used in case 1.2 in the proof of Proposition 11.6.3 shows that the minimal
point Ogq in Tg is in ch(zy,x2) and so, Og = u; for some 7 € {1,...,n}. By
Proposition I1.3.11, p;,. > 0 and by the assumption, it follows that u = u; =
Og and ¢, = 1. Now, if p3 is infinitely near to u, the same argument used in
Case 1 shows that p3 € Bg and also that there is some w € ch(u, p3) HBS,
proximate to u. Then, by the formula (3.g) of Proposition I1.3.11, we have
that p}, > 2. If p3 is not infinitely near to u;, z; and z3 are in the same
branch and we can repeat the argument above to show that 3 = p3 and
that u = Og and that it is proximate to p; and p3. If follows that ps = p3
against the hypothesis. This completes the proof. ]

II.7 Some consequences relative to adjacent ide-
als in dimension two

In this section, we derive some consequences of the results seen in the
preceding ones and relative to adjacent complete ideals. To this aim, we
must recall some definitions due to Zariski, Lipman and Noh concerning
ideals in a two-dimensional local ring.

Following Noh [49] (page 164), two complete ideals I D J are said to
be adjacent if their colengths differ by one, ie. if dim(c§ = 1. In this
case, we also say that I is right above J or that J is right below I. Noh
proves that given a complete mp-primary ideal I C R, there exist adjacent
complete ideals right above and below I (Lemma 1.1 of [49]). In case J is
simple, a complete ideal I right above J is either simple or the product of
two simple ideals (see Theorem 3.1 of [31]): keeping the notation of 1.2.10
and if J = I, a right above complete ideal I is simple if and only if p is
free.

Given an mo-primary ideal I C R of order r, Zariski defined the char-
acteristic form ¢(I) of I to be the greatest common divisor of the elements
in &2 in grp(R) = £ @ 5 @ - (see [65], page 363). c(I) is thus com-
posed of the principal tangents which are common to the elements of I with
multiplicity r. If I is complete and K = (K, v) is the cluster of base points
of I, we have

deg(c(I)) = > v (7.a)

peK,p—0O

Following Lipman [42], Noh writes e(I) for the self-intersection of K, and in
Theorem 2.1, computes the difference e(J) —e(I), where J C I are adjacent
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complete ideals. By Theorem I1.2.14, this difference is the multiplicity of
the point in the exceptional locus of X = Bl;(S) corresponding to J by
Theorem II.1.7.

Then, in Theorem 2.5 of [49], Noh gives the following upper bound for
e(J) —e(I), where I D J are two adjacent ideals having the same order:

e(J) —e(I) < deg(c(J)) (7.b)

Remark I1.7.1. If the point in the exceptional locus of X associated to J is

singular, the above inequality is equivalent to the bound given in Corollary
11.5.7.

Finally, if I = [T, I is the Zariski factorization of I, Noh writes T'(I)
for the set of Rees valuations of I, i.e. if I; = I,, with p; some point infinitely
near or equal to O, then T'(J) is the set of valuations vp,,¢ € {1,...,m}
and in virtue of Theorem 1.2.9, it is in bijection with the set of dicritical
points of K.

Here, we use some of the results already seen to answer some of the
questions concerning adjacent ideals appeared in [49). We fix a simple mep-
primary ideal J, and keeping the notation of 1.2.10, we write p for the
infinitely near point such that J = I,.

(3) How many complete ideals of order o(m}J) — 1 do ezist right above
mgJ ?

First of all, it is clear that o(m%J) = n + o(J). Hence, one looks for
complete mp-primary ideals I C R right above J with

olI)=o(J)+n—1. (7.c)

Since o(I) equals the virtual multiplicity of BP(I) at O, the condition (7.c)
above is equivalent to ask the virtual multiplicity of J at O to be that of
I plus n - 1. If we write v, and v, for the virtual multiplicities of BP(I)
and BP(J) at some point p, respectively, this means v}, = vo + 1 and
by Lemma IL.3.1, this implies that O must be a non-dicritical point of K.

Moreover, by Lemma 11.2.1, we knoiv that every complete ideal right below
I is of the form Hy,, for some q € F.

Take K as the cluster composed of
e all the points preceding or equal to p

® vo(Ip) free and consecutive points uy, ..., uyy( 1,), the first one in the
first neighbourhood of p

e n—1 free points q1, ..., gn—1 in the first neighbourhood of O, neither
of them preceding or equal to p
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and assign virtual multiplicities to K by taking vx = (P%) lpx (see
Lemma 1.1.22) where

oK = 1 if ¢ is maximal in K, i.e. if ¢ = ¢; for some 7 or w = Uno (1)
g 0 otherwise.

(See Figure I1.14). Clearly, the cluster K verifies the conditions (i) and (ii)
of Lemma II.2.12. After adding a point ¢ in the first neighbourhood of O
and unloading multiplicities, we obtain a cluster K’ such that

n ifg=0
pp=q 1 ifg=p
0 otherwise.

(see Proposition 11.3.11). After dropping the points with virtual multi-
plicity zero, the resulting cluster is K(p), the cluster of base points of
J = I,. Since this is true independently of the points ¢i,...,¢,_1 and
UL, -+ -5 Uyy(I,), We see there are infinitely many ideals right above maJ of
order o(m3J) — 1.

n — 1 points

unloading

Figure II.14: Enriques diagram of K and K’

vo(Ip) points
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(4) How many complete ideals of order o(mpJ™) — 1 do exist right above
man?

Now, we take the cluster K as the set composed of

e all the points that precede or equal p

e n chains [y,...,I, of consecutive free points, each l; composed of
vo(Ip) free points uj,... ,u:)o( L)’ the first one v} in the first neigh-
bourhood of p

and define the virtual multiplicities for K by vx = (P%) ™1 ps where

po = 1 ifg= u:)O(IP) for some ¢
1 0 otherwise.

(see Figure 11.15). By Proposition I1.3.11, the excesses of the cluster ob-

tained by adding some free point ¢ in the first neighbourhood of O and
unloading multiplicities are

1 ifg=0
pp=9{ n ifg=p
0 otherwise.

Once again we see that after dropping the points with virtual multiplicity
zero, the cluster K’ obtained is independent of the points u% chosen and
Hjyr = mpJ". Therefore, there are infinitely many complete ideals of order
o(mpJ™) — 1 right above mpJ™.

(5) Let I > J be adjacent complete ideals of the same order. For w €
T(IH\T(I), is it true that w(I) = w(J)—17 If this is true, thene(J)—e(I) <
deg(c(J)) in the inequality (7.b)?

For the first question, the answer is no. Take the complete mp-ideal
I = (2(y*—2°), (z—y)(y* —2°), 2(z—y) (¥ +2°), z(c—y) (y* —2° ~2%)). The
Enriques diagram of X = BP(I) is shown in Figure I1.16. The dicritical
points of K are p; and pg. Write K’ for the cluster obtained by adding
some free and simple point ¢ in the first neighbourhood of p and unloading
multiplicities, and write J = Hys (the Enriques diagram of K’ is shown on
“the right of Figure I1.16). The dicritical points of K’ are p» and ps. For the
divisorial valuation vy, corresponding to p4, we have

vpy(J) = 14

vpy(I) = 12.
On the other hand, the orders of I and J are both equal to 3. For the



98 II. Sandwiched singularities and the unloading procedure

n chains of vp(Ip) free points

unloading

Figure I1.15: Enriques diagram of K and K’

second question, the answer is no again. We give an example of a couple
of adjacent ideals I C J with the same order, and a p-valuation v, € T(J)
such that v,(I) = vp(J) — 1 and e(J) — e(I) = deg(c(I)).

Take a complete mo-primary ideal I in R such that K = BP(I) has the
Enriques diagram shown in Figure I1.17. The dicritical points of K are p;
and ps, and there is only one singularity in X = Bl;(9), say Q. Take the
cluster Kg and write J for the ideal Ig, corresponding to @ by Theorem
I1.1.7. The Enriques diagram of K¢ is shown on the right of Figure II.17.
Clearly, both I and J have the same order, which is equal to two. The
cluster K¢ has only one dicritical point, ps, and we have

Upy (J) =4
vp, (I) = 3.
However,
e(J)=44+4=8
e(l)=4+1+1=6
and so,

e(J)—e(I)=8—-6=2.
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Figure I1.16: Enriques diagram of K and K’

(As noticed above, this is just the multiplicity of the point @ € X). On
the other hand, by the equality (7.a) above,

deg(c(J)) =vp, =2.

and so, there is an equality in (7.b) above.

1 2

P
2 2

Figure 11.17: Enriques diagram of K and K’

O=p,

(6) Is it possible to have adjacent complete ideals I D J = J;*J32, where -
T(HNTJ)=0and s; >1 fori=1,2%

It is enough to take a complete ideal I = (zy(x + 32)), (x — ¥?)(z +
2y%)(z — y) (= +y),2(z — ¥*) (& — y)(= + y),2(z + v*)(z — y)(x + y). The
Enriques diagram of X’ = BP(I) is shown on the left of Figure I11.18 and the
dicritical points of K are p3,ps and ps. Write K’ for the cluster obtained
by adding a simple and free point in the first neighbourhood of O and not
already in K and unloading multiplicities. The Enriques diagram of K’ is
‘shown on the right of Figure I1.18. The dicritical points of K’ are p; and
po and we have pz’,cll = pg = 2. Therefore, if J = Hy/, we have

2 72
J = Ipllpz

and T(I)NT(J) = 0.
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Figure I1.18: Enriques diagram of X and K’



Chapter II1

Local principality of curves

going through a sandwiched
singularity

Fixed a complete mp-primary ideal I C R = Og 0, this chapter deals with
the problem of describing the behaviour of curves on X = Bl(S) with non-
exceptional support. These curves may be understood as strict transforms
of curves on S and this will be our point of view: from the cluster of
singular points of these curves and their behaviour relative to X = BP(I),
we will obtain information concerning the existence of local equations for
their strict transform on X. Following the sort of ideas of Chapter II, we

will propose also some algorithms to compute Cartier divisors on X with
prescribed conditions.

In section III.1 a criterion and a test are given to discern whether the
strict transform on X of a curve on S is a Cartier divisor. As a consequence,
a formula for the intersection number of a Cartier and a Weil divisor on
X, both with non-exceptional support, is derived in section II1.2. Fixed a
finite set of points in the exceptional locus of X, the existence of locally
irreducible Cartier divisors going through them with prescribed intersection
numbers with the exceptional components is also proved. In section II1.3
and fixed a Weil divisor on X containing no exceptional components, we
give an algorithm to compute Cartier divisors containing it and minimal
relative to the divisorial valuations. Finally, in section II1.4 and once fixed
a curve C on S, we study the order of singularity of its strict transform on
X and relate it to its order of singularity at O. Moreover, for analytically
irreducible curves (branches) we connect the study of the semigroup of C
at the point where it intersects the exceptional locus of X with a flag of
clusters relative to C' and K constructed in section II1.3 and an algorithm

101
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to compute this semigroup is derived.

III.1 Cartier divisors and Weil divisors through a
sandwiched singularity

Fix a complete mp-primary ideal I C R and K = (K, v) the cluster of base
points of I. Write Ky = {p € K | p, > 0} for the set of dicritical points of
K. In this section we give a characterization of the curves C C S such that
their strict transform C on X = Bl;(S) is a Cartier divisor.

The main result is the following:

Theorem IIL.1.1. Let C be a curve on S and keep the notation introduced
in Notation 1.4.8. The following conditions are equivalent:

(i) C is a Cartier divisor on X

(iii) There exists a curve Co C S such that Lo, = Lc and C,Z goes
through no singularity of X

() IfHE = {g € R|vp(g9) > v,(C),Vp € K1} and g € K\ Ky, then q is
a non-dicritical base point of HY,

Before proving Theorem II1.1.1 we need some technical results and fix-
ing some notation.

Notation II1.1.2. Givena curve C on S, let 71, ...,~, be the branches of C
at O and for each 7 denote by p; the first non-singular point on +; and not in
K. Define K¢ as being the cluster containing K, the points p;,i=1,...,s
and all the points preceding some of them. We write ko : Ske — S for
the blowing-up of all the points of K¢. Since K¢ contains the points of K,
the sheaf IOg,  is invertible: we write fc : Sk, — X for the morphism
induced by the universal property of the blowing-up. Clearly, C5%¥c is non-

singular, and fc factors through f : Sx — X as Ko contains the points
of K. Thus, we have a commutative diagram:
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Note that the exceptional components on Sk, contracting by fco to some
N
point of X (not necessarily a singularity) are {E, ¢ Yrerork, HQ € X,
we define
.SKC ESKC —
Ty ¢ ={pe Kc | (fo)(Epy"°) = Q}.

Then, similarly to the situation in section II.2 (see (2.c) in page 53) we
have,

Ke\Ky = |J 155 (1.a)
Qex

Recall from Definition 1.3.19 that if A C X is an effective Weil divisor

going through a singularity Q € X, there is associated to A a Q-Cartier
divisor Df;) on Sk, defined by the condition

S ~ S

s .
for all ¢ € TQKC - If A has no exceptional component and Qq, ..., Q) are
the points in the intersection of A with the exceptional locus of X, we

define "
Sk Qi
D¢ =%"D%.

i==1

Note that DiKC is not a divisor in general. By Zariski’s main theorem ([29]
Corollary II1.11.4), the fo",i € {1,...,n} are connected and so, they are

s .
the connected components of D’,“. Moreover, in virtue of (1.a) and (1.b),
we have

~o S
|(A%%e + D)-Ey "¢ s, = 0 (1.c)

Lemma III.%.3. If A is an effective Weil divisor on X, A is Cartier if
and only if D AKC is a divisor on Sk..

Proof. Clearly, if A is a Cartier divisor on X, then fe(4) = ASxc 4 DiKc
is a divisor on Sk, defined by any equation of A on X. For the converse,
assume that DiKC is a divisor on Sk,. Since the question is local, it is
enough to show that for any singularity Q € X, there exists an equation
for A in a neighbourhood of Q (this is clear if @ is non-singular). Clearly,

the total transform ASKc + DiKC of A on Sk, is a divisor and by (1.c),
the claim follows from Proposition 1.3.13. O

In particular and as already known (Proposition 1.3.17), we see that if
A is not a Cartier divisor on X, then there exists some integer my > 1

NS S . . .
such that m4A is: it is enough to take m A so that m D AKC is a divisor on
Ske-
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Lemma II1.1.4. Foru € Ky, let C,, C S be a curve going sharply through
K(u) and missing all points after u in K. Then C, and L, = L¢, are
Cartier divisors on X.

Proof. Note that the strict transform C~u on X is a Cartier divisor because
it goes through no singularity of X. Therefore, the germs of L¢, and C) at
any singularity of X are equal and since the total transform of any curve
C on X is a Cartier divisor, the first claim follows. O

Lemma I11.1.5. We have that:

(a) the exceptional divisors

EZK = Z ve(Ip)Eq, forp€e K
geK
on Sk, are a basis of the Q-vector space generated by {Ep}per. The
matriz of the change of basis from {Efp" Ypek to {Ep}pek is —Ak.

(b) the exceptional divisors {Ly}yex, on X are a basis of the Q-vector
space generated by {Ly}uek, -

Proof. First of all and for p € K, we may assume that X and K(p) have
underlying cluster K (it is enough to add points with virtual multiplicity
zero). It is clear from the definition of K(p) that the excess pff(p ) is 1 if
g = p and 0 otherwise. Thus, by Lemma 1.1.22, we have

A (vg(Ip))gex = —1p (1.d)

where 1, is the K-vector having all its entries equal to 0 but the corre-
sponding to p which is 1. From this, we see that the matrix (vy(Ip))uper
is the inverse of —A k. Since (1.d) is equivalent to

AxEX = -E,

the claim (a) follows.
(b) Clearly it is enough to see that the {£,}yex, are linearly indepen-
dent. Assume that there exist rational numbers {a,}yex + such that

> aulu=0. (Le)

uek 4

By multiplying by an integer, we may assume that the a, € Z for all
u € Ky. Now, for each u € Kj take Cy a curve going sharply through
K(u) and missing all points after v in K, and write

Z auCy = Cy — Ch

UG’C+
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where C; = Zau>0 a,Cy and Co = Zau<0(—-au)C’u. Then, by (1.e) we have
that

LC'l = Z auﬁu
a, >0
and
Le, = Z ("au)ﬁu
a, <0

are equal. Hence, by taking total transforms on Sk, we see that

Fle) =D auBgl =3 (-a)EE = f'(Lo) (L)
ay>0 ay<0
against (a). Therefore, the {£,} are linearly independent. O

Now, we can prove Theorem II1.1.1.

Proof of Theorem IIl.1.1.
We will prove that (7) = (i1) = (ii1) = (v) = (i).

(i) = (). Assume that C is Cartier on X and hence, that L¢ is so (as
the total transform C* = C + L¢ is always Cartier). Then, by Lemma
III.1.3, f*(C) is a divisor on Sk and so, the coefficients of the components
{Ep}pety in f*(Lc) are integers, i.e.

F(Le)=>_ bE, (1g)

qgeK

with by € Z for all ¢ € K. On the other hand, by (b) of Lemma III.1.5 we

can write
LC = E au[fua
ueky

with a, € Q. Now, for u € Ky, it is clear that f*(L,) = E“g{f and then,

FLe)= Y aEZK (1.h)

uek 4

is the expression of f*(L¢) in the basis {EISPK }pek. Therefore, by (a) of
Lemma II1.1.5 and the equalities above (1.g) and (1.h),

(aU)uEK = _AK<bu)u€K

and hence all the a,, are integers. Hence, (i) = (7).
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(4t) = (4t7). Assume that

Le = ) aulu (1.i)

uely

with a, € Z. If u € K, the projection formula applied to 7 gives that
|C* Lu|x = |(C + L¢)-Lu|x =0.

Hence, Ié-Lulx = —|L¢+Ly|x- In particular, for p € K4, we have

~1, ifp=u
0, otherwise.

|Cp-Lulx = _|6;'Lul.¥ = {
It follows from (1.i) that

IC-Lulx = —|Lo-Lulx == Y aplLpLulx = au
peEKL

and thus, a,, > 0 for all u € K. Since the cluster 7 = ZUGK+ a K(u) is
consistent, Theorem 1.1.30 says that there exists a curve Cp going sharply
through 7 and missing those points of K not contained in the underly-
ing cluster of 7. Then, the strict transform Co C X cuts transversally
each exceptional component L, at a, different points and goes through no
singularity of X. Moreover, it is clear that

Lo =Y aulu= L.

uey

(it) = (iv). Take HE = {9 € R | vp(g9) > vp(C),p € K4} which is a
complete mo-primary ideal as it is defined by valorative inequalities. Since
LCo = LC7

vp(Co) = vp(C) = vp(HE) (LJ)

for all p € K4 and hence, Co is defined by an element of H%. Therefore,
vp(Co) > vp(HE) for all p € K¢, and so

Sk S S
Egfe » Bgse = ¥ up(He)ES e (1K)
reKc

on Sk.. On the other hand, since (/Z'?) goes through no singularities of X,

the total transform of @ by f has no exceptional part, and since 7x = 7o f
we have

75(Co) = £*(Ch) = £*(Co + Loo) = Co ™ + f*(Ley).
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Thus

EZE = f*(Ley) = f*(Le)-
Assume that these exists some ¢ € K \ K4+ so that BP(HZ,) has positive
excess at it. Then p; = 0 and by the equality (2.c) in page 53, there is
some singularity Q € X such that ¢ € Tg. Thus, if C; goes sharply through
BP(HYZ), C; goes through Q and

—~ —~5
Oy =C" + Dgg

where

Sk _
Dal:_ Z buEy.
’LI.EK\/C+

Since Cy goes sharply through BP(HZ), in virtue of (1.j) we have that
ng = Eﬁ{g and v4(C1) = vg(HE) = v4(Cop) for all ¢ € K4. Thus, Le, =
L¢, and so

S * S * S Sk
ng = DCf +f (LC'1) = DC{l{ +f (LCo) = DCl + ECg > ECI(;
against (1.k). Therefore, BP(HZ,) has excess 0 at every ¢ € K\ K.

(iv) = (i). Assume that BP(HY ) has excess 0 at each point ¢ € K\K,. By
Theorem 1.1.30, there exists a curve C; going sharply through BP(HZ,) and
such that no points in K \ BP(HZ) belong to it. Then, its strict transform

-5
C: " intersects no components E, with p € K\ K. Since the direct image

~5 —_— o~
of Cy K by f is the strict transform C; on X, we see that C; goes through
no singularities of X and hence, it is Cartier. Using that L, = Lo and

that CT = C1+ Le, and C* = C + L¢ are Cartier divisors, we deduce that
L¢ and also C, are so. O

During the proof of Theorem III.1.1 we have proved the following fact
that we state separately for future reference.

Corollary II1.1.6. (of the proof of III.1.1) If C is a curve on S and
Lo = Zue,c+ ayLy, then

| ay = |C-Ly|x,

and so, a, > 0. Moreover, ifé’ is Cartier, then

o= 1]

pek+

is the Zariski factorization of the ideal HY. defined in (iv) of Theorem III.1.1
and also, L € @pelc+ ZyoLp. In particular, HE.Ox = Ox(—Lc).
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Corollary IIL.1.7. Let I = [[,c, I;” be the Zariski factorization of I
and let Q be any point in the exceptional locus of X. If C goes sharply
through Ko, then C is Cartier on X and |C-Lp|x = ap.

Proof. From Remark I1.4.2 we already know that for such a curve C, L¢ =
L;. Then, it is enough to apply Theorem III.1.1 and Corollary II1.1.6. [

In the case of primitive singularities (Definition II 3.1 of [58] or Remark
I11.2.13), Theorem II1.1.1 has a very easy formulation.

Corollary III.1.8. Let I, C R be a simple ideal and X = Bl (S). If C'is
a curve on S, C is a Cartier divisor on X if and only if vp(C) is a multiple
of K(p)?. Moreover, the minimal integer mg such that mszC is Cartier is
given by
LOM(vp(C), K(p)*)
7n5:= .
vup(C)

Proof. 1t is clear that L¢ = v,(C)L, and £, = vp(Ip)Lp. Since K(p)? =
vp(Ip), we infer that Lo € ZL, if and only if v,(C) € (K(p)?). O

Clearly, the question of whether the curve C on X is Cartier or not is
local as it depends only on the existence of a local equation for C near the
singularities of X (recall that every Weil divisor on a neighbourhood of a
regular point is also Cartier, see {29] I1.6.11).

Fixed a point @ in the exceptional locus of X, we write ICE ={pe
K+ | Q € Lp}. From Theorem III.1.1, we get the following local criterion.

Corollary IIL.1.9. Let Q be a point in the exceptional locus of X. If
C C S, denote by Cg the curve on S composed of the branches v of C
whose strict transform ¥ on X goes through Q. Then, C is locally principal
in a neighbourhood of Q if and only if

Le, € P zL..
ung

Proof. First of all, frogl the definition of Cg the germs of C and C’E} at
Q are equal and so, C is locally principal near @ if and only if C,’Z? is
Cartier. Now, by Theorem III.1.1, we know that this is the case if and
only if Leg = 3 exc, @pLp, With a, € Z for each p € K4, and by Corollary
I11.1.6, we have that a, = |C/6~Lp|x 2 0, which is zero if p ¢ ICE, The
claim follows. |
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Remark I11.1.10. From Theorem III.1.1, we deduce an algorithm based
on the unloading procedure that provides a test to verify if the strict trans-
form on X of a given curve C C S is Cartier or not. Take the weighted
cluster 7o = (K, o) with virtual values given by

{ w(C) ifpeKky
vp =

0 otherwise.

By definition we have
Hr. = &

so in order to know the dicritical points of BP(HZ), it is enough to unload
values in 7¢ if it is not consistent (see subsection 1.2.1). By (iv) of Theorem
II1.1.1, C is Cartier if and only if the unloaded cluster 7/:5 has excess 0 at
every point in K \ K. Note that in case the ideal I verifies the conditions
(i) and (ii) of Lemma I1.2.12, then 7¢ has an easy description in terms of
its virtual multiplicities: for each p € K,

0 otherwise.

{ v,(C) ifpeKy
op =

Before going on, we introduce some notation to be used in the following
sections.

Notation IIL.1.11. Given a curve C on S, we write K¢ = (K¢, 7°) for
the cluster defined by taking 7,7 = €,(C) for each p € K¢. Note that K¢ is
consistent, but not strictly consistent in general.

Next we illustrate the results of this section with a couple of examples.

Example I11.1.12. Take a complete mp-primary ideal I C R with base
points as shown in the Enriques diagram on the left of Figure II1.1. Then,
there is only one singularity in X = Bl;(S), say @, and there are three
exceptional components on X, Ly, , Ly, and Ly,, corresponding to the di-
critical points of X = BP(I). Take a curve C with singular points as in
Figure I11.2. Then, by computing the values of C relative to p4, pg and pj2,
we obtain that (see Notation 1.4.8)

Lo = 25L,, +90Ly, +111L,, (1.D)

In this example, the ideal I verifies the conditions (i) and (ii) of Lemma
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Figure IIL.1: On the left, the Enriques diagram of the cluster K = BP(I) of
Example II1.1.12. On the right, we represent the exceptional components Ly, Ly,
and Ly,, of X = Bl;(S); these three components intersect at the only singularity
Qof X.

I1.2.12 and so, the virtual multiplicities of the cluster 7¢ defined in Remark
II1.1.10 are

25 if P=D4

o = 90 ifp = P9
PUY 111 ifp=oppo
0 otherwise.

Figure III.3 shows the Enriques diagram of the cluster ’]/:(jv obtained by
applying the algorithm described in Remark II1.1.10. Since it has positive
excess at the points p1,ps and ps, Theorem III.1.1 says that the strict
transform C is not a Cartier divisor on X.

Note that

ﬁm = 4Lp4 + 7Lp9 + 8Lp12
Lpy = TLp, + 30Lp, + 32L,,,
Lp, = 8Lp, + 32Lp, + 42Ly,,.

Thus, the matrix of the change of basis from {£;,}i=4,9,12 to {Lp, }i=a.0,12

is
4 7 8

Ar=| 7 30 32
8 32 42
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LP12

Figure I11.2: On the left, the Enriques diagram of the singular points of C C S'in
Example II1.1.12 is represented with bold lines; on the right, the strict transform
C goes through the only singularity @ of X.

Figure I11.3: Enriques diagram obtained by means of the algorithm described

in Remark II1.1.10. The grey-filled circles represent the dicritical points of the
unloaded cluster.



112 IT1. Local principality of curves through a sand. sing.

Then, by the equality (1.1) above,

32 19 91
Lo = 2_5"6194 + Qgﬁps + ga‘cplz
and by Corollary II1.1.6, we infer that
~ 32
Lpx = —

Clplx = o2

~ 19
Colpls = 5

= 91
|C'LP12iX = 50

Example II1.1.13. Take a complete mp-primary ideal I with base points
as on the top of Figure II1.4. The dicritical points of X = BP(I) are ps, p4
and pg and so, the surface X = BI;(S) has thee exceptional components
Ly,, Ly, and Ly;. Moreover, X has two singularities: Q1 in the intersection
of Lp, and Ly, with T, = {p3} and Q2 in the intersection of L,, and Ly,
with T, = {p1,ps, ps, p7}. We have

Lp, = 2Lp, + 2Ly, + 2Ly,
Lm = 2LP2 + 4Lp4 + 2Lps
Lpg 2Lp, + 2Lp, + 9Lps.

Il

Now, if C is a curve on S with singular points as represented on the bottom
of Figure I11.4, then,

Lc = 6Ly, +8Lp, +11L,, =
5

7
= g":pz + ﬁm + gﬁps-

By. Theorem I11.1.1, C is not a Cartier divisor on X. However, if Cgp, is
the curve composed of the branches of C' whose strict transform on X go
through @, then

LCQ1 = 4Lp, + 6Ly, + 4L, =
= Epz + £P47

and by Corollary I11.1.9, C is principal in a neighbourhood of Q.
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Figure II1.4: On the top: on the left, the Enriques diagram of BP(I) and on the
right, we represent the exceptional components L;,, Ly, and L,; on the bottom
and left, the singular points of the curve C' and on the right, the we represent the
strict transform C on X in Example I111.1.13.
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III.2 On Cartier divisors going through a sand-
wiched singularity

Throughout this section we fix a curve C on S such that the strict transform
C is a Cartier divisor on X, and write K = (K,7°) for the cluster of base
points of the complete ideal HZ = {g € R | vp(g9) > vp(C),¥p € K4+}. With
this assumption, we know by Corollary II1.1.6 that the ideal sheaf HZOx
is invertible and so, the base points of HY, are contained in K. Moreover,
it is clear from the definition of HE that v,(C) > v,(HY) for all p € K,
and so K% < K¢. By Theorem III.1.1, we have that every ¢ € K \ K4 is
a non-dicritical base point of Hg. Moreover, since C' goes sharply through
K¢, we have

Sk Sk
EC c — EICCC
and also
LC = L;C% (2.3)

The following proposition allows to compute the exceptional part Dch

of the total transform of C on S Ko as the difference of the exceptional parts
of the total transforms of C' on Sk and that of a curve defined by a generic
element of Hyg,. Precisely,

Proposition IT1.2.1. We have

EoKe

Ske _ Ech o
c

Proof. By definition 77(C) = C + L¢ and Tk (C) = CSkc + E(S;KC. Since
Ko = foomr and fG(Lc) has exceptional support for 7, we infer that

S s N
E"® = D+ f&(Lo). (2.b)

Now, let Co be a curve going sharply through K2 and missing all points in
K¢\ K. Then, Co goes through no singularities of X and shares no points
with C in X. Thus, by (2.a),

7*(Co) = Co + Lc
and again from g = fc o7y,
* * (Y o~ *
ke (Co) = f&(Co+ Le) = Co "C + fa(Le)

and we deduce that

S *
Ege® = f&(Lo).
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Now, from (2.b) above, we infer that

Sk Ske Sk
EC == DC +E (()7

as claimed. [
The following result is technical and we state it here for future reference.

Lemma II1.2.2. If A C S is a curve such that A shares no points on X
with C, then

[C, Alo = [K¢, Alo.
In particular,

> ep(Clep(A) = 75%p(A).
p p

Proof. First of all, by the projection formula applied to = (Lemma 1.4.9),
we have

[C,Alo = |(C+Le)Alx =|Lo-Alx, (2.c)

the last equality since A and C share no points on X. Now, in virtue of
Theorem 1.1.30, we take a curve Co C S going sharply through K¢ and
sharing no points with A outside K. Then, Lc, = Lxg, = L¢ and A and

C"B share no points on X. Hence, and using again the projection formula
for 7, we get

K2, Alo = [Co,Alo = |(Co+ Ley)-Alx =
= |Loo-Alx =|Lc-Alx.

Now, the first claim follows from (2.c) and the second follows directly from
the first one by applying the Noether’s formula (see Theorem 1.1.31). [J

From Proposition II1.2.1 we get the following formula for the intersec-
tion number of the strict transforms on X of a couple of curves on S.

Corollary IIL.2.3. Let C' and C; be curves on S and assume that C is
Cartier. Then,

IC-C1|x = [C,Cilo — [K%, Cilo.

" Proof. By the projection formula applied to f¢ : Sk, — X and Proposi-
tion II1.2.1, we have

~ — ~ S ~ S
IC-Cilx = |(C®%¢ + DZ)-Cr gy, =
~ S S -~
= |(CFe + B — Ego®)C1 sy, =
~ Skey =S Sk, =S
_ |(C+ECKC).C1 KC|SKC _ lEICf’;C'Cl KCISKC

(2.d)
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Figure II1.5: Enriques diagram of X = BP(I) in Example IT1.2.4. On the right,
we represent the exceptional components Ly, Ly, , Ly, and Ly, of X; these four
components intersect at the only singularity @ of X.

~ 8
Now, let Cp be a curve going sharply through K¢ and such that Co e

(o}

~5
shares no point with C; € on Sko- Then, by the projection formula

applied to 7k, we have

—

—~ 5 S
[K&,Cilo = [Co,Cilo =1(Co " + Bip)-C1 s, =

—~ Sk
= |BrgCr sk,

and also,
— Sk Skcy . SKe
[07 CI]O = I(C c+ EC )Cl |SKC
The claim is derived immediately from (2.d). a

We discuss an example to illustrate the results of this section.

Example IIL.2.4. Let I C R be a complete mp-primary ideal with base
points as on the left of Figure IIL.5. Then, the dicritical points of X =
BP(I) are py, p4, ps and p1g and so, the surface X = BI; (S) has exceptional
components Ly, Lyp,, Lp; and Ly,,. Moreover, there is only one singularity
on X, say (), and we have,
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Figure II1.6: The singular points of the curves C (left) and D (right) in Example
11.2.4.

Figure II1.7: Enriques Diagram of the cluster K in Example I11.2.4
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Ly, = Lp + Ly, +2Lp + 2L,

Lp, = Lp +4Lp, +4Lp, + 4Ly,

Lps = 2Ly +4Ly, + 120, + 10Ly,,
Lpo = 2Lp +4Lp, 4+ 10Lp + 12L,,,.

Now, take the curves C and D having singularities as in Figure II1.6. Then,
an easy computation shows that

Le = 9L, +21Ly, + 42Lp, +44Ly,, =
= ‘CPI + 2‘CP4 + ﬁps + 2‘Cpm

and so, by Theorem III.1.1, C is a Cartier divisor on X. The cluster K¢ is
represented in Figure II1.7. We have that [C, D]o = 88 and [K%, D]o = 82.
Thus, Corollary II1.2.3 says that

|C-D|x = 88 — 82 =6.
Moreover, in virtue of Corollary II1.1.6, we have

C-Lyx =1 |C-Ly,|x =2
IC'Lpng =1 IC'LPulX =2

II1.3 On Cartier divisors and exceptional compo-
nents

In this section, we show that once finitely many points in the exceptional
locus of X have been fixed, there exist Cartier divisors C on X intersecting
the exceptional locus of X exactly at these points, with prefixed intersec-
tion multiplicities with the exceptional components. Precisely, given points
- {Q1,...,Qx} in the exceptional locus of X, and for each Q;, positive in-
tegers a]f, for p € IC%', there exist curves C' C § such that C is Cartier
and [5’, Lplg, = a;', for each p € IC%. From this, we infer that once a
sandwiched singularity @ € X has been fixed, the exceptional components
{Lp}pe K2 going through @ span a linear space of dimension equal to tthf.
The key result is the following theorem.

Theorem IIL.3.1. Let Q be a singular point on X and for each pE KZf,
let ap € Zso. Then there ezists a consistent cluster ’Té‘ such that the strict
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transform C on X of any curve C' going sharply through it is a Cartier
divisor that intersects the exceptional locus of X only at Q and

[5, Lplo = ap

for all p € ICS. Moreover, if Og is free or Og is equal to O € S, C is
irreducible as o Cartier divisor on X.

Proof. Write ICE = {p1,...,pm}, and T for the cluster obtained from
the cluster of base points of 1{®) = i I,C,?’ * by adding the points of K
and not in it (if any) with virtual multiplicities zero.

For each 7 € {1,...,m} write ¢; for the only point of Ty such that
the components E,, and E,, intersect on Sk (the uniqueness of this point
follows from the fact that Ex has no cycles, see Corollary 1.3.8: if q,¢' € Ty
are two such points, then p; € ch(q,¢') and by Remark I1.2.7, p; € To
against the hypothesis). Put 7o = 7(® and as far as pg} ' > 0 for some
i€ {l,...,m}, write w“" -1 ¢ Tj—1 for the point proximate to p;, infinitely
near to ¢; and minimal with this property, and take 7; = (T;,77) to be
the strictly consistent cluster obtained from (7;- 1) i1 by unloading (if
necessary) and dropping the points with virtual multlphmty zero. We claim

that there exists some n such that for each i € {1,...,m}, ppi =0, and

also v;f* = ’UT( ). To show this, we need a technical lemma that we state

separately for clarity.
First, we fix some notation. Take 7 > 1 and assume that 7; is obtained
by unloading (if necessary) from (7;-4),, i1 with w] proximate to p;.

Write T)_; = {p € T} | vp > fvp ' Whlch in virtue of Remark 1.2.14 is
the set of points where some unloading has been performed to obtain 7;
from (7;-1),, i1 Note that 7;_; has excess 0 at the points of T0 . Write

T ,={pe (’]; 1+ | ch%(pi,p) C T)_,} and note that p; € T-l, so we
put T}_l = {Piwl = Piyen- 7p]mj-1}

Lemma IIL.3.2. If j > 1 and py, # p,, there exists some u € ch® (P, Prm)
" such that pzj > 0.

Proof. We use induction on j. The case j = 1 is Proposition 11.6.3, so there
is nothing to prove. Now, assume that we reach a cluster T;_1 with the
wanted property, and that pp > O so that 7} is obtained by unloading (if
necessary) after adding a point w prox1mate to p; as described above.
Now, by Proposmon I1.6.3, for each t € {2,...,m;_ 1}’ there exists
some u] € ch®(p;, p]~ ) such that 7; has positive excess at u]. From this,
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lt follows that if pp # p;, then there is some u € ch®(px,p;) such that
pu > 0. If py,, pp are different from p;, by the induction hypothe51s there
exists some u € ch®(pp, pn) so that pZ] ' > 0. Hence, u ¢ Tj_l, and by

Proposition I11.3.11, pT’ = pu —1lifu € T+, and remains unchanged,
otherwise. In the second case, there is nothlng to prove, so we assume
that u € Tj+. Note that if w € ch(pm,pn), w # u, then w ¢ Tj“" as the
exceptional divisor Eg has no cycles. Therefore, we can assume that u is
the only point of ch®(pm,ps) at which 7; has positive excess. Thus, we
have pi—‘ =0 for any w € ch®(pm,u) U ch®(p,, u) and any w € ch®(p;, u)
because ch®(p;,u) C TJQ. From Lemma I[.6.6 we infer that pzj'l > 2.

Hence, pZ3 > 1. This completes the proof of the lemma. Ol
From the previous lemma we infer that if j > 1, neither of the p1,...,pm

belongs to TJQ. Moreover, we have that if 7; is equivalent to (’1}_1)w£‘, then

pgz' = pz,:—l — 12> 0 and if £ # ¢, then ka' = pgk'_l Therefore, after finitely
many steps we reach a cluster 7,, such that p,’ 7o — () for each i. Hence, we
obtain a sequence of clusters

To=T® T <...<Tp.

Furthermore, since no unloading steps are performed on any p € K., we
have that vT" = UZ( ), and in particular, vg" = g:, for i € {1,...,m}.
Define 75 as the cluster obtained from 7, by adding those points in K
and not in T, (if any) with virtual multiplicities equal to zero. If C goes
sharply through T ¢, then CS% intersects no component E, with pz =
0, and hence the strlct transform C of C' on X does not intersect any
exceptional component of X at some point besides ). Moreover, we have
that Lo = Ly, = EpEIC$ apLy, and by Corollary II1.1.6, we infer that if
peKS,
[5>LP]Q = |5>LP|X = Qp-

Notice by the way that HZ = {9 € R | vp(9) > ap,Vp € K4} and so,

K&=T (e) (see page 114). From this and in virtue of Proposition III.2.1,
we have that

Sk Sk Sk

DEf ©=FE;° - E_ - (3.a)

Now, we prove the second claim. By Proposition 11.3.11, we have that

pZ,} = ap, — 1 and also ng > 0. If ap = 1 or Og is a proper point of

S, there is nothing to prove, so we assume that o, > 2 and Og is free.
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Write p; € ICQ for the point Og is proximate to. Then at some step of
the above procedure, say j, we add to 7; the point w]. Since Po > 0, the
resulting cluster (7; )w{ is consistent. If fact, as long as the excess at p; is
positive, the clusters obtained by adding points proximate to p, infinitely
near to Og and minimal with this property will be consistent and hence no
unloading will be necessary. From Remark 1.2.14 it follows that vo” = vng
for every j > 1 and, in particular, vg" = Uo Now, by (b) of Lemma I1.3.1
applied to T (@), we have 7'0 = To, + 1 and 7' = 7, for every p preceding
Og. Therefore, by using Lemma I1.1.13, we see that ’UOQ +1= vT(a) +1
and hence,

’T
T(a)
OQ + 1.

IfOp=0isa proper point of S, O¢ is proximate to no point and the
T
equality ’UO = Uo "y1 easily follows.

. S
In any case, we infer from (3.a) that the coefficient of Eg, in DéKc

is one and hence, that C is irreducible as a Cartier divisor near Q. This
completes the proof. 1

Remark II1.3.3. The assumption that Og is free or proper is necessary
for the irreducibility of Cartier divisors through @ intersecting all the ex-
ceptional components with prefixed intersection multiplicities at Q.

Remark II1.3.4. Note that, in general, the Cartier divisors constructed

in Theorem II1.3.1 are not analytically irreducible as they are composed of .
several branches.

Now, we obtain the following corollary, as already claimed.

Corollary I11.3.5. Let Q = {Q1, ..., Qn} be points (singular or not) in the
exceptional locus of X and for each Q;, let {a;}peﬁii be positive integers.
- Then, there erxists a cluster T§ such that if C' is a generic curve going
through TS, then C is a Cartier divisor on X going through Q1,...,Qn
and for each Q; and for each p € IC%,

[C’ L;D]Qi = a;'

Furthermore, if Q; is reqular or such that Og, is free or equal to O, then
C is irreducible as a principal divisor near Q;.
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Proof. If Q; is singular, define TQ"‘i as the cluster obtained by Theorem
I11.3.1 applied to @; and {ap}pelcfi'

Now, if Q; is not singular, there are one or two exceptional components
going through @; as there exists an open neighbourhood U of Q; such that
the restriction fig-1(yy 1 f ~1(U) — U is an isomorphism.

Assume first that ﬁIC% = 2 and write IC%' = {p1,p2}. Take local
coordinates Z, 7 in a neighbourhood of @; such that Z,y are equations of
the germs of L,, and Ly, respectively. If n’ = ged(ayp,,ap,) is equal to
one, take v as the curve having Puiseux series

5(z) = 2o lom.

(Puiseux series of germs of curves at regular points are explained for in-
stance in Chapters 1 and 5 of {11]). Otherwise, write m; = %%1 and take
as the curve having Puiseux series

s(j') = {U‘al’z/ap1b_|_ i.(ap2+m1)/ap1 .

In any case, v is analytically irreducible and [v, Ly;]q, = ap, for j = 1,2.
Moreover, if 7o is the direct image of v by 7 : X — S, 70 is also analyti-
cally irreducible. Define 7§, as the (irreducible) cluster obtained by taking
the first non-singular point of 7o and all the points preceding it, each point
with virtual multiplicity equal to the effective multiplicity of yo. Then,
by Proposition 1.1.29, any curve C going sharply through TQ is also an-
alytically irreducible and hence, so is its strict transform C on X and C
intersects the exceptional locus only at ¢J;. Moreover, as any such curve
has no singular points outside of 7, 5., any point p of C being proximate to
p1 or p2 is in 73, and so e(C) = ep(7y). Therefore and for j = 1,2, we

have that
Yo @)= D e

PEK,p—p;j pEK,p—p;

and by 4. of Proposition 1.1.16, we infer that

[C> LPj]Qi = [%7 ij]Qi = Qp;.

If jleQi = 1, write IC%' = {p1}. In this case, take local coordinates Z,
in a neighbourhood of @); such that 7 is an equation of the germ of L,, at
Q;. Take =y as the curve having equation § — 2% = 0. Clearly, v is smooth
and so, analytically irreducible. As above, write v for the direct image of
~ by m and define Té"i in the same way. Then, if C goes sharply through
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C is analytically irreducible and the same argument used there shows
that C intersects the exceptional locus only at Q; and [C, Ly, g, = 0,

Now, it is enough to define Té" as the sum of the clusters {7 i},= sV

T§ = 3 iy 7§, to obtain the wanted cluster. O

Remark IIL.3.6. It is worth noting that an easy procedure for comput-
ing Cartier divisors with the required intersection multiplicities with the
exceptional components can be derived from the proof of Theorem III.3.1:
we assume that m = 1, as for the general case it is enough to take the sum
of the clusters obtained for each point Q;. The regular case being clear,
we assume also that Q is singular. Keeping the notation as in the proof of
Theorem I11.3.1, take 7(®) = BP(I{®)) and take also the consistent cluster
7; which is obtained by adding some simple point in the first neighbour-
hood of some point in T and unloading multiplicities. Then, if a; > 0,
write q for the point of Ty such that Ej, and Ey intersect on Sk, and while
pf,—" > 0 for some p € ICE, add points proximate to p, infinitely near to
g and minimal with this property, and unload multiplicities if necessary.
After finitely many steps, we reach the cluster 7 ) of Theorem I11.3.1.

Next we give an easy example to illustrate this procedure.

Example IT1.3.7. Take the singularity of Example I11.2.4 (see Figure IIL5)
and take

ap, =4, ap, =2, ap = 4, ap,=1.

Keeping the notation as above, write I (@) = I;}lfgfgngm Figure 11L.8
shows the Enriques diagrams of the clusters 7% and 7;, and Figure II1.9
gives the Enriques diagram of the cluster 75. By Theorem IIL3.1, for any
curve C going sharply through 73, C is a Cartier divisor on X locally

irreducible near () and

[57 Lp =14
[5, Lp,)o =2
[67 Lpslg =14
[6’LP10]Q =1

To close this section, we obtain as a corollary of Theorem II1.3.1 that
the tangents to the exceptional components going through some sandwiched

singularity Q € X are linearly independent. To this aim, we need first an
easy lemma.
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Figure I11.8: On the left, the Enriques diagram of the cluster T(®) = BP(I™)
in Example II1.3.7; on the right, the Enriques diagram of 7;.

Figure II1.9: Enriques diagram of the cluster 7§ in Example IIL.3.7.
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Lemma IIL.3.8. Let &,...,&, be smooth curves in C¥ (m < N) going
thought the point O = (0,...,0) and for each i, write l; for the tangent to
§ at O. Assume there is a hypersurface H of CV such that [H,&]o = 1

and [H,&lo > 2 fori € {2,...,m}. Then, l; does not belong to the linear
space generated by ls, ..., 1, at O.

Proof. If H is a hypersurface of CV such that [H, & ]o = 1, it is necessarily
smooth at O. If moreover [H,&;]o > 2 for i € {2,...,m}, the tangent space
to H at O contains Iy, ..., ly. Therefore, if [; is contained in the linear space
generated by la,...,ln, it is also contained in the tangent space to H at O
and [H,&1]o > 2 against the assumption. O

Corollary II1.3.9. Let I C R be a complete mo-primary ideal, X =
Bli(S) and Q € X a (sandwiched) singularity. Then, the tangent lines
to the exceptional components on X = BI(S) going through Q are lin-
early independent. In particular, the curve L = ZpEICQ Ly has a minimal
singularity at Q.

Proof. Write ICg ={p1,---,Pm}. For each i € {1,...,m}, and in virtue of
Theorem II1.3.1, there is a Cartier divisor C; going through Q such that

f1 =y
[C“L”J']Q”‘{z if i # 5

Consider an embedding of (X, Q) in an ambiental nonsingular variety A( x.Q)
of dimension my g = dim¢ —mé?— Since C; is a Cartier divisor, there is some
o

hypersurface H;: g; =0 in Aé: %.@) such that

1 ifi=j
Hi,Lylo =
[Hs, I Jo {2 i1 j

From Lemma II1.3.8 it follows that the lines {Iy;}=1,..,m span a linear space
of dimension equal to m = ﬁiCQ and the first claim is proved. Now, the
second claim follows directly from the definition of minimal singularity in
dimension one (see Remark I1.5.12) and the fact that the multiplicity at Q
of L = ZpEICQ L, is equal to ﬂKlQ O
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II1.4 On the Cartier divisors containing a given
Weil divisor on X

Keep the notation as in the preceding sections. In this one, we fix a curve
C on S but do not assume that the strict transform C on X is a Cartier
divisor. Hence, as already pointed out in section 1IL.1, if Q4,..., Q@ are
the points where C intersects the exceptional locus of X, Dg = A Dgi
is a Q-Cartier divisor on Sk, but not necessarily a Weil divisor (see Lemma

II1.1.3). However, for each singularity Q € X, we can take a divisor Eg on
Sk having exceptional support contracting by fc to @ and such that:

Sk Sk, =0 s
(a) forallp € TQ}‘C, |E, "¢ D&lsg, < |EpKC'Dg|SKC

(b) Eg is the minimal divisor verifying (a) i.e. if D is a divisor on
S
Sk, contracting by fc to Q and for all p € TE;KC, |Ech-D[5KC <
S e
|Ech.Dg|5Kc, then D > Dg.

Moreover, it can be seen that Eg > Dg, and the equality holds if and
only if Dg is a divisor on Sk, or, in virtue of Lemma II1.1.3, if and only if
C is principal near Q (see [21] §1 for details).

Definition ITI.4.1. We say that an effective Cartier divisor C’ on X con-
taining C' is v-minimal if

n
SKC __SKC h —=Q);
Dgre =Dife =S D,
i=1

—~5
and the strict transform C”"© intersects transversally the exceptional di-
visor of f¢.

The aim of this section is to describe an algorithm to construct curves
on S such that their strict transforms on X are v-minimal Cartier divisors
containing a given effective Weil divisor without exceptional component.

This procedure provides also a formula for —ﬁgi as a difference of exceptional
divisors as in Proposition I11.2.1.

First of all, some remarks are in order.

Remark II1.4.2. Given an effective Cartier divisor C’ containing C , whether

C’ is v-minimal or not is a local question, as it depends only on the germ
of C’ at the singularities of X.
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Remark I11.4.3. If C is already Cartier, then EZKC = DgKC and there

is only one v-minimal Cartier divisor containing C , which is C itself.

Remark IT11.4.4. Let C’ be an effective Cartier divisor on X containing C
and assume that it has an exceptional component L' = Zpe Ky apLy, with
ap € Z>o. Foreach p € K4, let uf,...,uh, € Ko\ Ky be the points whose
corresponding vertices in the dual graph 'k, are adjacent to p (clearly,
Np < Wi, (p); see section 1.5). Then, if ¢ € K¢ \ K4, the strict transform

~8
L'°%¢ of I’ on Sk, satisfies that

: P p
|E’SKC-E5KC|5 _ ) ap if g€ {uf,...,un,} for some pe K4
Kc 0 otherwise.

On the other hand, since C contains no exceptional component, C is
also contained in the effective divisor C' — L/, which may not be Cartier.
However, if C; is a generic curve going through the consistent cluster
T =3 e, ap(3°57, K(u?)), then it has a, branches through each v},
all of them missing the points in K¢ after it. Hence, for all ¢ € K¢ \ K4,

|aSKC'ESKClS _J e if g€ {uf,...,uh,} for some p € K,
k Kc 0  otherwise.

S
By Definition 1.3.19, we deduce that Dgfc =D Lf(c, and by Lemma III.1.3,
o 1
we infer that C' — L' + SCl is an effective Cartier divisor on X. Therefore,
in order to compute _ﬁéKc it is enough to take Cartier divisors without

exceptional component.

Remark I11.4.5. Assume that C’ is an effective Cartier divisor containing
C and having no exceptional component. Then, the image by 7 of this curve
has the form C + Co for some curve Cp C S. Equivalently, C’ is the strict

transform on X of C;, = C'+Cp. Then, by Corollary III.1.6, the complete
mo-primary ideal

1, ={g € R |v(0) > up(Ch),¥p € K4}

has factorization
%‘6 = H I;lcn i
peEXy
where my, = |C’-Ly|x. This fact suggests the idea of the algorithm stated
below: by means of a procedure based on unloading, we compute the min-
imal integers m, for which there exist curves Co C S so that C' 4+ Cp goes
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virtually through 3 Ky mpK (p). The procedure provides a flag of clusters
that allows us to give a complete description of such curves Cp and also, of
the v-minimal Cartier divisors (with no exceptional component) containing

C.

Before describing the algorithm, we need some technical results that we
state separately for clarity. The fist one introduces a variation of the un-
loading procedure. Recall from Notation 1.2.12 that given a non-consistent
cluster K, we write K for the consistent cluster obtained from K by unload-
ing multiplicities.

Lemma II1.4.6. Let K = (K, v) be a non-consistent cluster and let Ko C
K. There ezists a cluster K' = (K,V') equivalent to K and such that:

(i) p§ >0ifpe K\ Ko;
(i) v&' =of if p € K,.

Moreover, if we take the partial order relation given by the virtual values,
there is a unique minimal cluster with these assumptions.

Proof. Put K° = K and, inductively, as far as K1 has negative excess
at some point p € K \ Ko, define K¢ from K*~! by unloading on p. We
claim that there is an m so that K™ has non-negative excess at each point
in K \ Ko, and vl’fm = v;f if p € Ko. To show this, note that the steps
on the above procedure are part of an unloading sequence giving rise to
a consistent cluster as described in Theorem 1.2.16. From (b) of Theorem
1.2.16, we reach this cluster after finitely many steps, independently on the
choice of the points on which unloadings are performed. This shows that
after finitely many steps we reach a cluster K™ satisfying the condition (i).
By Remark 1.2.14, the condition (ii) is clear, as no unloading is performed
‘on a point of K.

Now, to prove the uniqueness of a cluster with the above assumptions
and minimal relative to the virtual values, assume that we have clusters
Kay = (K , v} and K = (K, V) equivalent to K and verifying the
conditions (i) and (ii). Then, for every p € K,

Ko KO - K _
vy Sy <y 1=1,2 (4.2)

Put K = (K, () the cluster defined by taking values v;f(o) = min{vz’f(l) , vl’f(z)}

for every p € K. Now, for p € K, write w(p) = §{¢g € K | ¢ — p} + 1.
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Figure I11.10: The Enriques diagrams of K, KXo and K’ in Example I11.4.8.

Then, if p € K \ Ko and say vf(l) < vj’f(z), we have (Artin’s trick [3])

@ t (0 K K@
Pp = —LAgv~ =uw(p)v, Z vy 2
d(p,g)=1
1 1 1 1
> w(p)vf()—— Z )c() 1tA v/c()_pg()zo
d(p,g)=1

the last inequality by assumption. Moreover, if p € Ko, then vf(o) = o
and from (4.a) above, we infer that K is equivalent to K. Therefore, K©
is equivalent to K and verifies the conditions (i) and (ii). From this, we

‘derive the claimed uniqueness. O

Notation I11.4.7. From now on, we will denote by Ko the minimal clus-

ter equivalent to K and verifying the conditions (i) and (ii) of Lemma
I11.4.6.

In the following example, we show that the hypothesis of minimality
relative to the virtual values is necessary for the uniqueness of Ko,

Example II1.4.8. Consider a cluster K having Enriques diagram as shown
on the left of Figure I11.10 and put Ko = {ps4}. The Enriques diagram in
- the middle shows the virtual multiplicities of KHo while that on the right
shows the virtual multiplicities of another cluster X’ verifying the conditions
(i) and (ii) of Lemma II1.4.6. Moreover, we have that

v =1{2,3,6,7,8,3} Vex, = {3,4,7,7,8,3}

vir = {3,4,8,7,8,3} vz ={3,4,8,8,8,3}

and so, both KXo and K’ are equivalent to K.
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In order to obtain X0 in practice, it is enough to perform usual unload-
ing on the points not in K with negative excess. To show this, consider a
sequence of clusters K* as in the proof of Lemma II1.4.6, and assume that
for some 7 > 1, there is some point in K, say p, such that v f > v’c °. We

can assume that ¢ is minimal with this property and so, vt’f < v(’f ° for

each g € K. Put ng = UEKO — vz’,ci_l > 0. Using the minimality of ¢, we
have that
’Ci——l 0 K:i—l
1Ak (Vi +n21p) = —w()(v, +np)+ Z vy
d(p.g)=1
.~ ~
< —anf e Y o=
d(p,g)=1
Ko

= LAKVEk, = —Fp

the last equality by Lemma 1.1.22. From the definition of KXo, we infer
that :

LAk (vii-1 +nply) <0 (4.b)

Now, as explained in the subsection 1.2.1, the unloading step on p giving
rise to K* increases the virtual value at p by an amount 7, which is the
least integer such that

1;AK(V}C +nlp,) <0,

while the virtual values at the other points of K remain unchanged. By
(4.b), we have that n < ng and so

_ Ici—l ’Ci—l 0 _ ’EKO
v, = +n§vp +n, =17,

against the assumption. Since any unloading step increases the value at
some point by some positive quantity, we derive that after finitely many
" unloading steps, we reach KXo,

Definition II1.4.9. We will say that KXo has been obtained from K by
partial unloading relative to Kj.

Remark II1.4.10. Let K = (K,v) be a consistent cluster and ¢ € F.
Since all unloading steps leading from K4 to K, are tame (Corollary I1.2.2),

—~K ~ K, —~
so are the unloading steps from K; to X, 0, and from K, ° to Kq. In
~ K —

particular, we have ¢(Kq) = ¢(Kq °) = c(lCq).
Note also that if Ko = 0, partial unloading and usual unloading agree.
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Lemma II1.4.11. Let K be a cluster, Ko C K a proper subset and q € Fx,
not proximate to any point of Ko. Let

T'= > mK@) + > k)

pEKp peK\Ko
=S mK@+ Y. wKd)
peKo pe K\ Ko

be (weighted) clusters with op > O for each p € K \ Ko. If 7:11 is not
consistent, then ’];2 is not consistent, either, and we have that

~ K

T2 =S (mh-s)Kp)+ Y. (ap—s)K ()
pPEKo peK\Kop

— K

T2 = (mi-sp)Kp)+ Y (ap—sp)K(D),
pEKp pPEK\Ko

where ap > sp if p € K\ Ko and sp > 0 if p € Ko.
Moreover, if p € K is such that no point of Ko is mﬁmtely near to it,
~ Ko

and %, 7% are the virtual multiplicities at p of T} ~, T; 72" , respectively,

1_ .2
then Ty =Tp-

Proof. First of all, notice that if p € K \ Ko and for i € {1,2}, we have
pgi = ——1;AKVTi = Qp. (4.0)

- —~ K '
Write T = K U{q} and for ¢ = 1,2, write T¢ for the cluster 7} °. Then, by
definition of partial unloading, we have vz; = v7i +7t, where @t = (n;)peT,
and

nﬁ,ZOifpeT and n;=OiprKo.

- Now, denote 7° = (nQ)per, 1) = min{ng, n2}, and for i = 1,2, write T¢ for
the cluster with set of points T and system of values given by

V%z‘ = V»Tqi +—ﬁ0. (4d)
For p € T, let j € {1,2} such that nzjy = min{nll,,n;‘,;}. Then,

—1tATn —w(p)n - Z no > w(p) nJ Z nJ —1;,AT'ﬁj.
d(p,q)=1 d(p,g)=1
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Therefore, if p € T\ Ky and ¢ € {1,2},

T} t t t =0
ppO - —]_pATV.TOi = ——]_pATVTi — ].pAT’I’L >

Z —].ZATVTi - IZATﬁj =
= ap— LA =pl’ >0,
the last inequality by definition of T7. On the other hand, if p € Ky, we

have that ng = 0 and by (4.d), va& = ’UZ— . Hence, 7¢ verifies the conditions
(i) and (ii) of Lemma II1.4.6 and by the minimality of 7%, we deduce that

7’ = @' and therefore, nzl, = nf, for each p € T'. In particular, for every
peT, ppi = ~1§,AT(v7i + 7%). Now, if we write s, = lgATﬁO for each

p € K, we have that for 1 = 1,2,
7 T
pp = —I;ATVTi —Sp=pp — Sp.

N/o\w, if£ € K\ Ky, by (4.c), we know that pgi = oy and so, we have
pgq = pg—2 = ap — Sp. By definition of partial unloading relative to Kp, it

is clear that o > s,. On the other hand, if p € Ko, we have pgl = mzl, —5p

and p;)ﬂ = mf, — sp. Moreover, since ng = 0, we infer that s, = IZATﬁO =
Ed(p,q):l ng > 0. This proves the first claim. The second one follows
immediately from it. O

Lemma II1.4.12. Let Q = (K, o) be a consistent cluster and let p1,...,pm
be points infinitely near to O and not in'K. Write @ = (T, 7) for the cluster
Q+ Y K(p;). Take the chain of clusters

To<Ti<...<T;<... withT;=(T,) (4.0)

defined as follows: put To = Q and for j > 0, as far as there exists some p;
such that 5, = 0, take Tj+1 as the cluster obtained from (7j)p, by partial
unloading relative to Q4 = {p € K | pz? > 0} and dropping the points with
virtual multiplicity zero. Then, after finitely many steps, this procedure
stops and we reach a cluster T, such that

(i) 7 =Tp, fpe T\ K,

(it) if T = (T,7) is such that Hr C Hg and 7, = 7, for each p ¢ K,
then Hr C Hr,.

(iit) T, has non-negative excess at every pointp € T\ Q. ; if p € Q., then
pz,—" = p? ~ 8p, where s, > 0 does not depend on the excesses of Q at
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the points in Q. In particular, if the ercesses of Q at these points
are big enough, then all the clusters T; in the flag (4.e) are consistent.

Proof. Clearly, Q is consistent and Hg C Hg. Moreover, the clusters 7; of
the chain above verify that

H@ C HTJ.. (4.)

To show this, we use induction on j. The above inclusion is clear for 7 = 0,
so assume it is true for j > 1. Write ’Z~3 for the strictly consistent cluster
obtained by unloading multiplicities (if necessary) and dropping the points
with virtual multiplicity zero, and write 7}, for its virtual multiplicity at a
point p. The cluster 7;,; is then equivalent to ('f})pi, where p; is such that
T,ZZ. = 0, and also ?{;i = 0 for there are no points in T} infinitely near to
p;. Hence, p; is not a point of fj Now, to prove that Q contains Tjt1,
it is enough to show that the virtual transform CT of any curve C going
sharply through O goes through the point p;, and this is clear as such a
curve goes effectively through p;.

Now, in virtue of (4.f), it is clear that after finitely many steps, we
reach a (not necessarily consistent) cluster 7, such that 7. = 1 for each

i € {1,...,m}. Since the excesses of the clusters 7; at the points in T'\ Q+
are non-negative, we infer that

Ty >7Tp forpe T\ K. (4.8)

Now, assume that we have a couple of (not necessarily consistent) clusters
TO = (T1,7W) and T® = (T2,7®) such that Hya), Hye C Ho and
T;éz) > 7p for p € T\ K. Define a new cluster 7(®) = (T, 7(9) by taking
P Tp ifpeT\K

where vy = (Ug)peK and vg = min{va(l),vZ@)}. Since Hyqy, Hy@) C
" H1©), we have that if p € K, then vg(o) = min{vg(l),vg(z)} > vf’ and so,
Hyo C Ho. That T < 7MW 7@ and ¥ =7, for p € T\ K follows
from the definition of 7(®. Now, by using Artin’s trick as in the proof
of Lemma II1.4.6, it is easy to see that pz,—(o) > 0 for p € T\ K4. This
proves the uniqueness of a minimal cluster 7/ = (T,7') containing Q and
satisfying (4.g), and shows that in fact, 7, = 7, if p € T\ K. From the way
the cluster 7, has been constructed, necessarily 7’ = 7,,, and so 7,, does
not depend on the choices done when constructing the chain (4.e).
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In virtue of the last assertion of Lemma I11.4.11 we infer that if j > 1
and if p € T\ Q4, Tg does not depend on the excesses {pZ}}qu . and
inductively, not on {pP}qeco,. Moreover, we the variation between the
excesses of 7;;1 and 7; at each p € T,

. T._l T]
sp=pp  —pPp,

does not depend on the excesses of 7;_; at the points of @, and inductively,
nor on the excesses of 7y = Q at these points. Therefore, if for eachp € Q,

we put
n
= 2 : J
Sp = Sps
Jj=1

we have that p,» = pr — sp, where s, > 0 is independent from the excesses
of Q at the points of Q. In particular, if pz? > sp for every p € Q4, the
resulting cluster 7, (and in fact, every 7;) is consistent. |

Description of the algorithm
Let m = {mp}pex, be a vector of integers and denote

™ = Z mpK(p).
pek+

Although 7¢™ depends on m, for simplicity in the notation, we write 7,
for its virtual multiplicity at p. Let g¢1,...,¢n be the first non-singular
points in the branches of C' and not in K. The procedure explained here is
a direct implementation of Lemma II1.4.12 applied to the cluster 7™ and
the points q1, ..., gm-

STEP 0 Take any ¢; and define 7™ = (K¢, 7!) as the cluster obtained from
(7g™)q, by partial unloading relative to K.

STEP j Once ’2}'1‘1 is defined, assume that there is some ¢; such that Tgi_l =0
(otherwise, the algorithm stops here) and define 'Z}m to be the cluster
obtained from (77 )4, by partial unloading relative to K.

As already pointed out, at each step of the above procedure, the excesses
at the points in K4 decrease by one or remain unaffected. In virtue of
Lemma IIL.4.12, this procedure stops after finitely many steps, say n, and
we obtain a cluster 7" such that:

(A) 73 =¢,(C) if pe Ko\ K,

(B) for each p € K¢ \ K, the excess pZ"m is non-negative and if p € K,
Tm

pp" = my — sp, where s, is a non-negative integer not depending on
m.
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In particular, if we choose m = {mp}yex, such that m, > s, for each
p € K4, we obtain a flag of consistent clusters

I <T™ <. <T™ (4.h)

Remark I11.4.13. In virtue of Lemma II1.4.11, the value of n depends on

the points of K4 and the position of C relative to K, but not on m. Note
also that if 7)™ is consistent, then

S
Erm — qu)m = Z npEp Ke
peKc

where n, is the number of unloadings performed on each p € K¢ (in par-
ticular, n, = 0 if p € K, see Remark 1.2.14). Therefore, the difference
Ezm — Egm does not depend on m, either.

Remark IT1.4.14. As in section II1.2, write K¢ = (K¢, e(C)) where e(C)
is the system of virtual multiplicities given by the effective multiplicities of

C. Clearly, if the strict transform C on X is Cartier, then K¢ = 7,7 and
also, K2 = 7.

The following proposition is the main result of this section. It gives a
complete description of the v-minimal Cartier divisors containing C without
exceptional support (see Remark II1.4.4) and a geometric interpretation of

. .. —=S
the integers s, above. It also presents a formula for the divisor D2Fe
introduced at the beginning of this section.

Proposition I11.4.15. Let C C S and write K¢ = (K¢,e(C)) for the
weighted cluster of its singular points taken with virtual multiplicities equal
to the effective ones. Keep the notations as above.

(a) Assume that m > s and write 7,* = (K¢,w™) for the cluster obtained
by the algorithm above described. Then, the cluster

Kar(c) = (Ke,w™ —e(C))

is consistent, and if Co is a curve going through it with effective
multiplicities equal to the virtual ones and having, for eachp € K\K.,

pc‘m(c) branches through p and missing all points after p in K¢, then
C +Cp is a v-minimal Cartier divisor containing C. Moreover, every
v-minimal Cartier divisor C' containing C and without exceptional
components has this form.

ke _ SKC SKC
(b) fo Esn® — Egm®.
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(c) Ifp € K¢ ts a dicritical point ofng‘art(C), then p € K\K4. Therefore,
the curves Co as in (a) share no points outside of K, the set of base
points of 1.

After Proposition 111.4.15, one should think of the curves C”\(/) as the
Weil divisors to be added to C to obtain a v-minimal Cartier divisor on X.

Proof. Since we are assuming that m > s, the cluster 7, is consistent, and

from its construction, it has virtual multiplicity one at q, .. ., ¢, and these
points are maximal in it. It follows that pg;" =1forie {1,...,m}. On

the other hand, from the definition of the points {¢;}i=1,.. m, the cluster
K¢ has excess equal to one at them and zero at the remaining points. Since
the excess of ICg;rt(c) at any point is the difference between the excesses
of 7)™ and K¢, we infer that the excesses of K'C“art(c) are non-negative and
hence, that ICg‘m(C) is consistent.

Let A’ be an effective Cartier divisor on X containing C and without

exceptional components, so that there exists some curve Ap such that A’ =
C + Ao (see Remark I11.4.5). By Theorem III.1.1, we have that

Lowao = ) mpLp ' (4.1)
peEk
for some m, € Z>o. We claim that m, > s, for each p € K;. To show
this, write A, = C'+ Ao and construct the chain (4.e) of Lemma I11.4.12
applied to ICZ,O and q1,...,qm,

%mzlcj,o <L =T

Since ep(Ap) > ep(C) for each p € K¢, we infer from the condition (ii) of
Lemma II1.4.12 that Ay, goes through 7,™ and so,

Vp( 0) > UZ’;"- (4.)

By condition (B) above, if 7™ is not consistent, then there exists some
p € K4 such that m, < sp. In this case, some unloading must be performed
on p when unloading multiplicities to reach 7, from 7,7*. Hence, in virtue
of Remark 1.2.14 and (4.j) above, we have v,(4}) > vg" against (4.1).
Therefore, 7;™ is consistent and m, > s, for each p € K,. Now, by
Proposition 111.2.1, we have that
Sk Ske Sk Ske Sk
r = 7 m > m m
Dy E AL E w2 ETn ETO
and the equality holds if and only if A}, goes through 7,™ with effective
multiplicities equal to the virtual ones, or equivalently, if and only if Ap goes
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through g, 1+(C) with effective multiplicities equal to the virtual ones. By
definition of the cluster K¢, CSKc intersects transversally the exceptional
divisor of fo. Therefore, the strict transform ESKC of A’ on Sk, intersects
transversally the exceptional divisor of f¢ if and only if for each p € K \
K4, Ap has pg’:n branches through p and misses all points after p in K.
Therefore, we see that A’ is a v-minimal Cartier divisor containing C' if and
only if Ap goes through ICg:m(C) with effective multiplicities equal to the
virtual ones and has pZT{n branches through p and misses all points after p
in K. This completes the proof of (a). Moreover, if A’ is v-minimal, then
Difc = EST?,C - E%’.f,c and in particular, by Definition IT11.4.1,

ASkc _ pSKc SKc
Dé —_— ETnm - E 0m .

This proves (b).

Finally, from the definition of 7/, we know that w;* = €,(C) for every
p € K¢ \ K. Therefore, p ¢ K is a dicritical point of 7, if and only if
p = ¢; for some 7. From its own definition, it follows that ICg‘an(C) has no

dicritical points out of K. This gives (c) and completes the proof of the
proposition. [

Example IT1.4.16. Take the complete mp-primary ideal I and the curve C
of Example II1.1.13, see Figure II1.4. We have already seen that Cis locally
principal near (; but not near Q2 (see Example I11.1.13). In fact, we have
that D2 = Epr® while D2 = 1,/ + 15 + 2B,/ + BB, 5o
ﬁ?{c = Dgl +Egz. In Figure II1.11, we represent 73" and the cluster 7,,"
obtained by applying the algorithm described in this section. The excesses
of 7)™ at p2,ps and pg are

Tm
Ppr =mg —2
Tm
Ppl =my—1
Tm
Ppr =mg—2

and so, s; = 2, s4 = 1 and sg = 2. Figure II1.12 represents the clusters 77
and K%

Cart(C)* The virtual values of 7 and 77 are
vrs = {8,10,12,12,10, 20,22, 22}

vrs = {7,10,11,12,9,18,20, 22}
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mg-2

Figure II1.11: On the left, we represent the Enriques diagram of the cluster 7™
corresponding to Example I11.4.16; on the right, the Enriques diagram of 7.

respectively. Hence, by (b) of Proposition I11.4.15, we have that

Sk

Dife = Ejkc — Epse =

TS
= Eyfc 4 EyKe 4 EhKe 4 opKe 4 ghKe.

Example I11.4.17. Take the sandwiched singularity (X, Q) and the curve
C of Example I11.1.12 (see Figure III.1). By applying the algorithm seen
in this section we get the cluster 7,7 shown on the left of Figure III.14.

By Proposmon I11.4.15, the v-mlnlmal Cartier divisors on X containing
C are the curves C + Co, where Cp is a curve going sharply through the
cluster ICCart(C). The Enriques diagram of ICCart(C) is shown on the right
of Figure I11.14.

We have that the virtual multiplicities of 75 are
vrs = {16,11,2,2,5,3,1,1,1,2,2,2}.

and the virtual values of 7,7 and 77 are, respectively

vrs = {17,28,31, 31, 50,80, 108, 108, 108, 132, 132, 132}

vrs = {16, 27,29, 31,48, 78,106,107, 108, 128, 130, 132}
and again, by (b) of Proposition 111.4.15,

EZKc - ngc _ ES:;'C -
= E,KC 4 EyKe 4 BoKe y o K 4 gpaKe

s s
+ 2Ep; ke +Ep ¢ + 4EP1I({)C +2E5,;€.



II1.5. On the order of singularity of curves . 139

Figure I11.12: On the left, the Enriques diagram of 7? of Example II11.4.16; on
the right, the Enriques diagram of ICSCart(C).

ITI.5 The order of singularity of curves through a
sandwiched singularity

Our aim in this section is to apply some of the results of the former ones
in order to get some formulas for the orders of singularity ¢ of curves on X
without exceptional support.

Our first result is the following theorem.
Theorem IIL.5.1. Let C be a curve on S such that C is a Cartier divisor
on X. Then,
60(C) = 6x(C) +d0(K?),
where §x(C) = 2 Qex 5Q((~7).
Remark II1.5.2. Recall from Definition 1.1.1 that R is

Theorem IIL5.1 says that the difference between the order of singularity
of C at O and that of its strict transform C on X equals the order of
_ singularity at O of a generic curve going through Kg. In other words, if
f =01is an equation of C at O, Ry = (% and {Q1,...,Qn} are the points

where C intersects the exceptional locus of X, then

.. .
dim¢ R_f = 00(K%),
where .
R = ][ 72
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m4
m4
m4+3m9+3w4
mytm,, m,

m,+4m,+5m,,

m,+1

m,+3m,+3m,,

my+m,,-1 my-1

m,+4m,+5m,,+1 me+2m,,

Figure II1.13: On the top, we represent the Enriques diagram of the cluster 7
corresponding to Example I11.4.17; on the bottom, the Enriques diagram of 7,™.
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Figure I11.14: On the left, Enriques diagram of the cluster 7,7 obtained by means
of the algorithm described in section I11.4 and corresponding to Example I11.4.17;
on the right, the Enriques diagram of K%art(C)‘

and for each i € {1,...,n}, J5 o C Ox,q, is the principal ideal defining C
near ;.

Remark IT1.5.3. If I = mo, Rfc is the ring of C' in the first neighbourhood
of O introduced by Northcott (see [50, 51]). In this case, Theorem IIIL.5.1
and Theorem 1.2.18 say that

55x(C) — 50(C) = 60(0)(63(0) - 1)

which is known to be the variation in the order of singularity of C after
blowing up O.

To prove Theorem II1.5.1, we need a technical lemma.

Lemma II1.5.4. Let T be a cluster and take T a system of virtual multi-
plicities for T so that T = (T',7) is strictly consistent. Denote by Toq; the
cluster obtained by taking 7, — 1 as the virtual multiplicity for p € T. If
C and C,4 are curves going sharply through T and T4, respectively, and

—~—5 ~
sharing no points out of T, then Cl4; T _ C57 is a canonical divisor of St.

Proof. First of all, if Kg, is a canonical divisor on St, the adjunction
formula (see [29] V.1.5) says that

KsrE5Tlsp = —2— (E5T)?
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for each p € T. On the other hand, recall from section 1.3 that if EST =
Syws ZEI;GT, the map

0 : Pic(St) — Hom(E®°T,Z)
defined by H(D)(EZ*,ST) = [D-EngsT is an isomorphism of groups. There-
fore, it is enough to show that
—~—5 ~
(Cay = C°T)-EpT |5y = =2 = (BJT)?
for every p € T. By 4. of Proposition 1.1.16, we have

(Co " =GV ESTls; = (ep(Cus) — e(C)) — Y (eq(Cas) — () =

q—p.g€T

= (p—1-m)— Z (q—1—1g) =

g—pg€eT
—1+4{ge T |q—p}=-2— (EST)?,

the last equality by Remark 1.5.1. O

Write KSKC for the canonical divisor of Sk.. Then, using Lemma
I11.5.4, we can prove now Theorem IIL.5.1.

Proof of Theorem II1.5.1 By Corollary 2.1.2. of [44], we have the following
formula for the order of singularity of C at some point Q:

~ 1 1 =Q =@
6(C) = §|D§-(stc - Dg)lch + §I(D§ - Da)-(Dé2 — D& —Ksy sk, =
1 —=Q 1 =0 =Q
= §|Dg'D5 Ske ™ §|D5-(D§ - D& —Ksy sk, =
l =@ =0
= 3D&(Dg~ 2D2 + Ky s, (5.a)

By the assumption, C is locally principal near each ); and by Remark
111.4.3, Eg = Dg. Therefore, :

1 1 s
50(C) = 3IDZ(-DZ+XKsy, sk, = 5ID%(~D5™ +Ksy,)lsice,
(5.b)

the last equality because the divisors Dg are the connected components of
Di¥e,
C
Now, let Cp be a curve going sharply through X and sharing no points

with C out of K (Theorem 1.1.30). Then, the curve A = C + Cp goes
sharply through the (strictly) consistent cluster A = K¢ + K. Moreover,
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since C/E shares no points with C and goes through no singularities of X,
~ Sy
its total transform by fo equals the strict transform Co ®C and S0,

~ ~S ~ .
Fo(A) = Go™ 4 G%e 4 DI
Therefore, by the projection formula applied to fc, we deduce that
~a,. S
|DZ.(A%%c + DZ)|s,, = 0.

Now, if A, is a curve on S going sharply through A ,;; and sharing no points
with C out of K¢, we infer from Lemma I11.5.4 and the above equality that

g S —~—Sk, =
IDE(=D5" +Ksllsxe = |DE(=DF + Auy ¢ = A%C)|5y, =
—~— Sk
= ng'Aadj ¢ ISKC'

Therefore, by (5.b),

~ 1 —Sk
5(C) = 3IDZ A sk
and summing-up for the points on X,
~ 1 s ——SK
Z 5Q(C) = -2-|D5K0-Aadj CISKC‘ (5.0)
QeX
Now, by Proposition II1.2.1, we have DZKC = ZKC - E,if,;c By the

projection formula for mx, (3. of Proposition 1.1.16) and the assumption
on the curve A,;, we have

S —8
Eg ™ AugClsig = [C, Auslo-
Similarly,

S —— Sk
|E Kc'Aadj CISKC = [ICOC>Aadj]07

¢
since the strict transform on Sk, of a generic curve going through K%
—8
shares no points with A, ®C¢  From this and (5.c) above,
~ 1
Y %)= 5 (G, Awlo = [K&; Auglo) =
QeX

- and by using the Noether’s formula,

= % Z ep(C)(ep(C) +1vp— 1) — Z TS(GP(C) v, —1)=

pEKc pEKc
1 1
=5 2 O -1 +5 Y (O
peKc pEKc

-3 T w3 X (0 - 1) 5

peEK peK¢
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Finally, in virtue of Lemma II1.2.2, we have
Z ep(Clyp = Z T Vpy (5.€)
P P
and also, 3, ep(C)p % = Ep(rpc’o)2. From (5.d) and using Theorem 1.2.18,

we infer _
3 8(C) = 60(C) + do(K2)
QReX

as claimed. O
From Theorem II1.5.1 we deduce the following formula for the order of
singularity of a Cartier divisor on X.

Corollary IIL.5.5. Let C C S be a curve such that C is Cartier on X.
For every p € K¢, write n, = ep(C) — 15°°. Then

5x(&) = 3 Tl =),
pEKC

Proof. By Theorem I11.5.1 and Theorem 1.2.18, we have

5x(C) = 80(C)—do(K&) = > ep(C)(epz(C)-—U -y TL‘)_(_%f—_l)
peKc peke

Now, by (5.e) above, we have Epe No inpC ® = 0. Then, a direct computa-

tion shows that ( 1
x(0) = Y =),
P

Remark II1.5.6. In virtue of Corollary II1.5.5, we can write
8x(C) = do(Kc — Kg),
where K¢ — K& = (K¢, e(C) — 79°) is, in general, a non-consistent cluster.
With the notation of section I1.3, we obtain also the following corollary.

Corollary IIL.5.7. If C is a transverse hypersurface section of (X,Q),
then

5¢(C) = do(Kq) — do(K) = B,

where K¢ is the cluster of base points of the ideal I C I corresponding to
Q by Theorem I1.1.7.
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Proof. The first equality is derived from Theorem III.5.1 applied to a curve
C going sharply through K¢ (see Proposition 11.4.2 and Corollary II1.1.7).
Denote by I/II, the virtual multiplicity of Kg at p. If @ is singular, by Lemma
I1.3.1, we have

1 if p=0g
’I’Lp=1/;)--l/p= -1 ifpeBg
0  otherwise.

(see Definition I1.3.3) and in virtue of Corollary I11.5.5, we obtain

5(C)=>_ "——_-—_P(”;_ D _ i BY.
p

If Q is regular, C is not singular and hence, 6q(C) = 0. In this case, BS =0
by definition, so the second equality also holds in this case. O

Next, we deal with the case where the strict transform C is not neces-
sarily a Cartier divisor. The following proposition gives a formula for the
order of singularity of C on X in this case.

Proposition III.5.8. Let C be a curve on S and keep the notation as in
section II1.8. Then,

Hrs

0x(C) = [T, Clo — [T, Clo — dime (7-2).

Remark IT1.5.9. Notice that if C is Cartier, by Remark I11.4.14, we have
73, Clo = [Ke, Clo = K%

and similarly,
75, Clo = [K&, Clo = (K&)>.
- In this case, and using Lemma II1.2.2, Proposition I11.5.8 says that

35(0) = K&— (K&)' ~ (dime(5

Kc
= 60(C) — 60(K?)

)~ dime (7)) =

the last equality by Remark 1.2.20. Therefore, we see that the formula in
Proposition II1.5.8 can be understood as a generalization of the formula
given in Theorem IIL.5.1.
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Proof. From (5.a) above and the fact that the divisors Dg and Dg/ are
disjoint if Q # @Q’, we have

~ —=S —5
5(0) = 3IDaee-(Dae — 2D + Ky, sy, =

—=S —S Sk
= —|D o (D5 - 2D5"C + Koyl -

~ 1—s —S —Sy
> 6(C) = §|D5KC-(D~KC — 2D + Ksy)

C ISKC =

1_—s —5 —=S S
= EIDGKC (D o +KSK )|5KC |D “c.D KCISKC'
(5.1)
Now, let C’ be a curve going sharply through 7.°. Then, by (b) of Propo-
sition 11L.4.15, Dg; = D_é Therefore, by the projection formula applied to
fCa
(€ + D) Dy s, = 0 (5.:)
C & Src T -8
On the other hand, in virtue of (a) of Proposition I11.4.15, we have

=S S
D¢ = Epi¢ - gy (5.h)

Now, if A and A, as in the proof of Lemma I11.5.1, by Lemma II1.5.4 and
the equalities (5.g) and (5.h) above

—Sk,~ ~SkK
[Dg ¢ -(Dg ¢ +Ksge sk, =

— —G ~
— |(E§—§C _ ESKC)'(DZKC +Aadj Ko ASKC)|SKC -

~SKe

—8 -~
— |ESI\C ( C’ +Aadj Ko _ASKC)|SKC .
s ~ —~S5 ~
_ |E K¢ ( C’ Ske +Aadj K¢ —ASKC)|SKC' (5&)

Now, since a generic curve through 7,3 (resp. through 7§) goes sharply

—g ~
through it and shares no points outside K¢ with C Skc s Ay Ko or ASKc

(see Theorem 1.1.30), we have
[Brg€ (~C%e + Ay 0 = A¥0)[5y, = (T3, (=C' + Auy— Ao
and similarly,

~ —~— S ~
lESAC (_CSKC + A, K¢ _ASKC)|5KC :[ 057(_Cl+Aadj_A)]O'
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It is clear that for each p € K¢, ep(A.y) — ep(A) = —1. Therefore, from
(5.i) and using Noether’s formula (see Theorem 1.1.31), we infer that

—Sk,.. ~—S
D¢ -(DZ° + Kso)lsk, = Y wws —1) =Y wplwy — 1) =
P P

= Y wi(wi® —1) =) wplws —1)
p p

(5.)
the last equality in virtue of Lemma II1.2.2. Hence, by Proposition 1.2.21,
1 —Sx. =S 1 1
S (D + K lsw, = 32w wp® =D =32 W -1 =
P P
Hyps
= dim 2
c( HTg)

On the other hand, since D%Ifc = DZKC, the projection formula for fc
says that < S <
|D5KC.D5KC| Skg = —|D6KC.CSKC| Ske =
and using (5.h) above, we infer that
= [75,Clo — 75, Clo-
Finally, the claim follows from (5.f). O

Before going further we discuss an example.

Example IT1.5.10. Take the cluster and the curve C of Example II1.1.12
(see Figure IIL.1 and II1.2). We have already seen that C is not a Cartier
divisor and in Example I11.4.17, we have computed the clusters 77 and 7.
From this, we have that

[7,7,Clo = 385
and
i [ OS,C]O = 362.
On the other hand,

Hrs wl(ws —1 C0(ws® — 1
dime(75) = Y -”—(—;—)— > w—p%zzm—m:lg.
TS
" peKc pEKC

Therefore, by Proposition I11.5.8, we obtain

5x(C) = 6o(C) =385 —362—13 =10
QeX
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~3
Finally, if C’ goes sharply through 7.7, then C’ ¥¢ is Cartier and by The-
orem III.5.1, we have also

5x(C") = >~ 8(C") = 80(C") — 6o(T§) = 207 — 193 = 14.
QeX

I11.5.1 The semigroup of a branch going through a sand-
wiched singularity

Here we want to derive from results already seen some facts concerning the
semigroup of a (non-exceptional) branch with origin at some point in the
exceptional locus of X. _

Let C be a branch on S and let Q € X be the point where C' inter-
sects the exceptional divisor. Then, since (C, Q) is analytically irreducible,
% ~ C{t} is a discrete valuation ring. We can take the semigroup

EQ(a) of C at Q defined as
o(C) = {n(9) | 9 € Og 0}

where v; is the valuation corresponding to Og Q (see appendix of [64] for

details). It is known that 5Q(5) measures the number of elements in N\

$o(C), where N = NU {0} (see Lemma 2.11.1 of [64]). Take a flag of
clusters with ends 7§ and 7;¥ as in (4.h):

To=Tg <...<T<...<T,=T3. (5.k)

n

The following proposition relates the semigroup EQ(é) of the branch
C at @ to the values [T, Clo, for i € {0,...,n}.

Proposition III.5.11. For each i € {0,...,n},
[7*,Clo - [75', Clo € Tq(C).

Moreover, if j > [’Zf,g]o —[7¢,Clo, then j € Eq(é’). In particular, if ¢ is
the conductor of £g(C), then

c< [7;;9,0]0 - [7;)87010'

Proof. We already know that if C; is a generic curve going through 77,
then
Lci € @ ZL,

ueky
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and so, the strict transform a on X is a Cartier divisor. Let g; € mg be
a local equation for C; near @, and g; its class in Og o Then, |C;-C|x =
[C:, 5]@ = v(g;) and by Corollary II1.2.3,

[Ci,Clo — [T, Clo = |Ci-C|x € £o(C).

Finally, if j > [Z5, Clo — [T, Clo, take a curve C’ going sharply through
75 and sharing exactly j + [7,Clo — 7.7, Clo points with C outside K¢.
Then, Loy = Ls € @pex, ZLp and by Theorem I11.1.1, C' is Cartier. On
the other hand, by Noether’s formula,

[C'.Clo = > e(C)ep(C) + (5 +[T5,Clo - [T, Clo) =
peKc
= .7+[ OS7C]07

the last equality since C’ goes sharply through 77. The argument used
above shows that j = [C’,Clo — [T, Clo € £g(C) and the claim follows.
O

From Proposition II11.5.11 we detail that any element of Xg (C) has the
form [C’,C]o — [T&, Clo for some curve C’ going sharply through some 7;?,
i € {0,...,n}. Note that although the flag of (5.k) is not unique, we infer
that the integers [7*,Clo — [I7, Clo are completely determined (as they
are the first elements of Xq(C C)). Tt follows also that the gaps in EQ(C)
are the integers between [T%,Clo — [75,Clo and [T,,Clo — [75, Clo,
for i € {0,...,n — 1}, and thus, we obtain a complete description of the

semigroup Yo(C) in terms of differences of intersection multiplicities of
curves at O.

This also provides an easy way to compute the semigroup of C once the
flag (4.h) has been computed: the differences

[ZS’C]O - [%57010

fori = 0,...,N — 1 are the first elements of Eq(é), and the remaining
~elements of £g(C) are all the integers j such that j > [7,?, Clo — [T§, Clo.

Remark II1.5.12. As we will see in the following examples, the bound for
the conductor of Proposition I11.5.11 is far from being sharp. We will see

also that in general the semigroup EQ(é) is not symmetric (and therefore,
the curve C needs not to be Gorenstein, see [35]).

In Appendix A we include a program written in C which implements
the algorithm for the computation of the semigroup of a branch C on X at
the point of intersection with the exceptional locus.
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Example IT1.5.13. Take a cluster K and a curve C' as shown in Figure
II1.15. By means of the algorithm explained in section II.4, we compute the
clusters 75 and 7. The virtual multiplicities of 7,7 and 7 are respectively,

T ={12,1,0,8,1,1,0,0,0,5,2,2,1,1,1}
v ={11,1,1,4,4,2,2,2,2}.
The cluster 7, is shown on the right of Figure II1.16. Then,
[77,Clo = 176

and
(75, Clo = 105.

Also, by using Proposition 1.2.21, we have

. Hpg R . R
dxmc(HTns) = dlmc(—@) - dlmc(HTos) = 141 — 100 = 41.
Thus, by Proposition IIL.5.8,
~ s s . H%S
5(C) = [I7,Clo - [To,C]o—dlmc(HTs) =

= 176 — 105 — 41 = 30.

In virtue of Proposition I11.5.11, we see that

So(C) = {0,7,12,14,19,21, 24,26, 28, 31, 33, 35, 36, 38,40, 41, . ..,
..., 42,43, 45,47,48, 49,50, 52, 53, 54, 55, 56, 57, 59, 60, . . .}

Therefore, the conductor of the semigroup is 59. In this case, the semigroup
is symmetric (see Figure II1.16) and so, the curve C is Gorenstein (see [1, 6];
see also [8]).

Example I11.5.14. Take a cluster K and a curve C' as shown in Figure
II1.17. Note that this sandwiched singularity is a singularity A,. As before,
we apply the algorithm of section II.4 to compute the clusters 7,7 and 7.
The virtual multiplicities of 7,7 and 7§ are respectively,

v’ ={6,0,2,2,1,1,1,}
v’ = {6,6}.
The Enriques diagram of 7.7 is shown on the right of Figure II1.17. Then,
[77,Clo =41
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Figure II1.15: On the top and left, the Enriques diagram of the cluster K of
Example ITL1.5.13; on the right,the bold edges represent the Enriques diagram of
singular points of C; on the bottom, the Enriques diagram of the cluster 7,
obtained by means of the algorithm described in section II1.3.
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J/!QIF\LI\L!}t!\LI\}J!L\LK\LI\L!l
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Conductor

Figure II1.16: Semigroup of the branch CatQ corresponding to Example II1.5.13.
We mark the elements of o (C) with a cross.

and
{ OS’ C]O = 15.

Moreover, we have

dime (2% = 18

C H’I‘i - .
Thus, By Proposition II1.5.8,
~  Hrs
3(C) = [T3,Clo - 175, Clo — dime (%) =

k3

= 41-15-18=38.
The semigroup of C at Q is

2o(C) = {0,5,7,9,10,12,14,15,16,17,...}

and the conductor of the semigroup is 14. In this case, 29(5) is not
symmetric as the integers 2 or 14 — 2 — 1 = 11 do not belong to the
semigroup (see Figure IIL.18). In particular, C is not Gorenstein.
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Figure I11.17: On the left, we represent the singular points of the branch C and
the cluster K (the bold edges represent the Enriques diagram of singular points of

C); on the right, the Enriques diagram of the cluster 7,7 obtained by means of the
algorithm described in section II1.3.

e o e

10 11 12 13 14 15 16

S l | Sk L l
0 7

© X—

Conductor

Figure I11.18: Semigroup of the branch C at Q corresponding to Example II1.5.14.
We mark the elements of ZQ(C ) with a cross. Since both 2 and 11 are not in

EQ(C’), we see that EQ(C) is not symmetric.
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Chapter IV

Complete ideals on
sandwiched singularities

Fixed a complete mo-primary ideal I C R, this chapter deals with the
relationship between complete ideal sheaves on X with finite cosupport in
the exceptional locus of X and complete ideals in the local regular ring R.
Precisely, in section IV.1, we associate to such an ideal sheaf 7 a complete
mo-primary ideal Hy C R, from which J can be recovered. Then, we
prove that fixed m > 0, there is a bijection between these ideal sheaves
and the complete mp-primary ideals of codimension m in R. In section
IV.2 we give an algorithm to compute minimal systems of global sections
generating some ideal sheaves on X. In section IV.3 we use the results of
section IV.1 to prove that there is an isomorphism of semigroups between
the semigroup of ideal sheaves on X and that of complete ideals in R.
Then, we relate the factorization of complete ideals in R to the factorization
and semifactorization of complete ideals in the local ring of a sandwiched
singularity in X.

IV.1 Complete ideals on the local ring of a sand-
wiched singularity

In this section, we deal with ideal sheaves J on X satisfying the following
condition

(t) J has finite cosupport, say {Q1,...,Qn}, contained in the exceptional
locus of X and for each @i, the stalk J; = Jp, is a complete mQ,-
primary ideal of Ox g,.

The goal is to show that such an ideal sheaf may be associated to some
complete mo-primary ideal in R, and conversely. To this aim, we need a

155
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definition.

Definition IV.1.1. We say that a complete mp-primary ideal H C R is
Cartier for X if the curves defined by generic elements of H satisfy any of
(and thus, all) the conditions of Theorem IIL.1.1.

Notation IV.1.2. Given a complete mp-primary ideal H € R, we denote
H° =T(X,0x(~Lg)) = {9 € R|vp(9) = vp(H),Vp € K4}

Clearly, H° D H and Ly = Lyo.. Note that H is Cartier for X if and
only if the ideal sheaf H°Ox generated by the elements of H® on X is
invertible.

The main result is the following theorem.

Theorem IV.1.3. Let J be an ideal sheaf on X satisfying (). There
erists a complete mp-primary ideal Hy in R with

dimg(
2

H? i Ox
‘7) = dimg ZXQi
g, = 2 dme(=)

and such that:

(a) Hy is a Cartier ideal for X, i.e. the sheaf H5Ox is invertible;

(b) the sheaf Hy = HgzOx is locally principal except precisely at the
points Q;,1 =1,...,n, and we have

Hg = JOx(—=Lnu,);

(c) if C is a curve defined by a generic element of Hy, then its strict
transform C on X is a Cartier divisor and intersects the exceptional
locus of X ezactly in the points {Q1,...,Qn}.

Moreover, with these requirements, the ideal Hy is unique.

Before proving Theorem IV.1.3, we must fix some notation. Given an
ideal sheaf J as in ({), let f7 : S7 — X be the minimal resolution of
the singularities of X such that the sheaf J Qs is invertible (equivalently,
Sz is the minimal resolution of the surface obtained by blowing-up 7 on
X). Since w7 o f7 : Sg — S is a birational morphism between regular
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surfaces, there exists some cluster K 7 containing K so that Sz is obtained
by blowing up all the points in K 7. Thus, we have a commutative diagram

fa

SJéSK“L)'X

S

For each p € K7, write E;,“,9 7 for the irreducible component being the strict
transform on S of the first neighbourhood F, of p. If @ is any point in
the exceptional locus of X, define

To? ={p€ Ks|(f7)-(B;7) = Q}.

Note that TSJ # ( if and only if either @ € Sing(X) or Q is in the
cosupport of 7. Note also that

S
Ks\K+= | 757
Qex
We write Dij for the exceptional divisor on Sy associated to JOs,,, that
is, 705, = (’)53(—D:g7‘7). For every p € K., we denote
S
ag = |DJJ-E§‘7|SJ € Lo

and by abuse of notation, we write Ly for the exceptional divisor on X
given by

Ly = Z apjl.',p € @ ZLy. (l1.a)

pEX 4 pek

Similarly, if Dij is the exceptional divisor on S 7 associated to the invertible
sheaf J;0s,,i.e.J;0s, = OSJ(—Dﬁf), then for p € K., we denote agi =
D577 |s,. Clearly,

n
S S
DY = . DY (1.b)

i=1

and

ap = Zafg. (1.c)

‘We shall make use of:
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Lemma IV.1.4. The sheaf T7Ox(—Ly) is generated by global sections, i.e.
ifHy = X, JOx(—=Lz)), then H7Ox = JOx(—Lyg).

Proof. First, since J is complete and Ox(—Ly) is invertible, we have that
JOx(~Lzg) is complete, and by Lemma 1.3.23, the ideal

H; =T(X,JO0x(-Ls))CR (1.d)

is complete and mp-primary. From this, H7Ox is a complete ideal sheaf
on X and, in particular, both H7Ox and JOx(—Ly) are contracted for
f7 (see Proposition 1.3.25). Hence

H;0x = (f7)«(H70s,) (Le)
JOx(—Lg) = (f7):(TO0s,(=(f7)"(Ls)))- (L.f)

Now, by the definition of Sz, JOs,(—(f7)*(Lz)) is invertible and clearly,
TO0s,(~(f2)* (L)) = Os;(=DF = (£2)*(L7)).
Moreover, from the way L s has been defined, we have that for all p € K7,
|E57-(DF + £5(Lg))ls, 0.

Therefore, by 2. of Proposition 1.3.29, 7Os_, (—(f7)«(L7)) is generated by
global sections. Now, note that

(S7, J0s,(—=(f7)+(Ls)) =T(X,TOx(~Ly)) = Hy

and so,

H70s, = JO0s,(=(f7)+(L7))).

From this and the equalities (1.e) and (1.f) above, we deduce that H;Ox =
JOx(—Lyg). O

Notation IV.1.5. From now on, given an ideal sheaf 7 satisfying (f), we
will write Hj = P(X, jOX(—-LJ)).

Corollary IV.1.6. We have
Sy _ Sz S
EHJ = EH?, + D7 .
Proof. In the proof of Lemma IV.1.4, we have seen

Hz0s, = OSJ(_D:;J - f}(LJ))a
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and also,
H%OSJ = OSJ(—-f}(LJ))

As the strict transform on X of any curve going sharply through K% goes
through no point of the cosupport of J or singularity of X, from the defi-
nition of EIS{? we infer that EIS_I?} = f4%(Lg) and so,
Sy _ pSs Sg
E Hy = D7 +E He,

as claimed. O

Remark IV.1.7. In virtue of Lemma IV.1.4, if C is a curve defined by
a generic element of Hy, then Lg = Ly, = Lg, and so, Hg = Hg.
Moreover, since Ly =3 o, apLp (see (1.2) above), in virtue of Theorem
I11.1.1 we have the strict transform of C on X is Cartier. It follows that
Hyz and H =T(X, Ox(—Ly)) are Cartier ideals for X, and that

Hy = [ P cRr (1.g)
peK

is the Zariski factorization of H“’7

Note that the set of base points of H% and H 7 are contained in K and
K 7, respectively. We write

e K% = (K,0°) for the cluster of base points of H%;
e K7 =(Kg,0) for the cluster of base points of H7 C R.
Note that K 7 has excess 0 at every point of K.

Proof of Theorem IV.1.8 First of all, as a direct consequence of Lemma
IV.1.4, we have that if C goes sharply through Ks, then C is defined
. locally near each @; by an element of J; C Oxg,. Hence, keeping the
notation of section II1.4, Dgi > Dij and so,

[6’ LP]Qi 2 O‘;) (l'h)

for each p € K. Therefore, we have

n n
ZO‘;’ < Z[C’ Lylo; < |C-Lplx = ap

i=1 =1
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the last equality by Corollary II1.1.6. By (l.c), we infer that |6’-Lplx =

> iz o and by (Lh), (C,L plQ; = ap It follows that C cannot intersect
L, at some point besides those Q; lying in L,.

To prove the uniqueness of the ideal Hy, we assume that H C R is
a complete mp-primary ideal verifying the conditions of Theorem IV.1.3.
Then, H°Oy is invertible and we can write H°Ox = Ox(— L(a)) with
L@ = > perc, @pLp. The same argument used in the proof of Lemma

IV.1.4 shows that JOx (—L(®) is generated by global sections if and only
if ap > a, for all p € K;. In fact, if ap < ap for some p € Ky, then
|ES7 (Dy + f5(L@))|s, > 0 and in this case, there are no curves C C S
such that 7% _(C) = C + D?J + f}(L(")) for otherwise, by the projection
formula,

(DY + f5(L)-ES7|s, = =|CS-E57 s, < 0.

Therefore, the ideals H® = [[ ek, Ip* and H = T(X, JOx(—L®)) verify
(a) and (b) in Theorem IV.1.3. However, the strict transform on X of a
curve defined by a generic elements of H intersects L, at oy —~a, > 0 points
besides the points Q; lying in L, and hence, the condition (c) in Theorem
IV.1.3 is not satisfied unless a, = ap. Therefore, condition (c) determines
the divisor L7 and by the equalities (1.g) and (1.d) above, the ideal Hy is
unique.

From the definition of S, the sheaf J;Og is invertible and we can write
JiOs, = OSJ(—D‘J“’;J ), where Dij has support UpGTS E Eg 7. According to
Qs
Proposition 1.3.33, we have

1 1
dime(X8) = _1DS7.(DS7 +Ks,)ls, = —3IDY (DY +Ks,)ls,
Ji 2 2

the last equality for the divisors Dij are the connected components of
D:;J . Therefore,

Qi y 1, s; /S
Zdlmc Q = _'Q'IDjJ'(DJJ+KSJ)|SJ=

1,57 ~S 1 s
= LID¥ D15, - JIDY Ksls, =

1, s S S 1. s S
— e - BB DY, - LI - B K s,

(1)
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by Corollary IV.1.6. Now, by the projection formula applied to mx, and
Corollary IV.1.6 again, we have that

S S S S S S S
|(EH? - EHtZ’y)'DJJ'SJ = IE D7 s — lEH% D7 s, =

S S S S
= |Ei Exls; — 21EHJ EH,,|SJ+|E J.E Jlsg

= K5 —2[Ks, Ko + (KF),
and from Corollary I11.2.2, we infer that [K7,K%]o = ( %)? and hence,
S S N
[(Ex, — EHJ;)'DJJ‘SJ = [(Ks—-K%),Kslo-

On the other hand, from Lemma II1.5.4 and the projection formula again,
we have

S S,
By’ — ER)Ks)ls, = [(Kg =KZ),(Cu; ~ C)lo
where C and C,,; can be chosen to go sharply through K7 and (K7).q,

respectively. Thus, from the equality (1.i) above and the Noether formula,
we have that

idim@(@%) = —1{(Ks K. Kslo — 31Ky = K%), Cus = Cllo =
= _%[(ICJ—’CO Caslo =——Z(ap—a »—1) =
= ——Zop<ap D+ Z pop—1) =
- dima? )

the last equality by Corollary I11.2.2 and Proposition 1.2.21. This completes
the proof. O

The following corollary is a direct consequence of Theorem IV.1.3.

Corollary IV.1.8. Let J' be a complete mp-primary ideal such that Hy C
J' C HY. Then, the ideal sheaf J' = J'Ox(Lg) satisfies () and its
cosupport is contained in {Q1,...,Qn}. Moreover,

HO
E dimg( j’Q’ dlm(c( )
Qi
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To close this section, we state another consequence of Theorem 1V.1.3,
which expresses the relationship between complete mo-primary ideals in R
and ideal sheaves on X satisfying (). To this aim, we need a definition,
which is a generalization of Definition I1.1.1, and to fix some notation.

Definition IV.1.9. If H C R is a Cartier ideal for X and C is a curve on
S defined by some element of H, the virtual transform of C relative to H
(or H°) on X, C*H°, is the effective divisor given by 7*(C) — Lyo.

Note that if 7 is an ideal sheaf on X satisfying (1), then L 7 is a Cartier
divisor on X (see (1.a) and Lemma II1.1.4) and so, the virtual transform
CX7 is an effective Cartier divisor on X , too.

Notation IV.1.10. For each m > 0, denote by
S% = {ideal sheaves J on X satisfying (f) and Y"1, dim@(%ﬁ;’i) =m}

and
B = { Cartier ideals H for X | dimc(%i) =m } .

Corollary IV.1.11. For each m > 0, the maps

ST — IR
J + Hgy

and

Iz — S%
H +— HOx(Lg)

are reciprocal bijections between ST} and IE.

Therefore, fivzed m > 0, by associating to each ideal sheaf J on X
verifying (1) the complete mo-primary ideal Hz, we get a bijection between
the set of ideal sheaves on X satisfying (1) with 3 dimc(Oxq,/J;) = m
and the set of Cartier ideals H C R for X of codimension m. The inverse
map associates to each H C R, the ideal sheaf on X obtained by removing
the exceptional part from HQOx.

Note that the cosupport of HOx(Ly) is composed of the points on X
the virtual transforms relative to H® of all the curves defined by elements
of H are going through.
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Proof. Fix m > 0 and let J € S%. Then, from Lemma IV.1.4 we know
that H70x = JOx(—Ly) and so, H7Ox(Ly) = J. On the other hand,
by Remark IV.1.7, we have that Ly = L. Therefore, HyOx(Ly,) = J.

Now, if H C R is a Cartier ideal for X, the strict transform on X
of any curve going sharply through BP(H) is a Cartier divisor (Theorem
I11.1.1) and Ox(Ly) is invertible. Hence, the cosupport of the sheaf J =
HOx(Lpg) is composed of the points shared by the virtual transforms on
X relative to H° of the curves defined by elements of H, and hence it is
finite. Moreover, for each point @ in the cosupport of J, the stalk Jg is a
complete mg-primary ideal in Ox g, and so J verifies (). Since H satisfies
the conditions of Theorem IV.1.3, we infer from the uniqueness of H that
H;=H. |

Remark IV.1.12. Note that by taking m = 1 and identifying each point in
the exceptional locus of X with its corresponding ideal sheaf, the preceding
theorem generalizes Theorem I1.1.7: any ideal sheaf J of Sﬁ( is Mg, for
some @ in the exceptional locus of X, and the corresponding ideal Haq, C
R by Corollary IV.1.11 is Ig.

IV.2 Systems of generators for a complete ideal
in the local ring of a sandwiched singularity

Fixed an ideal sheaf J on X satisfying (}), we have seen in Lemma IV.1.4
that JOx(—Lg) is generated by global sections. This section is devoted
to construct an algorithm to describe a minimal system of global sections

generating JOx(—L7). The algorithm suggested here follows the idea of
[10] and constructs a flag of clusters

TO'=K;<T'<...<TY = BP(mpHy)

with N = dim¢(524-) and Hy = T(X, JOx(~Lg))-
As above, we denote by {Q1,...,Qn} the cosupport of J and for each
. S
point Qi, Ty = {p € K7 | (f7)+(Ep”) = Qs}.

We make use of the following easy lemma.

LemmalIV.2.1. Let Ox ¢ be a rational surface singularity and let Hy, Hy C
Ox.,o be complete mg-primary ideals. Then,

Ox Ox . Ox
AQ dim¢ XQ + dimg X.Q + [Hl,HQ]Q,

i
e H H, H,
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where [H1, Ha)g = —|D Di}l | and f' 1 S' — X is any resolution of Q
such that both H1Ogr and HyOg are invertible.

In particular, if R = Os,o is regular and Q1, Qo are the clusters of base
points of Hy, Ho C R, respectively, then

c(Q1 + Qo) = ¢(Q1) + c(Q2) + [Q1, Q2]o-

Proof. The first equality follows directly from Proposition 1.3.33. IfR =
Ogp is regular, the claim follows by applying Proposition 1.2.21 and the
Noether’s formula (see Theorem 1.1.31). O

Now in order to describe the algorithm, we need to introduce some
notation.

Notation IV.2.2. If p is a point infinitely near to O and not in K, we
write o (p) for the first point of K(p) which is not in K.

Description of the Algorithm

STEP 0 Put 7y = (K, 79) the cluster K7 and let p € TS‘Z be a dicritical point

of Ty (for instance, take p any maximal point in TSJ ). Clearly, U§ I =
vp(H7) < vp(moHyz). Choose any point ¢ in the ﬁrst neighbourhood
of p and not already in 7o, and define 7; as the cluster (70)q obtained
by adding ¢ to 7o counted once. Note that 7; is consistent since p is
dicritical in Tp.

STEP j Once defined Tj—1 = (Tj-1, 73~1), assume that there exists some max-
imal point p in 7;_; such that

v’ Tt < vp(moHy).

Note that o (p) is proximate or equal to some point of TQJ for some
i € {1,...,n}. Choose p in such a way that i is minimal and define
T; to be the cluster (7j—1)q, Where g in the first neighbourhood of p
and not in T;_1 (as before, (Tj_1)q is consistent because p is dicritical
in T;-1).

It is clear that the clusters 7}, j > 0 are contained in BP(moH 7) and hence,

after finitely many steps, the procedure stops, giving rise to a cluster Ty_1

with no dicritical points satisfying vz—N ' < vp(mpHyz). Moreover, as no

unloading is performed during the above procedure, we have T = 7-3 for
every p € K 7. Since the virtual multiplicity of BP(mpoHz) is 0o + 1, we
infer that, for all i € {0,...,N —1},

T; ¢ BP(moHy).
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Note that O is a non-dicritical point of Tyy_;. Define Ty as the consis-
tent cluster obtained by adding to 7y_; some ¢ counted once in the first
neighbourhood of O, not in 7y_1, and unloading multiplicities.

Lemma IV.2.3. We have that T = BP(moH7) and so,

N = dime — L,
moHy
Proof. We already know that for each j > 0, T; & BP(moH7) and that
there are no dicritical points in Ty_; satisfying vp®~* < vp(moHz). First,
we prove that 7y < BP(mpHz). To this aim, it is enough to show that
a generic curve going through BP(moH 7) goes virtually through 7y, and
this is clear for any such curve C has effective multiplicity oo + 1, strictly
bigger than the virtual multiplicity of (Zy),, so that its virtual transform
relative to 7y contains the exceptional divisor of blowing-up O, and hence
has multiplicity at least one at q.

On the other hand, we have dim¢(Hz7/mpHz) = 0o + 1 and since
dim(c(HTj/qui_H) =1forall j >0, dimC(HTO/HTN) = N and Hy, = H.
Therefore, in order to see that Hr, = moH, it is enough to see that
N =00+ 1. To this aim, note that Ty_; is composed of the points and the
multiplicities of K7 plus, for each point p € K7, p§‘7 > 0 chains of v,(mp)
free and consecutive points, all of them with virtual multiplicity one and
infinitely near to p. Then, in virtue of Lemmas 1.1.22 and 1.1.13, we have

N-1 = 3 pf7u(mo) = pk,vk,(mo) = o% P, v, (mo) =
peK 7
= 0% ex,(Co)= Z opep(Co) = oo
pEK 7

where Cp is a generic curve going through O. Hence, N = oo + 1 as
wanted. |

Note that we have constructed a flag
To=Kg<Ti <...<Ty=BP(mpHy) (2.2)
such that for all j =0,...,N -1,
Lz; = Ly,, (2.b)

and hence, the strict transform C of any curve C going sharply through
some 7; is a Cartier divisor on X (see Theorem 111.1.1).

From this, it follows
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Proposition IV.2.4. By picking, for j = 0,...,N — 1 an equation h; of
a curve C; going through T; but going not through Tji1, we get a minimal
system of generators of Hy = T'(X, JOx(—Ly)).

The algorithm suggested here allows also to give, for each @; in the
cosupport of J, a minimal system of generators for the complete mQ -
primary ideal J; C Ox,q,. For each i € {1,...,n}, write N; = dlm(c(mQ 7;)

and M; = Y5} N (if i = 1, take My = 0).

Lemma IV.2.5. Ifﬁj s an equation fora; near Q;, then {ﬁMi, . 771Mi+Ni—1}
is a minimal system of generators of J; C Ox q;-

Proof. Let C be a generic curve going through K 7. By Lemma IV.2.1 and
the projection formula applied to fz7, we have

: OXQ Ox,Q:
=d Qi _ dime =29 =

Ox,0; S; S
= d — et D J'Z 7 -

N;

dimg(

= 1410527 s, =1+ Y P57
peTy?
Take the subflag of (2.a) composed of all the clusters 7y, ; for some j €
{0,...,N;}:
77\11. = 7}»{1.4_1 <...= TMi+Ni'

If we write H; for the ideal Hy,, ,; the above flag of clusters, gives a
filtration of ideals in R

HyDH;D...DHy; (2.c)
and dim¢ HH = 1 for each j € {0,...,N; — 1}. Since we know that
Ly; = Lu, (see (2.b) above) we can apply Corollary IV.1.8 to H; to infer
that H’; = H;O x (L 7) has finite cosupport contained in {Q1,...,Q,} and

n
) Ox.0 HY
E dimg(=—-%—) = dimg( ‘7).
put ’H}OXka H;

Therefore, if j € {0,...,N; — 1},

Z dimg(—————

H,O0x.0
H3+10A Qx

H.
A ) = C(Hj+1)
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Note that if Qx # @Q; and j € {0,..., N; —1}, then 7'{3-(’));,0,c = H;.Hox,ok
and hence,
H;Ox 0,

!

din’lc(
+10x,0:

)=1.
It follows that the filtration (2.c) induces a filtration of ideals
JiDHOx0, D ... D H?ViOX,Qu

all of them containing mg, J;. Since N; = dimc(-méfz), we see that Hy,Ox g, =

mg,Ji. Moreover, for each 0 < j < N, 6’; is defined locally at @; by an
element in H;Ox g, not in H;11O0x q,. This completes the proof. a

To close this section, we illustrate this procedure for getting global
sections of JOx(—Ls) with an example.

Example IV.2.6. Take the complete ideal I of Example I1.2.15. On X =
Bl;(S), take the ideal sheaf J defined in the following way: the stalk at Q1
is the maximal ideal, Jp, = mg,; the stalk at Q2 is the complete ideal of
Ox 0, generated by the curves C' with two smooth branches, one of them
tangent to L,,; finally, if P3 is the point of L,, where the strict transform
of the branch ¢ = 0 intersects the exceptional locus of X, the stalk of J
at Ps is the complete ideal generated by the smooth curves tangent to Lp,.
Then, we have that

L = 15Ly, + 24Lp, = 3Ly, + 3Ly,

and hence, H} = 133135. Figures IV.2 and IV.3 represent the clusters

obtained by the algorithm above described. It turns out that we can take

the curves C; : h; = 0 as a minimal system of global sections generating
JOx(—Lz), where

hy = (@ 4y + )@+ + 2%+ + 2%y + 2y - 2)(y + 32)
(y — 22)(z +°)

h o= @4y + 8+ )P+ + 28+ 27 + 28y + )y + 2)(y + 32)
(y — 2z)(z + 7

he = @4y +¥ +y0)@P+2° +28 + 27 + )y + )y + 2)(y — @)
(y — 2z)(z + v°)
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Figure IV.1: On the left Enriques diagram of the cluster K7; on the right, the
Enriques diagram of the cluster X% of Example IV.2.6.

h3

@+ +3* + )P +2® + 28 + 27 + 2By + 2Py + 2)(y — 2)
(y+2z)(z +¢%)

@ +y + 18+ )P+ P+ + 2T+ 2y + D)y + 2)(y - 2)
(y+22)(z - v°)

@ +y + )P+ + 28 2" By + )y +z)(y — z)

(y+2z)(z — v

(@ +y) @’ +2° + 2%+ + 28y + 2y + 2)(y — 2)(y + 22)(z — ?)
@ +y) o +2° + 2%+ 2"+ 2%y — 27y + o) (y — &) (y + 22) (z — o)
@+ 9" +2° + 27 + 2%y - )y + 2)(y - 2) (v + 22) (= - 3°)
@+ v+ + %)y - )y + 2)(y — 2)(y + 22) (2 — )

@ +y") @ + )y — 2y + 2)(y — 2)(y + 22) (z — ?)

IV.3 Factorization of complete ideals in the local

ring of a sandwiched singularity

In this section, we establish an isomorphism of semigroups between the
semigroup of ideal sheaves on X satisfying the condition (}) and that of
Cartier ideals for X. Then, we relate the factorization and semifactorization
of complete mg-primary ideals in Ox ¢ to the factorization of complete mo-
primary ideals in R.

We begin by showing that the maps defined in Corollary IV.1.11 are

isomorphisms of semigroups.
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Figure IV.2: Enriques diagrams of the clusters 7;,7 = 1,.. ., 6 obtained by means
of the algorithm described for getting generators in Example IV.2.6.
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Figure IV.3: Enriques diagrams of the clusters 7;,4 = 7, ..., 10 obtained by means
of the algorithm described for getting generators in Example IV.2.6.
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Define the product Ji 7> of two ideal sheaves on X satisfying (}) as
the image of the natural map J;3 ® J» — Ox. The ideal sheaf J17> has
cosupport equal to the union of the cosupport of J; and J> and for each
Q € X, the stalk is the product (J1)o(J2)g C Ox,g- This product is
associative and commutative, thus making the set

Sx = {ideal sheaves [J on X satisfying (1)}

a semigroup. Now, note that if H; and Hp are Cartier ideals for X, then
the product HjHo> is also a Cartier ideal for X, as

LHng = LH1 +LH2 € @ Zf,p.
pek+

Therefore, the set
Iz = {Cartier ideals for X}

with the natural product of ideals is also a semigroup. Note also that if
H,, Hy € Ip, then

Ly, = La, + L, = Lug + Lug = Ly, #y)e,
and so,
(HyHp)° = HOHS. (3.2)

It follows in particular that (H; H3)°Ox = H{H$Ox is invertible, HY H3O x =
Ox(—Ly, — Lyg,).

Proposition IV.3.1. We have that

(a) if 71 and Jo are ideal sheaves on X satisfying (1), then Hz g, =
HJIHJZ and H.o71.72 = H?71 .072

(b) the maps defined in Corollary IV.1.11 give reciprocal isomorphisms
of semigroups between Sx and Igr.

Proof. Clearly, we have
Lys=Lg +Lg,. (3.b)
By definition (see 1.d), we have
Hz, =T(X,510x(~Lg)) and Hg, =T(X,50x(-Lz)),
and so, by Lemma 1.3.26,

H\71H.72 = P(X)jloX(_le))F(XaJQOX(_sz))=
= F(Xa Jlj?OX(_lejz)) =Hgpg,-
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Now, by (3.a) above, (Hz7,)° = H%, HS,. This proves (a). Now, to prove
(b), it only remains to show that if H; and Ha are in I, then

(HiHyOx)(H Ha0Ox) ™ = (HiOx)(H?Ox) H(H20x)(H3Ox) ™"

Clearly, (H10Ox)(H2)Ox = HiH2Ox and using (3.b), the wanted equality
follows. O

Now, in order the study the factorization and semifactorization of com-
plete ideals in the local ring of a sandwiched singularity, we need to fix
some notation.

Notation IV.3.2. Once a sandwiched singularity Q@ € X and a complete
mg-primary ideal J C Ox g are fixed, we write J for the ideal sheaf on X
generated by J, J = JOx. Clearly, J satisfies the condition (}) and its
cosupport is reduced to the point Q.

For any resolution f’: S’ — X of @, recall that Jg’ is the semigroup
of all complete mg-primary ideals J such that JOg is invertible with the
natural product (see subsection 1.3.1) and that Jg, is the semigroup of the
complete mg-primary ideals in Ox . Write K " for the cluster with origin
at O so that 9’ is the surface obtained by blowing-up all the points in K’,
S’ = Sy, and let {Eg'}pe k- be the exceptional components on S’ for the
blowing-up 7 of the points in K’,

g1 x

NE

S

As usually, if Q is any point in the exceptional locus of X, write
T8 = {pe K'| (F)(E)) = Q).

For each p € TS, let DS’ = quTst aflp ) be the Q-Cartier divisor on S’
defined by | D;fl' Ef'|s/ = —0pq (this is well-defined because the intersection
matrix Ag,’ is negative-definite, see Proposition 1.3.4). Equivalently, D;f/ is

the exceptional part of the total transform of 6;,, where Cj, is a curve going
sharply through K(p) and missing all points after p in K.

For each p € TS let myp € Z>o be the least integer such that mngl is
a divisor on §’. In virtue of Lemma II1.1.3 and Theorem III.1.1, m, is the
least integer n such that one of the following equivalent conditions holds:
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(a) na;, is Cartier on X
(b) nLp € Byexc, ZL,.
In particular we see that m, is independent of the resolution S’ of Q.

Remark IV.3.3. If p € TQS', Ly is not a Cartier divisor in general and
hence, m, > 1.

Recall from subsection 1.3.1 that if IE;, is the semigroup of all excep-
tional divisors D on S’ such that

|D-EJ'|s <0 forallge TS

then the extremal elements of Ef, are all integer multiples of {mngl }pesr-
Since the sum of divisors in ]E;, corresponds to the product of complete
ideals in Ox,q, we infer that the complete mg-primary ideals J, C Ox,o
defined as the stalks at @ of the ideal sheaves

TIp = (f)+(Os/(—~m,DS"))

are the extremal elements of JS' (see Proposition 1.4 of [12]). Because all
of this, the following lemma needs no proof.

Lemma IV.3.4. For each p € TS , the ideal sheaf I " Ox (mpLy) is locally
principal except at Q, and its stalk at Q equals the complete mg-primary
ideal Jp C Ox .

The following theorem relates the factorization of complete mp-primary
ideals in R to the semifactorization and factorization of complete mep-
primary ideals in Oy, o. Keep the notation as in section IV.1.

Theorem IV.3.5. Let J C Ox g be a complete mg-primary ideal. If

Hy= [] B~ (3.c)

Sg
peTQ

.is the (Zariski) factorization of Hy C R into simple ideals, then
op
J = H mep
pGTSy

is the semifactorization of J (in the sense of Theorem 1.8.32).
In particular, the factorization (8.c) of Hz gives rise to a factorization
of J into simple complete ideals of Ox q if and only if o, € (my), for each
Sg
pE TQ .
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Proof. Write m = LCMg,>0(mp). From the equality (3.c) above, we have
that

mLp, = Y maply. (3.d)
pGTéJ

and by Theorem 1V.1.3, J = H7Ox(Lg ). Therefore,

J™ = HPOx(mLy,)=( [[ »'*")Ox(mLy,)=
S
peTy,

= [l @*"0x(mepLy))

s
J
pETQ

Since the ideals J, C Ox,q are the stalks at Q of the ideals sheaves given
by Ip " Ox (mpLy) (see Lemma 1V.3.4), it follows from (3.d) above that the
stalk of J™ at Q is

map
jén = H mep ’

Sg
peTQ

and by allowing rational exponents,

op
J= I %~
pETgJ
This completes the proof of the first claim. The second assertion follows

immediately from this one. O

In virtue of Remark IV.3.3 and Theorem IV.3.5, it is clear that one
may not expect the factorization of a complete mo-primary ideal H C R to
give rise to a factorization into simple complete ideals in Ox . However,
from Proposition IV.3.1 we know that fixed a complete mo-primary ideal
J C Ox g and if J is the ideal sheaf generated by J on X, each factorization
of J induces a factorization of the ideals Hy and H% into complete mo-
primary ideals of R (which are not simple in general). In particular, it gives
a necessary condition for a factorization of H

S
— Bj
Hy =1]1
i=1
to give rise to a factorization of J: for each j € {1,...,s},

L= w)L, € P 2L,

peky peEK4
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or equivalently, by Theorem IIL.1.1, L;;, must be a Cartier divisor on X.
In Theorem IV.3.7 we will show that this condition is somehow sufficient.
First, we need a definition.

Definition IV.3.6. We say that a complete mp-primary ideal H C R is
an irreducible Cartier ideal for X if it is Cartier for X and Ly is irreducible
as an element of @ cx, ZLp.

+

Theorem IV.3.7. Given a complete mg-primary ideal J C Ox g, each
factorization of J into complete mg-primary ideals

r
i=1

induces a factorization of Hy into Cartier ideals for X

r
Hy =[] HS,
i=1
and each factorization of H 7 into Cartier ideals for X has this form. More-

over, Hy, is irreducible as a Cartier ideal for X if and only if J; is a simple
complete mg-primary ideal.

Proof. By (a) of Proposition IV.3.1, each factorization of J as (3.e) gives
rise to a factorization

r
Hy =[] HY,
i=1
where J; are the ideal sheaves generated by J; on X. By Remark IV.1.7,

each H 7 is a Cartier ideal for X (see Corollary IV.1.11).
Conversely, assume that

8
Hy =[] B
j=1

where each Hj is a Cartier ideal for X. Then, L, € @k, ZLp and
by Corollary IV.1.11, the ideal sheaves given by H;Ox(Ly;) satisfy the
condition (f). Therefore, their stalk J; at Q@ are complete mg,-primary
ideals in Ox g. Since H7O0x = []i.; I].Bj(f)X and Ly = Ly, = Y5 BiLij,
we deduce

HyOx(Lu,) =Y IJ0x(Ly).

i=1
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By taking the stalks at @), we deduce that

8
J=T]7
i=1
and the claim follows. O

Remark IV.3.8. In Example IV.3.10, we show that in general, it is not
true that if J is a simple ideal in O, then L is irreducible in P ¢, ZLp.

Remark IV.3.9. In virtue of Theorem IV.3.7, if a complete mg-primary
ideal J C Ox g has unique factorization into simple me-primary ideals,
then H 7 has unique factorization into irreducible Cartier ideals for X. Of
course, this is the case if J is simple. Next we show an example of this fact.

Example I'V.3.10. Take the sandwiched singularity (X, Q) obtained when
blowing-up a complete mp-primary ideal I whose cluster of base points
has the Enriques Diagram shown in Figure IV.4. Take the complete mg-
primary ideal J = mg of Ox g. Then,
_ 73 _ 71313
Hy=I5=1,1I,.
By Theorem IV.3.7, each factorization of H 7 into irreducible Cartier ideals

for X induces a factorization of J into simple ideals of Ox g. Now, note
that the ideals I, I;’l and I;’Q are Cartier ideals for X, since

Lig=Li=3Ly Lg =8Lp  Lp =6Ly,

and in fact, I and Igl are irreducible as Cartier ideals for X. Moreover,
although I;’Q is not an irreducible Cartier ideal for X, the stalk at @ of the
ideal sheaf I3, Ox(6Ly,) is simple. Hence, the factorizations of Hy
_ 73 _ 1373
Hy =Ig =1, 1,
into Cartier ideals for X induce two different factorizations of J into simple
ideals of O X,Q:
J = m% =Ji JQ,

where J;, Jo are the stalks at @ of the ideal sheaves on X given by I3 Ox (3Ly,)
and I3 Ox (6Lp,).
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Figure IV.4: On the left, the Enriques diagram of the cluster of base points of
the ideal I in Example obtained by means of the algorithm described in section
IT1.3 and corresponding to Example IV.3.10; on the right, the Enriques diagram
of the cluster K.
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Chapter V

Some consequences on the
Nash conjecture for
sandwiched singularities

The study of the space of arcs of a singular variety is originally motivated
by a preprint of Nash, later published as [46], where he posed the question
whether each essential component over a singular variety is associated to
some arc family. This question has been studied by Bouvier, Gonzalez-
Sprinberg, Lejeune-Jalabert, Nobile, Reguera-L6pez among others [24, 25,
26, 38, 39, 48, 53] and more recently, by Ishii and Kollar [33], who proved
the question to be true for toric varieties but false in general. However, the
Nash conjecture remains open for surface singularities in general.

Related with the question proposed by Nash and for normal surface sin-
gularities, Lejeune-Jalabert posed in [38] an apparently simpler question:
whether a wedge centered at a general arc on the singularity lifts to its
minimal desingularization. In [38] an affirmative answer is given for toric
surface singularities and some cases of quasi-homogeneous surface singular-
ities, and in [40], for sandwiched singularities. A criterion for the existence
of smooth curves through any surface singularity is given in [25] and from
it, a partition of the space of smooth curves into disjoint families, each
family corresponding to a reduced component of the maximal cycle in case
the singularity is normal. As a consequence, it can be seen that the wedges
centered at a smooth curve lift to the minimal resolution of the singularity.

The aim of this chapter is to apply some of the results already seen in the
previous chapters of this memoir to infer some facts concerning the spaces
of Nash arcs on a sandwiched singularity. In sections V.2 and V.3 we prove
that the reduced components of the fundamental cycle correspond to Nash
families of arcs and so, we reprove in particular that the Nash conjecture for
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minimal surface singularities is true (see Corollary 2.6 of [53]). In section
V.4, we show that the Nash conjecture for sandwiched and for primitive
singularities are equivalent.

REMARK While completing the results of this chapter, A. Reguera has
proved that if the problem of wedges has an affirmative answer, then also
does the Nash conjecture (see [55]). As a consequence of the results of [40],
it turns out that the Nash conjecture is true for sandwiched singularities.

V.1 On Nash families of arcs on a sandwiched sin-
gularity

Let (X, Q) be a normal surface singularity and f : S’ — (X, Q) its minimal
resolution. An arc on (X, Q) is a formal parametrized curve, i.e. a C-
morphism (Spec C[[t]],0) — (X,Q) or equivalently, a C-morphism of
local rings

Y2 OX,Q — (C[[t]]

We write Z(p) for its image in X, i.e. Z(p) = s C, where C is the
prime divisor defined by ¢ and s is the ramification index of the mor-
phism (Spec C[[#]],0) — (C,Q), C being the the normalization of C. We
denote by H¢ the set of arcs on (X, Q).

For each i > 0, an arc of order i on (X, Q) is a C-morphism

i1 Ox,q — gz[J[rtp)

and we denote by Hq(%) the set of arcs of order ¢ on (X, Q). The projection
m o C[t]] — ((Ez[ﬂ]) induces a natural map p; : Hg — Ho(i) and if Q
is a singular point, p; is not surjective in general. We write Tr(¢) for the
image pi(Ho) and we call the elements of Tr(i) the i-truncations of arcs
on (X, Q). The Hp(%) together with the natural projections

pij : Ho(j) — Ho(d)

for 5 > i, form a projective system of affine algebraic sets and we have
Hgo = lim M (7). Therefore, Hq has a proalgebraic structure.

In [46], J. Nash proved that Tr(%) is a constructible subset of Hg(i). In
fact, it can be seen that for all 7 > 0, there exists some 3(i) > ¢ such that
Tr(i) = p; ai)(Ho(B(7))) and Tr(i) being the image of an algebraic set by
a morphism, it is constructible (see [4, 39]). We write Tr(3) for the Zariski
closure of Tr(¢) in Ho(1).

If { Ey}uen, are the irreducible exceptional components of 57, let F& de-
note the set of arcs on (X, Q) such that the lifted arc ¢ on S’ intersects E,,.
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Then, if 7,(7) = p; (F& ), the minimal resolution f : S’ — (X, Q) induces
a decomposition of the space of i-truncations T'r(i) = |, ca o Fu(i) and, by
taking the Zariski closure in Hg(1),

Tr(y = | Fud). (1)
u€lAq

Similarly, for each v € Ag, write NE for the set of arcs ¢ on (X, Q) such
that the lifted arc on S’ intersects transversally E, and does not intersect

the other exceptional components (i.e. IZ(\/QD) -Eylgr = dyw, the Kronecker
delta). For each 7 > 0, write N, (i) for the set of i-truncations of arcs in
N2, Nu(i) = pi(Nu(3)), and Ny (%) its Zariski closure in He (i). Clearly, for
each u and each ¢ > 0, we have N, (¢) C F,(i). In Proposition 1.2 of [53],

it is shown that in fact, NV, (z) = F,(2), and by (1.a),

Tr(i) = UueagNu(i)-

It is not hard to see that the Fy(i),u € Ag are irreducible, and conse-
quently, so are ./\T(z) = m Hence, it is clear that the number of irre-
ducible components of T'(7) is bounded by the number §Ag of exceptional
components in the minimal resolution of ). The Nash conjecture for nor-
mal surface singularities says that for i > 0, the number of the irreducible
components of Tr(z) is exactly §Aqg. Equivalently, the question is to decide
if for ¢ > 0, there are no inclusions m C W for u # v.

Since the number of the irreducible components C (%) of Tr(i) increases
with ¢ and is bounded, it becomes constant for ¢ big enough. Thus, for
Jj > i > 0, each component of Tr(j) is projected into a dense subset of
a component of Tr(i) and thus, the components Cy(j) of Tr(j) may be
identified with those of Tr(i). A Nash family of arcs consists of those arcs
whose truncation are projected by p;; in Cx(j) for some X all j > 7> 0
(see [46] p.32).

V.2 Some results for sandwiched singularities

From now on, we assume that (X, @) is a sandwiched singularity. Keeping
the notation introduced in Chapters I and II, we assume that a complete
mo-primary ideal I C R has been chosen, and write X = Bl;(S) and
K = (K,v) for the cluster of base points of I. If f : S — X is the
minimal resolution of X, then Tg = {p € K | fu(Ep) = Q} (T = Ag with
the notation of the preceding section).

In this section, we give a necessary condition in order to have an in-
clusion Ny (1) C Ng(2) for p # q in T which is formulated in terms of the
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intersection multiplicity of generic curves (on S) going virtually through
the clusters K(p) and K(g).

For each p € Tp, write
Dg= Y e @ ar.,

’UGTQ UETQ

for the Q-Cartier divisor on Sy being the exceptional part of the to-
tal transform of any curve on X whose strict transform on Sy intersects
transversally F, and does not intersect the other exceptional components
(see Definition 1.3.19). In Theorem 1.10 of [53] and for rational surface sin-
gularities, it is seen that an inclusion N,(i) € N (@) implies that Dz? - D(? is
a non-zero effective Q-Cartier divisor. We write Dg? > Dt? in this situation.

The main result of this section is the following.

Theorem V.2.1. If D,? > D,? and C is any curve on S, then
[C, Cplo > [C, Cglo

for a generic curve Cy going through the cluster K(q) and any curve Cp
going through K(p). In particular, v(Ip) > v(ly) for any divisorial valuation
v of R, and so I, C I.

Proof. Let C be any curve through O. Clearly it is enough to prove the
first assertion for generic curves Cy and Cj, going through K(gq) and K(p),
respectively. If Cy,u € T goes sharply through K(u) and misses all points
after u in K (see Theorem 1.1.30), in virtue of 4. of Proposition 1.1.16, we
have that for every v € Tg,

~ S
'Cu K'EU|SK = 5uva

and so, with the notation of section IIL.2, D?‘ = DY. If moreover we
assume that C, shares no points with C outside of K (we can do it again

~e ~8
by Theorem 1.1.30), then |C%-C,, * |s,, = 0 and by the projection formula
applied to 7 (5. of Proposition 1.1.16)

~ 8 —~ 85
[C,Culo = |(C%% + EZ)-Cy " |sy = |EK-Cu sy =
~8 " ~S
= |D5'Cu K|SK +|f*(Le)-Cu K|SK7

the last equality since EgK = Dx+f*(Lc). Again by the projection formula
and the symmetry of the intersection number (see Definition 1.3.19) we have

~ Sk ~o
|D6"Cu ISK = |CSA 'DSlSK
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and similarly,
—~38 —~ Sy
1/*(Lo)-Cu s = |Le” " D sy
Thus, for any v € Tg,
~ — S
[Ca CU]O = ]CSK’DSISK + |Lc ) 'Dz?lsk' (2.&)
Now, since we are assuming that sz;2 > D,? , it is clear that
|C%-DYs,. > |C%-DZs,
~5 ~ S
ILc™-DYsx > |Lo " -DYsy (2.b)

and from the equality (2.a) above, we have

C, Cp]o > |[C, Cq]o. (2.c)

Remark V.2.2. Notice by the way that g cannot be infinitely near to p,
for otherwise

ey(Cq) > €,(Cyp), for all v € K(q)

and hence, if C goes sharply through K(g), the Noether formula (Theorem
1.1.31) would say that

[C,Chlo = Z eu(Ceu(Cp) < Z eu(Cleu(Cq) <
uek(p) uek(p)
< Z eu(C)ew(Cp) = [C, Cglo
u€K(q)

against (2.c).

To complete the proof it will be sufficient to prove that the inequality
(2.b) is strict. To this aim, we need a couple of easy lemmas concerning

chains in the dual graph I'g of @ (see section 1.5). We state them separately
for clarity.

Remark V.2.3. Unless some confusion may arise, we will identify the
infinitely near points of Ty and the vertices in the dual graph of Q, I'g,
representing the exceptional component of Sk associated to them (see §1.5).
Hence, we may write for instance T = |T'g|.

Lemma V.2.4. Let IV be the connected component of T'g — {q} the vertex
p ts belonging to. We have
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(a) Leta, B,u € |T'g| such that ch(a, u)Nch(B,u) = {u}. Thench(a,B) =
ch(a,u) Uch(B,u) and so, u € ch(a, B).

(b) If a, B € |I"}, then ch(a, B) C |T|.
(c) If a« € |I"| and B ¢ |I”|, then q € ch(a, B).

Proof. To prove (a), assume that u ¢ ch(a,3) and let w € ch(a,3) be
such that d(w, u) = minyech(a,g) d(v, ). Then, w # v and w € ch(a,u) N
ch(B, u), against the assumption. Part (b) and (c) follow directly from the
definitions. (]

Lemma V.2.5. Assume as above that DQ > DQ Then we have
(a) ol > o for all u € |T|.
(b) p and all the points of Tg infinitely near to p are in I".

Proof. By the definition of I", it is clear that p € |I'|. Take u € Ty any
point infinitely near to p. If u ¢ |IV|, from (c) of Lemma V.2.4 we know
that ¢ € ch(p,u) and by (a) of Proposition I1.6.2, g is infinitely near to p,
which is impossible by Remark V.2.2. This proves (b).

Now, we use induction on the length of ch(p,u) to prove (a). First,
since IDS.EASK = —0y, for all u,v € Ty, we have

AoDY = -1,
and hence
-1 = 1}Aq(DY - D2)
= ~o)(ef ~ o)+ Sy (af) — )

Since ol > a{? for all u € T, we deduce from the above equality that

(p ) > a(Q) Now, if u € |I| is not p or g, take u’ the vertex adjacent to u
such that d(p,v') = d(p,u) — 1. By the induction hypothesis, a(p ) > a(q).
Thus

15A9(D? - DY) = —w(w)(@® - al®) + Syt (@ — a®)

= (u) (a(p) - a(q)) + (a(p) (q)) + Z)d (u,v)=1,v#u/ (a(p) - a(q))
> —ww)(ad - o)

Since the first member of this inequality is zero, we deduce that

P > ol@

as claimed. D
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End of the proof of Theorem V.2.1. Take ug € Ty any point infinitely near
—~S
to p and maximal. Thus, by 3. of Proposition 1.1.16, E,,, intersects L¢ ®
-~ 5
By Lemma V.2.5, ug € || and agfz,) > a&%). Since |Lo™ " .Euglsye > 0, it
follows that
—~ 5 -~ ~5
Lo “DYls, = alP|Le “Bulsx + Y, aP|Le”" Eulsy
ueTg,utuo
~ Sk

~ S
> a@|Lc " Bulse + Y al?|Le" Eulsy
ueTq,u#uo

~ 5
= |Lc " -D9s,
Hence, by the equality (2.a),
[C; Chlo > [C, Cqlo

as claimed. In particular, by taking C a smooth curve through O and not
tangent to Cp, or Cy, we have that

e6(Cy) > €0(Cy)- 2.d)

Finally, we have that for any divisorial valuation v, and any complete ideal
J C R, vy (J) is the intersection multiplicity of a curve defined by a generic
element of .J with a generic curve going through X(u). Hence, in virtue of
(2.d), we have vy (Ip) > vy(Ig) and since the complete mo-primary ideals
are defined by divisorial valuations (see Definition 1.2.1), the inclusion of
simple ideals

I, C I
follows. a

V.3 On Nash families of smooth arcs

This section is aimed to prove the following theorem.

Theorem V.3.1. Let Q be a sandwiched singularity. Then every reduced
component of the fundamental cycle of Q) is associated to a Nash family of
arcs. In other words, if there exists p,q € Tg such that m G m for
1 >> 0, then zp > 1.

The proof will follow from an accurate analysis of the graph I'g and
the coefficients of the fundamental cycle in connection with the proximity
relations of the points of the cluster.

Throughout this section, we assume that D,? > Dg) for p,q € T and
keep the notation of chapter II. In particular, Kg = (K,v/) is the cluster
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introduced in Notation I1.2.9 and p], means its excess at any v € K. The
following results are technical and we state them separately for clarity.

Lemma V.3.2. If there exists some up € |I'| such that py,, > 0, then
Zp > Zq.
P~ %q

Proof. Let C' C S be a curve going sharply through the cluster K¢q. Then,
if u € Tp, p), is the number of branches of C missing all points after
u in K (Proposition 1.1.29) and by 4. of Proposition 1.1.16, we have p}, =
léSK -Ey|sy - On the other hand, the strict transform on X of C is a generic
hypersurface section of (X, @) and not contained in the exceptional locus of
X (see Proposition I1.4.2). Thus, pl, is also the number of branches meeting
E, on Sk and no one is not transverse to E,. From this, p|, = —1{ Ao Z0o.
Since AQDQ = —1, for all u € Ty, we have

2 =142 = -(DF)AqZg

and so,
Zp — &g = _(D;? - Dz?)tAQZQ = (D;? - D(?)t(P;)ueTQ
Dt Y (- >0
u€Tq,uFuo
the last inequality by (a) of Lemma V.2.5 applied to ug. EI

Lemma V.3.3. Assume that z, = z,.

(a) If u is any point in |I'| such that all the points in Tg infinitely near
to u are also in |IV|, then v}, =0 and v,, = 1.

(b) If u is any point in |I"|, there is at most one point v in K prozimate
to u such that v, = v, — 1. If V), = v, there is not such a point.

Proof. By (c) of Lemma I1.3.1, it is enough to prove that v/, = 0 and this
in turn follows by induction on the number of points infinitely near to u,
using that by Lemma V.3.2 all these points have excess in K’ equal to zero.
This gives (a).

For (b), write s, = #{v € K(w) } v — u, v}, = v, — 1}. By Lemma IL.3.1
and since p, = 0 we have that

p;_—_y&——ZV{,Z(Vu—l)—Zuv—i-su:su—l.

v—Uu v—u

Since u € |I'|, p;, = 0 and so s, < 1. If ¥/, = v, the same argument shows
that pf, > s, and so, s, = 0. Hence the claim. O
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ql ’[)1
v .
Q1‘/I 1
» Vo U2
» G2 = Up_1 g2 = Vg_1
Vk Up—1 Uk Up—1
Uy e Ul e e
b U = w P

Figure V.1: Enriques Diagrams of the cluster K(w). On the left it is shown the
case when v; is free; on the right, when v; is satellite.

In particular, if z, = 2, by (b) of Lemma V.2.5 we have that v, = 0
and v, = 1, and so there is only one point in K infinitely near to p, say
w, having positive excess. Let K(w) be the irreducible cluster determined
by w. Denote by x, the last satellite point in /C(w) and gi, g2 the points
Zp is proximate to, g2 proximate to gq1. Write v1,...,vk—1 = q2,vx = Tp
the points of K(w) proximate to ¢; and uj,...,up = w the free points in
K(w) following x,. Notice that 15 > 1 and that p is infinitely near to ¢;
since it has virtual multiplicity one in K. The next figure shows the points
infinitely near to ¢; as they appear in the Enriques Diagram of K(w).

Proof of Theorem V.3.1 For any u € T, z, is the multiplicity at @ of any
arc in NV,,. Hence, if N,(3) C W, zp > 2¢ 2> 1. Obviously, if 2, > 24 there
is nothing to prove. So, we will assume that DI[(;2 > D(? and zp = z,.

Since xp, is the last satellite point in K(w), we have that vo(Iz,) >
vo (1) for any point v in K(w). In particular, vo(Iz,) > vo(Ip). Let up
be the last point in K(p) N K(q). Since q is infinitely near or equal to up,
vo(I4) = vo(Ig). Now, by Theorem V.2.1, we know that vo(Ip) > vo(Iy),
so we get a chain of inequalities

vo(Iz,) = vo(lp) > vo(ly) = vollg) (3.2)

and from it, we see that ¢ is not infinitely near to x,. Moreover, since ug
and z, are both in K(w), zp is infinitely near to ug.

Now, if z, ¢ |I’|, by (c) of Lemma V.2.4, we have that ¢ € ch(p, zp).
Since p and x, are in K(w), either p is infinitely near to x, or vice versa.
In any case, by (a) of Proposition I1.6.2 ¢ must be infinitely near to one of
them, against (3.a). Hence, z, € |I”|. The same argument shows that if u
is any point of Ty infinitely near to zp, then u € |IY|. Thus, we can apply
(a) of Lemma V.3.3 to get that v, = 0 and vy, = 1. In particular, there
is just one point in K and in the first neighborhood of z, and so, it is uy,
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which is free. Thus, z, is maximal among the points of K proximate to ¢;
and so, the corresponding vertices in I' are adjacent (see 3. of Proposition
1.1.16).

To complete the proof, we will distinguish if ¢ is in K(w) or not. It is
worth notice that the assumption z, = 2z, will lead to contradiction in all
cases but when ¢ = ¢; and p is infinitely near to it: then we need also to
assume that z; = 1. Notice that as K(w) is irreducible, all the points in it
are ordered.

Case 1: q is not in K(w).

As the vertices of ¢1 and zp, are adjacent, we deduce that ¢ is in I, and
by the same reason, vg—1 is in IV too. Moreover, we know that V;p =vg,—1
hence, by (b) of Lemma V.3.3, l/,{,j =y, for j = 1,...,k—1. Applying again
(b) of Lemma V.3.3 to vx_3, we are led to contradiction.

Case 2: q is in K(w).
If ¢ # g1 and vg_71 € |T”|, the same argument used in Case 1 works. For
the remaining cases, we assume that z; = 1.

Case 2.1: Assume that ¢ # ¢ and that vy_; ¢ |IV|. As in Case 1,
@1 € I} and v, = vy, for j = 1,...,k — 1 and vy = vy — 1. Moreover,
Up_1 = ¢. In particular, 1/"1 = 14 and by the Remark I1.3.10 and using
that z; = 1, we deduce that ¢ is free. Since z, is also proximate to ¢, the
vertices of ¢ and ¢ are not adjacent in the graph I'g, and thus, the only
point of K(w) adjacent to g is xp. It follows that all the points of K(w) but
q are in |[I”|. In particular, O € |I”| and (b) of Lemma I1.3.1 and Lemma
V.3.2 lead to contradiction.

Case 2.2: Assume now that ¢ = q;1. If u € Ty is any point infinitely near
to v1, then u is in || for otherwise, g € ch(vi,u) hence, q is infinitely near
to v; against the assumption. Moreover, by (a) of Lemma V.3.3, v, = 1
and v}, = 0.

Now, by (a) and (b) of Theorem II.3.8 and using induction backwards,
2y, =n—1i,fori=1,..,n—1and z;, =n. By (b) of Theorem I1.3.8 and
for i € {2, ..., k}, we see that

Zy; = 2qF 2oy — 1= 2y, _,

and by taking ¢ = k, we have that z,, = n, ¢ € {1,...,k}. Notice that the
point v; must be satellite for otherwise, (b) of Theorem 11.3.8 says that
zy, = 0 which is impossible. Thus, v, is proximate to ¢ and another point,
say q', and again (b) of Theorem II.3.8 gives that

nN=2zy =Zy+2—1= Zg- (3,b)

We will see that this situation leads to contradiction, no matter the value
of n. First, if n > 1, (3.b) says that z; > 1 and since q is proximate to ¢,



V.4. The Nash conjecture for primitive singularities 189

ql 'm-1=4¢q
I. PSR Ty = V1
m. r
2 I Vo 1T =gq

: q2 = Vg-1 Core =11 Y
&

k
Ul = w

Figure V.2: Enriques Diagrams of K(w) when p is infinitely near to ¢ = ¢, and
n = 1. The case when m = 2 and ry is free is shown on the right.

by (b) of Theorem I1.3.8 we have that zq 2 zg > 1 against the assumption.
Hence,n = 1. Write ry, ..., "m—1 = q,7m = v1 the points of K(w) proximate
to ¢.

Since z4 = 1 by iterated use of Remark I1.3.10, we deduce that if Zr; =1
for all i. Moreover, v, = vp,—1 for ¢ > 2, and also for i = 1 if 7; is satellite.
Hence, if m > 2 or if r is satellite, we are done by applying (b) of Lemma
V.3.3 to the point ¢'.

If m = 2 and 7y is free, then r; = ¢ and «, is the only point of K(w)

whose vertex is adjacent to that of q. The same argument used at the end
of Case 2.1 completes the proof. O

In the proof of Theorem V.3.1 we have also seen:

Corollary V.3.4. (of the proof of V.3.1) If N;,(1) C Ny(i) and 2z, = 2,
then p is infinitely near to q. '

From Theorem V.3.1, the positive answer of the Nash problem for min-

imal singularities, which was already proved in Corollary 2.6 of [53], also
follows.

Corollary V.3.5. Let (X,Q) be a minimal singularity. If p,q € Tg are
different and i > 0, then Np(i) € Ny(3).

V.4 The Nash conjecture for primitive singulari-
ties

In this section, we show that in order to prove the Nash conjecture for
sandwiched singularities it is enough to prove it for primitive singularities.
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A similar simplification was already pointed out by Lejeune-Jalabert and
Reguera in [40], where they gave a positive answer to the wedge problem
for sandwiched singularities by proving it first for primitive singularities.

First, we need a lemma.
Lemma V.4.1. Let (X1,Q1) be a rational surface singularity, g : X —

(X1,@1) a birational dominant morphism and E, an exceptional component
of Q such that E, also appears in the minimal resolution of Q)1 modulo

birational equivalence. Assume that for some i > 0, F&(i) C Fe(i) and
that the projection by g of any element of f,?(i) is in fz?l(i), for some
u € Tg,. Then,

FiH (i) € R (D).

Proof. The morphism g : X — (X3, @1) is the blow-up of a complete ideal
J =(g1,...,9m) C A = Ox, 0,, and we may assume that Q € Uy, where Up
is an affine open set of X of the form Spec A[g1/90, ..., gm/go] C A}. Now, if
Spec(A) C AZ, any arc v on (X1, Q1) is written in the form v = (z1, ..., z),
z € C[[t]]. Thus, the lifting ¥ of v on X is given by

(€1(2)5 -+ 20 (1), 1(8) /G0 (D), -, G () /90 (2))

where gz (t) = gr(z1(t), ..., zn(t)), k= 1,...,m.

If F2(i) C FE(i), the i-truncation of any arc of F& can be approx-
imated by the i-truncations of arcs of .7-"(? . By taking the projections of
these i-truncations on (X, Q), we see that F* (i) C g.(Fe (1)) € FI(3)
and hence, &1 (i) C F&'(i). O

Remark V.4.2. A similar result has been proved independently by Camille
Plénat [52].

Now, we come back to the situation where (X, Q) is a sandwiched sin-
gularity and X = Bl(S), where I is a complete mp-primary ideal in R.
Since the exponents of the simple ideals in the Zariski factorization of I are
irrelevant when blowing it up, we may assume that

N
I= HIj
j=1

and that I; # I, for j # k.

Take the notation as in section 1.4. In particular, write K and K; for the
clusters of base points of I and the simple ideals I;, j = 1,..., N. Moreover,
the surfaces X; = Bly; (S) have only one singularity, that is denoted by Q;-
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In particular, we have X; = Bl,(S) and the morphisms f : S — X
and f; : Sg; — X; induced by the universal property of the blowing
up are the minimal resolutions of X and X;,j = 1,..., N respectively.
Moreover, X and Sk are the birational join of the surfaces X; and S; for
J =1,...,N (see Proposition 1.4.6). If we write o; : X — X for the
blowing-up of IO x; in X;j and 7; : Sy — Sk; the induced morphism, we
have commutative diagrams of birational morphisms:

SKLX

SKJ. — X
i

Sk.
We write {EuK” }uequ for the exceptional components of f; : Sk, — Xj.

Proposition V.4.3. Let p,q € Tg, p # q be such that .7:,?(2') C qu(’i).
Then there exists some j € {1,..., N} with p € Tg, and some u € Tgu#

p, such that f;?j (i) c F& (¢).

Proof. Assume that p,q € Tg are points such that .7-}? (1) C qu (z) for
¢ > 0. From Theorem V.2.1 we know that ¢ is not infinitely near to p. Let
K; be any irreducible subcluster of X containing p.

If p is infinitely near to ¢, then ¢ is also in C; and hence, the exceptional
components E, and E,; also appear in the minimal resolution S; of Q;
modulo birational equivalence. By Lemma V.4.1 applied to aj : X — X s
we deduce that .7-'1?" (1) C .7-]? 7(3).

If p is not infinitely near to g, let up be the maximal point of K; to
which q is infinitely near. Then the projection by a; of any element in .7-"52
gives an arc v on (Xj,Q;) whose lifting to S; intersects (transversally or
not) the exceptional component E,, and therefore, v € f-ﬁ{,f. Thus, the
projection of any element of ]-'t? (i) is in F5' (i) and by Lemma V.4.1 again,
we deduce that .7-',? (%) C .7-'1% (2).

In any case, we see that an inclusion of spaces of arcs on the sandwiched
singularity (X, Q) implies a non-trivial inclusion of some spaces of arcs on
the primitive singularity (X;,Q;). The claim follows. O

As a direct consequence, we obtain the wanted result.

Corollary V.4.4. If the Nash conjecture is true for primitive singularities,
then it is also true for sandwiched singularities.
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Remark V.4.5. Notice that if (X,Q) is a primitive singularity and we
have ]:;?(z) C }'(?(z) for p,q € Tp with p # g, then by Theorem V.2.1, p
must be infinitely near to ¢ and moreover, ep(I,) > eo(Iy) where eo(J) is
the multiplicity at O of the linear system £; defined by J.




Appendix A

Implementation of some
algorithms

In this appendix we provide the listings of three programs written in C
which implement some algorithms suggested throughout this memoir. The
reader will notice that they are written in type typewriter, while the
comments are in the usual roman type. These programs are available, on
request, from the author.

Keeping the notation already used, the input data for these programs
consist of

(i) the proximity relations among the base points of a complete ideal I
(which is assumed to verify the conditions of Remark I11.2.11) and
among the singular points of a curve C on S whose strict transform
on X = Bl(S) goes through the singular point Q € X,

(ii) the virtual multiplicities of X’ = BP(I) at these points,
(iii) the effective multiplicities of C at these points.

These data are introduced as follows:

e the number k of points which are either the base points of I or the
singular points of C,

These points will be treated as the entries of a vector of length k with
the convention that the first entries correspond to the base points of
I and the remaining ones correspond to singular points of C' not in
K, all of them given with an admissible order,

e the proximity relations among all these points are introduced by
means of the elements below the diagonal of a kxk matrix P (the
proximity matrix), whose (i, j)-entry is denoted by P[i] [j],
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e the virtual multiplicities of the cluster X = BP(I) at these points are
introduced as the entries of a k-vector nu (note that nuli] is 0 if i
corresponds to a singular point of C, which is not a base point of I),

e the effective multiplicities of the curve C at these points are intro-
duced as the entries of another k-vector e.

REMARK. Note that if some point is a base point of I or not is inferred
from the value of the virtual multiplicity nu at it.

A.1 The semigroup of a branch through a sand-
wiched singularity

The following program implements the algorithm for the computation of
the semigroup of a branch going through a sandwiched singularity, see
subsection IT1.5.1.

/Ao skoodokokok sk ook sk skok koot skok ok ok stk ook ok seokolofekook ki okl sk ok ok ok sk ok ok /
/* Algorithm for the computation of the semigroup */
/* of a branch going through a sandwiched singularity */
/s skt ok ok ek skskok sk sk sk sk kel sk ks sk ks sk sk ki skok sk sk kol ok ok sk skok sk sk ok ok sk ok ok ok

#include <stdio.h>
int k; int P[30][30];

void unloading(int s, int *mult[300]) {

int i,j,sum,exp[30];
for (i=0;i<k;i++) {
sum=0;
for (§j=0;j<k;j++) {
sum=sum+P [j] [i]*mult [s] [j];
}
exp[i]=sum;
}
for(i=0;i<k;i++) {
if (expfi]<0) {
mult[s] [i]=mult[s] [i]+1;
for(j=i+1;j<k;j++) {
if ((P[3]1[i1==-1)&&(mult[s] [j1>0)) {
mult [s] [j]=mult[s] [j]-1;
}
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unloading(s,mult);
break;

void main ()
{
int i,j,s,aux,sum,cond;
int nul30],e[30],exc[30],inter{300],sem[300];
int *mult[300];

void unloading(int,int*[]);

printf ("\n Introduce the number of points of the cluster");
scanf ("%d",&k);
printf ("Introduce the proximity matrix \n");
for(i=0;i<k;i++) {
for (j=0;j<k;j++) {
if (3>1) {
P[i][j1=0;
} else {
scanf ("%d",&P[i] [j1);

}
printf ("\n Introduce the virtual multiplicities of the cluster");
for(i=0;i<k;i++) {
scanf ("%d",&nulil);
}
mult [0]=nu;
printf ("\n Introduce the effective multiplicities of the curve C");
for(i=0;i<k;i++) {
scanf("%d",&e[i]);
}

s=0;

aux=0;

for(i=0;i<k;i++) {
aux=aux+nulil*e[i];

}

inter[0]=0;

while (multl[s][k-1]<elk-11) {
sum=0;
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for(i=0;i<k-1;i++) {
mult[s+1] [i]=mult [s] [i];
}
mult [s+1] [k-1]=mult[s] [k-1]+1;

s=s+1;

unloading(s,mult);

for(i=0;i<k;i++) {
sum=sum+mult [s] [i]*e[i];

}

inter[s]=sum-aux;

printf("\n The number of unloading steps is : %d",s);
printf("\n The semigroup is : \n");
for(i=1;i<=s;i++) {
printf (" %d,",inter[i]);
}
for(i=0;i<=inter[s];i++) { sem[il]=0; }
for(i=0;i<=s;i++) {
sem[inter[i]]}=1;
}
i=interl[s];
while (sem[i]l==1) { i--; }
cond=i+1;
printf ("\n The conductor of the semigroup is %d",cond);
sum=0;
for (i=0;i<cond;i++) {
sum=sum+sem[i];
}

printf("\n The value of delta is %d",cond-sum);
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A.2 On the factorization of complete ideals in the
local ring of a sandwiched singularity

The following program implements an algorithm to know, once a curve
C on S is fixed, all the subcurves of C' whose strict transform on X is
a Cartier divisor. The algorithm is based on the procedure suggested in
Remark II1.1.10 and the output consists of a list of the wanted subcurves,

where each one is presented by giving which branches of C it is composed
of.

REMARK: Notice that once a complete mg-primary ideal J C Ox g is
fixed, this algorithm allows to know all the factorizations of J into complete
ideal in Ox g: with the notation of section IV.1, we introduce the number
of base points of the ideal TH s and the proximity relations among these
points. Then, the output is a listing of all the Cartier ideals H for X (see
Definition IV.1.1) being a factor of H7. In virtue of Proposition IV.3.1