

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

UNIVERSITAT POLITÈCNICA DE CATALUNYA

PROGRAMA DE DOCTORAT EN SOFTWARE

GUILLEM RULL FORT

VALIDATION OF MAPPINGS
BETWEEN DATA SCHEMAS

PhD. THESIS

ADVISED BY DR. CARLES FARRÉ TOST

AND DR. ANTONI URPÍ TUBELLA

BARCELONA

2010

A thesis presented by Guillem Rull Fort
in partial fulfillment of the requirements for the degree of

Doctor en Informàtica per la Universitat Politècnica de Catalunya

Acknowledgements

This work was supported in part by Microsoft Research through the European PhD Scholarship

Programme, by the Spanish Ministerio de Educación y Ciencia under projects TIN2005-05406

and TIN2008-03863, and by the Universitat Politècnica de Catalunya (UPC) under a FPI-UPC

grant.

Abstract

In this thesis, we present a new approach to the validation of mappings between data schemas. It

allows the designer to check whether the mapping satisfies certain desirable properties. The

feedback that our approach provides to the designer is not only a Boolean answer, but either a

(counter)example for the (un)satisfiability of the tested property, or the set of mapping assertions

and schema constraints that are responsible for that (un)satisfiability.

One of the main characteristics of our approach is that it is able to deal with a very expressive

class of relational mapping scenarios; in particular, it is able to deal with mapping assertions in

the form of query inclusions and query equalities, and it allows the use of negation and arithmetic

comparisons in both the mapping assertions and the views of the schemas; it also allows for

integrity constraints, which can be defined not only over the base relations but also in terms of the

views.

Since reasoning on the class of mapping scenarios that we consider is, unfortunately,

undecidable, we propose to perform a termination test as a pre-validation step. If the answer of

the test is positive, then checking the corresponding desirable property will terminate.

We also go beyond the relational setting and study the application of our approach to the

context of mappings between XML schemas.

Contents

1 INTRODUCTION ... 1

1.1 OUR APPROACH TO MAPPING VALIDATION ... 3

1.2 EXISTING APPROACHES TO MAPPING VALIDATION .. 7

1.3 CONTRIBUTIONS OF THIS THESIS .. 10

1.3.1 Checking Desirable Properties of Mappings .. 13

1.3.2 Explaining Validation Test Results ... 14

1.3.3 Testing Termination of Validation Tests ... 16

1.3.4 Validating XML Mappings ... 16

2 PRELIMINARIES .. 19

2.1 SCHEMAS ... 19

2.2 MAPPINGS .. 21

2.3 QUERY SATISFIABILITY AND THE CQC METHOD ... 22

3 CHECKING DESIRABLE PROPERTIES OF MAPPINGS .. 25

3.1 DESIRABLE PROPERTIES AND THEIR REFORMULATION IN TERMS OF QUERY SATISFIABILITY 25

3.1.1 Mapping Satisfiability ... 26

3.1.2 Mapping Inference .. 30

3.1.3 Query Answerability ... 33

3.1.4 Mapping Losslessness ... 37

3.2 DECIDABILITY AND COMPLEXITY ISSUES ... 42

3.3 EXPERIMENTAL EVALUATION .. 44

4 COMPUTING EXPLANATIONS ... 53

4.1 COMPUTING ALL MINIMAL EXPLANATIONS ... 55

4.1.1 Our Black-Box Method—The Backward Approach .. 55

4.1.2 Filtering Non-Relevant Constraints .. 60

4.1.3 Taking Advantage of an Approximated Explanation .. 66

4.1.4 Experimental Evaluation .. 67

4.2 COMPUTING AN APPROXIMATED EXPLANATION .. 74

4.2.1 Our Glass-Box Approach—The CQCE Method .. 74

4.2.2 Formalization ... 79

4.2.3 Experimental Evaluation .. 83

5 TESTING TERMINATION ... 87

5.1 DEALING WITH MULTIPLE LEVELS OF NEGATION—COMPUTING THE B-SCHEMA 88

5.2 DEPENDENCY GRAPH ... 92

5.3 ANALYSIS OF CYCLES—SUFFICIENT CONDITIONS FOR TERMINATION ... 93

5.3.1 Condition 1—The Cycle Does Not Propagate Existentially Quantified Variables 94

5.3.2 Condition 2—There Is a Potential Violator that Is Not a Repair of Any Vertex 95

5.3.3 Condition 3—The Canonical Simulation of the Cycle Terminates Within One Iteration 96

5.3.4 Overlapping Cycles .. 97

5.4 FORMALIZATION ...100

5.4.1 Schema Preprocess ..101

5.4.2 Dependency Graph ..104

5.4.3 Analysis of Cycles ..104

6 VALIDATING XML MAPPINGS ..113

6.1 XML SCHEMAS AND MAPPINGS ..113

6.2 TRANSLATION OF XML MAPPING SCENARIOS INTO LOGIC ...118

6.2.1 Translating the Nested Structure of Mapped Schemas ..118

6.2.2 Translating Path Expressions ..121

6.2.3 Translating Integrity Constraints ..123

6.2.4 Translating Nested Queries ...124

6.2.5 Translating Mapping Assertions ..126

6.3 CHECKING DESIRABLE PROPERTIES OF XML MAPPINGS ..129

6.3.1 Strong Mapping Satisfiability ..130

6.3.2 Mapping Losslessness ..131

6.3.3 Mapping Inference ...133

6.4 EXPERIMENTAL EVALUATION ...135

7 MVT: MAPPING VALIDATION TOOL ..139

7.1 ARCHITECTURE ...140

7.2 EXAMPLE OF MAPPING VALIDATION WITH MVT ..142

8 RELATED WORK ...151

8.1 MAPPING VALIDATION ..151

8.1.1 Instance-Based Approaches ...151

8.1.2 Schema-Based Approaches ..155

8.2 COMPUTATION OF EXPLANATIONS ..163

8.2.1 Explanations in Propositional SAT ..163

8.2.2 Explanations in Description Logics ...167

8.3 TRANSLATION OF XML MAPPING SCENARIOS INTO LOGIC ...168

8.3.1 Translation of XML Schemas and Queries ..168

8.3.2 Translation of XML Mapping Assertions ...172

9 CONCLUSIONS AND FURTHER RESEARCH ..175

REFERENCES ..179

1

1

Introduction

Mappings are specifications that model a relationship between two data schemas. They are key

elements in any system that requires the interaction of heterogeneous data and applications

[Hal10]. Such interaction usually involves databases that have been independently developed and

that store the data of the common domain under different representations; that is, the involved

databases have different schemas. In order to make the interaction possible, schema mappings are

required to indicate how the data stored in each database relates to the data stored in the other

databases. This problem, known as information integration, has been recognized as a challenge

faced by all major organizations, including enterprises and governments [Haa07, BH08, CK10].

Two well-known approaches to information integration are data exchange [FKMP05] and

data integration [Len02]. In the data exchange approach, data stored in multiple heterogeneous

sources is extracted, restructured into a unified format, and finally materialized in a target schema

[CK10]. In particular, the data exchange problem focuses on moving data from a source database

into a target database, and a mapping is needed to specify how the source data is to be translated

in terms of the target schema. In data integration, several local databases are to be queried by

users through a single, integrated global schema; mappings are required to determine how the

queries that users pose on the global schema are to be reformulated in terms of the local schemas.

Several formalisms are used to define mappings [CK10]. In data exchange, tuple-generating

dependencies (TGDs) and equality-generating dependencies (EGDs) are widely used [FKMP05].

Source-to-target TGDs are logic formulas in the form of X̄ ((X̄)  Ȳ (X̄ , Ȳ)), where (X̄) is

a conjunction of atomic formulas over the source schema and (X̄ , Ȳ) is a conjunction of atomic

formulas over the target schema. A target EGD is of the form X̄ ((X̄)  X1 = X2), where (X̄)

is a conjunction of atomic formulas over the target schema and X1, X2 are variables from X̄ .

2

In the context of data integration, global-as-view (GAV), local-as-view (LAV) and global-

and-local-as-view (GLAV) [Len02, FLM99] are the most common approaches. A GAV mapping

associates queries defined over the local schemas to tables in the global schema (e.g., a set of

assertions in the form of Qlocal  Tglobal). A LAV mapping associates queries over the global

schema to tables in the local schemas (e.g., assertions in the form of Tlocal  Qglobal). The GLAV

mapping formalism is a combination of the other two; it associates queries defined over the local

schemas with queries defined over the global schema (e.g., assertions in the form of Qlocal 

Qglobal).

A further formalism that has recently emerged is that of nested mappings [FHH+06], which

extends previous formalisms for relational and nested data by allowing the nesting of TGDs.

Model management [BHP00, Ber03, BM07, Qui09] is also a widely known approach which

establishes a conceptual framework for handling schemas and mappings generically, and provides

a set of generic operators such as the Merge operator [QKL07, PB08], which integrates two

schemas given a mapping between them; the ModelGen operator [ACT+08], which translates a

given schema from one model into another (e.g., from XML into the relational model); or the

composition of mappings [NBM07, BGMN08, KQL+09].

The ModelGen operator is required for any model management system in order to be generic,

since such a system must be able to deal with schemas represented in different models. An

implementation for this operator is proposed in [ACT+08]. This implementation follows a

metamodel approach in which each model is seen a set of constructs. A supermodel is then

defined by considering all constructs in the supported models [AT96]; in this way, any schema of

a supported model is also a schema of the supermodel, and the translation from the source model

into the target model becomes a transformation inside the supermodel. This transformation

consists of a sequence of elementary transformations that remove/add constructs as required for

the given schema to fit the target model. The supermodel is implemented as a relational

dictionary [ACB05, AGC09] in which models and schemas are represented in a uniform way. An

extension of this approach is proposed in [ACB06], which translates both the schema and the data

stored in the database. Another extension that does not translate the data directly but provides a

mapping (a set of views) between the original schema and the resulting translation has recently

been presented in [ABBG09a].

Another requirement for a model management system to be generic is the ability to provide a

single implementation for each operator, which must be able to deal with schemas and mappings

independently of their representation. An important work in this direction is the Generic Role-

3

based Metamodel (GeRoMe) [KQCJ07, KQLL07] and its generic schema mapping language

[KQLJ07, KQL+09]. The use of GeRoMe provides a uniform representation of schemas defined

in different modeling languages (in this sense GeRoMe is similar to the supermodel of

[ACT+08]). In GeRoMe, schema elements are seen as objects that play different roles, and these

roles act as interfaces to other schema elements. Model management operators are to be

implemented to interact with the roles exposed by the elements of the manipulated schema; in this

way, the operators become independent of the underlying model and also their implementation is

simplified as it only needs to focus on those roles that are relevant to the operator. Another

research effort in this same direction is the Model Independent Schema Management (MISM)

platform [ABBG09b], which shows how to use the dictionary and the supermodel from

[ACT+08] to implement different model management operators.

In the context of conceptual modeling, QVT (Query/View/Transformation) [OMG08] is a

standard language defined by the OMG (Object Management Group) to specify transformations

between conceptual schemas.

Languages like XSLT, XQuery and SQL are also used to specify mappings in several existing

tools that help engineers to build them [Alt10, Sty10]. One example of a system for producing

mappings is Clio [HHH+05], which can be used to semi-automatically generate a schema

mapping from a set of correspondences between schema elements (e.g., attribute names). This set

of inter-schema correspondences is usually called a matching [BMPQ04]. In fact, finding a

matching between the schemas is the first step towards developing a mapping. A significant

amount of work on schema-matching techniques can be found in the literature—see [RB01] for a

survey.

Nevertheless, the process of designing a mapping always requires feedback from a human

engineer. The designer guides the process by choosing among candidates and successively

refining the mapping. The designer needs thus to check whether the mapping produced is in fact

what was intended, that is, the developer must find a way to validate the mapping.

1.1 Our Approach to Mapping Validation

The goal of this thesis is to validate mappings by means of testing whether they meet certain

desirable properties. Our approach is aimed at allowing the user to ask whether the desirable

properties hold in the mapping being designed, and at providing the user with certain feedback

that helps him to understand and fix the potential problems.

4

Consider, for example, the mapping scenario shown in Figure 1.1. Relational schemas A and B

model data about employees, their salary and their bosses. Underlined attributes denote keys, and

dashed arrows referential constraints. Attribute EmployeeB.boss is the only one that accepts null

values. Solid arrows depict inter-schema correspondences, i.e., a matching of the schemas.

Let us assume that we have a mapping between schemas A and B which maps into database B

the employees in database A that have a salary above a certain threshold. Let us also assume that

the mapping consists of two assertions: m1 and m2, expressed in the GLAV formalism. Assertion

m1 maps information of employees that may or may not have a boss. Assertion m2 takes care of

specific information of employees that have a boss.

The mapping is syntactically correct, and it may seem perfectly right at a first glance.

However, it turns out that assertion m1 can only be satisfied trivially, that is, only those instances

of schema A in which the left-hand-side query of m1 gets an empty answer may satisfy the

Schema A:

 EmployeeA
 name
 address
 salary
 WorksForA
 emp
 boss

Schema B:

 EmployeeB
 emp-id
 name
 bossnull

 category
 CategoryB
 cat
 salary

salary  700
salary  2000
emp  boss

Figure 1.1: Example mapping scenario.

salary  1000
salary  5000
boss  emp-id

Constraints:

Constraints:

select wf.emp, wf.boss
from WorksForA wf, EmployeeA e
where wf.emp = e.name
 and e.salary >= 1000

select name, salary
from EmployeeA
where salary >= 10000

select e.name, c.salary
from EmployeeB e, CategoryB c
where e.category = c.cat



m2:

m1:

select e1.name, e2.name
from EmployeeB e1,
 EmployeeB e2
where e1.boss = e2.emp-id

5

mapping assertion. In this case, we say that the mapping is not strongly satisfiable. In general, we

say that a mapping is strongly satisfiable if there is a source and target schema instance that

satisfy all mapping assertions in a non-trivial way, where trivial satisfaction means that a

mapping assertion QA  QB (QA = QB) becomes   answer-of-QB ( = ) after the evaluation

of its queries. We say that a mapping is weakly satisfiable if there is a source and target instance

that satisfy at least one mapping assertion in a non-trivial way. Note that the previous mapping is

weakly satisfiable since m2 can be satisfied in a non-trivial way.

Most likely, the mapping scenario in Figure 1 is not what the designer intended. Therefore,

being able to check the strong satisfiability desirable property and obtaining an explanation that

highlights the mapping assertion m1 and the constraint “salary  2000” of schema A as the source

of the problem might help the designer to realize that m1 was probably miswritten, and that it

should be mapping those employees with a salary above one thousand, instead of ten thousand.

Assume now that we have come up with an alternative mapping that is more compact than the

previous one. It consists of the single assertion m3. The main difference with respect to m1 and m2

is that m3 uses left outer join to map at the same time the information common to all employees

and the information specific to the employees that have a boss.

We want to know if mapping {m3} is equivalent to {m1, m2} (we assume the problem of m1

not being strongly satisfiable has been fixed). We can achieve that by means of the mapping

inference property [MBDH02], that is, by testing whether m1 and m2 are inferred from {m3}, and

whether m3 is inferred from {m1 and m2}. The result of the test will be that m1 and m2 are indeed

inferred from {m3} (as expected), but not vice versa. To exemplify the latter, consider the

following pair of schema instances:

m3:

select e.name, e.salary, wf.boss
from EmployeeA e
 left outer join WorksForA wf
 on e.name = wf.emp
where e.salary >= 1000

select e1.name, c.salary, e2.name
from EmployeeB e1
 left outer join EmployeeB e2
 on e1.boss = e2.emp-id,
 CategoryB c
where e1.category = c.cat

Instance of A:
EmployeeA(‘e1’, ‘addr1’, 1000)
EmployeeA(‘e2’, ‘addr2’, 1000)
WorksForA(‘e1’, ‘e2’)

Instance of B:
EmployeeB(0, ‘e1’, null, ‘cat1’)
EmployeeB(1, ‘e1’, 2, ‘cat2’)
EmployeeB(2, ‘e2’, null, ‘cat1’)
CategoryB(‘cat1’, 1000)
CategoryB(‘cat2’, 2000)

6

The instances are consistent with respect to the integrity constraints of the schemas. They also

satisfy mapping assertions m1 and m2, but do not satisfy assertion m3. The question is that m1 and

m2 do not guarantee the correlation between the salary of an employee and the information about

who is his boss. That is shown in the counterexample by the employee ‘e1’ from A, who is

mapped into B as two different employees (same name, but different ids), one with the right

salary and without boss, and the other with the right boss and a wrong salary. Therefore, this

counterexample shows that {m3} is not only more compact than {m1, m2}, but also more accurate.

It is also clear that, for this property, being able to feedback the user with a counterexample like

the previous one would certainly help him to understand and fix the problem.

To illustrate one last desirable property, suppose that we wonder whether mapping {m3} maps

into database B not only the salary and the boss’s name of the employees selected from database

A, but also the personal information of each boss, i.e., their salary. To answer this question, we

can define the following query, which selects, for each employee with a salary  1000, the

corresponding boss and the salary of the boss:

Then, we can check whether mapping {m3} is lossless with respect to the query. If we do so,

we will realize that {m3} is actually lossy with respect to the query, that is, not all the salaries of

the bosses of employees with a salary  1000 in database A are mapped into database B. As a

counterexample, consider the following two instances of schema A:

They get a different answer for the query, since employee ‘e2’ (the boss) has a different salary

on each instance. However, the mapping allows these two instances to be mapped into a same

instance of schema B, e.g., the one shown below:

Instance of B:
EmployeeB(0, ‘e1’, 1, ‘cat1’)
EmployeeB(1, ‘e2’, null, ‘cat1’)
CategoryB(‘cat1’, 1000)

Instance1 of A:
EmployeeA(‘e1’, ‘addr1’, 1000)
EmployeeA(‘e2’, ‘addr2’, 1000)
WorksForA(‘e1’, ‘e2’)

Instance2 of A:
EmployeeA(‘e1’, ‘addr1’, 1000)
EmployeeA(‘e2’, ‘addr2’, 700)
WorksForA(‘e1’, ‘e2’)

select wf.boss, e1.salary
from WorksForA wf, EmployeeA e1, EmployeeA e2
where wf.boss = e1.name and wf.emp = e2.name
 and e2.salary >= 1000

7

The counterexample shows that the problem is that in order for the salary of a boss to be

mapped, it has to be  1000, just like any other employee. However, since we are asking about

the bosses of those employees that have a salary  1000, if the salary of a boss was < 1000, it

would mean that there is an employee with a salary higher than his boss’s, which most likely is

not an intended valid state for database A. Therefore, being able to provide such a

counterexample to the designer may help him to realize that schema A is probably underspecified,

and that a situation in which an employee has a salary higher than his boss’s is unlikely to happen

in practice, i.e., the designer could conclude that the mapping is actually enough to capture the

information represented by the query.

1.2 Existing Approaches to Mapping Validation

In this section, we briefly review the main existing approaches to validate mappings. More details

on these and other previous work are given in the related work chapter.

Our work is inspired by [MBDH02], where a generic framework for representing and

reasoning about mappings is presented. [MBDH02] identifies three important properties of

mappings: mapping inference, query answerability and mapping composition. The last property is

however not very interesting from the point of view of validation, since existing techniques for

mapping composition [FKPT05, NBM07, BGMN08] already produce mappings that satisfy the

property. Regarding the other two properties: mapping inference and query satisfiability, they are

addressed in [MBDH02] for the particular setting of relational schemas without integrity

constraints and the class of mappings that consists of assertions in the form of Q1 = Q2, where Q1

and Q2 are conjunctive queries over the mapped schemas.

In [ACT06, CT06], a system for debugging mappings in the data exchange context is

presented. The main feature of this system is the computation of routes [CT06]. Given a source

and a target instance, the system allows the user to select a subset of the tuples in the target

instance, and then it provides the routes that explain how these tuples have been obtained from

the source, that is, it indicates which mapping assertions have been applied and which source

tuples they have been applied to. Algorithms to compute one or all routes for a given user

selection are provided. [ACT06] considers relational and nested relational schemas, and

mappings formed by tuple-generating dependencies (TGDs).

The Spicy system [BMP+08] allows obtaining a ranking of the mapping candidates generated

by a mapping-generation tool like Clio. The goal of this system is to help the designer to choose

8

among the different mapping candidates. Mappings are expressed as sets of TGDs, and schemas

are either relational or nested relational. The Spicy system also requires that a source and a target

instance are available. The idea is that each mapping candidate is applied to the source instance

and the produced target instance is compared to the existing one. This comparison produces a

similarity measure that is then used to make the ranking. The Spicy system has evolved into the

+Spicy system [MPR09, MPRB09], which introduces the computation of cores into the mapping

generation algorithms in order to further improve the quality of mappings. +Spicy deals with

(nested) relational schemas with TGDs as schema constraints and mapping assertions. It rewrites

the source-to-target TGDs in order to allow them to be “compiled” into executable SQL scripts

that compute core solutions for the corresponding data exchange problem. Recently, algorithms

that are able to generate such executable SQL scripts while taking into account the presence of

EGDs in the schemas have been introduced into +Spicy [MMP10].

[YMHF01] proposes an approach to refine mappings between relational schemas by means of

examples. This approach requires the availability of a source instance so the system can select a

subset of tuples from this instance and build and example that shows the user how the target

instance produced by the mapping would look like. The user can modify the mapping and see

then how the modifications affect the produced target instance. Moreover, the examples are also

intended to show the user the differences between the mapping candidates. The formalism of the

produced mappings is the global-as-view (GAV), where assertions are in the form of Qsource 

Ttarget, and Qsource is a SQL query over the source, and Ttarget is a target table.

The Muse system [ACMT08] extends the work of [YMHF01] to the context of nested

mappings between nested relational schemas. It does not only help the user to choose among

alternative representations of ambiguous mappings, but also guides the designer on the

specification of the desired grouping semantics. Muse is also able to construct synthetic examples

whenever meaningful ones cannot be drawn from the available source instance. Such synthetic

examples are obtained from the mapping definition by freezing variables into constants.

TRAMP [GAMH10] is a system for understanding and debugging schema mappings and data

transformations in the context of data exchange. It allows the user to trace errors caused either by

the data, the mapping or the executable transformation that implements the mapping. TRAMP is

based on provenance. The user can query which source data contributed to the existence of some

target data (data provenance), or he can also query which parts of the executable transformations

contribute to a target tuple (transformation provenance), or which parts of the transformation

9

correspond to which mapping assertions (mapping provenance). TRAMP assumes mappings to be

sets of source-to-target TGDs. Schemas may contain key and referential constraints.

In [SVC+05], the authors propose a methodology for the integration of spatio-temporal

databases. One of the steps of this methodology is the validation of the mapping. Since they

represent both the database schemas and the mapping in a Description Logics (DL) language, the

validation is done by means of the reasoning mechanisms DL provide. Specifically, the validation

consists in checking whether some of the concepts defined in the schemas become unsatisfiable

once the mapping is taking into account. The methodology simply proposes that the mapping

and/or the schemas must be successively refined until all concepts are satisfiable.

A framework for the automatic verification of mappings with respect to a domain ontology is

presented in [CBA10]. It considers mappings to be source-to-target TGDs, and it requires

mappings to be semantically annotated. A semantic annotation assigns meaning to each variable

in the source-to-target dependencies relative to the domain ontology, that is, it attaches a concept

from the ontology to each variable. A same variable may have however different meaning when

appears on the source side of the TGD than when appears on the target side of the TGD, i.e., a

variable may get attached two concepts from the ontology: one that denotes its meaning in the

context of the source schema, and another that denotes its meaning in the context of the target

schema. Based on these semantic annotations, [CBA10] derives a set of verification statements

from each source-to-target TGD whose compatibility is then check against the domain ontology

by means of formal reasoning.

[ALM09] studies the complexity of the consistency and absolute consistency problems for a

language of XML mappings between DTDs based on mapping assertions expressed as

implications of tree patterns. Such a mapping is consistent if there is at least one document that

conforms to the source DTD and is mapped into a document that conforms to the target DTD. A

mapping is absolute consistent if the former happens for all documents that conform to the source

DTD. Translated into our setting, the former consistency property would correspond to our

mapping satisfiability property. The main difference is that consistency only requires the

satisfaction of the mapping assertions, but does not distinguish between trivial and non-trivial

satisfaction as we do in our relational setting.

In [BFFN05], the query preservation property is studied for a class of XML mappings

between DTDs. A mapping is said to be query preserving with respect to a certain query language

if all the queries that can be defined in that language on the source schema can also be computed

over the target schema. Note that this property is related to our mapping losslessness property, but

10

they are not the same property. [BFFN05] shows that query preservation is undecidable for XML

mappings expressed in a certain fragment of the XQuery and XSLT languages, and propose the

notion of XML schema embedding, which is a class of mappings guaranteed to be query

preserving with respect to the regular XPath language [W3C99].

1.3 Contributions of this Thesis

We propose an approach to validate mappings by means of checking certain desirable properties.

We consider an expressive class of relational mapping scenarios that allows the use of negation

and arithmetic comparisons in both the mapping assertions and the views of the schemas. The

class of schema constraints we consider is that of disjunctive embedded dependencies (DEDs)

[DT01] extended with derived relation symbols (views) and arithmetic comparisons. A DED

(without extensions) is a logic formula in the form of:

X̄ (X̄)  Ȳ 1 1(X̄ , Ȳ1)  ...  Ȳm m(X̄ , Ȳm)

where (X̄) and m(X̄ , Ȳ m) are conjunctions of relational atoms of the form R(w1, ..., wn) and

(dis)equalities of the form (w1  w2) w1 = w2, where w1, w2, ..., wn are either variables or constants.

We consider a global-and-local-as-view mapping formalism, which allows for assertions in the

form of QA  QB or QA = QB, where QA and QB are queries over the mapped schemas.

We identify three properties of mappings that have been already considered important in the

literature: mapping satisfiability [ALM09], mapping inference [MBDH02] and query

answerability [MBDH02].

We consider two flavors of mapping satisfiability: strong and weak, which address the trivial

satisfaction of the mapping by requiring that all or at least one mapping assertion, respectively, is

non-trivially satisfied.

We show that the query answerability property is not useful when mapping assertions express

inclusion of queries. To address this, we propose a new property that we call mapping

losslessness. We show that when all mapping assertions are equalities of queries, then mapping

losslessness and query answerability are equivalent.

We perform the validation by reasoning on the mapped schemas and the mapping definition,

and we do not require any instance data to be provided. This is important since relying on specific

schema instances may not reveal all potential pitfalls. Therefore, schema-based mapping

validation approaches like the one we propose here are a necessary complement to existing

11

instance-based mapping debuggers and mapping refining tools [YMHF01, CT06, BMP+08,

ACMT08].

Moreover, our approach does not only provide the user with a Boolean answer, but also with

additional feedback to help him understand why the tested property holds or not. The feedback

can be in the form of some instances of the mapped schemas that serve as an example or

counterexample for the tested property, or in the form of highlighting the subset of schema

constraints and mapping assertions that is responsible for the test result. We refer to the latter task

as computing an explanation.

Since the problem of reasoning on the class of mapping scenarios we consider is semi-

decidable, we propose to perform a termination test as a pre-validation step. If positive, the test

guarantees that the check of the target desirable property is going to terminate. We adapt the test

from the one proposed in [QT08] for the context of reasoning on UML conceptual schemas.

Table 1.1: Comparison of mapping validation approaches.

 Schema formalism

Mapping formalism

Validation approach

Reasoning type

Amano et al.
[ALM09]

DTDs Source-to-target implications
of tree patterns

Desirable-property
checking

Schema-based

Bohannon et al.
[BFFN05]

DTDs XML schema embeddings Desirable-property
checking

Schema-based

Cappellari et al.
[CBA10]

Relational with keys and
foreign keys plus an external
domain ontology

Source-to-target TGDs Desirable-property
checking

Schema-based

Madhavan et al.
[MBDH02]

Relational without integrity
constraints

Equalities of conjunctive
queries

Desirable-property
checking

Schema-based

Muse [ACMT08] (Nested) Relational with
functional dependencies and
referential constraints

Nested mappings Data example
computation

Instance-based

Routes [CT06] (Nested) Relational with
TGDs and EGDs

Source-to-target TGDs Route computation Instance-based

Sotnykova et al.
[SVC+05]

Description Logic SHIQ,
plus ALCRP(D) for the
spatio-temporal aspects

Description Logic SHIQ,
plus ALCRP(D) for the
spatio-temporal aspects

Desirable-property
checking

Schema-based

Spicy [BMP+08] (Nested) Relational with
keys and foreign keys

Source-to-target TGDs Ranking of mapping
candidates

Instance-based

TRAMP
[GAMH10]

Relational with keys and
foreign keys

Source-to-target TGDs Provenance querying Instance-based

Yan et al.
[YMHF01]

Relational without integrity
constraints

SQL queries with views (in
the from clause), functions
and arithmetic comparisons

Data example
computation

Instance-based

Our approach Relational with DEDs
extended with derived
relation symbols (views) and
arithmetic comparisons

Equality and inclusion
assertions between queries
with views, negations and
arithmetic comparisons

Desirable-property
checking

Schema-based

XML Schema Definitions
(XSDs) with the choice
construct, and with keys,
keyrefs and simple-type’s
range restrictions

Equality and inclusion
assertions between XQueries
with negations and arithmetic
comparisons

12

Finally, we study the extension of our approach to a specific context that has received a

growing attention during the last years: XML mappings. In particular, we study how to translate

XML mapping scenarios into a flat, logic formalism so we can take advantage of our previous

results from the relational setting.

We have also implemented our results in a mapping validation tool called MVT [RFTU09],

which was presented in the demo track of the EDBT 2009 conference.

Table 1.1 compares our work with the existing approaches to mapping validation. As can be

seen in the table, the existing approaches can be classified in two groups: those that check some

desirable properties of the mappings by reasoning on the schema and mapping definitions, and

those that rely on schema instances to help the designer understand, refine and debug the

mappings. Our approach clearly falls in the first group. Regarding the formalisms, the schema

and mapping formalism we deal with subsumes those in [MBDH02, CBA10 CT06, BMP+08,

ACMT08, GAMH10, SVC+05] and intersects with those in [YMHF01, ALM09, BFFN05]; we

will see that in detail in the related work chapter.

Table 1.2 compares our work with the other desirable-property checking approaches in terms

of the properties that are considered and the feedback that is provided to the user. The table shows

that while previous approaches focus on the check of the property and disregard the feedback

provided to the user, we provide an answer that is more explanatory than a simple Boolean value.

Regarding the desirable properties, we do not consider composition [MBDH02] or invertibility

[BFFN05] of mappings, since we understand the interest of these problems is currently on the

actual computation of the composition [MH03, FKPT05, NBM07, BGMN08] and the inverse

[Fag07, FKPT08, FKPT09, APRR09], respectively, which are research fields on their own, and

Table 1.2: Comparison of desirable-property checking approaches.

 Properties considered

Feedback provided

Amano et al. [ALM09] Consistency and
Absolute consistency of XML mappings

Boolean answer

Bohannon et al. [BFFN05] Query preservation and Invertibility not applicable (properties guaranteed by
definition of schema embedding)

Cappellari et al. [CBA10] Semantic compatibility w.r.t. a domain
ontology

Boolean answer

Madhavan et al. [MBDH02] Mapping inference,
Query answerability,
Mapping composition

Boolean answer

Sotnykova et al. [SVC+05] Concept satisfiability Boolean answer

Our approach Strong and Weak mapping satisfiability,
Mapping inference,
Query answerability,
Mapping losslessness

Either a (counter)example or the set(s)
of constraints responsible for the
(un)satisfaction of the tested property

13

thus beyond the scope of this thesis. We do not yet address the absolute consistency property

identified in [ALM09], but we plan to do it as further work. We do not address either the

compatibility w.r.t. a domain ontology proposed by [CBA10], since it requires the availability of

such an ontology and of semantic annotations which we do not consider. Regarding query

preservation [BFFN05], we consider the related properties of query answerability [MBDH02] and

mapping losslessness, but not the property itself; we however intend to study it as future research

together with the absolute consistency property, since we think there may be some connection

between the two. The remaining properties are either addressed by our approach or easily inferred

from the ones we consider—see the related work chapter for a detailed comparison.

See also the related work chapter for a comparison of our work with existing approaches in the

areas of computing explanations and translating XML mapping scenarios into logic.

In the next subsections, we give more details on each one of our contributions.

1.3.1 Checking Desirable Properties of Mappings

We propose to reformulate each desirable property test as a query satisfiability problem. We

define a new database schema that includes the two schemas being mapped, and include the

mapping assertions as integrity constraints of the new schema. We finally define a distinguished

query that encodes the property to be tested, in such a way that the satisfiability of the

distinguished query over the new schema determines whether the desirable property holds or not

for the current mapping. We also show that this reduction to query satisfiability does not increase

the complexity of the mapping validation problem by showing that one can also make a reduction

from query satisfiability to each desirable-property checking problem.

To perform the query satisfiability tests, we rely on the CQC method [FTU05], which has been

successfully used in the context of database schema validation [FTU04, TFU+04]. The method

works on a first-order logic representation of the database schema and the distinguished query,

but the translation into logic is quite straightforward in the relational case. To the best of our

knowledge, the CQC method is the only query satisfiability method able to deal with the class of

database schemas and queries that we consider.

The CQC method is a constructive method, that is, it tries to build a database instance in

which the query has a non-empty answer. To instantiate the tuples to be added to this database

instance, the method uses a set of Variable Instantiation Patterns (VIPs). Each application of the

VIPs provides a finite number of constants to be tried, which results in a finite number of

candidate database instances to be considered. If one of these instances satisfies the query and the

14

integrity constraints at the same time, then the instance is an example that shows the query is

satisfiable. Otherwise, the VIPs guarantee that if no solution can be constructed with the constants

they provide, then no one exists.

We have published this work in Data & Knowledge Engineering, Volume 66, Number 3, 2008

[RFTU08a].

1.3.2 Explaining Validation Test Results

The CQC method provides two types of feedback: a database instance that exemplifies the

satisfiability of the tested query, or a simple negative Boolean answer that indicates the query is

not satisfiable.

The database instance provided by the CQC method can be straightforwardly translated back

into an example/counterexample for the mapping validation test. Whether it will be an example or

a counterexample is going to depend on the specific property that we are testing. For instance,

mapping satisfiability is suitable to be exemplified when the mapping is indeed satisfiable, while

for mapping inference is best to provide a counterexample when the inference cannot be made.

The remaining question is the computation of an explanation for the case in which the CQC

method provides a negative Boolean answer. To the best of our knowledge, none of the existing

methods for query satisfiability checking [DTU96, ZO97, HMSS01] provides any kind of

explanation in this case.

We propose to explain such a test result by means of highlighting on the mapping scenario the

schema constraints and mapping assertions responsible for the impossibility of finding an

example/counterexample. For instance, in the strong mapping satisfiability test of {m1, m2} in

Section 1.1, the explanation for the unsatisfiability of the mapping would be the set {constraint

“salary  2000” of schema A, mapping assertion “m1”}.

Actually, there may be more than one explanation of this kind for a single test, so we firstly

propose a black-box method to compute all minimal explanations. The approach is black-box

because it makes successive calls to an underlying method, in our case, the CQC method; and the

computed explanations are minimal in the sense that any proper subset of them is not an

explanation.

The black-box method works at the level of the query satisfiability problem, that is, before

translating the test result back into the mapping validation context. The computed explanations

can be easily converted into explanations for the mapping validation test.

15

In a first stage, the black-box method provides one minimal explanation, which can be then

extended during a second stage into a maximal set of disjoint minimal explanations. These two

first stages have the advantage that the number of calls required to the underlying method is

linear with respect to the number of constraints in the schema. The third and final stage extends

the outcome of the second one into the set of all possible minimal explanations. It however

requires an exponential number of calls to the underlying method. Notice that this cost cannot be

avoided, since, in the worst case, the number of explanations for a certain test is indeed

exponential with respect to the number of constraints.

The drawback of the black-box method is the fact that, for large schemas, the runtime of each

call to the CQC method may be high. That means that even computing one single minimal

explanation can be a time-consuming process. It would be therefore desirable that the CQC

method could provide an approximation to one of the possible minimal explanations as a result of

its execution; this way, the user could decide whether the approximation suffices or more

accurate explanations are needed. To achieve that, we propose a glass-box approach, that is, a

modification of the CQC method that returns an approximated explanation when the tested query

is not satisfiable. By approximated explanation, we mean that the explanation is not necessarily

minimal.

The main advantage of the glass-box approach is that it does not require any additional call to

the CQC method. Moreover, it may dramatically improve the efficiency of the CQC method as a

side effect. That is because the approach is based on the analysis of the constraint violations that

occur during the search for a solution, and the information obtained from these analyses is used to

prune the remaining search space.

Going one step further, we combine the glass-box and the black-box approaches in order to

obtain the advantages from both of them. The idea is that the black-box approach can use the

approximated explanation provided by the glass-box approach in order to significantly reduce the

number of calls to be made to the CQC method. This way, the user gets an initial, approximated

explanation from the glass-box approach, which then can choose to refine into a minimal one by

applying the first stage of the black-box approach. If the user still wants more information, the

second and the third stage can be applied, and these stages would also benefit from the

approximations provided by the successive calls they make to the CQC method.

We have published our black-box approach in the CIKM 2007 conference [RFTU07], and our

glass-box method in the DEXA 2008 conference [RFTU08b].

16

1.3.3 Testing Termination of Validation Tests

Reasoning on the general class of mapping scenarios we consider is, unfortunately, undecidable,

which means the validation tests may never end. To deal with this, we propose to perform a

termination test previous to the validation of a desirable property.

We adapt the termination test proposed in [QT08] for the context of reasoning on UML

schemas to our mapping context. We apply the termination test after the reformulation of the

validation problem into a query satisfiability problem, and before the application of the CQC

method. This way, we have a single database schema to analyze.

The termination test builds a graph that represents the dependencies that exist between the

integrity constraints of the schema. Then, it analyzes the cycles in the graph and checks whether

they satisfy certain termination conditions. In particular, the termination test defines three

conditions that are sufficient for the termination of the CQC method. Note that these conditions

are sufficient but not necessary, as expected due to the undecidability of the termination checking

problem.

We extend the termination test in two directions:

 We consider database schemas whose integrity constraints and deductive rules may have more

than one level of negation, that is, negated derived literals whose deductive rules contain also

negated literals are allowed. This feature was not required in [QT08] since their translation of

UML/OCL schemas into first-order logic did not require more than one level of negation. In

our context, however, the translation of the mapping scenario into logic may contain more

than one level of negation.

 We study the application of the termination conditions to database schemas in which the

dependency graph contains overlapping cycles (by overlapping we mean vertex-overlapping).

The case in which cycles are disjoint (i.e., vertex-disjoint) was already addressed by [QT08].

We provide formal proofs for our results.

1.3.4 Validating XML Mappings

Since the emergence of the Web, the ability to map not only relational but also XML data has

become crucial. A sign of this is the growing interest of the research community on this kind of

mappings during the last years, e.g., [PVM+02, DT05, BFFN05, RHC+06, ALM09]. Most tools

and approaches to aid the construction of mappings support some class of XML mappings, e.g.,

17

Clio-based approaches typically allow mappings between nested relational schemas—see, for

instance, [PVM+02, FHH+06, BMP+08, ACMT08].

We generalize our previous results so we can deal with schemas defined in a subset of the

XML Schema Definition (XSD) language [W3C04], and mappings whose queries are defined in a

subset of the XQuery language [W3C07]. This way, we are able to check the mapping desirable

properties on a class of mapping scenarios that includes the nested relational one. The key point

of this generalization is the translation of the given XML mapping scenario into the first-order

logic formalism used by the CQC method. We combine existing proposals for the translation of

different parts of the XML schemas and XQueries [YJ08, DT05]. We also propose a new way of

translating the inclusion and equality mapping assertions, which takes into account the class of

schemas and queries the CQC method is able to deal with. Existing approaches to the translation

of this kind of assertions are mainly in the area of query containment checking [LS97, DHT04]

and query equivalence checking [LS97, DeH09], and do not consider integrity constraints,

negation and arithmetic comparisons all together. They are based on the reformulation of the

query containment and equivalence problems in terms of a certain property—query simulation

[LS97, DHT04] and encoding equivalence [DeH09]—over flat conjunctive queries.

In addition to the interest of validating mappings between XML schemas, being able to reason

on mapping assertions with nested queries is also interesting in our previous context of mappings

between flat relational schemas. For instance, consider again the example from Figure 1 (Section

1.1). We could think that mapping {m3} does not ensure that the relationship which states that

certain employees work for a same boss in database A is mapped into database B, i.e., they could

work for different bosses once mapped into database B. In order to check if our suspicions are

true, we could ask whether the following XML mapping assertion m4 is inferred from the

mapping. The two queries in assertion m4 are XQueries with the same return type (assume the

mapped databases allow XQueries to be posed on them); they select the bosses’ names along with

the set of their employees’ names:

m4:

for $b in //EmployeeA[./salary/text() >= 1000]
return
<result>
 <boss>{$b/name/text()}</boss>
 <emps>
 {for $e in //EmployeeA[./salary/text() >= 1000],
 $wf in //WorksForA[./boss/text() = $b/name/text()]
 where $wf/emp/text() = $e/name/text()
 return <emp>{$e/name/text()}</emp>
 </emps>
</result>

for $b in //EmployeeB
return
<result>
 <boss>{$b/name/text()}</boss>
 <emps>
 {for $e in //EmployeeB[
 ./boss/text() = $b/emp-id/text()]
 return <emp>{$e/name/text()}</emp>
 </emps>
</result>



18

The answer to the inference question would be that assertion m4 is not inferred from m3, which

is illustrated by the following counterexample that satisfies m3 but not m4:

The counterexample shows that m3 does not necessarily preserve the relationship between a

boss and the set of employees that work for him, as we suspected. We can see this in the fact that

while employee ‘e2’ and ‘e3’ work for the same boss in the instance of A, they work for different

bosses (with the same name) in the instance of B. The conclusion would be that assertion m4 was

probably missing from the mapping.

The example also illustrates that mapping assertions with nested queries allow for more

accurate mappings than flat formalisms, just like the nested mappings formalism [FHH+06] (see

the related work chapter for a comparison of the two formalisms).

Instance of A:
EmployeeA(‘e1’, ‘addr1’, 1000)
EmployeeA(‘e2’, ‘addr2’, 1000)
EmployeeA(‘e3’, ‘addr3’, 1000)
WorksForA(‘e2’, ‘e1’)
WorksForA(‘e3’, ‘e1’)

Instance of B:
EmployeeB(0, ‘e1’, null, ‘cat1’)
EmployeeB(1, ‘e1’, null, ‘cat2’)
EmployeeB(2, ‘e2’, 0, ‘cat1’)
EmployeeB(3, ‘e3’, 1, ‘cat1’)
CategoryB(‘cat1’, 1000)
CategoryB(‘cat2’, 2000)

19

2

Preliminaries

In this chapter, we introduce the basic concepts and notation that will be used throughout the

thesis.

2.1 Schemas

For the most part of the thesis, we focus on relational database schemas. A relational schema is a

finite set of relations with integrity constraints. We use first-order logic notation and represent

relations by means of predicates. Each predicate P has a predicate definition P(A1, …, An), where

A1, …, An are the attributes. A predicate is said to be of arity n if it has n attributes. Predicates

may be either base predicates, i.e., the tables in the database, or derived predicates, i.e., queries

and views. Each derived predicate Q has attached a set of non-recursive deductive rules that

describe how Q is computed from the other predicates. A deductive rule has the following form

(we use a Datalog-style notation [AHV95]):

q(X̄)  r1(Ȳ 1)  …  rn(Ȳ n)  rn+1(Z̄ 1)  …  rm(Z̄ s)  C1  …  Ct

Each Ci is a built-in literal, that is, a literal in the form of t1 op t2, where op  {< , , >, , =,

} and t1 and t2 are terms. A term can be either a variable or a constant. Literals ri(Ȳ i) and ri(Z̄ i)

are positive and negated ordinary literals, respectively (note that in both cases ri can be either a

base predicate or a derived predicate). Literal q(X̄) is the head of the deductive rule, and the other

literals are the body. Symbols X̄ , Ȳ i and Z̄ i denote lists of terms. We assume deductive rules to be

safe [Ull89], which means that the variables in Z̄ i, X̄ and Ci are taken from Ȳ 1, …, Ȳ n, i.e., the

variables in the negated literals, the head and the built-in literals must appear in the positive

literals in the body. Literals about base predicates are often referred to as base literals and literals

about derived predicates are referred to as derived literals.

20

We consider integrity constraints that are disjunctive embedded dependencies (DEDs) [DT01]

extended with arithmetic comparisons and the possibility of being defined over views (i.e., they

may have derived predicates in their definition). A constraint has one of the following two forms:

r1(Ȳ 1)  ...  rn(Ȳ n)  C1  ...  Ct

r1(Ȳ 1)  ...  rn(Ȳ n)  C1  ...  Ct  V̄ 1 rn+1(Ū 1)  ...  V̄ s rn+s(Ū s)

Each V̄ i is a list of fresh variables, and the variables in Ū i are taken from V̄ i and Ȳ 1, ..., Ȳ n.

Note that each predicate ri (on both sides of the implication) can be either base or derived. We

refer to the left-hand side of a constraint as the premise, and to the right-hand side as the

consequent. We use vars(ic) to denote the non-existentially quantified variables of constraint ic.

Formally, we write S = (PD, DR, IC) to indicate that S is a database schema with predicate

definitions PD, deductive rules DR, and integrity constraints IC. We sometimes omit the PD

component when it is clear from the context.

An instance D of a schema S is a set of facts about the base predicates of S. A fact is a ground

literal, i.e., a literal with all its terms constant. Instances are also known as extensional databases

(EDBs). The set of facts about the derived predicates of S that corresponds to a given instance D

(i.e., the extension of the queries and views of S when evaluated on D) is the intensional database

(IDB) of D, denoted IDB(D). It is worth noting that we consider the derived predicates under the

exact view assumption [Len02], i.e., the extension of a view/query is exactly the set of tuples that

satisfies the definition of the view/query on the database instance. Sometimes base and derived

predicates/literals are referred to as EDB and IDB predicates/literals, respectively.

The answer to a query Q on an instance D, denoted AQ(D), is the set of all facts about

predicate q in the IDB of D, i.e., AQ(D) = {q(ā) | q(ā)  IDB(D)}, where ā denotes a list of

constants.

A substitution  is a set of the form {X1 ↦ t1, …, Xn ↦ tn}, where X1, …, Xn are distinct

variables, and t1, …, tn are terms. The result of the application of a substitution  to a first-order

logic expression E, denoted E, is the expression obtained from E by simultaneously replacing

each occurrence of each variable Xi by the corresponding term ti. A unifier of two expressions E1

and E2 is a substitution  such that E1 = E2. Substitution  is a most general unifier for E1 and

E2 if for all other unifier ′ there is a substitution  such that ′ =   (i.e., ′ is the composition

of  and ).

21

A constraint ic is satisfied by an instance D if there is a ground substitution  from the

variables in ic (both the existentially and the non-existentially quantified variables) to the

constants in D such as ic is true on D, i.e., D ⊨ ic. A constraint ic is violated by an instance D

if D does not satisfy ic.

An instance D is consistent with schema S if it does not violate any of the constraints in IC.

This formalization of schemas has been taken from [FTU05]. A similar formalization, but

considering only referential and implication constraints, is used in [ZO97].

2.2 Mappings

We write M = (F, A, B) to denote that M is a mapping between schemas A = (PDA, DRA, ICA) and

B = (PDB, DRB, ICB), where F is a finite set of assertions {m1, ..., mn}. Each mapping assertion mi

either takes the form QA
i = QB

i or QA
i  QB

i, where QA
i and QB

i are queries over the schemas A and

B, respectively. Obviously, the queries must be compatible, that is, the predicates must have the

same arity. We will assume that the deductive rules for these predicates are in either DRA or DRB.

We say that schema instances DA and DB are consistent under mapping M = (F, A, B) if all the

assertions in F are true. We say that a mapping assertion QA
i = QB

i is true if the tuples in the

answer to QA
i on DA are the same as the ones in the answer to QB

i on DB. In more formal terms,

such a mapping assertion is true when the following holds: qA
i(ā)  AQA

i(DA) if and only if qB
i(ā)

 AQB
i(DB) for each tuple of constants ā, where qA

i and qB
i are the predicates defined by the two

queries in the assertion. Similarly, a mapping assertion QA
i  QB

i is true when the tuples in the

answer to QA
i on DA are a subset of those in the answer to QB

i on DB, i.e., qA
i(ā)  AQA

i(DA)

implies qB
i(ā)  AQB

i(DB).

This way of defining mappings is inspired by the framework for representing mappings

presented in [MBDH02]. In that general framework, mapping formulas have the form e1 op e2,

where e1 and e2 are expressions over the mapped schemas, and the operator op is well defined

with respect to the output types of e1 and e2. Other similar formalisms are the GLAV [FLM99]

approach and source-to-target TGDs [FKMP05]. Recall that GLAV mappings consist in

assertions that have the form QA  QB, where QA and QB are conjunctive queries, and TGDs

consist in logic formulas of the form X̄ ((X̄)  Ȳ (X̄, Ȳ)), where (X̄) and (X̄, Ȳ) are

conjunctions of relational atoms. Note that, with respect to GLAV and TGDs, we allow the use of

a more expressive class of queries.

22

2.3 Query Satisfiability and the CQC Method

A query Q is said to be satisfiable on a database schema S if there is some consistent instance of S

in which Q has a non-empty answer.

The CQC (Constructive Query Containment) method [FTU05], originally designed to check

query containment, tries to build a consistent instance of a database schema in order to satisfy a

given goal (a conjunction of literals). Clearly, using literal q(X̄) as goal, where X̄ is a list of

distinct variables, results in the CQC method checking the satisfiability of query Q.

The CQC method starts by taking the empty instance and uses different Variable Instantiation

Patterns (VIPs) based on the syntactic properties of the views/queries and constraints in the

schema to generate only the relevant facts that are to be added to the instance under construction.

If the method is able to build an instance that satisfies all the literals in the goal and does not

violate any of the constraints, then that instance is a solution and proves the goal is satisfiable.

The key point is that the VIPs guarantee that if the variables in the goal are instantiated using the

constants they provide and the method does not find any solution, then no solution is possible.

The two major VIPs are the Negation VIP, which is applied when all built-in literals in the

schema are = or  comparisons, and the Order VIP, which is applied when the schema contains

order comparisons. The Negation VIP works as follows: a given variable X can be instantiated

with one of the constants already used (those in the schema definition and those provided by

previous applications of the VIP) or with a fresh constant. The Order VIP also gives the choice of

reusing a constant or using a fresh one. However, in the latter case, the fresh constant may be

either greater or lower than all those previously used, or it may fall between two previously used

constants. The Order VIP comes in two flavors: Dense Order VIP and Discrete Order VIP; the

main difference is that the Discrete Order VIP must ensure that when a fresh constant is provided

that falls between two previously used constants there has to be enough room in that range for an

additional integer value.

As an example, let us assume that the CQC method must instantiate the relational atom

R(X, Y) using the Negation VIP, and that the set of used constants is empty. The possible

instantiations would be R(0, 0) and R(0, 1). As variable X is instantiated first, the only option is to

use a fresh constant, e.g., the constant 0. Thus, there are two possibilities for instantiating variable

Y: using the constant 0 again, or using a fresh constant, e.g., the constant 1.

Intuitively, the CQC method works in two phases. The first phase is query satisfaction. In

this phase, the CQC method generates an initial instance that satisfies the definition of the tested

23

query (i.e., the goal), but that is not necessarily consistent with the schema S. The second phase is

integrity maintenance. In this phase, the CQC method tries to repair the inconsistent instance

constructed by the previous phase by means of inserting new tuples into the database. If the

integrity maintenance phase reaches a point when some violation cannot be repaired by the

insertion of new tuples, then the CQC method has to reconsider the previous decisions (e.g., try

another instantiation for the tuples previously inserted from those provided by the VIPs).

The fact that at certain points the CQC method has to make decisions causes the solution

space the CQC method explores to be a tree. This tree is called the CQC-tree. Each branch of the

CQC-tree is what is called a CQC-derivation. A CQC-derivation can be either finite or infinite.

Finite CQC-derivations can be either successful, if they reach a solution, or failed, if they reach a

violation that cannot be repaired.

As proven in [FTU05], the CQC method terminates when there is no solution, that is, when all

CQC-derivations are finite and failed, or when there is some finite solution, i.e., when there is a

finite, successful CQC-derivation.

For a more detailed discussion on the CQC method see [FTU05].

24

25

3

Checking Desirable Properties of Mappings

Our approach to mapping validation consists in checking whether mappings meet certain

desirable properties. We identify three important properties already proposed in the literature—

mapping satisfiability [ALM09], mapping inference and query answerability [MBDH02]—and

propose a new one—mapping losslessness. We show how to perform such validation by means of

its reformulation as a query satisfiability problem over a database schema.

We show that the proposed reformulation in terms of query satisfiability does not increase the

complexity of the problem.

We finally perform a series of experiments to show the behavior of our approach. The

experiments are carried out using the CQC method [FTU05] as implemented in our Schema

Validation Tool (SVT) [TFU+04].

3.1 Desirable Properties and Their Reformulation in Terms of Query
Satisfiability

In this section, we firstly formalize the desirable properties and, secondly, explain how the

fulfillment of each property should be expressed in terms of query satisfiability.

Recall that a query Q is satisfiable over a schema S if there is any consistent instance of S in

which the answer to Q is not empty [DTU96, HMSS01, ZO97]. We define schema S in such a

way that mapped schemas A and B and mapping M are considered together. We assume that the

two original schemas have different relation names; otherwise, relations can simply be renamed.

In general, schema S is built by grouping the deductive rules and integrity constraints of the

two schemas, and then adding new constraints to make the relationship stated by the mapping

explicit. Formally, this is defined as

26

S = (DRA DRB, ICA ICB ICM),

where ICM is the set of additional constraints that enforces the mapping assertions.

For each mapping assertion of the form QA
i = QB

i, the following two constraints are needed in

ICM :

qA
i(X̄)  qB

i(X̄),

qB
i(X̄)  qA

i(X̄).

These constraints state that the two queries in the assertion must give the same answer, that is,

both QA
i  QB

i and QB
i  QA

i must be true.

For the assertions of the form QA
i  QB

i, only the first constraint is required:

qA
i(X̄)  qB

i(X̄).

Having defined schema S, we define a query Qprop for each desirable property, such that Qprop

will be satisfiable over S if and only if the property holds.

Below, we describe each desirable property in detail and its specific reformulation in terms of

query satisfiability.

3.1.1 Mapping Satisfiability

As stated in [Len02], when constraints are considered in the global schema in a data integration

context, it may be the case that the data retrieved from the sources cannot be reconciled in the

global schema in such a way that both the constraints of the global schema and the mapping are

satisfied.

In general, whenever we have a mapping between schemas that have constraints, there may be

incompatibilities between the constraints and the mapping, or even between the mapping

assertions. Therefore, checking whether there is at least one case in which the mapping and the

constraints are satisfied simultaneously is clearly a validation task that should be performed, and

this is precisely the aim of this property.

Definition 3.1. We consider a mapping M = (F, A, B) to be satisfiable if there are at least two

non-empty instances DA, DB such that they are consistent with schemas A and B, respectively, and

are also consistent under M. □

27

Note that the above definition explicitly avoids the trivial case in which DA and DB are both

empty sets. However, the assertions in F can still be satisfied trivially. We say that an assertion

QA
i = QB

i is satisfied trivially when both AQA
i(DA) and AQB

i(DB) are empty sets. An assertion

QA
i  QB

i is satisfied trivially when AQA
i(DA) is the empty set. Therefore, in order to really validate

the satisfiability of the mapping, we should ask whether all its assertions can be satisfied non-

trivially, or at least one of them.

Definition 3.2. A mapping M = (F, A, B) is strongly satisfiable if all assertions in F are

satisfied non-trivially. The mapping is weakly satisfiable if at least one assertion in F is satisfied

non-trivially. □

Example 3.1. Consider the schemas and the mapping shown graphically in Figure 3.1. The

formalization of the mapped schemas is the following:

Schema A = (DRA, ICA), where
constraints ICA = {

 category(C, S)  S  100,
employee(E, C, H)  S category(C, S) } and

deductive rules DRA = {
qA

1(E, H)  employee(E, C, H)  H > 10,
qA

2(E, S)  employee(E, C, H)  category(C, S) }

constraint:
salary  100

referential
constraint

employee
 emp-id
 category
 happiness-degree

category
 cat-id
 salary

Schema A

happy-emp
 emp-id
 happiness-degree

emp
 id
 salary

Schema B

constraint: happy-emp(E, H)
  emp(E, S)  S > 200

queries:
QA

1: q
A

1(E, H)  employee(E, C, H)  H > 10
QB

1: q
B

1(E, H)  happy-emp(E, H)

QA
2: q

A
2(E, S)  employee(E, C, H)  category(C, S)

QB
2: q

B
2(E, S)  emp(E, S)

QA
1 = QB

1

QA
2 = QB

2

referential
constraint

Figure 3.1: Graphical representation of the mapping scenario in Example 3.1.

28

Schema B = (DRB, ICB), where
constraints ICB = {

happy-emp(E, H)  emp(E, S)  S > 200,
 happy-emp(E, H)  S emp(E, S) } and

deductive rules DRB = {
qB

1(E, H)  happy-emp(E, H),
qB

2(E, S)  emp(E, S) }

The formalization of the mapping is as follows:

M = (F, A, B), where
mapping assertions F = { QA

1 = QB
1, Q

A
2 = QB

2 }

The deductive rules for the queries in F are those defined in the schemas.

Schema A has two tables: employee(emp-id, category, happiness-degree) and category(cat-id,

salary). The employee table is related to the category table through a referential constraint from

employee.category to category.cat-id. The category table has a constraint on salaries, which must

not exceed 100.

Schema B has also two tables: emp(id, salary) and happy-emp(emp-id, happiness-degree). It

has a referential constraint from happy-emp.emp-id to emp.id, and a constraint that states all

happy employees must have a salary of more than 200.

Mapping M links those instances of A and B, say DA and DB, in which (1) the employees in DA

with a happiness degree greater than 10 are the same as the happy-emps in DB, and (2) the

employees in DA are the same and have the same salary as the emps in DB.

We can see that the first mapping assertion, i.e., QA
1 = QB

1 (where qA
1(E, H)  employee(E, C,

H)  H > 10 and qB
1(E, H)  happy-emp(E, H)), can only be satisfied trivially. Mapping M is

thus not strongly satisfiable. There are two reasons for that. The first reason is that all happy-emps

in schema B must have a salary of over 200 while all employees in schema A, regardless of their

happiness degree, must have a maximum salary of 100. The second reason is that mapping

assertion QA
2 = QB

2 (where qA
2(E, S)  employee(E, C, H)  category(C, S) and qB

2(E, S) 

emp(E, S)) dictates that all employees should have the same salary in both sides of the mapping.

In contrast, the second mapping assertion is non-trivially satisfiable, which means that M is

weakly satisfiable. The reason is that there may be employees in A with a happiness degree of 10

or lower and emps in B that are not happy-emps.

29

It should also be noted that if we removed the second assertion from the mapping and just kept

the first one, the resulting mapping would be strongly satisfiable. For the sake of an example,

instances

DA = { employee(joan, sales, 20), category(sales, 30) }

DB = { emp(joan, 300), happy-emp(joan, 20) }

are consistent and satisfy the first mapping assertion.

The mapping would also become strongly satisfiable if we removed the first assertion and kept

the second. That is an example of how the satisfiability of a mapping assertion may be affected by

the rest of assertions in the mapping. □

The mapping satisfiability property for a given a mapping M = (F, A, B) can be reformulated

in terms of query satisfiability as follows.

First, we build the schema that groups schemas A and B and mapping M:

S = (DRA DRB, ICA ICB ICM)

The intuition is that from a consistent instance of S we can get one consistent instance of A

and one consistent instance of B such that they are also consistent under M.

Then, we define the distinguished query in order to check whether it is satisfiable over S. As

there are two types of satisfiability—strong and weak—we need to define a query for either case.

Assuming that F = {f1, ..., fn} and that we want to check strong satisfiability, we define the

strong_sat Boolean query as follows:

strong_sat  qA
1(X̄1)  ...  qA

n(X̄n)

where the terms in X̄1, ..., X̄n are distinct variables. Intuitively, each QA
i query in the mapping

must have a non-empty answer in order to satisfy this query. The same applies to QB
i queries

because of the constraints in ICM that enforce the mapping assertions.

Similarly, in the case of weak satisfiability, we would define the weak_sat Boolean query as

follows:

weak_sat  qA
1(X̄1)  ...  qA

n(X̄n)

However, because the bodies of the rules must be conjunctions of literals, the query should be

defined using the following deductive rules:

30

weak_sat  qA
1(X̄1)

...

weak_sat  qA
n(X̄n)

Proposition 3.1. Boolean query strong_sat/weak_sat is satisfiable over schema S if and only if

mapping M is strongly/weakly satisfiable.

Figure 3.2 shows the schema we obtain when Example 3.1 is expressed in terms of query

satisfiability. Note that the deductive rule that defines the distinguished query strong_sat has been

added to the resulting schema S.

3.1.2 Mapping Inference

The mapping inference property was identified in [MBDH02] as an important property of

mappings. It consists in checking whether a mapping entails a given mapping assertion, that is,

whether or not the given assertion adds new mapping information. One application of the

property would be that of checking whether an assertion of the mapping is redundant, that is,

whether it is entailed by the other assertions. Another application would be that of checking the

equivalence of two different mappings. We can say that two mappings are equivalent if the

assertions in the first mapping entail the assertions in the second, and vice versa.

The results presented in [MBDH02] are in the context of mapping scenarios in which

assertions are equalities of conjunctive queries and schemas do not have integrity constraints.

They show that checking the property in this setting involves finding a maximally contained

rewriting and checking two equivalences of conjunctive queries. Here, we consider a broader

class of assertions and queries and the presence of constraints in the schemas (see Chapter 2).

Constraints:
category(C, S)  S  100
employee(E, C, H)  S category(C, S)

happy-emp(E, H)  emp(E, S)  S > 200
happy-emp(E, H)  S emp(E, S)

qA
1(X, Y)  qB

1(X, Y)
qB

1(X, Y)  qA
1(X, Y)

qA
2(X, Y)  qB

2(X, Y)
qB

2(X, Y)  qA
2(X, Y)

Schema S

Deductive rules:
strong_sat  qA

1(X, Y)  qA
2(U, V)

qA
1(E, H)  employee(E, C, H)  H > 10

qA
2(E, S)  employee(E, C, H)  category(C, S)

qB
1(E, H)  happy-emp(E, H)

qB
2(E, S)  emp(E, S)

DRA

DRB

ICA

ICB

ICM

Figure 3.2: Example 3.1 in terms of query satisfiability.

31

Definition 3.3. (see [MBDH02]) Let a mapping assertion f be defined between schemas A and

B. Assertion f is inferred from a mapping M = (F, A, B) if all pair of instances of A and B that is

consistent under M also satisfies assertion f. □

Example 3.2. Consider again the schemas from Example 3.1, but without the salary

constraints:

Schema A = (DRA, ICA), where
constraints ICA = {

employee(E, C, H)  S category(C, S) } and
deductive rules DRA = {

qA
1(E, H)  employee(E, C, H)  H > 10,

qA
2(E, S)  employee(E, C, H)  category(C, S) }

Schema B = (DRB, ICB), where
constraints ICB = {

happy-emp(E, H)  S emp(E, S) } and
deductive rules DRB = {

qB
1(E, H)  happy-emp(E, H),

qB
2(E, S)  emp(E, S) }

Consider a new mapping:

M2 = (F2, B, A),
where F2 contains just the mapping assertion QB

2 = QA
2

and queries QB
2, Q

A
2 are those already defined in the schemas.

Let f1 be the mapping assertion Q1  Q2, where Q1 and Q2 are queries defined over schemas B

and A, respectively:

q1(E)  happy-emp(E, H)

q2(E)  employee(E, C, H)

The referential constraint in schema B guarantees that all happy-emps are also emps, and if the

mapping assertion in M2 holds, that means they are also employees in the corresponding instance

of schema A. Thus, assertion f1 is true, namely, the employees’ identifiers in the happy-emp table

are a subset of those in the employee table. Therefore, mapping M2 entails assertion f1.

Now, let f2 be the assertion Q3  Q4, where Q3 and Q4 are defined as follows:

 q3(E, H)  happy-emp(E, H)

 q4(E, H)  employee(E, C, H)

32

We can see that mapping M2 does not entail assertion f2. The difference is that we are not just

projecting the employee’s identifier as before, but also the happiness degree. In addition, given

that the assertion from M2 disregards the happiness degree, we can build a counterexample to

show that the entailment of f2 does not hold. This counterexample would consist of a pair of

instances, say DA and DB, that would satisfy the mapping assertion from M2 but that would not

satisfy f2, like, for instance, the following ones:

DA = { employee(0, 0, 5), category(0, 50) }

DB = { emp(0, 50), happy-emp(0, 10) }

It is not difficult to prove that the assertion from mapping M2 holds over DA and DB:

AQB
2(DB) = { qB

2(0, 50) }

AQA
2(DA) = { qA

2(0, 50) }

However, f2 does not hold:

AQ3(DB) = { q3(0, 10) }

AQ4(DA) = { q4(0, 5) } □

Expressing the mapping inference property in terms of query satisfiability is best done by

checking the negation of the property (i.e., the lack of inference) instead of checking the property

directly. The negated property states that a certain assertion f is not inferred from a mapping M =

(F, A, B) if there are two schema instances DA, DB that are consistent under M and do not satisfy f.

Therefore, the distinguished query to be check for satisfiability must state the negation of f. When

f has the form Qa = Qb, we define the map_inf Boolean query by means of the following two

deductive rules:

map_inf  qa(X̄)  ¬qb(X̄)

map_inf  qb(X̄)  ¬qa(X̄)

Otherwise, when f has the form Qa  Qb, only the first deductive rule is needed:

map_inf  qa(X̄)  ¬qb(X̄)

We define the schema S in the usual way: by putting the deductive rules and constraints from

schemas A and B together, and by considering additional constraints to enforce the mapping

assertions. Formally,

S = (DRA DRB, ICA ICB ICM)

33

Proposition 3.2. Boolean query map_inf is satisfiable over schema S if and only if mapping

assertion f is not inferred from mapping M.

Proof. Let us assume that f takes the form Qa = Qb and that map_inf is satisfiable over S. Then,

there is a consistent instance of S for which map_inf is true. It follows that there are two

consistent instances DA, DB of schemas A and B, respectively, such that they are also consistent

under mapping M. Given that map_inf is true, we can infer that there is a tuple that either belongs

to the answer to Qa but that does not belong to the answer to Qb, or that belongs to the answer to

Qb but not to the answer to Qa. Therefore, this pair of instances does not satisfy f.

In contrast, let us assume that there are two consistent instances DA, DB that are also consistent

under mapping M, but that do not satisfy assertion f. It follows that there is a consistent instance

of S for which assertion f does not hold. That means Qa  Qb, i.e., either Qa ⊈ Qb or Qb ⊈ Qa. We

can therefore conclude that map_inf is true over this instance of S, and so, that map_inf is

satisfiable over S.

The proof for the case in which f takes the form Qa  Qb can be directly obtained from this.

■

Figure 3.3 shows the schema that results from the reformulation of Example 3.2 in terms of

query satisfiability, for the case of testing whether assertion f1 is inferred from mapping M2. Note

the presence of the deductive rules that define the queries of assertion f1 (Q1 and Q2) and the rule

that defines the distinguished query map_inf.

3.1.3 Query Answerability

We consider now the query answerability property, which was also described in [MBDH02] as an

important property of mappings. The reasoning behind this property is that a mapping that is

Constraints:
employee(E, C, H)  S category(C, S)

happy-emp(E, H)  S emp(E, S)

qB
2(X, Y)  qA

2(X, Y)
qA

2(X, Y)  qB
2(X, Y)

Schema S

Deductive rules:
map_inf  q1(X)  q2(X)

qA
1(E, H)  employee(E, C, H)  H > 10

qA
2(E, S)  employee(E, C, H)  category(C, S)

q2(E)  employee(E, C, H)

qB
1(E, H)  happy-emp(E, H)

qB
2(E, S)  emp(E, S)

q1(E)  happy-emp(E, C, H)

DRA

DRB

ICA

ICB

ICM2

Figure 3.3: Example 3.2 in terms of query satisfiability.

34

partial or incomplete may nevertheless be successfully used for certain tasks. These tasks will be

represented by means of certain queries. The property checks whether the mapping enables the

answering of these queries over the schemas being mapped. While the previous two properties are

intended to validate the mapping without considering its context, this property validates the

mapping with regard to the use for which it has been designed.

As with mapping inference, the results presented in [MBDH02] are in the context of equalities

between conjunctive queries without constraints on the schemas. They show that the property can

be checked by means of the existence of an equivalent rewriting. As in the previous case, we

consider a broader class of assertions and queries and the presence of constraints in the schemas.

The intuition behind the property is that, given a mapping M = (F, A, B) and a query Q defined

over schema A, it checks whether every consistent instance of B uniquely determines the answer

to Q over A. In other words, if the property holds for a query Q, and DA, DB are two instances

consistent under M, we may compute the exact answer to Q over DA using only the tuples in DB.

Definition 3.4. (see [MBDH02]) Let Q be a query over schema A. Mapping M = (F, A, B)

enables query answering of Q if for all consistent instance DB of schema B, AQ(DA) = AQ(DA') for

every pair DA, DA' of consistent instances of schema A that are also consistent under M with DB.

□

Example 3.3. Consider again the schemas from the previous example:

Schema A = (DRA, ICA), where
constraints ICA = {

employee(E, C, H)  S category(C, S) } and
deductive rules DRA = {

qA
1(E, H)  employee(E, C, H)  H > 10,

qA
2(E, S)  employee(E, C, H)  category(C, S) }

Schema B = (DRB, ICB), where
constraints ICB = {

happy-emp(E, H)  S emp(E, S) } and
deductive rules DRB = {

qB
1(E, H)  happy-emp(E, H),

qB
2(E, S)  emp(E, S) }

Consider also the mapping M from Example 3.1:

M = (F, A, B), where
mapping assertions F = { QA

1 = QB
1, Q

A
2 = QB

2 }

35

and the following query Q defined over schema A:

q(E)  employee(E, C, H)  H > 5

We can see that mapping M does not enable the answering of query Q. The mapping only

deals with those employees in schema A who have a happiness degree greater than 10, while the

evaluation of query Q must also have access to the employees with a happiness degree of between

5 and 10. Thus, we can build a counterexample that will consist of three consistent instances: one

instance DB of schema B and two instances DA, DA' of schema A. Instances DA, DA' will be

consistent under mapping M with DB, but the answer to Q will not be the same in both instances,

i.e., AQ(DA)  AQ(DA'). These criteria are satisfied, for example, by the following instances:

DB = { emp(0, 150), emp(1, 200), happy-emp(1, 15) }

DA = { employee(0, 0, 6), employee(1, 1, 15), category(0, 150), category(1, 200) }

DA' = { employee(0, 0, 4), employee(1, 1, 15), category(0, 150), category(1, 120) }

We can easily state that this is indeed a counterexample because

AQ(DA) = { q(0), q(1) }

but

AQ(DA') = { q(1) } □

The previous example illustrates that query answerability is also easier to check by means of

its negation. Therefore, as two instances of schema A must be found in order to build a

counterexample, we must extend the definition of schema S as follows:

S = (DRA DRA' DRB, ICA ICA' ICB ICM ICM')

where A' = (DRA', ICA') is a copy of schema A = (DRA, ICA) in which we rename all the

predicates (e.g., q is renamed q') and, similarly, M' = (F', A', B) is a copy of mapping M = (F, A,

B) in which we rename the predicates in the mapping assertions that are predicates from schema

A. The intuition is that having two copies of schema A allows us to get from one single instance

of schema S the two instances of A that are necessary for building the counterexample.

We will then check the satisfiability of the Boolean query q_answer, which we define using

the following deductive rule:

 q_answer  q(X̄)  ¬q' (X̄)

36

where Q is the parameter query of the property (defined over schema A) and Q' is its renamed

version over schema A'. Intuitively, query q_answer can only be satisfied by an instance of S

from which we can get two instances of A that do not have the same answer for query Q, i.e.,

there is a tuple q(ā) in the answer to Q over one of the instances that is not present in the answer

to Q over the other instance.

Proposition 3.3. Boolean query q_answer is satisfiable over schema S if and only if mapping

M does not enable query answering of Q.

Proof. Let us assume that q_answer is satisfiable over S. That means there is a consistent

instance of S in which q_answer is true. It follows that there is an instance DB of B, an instance

DA of A, and an instance DA' of A', such that they are all consistent and DA and DA' are also both

consistent with DB under mappings M and M', respectively. As q_answer is true, we can infer that

there is a tuple q(ā), such that q(ā)  AQ(DA) and q'(ā)  AQ'(DA'). Given that schema A' is in fact

a copy of schema A, we can conclude that for each instance of schema A' there is an identical one

that conforms to schema A. Thus, DA' can be seen as an instance of A, in such a way that if it was

previously consistent with DB under M', it is now also consistent with DB under M and, for all

previous q'(ā) in the answer to Q', there is now a q(ā) in the answer to Q. Therefore, we have

found two instances DA, DA' of schema A such that AQ(DA) ⊈ AQ(DA') and are both consistent

under mapping M with a given instance DB of schema B. We can thus conclude that M does not

enable query answering of Q.

The other direction can easily be proved by inverting the line of reasoning. ■

Constraints:
employee(E, C, H)  S category(C, S)

happy-emp(E, H)  S emp(E, S)

qA
1' (X, Y)  qB

1(X, Y)
qB

1(X, Y)  qA
1' (X, Y)

qA
2' (X, Y)  qB

2(X, Y)
qB

2(X, Y)  qA
2' (X, Y)

employee' (E, C, H)  S category' (C, S)

qA
1' (X, Y)  qB

1(X, Y)
qB

1(X, Y)  qA
1' (X, Y)

qA
2' (X, Y)  qB

2(X, Y)
qB

2(X, Y)  qA
2' (X, Y)

Deductive rules:
q_answer  q(X)  ¬q' (X)

q(E)  employee(E, C, H)  H > 5
qA

1(E, H)  employee(E, C, H)  H > 10
qA

2(E, S)  employee(E, C, H)  category(C, S)

qB
1(E, H)  happy-emp(E, H)

qB
2(E, S)  emp(E, S)

q' (E)  employee' (E, C, H)  H > 5
qA

1' (E, H)  employee' (E, C, H)  H > 10
qA

2' (E, S)  employee' (E, C, H)  category' (C, S)

ICM '

ICA '
DRA '

Schema S

DRA

DRB

ICA

ICB

ICM

Figure 3.4: Example 3.3 in terms of query satisfiability.

37

Figure 3.4 shows the schema that we get when we reformulate Example 3.3 in terms of query

satisfiability. Note that the deductive rule that defines the distinguished query q_answer has been

added to the resulting schema S, and that the rules corresponding to queries Q, Q' have been

added to DRA and DRA', respectively.

3.1.4 Mapping Losslessness

As we have seen, query answerability determines whether two mapped schemas are equivalent

with respect to a given query in that it would obtain the same answer in both cases. However, in

certain contexts this may be too restrictive. Consider data integration [Len02], for instance, and

assume that for security reasons it must be known whether any sensitive local data is exposed by

the integrator system. Clearly, in such a situation, the query intended to retrieve such sensitive

data from a source is not expected to obtain the exact answer that would be obtained if the query

were directly executed over the global schema. Therefore, such a query is not answerable under

the terms specified above. Nevertheless, sensitive local data are in fact exposed if the query can

be computed over the global schema. Thus, a new property that is able to deal with this is needed.

In fact, when a mapping has assertions of the form QA
i  QB

i, checking query answerability

does not always provide the designer with useful information. Let us illustrate this with an

example.

Example 3.4. Consider the schemas used in the previous two examples:

Schema A = (DRA, ICA), where
constraints ICA = {

employee(E, C, H)  S category(C, S) } and
deductive rules DRA = {

qA
1(E, H)  employee(E, C, H)  H > 10,

qA
2(E, S)  employee(E, C, H)  category(C, S) }

Schema B = (DRB, ICB), where
constraints ICB = {

happy-emp(E, H)  S emp(E, S) } and
deductive rules DRB = {

qB
1(E, H)  happy-emp(E, H),

qB
2(E, S)  emp(E, S) }

Consider also the following query Q:

q(E)  employee(E, C, H)

It is not difficult to see that the mapping M from Example 3.1 enables answering of query Q.

38

M = (F, A, B), where
mapping assertions F = { QA

1 = QB
1, Q

A
2 = QB

2 }

The parameter query Q selects all employees in schema A; and mapping M states that the

employees in A are the same as the emps in B. Thus, when an instance of schema B is given, the

extension of the employee table in schema A becomes uniquely determined, as well as the answer

to Q.

Consider now the following mapping:

M3 = (F3, A, B), where
mapping assertions F3 = { QA

1  QB
1, Q

A
2  QB

2 }

Note that mapping M3 is similar to the previous mapping M, but the = operator has been

replaced with the  operator.

If we consider mapping M3, the extension of the employee table is not uniquely determined by

a given instance of B; in fact, it can be any subset of the tuples in table emp in the instance of B.

For example, let DB be an instance of schema B such that

DB = { emp(0, 70), emp(1, 40) }

and let DA and DA' be two instances of schema A such that

DA = { employee(0, 0, 5), category(0, 70) }

DA' = { employee(1, 0, 5), category(0, 40) }

We have come up with a counterexample and may thus conclude that mapping M3 does not

enable query answering of Q. □

The above example shows that when a mapping has assertions of the form QA
i  QB

i, an

instance of schema B does not generally determine the answer to a query Q defined over schema

A. This is because, over a given instance of B, there is just one possible answer for each query

QB
1, ..., QB

n in the mapping. However, due to the  operator, there is more than one possible

answer to the queries QA
1, ..., QA

n. A similar result would be obtained if Q were defined over

schema B. Thus, query answerability does not generally hold for mappings of this kind.

Intuitively, we can say that the reason is that query answerability holds only when we are able to

compute the exact answer for Q over an instance DA using only the tuples in the corresponding

mapped instance DB. However, if any of the mapping assertions has the  operator, we cannot

39

know, just by looking at DB, which tuples are also in DA, and we are therefore unable to compute

an exact answer for Q.

To deal with that, we defined the mapping losslessness property, which, informally speaking,

checks whether all pieces of data that are needed to answer a given query Q over schema A are

captured by mapping M = (F, A, B), in such a way that they have a counterpart in schema B. In

other words, if DA and DB are two instances consistent under mapping M and the property holds

for query Q, an answer to Q may be computed using the tuples in DB, although not necessarily the

same answer we would obtain evaluating Q directly over DA.

Definition 3.5. Let Q be a query defined over schema A. We say that mapping M = (F, A, B) is

lossless with respect to Q if for all pair of consistent instances DA, DA' of schema A, both the

existence of an instance DB that is consistent under M with DA and with DA' and the fact that

AQA
i(DA) = AQA

i(DA') for each query QA
i in the mapping imply that AQ(DA) = AQ(DA'). □

Example 3.5. Consider once again the schemas A and B used in the previous examples, and

the mapping M3 and the query Q from Example 3.4:

Schema A = (DRA, ICA), where
constraints ICA = {

employee(E, C, H)  S category(C, S) } and
deductive rules DRA = {

qA
1(E, H)  employee(E, C, H)  H > 10,

qA
2(E, S)  employee(E, C, H)  category(C, S) }

Schema B = (DRB, ICB), where
constraints ICB = {

happy-emp(E, H)  S emp(E, S) } and
deductive rules DRB = {

qB
1(E, H)  happy-emp(E, H),

qB
2(E, S)  emp(E, S) }

Mapping M3 = (F3, A, B), where
mapping assertions F3 = { QA

1  QB
1, Q

A
2  QB

2 }

Query Q = { q(E)  employee(E, C, H) }

We saw that the query answerability property does not hold for mapping M3. Let us now check

the mapping losslessness property.

Let us assume that we have two consistent instances DA, DA' of schema A, and a consistent

instance DB of schema B that is consistent under M with both instances of A. Let us also assume

that the answers to QA
2 and QA

1 are exactly the same over DA and DA'. Let us now suppose that Q

40

obtains q(0) over DA but not over DA'. According to the definition of Q, it follows that DA contains

at least one employee tuple, say employee(0, 0, 12), which DA' does not contain. Since DA is

consistent with the integrity constraints, it must also contain its corresponding category tuple, say

category(0, 20). Therefore, according to the definition of QA
2, the answer qA

2(0, 20) would be

obtained over DA but not over DA'. This clearly contradicts our initial assumption. Mapping M3 is

thus lossless with respect to Q. □

To reformulate the mapping losslessness property in terms of query satisfiability, we define

the schema S in a similar way as we did for query answerability:

S = (DRA DRA' DRB, ICA ICA' ICB ICM ICL)

where schema A' = (DRA', ICA') is a copy of schema A = (DRA, ICA) in which predicates are

renamed, and ICM is the set of constraints that enforce the assertions in mapping M = (F, A, B).

We use ICL to denote the set of constraints that force A and A' to share the same answers for the

QA
i queries in the mapping:

 ICL = { qA
1(X̄1)  qA

1' (X̄1), q
A

1' (X̄1)  qA
1(X̄1)

 ...,

 qA
n(X̄n)  qA

n' (X̄n), q
A

n' (X̄n)  qA
n(X̄n) }

Let Q be the query over schema A to be checked for satisfiability, and let Q' be the copy of Q

over schema A'. We define the Boolean query map_loss as follows:

map_loss  q(X̄)  ¬q' (X̄)

The intuition is that query map_loss can only be satisfied by an instance of S from which we

can get two instances of A that have the same answers for the QA
i queries (because of ICL) but not

for the query Q (because of the deductive rule). We are checking thus for the existence of a

counterexample.

Proposition 3.4. Boolean query map_loss is satisfiable over schema S if and only if mapping

M is not lossless with respect to query Q.

Proof. Let us assume that map_loss is satisfiable over S. Hence, there is an instance of S in

which map_loss is true. This means that the answer to Q has a tuple that is not in the answer to

Q'. Based on the instance of S, we can thus build an instance DA for schema A, an instance DA' for

schema A', and an instance DB for schema B. Given that A and A' are in fact the same schema with

41

different predicate names, and that queries Q and Q' are the same query, we can conclude that DA'

is also an instance of schema A, and that query Q evaluated over DA returns a tuple that is not

returned when it is evaluated over DA'. Thus, we have two instances of schema A, both of which

are consistent under mapping M with a third instance of schema B. Furthermore, the two

instances of schema A have the same answer for the queries in the mapping but not for query Q.

According to the definition of mapping losslessness, M is not lossless with respect to Q.

The other direction can be proved by inverting the line of reasoning. ■

Figure 3.5 shows the reformulation of Example 3.5 in terms of query satisfiability.

The mapping losslessness property is the result of adapting the property of view losslessness

or determinacy [CDLV02, NSV07, SV05]. Under the exact view assumption, a set of views V is

lossless with respect to a query Q if every pair of database instances that has the same extension

for the views in V also has the same answer for Q. Therefore, we can say that mapping

losslessness checks whether the set of queries V = {QA
1, ..., Q

A
n} is lossless with respect to query

Q. However, there is the additional requirement that the extensions for the queries in V must be so

that there is a consistent instance of schema B also consistent under the mapping with them.

It can be seen that in the cases in which all the assertions in the mapping take the form

QA
i = QB

i, mapping losslessness and query answerability (Section 3.1.3) are equivalent properties.

Proposition 3.5. Let Q be a query over schema A, and let M = (F, A, B) be a mapping where

F = {f1,...,fn} and fi is QA
i = QB

i for 1  i  n. Mapping M is lossless with respect to Q if and only

if M enables query answering of Q.

Constraints:
employee(E, C, H)  S category(C, S)

happy-emp(E, H)  S emp(E, S)

employee' (E, C, H)  category' (C, S)

qA
1(X, Y)  qA

1' (X, Y)
qA

1' (X, Y)  qA
1(X, Y)

qA
2(X, Y)  qA

2' (X, Y)
qA

2' (X, Y)  qA
2(X, Y)

qA
1(X, Y)  qB

1(X, Y)
qA

2(X, Y)  qB
2(X, Y)

Deductive rules:
map_loss  q(X)  ¬q' (X)

q(E)  employee(E, C, H)
qA

1(E, H)  employee(E, C, H)  H > 10
qA

2(E, S)  employee(E, C, H)  category(C, S)

qB
1(E, H)  happy-emp(E, H)

qB
2(E, S)  emp(E, S)

q' (E)  employee' (E, C, H)
qA

1' (E, H)  employee' (E, C, H)  H > 10
qA

2' (E, S)  employee' (E, C, H)  category' (C, S)

ICL

DRA '

ICA '

ICM3

Schema S

DRA

DRB

ICA

ICB

Figure 3.5: Example 3.5 in terms of query satisfiability.

42

Proof. Let us assume that mapping M is lossless with respect to query Q, and let us also

assume that mapping M does not enable answering of query Q. By the negation of query

answerability, there is an instance DB of schema B and two instances DA, DA' of schema A such

that DA and DA' are both consistent under M with DB but AQ(DA) ≠ AQ(DA'). Given that all

mapping assertions are like QA
i = QB

i, AQA
i(DA) = AQA

i(DA') is true for 1  i  n. Hence, instances

DA, DA' and DB form a counterexample for mapping losslessness and a contradiction is thus

reached.

Let us now however assume that mapping M enables answering of query Q, and let us also

assume that M is not lossless with respect to Q. By the negation of losslessness, there are two

instances DA, DA' of A such that AQA
i(DA) = AQA

i(DA') for 1  i  n, and there is also an instance DB

of B that is consistent under M with both instances of A. It must also be true that AQ(DA) ≠

AQ(DA'). In this case, the three instances form a counterexample for query answerability. Thus, a

contradiction is again reached. ■

3.2 Decidability and Complexity Issues

The high expressiveness of the queries and schemas considered in the paper makes the problem

of query satisfiability undecidable in the general case (that can be shown by reduction from query

containment [HMSS01]). Possible sources of undecidability are the presence of recursively-

defined derived predicates and the presence of either “axioms of infinity” [BM86] or “embedded

TGDs” [Sag88]. For this reason, if we are using the CQC method [FTU05] to check the desirable

properties of mappings defined in Section 3.1, the method may not terminate. However, we

propose a pragmatic solution that ensures the method’s termination, and makes the approach

useful in practice.

Intuitively, the aim of the CQC method is to construct an example that proves that the query

being checked is satisfiable. In [FTU05], it is proved that the CQC method is sound and complete

in the following terms:

− Failure soundness: If the method terminates without building any example, then the tested

query is not satisfiable.

− Finite success soundness: If the method builds a finite example when queries contain no

recursively-defined derived predicates, then the tested query is satisfiable.

43

− Failure completeness: If the tested query is not satisfiable, then the method terminates

reporting its failure to build an example, when queries contain no recursively-defined derived

predicates.

− Finite success completeness: If there is a finite example, the method finds it and terminates

either when recursively-defined derived predicates are not considered or recursion and

negation occur together in a strict-stratified manner.

Therefore, the CQC method does not terminate when there are no finite examples but infinite

ones. However, if there is a finite example, the CQC method finds it and terminates, and if the

tested query is not satisfiable, the method fails finitely and terminates.

One form to assure always termination is to directly avoid the CQC method to construct

infinite instances. This can be done by restricting the maximum number of tuples in the instance

that is constructed during the method’s execution (see Chapter 2). Once reached that maximum,

the current instance under construction is considered “failed”, since it probably does not lead to a

finite example, and the next relevant instance is tried. At the end of the process, if no solution has

finally been found, the method reports to the user that no example with less tuples than the

maximum exists. Then, the designer can choose to repeat the test with a greater maximum, and, if

the situation persists, that may be an indicator that there is no finite database instance in which the

tested query is satisfiable.

Such a solution could be regarded as some kind of “trickery”; however, it is a pragmatic

solution in the sense that no “real” database is supposed to store an infinite number of tuples.

In Chapter 5, we propose a test that is aimed at detecting whether the CQC method is

guaranteed to terminate when applied to a given mapping scenario. Such termination test is not

complete, as expected given the undecidability of the termination checking problem, but can be

complemented with the pragmatic solution proposed above.

Another key point regarding complexity is showing that for the class of mapping scenarios we

consider (see Chapter 2), expressing the desirable properties of mappings in terms of query

satisfiability does not increase their complexity.

For instance, the problem of checking query satisfiability can be reduced to the one of

checking mapping losslessness: Let us assume that we want to check whether V is satisfiable over

A. Let A' be a copy of A, and let V' be the copy of V over A'. Let us define Q over A as a copy of

V, but with a contradiction (e.g., the built-in literal 1 = 0) added to the body of all its deductive

rules (Q is thus not satisfiable). Let M be a mapping between A and A', with one single mapping

44

assertion: Q  V'. If V is satisfiable, then there is a consistent instance D of schema A in which

the answer to V is non-empty. Instance D together with the empty instances of A and A' form a

counterexample for losslessness of M with respect to query V. If V is not satisfiable, then no

counterexample for losslessness exists. If there were a counterexample, we would have two

instances of A giving different answers for V. Therefore, V should be satisfiable and we would

reach a contradiction.

Similar reductions can be made from query satisfiability to query answerability, mapping

inference, and mapping satisfiability.

3.3 Experimental Evaluation

We experimentally evaluated the behavior of our approach for validating mappings by means of a

number of experiments. The experiments were performed using the implementation of the CQC

method that is the core of our SVT tool [TFU+04]. We executed the experiments on an Intel Core

2 Duo, 2.16 GHz machine with Windows XP (SP2) and 2GB RAM. Each experiment was

repeated three times and we report the average of these three trials.

The experiments were designed with the goal of measuring the influence of two parameters:

(1) the number of assertions in the mapping, and (2) the number of relational atoms in the queries

(positive ordinary literals with a base predicate). We focused on the setting in which the two

mapped schemas are of similar difficulty (i.e., a similar number and size of tables with a similar

number and class of constraints), as well as the queries on each side of the mapping.

We designed the scenario for the experiments using the relational schema of the Mondial

database [Mon98], which models geographic information. The schema consists of 28 tables with

38 foreign keys. We consider each table with its corresponding primary key, unique and foreign

key constraints. The scenario consists of two copies of the Mondial database schema that play the

roles of schema A and schema B, respectively. The fact that both schemas are indeed copies of a

single schema has no real effect on the performance of the CQC method; what is actually relevant

is the difficulty of the schemas. The mapping between the two schemas varies from experiment to

experiment, but mapping assertions always take the form QA
i = QB

i. It must be remembered that

equality assertions are expressed by means of two constraints, while inclusion assertions only

require one of them; thus, we are considering the most general setting.

45

Figure 3.6 shows a graphic that compares the performance of the properties: strong mapping

satisfiability, mapping losslessness, mapping inference and weak mapping satisfiability, when the

number of assertions in the mapping varies. The query answerability property (not shown in the

graphic) would show the same behavior as mapping losslessness (this generally happens when the

two mapped schemas are of similar difficulty). Figure 3.6 focus on the case in which the

distinguished query that describes the fulfillment of the corresponding property (see Section 3.1)

is satisfiable. It must be remembered that the fact that the tested query is satisfiable has a different

meaning depending on which property we are considering. For the two flavors of the mapping

satisfiability property, it means that they hold, while for the other three properties it means that

they do not.

In this experiment, the queries in the mapping take the form: qA
i(X̄)  RA(X̄) and qB

i(X̄) 

RB(X̄), where RA is a table randomly selected from schema A and RB is its counterpart in schema

B.

The two variants of mapping satisfiability—strong and weak—can be checked without any

change in the mapping because both properties already hold for the mapping scenario as it is.

Instead, in order to ensure that mapping inference does not hold, we tested the property with

respect to the following assertion: Q1 = Q2. Queries Q1 and Q2 are: q1(X̄)  RA(X̄)  Xi  K1 and

q2(X̄)  RB(X̄)  Xi  K2, where Xi  X̄, K1 and K2 are different constants, and RA is one of the

tables that appear in the definition of the QA
i queries, and RB is the counterpart of RA. We built this

assertion by taking one of the assertions in the mapping and adding disequalities to make it non-

There is a solution for the query sat isfiability test
Varying the number of mapping assertions

One relational atom in each query

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 3 5 7 9 11 13 15 17 19 21 23 25 27

mapping assertions

R
u

n
n

in
g

 t
im

e
 (

se
c)

strong sat.

map. losslessness

map. inference

weak sat.

Figure 3.6: Comparison in performance of the properties when the number of mapping

assertions varies and the distinguished query is satisfiable.

46

inferable. We added disequalities on both sides of the assertion to keep both sides of the same

difficulty.

In the case of mapping losslessness, we used a parameter query Q that selects all the tuples

from a table T randomly selected from schema A. To ensure that the mapping is not lossless with

respect to Q, we modified the assertion that maps T to its counterpart in B, in such a way that the

two queries in the assertion projected all the columns but one.

We can see in Figure 3.6 that the strong version of mapping satisfiability is slower than the

weak one. This is expected, since strong satisfiability requires all assertions to be checked in

order to ensure that all of them can be satisfied non-trivially. Instead, weak satisfiability can stop

checking after finding one assertion that cannot be satisfied in a non-trivial way. It can also be

seen that strong satisfiability has clearly higher running times than mapping losslessness and

mapping inference. This is because these two properties have an additional parameter: a query

and an assertion, respectively, and in order to check the properties, the CQC method only has to

deal with the fragment of the schemas and mapping that is “mentioned” by the parameter

query/assertion. However, strong satisfiability has to deal with the whole part of the schema that

participates in the mapping. Figure 3.6 also shows that mapping losslessness has higher times

than mapping inference. This is expected, given the difference in the size of schema S between

the two cases.

In Figure 3.7, we can see the same experiment as in the previous figure but now for the case in

which the distinguished query is not satisfiable

No solution for the query satisfiability test
Varying the number of mapping assertions

One relational atom in each query

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27

mapping assertions

R
u

n
n

in
g

 t
im

e
 (

se
c)

strong sat.

map. losslessness

map. inference

w eak sat.

Figure 3.7: Comparison in performance of the properties when the number of mapping

assertions varies and the distinguished query is not satisfiable.

47

To make the two mapping satisfiability properties fail in this second experiment, we added to

each table in schema A a check constraint that required that one of the columns was greater than a

fresh constant. We added the same constraint to the counterpart of the table in schema B. We also

modified each mapping assertion in such a way that the two queries in the assertion were forced

to select those tuples that violated the check constraints.

In the case of mapping inference, we used one of the assertions already in the mapping as the

parameter assertion, and in the case of mapping losslessness, one of the QA
i queries in the

mapping as the parameter query.

The first thing we can observe in Figure 3.7 is the overall increment of all running times. The

reason is that the CQC method must try all the relevant instances that are provided by the VIPs

before concluding that there is no solution. Instead, in the previous experiment, the search

stopped when a solution was found. It is worth noting that strong mapping satisfiability and weak

mapping satisfiability have exchanged roles. The weak version of the property is now slower than

the strong one. Intuitively, this is because strong mapping satisfiability may stop as soon as it

finds an assertion that cannot be satisfied non-trivially, while weak mapping satisfiability must

continue to search until all the assertions have been considered.

Figure 3.8 and Figure 3.9 compare the performance of the properties when the number of

relational atoms in each query varies. Figure 3.8 focus on the case in which query satisfiability

tests have a solution, and Figure 3.9 focus on the case in which they do not. In both experiments,

the mapping has 14 assertions and its QA
i queries follow the pattern qA

i(X̄)  RA
1(X̄1)  ... 

RA
n(X̄n), where RA

1, ..., R
A

n are n tables randomly selected from schema A, and each query QB
i is

the counterpart over schema B of the corresponding query QA
i.

To ensure that in Figure 3.8 the query satisfiability tests had a solution and that in Figure 3.9

they did not, we proceeded in a similar way as in the previous two experiments. To ensure that

mapping inference in Figure 3.8 did not hold, we used one of the assertions in the mapping as

parameter assertion but added one inequality on each side. In the case of mapping losslessness,

we modified one of the assertions in the mapping in such a way that its queries projected all the

columns minus one. We then used the original query QA
i from the assertion as parameter query.

In Figure 3.9, to make the mapping unsatisfiable, we added a check constraint (column X must be

greater than a constant K) in each table, and modified the mapping assertions in such a way that

their queries now selected those tuples that violated the check constraints. To ensure that mapping

48

inference and mapping losslessness held in Figure 3.9, we used one of the assertions/queries in

the mapping as parameter assertion/query.

Figure 3.8 shows similar results to those in Figure 3.6 for all the properties. However, Figure

3.9 shows a rapid degradation of time for mapping losslessness and mapping inference, while

weak and strong mapping satisfiability show similar behavior to that in Figure 3.7 (only weak

mapping satisfiability is shown in the graphic).

As mentioned above, it is expected that running times will be higher when there is no solution,

since all possible instantiations for the literals in the definition of the tested query must be

checked. The reason why mapping inference and mapping losslessness are so sensitive and grow

so quickly with the addition of new literals can be seen by looking at the bodies of the rules that

There is a solution for the query satisfiability test
Varying the number of relational atoms in each query

Mapping has 14 assertions

0

1

2

3

4

5

6

1 2 3 4

relational atoms in each query

R
u

n
n

in
g

 t
im

e
 (

se
c)

strong sat.
map. losslessness
map. inference

w eak sat.

Figure 3.8: Comparison in performance of the properties when the number of relational

atoms in each query varies and the distinguished query is satisfiable.

No solution for the query satisfiability test
Varying the number of relational atoms in each query

Mapping has 14 assertions

0

2000

4000

6000

8000

10000

12000

1 2 3 4

relational atoms in each query

R
u

n
n

in
g

 t
im

e
 (

se
c

)

map. losslessness
map. inference
w eak sat.

Figure 3.9: Comparison in performance of the properties when the number of relational

atoms in each query varies and the distinguished query is not satisfiable.

49

define their distinguished queries (see Section 3.1), which follow the pattern q(X̄)  p(X̄).

Therefore, in order to determine whether or not query map_inf/map_loss is satisfiable, the

unfolding of q(X̄) must first be fully instantiated using the constants provided by the VIPs, e.g.,

q(ā)  r1(ā1)  ...  rn(ān), and it must then be checked whether or not p(ā) is true. If it is false,

we must then try another instantiation and so on until all possible ones have been checked.

Thanks to the VIPs there is a finite number of possible instantiations for the unfolding of q(X̄),

but its number is exponential with respect to the number of literals in the definition of q.

However, this is a very straightforward implementation of the CQC method. Many of these

instantiations could be avoided by using the knowledge we could obtain from the violations that

occur during the search, which would reduce these running times considerably (see Chapter 4).

Strong satisfiability; There is a solution for the query satisfiability
test

Varying the number of negations and relational atoms in each query
Mapping has 14 assertions

0

5

10

15

20

25

30

35

40

1 2 3 4

relational atoms in each query

R
u

n
n

in
g

 t
im

e
 (

se
c

)

3 negations
2 negations
1 negation
no negations

Figure 3.10: Effect in strong mapping satisfiability of increasing the number of negated atoms

in each query.

Strong satisfiability; There is a solution for the query satisfiability
test

Varying the number of comparisons and relational atoms in each
query Mapping has 14 assertions

0

100

200

300

400

500

600

700

800

1 2 3 4

relational atoms in each query

R
u

n
n

in
g

 t
im

e
 (

s
e

c)

3 comparisons
2 comparisons
1 comparison
no comparisons

Figure 3.11: Effect in strong mapping satisfiability of increasing the number of comparisons

in each query.

50

In Figure 3.9, the mapping satisfiability properties are not greatly affected by the addition of

new literals because not all the literals have to be instantiated before concluding that the

distinguished query is not satisfiable. Once a contradiction is found, only the literals that have

been instantiated so far must be reconsidered.

Figure 3.10 studies the effect on strong mapping satisfiability of adding negated literals to

each query in the mapping, for the setting in which the distinguished query is satisfiable and the

number of positive relational atoms in each query varies.

To perform the experiment shown in Figure 3.10, we added a conjunction of s negated literals

TA
1(Ȳ1)  ...  TA

s(Ȳs) to each mapping query, where TA
i are tables randomly selected from

schema A not already appearing in the definition of the corresponding query QA
i, and each

variable in Ȳi appears in a positive atom of QA
i.

As the CQC method turns the negations in the goal into integrity constraints, adding negated

literals makes more probable that a violation occurs during the search; thus, the method has to

perform more backtracking and that results in an augment of running time.

Figure 3.11 studies the effect on strong mapping satisfiability of adding built-in literals

(instead of the negations added in the previous experiment) to each query in the mapping.

The built-in literals added to the queries are comparisons with the form X > K, where X is a

variable corresponding to a column of one of the tables in the query’s definition, and K is a

constant.

Table 3.1: Summary of experiments.

Tested properties
Query

satisfiability
tests

#mapping
assertions

relational
atoms per

query

deductive
rules

#constraints
negated

literals in the
schema

order
comparisons

in the
schema

strong sat., weak sat.,
map. inference,
map. losslessness

have solution
varies
from 1 to 28

1
between
133 and 229

between
192 and 397

0, 1 or 2
(depending on
the property)

0

strong sat., weak sat.,
map. inference,
map. losslessness

have no
solution

varies
from 1 to 28

1
between
133 and 229

between
192 and 397

0, 1 or 2
(depending on
the property)

between
0 and 112

strong sat., weak sat.,
map. inference,
map. losslessness

have solution 14
varies
from 1 to 4

between
105 and 159

between
218 and 341

0, 1 or 2
(depending on
the property)

0

weak sat.,
map. inference,
map. losslessness

have no
solution

14
varies
from 1 to 4

between
108 and 159

between
218 and 341

1 or 2
(depending on
the property)

between
0 and 112

strong sat. have solution 14
varies
from 1 to 4

105 218
varies
from 0 to 84

0

strong sat. have solution 14
varies
from 1 to 4

105 218 0
varies
from 0 to 84

51

Figure 3.11 shows a clear increment of times when there are more than two comparisons per

query. The reason for that increment is the augment in the number of constants provided by the

VIPs. The VIPs use the constants in the schema to determine the relevant instantiations. Thus,

adding comparisons with constants increases the number of possible instantiations and,

consequently, the running time. Moreover, the more comparisons there are, the more pronounced

the increment of time.

Table 3.1 summarizes the performed experiments. It indicates which properties have been

checked in each case, whether or not the corresponding distinguished queries were satisfiable,

and other relevant features of the different scenarios.

52

53

4

Computing Explanations

Our approach does not only provide the designer with a Boolean answer; it also provides

additional feedback to help the designer understand why the tested property holds or not for the

given mapping. The feedback can be in the form of instances of the mapped schemas that serve as

an example/counterexample for the tested property, or in the form of highlighting the subsets of

schema constraints and mapping assertions that are responsible for the test result. Since the first

kind of feedback—schema instances—is already provided by the CQC method, we focus on

providing the second kind of feedback—subsets of schema constraints and mapping assertions.

We refer to this task as computing explanations.

An explanation is minimal if no proper subset of it is also an explanation.

It is important to note that there may be more than one minimal explanation for a given

desirable property test, and that all of them must be addressed in order to change the result of the

test. For example, consider the mapping scenario depicted in Figure 4.1. It is easy to see that

mapping {QEmp
1  QPer, QEmp

2  QWork} does not meet the strong mapping satisfiability property

(Section 3.1.1). The problem is that the two mapping assertions conflict with the age and the

salary constraint of the Employee schema, respectively (perhaps the designer missed one ‘0’ in

the maximum age to be selected by QEmp
1 and put an additional ‘0’ in the minimum salary to be

selected by QEmp
2). Since strong mapping satisfiability requires all mapping assertions to be non-

trivially satisfiable at the same time, the property will continue to “fail” although we fix one of

the assertions, i.e., we must fix the two in order to solve the problem. Therefore, there are two

minimal explanations: one is

{ mapping assertion “QEmp
1  QPer”, Employee’s constraint “age  18” },

and the other is

54

{ mapping assertion “QEmp
2  QWork”, Employee’s constraint “salary  5000” }.

In this chapter, we firstly propose a black-box method that computes all possible minimal

explanations for a given validation test (Section 4.1). This method works at the level of the query

satisfiability problem, that is, after the application of the CQC method and before translating the

test result back into the mapping validation context (such translation is straightforward). The

method is black-box because it relies on an underlying query satisfiability method, which, in our

case, is the CQC method.

The drawback of the black-box method is that, for large schemas, the runtime of each call to

the CQC method may be high. That means that even computing one single minimal explanation

can be a time-consuming process. To deal with that, we propose a glass-box approach (Section

4.2), i.e., an extension of the CQC method that does not only check whether the given query is

satisfiable but also provides an approximated explanation when needed. We call this extension:

CQCE method.

The explanation provided by the CQCE method is approximated in the sense that it may be not

minimal. The designer can decide whether the approximation is sufficient or more accurate

explanations are needed.

Employee
 name
 salary
 age

Person
 name
 age
Worker
 name
 salary

Constraints:
salary  5000
age  18

Constraints:
age < 100
salary  1000

Queries:
QEmp

1: q
Emp

1(N, A)  employee(N, S, A)  A  10
QPer: qPer

 (N, A)  person(N, A)

QEmp
2: q

Emp
2(N, S)  employee(N, S, A)  S  10000

QWork: qWork
 (N, S)  worker(N, S)

QEmp
1  QPer

QEmp
2  QWork

Figure 4.1: Flawed mapping scenario.

55

We show that not only the designer but also the black-box method can take advantage from

the approximated explanation provided by the CQCE method (Section 4.1.3).

An experimental evaluation of both approaches—black-box and glass-box—and of its

combination is also provided in the corresponding sections.

4.1 Computing All Minimal Explanations

We assume that we have a procedure isSat to perform query satisfiability tests on a given

database schema. Therefore, a query satisfiability test is a call to isSat(Q, S), which will return

true if query Q is satisfiable on schema S and false otherwise. We say that an explanation for a

query satisfiability test is a subset of integrity constraints from the schema such that it prevents

the test from returning true. In other words, the query we are testing would still be not satisfiable

if we removed from the schema all integrity constraints that are not in the explanation.

Definition 4.1. An explanation E for a query satisfiability test isSat(Q, S = (DR, IC)) that

returns false is a minimal subset of constraints from S such that considering only these constraints

the tested query Q is still not satisfiable, i.e., isSat(Q, S’ = (DR, E)) returns false. □

Note that, because E is minimal, isSat(Q, S’’ = (DR, E’)) will return true for any E’  E, i.e.,

the query Q is satisfiable for any proper subset of E.

We address the problem of finding all possible explanations in a way that is independent of

the particular query satisfiability method. That is, we see isSat as a black-box, and we call it

several times, modifying the (sub)set of integrity constraints that is considered in each call. We

do this “backwards”, which means that we call isSat successively, decreasing the number of

constraints that are considered each time.

We also propose a filter that can be used to reduce the number of calls to the underlying query

satisfiability method (Section 4.1.2). The filter is based on discarding those constraints that are

not relevant for the current query satisfiability test.

4.1.1 Our Black-Box Method—The Backward Approach

The backward approach is intended to find a first explanation quickly, and then to use the

knowledge from that explanation to find the remaining ones. It provides three levels of search,

each one giving more information than the previous. The first level is aimed at finding just one

explanation. This is done by reducing the number of constraints in the schema until only the

56

constraints forming the explanation remain. It requires only a linear number of calls to isSat, with

respect to the number of constraints in the schema. In the second level, the backward approach

finds a maximal set of non-overlapping explanations that includes the one found in the previous

phase. This is interesting because we can provide more than just one explanation, while keeping

the number of calls linear. Moreover, given that all the remaining explanations must overlap with

the ones already found, the designer has already a clue of where the rest of issues might be.

Finally, in the third level, the backward approach computes all the remaining explanations, but

also introduces an exponential number of calls to isSat.

4.1.1.1 Phase 1

Let us assume that a given query Q is not satisfiable on a certain database schema S, so

isSat(Q, S) returns false. Phase 1 starts by performing the query satisfiability test of Q on a new

schema that contains all the integrity constraints from the former schema except one: c. If

isSat(Q, S-{c}) returns false, that means there is at least one explanation that does not contain c.

Therefore, we can discard c definitely and repeat the query satisfiability test, removing another

constraint. Note that this does not mean that c does not belong to any explanation, but only that c

will not be included in the single explanation that we will obtain at the end of this phase. In

contrast, if isSat(Q, S-{c}) returns true, that means there are one or more explanations that

include c. As a consequence, c cannot be discarded and must be re-introduced in the schema.

Then, we repeat the query satisfiability test, removing another constraint. We continue this

process of removing a constraint, testing query satisfiability, discarding or reintroducing the

Figure 4.2: Phase 1 of the backward approach.

phase_1(Q: query, S = (DR, IC): schema): explanation

U := IC // set of “unchecked” constraints

E := IC // explanation

while (c  U)

E := E – {c}

if (isSat(Q, S’ = (DR, E)))

E := E  {c}

endif

U := U – {c}

endwhile

return E

57

constraint, removing another constraint and so on until all the constraints in the schema have been

considered.

If at the end of this process all constraints have been removed from the schema, we obtain an

empty explanation, which means that query Q is unsatisfiable even without integrity constraints.

Otherwise, we have obtained one explanation; it consists of all those constraints that remain in the

schema, that is, the ones that have been considered but not discarded during the process described

above. The algorithm in Figure 4.2 formalizes such a process.

For the sake of an example, let us assume that Q is a query defined as follows:

Q  R(X, Y, Z)  V(Z, A, B)  T(Z, U, V)  Y > 5  B < X  V = 2

Let us also assume that S is a database schema with no deductive rules but with the following

constraints, labeled as c1, c2, c3 and c4, respectively:

(c1) T(X, Y, Z)  Z  2

(c2) R(X, Y, Z)  Y  X

(c3) R(X, Y, Z)  X  5

(c4) V(X, Y, Z)  Z  10

In this case, query Q is not satisfiable on S. Concretely, there exist three explanations:

E1 = {c1}

E2 = {c2, c3}

E3 = {c3, c4}

Let us call phase_1(Q, S), with S = {c1, c2, c3, c4} to find one of these three explanations. If

we assume the constraints are considered in the order they were listed above, c1 is considered

first. Since isSat(Q, {c2, c3, c4}) returns false, c1 is discarded. Constraint c2 is considered next.

Since isSat(Q, {c3, c4}) returns false, c2 is also discarded. Constraint c3 is considered next. In

this case, isSat(Q, {c4}) returns true. Therefore, c3 is not discarded. Finally, constraint c4 is

considered. Since isSat(Q, {c3}) returns true, c4 cannot be discarded either. As a result,

phase_1(Q, S) returns {c3, c4}, that is, explanation E3. Note that if the constraints had been

considered in reverse order, for instance, the returned explanation would have been another: {c1}

= E1.

4.1.1.2 Phase 2

The second phase of the backward approach assumes that we already found a non-empty

explanation in the previous phase. The goal now is to obtain, at the end of the phase, a maximal

58

set of explanations such that all the explanations in the set are disjoint, i.e., there is no constraint

belonging to more than one explanation. One of these explanations will be the one we already

found in Phase 1.

The phase proceeds as follows. We take the original schema and remove all the constraints

included in the first explanation we found. In this way, we “disable” the explanation and have a

chance to discover other explanations (if any), which in Phase 1 were “hidden” by it. Next, we

perform the query satisfiability test over the remaining constraints. If the test returns false, that

means there is still, at least, another explanation not overlapping with the one we have. To find

out such a new explanation, we apply Phase 1 over the remaining explanations. On the contrary,

if after removing the constraints from the former explanation, the query satisfiability test returns

true, that means all the remaining explanations (if any) overlap with the one we have.

We repeat the process, removing the constraints from all the explanations we have found (the

one from the first phase and the new ones we have already found in this phase), until there are no

more explanations that do not overlap with the ones we already have. The algorithm in Figure 4.3

formalizes such a process.

Continuing with the example that we introduced to illustrate Phase 1, recall that we found that

{c3, c4} was an explanation for the fact that isSat(Q, {c1, c2, c3, c4}) had returned false.

According to Phase 2, we start now by calling isSat(Q, {c1, c2}). Since this call returns false too,

that means there is another explanation and its constraints are in {c1, c2}. Therefore, we call

phase_1((Q, {c1, c2}), which returns {c1} as the new explanation. Next, we call isSat(Q, {c2}),

which returns true and, thus, Phase 2 ends. The final output for this phase is {{c3, c4}, {c1}},

which is a set of disjoint explanations.

Figure 4.3: Phase 2 of the backward approach.

phase_2(Q: query, S = (DR, IC): schema,
EP1: explanation): Set(explanation)

SE := {EP1} // set of explanations

R := IC - EP1 // set of “remaining” constraints

while (not isSat(Q, S’ = (DR, R)))

E := phase_1(Q, S’ = (DR, R))

SE := SE  {E}

R := R – E

endwhile

return SE

59

4.1.1.3 Phase 3

The third phase assumes that we already obtained a set of disjoint explanations by performing the

previous phases. The goal now is to find all the remaining explanations, that is, those that overlap

with some of the explanations that we already have. To do this, we must remove one constraint

from each known explanation to “disable” them, and then apply the first and second phases over

the remaining constraints. The drawback here is that there could be many constraints in each

explanation and, thus, many constraints to be the one to be removed. Nevertheless, we should try

all combinations to ensure we find all the remaining explanations.

Once we have removed one constraint from each explanation and executed the previous two

phases over the remaining constraints, we get some new explanations that we will add to the set

of explanations we already have. Next, we should repeat this third phase, taking into account the

added explanations, until no new explanations are found. The algorithm in Figure 4.4 formalizes

such a process.

Figure 4.4: Phase 3 of the backward approach.

phase_3(Q: query, S = (DR, IC): schema,
SE: Set(explanation)): Set(explanation)

AE := SE

Combo := combinations(AE)

while (C  Combo)

R := IC – C

if (not isSat(Q, S’ = (DR, R)))

E := phase_1(Q, S’ = (DR, R))

NE := phase_2(Q, S’ = (DR, R), E)

AE := AE  NE

Combo := combinations(AE)

endif

Combo := Combo – {C}

endwhile

return AE

combinations(SE: Set(explanation)): Set(Set(constraint))

// returns all possible sets of constraints that can be obtained by
selecting one constraint from each explanation in SE.

60

Following the example of the previous subsections, we already had found two explanations:

{c3, c4} and {c1}. Now, if there is still some other explanation, it will overlap with these. Thus,

to avoid these explanations to hide the remaining ones, we must select one constraint from each

explanation and remove them from the original schema. In this example, there are two

possibilities:

1) remove {c1, c3}

2) remove {c1, c4}

Let us consider the first option. In this case, isSat(Q, {c2, c4}) returns true, so no further

explanation can be found.

In contrast, if we consider the second option, we get that isSat(Q, {c3, c2}) returns false.

Therefore, we can still find further explanations. Next, we call phase_1(Q, {c3, c2}), which

returns a new explanation: {c3, c2}. Clearly, phase_2(Q, {c3, c2}, {c3, c2}) will return {{c3,

c2}} as new set of explanations.

As we have found new explanations, we must repeat the process taking now into account all

the explanations discovered so far. This time, there two possible ways of disabling the three

explanations that we have found so far (recall the explanations are: {c3, c4}, {c1} and {c3, c2}):

1) remove {c1, c3}

2) remove {c1, c2, c4}

It is worth noting that, since constraint c3 is shared by the explanations {c3, c4} and {c3, c2},

it is not necessary to try and remove the combinations {c1, c2, c3} and {c1, c3, c4}; the removal

of c3 already disables {c3, c4} and {c3, c2}, so there is no need to remove and additional

constraint from neither of them.

After trying the two possibilities, we reach the conclusion that there are no further

explanations. Therefore, Phase 3 ends. The outcome of this phase and of the entire approach is

the set formed by the three explanations: {{c3, c4}, {c1}, {c3, c2}}.

4.1.2 Filtering Non-Relevant Constraints

As we have seen, the backward approach requires performing several calls to isSat, mostly to

check whether the constraint we just removed from the schema is part or not of the explanation

we are looking for. The filter described in this section consists in detecting those constraints that

we can ensure are not relevant for the current query satisfiability test. We can say that a constraint

is not relevant for the test when in order to get a fact about the query’s predicate it is not required

61

to have also a fact about all the positive ordinary predicates in the constraint. The idea is that

when we remove a constraint from the schema during Phase 1, we can also remove all those

constraints that are no longer relevant for the query satisfiability test. Recall that Phase 1 is also

called from Phase 2 and 3, so all three phases benefit from this filter.

For example, let us assume that we have the following database schema:

R(X, Y, Z)  Y S(Z, Y)

R(X, Y, Z)  Z  5

S(X, Y)  X < 5

T(X, Y, Z)  Y  Z

Let us also assume that we are testing whether query Q is satisfiable, being Q defined by the

following rule:

Q(X, Y)  R(X, Y, Z)

Figure 4.5: Version of Phase 1 that filters non-relevant constraints.

phase_1′(Q: query, S = (DR, IC): schema): explanation

IC := IC – nonRelevantConstrs(Q, S)

U := IC // set of “unchecked” constraints

E := IC // explanation

while (c  U)

E := E – {c}

NRC := nonRelevantConstrs(Q, S′ = (DR, E))

E : = E – NRC

if (isSat(Q, S′′ = (DR, E)))

E := E  {c}  NRC

U := U – {c}

else

U := U – ({c}  NRC)

endif

endwhile

return E

nonRelevantConstrs(Q: query, S: schema): Set(constraint)

// returns the set of constraints that are not relevant for the satisfiability
test of Q on S.

62

Since Q is not satisfiable, let us suppose we apply the backward approach to compute the

explanations. We will start by finding one minimal explanations. During the process, we will

remove constraint R(X, Y, Z)  Y S(Z, Y) to see if it is in the explanation. In doing so, we will

be eliminating the necessity of having to insert a fact about predicate S in order to satisfy Q. The

consequence of that is that since S will remain empty, its constraints will never be violated, and

therefore, they are not relevant for the query satisfiability test. In this case, there is just one

constraint over S: S(X, Y)  X < 5, which can also be removed from the schema before calling

isSat.

More formally, the steps to apply the filter during the backward approach are the following:

1. Before starting Phase 1, we could remove the constraints that are already non-relevant for the

test over the original schema (as we did with the forward approach).

2. During Phase 1, after we remove one integrity constraint ICi from the schema, we could

recompute what constraints are relevant for the test over the schema that contains only the

remaining constraints.

3. If some of the remaining constraints are not relevant, we can remove them before

performing the test.

4. If then the test says that the predicate is still unsatisfiable we will have removed more

than just one constraint and thus reduced the number of test executions we will have to

do.

5. Otherwise, if the test says that the predicate is now satisfiable, we will have to put back

the constraint ICi and the constraints removed in step 3.

6. If all the constraints are relevant, we can do nothing but continue the normal execution of

Phase 1.

Let us consider again the example from above. In step 1 we would detect that constraint

T(X, Y, Z)  Y  Z is not relevant. We could thus eliminate it and perform Phase 1 over the

remaining three constraints. Let us suppose that we follow the order in which the constraints were

listed above. Then, we would first eliminate the inclusion dependency. That would leave us with

two constraints in the schema: R(X, Y, Z)  Z  5 and S(X, Y)  X < 5. As we said, the later

constraint is no longer relevant for the query satisfiability test. Thus, we could remove it and

perform the test with only one constraint: R(X, Y, Z)  Z  5. Since the query becomes

satisfiable, we should put back the two removed constraints (the inclusion and the one about S).

63

Phase 1 would remove then the next constraint: R(X, Y, Z)  Z < 5, and it would continue the

execution in a similar way. Figure 4.5 shows an algorithm for this new version of Phase 1.

To characterize formally the constraints that are relevant for a certain query satisfiability test,

we are going to assume that each constraint is reformulated as a rule defining a derived predicate

ICi in such a way that the constraint is violated when its corresponding predicate ICi is true in the

database. Recall that we also assume that deductive rules have no recursion.

Let Q be a generic derived predicate defined by the following rules:

Q(X̄)  P1
1(X̄1)  ...  P1

s1(X̄s1)  C1
1  ...  C1

r1  S1
1(X̄1)  ...  S1

m1(X̄m1)

...

Q(X̄)  Pk
1(X̄1)  ...  Pk

sk(X̄sk)  Ck
1  ...  Ck

rk  Sk
1(X̄1)  ...  Sk

mk(X̄mk)

Symbols P1
1, ..., P

1
s1, S

1
1, ..., S

1
m1, ..., P

k
1, ..., P

k
sk, S

k
1, ..., S

k
mk are predicates and C1

1, ..., C
1

r1,

..., Ck
1, ..., Ck

rk are built-in literals. We will define neg_preds(Q) as the predicates in those

negative literals that appear in the definition of Q, taking into account all possible unfoldings.

Formally:

neg_preds(Q) = {{Sj
i | 1  i  mj} | 1  j  k}  {{neg_preds(Pj

i) | 1  i  sj} | 1  j  k}

neg_preds(R) =  if R is a base predicate

Now, we are going to define what predicates are relevant for the satisfiability test of a certain

predicate P. There will be two types of relevancy: p-relevancy and q-relevancy. The p-relevant

predicates will be those that in order to build a database where P is intended to be satisfiable, it

may be required to insert some fact about them in that database. The q-relevant predicates will be

those derived predicates such that although it is not explicitly required for them to have some fact

in order to make P satisfiable, they may end up having some as a result of other predicate’s facts

being inserted in the database.

Definition 4.2. Assuming that we are testing the satisfiability of a certain predicate P, we can

say the following:

 Predicate P is p-relevant.

 If Q is a derived predicate and it is p-relevant, then Pj
i with 1  i  sj and 1  j  k, are also

p-relevant predicates.

 If Q is a derived predicate and Pj
1, ..., P

j
sj are p-relevant or q-relevant, for some 1  j  k, then

Q is q-relevant.

64

 If Q is a derived predicate and there is a negated literal about Q in the body of a rule of some

p-relevant derived predicate, and Pj
1, ..., P

j
sj are p-relevant or q-relevant predicates, for some

1  j  k, then Sj
1, ..., Sj

mj and the predicates in neg_preds(Pj
1)...neg_preds(Pj

sj) are p-

relevant.

 If ICi  P1(X̄1)  ...  Ps(X̄s)  C1  ...  Cr  S1(X̄1)  ...  Sm(X̄m) is an integrity constraint

and P1, ..., Ps are p-relevant or q-relevant predicates, then ICi is q-relevant and the predicates

in neg_preds(ICi) are p-relevant. □

It is worth noting that a predicate defined by an integrity constraint cannot be p-relevant, as it

is not mentioned anywhere but in the head of the constraint, and thus, only the last point of the

definition is applicable.

Definition 4.3. We will say that an integrity constraint ICi  L1  ...  Ln is relevant for the

satisfiability test of P if and only if the derived predicate ICi is q-relevant for that test. □

As an example, let us assume that we have a database schema with the following deductive

rules and constraints:

V(X,Y)  R(X,A,B)  S(B,C,Y)  W(A,C)

W(X,Y)  P(X,Y)  Y > 100

P(X,Y)  T(X,Y)  H(X)

Q(X)  S(X,Y,Z)  Y  5  Y  10

IC1  R(X,Y,Z)  T(Y,Z)

IC2  F(X,Y)  X  0

Derived predicates IC1 and IC2 correspond to two constraints. Let us also assume that we want

to test if V is satisfiable in this schema. Let us now compute the predicates that are relevant for

this satisfiability test:

(1) We star with p-relevant =  and q-relevant = 

(2) The first point in the definition of predicate’s relevancy says that, as we are testing the

satisfiability of V, V is a p-relevant predicate.

(3) Then, p-relevant = {V} and q-relevant = 

(4) Now that we know V is p-relevant, by the second point of the definition we can infer that R

and S are also p-relevant.

(5) p-relevant = {V, R, S} and q-relevant = 

65

(6) As long as S is p-relevant, by the third point of the definition, we can say that Q is

q-relevant.

(7) p-relevant = {V, R, S} and q-relevant = {Q}

(8) By the fifth point, as R is p-relevant, we can say that IC1 is q-relevant and T is p-relevant.

(9) p-relevant = {V, R, S, T} and q-relevant = {Q, IC1}

(10) Once we know that T is p-relevant, by the third point again, we can conclude that P is

q-relevant.

(11) p-relevant = {V, R, S, T} and q-relevant = {Q, IC1, P}

(12) We can apply now the fourth point of the definition. The derived predicate W appears

negated in the rule of V, and V is p-relevant. The predicates that appear positively in W, i.e.,

{P}, are also relevant. Thus, we can infer that the predicates that appear negated in W or

some of its unfoldings are p-relevant. That means H is p-relevant.

(13) p-relevant = {V, R, S, T, H} and q-relevant = {Q, IC1, P}

(14) We still can apply the third point and say that as P is q-relevant, then W is q-relevant too.

(15) p-relevant = {V, R, S, T, H} and q-relevant = {Q, IC1, P, W}

(16) We cannot infer anything new. Thus, there are no other relevant predicates.

Finally, we can say that IC1 is a relevant constraint for the satisfiability test of V and that IC2 is

not relevant. Intuitively, it is easy to see that IC2 is not relevant because predicate F is not

mentioned anywhere else (F is also non-relevant).

Proposition 4.1. Let P be an unsatisfiable predicate and let ICi be a constraint from the

database schema. If ICi is not relevant for the satisfiability test of P, then P is still unsatisfiable

after removing ICi from the schema.

Proof. Let us assume that after removing ICi from the schema, P becomes satisfiable. It

follows that exists some minimal database D such that D is consistent and some fact about P is

true in D. Database D is minimal in the sense that there is no database D’ with less tuples than D

such that D’ is also consistent and contains some fact about P.

As long as P becomes satisfiable after removing ICi, database D should violate ICi. Our goal

now is to show that it follows that ICi is q-relevant for the satisfiability test of P. To reach that,

we will do induction over the unfolding level of the predicates. A base predicate has an unfolding

level of 0. A derived predicate such that the maximum unfolding level of the predicates that

66

appear positively in its rules is n, has an unfolding level of n+1 The base case will be thus when

the predicate is a base predicate. Let T be this predicate. We assume that there is at least one fact

about T in D. Given that D is minimal, there are only two possibilities. The first is that a fact

about T may be required to satisfy the definition of P, i.e., a positive literal about T appears in the

definition of P (taking into account all possible unfoldings). The second possibility is that the

satisfaction of P leads to the violation of some integrity constraint that can be repaired by means

of the addition of a fact about T, i.e., there is some constraint with a negative literal about T and

such that all its positive literals are true in D. In both cases, the conclusion is that predicate T is p-

relevant for the satisfiability test of P. The induction case will be that in which T is a derived

predicate. As long as some fact about T is true in D, some rule defining T should have all its

literals true in D. By induction, we can conclude that all the predicates from the positive literals in

that rule are p-relevant or q-relevant and that T is thus q-relevant itself.

Finally, as ICi is true in D, we can conclude that ICi is q-relevant, and we reach a

contradiction. ∎

4.1.3 Taking Advantage of an Approximated Explanation

Let us assume that isSat(Q, S) returns a pair (B, ApproxE), where B is the Boolean result of the

query satisfiability test, and ApproxE is an approximated explanation for Q being unsatisfiable on

S (meaningful only when B = false). The idea is to offer the approximated explanation to the user

in the first place. If he wants a more accurate explanation, we can apply the Phase 1 of the

backward approach to minimize the explanation; if he then wants additional explanations, we can

apply Phase 2; and if he wants all the possible explanations, we can just apply Phase 3.

Moreover, the Phase 1 of the backward approach can be modified so it takes advantage of the

approximated explanation returned by isSat. We do that as follows.

This new version of Phase 1—let us call it Phase 1′′—assumes that we have already tested the

satisfiability of Q on S and found that it is not satisfiable, that is, it assumes that we already have

an approximated explanation ApproxE returned by the initial query satisfiability test.

Phase 1′′ starts by removing from S all those integrity constraints not present in ApproxE.

After that, it removes one additional constraint, namely c. Now, it computes the integrity

constraints that are no longer relevant for the satisfiability of Q on S (see Section 4.1.2), namely

{c1, ..., cn}, and removes them all. Let us assume isSat(Q, ApproxE-{c, c1, ..., cn}) returns (B′,

ApproxE′). If B′ is true, {c, c1, ..., cn} must all be re-introduced in the schema. If B′ is false, we

can discard all those constraints not in ApproxE′—that includes both c and {c1, ..., cn}—and also

67

all those other constraints that become not relevant after these last removals. The process

continues until all constraints have been considered. As in the original version, the constraints

that remain at the end of the process are the ones that form the explanation. Figure 4.6 formalizes

Phase 1′′.

We will discuss how to compute an approximated explanation with a single execution of isSat

in Section 4.2.

4.1.4 Experimental Evaluation

We have performed some experiments to compare the efficiency of the backward approach with

respect to one of the best methods known for finding minimal unsatisfiable subsets of constraints:

the hitting set dualization approach [BS05]. We have also evaluated the behavior of the backward

approach when varying some parameters: the size of the explanations, the number of explanations

for each test, and the number of constraints in the schema. We executed the experiments on an

Intel Core 2 Duo, 2.16 GHz machine with Windows XP (SP2) and 2 GB RAM.

Figure 4.6: Version of Phase 1 that takes advantage of approximated explanations.

phase_1′′(Q: query, S = (DR, ApproxE): schema): explanation

ApproxE := ApproxE – nonRelevantConstrs(Q, S)

U := ApproxE // set of “unchecked” constraints

E := ApproxE // explanation

while (c  U)

E := E – {c}

NRC := nonRelevantConstrs(Q, S′ = (DR, E))

E := E – NRC

(B′, ApproxE′) := isSat(Q, S′′ = (DR, E))

if (B′)

E := E  {c}  NRC

U := U – {c}

else

E := ApproxE′ – nonRelevantConstrs(Q, S′′′ = (DR, ApproxE′))

U := U  E

endif

endwhile

return E

68

To perform the query satisfiability tests in the experiments, we used the CQCE method, which

will be described in Section 4.2. More precisely, we used the implementation of the CQCE

method that is the core of our SVTE tool (Schema Validation Tool with Explanations) [FRTU08].

Remind that our approach is however independent of the method used. We have used the CQCE

method here since it allows us to consider schemas with a high degree of expressiveness and

evaluate the behavior of the backward approach in the case in which it can take advantage of

approximated explanations.

The first experiment, shown in Figure 4.7, is aimed at comparing the approach for computing

explanations that we proposed on Section 4.1.1, the backward approach, with the hitting set

dualization approach proposed in [BS05]. We have used an implementation of the dualization

approach that uses incremental hitting set calculation, as described in [BS05], but replacing the

Figure 4.8: Number of calls to the CQCE method in Figure 4.7.

Figure 4.7: Comparison of the backward and dualization approaches.

69

calls to the satisfiability method by calls to the CQCE method. We performed the experiment

using a database schema formed by K chains of tables, each one with length N:

R1
1(A

1
1,B

1
1), ..., R

1
N(A1

N,B1
N)

...

RK
1(A

K
1,B

K
1), ..., R

K
N(AK

N,BK
N).

Each table has two columns and two constraints: a foreign key from its second column to the

first column of the next table, i.e., Rj
i.B

j
i references Rj

i+1.A
j
i+1, and a Boolean check constraint

requiring that the first column must be greater that the second, i.e., Rj
i.A

j
i > Rj

i.B
j
i. Additionally,

the first table of each chain has a check constraint stating that its first column must not be greater

than 5, i.e., Rj
1.A

j
1  5. The last table of each chain has another check constraint stating that its

second column must not be lower than 100, i.e., Rj
N.Bj

N  100. This schema is designed to allow

us to study the effect of varying the number and size of explanations. Note that the value of N

determines the size of the explanations and that the value of K determines their number. When N

is set to 1, we find explanations of size 3, and each increment in the value of N results in 2

additional constraints in each explanation. Regarding K, its value is exactly the number of

explanations we will find.

Note also that in this experiment all the explanations are disjoint. Each chain of tables in the

schema provides one explanation, and all the chains are disjoint. That means, when we execute

the phase 3 of the backward approach, it will not provide any new explanation with respect to the

first two phases.

In this experiment, we computed the explanations for the satisfiability test of the following

Boolean query P:

P  R1
1(X

1
1,X

1
2)  ...  RK

1(X
K

1,X
K

2).

The symbols X1
1, X

1
2, ..., X

K
1, X

K
2 are fresh variables. Due to the previous database schema

definition, the satisfiability test of P does not reach any solution, i.e., P is not satisfiable over the

former schema.

Figure 4.7 shows the running times for different values of N, which range from 1 to 5. The

value of K was set to 2. We executed the backward approach without using the filter described in

Section 4.1.2. All three phases of the backward approach were executed.

The graphic shows that the dualization approach is quite much slower than our backward

approach. It is worth noting, however, that the dualization approach [BS05] was proposed for the

70

context of type error and circuit error diagnosis and that we are applying it now to a different

context. One difference is that while in [BS05] the authors use an incremental satisfiability

method for Herbrand equations, we are not aware of any incremental method to check query

satisfiability in the class of schemas that we consider here. Another difference is that the

dualization approach computes the explanations by means of the relationship that exists between

the minimal unsatisfiable subsets of constraints (the explanations) and the maximal satisfiable

subsets of constraints. Thus, it finds a maximal unsatisfiable subset first, then computes its

complements, and finally computes the hitting sets for the set of complements. The resulting

hitting sets are the candidates for being explanations. In a different way, the backward approach

finds a maximal set of disjoint explanations first, which requires only a linear number of test

executions, and then focuses on finding the remaining explanations, taking into account that they

must overlap with the ones already found. In this way, it can significantly reduce the number of

candidates to be considered. Figure 4.8 shows the number of calls to the CQCE method performed

by each approach.

Figure 4.9: Effect of varying the size and number of explanations.

71

Figure 4.9 shows the behavior of the dualization and backward approaches when the number

of explanations varies from 1 to 3, the explanations are disjoint, and the size of each explanation

ranges from 3 to 11. We used the same database schema than in the previous experiment and the

same target query P. Focusing on our backward approach, Figure 4.9 shows an increase of

running time when the number of explanations grows, which is higher when going from 2 to 3

explanations. This is expected since although phases 1 and 2 imply a linear number of test

executions, phase 3 still requires an exponential number of them. Regarding the dualization

approach, it shows a similar behavior, although its running times are significantly higher than

those of the backward approach under the same number of explanations. The same behavior can

be observed on the number of calls the two approaches make to the CQCE method.

In Figure 4.10, we compare the backward approach with its three phases against the first two

phases only and against the first phase only. This time, we used a database schema similar to the

one we used in the previous experiments but formed now by the following two chains:

R1
1(A

1
1,B

1
1), ..., R

1
N-1(A

1
N-1,B

1
N-1), R

1
N(A1

N,B1
N,C1

N)

R2
1(A

2
1,B

2
1), ..., R

2
N(A2

N,B2
N)

The integrity constraints are also similar to those in the previous schema but with two

additions: a check constraint in R1
N that states A1

N  C1
N, and another check, also in R1

N, which

states C1
N  200. The target query P is now the following:

P  R1
1(X,Y)  R2

1(U,V)

In this schema, there will be three explanations for the satisfiability test of P. The first chain

will provide two of them, which will overlap. These two explanations will share all their

constraints except those in R1
N; one explanation will have the constraints: A1

N  B1
N and B1

N 

100, and the other explanations the constraints: A1
N  C1

N and C1
N  200. The second chain will

provide the third explanation. Phase 1 will thus find one of these three explanations; phase 2 will

find an explanation disjoint with the previous one; and, finally, the third phase will find the

remaining one. This way, since each phase provides one explanation, we will be able to compare

them.

The graphics in Figure 4.10 show a big increment of running time when we introduce the third

phase. This is expected since the third phase requires to select one constraint from each

explanation already found, trying all the possible combinations. It can also be seen that the

graphics for the cases of phases 1 & 2 and phase 1 only have also an exponential shape although

they require just a linear number of test executions. This result is clearly due to the cost of each

72

one of these test executions, as the exponential cost of the used method (in this case the CQCE

method) cannot be avoided because of the complexity of the satisfiability problem. Note that,

however, the linear shape can indeed be observed in Figure 4.11, which shows the number of

calls to the CQCE method made by the backward approach in Figure 4.10.

In Figure 4.12, we study the effect of both the filter described in Section 4.1.2 and the use of

approximated explanations described in Section 4.1.3 in reducing the number of calls the

backward approach makes to the underlying query satisfiability method. This time we used a

database schema similar to the one from the first experiment (with K = 2), but with some

additions. First, we added a third attribute Rj
i.C to each table Rj

i. Moreover, for each chain

Rj
1(A

j
1,B

j
1,C

j
1), …, Rj

N(Aj
N,Bj

N,Cj
N), we added L constraints in the form of: Rj

1(A
j
1,B

j
1,C

j
1)  ... 

Rj
N(Aj

N,Bj
N,Cj

N)  Cj
1  kj

1  …  Cj
N  kj

n, where kj
1, …, kj

n are fresh constants. These new

constraints will allow us to see the difference between using or not approximated explanations.

Figure 4.11: Number of calls to the CQCE method in Figure 4.10.

Figure 4.10: Comparison of the three phases of the backward approach.

73

Note that the constraints are relevant for the query satisfiability test (thus, they will not be

removed by the filter), but are not part of any explanation (which makes them candidates to be

removed when using approximated explanations). The next modifications are aimed at making

visible the difference between using the filter and using no optimization. To that end, we added,

for each table Rj
i, the following chain: Rj

i,1(A1,B1), ..., R
j
i,N(AN,BN). Each one of the tables in the

chain has the following constraints: a check Rj
i,s.As > Rj

i,s.Bs, and a referential constraint in which

Rj
i,s.Bs references Rj

i,s+1.As+1. We also added an additional referential constraint to each table Rj
i

that references the first table of its corresponding new chain, i.e., Rj
i.B

j
i references Rj

i,1.A1. Finally,

we added M tables from the relational schema of the Mondial [Mon98] database (out of 28

tables), and connected them with the tables Rj
1 by means of referential constraints in which an

attribute of each table from the Mondial schema references some Rj
1.A

j
1. We considered the

Mondial database schema with its primary key, unique and foreign key constraints.

The graphics in Figure 4.12 show the behavior of the backward approach with/without filter

and with/without taking advantage of approximated explanations, when increasing the number of

constraints in the database schema. We used schemas with 40, 78, 125 and 189 constraints,

respectively, which we got by changing the value of N, L and M. It can be seen how using the

filter reduces dramatically the number of calls to isSat with respect to the version of the backward

approach without any optimization. It is also clear that the combination of the filter with the

approximated explanations reduces even more the required number of calls.

Figure 4.12: Effect of the filter and the use of approximated explanations on the number of
calls to the CQCE method.

74

4.2 Computing an Approximated Explanation

In this section, we propose to explain the unsatisfiability of a given query be means of a glass-box

approach. That is, we propose to extend the query satisfiability method in such a way that when

the tested query is unsatisfiable, it returns not only a Boolean answer but also some sort of

explanation. More specifically, we propose an extension of the CQC method, which we refer to as

the CQCE method.

Recall that the CQC method is a query satisfiability method. That means the explanation

provided by this glass-box approach is to be translated back into the mapping validation context,

as in the case of our black-box method.

In contraposition to the black-box method, this glass-box approach does not require multiple

executions of the query satisfiability test but just one, which has a significant impact on running

time, especially when schemas are large. The drawback is the fact that the explanation provided

by the CQCE method may be not minimal, and the fact that it provides just one explanation and

not all the possible ones. However, as discussed in Section 4.1.3, our black-box method can be

combined with this glass-box approach in such a way that we benefit from the advantages of both

of them.

Before introducing the CQCE method, we must discuss some formalism issues:

 For the sake of uniformity when dealing with deductive rules and constraints, we associate an

inconsistency predicate Ici to each integrity constraint (we did the same in Section 4.1.2).

Then, a database instance violates a constraint Ici  L1  ...  Lk if predicate Ici is true in that

database, i.e., if there is some ground substitution  that makes (L1  ...  Lk) true.

 We assume that the satisfiability test of the given query is expressed in terms of a goal to

attain G = L1  …  Lm and a set of conditions to enforce F  IC [FTU04]. In this way, we

say that (G, F) is satisfiable if there is at least one database instance that makes G true and

does not violate any integrity constraint in F.

 An explanation for the non-satisfaction of a query satisfiability test expressed in terms of

(G, F) is a set of integrity constraints E  F such that (G, E) is not satisfiable.

4.2.1 Our Glass-Box Approach—The CQCE Method

The main aim of our approach is to perform query satisfiability tests expressed in the formalism

stated above, in such a way that: (1) if the property is satisfiable, we provide a concrete database

75

instance in which the query has a non-empty answer; and (2) if the query is not satisfiable, we

provide an approximated explanation.

As defined in [FTU05], the CQC method does not provide any kind of explanation when a

query satisfiability test “fails”. Roughly, the original CQC method performs query satisfiability

tests by trying to construct a database instance in which the tested query has at least one tuple in

its answer (see Chapter 2 for an overview). The method uses different Variable Instantiation

Patterns (VIPs), according to the syntactic properties of the database schema considered in each

test, to instantiate the ground EDB facts (i.e., tuples) to be added to the database. Adding a new

fact to the database under construction may cause the violation of some constraints. When a

violation is detected, some previous decisions must be reconsidered in order to explore alternative

ways to reach a solution (e.g., reinstantiate a variable with another constant). In any case, the

CQC method does not prescribe any particular execution strategy for the generation of the

different alternatives.

The extension we propose in this section is to define an execution strategy that explores only

those alternatives that are indeed relevant for reaching the solution. In order to do this, we need to

modify the internal mechanisms of the CQC method to gather the additional information that is

required for detecting which alternatives are relevant. If none of these alternatives leads to a

solution, the gathered information will be used to build one explanation: the explanation of why

this execution has failed. This explanation may however not be minimal in the context of

explaining the unsatisfiability of the query.

In addition to allow us the computation of an approximated explanation, using the CQCE

method results in a significant efficiency improvement, as we will show in Section 4.2.3.

4.2.1.1 Example

Let us consider a database schema with two tables: Category(name, salary) and Employee(ssn,

name, category). The salary is constraint to be  50 and  30; the category of an employee must

be different from ‘ceo’; and there is a referential constraint from attribute Employee.category to

Category.name. It is easy to see that this database cannot store any tuple. The constraint in the

salary is impossible to satisfy, which means we cannot insert any tuple into the Category table.

Since employees must always have a category, we cannot insert any tuple into the Employee table

either (we assume null values are not allowed). The deductive rules and integrity constraints of

this schema, expressed in the formalism required by our method, are as follows:

Deductive rules DR = { isCat(X)  Cat(X, S) }

76

Integrity constraints IC = { Ic1  Emp(X, Y)  Y = ‘ceo’,

 Ic2  Emp(X, Y)  isCat(Y),

 Ic3  Cat(X, S)  S > 30,

 Ic4  Cat(X, S)  S < 50 }

Suppose that we want to check whether a query that selects all employees is satisfiable on this

database schema, that is, whether (G = Emp(X, Y), IC) is satisfiable. Figure 4.13 shows a CQCE-

derivation that tries to construct an EDB to prove that this query is satisfiable. Each row in the

figure corresponds to a CQCE-node that contains the following information (columns):

(1) The goal to attain: the literals that must be made true by the EDB under construction.

(2) The conditions to be enforced: the set of conditions that the constructed EDB is required

to satisfy.

(3) The extensional database (EDB) under construction.

(4) The conditions to be maintained: a set containing those conditions that must remain

satisfied until the end of the CQCE-derivation.

(5) The set of constants used so far.

The transition between an ancestor CQCE-node and its successor is performed by applying a

CQCE-expansion rule to a selected literal (underlined in Figure 4.13) of the ancestor CQCE-node

(see Section 4.2.2).

The first two steps shown in Figure 4.13 instantiate variables X and Y from literal Emp(X, Y) in

order to obtain a ground fact to be added to the EDB. The constants used to instantiate the

variables are determined according to the corresponding Variable Instantiation Patterns (VIPs)

[FTU05] and their data type (int, real or string). A label is attached to the constant occurrences,

 Goal to attain Conditions
to enforce

EDB Used
constants

Conditions
to maintain

 {Emp(01, ceo2)3}

 Emp(X, Y)

 Emp(01, Y)

 []

{Ic1, Ic2, Ic3, Ic4} = C0

1:A2.1

2:A2.1

{Ic1, Ic2, Ic3, Ic4}

{Ic1  [Emp(01, ceo2)3 ] ceo2 = ceo,
 Ic2, Ic3, Ic4}





{50, 30,
ceo, 0}

{50, 30,
ceo}

{50, 30,
ceo, 0}

C0

C0

C0

  Emp(01, ceo2) {Ic1, Ic2, Ic3, Ic4} {50, 30,
ceo, 0}

C0

3:A2.2

 {Emp(01, ceo2)3} [] {Ic1  Emp(X, Y)  Y = ceo,
 Ic2, Ic3, Ic4}

{50, 30,
ceo, 0}C0

4:B2

 Node
 ID

 1

 2

 3

 4

 5
5:Failed derivation

Figure 4.13: Example of CQCE-derivation.

77

indicating the node where they were introduced. Step 3 inserts the instantiated literal into the

EDB under construction. Label 3 is attached to the new tuple to keep record of which node was

responsible for its insertion. After this step, we get a node with an empty goal, i.e. []. However,

the work is not done yet, since we must ensure that the four constraints are not violated by the

current EDB. Steps 4 and 5 evaluate constraint Ic1, which is violated.

The analysis of a violation consists in finding those ancestor CQCE-nodes in the current

derivation that take a decision whose reconsideration may help to avoid—a.k.a., repair—the

violation. Each one of these CQCE-nodes is a repair for the violated constraint. The set of repairs

for Ic1 is recorded in the failed CQCE-node 5 where constraint Ic1 was violated. One way to repair

this violation is change the value of constant ceo2 in order to make ceo2 = ceo false. The label 2

attached to constant ceo indicates that this constant was used in the expansion of CQCE-node 2 to

instantiate a certain variable. Thus, we can backtrack to node 2 and try another instantiation for

variable Y. This means node 2 is one of the repairs for the violation, so node 2 is included in the

set of repairs of node 5. Other possible way to repair the violation is avoid the insertion of tuple

Emp(01, ceo2)3 into the EDB. Label 3 indicates that this tuple was inserted in order to satisfy the

literal Emp(01, ceo2) from the goal of node 3. The only possible way to avoid this insertion is by

means of avoiding the presence of this literal in the goal. However, as the literal comes from the

original goal (note there is no label attached to it), the insertion of the tuple into the EDB cannot

be avoided. Therefore, the set of repairs of node 5 is {2}.

With this information into account, the method will try to construct an alternative CQCE-

(sub)derivation to achieve the initial goal, which will be rooted at CQCE-node 2 (the repair of

node 5). Moreover, in order to keep track of what has happened in the failed derivation, node 2

will record the set of repairs of node 5 together with the explanation of why that derivation failed,

that is, the set {Ic1}.

Figure 4.14 shows an alternative CQCE-derivation rooted at node 2. Steps 6, 7, 8 of this new

derivation are similar to steps 2, 3 and 4, but step 6 uses a fresh constant ‘a’ to instantiate variable

Y. Step 9 selects literal a2 = ceo. Since such a comparison is false, Ic1 is not violated now, and it is

thus removed from the set of conditions to enforce.

Steps 10 and 11 deal with referential constraint Ic2, which introduces a new (sub)goal:

isCat(a2). To achieve it, tuple Cat(a2, 5012)13 is added to the EDB (step 14), but this addition

violates constraint Ic3 (step 16).

78

As before, the analysis of the violation is performed. In this case, the set of repairs, recorded in

node 15, is {12, 10}. The intuition is that the violation was originated by the instantiation of

variable S in node 12, and that this instantiation was required to achieve the (sub)goal introduced

by node 10.

The method will try to construct another alternative (sub)derivation rooted at CQCE-node 12.

Any derivation starting from node 12 will fail because each possible instantiation for variable S in

Cat(a2, S) will lead to the violation of either Ic3 or Ic4, with {12, 10} as the set of repairs in any

case. Therefore, the method marks CQCE-node 12 as failed. Its explanation is {Ic3, Ic4}, and the

set of repairs is {10}. The method will visit now this node 10. This node enforces referential

constraint Ic2, and so, leads to the violation of constraints Ic3 and Ic4. Since there is not an

alternative (sub)derivation rooted at node 10, the method marks this node as failed. The

explanation for this failure is the explanation of its only (sub)derivation plus the referential

constraint Ic2, i.e., {Ic2, Ic3, Ic4}. The set of repairs of node 10 is the empty set. Therefore, there is

no point in reconsidering any previous decision, so the method ends without being able of

constructing an EDB that satisfies the initial goal, and returns {Ic2, Ic3, Ic4} as the set of integrity

constraints that explains such a failure (the explanation indicated in the introduction). Note that

 Goal to attain Conditions
to enforce

EDB

13:A2.1

Used
constants

Conditions
to maintain

{Emp(01, a2)6}

 Emp(01, Y)

 []

 isCat(a2)10 {Ic3, Ic4}

6:A2.1

7:A2.2

11:B3

{Ic1, Ic2, Ic3, Ic4}

{Ic2  [Emp(01, a2)6 ] isCat(a2),
 Ic3, Ic4}



{Emp(01, a2)6}

{50, 30,
ceo, 0}

{50, 30,
ceo, 0, a}

{50, 30,
ceo, 0, a}

C0

C0

C0

 Cat(a2, S)11 {Ic3, Ic4} {Emp(01, a2)6}
{50, 30,

ceo, 0, a}C0

 Cat(a2, 5012)11 {Ic3, Ic4} {Emp(01, a2)6} {50, 30,
ceo, 0, a}

C0

 [] {Ic3  Cat(X, S)  S > 30,
 Ic4, Ic1, Ic2}

{Emp(01, a2)3,
 Cat(a2, 5012)13}

{50, 30,
ceo, 0, a}C0

14:A2.2

 [] {Ic3  [Cat(a2, 5012)13 ] 5012 > 30,
 Ic4, Ic1, Ic2}

{Emp(01, a2)3,
 Cat(a2, 5012)13}

{50, 30,
ceo, 0, a}C0

15:B2

  Emp(01, a2) {Ic1, Ic2, Ic3, Ic4} {50, 30,
ceo, 0, a}

C0

{Emp(01, a2)6} []
{Ic1  Emp(X, Y)  Y = ceo,
 Ic2, Ic3, Ic4}

{50, 30,
ceo, 0, a}C0

 Node
 ID

 2

 6

 7

10

11

12

13

14

15
16:Failed derivation

{Emp(01, a2)6} [] {Ic1  [Emp(01, a2)6 ] a2 = ceo,
 Ic2, Ic3, Ic4}

{50, 30,
ceo, 0, a}

C0 8

8:B2

9:B5
{Emp(01, a2)6} [] {Ic2  Emp(X, Y)  isCat(Y),

 Ic3, Ic4}
{50, 30,

ceo, 0, a}
C0 9

10:B2

12:A1

Figure 4.14: An alternative CQCE-(sub)derivation.

79

since node 2 does not belong to the set of repairs of node 10, the explanation for the failed

derivation in Figure 4.13, recorded at node 2, is discarded and not included in the final

explanation.

4.2.2 Formalization

Let S = (DR, IC) be a database schema, G0 = L1  …  Ln a goal, and F0  IC a set of constraints

to enforce, where G0 and F0 characterize a certain query satisfiability test. A CQCE-node is a

5-tuple of the form (Gi, Fi, Di, Ci, Ki), where Gi is a goal to attain; Fi is a set of conditions to

enforce; Di is a set of ground EDB atoms, i.e., an EDB under construction; Ci is the whole set of

conditions that must be maintained; and Ki is the set of constants appearing in DRG0F0 and Di.

A CQCE-tree is inductively defined as follows:

1. The tree consisting of the single CQCE-node (G0, F0,  F0, K) is a CQCE-tree.

ExpandNode(T: CQCE-tree, N: CQCE-node): Boolean
if N is a solution node then T.solution := N; B := true
else

B := false
Apply one CQCE-expansion rule R.
if children(N, T) =  then HandleLeaf(T, N)
else

U := children(N, T)
while M  U  B

if ExpandNode(T, M) then B := true
else if N  M.repairs then N.repairs := M.repairs; N.explanation := M.explanation; U := 
else

if R is A1-rule or A2.1-rule then HandleDecisionalNode(T, N)
else /*R is B3-rule*/ HandleSelectionOfConstrWithNegs(T, N)
U := U - {M}

return B

HandleLeaf(T: CQCE-tree, N: CQCE-node)
if N.selectedLiteral is from N.goal then

N.repairs := RepairsOfGoalComparison(N.selectedLiteral, T); N.explanation := 
else /*N.selectedLiteral is from N.selectedCondition*/

N.repairs := RepairsOfIc(N.selectedCondition, T, N)
Let us assume N.selectedCondition defines predicate Ici.
if there is a constraint Ic defining predicate Ici in root(T).conditionsToEnforce then

N.explanation := {Ic}
else /*N.selectedCondition appeared as a result of a negative literal in the goal*/

N.explanation := 

HandleSelectionOfConstrWithNegs(T: CQCE-tree, N: CQCE-node)
Let children(N, T) = {M}; Let us assume N.selectedCondition defines predicate Ici.
N.repairs := M.repairs - {N}
if there is a constraint Ic defining predicate Ici in root(T).conditionsToEnforce then

N.explanation := M.explanation  {Ic}
else

N.explanation := M.explanation

HandleDecisionalNode(T: CQCE-tree, N: CQCE-node)
N.explanation := ; N.repairs := 
for each node C  children(N, T)

N.explanation := N.explanation  C.explanation; N.repairs := N.repairs  (C.repairs - {N})

Figure 4.15: Formalization of the CQCE-tree exploration process.

80

2. Let T be a CQCE-tree, and (Gn, Fn, Dn, Cn, Kn) a leaf CQCE-node of T such that Gn ≠ [] or Fn ≠

. Then the tree obtained from T by appending one or more descendant CQCE-nodes

according to a CQCE-expansion rule applicable to (Gn, Fn, Dn, Cn, Kn) is again a CQCE-tree.

It may happen that the application of a CQCE-expansion rule on a leaf CQCE-node (Gn, Fn, Dn,

Cn, Kn) does not obtain any new descendant CQCE-node to be appended to the CQCE-tree because

some necessary constraint defined on the CQCE-expansion rule is not satisfied. In such a case, we

say that (Gn, Fn, Dn, Cn, Kn) is a failed CQCE-node. Each branch in a CQCE-tree is a CQCE-

derivation consisting of a (finite or infinite) sequence (G0, F0, D0, C0, K0), (G1, F1, D1, C1, K1), …

of CQCE-nodes. A CQCE-derivation is successful if it is finite and its last (leaf) CQCE-node has

B#-Rules:

(B1) The selected literal d(X̄) is a positive atom of a derived
predicate:

(Gi, {Ick [B] d(X̄)  P1 ... Pn }  Fi, Di, Ci, Ki)

(Gi, {S1, ..., Sm}  Fi, Di, Ci, Ki)

where Sj = Ick  [B ] Normalize((T1  ...  Tu  P1  ... 
Pn)j), and d(Z̄)  T1  ...  Tu is one of the m deductive rules
in DR that define predicate d, and j is the most general unifier
of d(X̄) and d(Z̄).

(B2) The selected literal b(X1, ..., Xp) is a positive EDB atom:

(Gi,{Ick[B]b(X1,...,Xp)P1...Pn}Fi, Di, Ci, Ki)

(Gi, S = {S1, ..., Sm}  Fi, Di, Ci, Ki)

only if S =  or n  1, where Sj = Ick  [B  b(k1, ..., kp)
 label ]

(P1  ...  Pn)j, and b(k1, ..., kp)
 label is one out of the m facts

about b in Di, and j = {X1 ↦ k1, ..., Xp ↦ kp} (k1, ..., kp may be
labeled).

(B3) The selected literal p(X̄) is a ground negated atom, and
all positive literals in the condition have already been selected:

(Gi,{Ick[B]p(X̄)T1...Tn}Fi, Di, Ci, Ki)
id

(Gi  Qnew
id, Fi, Di, Ci, Ki)

where Qnew is a fresh predicate of arity 0 defined by the
following n deductive rules: Qnew  p(X̄), Qnew  T1, ..., Qnew
 Tn, which are added to DR.

(B4) The selected literal C is a ground built-in literal that is
evaluated true (disregarding labels):

(Gi, {Ick  [B ] C  P1  ...  Pn}  Fi, Di, Ci, Ki)

(Gi, {Ick  [B  C ] P1  ...  Pn}  Fi, Di, Ci, Ki)

only if n  1.

(B5) The selected literal C is a ground built-in literal that is
evaluated false (disregarding labels):

(Gi, {Ick  [B ] C  P1  ...  Pn}  Fi, Di, Ci, Ki)

(Gi, Fi, Di, Ci, Ki)

A#-Rules:

(A1) The selected literal d(X̄) is a positive atom of a
derived predicate:

(Gi = d(X̄)  L1  ...  Ln, Fi, Di, Ci, Ki)
 id

(Gi+1,1, Fi, Di, Ci, Ki) | ... | (Gi+1,m, Fi, Di, Ci, Ki)

where Gi+1,j = (T1
id  ...  Ts

id  L1  ...  Ln)j, and d(Z̄)
 T1  ...  Ts is one of the m deductive rules in DR that
define predicate d, and substitution j is the most general
unifier of d(X̄) and d(Z̄).

(A2.1) The selected literal b(X̄) is a positive non-ground
EDB atom:

(Gi, Fi, Di, Ci, Ki)
 id

(Gi 1, Fi, Di, Ci, Ki+1,1) | ... | (Gi m, Fi, Di, Ci, Ki+1,m)

where Y is a variable from X̄, and each ground substitution
j ={Y ↦ kj

id} is one of the m instantiations for variable Y
provided by the corresponding VIP.

(A2.2) The selected literal b(X̄) is a positive ground EDB
atom:

(b(X̄)  Gi+1, Fi, Di, Ci, Ki)
 id

(Gi+1, Fi+1,j, Di+1,j, Ci, Ki)

where Fi+1,j = Fi Ci and Di+1,j = Di {b(X̄)id} if b(X̄)  Di
(disregarding labels); otherwise Fi+1,j = Fi and Di+1,j = Di.

(A3) The selected literal p(X̄) is a ground negated atom:

(p(X̄)  Gi+1, Fi, Di, Ci, Ki)
 id

(Gi+1, Fi  {Ic id}, Di, Ci  {Icid}, Ki)

where Ic = Icnew  Normalize(p(X̄)), and Icnew is a fresh
predicate.

(A4) The selected literal C is a ground built-in literal:

(C  Gi+1, Fi, Di, Ci, Ki)

(Gi+1, Fi, Di, Ci, Ki)

only if C is evaluated true (disregarding labels).

Figure 4.16: Formalization of the CQCE-expansion rules.

81

the form ([],  Dn, Cn, Kn). A CQCE-derivation is failed if it is finite and its last (leaf) CQCE-

node is failed. A CQCE-tree is successful when at least one of its branches is a successful CQCE-

derivation. A CQCE-tree is finitely failed when each one of its branches is a failed CQCE-

derivation.

Figure 4.15 shows the formalization of the CQCE-tree exploration process. ExpandNode(T,

N) is the main algorithm, which generates and explores the subtree of T that is rooted at N. The

CQCE method starts with a call to ExpandNode(T, Nroot) where T contains only the initial node

Nroot = (G0, F0,  F0, K). If the CQCE method constructs a successful derivation,

ExpandNode(T, Nroot) returns “true” and T.solution pinpoints its leaf CQCE-node. On the

contrary, if the CQCE-tree is finitely failed, ExpandNode(T, Nroot) returns “false” and

Nroot.explanation  F0 is an explanation for the unsatisfiability of the tested query.

Regarding notation, we use N.explanation and N.repairs to denote the explanation and the set

of repairs attached to CQCE-node N. We assume that every CQCE-node has a unique identifier.

RepairsOfGoalComparison(C: Built-in literal, T: CQCE-tree): Set(CQCE-node)
R := AvoidLiteral(C, T)
if the two constants in C are not labeled with the same label then

R := R  ChangeConstants(C, T)
return R

RepairsOfIc(Ic: Constraint, T: CQCE-tree, N: CQCE-node): Set(CQCE-node)
if Ic has negated literals then R := {N} else R := 
for each built-in literal C in Ic

if the two constants in C are not labeled with the same label then
R := R  ChangeConstants(C, T)

for each positive ordinary literal L in Ic
Let id be the label of L; Let N id be the node of T identified by id.
R := R  AvoidLiteral(N id.selectedLiteral, T) /*expansion rule applied to N id was A2.2*/

R := R  AvoidIc(Ic, T)
return R

AvoidLiteral(L: Literal, T: CQCE-tree): Set(CQCE-node)
if L is a labeled literal then

Let id be the label of L; Let N id be the node of T identified by id.
if N id.selectedLiteral is from N id.goal then

return {N id}AvoidLiteral(N id.selectedLiteral, T) /*expansion rule applied to N id was A1*/
else

return RepairsOfIc(N id.selectedCondition, T, N id) /*expansion rule applied to N id was B3*/
else return 

AvoidIc(Ic: Constraint, T: CQCE-tree): Set(CQCE-node)
if Ic is a labeled constraint then

Let id be the label of Ic; Let N id be the node of T identified by id.
R := AvoidLiteral(N id.selectedLiteral, T) /*expansion rule applied to N id was A3*/

else R := 
return R

ChangeConstants(C: Ground built-in literal, T: CQCE-tree): Set(CQCE-node)
R := 
for each labeled constant K id in C

Let N id be the node of T identified by id. /*expansion rule applied to N id was A2.1*/
R : = R  {N id}.

return R

Figure 4.17: Formalization of the violation analysis process.

82

When it is necessary, we write (Gi, Fi, Di, Ci, Ki)
 id to indicate that id is the identifier of the node.

Similarly, constants, literals and constraints may have labels attached to them. We write I label

when we need to refer the label of I. The expansion rules attach these labels. Constants, literals

and constraints in the initial CQCE-node Nroot are unlabeled.

We assume the bodies of the constraints in Nroot are normalized. We say that a conjunction of

literals is normalized if it satisfies the following syntactic requirements: (1) there is no constant

appearing in a positive ordinary literal, (2) there are no repeated variables in the positive ordinary

literals, and (3) there is no variable appearing in more than one positive ordinary literal. We

consider normalized constraints because that simplifies the violation analysis process.

Figure 4.16 shows the CQCE-expansion rules used by ExpandNode. The Variable

Instantiation Patterns (VIPs) used by expansion rule A2.1 are those defined in [FTU05]. The

Normalize function used by rules A3 and B1 returns the normalized version of the given

conjunction of literals.

The application of a CQCE-expansion rule to a given CQCE-node (Gi, Fi, Di, Ci, Ki) may result

in none, one or several alternative (branching) descendant CQCE-nodes depending on the selected

literal L, which can be either from the goal Gi or from any of the conditions in Fi. Literal L is

selected according to a safe computation rule, which selects negative and built-in literals only

when they are fully grounded. If the selected literal is a ground negative literal from a condition,

we assume all positive literals in the body of the condition have already been selected along the

CQCE-derivation.

In each CQCE-expansion rule, the part above the horizontal line presents the CQCE-node to

which the rule is applied. Below the horizontal line is the description of the resulting descendant

CQCE-nodes. Vertical bars separate alternatives corresponding to different descendants. Some

rules such as A4, B2, and B4 include also an “only if” condition that constrains the circumstances

under which the expansion is possible. If such a condition is evaluated false, the CQCE-node to

which the rule is applied becomes a failed CQCE-node. In other words, the CQCE-derivation fails

because either a built-in literal in the goal or a constraint in the set of conditions to enforce is

violated.

Figure 4.17 shows the formalization of the violation analysis process, which is aimed to

determine the set of repairs for a failed CQCE-node. A repair denotes a CQCE-node that is

relevant for the violation. RepairsOfGoalComparison and RepairsOfIc return the

corresponding set of repairs for the case in which the violation is in the goal and in a condition to

83

enforce, respectively. AvoidLiteral (AvoidIc) returns the nodes that are responsible for the

presence of the given literal (constraint) in the goal (set of conditions to maintain). Finally,

ChangeConstants returns the nodes in which the labeled constants that appear in the given

comparison were used to instantiate certain variables.

4.2.3 Experimental Evaluation

We have performed a set of experiments to compare the efficiency of the CQCE method as

implemented in [FRTU08] (SVTE tool) with respect to the original CQC method as implemented

1

10

100

1000

10000

100000

1 2 3 4

relational atoms in each query

R
u

n
n

in
g

 t
im

e
 (

s
e

c
s

, l
o

g
. s

c
a

le
)

original CQC (conjunctive) extended CQC (comparisons)

extended CQC (negations) extended CQC (conjunctive)

Figure 4.18: Satisfiability tests with no solution.

1

10

100

1000

1 2 3 4
relational atoms in each query

R
u

n
n

in
g

 t
im

e
 (

s
e

c
s

,
lo

g
.

s
c

a
le

)

original CQC (comparisons) original CQC (negations)

extended CQC (comparisons) extended CQC (negations)

Figure 4.19: Satisfiability tests with solution.

Table 4.1: Detailed running times (seconds) from Figure 4.18 and Figure 4.19.

 Figure 4.18 Figure 4.19
relational

atoms in
each query

original
CQC

(conjunctive)

extended
CQC

(comparisons)

extended
CQC

(negations)

extended
CQC

(conjunctive)

original CQC
(comparisons)

original
CQC

(negations)

extended
CQC

(comparisons)

extended
CQC

(negations)
1 16.94 3.76 3.34 3.03 117.48 5.13 6.33 1.53
2 36.22 5.33 4.43 3.97 222.13 11.24 6.75 2.04
3 913.96 7.46 5.64 5 359.63 21.05 9.88 2.85
4 10369.94 9.43 7.09 6.03 711.34 36.03 19.1 3.65

84

in [TFU+04] (SVT tool). We have executed the experiments on an Intel Core 2 Duo, 2.16 GHz

machine with Windows XP (SP2) and 2 GB RAM. Each experiment was repeated three times and

we report the average of these three trials.

Each set of experiments checks whether a given view (or query) of the schema is satisfiable.

Both the original CQC method and the extended version (the CQCE method) are used to perform

the corresponding tests.

The first set of experiments reported in Figure 4.18 (note the logarithmic scale) focus on the

case in which satisfiability does not hold, i.e., the contents of the view is always empty. The

tested query is actually encoding a mapping validation property (see Chapter 3), in particular, the

mapping losslessness property. The mapped schemas are based on the relational schema of the

Mondial database [Mon98]. The database schema that results from the reformulation of the

property is as follows. It consists of three copies of the Mondial schema, say S1, S2 and S3, each

one with its primary keys, foreign keys and unique constraints. Additionally, a set Mk = {Qk
1, ...,

Qk
14} of queries is defined over each Sk (1  k  3). These queries have the form Q(X̄)  T1(X̄1) 

...  Tn(X̄n), where n varies from 1 to 4, and T1, ..., Tn are tables randomly selected from the

schema. Finally, we also add a set of constraints that relates S1, S2 and S3. These constraints have

the form of Ici  Qk
j(X̄)  Qm

j(X̄), where Qk
j is a from Mk and Qm

j is from Mm (1  k,m  3; k 

m; 1  j  14). The goal of each satisfiability test has the form of G0 = P(X̄)  P’(X̄), where P is

a query over S1, and P’ is its equivalent over S2.

Figure 4.18 shows that the use of the CQCE method in this conjunctive setting results in a

drastic reduction of running times. This is because its execution strategy helps to avoid the

exploration of a high number of alternative CQCE-(sub)derivations when exploring the CQCE-

tree. Moreover, Figure 4.18 shows that the introduction of either comparisons or negations results

also in lower times when using the extended method than when using the original one. These

negations and comparisons are added to each query Qk
i (and to query P). Therefore, Qk

i has the

form of either Qk
i(X̄)  T1(X̄1)  ...  Tn(X̄n)  R1(Ȳ1)  R2(Ȳ2)  R3(Ȳ3) or Qk

i(X̄)  T1(X̄1) 

Table 4.2: Characteristics of the database schemas.

 Figure 4.18 Figure 4.19
 original

CQC
(conjunctive)

extended
CQC

(comparisons)

extended
CQC

(negations)

extended
CQC

(conjunctive)

original CQC
(comparisons)

original
CQC

(negations)

extended
CQC

(comparisons)

extended
CQC

(negations)
deductive
rules

159 159 159 159 105 105 105 105

constraints 341 341 341 341 218 218 218 218
negated
literals

171 171 303 171 104 188 104 188

comparisons 0 126 0 0 74 0 74 0

85

...  Tn(X̄n)  Z1 > k1  Z2 > k2  Z3 > k3, where R1, ..., R3 are tables randomly selected from the

schema, and k1, k2 and k3 are fresh constants.

The second set of experiments reported in Figure 4.19 focus on the case in which the

satisfiability tests have a solution, i.e., the tested query admits a non-empty instance. The used

schemas are like those from the previous set of experiments, but now we have S1 and S2 only. The

goal of each satisfiability test has now the form of G0 = Q1
1(X̄1)  ...  Q1

14(X̄14).

The graphics in Figure 4.19 show that, either when each query Qk
i has 3 negations or when

each query Qk
i has 3 comparisons, the extended version of the method is faster than the original

one. Although the computation of an explanation is not needed when the satisfiability test has a

solution, Figure 4.19 shows that we can still take advantage of the efficiency improvement that

results from using the CQCE method.

Table 4.1 shows the detail of the running times of both sets of experiments. Table 4.2 shows

the main characteristics of the schemas.

86

87

5

Testing Termination

As we already discussed in Section 3.2, the problem of checking the desirable properties of

mappings presented in Chapter 3 on the class of mapping scenarios described in Chapter 2 is,

unfortunately, undecidable. In order to deal with that, we propose to perform a termination test as

a previous step to the check of each desirable property. Such a test is intended to detect situations

in which the check of the target desirable property on the given mapping scenario is guaranteed to

terminate. Such a test is obviously not complete, given the undecidability of the termination

checking problem itself.

The termination test is based on the assumption that the target desirable property is going to be

checked by means of the approach presented in Chapter 3, that is, by means of its reformulation

in terms of query satisfiability and the subsequent application of the CQC method (or its extended

version—see Section 4.2). More specifically, the termination test is to be applied after the

reformulation in terms of query satisfiability and before the application of the CQC method.

We adapt to our mapping validation context the termination test that was presented in [QT08]

in the context of reasoning on UML/OCL conceptual schemas. The test consists of two main

tasks: the construction of a dependency graph of the constraints in the schema, and the analysis of

the cycles in this graph.

We also extend the termination test in two ways.

First, the termination test, as presented in [QT08], is able to deal with a class of deductive

rules and constraints that is very close to the one the CQC method handles, but it that does not

allow more than one level of negation, i.e., negated literals must be about base predicates or about

derived predicates whose deductive rules contain no negation. That is enough for the setting of

[QT08], but in our mapping validation context, the database schema that results from the

88

reformulation of the desirable property checking in terms of query satisfiability may have more

than one level of negation. Therefore, we propose and additional task: the materialization of all

derived predicates in the schema, that is, the rewriting of the given schema into an equivalent one

in which all predicates are base predicates. We refer to such a rewriting on a schema S as the b-

schema of S.

Second, the termination test consists of three sufficient conditions. The idea is that if each

cycle in the dependency graph satisfies at least one of the conditions, then the reasoning on the

schema is guaranteed to terminate. [QT08] studies termination for the case in which the cycles of

the dependency graph are disjoint (i.e., vertex-disjoint). We extend this work by considering the

case in which the cycles are overlapping (i.e., vertex-overlapping).

In the next sections, we firstly introduce the different stages of the termination test (i.e.,

computation of the b-schema, building of the dependency graph, and analysis of cycles) in an

intuitive way, and then we provide their formalization (Section 5.4).

5.1 Dealing with Multiple Levels of Negation—Computing the B-Schema

The computation of the b-schema is the first stage of the termination test. This stage will allow us

to rewrite a database schema whose constraints and deductive rules have multiple levels of

negation into an equivalent schema with only one level of negation.

The input to this stage is the database schema that results from reformulating the current

desirable property in terms of query satisfiability. The goal is to materialize all the derived

predicates in the schema. We have to do that before we can construct the dependency graph and

analyze the cycles.

The key point in the task of materializing derived predicates is replacing the deductive rules

with constraints that keep the materialized predicates updated. Consider, for example, the

following deductive rule:

q(X, Z)  p(X, Y)  r(Y, Z)

According to the semantics of deductive rules [Cla77, Llo87], the meaning of such a rule is

stated explicitly by the formula:

X, Z (q(X, Z)  Y (p(X, Y)  r(Y, Z)))

89

That means we need two disjunctive embedded dependencies (DEDs) in order to keep the

materialization of q correctly updated, one for each direction of the implication:

q(X, Z)  Y (p(X, Y)  r(Y, Z))

p(X, Y)  r(Y, Z)  q(X, Z)

For the sake of simplicity and uniformity, we will however prefer to have DEDs whose

consequent is a disjunction of atoms, instead of DEDs whose consequent is a disjunction of

conjunctions of atoms. This requirement is already fulfilled by the constraints that are present in

the original schema (see Chapter 2). In order to enforce it in the new constraints, we could think

of splitting q(X, Z)  Y (p(X, Y)  r(Y, Z)) in two, as follows:

q(X, Z)  Y p(X, Y)

q(X, Z)  Y r(Y, Z)

However, the splitting is not correct, since it loses the correlation of p and r on Y. A more

accurate way of doing it is to introduce an intermediate predicate—let us call it q′—that has one

attribute for each distinct variable in the body of the original deductive rule. That is, the deductive

rule q(X, Z)  p(X, Y)  r(Y, Z) is to be rewritten into the following equivalent set of two rules,

before starting the materialization:

q(X, Z)  q′(X, Y, Z)

q′(X, Y, Z)  p(X, Y)  r(Y, Z)

Now, we can replace the two rules with the corresponding DEDs, and do the straightforward

splitting without losing correctness:

q(X, Z)  Y q′(X, Y, Z)

q(X, Y, Z)  q(X, Z)

q′(X, Y, Z)  p(X, Y)

q′(X, Y, Z)  r(Y, Z)

p(X, Y)  r(Y, Z)  q′(X, Y, Z)

The rewriting above is fine for the presented example, but in the general case, other issues

may arise and need to be addressed. The first one is that the terms in the head of the deductive

rule may not be all distinct variables, i.e., some of them may be constants, and some of the

variables may appear more than once. For instance, consider the following deductive rule:

q2(X, 10, X, Z)  p(X, Y)  r(Y, Z)

If we just apply the previous rewriting, we firstly obtain the next two rules:

90

q2(X, 10, X, Z)  q2′(X, Y, Z)

q2′(X, Y, Z)  p(X, Y)  r(Y, Z)

and then, the following DEDs:

q2(X, 10, X, Z)  Y q2′(X, Y, Z)

q2′(X, Y, Z)  q2(X, 10, X, Z)

q2′(X, Y, Z)  p(X, Y)

q2′(X, Y, Z)  r(Y, Z)

p(X, Y)  r(Y, Z)  q2′(X, Y, Z)

The set of DEDs may look just fine, and it indeed keeps predicate q2 updated with respect to

insertions into p and r, but it does not prevent facts such as, for instance, q2(1, 2, 3, 4) from

existing in an instance of the database. According to the semantics of deductive rules, all facts

about q2 should fit the pattern q2(X, 10, X, Z), i.e., they should be unifiable with the head of the

rule. The problem is that this is not guaranteed by the DEDs above.

To address the situation, we propose to extend the definition of predicate q2′ in such a way that

it has not only one attribute for each distinct variable in the body of the rule but also one attribute

for each term in the head of the original rule. Then, we can add equalities to the rule of q2′ to

enforce that each variable that corresponds to one of these new attributes must either be equal to a

certain constant, or be equal to a certain variable from the body of the rule:

q2(A, B, C, D)  q2′(A, B, C, D, X, Y, Z)

q2′(A, B, C, D, X, Y, Z)  p(X, Y)  r(Y, Z)  A = X  B = 10  C = X  D = Z

The set of DEDs that corresponds to the two rules is:

q2(A, B, C, D)  X, Y, Z q2′(A, B, C, D, X, Y, Z)

q2′(A, B, C, D, X, Y, Z)  q2(A, B, C, D)

q2′(A, B, C, D, X, Y, Z)  p(X, Y)

q2′(A, B, C, D, X, Y, Z)  r(Y, Z)

q2′(A, B, C, D, X, Y, Z)  A = X

q2′(A, B, C, D, X, Y, Z)  B = 10

q2′(A, B, C, D, X, Y, Z)  C = X

q2′(A, B, C, D, X, Y, Z)  D = Z

p(X, Y)  r(Y, Z)  q2′(X, 10, X, Z, X, Y, Z)

Notice how we can easily deal with the new equalities in the last DED.

91

Another issue that needs to be addressed is that the body of a deductive rule may have negated

literals. For instance:

q3(X, Z)  s(X, Y, Z)  u(X)  w(Y, Z)

In that case, a straightforward translation of the deductive rule into constraints would result in:

q3(X, Z)  s(X, Y, Z)

q3(X, Z)  u(X)

q3(X, Z)  w(Y, Z)

s(X, Y, Z)  u(X)  w(Y, Z)  q3(X, Z)

However, DEDs cannot have negated literals, neither in the consequent nor in the premise.

The case in which the negation is in the consequent can be amended by moving the negated literal

into the premise (the negation will be lost in the process) and leaving some contradiction in the

consequent (e.g., the comparison 1 = 0). DEDs q3(X, Z)  u(X) and q3(X, Z)  w(Y, Z) would

thus become:

q3(X, Z)  u(X)  1 = 0

q3(X, Z)  w(Y, Z)  1 = 0

In the case in which the negated literals are in the premise, we can move them into the

consequent (the negation will be lost in the process), where they will remain in disjunction with

the literals already there. The DED s(X, Y, Z)  u(X)  w(Y, Z)  q3(X, Z) could be thus

rewritten as:

s(X, Y, Z)  u(X)  w(Y, Z)  q3(X, Z)

Finally, there is one last issue to address. It refers to the case in which a single derived

predicate has more than one deductive rule. As an example, consider:

q4(X, Z)  p(X, Y)  r(Y, Z)

q4(X, X)  u(X)

In order to ease the application of the previous rewritings, it is better if we just introduce a

new intermediate predicate for each rule:

q4(X, Y)  q4′ (X, Y)

q4(X, Y)  q4′′(X, Y)

q4′ (X, Z)  p(X, Y)  r(Y, Z)

q4′′(X, X)  u(X)

92

Now, we can combine the rewritings that we just discussed, and modify each intermediate

predicate (i.e., q4′ and q4′′) independently and according to its characteristics:

q4(A, B)  q4′ (A, Y, B)

q4(A, B)  q4′′(A, B, X)

q4′ (X, Y, Z)  p(X, Y)  r(Y, Z)

q4′′(A, B, X)  u(X)  A = X  B = X

The major difference with respect to the previous examples is the translation of the first two

rules. According to the semantics of deductive rules, a fact about a derived predicate is true on a

database instance if and only if it is “produced” by at least one of the predicate’s rules. Therefore,

it is easy to see that q4(A, B)  q4′(A, Y, B) and q4(A, B)  q4′′(A, B, X) can be translated into the

following DEDs:

q4(A, B)  Y q4′(A, Y, B)  X q4′′(A, B, X)

q4′ (A, Y, B)  q4(A, B)

q4′′(A, B, X)  q4(A, B)

After we have translated all the deductive rules of the given schema S into DEDs, the resulting

schema is the b-schema of S.

5.2 Dependency Graph

Once we have computed the b-schema, the next stage is the construction of the dependency

graph. The dependency graph is intended to show the dependencies that exist between the

integrity constraints of the schema.

The vertexes in the graph denote constraints that have the same ordinary literals in their

premises (modulo renaming of variables). As an example, consider a b-schema with the following

constraints:

(c1) r(X, Y)  Z s(Z, Y)  Z q(X, Z)

(c2) r(X, Y)  Y > 5  Z t(Y, Z, X)

(c3) s(X, Y)  p(X, Z, U)  V t(X, Z, V)

(c4) t(X, Y, Z)  V r(Z, V)

The dependency graph of this schema has 3 vertexes: {c1, c2}, {c3} and {c4}.

In general, there is an edge from a vertex v1 to a vertex v2 if the constraints in v1 may lead to

the insertion of a new tuple and the violation of the constraints in v2. The edge is labeled with the

93

combination of literals from the consequents of v1 that may cause the violation of v2. For instance,

in the example, there is one edge from {c1, c2} to {c3} that is labeled with the literals {Z s(Z, Y),

Z t(Y, Z, X)}. There are also two edges from {c1, c2} to {c4}, one labeled {Z s(Z, Y), Z t(Y, Z,

X)}, and the other labeled {Z q(X, Z), Z t(Y, Z, X)}. Figure 5.1 shows the complete dependency

graph for the example.

5.3 Analysis of Cycles—Sufficient Conditions for Termination

The analysis of the cycles of the dependency graph will allow us to detect whether the query

satisfiability check is guaranteed to terminate. Recall that we assume the satisfiability of the given

query will be checked by means of the CQC method. Recall also that after the initial satisfaction

of the query, the CQC method becomes an integrity maintenance process (see Chapter 2), that is,

it keeps adding new tuples to the instance under construction until all constraints are satisfied, in

which case the CQC method ends, or a violation that cannot be repaired is found, in which case

another branch of the CQC-tree (i.e., the tree-shaped solution space that the CQC method

explores) has to be considered. The analysis of cycles is aimed at detecting whether such an

integrity maintenance process is guaranteed to terminate and, in particular, it guarantees that all

branches of the CQC-tree will be finite.

From the point of view of the analysis, a cycle C is a sequence

C = (v1, r1, v2, r2, ..., vn, rn, vn+1 = v1)

where each vi denotes a vertex from the dependency graph—in particular, it denotes the

conjunction of ordinary literals that is common to the premises of all the constraints in that

{c1, c2}

{c3}

{c4}

{Z s(Z, Y), Z t(Y, Z, X)}

{V t(X, Z, V)}

{V r(Z, V)}

{Z s(Z, Y),
 Z t(Y, Z, X)} {Z q(X, Z),

 Z t(Y, Z, X)}

Figure 5.1: A dependency graph.

94

vertex—, and each ri denotes the label of the edge that goes from vertex vi to vi+1. We refer to the

literals in vi as potential violators, and we refer to ri as the repair of vi on C. We say that a vertex

vi is violated on C with respect to a given instance I if the potential violators of vi are true on I and

the repair ri of vi on C is false on I. Note that a repair ri is false on an instance I if at least one of

the literals in ri is false on I.

The analysis consists of three conditions to be evaluated on each cycle. Termination will be

guaranteed if each cycle in the dependency graph satisfies at least one of the conditions.

Note that the conditions are sufficient but not necessary, i.e., we cannot say anything about the

termination of integrity maintenance when there is some cycle in the dependency graph that does

not satisfy any of the conditions. This is expected given the undecidability of the termination

problem. In particular, the incompleteness of the termination test comes from two fronts. First, all

branches of the CQC-tree being finite does not imply each cycle of the dependency graph will

satisfy one of the termination conditions. Second, the CQC method is known to terminate when

there is at least one finitely successful branch in the CQC-tree (i.e., a finite solution), even if the

CQC-tree also contains infinite branches [FTU05].

It is worth noting that checking the termination conditions is a decidable process.

Note also that if the dependency graph has no cycles, then integrity maintenance will surely

terminate.

In the next sections, we firstly review the termination conditions applicable to a dependency

graph whose cycles are disjoint, and then discuss how to extend this work in order to deal with

overlapping cycles.

5.3.1 Condition 1—The Cycle Does Not Propagate Existentially Quantified

Variables

To illustrate what we mean by propagation of an existentially quantified variable, consider the

following constraints:

(ic1) p(X, Y)  Z q(X, Z)

(ic2) q(A, B)  C p(A, C)

These constraints form a cycle:

C = (v1 = p(X, Y), r1 = {Z q(X, Z)}, v2 = q(A, B), r2 = {C p(A, C)})

95

The cycle propagates neither Z nor C. In particular, v2 does not propagate Z, since B does not

appear in r2; and, similarly, v1 does not propagate C, since Y does not appear in r1.

In general, Condition 1 holds for a given cycle C if and only if no vertex from C propagates

the existentially quantified variables of the previous vertex in the cycle.

In the example above, it is easy to see that the insertion of a new p or q triggers an integrity

maintenance process that terminates after one iteration on the cycle. In the general case, the

intuition is that the constants a vertex propagates to its successor are either from the initial

database instance, or have been obtained from the previous vertex; and since the previous vertex

is not allowed to propagate existentially quantified variables (i.e., it cannot propagate “invented”

values), then it must have obtained these constants from its own predecessor, and so on. If we

follow this reasoning, we conclude that the constants each vertex in the cycle propagates are from

the database obtained after the initial insertion that triggered the integrity maintenance process.

Since the number of constants in this initial database instance is assumed to be finite and since the

existentially quantified variables can always be unified with the values already in the database

during a vertex’s violation check, then we can conclude that only a finite number of new tuples

are generated as a consequence of the integrity maintenance process.

We will also show in Section 5.4.3 that there is a relationship between this Condition 1 and the

well-known weak acyclicity property of sets of tuple-generating dependencies that guarantees

termination of the chase [FKMP05].

5.3.2 Condition 2—There Is a Potential Violator that Is Not a Repair of Any Vertex

Roughly speaking, the aim of Condition 2 is to look for a constraint in the current cycle that has a

potential violator that is not a repair of any vertex. The idea is that this will prevent the constraint

from being violated further once it has already been violated and repaired a certain finite number

of times.

In particular, Condition 2 holds for a cycle C = (v1, r1, …, vn, rn, vn+1 = v1) whenever there is a

vertex vi  C such as the potential violators of vi include a literal L about some predicate P that

does not appear in any r′  C—that is, no new tuple about P is created during the repair of the

vertexes of C—, and the non-existentially quantified variables of ri appear all in literal L—that is,

the number of distinct ways of repairing the violation of vi by means of ri is bound to the number

of tuples that already exist in the database before starting the integrity maintenance of C and that

can be unified with L.

96

As an example, consider the following constraints:

(ic1) p(X, Y)  q(Z)  V r(Z, V)

(ic2) r(X, Y)  Z p(Y, Z)

The corresponding dependency graph is the following:

Notice that neither r1 nor r2 insert new tuples about q, and that the non-existentially quantified

variables of r1—i.e., variable Z—are bound to the potential violator q(Z) of v1.

Let us assume the initial instance for the integrity maintenance process contains a finite

number k of facts about q. Then, after k violations of ic1′′ and its corresponding repairs, we can be

sure that any subsequent insertion into p will not cause a violation of the constraint because we

will be able to unify the consequent V r(Z, V) with one of the tuples inserted by the previous

repairs of ic1′′. The conclusion is that constraint ic1 can only be violated a finite number of times

and the integrity maintenance process of the cycle is guaranteed to terminate.

Regarding the example from Section 5.2, the cycle that involves the constraints c1, c3 and c4

in Figure 5.1 satisfies Condition 2.

5.3.3 Condition 3—The Canonical Simulation of the Cycle Terminates Within One

Iteration

The idea of Condition 3 is to simulate on a canonical database instance the integrity maintenance

of the current cycle, and see if this simulation stops within one iteration through the cycle.

To illustrate this, consider the following example:

 v1 = p(X)

 r1 = {Y r(X, Y)}
 v2 =
r(X, Y)

 r2 = {Z s(X, Y, Z)}

 v3 =
s(X, Y, Z) r3 = {p(X)}

 v1 =
 p(X, Y)  q(Z)

r1 = {V r(Z, V)}

v2 = r(X, Y)

r2 = {Z p(Y, Z)}

97

Starting at v1, the canonical simulation for the cycle in the graph would be as follows:

Initial canonical instance: Sim0(v1) = {p(x)}

Instance after 1 step of integrity maintenance: Sim1(v1) = Sim0(v1)  {r(x, y)}

Instance after 2 steps of integrity maintenance: Sim2(v1) = Sim1(v1)  {s(x, y, z)}

Instance after 3 steps of integrity maintenance: Sim3(v1) = Sim2(v1)  

where x, y and z denote variables that have been “frozen” into constants.

Note that Sim2(v1) = Sim3(v1). That means the simulation reaches a fix-point and ends within

one iteration of the cycle. Similar results are obtained when starting at vertexes v2 and v3.

In general, Condition 3 simulates, for each vertex in the cycles, all the distinct canonical

sequences of violations and repairs that start at that vertex (there is a finite number of them), e.g.,

the one above. The intuition is that any real sequence of violation and repairs that results from the

execution of the CQC method (its integrity maintenance phase) has a “canonical representative”

in the simulation; therefore, if all the sequences in the simulation are finite, the real sequence

generated by the CQC method should be finite too—see Section 5.4.3 for a more detailed

definition and the formal proof.

Regarding the example from Section 5.2, the two cycles in Figure 5.1 that involve the

constraints c1, c2 and c4 do satisfy Condition 3.

5.3.4 Overlapping Cycles

In this section we study the application of the previous termination conditions to the case in

which the cycles in the dependency graph are overlapping.

Recall that the idea of the test is that if each cycle in the dependency graph satisfies at least

one of the termination conditions, then termination is guaranteed on the whole schema.

In order to be able to apply the test in our setting, we need termination to be preserved by the

overlapping of cycles, where each cycle may satisfy a different termination condition. We will

show that termination is already preserved by all the combinations of overlapping cycles except

two: the overlapping of cycles that satisfy Condition 1 and Condition 3, respectively; and the

overlapping of cycles that satisfy Condition 2.

5.3.4.1 Condition 1 and Condition 3

In Figure 5.2, we provide a counterexample for the case in which the dependency graph contains

overlapping cycles some of which satisfy Condition 1 but not Condition 3 and some others satisfy

98

Condition 3 but not Condition 1. The counterexample consists of three cycles: two cycles satisfy

Condition 1 and the remaining cycle satisfies Condition 3. The integrity maintenance process

does indeed terminate when applied to each cycle individually, but it may not terminate when

applied to the whole schema.

The two cycles that meet Condition 1 are:

C1 = (v1, r1, v2, r2, v1)

C2 = (v3, r3, v5, r5, v3)

It is easy to see that neither C1 nor C2 propagate existentially quantified variables.

The cycle that satisfies Condition 3 is:

C3 = (v1, r1, v3, r3, v4, r4, v1)

We can see that the canonical simulation from Section 5.3.3 does indeed terminate within one

iteration of C3:

Sim2(v1) = Sim3(v1) = {A(x, y, x), D(y, z, x), B(y, x, u), C(y, x, u), E(x, u, y)}

Sim3(v3) = Sim4(v3) = {B(x, y, z), C(x, y, z), E(y, z, x), A(y, x, u), D(x, u, y)}

Sim3(v4) = Sim4(v4) = {C(x, y, z), A(y, x, u), D(x, u, y), B(x, y, u2), C(x, y, u2), E(y, u2, x)}

Consider now the instance I = {D(0, 1, 2)}. Performing integrity maintenance on I with the

whole dependency graph from Figure 5.2 into account may produce an infinite instance; for

example, the following one:

v1 = A(X, Y, Z)

r1 = {D(Y, Z, X),
 U B(Y, X, U)}

v2 = D(X, Y, Z)

r2 = {A(Y, Z, X)}

v3 = B(X, Y, Z)

r3 = {C(X, Y, Z),
 E(Y, Z, X)}

v4 = C(X, Y, Z)

v5 = E(X, Y, Z)

 r4 =
{U A(Y, X, U)}

r5 = {B(Y, Z, X)} r1 = {D(Y, Z, X),
 U B(Y, X, U)}

r3 = {C(X, Y, Z),
 E(Y, Z, X)}

Figure 5.2: Counterexample for the overlapping of cycles that satisfy Condition 1 and
Condition 3, respectively.

99

{D(0, 1, 2), A(1, 2, 0), B(2, 1, 3), E(1, 3, 2), B(3, 2, 1), C(3, 2, 1), A(2, 3, 4), D(3, 4, 2),

A(4, 2, 3), B(2, 4, 5), E(4, 5, 2), B(5, 2, 4), C(5, 2, 4), A(2, 5, 6), D(5, 6, 2), A(6, 2, 5), …}

Note that the instance above corresponds to an infinite sequence of violations and repairs that

goes through the following path:

v2, r2, v1, r1, v3, r3, v5, r5, v3, r3, v4, r4, v1, r1, v2, …

In the light of this counterexample, we will exclude the combination of Condition 1 and

Condition 3 as a guarantee for termination in the case of overlapping cycles.

5.3.4.2 Condition 2

Similarly as we did in the previous section, we can also come up with a counterexample for the

overlapping of cycles that satisfy Condition 2. In this case, however, instead of excluding the

overlapping of cycles that satisfy Condition 2 from the termination test, we will provide an

alternative definition for Condition 2 that will be a sufficient condition for the termination of

integrity maintenance in the presence of overlapping cycles.

Let G be the following dependency graph:

There are two cycles in G:

C1 = (v1, r1, v2, r2, v4, r4, v5, r5, v1)

C2 = (v1, r1, v3, r3, v4, r4, v5, r5, v1)

Both cycles satisfy Condition 2. Predicate E does not appear in any repair from C1, and vertex

v4, which is part of C1, has a potential violator with predicate E, i.e., E(X, Y), where X and Y are

precisely the variables that appear in r4. Similarly, predicate D does not appear in any repair from

C2, and vertex v4, which is also part of C2, has potential violator D(X, Y).

v1 = A(X, Y, Z)

v2 = B(X, Y)

v3 = C(X, Y)

 v4 =
D(X, Y)  E(X, Y) v5 = F(X, Y)

 r1 = {B(Z, X),
 C(Z, X)}

 r1 = {B(Z, X),
 C(Z, X)}

 r2 = {D(X, Y)}

 r3 = {E(X, Y)}

 r4 = {F(X, Y)}

 r5 = {Z A(X, Y, Z)}

100

It is true that performing integrity maintenance on either C1 or C2, individually, is a finite

process. However, it can be seen that, when the whole schema is considered, the integrity

maintenance process may not end. As an example, consider the instance I = {A(0, 1, 2)}.

Performing integrity maintenance on I with the constraints represented in G may produce an

infinite instance such as:

{A(0, 1, 2), B(2, 0), C(2, 0), D(2, 0), E(2, 0), F(2, 0), A(2, 0, 3), …}

The problem is that Condition 2 requires the existence of a potential violator that is not a

repair of any vertex of the current cycle, but it allows the potential violator to be part of the repair

of a vertex from another cycle. In the example, cycle C1 has a potential violator E(X, Y) that does

not appear in the repairs from C1 but does appear in the repairs from C2. Similarly, potential

violator D(X, Y) does not appear in the repairs from C2 but it does appear in the repairs from C1.

Therefore, when these two cycles are considered together, the reason that prevented each cycle

from looping forever—i.e., the fact that the corresponding potential violator receives no new

insertion during the integrity maintenance process—is no longer true.

In order to address this problem, which arises when overlapping cycles are considered, we

propose an alternative definition for Condition 2 in which the potential violator Lj is required to

be about a predicate that does not appear in the repair of any vertex in the whole dependency

graph (instead of in any repair of the current cycle). Note that the restriction that we discussed in

Section 5.3.2 regarding the variables that appear in Lj applies also here.

Summarizing, the alternative definition that we propose for Condition 2 in the presence of

overlapping cycles is as follows: Condition 2 holds for a cycle C if and only if there is a vertex vi

in C that has a potential violator Lj = p(X̄) such that a literal about predicate p does not appear in

the repair of any vertex in the dependency graph and all the non-existentially quantified variables

in the repair ri of vi on C appear in p(X̄)—see the formal proof for correctness in Section 5.4.3.

5.4 Formalization

In this section, we provide the formal definitions and proofs for the three stages of the termination

test.

101

5.4.1 Schema Preprocess

Definition 5.1 (B-Schema). Let S = (PDS, DRS, ICS) be a database schema. The b-schema of S

is BS = (PDBS, , ICBS), where PDBS = PDS  PDDR, ICBS = ICS  ICDR  ICP  ICN, and, for

each deductive rule qi = (q(X̄ i)  L1  ...  Lk)  DRS, the following is true:

 PDDR contains the predicate definition qi(A1, ..., At, B1, ..., Bn), where t is the number of terms

in the head of qi, i.e., t = |X̄ i|, and n is the number of distinct variables in L1  ...  Lk.

 ICDR contains the integrity constraints:

qi(Ā i, B̄ i)  q(Ā i)

qi(Ā i, B̄ i)  Aj1 = k1

..., qi(Ā i, B̄ i)  Aju = ku

qi(Ā i, B̄ i)  Ag1 = Bh1

..., qi(Ā i, B̄ i)  Agv = Bhv

q(Z̄)  B̄ 1 q1(Z̄ , B̄ 1)  ...  B̄ i qi(Z̄ , B̄ i)  ...  B̄ m qm(Z̄ , B̄ m)

where k1, ..., ku are the constants in X̄ i; they appear in the positions j1, ..., ju; Bh1, ..., Bhv are the

variables in B̄ i that correspond to variables in L1  ...  Lk that appear in Xi with positions g1,

..., gv; Aj1, ..., Aju and Ag1, ..., Agv are the variables in Ā i in the positions j1, ..., ju and g1, ..., gv,

respectively; Z̄ denotes a list of t distinct variables; and q1, ..., qm are the base predicates in

PDDR that correspond to those deductive rules in DRS with the derived predicate q in their

head.

 If L1, ..., Lk are positive literals, ICP contains the constraints:

L1  ...  Lk  qi(Ā i, B̄ i)

qi(Ā i, B̄ i)  L1

..., qi(Ā i, B̄ i)  Lk

 If L1  ...  Lk = P1  ...  Pr  N1(Z̄ 1)  ...  Ns(Z̄ s) and s > 1, ICN contains the constraints:

P1  ...  Pr  N1(Z̄ 1)  ...  Ns(Z̄ s)  qi(Ā i, B̄ i)

qi(Ā i, B̄ i)  P1

..., qi(Ā i, B̄ i)  Pr

qi(Ā i, B̄ i)  N1(Z̄ 1)  1 = 0

..., qi(Ā i, B̄ i)  Ns(Z̄ s)  1 = 0 □

102

Definition 5.2 (B-Instance). Let IS be a database instance. The b-instance of IS is

IBS = IS  Facts(DRS, IS),

where Facts(DR, I) = {q(X̄), qi(X̄ , Ȳ) | qi = (q(X̄)  L1...Lk)  DR, Ȳ denotes the

variables in L1  ...  Lk, and  is a ground substitution such that I ⊨ (L1  ...  Lk)}. □

Lemma 5.1. Let S be a database schema, and let BS be its b-schema. The following is true:

 Let IS be an instance of S, then the b-instance IBS of IS is an instance of BS.

 Let IBS be an instance of BS, then IBS is the b-instance of an instance IS of S.

Proof. It follows from (1) the fact that the set of predicate definitions of the b-schema is PDBS

= PDSPDDR and (2) the fact that a b-instance is built from the original instance IS by

materializing the derived predicates in S and populating the new predicates defined in PDDR. ■

Lemma 5.2. Let IS be an instance of database schema S. Instance IS is consistent if and only if

the b-instance of IS is a consistent instance of the b-schema of S.

Proof. Let us assume that IS is a consistent instance of S = PDS, DRS, ICS. Let IBS be the b-

instance of IS. By Lemma 1, IBS is an instance of the b-schema BS = PDBS, , ICBS of S. We

know that ICBS = ICSICDRICPICN, and that those facts in IBS that are also facts of IS do satisfy

the constraints ICS. The key point is to show that the facts in IBS that are not facts of IS do satisfy

the constraints ICDRICPICN.

Let us start with ICDR. The constraints in the form of qi(Ā i, B̄ i)  Aju = ku and qi(Ā i, B̄ i)  Agv

= Bhv state that, in the materialized relation qi(X̄ , Ȳ), X̄ contains one variable for each term in the

head of the deductive rule qi  DRS, which can be either a constant (i.e., consequent is Aju = ku) or

a variable from the body of qi (i.e., consequent is Agv = Bhv). We can be sure that these constraints

hold on IBS because of the definition of Facts(DRS, IS), which adds q(X̄) and qi(X̄ , Ȳ) to IBS for

each ground substitution  that makes the body of qi true on IS.

Still in ICDR, the constraints in the form of qi(Ā i, B̄ i)  q(Ā i) and q(Z̄)  B̄ 1 q1(Z̄ ,

B̄ 1)...B̄ i qi(Z̄ , B̄ i)...B̄ m qm(Z̄ , B̄ m) state that there must be one fact q(X̄) about the

derived predicate q for each instantiation qi(X̄ , Ȳ) of the deductive rule qi, and vice versa, i.e., if

there is a fact about q, it has to come from some of the deductive rules of q. Again, this clearly

holds in IBS since Facts includes both a fact q(X̄) about q and a fact qi(X̄ , Ȳ) about qi for each

instantiation  of each deductive rule qi.

103

The constraints in ICP keep qi(X̄ , Ȳ) updated according to the body of the deductive rule when

this has no negated literals. If the body holds, then the corresponding tuple must exists, and if the

tuple exists, the literals in the body must all be true. This obviously holds in IBS given the

definition of Facts.

Finally, ICN addresses the case in which the body of qi has negated literals. It is like ICP with

some additional algebraic manipulations: in P1  ...  Pr  N1(Z̄ 1)  ...  Ns(Z̄ s)  qi(Ā i, B̄ i), the

negated literals have been moved into the consequent, and in qi(Ā i, B̄ i)  Ns(Z̄ s)  1=0 the

negated literal has been moved into the premise. As above, it follows immediately from the

definition of Facts.

We can therefore conclude that IBS satisfies all constraints in ICBS, that is, IBS is a consistent

instance of the b-schema.

On the other direction, let us assume IS is an instance of S whose b-instance IBS satisfies the

integrity constraints of the b-schema. Since the facts in IS are also facts of IBS, i.e., IS  IBS, and the

b-schema includes the constraints of S, i.e., ICS  ICBS, then IS will be consistent. ■

Theorem 5.1. Derived predicate Q of database schema S is satisfiable if and only if the base

predicate Q in the b-schema of S is satisfiable.

Proof. Let us assume derived predicate Q of schema S = PDS, DRS, ICS is satisfiable. There

is a consistent instance IS of S that contains at least one fact about Q. By Lemma 2, the b-instance

IBS of IS is a consistent instance of the b-schema. By construction of IBS, we know that IBS contains

a fact q(X̄) for each instantiation  that makes true the body of a deductive rule (q(X̄) 

L1...Lk)  DRS on IS. Since Q is satisfiable on IS, there is at least one of such instantiations, i.e.,

IBS contains at least one fact about Q. Therefore, instance IBS exemplifies that base predicate Q of

the b-schema is satisfiable.

On the other direction, let us assume base predicate Q in the b-schema of S is satisfiable.

There must be a consistent instance IBS of the b-schema with at least one fact about Q. By

Lemmas 1 and 2, there is a consistent instance IS of S such that IBS is its b-instance. Since IBS

contains a fact q(X̄) about Q, and by definition of b-instance, there must be an instantiation 

and a deductive rule (q(X̄)  L1...Lk)  DRS such that (L1...Lk) is true on IS. Therefore, Q

has a non-empty answer on IS, i.e., IS exemplifies that Q is satisfiable on S. ■

104

5.4.2 Dependency Graph

Definition 5.3 (Potential Violation and Repair). A literal p(X̄) is a potential violation of an

integrity constraint ic  ICST if it appears in the premise of the constraint. We assume X̄ is a list

of distinct variables; otherwise, a constant k (a repeated variable Y) can be replaced by a fresh

variable Z plus the equality Z = k (Z = X). We denote by PV(ic) the set of potential violations of

ic. There is a repair REi(ic) = {Li} for each ordinary literal Li in the consequent of ic. □

Definition 5.4 (Dependency Graph). A dependency graph is a graph such that each vertex

corresponds to an integrity constraint ici  ICST. There is an arc labeled REk(ici) from ici to icj if

there exists p(X̄), p(Ȳ) such that p(X̄)  REk(ici) and p(Ȳ)  PV(icj). Note that there may be

more than one arc from ici to icj, since two different repairs of ici may lead to the violation of icj.

Also, note that only the integrity constraints that have ordinary literals in its consequent are

considered in the dependency graph.

A maximal set of constraints SP = {ic1, ..., ics} such that ic1, ..., ics have the same ordinary

literals in their premises (modulo renaming of variables) is considered as a single constraint ic′

from the point of view of the graph; thus, it corresponds to a single vertex. Let L1,1  ...  L1,r1, ...,

Ls,1  ...  Ls,rs be the consequents of the constraints in SP; there is a repair REk(ic′) = {L1,j1, ...,

Ls,js} for each combination j1, ..., js with 1  j1  r1, ..., 1  js  rs. The incoming and outgoing arcs

of ic′ in the graph are computed as defined above. □

5.4.3 Analysis of Cycles

Definition 5.5 (Cycle). A cycle is a sequence in the form of C = (ic1, r1, ..., icn, rn, icn+1 = ic1),

where ic1, …, icn are vertexes (i.e., constraints) from the dependency graph and ri denotes the

label of an arc from ici to ici+1. □

Before starting with the termination conditions, let us address the case in which the b-schema

has no cycles.

Proposition 5.1. Let S be a b-schema with no cycles in its dependency graph. Then, checking

the satisfiability of a query Q on S with the CQC method is a finite process.

Proof. Let G be the dependency graph of S. Let us assume G has no cycles. Let us suppose

that checking the satisfiability of a certain query Q on S with the CQC method does not terminate.

Recall that the CQC method is, after the initial query satisfaction phase, an integrity maintenance

105

process (see Chapter 2). Then, if the CQC method does not terminate, that means there exists an

infinite sequence of violations and repairs seq = (ic11, r1(11′), ic22, r2(22′), …), where

each i is a ground substitution that causes the violation of ici and, if i > 1, PV(ici)i contains at

least one tuple from the previous repair, i.e., PV(ici)i  ri-1(i-1i-1′)  . Substitution i′

assigns a constant to each existentially quantified variable in ri, according to the Variable

Instantiation Patterns (VIPs) (see Chapter 2). Since S is finite, it contains a finite number of

constraints. Therefore, seq being infinite implies that there must be a constraint ici from S that

occurs more than once in seq. Let us consider a fragment of seq between two consecutive

occurrences of ici, namely seq′ = (icia, ri(aa′), …, icib), and let us do induction on the length

of seq′. The base case is that in which there is no other constraint in seq′ but ici, that is, seq′ =

(icia, ri(aa′), icib). In this case, C = (ici, ri, ici) must be a cycle from G, and we have reached

a contradiction with G being acyclic. The inductive case is that in which there are other

constraints in seq′ besides ici. There are two possibilities: either the constraints in seq′ besides ici

are all different or there is some constraint icj that appears more than once. If all constraints in

seq′ different from ici are distinct, then C = (ici, ri, …, ici) must be a cycle from G and we have

again reached a contradiction. If there is some constraint icj different from ici that appears at least

twice in seq′, then seq′ = (icia, …, icjc, rj(cc′), …, icjd, …, icib). By hypothesis of

induction, the sequence between the two consecutive occurrences of icj, i.e., seq′′ = (icjc,

rj(cc′), …, icjd), must go through some cycle C, and we reach a contradiction. ■

Let us now formalize the termination conditions.

Definition 5.6 (Condition 1). We say a cycle C = (ic1, r1, ..., icn, rn, icn+1 = ic1) satisfies

Condition 1 if for all constraint ici in C and for all pair of literals p(X1, ..., Xm)  ri and p(Y1, ...,

Ym)  PV(ici+1), variable Xk being existentially quantified implies Yk  vars(ri+1), 1  k  m. □

Theorem 5.2. Let S be a b-schema. If all the cycles in the dependency graph of S satisfy

Condition 1, then checking the satisfiability of a query Q on S with the CQC method is a finite

process.

Proof. Let G be the dependency graph of S. Let us assume all cycles in G satisfy Condition 1.

Let us suppose that checking the satisfiability of a certain query Q on S with the CQC method

does not terminate. That means there must exists an infinite sequence seq of violations and repairs

(see proof of Proposition 5.1), seq = (ic11, r1(11′), ic22, r2(22′), …), where each i is a

ground substitution that causes the violation of ici; if i > 1, PV(ici)i contains at least one tuple

106

from the previous repair, i.e., PV(ici)i  ri-1(i-1i-1′)  ; and substitution i′ assigns a

constant to each existentially quantified variable in ri, according to the VIPs. Since the number of

constraints in S is finite, there must be some constraint ici that is violated an infinite number of

times in seq. Let icia be the first occurrence of ici in seq, and let seq′ = (icia, ri(aa′), …) be

the (infinite) suffix of seq that begins with this first occurrence of ici. We know each constraint in

seq′ must belong to some cycle from G; otherwise, seq′ could not go through ici an infinite

number of times. Given that all cycles in G satisfy Condition 1, then we also know that no

constraint from seq′ propagates the existentially quantified variables of the previous constraint.

Let I be the instance on which the first occurrence of ici is evaluated. The fact that no constraint

from seq′ propagates “invented” values means that the non-existentially quantified variables in

the repair of each occurrence of ici in seq′ are unified with constants from I. Since I is finite, there

is only a finite number of possible unifications for these non-existentially quantified variables in

the context of the whole seq′. Given also that constraint ici has only a finite number of distinct

repairs (note that different occurrences of ici in seq′ may have different repairs, e.g., ri, ri′, ri′′, …)

(see Definition 5.3), we can conclude that after ici has been violated and repaired a finite number

of times, ici will not be violated again. We have thus reached a contradiction with ici being

violated infinite times in seq′. ■

We show next that there is a connection between Condition 1 and the well-known property of

weak acyclicity, which is a property of sets of tuple-generating dependencies that guarantees

termination of the chase [FKMP05].

Proposition 5.2. Let S be a b-schema with integrity constraints IC. If the constraints in IC

have neither arithmetic comparisons nor disjunctions and are in the form of tuple-generating

dependencies, then all cycles in the dependency graph of S satisfying Condition 1 implies that IC

is weakly acyclic and chasing any instance I of S with IC is a finite process.

Proof. Let G be the dependency graph of S as defined in Definition 5.4. Let Gchase be the

dependency graph of IC as defined in [FKMP05]. Recall that Gchase has one vertex for each

position (R, A), where R is a relation and A an attribute from the schema. Given a tgd ic  IC, ic =

  , there is an edge from position 1 to position 2 if there is a variable X in  with position

1 that also appears in  with position 2; there is a special edge from position 1 to position 2 if

there is a variable X in  with position 1 that also appears in some position of  and there is an

existentially quantified variable Y in  with position 2. The set IC of tgds is weakly acyclic if its

dependency graph Gchase has no cycle going through a special edge. Now, let us suppose all cycles

107

in G satisfy Condition 1 and IC is not weakly acyclic. Then, Gchase has a cycle Cchase going

through a special edge. Let 1, 2, … n be the positions in Cchase. There is an edge from each

position i to the next position i+1. We know each edge (i, i+1) is caused by a constraint ici 

IC. Let ic1, ic2, … icn-1 the constraints from IC responsible for the edges in Cchase. Let us assume

without loss of generality that the special edge in Cchase is the one that goes from 1 to 2. That

means constraint ic2 propagates at least one existentially quantified variable of ic1. Constraints ic1

and ic2 must belong to a cycle C  G; otherwise, Cchase would not be a cycle. Since all cycles

from G satisfy Condition 1, ic2 should not propagate the existentially quantified variables of ic1,

that is, we have reached a contradiction. ■

Definition 5.7 (Condition 2). We say a cycle C = (ic1, r1, ..., icn, rn, icn+1 = ic1) satisfies

Condition 2 if C contains a constraint ici that satisfies the following. Let URgraph = {p | p(X̄) 

REj(ick), ick  dependency graph} be the union of the repairs of the constraints in the dependency

graph, and let UVi = {q | q(Ȳ)  PV(ici)} be the union of the potential violators of ici. Then,

(1) UVi ⊈ URgraph, where the literals in PV(ici) whose predicates belong to UVi but not to URgraph

are {L1, ..., Lk}, and

(2) vars(ri)  vars({L1, ..., Lk}), where vars(ri) denotes the non-existentially quantified variables

of ri. □

Lemma 5.3. Let C be a cycle that satisfies Condition 2, and let ici  C be the distinguished

constraint Definition 5.7 refers to. Then, integrity maintenance on a finite instance can only

violate ici a finite number of times.

Proof. Let us suppose that integrity maintenance on a certain finite instance I violates ici an

infinite number of times. Let 1, ..., m be the m possible ground substitutions such that I ⊨ (L1 

...  Lk)j, 1  j  m. Let I′ be instance I after m iterations of the integrity maintenance process.

Let us assume without loss of generality that I′ violates ici (otherwise, we keep doing integrity

maintenance until we find the next violation of ici). We know ici = L1  ...  Lk  Lk+1  ...  Ln 

Ln+1  ...  Ln+r, where {L1, ..., Lk} are the literals Definition 5.7 refers to. Let  be a ground

substitution for the non-existentially quantified variables of ici such that I′ ⊨ (L1  ...  Lk  Lk+1

 ...  Ln) and I′ ⊭ (Ln+1  ...  Ln+r). By point (1) of Definition 5.7, we know j, 1  j  m,

such that  = j  ′ and I′ ⊨ (L1  ...  Lk)j. By point (2), vars(Ln+1  ...  Ln+r)  vars(L1  ... 

Lk). Therefore, I′ ⊭ (Ln+1  ...  Ln+r)j. However, since ici has already been violated and repaired

108

m times, I′  {Ln+1j, ..., Ln+rj | 1  j  m}, which means I′ ⊨ (Ln+1  ...  Ln+r)j. So, we have

reached a contradiction. ■

Theorem 5.3. Let S be a b-schema. If all the cycles in the dependency graph of S satisfy

Condition 2, then checking the satisfiability of a query Q on S with the CQC method is a finite

process.

Proof. Let G be the dependency graph of S. Let us assume all cycles in G satisfy Condition 2.

Then, each cycle C from G has a constraint ici to which Lemma 5.3 can be applied. That is, each

cycle C from G has a constraint ici that can only be violated a finite number k of times. After k

violations and repairs of ici, there is no point on keep checking it, so we can remove ici and

continue the integrity maintenance process with the remaining constraints. Since this applies to all

cycles in G, that leaves us with an acyclic schema; and we know by Proposition 5.1 that the CQC

method (which, after the initial query satisfaction phase, becomes an integrity maintenance

process) is guaranteed to terminate on an acyclic b-schema. ■

Definition 5.8 (Canonical Integrity Maintenance Step). Given an instance I, a constraint ici,

and a repair ri for ici, a canonical integrity maintenance step is defined as follows:

Maint(I, ici, ri) = I  ri j

where j = j  j′ is one of the m possible instantiations, m  0, such that I ⊨ PV(ici)j, and

I ⊭ ri j, and j′ instantiates each existentially quantified variable of ri with a fresh constant, and

PV(ici)j contains at least one fact inserted by the previous canonical integrity maintenance step

(if the current is not the first step). □

Definition 5.9 (Canonical Simulation of a Cycle). Given a cycle C = (ic1, r1, ..., icn, rn, icn+1 =

ic1) we define a canonical simulation of C that starts at constraint ici as follows (note that, when

j > 0, ici+j-1 denotes the current constraint and ici+j denotes the next constraint):

Sim0(ici) = PV(ici)0

Simj(ici) = Maint(Simj-1(ici), ici+j-1, ri+j-1)  PV(ici+j)u j > 0

where

(i) Substitution 0 assigns a fresh constant to each variable.

(ii) There is a substitution s for each L  Maint(Simj-1(ici), ici+j-1, ri+j-1) and M  PV(ici+j) such

that L contains at least one tuple inserted by the last canonical integrity maintenance step and

109

there exists a most general unifier s of L and M. Substitution s = s  s′, where s′ assigns

a fresh constant to each variable in PV(ici+j)s – M s. Substitution u is one out of the s’s.

□

Definition 5.10 (Condition 3). We say a cycle C = (ic1, r1, ..., icn, rn, icn+1 = ic1) satisfies

Condition 3 if for each constraint ici  C, there exists a constant k, 1  k  n, such that all

canonical simulations that start at ici reach a fix-point in at most k steps, that is, Simk(ici) =

Simk+1(ici). □

The simulation begins with the construction of a canonical instance that “freezes” each

variable from the premise of ici into a constant (point (i)). Then, Sim evaluates the premise of the

constraint, disregarding the arithmetic comparisons, and, if the constraint is violated, Sim adds the

necessary facts to repair that premise (definition of Maint). Additionally, for each subset of

existing facts that includes at least one of the last repairs and that can be unified with some

portion of the premise of the next constraint, it freezes the non-unified variables of this next

constraint’s premise into constants, and inserts the resulting facts (point (ii)); this is required since

we want the satisfaction of a constraint to come from its repairs already holding and not from its

potential violators being false. The process moves from one constraint in the cycle to the next,

until it completes one iteration of the cycle or reaches a constraint that does not need to be

repaired. As an example, consider the cycle formed by the following constraints:

(ic1)
A(X)Y B(X, Y)

A(X)Y E(X, Y)

(ic2) B(X, Y)  C(X, Z)D(X, Y, Z)

(ic3)
D(X, Y, Z)A(X)

D(X, Y, Z)V E(X, V)

The violation and repair of constraints ic1 and ic2 leads to the satisfaction of the two

consequents in ic3, that is, A(X) and V E(X, V) in ic3 are guaranteed to hold because of the

violation of ic1 (remind that in order to violate a constraint, its premise must hold) and its repair,

respectively. Similarly, in the case in which the integrity maintenance process starts with ic2, the

violation and repair of ic2, ic3 leads to the satisfaction of ic1. In the case in which it starts with ic3,

the violation and repair of ic3, ic1, ic2 leads to the satisfaction of ic3. Therefore, the simulation of

one iteration of integrity maintenance always reaches a fix-point. The canonical simulation that

starts at ic1 is shown below (in this example, there is only one simulation for each starting ici):

110

Sim0(ic1) = {A(x)}

Sim1(ic1) = Sim0(ic1)  {B(x, y), E(x, y2), C(x, z)}

Sim2(ic1) = Sim1(ic1)  {D(x, y, z)}

Sim3(ic1) = Sim2(ic1)  

Notice the insertion of C(x, z) in Sim1, which ensures the satisfaction of the premise of ic2 in

the next step of the simulation.

The conclusion is that the cycle in the example is finite.

Theorem 5.4. Let S be a b-schema. If all the cycles in the dependency graph of S satisfy

Condition 3, then checking the satisfiability of a query Q on S with the CQC method is a finite

process.

Proof. Let G be the dependency graph of S. Let us assume all cycles in G satisfy Condition 3.

Let us suppose that checking the satisfiability of a certain query Q on S with the CQC method

does not terminate. We know there must exists an infinite sequence seq of violations and repairs

(see proof of Proposition 5.1), seq = (ic11, r1(11′), ic22, r2(22′), …), where each i is a

ground substitution that causes the violation of ici; if i > 1, PV(ici)i contains at least one tuple

from the previous repair, i.e., PV(ici)i  ri-1(i-1i-1′)  ; and substitution i′ assigns a

constant to each existentially quantified variable in ri, according to the VIPs.

We also know that seq has to go through some cycle C from G. Let us assume without loss of

generality that C = (ic1, r1, …, icn, rn, icn+1 = ic1). Let seqC be the first fragment of seq that iterates

on C, i.e., seqC = (ic11, r1(11′), …, icnn, rn(nn′), ic1n+1, r1′(n+1n+1′)). Let I be the

instance on which ic11 is evaluated.

Since C satisfies Condition 3, we know there is a certain constant k  n, which we assume is

the lowest possible, such that Simk(ic1) = Simk+1(ic1).

Our goal is to show that, based on seqC, we can build a sequence seqsim = (PV(ic1)1, r1(1 

1′), …, PV(ick+1)k+1, rk+1(k+1  k+1′)), where j, 1  j  k+1, Simj-1(ic1) ⊨ PV(icj)j, Simj-1(ic1)

⊭ rjj, substitution j′ instantiates the existentially quantified variables of rj with fresh constants,

and, if j > 1, (rj-1j-1′  PV(icj)j)  . Since the existence of seqsim implies there is a canonical

simulation such that Simk(ic1)  Simk+1(ic1), that will lead us to a contradiction.

We know that Sim0(ic1) is a canonical instance built by freezing the variables of PV(ic1) into

constants (point (i) of Definition 5.9), so let 1 be that instantiation. We also know that 1 unifies

each literal in PV(ic1) with a certain fact from I. Therefore, we can define (with a slight abuse of

111

notation) a substitution 1 from the frozen variables in ic11 to the constants in ic11 such that

(PV(ic1)1)1 = PV(ic1)1. Then, we set PV(ic1)1 as the first element of seqsim.

We know that Sim1(ic1) extends 1 with 1′ in order to instantiate the existentially quantified

variables of r1 with fresh constants (definition of Maint). Since (r11′  PV(ic2)2)  , we use A

and B to denote the literals in r1 and PV(ic2), respectively, that, once fully instantiated, become

the facts in (r11′  PV(ic2)2). We extend 1 with 1′, where 1′ is a substitution that replaces the

frozen variables in A(11′) with the constants in B2 in such a way that A(1  1′)(1  1′) =

B2. That means r1(11′)(1  1′) = r1(11′). We then set r1(11′) as the second element

of seqsim.

Now, we apply induction and focus on an intermediate icj, 1 < j  k+1. Our hypothesis of

induction is that what we just did in reference to ic1 and r1 can be done in reference to all ici and

ri, 1  i < j. Since PV(icj)j  rj-1(j-1j-1′)  , that means there is a fact F1j in PV(icj)j that is

also present in rj-1(j-1j-1′). By hypothesis of induction, we already have defined a substitution

a that unifies a certain fact Fsim1  seqsim with F1j, i.e., Fsima = F1j. Since we are assuming

that in the potential violators there are neither constants nor variables that appear more than once

in a single literal (Definition 5.3), then we can be sure that Fsim can be unified with the literal F1 

PV(icj). Let us focus now on some fact Fsj  PV(icj)j such that Fsj  F1j. There are two

possibilities: either (1) there is some fact Fs s  seqsim and some substitution a such that (Fs 1)a

= Fsj and Fs 1 can be unified with the literal Fs  PV(icj), or (2) otherwise. In case (2), we apply

the point (ii) from Definition 5.9 and define substitution s, which assigns a fresh constant to each

variable in Fs, and substitution s, which replaces the frozen variables of Fss with the constants

from Fsj in such a way that (Fss)s = Fsj. Finally, we define j as the union of s’s and set

PV(icj)j as the new last element of seqsim, i.e., seqsim = (PV(ic1)1, r1(1  1′), ..., PV(icj)j).

Now, let us focus on the repair of icj, i.e., rj. We must show that rjj is not true on seqsim. To do

so, let us assume that it is, and we will reach a contradiction. If rjj is true on seqsim, then for each

literal Fsj  rjj (note that Fsj may be not ground) there is a substitution j′′ such that (Fsj)j′′ 

seqsim, which means that, by hypothesis of induction, we have already defined a substitution s

such that ((Fsj)j′′)s = Fsj. The conclusion is that rjj is true on seq, that is, constraint icj is not

actually violated by the CQC method, which means seq is not infinite, and we have reached a

contradiction.

At this point, we know that rjj is not true and we can proceed as we did with r1.

112

When we reach j = k+1, we have finally built the sequence seqsim = (PV(ic1)1, r1(11′), …,

PV(ick+1)k+1, rk+1(k+1  k+1′)). From the reasoning above we can conclude that rk+1k+1 is not true

on seqsim. Since Simk(ic1) = PV(ic1)1  r1(11′)  …  PV(ick+1)k+1 is the result of the first k

steps of one of the canonical simulations of C that start at ic1 (modulo renaming of frozen

variables), then Simk(ic1) ⊭ rk+1k+1. That means rk+1(k+1  k+1′) is inserted by the k+1 step of at

least one of these simulations, i.e., rk+1k+1  Simk+1(ic1). The conclusion is that not all canonical

simulations that start at ic1 reach a fix-point within k steps, i.e., Simk(ic1)  Simk+1(ic1) for some

simulation. Therefore, we have reached a contradiction. ■

Corollary 5.1. If the dependency graph of a given b-schema satisfies one of the following

conditions:

 Each cycle satisfies Condition 1 or Condition 2.

 Each cycle satisfies Condition 2 or Condition 3.

then checking the satisfiability of a query on the b-schema with the CQC method is a finite

process.

Proof. We know from the proof of Theorem 5.3 that after a finite number of violations and

repairs, at least one constraint from each cycle that satisfies Condition 2 can be removed. That

leaves us with a schema in which either all cycles satisfy Condition 1 or all cycles satisfy

Condition 3. In both cases, we know that checking the satisfiability of a query on that kind of

schemas with the CQC method is guaranteed to terminate (Theorem 5.2 and Theorem 5.4,

respectively). ■

113

6

Validating XML Mappings

In this chapter, we generalize our previous results so we can deal with XML mapping scenarios.

This kind of mappings has been object of a growing interest by the research community during

the last years. Most mapping design tools and approaches also support some kind of XML

mappings.

First, we describe the class of XML schemas and mappings that we consider. Then, we

propose a translation of the mapping scenario into the first-order logic formalism required by the

CQC method. Finally, we show how the previous translation allows us to reformulate the

desirable properties discussed in Chapter 3—applied now to the XML context—in terms of query

satisfiability.

6.1 XML Schemas and Mappings

We consider XML schemas defined by means of a subset of the XML Schema Definition

language (XSD) [W3C04]. Basically, these schemas consist of a root element definition followed

by a collection of type definitions. Formally, an XML schema S has the form S = (r, T, IC), where

r is the root element definition, T is the set of type definitions, and IC is the set of integrity

constraints.

Using a production-based notation (an extension of that used in [BNV07]), a type definition is

in the form of:

type  elem1[type1][n1..m1], …, elemk[typek][nk..mk]

Each elemi[typei][ni..mi] is an element definition, where elemi is the name of the element, typei

is either a simple type (e.g., integer, real, string) or a complex type (defined by another

114

production), and [ni..mi] denotes the value of the minOccurs and maxOccurs facets [W3C04]

(i.e., a node of type “type” must have at least (at most) ni (mi) elemi child nodes).

As an example, the production

purchasetype  customer[string][1..1], item[itemtype][0..*]

states that any node of purchasetype type must have exactly one customer child node and zero

or more item child nodes.

We assume the element definition of the root (i.e., r in S = (r, T, IC)) has minOccurs = 0

and maxOccurs = 1; in particular, we assume that the presence of the root is not required in

order to allow the empty instance to be a valid instance of the schema.

Complex types can be defined either as a <sequence> of element definitions (see the

productions above), or as a <choice> among element definitions. Productions that denote a

choice are in the form of

type  elem1[type1][n1..m1] + … + elemk[typek][nk..mk]

Elements can also be defined as of simple type, optionally with a restriction on its range. For

example,

producttype  name[string][1..1], price[decimal between 700 and 5000][1..1]

indicates that the price of a product must be at least 700 and at most 5000.

We consider XML schemas in which neither element names nor complex type names appear

in more than one element definition. If a given schema does not meet this requirement, it can

always be rewritten, as long as its productions are not recursive. For example, consider an XML

schema with the following productions:

purchasetype  customer[persontype][1..1], salesperson[persontype][1..1],
item[itemtype][0..*]

persontype  name[string][1..1], address[string][1..1]

itemtype  product[producttype][1..1], quantity[integer][1..1]

producttype  name[string][1..1], price[decimal][1..1]

The schema has two different element definitions with the same element name, namely

name[string][1..1] in the production of persontype and name[string][1..1] in the production of

producttype. It also has two different element definitions with the same complex type, namely

115

customer[persontype][1..1] and salesperson[persontype][1..1]. In order to fulfill the requirement

above, duplicate element names can be renamed, and repeated complex types can be split:

purchasetype  customer[customertype][1..1], salesperson[salespersontype][1..1],
item[itemtype][0..*]

customertype  customer-name[string][1..1], customer-address[string][1..1]

salespersontype  salesperson-name[string][1..1], salesperson-address[string][1..1]

itemtype  product[producttype][1..1], quantity[integer][1..1]

producttype  product-name[string][1..1], price[decimal][1..1]

Note that we have first split persontype into customertype and salespersontype, and then we have

renamed the duplicate element definitions: the name and address of both customertype and

salespersontype, and also the name of producttype.

Henceforth, we omit the [type] component of element definitions when it is clear from the

context.

An instance of an XML schema S = (r, T, IC) is an XML document with root r that conforms

to T. Such instance is consistent if it satisfies the integrity constraints IC. It is important to note

that we do not consider the order in which sibling nodes appear in an XML document; therefore

an XML document such as

<product>
 <productName>P1</productName>
 <price>700</price>
</product>

is equivalent to

<product>
 <price>700</price>
 <productName>P1</productName>
</product>

Regarding path expressions, we consider paths in the form of

/elem1[cond1]/ … /elemn[condn]

where each condi is a Boolean condition that conforms to the following grammar:

Cond ::= Path | Cond1 ‘and’ Cond2 | Cond1 ‘or’ Cond2 | ‘not’ Cond | ‘(‘ Cond ‘)’ |

(Path1‘/text()’ | Const1) (‘=’ | ‘’ | ‘<’ | ‘’ | ‘>’ | ‘’) (Path2‘/text()’ | Const2)

116

Path expressions may also use the descendant axis ‘//’. These paths can be easily rewritten into

paths with the child axis “/” only. Note that since element names cannot be duplicated, there is

only one possible unfolding for a path //elemi into /elem1/ … /elemi.

We consider a subclass of the integrity constraints key and keyref. In particular, we

consider the class of keys and referential constraints used in the nested relational setting. Such

constraints are in the form of

key: {field1, …, fieldn} key of selector

keyref: (selector, {field1, …, fieldn}) references (selector′, {field1′, …, fieldn′})

where selector is a path expression that returns a set of nodes and each fieldi is a path

expression relative to selector that returns a single simple-type node.

Schema S2:
orderDB: sequence
 order minOccurs=0, maxOccurs=unbounded: sequence
 id key: integer
 shipTo: string
 billTo: string
 item minOccurs=0, maxOccurs=unbounded: sequence
 order: integer
 name: string
 quantity: integer
 price: decimal

Mapping M between S1 and S2: M = {QS1 = QS2}

QS1:<orders>
 {for $po in //purchaseOrder[.//twoAddresses]
 return <order>{$po//shipTo, $po//billTo}
 <items>{for $it in $po/item return $it}</items>
 </order>}

 </orders>

QS2: <orders>
 {for $o in /orderDB/order
 where not(/orderDB/item[./order/text() = $o/id/text() and ./price/text() <= 5000])
 return <order>{$o/shipTo, $o/billTo}
 <items>{for $it in //item[./order/text() = $o/id/text()] return
 <item><productName>{$it/name/text()}</productName>
 {$it/quantity, $it/price}
 </item>}
 </items>
 </order>}
 </orders>

Schema S1:
orderDoc: sequence
 purchaseOrder minOccurs=0, maxOccurs=unbounded: sequence
 customer: string
 item minOccurs=0, maxOccurs=unbounded: sequence
 productName: string
 quantity: integer
 price: decimal
 between 0 and 5000
 shipAddress: choice
 singleAddress: string
 twoAddresses: sequence
 shipTo: string
 billTo: string

keyref

Figure 6.1: Example XML mapping scenario.

117

We consider an XML schema mapping to be defined as a set of assertions M = {m1, ..., mk}

that specify a relationship between two XML schemas. Each assertion mi is of the form

QS1 op QS2, where QS1 and QS2 are queries expressed in a subset of the XQuery language

[W3C07], S1 and S2 are the two mapped schemas, and op is  or =.

The queries in a mapping are XQueries with the “for”, “where” and “return” clauses. Their

general form is:

<tag> for Var1 in Path1, …, Vark in Pathk

 where Cond

 return <tag1> Result1 </tag1> … <tagn> Resultn <tagn>

</tag>

where tag1, ..., tagn are all different (i.e., no union is allowed), and each Resulti denotes the

following:

Result ::= Path‘/text()’ | Const | Query | <tag> Result+ <tag>

The two queries in a same mapping assertion must return an answer of the same type, i.e., the

XML documents generated by the two queries must conform to a same schema. As an example,

see the XML mapping scenario in Figure 6.1; the two queries in the mapping return an XML

document that conforms to

orderstype  order[0..*]

ordertype  shipTo[string][1..1], billTo[string][1..1], items[1..1]

itemstype  item[0..*]

itemtype  productName[string][1..1], quantity[integer][1..1], price[decimal][1..1]

Since the actual tag’s names in the result of the queries are not relevant for our purposes, we

omit them and use the following nested relational notation:

Query ::= ‘for’ (Var ‘in’ Path)+ (‘where’ Cond)? ‘return’ ‘[’ Result+ ‘]’

Result ::= Path‘/text()’ | Const | Query | ‘[’ Result+ ‘]’

We say that two instances of the XML schemas being mapped are consistent with the mapping

if all the mapping assertions are true. A mapping assertion QS1  (=) QS2 is true if the answer to

QS1 is included in (equal to) the answer to QS2 when the queries are executed over the pair of

mapped schema instances.

118

We consider inclusion and equality of nested structures under set semantics [LS97, DHT04].

The answer to a query will be thus a set of records {[R1,1, …, R1,m], …, [Rn,1, …, Rn,m]}, where

each Ri,j is either a simple type value, a record, or a set of records.

The inclusion of two nested structures R1, R2 of the same type T, i.e. R1  R2, can be defined

by induction on T as follows [LS97]:

(1) If T is a simple type, R1  R2 iff R1 = R2

(2) If T is a record type, R1 = [R1,1, …, R1,n]  R2 = [R2,1, …, R2,n] iff R1,1  R2,1  …  R1,n  R2,n

(3) If T is a set type, R1 = {R1,1, …, R1,n}  R2 = {R2,1, …, R2,n} iff i j R1,i  R2,j

Equality can be defined similarly [LS97]:

(1) If T is a simple type, R1 = R2

(2) If T is a record type, [R1,1, …, R1,n] = [R2,1, …, R2,n] iff R1,1 = R2,1  …  R1,n = R2,n

(3) If T is a set type, {R1,1, …, R1,n} = {R2,1, …, R2,n} iff i j R1,i = R2,j  j i R2,j = R1,i

Note that, given the definitions above, Q1 = Q2 is not equivalent to Q1  Q2  Q2  Q1 [LS97].

See the Related Work chapter for a detailed comparison with other XML schema and mapping

formalisms.

6.2 Translation of XML Mapping Scenarios into Logic

To validate XML schema mappings, we translate the problem from the initial XML setting into

the first-order logic formalism the CQC method works with. The main goal of this section is to

define such a translation for the XML schemas and the mapping.

6.2.1 Translating the Nested Structure of Mapped Schemas

Each element definition name[type][n..m] is translated into a base predicate along the lines of the

hierarchical representation of XML schemas used in [YJ08]. If the element is the root, then it is

translated into the predicate name(id). Otherwise, the predicate will be either name(id, parentId)

if type is complex, or name(id, parentId, value) if type is simple. The attributes of the predicates

denote: the id of an XML node, the id of the parent node, and the simple-type value, respectively.

As an example, consider an XML schema with the following type definitions:

purchasetype  customer[string][1..1], item[0..*]

itemtype  product[string][1..1], quantity[integer][1..1], price[decimal][1..1]

119

Figure 6.2 shows an XML document that conforms to this schema and also shows the instance

of the logic schema into which the XML schema is translated.

Note that the logic representation identifies XML nodes by the value of the id attribute plus

the name of the predicate, e.g., item(0, ...) and item(1, ...) have the same predicate but different

ids, while customer(0, ...) and item(0, ...) have the same id but different predicates. In order to

make this semantics explicit to the CQC method, we must add, for each element definition

different from the root, the following constraints:

elem(id, parentId1[, value1])  elem(id, parentId2[, value2])  parentId1 = parentId2

elem(id, parentId1, value1)  elem(id, parentId2, value2)  value1 = value2

where elem denotes the name of the element. These constraints state that it is not possible to

have to different nodes with the same id. Note that the last constraint is only applicable to simple-

type elements. It is also worth noting that no constraint is required to enforce the equality of

contents for complex-type elements; the reason is that child nodes are the ones that “point to” its

parent by means the parentId attribute, and that, in first-order logic, two tuples with the same

values in their attributes are considered as the same tuple.

In the case of the root element, since it can only have one single node, the constraint required

is the following:

root(id1)  root(id2)  id1 = id2

<purchase>
 <customer>John</customer>
 <item>
 <product>P1</product>
 <quantity>1</quantity>
 <price>100</price>
 </item>
 <item>
 <product>P2</product>
 <quantity>2</quantity>
 <price>50</price>
 </item>
</purchase>

purchase(0)

 customer(0, 0, John)
 item(0, 0)

 product(0, 0, P1)
 quantity(0, 0, 1)
 price(0, 0, 100)

 item(1, 0)

 product(1, 1, P2)
 quantity(1, 1, 2)
 price(1, 1, 50)

XML document: Translation into logic:

Figure 6.2: An XML document and its translation into logic.

120

where root denotes the name of the root element.

We also need additional constraints to make explicit the parent-child relationship between

elements. For each element definition

parenttype  … elem[type][n..m] …

a referential constraint from the parentId attribute of the elem predicate to the id attribute of

the parent predicate is required:

elem(id, parentId[, value])  [parentId2[,value2]] parent(parentId[, parentId2[, value2]])

Recall that since we are assuming that element names do not appear in more than one element

definition, then there cannot be more than one possible parent for a given element.

In order to make explicit the semantics of the <choice> construct

parenttype  elem1[type1][n1..m1] + ... + elemk[typek][nk..mk]

we need a constraint for each pair of element definitions elemi and elemj, i  j, in the choice;

the constraint is to state that there cannot be an elemi node and an elemj node both with the same

parent:

elemi(idi, parentIdi[, valuei])  elemj(idj, parentIdj[, valuej])  parentIdi  parentIdj

Regarding the minOccurs and maxOccurs facets of element definitions, they also have to

be made explicit by means of integrity constraints. In particular, the maxOccurs facet of

elem[n..m] can be modeled by the following constraint:

elem(id1, parentId[, value1])  …  elem(idm+1, parentId[, valuem+1]) 

id1 = id2  id1 = id3  …  id1 = idm+1  id2 = id3  …  id2 = idm+1  …  idm = idm+1

which is required only when m   and elem is not the root. The constraint states that the only

way we can have m+1 elem tuples with the same parentId if at least one of them is a duplicate

(i.e., it has the same id than one of the other m tuples).

The translation into logic of the minOccurs facet depends on whether the type definition in

which the element appears is a sequence or a choice. If elem[n..m] appears in a sequence

parenttype  elem1[n1..m1], …, elem[n..m], …, elemk[nk..mk]

and n > 0, then we have to introduce a constraint to ensure that whenever a node of the parent

type exists, it has at least n elem child nodes:

121

parent(id[, grandparentId])  aux(id)

where aux is an auxiliary predicate defined by the following deductive rule:

aux(id)  elem(id1, id[, value1])  …  elem(idn, id[, valuen]) 

id1  id2  …  id1  idn  id2  id3  …  id2  idn  …  idn-1  idn

In the case in which elem[n..m] appears in a choice

parenttype  elem1[n1..m1] + … + elem[n..m] + … + elemk[nk..mk]

two cases must be considered. First, if n1, …, n, …, nk are all > 0, then a constraint that

ensures that each parent node has either an elem1, …, elem, … or elemk child node is needed:

parent(parentId[, grandparentId])  id1[,value1] elem1(id1, parentId[, value1])  … 

id[,value] elem(id, parentId[, value])  … 

idk[,valuek] elemk(idk, parentId[, valuek])

Second, if n > 1, the presence of an elem node E must imply the existence of at least n-1 other

elem nodes siblings of E:

elem(id, parentId[, value])  aux(id, parentId)

where

aux(id, parentId)  elem(id, parentId[, value])  elem(id2, parentId[, value2])  ... 

elem(idn, parentId[, valuen])  id  id2  ...  id  idn  ...  idn-1  idn

6.2.2 Translating Path Expressions

Recall that we consider path expressions that have the form

/root1[cond1]/elem2[cond2]/ … /elemn[condn]

where n  1 and each condi is a Boolean condition. Recall also that if the path expression has

some ‘//’ (descendant) axis, it can be unfolded into an expression of the form above.

We translate each path expression into a derived predicate along the lines suggested in

[DT05]. The main difference is that we allow conditions with negations and order comparisons,

which are not handled in [DT05]. The translation of path, denoted by T-path(path, id),

corresponds to Ppath(idn), that is, T-path(path, id) = Ppath(idn).

Ppath is a derived predicate defined by the following deductive rule:

122

P/root[cond1]/elem2[cond2]/.../elemn[condn](idn)  root1(id1)  T-cond(cond1, id1)  elem2(id2, id1) 

T-cond(cond2, id2)  ...  elemn(idn, idn-1)  T-cond(condn, idn)

If the path ends with “/text()”, the literal about namen should be namen(idn, idn-1, value), and

the term in the head of the rule should be valuen instead of idn. In the body of the rule, T-cond

stands for the translation of the Boolean condition cond. It is defined as follows:

 T-cond(cond1 and cond2, pid) = T-cond(cond1, pid)  T-cond(cond2, pid)

 T-cond(cond1 or cond2, pid) = aux(pid), where

aux(pid)  T-cond(cond1, pid)

aux(pid)  T-cond(cond2, pid)

 T-cond(not cond, pid) = auxcond(pid), where

aux(pid) T-cond(cond, pid)

 T-cond(path1/text() op path2/text(), pid) = T-relpath(path1/text(), pid, value1) 

 T-relpath(path2/text(), pid, value2)  value1 op value2

where value1 and value2 are the simple-type results of the relative path expressions.

 T-cond(path, pid) = T-relpath(path, pid, res)

Relative paths have the following translation:

− T-relpath(./elem1[cond1]/ ... /elemn[condn], pid, idn) = elem1(id1, pid) 

T-cond(cond1, id1)  ...  elemn(idn, idn-1)  T-cond(condn, idn)

− T-relpath(./elem1[cond1]/ ... /elemn[condn]/text(), pid, value) = elem1(id1, pid) 

T-cond(cond1, id1)  ...  elemn(idn, idn-1, value)  T-cond(condn, idn)

As an example, the path expression:

/orderDoc/purchaseOrder[not(./item[./price/text()< 1000])]/customer

would be translated as:

P/orderDoc/purchaseOrder[not(./item[./price/text()<1000])]/customer(id)  orderDoc(id1) 
purchaseOrder(id2, id1)  aux./item[./price/text() < 1000](id2)  costumer(id, id2)

aux./item[./price/text() < 1000](id2)  item(id3, id2)  price(id4, id3, val)  val < 1000

123

6.2.3 Translating Integrity Constraints

A key constraint in the form of

{field1, …, fieldn} key of selector

where selector is a path expression that returns a set of complex-type nodes, and each fieldi is

a path expression that returns one single simple-type node, can be expressed in our logic

formalism by means of the following constraint:

T-path(selector, id1)  T-path(selector, id2) 

T-relpath(field1, id1, value1)  T-relpath(field1, id2, value1)  … 

T-relpath(fieldn, id1, valuen)  T-relpath(fieldn, id2, valuen)  id1 = id2

The constraint states that there cannot be two nodes in the set returned by selector with the

same values for field1, …, fieldn.

As an example, the constraint

{./id/text()} key of /orderDB/order

from Figure 6.1 would be translated into logic as follows (for simplicity, we fold both path

and relative path translations into derived predicates):

P/orderDB/order(id1)  P/orderDB/order(id2) 
P./id/text()(id1, value)  P./id/text()(id2, value)  id1 = id2

where

P/orderDB/order(id)  orderDB(id1)  order(id, id1)

P./id/text()(pid, value)  id(id, pid, value)

Similarly, a keyref constraint in the form of

(selector, {field1, …, fieldn}) references (selector′, {field1′, …, fieldn′})

is translated into logic as the following constraint:

T-path(selector, id)  T-relpath(field1, id, value1)  …  T-relpath(fieldn, id, valuen)

 aux(value1, …, valuen)

where

124

aux(value1, …, valuen)  T-path(selector′, id′) 

T-relpath(field1′, id′, value1)  …  T-relpath(fieldn′, id′, valuen)

Finally, a range restriction on a simple type such as /orderDoc/purchaseOrder/item/price being

a decimal between 0 and 5000 in Figure 6.1 is translated into logic as follows:

P/orderDoc/purchaseOrder/item/price/text()(value)  value  0

P/orderDoc/purchaseOrder/item/price/text()(value)  value  5000

where

P/orderDoc/purchaseOrder/item/price/text()(value)  orderDoc(id1)  purchaseOrder(id2, id1) 
item(id3, id2)  price(id4, id3, value)

6.2.4 Translating Nested Queries

The queries in an XML mapping are XQueries whose answer is an XML document that conforms

to some nested relational schema. We translate each of these nested queries as a collection of

“flat” queries; we follow a variation of the approach that was used in [LS97] (see the Related

Work chapter for a detailed comparison).

There will be one flat query for each nested block. For example, consider the query QS1 from

Figure 6.1 (shown here in our compact notation).

QS1: for $po in //purchaseOrder[.//twoAddresses]
return [$po//shipTo/text(), $po//billTo/shipTo,

for $it in $po/item
return [$it/productName/text(), $it/quantity/text(), $it/price/text()]]

It has two “for … return …” blocks, i.e., the outer one and the inner one. The outer block

iterates through those purchase orders with two addresses, while the inner block iterates through

the items of the purchase orders selected by the outer block.

We translate the outer block into the following derived predicate:

QS1
outer(po, st, bt)  T-path(//purchaseOrder[.//twoAddresses], po) 

T-relpath(.//shipTo/text(), po, st)  T-relpath(.//billTo/text(), po, bt)

which projects the id of each purchaseOrder XML node (i.e., variable po) together with the

simple-type value of its shipTo and billTo descendants. Note that the predicate ignores the inner

block of the query, which is to be translated into a separate predicate.

125

The translation of an inner block requires dealing with the variables inherited from its parent

block, e.g., variable $po in QS1.We use access patterns [DLN07] to deal with this kind of

variables. In particular, we consider derived predicates with both “input-only” and “input-output”

terms. We denote these predicates by QX1, … Xn(Y1, …, Ym), where X1, …, Xn are the input-only

terms and Y1, …, Ym are the usual input-output terms. In this way, we translate the inner block of

QS1 into the following derived predicate:

QS1
innerpo(it, pn, q, p)  T-relpath(./item, po, it) 

T-relpath(./productName/text(), it, pn)  T-relpath(./quantity(text(), it, q) 
T-relpath(./price/text(), it, p)

In order to allow the CQC method to deal with predicates with access patterns the same way it

does with the usual derived predicates, a requirement must be fulfilled. The requirement is that

input-only variables must be safe, that is, whenever a literal QX1, … Xn(Y1, …, Ym) appears in

the body of some deductive rule or condition, the variables in {X1, … Xn} must either appear in

some other positive literal in the same body in an input-output position, or, if the body is from a

deductive rule, they may appear in the head of the rule as input-only variables but then the

requirement must be inductively fulfilled by the derived predicate defined by the deductive rule.

The translation of the “where” clause of a query block is similar to the translation of a Boolean

condition from a path expression. The difference is that a condition from a path expression

involves at most one single variable which denotes the node to which the condition is applied,

while a where clause potentially involves all the variables in the “for” clause (plus the variables

inherited from the ancestor blocks). As an example, consider the outer query block of QS2 in

Figure 6.1, which has a “where” clause:

QS2: for $o in /orderDB/order
where not(/orderDB/item[./order/text() = $o/id/text()

and ./price/text()  5000])
return [$o/shipTo/text(), $o/billTo/text(), for … return …]

The “where” clause will be translated into an auxiliary derived predicate as follows:

QS2
outer(o, st, bt)  T-path(/orderDB/order, o)  auxo 

T-relpath(./shipTo/text(), o, st)  T-relpath(./billTo/text(), o, bt)

auxo  T-path(/orderDB/item, it)  T-relpath(./order/text(), it, value1) 
T-relpath(./id/text(), o, value2)  value1 = value2 
T-relpath(./price/text(), it, value3)  value3  5000

126

Note the use of the input-only variable “o” in the auxiliary predicate that models the “where”

clause. This input-only variable denotes the variable inherited from the “for” clause.

6.2.5 Translating Mapping Assertions

An XML mapping scenario consists of two XML schemas and an XML mapping that relates

them. We have already discussed how to translate each XML schema into our logic formalism.

Therefore, in order to complete the translation of the mapping scenario into logic, we must see

now how to translate the mapping assertions.

A mapping assertion consists of two nested XML queries related by means of a  or =

operator. An instantiation of a mapping scenario is consistent only if it makes all the assertions in

the mapping true. The mapping assertions can thus be modeled as integrity constraints defined

over the translations of the two mapped schemas.

To translate a mapping assertion Q1  (=) Q2, we will make use of the definition of inclusion

(equality) of nested structures from Section 6.1 and the flat queries that result from the translation

of Q1 and Q2.

Let QA and QB be two generic (sub)queries with the same return type:

QA: for $v1 in path1, ..., $vna in pathna where cond

return [A1, ..., Am, B1, ..., Bk]

QB: for $v1′ in path1′,...,$vnb′ in pathnb′ where cond ′

return [A1′,..., Am′, B1′,..., Bk′],

where each Ai and Ai′ are simple-type expressions, and each Bi and Bi′ are subqueries. Let us

assume the outer block of QA is translated into predicate QA0x1, ..., xka(v1, ..., vna, r1, ..., rm),

where x1, ..., xka denote the variables inherited from the ancestor query blocks, v1, ..., vn denote the

variables in the “for” clause, and r1, ..., rm denote the simple-type values returned by the block.

Similarly, let us also assume the outer block of QB is translated into QB0x1′, ..., xkb′(v1’, ..., vnb′,

r1′, ..., rm′).

Let us assume the mapping assertion is QA  QB. The assertion states that the nested structure

returned by the execution of QA must be included in the nested structure returned by the execution

of QB. The first step is to express this in first-order logic.

We use T-inclusion(QA, QB, {i1, …, ih}) to denote the first-order translation of QA  QB,

according to the definition of inclusion from Section 6.1, where {i1, …, ih} is the union of the

127

variables inherited by QA and the variables inherited by QB from their respective parent blocks (if

any):

T-inclusion(QA, QB, {i1,...,ih}) = (v1,...,vna, r1,...,rm) (QA0x1,...,xka(v1,...,vna, r1,...,rm) 

(v1′,...,vnb′) (QB0x1′,...,xkb′(v1′,...,vnb′, r1,...,rm)

 T-inclusion(B1, B1′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})

 ...  T-inclusion(Bk, Bk′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})))

where {x1,...,xka}{x1’,...,xkb’}  {i1,...,ih}.

The constraint formally states that for all tuple in the answer to QA, there must be a tuple in the

answer to QB such that both tuples have the same value for their simple-type attributes (r1, … rm)

and each complex-type attribute in the tuple of QA has a value which is a nested structure

(produced by the execution of Bi) and is included in the value (also a nested structure) of the

corresponding attribute (Bi′) of the tuple of QB.

However, the constraint above does not fit the syntactic requirements of the class of logic

database schemas the CQC method deals with (see Chapter 2). To address that, we first need to

get rid of the universal quantifiers. To do so, we perform a double negation on T-inclusion and

move one of the negations inwards:

T-inclusion(QA, QB, {i1,...,ih}) = (v1,...,vna, r1,...,rm) (QA0x1,...,xka(v1,...,vna, r1,...,rm)

 (v1’,...,vnb’) (QB0x1’,...,xkb’(v1’,...,vnb’, r1,...,rm)

 T-inclusion(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})

 ...  T-inclusion(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})))

Next, we fold each existentially quantified (sub)expression and get the following:

T-inclusion(QA, QB, {i1,...,ih}) = QA-not-included-in-QBi1,...,ih

where

QA-not-included-in-QBi1,...,ih  QA0x1,...,xka(v1,...,vna, r1,...,rm)

 aux-QA-not-included-in-QBi1,...,ih, v1,...,vna, r1,...,rm

aux-QA-not-included-in-QBi1,...,ih, v1,...,vna, r1,...,rm  QB0x1′,...,xkb′(v1′,...,vnb′, r1,...,rm)

 T-inclusion(B1, B1′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})

 ...  T-inclusion(Bk, Bk′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})

Finally, we put QA-not-included-in-QBi1,...,ih in form of DED:

128

QA-not-included-in-QBi1,...,ih  1 = 0

which is the same as

T-inclusion(QA, QB, {i1,...,ih})  1 = 0

As an example, consider the mapping assertion QS1  QS2, where QS1 and QS2 are the queries

in Figure 6.1. Let us assume the outer block of each query is translated into the derived predicate

QS1
0 and QS2

0, respectively, and the inner block is translated into the derived predicate QS1
1 and

QS2
1, respectively. The mapping assertion is then translated into the constraint

QS1-not-included-in-QS2   1= 0

where

QS1-not-included-in-QS2   QS1
0(po, st, bt) 

aux-QS1-not-included-in-QS2po, st, bt

aux-QS1-not-included-in-QS2po, st, bt  QS2
0(o, st, bt) 

QS1
1-not-included-in-QS2

1po, st, bt, o

QS1
1-not-included-in-QS2

1po, st, bt, o  QS1
1po(it, pn, q, p) 

aux-QS1
1-not-included-in-QS2

1po, st, bt, o, it, pn, q, p

aux-QS1
1-not-included-in-QS2

1po, st, bt, o, it, pn, q, p  QS2
1o(it’, pn, q, p)

Similarly, the translation of an equality assertion QA = QB results in two constraints; one states

that there cannot be a tuple in QA that is not present in QB, and the other states that there cannot be

a tuple in QB that is not present in QA:

T-equality(QA, QB, {i1, …, ih})  1 = 0

T-equality(QB, QA, {i1, …, ih})  1 = 0

where T-equality is generically defined as follows:

T-equality(QA, QB, {i1,...,ih}) = QA-not-eq-to-QBi1,...,ih

and QA-not-eq-to-QB is a derived predicate defined by the following deductive rules:

QA-not-eq-to-QBi1,...,ih  QA0x1,...,xka(v1,...,vna, r1,...,rm)

 aux-QA-not-eq-to-QBi1,...,ih, v1,...,vna, r1,...,rm

aux-QA-not-eq-to-QBi1,...,ih, v1,...,vna, r1,...,rm  QB0x1′,...,xkb′(v1′,...,vnb′, r1,...,rm)

 T-equality(B1, B1′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})

 T-equality(B1′, B1, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})

129

 ...  T-equality(Bk, Bk′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})

  T-equality(Bk′, Bk, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})

As an example, consider the mapping assertion QS1 = QS2 from Figure 6.1. It would be

translated into

QS1-not-eq-to-QS2   1 = 0

QS2-not-eq-to-QS1   1 = 0

where

QS1-not-eq-to-QS2   QS1
0(po, st, bt)  aux-QS1-not-eq-to-QS2po, st, bt

aux-QS1-not-eq-to-QS2po, st, bt  QS2
0(o, st, bt) 

QS1
1-not-eq-to-QS2

1po, st, bt, o 
QS2

1-not-eq-to-QS1
1po, st, bt, o

QS1
1-not-eq-to-QS2

1po, st, bt, o  QS1
1po(it, pn, q, p) 

aux-QS1
1-not-eq-to-QS2

1po, st, bt, o, it, pn, q, p

aux-QS1
1-not-eq-to-QS2

1po, st, bt, o, it, pn, q, p  QS2
1o(it′, pn, q, p)

QS2
1-not-eq-to-QS1

1po, st, bt, o  QS2
1o(it′, pn′, q′, p′) 

aux-QS2
1-not-eq-to-QS1

1po, st, bt, o, it′, pn′, q′, p′

aux-QS2
1-not-eq-to-QS1

1po, st, bt, o, it′, pn′, q′, p′  QS1
1po(it, pn′, q′, p′)

QS2-not-eq-to-QS1   QS2
0(o, st′, bt′)  auxQS2-not-eq-to-QS1o, st′, bt′

auxQS2-not-eq-to-QS1o, st′, bt′  QS1
0(po, st′, bt′) 

QS2
1-not-eq-to-QS1

1po, st′, bt′, o 
QS1

1-not-eq-to-QS2
1po, st′, bt′, o

6.3 Checking Desirable Properties of XML Mappings

Our approach to validating XML mappings is an extension of the one we proposed for relational

mapping scenarios. It is aimed at providing the designer with a set of desirable properties that the

mapping should satisfy. For each property to be checked, a query that formalizes the property is

defined. Then, the CQC method [FTU05] is used to determine whether the property is satisfied,

i.e., whether the query into which the property is reformulated is satisfiable. In addition to this

query, the CQC method also requires the logic database schema on which the query is defined.

This logic database schema is the one that results from putting together the translation of the two

130

mapped XML schemas and the translation of the XML mapping assertions; translations that we

have discussed in the previous sections.

In this section, we show how the desirable properties of relational mappings we saw in

Chapter 3 are also applicable to the XML context and how these properties can be reformulated in

terms of a query satisfiability check over the logic translation of the XML mapping scenario. We

focus here on the reformulation of the strong mapping satisfiability, mapping losslessness, and

mapping inference properties (the reformulation of weak mapping satisfiability and query

answerability can be straightforwardly deduced from these).

6.3.1 Strong Mapping Satisfiability

A mapping is strongly satisfiable if there is a pair of schema instances that make all mapping

assertions true in a non-trivial way. In the relational setting (see Chapter 3), the trivial case is that

in which the two queries in the assertion return an empty answer. In XML, however, queries may

return a nested structure; therefore, testing this property must make sure that all levels of nesting

can be satisfied non-trivially. As an example, consider the mapping in Figure 6.1. The mapping

may seem correct because it relates orders in S1 with orders in S2. However, only those orders in

S1 that have no items can satisfy the assertion. There is a contradiction between the “where”

clause of QS2 and the range restriction on the price of S1’s items.

Strong satisfiability of XML schema mappings can thus be formalized as follows:

Definition 6.1. An XML schema mapping M between schemas S1 and S2 is strongly

satisfiable if IS1, IS2 instances of S1 and S2, respectively, such that IS1 and IS2 satisfy the assertion

in M, and for each assertion QS1 op QS2 in M, the answer to QS1 in IS1 is a strong answer. We say

that R is a strong answer if

(1) R is a simple type value,

(2) R is a record [R1, ..., Rn] and R1, ..., Rn are all strong answers, or

(3) R is a non-empty set {R1, ..., Rn} and R1, ..., Rn are all strong answers. □

The query into which the strong satisfiability of a mapping M is reformulated is the following:

QstronglySat  StrongSat(QS1
1, )  …  StrongSat(QS1

n, )

where StrongSat is a function generically defined as follows.

131

Let V be a generic (sub)query:

V: for $v1 in path1, ..., $vs in paths where cond

return [A1, ..., Am, B1, ..., Bk],

where A1, ..., Am are simple-type expressions and B1, ..., Bk are query blocks; and let predicate

V0 be the translation of the outer block of V. Then,

StrongSat(V, inheritedVars) = V0x1,...,xr(v1,...,vs, r1,...,rm)

 StrongSat(B1, inheritedVars  {v1,...,vs, r1,...,rm})

 ...  StrongSat(Bk, inheritedVars  {v1,...,vs, r1,...,rm})

where {x1,...,xr}  inheritedVars.

The logic schema DB over which we are to check the satisfiability of QstronglySat is obtained as

follows. Let DRM and ICM be the deductive rules and constraints that result from the translation of

the assertions from mapping M = {QS1
1 op1 Q

S2
1, ..., Q

S1
n opn Q

S2
n}. Let DRS1, ICS1 and DRS2, ICS2

be the rules and constraints from the translation of mapped schemas S1 and S2, respectively.

Then, DB = (DRS1DRS2DRM, ICS1ICS2ICM).

As an example, consider again the mapping M in Figure 6.1. Strong satisfiability of this

mapping is defined by the query:

QstronglySat  QS1
0(po, st, bt)  QS1

1po(it, pn, q, p)

Note that the second literal in the body of this query can never be satisfied, since every

possible instantiation either violates the range restriction on the price element of S1 or it violates

the mapping assertion (more specifically, the “where” clause of QS2). Such unsatisfiability is

detected by applying the CQC method.

6.3.2 Mapping Losslessness

Recall that the mapping losslessness property allows the designer to provide a query on the

source schema and check whether all the data needed to answer that query is mapped into the

target; and that it can be used, for example, to know whether a mapping that may be partial or

incomplete suffices for the intended task, or to be sure that certain private information is not

made public by the mapping.

The definition from Chapter 3 can be easily applied to the context of XML mappings.

132

Definition 6.2. Let Q be a query posed on schema S1. Let M be an XML mapping between

schemas S1 and S2 with assertions: {QS1
1 op1 Q

S2
1, ..., Q

S1
n opn Q

S2
n}. We say that M is lossless

with respect to Q if IS1
1, I

S1
2 instances of S1 both

(1) IS2 instance of S2 such that IS1
1 and IS1

2 are both mapped into IS2, and

(2) for each mapping assertion QS1 op QS2 from M, the answer of QS1 over IS1
1 is equal to the

answer of QS1 over IS1
2,

imply that the answer of Q over IS1
1 is equal to the answer of Q over IS1

2. □

In other words, mapping M is lossless w.r.t. Q if the answer to Q is determined by the

extension of the QS1
i queries in the mapping, where these extensions must be the result of

executing the queries over an instance of S1 that is mapped into some consistent instance of S2.

As an example, consider the mapping M in Figure 6.1 and suppose that we have changed

“./price/text() <= 5000” by “./price/text() > 5000” in the definition of QS2 in order to make M

strongly satisfiable. Consider also the following query Q:

Q: for $sa in //singleAddress return [$sa/text()]

Intuitively, mapping M is not lossless w.r.t. Q because it maps the purchase orders that have

two addresses, but not the ones with a single address. More formally, we can find a

counterexample that shows M is lossy w.r.t. Q. This counterexample is depicted in Figure 6.3,

and it consists of two instances of S1 that have the same extension for QS1, that are both mapped

to a consistent instance of S2, and that have different answers for Q.

Instance of S2:
<orderDB>
 <order>
 <id>0</id>
 <shipTo>Address2</shipTo>
 <billTo>Address3</billTo>
 </order>
 <item>
 <order>0</order>
 <name>product1</name>
 <quantity>2</quantity>
 <price>50</price>
 </item>
</orderDB>

Instance 2 of S1:
<orderDoc>
 <purchaseOrder>
 <customer>Joan</customer>
 <shipAddress>
 <singleAddress>Address4
 </singleAddress>
 </shipAddress>
 </purchaseOrder>
 <purchaseOrder>
 <customer>Mary</customer>
 <item>
 <productName>product1
 </productName>
 <quantity>2</quantity>
 <price>50</price>
 </item>
 <shipAddress>
 <twoAddresses>
 <shipTo>Address2</shipTo>
 <billTo>Address3</billTo>
 </twoAddresses>
 </shipAddress>
 </purchaseOrder>
</orderDoc>

Instance 1 of S1:
<orderDoc>
 <purchaseOrder>
 <customer>Andy</customer>
 <shipAddress>
 <singleAddress>Address1
 </singleAddress>
 </shipAddress>
 </purchaseOrder>
 <purchaseOrder>
 <customer>Mary</customer>
 <item>
 <productName>product1
 </productName>
 <quantity>2</quantity>
 <price>50</price>
 </item>
 <shipAddress>
 <twoAddresses>
 <shipTo>Address2</shipTo>
 <billTo>Address3</billTo>
 </twoAddresses>
 </shipAddress>
 </purchaseOrder>
</orderDoc>

Figure 6.3: Counterexample for mapping losslessness.

133

Let M = {QS1
1 op1 Q

S2
1, ..., Q

S1
n opn Q

S2
n} be a mapping between schemas S1 and S2, and let Q

be a query over S1. The query into which losslessness of mapping M with respect to query Q is

reformulated is as follows:

Qlossy  T-inclusion(Q, Q′, )

where Q′ is a copy of Q in which each element name elem in the path expressions has been

renamed elem′.

The logic schema DB over which we are to check the satisfiability of Qlossy is defined as

follows. Let DRS1, ICS1 and DRS2, ICS2 be the rules and constraints from the translation of S1 and

S2, respectively; let DRS1′, ICS1′ be a copy of DRS1, ICS1 in which each predicate p has been

renamed p′; and let DRL, ICL be the result of translating the assertions: QS1
1 = QS1

1′, ...,

QS1
n = QS1

n′. Then, DB = (DRS1DRS2DRM DRS1′ DRL, ICS1ICS2 ICM ICS1′ ICL).

If the CQC method can build an instance of DB in which Qlossy is true, this instance can be

partitioned in three instances: one for S1, one for S1′, and one for S2. Since S1 and S1′ are

actually two copies of the same schema, we can say that we have two instances of S1, which are

both mapped to the instance of S2 (because ICM) and share the same answer for the QS1
i queries in

mapping M (because ICL). Moreover, since Qlossy is true and its definition requires that Q ⊈ Q′,

then the two instances of S1 must have different answers for query Q. In conclusion, we have got

a counterexample that shows M is lossy w.r.t. query Q.

6.3.3 Mapping Inference

The mapping inference property [MBDH02] checks whether a given mapping assertion is

inferred from a set of others assertions. It can be used, for instance, to detect redundant assertions

or to test equivalence of mappings.

Definition 6.3. Let M be an XML mapping between schemas S1 and S2. Let F be a mapping

assertion between S1 and S2. We say that F is inferred from M if IS1, IS2 instances of schemas S1

and S2, respectively, such that IS1 and IS2 satisfy the assertions in M, then IS1 and IS2 also satisfy

assertion F. □

The query into which inference of a mapping M with respect to an assertion F is reformulated

is defined as follows:

− If F is an inclusion assertion Q1  Q2, query QnotInferred will be defined by a single rule:

QnotInferred  T-inclusion(Q1, Q2, )

134

− Otherwise, if F is like Q1 = Q2, there will be two rules:

QnotInferred  T-equality(Q1, Q2, )

QnotInferred  T-equality(Q2, Q1, )

The logic schema DB over which we are to check the satisfiability of query QnotInferred is

DB = (DRS1 DRS2DRM, ICS1ICS2ICM).

As an example, let F be Q1 = Q2, and let Q1 and Q2 be the following queries defined over the

schemas shown in Figure 6.1:

Q1: for $po in //purchaseOrder
 return [for $sa in $po/shipAddress/singleAddress return [$sa/text()],
 for $ta in $po/shipAddress/twoAddresses
 return [$ta/shipAddress/text(), $ta/billTo/text()]
 for $it in $po/item
 return [$it/productName/text(), $it/quantity/text(), $it/price/text()]]

Q2: for $o in /orderDB/order
 where not(/orderDB/item[./order/text() = $o/id/text() and ./price/text() > 5000])
 return [for $st in $o/shipTo, $bt in $o/billTo where $st/text() = $bt/text()
 return [$st/text()],
 for $st in $o/shipTo, $bt in $o/billTo where $st/text()  $bt/text()
 return [$st/text(), $bt/text()],
 for $it in //item[./order/text() = $o/id/text()]
 return [$it/name/text(), $it/quantity/text(), $it/price/text()]]

Assertion F maps both the purchase orders that have a twoAddresses node, and also those with

a singleAddress node. It fixes thus the problem of mapping M not being lossless w.r.t. the

singleAddress information (see Section 6.3.2). Let us suppose that now we want to see whether F

is inferred from M. We apply the CQC method over QnotInferred and we obtain a counterexample,

which consists in a pair of schema instances that satisfy M (because ICM), i.e., they share the

twoAddresses nodes, but do not satisfy F (because the definition of QnotInferred), i.e., they do not

have the same singleAddress nodes. Therefore, F is not inferred from M.

135

6.4 Experimental Evaluation

To show the feasibility of our approach to validate XML mappings, we perform a series of

experiments and report the results in this section. We perform the experiments on an Intel Core2

Duo machine with 2GB RAM and Windows XP SP3.

The mapping scenarios we use in the experiments are adapted from the STBenchmark

[ATV08]. From the basic mapping scenarios proposed in this benchmark, we consider those that

can be easily rewritten into the class of mapping scenarios described in Section 6.1 and that have

at least one level of nesting. These scenarios are the ones called unnesting and nesting. We also

consider one of the flat relational scenarios, namely the one called self joins, to show that our

approach generalizes the relational case. These mapping scenarios are depicted in Figure 6.4.

For each one of these three mapping scenarios we validate the three properties discussed in

Section 6.3, i.e., strong mapping satisfiability, mapping losslessness and mapping inference. In

order to do this, we apply the translation presented in Section 6.2 and Section 6.3 to transform

each mapping scenario into a logic database schema and the mapping validation test into a query

satisfiability test over the logic schema. Note that although STBenchmark [ATV08] expresses the

mappings in the global-as-view (GAV) formalism, these mappings can be easily rewritten into

mapping assertions in the form of Qsource  Qtarget. Since we have not yet implemented the

automatic XML-to-logic translation, we performed the translation manually. The number of

constraints and deductive rules in the resulting logic schemas are shown in Table 6.1.

To execute the corresponding query satisfiability tests, we used the implementation of the

CQCE method that is the core of our existing relational schema validation tool SVTE [FRTU08].

We performed two series of experiments, one in which the three properties hold for each

mapping scenario, and one in which they do not. The results of these series are shown in Figure

6.5(a) and Figure 6.5(b), respectively.

Since the mapping inference and mapping losslessness properties must be checked with

respect to a user-provided parameter, and given that we want the mappings to satisfy these

properties, we check in Figure 6.5(a) whether a “strengthened” version of one of the mapping

assertions is inferred from the mapping in each case, and whether each mapping is lossless with

respect to a strengthened version of one of its mapping queries. These strengthened queries and

assertions are built by taking the original ones and adding an additional arithmetic comparison.

Similarly, in Figure 6.5(b), we strengthen the assertions/queries in the mapping and use one of the

original ones as the parameter for the mapping inference and mapping losslessness test,

136

respectively. Regarding strong mapping satisfiability, we introduce two contradictory range

restriction, one in each mapped schema, in order to ensure the property will “fail”.

We can see in Figure 6.5(a) that the three properties are checked fast in the unnesting and self

joins scenarios, while mapping inference and mapping losslessness require much more time to be

tested in the nesting scenario. This is not unexpected since the mapping queries of the nesting

scenario have two levels of nesting, while those from the other two scenarios are flat. To

understand why mapping inference and mapping losslessness are the most affected by the

increment of the level of nesting, we must recall how the properties are reformulated in terms of

query satisfiability. In particular, the query to be tested for satisfiability in both mapping

losslessness and mapping inference encodes the negation of a query inclusion assertion that

depends on the parameter query/assertion, as shown in Section 6.3. Therefore, an increment of the

level of nesting of the mapping scenario is likely to cause an increment of the level of nesting of

the tested query, which is what happens in the nesting scenario; and a higher level of nesting

means a more complex translation into logic, involving multiple levels of negation, as shown in

Section 6.2.5.

In Figure 6.5(b), we can see that all three properties run fast and that there is no much

difference between the mapping scenarios. It is also remarkable the performance improvement of

Source
 Reference [0..*]
 title
 year
 publishedIn
 Author [1..*]
 name

Target
 Publication [0..*]
 Title
 Year
 PublishedIn
 Name

Source
 Reference [0..*]
 title
 year
 publishedIn
 name

Target
 Period [0..*]
 Year
 Author [0..*]
 Name
 Publication [0..*]
 Title
 PublishedIn

Source
 Gene [0..*]
 name
 type
 protein

Target
 Gene [0..*]
 Name
 Protein
 Synonym [0..*]
 Name
 WID

(i) Unnesting

(ii) Nesting

(iii) Self joins

Figure 6.4: Mapping scenarios taken from the STBenchmark [ATV08].

137

the nesting scenario with respect to Figure 6.5(a). To understand these results we must remember

that mapping inference and mapping losslessness are both checked by means of searching for a

counterexample. That means the test can stop as soon as the counterexample is found, while, in

Figure 6.5(a), all relevant counterexample candidates had to be evaluated. The behavior of strong

mapping satisfiability is exactly the opposite. However, the results of this property in this series

of experiments are very similar to those in Figure 6.5(a). The intuition to this is that strong

satisfiability requires all mapping assertions to be non-trivially satisfied; thus, as soon as one of

them cannot be so, the query satisfiability checking process can stop.

0

2

4

6

8

10

12

14

16

18

20

unnesting nesting self joins

ru
n

n
in

g
 t

im
e

 (
s

e
c

s
)

strong mapping satisfiability

mapping inference

mapping losslessness

Figure 6.5: Experiment results when (a) the mapping properties hold and
when (b) they do not.

0

0,05

0,1

0,15

0,2

0,25

unnesting nesting self joins

ru
n

n
in

g
 t

im
e

 (
s

e
c

s
)

strong mapping satisfiability

mapping inference

mapping losslessness

(a)

(b)

 strong map. satisfiability mapping inference mapping losslessness
 #constraints #rules #constraints #rules #constraints #rules
unnesting 50 28 50 43 78 62
nesting 51 33 51 37 76 57
self joins 46 30 46 38 68 66

Table 6.1: Size of the logic database schemas that result from the translation of the
mapping scenarios in Figure 6.4.

138

139

7

MVT: Mapping Validation Tool

In this chapter, we present MVT, a prototype mapping validation tool that implements the results

presented in Chapter 3 and Chapter 4.

MVT allows the designer to ask whether the mapping has certain desirable properties. The

answers to these questions will provide information on whether the mapping adequately matches

the intended needs and requirements (see Chapter 3). The tool does not only provide a Boolean

answer as test result, but also provides additional feedback. Depending on the tested property and

on the test result, the provided feedback is in the form of example schema instances (Chapter 3),

or in the form of highlighting the mapping assertions and schema constraints responsible for

getting such a result (i.e., explanations as defined in Chapter 4).

MVT is able to deal with a highly expressive class of mappings and database schemas defined

by means of a subset of the SQL language. Namely, MVT supports:

 Primary key, foreign key, Boolean check constraints.

 SPJ views, negation, subselects (exists, in), union, outer joins (left, right, full).

 Data types: integer, real, string.

 Null values.

 Mapping assertions in the form of Q1 op Q2, where Q1 and Q2 are queries over the

mapped schemas, and op is =,  or .

MVT is, to the best of our knowledge, the first implemented tool able to check the kind of

properties discussed in Chapter 3 in the context of schema mappings. Implementing the CQCE

method presented in Section 4.2 allows MVT to compute one approximated explanation in the

case in which example schema instances are not a suitable feedback for the test result.

140

Implementing the black-box method from Section 4.1 allows MVT to offer the designer the

possibility of refining the approximated explanation into an exact one and compute all the

additional possible explanations. Moreover, the fact that MVT also incorporates the treatment of

null values is significant, since a single validation test may have a certain result when nulls are

not allowed and a different result when they are.

7.1 Architecture

MVT extends our database schema validation tool [TFU+04, FRTU08] to the context of

mappings. The architecture of MVT is depicted in Figure 7.1.

The GUI component allows using MVT in an easy and intuitive way. To perform the different

available tests, users go along the following interaction pattern:

1. Load the mapping and the mapped schemas.

2. Select one of the available desirable property tests.

3. Enter the test parameters (if required).

4. Execute the test.

Figure 7.1: Architecture of MVT.

141

5. Obtain the test result and its feedback, which can be in the form of example schema

instances, or in the form of highlighting the schema constraints and mapping

assertions responsible for the test result.

The Test Controller processes the commands and data provided by users through the GUI and

transfers back the obtained results.

The Mapping and Mapped Schemas Extractor is responsible for translating the loaded

mapping and mapped schemas into a format that is tractable by the CQCE Method Engine. In this

way, it generates an in-memory representation where both the mapping and the schemas are

integrated into a single logic database schema that is expressed in terms of deductive rules.

According to the approach presented in Chapter 3, the Test Controller and the Mapping and

Mapped Schemas Extractor work together to reformulate the problem of validating the selected

mapping property in terms of the problem of testing whether a query is satisfiable over a database

schema. The resulting query satisfiability test is performed by the CQCE Method Engine.

The CQCE Method Engine implements the CQCE method, the extended version of the CQC

method that we presented in Section 4.2. Recall that the original CQC method [FTU05] can be

used to check whether a certain query is satisfiable over a given database schema. It provides an

example database instance when the query is indeed satisfiable. However, it does not provide any

kind of explanation for why the tested query is not satisfiable. Other validation methods do not

provide an explanation for this case either. The CQCE method addresses this issue. It extends the

CQC method so this is able to provide an approximated explanation for the unsatisfiability of the

tested query. The provided explanation is the subset of constraints that prevented the method

from finding a solution. The explanation is approximated in the sense that it may be not minimal,

but it will be as accurate as possible with a single execution of the method.

The Text Controller may ask the Explanation Engine to check whether the explanation

provided by the CQCE Method Engine is minimal or not, and to find the other possible minimal

explanations (if any). In order to do that, the Explanation Engine implements the black-box

method presented in Section 4.1.

The feedback is translated back to the original SQL representation by the Test Controller and

the Mapping and Mapped Schemas Extractor, and shown to the user through the GUI. If the

CQCE Method Engine provides a database instance, it provides an instance of the integrated

schema that resulted from the problem reformulation; therefore such an instance has to be split

and translated in order to conform to the original mapped schemas. Similarly, if the feedback is

142

an explanation, i.e., a set of constraints that belong to the integrated schema, these constraints

have to be translated in terms of the original mapped schema constraints and mapping assertions.

The whole MVT has been implemented in the C# language, using Microsoft Visual Studio as

a development tool. Our implementation can be executed in any system that features the .NET 2.0

framework.

7.2 Example of Mapping Validation with MVT

Let us illustrate the use of MVT by means of an example. Consider the following database

schema S1:

CREATE TABLE Category (
 name char(20) PRIMARY KEY,
 salary real NOT NULL,
 CHECK (salary >= 700),
 CHECK (salary <= 2000))

CREATE TABLE Employee (
 name char(30) PRIMARY KEY,
 category char(20) NOT NULL,
 address char(50),
 CHECK (category <> 'exec'),
 KEY(category) REFERENCES Category(name))

CREATE TABLE WorksFor (
 emp char(30) PRIMARY KEY,
 boss char(30) NOT NULL,
 CHECK(emp <> boss),
 FOREIGN KEY (emp) REFERENCES Employee(name),
 FOREIGN KEY (boss) REFERENCES Employee(name))

the following database schema S2:

CREATE TABLE Persons (
 id int PRIMARY KEY,
 name char(30) NOT NULL,
 address char(50))

CREATE TABLE Emps (
 empId int PRIMARY KEY,
 salary real NOT NULL,
 boss int,
 CHECK (salary BETWEEN 1000 AND 5000),
 CHECK (empId <> boss),
 FOREIGN KEY (empId) REFERENCES Persons(id),
 FOREIGN KEY (boss) REFERENCES Emps(empId))

and the following mapping assertions between S1 and S2:

143

 MAPPING ASSERTION m1
(SELECT e.name, c.salary
 FROM employee e, category c
 WHERE e.category = c.name and c.salary >= 10000)
 SUBSET OF
(SELECT p.name, e.salary
 FROM persons p, emps e
 WHERE p.id = e.empId)

 MAPPING ASSERTION m2
(SELECT wf.emp, wf.boss
 FROM worksFor wf, employee e, category c
 WHERE wf.emp = e.name and e.category = c.name
 and c.salary >= 1000)
 SUBSET OF
(SELECT pEmp.name, pBoss.name
 FROM emps e, persons pEmp, persons pBoss
 WHERE e.empId = pEmp.id and e.boss = pBoss.id)

The mapping defined by these two assertions states that the employees of S1 that have a salary

above a certain threshold are a subset of the emps of S2. Assertion m1 captures information of

employees that may or may not have a boss, while assertion m2 takes care of specific information

of employees that have a boss. Figure 7.2 shows these schemas and mapping loaded into MVT.

Testing mapping satisfiability. Mapped schemas S1 and S2 are themselves correct in the

sense that their constraints are not contradictory. However, when the mapping is considered, it

Figure 7.2: Schemas and mapping loaded into MVT.

144

turns out that assertion m1 can only be satisfied trivially. That is, if we want to satisfy m1 without

violating the constraints in S1, the first query of m1 must get an empty answer (recall that the

empty set is a subset of any set).

MVT allows the designer to detect that problem by means of running a mapping satisfiability

test (see Figure 7.3). Moreover, it highlights the schema constraints and mapping assertions that

are responsible for the problem (see Figure 7.4). In this example, the problem is in the interaction

between m1 and the constraint CHECK (salary <= 2000) from S1. That explanation may help

the designer to realize that m1 was probably miswritten, and that it should be mapping those

employees with a salary above one thousand, instead of ten thousand.

Figure 7.4: MVT explains why the tested mapping is not strongly satisfiable.

Figure 7.3: MVT shows a test result.

145

Let us assume that we decide to fix m1 as indicated above. We can load the updated mapping

into MVT, perform the satisfiability test again, and see that m1 is now satisfiable. This time, the

feedback the tool provides is a pair of instances, one for each mapped schema, that indeed satisfy

both m1 and m2 non-trivially (we omit it here).

Testing mapping assertion redundancy. The next test uses the mapping inference property

[MBDH02] to detect redundant assertions in the mapping. Recall that an assertion is inferred

from a mapping if all pairs of schema instances that satisfy the mapping also satisfy the assertion.

Based on that, a mapping assertion is redundant if it can be inferred from the other assertions in

the mapping (taking into account the mapped schema constraints). Therefore, the expected

Figure 7.5: Result of a mapping assertion redundancy test.

Figure 7.6: MVT explains why the tested mapping assertion is redundant.

146

feedback for a mapping assertion that is redundant is the set of schema constraints and other

mapping assertions the tested assertion is inferred from. If the tested assertion is not redundant, it

is better to illustrate that by means of providing a pair of mapped schema instances that satisfy all

mapping assertions except the tested one.

To illustrate this test, let us assume that we have come up with an alternative mapping, more

compact that the one we already had. It consists of the following single assertion:

 MAPPING ASSERTION m3
(SELECT e.name, c.salary, wf.boss
 FROM employee e LEFT OUTER JOIN worksFor wf
 ON wf.emp = e.name, category c
 WHERE e.category = c.name and c.salary >= 1000)
 SUBSET OF
(SELECT pEmp.name, e.salary, pBoss.name
 FROM emps e LEFT OUTER JOIN persons pBosss
 ON e.boss = pBoss.id, persons pEmp
 WHERE e.empId = pEmp.id)

The main difference with respect to m1 and m2 is that m3 uses left outer join to capture both

the employees with and without boss at the same time. Now, we may want to know how this

assertion relates with the other two. Therefore, we load the schemas and the three assertions into

MVT, and run the assertion redundancy test. We get the following results (see Figure 7.5).

Figure 7.7: MVT provides an example to illustrate why the tested mapping assertion is not
redundant.

147

Assertions m1 and m2 are both redundant. The explanation for m1 is {m3}. The one for m2 is

{m3, WorksFor.boss NOT NULL} (see Figure 7.6). However, m3 is not redundant, and the

feedback provided by MVT is the following pair of schema instances (see Figure 7.7):

Instance of S1: Instance of S2:
Category('execA', 1000) Persons(0, 'A', null)
Employee('A', 'execA', null) Persons(1, 'A', null)
Employee('AA','execA', null) Persons(2, 'AA', null)
WorksFor('A', 'AA') Emps(0, 1000, null)
 Emps(1, 2000, 2)
 Emps(2, 1000, null)

These schema instances show that m3 is not only more compact but also more accurate.

Assertions m1 and m2 allow a single employee from S1 to be mapped to two persons with

different ids. Assertion m3 prevents that by means of the outer join (other formalisms allow

expressing this kind of correlations by means of Skolem functions [PVM+02]).

Testing mapping losslessness. Recall that we say a mapping is lossless with respect to a

given query if the information needed to answer that query is captured by the mapping (see

Chapter 3). More formally, mapping {V1 op W1, …, Vn op Wn} is lossless w.r.t. query Q defined

over S1 (S2) if Q is determined by the extension of the Vi (Wi) queries (these query extensions

must satisfy the mapping assertions). The purpose of this property is to allow the designer to test

whether a mapping that may be partial or incomplete is enough for the intended purpose.

When a mapping turns out to be lossy, MVT provides a counterexample as feedback. When

the mapping is indeed lossless, the provided feedback is the explanation (schema constraints and

mapping assertions) that prevents a counterexample from being constructed.

We illustrate the property with the following example. Let us assume that after replacing the

mapping {m1, m2} with {m3} we want to know whether the names and addresses of all

employees with a salary of at least 1000 are mapped. We perform a mapping losslessness test

with the following query as parameter (see Figure 7.8):

SELECT e.name, e.address
FROM employee e, category c
WHERE e.category = c.name and c.salary >= 1000

The result of the test indicates that the mapping is not lossless with respect to the query, and

provides the following schema instances as feedback (see Figure 7.9):

148

Instance 1 of S1: Instance of S2:
Category('execA', 1000) Persons(0, 'A', null)
Employee('A', 'execA', null) Emps(0, 1000, null)

Instance 2 of S1:
Category('execA', 1000)
Employee('A', 'execA', 'A')

The above counterexample shows two instances of S1 that differ in the address of the

employee, but are mapped to the same instance of S2 and have the same extension for the queries

in the mapping. Seeing this, the designer can realize that the address of the employees is not

Figure 7.8: MVT allows the user to introduce a query and ask whether the tested mapping
is lossless with respect to that query.

Figure 7.9: MVT provides an example to illustrate that the tested mapping is lossy with
respect to the user’s query.

149

captured by the mapping. This result does not mean necessarily that the current mapping is

wrong. That depends on the intended semantics. For example, if the address of the employees in

S1 was considered classified for some reason, then a lossy mapping would be what the designer

wanted. Let us assume that this is not the case, and that the designer decides to modify m3 in

order to capture the addresses. Then, it suffices to add e.address and pEmp.address to the

“select” clauses of the queries of m3, respectively.

MVT also allows testing the property of query answerability [MBDH02]. We omit its

discussion here since its use case is similar to that of the mapping losslessness test (recall that

mapping losslessness is a generalization of query answerability).

150

151

8

Related Work

In this chapter, we review the previous work on the thesis topics and detail how it relates with our

contributions. More specifically, we detail how the existing approaches to mapping validation in

both the relational and the XML settings relate with ours; we compare our method for computing

explanations with previous work on the SAT solver and Description Logics fields; and finally, we

discuss existing work related with the topic of translating XML mapping scenarios into a first-

order logic formalism.

8.1 Mapping Validation

In this section, we review existing instance-based and schema-based approaches to mapping

validation. For each of them, we compare their validation approach with ours, and also the

schema and mapping formalism they address with the one we consider.

8.1.1 Instance-Based Approaches

Instance-based approaches rely on source and target instances in order to debug, refine and guide

the user through the process of designing a schema mapping. Several instance-based approaches

have been proposed during the last years: the Routes approach [CT06], the Spicy system

[BMP+08], the approach of Yan et al. [YMHF01], the Muse system [ACMT08], and the TRAMP

[GAMH10] suite. They all rely on specific source and target schema instances, which do not

necessarily reflect all potential pitfalls.

The Routes approach [CT06] requires both a source and a target instance in order to compute

the routes. The Spicy system [BMP+08] requires a source instance to be used to execute the

mappings, and a target instance to compare the mapping results with. The system proposed by

152

Yan et al. [YMHF01] requires a source instance to be available so it can extract from it the

examples that it will show to the user. The Muse system [ACMT08] can generate its own

synthetic examples to illustrate the different design alternatives, but even in this case the

detection of semantic errors is left to the user, who may miss to detect them. The TRAMP suite

[GAMH10] allows querying different kinds of provenance, in particular: data, transformation and

mapping provenance. Data and transformation provenance depend on the available instances to

indicate which source data and parts of the transformation contribute to a given target tuple.

Mapping provenance relies on transformation provenance to determine which mapping assertions

are responsible for a given target tuple and also to identify which parts of the transformation

correspond to which mapping assertions. As with the previous approaches, detection of errors is

entirely left to the user.

All these approaches can therefore benefit from the possibility of checking whether the

mapping being designed satisfies certain desirable properties. For instance, such a checking can

complement the similarity measure used to rank the mapping candidates in the Spicy system

[BMP+08]; for the sake of an example, the designer might be interested on the mapping

candidates with a better score in the ranking that preserve some information that is relevant for

the intended use of the mapping. Similarly, in the approach of Yan et al. [YMHF01] and the

Muse system [ACMT08], the check of desirable properties may be a complement to the examples

provided by these systems in order to help choosing the mapping candidate that is closest to the

designer’s intentions. The user of the TRAMP suite [GAMH10] could also benefit from the

ability to check automatic properties such as the satisfiability of the mapping or the redundancy

of mapping assertions. The use of mapping inference to compare alternative mappings could be

another useful complement. Desirable properties that are to be parameterized by the user such as

query answerability or mapping losslessness could be of help in order to uncover potential flaws

that could then be examined in detail with the provenance query capabilities of TRAMP.

Regarding the Routes approach [CT06], the computation of such routes is not only interesting

as a complementary tool to the validation of the mapping, but also as a tool to help the designer

understand the feedback provided by our approach when this is in the form of a

(counter)example. For instance, consider again the counterexample from Section 1.1, which

illustrates that mapping assertion m3 is not inferred from mapping assertions m1 and m2. Assume

the designer obtains the following counterexample as feedback from the validation test:

153

It might be difficult to extract from this counterexample the knowledge of what the exact

problem is, especially if the schemas were large. To address that, the designer could select the

tuples in the instance of B and compute their routes:

a1 m1 b1, b4

a2 m1 b3, b4

a3, a1 m2 b2, b3 foreign key Emp-Cat b2, b3, b5 foreign key Emp-Cat b2, b3, b5, b4

This way, he could easily see that tuple b1 is produced only by m1 (first route), tuple b2 is

produced only by m2 (last route), but tuple b3 is produced by both m1 and m2 (last two routes).

Most likely, the designer was expecting all EmployeeB’s tuples to be produced by both mapping

assertions. Moreover, since b1 and b2 both refer to the employee ‘e1’ which is unique in the

instance of A, this might help the designer to realize the problem of correlation that exists

between mapping assertions m1 and m2.

Regarding the schema and mapping formalism, the class of relational mapping scenarios we

firstly consider includes the one allowed by Yan et al. system. Yan et al. consider relational

schemas with no integrity constraints, and mappings expressed as SQL queries, which may be

defined over views and contain arithmetic comparisons and functions. Disregarding functions,

which we do not handle, we extend the rest of their schema formalism by allowing integrity

constraints. We consider integrity constraints in the form of disjunctive embedded dependencies

(DEDs) extended with derived relation symbols and arithmetic comparisons. We also extend the

class of mappings they consider by allowing the use of negation (e.g., “not exists” and “not in”

SQL expressions). Moreover, our mapping assertions do not consist of a single query but of a pair

of queries related by a  or = operator, that is, we consider an extended GLAV mapping

formalism while Yan et al. consider a GAV one.

Routes, Spicy and Muse allow both relational and nested relational schemas with key and

foreign key-like constraints—typically formalized by means of TGDs and EGDs—, and

mappings expressed as source-to-target TGDs. TRAMP considers a similar setting, but it focuses

on flat relational schemas. Comparing with our contributions in the relational setting, the class of

Instance of A:
a1: EmployeeA(‘e1’, ‘addr1’, 1000)
a2: EmployeeA(‘e2’, ‘addr2’, 1000)
a3: WorksForA(‘e1’, ‘e2’)

Instance of B:
b1: EmployeeB(0, ‘e1’, null, ‘cat1’)
b2: EmployeeB(1, ‘e1’, 2, ‘cat2’)
b3: EmployeeB(2, ‘e2’, null, ‘cat1’)
b4: CategoryB(‘cat1’, 1000)
b5: CategoryB(‘cat2’, 2000)

154

disjunctive embedded dependencies (DEDs) with derived relation symbols and arithmetic

comparisons that we consider includes that of TGDs and EGDs. That is easy to see since it is

well-known that traditional DEDs already subsume both TGDs and EGDs [DT05]. Similarly, our

mapping assertions go beyond TGDs in two ways: (1) they may contain negations and arithmetic

comparisons, while TGDs are conjunctive; and (2) they may be bidirectional, i.e., assertions in

the form of QA = QB (which state the equivalence of two queries), while TGDs are known to be

equivalent to GLAV assertions in the form of QA  QB [FKMP05].

Comparing with our contributions in the XML setting, the nested relational formalism

considered by Routes, Spicy and Muse is a subclass of the XML schemas we consider. More

specifically, we consider XML schemas defined by means of a subset of the XML Schema

Definition (XSD) language [W3C04]. We consider the choice construct and the possibility to

restrict the range of simple types; features that are not typically allowed in the nested relational

formalism. We also consider the XSD’s key and keyref constraints, which subsume the typical

constraints in the nested relational setting. Regarding the mapping formalism, the nested

mappings [FHH+06] considered by Muse allow the nesting of TGDs, which results in more

expressive and compact mappings. The next example illustrates that nested mapping scenarios

can be reformulated into the class of mapping scenarios we consider, in particular, into scenarios

with mapping assertions in the form of Qsource  Qtarget, where Qsource and Qtarget are expressed in a

subset of the XQuery language [W3C07]. Consider the mapping scenario depicted in Figure

8.1(a) (taken from [FHH+06]).

The nested mapping in this scenario is the following:

Source: Rcd
 projs: Set of
 proj: Rcd
 dname
 pname
 emps: Set of
 emp: Rcd
 ename
 salary

Target: Rcd
 depts: Set of
 dept: Rcd
 dname
 budget
 emps: Set of
 emp: Rcd
 ename
 salary

Source: Rcd
 projs: Set of
 proj: Rcd
 dname
 pname
 emps: Set of
 emp: Rcd
 ename
 salary
 functionE: Set of
 E: Rcd
 input
 output

Target: Rcd
 depts: Set of
 dept: Rcd
 dname
 budget
 empSet: Rcd
 empSetId
 emps: Set of
 emp: Rcd
 ename
 salary

(a) mapping scenario with a
nested mapping

(b) mapping scenario with a mapping in the
form of Qsource  Qtarget

Figure 8.1: (a) nested mapping scenario and (b) its reformulated version.

155

for p in projs exists d′ in depts
where d′.name = p.dname  d′.emps = E[p.dname]

 (for e in p.emps exists e′ in d′.emps
where e′.ename = e.ename  e′.salary = e.salary)

Notice the use of the Skolem function E to express that employees must be grouped by

department name when moved into the target schema. A straightforward reformulation of this

mapping scenario is shown in Figure 8.1(b). Since we do not consider function symbols, the

source and target schemas must be reformulated in order to make explicit the semantics of the

Skolem functions. More specifically, the functionE relation is introduced in the source schema in

order to simulate the Skolem function E. Additional schema constraints are also needed to

guarantee that functionE is a functional relation; in particular, both attributes of this relation,

namely input and output, must be keys. Also, two referential constraints are needed to state that

functionE is defined over the set of department’s names. The fact that functionE generates a

unique id for a set of employees is expressed by the following reformulated mapping assertion,

which maps the output of functionE into the empSetId attribute that has been introduced into the

target schema to make explicit the semantics that the set of employees has an id:

Attribute empSetId must therefore be a key of empSet; since empSet is a nested record, we

clarify that it means there may not be two empSet records in the whole target instance with the

same value for empSetId.

8.1.2 Schema-Based Approaches

Schema-based approaches are those that check certain properties of the mappings by reasoning on

the mapped schemas and the mapping definition. Our approach is clearly a member of this group,

and it is inspired by the work of Madhavan et al. [MBDH02] (see Section 1.2). Other existing

for $p in //proj
return
<result>
 <dept>{$p/dname/text()}</dept>
 <empsetid>
 {//E[./input/text()=$p/dname/text()]/output/text()}
 </empsetid>
 <emps>
 {for $e in $p/emp return
 <emp>
 <name>{$e/ename/text()}</name>
 <salary>{$e/salary/test()}</salary>
 </emp>}
 </emps>
</result>

for $d′ in //dept
return
<result>
 <dept>{$d′/dname/text()}</dept>
 <empsetid>{d′/empSet/empSetId/text()}</empsetid>
 <emps>
 {for $e′ in d′/empSet/emps/emp return
 <emp>
 <name>{$e′/ename/text()}</name>
 <salary>{$e′/salary/text()}</salary>
 </emp>}
 </emps>
</result>



156

approaches that are close to ours are those of Sotnykova et al. [SVC+05], Cappellari et al.

[CBA10], Amano et al. [ALM09] and Bohannon et al. [BFFN05].

Sotnykova et al. propose a mapping validation phase as a part of their approach to the

integration of spatio-temporal database schemas. They use Description Logics (DLs) to represent

both the schemas to be integrated and the mappings between them. Description Logics are a

family of formalisms for knowledge representation and reasoning, with formal logic semantics

[BCM+03]. A DL schema defines the relevant concepts of a domain and the relationships

between them (typically, roles, role hierarchies and concept inclusions). A mapping expressed in

DL consists of a set of general concept inclusions (GCIs) and concept equivalences, in the form

of C ⊑ D and C ≡ D, respectively, where concepts C and D are from different schemas.

Sotnykova et al. use the description logic SHIQ [HST00] to describe schemas and mappings

without any spatial and temporal features, and the description logic ALCRP(D) [HLM99] to

specify the spatio-temporal aspects. They rely on the DL reasoning services in order to validate

the mappings against the schemas. The validation they perform consists in checking concept

satisfiability, that is, checking for each concept whether or not it describes an empty set of

instances.

Concept satisfiability relates with our mapping satisfiability property; in particular, it implies

weak mapping satisfiability. The intuition is that if all concepts are satisfiable, then for each

mapping assertion in the form of C ⊑ D or C ≡ D, there is an interpretation in which C is not

empty. That means each mapping assertion can be satisfied in a non-trivial way.

To compare our mapping formalism with that used by Sotnykova et al., we disregard the

spatio-temporal aspects and focus on the description logic SHIQ. We show that the DL SHIQ is a

subset of the relational formalism we consider. In particular, Table 8.1 shows how the SHIQ

constructs and axioms can be rewritten as a set of disjunctive embedded dependencies (DEDs).

The idea of the translation is to assign a unary relation symbol PC to each atomic and non-atomic

concept C, and a binary relation symbol PR to each role R. A set of DEDs is used to explicit the

semantics of the constructs and axioms that appear in the DL terminology. Note that although we

are able to deal with DEDs extended with derived relation symbols and arithmetic comparisons,

the use of derived symbols is not required by this translation and the DL does not allow for

arithmetic comparisons; thus, it suffices to consider traditional DEDs with (dis)equalities in the

form of (w  w′) w = w′, where w and w′ are variables or constants [DT01]. As an example,

consider the concepts Female, Employee and Department; the role worksIn; and the axiom

Employee ⊓ Female ⊑ worksIn.Department

157

Such a DL schema would be translated into a relational schema with unary relation symbols

PEmployee⊓Female, PEmployee, PFemale, PFemale, PworksIn.Department and PDepartment; binary relation symbol

PworksIn; and the following set of DEDs:

{ PEmployee⊓Female(X)  PworksIn.Department(X),

 PEmployee⊓Female(X)  PEmployee(X)  PFemale(X),

 PEmployee(X)  PFemale(X)  PEmployee⊓Female(X),

 PFemale(X)  PFemale(X)  1 = 0,

 P⊤(X)  PFemale(X)  PFemale(X),

 PworksIn.Department(X)  Y PworksIn(X, Y)  PDepartment(Y),

 PworksIn(X, Y)  PDepartment(Y)  PworksIn.Department(X),

 PEmployee⊓Female(X)  P⊤(X),

 PEmployee(X)  P⊤(X),

 PFemale(X)  P⊤(X),

 PFemale(X)  P⊤(X),

 PworksIn.Department(X)  P⊤(X),

 PDepartment(X)  P⊤(X),

Table 8.1: Translation of DL SHIQ constructs and axioms into DEDs.

Construct Translation into DEDs

⊤ (universal concept) {PC(X)  P⊤(X) | C is a concept} 
{PR(X, Y)  P⊤(X)  P⊤(Y) | R is a role}

⊥ (bottom concept) {P⊥(X)  1 = 0}

C ⊓ D (conjunction) {PC⊓D(X)  PC(X)  PD(X), PC(X)  PD(X)  PC⊓D(X)}

C ⊔ D (disjunction) {PC⊔D(X)  PC(X)  PD(X), PC(X)  PC⊔D(X), PD(X)  PC⊔D(X)}

C (negation) {PC(X)  PC(X)  1 = 0, P⊤(X)  PC(X)  PC(X)}

R.C (exists restriction) {PR.C(X)  Y PR(X, Y)  PC(Y), PR(X, Y)  PC(Y)  PR.C(X)}

R.C (value restriction) ≡ (R.C) {PR.C(X)  P(R.C)(X), P(R.C)(X)  PR.C(X)}

R  R+ (transitive role) {PR(X, Y)  PR(Y, Z)  PR(X, Z)}

R ⊑ S (role hierarchy) {PR(X, Y)  PS(X, Y)}

R– (inverse role) {PR–(X, Y)  PR(Y, X), PR(X, Y)  PR–(Y, X)}

nR.C (qualifying number restriction) {PnR.C(X)  P⊤(X)  PR(X, Y1)  ...  PR(X, Yn)
  PC(Y1)  ...  PC(Yn)  Y1  Y2  ...  Yn-1  Yn,
 P⊤(X)  PR(X, Y1)  ...  PR(X, Yn)  PC(Y1)  ...  PC(Yn)
  Y1  Y2  ...  Yn-1  Yn  PnR.C(X)}

nR.C (qualifying number restriction) {PnR.C(X)  PR(X, Y1)  ...  PR(X, Yn+1)  PC(Y1)  ...  PC(Yn+1)
  Y1  Y2  ...  Yn  Yn+1  1 = 0} 
{P⊤(X)  PR(X, Y1)  ...  PR(X, Ym)  PC(Y1)  ...  PC(Ym)
  Y1  Y2  ...  Ym-1  Ym  PnR.C(X)  Ym+1 (PR(X, Ym+1)
  PC(Ym+1)  Y1  Ym+1  ...  Ym  Ym+1) | 0  m  n}

Axiom Translation into DEDs

C ⊑ D (general concept inclusion) {PC(X)  PD(X)}

C ≡ D (C ⊑ D and D ⊑ C) {PC(X)  PD(X), PD(X)  PC(X)}

158

 PworksIn(X, Y)  P⊤(X)  P⊤(Y) }

Checking the satisfiability of a concept C would be thus equivalent to check whether PC(X) is

satisfiable with respect to the set of DEDs. Such test could be performed with the CQC method

[FTU05].

Cappellari et al. [CBA10] propose to check the semantic compatibility of schema mappings

with respect to a domain ontology O. From each source-to-target TGD qS(X̄)  Ȳ qT(X̄ , Ȳ) in

the mapping, they derive a set of verification statements in the form of qS(x) ⊑ qT(x) (i.e.,

concept subsumption), where x is a variable from X̄ and qS(x), qT(x) denote the concept of the

domain ontology assigned to x in the context of the source and target schema, respectively.

[CBA10] understands the verification of a mapping as checking, for each verification statement u,

whether O ⊨ u. This semantic compatibility property has a goal similar to that of our mapping

satisfiability property, that is, the detection of inconsistencies within the mapping. The main

difference is that Cappellari et al. check the consistency of the mapping against an external

ontology that models the domain shared by the source and target schema, while we focus on

detecting inconsistencies between the mapping assertions and the integrity constraints that are

present in the mapped schemas. It is also worth noting the difference in the formalism, that is,

Cappellari et al. reason on ontologies while we reason on a class of schemas and mappings that is

based on first-order logic—see Table 8.1 for a comparison of our formalism with a set of

constructs and axioms commonly used in Description Logics. Nevertheless, given the progressive

expansion of the Semantic Web, it would be interesting to study if our approach to mapping

validation can also take advantage from such external domain ontologies. As [CBA10] shows, the

semantics expressed in this kind of ontologies may uncover mapping flaws that could not be

detected by taking only into account the semantics explicitly stated in the mapped schemas.

Amano et al. [ALM09] study the consistency and absolute consistency checking problems for

XML mappings that consist of source-to-target implications of tree patterns between DTDs. A

mapping is consistent if at least one tree that conforms to the source DTD is mapped into a tree

that conforms to the target DTD. A mapping is absolutely consistent if all trees that conform to

the source DTD are mapped into a tree that conforms to the target DTD. This work extends the

previous work of Arenas and Libkin [AL08], where mapping consistency is addressed for a

simpler class of XML mappings.

The mapping consistency property of [ALM09] is very similar to our notion of mapping

satisfiability; the main difference is that we introduce the requirement that mapping assertions

159

have to be satisfied in a non-trivial way, that is, a source instance should not be mapped into the

empty target instance. We introduce this requirement because in the relational setting, which we

firstly address, the empty database instance is a consistent instance of any database schema;

therefore, any mapping is trivially satisfied by an empty source instance and an empty target

instance. Moreover, even when we focus on the XML setting, the class of mapping scenarios we

consider—with integrity constraints, negations and arithmetic comparisons—makes more likely

the existence of contradictions either in the mapping assertions, or between the mapping

assertions and the schema constraints, or between the mapping assertions themselves; which may

result in mapping assertions that can only be satisfied in a trivial way. Our mapping satisfiability

property makes thus sense in both the relational and the XML setting. Another difference is that

we consider two flavors of satisfiability: strong and weak. Remind that we say a mapping is

weakly satisfiable if at least one mapping assertion can be satisfied in a non-trivial way, and

strongly satisfiable if all mapping assertions can be satisfied in a non-trivial way at the same time.

Regarding the absolute consistency property, we do not address it yet, but we intend to do it in

future research—see the “Conclusions and Further Research” chapter for some ideas.

Comparing our XML schemas with those addressed by Amano et al, we can say that the

subset of the XSD language we consider corresponds to a subset of the DTD language extended

with some specific XSD features. In particular, a general DTD is a set of productions in the form

of A  , where A is an element type and  is a regular expression over element types. Our XML

schemas can also be seen as sets of productions that satisfy the following conditions:

 (1) Each regular expression  is of the form:

 ::= simple-type |  | B1, ..., Bn | B1 + ... + Bn | B*

where simple-type denotes the name of a simple type, e.g., string, integer or real;  is the

empty word; B is an element type (a child of A); ‘+’ denotes disjunction; ‘,’ denotes

conjunction; and ‘*’ is the Kleene star.

 (2) Each element type B appears in the body of at most one production.

As pointed out in [BFFN05], the first condition does not suppose a loss of generality with

respect to general DTDs, since any DTD S can be rewritten into an S′ that fills this condition, and

so the XPath queries over S can be rewritten into equivalent ones over S′. Similarly, the second

condition can be enforced by splitting the repeated element types, that is, if B is child of A1 and

A2, and B   is its production, then we can split B into BA1 and BA2 with productions BA1  

160

and BA2  . Note that if  is not a simple type name, then we will have to recursively split its

components. Note also that this rewriting of DTD S into S′ is only possible if S is not recursive.

Regarding the rewriting of the XPath expressions over S, they can be easily rewritten into

equivalent ones over S′ as long as they do not use the descendant axis (i.e., ‘//’) over element

types that need to be split. Summarizing, our XML schemas are more restricted than those of

Amano et al. in the sense that they do not allow for recursion or the use of the descendant axis on

element types that appear (directly or indirectly) in the body of more than one production.

Nevertheless, our XML schemas do allow for certain integrity constraints that can be found on

XSD schemas; in particular, we consider keys, keyrefs and restrictions on the range of simple

types (e.g., salary  real between 1000 and 5000).

Regarding the mapping formalism, Amano et al. consider implications of tree patterns such as

the following (adapted from [ALM09]):

where the source and target DTD are as follows:

This source-to-target dependency states that whenever a source XML document conforms to

the premise of the implication, i.e., whenever it contains a professor named x who teaches courses

numbered cn1, cn2 on the year y and supervises a student named s, then the target document must

conform to the pattern in the consequent. The variables in the patterns refer to attributes of the

element types. Equalities (=) and inequalities () of such variables are also allowed on both sides

prof(x)

teach supervise

year(y)

course1
 (cn1)

course2
 (cn2)

student(s)

r

course
(cn1, y)

course
(cn2, y)

student
 (s)

taughtby
 (x)

taughtby
 (x)

supervisor
 (x)



courses students

r

Source DTD:
r  prof*
prof  teach, supervise
teach  year
year  course1, course2
supervise  student*

Target DTD:
r  courses, students
courses  course*
students  student*
course  taughtby
student  supervisor

161

of the implication, e.g., cn1  cn2 could be added to the premise to avoid replicate the course on

the target.

Implications of tree patterns can be converted to assertions of the form Qsource  Qtarget. For

example, the previous implication can be rewritten as:

Amano et al. allow the use of horizontal navigation axes in the patterns, that is, the “next-

sibling” axis and the “following-sibling” axis. We only consider the traditional vertical axes, i.e.,

the child (‘/’) axis and the descendant (‘//’) axis, and we also assume set semantics, that is, we

disregard the order in which the children of a single node that are of the same element type

appear. We do allow for arithmetic comparisons and negations in the XPath expressions and in

the “where” clause of the mapping’s queries.

Information preservation is studied by Bohannon et al. [BFFN05] for XML mappings between

DTDs. A mapping is information preserving if it is invertible and query preserving. A mapping is

said to be query preserving with respect to a certain query language if all the queries that can be

posed on a source instance in that language can also be answered on the corresponding target

instance. Bohannon et al. show that it is undecidable to determine whether any language

subsuming first-order logic is information preserving with respect to projection queries. To

address this, they propose the mapping formalism of schema embeddings, which is guaranteed to

be both invertible and query preserving with respect to the regular XPath language [Mar04]. Note

that query preservation is related to query answerability and mapping losslessness, but is a

different property. Query preservation is checked with respect to an entire query language, while

query answerability and mapping losslessness are checked with respect to a particular query.

Moreover, query answerability and mapping losslessness are aimed at helping the designer to

determine whether a mapping that is partial or incomplete—and thus not query preserving—

suffices to perform the intended task [MBDH02] (remind that mapping losslessness generalizes

for $c1 in /r/courses/course, $c2 in /r/courses/course,
 $s in /r/students/student
where not($c1 is $c2) and
 $c1/@year/text() = $c2/@year/text() and
 $c1/taughtby/@value/text() = $c2/taughtby/@value/text()
 and
 $s/supervisor/@name/text() = $c1/taughtby/@value/text()
return
<result>
 <prof>{$c1/taughtby/@value/text()}</prof>
 <year>{$c1/@year/text()}</year>
 <course1>{$c1/@number/text()}</course1>
 <course2>{$c2/@number/text()}</course2>
 <student>{$s/@name/text()}</student>
</result>



for $p in /r/prof, $s in $p/supervise/student
return
<result>
 <prof>{$p/@name/text()}</prof>
 <year>{$p/teach/year/@value/text()}</year>
 <course1>
 {$p/teach/year/course1/@number/text()}
 </course1>
 <course2>
 {$p/teach/year/course2/@number/text()}
 </course2>
 <student>{$s/@name/text()}</student>
</result>

162

query answerability in order to deal with query inclusion assertions, and that both properties are

equivalent when all mapping assertions are query equalities).

Looking at the mapped DTDs as graphs, a schema embedding is a pair of functions: one that

maps each node A in the source DTD—an element type—into a node (A) in the target DTD, and

another that maps each edge (A, B) in the source DTD—a parent-child relationship—into a

unique path from (A) to (B) in the target DTD.

Comparing with our XML mapping formalism, a schema embedding can be seen as a single

query Qsource that produces a nested-type result that conforms to the target DTD, i.e., the result is

the target instance. Such a mapping is a particular case of a mapping with a single assertion of the

form Qsource = Qtarget. The main difference is that a schema embedding maps each source instance

into a unique target instance, while a query equality in its general form maps a single source

instance into a set of target instances. That is because although the extension for Qsource

determines the extension of Qtarget, there may be more than one target instance in which Qtarget has

this extension, which is the well-known view updating problem [DTU96].

Bohannon et al. consider paths expressed in the regular XPath language [Mar04], which

allows for qualifying conditions with negations and disjunctions, but not arithmetic comparisons.

Regular XPath also allows for position qualifiers to distinguish between multiple appearances of

a same element type B in the body of a single production. This feature is similar to the horizontal

navigation considered in [ALM09]. As we already discussed, we only consider vertical

navigation and set semantics. Another difference is that Bohannon et al. consider recursive DTDs,

but not integrity constraints, while we consider integrity constraints, but not recursive schemas.

Information preservation is also addressed in [BFM04] for XML-to-relational mapping

schemes. Such mapping schemes are mappings between the XML and the relational model, and

not mappings between specific schemas as are the mappings we consider. It is also worth noting

that the notion of lossless mapping scheme defined in [BFM04] corresponds to that of query

preservation in [BFFN05] and not to our mapping losslessness property.

A kind of schema-based validation is also performed in the context of ontology matching

(a.k.a. ontology alignment). Recall that a matching is a set of correspondences between two

schemas, where a correspondence is typically a triplet of the form (e1, e2, sim), where e1 and e2 are

the entities being related (one from each schema), and sim is a similarity score that measures how

likely it is that these two entities are actually related [RB01]. Some matching algorithms use some

form of reasoning to improve the quality of the generated matching. That is the case of the

163

algorithms proposed in [UGM07] and [JSK09], which are algorithms aimed at ontology matching

that use the reasoning capabilities of Description Logics.

In [UGM07], Udrea et al. present the ILIADS algorithm that aligns OWL Lite ontologies and

makes use of logical reasoning to adjust the similarity measure of the correspondences. The

algorithm performs a limited number of inference steps for each candidate correspondence

(limited means a given finite number of steps); if it can infer equivalences that are probable, the

similarity measure of the current candidate increases; otherwise, the similarity measure decreases.

[JSK09] proposes the ASMOV algorithm for OWL-DL ontology matching with semantic

verification. The verification step checks whether certain axioms (of a prefixed kind) inferred

from the candidate matching are true given the information in the ontologies. Correspondences

whose inferred axioms can be verified are preferred; those whose inferred axioms cannot be

verified are removed from the candidate matching.

Note that these approaches are not comparable with ours since they target a different kind of

mappings, i.e., matchings, while we focus on logical mappings.

8.2 Computation of Explanations

Existing approaches to validate mappings by means of desirable-property checking focus only on

determining whether the tested property holds or not, but do not address the question of what

feedback is provided to the user, that is, they only provide a Boolean answer [MBDH02,

SVC+05, ALM09]. We address this situation either by returning the (counter)example produced

by the CQC method [FTU05] or by highlighting the schema constraints and mapping assertions

responsible for the (un)satisfiability of the tested property. We refer to the latter task as

computing an explanation.

Our notion of explanation is related to that of Minimal Unsatisfiable Subformula (MUS) in the

propositional SAT field [GMP08], and to that of axiom pinpointing in Description Logics [SC03].

In the next subsections, we review the most relevant related work, and show that our approach

adapts and combines the main techniques from these two areas.

8.2.1 Explanations in Propositional SAT

The explanation of contradictions inside sets of propositional clauses has received a lot of

attention during the last years. A survey of existing approaches to this problem can be found in

[GMP08]. The majority of these techniques rely on the concept of Minimal Unsatisfiable

164

Subformula (MUS) in order to explain the source of infeasibility. A set of propositional clauses U

is said to be a MUS of a CNF (Conjunctive Normal Form) formula F if (1) U  F, (2) U is

unsatisfiable, and (3) U cannot be made smaller without becoming satisfiable. Notice that what

we call an explanation is basically the same as a MUS; the difference is that instead of

propositional clauses we have schema constraints and mapping assertions.

It is well-known that there may be more than one MUS for a single CNF formula. The most

efficient methods for the computation of all MUSes are those that follow the hitting set

dualization approach—see the algorithm of Bailey and Stuckey [BS05], and the algorithms of

Liffiton and Sakallah [LS05, LS08]. The hitting set dualization approach is based on a

relationship that exists between MUSes and CoMSSes, where a CoMSS is the complementary set

of a MSS, and a MSS is a Maximal Satisfiable Subformula defined as follows. A set of clauses S

is a MSS of a formula F if (1) S  F, (2) S is satisfiable, and (3) no clause from F can be added to

S without making it unsatisfiable. The relationship between MUSes and CoMSSes is that they are

“hitting set duals” of one another, that is, each MUS has at least one clause in common with all

CoMSSes (and is minimal in this sense), and vice versa. For example, assume that F is an

unsatisfiable CNF formula with 6 clauses (denoted c1 to c6) and that it has the following set of

MSSes and CoMSSes (example taken from [GMP08]):

MSSes: {c1, c2, c3, c5, c6}, {c2, c3, c4, c6}, {c3, c4, c5}, {c2, c4, c5}

CoMSSes: {c4}, {c1, c5}, {c1, c2, c6}, {c1, c3, c6}

The corresponding set of MUSes would be the following:

MUSes: {c2, c3, c4, c5}, {c1, c4}, {c4, c5, c6}

Notice that each MUS has indeed an element in common with each CoMSS, and that

removing any element from a MUS would invalidate this property.

In order to find all MUSes, the algorithms that follow the hitting set dualization approach start

by finding all MSSes, then compute the CoMSSes, and finally find the minimal hitting sets of

these CoMSSes. The intuition of why this approach results more efficient than finding the MUSes

directly is the fact that, in propositional SAT, finding a satisfiable subformula can be done in a

more efficient way than finding an unsatisfiable one, mainly thanks to the use of incremental SAT

solvers. Moreover, the problem of finding the minimal hitting sets is equivalent to computing all

minimal transversals of a hypergraph; a well-known problem for which many algorithms have

been developed.

165

The problem of applying hitting set dualization in our context is that, to our knowledge, there

is no incremental method for query satisfiability checking, and, in particular, it is not clear how to

make the CQC method incremental (that could be a topic for further research). Therefore, there is

no advantage in going through the intermediate step of finding the MSSes, and finding the

MUSes directly becomes the more efficient solution. This intuition is confirmed by the

experiments we have conducted to compare our black-box approach with the algorithm of Bailey

and Stuckey [BS05].

Since in the worst case the number of MUSes may be exponential w.r.t. the size of the

formula, computing all MUSes may be costly, especially when the number of clauses is large. In

order to combat this intractability, Liffiton and Sakallah [LS08] propose a variation of their

hitting set dualization algorithm that does not compute all CoMSSes neither all MUSes, but a

subset of them. This goes on the same direction that the phase 2 of our black-box approach,

which is more than a mere intermediate step in the process of finding all explanations. It provides

a maximal set of minimal explanations with only a linear number of calls to the CQC method.

The idea is to relax completeness so the user can obtain more than one explanation without the

exponential cost of finding all of them.

Also because of this intractability, many approaches to explain infeasibility of Boolean clauses

focus on the easier task of finding one single MUS. The two main approaches are the constructive

[SP88] and the destructive [BDTW93].

The constructive approach considers an initial empty set of clauses F′. It keeps adding clauses

from the given formula F to the set F′ while F′ is satisfiable. When F′ becomes unsatisfiable, the

last added clause c is identified as part of the MUS. The process is iterated with F′ - {c} as the

new formula F and {c} as the new set F′. The process ends when F′ is already unsatisfiable at the

beginning of an iteration, which means that F′ is a MUS.

The destructive approach considers the whole given formula, and keeps removing clauses until

the formula becomes satisfiable. When that happens, the last removed clause is identified as part

of the MUS. The process is iterated with the identified and remaining clauses as the new initial

formula. The process ends when no new clause is identified.

The computation of one MUS relates with the phase 1 of our black-box method, which is

aimed at computing one minimal explanation for the tested mapping property (reformulated as a

query satisfiability problem). The phase 1 applies the destructive approach to our context, and

combines it with our glass-box method. The idea is to take advantage of the fact that the modified

166

version of the CQC method—the CQCE method—does not only check whether a given query is

satisfiable but also provides an approximated explanation (i.e., not necessarily minimal) when is

not. The destructive approach is the one that is best combined with our glass-box approach since

it is expected to perform a lot of satisfiability tests with negative result. Each time a constraint is

removed and the tested query is still unsatisfiable w.r.t. the remaining constraints, the CQCE

method will provide an approximated explanation in such a way that in the next iteration of the

destructive approach we will be able to remove all remaining constraints that do not belong to the

approximated explanation. This way, the number of calls that the phase 1 of our black-box

approach makes to the CQCE method decreases significantly. Moreover, since phase 1 is reused

by the two subsequent phases, we can benefit from this combination of the black-box and glass-

box approaches not only when we are interested in computing one explanation but also when

computing either a maximal set of disjoint explanations or all the possible explanations.

Given that computing one single MUS still requires multiple calls to the underlying

satisfiability method, some approaches consider the approximation of a MUS a quicker way of

providing the user with some useful insight on the source of infeasibility of the formula. This

relates with our glass-box approach, which is also aimed at providing an approximated

explanation without additional executions of the CQC method. The work that is most relevant to

us is that of Zhang and Malik [ZM03]. They propose a glass-box approach that makes use of a

resolution graph that is built during the execution of the SAT solver. The resolution graph is a

directed acyclic graph in which each node represents a clause and the edges represent a resolution

step. An edge from a node A to a node B indicates that A is one of the source clauses used to

infer B via resolution. The root nodes are the initial clauses, and the internal nodes are the clauses

obtained via resolution. In order to obtain an approximated MUS, the root nodes that are

ancestors of the empty clause are considered. Such a MUS is approximated since it is not

guaranteed to be minimal. The drawback of this approach is the size of the resolution graph,

which may be very large; actually, in most cases the resolution graph is stored in a file on disk.

Besides the storage problems, the additional step that is required to obtain the approximated MUS

from the resolution graph may also introduce a significant cost given the necessity of exploring

the file in a reverse order. The main difference with respect to our glass-box approach is that our

modification of the CQC method does not require keeping in memory the fragment of the search

space that has been explored during the execution. The CQCE method only keeps in memory the

current branch (the search space is tree-shaped). The nodes in the current branch store the

explanations of their failed subtrees. When the CQCE method finishes without finding a solution

(i.e., a (counter)example for the tested property) the union of the explanations stored in the root

167

node is the approximated explanation that will be returned to the user, so no additional step is

required. Moreover, the modifications introduced to the CQC method do not only preserve the

running time, but may reduce it dramatically.

8.2.2 Explanations in Description Logics

Axiom pinpointing is a technique introduced by Schlobach and Cornet [SC03] as a non-standard

reasoning service for the debugging of Description Logic terminologies. The idea is similar to

that of MUSes in the SAT field, and to our notion of explanations, that is, identify those axioms

in a given DL terminology that are responsible for the unsatisfiability of its concepts. They define

a MUPS (Minimal Unsatisfiability-Preserving Sub-TBox) as a subset T′ of a terminology T such

that a concept C from T is unsatisfiable in T′, and removing any axiom from T′ makes C

satisfiable.

Schlobach and Cornet propose a glass-box approach to calculate all the MUPSes for a given

concept with respect to a given terminology. The algorithm works for unfoldable ALC

terminologies [Neb90] (i.e., ALC terminologies whose axioms are in the form of C ⊑ D, where C

is an atomic concept and D contains no direct or indirect reference to C), although it has been

extended to general ALC terminologies in [MLBP06]. The idea is to extend the standard tableau-

like procedure for concept satisfiability checking, and decorate the constructed tableau with the

axioms that are relevant for the closure of each branch. After the tableau has been constructed and

the tested concept found unsatisfiable, an additional step is performed, which applies a

minimization function on the tableau (it can also be applied during the construction of the

tableau) and uses its result (a Boolean formula) to obtain the MUPSes. The MUPSes will be the

prime implicants of the minimization function result, i.e., the smallest conjunctions of literals that

imply the resulting formula. Comparing with our glass-box approach, the main difference is that

the two approaches have different goals; while our modified version of the CQC method is aimed

at providing one approximated explanation without increasing the running time, the algorithm of

Schlobach and Cornet provides all the exact MUPS, but that requires and additional exponential

cost.

A black-box approach to the computation of MUPSes is presented in [SHCH07]. Since it

makes use of an external DL reasoner, it can deal with any class of terminology for which a

reasoner exists. The algorithm uses a selection function to heuristically choose subsets of axioms

of increasing size from the given terminology. The satisfiability of the target concept is checked

against each one of these subsets. The approach is sound but however not complete, i.e., it does

168

not guarantee that all MUPSes are found. In this sense, it is similar to executing our black-box

method until its phase 2, which results in an incomplete but sound set of minimal explanations.

Another way of explaining the result of the different reasoning tasks in Description Logics is

explored by Borgida et al. in [BCR08]. Their notion of explanation is different from ours in the

sense that they consider an explanation to be a formal proof, which can be presented to the user

following some presentation strategy (e.g., tree-shaped proofs). They propose a set of inference

rules for each reasoning task commonly performed in DL-Lite [CDL+07]. Then, a proof can be

constructed from the premises by means of using the corresponding set of inference rules. As

future research, it would be interesting to study how these proof-like explanations can be

combined with ours. The motivation would be that highlighting the constraints and mapping

assertions responsible for the (un)satisfiability of the tested property may not be enough to fully

understand what the problem is, i.e., it may not be clear what the precise interaction between the

highlighted elements is, especially if the constraints and assertions are complex. In this situation,

providing some kind of proof that illustrates how the highlighted elements relate might be very

useful.

8.3 Translation of XML Mapping Scenarios into Logic

In order to apply our validation approach to mappings between XML schemas, we translate the

XML mapping scenarios into the first-order logic formalism used by the CQC method (step that

is straightforward in the relational setting). This way, we can apply the same technique than with

relational mappings, that is, reformulate the desirable-property checking in terms of query

satisfiability and apply the CQC method to solve it.

In the next subsections, we firstly show that our translation adapts and combines existing

approaches to the translation of XML schemas and queries. Secondly, we show how our

translation of the mapping assertions differs from existing ones, which also deal with inclusion

and equality assertions although not in the context of mappings but in the context of query

containment and query equivalence checking.

8.3.1 Translation of XML Schemas and Queries

Our translation of XML schemas into first-order logic is based on the hierarchical representation

used by Yu and Jagadish in [YJ08]. They address the problem of discovering functional

dependencies on nested relational schemas. They translate the schemas into a flat representation,

169

so algorithms for finding functional dependencies on relational schemas can be applied. The

hierarchical representation assigns a flat relation to each nested table. To illustrate that, consider

the following nested relational schema, which models data about an organization, its employees,

and the projects each employee works on:

Its hierarchical representation would be the following set of flat relations:

{org(@key, parent, org-name), employee(@key, parent, name, address),
project(@key, parent, proj-id, budget)}

Note that each flat relation keeps the simple-type attributes of the nested relation, and has two

additional attributes: the @key attribute, which models the id of XML nodes; and the parent

attribute, which references the @key attribute of the parent table, and models the parent-child

relationship of XML nodes.

We adapt this hierarchical representation to the subset of the XSD language that we consider.

We assign a flat relation in the form of element(id, parent) to each schema element of complex

type (e.g., employee(id, parent)), and a flat relation in the form of element(id, parent, value) to

each simple-type schema element (e.g., name(id, parent, value), where name.parent references

employee.id). The reason why we define simple-type schema elements as separated flat relations

is to make easier the translation of the XSD’s choice construct, which is not considered in the

nested relational formalism.

Our translation of the mapping’s XQueries adapts the one used by Deutsch and Tannen in

[DT05], and combines it with the hierarchical representation from [YJ08].

Deutsch and Tannen address in [DT05] the problems of XML query containment and XML

query reformulation (i.e., rewriting a query through a mapping) by means of reducing these

problems into relational ones. This way, the problems can be solved with the chase procedure and

with the Chase&Backchase (C&B) algorithm [DPT99], respectively. The mappings they consider

org: Rcd
 org-name
 employees: Set Of
 employee: Rcd
 name
 address
 projects: Set Of
 project :Rcd
 proj-id
 budget

170

are in the form of GAV and LAV XQuery views. In order to translate these nested-type views

into a flat formalism, Deutsch and Tannen encode each XQuery as a set of XBind queries. They

define XBind queries as an analog of relational conjunctive queries; the difference is that instead

of relational atoms they have predicates defined by XPath expressions. As an example, consider

the following XQuery (taken from [DT05]), which returns a set of items, each item consisting of

a writer’s name and a set of book titles written by that writer:

 Q: for $a in //author/text()
 return
 <item>
 <writer> {$a} </writer>
 {for $b in //book, $a1 in $b/author/text(), $t in $b/title
 where $a = $a1
 return $t }
 </item>

An XBind query would be associated to each query block as follows:

 Xbouter(a)  [//author/text()](a)

 Xbinner(a, b, a1, t)  Xbouter(a)  [//book](b)  [./author/text()](b, a1)
  [./title](b, t)  a = a1

Unary XPath atoms denote absolute paths. For example, [//author/text()](a) is true if and only

if there is an author node in the XML tree whose text is a. Similarly, [//book](b) is true iff b is a

book node which is descendant of the root. Binary XPath atoms denote relative paths. For

instance, [./author/text()](b, a1) is true iff there is an author node that is child of node b and

whose text is a1.

The next step in the translation proposed by Deutsch and Tannen is to replace the XPath atoms

with their definition expressed in the GReX (Generic Relational encoding for XML) encoding, in

order to convert the XBind queries into relational conjunctive queries. The GReX encoding uses a

set of predefined predicates such as: root, child, desc (descendant), tag and text (among others).

As an example, the conjunctive queries that result from encoding the two XBind queries above

into GReX are the following:

 Bouter(a)  root(r)  desc(r, d)  child(d, c)  tag(c, “author”)  text(c, a)

 Binner(a, b, a1, t)  Bouter(a)  root(r)  desc(r, d)  child(d, b)
  tag(b, “book”)  child(b, au)  tag(au, “author”)
  text(au, a1)  child(b, t)  tag(t, “title”)  a = a1

171

The semantics of the GReX predicates is partially modeled by a set of DEDs which the

authors call TIX (True In XML). Although TIX does not capture the entire semantics of the GReX

predicates, it suffices to solve the query containment and query reformulation problems via the

chase and the Chase&Backchase, respectively. It is worth noting that Deutsch and Tannen

address the containment of XBind queries only, and do not consider containment of XQueries.

Similarly, they address the problem of reformulating an XBind query—not an XQuery—through

a mapping that consists of XQuery views.

It is also worth noting that in order to solve the query reformulation problem, the conjunctive

queries that result from translating the XQuery views into XBind queries and then encoding them

into GReX must be materialized, that is, the mapping queries are replaced by DEDs which keep

the materialized predicates updated. This makes possible the subsequent application of the C&B

algorithm, whose inputs are a single conjunctive query and a set of DEDs.

Comparing with our approach, we also consider XQueries in the mapping assertions, but we

allow for arithmetic comparisons and negations in both the XPath expressions’ conditions and the

where clauses of the XQueries. Moreover, our mappings are not GAV or LAV, but GLAV, i.e.,

each mapping assertion consists of two queries instead of one. That means we need to introduce

additional constraints (DEDs) to explicit the semantics of these GLAV assertions. To do that, we

rely on the derived predicates that result from the translation of the mapping’s queries. Note that

we do not require the mapping’s queries to be materialized, since the CQC method allows for

derived predicates.

Nevertheless, one of the main differences of our approach with respect to that of Deutsch and

Tannen is that we use the hierarchical representation from [YJ08] instead of the GReX encoding.

We apply the hierarchical representation because the resulting translation is closer to the

formalism we use when we focus on the relational setting. This way, we can take advantage of

our contributions in the relational setting without major modifications.

Another difference is that we assume the schemas are given in a subset of the XSD language

[W3C04], and focus on translating these schemas into logic. Deutsch and Tannen assume that the

given schemas have been already encoded as sets of XML integrity constraints (XICs), which are

in the form of DEDs with XPath atoms instead of relational atoms (like in the case of XBind

queries).

172

8.3.2 Translation of XML Mapping Assertions

Since our mapping assertions are in the form of query inclusions and query equalities, the

problem of translating these assertions into first-order logic matches the problem of reducing the

containment and equivalence checking of nested queries to some other property checking over

relational queries. The works in this area that are closer to ours are those of Levy and Suciu

[LS97], Dong et al. [DHT04], and DeHaan [DeH09].

Levy and Suciu address in [LS97] the containment and equivalence of COQL queries

(Conjunctive OQL queries), which are queries that return a nested relation. They encode each

COQL query as a set of flat conjunctive queries using indexes. An indexed query Q is a query

hose head is in the form of Q(Ī1; ...; Īd; V1, ..., Vn), where Ī1, ..., Īd denote sets of index variables,

and variables V1, ..., Vn denote the resulting tuple. For example, consider the following COQL

query, which computes for each project the set of employees that work on it:

 Q: select [p.proj-name, (select e.name from Employee e
 where e.project = p.proj-id)]
 from Project p

This query would be encoded by the following two indexed queries:

 Q1(proj-id; proj-name)  Project(proj-id, proj-name, budget)

 Q2(proj-id; emp-name)  Employee(emp-name, address, proj-id)

In the case of Q1, it associates the index proj-id to each project name; the intuition is that this

index denotes the set of employees computed by the inner query. Query Q2 indicates which

employees are associated with each index. It is worth noting that although we mainly follow the

query translation used by Deustch and Tannen [DT05], the idea of index variable has inspired us

the concept of inherited variable, which we introduce in our translation in order to avoid the

repetition of the outer query blocks in the inner query blocks (e.g., we would like to avoid atoms

Xbouter(a) and Bouter(a) in the example of the previous section)—see Chapter 6.

Relying on the concept of indexed query, Levy and Suciu define the property of query

simulation. Let Q and Q′ be two indexed queries, Q simulates Q’ if for every database instance

the following condition holds:

Ī1 Ī1′ ... Īd Īd′ V1 ... Vn [Q(Ī1; ...; Īd; V1, ..., Vn)  Q′(Ī1′; ...; Īd′; V1, ..., Vn)]

They reduce containment of COQL queries to an exponential number of query simulation

conditions between the indexed queries that encode them.

173

Levy and Suciu also define the property of strong simulation. Q strongly simulates Q′ if:

Ī1 Ī1′ ... Īd Īd′ V1 ... Vn [Q(Ī1; ...; Īd; V1, ..., Vn)  Q′(Ī1′; ...; Īd′; V1, ..., Vn)]

They reduce equivalence of COQL queries which cannot construct empty sets to a pair of

strong simulation conditions (equivalence of general COQL queries is left open).

Dong et al. [DHT04] adapt the technique proposed by Levy and Suciu to the problem of

checking the containment of conjunctive XQueries. They also encode the nested queries into a set

of indexed queries, and also reduce the containment checking to a set of query simulation tests

between the indexed queries. They show that the reduction of COQL query containment proposed

by Levy and Suciu is insufficient, since it only considers a subset of the query simulations that

should be checked. Dong et al. also propose some extensions to the query language, such as the

use of negation and the use of arithmetic comparisons. They however do not consider both

extensions together as we do, and they do not consider the presence of integrity constraints in the

schemas.

DeHaan [DeH09] addresses the problem of checking the equivalence of nested queries under

mixed semantics (i.e., each collection can be either set, bag or normalized bag). The idea is to

follow the approach proposed by Levy and Suciu, that is, encode the nested queries into flat

queries and then reduce the equivalence problem to some property checking over the flat queries.

DeHaan shows that the reduction of nested query equivalence to strong query simulation

proposed by Levy and Suciu is not correct. He proposes a new encoding for the nested queries

into flat queries that captures the mixed semantics, and proposes a new property: encoding

equivalence, to which nested query equivalence under mixed semantics can be reduced to. Notice

that this approach is different with respect to ours in the sense that it focus on mixed semantics

while we focus on set semantics (Levy and Suciu [LS97] and Dong et al. [DHT04] focus on set

semantics too). We consider set semantics since it makes easier the generalization of our previous

results from the relational setting. DeHaan also proposes some extensions to the query language,

but he does not consider the use of negation or arithmetic comparisons.

The main difference of the approach followed by these three works with respect to ours is that

we do not intend to translate the mapping assertions into some condition over conjunctive

queries. Instead, we propose a translation that takes into account the class of queries and

constraints the CQC method is able to deal with, especially the fact that the CQC method allows

for the use of negation on derived atoms. We take advantage of this feature and propose a

translation that expresses the definition of query containment and query equivalence into first-

174

order logic, and then rewrites it into the syntax required by the CQC method by means of some

algebraic manipulation. Our goal is to obtain a set of constraints (DEDs) that model the semantics

of the mapping assertions, since that is the way in which we encode the mappings when we

reformulate the mapping validation tests in terms of query satisfiability in the relational setting.

Therefore, translating the XML mapping assertions in this way makes easier to reuse the

techniques we have proposed for the case of mappings between relational schemas.

175

9

Conclusions and Further Research

Mappings between schemas are key elements in any system that requires interaction of

heterogeneous data and applications. A lot of research has focused on the goal of making the

mapping design process as automatic as possible, since manually designing mappings is a labor-

intensive and error-prone process. However, the design of a mapping always requires the

participation of a human engineer to solve the semantic heterogeneities and further refine the

proposed mapping. Mapping designers need thus to validate the produced mapping in order to see

if it is what was intended.

In this thesis, we have proposed an approach to mapping validation that allows the designer to

check whether the mapping satisfies certain desirable properties. We have proposed a

reformulation of this desirable-property checking problem in terms of the problem of checking

the satisfiability of a query on a database schema. This way, we can take advantage of an existing

validation technique that has been successfully used on the area of database schema validation,

i.e., the CQC method [FTU05], which allows solving such a query satisfiability problem.

Moreover, we have proposed to provide the mapping designer with a richer feedback for the

desirable-property checking than just a Boolean answer. We have proposed to either provide a

(counter)example for the tested property, or highlight the mapping assertions and schema

constraints that are responsible for the (not) satisfaction of the tested property. Since the former

task is already addressed by the CQC method, we have focused on the latter, which we refer to as

computing an explanation. To this end, we have adapted and combined techniques from the

propositional SAT and Description Logics areas. We have firstly proposed a black-box method

that computes all minimal explanations. This method, however, may lead to high running times,

especially when the schemas and the mapping are large. To address this, we have also proposed a

glass-box approach, that is, a modification of the CQC method such that it produces an

176

approximated explanation (i.e., not necessarily minimal) as a result of its single execution. We

have also combined our glass-box and black-box approaches in order to get the benefits from

both.

Since checking the desirable properties of mappings that we consider in this thesis is an

undecidable problem, we have proposed to perform a termination test as a previous step to the

validation. If the answer of the test is positive, then we can be sure that the corresponding

desirable-property checking will terminate. In order to do this, we have adapted and extended a

termination test proposed in the area of reasoning on UML/OCL conceptual schemas [QT08]. In

particular, we have extended the termination test to handle multiple levels of negation and

overlapping cycles of constraints.

Finally, we have gone beyond the relational setting and applied our approach to the validation

of mappings between XML schemas. Such mappings have received a growing attention during

the last years, especially since the emergence of the Web. Our idea has been to reuse as much as

possible the techniques we have developed for the validation of relational mappings, so we can

take advantage from them. In order to do so, we have translated the XML mapping scenarios into

the first-order logic formalism used by the CQC method (this step was straightforward in the

relational setting). This way, we can then apply the same technique than with relational

mappings, i.e., reformulate the desirable-property checking as a query satisfiability problem and

apply the CQC method to solve it.

As further research, we plan to study a desirable property that we have not considered here:

absolute consistency of a mapping, which has been identified in [ALM09]. In a data exchange

scenario, a mapping is said absolutely consistent if all valid source instances are mapped into

valid target instances. This property is more complex to check than the ones we have considered

in this thesis, but yet we think we can adapt the approach we have proposed here to deal with it.

The idea would be to address first the case of full mappings, that is, mappings in which the target

instance is filled only with data from the source and not with values invented by the mapping (in

other words, the mapping does not have existentially quantified variables or Skolem functions).

The reason is that the problem of checking absolute consistency of full mappings seems easier to

reformulate in terms of a query satisfiability problem. Then, for the case of mappings that are not

full, we could compute the “full fragments” of these mappings, i.e., a simplified version of each

mapping which has the property of being full, and such that if this fragment is not absolutely

consistent, neither is the original mapping. This way, we would have a sufficient condition for a

mapping to be not absolutely consistent. Finally, we would like to identify and characterize

177

classes of non-full mappings in which the former condition is not only sufficient but also

necessary.

Also in the context of data exchange, we would like to study whether the CQC method can be

used to compute universal solutions for the class of mapping scenarios considered here or at least

for the language fragments in which the semantics of data exchange has clearly been established.

That would give us a better understanding of the relationship between the CQC method and the

well-known chase procedure [FKMP05], which is the procedure typically used to compute

universal solutions for data exchange problems. As a starting point, it is easy to see that the

application of the CQC method with its Simple VIP (i.e., the Variable Instantiation Pattern that

instantiates each variable with a fresh constant) when all schema constraints and mapping

assertions are TGDs is equivalent to the application of the standard chase [FKMP05].

Another line for future research is that of improving the efficiency of the CQC method. This is

important since our mapping validation approach relies on this method to perform the validation

tests. More specifically, there is work to do with the way in which the integrity constraints are

evaluated during the method’s execution. Currently, they are evaluated for the whole database

instance each time a new tuple is inserted. This situation could be improved by adapting the

technique proposed in [MT03] for a view updating and integrity maintenance method. This

technique makes explicit an order for the integrity constraints to be handled. The order is

provided by a precedence graph in order to minimize the number of times that each constraint is

checked during the integrity maintenance process. For instance, assume that you have to check

the constraints ic1 and ic2 and that you know the repair of ic2 may lead to the violation of ic1.

Then, it is more efficient to check ic2 first, and then check ic1; otherwise you may need to check

ic1 two times: before and after the check of ic2. A similar technique is also used in [QT08] which

takes advantage of the dependency graph that has been already constructed as a part of the

proposed termination test (see Section 1.3.3 and Chapter 5).

It would be also interesting to study the applicability of our mapping validation approach in

the field of conceptual modeling. Conceptual schemas are usually richer in semantics than

relational or XML schemas, and therefore the ability of our approach to deal with expressive

schemas should be especially useful. It should be studied whether existing mapping formalisms

between conceptual schemas (e.g., QVT [OMG08]) can be translated into first-order logic, and

whether the desirable properties of mappings we consider here still make sense in these

formalisms. Related with this, a tool to check desirable properties of UML/OCL conceptual

schemas—called AuRUS (Automated Reasoning on UML/OCL Schemas)—is being developed

178

inside our research group [QRT+10]. This tool uses the CQC method to reason on a first-order

logic translation of the conceptual schema; therefore, it would be a natural starting point to be

extended in order to address the validation of mappings between conceptual schemas.

Also with the aim of going beyond the relational setting, but in a more generic way, we would

like to explore the application of model management in order to translate a given mapping

scenario expressed in some formalism into a relational scenario on which we could perform the

validation by means of the techniques presented in this thesis. Let us assume we have a mapping

from schema A to schema B; the model management operators that would be necessary to

translate this scenario into a relational one are: ModelGen [ACT+08], in order to translate schema

A and B into the relational model; the inversion of a mapping [Fag07], which we would apply to

the mapping that relates A with its relational version; and the composition of mappings

[BGMN08], which we would use to compose the previously inverted mapping with the mapping

that goes from A to B and with the mapping from B to its relational version. The key point here

would be to see whether the resulting relational mapping scenario would be equivalent from the

point of view of validation to the original one.

179

References

[ABBG09a] Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, Giorgio Gianforme: A

runtime approach to model-independent schema and data translation. EDBT 2009:

275-286

[ABBG09b] Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, Giorgio Gianforme: MISM:

A Platform for Model-Independent Solutions to Model Management Problems. J.

Data Semantics 14: 133-161 (2009)

[ACB05] Paolo Atzeni, Paolo Cappellari, Philip A. Bernstein: A Multilevel Dictionary for

Model Management. ER 2005: 160-175

[ACB06] Paolo Atzeni, Paolo Cappellari, Philip A. Bernstein: Model-Independent Schema

and Data Translation. EDBT 2006: 368-385

[ACMT08] Bogdan Alexe, Laura Chiticariu, Renée J. Miller, Wang Chiew Tan: Muse:

Mapping Understanding and deSign by Example. ICDE 2008: 10-19

[ACT06] Bogdan Alexe, Laura Chiticariu, Wang Chiew Tan: SPIDER: a Schema mapPIng

DEbuggeR. VLDB 2006: 1179-1182

[ACT+08] Paolo Atzeni, Paolo Cappellari, Riccardo Torlone, Philip A. Bernstein, Giorgio

Gianforme: Model-independent schema translation. VLDB J. 17(6): 1347-1370

(2008)

[AGC09] Paolo Atzeni, Giorgio Gianforme, Paolo Cappellari: A Universal Metamodel and

Its Dictionary. T. Large-Scale Data- and Knowledge-Centered Systems 1: 38-62

(2009)

[AHV95] Serge Abiteboul, Richard Hull, Victor Vianu: Foundations of Databases. Addison-

Wesley 1995

[AL08] Marcelo Arenas, Leonid Libkin: XML data exchange: Consistency and query

answering. J. ACM 55(2): (2008)

180

[ALM09] Shun'ichi Amano, Leonid Libkin, Filip Murlak: XML schema mappings. PODS

2009: 33-42

[Alt10] Altova MapForce (2010). http://www.altova.com/.

[APRR09] Marcelo Arenas, Jorge Pérez, Juan Reutter, Cristian Riveros: Inverting Schema

Mappings: Bridging the Gap between Theory and Practice. PVLDB 2(1): 1018-

1029 (2009)

[AT96] Paolo Atzeni, Riccardo Torlone: Management of Multiple Models in an Extensible

Database Design Tool. EDBT 1996: 79-95

[ATV08] Bogdan Alexe, Wang Chiew Tan, Yannis Velegrakis: STBenchmark: towards a

benchmark for mapping systems. PVLDB 1(1): 230-244 (2008)

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, Peter F.

Patel-Schneider: The Description Logic Handbook: Theory, Implementation, and

Applications Cambridge University Press 2003

[BCR08] Alexander Borgida, Diego Calvanese, Mariano Rodriguez-Muro: Explanation in

the DL-LiteFamily of Description Logics. OTM Conferences (2) 2008: 1440-1457

[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, P. M. Wognum: Diagnosing and Solving

Over-Determined Constraint Satisfaction Problems. IJCAI 1993: 276-281

[Ber03] Philip A. Bernstein: Applying Model Management to Classical Meta Data

Problems. CIDR 2003

[BFFN05] Philip Bohannon, Wenfei Fan, Michael Flaster, P. P. S. Narayan: Information

Preserving XML Schema Embedding. VLDB 2005: 85-96

[BFM04] Denilson Barbosa, Juliana Freire, Alberto O. Mendelzon: Information Preservation

in XML-to-Relational Mappings. XSym 2004: 66-81

[BGMN08] Philip A. Bernstein, Todd J. Green, Sergey Melnik, Alan Nash: Implementing

mapping composition. VLDB J. 17(2): 333-353 (2008)

[BH08] Philip A. Bernstein, Laura M. Haas: Information integration in the enterprise.

Commun. ACM 51(9): 72-79 (2008)

[BHP00] Philip A. Bernstein, Alon Y. Halevy, Rachel Pottinger: A Vision of Management

of Complex Models. SIGMOD Record 29(4): 55-63 (2000)

181

[BM86] François Bry, Rainer Manthey: Checking Consistency of Database Constraints: a

Logical Basis. VLDB 1986: 13-20

[BM07] Philip A. Bernstein, Sergey Melnik: Model management 2.0: manipulating richer

mappings. SIGMOD Conference 2007: 1-12

[BMPQ04] Philip A. Bernstein, Sergey Melnik, Michalis Petropoulos, Christoph Quix:

Industrial-Strength Schema Matching. SIGMOD Record 33(4): 38-43 (2004)

[BMP+08] Angela Bonifati, Giansalvatore Mecca, Alessandro Pappalardo, Salvatore Raunich,

Gianvito Summa: Schema mapping verification: the spicy way. EDBT 2008: 85-96

[BNV07] Geert Jan Bex, Frank Neven, Stijn Vansummeren: Inferring XML Schema

Definitions from XML Data. VLDB 2007: 998-1009

[BS05] James Bailey, Peter J. Stuckey: Discovery of Minimal Unsatisfiable Subsets of

Constraints Using Hitting Set Dualization. PADL 2005: 174-186

[CBA10] Paolo Cappellari, Denilson Barbosa, Paolo Atzeni: A Framework for Automatic

Schema Mapping Verification Through Reasoning. In International Workshop on

Data Engineering meets the Semantic Web (ICDEW 2010)—In conjunction with

ICDE 2010: 245-250

[CDL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

Riccardo Rosati: Tractable Reasoning and Efficient Query Answering in

Description Logics: The DL-Lite Family. J. Autom. Reasoning 39(3): 385-429

(2007)

[CDLV02] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:

Lossless Regular Views. PODS 2002: 247-258

[CK10] Balder ten Cate, Phokion G. Kolaitis: Structural characterizations of schema-

mapping languages. Commun. ACM 53(1): 101-110 (2010)

[Cla77] Keith L. Clark: Negation as Failure. Logic and Data Bases 1977: 293-322

[CT06] Laura Chiticariu, Wang Chiew Tan: Debugging Schema Mappings with Routes.

VLDB 2006: 79-90

[DeH09] David DeHaan: Equivalence of nested queries with mixed semantics. PODS 2009:

207-216

182

[DHT04] Xin Dong, Alon Y. Halevy, Igor Tatarinov: Containment of Nested XML Queries.

VLDB 2004: 132-143

[DLN07] Alin Deutsch, Bertram Ludäscher, Alan Nash: Rewriting queries using views with

access patterns under integrity constraints. Theor. Comput. Sci. 371(3): 200-226

(2007)

[DPT99] Alin Deutsch, Lucian Popa, Val Tannen: Physical Data Independence, Constraints,

and Optimization with Universal Plans VLDB 1999: 459-470

[DT01] Alin Deutsch, Val Tannen: Optimization Properties for Classes of Conjunctive

Regular Path Queries. DBPL 2001: 21-39

[DT05] Alin Deutsch, Val Tannen: XML queries and constraints, containment and

reformulation. Theor. Comput. Sci. 336(1): 57-87 (2005)

[DTU96] Hendrik Decker, Ernest Teniente, Toni Urpí: How to Tackle Schema Validation by

View Updating. EDBT 1996: 535-549

[Fag07] Ronald Fagin: Inverting schema mappings. ACM Trans. Database Syst. 32(4):

(2007)

[FHH+06] Ariel Fuxman, Mauricio A. Hernández, C. T. Howard Ho, Renée J. Miller, Paolo

Papotti, Lucian Popa: Nested Mappings: Schema Mapping Reloaded. VLDB 2006:

67-78

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa: Data exchange:

semantics and query answering. Theor. Comput. Sci. 336(1): 89-124 (2005)

[FKPT05] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, Wang Chiew Tan: Composing

schema mappings: Second-order dependencies to the rescue. ACM Trans. Database

Syst. 30(4): 994-1055 (2005)

[FKPT08] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, Wang Chiew Tan: Quasi-inverses

of schema mappings. ACM Trans. Database Syst. 33(2): (2008)

[FKPT09] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, Wang Chiew Tan: Reverse data

exchange: coping with nulls. PODS 2009: 23-32

[FLM99] Marc Friedman, Alon Y. Levy, Todd D. Millstein: Navigational Plans For Data

Integration. AAAI/IAAI 1999: 67-73

183

[FRTU08] Carles Farré, Guillem Rull, Ernest Teniente, Toni Urpí: SVTe: a tool to validate

database schemas giving explanations. DBTest 2008: 9

[FTU04] Carles Farré, Ernest Teniente, Toni Urpí: A New Approach for Checking Schema

Validation Properties. DEXA 2004: 77-86

[FTU05] Carles Farré, Ernest Teniente, Toni Urpí: Checking query containment with the

CQC method. Data Knowl. Eng. 53(2): 163-223 (2005)

[GAMH10] Boris Glavic, Gustavo Alonso, Renée J. Miller, Laura M. Haas: TRAMP:

Understanding the Behavior of Schema Mappings through Provenance. PVLDB

3(1): 1314-1325 (2010)

[GMP08] Éric Grégoire, Bertrand Mazure, Cédric Piette: On Approaches to Explaining

Infeasibility of Sets of Boolean Clauses. ICTAI (1) 2008: 74-83

[Haa07] Laura M. Haas: Beauty and the Beast: The Theory and Practice of Information

Integration. ICDT 2007: 28-43

[Hal10] Alon Y. Halevy: Technical perspective - Schema mappings: rules for mixing data.

Commun. ACM 53(1): 100 (2010)

[HHH+05] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa, Mary Roth:

Clio grows up: from research prototype to industrial tool. SIGMOD Conference

2005: 805-810

[HLM99] Volker Haarslev, Carsten Lutz, Ralf Möller: A Description Logic with Concrete

Domains and a Role-forming Predicate Operator. J. Log. Comput. 9(3): 351-384

(1999)

[HMSS01] Alon Y. Halevy, Inderpal Singh Mumick, Yehoshua Sagiv, Oded Shmueli: Static

analysis in datalog extensions. J. ACM 48(5): 971-1012 (2001)

[HST00] Ian Horrocks, Ulrike Sattler, Stephan Tobies: Practical Reasoning for Very

Expressive Description Logics. Logic Journal of the IGPL 8(3): (2000)

[JSK09] Yves R. Jean-Mary, E. Patrick Shironoshita, Mansur R. Kabuka: Ontology

matching with semantic verification. J. Web Sem. 7(3): 235-251 (2009)

[KQCJ07] David Kensche, Christoph Quix, Mohamed Amine Chatti, Matthias Jarke:

GeRoMe: A Generic Role Based Metamodel for Model Management. J. Data

Semantics 8: 82-117 (2007)

184

[KQLJ07] David Kensche, Christoph Quix, Yong Li, Matthias Jarke: Generic Schema

Mappings. ER 2007: 132-148

[KQLL07] David Kensche, Christoph Quix, Xiang Li, Yong Li: GeRoMeSuite: A System for

Holistic Generic Model Management. VLDB 2007: 1322-1325

[KQL+09] David Kensche, Christoph Quix, Xiang Li, Yong Li, Matthias Jarke: Generic

schema mappings for composition and query answering. Data Knowl. Eng. 68(7):

599-621 (2009)

[Len02] Maurizio Lenzerini: Data Integration: A Theoretical Perspective. PODS 2002: 233-

246

[Llo87] John W. Lloyd: Foundations of Logic Programming, 2nd Edition Springer 1987

[LS97] Alon Y. Levy, Dan Suciu: Deciding Containment for Queries with Complex

Objects. PODS 1997: 20-31

[LS05] Mark H. Liffiton, Karem A. Sakallah: On Finding All Minimally Unsatisfiable

Subformulas. SAT 2005: 173-186

[LS08] Mark H. Liffiton, Karem A. Sakallah: Algorithms for Computing Minimal

Unsatisfiable Subsets of Constraints. J. Autom. Reasoning 40(1): 1-33 (2008)

[Mar04] Maarten Marx: XPath with Conditional Axis Relations. EDBT 2004: 477-494

[MBDH02] Jayant Madhavan, Philip A. Bernstein, Pedro Domingos, Alon Y. Halevy:

Representing and Reasoning about Mappings between Domain Models.

AAAI/IAAI 2002: 80-86

[MH03] Jayant Madhavan, Alon Y. Halevy: Composing Mappings Among Data Sources.

VLDB 2003: 572-583

[MLBP06] Thomas Andreas Meyer, Kevin Lee, Richard Booth, Jeff Z. Pan: Finding

Maximally Satisfiable Terminologies for the Description Logic ALC. AAAI 2006

[MMP10] Bruno Marnette, Giansalvatore Mecca, Paolo Papotti: Scalable Data Exchange with

Functional Dependencies. PVLDB 3(1): 105-116 (2010)

[Mon98] The Mondial database. http://www.dbis.informatik.uni-goettingen.de/Mondial/.

[MPR09] Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich: Core schema mappings.

SIGMOD Conference 2009: 655-668

185

[MPRB09] Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich, Marcello Buoncristiano:

Concise and Expressive Mappings with +Spicy. PVLDB 2(2): 1582-1585 (2009)

[MT03] Enric Mayol, Ernest Teniente: Consistency preserving updates in deductive

databases. Data Knowl. Eng. 47(1): 61-103 (2003)

[NBM07] Alan Nash, Philip A. Bernstein, Sergey Melnik: Composition of mappings given

by embedded dependencies. ACM Trans. Database Syst. 32(1): 4 (2007)

[Neb90] Bernhard Nebel: Terminological Reasoning is Inherently Intractable. Artif. Intell.

43(2): 235-249 (1990)

[NSV07] Alan Nash, Luc Segoufin, Victor Vianu: Determinacy and Rewriting of

Conjunctive Queries Using Views: A Progress Report. ICDT 2007: 59-73

[OMG08] Object Management Group: Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification Version 1.0 (April 2008).

http://www.omg.org/spec/QVT/1.0/PDF/.

[PB08] Rachel Pottinger, Philip A. Bernstein: Schema merging and mapping creation for

relational sources. EDBT 2008: 73-84

[PVM+02] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, Ronald

Fagin: Translating Web Data. VLDB 2002: 598-609

[QKL07] Christoph Quix, David Kensche, Xiang Li: Generic Schema Merging. CAiSE

2007: 127-141

[QRT+10] Anna Queralt, Guillem Rull, Ernest Teniente, Carles Farré, Toni Urpí: AuRUS:

Automated Reasoning on UML/OCL Schemas. To appear in ER 2010.

[QT08] Anna Queralt, Ernest Teniente: Decidable Reasoning in UML Schemas with

Constraints. CAiSE 2008: 281-295

[Qui09] Christoph Quix: Model Management. Encyclopedia of Database Systems 2009:

1760-1764

[RB01] Erhard Rahm, Philip A. Bernstein: A survey of approaches to automatic schema

matching. VLDB J. 10(4): 334-350 (2001)

[RFTU07] Guillem Rull, Carles Farré, Ernest Teniente, Toni Urpí: Computing explanations

for unlively queries in databases. CIKM 2007: 955-958

186

[RFTU08a] Guillem Rull, Carles Farré, Ernest Teniente, Toni Urpí: Validation of mappings

between schemas. Data Knowl. Eng. 66(3): 414-437 (2008)

[RFTU08b] Guillem Rull, Carles Farré, Ernest Teniente, Toni Urpí: Providing Explanations for

Database Schema Validation. DEXA 2008: 660-667

[RFTU09] Guillem Rull, Carles Farré, Ernest Teniente, Toni Urpí: MVT: a schema mapping

validation tool. EDBT 2009: 1120-1123

[RHC+06] Mary Roth, Mauricio A. Hernández, Phil Coulthard, Ling-Ling Yan, Lucian Popa,

C. T. Howard Ho, C. C. Salter: XML mapping technology: Making connections in

an XML-centric world. IBM Systems Journal 45(2): 389-410 (2006)

[Sag88] Yehoshua Sagiv: Optimizing Datalog Programs. Foundations of Deductive

Databases and Logic Programming. 1988: 659-698

[SC03] Stefan Schlobach, Ronald Cornet: Non-Standard Reasoning Services for the

Debugging of Description Logic Terminologies. IJCAI 2003: 355-362

[SHCH07] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, Frank van Harmelen:

Debugging Incoherent Terminologies. J. Autom. Reasoning 39(3): 317-349 (2007)

[SP88] J. L. de Siqueira N., Jean-Francois Puget: Explanation-Based Generalisation of

Failures. ECAI 1988: 339-344

[Sty10] Stylus Studio (2010). http://www.stylusstudio.com/.

[SV05] Luc Segoufin, Victor Vianu: Views and queries: determinacy and rewriting. PODS

2005: 49-60

[SVC+05] Anastasiya Sotnykova, Christelle Vangenot, Nadine Cullot, Nacéra Bennacer,

Marie-Aude Aufaure: Semantic Mappings in Description Logics for Spatio-

temporal Database Schema Integration. J. Data Semantics III: 143-167 (2005)

[TFU+04] Ernest Teniente, Carles Farré, Toni Urpí, Carlos Beltrán, David Gañán: SVT:

Schema Validation Tool for Microsoft SQL-Server. VLDB 2004: 1349-1352

[UGM07] Octavian Udrea, Lise Getoor, Renée J. Miller: Leveraging data and structure in

ontology integration. SIGMOD Conference 2007: 449-460

[Ull89] Jeffrey D. Ullman: Principles of Database and Knowledge-Base Systems, Volume

II Computer Science Press 1989

187

[W3C99] W3C: XML Path Language (XPath) Version 1.0. W3C Recommendation 16

November 1999. http://www.w3.org/TR/xpath/.

[W3C04] W3C: XML Schema Part 0: Primer Second Edition. W3C Recommendation 28

October 2004. http://www.w3.org/TR/xmlschema-0/.

[W3C07] W3C: XQuery 1.0: An XML Query Language. W3C Recommendation 23 January

2007. http://www.w3.org/TR/xquery/.

[W3C08] W3C: Document Type Definition (fragment of Extensible Markup Language

(XML) 1.0 (Fifth Edition) W3C Recommendation 26 November 2008).

http://www.w3.org/tr/rec-xml/#dt-doctype.

[YJ08] Cong Yu, H. V. Jagadish: XML schema refinement through redundancy detection

and normalization. VLDB J. 17(2): 203-223 (2008)

[YMHF01] Ling-Ling Yan, Renée J. Miller, Laura M. Haas, Ronald Fagin: Data-Driven

Understanding and Refinement of Schema Mappings. SIGMOD Conference 2001:

485-496

[ZM03] Lintao Zhang, Sharad Malik: Extracting Small Unsatisfiable Cores from

Unsatisfiable Boolean Formula. SAT 2003

[ZO97] Xubo Zhang, Z. Meral Özsoyoglu: Implication and Referential Constraints: A New

Formal Reasoning. IEEE Trans. Knowl. Data Eng. 9(6): 894-910 (1997)

