_U. UNIVERSITAT
) POMPEU FABRA

Musical expectation modelling from
audio: a causal mid-level approach to
predictive representation and learning

of spectro-temporal events

Amaury Hazan

A dissertation submitted to the Department of Information and
Communication Technologies at the Universitat Pompeu Fabra for
the program in Computer Science and Digital Communications in

partial fulfilment of the requirements for the degree of

Doctor per la Universitat Pompeu Fabra

Director de la tesi:

Doctor Xavier Serra
Departament de Tecnologies de la Informacio i les Comunicacions
Universitat Pompeu Fabra, Barcelona

Tesi Doctoral UPF / 2010






This research was performed at the Music Technology Group of the Uni-
versitat Pompeu Fabra in Barcelona, Spain. This research was partially
funded by the EmCAP project FP6-IST, contract 013123.






Acknowledgements

Nicolas Wack taught me that programming is not a burden, it’s a lifestyle.
Paul Brossier taught me that open source is not real-time, but when it’s
open-source and real-time it feels good. Perfecto Herrera taught me to take
it easy, to make it solid and to make it happen. Xavier Serra gave me the
opportunity to be part of MTG and to start this thesis. Noemi taught me
not to work on weekends, even if models of listening are fun.

The researchers I met at MTG and thanks to MTG taught me many
things too: many thanks to Bram de Jong, Gunter Geiger, Jens Grivolla,
Thomas Aussenac, Julien Ricard, Alex Freginals, Xavier Forns, Xavier Ama-
triain, Alex Loscos, Jordi Janer, Inés Salselas, Fabien Gouyon, Hendrik Pur-
wins, Maarten Grachten, Rafael Ramirez, Anssi Klapuri, Esteban Maestre,
Alfonso Pérez, Emilia Gomez, Ricard Marxer, Piotr Holonowicz, Joshua
Eichen, Owen Meyers, Eduard Aylon, Cyril Laurier, Jordi Funollet and Sergi
Jorda.

My brother taught me about personal commitment, but he works on
weekends. My parents told me that a thesis should be completed after six
years, even if models of listening are fun.

Actually, they are.

iii






Abstract

We develop in this thesis a computational model of music expectation,
which may be one of the most important aspects in music listening. Many
phenomenons related to music listening such as preference, surprise or emo-
tions are linked to the anticipatory behaviour of listeners. In this thesis, we
concentrate on a statistical account to music expectation, by modelling the
processes of learning and predicting spectro-temporal regularities in a causal
fashion.

The principle of statistical modelling of expectation can be applied to sev-
eral music representations, from symbolic notation to audio signals. We first
show that computational learning architectures can be used and evaluated
to account behavioral data concerning auditory perception and learning. We
then propose a what/when representation of musical events which enables
to sequentially describe and learn the structure of acoustic units in musical
audio signals.

The proposed representation is applied to describe and anticipate timbre
features and musical rhythms. We suggest ways to exploit the properties of
the expectation model in music analysis tasks such as structural segmenta-
tion. We finally explore the implications of our model for interactive music
applications in the context of real-time transcription, concatenative synthe-
sis, and visualization.






Resumen

Esta tesis presenta un modelo computacional de expectativa musical, que
es un aspecto muy importante de como procesamos la misica que oimos.
Muchos fenémenos relacionados con el procesamiento de la misica estan
vinculados a una capacidad para anticipar la continuaciéon de una pieza de
musica. Nos enfocaremos en un acercamiento estadistico de la expectativa
musical, modelando los procesos de aprendizaje y de prediccién de las regu-
laridades espectro-temporales de forma causal.

El principio de modelado estadistico de la expectativa se puede aplicar
a varias representaciones de estructuras musicales, desde las notaciones sim-
bélicas a la senales de audio. Primero demostramos que ciertos algoritmos
de aprendizaje de secuencias se pueden usar y evaluar en el contexto de la
percepcion y el aprendizaje de secuencias auditivas. Luego, proponemos una
representacion, denominada qué/cudndo, para representar eventos musicales
de una forma que permite describir y aprender la estructura secuencial de
unidades actsticas en senales de audio musical.

Aplicamos esta representacién para describir y anticipar caracteristicas
timbricas y ritmos. Sugerimos que se pueden explotar las propiedades del
modelo de expectativa para resolver tareas de analisis como la segmentacion
estructural de piezas musicales. Finalmente, exploramos las implicaciones
de nuestro modelo a la hora de definir nuevas aplicaciones en el contexto de
la transcripcion en tiempo real, la sintesis concatenativa y la visualizacion.

vii
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CHAPTER

Introduction

Computational modelling of music aims at providing tools that enable us
to analyze, understand and interact with music. In this context, computa-
tional modelling of music expectation is focusing on creating models of music
listening which have the ability to represent musical events in a meaningful
way. This representation gives the model a predictive capability about the
future events to be heard. Both representation and prediction processes take
place and evolve during listening in a causal, dynamic way.

Here, we start from the audio signal and view music as a sequence of
acoustic events that are ordered through time to form musical patterns. As
such, our definition does not focus on precise aspects of western music such
as meter or harmony. However, this representation is flexible enough to
accommodate a range of musical audio signals, from commercial music to
casual sounds and voice onomatopoeia.

The role of computational models of music expectation is to create a
meaningful representation of sequences of acoustic events and to learn the
structure of those sequences through the generation of expected events. This
makes our approach closely related to studies in music representation, per-
ception, and sequential learning. Computational approaches to these phe-
nomena have already been proposed in the past, however there are only a
few approaches that tried to provide a bridge between real-world musical
stimuli and models of expectation.

We suggest that computational models of music expectation have the po-
tential to bring new approaches to interaction with musical content, because
of their ability to represent a stream of music and to predict it. This opens
the door to applications of real-time visualization of the musical structure,
musical interaction with computers and musical gaming, to cite a few.
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1.1 Motivation

Models of music listening have played an increasing role in the recent
years. Music listening has proved to provide many insights about cognitive
processes such as memory, attention or emotion. Music stimuli have been
used to derive functional brain maps of music listening using neuroimaging
techniques. This enabled to determine which cortical functions were impor-
tant when listening to music, as compared to processing other stimuli such
as speech or images. Researchers have proposed computational counterparts
that attempt to simulate some of the phenomena involved in sound and mu-
sic listening. Because of the multifaceted aspects of music listening, those
models usually focus on a particular aspect of music perception (e.g. pitch
processing) and can rarely process real-world music pieces. Nevertheless,
those computational models have proved useful in allowing theories of music
perception to be evaluated empirically through simulations.

On a more practical side, computer scientists have proposed new com-
puter tools and interfaces to help music lovers to make, discover and share
music. Some of these tools provide ways of extracting relevant information
from musical audio tracks, which is called music content analysis and has
been one of the major branches of the Music Information Retrieval (MIR)
research (see (Downie, 2003) for an introduction). In the majority of cases,
these models of music content analysis are loosely related to models of music
perception. Works in the field of content-based Music Information Retrieval
aim at analyzing, indexing and managing collections of music. Music content
analysis engines produce compact summary of musical pieces in a bottom up
approach. First, low level descriptors are computed along a musical signal.
Then, these signals are averaged to form mid and high-level descriptors that
represent the musical piece as a signature, that is, a compact summary of
the piece.

Recent approaches are able to summarize various aspects of a musical
piece such as rhythm (Gouyon and Dixon, 2005), tonality (Gomez, 2006),
or spectral content (Wang, 2003). The resulting signature can then be used
to perform queries among a the music collection, such as similarity, finger-
printing, recommendation or playlist generation. It is not unusual to qualify
this approach as bag-of-features oriented: each item’s signature is a bag of
features that help describing it. In this process, the time structure of the
musical information is often collapsed or reduced to a few measures describ-
ing the statistical properties of the signal features (e.g. average, standard
deviation).

The general work flow of content-based MIR systems does not differ dra-
matically from other Information Retrieval systems that manage collections
of images or text. In all these cases, approximations are made concerning
how the listener -the reader or observer- perceives each document. Because
features are averaged through time, one strong approximation that is made
in such systems is the timing of perception. The perception of our envi-
ronment is nevertheless a phenomenon that evolves through time. When
observing a picture, subjects produce a sequence of eye saccades and thus
track the points of interest of the picture. Readers discover a text one word



1.2. A THEORY OF EXPECTATION 3

after the other and form a semantic representation which is modified and
completed when subsequent words are read.

Similarly, listeners follow a musical piece as it unfolds through time. Dur-
ing this process, each new musical event is processed as a new evidence for
appreciating the piece; At each point in time the listener could ask uncon-
sciously: Did I perceived something? Does the sound I just I heard gives me
a feeling of repetition? Does it surprise me? Is this sound, note or chord
worth remembering? What feelings does it elicitate to me? The temporal
dynamics of the listening process are driven by important cognitive func-
tions such as attention, representation, memory, prediction, expectation and
emotion (Peretz and Zatorre, 2005). In this thesis, we emphasize prediction
and expectation as the dynamic processes that govern the timeline of music
listening. At each point in time , based on what has been heard so far, the
listener forms expectations about what is going to be heard and when it is
going to be heard. Subsequent events are then compared to these expecta-
tions. In this context, the interplay of representation, expectation generation
and comparison of incoming events with former expectations forms the tem-
poral dynamics of the listening process. Jones and Boltz (1989) refer to this
process as future-oriented attending.

Temporal dynamics are also crucial when it comes to musical performance
and practice. In a band, music practitioners can constantly follow each
other to produce a collective, synchronized, musical rendition. Non-trained
musicians are able to follow a musical piece by tapping their feet or clapping
their hands. If the musical piece is predictable enough, the prediction will
be correct. If a sudden change occur the predictions will be wrong during a
certain time lag until the structure can be followed again. This is a dynamic
behaviour that we would like to be reflected using a computational model,
and that can not be addressed with bag-of-features approaches.

Overall, our main motivation is to investigate under which conditions a
computational model a music expectation can be built, define what type of
expectations can be generated by the model, and explore new forms of mu-
sical interaction that would take advantage of such a computational model.

1.2 A theory of expectation

Researchers have attempted to define the cognitive functions elicited by
music listening. Meyer (1956) highlighted the role of expectation in the mu-
sic listening process. According to him, the listener’s expectations provide an
important tool in the process of composing a musical piece, and that musical
emotions can arise from the interplay between composition and expectations.
For instance, at each point in time, the listener’s expectation can be fulfilled
by the composer, making the structure easier to follow, or delayed, creating a
feeling of tension. Huron (2006) refines these ideas and formulates a theory
called ITPRA, an acronym for responses caused by Imagination, Tension,
Prediction, Reaction, and Appraisal. For Huron, expectations in music and
other domains arise from these five functionally distinct neurophysiological
systems. Each system responds to stimulations from the other systems, and
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the sequential ordering of these responses creates the overall listening ex-
perience. The five systems are defined by Huron as follows: “Feeling states
are first activated by imagining different outcomes (Imagination). As an
anticipated event approaches, physiological arousal increases, often leading
to a feeling of increasing tension (Tension). Once the event has happened,
some feelings are immediately evoked related to whether one’s prediction
were borne out (Prediction). In addition, a fast reaction response is acti-
vated based on a very cursory and conservative assessment of the situation
(Reaction). Finally, feeling states are evoked that represent a less hasty ap-
praisal of the outcome (Appraisal).” Huron shows that the ITPRA theory
of expectation helps describing many aspects of music listening and musi-
cal organization in general, and backs Meyer by suggesting that musicians
“have proved the most adept at manipulating the conditions of the different
dynamic responses”. These works provide a basis for understanding that the
timing of perception influences how music is appreciated by listeners, and
helps us defining the role of expectation.

The influence of expectation in the listening process can be seen as two-
fold: on the one hand, expectations can be formed in a bottom-up fashion,
depending on low-level statistics of the auditory environment. This pro-
cess may be regarded as largely automatic, the way it affects perception has
been formalized into principles such as Gestalt (Narmour, 1990) or Audi-
tory Scene Analysis (Bregman, 1990). In this context, Narmour suggested
that certain aspects of music expectation are innate to music listeners rather
than drawn from musical experience. On the other hand, expectations can
originate from higher level processes, and be governed by a knowledge that
has been built with the musical experience of each listener. Here, the lis-
teners expectation can be influenced by learning and therefore depends on
enculturation (Krumhansl, 1979; Hannon and Trehub, 2005). These higher-
level expectations can in turn affect lower-level stage of music perception in
a top-down fashion.

From a computational modelling perspective, these approaches to define
expectation raise the following questions: What to expect? In other words,
how do listeners represent musical events from an auditory stream such as
music, in a way that they can form expectations on it?

1.3 Prediction-driven Computational Modelling

In his thesis, Ellis (1996) proposed a model of computational auditory
scene analysis that is driven by the prediction of incoming events. As such,
this model forms a milestone for building a general model of sound percep-
tion, because it addresses both issues of representation and prediction. By
using a coarse representation of sounds - showing an emphasis on generality
rather than precision, the system can simulate experiments dealing with real
world street sounds. However, the lack of musically informed representations
make the system impractical for representing adequately sounds in musical
mixtures.

Representation of musical signals is a complex issue that has been later
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addressed by content-based MIR systems. However, many works trying to
build predictive models in music have relied on ad hoc, symbolic repre-
sentations of music. In he last two decades, many approaches have been
proposed to build symbolic models of music prediction, see (Bharucha and
Todd, 1989; Todd and Loy, 1991; Mozer, 1994; Tillmann et al., 2000; Lar-
tillot et al., 2001; Eck and Schmidhuber, 2002; Pearce and Wiggins, 2004).
Indeed, putting aside the issue of representing the musical signal has enabled
researchers to focus on other questions that arise when investigating predic-
tion and modelling it: Is prediction an innate feature or is it learned? If so,
how do we learn to predict? How good are we at prediction?

1.3.1 Sequential Learning

Most of our day-to-day activities involve sequencing of actions to achieve
a desired goal, from sequencing words to form a sentence, to driving an au-
tomobile or following directions on a road map. Lashley and Jeffress (1951)
has highlighted the ubiquity of sequentiality or serial order in our behavior.
Sequential learning has been investigated under different perspectives, from
neurophysiology to psychology to computational modelling. These works
aimed at defining what part of sequential prediction was innate and what
part was acquired. Several mechanisms that influence the prediction process
have been identified, and they may be linked to conscious training. How-
ever, another mechanism called implicit learning suggested the hypothesis
that subjects could learn and exploit the underlying structure of a sequence
by mere exposure to a structured sequence of events.

Some issues researchers attempt to define are the kind of structure that
can be learned, the capacity or sequential memory, or the amount of sequen-
tial context needed to perform accurate predictions. Speech, language, and
music, due to their very sequential nature, have been considered as cases of
sequential learning. Computational modelling studies have investigated the
use of certain predictive models and compared them with behavioral data.

1.4 Expectation modelling in musical audio

We aim at developing a model of expectation that is able to form a
representation of music from an audio stream, and generate expectations
while “listening” to this stream. Subsequently we aim at defining how these
expectation can be used by the system to support the listening process and
to provide feedback to users of musical systems.

1.4.1 Goals

This PhD dissertation first discusses the theoretical and empirical foun-
dations of music representation and expectation, and then proposes technical
approaches to provide models and implementations that simulate these phe-
nomena. The dissertation also stresses how the proposed approach can be
integrated into musical system to provide novel functionalities and applica-
tions.
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Our hypothesis is that expectation modelling provides an alternative ap-
proach of music listening modelling when it comes to work with real-world
auditory streams, by shifting the paradigm of bag-of-features processing to
a dynamic listening process. This thesis aims at showing why and how ex-
pectation modelling can be implemented in this context. The goals of the
PhD dissertation are presented below:

— Review the theoretical, cognitive, and perceptual concepts involved in
music listening. This will first lead us to review issues such as the rep-
resentation of auditory and musical events. This review will then be
complemented by behavioral data concerning musical sequences learn-
ing.

— Review computational models of sequential learning that have been
used in the literature as well as models that have been specifically
applied to music.

— Propose a framework for simulating and evaluating sequential learning
experiments, and study the impact of music representation in these
simulations.

— Propose a representation of musical audio signals based on the time
dependencies (when) between acoustic units (what).

— Integrate a representation and an expectation module in order to build
a model of music listening that can be applied to a range of musical
audio signals.

— Validate the proposed expectation model, showing the implications
of our approach and how it can be used in artificial music listening
systems.

1.4.2 Application contexts

The application contexts of this work are summarized below:

— Novel description of musical content in MIR systems: expectation mod-
elling that takes into account the timing of music listening provides a
complementary description of musical excerpts. The predictability of
the musical content provides cues describing the structure of musical
signals. As such, expectation-driven modelling can provide comple-
mentary accounts of musical complexity, and may be used for per-
forming segmentation of musical content.

— Synthesis of prediction: By coupling the external audio-based repre-
sentation and the internal representation of the musical structure, it
is possible to create an auditory rendition of the system’s predictions.
This opens the door to interesting music applications that can comple-
ment existing mosaicing techniques (Schwarz, 2004; Jehan, 2005) but
also provides a means to inspect the system’s internal representation
of the auditory stimuli.

— Interaction with music: An online model of music listening and expec-
tation can analyze music as it is produced. This enables applications
involving musical interaction with users: the users can perform music
and get auditory and visual feedback from the musical system. Inter-
action is not limited to music practitioners. The system works with
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audio signals, and nonmusicians can also interact musically, like in
casual games.

1.5 Summary of the PhD work

The goal of this PhD is to contribute to clarify how a causal music ex-
pectation system can be applied to real-world, audio signals.

Models of music expectation have traditionally been applied to ad-hoc
symbolic representation of musical events. By starting from this traditional
approach to expectation modelling, we use a symbolic representation of mu-
sical events in which case the task of an expectation model is to predict what
18 coming next.

Using this setting, we define a computational framework that enables to
simulate experiments of learning of tone sequences that use the forced-choice
task paradigm (Saffran et al., 1999). Our simulations show that the ability
to reproduce behavioral data is largely influenced by the representation that
is chosen to describe musical events.

These findings lead us to define a model in which the representation of
musical events and their expectation is linked. We propose a representation
of the acoustic musical stream that takes into account both acoustic prop-
erties of musical sounds (what) and the time in which they occur (when).
This leads us to define a range of schemes that combine these characteristics,
which form the basis of the what/when expectation model. We show that
different representation models of the acoustic events -either supervised or
unsupervised- can be integrated with the what/when expectation model.

The system is then evaluated using a range of musical signals contain-
ing percussive sounds, monophonic melodies, or mixtures from commercial
recordings. The results suggest that fully unsupervised representation mod-
els can represent and track musical signals that can be described in a mono-
phonic way, whether supervised representation models are needed to tackle
the polyphonic representation of more complex sound mixtures.

Then, we show how this expectation model can be integrated in audio-
processing musical systems, to enable real-time interaction, synthesis of pre-
diction and visualization of both musical structure and expectation dynam-
ics.

1.6 Structure of this document

The organization of this PhD dissertation is the following. In Chap-
ter 2 we give an account of auditory and music perception from multiples
perspectives with the goal to illustrate how prediction has been studied and
modelled. Music perception is viewed as an active process that involves both
representation and prediction of musical events, and we aim at defining how
these aspects can be combined in a simplified listening model. The musical
information that can be extracted when attending a musical stream, such as
timbre, melody or rhythm, is presented. In our review, we use contributions
from (Purwins et al., 2008). Then, we report several experiments that inves-
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tigate how learning of musical sequences takes place. Those works provide
methods for assessing how well a set of musical stimuli can be learned by
subjects and investigate which musical structure can be learned and what
musical factors influence learning.

In Chapter 3 we introduce computational methods of sequential learning
and present past approaches to music prediction using symbolic representa-
tions.

In Chapter 4, we develop a learning simulation framework in which well-
known prediction methods are used to simulate a behavioral experiment fo-
cusing on statistical learning of tone sequences, and stress that the choice of
the musical representation influences learning and prediction. This chapter
reports the findings published by Hazan et al. (2008). The issue of com-
putational representation of musical events is developed in Chapter 5, with
an emphasis on description of musical audio signals and prediction-driven
approaches to audio analysis.

In Chapter 6, we integrate the representation and prediction layers. We
introduce our representation and expectation models, which are aimed at
generating expectations while analyzing audio signals by maintaining an in-
ternal symbolic representation of the musical stream in terms of time and
acoustic properties of musical events. We provide a set of metrics for char-
acterizing the predictive behavior of the system, evaluate our model using
different sets of musical excerpts, and discuss the results obtained. This
chapter uses and extends the models and findings presented by Hazan et al.
(2009).

In Chapter 7 we show how the what/when expectation model can be
integrated into musical systems for providing analysis of musical signals or
for real-time applications that involve interaction and visualization.

Finally, in Chapter 8 we present the general conclusions of this disserta-
tion and suggest future work directions.



CHAPTER

Context of Research

2.1 Chapter Summary

We introduce in this chapter a number of musical dimensions that may
be considered when focusing on expectation of musical sequences. We will
present these dimensions according to two perspectives: accounts of music
perception that are rooted in western music, and more general accounts of
auditory perception and psychoacoustics. When considering music expecta-
tion, we first need to define which musical events or auditory objects can be
considered, as well as the temporal structures that organize those objects
in musical sequences. On top of addressing the issue of music representa-
tion, we aim at modelling expectation through learning of musical sequences.
Therefore, in a second part, we will propose a review of auditory and music
sequence learning experiments, show the methodology employed to charac-
terize how learning takes place, and show which factors influence the process
of learning musical sequences.

2.2 Describing the dimensions of music: Timbre,
Melody and Rhythm

Which musical dimensions should we take into account when considering
music expectation? Because music perception is a complex phenomenon,
which can be described at various scales, this question is difficult to answer.
In our approach, we aim at describing music as a sequence of auditory events
which are organized through time. In this simplified view, auditory events
can consist of notes, sounds, or attacks. We will first review approaches
to describe these auditory events sequences, and will then review how to
describe the temporal structures that organize these events.
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2.2.1 What to expect - expectation of musical elements

When listeners listen to a musical passage, they direct their attention
and process the successive acoustic cues in a way that makes them able to
identify musical events such as notes, chords, voices, percussive strokes, etc.

In other words, listeners extract auditory objects from the stream they
pay attention to, some with a better precision than others. For instance,
when listening to a string section, it can be difficult or even impossible for
a expert to identify how many instruments are playing together, and at
which time is located each instrument attack. Conversely, some auditory
objects such as a hand clap may be easier to identify and locate in time by
non-musicians.

Auditory objects

The question of how we process sound to organize it into meaningful
perceptual objects has been at the center of Bregman’s investigations. Rep-
resenting sound objects in the auditory environment is mandatory in one’s
everyday life, for instance to locate incoming cars while crossing the street
in a noisy environment. However, those auditory objects do not necessarily
refer to concrete sound sources, rather the refer to the mental representa-
tions we create from our acoustic environment. The task of creating and
maintaining those auditory objects is called Auditory Scene Analysis (ASA,
(Bregman, 1990)). Three ASA key processes are segmentation, integration,
and segregation. Probably the best-known example of segregation is the
cocktail party problem, in which individuals are able to segregate one par-
ticular voice among many other voices and sounds. Integration of sounds
takes place when different sounds are associated together to form a sound
unit. This happens, for instance, when individual notes are grouped together
and identified as a chord, or when a succession of chords is perceived as a
musical color. When listening to the everyday sound environment or a musi-
cal piece, the listener often hears a mixture of acoustic components and has
to identify from this mixture a representation that makes sense by isolating
independent streams. Several factors influence how streams are segregated
from mixtures of sounds, an important aspects being the temporal ordering
of events in the mixture.

Top-down and bottom-up processing

Top-down and bottom-up processing form two pathways involved in mu-
sic perception, and have been considered in computational models. First,
bottom-up processing starts from the input waveform, and successively com-
bines the low level information to create more abstract cues that can be used
as input for higher-level auditory objects. Bottom-up processing is also re-
ferred to as data-driven processing. Bottom-up processing is common prac-
tice in Music Information Retrieval systems, where low-level descriptors are
extracted from the signal (see (Peeters, 2004) for a review of such descrip-
tors). These low-level descriptors are then combined to obtain higher-level
information, such as sound category, genre, or key. For instance, sounds
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with high transients and short sustain will be associated more likely to per-
cussion or speech plosives than to bowed strings. Such account of music
perception through the bottom-up representation of auditory objects has
been developed (Schaeffer, 1966; Bregman, 1990; Roads, 2004).

Conversely, top-down processing starts from an internal representation of
the environment and prior knowledge regarding the auditory objects, their
regularities and co-occurrences. The information flows down, by successively
comparing a higher level representation with lower level sensory input, and
adapting the higher level model to reflect the sensory input. Top-down
processing governs several aspects of auditory perception such as auditory
restoration, where listeners can still identify recordings of spoken words
where syllables have been deleted or replaced with noise bursts (Warren
and Warren, 1970), plays an important role in resolving the cocktail party
problem (Bregman, 1990), and enable listeners to identify a specific audi-
tory stream for a complex sound mixture. Top-down processing also helps
understanding the contezt effect: in a listening experiment using speech,
Ladefoged (1989) has shown that listeners identify the same auditory stimu-
lus at the end of a sentence as two different words depending of the beginning
of the sentence.

Overall, it should be noted that bottom-up and top-down processes
should be viewed as complementary cognitive processes (Bregman, 1990).
The model we will introduce in Chapter 6 provides an approach to integrat-
ing both top-down and bottom-up processes, by limiting our definition of
musical sequences to a set of acoustic units that are governed by tempo-
ral patterns. Acoustic properties of sound attacks and timing information
are integrated to form a set of timbre and temporal symbols in bottom-up
fashion. Conversely, musical structures can be learned and expectations can
be generated in a symbolic fashion and mapped backed into the auditory
domain in a top-down fashion. Following, we introduce the main musical
dimensions, that is, timbre, melody and rhythm, we will refer to in this
dissertation.

Timbre Perception

One of the characteristics that help distinguish between different strokes,
notes or voices is timbre. The definition of timbre is still subject of contro-
versy for the lack of agreement in the literature to the point that it has been
qualified as "the psychoacoustician’s multidimensional wastebasket category
for everything that cannot be qualified as pitch or loudness" (McAdams and
Bregman, 1979). Timbre is first a subjective sensation that depends on a
variety of acoustic properties? According to Grey (1977),“a major aim of
research in timbre perception is the development of a theory for the salient
dimensions or features of classes of sounds.” There is some consensus that
the envelope of sounds as well as their spectral content affect the timbre of
a sound.
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Among the physical quantities than may influence timbre, Schouten (1968)
lists the following:

1. The range between tonal and noiselike character.

2. The spectral envelope.

3. The time envelope in terms of rise, duration, and decay.
4

. The changes both of spectral envelope (formant-glide) and fundamen-
tal frequency (micro-intonation).

5. The prefix, an onset of a sound quite dissimilar to the ensuing lasting
vibration

Further works have attempted to characterize the perceptual dimensions
of timbre by performing listening experiments. Grey (1977) proposed a
characterization of timbre in three dimensions. In this study, subject are
presented with sounds from different instruments but whose fundamental
frequency remains constant. The listeners rated the similarity between
this sounds and the results were analyzed using Multi-Dimensional Scal-
ing (MDS) and related them to properties of the signal. This study has
then been followed by (Wessel, 1979; Krumhansl, 1989; McAdams et al.,
1995), in which the sound used and the experimental setup have been re-
fined. Krumhansl (1989) uses three perceptual dimensions, namely attack
quality, spectral fluz, and brightness. In (McAdams et al., 1995), the au-
thors proposed a perceptual characterization of timbre in three dimensions
along with a computational definition of physical quantities (i.e. spectral
centroid, rise time, spectral flux) that match these perceptual dimensions.
The three-dimensional space obtained is this study is shown in Figure 2.1.

Melody Perception

From a cognitive perspective, melody perception concerns primarily per-
ceptual grouping. This grouping depends on relations of proximity, similar-
ity, and continuity between perceived events. As a consequence, what we are
able to perceive as a melody is determined by the nature and limitations of
perception and memory. Melody perception presumes various types of group-
ing. One type of grouping divides simultaneous or intertwined sequences of
pitches into streams. The division into streams is such that streams are in-
ternally coherent in terms of pitch range and the rate of events. A second
type of grouping concerns the temporal structure of pitch sequences. A sub-
sequence of pitches may form a melodic grouping (Snyder, 2000), if preceding
and succeeding pitches are remote in terms of pitch register, or time, or if the
subsequence of pitches is repeated elsewhere. Such groupings in time may
occur at several time scales. At a relatively short time scale the groupings
correspond to instances of the music theoretic concepts of motifs, or figures.
At a slightly longer time scale, they may correspond to phrases. According
to Snyder (2000), the phrase, which is typically four or eight bars long, is
the largest unit of melodic grouping we are capable of directly perceiving,
due to the limits of short term memory. Rather than being fully arbitrary,
(parts of) melodies are often instantiations of melodic schemata, frequently
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Figure 2.1: Three dimensional timbre space characterized by McAdams et al.
(1995). Each point represent an instrument timbre label.

axial — arch — gap-fill

Figure 2.2: Pitch contour diagrams of three melodic schemata: axial, arch,
and gap-fill, from (Snyder, 2000).

recurring patterns of pitch contours. The most common melodic schemata
are axial forms, arch forms, and gap-fill forms (Meyer, 1956). Axial forms
fluctuate around a central pitch, the ‘axis’; Arch forms move away from and
back to a particular pitch; And gap-fill forms start with a large pitch inter-
val (the ‘gap’) and continue with a series of smaller intervals in the other
registral direction, to fill the gap (Snyder, 2000). The pitch contours of these
schemata are illustrated in Figure 2.2.

The Implication-Realization model

The most well-known model for melodic expectancy is the Implication-
Realization (I-R) model (Narmour, 1990, 1992) The (I-R) model is a theory
of perception and cognition of melodies. The theory states that a melodic
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musical line continuously causes listeners to generate expectations of how
the melody should continue. The nature of these expectations in an individ-
ual are motivated by two types of sources: innate and learned. According
to Narmour, on the one hand we are all born with innate information which
suggests to us how a particular melody should continue. On the other hand,
learned factors are due to exposure to music throughout our lives and famil-
iarity with musical styles and particular melodies. According to Narmour,
any two consecutively perceived notes constitute a melodic interval, and if
this interval is not conceived as complete, it is an implicative interval, i.e. an
interval that implies a subsequent interval with certain characteristics. That
is to say, some notes are more likely than others to follow the implicative
interval. Two main principles recognized by Narmour concern registral di-
rection and intervallic difference. The principle of registral direction (PRD)
states that small intervals imply an interval in the same registral direction (a
small upward interval implies another upward interval and analogously for
downward intervals), and large intervals imply a change in registral direc-
tion (a large upward interval implies a downward interval and analogously
for downward intervals). The principle of intervallic difference (PID) states
that a small (five semitones or less) interval implies a similarly-sized interval
(plus or minus 2 semitones), and a large interval (seven semitones or more)
implies a smaller interval.

Based on these two principles, melodic patterns or groups can be identi-
fied that either satisfy or violate the implication as predicted by the princi-
ples. Such patterns are called structures and are labeled to denote charac-
teristics in terms of registral direction and intervallic difference.

For example, the P structure (“Process”) is a small interval followed by
another small interval (of similar size), thus satisfying both the PRD and the
PID. Similarly the IP (“Intervallic Process”) structure satisfies the PID, but
violates the PRD. Some structures are said to be retrospective counterparts
of other structures. They are identified as their counterpart, but only after
the complete structure is exposed. In general the retrospective variant of
a structure has the same registral form and intervallic proportions, but the
intervals are smaller or larger. For example, an initial large interval does not
give rise to a P structure (rather to an R, IR, or VR, see figure 1, top), but
if another large interval in the same registral direction follows, the pattern
is a pair of similarly sized intervals in the same registral direction, and thus
it is identified as a retrospective P structure, denoted as (P).

Figure 2.3 (left) shows eight prototypical Narmour structures. A note in
a melody often belongs to more than one structure. Thus, a description of a
melody as a sequence of Narmour structures consists of a list of overlapping
structures. The melody can be parsed in order to automatically generate an
implication /realization analysis. Figure 2.3 (left) shows the analysis for a
melody fragment. As pointed out by Grachten et al. (2006), The I-R analysis
can be regarded as a moderately abstract representation of the score, that
conveys information about the rough pitch interval contour and, through the
boundary locations of the I-R structures, it includes metrical and durational
information of the melody as well. It is worth noting here that the I-R
model rely on perception principles (proximity, similarity, closure) that are
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Figure 2.3: Eight of the basic structures of the Implication-Realization (I-R)
model (left). First measures of All of Me (Marks & Simons 1931), annotated
with I/R structures (right). From (Grachten et al., 2006).

not specific to melody. In this context the I-R model might be adapted to
process sequences of auditory objects other that pitches (e.g. non-pitched
percussive events).

2.2.2 When to expect: expectation of time structures

In parallel to forming expectations about what is going to be heard, the
listener also anticipates when the events will be heard. The interaction of
what and when expectation form the main basis of predictive listening in
music. A representation of events in time has to be used to anticipate the
timing of future events. Different representations of time that may be useful
to form such expectations. We will present in this section some key concepts
to understand these representations.

Firstly, periodic auditory cues such as clock ticks are easy to predict,
because the period of the cue can be processed by listeners. This is not the
case for events in which the period between cues is either too short (successive
events will be perceived as a whole or as independent streams) or too long,
in which case the perception of periodicity vanishes. Demany et al. (1977)
sustains the existence of a preferred tempo spectrum ranging from 60 to 120
beats per minute anchored approximately at 100 beats per minute (we refer
to London (2002), who provides a detailed review of cognitive constraints on
beat perception). When a musical excerpt is attended, listeners are able to
follow the most salient periodic pulse and tap in time with the music. The
notion of tactus is associated to this most salient pulse.

From Periodicity to Rhythm

Meter represents a finer-grained description of the temporal structure
which enables to describe musical events in a hierarchical way. As noted by
Tillmann (2008), "temporal regularities include the organization of event-
onset-intervals through time leading to a sensation of meter - a sensation
of a regular succession of strong and weak beats superimposed over an
isochronous pulse. Temporal regularities also include the temporal patterns
of onset intervals creating rhythms that are perceived against the metrical
background". As Huron (2006) points out, meter may also be seen from
a prediction-driven perspective. Huron points out that “Meter provides a
recurring temporal template for coding and predicting event onsets.”. If a
sequence of inter-onset intervals has a regular period, “the temporal expec-
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tations might be represented using mental oscillators of various frequencies
and phases”. Then, by considering where the onsets are located along the
sequence period, the listener may be able to locate the onset moments that
are more likely than others. This gives rise to a hierarchy of temporal events
“which can be expressed in terms of their metric position within a recur-
ring temporal template”. To this extent, meters can be viewed as predictive
schemas that enable expectation of temporal events. The time expectation
model we propose in Chapter 6 aims at learning the time regularities be-
tween acoustic objects. We will suggest that the prediction statistics of such
regularities can give rise to a rough, implicit representation of meter.

On a more precise scale, a musical sequence can be described in terms
of rhythm. Rhythm is a musical concept with a particularly wide range of
meanings, and as such it is essential to delimit the scope of what we will be
talking about when discussing rhythm. An all-encompassing description of
rhythm would be that it is about the perception of the temporal organiza-
tion of sound. As far as we consider musical sound, rhythm in this sense
is tightly connected with the concept of meter. Several studies have even
questioned the separation between the processes of meter and rhythm per-
ception altogether (Hasty, 1997; Rothstein, 1981; Drake, 1998; Lerdahl and
Jackendoff, 1983).

Although rhythm is ambiguous and could, as in the bottom-line definition
given above, also include meter, a common use of the words rhythm and
meter is expressed in a paraphrase of London (2006): “Meter is how you
count time, and rhythm is what you count—or what you play while you are
counting”. When we hear a sequence of events that can be located in time,
periodicities in the timing of these events will cause in us the awareness of a
beat, or pulse. By this, we mean a fixed and repeating time interval with a
particular offset in time, that can be thought of as a temporal grid, forming
a context in which the perceived events take place. The perception of events
often makes some beats feel stronger, or more accented, than others, giving
rise to a hierarchical grid of beats.

As a context for the perception of musical events, meter serves to catego-
rize events in terms of temporal position and accent, and inter-onset intervals
(I0I) of events in terms of duration. A common interpretation of rhythm
is the grouping of sequences of such categorized events, where groups often
contain one accented event and one or more unaccented events (Cooper and
Meyer, 1960). This accounts for the influence of meter on the perception
of rhythm. The perception of actual musical events on the other hand also
affects the perception of meter. Firstly, in actual performances phenomenal
cues like the loudness and duration of events are used to accent particular
metrical positions, thereby suggesting a specific meter (Lerdahl and Jack-
endoff, 1983; Palmer, 1989). In addition to this, the frequency distribution
of musical events over metrical locations is mainly correlated with meter,
rather than, for example, musical style or period (Palmer and Krumhansl,
1990). This indicates that frequency distribution of events in a piece could
be a perceptual clue to determining meter. Palmer and Krumhansl (1990)
also show that listeners appear to have abstract knowledge of the accent
structure of different kinds of meters, which become more fine-grained as a
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result of musical training. They suggest that the accent structures of differ-
ent meters are learned by virtue of their ubiquity in Western tonal music.

A first step towards the understanding of rhythm perception is the study
of perceived event durations. Differentiation of event durations happens in
an early stage of auditory processing. Several factors are known to affect the
perceived durations, leading to a difference between the physical duration
and the perceived duration of an event. These include the phenomenon of
auditory streaming, intensity/pitch difference between evenly spaced notes,
and metric context. Likewise, perceived inter-onset intervals are influenced
by event durations, and the different durations of successive events in their
turn can affect the intensity and/or loudness perception of these (Terhardt,
1998).

Listening to two successive acoustic events gives rise to other cognitive
processes than listening to each event separately. The judgment of successive
events can be divided into two steps. The first step follows a modified version
of Weber’s law, in which the just-noticeable difference between two successive
durations is proportional to their absolute length plus a constant of minimal
discrimination (Allan, 1979). The second step consists in comparing the two
durations. If they are similar, the second duration is related to the first
one. If the two durations are considered very different they will both be
related to previously established perceptual categories of durations (Clarke,
1989). Following, we will present several experiments that investigate how
the quantization of rhythm takes place in listeners.

Rhythm quantization

Desain and Honing (2003) present two experiments to analyze the for-
mation of perceived discrete rhythmic categories and their boundaries. The
notion of rhythmic categories is interesting because those discrete categories
refer to rhythms defined by continuous durations. In the first experiment
they study the phenomenon of rhythm categorization, which consists in the
mapping from the performance space —the set of possible performed IOI
durations— to a symbolic space of rhythm representation —the set of dura-
tion categories, or nominal durations. An example comparing these two
representations is shown in Figure 2.4.

Such a mapping expresses how much the IOI’s of a performed rhythmic
pattern can deviate from the nominal IOI durations that define the pattern,
before it is being perceived as a different rhythmic pattern. The deviation
from the nominal IOI durations is called expressive timing. Listeners tend
to simplify durational relations assigned to an expressively timed pattern
of onsets. Here, high consistency in the listener’s judgment is predominant
if the durational ratios are simple. Figure 2.5 shows the time clumping
map that can be extracted from this experiment, by associating perceived
rhythmic categories to triplets of performed inter-onset intervals.

In the second experiment, Desain and Honing study how the metrical con-
text affects the formation of rhythmic categories. As a context, an acoustic
pattern is provided by tapping a triple, duple, and simply a bar structure.
Then the stimulus is played. Given triple and duple meter contexts, the
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Figure 2.4: Examples of the two representations of time in music. A per-
formed rhythm in continuous time (a) and a perceived rhythm in discrete,
symbolic time (b). By Desain and Honing (2003).
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Figure 2.5: Time clumping map obtained after a listening experiment. The
three triangle axes indicate the performance time as inter-onset intervals be-
tween successive strokes. The colored region refer to the symbolic categories
that were chosen by the participants. Darker colors indicate a greater agree-
ment between participants. Grey lines mark boundaries between rhythm
categories. White regions indicate regions of low agreement among partici-
pants regarding the perceived rhythmic category. From (Desain and Honing,
2003).

stimulus is identified as having the meter of the context stimulus. If only
bars are sonified, the stimulus is as well identified as duple meter in the
majority of the cases.

As noted by Hannon and Trehub (2005), when listeners have categorized
durations, they will continue to interpret new temporal patterns in terms of
the formed categories, even in the presence of perceptible temporal changes



2.2. DESCRIBING THE DIMENSIONS OF MUSIC 19

(Clarke, 1987; Large, 2000).

We retain from this overview that both performance and perceptual rep-
resentations of time may be considered when representing timing in music.
This gives us a basis to consider the representation of time from two view-
points: an absolute, precise and sensor driven representation (referred to as
“performance” time by Desain and Honing (2003)) and a compact, discrete
representation of time symbols. To this extent, we suggest a model that
may be able to manage both representation should implement mechanisms
to translate the time information between these representations.

Rhythm along several acoustic dimensions Going back to figure 2.4
we observe that the rhythm stimulus that is considered is made of a single
class of stroke. For the sake of simplicity, the only absolute information that
is considered is the duration between successive strokes. We could argue that
many popular rhythms (think about a rock drum performance) are using a
more extended set of strokes (e.g. tom, cymbal, etc ...). The individual char-
acteristic of each stroke (accent, instrument) provides additional information
that may be used to encode the musical rhythm. For instance, being able
to segregate the tom strokes form the cymbal strokes enables to track the
stroke dependencies between events of the same acoustic category. This is
an example of how top-down processing can influence lower-level representa-
tion layers. As we will see in Section 2.3.3, the acoustic similarities between
strokes and notes can affect the way a musical sequence is learned. This will
also form a basis for the computational model we propose in Chapter 6.
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2.3 Learning and music perception

So far we have reviewed aspects of music perception that enable to define
a musical stream under various modalities (pitch, timbre, time and rhythm).
In the context of this dissertation, we are interested in investigating the role
of expectation and its interplay with the representation with musical events.
As we stressed in the introduction, this interplay can take place at several
levels of abstraction. First, low-level expectation processes take place in a
unconscious, automatic, hardwired fashion, and are reflected in Auditory
Scene Analysis and Gestalt approaches. Then, higher-level expectation pro-
cesses may be the result of a knowledge of the musical environment, that
is acquired through experience. Several works have shown that an implicit
knowledge about tonal structures can be acquired by mere exposure to tonal
music and will be presented below. More generally, this section introduces
works that aim to answer how we learn musical sequences and what musical
aspects influence learning.

Apart from the hypothesis raised and results obtained, we will intro-
duce the methodology used to understand the experimental setup employed
as basis for the simulation framework we will introduce in Chapter 4. One
major difficulty here is that the music we listen to on a daily basis, the "real-
world" music, is usually too complex to be used in behavioral experiments
where few parameters are to be varied, while many other need to be fixed,
to obtain significant conclusions. However, we will show that these stud-
ies converge towards a common learning principle which takes place along
several dimensions of music.

2.3.1 Implicit learning of auditory and musical regularities

In the 1960s, Reber pioneered the use of artificial grammars to inves-
tigate how these grammars could be learned by human subjects. Reber’s
work focused on the mechanism of implicit learning which suggests that the
common structure of stimuli can be learned by means of mere exposure to
those stimuli. To demonstrate this, the author generated sequences of let-
ters using a finite state automaton (FSA) as shown is Figure 2.6. Sequences
generated using this FSA share a common underlying structure, even if they
differ in size. Participants were then presented novel sequences and asked if
these sequences were grammatical or not. Reber measured how well these
sequences could be memorized by subjects and showed that the results sig-
nificantly outperformed those obtained with randomly generated sequences
(Reber, 1967).

This phenomenon of implicit learning takes place independently of the
modality of the visual stimuli (colors, letters, shapes). Subsequent works
have translated these findings into the auditory domain. In this case, the
sequences of letters are replaced by sequences of sounds. Tones are used by
Altmann et al. (1995); Saffran et al. (1999); Loui et al. (2006).

In (Bigand et al., 1998a), the sequences are made of sounds with distinct
timbres, whereas they consist of speech phonemes in (Saffran et al., 1996).
Those studies have also employed various methods to generate exposure se-
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Figure 2.6: Finite-state automaton used by Reber (1967) to generate letter
sequences.

quences. The underlying structure to be learned from exposure sequences
can be derived from transition probabilities (Saffran et al., 1996, 1999; Till-
mann and McAdams, 2004), finite-state automata (Loui et al., 2006), or
grammars (Bigand et al., 1998b). Among those works, there is a common
agreement that the structure of auditory sequences can be learned by mere
exposure.

Therefore, investigating music perception from an implicit learning per-
spective may provide a complementary account to the music perception the-
ories presented in Section 2.2, that do not focus explicitly on the learning
process. We will provide in Chapter 4 a modelling study that shows how
prediction and implicit learning are related. To achieve this, we need to un-
derstand the methodology employed to highlight implicit learning in musical
sequences.

Learning statistical triplets in speech and tone sequences

Saffran et al. (1996, 1999) focused on assessing whether humans can
learn regularities related to the transition probabilities regulating the ele-
ments inside auditory units (called words) or the word transitions in audi-
tory material. In (Saffran et al., 1996) the auditory material was made of
synthesized speech syllables, while in (Saffran et al., 1999) the authors used
tone sequences, preserving the previous experimental setup. The authors
created a set of artificial stimuli by setting high inside-word and low across-
boundaries transition probabilities. In this work, two languages L1 and L2
were created. Each one contained 6 tone triplets, called tone-words. First,
a random sequence of words of the defined language was presented to the
subjects. However the tone triplets were presented in a regular order. There
was no explicit cue indicating the boundaries among them. This means that
the presented material appeared as a stream of tones which could be only
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segmented using the statistical regularities of words. In the first experiment,
words from L1 were non-words in L2, and vice versa. That is, there was
no word in one language that appeared, even partly, in the other language.
In the second experiment, words from one language were part-words in the
other language, that is, only one tone differed between each language word.
After exposure, the subjects had to perform forced-choice tasks involving
exhaustive word-pairs belonging to each language. The task consisted in
choosing which word of the pair had been effectively heard in the presented
material. This study pointed out that the subjects were able to categorize
above chance the words belonging to the material they were exposed. This
means that the subjects are able to segment the input stream into words and
to distinguish if a word presented subsequently belongs to the sequence they
have been exposed to, and suggests that an automatic learning mechanism
that exploits the co-occurrences of tones takes place.

Non western music scales

Loui et al. (2006) investigated the emergence of statistical regularities
based on the presentation of non-western tonal sequences, generated using
using the the Bohlen-Pierce scale (Mathews et al., 1984). Indeed, western
listeners are mostly exposed to music using the western scale, so using a
non-western scale to assess tone-word learning enables to discard the effect
of enculturation in the learning process. In (Loui et al., 2006), the tone
sequences were derived from two distinct finite state grammars, with some
constraints (they respect the Narmour principle of closure). This work in-
vestigates whether the participants can acquire aspects of the structure of
these two grammars using (a) forced-choice recognition and generalization
(b) pre and post-exposure probe tone ratings, and (c¢) preference ratings.
The authors introduced two experimental settings: in the first one a few
exposure melodies were presented, while in the second one the number of
exposure melodies (following a unique exposure grammar) was multiplied
by three. As a general conclusion, the participants in experiment 1 tend to
recognize better the melodies they have been exposed to while some in ex-
periment 2 (the ones exposed to grammar 1) are also able to recognize new
melodies generated from the grammar they have been exposed to (i.e. gen-
eralization). Furthermore, the post-exposure probe tone ratings were more
correlated with the statistical distribution of the stimulus notes. Overall,
the works presented above show that subjects are able to identify whether
novel sequences respect or violate the structure of the exposure sequences.

This suggests that implicit learning also applies in auditory sequences
under several modalities. One question arises from this: can the several
dimensions that define a musical sequence have an influence on each other
in way that makes it easier or harder to learn this sequence?
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Learning statistical regularities in timbre sequences and the
influence of timbral similarity

Tillmann and McAdams (2004) investigated the relation between acous-
tical similarity and statistical regularities in auditory sequences generated
using different instruments. The authors proceeded by creating three sets
of stimuli. The authors defined statistical timbre triplets by analogy with
Saffran’s work. In the first set, the statistical regularities were supported
by acoustical similarities, i.e. the "timbral distance" between inner-word
items was low while it was high across word boundaries. In the second set,
the acoustical similarity contradicted the statistical regularities of the stim-
uli. Finally, in a third set, the timbral distance between consecutive events
was neutral with respect to the statistical regularities. As a result, the au-
thors found than subjects could learn timbre triplets from the first set with
a higher accuracy than using the other sets. The worst learning accuracy
was achieved using material where the acoustical cues were contradicting the
statistical regularities of the auditory sequence. This work showed that the
timbre information contained in auditory sequences influences the recogni-
tion of statistical units. Acoustic cues that support the statistical structure
of timbre sequences facilitate the learning process. When the timbre in-
formation contradicts the same statistical structure, learning becomes more
difficult.

2.3.2 Learning non-local dependencies

So far, we have considered how learning takes places for auditory se-
quences where adjacent events share a common structure. From this view-
point, tones, sounds or phonemes are organized so that the transitions be-
tween successive events define this structure. However, musical sequences
can also exhibit non-adjacent dependencies. To understand these non-local
dependencies, let’s consider a musical example. A melody is defined as a
succession of notes that may have a complex structure, if we try to de-
fine this structure in terms of transitions between adjacent events. How-
ever, this apparently complex sequence can reveal two simpler interleaved
melodies, such as a bass line and a main melody line. Therefore, we are inter-
ested in knowing how implicit learning takes place in a context of non-local
dependencies. Past research on sequential order has shown that implicit
learning of non-local patterns was generally difficult and that learners could
learn patterns of temporally adjacent elements much better that they could
learn non-temporally adjacent patterns (Cleeremans and McClelland, 1991;
Cleeremans, 1993).

If we go back to the example of two interleaved melodies, the intuition
would suggest that the bass line and main melody lines can be segregated by
the listener because of the acoustical features that are common to each line.
This acoustical features could include loudness, pitch or the characteristic
timbre of the instrument used. If segregation can be successfully achieved
(e.g. the bass line and main melody are perfectly identified), the problem is
reduced to learning the local dependencies between elements of each stream.
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Conversely, if errors are made during segregation (e.g. two streams are
segregated, but both streams consist of interleaved notes from the bass and
melody lines), the local dependencies between elements of each stream would
not exhibit a clear structure. Further research has attempted to define to
what extent acoustical cues can affect the learning of non-local dependencies.

2.3.3 Influence of acoustical cues

Newport and Aslin (2004) investigate how learning of non-local depen-
dencies take place for speech stimuli, and report a similar study focused on
tone sequences in (Creel et al., 2004). In both cases they propose a set of
experiments focused on learning temporally non adjacent patterns and as-
sessed whether acoustical cues could influence learning. The stimuli used in
these experiments are similar to those used in (Saffran et al., 1999), but in
this case the transition probabilities are defined between non-adjacent items.
Two sets of items sharing are created, each one governed by its own transi-
tion probabilities, and the items of each set are then interleaved to form the
exposure sequences. In the first experiment, the subjects are presented an
exposure sequence where the items from both sets share the same acoustical
features. Hence, apart from the nonlocal dependencies that govern each set,
there is nothing that can help discriminating items from one set or the other.
Acoustic cues are then introduced and applied on items from each set. In the
case of tone sequences, items from a given set are rendered one octave lower
(experiment 2), with a a sharply different timbre (experiment 3), or with
moderately different timbre (experiment 4). In the case of speech, sequences
of vowels (respectively consonants) are created, each item of the resulting
sequence is then interleaved with unrelated consonants (respectively vowels).

The authors find similar results in both studies. They first confirm with
the experiment the inability of learning highly consistent nonlocal depen-
dencies in absence of acoustical cues, whether learning of local dependencies
can be achieved successfully, as is was shown in (Cleeremans, 1993). Then,
they show with the subsequent experiment that if acoustical cues are used to
induce dissimilarities between the two sets, subjects can learn the structure
of each set and therefore learn the dependencies between nonadjacent items.

The works presented above highlight the interplay between statistical
dependencies - using low or high order context- and acoustical cues taking
place when learning auditory sequences. Non-local dependencies cannot be
learned without the help of acoustical cues that help the listener to segregates
streams. This suggests that a model of acoustic sequence learning may
take advantage of the events acoustic information and form streams as a
preliminary process to sequence learning. We will get back to this point
when exploring alternative expectation models applied to audio signals in
Chapter 6.
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2.3.4 Learning time dependencies

In the studies mentioned above, what matters is the ordering of auditory
events and the acoustical cues that are used. However, they do not take into
account the time structures (we refer to Section 2.2.2) that govern the occur-
rence of acoustic events. Compared to the amount of studies investigating
implicit learning in auditory sequences, only a few works have validated, with
behavioral experiments, the issue of how learning of time structures takes
place. Boltz (1993) has shown that temporal dependencies can support the
process of melody recognition. Hannon and Trehub (2005) investigate how
rhythm structures are learned and the influence of cultural bias to learning.
Indeed, rhythm patterns make possible to link remote events into a single
stream, enabling their co-occurrences to be learned to some extent. The
authors use two sets of rhythms to be learned, the first set has a simple
metrical structure (temporal dependencies can be expressed with simple ra-
tios such as 1/2), while the second group use complex rhythms. Using a
forced-choice task setup, they asked participants to classify novel sequences
as preserving or violating the exposure sequences. The results shown that
North-American adults could learn to recognize the simple rhythms but were
unable to learn the complex rhythms while Bulgarian or Macedonian adults-
whose musical culture makes a more frequent use of complex rhythms- could
perform both tasks. This enculturation bias was confirmed with a last ex-
periment, where North American infants were shown to be able distinguish
structure-preserving complex rhythms from structure-violating sequences.
This suggests that the musical environment North American infants are ex-
posed to during development has overridden their initial ability to apprehend
complex rhythms, because this ability is not useful in their environment.

2.3.5 Towards a statistical account of music perception

The works we have presented here focus on the various dimension we use
to define musical sequences, i.e. timbre, pitch, and time. Independently of
the modality used, these studies show that the common principle of implicit
learning holds, that is, that mere exposure to sequences of events enables
to learn to represent the structure of these sequences. Furthermore, the in-
terplay between temporal and acoustical cues can enable to learn non-local
dependencies, which would be too difficult to learn otherwise. More work
has to be done to be able to deal with the complexity of real-world mu-
sic. As Tillmann (2008) states, "Experimental research on music perception
has to find a balance between the complexity of real musical material and
strong experimental control of the used material leading to the use of sim-
ple tone contexts or melodies". However, despite the actual limitations of
these works, we aim at integrating the general results obtained here in a
computational model of music expectation.

Therefore, we will focus on building a model that can acquire a represen-
tation of musical structure through exposure, according to the principle of
statistical learning. Our first motivation is to create a “blank” listener model
guided by representation and learning principles. In this approach, the envi-
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ronment will induce an internal model that will serve as a basis for generating
expectations, instead of attempting to hard-wire a specific and static music
theory in the model. The key questions that arise at the point are: what are
the computational architectures that can be used to implement statistical
learning systems and how can such architecture be evaluated. This questions
will be answered in the two forthcoming chapters, where we will first define a
range of models that can perform causal learning of sequential structure, and
propose a use-case for evaluating such models based on Saffran et al. (1999).
Furthermore, our review has shown that statistical learning may take place
along several musical dimensions (e.g. timbre, melody, rhythm) and showed
that learning may be facilitated when considering several dimensions instead
of focusing on one. Because we aim at processing audio excerpts, we will
propose, in Chapter 6, a set of representations of the audio stream in terms
of acoustic cues and timing events, and investigate how these two dimensions
can be combined.



CHAPTER

Causal models of
sequential learning and
applications to music

3.1 Chapter Summary

In this chapter, we introduce models of sequential learning and present
computational approaches that have been used to simulate this phenomenon.
As such, this chapter introduces the modelling formalism that will be used
in this dissertation. We give an emphasis to causal models, that is, model
whose predictions only depend on past observations, because causality pro-
vides a natural framework for modelling sequential learning. Furthermore,
to reflect the existing work on sequence learning modelling and music se-
quence learning in particular, most of the approaches we present here are
either symbolic approaches or are employed to process sequences represented
in a symbolic way.

3.2 Models of sequential learning

A important core of computational techniques have been developed in
the last 50 years to perform sequence analysis and prediction tasks. The
spectrum of methods ranges from periodicity analysis (such as autocorre-
lation, time-frequency methods such as Fourier or wavelet transform), to
artificial neural networks and probabilistic approaches. Predictive models
have been used as forecasting application in many fields such as industry,
finance or medicine (Box et al., 1976). Here, we focus on modelling learning
as a dynamical process that evolves through time. This is why we make a
distinction between causal and non-causal techniques, as explained below.

27
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3.2.1 Causal versus batch processing

We aim to distinguish techniques that rely on a entire sequence to parse
it from techniques that build and maintain a representation of the sequence
accessed so far without being able to look ahead in the future. The former
techniques are referred to as batch techniques - they operate on a batch of
data from the beginning to the end, while the latter approaches are referred
to as causal approaches. Formally, a causal system, is a system whose state
at a specific instant ty depends only on the input x; for values of ¢ less or
equal than tg.

3.2.2 Markov-chain models

In mathematics, a Markov-chain is a stochastic process which respects the
Markov property Markov (1971). This means that future states depend only
on present states and are independent of past states. That is, the definition
of the present state fully defines the evolution of future states. Formally, A
Markov chain is a sequence of variables X7, X5, X3, ...,X,;, X, 41 so that

Pr(Xni1]Xn, ., X3, X2, X1) = Pr(X,41]Xn) (3.1)

A variation of this is the Markov chain of order N, where N is finite.
The state of this process can be written down as:

Pr(X,+1|Xn, ..., X3, X2, X1) = Pr( X1 Xn, Xn—1, -y Xn—nN) (3.2)

Here, N acts as a memory of fixed size. Hence, a Markov chain of order N is
a process in which the future state X, 11 is fully defined by a fixed number
of past observations. This assumption is the basis of many learning models
that base their predictions on a past context of fixed size.

3.2.3 N-gram modelling

N-gram modelling provides a straightforward and efficient approach to
probabilistic reasoning and expectation. This approach fits well to symbolic
sequence modelling approaches, where each sequence item belongs to a fixed
set of possible symbols. The basic idea is to construct tables of transition
probabilities from subsequences of N — 1 items to the next item by counting
their occurrence in a set of training data.

We illustrate this by taking an example from MacKay (2003), focusing
on modelling transition probabilities between letters (including the space
character) in English sentences. Here, we consider the simple case where
N = 2, also referred to as bi-gram modelling. Let us consider the random
variable X, which corresponds to the outcome of a letter in the English
corpus. The outcomes of X can be any letter of the alphabet, plus the space
character. Similarly, we can define a random variable Y, which corresponds
to the outcome of the following letter. Based on the training corpus, the first
step consists in counting the occurrence of each single letter. By normalizing
these counts, one can derive the marginal probability distribution of letters,
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denoted P(X), as shown in Figure 3.1a. In a similar way, one can count all
the sequences of two letters that occur in the training corpus, and derive
the joint probability distribution, denoted P(X,Y’). Figure 3.1b shows in
a graphical way the probability distribution of such bi-grams. Here, the
probabilities are represented as white squares in a two-dimensional table
and sum to one. Based on the probabilities of occurrence of single letters
and bi-grams, we can then derive the transition probabilities between two
consecutive letters by computing the conditional probability between a letter
given the outcome of the previous one:

P(X,Y)
P(X)
Similarly, it is possible to derive the conditional probability of a letter given

the outcome of the following one.

If we return to our example, the resulting transition probabilities for
the English text corpus are shown in Figure 3.2. As an outcome of this
process, the transition probability tables can now be used for prediction and
expectation generation task. Indeed, when parsing a novel English sentence,
it is possible, at each point in time, to obtain the condition probability
distribution of the next letter.

We can now define N-grams as a function of the order parameter N.
When a new event z; is appended in the input sequence, a two-dimensional
table, indexing the occurrences of all possible sequences of length n, is in-
cremented by one at the position with row corresponding to the sequence
Ty—N+1 ... T¢—1 and at the column corresponding to the symbol z;. This
means the count table has nsymbols™ cells, where nsymbols is the number
of possible symbols. As such, this technique is expensive in terms of space,
even if we can use sparse matrix implementations to reduce the size of the
transition tables. From the count table and an observation of the actual se-
quence, we can derive the posterior probability for each possible symbol and
produce an expectation accordingly. The N parameter controls the amount
of past events considered in the prediction and has to be adjusted carefully.
Indeed, an inaccurate choice of N may affect the behavior of the learner
by biasing it to too general predictions (low N), and to over fit prediction
(high N). Extensions have been proposed to combine predictions made from
different context sizes.

Overall, the example we presented here gives a overview of the differ-
ent processes involved in N-gram modelling. However, this example is also
misleading , because it starts from the analysis of corpus of English text,
derives knowledge from it, and then enables to perform prediction. As a
matter of fact, there no need of a training corpus nor to separate learning
and prediction. N-gram models can be applied in a causal way to symbolic
sequences, by constantly updating their probability tables and by providing
prediction based on the current tables. This way of coupling learning and
prediction processes may precisely serve as basis for tackling the mechanism
of implicit learning in the context of musical processing. Here, the continu-
ous exposure to structured musical streams will substitute the corpus-based
training shown in the English letters example.

P(Y|X) = (3.3)
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Figure 3.1: (a) Probability distribution of single letter P(X) and (b) bi-
grams probabilities P(X,Y) derived from counting their occurrences in a
corpus of English text. Adapted from MacKay (2003).
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Figure 3.2: (a) Conditional probabilities of letter given the previous one
P(Y|X) and (b) conditional probability of a letter given the next one
P(X|Y) (b). These transition probabilities are derived from the single let-
ter and bi-gram probabilities shown in Figure 3.1. Adapted from MacKay
(2003).
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Variable order markov-chain approaches

Extensions to markov chain models of fixed order have been proposed in
the context of compression algorithms research. First, Incremental Parsing
(IP, Ghezzi and Mandrioli (1979)), an online method based on compression
theory. Another approach is based on Prediction Suffix Trees (PST, Allauzen
et al. (1999)). Whereas a a markov chain of order M can be represented as
a tree where all branches are of size M, in PST the size of the tree branches
can be lower or equal to the maximum model order, which reduces the
memory requirements of the model. Finally, an extension of N-grams, called
Predictive Partial Match (PPM, Cleary and Witten (1984); Moffat (1990)),
enables to combine transition tables of different context sizes. PPM will be
presented in more details in Chapter 6.

3.2.4 Artificial Neural Networks

Artificial neural networks (ANN) form a branch of mathematical models
that has been motivated by the structure and functional organization of bi-
ological systems. They consist of groups of interconnected artificial neurons
that process information in a distributed way. Each artificial neuron is a
simple unit that has its own activation state and is connected to other units
via synaptic weights. The state of a given unit is determined depending
of activations and weights of incoming units and the activation function of
this unit. Synaptic connection can be either directed or undirected. For the
sake of simplicity, we start introducing the typical case of feedforward neu-
ral networks, and will derive from this architectures that are able to model
sequences of events. There are, however, more complex alternatives to this
approach, which we will present in section 3.2.4. First, we show in Figure 3.4
how an artificial neuron is represented.

The activation function of each unit is arbitrary and does not need to
be linear, which make ANN capable of non-linear transformation of data.
Sensory inputs can be fed to the network and mapped to a useful repre-
sentation which depends of the task considered. Formally, the incoming
weighted inputs to a artificial unit j are first summed:

netj = Zwljxl (34)
1#]
The output of the unit j is then computed by summing a bias term §;
and applying the unit activation function ¢:

0j = ¢(net; +6,) (3.5)

The activation function ¢ can be either identity (we refer to linear units)
or a thresholding function that ensures the unit output will be constrained
to a certain range. Nonlinear thresholding functions such as the sigmoid or
hyperbolic tangent are commonly used (Bishop, 1995).
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Network Topology

The artificial neuron units are interconnected to form a topology. We
consider here a typical data modelling system, in which sensory data is
connected to a first layer of units, transformed along several hidden layers
and mapped into a range of output units. Feedforward neural networks are
made of several layers. Units from the same layer are not connected but
receive inputs from the previous layer and project into the next layer, as
shown in the example in Figure 3.5.

In this case, when presenting an input to the network, it is straightfor-
ward to compute a forward pass, which propagates the units activations from
the input layer to the outputs.

ANN as an online adaptive learning system

A key characteristic of ANN is that network weights can be adapted
using update rules during a learning phase. The weight update may de-
pend on the inputs, outputs, external labels, or internal network state. This
makes ANN an adaptive data modelling tool that can be used in range of
supervised or unsupervised learning tasks such as classification, regression,
or dimensionality reduction. The most popular learning rule for perform-
ing supervised training is called backpropagation (Werbos, 1974; Rumelhart
and McLelland, 1986). In a supervised setting, an input vector is fed to the
input, and the units activations are updated using the forward pass. Then
the network’s outputs are compared to the expected outputs (which forms
the supervised data). An error function is used to perform this comparison,
leading to a modification of the network weights in order to reduce this er-
ror, as explained below. Depending of the task considered, different types of
output units and error functions are used, because they they enable to easily
compute the error derivatives. We refer to Bishop (1995) for a justification
of these measures.

Regression problems An error measure is chosen to compare output
and targets. This measures depends on the task considered and has to be
associated to a specific choice of output units. For regression tasks, linear
output units are used and the most widely used error function is the sum-
of-squares error, given by:

M

1 2
SSE = > (0 —ti) (3.6)

i=1

where o; is the activation of output unit ¢, t; is the target value of output
unit 7, and M is the dimensionality of both vectors.

Classification problems As mentioned by Bishop (1995), it is possible
to enforce a neural network to treat inputs or outputs as probabilities, which
enables to train the networks and evaluate them according to probabilistic
criteria. In a classification task, we would like to feed the network a vector
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Figure 3.3: A typical artificial neuron unit. Incoming units are denoted
21, ..., Zn. They are connected through synaptic weights denoted xy;, ..., p;,
where j is the index of the actual unit. The incoming weighted activations
are summed along with a bias term 6;. A possibly non-linear activation
function is then applied to this sum to produce the unit output.
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Figure 3.4: A typical feedforward neural network, also called multi-layer
perceptron. The number of hidden layers can vary.
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of sensory inputs and obtain the probability distribution over the possible
classes. Here, a suitable error function for comparing the network’s outputs
with targets would be the cross-entropy error. If we consider two discrete
probability distributions p and g over state space of dimension M, the cross-
entropy between p and ¢ is defined as:

H(p,q) = =Y _p(x)log(q()) (3.7)
M

For classification tasks, a common choice is to use a softmax output
layer, which ensures the output units activations sum to one. We consider
an output unit of index j among M output units. Thus the output layer
represent a multinomial distribution over N possible values. To compute the
output of this unit, we replace Equation 3.5 by:

enetj

Backpropagating the error Once the error between outputs and targets
is computed, the networks weights need to be adjusted to minimize the er-
ror. Backpropagation is a computationally efficient algorithm that enables
to evaluate the error-function derivatives of each unit with respect to its
incoming weights, by going backward from the output units to the input
units. When error derivatives corresponding to a unit are known, its incom-
ing weights can be modified , thus enabling learning. We refer to Bishop
(1995) for a full derivation of the backpropagation algorithm.

Batch versus online training Training can take place in two settings,
batch and online: in the batch setting, the system processes a number of
input samples as a batch. The mean error between outputs and expected
targets is computed, allowing to adjust the weights using backpropagation.
In the online setting, each time an input is presented, the networks out-
puts are compared to the expected outputs and backpropagation is applied.
While the batch approach requires less computational efforts, it has two main
disadvantages. The first drawback is that the network can be more likely
trapped in a local minima during learning, because the average error signal
provide less information than the individual errors. The second drawback is
that batch processing does not allow to represent the timeline of sequential
learning, when a system randomly initialized starts generating predictions,
which are refined through exposure. Therefore, we focus here on the online
variant of the backpropagation learning rule.

Modelling sequences of events and generating expectation

So far, we have considered networks in which, at each point in time,
an input is applied and propagated to the outputs. In order to represent
sequences the networks needs to encode the inputs temporal context. In our
case, this would enable to build sequence prediction models. At each point



3.2. MODELS OF SEQUENTIAL LEARNING 35

in time, the network would process the most recent input. Based on the
input context, the network would be trained to predict the next item. Even
if backpropagation is generally considered as a supervised technique, here we
do not need to provide external labels: each time a new item is presented to
the network, it is compared with the last network’s prediction, which enables
to backpropagate the error signal. Two simple modifications can be done to
the feedforward neural network to handle sequence processing.

Time Delay Neural Network (TDNN) can be applied to next-event pre-
diction tasks by using as many inputs as necessary to encode a fixed number
of past events and using the output to predict the next event (Rumelhart and
McLelland, 1986; O’Reilly and Munakata, 2000; Kuhn and Dienes, 2008).
The number of past events encoded in the input layer determines the context
available to provide a prediction, that is the context size is fixed explicitly to
N past events, in a way similar to N-gram modelling. At each time step, the
most recent input is appended and the past inputs are shifted using a delay
line, the oldest input being not considered anymore. We show a three-layers
Temporal Delay Neural Network with context of size N in Figure 3.5.

( Inputt_l>< Input, >

Figure 3.5: A temporal delay neural network with two layers, processing
inputs over a context of size N. The individual artificial units are not shown.
We show pools of artificial neurons with rectangles. Arrows show all-to-all
feedforward connections between pools.

Simple Recurrent Network (SRN) are another variation that allows to
represent past inputs in an implicit way, called Simple Recurrent Networks
(Elman, 1990; Cleeremans and McClelland, 1991). A three-layer network
is used, with the addition of a set of "context units" in the input layer,
as shown in Figure 3.6. There are connections from the hidden layer to
these context units fixed with a weight of one. The fixed back connections
result in the context units always maintaining a copy of the previous values
of the hidden units (since they propagate over the connections before the
learning rule is applied). Thus the network can maintain a state, allowing it
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to perform such tasks as sequence-prediction that are beyond the power of
a standard feed-forward neural network.

Outputyy

..
PN
( Input, > ( Contextt>

Figure 3.6: A simple recurrent network, obtained by appending a context
layer to the network. At each time step, the hidden layer activation is
computed depending of both input and context layer using feedforward con-
nections. Then, we perform a copy of the hidden layer activations into the
context layer. We show pools of artificial neurons with rectangle. Arrows
show all-to-all feedforward connections between pools.

Simple Recurrent Networks have already been used in several works in
order to build computational models of sequence learning from a cognitive
perspective. Elman (1990) shows the ability of SRN to learn the structure
of sequences made of numbers, letters or words. By analyzing the the net-
work’s test prediction error, Elman shows a trained SRN can perform word
segmentation from sequences of letters. In Figure 3.7, we show the test
prediction error of a SRN trained on a set of English sentences. The SRN
prediction error is the highest at the beginning of a word (because the tran-
sition between two words is unpredictable) and decreases with subsequent
word letters. Botvinick and Plaut (2006) use a variation of the SRN to in-
vestigate how learning of ordered lists of items takes place. Applications
that are specific to music modelling are presented in Section 3.2.5

Other neural network approaches for sequence modelling

There have been many alternative models proposed for modelling se-
quence learning. Here we have shown that the SRN architecture implements
recurrence using a copy of the hidden layer into the context layer, how-
ever the SRN can still be trained as a feedforward network, which makes
the training straightforward with standard techniques. Fully recurrent neu-
ral architecture have been proposed, in which there can be backwards con-
nection between layers as well as lateral connection between layer units or
self-connections between artificial neurons. Specific learning rules have been
devised for training these networks, the most notable being Real Time Re-
current Learning (Williams and Zipser, 1989) and Backpropagation Through
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Figure 3.7: A word learning simulation presented by Elman (1990) using
a SRN predictor. The trained prediction error is plotted along time. The
letters presented at each point in time are shown in parentheses.

Time (Werbos, 1990). However, such recurrent networks exhibit complex dy-
namics, and are hard to train compared to feedforward networks. Further-
more, it has been shown that the error gradient needed to backpropagate
errors vanishes in few times, which makes it difficult to maintain information
over more than few time steps (Hochreiter and Schmidhuber, 1997). To alle-
viate this, Hochreiter and Schmidhuber (1997) proposed a new architecture
called Long Short Term Memory (LSTM). The basic LSTM memory unit
comprises a self-connected memory unit along with gate units that control
the amount of information that flows in and out of the memory cell. This
enables LSTM networks to learn data with extended context dependencies,
but adds further complexity to the model, which limited its widespread use
outside the neural network community. A more recent network architec-
ture called Echo State Networks has been proposed by Jaeger (2003), which
consists of a hidden layer with randomly sparse connections. Finally, Self
Organizing Maps (SOM), (Kohonen, 1998)) are an unsupervised connection-
ist approach that use a pool of interconnected artificial units. All units are
connected to the inputs, when a new input is presented, the units whose
weights are most similar to the input is selected in a competitive fashion.
The winning unit is then updated along with neighboring units. Since their
inception, SOM have been widely used for visualization purposes, but have
also been used to learn sequences of events by using hierarchies of SOM
(Carpinteiro, 2000).

The review on causal models for sequence prediction we have proposed
here is not exhaustive. Here we have focused on defining a basic set of tools
that can be used when dealing with musical sequence modelling. We will
now present their applications to music modelling.
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3.2.5 Applications to music modelling

Markov-chain techniques have been considered in musical applications
from machine improvisation (Lartillot et al., 2001) to cognitive modelling
of music perception (Ferrand et al., 2002). Lartillot et al. (2001) compares
Incremental Parsing and Prediction Suffix Trees to represent melodies and
model musical style. Pearce and Wiggins (2004) study and evaluate sta-
tistical models for capturing the structure of monophonic melodies using 8
melodic datasets. Extensions of N-gram techniques such as Predictive Par-
tial Match are compared. Other approaches make use of Markovian mod-
elling to learn the structure of musical sequences in an interaction setting,
the best known being the Continuator (Pachet, 2003) and OMax (Assayag
and Dubnov, 2004). This latter system uses the oracle factor (Allauzen
et al., 1999) to create a hierarchical representation of musical sequences that
can be applied to MIDI signals or to melodies in audio signals (Assayag
et al., 2006). Paiement (2008) investigates the use of graphical models to
encode the dependencies of symbolic music sequences. Paiement proposes
approaches to integrate musical knowledge such as musical meter and tonal-
ity in the learning process and shows that models that take into account
this knowledge can perform better when encoding musical sequences. Addi-
tionally, methods based on evolutionary computation that rely less directly
on markov-chains have been proposed to model musical style, with applica-
tions to improvisation (Homer and Goldberg, 1991; Biles, 1994; Burton and
Vladimirova, 1999), or performance modelling (Ramirez and Hazan, 2005;
Hazan et al., 2006).

Connectionist approaches have been long investigated for building mod-
els of music perception and performance. We refer to Todd and Loy (1991);
Griffith and Todd (1999) for an overview. First, simple models have been
proposed to build computational representations of musical sequence in a
distributed way. Bharucha and Todd (1989) proposed a connectionist model
of tonal representation. A three layer network was used, to represent rela-
tions between notes (first layer), chords (second layer) and keys (last layer).
Incorporating tonal knowledge in the network was made possible by creat-
ing connections from one layer to another. All notes belonging to a spe-
cific chord were connected. Similarly, all chords belonging to a key were
connected. This allowed the process incoming notes in a distributed way,
by propagating the units activation among the three layers. However, the
model proposed by Bharucha is hardwired, and doesn’t learn tonal relation-
ships through exposure. Tillmann et al. (2000) proposed a model based on
two self-organizing map layers that was able to learn these relationships in
an unsupervised way, by exposure to musical sequences. The connections
obtained after training were comparable to the hardwired connections in
(Bharucha and Todd, 1989). Other works have emphasized the sequential
dependencies between musical events, without explicitly defining a hierar-
chical network architecture. In this context, recurrent network models have
been considered because of their ability to encode sequences. Mozer (1994)
used a model close to Elman’s SRN to learn a variety of musical tasks,
investigating either artificial melodies or Bach excerpts. Mozer compared
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different representations of notes and chords and showed that an implicit hi-
erarchical representation of musical events was maintained by the networks.
The LSTM network architecture has been used more recently to learn the
structure of blues excerpts (Eck and Schmidhuber, 2002) and generate blues
improvisations, or to create models of jazz performances (Franklin, 2004).
Other works aim at studying whether artificial neural networks can provide
an account of musical learning as observed in human subjects. Kuhn and
Dienes (2008) investigated whether time delay feedforward neural networks
and simple recurrent networks could learn a non local music construction
rule using a bi-conditional grammar and compared the results to those of a
listening experiment.

3.3 Concluding remarks

Overall, this review shows that a considerable amount of research has
been carried on, on the one hand to build and compare models of sequential
learning, and on the other hand to apply them to musical tasks. Altough
in most cases these works assume a fixed symbolic representation of low
level musical events (e.g. tones, chords), some of them have shown that
higher-level representations could be derived by exposure to musical ma-
terial (Mozer, 1994; Tillmann et al., 2000). Also, some works have shown
that it was possible to design music generation systems that could interact
with users (Pachet, 2003; Assayag and Dubnov, 2004; Assayag et al., 2006),
unveiling the applications of music modelling through sequence learning.
However, fewer works have focused on investigating sequence learning from
a music perception viewpoint, by attempting to compare the model behav-
ior with experimental data on human subjects (Tillmann et al., 2000; Kuhn
and Dienes, 2008). Even in this case, past research often omits considering
alternative representations for musical sequences. In the next chapter, we
will introduce an evaluation use case, in which we study how connectionist
prediction models such as TDNN and SRN can provide an account of the
behavioral results obtained by Saffran et al. (1999) by comparing a set of rep-
resentations of tone sequences and will study how these alternative symbolic
representations affect the simulation results. Additionally, it is worth noting
here that the research presented above almost exclusively focuses on western
tone sequences encoded in a symbolic way. The main principles enounced
here (on-line learning, prediction, emergence of representations) may as well
apply in a more general framework of music listening. In Chapter 6 we will
introduce a model in which musical events may be described from audio
signals in terms of spectro-temporal properties, timing and rhythm, thus
allowing a mid-level approach to music modelling and expectation.






CHAPTER

A modelling use case:
statistical learning of tone
sequences

4.1 Chapter Summary

We aim at simulating the findings obtained by Saffran et al. (1999) that
were described in Section 2.3. These simulations will provide us a start-
ing point to validate models of musical sequence learning. We propose a
validation loop that follows the experimental setup that was used with hu-
man subjects, in order to characterize the networks’ accuracy to learn the
statistical regularities of tone sequences. Tone-sequence encodings based on
pitch class, pitch class intervals and melodic contour are considered and com-
pared. The experimental setup is extended by introducing a pre-exposure
forced-choice task, which makes it possible to detect an initial bias in the
model population prior to exposure. Two distinct models, a Simple Recur-
rent Network (SRN) and a Feedforward Neural Network (FNN) with a time
window of one event lead to similar results. We obtain the most consistent
learning behavior using an encoding based on Pitch Classes, which is not a
relative representation. More importantly, our simulations highlight the im-
pact of tone sequence encoding in both initial model bias and post-exposure
discrimination accuracy. The representation of symbolic information should
not be determined a priori when simulating sequential learning experiments.
Rather, the choice of the representation should be supported by physiological
data or be compared and validated experimentally.
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4.2 Motivation

The model we aim to develop in this thesis should take as input a musical
stream and form specific expectations regarding the future sequence events,
based on the sequence listened so far, and the internal representations de-
veloped by learning. Our approach constrains the model to be informed
of music cognition findings as observed in psychological experiments. In
our view, a main concern lies in finding specific musical and cognitive tasks
that a model should perform to be validated. In this perspective, we ex-
ploit the idea that statistical environmental regularities are fundamental for
perception and knowledge acquisition. Statistical regularities in the envi-
ronment influence the processing of information in the brain, such as learn-
ing, memory and inductive inference. So far, humans’ exploitation of these
statistical regularities in cognitive mechanisms has been subject of study
by cognitive sciences (Barlow, 2001). Learning, this way, could be seen as
the internalization of environmental regularities, as a counterpart to Gestalt
laws (proximity, common fate, good continuation), that describe bottom-up,
hardwired processes. Learners take advantage of statistical information of
syllable sequences such as the distribution of patterns of sounds to discover
word boundaries.

As presented in Section 2.3, several works have devised an experimental
protocol for assessing how humans learn regularities in acoustic sequences,
made of either tones, phonemes, or timbres.

While these experiments can be seen as a means to validate models of
expectation, we also suggest that computational simulations may be used
to inspect further and eventually validate the experimental protocols them-
selves. As a starting point, we aim at simulating the experiment presented
by Saffran et al. (1999).

4.3 Simulation setup

In this section, we provide details about our experimental setup, the
alternatives we use in order to encode tone sequences, and our ANN models
settings. First, we present in Figure 1 an overview of the experimental setting
used in both original experiment and our simulation.

4.3.1 Tone sequence encoding

— Pitch Class (PC): each tone is encoded using a pitch class representa-
tion: we use 12 input units, for representing a given pitch we set the
activation of one unit to one while the others are set to zero.

— Pitch Class Intervals (PCI): Each interval from one tone to the next
one is encoded using a pitch class representation: we use 25 input units,
for representing a given interval we set the activation of one unit to one
while the others are set to zero. The 25 units allow intervals ranging
from -12 to +12 semitones.

— Melodic Contour (C): Each interval from one tone to the next one is
encoded using a contour representation: we use three input units, for
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Original experiment Proposed simulation

1. Initialization 1. Initialization
Choose one expectation
model

1 1 Two groups of listeners
Two musical languages Two groups of expectators,
(6 3-tones musical words) each expectators with
random initial conditions

Random-generated sequences .
Two musical languages

(6 3-tones musical words)

2. Exposure Random-generated
sequences
2-© 2

2. Pre-exposure forced-choice task:

Example Sequence: Exhaustive pairs, one word from each
language. Unbiased models should provide
a random guess

pitch

midi L.-'.-__-'.-_.- o

word.1 word.2 word.3 word.4 word.2 word.1

3. Post-exposure forced-choice task:
Exhaustive pairs, one word from each language,

subjects choose the most expected word (success) (failure)
- [l 3. Exposure
| /
* — - -0
- - Qi;>/'
|
(success) (failure) 4. Post-exposure forced-choice task

Figure 4.1: Overview of the experimental setup. left: original experiment
from (Saffran et al., 1999), right: simulation.

representing a given interval we set the activation of one unit to one
while the others are set to zero. The three units allow to represent the
contours down, same and up.

4.3.2 ANN settings

ANN are usually trained in several passes, called epochs. Then a test
phase, in which no weight update takes place, is subsequently performed.
Here, by analogy with the approach of Kuhn and Dienes (2008), we make
no distinction between training and test mode. At each time step, even
during the forced-choice task, the network weights are updated to reduce the
mismatch between their expectation and the next note event. The number of
epochs is set to 1, because we want to reproduce a psychological experiment
in which the subjects attend the sequence of stimuli only once. We use an
FNN with a time window of one event, that is, the FNN network has only
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access to the current event when predicting the next one. For both FNN
and SRN, the detail of the parameters we explored is given below.

Exploration of the model parameters For our experiments, we used a
set of parameters for defining and training the SRN. These parameters are
learning rate, momentum, and number of hidden (and context) nodes. While
the learning rate and momentum provide a way of controlling the weights
search, the number of hidden and context units controls the complexity of
the model that is learned. As a comparison with Kuhn and Dienes (2008),
we do not allow a very large number of hidden and context units, for instance
60 or 120. This is because we believe that the task addressed by Saffran et al.
(1999) involves smaller time dependencies than the bi-conditional learning
task addressed by Kuhn and Dienes (2008). Thus, we use a smaller number
of hidden units. We summarize the set of possible parameters in Table 4.1.

Table 4.1: Parameter Set for the SRN

Parameters Values
learning rate | 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9
hidden units | 2, 5, 10, 15, 30

4.3.3 Simulating the forced-choice task

In order to model the forced-choice task we compare, for each word tone
or interval (depending on the selected coding schema), the model predictions
with the actual next tone or interval. The word from which the lowest
mismatch is observed is selected as the chosen word. Figure 2 shows how
the forced-choice task is simulated for either interval-based encodings or
tone-based encodings.

4.3.4 Experimental loop
We run our simulations using the following general loop.

1. Create, for each language, a random sequence of tones by concatenat-
ing words from the corresponding language. Following Saffran et al.
(1999), we create, for each language, 6 blocks of 18 words each by ran-
domly picking words from this language. Words never appear twice in
a row. Then, the blocks are concatenated randomly to form sequences
equivalent to a 21 minutes auditory stream.

2. Create two network instances for simulating an individual from Group
1 and another from Group 2. Both networks have initially random
weights and activations

3. For each network, perform the forced-choice categorization task on all
possible combinations of L1-L2 words. Store the recognition accuracy
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Figure 4.2: Forced-choice task simulation. The horizontal axis indicates
time. Bottom: tone-based encoding, circles represent successive tones. Top:
interval-based encoding, circles represent successive intervals. Plain diagonal
arrows show models producing expectations of the next event. Only the
events which are involved in the mismatch computation are labelled. Vertical
bidirectional arrows show from which prediction the mismatch is measured.
Gray vertical lines show word boundaries.

before exposure. During this task, the order of presentation of each
stimulus pair is random. Moreover, when each pair is presented, the
words from the two languages are presented in random order.

4. Present to each network its corresponding sequence.

5. For each network, perform again the forced-choice categorization task.
The settings are similar to those presented in step 3. Store the recog-
nition accuracy after exposure.

We repeat this loop 100 times for each experiment in order to extract a
recognition accuracy score for each instance of the network.

4.4 Results and discussion

In Figures 4.3 and 4.4 we respectively show the results of our experiments
involving the SRN and FNN models. For both models, the best results were
obtained using the following parameters: 2 hidden units and a learning rate
of 0.01.
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Figure 4.3: Forced-choice accuracy obtained with SRN predictor for distinct
tone sequence encodings, compared with the subjects’ response in (Saffran
et al.,, 1999). The simulation of both Experiment 1 (left: words versus
non-words) and Experiment 2 (right: words versus part-words). For each
experiments and model, the results are shown for Language L1 on the left and
for Language L2 on the right. Contour encoding is denoted C, Pitch Class
Interval encoding is denoted PCI, and pitch class encoding is denoted PC.
For each language, the right-most bar shows the ground truth post-exposure
accuracy obtained by Saffran et al. (1999), denoted GT. The pre-exposure
(light bars) and post-exposure (medium dark bars) mean scores are plotted,
along with their standard deviation over the 100 runs. The horizontal dashed
line indicates the 50% baseline.
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L1 - bars on the left , L2 - bars on the right

FNN model, Experiment 1 FNN model, Experiment 2
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Figure 4.4: Forced-choice accuracy obtained with FNN predictor for distinct
tone sequence encodings, compared with the ground truth. For the details
we refer to Figure 4.3.
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4.4.1 Acquisition of statistical regularities

Inspecting the post-exposure results reveals distinct outcomes depending
on the tone sequence encoding used. We analyzed the results obtained using
independent samples t-tests when comparing pre and post-exposure scores,
and used one-sample ¢-tests when comparing scores to the 50% baseline .
Using the Pitch Class Interval representation, the post-exposure recognition
scores are higher than the baseline for Experiment 1 for both languages
(p < 0.001). However, both SRN and FNN models fail in reproducing the
results of the second experiment, because the Language L2 post-exposure
score is lower than the baseline.

The Contour-based representation can not account for the results of Ex-
periment 1, because models exposed to Language L2 exhibit a post-exposure
accuracy which is lower than the baseline (p < 0.05). Experiment 2 is not
reproduced either: in this case the model population exposed to the Lan-
guage L1 exhibits a strong negative post-exposure bias towards this language
(p < 0.001). The fact that Experiment 2 involves the comparison of words
versus part-words explains well the failure in obtaining a good fit using a
melodic contour representation: indeed, the words to be discriminated dur-
ing the forced-choice task are very similar when projected into a contour
representation.

Overall, the most consistent improvement of the post-exposure forced-
choice task accuracy for all experiments and languages (p < 0.05 in all cases)
is obtained using a Pitch Class representation, that is, a representation where
pitch is not defined with intervals. However, we were not able to reproduce
the fact than Experiment 1, because it involves a comparison of words versus
non-words, led to a higher discrimination accuracy than Experiment 2. In
our simulations, the average post-exposure accuracy for Experiment 1 is 65%
for Language L1 and 61% for Language L2. For Experiment 2, the average
post exposure accuracy is 77% for Language L1 and 63% for Language L2.

4.4.2 Influence of used architecture

The first observation to be made concerns the similarity between the
results obtained in Figure 4.3 using the SRN model, and in 4.4 using the
FNN model, independently of the encoding used. Our results suggest that
the SRN model can not take advantage of a longer context when providing
a prediction, which may confirm that the task presented in Saffran et al.
(1999) can only be solved by means of computing transition probabilities
between successive events.

We have proposed in this paper an attempt towards modelling the acqui-
sition of statistical regularities in tone sequences. We have used two Artificial
Neural Network architectures to simulate the general learning trend observed
by Saffran et al. (1999). Our results show that the choice of the Artificial
Neural Network architecture has little effect on the post exposure accuracy,
which suggests that an extended temporal context is not necessary to model
this task.
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4.4.3 Influence of used representation

We have extended the original experiment with a pre-exposure forced-
choice task and observed the outcome of this task with both simulations
and a behavioral experiment. We have found that a bias towards a given
language can appear, which may depend on the tone sequence representa-
tion used. This suggests that further studies aimed at investigating tone
sequence learning should take into account different representations of the
tone sequences.

The simulations based on interval representations such as Pitch Class In-
terval or Contour did not consistently account for the experimental results.
That is, representations where the information between tones is relative ,
enabling shift invariance for instance, do not enable to reproduce the exper-
imental results. However, using a tone sequence encoding based on Pitch
Class, we observe, for all experiments and languages, an increase of the cat-
egorization accuracy of words versus non-words and words versus part-words
in a population of prediction models after they have been exposed to tone
sequences containing statistical regularities.

A note on scalability In the simulations presented in this chapter, we
have proposed several alternatives to represent tone sequences. Our model
provides a prediction of the next tone or interval based on the observation
of a limited number of past events. We are interested in scaling our system
in order to process more complex representations of musical events, over an
increased temporal context. That is, we aim at working with a greater set
of possible events, while being able to detect patterns of successive events,
even if they are separated by more than a few time steps. In this context,
it becomes more difficult to train the ANN architectures we have presented
here in an online learning and prediction setting, where only one training
epoch is allowed. This is the reason why we will use an alternative learning
and prediction model when extending our system in Chapter 6.

4.4.4 Concluding remarks

As a summary of this chapter, we have presented a setup for simulating
the forced-choice task experiments reported by Saffran et al. (1999)!. To
achieve this, we have proposed a set of encodings based on absolute pitch
values, intervals, and contours for representing the tone sequences used in
the experiment, and have used two neural network architectures to imple-
ment the learning process that takes place with human subjects. We have
found that the choice of the encoding has a major impact than the network
architecture. Contrastingly, as stated in previous chapter, most of the works
focusing on models of implicit learning for music stimuli use a unique rep-
resentation of tone sequences when comparing learning models. Therefore,
representation is an important aspect even when using a symbolic represen-
tation (Mozer, 1994; Conklin and Anagnostopoulou, 2001; Paiement, 2008).

1. The source code of the simulation framework is available http://emcap.iua.upf.
es/downloads/content_final/statistical_learning_experimenter_package.html
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In next chapter, we will present approaches to represent musical aspects in
audio signals. Then, we will consider a representation of acoustic events
through time that is not specific to melody in Chapter 6 and will take ad-
vantage of the conclusions obtained here to propose a set of representation
alternatives. This way, we will be able to study the impact of the represen-
tation in the structure learning and expectation processes.






CHAPTER

Representation and
Expectation in Music: a
Mid-level approach

5.1 Chapter summary

In Chapter 3 we have introduced models of sequential learning and their
applications to music modelling. In most cases, these models were applied
to fixed, symbolic representations of musical events. In Chapter 4, we have
compared the use of different symbolic representations in a sequential learn-
ing simulation. As our aim is to create a model of listening that can be
applied to a range of musical audio signals, we need to define an interface
between symbolic sequence modelling and audio representation approaches.
In this chapter, we review approaches to automatic extraction of musical in-
formation from musical audio signals that can be used for further sequential
processing. Therefore, our system will create symbols that correspond to
musical objects present in a given audio stream, which makes our approach
mid-level. Our representation must describe events at a higher level than
the audio signal itself or quantities directly derived from its time-frequency
analysis, but should at the same time be less abstract than a score because
we want it to distinguish objects with different spectro-temporal properties
and time locations.

First, we review transcription systems that identify musical events from
their spectro-temporal properties and their location in time. Then, we show
how audio analysis techniques that involve some predictive behavior can be
regarded as simple expectation systems. Finally, we introduce prediction-
driven systems and information-theoretic approaches that have been applied
to audio signals. Based on this review, we will present in next chapter a
model that integrates both representation and expectation processes.
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5.2 Automatic description of signals with attacks,
beats and timbre categories

In the last two decades, there has been a substantial amount of work
aimed at providing a mid-level description of musical audio. Here, we narrow
our presentation to works aimed at producing a mid-level description of
musical signals in terms of timing and acoustic properties.

5.2.1 Time description: when

First, the incoming audio stream can be described in terms of onsets,
that is, the beginning of a musical note or sound. Onset detection is com-
monly performed in two steps: first the incoming signal is transformed into
a low-dimensional signal called the detection function. This can be done,
for instance, using a bank of temporal filters derived from psychoacoustical
knowledge (Klapuri, 1999), deriving a detection function from spectral do-
main features (Brossier et al., 2004; Collins, 2004; Duxbury et al., 2003b) or
using supervised learning approaches (Lacoste and Eck, 2007). From this, a
peak-picking component takes the detection function as inputs and returns
onset times. The musical stream can also be described in terms of beats
which characterize the stream periodicity even in the absence of clear per-
ceptual attacks. Depending of the approach used, the output of such analysis
can be the average periodicity, the position of the beats, or a location over
a finer grained metrical grid. This approach is called beat-tracking or meter
estimation, and is presented in Section 5.3.2.

5.2.2 Instrument and melody description: what

Apart from the time dimension, another mid-level description we are in-
terested in is the nature of the sounds whose attack is detected. Applied
to a melody, note height would correspond to pitch detection. Unpitched
sounds may be identified using timbre categorization techniques. Both tim-
bre and pitch properties may be combined to describe instrument notes in
a precise way. The detection of unpitched sounds such as drum sounds
and percussive sounds in general has been considered in a variety of MIR
systems. Classification of unpitched sounds has been addressed by Gouyon
et al. (2000); Herrera et al. (2002) and was followed by works focusing on the
transcription of percussive excerpts such as drums (Gillet and Richard, 2004;
Tanghe et al., 2005a; Yoshii et al., 2005) or beat-box (Kapur et al., 2004;
Hazan, 2005c¢). While these approaches are essentially supervised, because
they assign a label from a predefined set to the sounds they process, other
works have proposed unsupervised approaches to categorization of sounds.
(Wang et al., 2003; Paulus and Klapuri, 2003; Schwarz, 2004; Jehan, 2005;
Hazan, 2005a), assuming a fixed number of timbre categories, or by consid-
ering hierarchical approaches Schwarz (2004); Jehan (2005). Indeed, unsu-
pervised categorization requires a suitable distance measure between sounds
to categorize. Casey (2002); Cano (2006); Pampalk et al. (2008) proposed
approaches focused on similarity measures between sounds. For some of the
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works presented here (Tanghe et al., 2005a; Hazan, 2005¢), causal versions
have been presented, enabling real time implementations.

5.2.3 Combining timbre and temporal Information

Paulus and Klapuri (2003) proposed an unsupervised transcription sys-
tem for percussive events that uses both the timbre characteristics of strokes
and their temporal features, derived from onset detection and meter estima-
tion processes. The first stage on the system groups attacks depending of
their timbre characteristics. After this stage, each attack is associated to a
specific group, called timbre cluster, in an unsupervised way. Subsequently,
timbre clusters are mapped to predefined drum labels by considering the
rhythmic features of events within each cluster.

On a broader time scale, systems have been proposed to perform auto-
matic segmentation of musical pieces, and are called structural segmentation
systems. Examples of structural segmentation systems include (Foote, 1999;
Aucouturier and Sandler, 2001; Peeters et al., 2002; Goto, 2003; Ong, 2006).
The general idea lies in computing a self-similarity matrix over a descrip-
tion of the musical signal. Features include timbre (e.g. MFCC) or chroma
features. The computation of a self similarity matrix involved in the seg-
mentation makes it an inherently batch process.

We have presented an overview of automatic systems that aim to ex-
tract musical structures from audio signals. Those structures include events
onsets, periodicity and metrical structure, and events categories based on
spectro-temporal properties. Methods for evaluating the proposed systems
have been proposed, and often require a comparison with data annotated by
experts, known as ground truth. For each specific discipline (e.g. onset de-
tection) evaluations of systems from several research teams using a common
set ground truth are organized at MIREX!. Overall, the MIREX evalua-
tions show that even if the accuracy of such systems increases over years,
those systems are still error-prone and the issue of automatic description of
musical audio can not be considered as a solved problem for the time being.
Consequently, expectation models applied to audio signals need to take into
account the errors introduced by automatic description stages.

5.3 Prediction in existing models of audio analysis

Most of the representation systems introduced above do not incorporate
prediction in their processing chain. It is worth noting that the notion of
signal prediction has long been considered in the audio signal processing
field, at different time scales and levels of abstraction.

First, low-level techniques perform signal prediction at the sample level
or over a short period of time. Then, beat-tracking techniques are based on
a higher-level description of the musical signal because they extract infor-
mation about its temporal structure, and some of those models can be con-

1. http://www.music-ir.org/mirex/
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sidered as time expectation systems. Finally, a system of computational au-
ditory scene analysis driven by prediction has been proposed by Ellis (1996).

5.3.1 Audio signal prediction at the sample level

One application of audio signal processing lies in describing the musical
signal in a more compact form, thus allowing to discard redundant signal
data and reducing transmission costs. One of the techniques that has been
designed to perform audio signal analysis and compression is Linear Pre-
diction Coding (LPC, (Makhoul, 1975)). LPC was originally developed to
perform speech signals coding, and has been widely used since then in a vari-
ety of applications. The basic idea behind LPC is that speech signals can be
described as the result of a simple model of the vocal tract, which contains a
source and a filter. To produce vowels, the source uses a sequence of pulses
(which originate from the glottis in the vocal tract). To produce consonants
and unvoiced sounds, the source uses a noise-like signal. Then, the source
signal is filtered by applying a filter response that is characteristic of a given
phoneme. In the case of speech, 4 formants are usually used to define a
phoneme response. Using the source and filter parameters, it is possible
to re-synthesize the signal. Consequently, speech signal can be described
in a compressed form using the source-filter parameters and its residual,
which corresponds to the difference between original and the re-synthesized
signal. LPC performs prediction at the sample level to compute the lin-
ear prediction coefficients for a given signal. Further investigations have
proposed predictive models similar to LPC that incorporate psychoacoustic
knowledge such as Perceptual Linear Predictive analysis (PLP) (Hermansky,
1990)) and models that focus on approximating the spectral changes rather
than the spectrum itself such as RASTA (Hermansky and Morgan, 1994).

Another example of prediction-driven processing is the computation of a
specific onset detection function, know as complex domain (Duxbury et al.,
2003b). The complex domain detection function is computed on a spectro-
gram by using both magnitude and phase information. For stationary sig-
nals, we assume that each spectrogram bin evolves linearly from one frame
to the next. It is then possible, for successive frames, to compute an estimate
of each incoming bin based on its last values. From this, the error between
estimated bins and actual bins is computed, resulting in the complex domain
detection function.

Overall, the techniques presented here achieve a form of crude prediction
on a low level basis, over a short time period. However, due to the short time
scale of the predictions made, these methods can hardly be considered as
models of of music perception. Following, we consider methods that analyze
the periodicity of musical audio signals over a larger time scale: musical
beats.

5.3.2 Beat-tracking as Expectation in Time

Beat tracking refers to the process of tracking periodic beat pulses in
audio signals. These pulses correspond to the signal tactus and are often
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easily estimated by listeners, even if they are non-musicians. From this,
it is possible to perform a segmentation of the audio signal or extract its
periodicity, for instance by computing the average Beats per Minute (BPM).
Beat tracking algorithms have been proposed in the last three decades, using
a variety of approaches, and were applied to either symbolic, MIDI or audio
data. Some approaches attempted only to compute the average periodicity
of a musical signal without identifying pulses, which is also referred to as
tempo estimation. Other approaches can additionally identify pulses (Goto
and Muraoka, 1995; Davies and Plumbley, 2005) or extract the finer-grained
metrical structure of musical signals (Dixon, 1997; Cemgil et al., 2002).

The techniques used for performing beat-tracking range from rule-based
models (Povel and Essens, 1985), autocorrelation methods (Davies and Plumb-
ley, 2005; Brossier, 2006), oscillating filters (Scheirer, 1998), histograming
methods (Gouyon and Herrera, 2003), multi-agent systems (Goto and Mu-
raoka, 1995; Goto, 2001), probabilistic approaches (Cemgil et al., 2002), and
multi-resolution analysis (Smith, 1996). We refer to Hainsworth (2006) for
a detailed review of these approaches.

Here, we focus on approaches that can process audio signals as they can
been seen as computational models of temporal expectation in the signal
domain. We need to make a distinction between models that process the
whole signal to be analyzed in a batch setting, and causal models that aim
at extracting the periodicity, pulse or metrical structure in the audio stream
analyzed so far, and that may be able to locate incoming time regions where
musical events may occur. As discussed by Hainsworth (2006), methods
such as oscillating filters make causal processing straightforward, while other
methods can not perform causal processing or need to be adapted to do so,
for instance by performing batch processing over a sliding analysis window.

From an expectation modelling viewpoint, a causal beat tracking system
may be seen as a temporal expectation system. At each point in time, the
system has to keep track of the most recent pulses and has to predict, based
on the pulse history and the current signal, where the subsequent pulse will
occur. Causal beat tracking is focused on expecting when the next pulse
is going to be perceived, without considering which acoustical cues will be
associated to that pulse. That is, they aim to answer the question of when
next events will be heard, and can possibly associate these events to a finer-
grained metrical structure. To this extent, beat-tracking approaches may
provide a useful basis in the context of expectation modelling, and can serve
either as a input of an expectation system or be part of the expectation
model. However, beat-tracking approaches do not aim at distinguishing
acoustical cues in audio signal, and do not inform about what is going to
be heard next. When developing our expectation model in Chapter 6, we
will show how some components of the system are related to beat-tracking
approaches.
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Figure 5.1: Block diagram of a prediction-driven computational auditory
scene analysis system, from (Ellis, 1996).

5.3.3 Prediction-driven computational auditory scene
analysis

The idea of building a system that can represent audio signals in a com-
pact form to learn their structure and anticipate forthcoming events has been
introduced by Ellis (1996). The author proposes a computational framework
where the tasks of representing the acoustic stream and predicting its con-
tinuation are closely linked. This model is aimed to provide a more plausible
alternative to standard auditory scene analysis models (Cooke, 1993; Brown,
1993). Those models are seen by the author as “data-driven" because they
compute representations of the acoustic stream based on the low-level fea-
tures only, without considering in which context these features are computed.
Such data-driven approaches make it difficult to deal with ambiguous and
noisy signals. Those ambiguities may be compensated in a model considering
some knowledge about the signal structure. Furthermore, the author sug-
gests that the temporal dynamics of the listening process requires to build an
incremental model, which performs analysis in strictly advancing time steps,
instead of of performing batch processing of waveforms. A block diagram of
the presented model is shown in Figure 5.1.

The auditory front-end feeds the system core engine, which is is charge
of reconciliating the low level observations with an “internal model of the
sound-producing entities in the environment*. That is, the engine has to
adapt both the world model and the sensory input to find some degree of
agreement between them. The world model is itself based on a representation
of the signal, which has be chosen to provide a very general description,
intended to deal with the broad auditory environment of human perception.
Three acoustic units are used to describe the acoustic environment: noise
units, tonal units and transients. The system does not take into account
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Figure 5.2: Diagram of the evolution of various alternative explanations
from a simple example involving noise sounds, from (Ellis, 1996). From
left to right: a root hypothesis concerning an event occurrence at a given
time gives rise to a tree of possible observations concerning future auditory
objects.

finer-grained details so that similar sounds with specific differences can be
described the same way. This model makes use of a blackboard architecture,
which is a functional model of memory and representation. The blackboard
provides a computational framework to allow various competing hypotheses
at different levels of abstraction to be considered which gives representational
power to the system. We show in Figure 5.2 an example of competing
representation that can emerge from FEllis system analyzing an audio excerpt
of a simple experiment from Bregman.

The diagram shown in Figure 5.2 shows the various competing hypothe-
ses that can emerge from the analysis of a simple excerpt. An issue raised by
this type of model is the scalability of the system when considering a richer
representation. If our aim is to model -even in rough form- the dynamics of
musical excerpt, we will need to consider a richer representation of events for
an extended temporal context. In this case, a blackboard approach would
quickly face combinatorial explosion issues. Ellis’ model is applied to some
analysis tasks, which includes auditory material such as voices and envi-
ronmental sounds. The system is able to re-synthesize its representation of
auditory events, which allows validation by listeners. Ellis has formulated
a key modelling principle: an incremental system with a prediction to per-
ception feedback loop. However, we need to refine and adapt the model
to accommodate the representation of higher-order structures that may be
suitable to represent musical information.
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5.4 Information-Theoretic Approaches

We finally review systems that use an information-theoretic approach to
audio analysis and that have proposed a formalism to define prediction in
audio signals. Abdallah (2002) considers redundancy reduction and unsu-
pervised learning applied to musical and spoken audio (either waveform or
spectral distribution), and reports a set of experiments aimed at defining
a base representation of audio signals. Lewicki (2002) follows a similar ap-
proach to represent natural sounds. Abdallah also sketches how a musical
system may exhibit degrees of suprise in a way rooted in perception and
information theory. From an information-theoretic viewpoint, the musical
signal can be viewed as an information source. This source is then trans-
mitted to a listener (receiver) through a noisy information channel. As a
consequence of this, the listener perceives both musical structure and noise
associated to the transmission of the musical content. As such, information
theoretic models include both the musical signal and the listener into the
music perception model. This provides an alternative account to analysis of
musical signals by considering the predictability of their structure from the
listener’s point of view instead of merely computing statistics on the musical
signal itself as it is done in most works listed in Section 5.2 and more gen-
erally in MIR systems. According to Abdallah and Plumbley (2009), “the
general thesis is that perceptible qualities and subjective states like uncer-
tainty, surprise, complexity, tension, and interestingness are closely related
to information-theoretic quantities like entropy, relative entropy, and mutual
information.” Pearce and Wiggins (2004) use entropy and cross-entropy to
evaluate whether statistical models can learn symbolic monophonic melodies.
The entropy rate, denoted H(X|Z), reflects the instantaneous certainty of
statistical models to characterize the current X observations given Z past
observations , while cross-entropy applied to test melodies informs about the
generalization accuracy of a learned statistical model.

Dubnov (2006) introduces a model of transmission of the musical signal
over a time-channel. In this model, "The input to the channel is the history
of the signal up to the current point in time, and the output is its next
(present) sample." The channel receiver makes a prediction of the upcoming
sample based on the history of samples it has received so far. Therefore,
it is possible to compare the receiver prediction with the next sample to
be transmitted. The Information Rate (IR) is a measure of how the infor-
mation is transmitted from the source to the receiver in the time-channel.
Dubnov derives the IR model from this measure, and applies it to scalar
and multivariate musical signals. The unidimensional IR case is shown to be
equivalent to using a descriptor known as Spectral Flatness (Jayant and Noll,
1984). In the multivariate case, the model can process musical signal rep-
resented with multi-dimensional audio descriptors. The model is extended
in (Dubnov, 2008), where an additional recurrence analysis component en-
ables to detect repetitions in blocks on a larger time scale. In this case, two
parallel processes take place, one focusing on short-term frames of signal to
compute a so-called data-IR, and the other focusing on long-term frames to
compute the model-IR. Applications to audio signals such as natural sounds
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and classical music are presented in (Dubnov, 2006, 2008). Cont (2008) dis-
cusses and extends the IR model in his thesis. Abdallah (2008) discusses the
validity of Dubnov’s IR measure and proposes further information measures
in (Abdallah and Plumbley, 2009), where the authors propose to compute
the average predictive information rate, noted I(X,Y|Z) which may be seen
as the average rate at which new information arrives about the present and
future observations X and Y, given past observations Z. In an experiment
using a simple Markov-chain model applied to two Philip Glass minimalis-
tic music pieces, the authors show that these measures reveal the structure
of the pieces in agreement with the judgment of a human expert listener.
However, Abdallah’s model was not tested on representations derived from
audio signals.

5.5 Concluding remarks

Overall, information-theoretic approaches provide a convenient and el-
egant framework to formulate issues such as signal representation and ex-
pectation, and may be applied to different representations of musical sig-
nals, either in a symbolic form or as audio excerpts. Furthermore, the idea
of deriving a useful representation of musical signals in a purely unsuper-
vised way - instead of crafting specific representation algorithms for specific
tasks - is appealing. However, more work is needed in this area to give re-
searchers ways of extracting musical structure as those found in state of the
art MIR systems. As an alternative to pure MIR-centered and Information-
theoretic systems, we will propose in next chapter a hybrid approach. Some
typical components from MIR systems will be used to provide a mid-level
representation of audio events, those events will in turn be processed in
an information-theoretic fashion to further organize them and enables their
prediction.






CHAPTER

The What /When
expectation model

6.1 Chapter summary

Our model of music expectation is aimed at combining audio signal rep-
resentation and the generation of future occurrences in this representation
within a single framework. A causal system to represent a stream of music
into musical events, and to generate further expected events, is presented
here. Starting from an auditory front-end which extracts timbral and tem-
poral features such as onsets and beats, a categorization process (either
supervised or unsupervised) builds and maintains a set of symbols aimed at
representing musical stream events using both timbre and time descriptions.
The time events are represented using inter-onset intervals relative to the
beats. We propose and compare three ways of combining time and timbre
dimensions regarding the prediction of the next event. Several alternatives
to timbre and timing description, cluster estimation and assignments are
considered.

These symbols are then processed by an expectation module using Pre-
dictive Partial Match, a multiscale technique based on N-grams. To char-
acterize the ability of the system to generate an expectation that matches
both ground truth and system transcription, we introduce several measures
that take into account the uncertainty associated with the unsupervised en-
coding of the musical sequence. The system is evaluated using a database of
annotated drum recordings. We compare three approaches to combine tim-
ing (when) and timbre (what) expectation. The applications of this models,
including visualization and sonification of the expectation, are presented in
Chapter 7.
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6.2 Motivation

Our main focus lies in integrating a learning system which can constantly
learn aspects of the structure of musical audio signals while it listens to mu-
sical events, in a way that is inspired by cognitive principles. We propose a
causal and unsupervised system that learns the structure of an audio stream
and predicts how it will continue. Our system uses concepts and approaches
from a variety of research topics: automatic music transcription, unsuper-
vised learning and model selection, and symbolic statistical learning. A
mid-level representation of the signal is constructed as a discrete sequence
of symbols representing time dependencies between events and timbre prop-
erties. A prediction of the subsequent symbols can then be provided, from
which the system can then predict the nature and the timing of the next mu-
sical event. As such, the system prediction algorithm is symbolic, but the
system is responsible of producing a symbolic representation of the musical
stream in an unsupervised manner (i.e. the symbols are based on acoustic
information).

From a general viewpoint, we assume a musical sequence as being a
succession of musical events with intrinsic properties (e.g. pitch, loudness,
timbre) which are heard at a given time. While the musical sequence is
attended, timbre and timing patterns perceived so far (among other musical
information that is not considered in this paper) can be used to provide
a prediction of the next musical event to be heard. The prediction can
be made over several dimensions, e.g. the timbre properties of the next
event to be heard (what) or the temporal location of the next event (when).
Distinct strategies may be used by listeners to combine predictions along
these dimensions. Even tough in the case of timbre recent evidence points
to the possibility that certain timbre dimensions (e.g., attack slope, spectral
centre of gravity, etc.) could be processed separately (Caclin et al., 2006) we
will consider timbre as a nonseparable dimension to be used for predicting
events. From the physiological literature, it seems to be a separation between
the circuits dealing with the detection of violations of musical expectancies or
predictions (in the ventrolateral prefrontal cortex), and the circuits dealing
with the processing of perceptual objects and their monitoring in working
memory in the dorsolateral prefrontal cortex and posterior parietal cortex
(Sridharan et al., 2007).

In addition, we may assume a functional and physiological separation be-
tween sequential processing (related to musical syntax and grammar) which
could take place in Broca’s area (Maess et al., 2001) and the processing of
timing information, which could be happening at the right temporal audi-
tory cortex and superior temporal gyrus (Peretz and Zatorre, 2005)). From
these physiological considerations we could address the prediction of what
and when dimensions as two independent processes which may be modeled
with two independent predictors.

However, from the Auditory Scene Analysis (Bregman, 1990) point of
view, sound events may be separated into different auditory objects (audi-
tory stream segregation) or assigned to a single auditory object (auditory
stream fusion). This depends on the intrinsic properties of the musical events
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(e.g. timbre, pitch) and the timing of the events. If auditory stream inte-
gration takes place, each event may be described as how it differs from the
preceding event in terms of timbre and timing. In this sense, the what and
when dimensions might be merged into a unique dimension, which would
be modeled with a unique next-event predictor. Finally, if auditory stream
segregation takes place, a different representation of the events has to be
considered. In a perceptual experiment (Creel et al., 2004), while the statis-
tical regularities between nonadjacent tones were hardly learned when the
musical sequence contained events which were similar in pitch or timbre,
these regularities could be acquired when the temporally nonadjacent events
differed in pitch range or timbre. Therefore, if a musical sequence can be
perceptually segregated into separate timbre streams, the temporal depen-
dencies between events might be computed (to a certain extent) from the
separate timbre stream rather than from the temporally adjacent elements.
This could be modeled by considering each segregated stream as a separate
dimension which would be modeled with a stream-specific timing predic-
tor. The system we present in this chapter enables us to implement these
three strategies and compare them empirically using a database of annotated
sequences of percussive events.

6.3 Overview of the system

The system has the following modules: feature extraction, dimensionality
reduction, and next event prediction. These components, all of which run
simultaneously when the system is following a musical stream, are shown in
Figure 6.1. First, the feature extraction module is the audio front-end, which
extracts timbre descriptors, onsets and beats from the incoming signal. This
module is based on the Aubio library (Brossier, 2006). Each extracted hit
is encoded in the dimensionality reduction module based on both time and
timbre description, following an unsupervised scheme. Therefore, we obtain
a symbolic representation of the incoming events, to be used by the next
event prediction module.

6.4 Low and Mid-level Feature Extraction

6.4.1 Analysis Settings

The audio stream is analyzed using a window size of 1024 samples (23
ms using a sampling rate of 44 KHz) with 50 percent overlap. We apply a
Hamming window before computing the Fast Fourier Transform (with the
same window size) to perform spectral analysis.

6.4.2 Temporal detection

Onsets are extracted as events are presented. Optionally, beat locations
are extracted, and combined with onsets to produce a tempo-independent
timing characterization between successive events. We present the methods
used for achieving both onset detection and beat tracking tasks.
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Figure 6.1: System diagram. Feedforward connections (left to right) create a
stream of symbols to be learned. Feedback connections (right to left) enable
symbolic predictions to be mapped back into absolute time. IOI refers to
Inter-Onset Interval, as explained in the next section.

Onset detection We compare different onset detection techniques that
are available in the Aubio library. The methods we compare are the follow-
ing:
— High-Frequency Content (HFC, (Masri, 1996)), obtained by summing
the linearly-weighted values of the spectral magnitudes
— Complex domain (Duxbury et al., 2003a), obtained by observing the
fluctuation of the spectrum in the complex domain, thus taking ad-
vantage of both phase and magnitude.
— Dual: a hybrid function which combines the complex domain function
with a function based on the KL-divergence.
Details and evaluation for these algorithms are available in (Brossier, 2006).

Beat tracking Beat tracking can be applied to provide time anchors from
which it is possible to describe inter-onsets intervals in a beat relative fashion.
This would enable the system to create a tempo-invariant representation of
time. The tempo detection algorithm is based on (Davies et al., 2005). This
algorithm is based on the autocorrelation of the onset detection function. A
comb filter is applied to the resulting autocorrelation function, leading to an
histogram of the period candidates. The histogram peak is then selected as
the detected period, denoted Period(t).

6.4.3 Inter Onset Intervals Characterization

We propose here alternatives to characterize timing relations between
events. As an outcome of the temporal detection, the duration between
successive events can be measured. These intervals can be seen as an absolute
difference of onset times, or as beat-relative difference.
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Inter Onset Interval If an onset occurs at time t.y,.-, and the previous
onset has occurred at time ¢p,., we can derive the absolute Inter Onset
Interval (IOI) as:

IOI(t) = teurr — tprev (61)

Beat-Relative Inter Onset Interval Based on this, for each new event,
the beat-relative inter-onset interval (BRIOI) is computed as follows:

BRIOI(t) = 1% (6.2)

where TOI(t) refers to the inter-onset interval between the current event
onset and the previous onset, and Period(t) refers to the current extracted
beat period.

Cluster-Wise Inter Onset Intervals Each incoming event belongs to a
timbre class. In Section 6.5 we propose an unsupervised approach to assign
a timbre symbol to incoming events. This makes it possible to compute
IOI between events that belong to the same timbre category, instead of
characterizing IOI between successive events of distinct timbre classes.

Beat Relative Cluster-Wise Inter Onset Intervals can be computed
similarly to BRIOI.

6.4.4 Timbre Description

We use 13 Mel-Frequency Cepstrum Coefficients (Davis and Mermelstein,
1980). We have implemented the MFCC in the Aubio library (Brossier, 2006)
following Slaney’s MATLAB implementation, using 40 filters. We compute
the median of each coefficient over a 100 ms window starting from the onset
frame, in order to represent both attack and tail of the detected event. The
value of 100 ms is chosen as a tradeoff allowing to either represent short,
percussive sounds or longer sustained sounds.

6.5 Event quantization in the time and timbre space

In the dimensionality reduction and event quantization stage, our system
assigns detected events to discrete time and timbre categories, thus creating
a symbolic description of the audio stream. This is done by applying dimen-
sionality reduction and clustering techniques, as shown below. Therefore,
the output of this stage a set of cluster assignments corresponding to timbre
and timing properties of the detected events. We will see in Section 6.6.2
alternatives to recombine these cluster assignments to obtain the desired
symbolic representation.
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6.5.1 Bootstrap step

Before starting to effectively encode and expect musical events, the sys-
tem accumulates observations and therefore acts having a short-term mem-
ory buffer to gather statistics based on the incoming hits. During this accu-
mulation period, the system does not provide any prediction regarding the
future events. The processes involved here are (a) feature normalization,
(b) Principal Component Analysis (PCA) for dimensionality reduction and
(c) estimation of the number of clusters, for both timbre features and 101
While (a) and (c¢) are always performed, (b) is only applied to the timbre
features, and it is optional.

Bootstrap feature preprocessing

— Feature normalization: we normalize the accumulated timbre descrip-
tors and IOI so that they have zero-mean and unit variance. The initial
distribution of parameters is stored so that any normalized instance can
be mapped back into its initial feature space.

— PCA: A PCA can be performed on the bootstrap normalized timbre
features. In this case, instead of choosing the target dimensionality,
we choose the desired amount of explained variance of the projected
set compared to the original set.

The bootstrap information is stored as it enables to subsequently per-
form normalization and dimensionality reduction on new data (Figure 6.1,
left to right connection), or to expand and apply inverse normalization to
the projected data (Figure 6.1, right to left connection). Additionally, we
also store the normalized and projected short-term history, which is used to
estimate the number of clusters to work with. This step is presented in the
next paragraph.

Evaluating the number of symbols The number of clusters to represent
both IOTI and timbre events influences the performance of the system and has
to be chosen carefully during the bootstrap step. We perform first a cluster
estimation using a grid of Gaussian Mixture Models with diagonal covariance
matrix, trained with the Expectation-Maximization (EM) (Dempster et al.,
1977) algorithm, following a voting procedure derived from (Cournapeau,
2006).

If our maximum number of clusters is fixed to M, we need to perform
model fitting for all the cluster values from 1 to M and select the best model
by taking into account both likelihood to the data and model complexity. Ad-
ditionally, for each cluster number, we run R independent processes, which
provides a better robustness to our estimation. Therefore, we create an es-
timation grid in which R M, where M is the maximum number of clusters
we allow, and R is the number of independent runs. Each column of the grid
represents R models with an increasing number of clusters, from one to M.
We train each grid model with EM, using 20 iterations. Once the grids are
trained we proceed to the model selection step by computing information
criteria as explained below.
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Information criteria for model selection Each grid model can be de-
scribed with the following parameters. First, the maximized likelihood, de-
noted by L, is a quantitative measure of how the trained model fits the
data. The number of free parameters, K, measures how complex the model
is. The number of samples N is the number of instances present in the
short-term history (see previous paragraph). Different information criteria
(IC) have been used in the model selection literature, which are described
below. First, the Bayesian Information Criterion (BIC) (Schwarz, 1978) is
defined as follows:

BIC = —2In(L) + K In(N) (6.3)

The BIC strongly penalizes complex models. Models with few parameters
and which maximize the data likelihood minimize the BIC. Akaike (1974)
proposes another information criterion which penalizes less the model com-
plexity, but does not take into account the amount of available data.

AIC = 2K — 21In(L). (6.4)

In Section 6.7, we will compare the performance of the system when
either BIC or AIC are used to determine the number of clusters in the data.
To decide the final number of clusters we compute the median over the
Cross-runs:

K = median; <;<g(argmin; < ;< (IC)) (6.5)

As an outcome, the estimated number of timbre and IOI clusters is noted
Kpimpre and Kjog respectively.

6.5.2 Running state

Once the clusters have been estimated for timbre features and BRIOI, we
have to generate cluster assignments for incoming instances and update the
clusters to take into account these new instances. To achieve this, we use an
online K-means algorithm, with each cluster mean vector being initialized
by the GMM model selected at the end of the bootstrap step. A cluster is
assigned to each instance x following:

ky = argming |2 — px| (6.6)

where py is the k-th cluster mean. Then the mean of the assigned cluster is
updated following:

Apg, = n(z — p,) (6.7)

Here 7 is the learning rate, which controls how much each new instance
influences the mean update of its assigned cluster. Values near zero have the
effect of quantizing the incoming instance to the cluster mean, while values
near one tend to shift the cluster mean towards the instance assigned to
it. We have experimented with values comprised between 0.1 and 0.9, and
have also implemented an optimal learning rate schedule, following (Bottou,
2004). In this latter case, the learning rate depends on how many instances
a given cluster centroid represents.



68 CHAPTER 6. THE WHAT/WHEN EXPECTATION MODEL

Then the optimal learning rate can be computed as:

opt __ 1

U e (6.8)

where nj represents the current number of data points in cluster k.

We illustrate the overall timbre encoding process in Figure 6.2 using a
commercial drum’n bass pattern (Audio.l). The normalized distance in-
volved in the cluster assignment step is obtained at the end of the bootstrap
step. A principal component analysis has been used to project the internal
timbre description into two dimensions.
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Figure 6.2: Timbre clusters assigned to each event after exposure to a com-
mercial drum’n bass pattern (Audio.1). The timbre descriptors are MFCC.
Crosses, squares and triangles represent points assigned to a specific timbre
cluster.

Finally, we show in Figure 6.3, the BRIOI cluster assignments when
processing the same excerpt. The figure shows the raw, unclustered BRIOI
histogram (bottom), and the histogram of clustered BRIOI (top), i.e. in
which each BRIOI event has been substituted by the current mean of its
assigned cluster. We can see that the IOI clustering process performs a kind
of "soft" quantization of the raw 101 values.

6.6 From representation to expectation

6.6.1 Multi-scale N-grams

The prediction module has to deduce the most likely future events based
on the sequence observed so far. We treat the incoming encoded signal as


http://www.dtic.upf.edu/~ahazan/thesis/audio/percloop-original.wav
http://www.dtic.upf.edu/~ahazan/thesis/audio/percloop-original.wav
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Figure 6.3: Unclustered and clustered BRIOI histograms after exposure to
a commercial drum’n bass pattern.

a sequence of symbols and use a symbolic expectation algorithm. In this
work, we use the Prediction by Partial Match (PPM) (Cleary and Witten,
1984) algorithm. PPM is a multiscale prediction technique based on N-
grams, which has been applied to lossless compression and to the statistical
modelling of symbolic pitch sequences (Pearce and Wiggins, 2004). In N-
gram modelling, the probability distribution of the next symbol is computed
based on the count of the sub-sequences preceding each possible symbol.
The probability distribution of the next symbol e;, where 1 < i < K,

given the context sequence e(l 1n) 41 is:
pleslel” ) = (e’|el(z y+1) if C(ez‘e(z n)+1) >0
(i~ n)+1 v(e (l,n)ﬂ) (ez\e (i n)+2) if c(el\e )+1) =0

where c(e;|e’ is the number of counts of each symbol e; following

(i— n)+1)
the subsequence e(z 1n) 4+1- The symbol counts, given each possible subse-
quence of size n, are stored in a transition table containing K™ rows and K
columns. When a symbol has not appeared after e(l n) 41, the model per-
forms a recursive backoff to a lower-order context. Here we use a PPM model
with escape method C (Moffat, 1990) and update exclusion, which provides
a reasonable tradeoff between accuracy and complexity. In addition, v and

« are defined as follows:

t(ei-il )
(i—n)+1
YeilelZnyn) = 5o ; o
(= ”)+1 >k C(e(ijn)Jrl) +t(e(i*1n)+1)
(61|e(1 n)+1)
e _ (6.10)
e n)+1 Z ( |e(z n)+1) (e(ij")+1>
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In Equations 6.10 and 6.9, the quantity t(e{ ) is the number of different
symbols which have appeared in the subsequence €], j > i.

6.6.2 Combining timbre and time: expectation schemes

The PPM predictor presented above produces an expectation of the next
symbol to be observed given the observed context. We are interested in
providing two predictions, concerning the timbre category and 101 category
of the future event to be perceived. We propose to compare three expectation
schemes whose graphical models are illustrated in Figure 6.4.

1. independent sch
& \/FA.
( (X X
Timbre .1 Timbre Timbre .,

101 el 101 t 101 41

2. joint scheme

Timbre® 101 Timbre® 101 ¢ Timbre® 101l ;

t-n+1

3. when|what scheme

e

LN
timbre 1 timbre 1 timbre 1
101 tnt1 101 t 101 41
LN )
timbre 2 timbre 2 timbre 2
101 tnel 101 t 101 41
[ ]
[ ]
[ ]
timbre N timbre N timbre N
101 tnel 101 t 101 41

Figure 6.4: Graphical models of three schemes for combining what and when
prediction.

Independent what/when prediction scheme Two independent PPM
symbolic predictors are used. The random variables Timbre and IOI are
thus considered independent.
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Joint prediction scheme After the bootstrap step, the number of timbre
and IOI symbols Kr1impre and K;o; has been determined. From this, a new
set of symbols denoted Timbre®IOI is created. This set contains exhaustive
combinations of timbre and IOI symbols, therefore it has Krimpre ¥ Kror
elements. This approach can lead to high memory requirements if Kp;ppre *
K01 becomes high. In this case, a unique PPM predictor is used to predict
the symbol Timbre @ 1014 .

When|what prediction scheme FEach timbre cluster is associated with
a specific cluster-wise IOI symbol predictor (see Section 6.4.3). This means
that for each timbre cluster, there is a predictor which provides a guess of
when an event belonging to the same timbre cluster will appear.

6.6.3 Scheme-dependent representation architecture

Depending of the expectation scheme used, the representation layer pro-
cesses need to be adjusted to create a relevant set of timbre and/or time
symbols. Here, we show the building blocks of the representation layer for
the following schemes:

— Joint and independent scheme: both timbre and time symbols are
created to either serve as input to two independent predictors (inde-
pendent scheme) or be recombined into a set of combined timbre/time
symbols (joint scheme) We show a block diagram of this configuration
in Figure 6.5.

— When|what prediction scheme: IOI between events of the same timbre
category are categorized by category-wise online K-means processes.
Symbols are then given as input to a set of IOI symbol predictors, one
for each category. The representation block diagram for this configu-
ration is shown in Figure 6.6.

Audio In
l Timbre
- Symbol
Timbre Attack N PCA Online ymbo
Descriptors Descriptors | ] orm 1> ] K-Means ’
Timbre
Distance
Onsets 101
) 10l
Online Symbol
Beats BRIOI | Norm K-Means ,

(o]}
Distance

Figure 6.5: Block diagram of the representation layer used for independent
and joint expectation schemes. Directed arrows represent the data processing
flow, thick boxes represent processes that are initialized during the bootstrap
step. Additionally, the distances involved in the categorization process are
shown with rounded boxes.
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Audjo In
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Figure 6.6: Block diagram of the representation layer used for when|what
scheme. In this example, the number of timbre clusters is three, as result
of the estimation in the bootstrap step. Directed arrows represent the data
processing flow, thick boxes represent processes that are initialized during
the bootstrap step. Additionally, the distances involved in the categorization
process are shown with rounded boxes.

6.6.4 Unfolding time expectation

Based on the symbolic expectation generated, we can produce a timbre
and BRIOI symbol expectation. From this, we apply an inverse normaliza-
tion of the mean of the chosen BRIOI cluster and scale it to the current
extracted tempo to obtain the absolute time position of the expected on-
set for the expected timbre cluster. Following we show in Figure 6.7 both
transcription and expectation timelines obtained during exposure to a drum
example. Here Kr;mpre equals 3. While the beginning of the expectation
timeline only contains events of timbre cluster #1 with random inter onset
intervals, after a few seconds events from timbre cluster #3 start to be pre-
dicted following the transcription pattern. Then, the IOI pattern involving
timbre cluster #1 events is learned, progressively followed by the timbre
cluster #2 pattern.

6.7 System evaluation

In this section we present an evaluation of the system using a database
of drum patterns. We first introduce a range of performance metrics for this
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Figure 6.7: Comparison of transcription (top) and expectation (bottom)
during exposure to an artificial drum pattern. Vertical colored lines indicate
detected and expected events belonging to different timbre clusters. The
vertical axis indicates time, after the bootstrap step has been performed.

task. We then present an experiment involving predictive learning of drum
patterns.

6.7.1 Performance metrics

Our system produces an on-line transcription of the incoming audio
stream and estimates, for each run, the optimal number of clusters to be
used to produce a transcription. The transcription is used in turn to pro-
duce an expectation timeline which contains the same number of clusters
than the transcription. Consequently, by using a database of annotated
audio excerpts, several comparisons can be made. First, the transcription
accuracy can be computed. Then, the transcription and the expectation
produced by the system can be compared, without taking into account the
annotations. To this respect, it would be desirable to know about violations
of expectancies when human listeners learn a set specific musical patterns.
Unfortunately such experiments have not yet been performed, and would
require a careful choice of rhythms and acoustic stimuli. Finally the expec-
tation timeline can be compared to the ground truth annotations. In this
section, we present the performance metrics we use to achieve all these steps.

Comparison with the ground truth

Precision and recall applied to unsupervised transcription In the
context of unsupervised transcription it might be useful to compare a se-
quence of events transcribed in an unsupervised way with a ground truth
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annotation, where each ground truth event belongs to a fixed set of labels.
If the sequence transcribed is labeled we can evaluate the analysis derived
from the event detection and unsupervised clustering processes. We use a
measure introduced in (Marxer et al., 2007) and (Marxer et al., 2008) that
is designed to evaluate clustering when the mapping between the reference
classes and estimated clusters is unknown. The confusion matrix is first
constructed by using the onset matching technique presented by Brossier
(2006) adapted to multiple classes of onsets. Let us consider C' the number
of ground truth classes and K the number of clusters. We write n.; the
number of co-occurrences of class ¢ and cluster k, n. the total number of
occurrences of class ¢. Then we can express the precision and recall as:

Plek) = LD S fo>1 (6.11)
1 otherwise.
Nc k_l .
: fn.>1
Rlek) ={ 17 e 6.12
(e:K) { 1 otherwise. ( )

The pairs of precision and recall of each cluster are integrated to achieve
precision and recall measures per class. The integration is performed by do-
ing a weighted average of the precision and recall values of the co-occurrences,
among all occurrences of class c. The total precision and recall measures are
the weighted sums of the per-class measures.

We will use P and R to evaluate the transcription and prediction accuracy
of our system. When comparing the transcription timeline with the ground
truth we will call the precision measure Transcription Incremental Preci-
sion (TIP) and the recall measure Transcription Incremental Recall (TIR),
and derive from these measures the Transcription Incremental F-Measure
(TIFM ). When comparing the expectation timeline with the ground truth
we will use the terms FEzpectation Incremental Precision (EIP) for P and
Ezpectation Incremental Recall (EIR) for R, and from these measures we
derive the Ezpectation Incremental F-Measure (EIFM )

Other useful metrics In addition to the measures defined above, we
also consider a simple metric which compares the complexity of the system
representation with the timbre complexity of the attended signal. This can
be done straightforwardly by computing the class to cluster ratio as follows:

CCR = Krimbre (613)
CTimbre
where Crimpre 18 the number of different annotated timbre labels for this
excerpt, and Kp;mpre has been estimated at the end of the bootstrap step
(see Equation 6.5).

Finally, it may happen, if the sensitivity of the system is low, that the
bootstrap step leads to an estimate of timbre clusters equal to one. This is
clearly not desirable in the context of evaluating a system which combines
time and timbre dimension. For this reason, we introduce another statistic,
which we name P1, and define as the percentage of runs in which the estimate
of clusters led to one timbre cluster.
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Comparing expectation and transcription

Comparing expectation and transcription timelines is easier than a com-
parison against the ground truth, mainly because both timelines share the
same cluster representation. That is, the list of transcribed event onsets in-
dexed by cluster n can be compared directly to the the list of expected event
onsets indexed by cluster n by using onset detection related measures. We
could compute the average F-measure by comparing both transcribed and
expected timbre cluster onset times for each of the timbre clusters. How-
ever, such metrics cannot be considered here because of the variability of
the unsupervised encoding we use. That is, the encoder provides a number
of timbre clusters that is an approximation of the number of instrument or
acoustic categories. For instance, the encoder can return an estimate of five
timbre clusters for an excerpt containing three instruments. Consequently,
during the running state, few of these clusters are indeed used, because a vast
majority of the incoming instances are assigned to a subset of the estimated
clusters (in the example, three of the five estimated clusters). As a result,
the underrepresented clusters are likely to return very low F-measures, which
may in turn affect the average computed F-measure.

In (Hazan et al., 2007) we have proposed to use the weighted average
F-measure, which is defined as follows:

Ky
WFM =Y w;F, (6.14)

i=1

where K is the number of timbre clusters, each w; is obtained by dividing
the number of onsets assigned to cluster ¢ by the total number of onsets, and
F; is the standard F-measure between onsets assigned to cluster i, with + /-
50ms tolerance windows. The individual cluster-wise F-measures involved in
the resulting average computation are weighted by the proportion of events
appearing in that cluster. This enables us to reduce the contribution of
unused or scarcely-used timbre clusters.

Information-theoretic viewpoint: expectation entropy

For each incoming event, the entropy of each expectation can provide in-
formation about the certainty of the returned prediction. For each predictor,
the entropy can be computed as follows:

H(p)=- Z p(ei)logap(ei) (6.15)
1<i<K

where p(e;) is the next event estimated probability distribution over the set
of possible symbols K. For each detected event, a number of expectations
can be generated depending on the expectation scheme. The variation of
the prediction entropy signal may give additional information regarding the
structure of the attended stream. We will go back to this aspect when
presenting the results in Section 6.7.7.
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6.7.2 Experiment: Loop following

Based on the performance metrics introduced above, we present an em-
pirical evaluation based on a database of drum loops. These drum loops
provide a good evaluation material because they contain strokes with dif-
ferent acoustic properties, which are organized through time patterns of
varying complexity. The task, material and system settings are presented,
then we present and discuss the results. The task we propose to simulate is
the following: the system is initialized and it does not access any previously
trained models; it is exposed to a drum loop repeated several times; once
the system has accumulated enough information to perform the bootstrap
step and both timbre and IOI symbols are defined, the transcription and
expectation timelines are produced. From these, we can compute, at each
loop repetition, the statistics presented in previous section.

Material We have selected a subset of audio recordings from the ENST-
Drums database (Gillet and Richard, 2006). We use polyphonic drum loops
played by one drummer, namely drummer #2 in the database. The database
consists of 49 drum excerpts (called phrases in the database) of 9 different
styles, for a total of 5627 events. Most of the database patterns have a dura-
tion of approximately 10 seconds, that is, slightly more than the time needed
to perform the bootstrap computation. In order to observe the learning dy-
namics of the system, we need to work with longer excerpts. We therefore
have edited and looped the original signals 2, 4, 8 and 10 times, depending
on the experiment.

Annotations preprocessing As stated by Gillet and Richard (2006),
each drum excerpt was annotated following a semi-automatic process. For
instance, each cymbal has a distinct label and there is a distinction made
between open hi-hat and closed hi-hat. Because each drum excerpt was
recorded using 8 microphones, simultaneous strokes were also precisely anno-
tated. The average number of timbre labels present in each excerpt included
in our subset is 5.5.

Because our system is processing the input stream with a fixed frame
rate (the time precision is 11.6 ms) and performs timbre clustering as if
the input was monophonic, we decide to apply the following ground truth
preprocessing. If consecutive onsets follow one after the other so that they
are in the same analysis frame, we merge the annotated labels into one joint
label and keep as onset time the first onset of the consecutive attacks.

Experimental setting The system is designed to learn in a causal way,
therefore it may learn more accurately when being exposed to the excerpts
several times: this is why we have experimented with a number of repetitions
of the basic loop of 2, 4, 6, and 8. The other parameters (e.g. onset detec-
tion threshold, model selection information criterion, timbre PCA explained
variance, next event predictor context size) are varied for comparison pur-
poses as explained below. Unless explicitly notified, the default parameters
we use are listed in Table 6.1.
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Parameter Value
Descriptor set MFCC
Onset detection threshold 0.6
Onset detection Method Dual

PCA explained variance 0.6
# Bootstrap events 40
Maximum N-gram order 2
Model Selection Criterion AIC
On-line K-means 7 nopt

Table 6.1: Default parameters used for simulations

6.7.3 Results

This section presents the results of the evaluation whose details are pre-
sented in the previous section. Because our expectation system is made of
several components, we first present the evaluation of these components in
isolation. Then, we provide an overall system evaluation based on the system
transcription and expectation accuracies.

6.7.4 Evaluation of system components

It is possible to evaluate some of the system components by providing
them as input the data which can be extracted from the ground truth. Given
the ground truth annotations (i.e. onset times and labels), we can evaluate
some processing stages of the system, such as onset detection and timbre
clustering, in isolation. Other stages cannot be directly evaluated with the
annotations. The ENST-Drum data is not beat-marked, consequently we
have not performed an evaluation of the beat tracking component, and refer
to Brossier (2006) for an evaluation of this component. Also, some compo-
nents rely on a symbolic representation of time. This is the case of the 101
clustering component which provides IOI cluster labels as output, and the
next-event prediction component, which uses IOI cluster labels as input and
output. Concerning the symbolic expectation component, the PPM stage
has been evaluated using symbolic pitch sequences by Pearce and Wiggins
(2004). In our case, the symbolic representation we are going to feed to the
PPM will possibly be noisy, due to event detection and clustering errors.
However, we are interested in evaluating this component under this noisy
representation rather than in isolation as shown is Section 6.7.5. We first
present the results of the onset detection and timbre clustering stages, when
evaluated against ground truth annotations.

Onset Detection

We have first performed an evaluation of the onset detection component
by comparing the detected onsets with ground truth annotations, for three
onset detection functions labeled complex, dual, and hfc. We refer to Sec-
tion 6.4.2 for an overview of these methods. For each method, we have varied
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the threshold of the peak-picking stage. We used the database presented in
Section 6.7.2, and found that the best configuration was associated with
the dual detection function and a peak-picking threshold value of 0.6. The
corresponding F-measure is equal to 0.76, and is comparable to the results
obtained by the dual detection function in MIREX 2006!. However, the
results are lower than those of more recent onset detection techniques evalu-
ated on drum solos in MIREX 2009 2. Nevertheless, here we aim at showing
that the possibly noisy representation can still be exploited in further stages
of the system. In next section, we study how the automatic detection stage
affects the timbre clustering process.

Timbre Clustering

We report here the results obtained when evaluating the timbre clustering
component. We propose two evaluation settings in which the inter-onset re-
gions processed by the timbre clustering component are obtained differently.
In the first configuration, the regions correspond to the onsets provided by
the ground truth of the ENST-drums database. Thus we evaluate the timbre
clustering component in isolation. In the second configuration, the audio re-
gions correspond to the onsets computed by the onset detection component,
consequently we evaluate the overall accuracy of the combination of onset
detection and timbre clustering components.

The timbre clustering accuracy is largely influenced by the outcome of
the bootstrap process, in which a PCA can be trained on the bootstrap data,
and the estimation of the optimal number of clusters is performed. For this
reason, we vary the PCA desired explained variance between 0.1 and 0.8 (or
do not perform PCA at all), and the information criterion to be used (either
BIC or AIC).

Following, we present the mean transcription statistics obtained when
varying these parameters. For each run, we report the Transcription Incre-
mental F-measure (TIFM), the class to cluster ratio (CCR) and percentage
of estimates, and the percentage of estimates leading to one timbre cluster
(P1). In Table 6.2 the onset times from the ground truth annotations are
used, which enables to appreciate the accuracy of system based on a per-
fect onset detection process. In Table 6.3, the onset times are extracted
automatically.

On the one hand, the results corresponding to ground truth onsets show
that the combination of the amount of data compression (controlled by the
PCA desired variance) and the information criterion play an important role
in the outcoming timbre representation. In all cases, the TIFM lies between
0.509 and 0.572. The TIFM average for runs based on AIC (respectively
BIC) is 0.551 (respectively 0.536). However we see that AIC-based estima-
tion leads to a better estimation (mean CCR 0.753) than the BIC-based
estimation (mean CCR: 0.514). If both criteria tend to estimate less clus-

1. http://www.music-ir.org/mirex/2006/index.php/Audio_Onset_Detection_
Results

2. http://www.music-ir.org/mirex/2009/index.php/Audio_Onset_Detection_
Results:_Solo_Drum
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’ PCA var./Inf. Cr. ‘ AICGT BIOGT ‘
0.1 0.572 0.521 6.382 0.539 0.369 19.178
0.2 0.565 0.519 8.510 0.525 0.353 19.148
0.3 0.570 0.495 4.255 0.539 0.366 21.276
0.4 0.549 0.654 2.127 0.556 0.468 14.891
0.5 0.559 0.847 0.000 | 0.551 0.550 10.631
0.6 0.522 0.896 0.000 0.548 0.635 8.512
0.7 0.536 0.958 0.000 0.545 0.649 8.512
0.8 0.545 0.956 0.000 0.515 0.620 19.143
No 0.545 0.933 0.000 0.509 0.624 19.571

Table 6.2: Timbre clustering statistics for different bootstrap settings de-
pending on the PCA desired explained variance (“No” means no PCA is ap-
plied during bootstrap). The columns show the information criterion used.
AICgr and BICgr corresponds to runs that use the ground truth onsets.
For each run, the measures presented are, from left to right, Transcription
Incremental F-measure, Class to Cluster Ratio, and Percentage of estimates
leading to one timbre cluster.

ters than the ones available in the ground truth, the AIC estimation tends
to produce a higher number of timbre clusters. This is reflected in the P1
measure: AIC-based runs estimate a single cluster less frequently than BIC-
based runs. Overall, the AIC criterion can be seen as more sensitive than
the BIC. From this, the choice of the PCA explained variance is a tradeoff
between higher TIFM (low PCA explained variance) or higher CCR (high
PCA explained variance). Situations resulting in one single cluster render
the clustering process useless, since there is no information gain. The P1
statistic shows that the BIC-based estimation leads to a unique timbre clus-
ter in 20.21% of the runs in average, while the P1 of AIC-based runs has
a mean of 0.6%. Additionally, by comparing Tables 6.2 and 6.2, we can
see that when ground truth onsets are used, the resulting TIFM values are
slightly higher, the other parameters being fixed. This shows that when the
errors made by the detection stage are indeed propagated into further stages
of the system. However, the TIFM statistics follow the same trend in both
settings.

For the subsequent experiments, we choose to perform the bootstrap
estimation with the AIC criterion and a PCA explained variance of 0.6, as
a tradeoff to maximize both TIFM and CCR.

6.7.5 Expectation

After the system has completed the bootstrap step it generates expec-
tations. From this moment, we can evaluate how generated expectations
match both transcription and ground truth. We now present the distribu-
tion of the expectation statistics obtained when attending each excerpt of
the ENST subset as described in previous section.
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’ PCA var./Inf. Cr. ‘ AICTR BICTR
0.1 0.572 0.521 2.127 0.539 0.369 29.787
0.2 0.565 0.519 2.127 | 0.525 0.353 34.042
0.3 0.570 0.495 2.127 0.539 0.366 31.914
0.4 0.542 0.659 0.000 | 0.539 0.441 21.276
0.5 0.519 0.819 0.000 0.550 0.579 19.148
0.6 0.526 0.904 0.000 | 0.557 0.590 17.021
0.7 0.516 0.899 0.000 | 0.553 0.569 23.404
0.8 0.522 0.883 0.000 | 0.558 0.475 25.531
No 0.502 0.891 0.000 | 0.556 0.469 26.341

Table 6.3: Timbre clustering statistics for different bootstrap settings de-
pending on the PCA desired explained variance (“No” means no PCA is ap-
plied during bootstrap). The columns show the information criterion used.
AICTgr and BICTR correspond to runs using the detected onsets. For each
run, the measures presented are, from left to right, Transcription Incremen-
tal F-measure, Class to Cluster Ratio, and Percentage of estimates leading to
one timbre cluster. It can be seen that the overall TIFM values are slightly
lower than those obtained when ground truth onsets are available.

Influence of exposure

In this experiment, we aim to show the impact of exposure in the system
predictive accuracy. Our initial guess is that the system is sensitive to ex-
posure, but we aim at quantifying how each expectation scheme is sensitive
to repeated patterns. For each expectation scheme, we report in Figure 6.8
four independent runs in which we present to the system each drum pattern
repeated 2, 4, 6 and 8 times. All schemes are characterized by a high EIP
(greater than 0.65 in all cases) and a lower EIR, (lower than 0.42 in all cases).

As expected, when the number of repetitions increases we observe an in-
crease of all expectation statistics. In the case of the joint and independent
schemes, the WFM has the biggest increase, which means the PPM expec-
tator can take advantage of the repetitions to learn to provide a prediction
which matches its transcription. The other expectation statistics, which are
related to the ground truth, also increase -to a lesser extent- with an increas-
ing number of repetitions. The when|what scheme expectation statistics are
less affected by an increase in the number of repetitions. For this scheme, the
EIFM decreases when the number of repetitions goes from 6 to 8. Overall,
the results show that both joint and independent schemes enable the sys-
tem to create a internal representation which sequential regularities can be
learned, as shown by the WFM statistics. The WFM increase is less marked
when using the when|what scheme, suggesting that the resulting internal
representation does not contain such regularities. A reason of this may be
that the when|what scheme representation is not as robust to transcription
noise. We will go back to this in Section 6.8.
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Figure 6.8: Comparison of expectation statistics (EIP, EIR, EIFM, WFM) as
a function of the number of repetitions of a given loop. The three expectation
schemes are compared. Left: joint scheme, middle: independent scheme,
right: when|what scheme.

Influence of context size

As the PPM predictor we use to provide a prediction of the next event is
based on the observation of a context of fixed size N (see Section 6.6.1), we
are interested in measuring the impact of the prediction context size. Indeed,
the number of past items involved in the posterior probability computation
may affect the behavior of the learner by biasing it with predictions which are
too general (low N), or by overfitting the prediction (high N). In Figure 6.9
we show the average expectation statistics (EIP, EIR, EIFM and WFM)
plotted against the size of the context length N, which is varied from 1 to 6.

Overall, the joint scheme leads to the highest EIR and EIFM while the
independent scheme leads to the highest EIP. Both independent and joint
schemes exhibit a similar dependency to context size. Both models exhibit
an increase of the WFM when the context size varies from 2 to 4, and the
independent scheme WFM grows along the context size. This is not the case
of the when|what scheme, in which the expectation statistics exhibit almost
no variation with an increasing context size. Two factors may explain this:
first, the when|what scheme intrinsically needs less context to encode pat-
terns of rhythmic events, because the timing structures between events of
the same timbre category may be simpler to describe than those between
successive events regardless their timbre category. Consequently, structures
associated to the when|what scheme need less context to be learned. More-
over, whereas this first reason holds for an error-free representation of timing
structures, here the unsupervised transcription stage provides a noisy repre-
sentation of events. Events labeled with the wrong timbre category will give
rise to erroneous cluster-wise inter-onset intervals, which form the basis of
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the when|what scheme encoding. Overall, the when|what prediction scheme
may appear as a processing path that is less robust to transcription error
than the independent and join schemes.

joint indep whenwhat
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Figure 6.9: Comparison of expectation statistics (EIP, EIR, EIFM, WFM)
as a function of the maximum order used to provide a prediction of the next
event. The three expectation schemes are compared. Left: joint scheme,
middle: independent scheme, right: when|what scheme.

6.7.6 Expected onset detection

Because our system representation is unsupervised and the number of
timbre clusters is not fixed, it is not possible to directly compare the per-
formance of the transcription and expectation stages with existing systems.
However, we can can collapse the timeline of expected events into a train
of onsets, and compare these expected onsets with the ground truth using
standard evaluation techniques.

We report in Table 6.4 the results of comparing the train of expected
onsets, with the ground truth onsets. The parameters we use are the default
values presented in Table 6.1. These figures can be compared with the results
obtained in the onset detection evaluation in Section 6.7.4. The joint and
independent schemes lead to an expected F-measure which is above 0.6, that
is, about 15% lower than the onset transcription F-measure. The when|what
scheme leads to poorer onset expectation results.

Overall, the evaluation reported here shows that the expectation schemes
have distinct behavior with respect to the variations of the expectation statis-
tics depending of exposure and context size. While the joint and indepen-
dent schemes have a similar behavior (the joint scheme slightly outperforms
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’ joint \ indep \ when|what ‘
(0613 ]0.619 | 0424 |

Table 6.4: F-measure, computed between expected events and ground truth
annotations, as a function of the expectation scheme.

the independent scheme in most of the cases) and dependency to exposure
and context size, the when|what scheme exhibits worse performance and a
smaller dependency on exposure and context size. These findings will be
addressed in the discussion.

6.7.7 Expectation entropy and structure finding

We would like to analyze the time dynamics of the expectation signal.
Our aim is to assess if the expectation signal can provide an account of
the attended excerpt structure. To do this, we compute the instantaneous
prediction entropy during the analysis.

In Figure 6.10, we compute the entropy (following Equation 6.15) of both
BRIOI and timbre predictors when processing the commercial drum’n bass
excerpt we used as a running example. The basic loop boundaries, which are
unknown by the system, are shown using red vertical lines. We observe an
overall decreasing trend in the entropy curve. The basic loop consists itself
of four variations of the same rhythmic pattern, and this internal structure
appears plotted in the figure.
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Figure 6.10: Instantaneous Entropy of timbre (top) and BRIOI (bottom)
predictors for a commercial drum’n bass excerpt. The entropy signal appears
after 20s, when the bootstrap step has been performed. Globally, the entropy
displays a decreasing trend that corresponds to the learning of the excerpt.
Locally, we can see repeating patterns reflecting the loop structure.

It is worth noting that the prediction entropy can be useful for describing
other signals than drums loops. In the following example we use the joint
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expectation scheme to process a polyphonic piano recording, made of two
repeated parts, which are themselves made of two variations of the same
motive. We show in Figure 6.11 the instantaneous prediction entropy when
attending the piano excerpt repeated 8 times. After a the third repetition,
the entropy pattern adopts a shape that reflects the structure of the excerpt,
with high entropy values at the beginning of motives and low entropy values
marking the beginning of the sub-motives. This pattern may be compared
with the error pattern that is obtained by Elman (1990) when predicting
sequences of words (see Figure 3.7). After the sixth repetition, the entropy
pattern is altered, local entropy minima indicating motif boundaries become
local maxima. However, the entropy pattern keeps the periodicity that re-
flects the two motive repetitions.
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Figure 6.11: Instantaneous Entropy of the combined Timbre-IOI predictor
for a piano recording. The entropy signal appears after 20s, when the boot-
strap step has been performed. Vertical bars indicate repetitions of the ex-
cerpt, unknown by the system. After a few repetitions, the entropy pattern
settles and adopts a shape that reflects the structure of the excerpt.

Overall, we have shown here that the information of prediction entropy
dynamics may be used to reveal the overall structure and redundancies is
the analyzed signal. This finding may lead to enable the system to perform
on-line structural segmentation tasks. However, the scale of the structures
to be highlighted would need to be controlled to tune the system to specific
tasks. Moreover, as we have seen in Figure 6.11, the entropy signal pattern
seems to stabilize through several repetitions of an excerpt and is not stable
after a certain number of repetitions. However the results shown here are
promising as they show that a causal prediction-oriented listening system
can implicitly perform analysis tasks that are usually done by ad-hoc, offline
systems (Foote, 1999; Aucouturier and Sandler, 2001; Peeters et al., 2002;
Goto, 2003; Ong, 2006).

6.8 Discussion

We have presented a system that addresses simultaneously the detection
of temporal and timbre events, their categorization, and the prediction of
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forthcoming ones. The idea of describing the what/when musical stream
through the formation of a set of time and timbre categories is rooted in
experimental findings, as presented in Chapter 2. Here, we have discussed 3
different representation and expectation architectures, namely independent,
joint, and when|what schemes. Some of them having more physiological and
cognitive plausibility than others. Independently of the used architecture, we
have defined two main processing constraints, namely unsupervised learning
and causal processing. In our approach, we do not cope with an incremental
learning approach which is capable of constantly modifying itself by adding
or removing categories of timbre or durations. Instead, during a bootstrap
phase of the system, the number of clusters is estimated and they are ini-
tialized, before generating expectations. However, the constraints make our
approach distinct to supervised approaches to timbre transcription, where
the target timbre categories are known in advance. Our approach can also
accommodate a supervised transcription setting, as we will show in Section
6.8.

For validating the system in a unsupervised way, we have defined new
measures to evaluate both unsupervised transcription and unsupervised ex-
pectation tasks. We have run an evaluation of two system components (onset
detection and timbre clustering) and the combination of those two, which
represent the unsupervised transcription. These experiments have shown
that the way the information is represented (e.g. by varying the PCA ex-
plained variance) and the information criterion we use influence the timbre
events representation. The Incremental F-measure proposed by Marxer et al.
(2008) is a means of evaluating how close the set of symbols is to the ground
truth labels. However, additional measures are needed to assess the sensi-
tivity of the system. The Akaike information criterion does not penalize the
complexity as much as the Bayesian information criterion does. We find that
the Akaike criterion coupled with a moderate compression of the timbre fea-
tures (i.e. PCA explained variance of 0.6) leads to the best tradeoff between
complexity and similarity with the ground truth.

In our approach, the onsets phase is not explicitly encoded: the time
location of events relative to the previous beat is not taken into account,
which makes beat-tracking an optional process. Rather, inter-onset inter-
vals is the only timing information that is used. Even in this case, as noted
in Section 6.7.7, the expectation entropy signal may create an implicit phase
signal corresponding to the location of current event in a higher-level tem-
poral structure. Thus, our IOI-based time representation may be seen as a
complementary way of generating expectations compared to approaches that
explicitly rely on extracted beat, beat weight, or metrical hierarchy (Smith,
1996).

Furthermore, in none of the evaluated configurations we have been able
to reach an Expectation Incremental F-measure higher than 0.572 for the
evaluation dataset. For reference, the best performing MIREX 2005 drum
transcription entry (Yoshii et al., 2005), was evaluated to have an average F-
measure of 0.659 for a three-class transcription task. But in this latter work,
the task was to generate a transcription using a predefined set of classes. Be-
cause our system performs unsupervised transcription and expectation, the
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evaluation measures differ and these figures cannot be directly compared.
However, it would be a natural extension to our work to characterize the
performance of the expectation system in the context of supervised tran-
scription. This would allow us to directly compare the expectation statistics
with the transcription results of existing systems. To increase the transcrip-
tion accuracy, we aim at investigating how to combine a short-term repre-
sentation of timbre and time (e.g. bootstrap estimation) with a longer-term
representation which may involve a database of predefined timbre categories.

Concerning the performance of the whole expectation system, we can
make a distinction between the independent and joint schemes, for which
expectation performs in the same order of magnitude and depends on repe-
titions and context size, and the when|what scheme, for which expectation
performs worse and depends less on training duration and context size. To
explain this, we assume that the accuracy of the when|what scheme is more
crucially altered by errors in the transcription, because these errors generate
in turn errors in the representation of timing events by creating erroneous
clusters of inter-onset intervals. From a computational point of view, these
architectures may be seen as parallel processing paths. The independent and
joint schemes need more information to be stored (because transitions be-
tween timbre events are also encoded). The joint scheme space requirements
are higher because the transitions between all combinations of timbre and
time symbols are stored. From a musical point of view, the independent and
joint schemes would be able to code information about the musical surface,
such as melodies or drum solos.

Contrastingly, the transitions between timbre events are implicitly coded
in the when|what scheme. This makes its space requirements low when rep-
resenting rhythms (e.g. the time dependencies between onsets with same
timbre are simple, even if the sum of onsets over timbre forms a more com-
plex structure). However, to be properly applied to musical audio signals,
this scheme requires the transcription component to perform efficiently. The
transcription accuracy may be increased by using source separation (e.g.
via independent component analysis or non-negative matrix/tensor factor-
ization) instead of merging together simultaneous attacks. Also, the use
of a polyphonic detection model, in which two distinct timbre categories
can be detected at the same time, may make the when|what scheme more
competitive.

Whereas the independent scheme of inter-onsets captures rhythmical as-
pects encoded as durations between onsets, the independent scheme of tim-
bres encodes the regularities in the pure order of the events abstracting
from specific durations. The plausibility of the when|what scheme versus
the independent schemes depends on the degree of streaming. If a strong
tendency towards streaming yields the perception of separate synchronous
rhythms (for each particular percussion sounds, e.g. the hi-hat or bass drum
rhythm in isolation), the when/what scheme is preferred over the indepen-
dent scheme. The more interdependent the sound classes and their durations
(more precisely: 10Is) the more appropriate the joint scheme. Overall our
system could take advantage of combining these three schemes, which rep-
resent different statistical and musical viewpoints for pattern matching and
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expectation tasks.

Using supervised detection models In this chapter, we have empha-
sized the use of a unsupervised representation component, to show how a
general-purpose model can process distinct types of musical audio excerpts.
However, it is also possible to use a supervised transcription component, and
to plug-in this component into the expectation model. For instance, to han-
dle a polyphonic representation, we can use a set of binary classifiers (one
for each sound to be represented) in the representation layer. Therefore, we
can adapt the representation architecture corresponding to the when|what
prediction model depicted in Figure 6.6. The resulting architecture is shown
in Figure 6.12.

Audijo In
Timbre Attack Binary
Descriptors Descriptors [ >]  Norm > PCA Classifiers
Onsets
Class-specific
Class-wise Online 101 Symbol
101 ] Norm K-Means [——>
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Figure 6.12: Block diagram of the representation layer used for the
when|what in a supervised setting. We refer to the legend in Figure 6.5

The work presented here emphasizes the expectation as being a central
process involved in music listening. The ability of a system to form expec-
tation may serve as a measure of musical complexity. Expectation describes
structure by inducing a segmentation through points of high or low expecta-
tion. Finally, in the context of causal modelling, we can see the expectation
as a dynamic top-down control which may modulate lower-level processes
such as onset detection. In our what/when prediction framework, the ex-
pectation feedback may be provided to timbre-specific event detectors. In
the context of musical audio analysis, we view models of music expectation
as general components able to dynamically accumulate the structure of the
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drum loop # perc. | # comb. perc.
simple disco 5 5
complex funk ) 12

Table 6.5: Number of percussion sound classes (denoted perc.) and number
of combinations of simultaneous classes (denoted comb. perc.) in the two
examined drum patterns.

musical environment, and where the expectation signal may help to solve
more specific musical tasks.

6.9 Examples

Let us now illustrate the working of our system with two examples from
the ENST data base. The two drum patterns have contrasting degrees of
complexity. In the ENST data base they are called phrase  disco_ simple_
slow_ sticks (simple disco) and and phrase_ funk_ complex  fast_ sticks
(complez: funk). No source separation is performed as a preprocessing step.
Therefore, it should be considered how many different percussion sounds
appear in the drum samples and how many different combinations appear
(Table 6.5), since each sound combination may lead to a different cluster.
In our examples, we observe that estimated cluster numbers are less than
the numbers of percussion sounds. We have calculated the matching matrix
between the annotated onset events (’score’) of a class (e.g. chh bd=closed
hi-hat and bass drum played synchronously) and the detected onsets of a
cluster that has emerged in our system. In this matching matrix we can
iteratively yield the maximal entry thereby establishing a connection be-
tween a row (class) and a column (cluster). After elimination the row and
column of the maximal entry we determine the maximal entry again until
the matrix vanishes. This procedure endows us with an optimal mapping
between the classes and the clusters. In Figures 6.14 and 6.16, we display
sequences of classes and clusters on the same line if they are interconnected
through this mapping. For the simple disco pattern (Figure 6.14), it can
be seen that fragments of the basic pattern bass/open hi-hat/snare/closed
hi-hat are captured. The single cymbal instance is not captured. However,
one cluster (second highest row) can be interpreted as detecting the sustain
phase of the cymbal (three hits).

Considering the complex funk excerpt, we show in Figure 6.15 the first
half of the looped pattern. The score expressed as combination of instru-
ments, the sequence of detected timbre clusters and the expectations are
shown in Figure 6.16. The number of extracted clusters (six) is less than
the order of occurring combinations of percussion sounds (twelve). Several
sound combinations occur sparsely. The mapping between sounds and clus-
ters is not clear. The expectations cannot capture the complexity of the
pattern well.
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Figure 6.13: Acoustic properties of the detected attacks, plotted along their
2 first principal components. Colors and shapes indicate timbre clusters
assignments.
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Figure 6.15: Score of the complex funk excerpt.
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CHAPTER

Integration in Music
Processing Systems

7.1 Chapter Summary

The model presented with this thesis has been integrated in different
musical systems, each one highlighting specific aspects of it. The represen-
tation layer has been integrated into a real-time music transcription system.
The combination of representation and expectation modules has been the
basis of a software tool able to visualize and evaluate the ongoing represen-
tation expectation of an attended signal, which was developed within the
Emcap project'. Also, this tool allows the sonification of the expectation
process, that is, the generation of an audio rendition of the expected events
by means of concatenative synthesis, in a fully unsupervised setting. Sonifi-
cation provides a way of inspecting the internal dynamics of the what/when
expectation model. Finally, a real-time application has been designed to
provide a real-time visualization of the system expectations.

7.2 Integration of the Representation Layer

7.2.1 A library for high-level audio description

Various aspects of the representation layer described in this thesis have
been implemented in a C-++ library called Billaboop?. More generally,
Billaboop is a library which provides high-level interaction with audio, and
was designed to be included in real-time audio applications. On the one
hand, Billaboop is similar to the Aubio 2 library because it is intended to be a
low-latency library for causal and possibly real-time processing. On the other

1. http://emcap.iua.upf.es/
2. http://billaboop.com/1lib
3. http://aubio.org
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hand, Billaboop takes advantage of of a more structured and object-oriented
design in C++, which makes it similar to the libraries CLAM#, Marsyas °,
or Essentia®. Moreover, Billaboop aims at integrating audio analysis, data
modelling and machine learning tools in a single library.

First, the library provides a common framework for computing audio
descriptors either in the temporal or the spectral domain. Each low level de-
scriptor processing class is derived from the abstract Descriptor class. This
makes it easy to add new descriptors to the applications, and to add new de-
scriptors to the library analysis processing queue. The low-level descriptors
available so far are listed below:

— Zero Crossing rate

— Complex Domain Detection

— High Frequency Content

— Spectral Centroid

— Spectral Slope Regression

— Energies in Bark, Gammatone, and Mel filterbanks

— Mel-frequency Cepstrum Coefficients

The library also provides a set of mathematical and statistical tools that
enable to derive new descriptors from the base set. These tools include
methods such as linear regression, data normalization or peak picking. This
enables to easily build higher-level descriptors such as temporal regression
over the instantaneous energy of a given filterbank or onset detectors. Higher
level descriptors, resulting for a categorization process, can be extracted with
the following machine learning algorithms.

— K-Nearest Neighbours

— Support Vector Machines (SVM, using a wrapper to the libsvm 7 li-

brary)

— K-means clustering

— Online K-Means

The supervised algorithms can be run in testing mode based on previously
built models. However, it is also possible to train models from the library,
which is useful from running validation experiments or to provide embedded
learning in applications that use the library.

The Billaboop library thus provides supervised or unsupervised detection
of acoustic events based on arbitrary descriptors. The resulting higher-level
description of the incoming audio stream enables to perform the following
tasks:

— Query by audio similarity

— Query by cluster prototype

— Concatenative synthesis

Billaboop is available under the GNU general Public License (GNU GPL).
It has been tested on Windows, MacOSX and Linux environments. In the
next section we present a front-end to the transcription layer provided by
this library.

. http://clam-project.org

. http://marsyas.sness.net

. http://mtg.upf.edu/technologies/essentia
. http://www.csie.ntu.edu.tw/"cjlin/libsvm

RS N


http://clam-project.org
http://marsyas.sness.net
http://mtg.upf.edu/technologies/essentia
http://www.csie.ntu.edu.tw/~cjlin/libsvm

7.3. ANALYZING, EVALUATING AND SONIFIYING 93

7.2.2 Real-time interaction front-end

A real-time application called Billaboop Drums has been implemented to
provide a virtual drumming interface. The main idea is to provide to users
a real-time transcription of percussive strokes detected in the signal input.
The user can choose to use a predefined transcription model or to build one
within the application. This makes it possible to use arbitrary sounds (tool
drumming, hand clapping, beat boxing) to control the application. As a
result, the application returns either a MIDI transcription of the performed
rhythm or can control an internal sampler by performing query by similarity.

A screenshot of the Billaboop Drums VST plug-in is shown in Figure 7.1.
The vertical slider controls the onset detection sensitivity. Three target
classes are defined, namely Bass Drum, Snare Drum and Hi Hat. The radio
buttons auto, wizard, and edit enable to choose the sound detection recog-
nition mode. When running the auto recognition mode the programs uses a
previously built, general purpose sound classification model. As reported in
(Hazan, 2005b), this model has been trained on a dataset using sources from
professional and amateur beatboxers, as well as arbitrary sounds (e.g. keys,
spoon hitting a tea mug, handclaps). The accuracy of this model has been
discussed in (Hazan, 2005b), and showed that a cross-validation accuracy of
81% can be attained if the system has to return a decision in 11ms. This
makes this general model usable for real-time performance especially because
higher detection rates can be attained when a given user gets used to the
predefined model. However, in other cases it is preferable to allow the user
to build its own recognition model. This can be achieved on-line, using the
edit or wizard mode. In this case, the user provides a number of exemplar
acoustic strokes for each drum label. Then, the embedded learning compo-
nent provided by the Billaboop library enables to train a recognition model.
The wizard mode makes it faster to provide exemplar strokes by guiding the
user with spoken instructions without the need of using the graphical user
interface.

7.3 Analyzing, evaluating, and sonifiying
representation and expectation

We present in this section the command line tool used to perform ex-
pectation generation experiments using the what/when expectation model
presented in this thesis. This tool is called Billabio, and was first introduced
in (Hazan et al., 2007). Billabio is implemented in the Python® program-
ming language using the Numpy package”. The resource-intensive opera-
tions such as audio analysis are handled by two external libraries, namely
Aubio and Billaboop. The general system block diagram has been presented
in Figure 6.1. Additionally, detailed diagrams specific to a given expectation
scheme have been shown in Figure 6.5 and 6.6.

8. http://python.org
9. http://numpy.scipy.org
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BDRSDNHHEB N =

Figure 7.1: Screenshot of the Billaboop Drums VST plug-in.

The general idea behind this tool is to study the dynamics of the what /when
expectation system by providing visualization, evaluation and sonification of
the expectation process. The audio analysis stage corresponding to feature
extraction can be parametrized, allowing to choose from a set of descriptors.
The visualization module has been used to produce all the figures presented
in previous chapter. The evaluation can be performed either in an unsuper-
vised or supervised settings. In the latter case, annotated files corresponding
to each of the analyzed audio files need to be provided. The behaviour of
the system modules can be configured. We show in Table 7.1 the list of
command-line parameters that can be passed to the application. We report
the main parameters that can be controlled. First, the user launches the
analysis process by providing an audio file playlist. Indeed, because we use a
dynamic listening model, the ordering of the audio sources is important. The
number of repetitions can be provided. Then, the auditory front end can be
configured by choosing the onset detection thresholds and technique used,
the list of descriptors to use and the descriptors averaging technique, if any.
The dimensionality reduction module can be controlled by tuning the PCA
process and the online K-means clustering parameters. Finally, the expec-
tation module can be configured: the maximum context size to considered
by the PPM expectators and the expectation scheme can be chosen.
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Usage: ./billabio [options] soundfile [soundfile_2 soundfile_N]

Options:
-h, --help show this help message and exit
-B BUFSIZE, --bufsize=BUFSIZE
buffer size [default=1024]
-H HOPSIZE, --hopsize=HOPSIZE
overlap size [default=512]
-g NGRAMSIZE, --cngramsize=NGRAMSIZE
the size of the n-grams [default=5]
-s EXPECTATORSCHEME, --expscheme=EXPECTATORSCHEME
the expecator scheme [default=indep]
-t DETECTIONTHRESHOLD, --threshold=DETECTIONTHRESHOLD
onset detection threshold [default=0.5]
-p DOPLOT, --plot=DOPLOT
whether to plot the results on a separate window
(file/window/no) [default=no]
-S, --sonify whether to sonify the transcription and the
expectation
-r NREPEATS, --repeat=NREPEATS
how many times to repeat the input sound [default=1]
-d DESCMODE, --descmode=DESCMODE
whether to store each descriptors on the onset frame
or to compute the median the IOI region
(onset/ioi/onset2) [default=ioil
-D DESCLIST, --desclist=DESCLIST
which timbre descriptors we aim to use. The format is
"descl desc2", where the descriptors have to be chosen
from the keywords: sc, zcr, pitch, mfcc [default "zcr
sc pitch"]
-i INFOCRITERION, --infocriterion=INFOCRITERION
Model selection criterion (bic/aicc) [default aicc]
-e IOILRATE, --ioilrate=IOILRATE
ioi online k-means learning rate [default .3]
-f TIMBRELRATE, --timbrelrate=TIMBRELRATE
timbre online k-means learning rate [default .3]
-X, --pca whether to do PCA on timbre descriptors [default no]
-E, --eval whether to evaluate attended excerpt against ground
truth, for each loop
-P DBPATH, --dbpath=DBPATH
Database path, used for evaluation

Table 7.1: List of configurable parameters in the Billabio application

7.3.1 Implementation

The components of Billabio are written in the Python programming lan-
guage, which the exception of the audio analysis processes, which are im-
plemented in C. Both dimensionality reduction and next event prediction
modules, constituting the machine learning algorithms, are implemented us-
ing numpy. Additionally, we use the em package ° (Cournapeau, 2006) for

10. http://www.ar.media.kyoto-u.ac.jp/members/david/softwares/em
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applying the Expectation Maximization Algorithm, and the mdp package !
(Berkes and Zito, 2007) for performing the Principal Component Analysis.

7.3.2 Sonification

Additionally, the system enables to sonify the transcription and expec-
tation processes, as explained below. Expectation sonification provides a
simple but powerful tool for evaluating qualitatively the system dynamics
for encoding an audio input and generating an expectation signal. Basi-
cally, we design a system, inspired by Schwarz (2004), Collins (2004) and
Jehan (2005) based on data-driven concatenative synthesis, as explained be-
low. During the listening process, each inter-onset region is described using
some features (e.g. Zero Crossing Rate, Centroid, MFCC, Pitch). The inter-
onset region description is associated to a timbre cluster and the waveform
corresponding to this region is stored.

Consequently, we can resynthesize the transcription based on the ac-
cumulated slices and events cluster assignments. The expectation module
provides a timeline corresponding to the future onset times for each timbre
cluster. Based on this timeline, we retrieve, for each expected cluster, the
waveform which is prototypical for this cluster. This way, we can generate
an output audio stream which sonifies both encoding and expectation pro-
cesses. We include examples of expectation sonification for various audio
files, either containing pitched or percussive sounds, in Appendix B.

7.4 Real-Time What/When Expectation System

The real-time what/when expectation system(Hazan et al., 2008a) is an
application demonstrating the real-time use of the expectation model de-
veloped in Chapter 6 which illustrates the when|what prediction scheme.
As noted in Section 6.8, this prediction scheme enables the processing of
a polyphonic representation of events. Because this scheme is more sen-
sitive to the transcription noise than the joint and independent schemes,
it requires an accurate polyphonic detection model. The online K-means
algorithm we introduced in previous chapter cannot model the occurrence
of simultaneous strokes for different categories, for this reason we provide
here a supervised detection model that can handle a polyphonic representa-
tion of percussive strokes. The block diagram corresponding to a supervised
polyphonic detection model is shown in Figure 6.12. The representation of
acoustic units relies on a set of supervised classifiers that were trained on the
MAMI database (Tanghe et al., 2005b), which consists of annotated drum
samples in a polyphonic context. Our implementation allows the use of ar-
bitrary binary libsvm models for each sound detector. Here we have trained
four binary classifiers to detect the occurrence of the following labels: Bass
Drum, Snare Drum, Open Hat, and Closed Hat. The binary classifiers are
SVM models trained using the libsvm wrapper that is included in the Bill-
aboop library.

11. http://mdp-toolkit.sourceforge.net
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Past Future

Figure 7.2: Screenshot of the real-time what/when expectation system, ana-
lyzing the song Highway to Hell (AC/DC, 1979). Four stroke categories are
used, and correspond to four rows and colors.

Salient events in the incoming music stream are detected and categorized.
For each timbre category, expectation of the future events to be heard is com-
puted. The analysis, sonification, and the visualization of transcription and
expectation are done real-time, which enables an interactive user experience.
The visualization of musical events is divided into two parts: past (left) and
future (right). The vertical red line indicates the present. At each instant,
when a perceptual hit is detected, a point appears at the present. Detected
events of each category trigger a specific drum sample, in a way similar to
the Billaboop Drums implementation. The color and row correspond to a
specific timbre category. Detected stokes appear as solid colored balls, in
the present line and they scroll to the left as the acoustic stream is analyzed.
Based on the detected events, expectations are generated. Empty circles
corresponding to those expectations are consequently displayed as future
events, at the right of the present line. When a detected event matches and
expected event, this means that the expectation is fulfilled.

We show a screenshot of the system while processing a commercial record-
ing in Figure 7.2. The recording used for this example is Highway to Hell
(AC/DC, 1979). The detected and expected events correspond from to to
bottom, to the Bass Drum, Snare Drum, Open Hat and Closed Hat detection
models. We can see the expectation pattern displayed with empty circles.
Some expectations, namely in the Bass Drum, Snare Drum and Closed Hat
categories are matched. Also, we can notice in the top left corner a an un-
matched expectation for the Bass Drum, that corresponds to an event that
was missed by the detection model but was expected by the system, because
it was following the regularities of the Bass Drum pattern analyzed so far.
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7.5 Concluding remarks

In this dissertation we have stressed the interplay that takes place be-
tween representation, learning, and expectation. We have introduced in
this chapter different implementations that enable the comparison of design
alternatives, and proposed a musical system that allows the use of repre-
sentation and expectation models for processing spectro-temporal events in
musical audio signals. Of course, the representation we use does not allow
us to process some important events in music such as chords or harmony,
and by no means we claim to have proposed a system that can process all
kind of musical signals. As such, these tools and applications have to be
seen as a starting point for making representation and expectation models
available for processing musical audio, and are aimed to evolve into novel
application uses for research, compositional and interaction purposes. In
the next chapter, we summarize and discuss the whole approach presented
in this dissertation, and present general conclusions.



CHAPTER

Conclusions and future
work directions

In this dissertation, we have shown that it is possible to build a mu-
sic representation and expectation model that exhibits basic characteristics
found in auditory perception and cognitive systems:

— Causal processing: new acoustic information is processed as it becomes

available.

— Adaptation: Incoming information enables the refinement of the inter-
nal representation of musical sequences.

— Prediction: The sensory information and current representation of the
acoustic stream enables the formation of expectations regarding forth-
coming events.

These principles have formed the basic thread from which we have pre-

sented and discussed the following contributions.

8.1 Contributions

A prediction-based account of implicit learning We have proposed in
Chapter 4 an approach to modelling the acquisition of statistical regularities
in tone sequences. We have used two Artificial Neural Network architectures
to simulate the general learning trend observed by Saffran et al. (1999). Our
results show that the choice of the network architecture has little effect on the
post-exposure accuracy, which suggests that an extended temporal context
is not necessary to model this task.

The simulations based on interval representations such as Pitch Class
Interval or Contour did not consistently account for the experimental results.
However, using a tone sequence encoding based on Pitch Class, we observed,
for all experiments and languages, an increase of the categorization accuracy
of words versus non-words and words versus part-words in a population of
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prediction models after they have been exposed to tone sequences containing
statistical regularities.

In this learning modelling experiment, our main contribution is two-fold.
First, we showed that the choice of the representation of the musical events
must be taken into account when modelling music perception in humans and
machines, even when working in the symbolic domain. Furthermore, our re-
sults suggest that the common assumption that pitch sequences are encoded
as abstract interval values cannot be taken for granted. More importantly,
we have proposed a framework for simulating and evaluating the outcome of
sequence learning experiments based on the forced-choice task paradigm in
a way that allows for the comparison of arbitrary learning algorithms. This
framework is extensible and enables the assessment of whether learning ar-
chitectures can simulate further empirical findings using real-world musical
sequences (Schellenberg, 1996; Dalla Bella et al., 2003).

What/When expectation model We have presented an unsupervised
and causal approach to transcribe, encode and generate what and when
expectations based on constant-tempo musical audio, using both timbre and
timing dimensions. Our system analyzes and represents events based on
beats and onset, and creates a set of categories, in either an unsupervised
or supervised way to describe incoming events. Then, the model learns the
regularities of the incoming signal to create expectations. As such, this can
be considered as a mid-level approach to expectation modelling applied to
audio, if we compare it to systems that focus on auditory sequences (Brown,
1993; Cooke, 1993; Ellis, 1996), information-theoretic approaches that do not
explicitly extract semantic information from the musical audio (Abdallah,
2002; Dubnov, 2006; Cont, 2008), and models that focus on symbolic or
MIDI representations of music (Bharucha and Todd, 1989; Todd and Loy,
1991; Mozer, 1994; Tillmann et al., 2000; Lartillot et al., 2001; Pachet, 2003;
Eck and Schmidhuber, 2002; Pearce and Wiggins, 2004).

Alternatives to combining the what and when dimensions have been pre-
sented and evaluated. We have illustrated the steps involved in the fea-
ture extraction, dimensionality reduction, learning and expectation processes
and we have compared these steps quantitatively using a corpus of percus-
sive excerpts. Three expectation schemes, namely independent, joint, and
when|what schemes were defined to take into account alternative viewpoints
regarding how musical events are organized. From a cognitive perspective
those schemes may be associated to distinct processing pathways of the mu-
sical stream (Peretz and Zatorre, 2005).

A set of statistics has been presented to characterize the system learn-
ing abilities. An evaluation of the system components has been performed.
The results show that, on the one hand, the system’s ability to produce an
expectation timeline that agrees with ground truth annotations depends on
the quality of the transcription process, and that the performance of the
when|what scheme is more severely degraded when the transcription accu-
racy degrades. On the other hand, even if the representation of the system
does not accurately fit the ground truth, our results suggested that the sys-
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tem is able to use and maintain an internal representation of the musical
stream to identify patterns whose regularities can be learned. In this lat-
ter case, the transcription step may be seen as a musically-informed sparse
representation process. Therefore, we suggest that the model may be evalu-
ated according to the usefulness and robustness of its representation rather
than using ground truth annotations. Besides, we have suggested that the
expectation signal may describe the structure of musical patterns in a causal
manner and have shown the expectation entropy measure could provide in-
formation about the structure of musical streams. This expectation-based
signals may provide an alternative approach to perform structural segmen-
tation tasks.

Integrating representation and expectation models into musical
systems By their nature, causal systems accommodate with the time dy-
namics of the sensory data they process. In the case of audio, real-time
systems can be implemented to provide a seamless interaction with users,
and enables novel uses for musical or educational purposes, as well as en-
tertainment. Among the possible applications of this work are: musical
learning applications that do not require a specific hardware such as a key-
board, accompaniment applications, or audio-driven games. Here, our main
motivation is to demonstrate that even if there is room for improvement in
almost all components of the system, it is already possible to design novel
interactive settings and applications that take advantage of representing and
creating expectations from audio signals. Because musicians and enthusiasts
are among the most valuable users of the technologies that may derive from
this research, they should be given ways to access and understand those tech-
nologies. This way, users may help to both broaden and refine the spectrum
of possible systems that enable a meaningful musical interaction.

8.2 Open issues

In spite of the contributions and achievements presented here, we would
like to see this research as starting point which highlights interesting issues
in the field of expectation modelling. Here we attempt to describe the most
relevant issues and work directions to this work.

8.2.1 Measuring mismatch with the environment

One objection that can be made concerning the approach proposed here
is that it creates and maintains a representation of the musical events, gener-
ates expectations based on this, but does not retrospectively compare these
expectations with actual events to refine its representation. This would cor-
respond to Ellis’ reconciliation process (Ellis, 1996) or the appraisal step
in the theory developed by Huron (2006). To this extent, even though our
system can create symbolic expectations that can be mapped into absolute
time by the representation layer, there is no further feedback processing nor
reuse of the expectation mismatch with the environment. It is worth noting



102 CHAPTER 8. CONCLUSIONS

that our architecture could handle this additional processing, but we need
to properly define mismatch measurements to track which expectations are
fulfilled, and how they are fulfilled. Some starting points to this would be the
distances measures proposed by Paiement (2008), as well as works focusing
on audio similarity (Pampalk et al., 2008).

8.2.2 Scales of music processing

Another outstanding issue in our research is the need to address the
various temporal scales involved in music processing and learning.

Representation over multiple time scales In our model, we have fo-
cused in representing musical structure in terms of relations between event
onsets over several acoustic dimensions. While being simple enough to be
computationally tractable and rich enough to describe several aspects of mu-
sical sequences at the same time, this time scale may be inaccurate to model
more precise acoustic inflections that could contain relevant information.
Conversely, if we aim consider a musical excerpt from a broader viewpoint,
we might need to use a longer time scale. It is worth noting that, by creating
an expectation signal between event onsets (that can be considered in the
timescale of a note), the system may able to implicitly perform segmenta-
tion on a bar timescale, as the expectation entropy patterns suggest (see
Section 6.7.7). As a future work, it may be possible to represent and learn
the regularities of the expectation entropy patterns.

Learning timescale In the majority of the experiments presented here,
we have repeatedly presented to the system short music excerpts and assessed
whether the system was able to follow those excerpts through repetitions.
However, because the model’s running state proceeds in a causal way, our
implementation could virtually analyze musical streams of arbitrary dura-
tion. Consequently, we need to investigate how to assess longer-term effects
of learning, what musical memory contents are maintained and how they are
maintained through the exposure to successive and possibly distinct musical
sequences. For instance, we would like to assess to which extent our model
can keep some information about previous excerpts when heading at the
end of a playlist. One actual limitation to progress in that direction is that
our model performs the bootstrap estimation only at the beginning of any
exposure. Alternative strategies should be investigated, such as performing
bootstrap when a new representation is needed, or continuously performing
the bootstrap step in parallel to the running state.

8.2.3 Towards an account of auditory learning
experiments using the what /when model

In Chapter 4 we have proposed a framework to modelling the acquisition
of statistical regularities in tone sequences, represented in a symbolic form.
Then, in Chapter 6, we have introduced an expectation model that learns to
represent auditory events in a meaningful way. From these two contributions,
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it seems natural to investigate whether the what/when expectation model
can provide an account of empirical results dealing with auditory learning
experiments that focus on the interaction between acoustical cues and time
structures (Newport and Aslin, 2004; Tillmann and McAdams, 2004), but
this would be better included in the research agenda of music cognition
scientists.

8.3 A personal concluding note

This dissertation is in essence a multidisciplinary account to model mu-
sic expectation from areas such as auditory perception, learning, expectation
modelling, and information theory. As such, an important part of my re-
search has consisted in building bridges across these disciplines, and trying
to view issues that were specific of a given area from a distinct viewpoint.
Firstly, this dissertation aims to provide tools to cognitive science and se-
quence learning researchers to address computationally real-world auditory
and musical stimuli. Likewise, it aims at enabling MIR and auditory per-
ception researchers to investigate the effects of learning and the usefulness
of an ever-evolving representation of the musical signal. Finally, I hope that
the contributions presented here can serve as a basis for designing an inter-
active music system driven by cognitive principles, pattern recognition and
predictive learning.
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Appendix B: Sound
Examples

This appendix contains a list ! of sound examples that illustrate the pro-
cess of sonifying the expectation of audio excerpts using the Billabio soft-
ware, presented in Chapter 7. For each excerpt, we provide the original
sound (left column), the sonification of the expectation immediately after
bootstrap (middle column), and the sonification of the expectation after the
system has processed a few repetitions of the original sound (right column).

Type of sound | Original excerpt | Beginning End

Drum’n bass Audio.1 Audio.2 Audio.3
Drum 1 Audio .4 Audio.5 Audio.6
Drum 2 Audio.7 Audio.8 Audio.9
Voice Audio.10 - Audio.11
Keyboard Audio.12 Audio.13 | Audio.14

1. This list can also be accessed using the following link http://www.dtic.upf.edu/
~ahazan/thesis/examples.html
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http://www.dtic.upf.edu/~ahazan/thesis/audio/percloop-original.wav
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http://www.dtic.upf.edu/~ahazan/thesis/audio/percloop-end.wav
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