
PHD THESIS

– JUNE 2014 –

A METHOD FOR THE UNIFIED DEFINITION AND
TREATMENT OF CONCEPTUAL SCHEMA QUALITY ISSUES

David Aguilera

Advisors
Dr. Antoni Olivé

Dr. Cristina Gómez

A thesis presented by David Aguilera
in partial fulfillment of the requirements for the degree of

Doctor per la Universitat Politècnica de Catalunya – BarcelonaTech

Author: David Aguilera

Address: Department of Service and Information System Engineering
Edifici Omega, Despatx S206
C/ Jordi Girona, 1–3
08034 Barcelona, Spain

Email: daguilera@essi.upc.edu — david.aguilera.moncusi@gmail.com

Telephone: (+34) 93 413 71 74

Fax: (+34) 93 413 78 33

This thesis was written in LATEX,
using free software tools.

To my family.
To María.

Acknowledgments

This thesis has been possible thanks to the help, assistance, and friendship of
many people, to whom I am indebted. I would like to express my sincere grati-
tude to all of them.

First and foremost, I would like to thank my advisors Dr. Cristina Gómez and
Dr. Antoni Olivé. They gave me the opportunity to meet the research world, and
they showed me how to enjoy researching. Their rigor, guidance, patience, and
support has been crucial during all these years.

I am also very grateful to my colleagues in the Grup de Modelització Concep-
tual and the Departament d’Enginyeria de Serveis i Sistemes d’Informació. Their
comments and valuable insights on my work helped me improving the overall
quality of my research. I am also indebted to the reviewers of this thesis, whose
contributions have been essential in pursuing excellence.

My special thanks to all those friends that have been by my side during the
past four—and in some case more than ten—years, Antonio Villegas, David San-
cho, Marc Rodríguez, Mikel Fernández, Nikolaos Galanis, and many, many oth-
ers. You were there when I felt down. You made my life funnier. For this, I truly
thank you.

Finally, I want to thank my family. A lot of things happened during these past
years, but we overcame all problems. Thank you mom, dad, and Marc, and thank
you María. You always believed in me. I took your strength and determination
whenever mine was missing.

This work has been partly supported by
Ministerio de Ciencia y Tecnología, BarcelonTech (UPC),

TIN2008-00444 project (Grupo Consolidado). FPI-UPC program.

Abstract

The modern world is software-intensive. National infrastructures, smartphones
and computers, health-care systems, e-commerce—everything is run by software.
Therefore, developing high-quality software solutions is essential for our society.

Conceptual modeling is an early activity of the software development process
whose aim is to define the conceptual schema of a domain. As the role played by
conceptual schemas in software development becomes more relevant—because
of, for example, the emergence of model-driven approaches—, their quality be-
comes crucial too. The quality of a conceptual schema can be analyzed in terms
of “quality properties”. All conceptual schemas should have the fundamental
properties of syntactic and semantic correctness, relevance and completeness, as
well as any other quality property that has been proposed in the literature and
that may be required or recommended in particular projects.

It is a fact that only a few quality properties have been integrated into the de-
velopment environments used by professionals and students, and thus enforced
in the conceptual schemas developed by them. A possible explanation of this
unfortunate fact may be that the proposals have been defined in the literature
in disparate ways, which makes it difficult to integrate them into those environ-
ments. The goal of this thesis is to ease the integration of those quality properties
that can be evaluated using the conceptual schema itself.

We propose a method that permits the unified definition and treatment of
conceptual schema quality issues, which we understand as “important quality top-
ics or problems for debate or discussion”. Our work includes, on the one hand,
a characterization and formalization of conceptual schema quality issues, and,
on the other hand, the creation of a catalog of quality issues obtained from the
literature and defined using the aforementioned formalization.

We also provide a prototype implementation of our method, which integrates
the catalog of quality issues on top of a real modeling tool. This implemen-
tation provides assistance to conceptual modelers during the development of a
conceptual schema in a non-disruptive manner. Moreover, our thesis discusses
incremental methods for the efficient evaluation of OCL expressions in the context
of quality issues and integrates one of them into our prototype tool.

Contents

I Preface 1

1 Introduction 3

1.1 Motivation and Antecedents . 4

1.2 Research Approach . 7

1.3 Research Contributions . 9
1.3.1 A Formalization of Conceptual Schema Quality Issues 11
1.3.2 A Catalog of Conceptual Schema Quality Issues 12
1.3.3 A Conceptual Modeling Assistant 12

1.4 Overview of the Thesis . 13

II Background on Conceptual Modeling and Quality 19

2 Basic Concepts on Conceptual Modeling 21

2.1 Conceptual Modeling . 22

2.2 Conceptual Schemas . 23
2.2.1 Structural Subschema . 23
2.2.2 Behavioural Subschema . 27

2.3 Modeling Languages . 28
2.3.1 The Entity-Relationship (ER) Model 28
2.3.2 The Unified Modeling Language (UML) 29

2.4 Metamodeling . 31

2.5 Summary . 33

3 Quality in Conceptual Modeling 35

i

CONTENTS

3.1 Frameworks for Evaluating Quality . 36

3.2 Related Work on Improving Quality . 41
3.2.1 Working with Inconsistencies . 41
3.2.2 Quality Properties in the Literature 42
3.2.3 Tool Support to Assess Quality 45

3.3 Summary . 48

III Contributions 51

4 Overview of Our Method 53

4.1 A Brief Introduction to Quality Issues 54
4.1.1 Motivating Example . 54
4.1.2 Informal Definition of Quality Issues 55

4.2 General Structure of our Method . 58
4.2.1 Defining Quality Issue Types . 59
4.2.2 Compilation of Quality Issue Types in a Catalog 60
4.2.3 Using Quality Issues on Schema Development 61

4.3 Summary . 62

5 Formalization of Quality Issues 63

5.1 Definition of Issue Type and Issue Instance 65
5.1.1 Potential Issues: the Scope and Applicability Condition 66
5.1.2 Raised Issues: the Issue Condition 67
5.1.3 Kind and Acceptance of an Issue Type 69

5.2 The Lifecycle of an Issue Instance . 71

5.3 Issue Precedence . 73

5.4 On Computing Issues Instances . 74

5.5 Issue Actions: Tackling Issues . 78

5.6 Summary . 81

6 Catalog of Quality Issues 83

6.1 Classification of Issue Types . 84

6.2 Issue Types . 86
6.2.1 Syntactic . 87
6.2.2 Syntactic+ . 88

ii

CONTENTS

6.2.3 Basic Quality . 92
6.2.4 Best Practice . 105
6.2.5 Naming . 119

6.3 Limitations . 127

6.4 Evaluation . 128

6.5 Summary . 132

7 A Conceptual Modeling Assistant 133

7.1 Overview and Architecture . 134
7.1.1 Introduction to the Eclipse Platform 134
7.1.2 CMA’s Architecture . 136
7.1.3 The Issue Type Manager . 138
7.1.4 The Issue Processor . 138
7.1.5 The Issue View . 142

7.2 Online Catalog (for OCL Issue Types) 143

7.3 User Interaction . 145
7.3.1 Selecting the Relevant Issue Types 146
7.3.2 Defining the Model and Obtaining Feedback 147
7.3.3 Fixing Issue Instances . 148

7.4 Summary . 148

8 Incremental Evaluation of Quality Issues 151

8.1 Understanding Incremental Evaluation 152
8.1.1 A Motivating Example . 153
8.1.2 Computing Issue Instances as the Schema Evolves 155

8.2 Related Work on Incremental Evaluation 158
8.2.1 Efficient Evaluation of OCL Integrity Constraints 158
8.2.2 Inconsistency Management . 160

8.3 Incremental Evaluation of Quality Issues 163
8.3.1 Formalization of Incremental Evaluations 163
8.3.2 Integrating an Incremental Approach to our Method 165
8.3.3 Integrating the Incremental Evaluation of Quality Issues in

our CMA . 171
8.3.4 Comparison of Regular and Incremental Evaluation of Qual-

ity Issues . 172

iii

CONTENTS

8.4 Summary . 174

9 Quality Assessment in Current IDEs 177

9.1 Current Support of Quality Issues . 178

9.1.1 The Analysis . 179

9.2 Comparing IDEs vs Our Catalog . 183

9.3 Extending Current IDEs with the Catalog 185

9.3.1 Comparing Issue Type Formalizations 185

9.3.2 Adapting Scopes . 187

9.3.3 Adapting Applicability and Issue Conditions 189

9.3.4 Adapting Checking Issues . 190

9.3.5 Adapting Precedents . 190

9.4 Summary . 192

10 Conclusions and Further Work 193

10.1 Summary of the Results . 194

10.1.1 The Challenge of Quality in Conceptual Modeling 194

10.1.2 Formalization of Quality Issues and Compilation of a Catalog 195

10.1.3 Implementation and Integration of our Method in an Inte-

grated Development Environment 196

10.1.4 Efficient Evaluation of Quality Issue Types using Incremental

Methods . 197

10.2 Directions for Further Research . 198

10.2.1 Extending the catalog . 198

10.2.2 Validation with Real Users and Projects 199

10.2.3 Automatic Reparation of Conceptual Schemas 199

10.2.4 Integration with Other Methodologies 200

10.3 Impact of the Thesis . 200

10.3.1 Publications . 201

10.3.2 Degree’s Final Project . 204

Bibliography 205

iv

CONTENTS

Appendices 217

A Naming Guidelines for the UML 219

A.1 Entity types . 221
A.1.1 Literature review . 221
A.1.2 Naming guideline . 222

A.2 Attributes . 224
A.2.1 Literature review . 224
A.2.2 Naming guideline . 225

A.3 Associations . 227
A.3.1 Binary associations . 228
A.3.2 n-ary associations . 231

A.4 Invariants . 233
A.4.1 Naming guideline . 235

A.5 Event Types . 236
A.5.1 Event Types . 236
A.5.2 System Operations . 238
A.5.3 Preconditions . 239
A.5.4 Postconditions . 240

A.6 States . 241
A.6.1 Naming guideline . 241

v

List of Figures

1.1 Reasoning on Design Cycle. 7
1.2 Design Research in this Thesis. 8
1.3 Structure of the thesis. 14

2.1 Representation of the structural part of an IT Department. 24
2.2 Examples of relationship types in the IT Department domain. 25
2.3 Examples of attributes in the IT Department domain. 26
2.4 Representation of some event types in an IT Department. 27
2.5 Example of a conceptual schema modeled using the ER. 29
2.6 Example of a conceptual schema modeled using the UML. 29
2.7 Relationships between a meta information system and an informa-

tion system. 31
2.8 A simplified version of the UML metamodel. 32
2.9 UML metamodel instantiation. 33

3.1 Wand and Wang’s framework. 38
3.2 ArgoUML’s User Interface showing some improvements available. . 47

4.1 A conceptual schema with several quality issues. 54
4.2 Example of the use of the Identifier stereotype. 57
4.3 Overview of our method. 59

5.1 Computation of the Potential set. 67
5.2 Computation of the Raised set. 68
5.3 Computation of the Potential and Raised sets for an issue type that

has a scope with more than one metatype. 69
5.4 The lifecycle of an issue of type Ix , depending on its Kx and Ax . . 72
5.5 Example of Global Issue Precedence and Instance Issue Precedence. 74

vii

LIST OF FIGURES

5.6 The main stages to compute issue instances. 75
5.7 The result of applying different issue actions to solve the issue a

conceptual schema contains. 79

6.1 Example of a recursive binary association that results in an infinite
population. 92

6.2 Examples of recursive associations. 94
6.3 A recursive relationship type with nonsatisfiable cardinality con-

straints. 97
6.4 Example of unsatisfiable cardinality constraints. 98
6.5 The graph G corresponding to the schema depicted in the previous

figure. 99
6.6 Example of three different entity types representing the same con-

cept. 103
6.7 Example of two specializations that are not included in a General-

izationSet and should be defined as a partition. 107
6.8 Two examples of identifiable entity types. 108
6.9 Example of a redundant generalization. 110
6.10 Complete constraint entailed by type or type and multiplicity re-

definitions. 111
6.11 Disjointness constraint entailed by disjoint multiplicity redefinitions.111
6.12 Disjointness constraint entailed by type and multiplicity redefini-

tions. 112
6.13 Disjointness constraint entailed by type and multiplicity redefini-

tions. 113
6.14 Disjointness constraint entailed by type redefinitions. 114
6.15 Example of a complete generalization set with an attribute re-

peated among all its specific classes. 115
6.16 Example of an incomplete generalization set with an attribute re-

peated among all its specific classes. 116
6.17 Example of a conceptual schema where an attribute is being used

instead of a relationship type. 118
6.18 Example of a binary association with no explicit names and three

possible solutions. 120
6.19 Example of an issue instance that is related to the graphical facet

of a UML conceptual schema. 127

viii

LIST OF FIGURES

6.20 Fragments of three conceptual schemas, each fragment with sev-
eral quality issues. 130

7.1 The Eclipse’s Architecture—the kernel and its plugin system. 135
7.2 Screenshot of Eclipse with a UML model editor opened. 136
7.3 CMA’s Architecture—an Eclipse plugin that extends the UML2Tools. 137
7.4 Integration of Black Box Issue Types in our CMA using an interface. 142
7.5 Screenshot of a web browser displaying an issue type from our

catalog. 146
7.6 Mockup of our CMA showing the “Issue Type Selection” dialog. . . . 146
7.7 Screenshot of our CMA (built on top of Eclipse) showing a con-

ceptual schema. 147
7.8 Mockup of Eclipse showing the available actions that may fix an

issue. 149

8.1 A conceptual schema with several quality issues. 154
8.2 General schema of Cabot and Teniente’s method. 159
8.3 Comparison of evaluation times per model change using a batch

process, a type-based approach, and an instance-based approach. . 173

9.1 Summary of quality issue enforcement in current IDEs. 181
9.2 Screenshot of ArgoUML, where a corrective action is being executed.183
9.3 Example of a conceptual schema with a complete Generalization-

Set that has repeated attributes. 187

A.1 Main NamedElements used for defining conceptual schemas in UML.221
A.2 Examples of boolean and non-boolean attributes. 226
A.3 Examples of associations and roles. 232
A.4 Examples of n-ary associations. 234
A.5 Fragment of a structural schema and its behavioural specification

using event types and system operations. 237

ix

Part I

Preface

1

All human wisdom is summed up in
these two words: wait and hope.

A. Dumas, The Count of
Monte-Cristo

1
Introduction

Modeling is hard. The definition of good models is especially hard. The main
goal of this thesis is to improve the quality of conceptual schemas. In order
to do so, we provide a method to uniformly define and treat conceptual schema
quality issues, which we understand as “important [quality] topics or problems
for debate or discussion”1 in the field of conceptual modeling. Therefore, our
proposal aims to point out the quality issues a conceptual schema contains so that
the conceptual modeler becomes aware of them and, ultimately, she can solve
them. These quality issues may be, for example, violating integrity constraints,
having non-satisfiable associations, or not following best practices, among others.

Throughout the chapters of the work at hand we introduce the notion of
quality in conceptual modeling, its relevance, and how it can be achieved; we
present and describe the different elements of our method’s formalization; we
address and discuss the importance of an incremental evaluation of some quality

1Oxford dictionaries (http://oxforddictionaries.com/).

3

http://oxforddictionaries.com/

CHAPTER 1. INTRODUCTION

issues to obtain instant feedback; and we outline the different artifacts we have
built, including an extensive quality issue catalog that contains over 60 state-
of-the-art issues (formalized as our method requires), and a prototype tool that
implements this catalog into a modeling tool so that the tool can assist conceptual
modelers.

This chapter introduces our work and presents the research approach we
used, as well as the structure of the dissertation. Section 1.1 starts with a descrip-
tion of the motivation and the antecedents of this thesis, which deals with the
quality and the understandability of conceptual schemas. Next, Section 1.2 intro-
duces the basic notions and guidelines of the design-science research methodology
and relates them with the different stages of our work. Section 1.3 enumerates
and describes the different contributions of this thesis and the goals it tries to
fulfill. Finally, Section 1.4 shows an overview of the structure of this document,
including a brief description of each remaining chapter and a reading guide.

1.1 Motivation and Antecedents

We cannot run the modern world without software [114, p. 4]. National infras-
tructures, health-care systems, home-entertainment systems, communications,
the film industry, our smartphones and computers—everything is software-inten-
sive. Hence, software engineering has become essential for our society.

Engineering is about getting results of the required quality within the schedule
and budget [114, p. 8]. The most effective way to do so is to adopt a systematic
and organized approach. Fortunately for software engineers, there are several
methods and techniques in the literature that aim to develop high-quality soft-
ware, according to user expectations, quality criteria, estimated costs, and within
the schedule.

Conceptual modeling is an early activity of the software development process.
Its aim is to gather, organize, and classify the relevant, general information of a
domain, and represent it as a conceptual schema [97, 133]. Conceptual schemas
are a key component in information system development, since they provide an
abstraction of the real-world.

4

1.1. MOTIVATION AND ANTECEDENTS

Traditionally, conceptual schemas have only been used for documentation
purposes, and were rarely maintained up to date with the implementation. None-
theless, the emergence of model-driven approaches is changing this trend by
increasing the role conceptual schemas play [12, 68, 110]. A Model-Driven
Development (MDD) paradigm [78, 99] (or Model-Driven Architecture (MDA)
according to the Object Management Group (OMG)) promotes the automatic
generation of the system implementation based on its model. As a consequence,
several techniques and methods that were usually applied to code—for example,
testing—may now be applied to conceptual schemas [123, 124, 125].

As the role played by conceptual schemas in software development becomes
more relevant, assessing their quality becomes crucial. Experience demonstrates
that low quality leads to failures. On January 28, 1986, the NASA Shuttle Chal-
lenger exploded shortly after launch, destroying the vehicle and all crew mem-
bers. The destruction of the Shuttle was caused by the hardware failure of a solid
rocket booster (SRB) “O” ring. On August 2, 2012, the Knight Capital Group (an
American global financial services firm) announced that it lost $440 million when
it sold all the stocks it accidentally bought the previous day because “a computer
glitch”.

These two examples demonstrate that human errors are unavoidable. How-
ever, one can diminish the errors that may occur by analyzing the quality of the
product before it is released. In the field of conceptual modeling, there are em-
pirical studies showing that more than half the errors that occur during system
development are requirements errors [47, 73]. As a consequence, it is clear that
addressing quality issues during the development of a conceptual schema is our
best choice. Unfortunately, software quality has traditionally focused on evalu-
ating the final product [87], not the schema. As a result, evaluating the quality
of a conceptual schema looks more like an “art” than an engineering discipline
[85].

There are several quality frameworks in the literature whose aim is to eval-
uate the quality in the conceptual modeling stage. Some of these frameworks
focus on the quality of data models, whilst others focus on the quality of the mod-
eling process. Moreover, there are many analytical methods that can be used to
validate and verify software artifacts. Nowadays, conceptual modelers need to
master these techniques so as to guarantee the quality of their products.

5

CHAPTER 1. INTRODUCTION

It is clear that assessing the quality of conceptual schemas is very important
[9, 30]. In order to conduct this task effectively, conceptual modelers require the
assistance of modeling tools that implement facilitate the validation and testing
of conceptual schemas [98]. In [52], the authors present a research roadmap
for model-driven development of complex software. In particular, they identify
the challenge of “having quality assurance programs” for the effective modeling
of domains using Domain-Specific Languages. In [119], the authors summarize
some Model-Driven Engineering challenges that were identified during a work-
shop. Quality in conceptual modeling is one of these challenges and, specifically,
the importance of verifying and validating (partially incomplete) models auto-
matically and incrementally. In [18], the authors point out the kinds of modeling
errors that novice analysts are most likely to produce and discuss the importance
of developing checklists and guidelines for quality assurance teams. Once this
step is done, they also propose developing validation procedures, creating in-
struments for measuring quality from different perspectives, and integrating all
this knowledge into current modeling tools.

The purpose of this thesis is to define a method that permits the definition
and treatment of conceptual schema quality issues in a uniform manner. A qual-
ity issue might be any topic or problem that has an impact in the resulting quality
of a conceptual schema and can be evaluated using the schema solely. The for-
malization included in our method can be used to describe when a conceptual
schema contains an issue that requires the modeler’s attention and how the issue
can be tackled and fixed. Moreover, if the method is integrated within a mod-
eling tool, then conceptual modelers can benefit from an automated real time
support and assistance during the development of their schemas.

The general problems addressed in this thesis are:

• the characterization and formalization of conceptual schema quality issues,

• the creation of a catalog of uniformly-defined quality issues, available to
practitioners and tool developers, and

• the improvement on addressing quality issues during the development of a
conceptual schema by automating its detection and suggesting which ac-
tions fix them.

6

1.2. RESEARCH APPROACH

1.2 Research Approach

The work presented in this thesis is structured following the main ideas of the
Design Science Research methodology. This methodology is a problem-solving
paradigm based on the creation and the evaluation of artifacts whose purpose
is to solve identified problems. In other words, it involves the analysis of the
use and performance of designed artifacts to understand, explain, and very fre-
quently improve on those artifacts [128]. As stated by Hevner et al. in [62], “the
fundamental principle of design-science research is that knowledge and under-
standing of a design problem and its solution are acquired in the building and
application of an artifact”. That is, design-science research requires the creation
of an innovative, purposeful artifact for a specified problem domain which yields
utility for the specified problem.

O
p
e
ra

ti
o
n
 o

f
K

n
o
w

le
d
g
e

a
n
d
 G

o
a
l

Awareness of Problem

Conclusion/Solution

Suggestions

Development

Evaluation C
ir
cu

m
sc

ri
p
ti
o
n

Figure 1.1. Reasoning on Design Cycle.

Figure 1.1 illustrates the course of a general design cycle, as Takeda et al.
analyzed in [121]. The cycle begins by being aware of the problem to be ad-
dressed. Next, suggestions to solve this problem are abductively drawn using the
existing knowledge available. Finally, an artifact that partially or fully imple-
ments the proposed solution is built during the development stage so that it can
be evaluated. The conclusion indicates the termination of a project. Development,
evaluation, and, sometimes, further suggestion stages are frequently performed it-
eratively. At each iteration, expertise and knowledge about the problem at hand
is gained, and the quality and the accuracy of the proposed solutions can thus be
improved.

In [62], the authors proposed the following guidelines for Design Research
in Information Systems Research:

7

CHAPTER 1. INTRODUCTION

Implementation

Integration

Adaptation

Design as

an Artifact

Problem

Relevance

Research

Contributions

Design as a

SearchProcess

Research

Rigor
Design

Evaluation
Communic.

of Research

Conceptual
Modeling
Assistant

Catalog of
Quality
Issues

Conceptual
Schemas in

MDD

Quality
Assessment

Instant and
Useful Feedback

S
ea

rc
h
,
st

u
d
y,

 a
d
ap

ta
ti
on

,
an

d
 i
n
te

-
gr

at
io

n
 o

f
ex

is
ti
n
g

te
ch

n
iq

u
es

 a
n
d

to
ol

s
fr
om

 l
it
er

at
u
re

 a
n
d
 r

ea
l
w

or
ld

It
er

at
iv

e
d
ev

el
op

m
en

t
of

 t
h
e

m
eh

od
an

d
 i
m

p
le

m
en

ta
ti
on

 o
f
th

e
p
ro

to
ty

p
e

to
ol

 a
s

an
 E

cl
ip

se
 p

lu
gi

n
 +

 c
at

al
og

.

Thesis Publica-
tions at research
conferences and
journals

Method for
Defining

Quality Issues
+

CMA

Eclipse Plugin
(CMA)

Incremental
Evaluation

Issue Def.

Review of
Quality Support

in IDEs

The Method

The Catalog

Figure 1.2. Design Research in this Thesis.

i. Design as an Artifact. Design-science research must produce a viable ar-
tifact in the form of a construct, a model, a method, or an instantiation.

ii. Problem Relevance. The objective of design-science research is to develop
technology-based solutions to important and relevant business problems.

iii. Design Evaluation. The utility, quality, and efficacy of a design artifact
must be rigorously demonstrated via well-executed evaluation methods.

iv. Research Contributions. Effective design-science research must provide
clear and verifiable contributions in the areas of the design artifact, design
foundations, and/or design methodologies.

v. Research Rigor. Design-science research relies upon the application of
rigorous methods in both the construction and evaluation of the design
artifact.

vi. Design as a Search Process. The search for an effective artifact requires
utilizing available means to reach desired ends while satisfying laws in the
problem environment.

vii. Communication of Research. Design-science research must be presented
effectively both to technology-oriented as well as management-oriented
audiences.

Figure 1.2 shows the application of design science research in this thesis.
As we can see, the thesis follows the guidelines presented above because (i)

8

1.3. RESEARCH CONTRIBUTIONS

in Chap. 7 we present a prototype tool that solves the problem of improving
the quality of conceptual schemas, and in Chap. 6 we present a public catalog
of conceptual schema quality issues; (ii) the problem of quality in conceptual
modeling is relevant, as we outline throughout Chapters 1, 2, 3; (iii) we evaluate
our results from different perspectives (Chapter 6 and Section 8.3.4 and 9.2);
(iv) and (v) our work is clearly based on the existing knowledge in the field of
quality in conceptual modeling (Chapters 3, 6, and 9) and in the field of the
efficient evaluation of integrity constraints and OCL expressions (Chap. 8); (vi)
our results were obtained and improved iteratively; and (vii) we communicate
our results to the community for their evaluation and reusal (Sect. 10.3).

1.3 Research Contributions

As we have mentioned in Sect. 1.1, conceptual schemas are becoming one of
the most relevant artifacts in software development. Therefore, their quality is
a very important facet that has to be considered after and probably during its
creation. As we shall see in Chap. 3 and Chap. 6, there are several frameworks,
methods, and proposals that deal with the quality of conceptual schemas, making
it difficult for conceptual modelers to know and apply them all. In order to
simplify their work, we propose a method that permits the unified definition
and treatment of the relevant criteria a conceptual schema has to fulfill. In this
sense, our method is two-folded: on the one hand, it provides a formalization for
defining conceptual schema quality issues to whoever wants to define a new type
of issue. On the other hand, it describes how to detect the issues a conceptual
schema has and how they change as the schema evolves.

The main goal of this thesis is to improve the quality of conceptual
schemas, which is defined as the degree up to which a set of prop-
erties are met. In particular, we focus on the properties that can be
evaluated looking at the schema itself—i.e. syntactic correctness of
the conceptual schema, as well as on the proper application of any
guidelines and/or best practices that are required by the company
or project in which the conceptual schema is defined.

9

CHAPTER 1. INTRODUCTION

Our method for defining and treating conceptual schema quality issues can
be outlined in the following sub-goals:

• Study and characterization of several quality criteria. The criteria we
address include correctness, completeness, best practices, and guidelines.
We are interested in defining and treating them uniformly in terms of qual-
ity issues—i.e. when there are issues regarding any of these criteria and
how these issues can be fixed.

• Creation of a catalog of quality issues. There are several quality issues
published in the literature. We want to formalize as many of them as pos-
sible2 using our formalization and present the results in a public catalog.
Such a catalog would be useful to practitioners who want to assure and
improve the quality of conceptual schemas, and to any engineer imple-
menting a modeling tool that is interested in integrating into the tool an
automatic assistance to conceptual modelers. In this thesis, we focus on
conceptual schemas written in UML/OCL and, thus, the quality issues we
deal with are targeted at this language. However, the method could be
applied to both Domain Specific Languages (DSL) and other conceptual
modeling languages.

• Implementation of a prototype modeling tool that demonstrates the
usefulness of our method. In order to demonstrate the usefulness of our
method, we integrate the catalog of quality issues within a modeling tool.
We believe that quality issues are really useful when they are addressed
during the development of a conceptual schema. The easiest way to do
so is to have them implemented within a modeling tool that automatically
monitors the issues the conceptual schema has. Implementing a proto-
type tool serves this purpose perfectly, and permits us to discuss different
aspects of the catalog integration, such as how to provide a real-time assis-
tance during the development of a conceptual schema.

2(rev3.16) We do not aim to create a complete catalog that includes all the quality issues available
in the literature. The catalog presented in the thesis is a first step in this direction and its aim is to
demonstrate the descriptive validity of our method.

10

1.3. RESEARCH CONTRIBUTIONS

1.3.1 Characterization and Formalization of Conceptual
Schema Quality Issues

As we have already mentioned, one of the most effective ways to get a concep-
tual schema of the required quality within the schedule and budget is to adopt a
systematic and organized approach [114, p. 8]. However, evaluating the quality
of a conceptual schema looks more like an “art” than an engineering discipline
[85]. This thesis aims to solve this problem. Our first contribution is a character-
ization and formalization of conceptual schema quality issues that permits us to
uniformly define and treat them. We understand a quality issue as an “important
[quality] topic or problem for debate or discussion” in the field of conceptual
modeling. Quality issues may be, for example, violating integrity constraints,
having non-satisfiable associations, or not following best practices.

Our proposal addresses the following aspects:

1. How and who defines a quality issue. We characterize and formalize the
notion of quality issue. As we introduce in Chap. 4 and describe in depth
in Chap. 5, a quality issue has to specify which type of elements—like
entity types, relationship types, or attributes, among others—may present
a certain type of issue, how we can detect in a schema the elements of that
type that actually have an issue, which kinds of issues exist, how issues
may be classified, and so on.

2. How and when we may detect the issues a conceptual schema con-
tains. Our proposal includes an algorithm to compute the issues a concep-
tual schema has (see Sect. 5.4). Our method aims to detect quality issues
as they arise during the development of a conceptual schema, but it also
permits the on-demand detection of quality issues.

3. How issues change as the schema evolves. Issues appear and disappear
as the conceptual modeler changes the schema. The method describes the
different states in which a particular issue may be and how the changes
over the schema affect issues’ states.

4. How and when the conceptual modeler may tackle issues. Not only
detecting issues is important, but also tackling them. For each issue, our

11

CHAPTER 1. INTRODUCTION

formalization includes one or more actions the modeler can take in order
to fix it.

5. How to efficiently detect the issues a conceptual schema contains and
thus provide instant feedback. Chapter 8 presents an improved version
of the algorithm that computes issues efficiently, using an incremental ap-
proach.

1.3.2 A Catalog of Conceptual Schema Quality Issues

The second most important contribution of this thesis is a review of the qual-
ity criteria we may found in the literature. These criteria include, as we have
already mentioned, the fundamental properties of syntactic correctness, as well
as several best practices and guidelines that have been proposed during the past
years in modeling-related conferences, journals, and books. These criteria are
then defined in terms of quality issues and compiled in the first version of a free-
to-access, public catalog. Obviously, this catalog can and should be extended so
that it includes most, if not all, available quality issues. We focus on conceptual
schemas written in UML/OCL and, thus, the quality issues we deal with are tar-
geted at this language. However, the method could be applied to both DSLs and
other conceptual modeling languages.

We believe the modeling community can benefit a lot from such a catalog.
On the one hand, it can be used as a quality reference guide by practitioners who
want to assure and improve the quality of conceptual schemas. On the other
hand, it can be used by any engineer that is interested in integrating into her
modeling tool the automatic assistance our method puts forward.

1.3.3 A Conceptual Modeling Assistant

The guidelines of the design-science research, which we discussed in Sect. 1.2,
require an artifact to evaluate the benefits of the approach under test. In this
thesis we have built two artifacts: on the one hand, there is the catalog of quality
issues, which we have already commented. On the other hand, we implemented
a prototype tool that integrates this catalog and our method within a real Inte-
grated Development Environment (IDE).

12

1.4. OVERVIEW OF THE THESIS

We built our prototype tool as an Eclipse3 plugin. The plugin is responsible of
downloading a catalog of OCL-defined quality issue types from a remote server
and, then, evaluating the conceptual schema in order to determine the issues it
has. Moreover, it offers the list of actions that may solve each particular issue.

This plugin transforms Eclipse in what we call a Conceptual Modeling Assis-
tant (CMA). A CMA is responsible of detecting issues automatically and of noti-
fying the modeler. Chapter 7 describes this prototype implementation in detail.
Moreover, in Chap. 8 we discuss the importance of using incremental methods
for providing instant feedback and we outline the integration of an incremental
method into our CMA prototype. As a result, the detection of issues and the
feedback generation becomes instant—i.e. the modeler has information on the
issues she is introducing in or fixing from the schema in real time.

1.4 Overview of the Thesis

Figure 1.3 depicts the structure of this thesis. The thesis contains ten chapters
which are organized in three parts:

Part 1: Preface It only includes Chap. 1. There, we introduce the motivation
of this thesis, the research approach we used, the goals we pursue, and
the main contributions. It also includes a brief overview of the rest of the
thesis.

Part 2: Background on Conceptual Modeling and Quality This part includes
Chapters 2 and 3. This part introduces some relevant concepts about
conceptual modeling and metamodeling, as well as some related work on
quality in conceptual modeling, including quality frameworks and quality
properties.

Part 3: Contributions It includes all the remaining chapters of this thesis. First,
Chapter 4 outlines the method we propose. Next, Chapters 5, 6, and 7
present the main contributions of the thesis in depth: (1) the formaliza-
tion of quality issues, (2) the catalog of quality issues, and (3) a prototype

3Eclipse is an open-source IDE whose core can be extended easily using a plugin system. Using
the appropriate plugins, it can be used as a UML modeling environment.

13

CHAPTER 1. INTRODUCTION

4. Overview of Our Method

1. Introduction

2. Basic Concepts on
Conceptual Modeling

I. Preface

II. Background on
Conceptual Modeling

and Quality

III. Contributions

3. Quality in Conceptual Modeling

9. Quality Assessment in
Current IDEs

8. Incremental Evaluation of
Quality Issues

5. Formalization of Quality Issues 6. Catalog of Quality Issues 7. A Conceptual Modeling Assistant

10. Conclusions and Further Work

Figure 1.3. Structure of the thesis.

tool that implements our method. Chapter 8 describes how issues can be
detected efficiently during the development of the conceptual schema, pro-
viding instant feedback to the conceptual modeler. In Chap. 9 we analyze
several IDEs that are being used by practitioners in order to determine
up to which extent they support modelers in assessing quality. Finally, in
Chap. 10 we expose our conclusions and we outline future work.

In the following, we describe the contents of each chapter in more detail.

14

1.4. OVERVIEW OF THE THESIS

Chapter 2. Basic Concepts on Conceptual Modeling

In this introductory chapter we present conceptual modeling as one of the most
important activities in software development, especially since the arise of model-
driven development approaches. We briefly introduce the main components of
conceptual schemas, as well as some basic notions on metamodeling. It is impor-
tant to understand these concepts before reading the rest of the thesis.

Chapter 3. Quality in Conceptual Modeling

This chapter reviews the state of the art in quality assessment. On the one hand,
we focus on some of the main quality frameworks proposed in the literature
for evaluating the quality of software artifacts. On the other hand, we review
some related work on actually improving the quality of conceptual schemas. The
review explores a wide range of proposals, including inconsistency management,
best practices, naming guidelines, refactorings, and tool support. The chapter also
points out the need of creating a method to uniformly define and treat many of
the proposals explored here.

Chapter 4. Overview of Our Method

This chapter presents an overview of our method. In order to do so, it includes
a motivating example that serves as an illustration of the quality issues we deal
with in this thesis. Next, we informally present the definition and formaliza-
tion of conceptual schema quality issues. Finally, we describe the three different
phases of our method, from which we derive the main contributions of our work:
(i) defining quality issues, (ii) compiling a catalog of quality issues, and (iii)
using quality issues during the development of a conceptual schema.

Chapter 5. Formalization of Quality Issues

We present the main contribution of our thesis in this chapter—i.e. the con-
cepts of quality issue type and quality issue instance. We formally describe the

15

CHAPTER 1. INTRODUCTION

different components of an issue type, which basically include when a conceptual
schema has issues of a certain type, how these issues are affected by the changes
performed over the conceptual schema, and which actions have to be taken in
order to solve these issues. We also present an algorithm that, given a concep-
tual schema and a set of issue types, computes the issues present in the schema.
This algorithm can be used in “real-time” during the development of the schema,
providing instant4 feedback to the modeler on the issues she has to consider, or
as a batch process at the end of the development of the schema. The evaluation
of our method is presented throughout the subsequent chapters of the thesis in
terms of its expressiveness and usefulness.

Chapter 6. Catalog of Quality Issues

Another important contribution of the thesis is the creation of a comprehensive
catalog of quality issues. This chapter presents a review of the literature, looking
for issues in modeling journals, conferences, and books. The issues are defined
for UML-defined conceptual schemas, although some of them may apply to other
modeling languages. The catalog demonstrates the descriptive validity of our
method. Moreover, it also explores the usefulness of the quality issues it includes.
We argue that such a catalog, which may be extended in future iteration, may
help conceptual modelers and practitioners, as well as IDE engineers who want
to integrate issues into their tools.

Chapter 7. A Conceptual Modeling Assistant

This chapter presents the prototype tool we have built to demonstrate the feasi-
bility and usability of our method. We conceived our prototype tool as a plugin
for Eclipse (an open-source IDE that can be used as a modeling tool). The pro-
totype implements the detection of conceptual schema quality issues, providing
feedback that points out the issues a conceptual schema has.

4We can only provide instant feedback if we are able to evaluate quality issues quickly. When there
are many issue types and the schema is big enough, the time required to perform the computation
would be to high to be considered “instant”. This issue is addressed and discussed in Chap. 8.

16

1.4. OVERVIEW OF THE THESIS

Chapter 8. Incremental Evaluation of Quality Issues

As we have already stated, we want our method to be used during the devel-
opment of a conceptual schema. If it is, conceptual modelers can get real-time
feedback on the issues their schemas have. Therefore, it is necessary that our
method is able to detect issues quickly so that it can provide instant feedback.

In this chapter we first review the state of the art related to the efficient and
incremental evaluation of OCL expressions and metamodel constraints. Incre-
mental methods aim to re-evaluate an expression if, and only if, the result of that
expression may have changed. Next, we adapt one incremental proposal to our
method and we explore how some quality issue types (in particular, those that
are defined in our catalog using OCL) can be evaluated incrementally. Finally, the
chapter also includes an experimental evaluation that compares the efficiency of
our method in detecting quality issues with and without the incremental evalua-
tion.

Chapter 9. Quality Assessment in Current IDEs

Integrated Development Environments (IDEs) can help conceptual modelers as-
sessing quality. Usually, modeling tools only focus on creating syntactically cor-
rect schemas. However, they can also be used to automatize the process of cre-
ating a conceptual schema, especially when it comes to analyzing its quality and
detecting its flaws. In this chapter we review some tools that are being used by
practitioners nowadays and we analyze the support their offer with regard to
quality. This review provides a better understanding on how modelers can be
assisted and which areas can and should be improved. Finally, in this chapter
we demonstrate that our catalog leads to the detection of more quality issues
compared to the issues current modeling tools are able to detect.

Chapter 10. Conclusions and Further Work

This chapter presents the conclusions of the work at hand. It summarizes the
main contributions of this thesis, and points out some insights and future work
on how to continue our research line. It also enumerates the main publications

17

CHAPTER 1. INTRODUCTION

related to the thesis we published during these past years.

18

Part II

Background on
Conceptual Modeling and

Quality

19

The best books. . . are those that tell
you what you know already.

G. Orwell, 1984

2
Basic Concepts on

Conceptual Modeling

This thesis aims to contribute to the challenge of developing high-quality concep-
tual schemas. In order to do so, we propose a method that allows the treatment
of the quality issues that appear in a conceptual schema. Before we can discuss
quality in the conceptual modeling domain and how we characterize and formal-
ize quality issue, an introduction to conceptual modeling seems appropriate.

Therefore, in this chapter we introduce conceptual modeling and we clarify
our vision on conceptual schemas. Moreover, we also introduce some basic con-
cepts on metamodeling that will be necessary to understand how quality issues
are defined. Section 2.1 outlines the importance of conceptual modeling in the
software development process and introduces the main artifact it delivers—i.e.
the conceptual schema. In Sect. 2.2 we describe the key parts of a complete
conceptual schema, taking into account both the structural and the behavioural

21

CHAPTER 2. BASIC CONCEPTS ON CONCEPTUAL MODELING

(sub)schemas. Section 2.3 introduces the modeling languages and presents two
examples: the Entity-Relationship (ER) model and the Unified Modeling Lan-
guage (UML). The UML is the language we will be using in this thesis for defin-
ing conceptual schemas. Next, Section 2.4 introduces some basic concepts on
metamodeling in general, and the UML metamodel in particular. Understanding
metamodeling and the UML metamodel is important because, as we shall see in
Chap. 5, quality issues are defined at the metamodel level. Finally, Section 2.5
summarizes the chapter.

2.1 Conceptual Modeling

Conceptual modeling is an early activity of the software development process,
closely related to requirements engineering. Its aim is to gather, organize, and
classify the relevant, general information of a domain into a conceptual schema, so
that a system implementing that schema can maintain concrete information about
the domain [97, 133]. The conceptual schema is thus a simplified representation
of a complex reality that makes the understanding of that reality easier.

Conceptual schemas are a key component in information system develop-
ment, since they provide an abstraction of the real-world. According to the prin-
ciple of conceptualization, this abstraction “should only include conceptually rel-
evant aspect (both static and dynamic) of the domain, and exclude all aspects
of data representation, physical data organization, and access” [64]. In other
words, conceptual schemas are much less bound to any underlying implemen-
tation technology and much closer to the problem domain [110], making the
understanding of a domain easier for developers and stakeholders.

Generally, a conceptual schema comprises a structural schema and a behaviou-
ral schema. The former consists of a set of entity and relationship types. It is
usually known as the static component of the general knowledge, and it allows
maintaining a consistent representation of the state of the domain. This repre-
sentation is accessible at any moment of the system’s lifetime, and it is called the
Information Base. The latter represents the valid changes in the domain state as
well as the actions the system can perform [97].

Classically, conceptual schemas have been used for documentation purposes

22

2.2. CONCEPTUAL SCHEMAS

only. However, as model-driven approaches emerge and gain importance, they
are becoming the primary artifact in all phases of the development life-cycle [12,
68, 110]. A Model-Driven Development (MDD) paradigm [78, 99] (or Model-
Driven Architecture (MDA) according to the Object Management Group (OMG))
promotes the automatic generation of the system implementation based on its
model.

In the MDA paradigm there are two kinds of models. On the one hand,
Platform-Independent Models (PIM) provide a formal specification of the struc-
ture and behaviour of a system by avoiding any technical detail. On the other
hand, Platform-Specific Models (PSM) specify the system in terms of the imple-
mentation constructs that are available in one specific implementation technol-
ogy. The goal of an MDA approach is to automatically transform a PIM into a
PSM, making the conceptual schema (i.e. a PIM) the final description of the
domain that is required for the development of an information system [94].

2.2 Conceptual Schemas

Conceptual schemas are a key component in information system development,
since they provide an abstraction of the real-world. Generally, a conceptual
schema comprises a structural schema, which deals with the static facet of the
information system, and a behavioural schema, which defines how the knowl-
edge stored in the information system changes during its lifetime.

2.2.1 Structural Subschema

Human beings use concepts to structure their perception of a domain. As a con-
sequence, they classify objects into concepts. In the field of information systems,
we assume that a domain consists of a number of objects and the relationships
between them. As expected, these objects are classified into concepts [97, p. 10].

The structural schema of an information system contains the relevant concepts
of that domain so that it can maintain a representation of the state of the domain
at a given time. This state consists of a set of objects, a set of relationships, and
the set of concepts into which these objects and relationships are classified.

23

CHAPTER 2. BASIC CONCEPTS ON CONCEPTUAL MODELING

Domain

IT Department

Information

System

Edward
John

represents

e:Employee

are abstracted as has instances

Employee
Concept: Entity Type:

Employee

j:Employee
We like working

in here...

Figure 2.1. Representation of the structural part of an IT Department.

In conceptual modeling, a concept whose instances are unique and identifi-
able are called entity types, and its instances are simply called entities. An entity
is always an instance of at least one entity type, but it may be the case that it is
an instance of more than one entity type. Figure 2.11 depicts a portion of an IT
Department domain. In this domain, John and Edward are entities (objects) of
the entity type (concept) Employee.

Some concepts are associative, in the sense that their instances relate two or
more entities [97, p. 13]. Relationship types are concepts whose instances are
relationships. For example, Figure 2.2 shows two different relationships between
an Employee and a Project. On the one hand, we can see that John is working
on a Project named “Eclipse”, and, on the other hand, that Eclipse is managed by
Edward—i.e. Edward is Eclipse’s manager.

Relationship types are similar to entity types, because they “are also concepts
whose population are individual relationships that are considered to exist in the
domain at that time” [97, p. 59]. In our example, we have two relationship
types between an Employee and a Project. We may call one relationship type
“IsWorkingOn”, so that it abstracts the notion of “an Employee who is working on
a Project”, and we may call the other one “IsManagedBy”, so that it abstracts the
notion of “a Project is managed by one Employee”.

As we can see, relationship types consists of a set of n participants, where

1There may be more entity types in this context, such as Projects, Customers, and so on. However,
for the sake of simplicity we only depicted Employees.

24

2.2. CONCEPTUAL SCHEMAS

Domain

IT Department

Information

System

Edward

John

represents

are abstracted as
has instances

"An employee may be

working on a project"
Employee

p
ro

je
ct

Eclipse

I am the manager

of the Eclipse project

... and I work on it

"A project is managed by

an employee"

Project

IsWorkingOn

manager
IsManagedByrepresents

e:Employee

j:Employee

eclipse:Project

IsWorkingOn

IsManagedBy
manager

Figure 2.2. Examples of relationship types in the IT Department domain.

n ≥ 2. A participant is no more than an entity type of the domain that plays a
certain role in the relationship. In the previous example, we have seen that an
Employee plays the role manager of a certain Project when she is responsible of
the project’s management.

Besides relationship types, structural schemas contain attributes. At a concep-
tual level, an attribute is very similar to a binary relationship type. In general, a
binary relationship type relates two concepts that are equally important. In the
previous example, an Employee cannot “be working” without an assigned Project
nor a Project can “be developed” if no Employees are working on it. However,
there are some scenarios where we may consider one participant as a character-
istic of the other. Figure 2.3 shows an example of these characteristics: Edward’s
name is “Edward” and that his salary is “960€/month”. In this case, we may
agree that both name and salary are attributes of the entity type Employee.

Finally, another important element for defining structural schemas are Con-
straints. In an ideal world, the information base would be an exact representation
of the domain. Unfortunately, some of the facts an information base has may be
invalid or incomplete. An information base has integrity when it contains all
relevant facts and those facts are valid [97, p. 181]. To ensure this integrity,

25

CHAPTER 2. BASIC CONCEPTS ON CONCEPTUAL MODELING

Domain

IT Department

Edward

John

this info is

abstracted as

a name and
a salary

Employees have

Hi! My name is Edward.

Hello! I am John.

I only make

960€/month...

Information

System

represents

has instances

Entity Type:

Employee
name:String
salary: AmountOfMoney[0..1]

name = "Edward"
salary = 960 €

e:Employee

name = "John"

j:Employee

Figure 2.3. Examples of attributes in the IT Department domain.

we must check periodically the information base against the domain. However,
it is possible to build some mechanisms—i.e. to define integrity constraints—
that automatically guarantee some level of integrity. Moreover, they also help
us to understand the meaning of the domain. There are many different types
of constraints. Two of the most important are Cardinality Constraints and Key
Constraints.

Cardinality Constraints constrain the population of relationship types. Imag-
ine, for example, that a Project has one, and only one, manager, and that an
Employee can only manage up to two different Projects. In this case, the bi-
nary relationship type IsManagedBy(Project manager:Employee) would define the
following two cardinality constraints: Card(Manages; manager, pro jec t) =
(0, 2), which states that an Employee may be the manager of up to two Projects,
and Card(Manages; pro jec t, manager) = (1), which states that a Project has
exactly one Employee as its manager.

On the other hand, Key Constraints are one of the best-known constraints. A
key of entity type E is a set of one or more attributes of E such that the map-
ping from the population E to the corresponding group of attribute values is
one-to-one [97, p. 196]. A key is simple is it consists of a single attribute, and
composite otherwise. Two different instances of E cannot have identical values
for all attributes in the key. An entity type may have any number of keys.

26

2.2. CONCEPTUAL SCHEMAS

2.2.2 Behavioural Subschema

As aforementioned, the structural schema defines the relevant entity and rela-
tionship types of a domain so that the information system can maintain a repre-
sentation of the state of that domain at a given point in time—i.e. the information
base. The facts contained in the information base are not static, but change over
time according to a set of changes called domain events. The set of event types
that are relevant to an information system and the effects of those event types are
described in the behavioural schema [97, p. 18]. We may say that the definition
of these event types is the most important part of the behavioural (sub)schema
[97, p. 246].

According to [97, Chap. 11], domain events can be seen as entities. An
event entity type encapsulates a set of one or more structural events—i.e. atomic
changes to the information base such as creating a new instance of an entity type,
“creating a new instance of a relationship type”, or “modifying an attribute”,
among others. Like any other entity, event entities may participate in relation-
ships with other entity types, they may have attributes, and they may also be
included in a taxonomy of events, where one event type inherits and specializes
another one.

Domain

IT Department

Information

System

represents

is abstracted as
[its effect] produces

Assign Project
Event Type:

AssignProject

e:Employee

Actions and
Changes:

«event»

eclipse:Project

j:Employee
IsWorkingOn

IsWorkingOn

Edward

May I help?

John

p
ro

je
ct

Eclipse

Figure 2.4. Representation of some event types in an IT Department.

Consider, for example, the domain of the IT Department introduced in the
previous section. In that domain, where Employees work on Projects. In Fig. 2.4,
we can see that John is already working on the Project “Eclipse”, and how Edward
wants to start working on it too. In this context, we may find an event such as
“assigning a Project p to an Employee e so that e works on p”. This event would

27

CHAPTER 2. BASIC CONCEPTS ON CONCEPTUAL MODELING

create a new instance of the relationship type IsWorkingOn(Employee, Project) is
created using the instances e and p—.

More examples of event types in this domain may be “hiring a new Employee”
(where a new instance of the entity type Employee is inserted in the information
base), “set a new manager for a certain Project (where the relationship between
the former manager and the project is deleted and a new one is created), or
“firing an Employee” (where an instance of the entity type Employee is removed
from the information base), among others.

2.3 Modeling Languages

So far we have seen that conceptual modeling is an activity whose aim is to pro-
vide a simplified representation of a complex reality (i.e. a conceptual schema)
that makes the understanding of that reality easier. In order to formally represent
these conceptual schemas we use modeling languages.

Modeling languages are artificial languages whose purpose is to represent in-
formation or knowledge about a domain. These languages, which can be graph-
ical or textual, express the concepts we find in a domain, the relationships be-
tween these concepts, some constraints that must be satisfied by the information
base, and so on.

In this section, we describe the Entity-Relationship (ER) model briefly. ER is
the precursor of modern object-oriented approaches to model data and it is still
widely used. Next, we introduce the Unified Modeling Language (UML) and the
Object Constraint Language (OCL), which have become the de-facto standard
modeling languages to graphically describe conceptual schemas. This thesis as-
sumes UML/OCL as the modeling language to be used for defining conceptual
schemas.

2.3.1 The Entity-Relationship (ER) Model

The Entity-Relationship (ER) model was firstly introduced by Chen in [26]. As
stated in [26], “ER adopts the natural view that the real world consists of entities

28

2.3. MODELING LANGUAGES

and relationships”. Therefore, it defines a conceptual representation of data,
which was formerly used for modeling databases graphically.

manager

Employee Project

Is
Working

On

Is
Managed

By

name

salary
name

task

0..21

1..3*

Figure 2.5. Example of a conceptual schema modeled using the ER.

In ER, entity types are represented as rectangles and relationship types as
diamonds with lines connecting each of the relationship’s participants. Entities
may be thought as nouns whilst relationships may be thought as verbs that relate
and connect two or more nouns [27]. ER also allows the definition of attributes,
represented as ellipses connected to the entity or relationship type that owns
them. It also permits the definition of some cardinality constraints. Figure 2.5
depicts the domain we presented throughout the previous sections, using the ER
notation.

2.3.2 The Unified Modeling Language (UML)

In the last years, the Unified Modeling Language (UML) has become the de-facto
standard modeling language to graphically describe conceptual schemas. UML is
a standardized, graphical, general-purpose modeling language maintained by the
Object Management Group (OMG). The specification of its latest version (2.4.1)
can be found in [93].

IsWorkingOn

IsManagedBy

Employee
name:String
salary: AmountOfMoney[0..1]

Project
name:String

1
manager

0..2

*
1..3
task

Figure 2.6. Example of a conceptual schema modeled using the UML.

In UML, entity types are defined as classes (which are graphically drawn as
boxes that include the class name and its attributes) and relationship types are

29

CHAPTER 2. BASIC CONCEPTS ON CONCEPTUAL MODELING

defined as associations (lines connecting classes). For example, in Fig. 2.6 we
see a UML conceptual schema with two classes and two associations. The class
Employee has two attributes (name and salary), and the class Project has only one
(name). The figure also shows the associations IsWorkingOn and IsManagedBy
between the entity types Employee and Project.

We have already stated that constraints are also important elements of con-
ceptual schemas. UML permits the graphical definition of many constraints like,
for example, cardinality constraints. Figure 2.6 includes several examples of car-
dinality constraints:

• An Employee has one salary (or it may be unknown).

• An Employee works on at least one Project, and on no more than three.

• A Project has as many Employees working on it as required (there is no
maximum) and, in fact, it may be the case that none is working on it.

• An Employee may manage up to two Projects.

• A Project has exactly one manager.

However, there are some constraints that cannot be formally described using
UML alone (like, for example, key constraints) and, therefore, a formal language
to represent them is required. The Object Constraint Language (OCL) is a declar-
ative language that complements UML and permits the description of rules in
object-oriented models. Firstly introduced by IBM, the OCL is now a widely
accepted standard maintained by the OMG. OCL constraints are boolean expres-
sions targeted at a certain class, which means that they are evaluated for every
single instance of that class. Since they are constraints, it is expected that the
expression returns True for each instance.

Consider, for example, the entity type Employee. Assume that an employee is
identified by its name (i.e. there are no two different employees with the same
name). This [key] constraint can be defined in OCL as follows:

context Employee inv i s i d e n t i f i e d by h i s name :
Employee . a l l I n s t a n c e s ()−>i sUnique (

Tuple {name : Str ing=name}
)

30

2.4. METAMODELING

2.4 Metamodeling

As we have already seen in Sect. 2.2, domain objects are instances of entity types.
Entity types can also be seen as objects that are instances of types known as meta
entity types [97, p. 383]. A metaschema is a schema that represents general
knowledge about a domain that consists of a schema [97, p. 400].

Conceptual

Schema (S)

Information

Processor (IP)

Information

Base (IB)

Information System (IS)

Domain

Meta Conceptual

Schema (MS)

Meta Information
Processor (MIP)

Meta Information

Base (MIB)

Meta Information
System (MIS)

Figure 2.7. Relationships between a meta information system and an information system
[97, p. 400].

Figure 2.7 shows the differences between a schema and a metaschema. The
information system IS contains a conceptual schema S that represents the gen-
eral, relevant knowledge of a domain. This general knowledge is then used to
maintain concrete information of that domain in the information base IB. The
processor I P receives external messages and changes the IB and/or produces an
output according to these messages.

If we now look at the meta information system M IS, we shall see the same
pattern: it contains a (meta) conceptual schema MS that represents the general
knowledge of a domain—i.e. the domain of conceptual schemas. This general
knowledge is then used to define a concrete conceptual schema S, which is stored
as the (meta) information base M IB. The processor M I P receives external mes-

31

CHAPTER 2. BASIC CONCEPTS ON CONCEPTUAL MODELING

sages and changes the M IB and/or produces an output.

A metamodel is a precise definition of the constructs and rules needed for cre-
ating models. Metamodels can be used as a schema for semantic data that needs
to be exchanged and stored, as a language that supports a particular methodol-
ogy or process, or as a language that expresses additional semantics of existing
information. In order for a conceptual schema to be syntactically correct, it has
to conform to this metamodel—i.e. it has to satisfy all metamodel constraints.

In this thesis, metamodeling plays a key role. As we have already outlined in
Chap. 1, quality issues aim to detect any situation within a conceptual schema
that may be improved. As we shall see in Chap. 5, quality issues define these sit-
uations at the metamodel level so that any conceptual schema, regardless of the
specific domain, can in principle benefit form them. As a result, understanding
metamodeling and, in particular, the UML metamodel is very important.

Element

NamedElement
name:String[0..1]

Generalization

Property Type

Classifier

Class Association

memberEnd 2..* * ownedAttribute

0..1

0..1

general
1
specific
1

* *

0..1*
lower: Integer

upper: Integer

Figure 2.8. A simplified version of the UML metamodel.

Figure 2.8 shows a simplified version of UML’s metamodel. We can see that
any element in a UML schema is an Element. Some of these elements have an
associated name, like Class or Association; this is why they are also Named El-
ements. A Generalization, for example, is a special kind of Element that relates
two instances of Classifier. The metamodel also defines some constraints. For
example, an Association has to be related to, at least, two Properties.

32

2.5. SUMMARY

Figure 2.9 shows the conceptual schema2 depicted in Fig. 2.6 as an instan-
tiation (known as “object diagram”) of the UML metamodel. As we can see,
Employee and Project are instances of the UML metaclass Class, and the associ-
ation IsManagedBy is an instance of the UML metaclass Association. The mem-
berEnds of this association, as well as the name attribute of the class Project, are
instances of the UML metaclass Property. According to [our simplified version of]
the UML metamodel, Properties have a type, and the lower and upper cardinality
constraints.

e:Class

name = "Employee"

p:Class

name = "Project"

:Association

name = "IsManagedBy"

:Property

name = "manager"
lower = 1
upper = 1

:Property

lower = 0
upper = 2

memberEnd
memberEnd

type type:Property

name = "name"
lower = 1
upper = 1

ownedAttribute

String
«datatype» type

Figure 2.9. UML metamodel instantiation of the conceptual schema depicted in Fig. 2.6.

2.5 Summary

In this chapter we have presented a brief introduction to the basic concepts about
conceptual modeling, conceptual schemas, and metamodeling. In particular, we
have described the structural and the behavioural components of a conceptual
schema, and how they can be modeled using the UML/OCL. We have also intro-
duced a few notions on metamodeling and we have presented the UML’s meta-
model.

2For the sake of simplicity, we have omitted the association IsWorkingOn and all Employee’s at-
tributes.

33

She generally gave herself very good
advice, (though she very seldom fol-
lowed it).

L. Carroll, Alice in Wonderland

3
Quality in Conceptual Modeling

The meaning of “quality” has been widely discussed during the past years. In
general, the quality of a product is “the degree up to which a set of properties are
met” [54]. Experience demonstrates that low quality leads to failures. In order
to prevent an error to become a disaster, it is crucial to assure that a product
reaches a certain level of quality before it is released. Unfortunately, measuring
quality is very complicated.

In this chapter we review the state of the art in quality assessment, paying
special attention to quality in conceptual modeling. First, Section 3.1 presents
the main quality frameworks proposed in the literature for evaluating the quality
of software artifacts. Section 3.2 reviews some works that describe how to ad-
dress quality in conceptual modeling, which is currently a “hot topic” [55]. First,
we focus on a few proposals that encourage conceptual modelers to create con-
ceptual schemas that have inconsistencies (i.e. they are syntactically incorrect)
during their development. Next, we review some quality properties that have

35

CHAPTER 3. QUALITY IN CONCEPTUAL MODELING

been published in the literature, including naming guidelines and best practices.
Finally, we discuss the important role tools may play in assisting conceptual mod-
elers address quality.

3.1 Frameworks for Evaluating Quality

The quality of a product is the degree up to which a set of properties are met.
In [54], Garvin defines the concept of product quality and identifies “five major
approaches to its definition”:

The transcendent approach has its basis on philosophy and sees quality as a
synonymous of “innate excellence”, an unanalyzable property.

The product-based approach views quality as a precise and measurable vari-
able. According to this view, differences in quality reflect in differences of
some attributes possessed by a product.

The user-based approach starts from the opposite premise: the quality lies in
the eyes of the beholder. Every person has her own needs, and those goods
that best satisfy her needs are those they regard as having more quality.

The manufacturing-based approach is concerned with manufacturing and en-
gineering practice. It identifies quality as “conformance to requirements”:
once a design or specification has been established, any deviation implies
a reduction in quality.

The value-based approach defines quality in terms of costs and prices. Thus, a
quality product is one that provides performance at an acceptable price or
conformance at an acceptable cost.

Software solutions and, more specifically, conceptual schemas, can also be
seen as “products” and, therefore, it is possible to evaluate their quality. Tradi-
tionally, software quality has focused on evaluating the final product [87]. There
are some international standards aimed at this end like, for example, ISO 9000
[65] and ISO/IEC 9126 [66]. Moreover, there are some proposals in the liter-
ature devoted to evaluate the quality of specific software categories, including

36

3.1. FRAMEWORKS FOR EVALUATING QUALITY

data quality [100, 132, 136], code quality [116], or data and process quality
[89].

Although quality evaluation of final products is positive and necessary, it is
not as efficient as it could be. It is widely accepted that the cost of an error
increases very rapidly over the development cycle, and empirical studies show
that most errors are introduced in the requirements stage [16, 85]. Fagan stated
that “[in the early stages of development], the cost to remedy defects is 10–100
times less than it would be during testing or maintenance” [48]. Since errors are
unavoidable, it is highly important to remove them as soon as possible in order to
reduce the associated costs. Therefore, it seems necessary to be able to evaluate
and improve the quality before the final product is available—i.e. we need some
means to evaluate and improve the quality of a conceptual schema.

According to [85], there are no general accepted guidelines to evaluate the
quality of a conceptual, which results in ad hoc and subjective procedures to do
so. A possible explanation for this unfortunate fact may be that “it is easier to
evaluate the quality of a finished product than a logical specification that needs
to be aligned with the expectations of people involved in the system under de-
velopment” [129].

In [91], the authors reported on an empirical investigation on the impact of
proper documentation in UML on the quality of software system, focusing on
defect density as a measure of software quality. They found that Java classes
that were modeled using UML had lower defect density than those that were not
modeled, thus proving the potential benefits of UML modeling for improving the
quality of software. In the context of MDD and MDA paradigms, where mod-
els are the key artifact in the development process and not only documentation
assets, their quality has an even higher impact on the quality of the delivered
system. [85] suggests that any conceptual quality analysis should comply with
both ISO 9000 [65] and ISO/IEC 9126 [66]. On the one hand, ISO 9000 defines
a framework of quality concepts, terminology, principles, and processes that ap-
ply to all software products and services and, on the other hand, ISO/IEC 9126
defines a framework for evaluating the quality of software products and covers
the software development cycle.

There are several quality frameworks in the literature whose aim is to eval-
uate the quality in the conceptual modeling stage. Some of these frameworks

37

CHAPTER 3. QUALITY IN CONCEPTUAL MODELING

Information System

(IS)

User's View of

RW SystemPerception of the Real-

World (RW) System
User's View as

Inferred from the

IS

Possible Data
Deficiencies

Direct Observation
Process

Representation Process
(Conceptual Modeling)

Interpretation
Process

Modeling Method,
Grammar

Ontological
Construct

Figure 3.1. Wand and Wang’s framework.

focus on the quality of data models, whilst others focus on the quality of the mod-
eling process. An example of the former group is the framework proposed by
Moody et al. in [86], which was later refined and extended in [87]. This frame-
work proposes a set of quality factors (completeness, correctness, simplicity, flex-
ibility, integration, understandability, and implementability), their relationships
with stakeholders, their contribution to the improvement strategy, their impor-
tance, and quality measures to evaluate them. An example of the second group
is the framework proposed by Wand and Wang in [132], where the quality of
a product is said to “depend on the process by which the product is designed
and produced”. It is important to remark that there are new frameworks that
combine both views [89].

The model proposed in [132] makes a distinction between the internal and
the external view of an information system and the quality dimensions related to
each one. The external view is concerned with the use and effect of the system,
whilst the internal view addresses the construction and operation necessary to
attain the required functionality. Table 3.1 categorizes the set of data quality di-
mensions that were identified by the authors, based on the definitions of internal
and external views. Figure 3.1 shows their framework and the possible deficien-
cies that may be detected by a user when she compares the view she has of the
domain and the view inferred from the build information system. According to
Wand and Wang, the process by which the information system is built is the key
factor to success.

Lindland et al. identify three main conceptual schema quality goals in [75]:
syntactic quality, semantic quality, and pragmatic quality. The authors consider a

38

3.1. FRAMEWORKS FOR EVALUATING QUALITY

Table 3.1. Data quality dimensions as related to the internal or external views.

Dimensions

Internal View
(design, oper-
ation)

Data-related
accuracy, reliability, timeliness, completeness, currency, consistency, preci-
sion

System-related
reliability

External View
(use, value)

Data-related
timeliness, relevance, content, importance, sufficiency, usableness, useful-
ness, clarity, conciseness, freedom from bias, informativeness, level of de-
tail, quantitativeness, scope, interpretability, understandability

System-related
timeliness, flexibility, format, efficiency

conceptual schema as a set of statements in a modeling language, whose foun-
dations are in the theory of semiotics [101]. Semiotics is related to the field of
linguistics and includes the evaluation of codes and signs based on tree main
points of view, that correspond to the goals identified by the authors: syntac-
tic view (relations among signs in formal structures), semantic view (relations
between signs and the concepts they refer), and pragmatic (relation between
signs and the “effects” they have on the people who use them). The SEQUAL
framework (presented in [70]) extends “Lindland’s” and separates quality goals
from quality means (or quality types). Table 3.2 presents an overview of the
framework.

Quality Dimensions Addressed in this Thesis

According to the framework presented in [89], the main quality properties ad-
dressed in this thesis correspond to the physical layer, which contains the ob-
servable elements of the quality framework. In particular, our method aims to
improve the empirical quality and the syntactic quality of the conceptual modeling
process.

On the one hand, syntactic quality is defined as “the correspondence between

39

CHAPTER 3. QUALITY IN CONCEPTUAL MODELING

Table 3.2. SEQUAL Quality Framework.

Quality Type Goals Description

Physical Externalization The conceptual model is available as a physical ar-
tifact, representing the knowledge of some social
actor using statements of the modeling language.

Internalizability The conceptual schema is available and persis-
tently enabling the audience to interpret it.

Empirical Minimal Error
Frequency

The conceptual schema can be evaluated look-
ing the schema itself, comprising comprehensibil-
ity matters such as layout for graphs and readabil-
ity indexes for text.

Syntactic Syntactic
Correctness

All statements in the conceptual model schema ac-
cording to the syntax and vocabulary of the mod-
eling language.

Semantic Feasible Validity All the statements in the conceptual schema are
(sufficiently) correct and relevant to the problem.

Feasible
Completeness

The schema contains all valuable statements that
would be correct.

Perceived
Semantic

Perceived Validity
and Completeness

The model is valid and complete, according to
the actors’ interpretation of the schema and their
knowledge about the domain.

Pragmatic Feasible
Comprehension

It is the correspondence between the model and
the audience’s interpretation of the model. In
other words, the model has to be understood.

Social Feasible Agreement It implies resolving inconsistencies by choosing al-
ternatives where benefits of choosing exceed the
cost of working out consensus.

Organizational Modeling Goals
Satisfaction

The model has to fulfill the goals of modeling,
which define why the conceptual modeling process
is undertaken.

Knowledge Feasible Knowl-
edge Validity and
Completeness

Validity and completeness taking into account the
audience’s knowledge about the domain.

the conceptual schema representation and the language in which it is written”.
As we describe in Chap. 5, our proposal encourages working with syntactically
incorrect schemas whilst they are being developed, as long as the errors are fixed

40

3.2. RELATED WORK ON IMPROVING QUALITY

at some point. Therefore, evaluating the syntactic quality becomes crucial.

On the other hand, empirical quality includes any quality property that can
be evaluated by looking at the schema itself. These properties comprise compre-
hensibility matters such as readability indexes for text. The next sections include
several quality properties, such as best practices and naming guidelines, that
directly contribute this SEQUAL’s quality dimension.

3.2 Related Work on Improving Quality

Software systems are always validated by their users once the system is deliv-
ered and they start using it. In general, any software artifact—and, in particular,
conceptual schemas—may be verified and validated according to a set of quality
criteria defined in a specific quality framework. There is a wide range of proper-
ties that can be validated and contribute to different quality dimensions, as well
as several activities and methods aimed to perform this validation.

In this section, we first review some works that describe how to address syn-
tactic quality. These works encourage conceptual modelers to create conceptual
schemas that have inconsistencies (i.e. they are syntactically incorrect) during
their development. Next, we review some quality properties that have been pub-
lished in the literature. These properties include naming guidelines and best
practices. Finally, we discuss the important role tools may play in assisting con-
ceptual modelers address quality. In this sense, we briefly outline the support that
tools offer in other domains (such as, for example, programming environments),
and the support conceptual modelers get nowadays.

3.2.1 Working with Inconsistencies

In Sect. 2.4, we have introduced metamodeling, and we have seen that, for a
conceptual schema to be syntactically correct, all metamodel constraints have to
be satisfied. The violation of a metamodel constraint is known as an inconsis-
tency. Classically, inconsistencies are forbidden—i.e. the modeler cannot per-
form any change such that her conceptual schema becomes inconsistent. How-
ever, some authors consider inconsistencies inevitable and, therefore, they en-

41

CHAPTER 3. QUALITY IN CONCEPTUAL MODELING

courage working with them, as long as they get fixed sometime in the (near)
future [44, 49, 115]. The rationale is that developing a conceptual schema is
a creative process and, as such, inconsistencies inevitable arise whilst exploring
different alternatives, or simply because of different stakeholders having differ-
ent (inconsistent) views of the system under development. When inconsistencies
are allowed, inconsistency handling becomes a key piece in the development of
a schema.

In [15, 112], Blanc, Silva, et al. propose an incremental consistency checker
based on the idea of representing models as sequences of primitive construc-
tion operations. The four elementary operations they define are: create, delete,
setProperty, and setReference. In order to detect an inconsistency, they define In-
consistency Detection Rules. Any inconsistency rule is a logic formula over the
sequence of model construction operations: if a set of operations is triggered in
a specific order, it can be assured that an inconsistency has been introduced into
the model.

In [43, 44], Egyed proposes an instant consistency checking for the UML.
Its immediacy makes it similar to the one proposed by Blanc et al., but it takes a
completely different approach to deal with inconsistency detection. His approach
defines a few consistency rules for UML 1.3 and checks whether they hold or not
each time a change is performed. His main contribution involves the detection
of scope. The rules have to be checked against the elements that have changed
or can be indirectly affected by the change, not against the whole schema. In
previous methods, rules were defined in terms of types, but Egyed suggests a
new solution where rules are checked against concrete instances, not types.

3.2.2 Quality Properties in the Literature

Metamodel constraints are one of the most important and obvious quality proper-
ties a conceptual schema has to satisfy. If they are not, the schema is syntactically
incorrect. Nonetheless, there is plenty of proposals in the literature that propose
other quality properties, including layout guidelines, best practices, and naming
guidelines, among others. Here, we review some of them.

42

3.2. RELATED WORK ON IMPROVING QUALITY

Best Practices

Many proposals in the literature that aim to improve the resulting quality of
a conceptual schema can be categorized as best practices. A best practice is a
method or technique that has consistently shown results that are superior to
those achieved by other means. In the field of conceptual modeling, best prac-
tices include refactoring a schema, distributing the elements in a certain layout,
or making an implicit OCL constraint explicit.

Some proposals deal with the definition of constraints. In [34], the authors
propose a set of stereotyped constraints that aim to simplify the definition of
general constraints. These include “identifier constraints” or “path inclusion and
path exclusion constraints”, among others. The usage of stereotyped constraints
is useful to both conceptual modelers and conceptual schema’s audience. On the
one hand, the definition of this constraints becomes easier. On the other hand,
since the meaning of an stereotyped constraint is well established, it is easier for
the audience to comprehend it.

In [33], the authors deal with association redefinitions, which is a new con-
cept in UML 2.0. Their work includes an analysis of the interactions between
taxonomic constraints and redefined associations. As a result, they propose a
set of well-formedness rules, which can be summarized as “making an implicit
constraint explicit”. Thus, for example, a set of association redefinitions is not
well-formed if it entails a disjoint (complete) constraint for a generalization set
that the designer has specified as overlapping (incomplete).

More examples of best practices and relevant quality properties include:

• Classes must be identifiable [97]. The rationale behind this requirement
is that when an entity type is identifiable, the users and the information
system have a shared means to refer to its instances. If, on the other hand,
an entity type is not identifiable, then the users and the information system
will be unable to share information about instances of it.

• Recursive binary associations may define the properties of reflexivity, sym-
metry, and transitivity. When they do, the modeler has to define explicit
OCL constraints [97].

• Remove redundant generalizations [97].

43

CHAPTER 3. QUALITY IN CONCEPTUAL MODELING

• The elements of a conceptual schema must be relevant. An element of a
conceptual schema is relevant if it is used in a constraint, a derivation rule,
or an event type [97].

• Detect when a binary relationship makes the schema not strongly satisfi-
able [60].

Naming Guidelines

The names conceptual modelers give to the elements of a conceptual schema
have a strong influence on the understandability of that schema. It is widely
recognized that good names make it easier for requirement engineers, conceptual
modelers, system developers and users to understand conceptual schemas [1, 38,
79, 82]. However, choosing good names is one of the most difficult aspects of
conceptual modeling [107, p. 46]. In the literature, there have been several
proposals of naming guidelines for conceptual schema elements [10, 13, 27, 46,
79].

Appendix A provides an in-depth review of the literature. Moreover, it in-
cludes a naming guideline proposal for the UML.

Refactorings

As introduced in [17, 51], “refactorings are changes made to the internal struc-
ture of software to make it easier to understand and cheaper to modify without
changing its observable behavior”. They describe what can be changed, how the
modification can be done without altering the semantics, and what problems to
look out for when doing so. Until now, refactorings have usually been discussed
in the context of program code. As stated by Boger et al. in [17] refactorings may
be defined on the level of models, so refactoring browsers could be implemented
in the context of UML CASE tools rather than IDEs.

Refactoring by hand is time consuming. This simple fact prevents program-
mers from making refactorings they know they should, simply because refactor-
ing costs too much. Automated tools that support refactoring would improve
model’s quality [51]. Since refactorings aim to change the schema in a way such

44

3.2. RELATED WORK ON IMPROVING QUALITY

that the two alternatives are equivalent, we may identify which is best-suited for
our needs and, thus, has “more quality”.

3.2.3 Tool Support to Assess Quality

Users from many different domains rely on computer tools to carry on their tasks.
Complex general tasks such as undoing and redoing changes, sharing files, or
finding information, became easier only because they were performed within a
computer. For example, writers do no longer write manuscripts manually—they
use text processors—, and architects do not draw blueprints manually either—
they use Computer Aided Design (CAD) programs.

Nowadays, the support offered by computer tools is much greater: they do
not only simplify the work itself, but they provide further assistance to their
users. One clear example are word processors, which include advanced function-
alities such as detecting misspellings in real-time, finding word synonyms, and
automatically fixing case typos, among others.

If we look at the domain of programming languages (which are closer to
conceptual modeling), we can see that this kind of support does also exist. Com-
puter programmers use Integrated Development Environments (IDE)—software
applications that integrate any tool that is required to write, build, and test a
computer program. IDEs include many functionalities aimed to simplify pro-
grammer’s work and improve code’s quality like, for example, code refactoring,
code completion, real-time compilation errors and warnings, and so on.

As we shall see in Chap. 9, the conceptual modeling community has also
tools to support the development of conceptual schemas. In general, professional
modeling applications simplify the creation of conceptual schemas by ensuring
(some, if not all) metamodel constraints and, in some cases, checking a few
quality properties.

In the literature, there are several methods and frameworks to ensure the
quality of a conceptual schema (in Chap. 6 we review many of them). These
proposals are usually presented along with a prototype tool that provides some
automatic assistance to the conceptual modelers. Unfortunately, these proposals
have not been integrated into a single application (as IDEs do in the field of

45

CHAPTER 3. QUALITY IN CONCEPTUAL MODELING

programming), making it difficult to use them all in practice.

In [135], Wohed presents a case study where a wizard tool that suggests the
most suitable pattern from a pattern library was tested. She tries to determine
whether such a tool could be successfully used as a pedagogical aid, as well as to
gather opinion about such a tool. The study shows that the subjects who used the
wizard tool were more willing to change their schemas following its suggestions.

In [17], Boger et al. discuss the important role refactorings play within the
extreme programming and agile process community. According to the authors,
refactorings—which are widely supported by IDEs on code—could (and should)
be applied on UML models. In order to support them, the authors present a
refactoring browser for UML—a prototype tool that assists conceptual modelers
on detecting and applying refactorings.

Another example where a tool may be useful is conceptual schema testing.
In [123, 124], the authors present a method to test conceptual schemas. This
method was implemented in a prototype tool [125]. In [40], the authors imple-
ment their own approach on conceptual schema testing.

In [37], Davies et al. tried to determine whether practitioners used concep-
tual modeling within the organizations they worked for and, if they did, which
tools, techniques, and purposes were used. The most used tool according to their
survey is Visio, far ahead from the second one Rational Rose. In fact, the authors
reported that at least 40% of respondents did either not know or use any of the
24 tools named in the survey.

ArgoUML—A Modeling Tool that Focuses on Quality

As stated in [105], ArgoUML is a domain-oriented design environment that pro-
vides cognitive support of object-oriented design. It provides some of the same
automation features of a commercial CASE tool, but it focuses on features that
support the cognitive needs of designers. Figure 3.2 shows the ArgoUML’s User
Interface criticizing modeler’s work.

ArgoUML is particularly inspired by three theories within cognitive psychol-
ogy [105]: (i) reflection-in-action, (ii) opportunistic design and (iii) comprehen-
sion and problem solving.

46

3.2. RELATED WORK ON IMPROVING QUALITY

Untitled - Class Diagram - ArgoUML *

File Edit View Create Arrange Generation Critique Tools Help

79 M used of 455M max

Medium
High

Low

Revise Package Name untitledModel
Add Associations to person
Add Operations to person
Capitalize Class Name person
Add Constructor to person
Name Conßict Caused by person
Add Associations to person
Add Operations to person
Add Instance Variables to person
Capitalize Class Name person

By Priority 11 Items

Order By Type Name

untitledModel
ProÞle ConÞguration

* *
p

Source Constraints Stereotype Tagged Values Checklist

Properties Documentation Presentation

Normally classes begin with a capital letter. The name 'person' is
unconventional because it does not begin with a capital.

Following good naming conventions help to improve the
understandability and maintainability of the design.

To address this, use the "Next>" button, or manually select person
and use the Properties tab to give it a di�erent name.

*

z

< Back Next > Finish Help

ToDo Item

Package-centric

Figure 3.2. ArgoUML’s User Interface showing some improvements available.

Reflection-in-action This theory observes that modelers do not conceive a fully-
formed design. Instead, they construct a partial design and evaluate it so
that, ultimately, they can revise, improve and extend it.

Opportunistic design A theory which states that, despite the fact that users plan
and describe their work in an ordered fashion, in the end they choose
successive tasks based on the criteria of cognitive cost.

Comprehension and Problem Solving The theory notes that designers have to
bridge a gap between their mental model of the problem or situation and
the formal model of a solution or system.

ArgoUML implements these theories using a number of techniques:

• A user interface which allows the user to view the design from a number
of different perspectives.

• Processes running in parallel with the design tool that evaluate the current

47

CHAPTER 3. QUALITY IN CONCEPTUAL MODELING

design against models of what “best practice” design might be like (design
critics).

• The use of to-do lists, so the user can record areas for future work.

• The use of checklists, to guide the user through a complex process.

3.3 Summary

In this chapter we have reviewed the state of the art in quality assessment in the
field of conceptual modeling. We have seen that quality is a complicated concept
that has been widely discussed during the past years.

First, we have discussed the concept of quality. The quality of a product is
generally described as “the degree up to which a set of properties are met” [54].
In the software domain, software quality has traditionally focused on evaluating
the final product [87] and, in fact, there are some international standards for
evaluating it [65, 66]. We have also seen that there are several frameworks for
evaluating the quality of a conceptual schema [70, 75, 87].

Second, we have reviewed some related work on improving the quality of
conceptual schemas. We have seen that there is plenty of proposals in the liter-
ature that aim to improve some specific properties within a conceptual schema,
including naming guidelines [10, 13, 27, 46, 79] and best practices [34, 33, 60,
97]. Some works, on the other hand, do not propose new quality properties, but
discuss how modelers should work with them. An example of the latter are those
works related to working with inconsistencies [15, 43, 44, 112], which focus on
how to efficiently deal with inconsistencies and where the properties addressed
are the well-known metamodel constraints.

We have also discussed the importance of tool support to assess quality. In this
sense, we have briefly outlined some examples of the features that tools in a code
programming domain offer—which include refactorings, code completion, error
detection, and so on—. Moreover, we have seen that many authors implement
their quality proposals within a prototype tool to make their proposals useful to
practitioners.

48

3.3. SUMMARY

We have presented ArgoUML as an example of a modeling tool that is focused
on improving the quality of conceptual schemas. This tool criticizes the flaws of
a conceptual schema, providing useful feedback to the modeler. The critiques it
offers include some of the quality properties that we may find in the literature,
but the catalog it includes is far from complete.

Clearly, there is a lot of work available on quality in conceptual modeling.
Nonetheless, we believe there are still some open issues to be solved in this field.
All these proposals are not arriving to practitioners, probably due to the difficul-
ties of understanding and integrating them all in a unique tool. One possible ex-
planation might be that each proposals focuses on a particular problem, and does
not present the solution using a more global, unified framework. Thus, we may
find, for example, proposals that describe how to use stereotyped constraints to
define general constraints [34] and, therefore, simplify its understanding, as well
as other proposals that propose working with inconsistencies [15, 43, 44, 112].

In this thesis we try to solve this problem by providing a formalization that
unifies the definition of all these proposals in terms of quality issues. Therefore,
our formalization permits to define which quality issues we address and how we
treat them.

49

Part III

Contributions

51

Blah, blah, blah, let’s have another
scotch.

D. Koontz, False Memory

4
Overview of Our Method

A conceptual schema defines the general knowledge that an information system
needs to know in order to perform its functions [97]. The increasingly important
role conceptual schemas play in information system development requires that
they must be of high-quality [75, 76]. This quality can be analyzed in terms of
properties (or dimensions). All conceptual schemas should have the fundamental
properties of syntactic and semantic correctness, relevance and completeness,
but other quality properties have been proposed in the literature [10, 14, 27, 29,
33, 34, 38, 51, 31], and may be required or recommended in particular projects.

As we have already said in the previous chapters, the method proposed in this
thesis is based on the notion of conceptual schema quality issue. We understand
an issue as “an important [quality] topic or problem for debate or discussion”.
In essence, an issue is a condition. The condition may be an integrity constraint
a schema must satisfy to be syntactically correct, a necessary condition for a
schema to be satisfiable, a condition for a schema element to be relevant, a best

53

CHAPTER 4. OVERVIEW OF OUR METHOD

practice defined as a condition that must be satisfied, and so on.

In this chapter, we briefly introduce quality issues and we outline our method.
First, Section 4.1 provides an informal introduction to quality issues. The section
starts with a motivating example that serves as an illustration of the quality issues
we deal with in this thesis. Next, Section 4.1.2 defines quality issues informally,
focusing on the difference between quality issue types and quality issue instances.
In Sect. 4.2, we describe the general structure of our method. The method’s
structure can be summarized in three phases: (i) definition of quality issue types
using our formalization, (ii) compilation of quality issue types in a catalog, and
(iii) usage of quality issue types during the development of a conceptual schema.
Finally, Section 4.3 summarizes the chapter.

4.1 A Brief Introduction to Quality Issues

In this section, we first introduce a simple motivating example that serves as an
illustration of the quality issues we deal with in this thesis. Next, we use the
motivating example to give an informal definition of quality issues.

4.1.1 Motivating Example

IsParentOf

parent 2
3
child

Vehicle

LandVehicle

{disjoint, complete}

MotorVehicle Person
1..0

Car
plateNumber:String

motorcycle
plateNumber:String

* Owns

Figure 4.1. A conceptual schema with several quality issues.

Consider the structural conceptual schema of Fig. 4.1. There is a four-level
hierarchy of IsA (Car and motorcycle IsA MotorVehicle IsA LandVehicle IsA Vehicle).
A person may own any number of motor vehicles. Moreover, there is the typical
parent-child relationship type.

54

4.1. A BRIEF INTRODUCTION TO QUALITY ISSUES

Even if the example is very small, we can detect several quality issues. On
the one hand, there are some issues that are clearly “problems”:

a) the cardinality constraint [1..0] of the participant person in association
Owns is syntactically incorrect,

b) the entity type motorcycle does not start with a capital letter, despite several
naming guidelines recommend that entity types start with a capital letter
(e.g. [10]),

c) the abstract entity type Vehicle has only one subtype (LandVehicle). Either
Vehicle is not abstract, or both type and subtype have the same population,

d) the cardinality constraints of association IsParentOf are not satisfiable,

e) the specialization Car IsA LandVehicle is redundant, and

f) the attribute plateNumber is repeated in all subtypes of MotorVehicle.

On the other hand, there are a few issues that should be checked. For exam-
ple, the modeler has to check whether:

g) the name of the association IsParentOf (as well as the name of the associa-
tion Owns) makes sense1, and

h) the recursive binary association IsParentOf needs a constraint enforcing the
asymmetry property.

4.1.2 Informal Definition of Quality Issues

In Chap. 1, we have defined a quality issue as “an important topic or problem for
debate or discussion”. According to this definition, an issue can therefore point
out a “problem” that needs to be solved, or a “topic” the modeler has to pay
attention to. Our method makes this distinction too and classifies issues in two
different kinds: problem issues and checking issues. Regardless the issue kind,

1See Sect. A.3 for further details on this issue.

55

CHAPTER 4. OVERVIEW OF OUR METHOD

the conceptual modeler is responsible of addressing and solving all issues her
conceptual schema has before it is “finished”.

Informally, a problem issue is an issue that should not happen in the schema.
These issues can be automatically detected and, when they are, we know “for
sure” the schema has a defect. In order to solve issues of this kind, the conceptual
modeler has to change the schema in a way such that the issues cease to exist.
As long as one of them exists, the schema is not correct.

In the example from Fig. 4.1, (e) is a problem issue because it is not considered
good practice to have redundant specializations in a schema. Therefore, the
schema “has a problem that has to be fixed”. Note that (1) we can automatically
detect this situation, and (2) as long as there is a redundant generalization in
the schema, the schema is not correct. A possible solution to this problem issue
could be to remove the redundant specialization from the schema.

On the other hand, a checking issue is an issue that requires the conceptual
modeler to check something that cannot be automatically checked. For example,
(h) is a checking issue because the modeler has to manually check if a recursive
binary association is asymmetric or not. This checking issue forces the mod-
eler to pay attention to a particular part of the schema and make sure that the
model represents the domain properly. Because of this issue, the modeler may
ask herself the following questions: “is the association asymmetric?”, “if it is, is
an integrity constraint enforcing the asymmetry property missing?”, “if it is not,
is there an unnecessary constraint that enforces it?”, and so on.

The only way to solve a checking issue is by manually setting it as “checked”.
If the checking issue pointed out a problem in the schema that was unnoticed
(e.g. the association was asymmetric, but the corresponding integrity constraint
was missing), the modeler has to perform an action to solve it and, then, mark
the issue as “checked”.

There are some issues that can be defined as problem or checking, depending
on the information we have/use. Consider, for example, the identifiability issue,
which states that “all entity types defined in a conceptual schema must be identi-
fiable” [97, p. 109]. The rationale behind this requirement is that when an entity
type is identifiable, the users and the information system have a shared means to
refer to its instances.

56

4.1. A BRIEF INTRODUCTION TO QUALITY ISSUES

In order to make an entity type identifiable, the conceptual modeler has
to specify the set of properties (i.e. attributes and/or association ends) that
uniquely identifies each entity. In UML/OCL, this is usually achieved by creat-
ing an OCL integrity constraint.

Consider, for example, the entity type Car from Fig. 4.1. Assuming that, in
general, a car’s plate number uniquely identifies the car, we can define the follow-
ing constraint to specify that “a Car is identifiable using its property plateNum-
ber”:

context Car inv i s i d e n t i f i e d by i t s p l a t e number :
Car . a l l I n s t a n c e s ()−>i sUnique (

Tuple {plateNumber : Str ing=plateNumber }
)

When using OCL integrity constraints, the identifiability issue has to be a
checking issue. The rationale is we cannot automatically know for sure if there is
an OCL integrity constraint specifying the set of properties that uniquely identify
an entity type. As a consequence, the modeler has to manually check whether
there is such constraint for each entity type, define it when it does not exist, and
set the issue as checked.

However, this issue can also be defined as a problem issue, if we were able to
automatically determine whether the required constraint exists or not. In [34],
the authors propose a UML profile to simplify the definition of several general
constraints, including the identifiability constraint. Clearly, once the constraint
is stereotyped, we can automatically check its existence and, therefore, we can
define the issue as a problem issue. Figure 4.2 shows the stereotyped Identifier
constraint applied to the entity type Car.

Car
plateNumber:String

{«Identifier»}

Figure 4.2. Example of the use of the Identifier stereotype.

Issue Types and Issue Instances

Consider, for example, issues (b) and (f). These issues point out specific problems
of the schema depicted in Fig. 4.1—(b) points out that “the class motorcycle

57

CHAPTER 4. OVERVIEW OF OUR METHOD

does not start with a capital letter”, and (f) that “the attribute plateNumber is
repeated in all subtypes of MotorVehicle”. These issues are, in fact, instances of
the following issue types:

Ib = “the name of a class is not properly capitalized”, and

I f = “an attribute is repeated among all specific classes of a complete general-
ization set”.

Informally, an issue type describes a problem we want to avoid in
a conceptual schema, or a situation the conceptual modeler has to
be aware of. An issue instance, on the other hand, points out that
specific problem or situation in a concrete conceptual schema.2

A conceptual schema may have several issue instances of different issue types.
Moreover, there may be several issue instances of the same issue type in a partic-
ular schema. These concepts are further detailed in Chap. 5.

4.2 General Structure of our Method

The goal of this thesis is to improve the quality of conceptual schemas. In order
to do so, we propose the usage of quality issues during the development of con-
ceptual schemas. Quality issues provide useful feedback to the modeler on those
aspects of a conceptual schema that can (and thus should) be improved, as well
as on how to do so.

In this section, we outline the main components of our method, which con-
sists in three phases: (i) the definition of quality issue types using our formaliza-
tion, (ii) the compilation of quality issue types in a catalog, and (iii) the usage of
quality issue types during the development of a conceptual schema. Figure 4.3
depicts our method and outlines each phase.

2We may use the term “issue” indistinctly to refer both to issue types and issue instances.

58

4.2. GENERAL STRUCTURE OF OUR METHOD

Method
Engineer

Relevant quality
problem A...

Characterization
of Quality Issues

Quality Issue Type A
(Properly Formalized)

Formalization of a
Quality Issue Type

i

Compilation of a

Quality Issue Catalog

ii

Quality Issue Type
A

Quality Issue Type
B

Quality Issue Type
C

«addition of A
to the catalog»

Using Quality Issues

on Schema Dev.

iii

Conceptual
Modeler

Modeling Tool

Issue types A and
C are relevant for

my schema...

«loading issues
A and C

from the catalog»

A C

Issue Types (enabled)

Conceptal Schema

«creates»

«addresses and fixes»

Issue Instances

Issue Instance - A
Issue Instance - C
Issue Instance - C

«uses»

Figure 4.3. Overview of our method.

4.2.1 Defining Quality Issue Types

Conceptual schemas should not have defects and they should satisfy the quality
criteria required by the methods used in their development [18, 28, 69, 75, 85,
111]. In Sect. 4.1.1 we have presented a motivating example which consisted of a
conceptual schema with several quality issues. As we have introduced in Chap. 3
and as we shall see in Chap. 6, there is plenty of quality criterion proposals in
the literature.

59

CHAPTER 4. OVERVIEW OF OUR METHOD

The first phase of our method aims to define these quality criteria uniformly in
terms of conceptual schema quality issue types. The characterization and formal-
ization of quality issues—which is explained in Chap. 5,—is the most important
contribution of this thesis, as well as a major requirement for this phase. Quality
issue types are defined by method engineers and include:

• a Scope, which includes the metaelements that may have issues of the type
that is being defined,

• a Condition, which is defined at the metamodel level and it is used to de-
termine whether an instance of the scope actually has an issue of that type,

• a Kind, which (as we have seen) can either define the issue type as a Prob-
lem or Checking issue,

• a set of Actions that, when executed, fix a particular instance of that issue
type, and

• a few more elements that are discussed in Chap. 5.

4.2.2 Compilation of Quality Issue Types in a Catalog

The second phase of our method consists in the compilation of a quality issue
catalog. Chapter 6 presents, as another contribution of the thesis, the catalog
we have built so far using our method. The benefits provided by a catalog of
uniformly-defined quality issues are two-folded. On the one hand, it can be
used as a reference point for any conceptual modeler who wants to improve
her conceptual schema. Hopefully, the catalog will contain all published quality
issues using a unified representation and will be updated when necessary. On the
other hand, we believe that using IDEs that automatize the detection and tracking
of quality issues is one of the best ways to ensure the quality of a conceptual
schema. IDE engineers are responsible of integrating quality issues within their
tools. Obviously, the catalog can be used to this end and become a useful resource
for these engineers.

60

4.2. GENERAL STRUCTURE OF OUR METHOD

4.2.3 Using Quality Issues on Schema Development

Finally, the last phase of our method consists in using quality issues to actually
improve the quality of conceptual schemas. The formalization we propose for
quality issues determines when quality issues appear in a conceptual schema, how
they (may) change, and which actions need to be taken in order to fix them—
i.e. the method we propose guides the conceptual modeler in the process of
improving the quality of the schema. On the one hand, it can be used to detect
which issues are present in the schema. On the other hand, the method provides
useful insights on which actions may fix a particular issue.

We believe our method is especially useful when it is integrated in an IDE.
In Chap. 7, we introduce the third major contribution of the thesis—a prototype
Conceptual Modeling Assistant (CMA) that implements the method in a real IDE.
As a result, the responsibilities of assessing the quality of a conceptual schema are
split between the CMA and the modeler. On the one hand, the CMA is responsible
of:

• identifying which quality issues are contained in the schema,

• keeping track of the state in which they are,

• monitor the changes the modeler makes to the schema and how they affect
issues (i.e. whether new issues appear, whether old issues get fixed, and so
on), and

• providing useful feedback on both

On the other hand, the conceptual modeler is responsible of:

• selecting which quality issue types (among those available in the catalog)
are relevant in her conceptual schema, and

• making sure no issues of those types are present in the schema and, if they
are, fixing them.

A fourth contribution of the thesis is the incremental evaluation of quality
issues, which provides instant feedback. In Chap. 8, we introduce the importance

61

CHAPTER 4. OVERVIEW OF OUR METHOD

of this incremental evaluation. In particular, we review the available literature
on incremental evaluation—paying special attention to those works related to
incremental evaluation of OCL expressions—, and discusses and evaluates how
one specific method can be adapted to our formalization of issue types and im-
plemented in our CMA.

4.3 Summary

First, Section 4.1 has introduced a motivating example that serves as an illustra-
tion of the quality issues we deal with. Using this example, we have provided
an informal definition of quality issues. We have seen that quality issues may be
classified as problem issues or checking issues. Roughly, the former ones are issues
that point out a defect on the schema that should not happen. The latter, on the
other hand, point out situations that the modeler needs to be aware of. It may be
the case that these situations are a defect actually and, therefore, the modeler is
responsible of performing some action to fix them. We have also introduced the
differences between issue types and issue instances.

Section 4.2 has presented the general structure of our method. The method
we propose in this thesis consists in three main steps: (i) the definition of quality
issue types in terms of the formalization presented in Chap. 5, (ii) the compila-
tion of a catalog of quality issues, as presented in Chap. 6, and (iii) the usage of
quality issues during the development of a schema. In the remaining chapters of
this thesis, we describe in detail the contributions of this thesis that conform the
method.

62

Most men would rather deny a hard
truth than face it.

G. R.R. Martin, A Game of Thrones

5
Characterization and

Formalization of Conceptual
Schema Quality Issues

Engineering is about getting results of the required quality within the schedule
and budget [114, p. 8]. The most effective way to do so is to adopt a systematic
and organized approach. Conceptual modeling is no exception to this rule. The
increasingly important role conceptual schemas play in information system de-
velopment requires that they must be of high-quality—i.e. they all should have
the fundamental properties of syntactic and semantic correctness, relevance and
completeness, as well as any other quality properties have been proposed in the
literature that are relevant in the context in/for which they are being developed.

It is a fact that only a few quality properties (mainly those related to syntax)
have been integrated into the development environments used by professionals

63

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

and students, and thus enforced in the conceptual schemas developed by them.
A possible explanation of this unfortunate fact may be that the proposals have
been defined in the literature in disparate ways, which makes it difficult to use
them in practice.

In the previous chapter we introduced our method for assessing the quality of
conceptual schemas. The method we propose is based on the notion of “concep-
tual schema quality issues”, which we understand as “important quality topics
or problems for debate or discussion”. Our method is structured in three main
stages: (i) formalizing quality issues, (ii) compiling them into a catalog, and (iii)
using them while developing a conceptual schema.

In this chapter we focus on the first stage of our method—i.e. the formal-
ization of quality issue types and quality issue instances. We aim to formalize
how quality issues can be detected within a conceptual schema, how they evolve
as the schema changes, and how the conceptual modeler can fix them [4]. Its
evaluation is presented in the subsequent chapters of the thesis in terms of its
expressiveness and usefulness. On the one hand, the expressiveness of our method
is demonstrated by analyzing its capability to define many existing quality prop-
erties (i.e. issue types) we may find in the literature. The result of this evaluation
is the second contribution of the thesis—a catalog of conceptual schema quality
issues (Chapter 6). On the other hand, we evaluate in two steps the usefulness
of our method by analyzing the presence of quality issues in a set of conceptual
schemas developed by students. First, in Chap. 6 we demonstrate the feasibility
of a quality assurance approach based on the catalog—i.e. conceptual schemas
could be improved by using the catalog. Second, in Chap. 9 we demonstrate that
our catalog leads to the detection of more quality issues compared to the issues
current modeling tools are able to detect.

Section 5.1 starts with the formal definition of the main components that
shape all these relevant aspects of an issue type. These components include the
types for which an issue may exist, the conditions that determine whether an
instance of these types produce or not an issue instance, how a particular issue
type is classified, or the actions that can be executed to fix a particular issue
instance, among others. Next, Section 5.2 describes the different states in which
an issue instance can be depending on its classification. Section 5.3 describes the
notion of “issue precedence”, which is used to prioritize which issue instances
should be presented to the conceptual modeler and, thus, optimize the amount

64

5.1. DEFINITION OF ISSUE TYPE AND ISSUE INSTANCE

of feedback she gets. In Sect. 5.4, we present an algorithm that can be used
to compute the issues raised in a schema, either under request or continuously.
Next, Section 5.5 presents in detail the concept of “issue actions”, which are
operations the modeler can execute in order to fix a particular issue instance.
Finally, Section 5.6 summarizes this chapter.

5.1 Definition of Issue Type and Issue Instance

Let S be a schema that consists of n schema elements e1, . . . , en, which are an
instance of the corresponding schema metatypes. The most important schema el-
ements are entity, relationship and event types, IsA relations, constraints, deriva-
tion rules and pre/post conditions. Among the auxiliary schema elements there
are strings (for example, names of relationship types) and integers (for example,
minimum values of cardinality constraints).

We define a conceptual schema quality issue instance (for short, issue) of
type Ix as a fact Ix(e1, . . . , em) where e1, . . . , em are schema elements, m ≥ 1. In
a schema there may be several distinct issues of the same issue type, and there
may be several issues for the same tuple 〈e1, . . . , em〉.

For example, consider the issue (e) presented in Sect. 4.1.1 “the specialization
Car IsA LandVehicle is redundant”, and assume that g is the schema element
corresponding to Car IsA LandVehicle. Then, issue (e) can be formalized as an
issue Ie(g) of issue type Ie = “The specialization is redundant”.

Each issue is an instance of an issue type Ix . Formally, Ix is a tuple:

Ix = 〈Sx ,φx ,ρx ,Kx ,Ax ,Ox ,Px〉 (5.1)

where

65

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

– Sx is the scope of the issue type – Kx is the kind of the issue type
– φx is the applicability condition – Ax is the acceptability of the issue type
– ρx is the issue condition – Ox is a set of issue actions

– Px is a set of precedents.

5.1.1 Potential Issues: the Scope and Applicability Con-
dition

The scope Sx of an issue type Ix is a tuple Sx = 〈T1, . . . , Tm〉 of m (m≥ 1) schema
metatypes. At a given time, there could be an instance of Ix for each element of
the Cartesian product of T1 × . . .× Tm. In the previous example, assuming that
TIsA is the schema metatype corresponding to the IsA relations of the schema S,
then Se = 〈TIsA〉. In principle, there could be an instance of issue type Ie for each
instance of TIsA in schema S.

In practice, often not all elements of T1 × . . .× Tm may raise an issue of type
Ix , but only a subset of them. Therefore, we find it convenient to define for each
issue type Ix an applicability condition φx(e1, . . . , em) such that the potential set
Pot(Ix) of elements of T1 × . . .× Tm that may raise an issue of type Ix is:

Pot(Ix) = {〈e1, . . . , em〉 | 〈e1, . . . , em〉 ∈ T1 × . . .× Tm ∧φx(e1, . . . , em)} (5.2)

When Pot(Ix) = T1 × . . .× Tm then we define φx(e1, . . . , em) = True.

If we consider the issue (e) from Sect. 4.1.1, we may assume that an IsA
specialization can be redundant only if its subtype is a subtype of another spe-
cialization and its supertype is a supertype of another specialization. Therefore,
we could define φe(g) = “the subtype of g is a subtype of another specializa-
tion and the supertype of g is a supertype of another specialization”. Figure 5.2
illustrates the fact that the generalization Car IsA LandVehicle is in the Pot(Ie)
set, because its general classifier LandVehicle is a supertype of another general-
ization (Car IsA MotorVehicle) and its specific classifier is a subtype of another
specialization (MotorVehicle IsA LandVehicle).

Other examples where the applicability condition becomes very useful in-
clude, for instance, issues:

• (g), which corresponds to a naming guideline for binary associations de-

66

5.1. DEFINITION OF ISSUE TYPE AND ISSUE INSTANCE

IsParentOf

parent 2
3
child

Vehicle

LandVehicle

{disjoint, complete}

MotorVehicle Person
1..0

Car
plateNumber:String

motorcycle
plateNumber:String

* Owns

The general and the specific
types of the highlighted ge-
neralization participate in
other generalizations.

Figure 5.1. Computation of the Potential set.

scribed in Sect. A.3 and, therefore, has an applicability condition that se-
lects binary associations only, and

• (h), which requires the modeler to check whether a recursive binary as-
sociation (such as IsParentOf) needs a constraint enforcing the asymmetry
property. Since this constraint makes sense within the context of recursive
binary associations only, the potential set of elements that may raise an
issue of this type only includes, as expected, any binary association whose
member ends have the same type.

5.1.2 Raised Issues: the Issue Condition

An instance of issue type Ix at a given time is an element of Pot(Ix) that satisfies
the issue condition ρx(e1, . . . , em) at that time. The set Raised(Ix) of issues of
type Ix raised at a given time is:

Raised(Ix) = {〈e1, . . . , em〉 | 〈e1, . . . , em〉 ∈ Pot(Ix)∧ρx(e1, . . . , em)} (5.3)

As before, when Raised(Ix) = Pot(Ix) then we define ρx = True.

The issue condition corresponding to issue (e) in Sect. 4.1.1 would be (writ-
ten in the appropriate language) ρe(g) = “there is an indirect specialization be-
tween the subtype and supertype of g”. Figure 5.2 illustrates the application of
this condition, showing that there is an indirect specialization between Car and
LandVehicle (in particular, the generalizations Car IsA MotorVehicle and MotorVe-
hicle IsA LandVehicle).

67

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

IsParentOf

parent 2
3
child

Vehicle

LandVehicle

{disjoint, complete}

MotorVehicle Person
1..0

Car
plateNumber:String

motorcycle
plateNumber:String

* Owns

There is an indirect path between
the entity types Car and LandVe-
hicle (the one that goes through
MotorVehicle).

Therefore, the direct generalization
between these two entity types is
redundant.

Figure 5.2. Computation of the Raised set.

Another example is issue (f), which was first introduced in Sect. 4.1.1 and
uses, as we shall see, a scope with more than one metatype. This particular issue
points out the fact that there is an attribute (plateNumber) that is repeated in all
subtypes of MotorVehicle.

The corresponding issue type I f could be defined as “an attribute is repeated
among all specific classes of a complete generalization set”. Figure 5.3 shows the
aforementioned GeneralizationSet with the attribute plateNumber repeated in all
its specific classes, as well as a few additional attributes.

The issue type I f might be formalized as follows:

S f = 〈gs : GeneralizationSet, s : String〉
φ f (gs, s) = “There is an attribute named s in a subclass

of the GeneralizationSet gs”

ρ f (gs, s) = “All subclasses of the GeneralizationSet gs have an

attribute named s”

that is, there is a raised issue for each tuple 〈gs, s〉 such that gs ∈ Generalization-
Set, s ∈ String, and there is an attribute named s in each subclass of gs.

In this example, the potential set Pot(I f) of elements of GeneralizationSet ×
String is:

Pot(I f) = {〈gs, plateNumber〉, 〈gs, maxSpeed〉, 〈gs, numOfSeats〉}

which, as expected, does not include the pairs 〈gs, name〉 nor 〈gs, birthday〉,

68

5.1. DEFINITION OF ISSUE TYPE AND ISSUE INSTANCE

Vehicle

Car
plateNumber: String

maxSpeed: Natural

numOfSeats: Natural

Motorcycle
plateNumber: String

maxSpeed: Natural

{disjoint, complete}

Person
name: String

birthday: Date

1
owner

*

Figure 5.3. Computation of the Potential and Raised sets for an issue type that has a scope
with more than one metatype.

because both Strings correspond to the names of attributes that do not belong to
any subclass of gs.

Finally, the set Raised(I f) = {〈gs, plateNumber〉, 〈gs, maxSpeed〉}.

This issue type illustrates the utility of using scopes with more than one
metatype: the issue instances of type I f clearly point out the GeneralizationSet
where one or more attributes are repeated and provide an accurate and concise
feedback by pointing out the specific names of these attributes.

5.1.3 Kind and Acceptance of an Issue Type

In our method, issue types have an issue kind Kx , which may be problem or
checking issue. All issues of an issue type are of the same kind. A problem issue
Ix(e1, . . . , em) is an issue that in principle (we will see later on that there may
be exceptions) should not happen in a schema. Once raised, the issue should
be solved (and thus, it ceases to exist), which can only be done by changing the
schema in a way such that:

• 〈e1, . . . , em〉 is not an element of T1 × . . .× Tm, or

• 〈e1, . . . , em〉 does not satisfy φx(e1, . . . , em), or

• 〈e1, . . . , em〉 does not satisfy ρx(e1, . . . , em)

In the running example, Ke = problem issue, because it is not considered
good practice to have redundant specializations in a schema. A possible solution

69

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

to this problem issue could be to remove the redundant specialization from the
schema.

A checking issue Ix(e1, . . . , em) is an issue that requires the conceptual mod-
eler to check something that cannot be automatically checked, or—in general—to
perform some action that cannot be automatically performed. Once the check-
ing has been done, or the action has been performed, the issue usually remains
raised, but in a different state (as we will describe shortly).

In the schema of Fig. 4.1, an example of checking issue could be Ih = “The
symmetric property of the association is well defined”. In this case, we have:

Sh = 〈Association〉
φh(a) = “Association a is binary and recursive”

ρh(a) = True

The issue requires the conceptual modeler to check whether or not IsParentOf
is symmetric, asymmetric or antisymmetric and, if so, to check that there is a
constraint (invariant) that enforces it [97, p. 203]. Once checked, the issue
becomes checked, although it is still a raised issue.

On the other hand, the issues of an issue type Ix may or may not be ac-
ceptable, Ax = {True, False}. An issue type may be defined as acceptable if the
method engineer believes that some of its instances are acceptable in some cir-
cumstances. The exact meaning of the acceptability depends on the issue kind.

If Kx = problem issue, then:

• Ax = True means that a conceptual modeler may find it reasonable that
there are some instances of Ix in a particular schema.

• Ax = False means that all issues of type Ix must be solved.

If Kx = checking issue, then:

• Ax = True means that a conceptual modeler may find it reasonable not to
check some instances of Ix in a particular schema.

70

5.2. THE LIFECYCLE OF AN ISSUE INSTANCE

Table 5.1. Classification of some issues of the schema shown in Fig. 4.1

Acceptable Non-acceptable

Ib: Entity type motorcycle does not start
with a capital letter.

Ia: Cardinality constraint of participant per-
son in association Owns is syntactically in-
correct.

Problem Is-
sue

Ic : Abstract entity type Vehicle has only one
subtype.

Id : Cardinality constraints of association Is-
ParentOf are not satisfiable.

I f : Attribute plateNumber is repeated in all
subtypes of MotorVehicle.

Ie: The specialization Car IsA LandVehicle is
redundant.

Checking Is-
sue

Ig : The name of the association IsParentOf
must make sense.

Ih: The symmetric property of IsParentOf is
well defined.

• Ax = False means that all issues of type Ix must be checked.

In the example of Fig. 4.1, the issue Ic = “Abstract entity type has only one
subtype” could be an instance of an acceptable issue type, because there may be
situations in which the conceptual modeler can accept issues of this type.

Table 5.1 shows the classification according to kind and acceptability of the
issues raised in the motivating example of Fig. 4.1.

5.2 The Lifecycle of an Issue Instance

Figure 5.4 depicts the states in which an issue can be,depending on its kind an
acceptability. As we have already seen, an issue Ix(e1, . . . , em) is automatically
created at the time when 〈e1, . . . , em〉 ∈ Raised(Ix). Its initial state is always
Pending. Similarly, an existing issue Ix(e1, . . . , em) is automatically deleted at the
time when 〈e1, . . . , em〉 /∈ Raised(Ix). This transition to its deletion is represented
by the action Deletion.

The simplest case is when Ix is a non-acceptable problem issue (Fig. 5.4 (a)).
Issues of this type are created in the initial state of Pending, and they remain in
this state until they cease to exist. An example is Ia = “The cardinality constraints
of an association participant are syntactically incorrect”. When an issue of this
type is raised, it becomes Pending and it remains in this state until the conceptual
modeler changes the schema in a way that the issue is not raised.

Problem issues that are acceptable may be in the states of {Pending, Accepted}

71

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

Non-Acceptable

Problem Issue

Deletion

Pending

(a)

Acceptable

Problem Issue

Deletion

Pending

Accepted

Accep-
tance

Reconside-
ration

(b)

Non-Acceptable

Checking Issue

Deletion

Pending

Checking
Reconside-
ration

Checked

(c)

Acceptable

Checking Issue

Deletion

Accep-
tance

Checked

Pending

Accepted

Reconside-
ration

Checking

(d)

Figure 5.4. The lifecycle of an issue of type Ix , depending on its Kx and Ax

as shown in Fig. 5.4 (b). If the conceptual modeler accepts (event Acceptance)
one of these issues, then the issue changes to the state of Accepted. The transi-
tion can be reversed if the conceptual model reconsiders the acceptance (event
Reconsideration). An example is Ib = “The name of entity type does not start
with a capital letter”. When an issue of this type is raised, it becomes Pending. In
most cases, the conceptual modeler will change the name and then the issue will
be automatically deleted. However, given that Ib has been defined as acceptable,
the conceptual modeler may choose to accept issues of this type.

Non-acceptable checking issues can be in the states of {Pending, Checked} as
shown in Fig. 5.4 (c). Once the conceptual modeler checks (event Checking) the
issue, it changes to the state of Checked. The transition can be reversed if the
conceptual model reconsiders the checking (event Reconsideration). An example
is Ih = “The symmetric property of the association is well defined” When an issue
of this type is raised, it becomes Pending and it remains in this state until the
conceptual modeler performs (event Checking) one of the issue actions, which
checks the issue.

Finally, acceptable checking issues can be in the states of {Pending, Accepted,
Checked} as shown in Fig. 5.4 (d). The semantics of Checked is the same as the
previous case, but now an issue can be accepted (event Acceptance), meaning
that the conceptual modeler, for whatever reason, decides not to check the issue.
The transition to Accepted can be reversed. An example is Ig = “The name of
the association must make sense”. If the conceptual modeler performs (event
Checking) one of the issue actions, then the issue becomes Checked. However,

72

5.3. ISSUE PRECEDENCE

the conceptual modeler may decide not to check the issue and accept the name
of the association as it is.

5.3 Issue Precedence

In some cases, the issues of a given issue type Ix should only be considered if
there are no other unsolved issues of some specific types. For example, the issues
of type Id = “The cardinality constraints of an association are not satisfiable”
should only be considered if there are no unsolved issues of type Ia = “The
cardinality constraints of an association participant are not syntactically correct”.
Clearly, it makes no sense to check satisfiability if some cardinality constraints
are incorrect. We formalize these issue relationships by means of precedence
relationships, which are obviously acyclical. For each issue type Ix we can define
two sets of issue type precedents: global and instance.

Figure 5.5 depicts a conceptual schema with a few issues and their prece-
dents. On the one hand, if an issue type I y is a global precedent of another issue
type Ix , then there cannot be issues of type Ix as long as there are any unsolved
issues of type I y . For instance, in the above example we would define Ia as a
global precedent of Id . On the other hand, if I y is an instance precedent of Ix ,
then Ix should only be considered for those instances that are not involved in an
issue of type I y . For example, consider the issue type Ig = “The name of the
association must make sense” and a new problem issue type based on a certain
naming guideline In = “The name of the association is not a verb phrase in third
person singular”. If there is a schema with two associations a1 and a2 and the
name of a1 is not in the correct form, then the issue In(a1) would be raised.
Clearly, the modeler has to fix the name of a1 prior to checking whether it makes
sense or not. However, if In(a2) /∈ Raised(In), then she should be able to check
whether the name of a2 makes sense regardless the issue In(a1) is raised or not.

Formally, the global precedents of an issue type Ix , denoted GP x = {I1, . . . ,
Ip}, is a set of issue types I1, . . . , Ip such that any issue of type Ix should be
considered only if there is no any unsolved issue of types I1, . . . , Ip. Then, the
first example would be formalized as GPd = {Ia}.

The instance precedents of an issue type Ix , denoted IP x = {〈I1,Mx:1〉, . . . ,

73

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

Global Precedent

Examples

I : "Non-satisfiable cardinality constraints" (precedent of I)d

I : "Syntactically correct cardinality constraints"a

Instance Precedent

Examples

I : "The name is a verb phrase" (precedent of I)n g

I : "The name makes sense"g

Ia

Company

IsParent (a)

parent 2
3

child
Person

name:String
WorkerOf (a)

1..02..*

I and In g

Id

I (1..0), because the lower value (1) is greater than the
 upper value (0).
a

I (IsParentOf(parent:Person[2], child:Person[3]))d

Issue type d is never evaluated because its global
precedents are not satisfied and, thus, this issue
instance is not reported to the modeler.

Issue Instances

I (a), because the name is not a verb phrase.n

Issue Instances

I (a) does not exist, because the name is a verb phrasen

I (a , "IsParent"), because the instance precedent is satifsied.g

I (a , "WorkerOf")g

This issue instance is not created until its instance
precedent is fixed.

1

2

2

2

1

1

a

Figure 5.5. Example of Global Issue Precedence and Instance Issue Precedence.

〈Iq,Mx:q〉}, is a set of tuples of the form 〈I y ,Mx:y〉 where I y is an issue type
whose scope Sy ⊆ Sx and Mx:y is a set of pairs 〈i, j〉 (1 ≤ i ≤ |Sy | and
1 ≤ j ≤ |Sx |) that map each metatype in Sy to one, and only one, metatype
in Sx . Therefore, an issue Ix(ex1

, . . . , exm
) should not be considered if there is an

unsolved issue I y(ey1
, . . . , eyl

) such that ∀i, j | 〈i, j〉 ∈Mx:y ⇒ eyi
= ex j

. Then,
the second example would be formalized as IP g = {〈In, {〈1, 1〉}〉} (assuming that
the scopes of Ig and In are Sg = 〈Association, String〉 and Sn = 〈Association〉).

5.4 On Computing Issues Instances

In this section we propose an algorithm for computing the issues that are present
in a conceptual schema S, given a concrete set of issue types T . The algorithm
can be used to compute raised issues either under request or continuously.

74

5.4. ON COMPUTING ISSUES INSTANCES

Input

1. Select an Issue Type

2. Compute its Potential set

3. Filter the Potential set

4. Build the Raised set

5. Inherit previous states

Computation of Issue Instances

Conceptal Schema

Issue Types Issue Instances
(prev. execution)

Output

Issue Instances

Figure 5.6. The main stages to compute issue instances.

Figure 5.6 depicts the main stages of the issue computation process. The
process is divided in five stages that are executed iteratively for each issue type
in T . In the following, we briefly introduce the inputs and outputs of the process,
and we outline each stage.

The Input In order to compute the issue instances of a conceptual schema S, our
algorithm requires:

• the conceptual schema S,

• the set of Issue Types T the conceptual modeler selected as relevant,
and

• the set of issue instancesΨprev we computed in a previous execution of
the process. These issue instances are a set of pairs 〈Ix(e1, . . . , em),ε〉
computed in the previous execution, where Ix(e1, . . . , em)was a raised
issue and ε was its state (as described in Sect. 5.2).

1. Select an Issue Type In general, given any Ix and I y issue types, the compu-
tation of the respective issue instances are independent processes that do
not interfere each other. As a result, it does not matter whose instances
are computed first. However, if I y is a precedent of Ix , it is a necessary
condition that the issues of type I y are determined before the issues of type
Ix , since the existence of issues of the former type may modify the set of
raised issues of the latter type. Therefore, the first stage of the algorithm
selects an Issue Type Ix such that all its precedents (if any) have already
been computed in a previous iteration.

75

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

2. Compute the Potential set In order to compute the issues of any type Ix ∈ T
(whose precedents have already been computed in a previous iteration),
we first have to determine the set Pot(Ix). As we have already seen, the
elements of a tuple 〈e1, . . . , em〉 ∈ Pot(Ix) must (1) be instances of the
corresponding metatypes in the scope Sx (that is, T1(e1) ∧ . . . ∧ Tm(em))
and (2) satisfy the applicability condition φx(e1, . . . , em).

3. Filter the Potential set Issue types may have global and instance precedents.
If there is an issue whose type is a global precedent of Ix , then we must
skip the evaluation of Ix (that is, the Potential set is the empty set). If,
on the other hand, there is one or more issues whose type is an instance
precedent of Ix , we have to remove any tuple from the Potential set that
does not have its instance precedents satisfied (as described in Sect. 5.3).

4. Build the Raised set Next, we have to compute the set Raised(Ix). This can
be easily achieved by simply selecting those tuples 〈e1, . . . , em〉 ∈ Pot(Ix)
that satisfy the issue condition ρx(e1, . . . , em). As a result, we have an issue
Ix(e1, . . . , em) for each tuple 〈e1, . . . , em〉 in Raised(Ix).

5. Inherit previous states Finally, we have to properly set the state ε of each
issue instance we have just created. As we have seen in Sect. 5.2, when an
issue instance is created, its state ε is automatically set to Pending. During
a continuous evaluation, however, this process is periodically executed—
hopefully each time a change occurs—. Hence, it may be the case that
some of the issues of any type Ix we have just created (Raised(Ix)) already
existed from a previous iteration (Raisedprev(Ix)).

Therefore, for each issue instance Ix(e1, . . . , em) in Raised(Ix), we have to
check whether the issue is also in Raisedprev(Ix). If that is the case, then the
state ε of the issue instance Ix(e1, . . . , em) must be εprev instead of Pending.

The Output The process finalizes once all issue types in T have been processed.
The result is the set of pairs 〈Ix(e1, . . . , em),ε〉 where Ix(e1, . . . , em) is a
raised issue and ε is its state (either Pending, if the issue did not exist in
the previous iteration, or εprev, if the issue did already exist).

Algorithm 1 computes the raised issues of a conceptual schema. The algo-
rithm can be executed under request or continuously. Each time the algorithm is
executed:

76

5.4. ON COMPUTING ISSUES INSTANCES

Algorithm 1 Computing Issue Instances

Input – S: a set of n schema elements e1, . . . , en,
– T : the set of issue types I1, . . . , Ip, and
– Ψprev: the set of pairs 〈Ix(e1, . . . , em),ε〉 computed in the pre-

vious execution, where Ix(e1, . . . , em) was a raised issue and
ε was its state.

Output – Ψnew: the set of pairs 〈Ix(e1, . . . , em),ε〉 computed in this exe-
cution, where Ix(e1, . . . , em) is a raised issue and ε is its state.

1: procedure updateIssues(S,T ,Ψprev) :Ψnew
2: Ψnew← ;
3: Tpending← T
4: while Tpending 6= ; do
5: Ic ← Ix | (Ix ∈ Tpending ∧ (@I y | I y ∈ Tpending ∧ I y ∈ Px))
6: CandidateIssues← ;
7: Pot(Ic)← {〈e1, . . . , em〉 | 〈e1, . . . , em〉 ∈ T1 × . . .× Tm ∧φc(e1, . . . , em)}
8: for all 〈e1, . . . , em〉 ∈ Pot(Ic) do
9: if arePrecedentsSatisfied(〈e1, . . . , em〉,Pc ,Ψnew) then

10: if ρc(e1, . . . , em) then
11: CandidateIssues← CandidateIssues∪ 〈e1, . . . , em〉
12: end if
13: end if
14: end for
15: IssuesToKeep← {〈e1, . . . , em〉 | 〈Ic(e1, . . . , em),ε〉 ∈Ψprev ∧

〈e1, . . . , em〉 ∈ CandidateIssues}
16: IssuesToCreate← CandidateIssues− IssuesToKeep
17: Ψnew←Ψnew ∪

{i = 〈Ic(e1, . . . , em),ε〉 | i ∈Ψprev ∧ 〈e1, . . . , em〉 ∈ IssuesToKeep} ∪
{〈Ic(e1, . . . , em), Pending〉 | 〈e1, . . . , em〉 ∈ IssuesToCreate}

18: Tpending← Tpending − {Ic}
19: end while
20: return Ψnew
21: end procedure

1. an issue type Ic ∈ T (whose issue precedents have already been computed
in previous iterations) is randomly selected (line 5).

2. Then, for each tuple 〈e1, . . . , em〉 of the schema to which Ic may apply—that
is, 〈e1, . . . , em〉 ∈ Pot(Ix) (line 7)—, the algorithm checks that

• its issue precedents are satisfied (line 8), and

• it satisfies the issue condition ρc (lines 7 to 13).

77

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

3. Finally, for those tuples 〈e1, . . . , em〉 ∈ CandidateIssues, the algorithm gen-
erates the associated issues in the proper state (stage 5). If there was a
pair i = 〈Ic(e1, . . . , em),ε〉 in Ψprev, i is added to the result Ψnew; otherwise,
a new pair i such that i = 〈Ic(e1, . . . , em), Pending〉 is created and added to
Ψnew (lines 14 to 18).

5.5 Issue Actions: Tackling Issues

The goal of this thesis is—as we already know—to improve the quality of a con-
ceptual schema. In order to do so, we propose a method to uniformly define and
treat conceptual schema quality issues. As we outlined in Chap. 4, the general
idea is to (1) automatically detect the issues a schema contains and (2) require
the conceptual modeler to fix them so that, in the end, the schema contains no
issues.

Throughout the previous section of this chapter we have discussed all the
relevant aspects for detecting the issue instances that a conceptual schema con-
tains. In particular, we have described (a) the main components of an issue type,
(b) the differences between Problem and Checking issue types, (c) the lifecycle
of issue instances, and (d) an algorithm to compute the issue instances that are
present in a schema.

The conceptual modeler is the one responsible of fixing issue instances. In
Sect. 5.2 we have described the different states in which an issue instance can be
and how an issue moves from one state to another. In general, an issue instance
is fixed whenever the schema is changed in a way such that the issue is no longer
raised. However, Checking issues types or Acceptable issue types can also be fixed
by setting them as Checked or Accepted, respectively.

In order to provide better assistance to conceptual modelers, our formal-
ization requires an issue type Ix to have a set Ox of one or more issue ac-
tions. Assuming that Sx = 〈T1, . . . , Tm〉, each issue action in Ox is an operation
op(p1:T1, . . . , pm:Tm) whose effect depends on Kx . If it is a problem issue, then
the execution of the operation solves the issue Ix(e1, . . . , em) (that is, 〈e1, . . . , em〉
/∈ Raised(Ix)), and the issue ceases to exist. If Ix is, on the other hand, a checking
issue, then the execution of the operation may either solve the issue by removing

78

5.5. ISSUE ACTIONS: TACKLING ISSUES

it from the Raised set, or by setting the state of the issue to Checked.

Vehicle

Car
plateNumber: String
numOfSeats: Natural

Motorcycle
plateNumber: String
maxSpeed: Natural

{disjoint, complete}

Car
numOfSeats: Natural

Motorcycle
maxSpeed: Natural

{disjoint, complete}

Vehicle
plateNumber: String

(a) (b)

Vehicle

Car
plateNumber: String

numOfSeats: Natural

Motorcycle
plateNumber: String

maxSpeed: Natural

{disjoint, incomplete}

Vehicle

Car
plateNumber: String

numOfSeats: Natural

Motorcycle

maxSpeed: Natural

{disjoint, complete}

(c) (d)

(e)

Vehicle

Car
plateNumber: String

numOfSeats: Natural

Motorcycle
plateNumber: String

maxSpeed: Natural

{disjoint, complete}

Boat

Figure 5.7. The result of applying different issue actions to solve the issue a conceptual
schema contains.

For example, consider I f = “An attribute is repeated in all subtypes of a com-
plete generalization set”. Figure 5.7 (a) shows a conceptual schema with an
instance I f (gs, plateNumber), where the attribute plateNumber appears in Car
and Motorcycle. There are many actions the modeler can perform in order to fix
an instance of the issue type I f , including, for instance:

(b) the refactoring operation pullUpAttribute described in [51], which removes
the repeated attributed from the specific classes and creates it in the gen-
eral class (in the example, the attribute plateNumber is moved from Car
and Motorcycle to Vehicle),

(c) removing one (or more) of the repeated attributes from the specific classes

79

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

(in the example, the attribute plateNumber was removed from Motorcycle
only),

(d) changing the completeness constraint of the GeneralizationSet from complete
to incomplete, so that there may be instances of Vehicle that are not Cars nor
Motorcycles and, therefore, do not need the attribute plateNumber, or

(e) creating a new specific class in the GeneralizationSet which does not in-
clude the repeated attribute (in the example, a new class named Boat).

and many more like, for example, renaming one of the repeated attributes, re-
moving the GeneralizationSet, adding an already existing class in the Generaliza-
tionSet, and so on.

Issue actions can be automated or manual. An automated action is an oper-
ation op whose parameters correspond to the scope of the issue type—i.e. as-
suming that Sx = 〈T1, . . . , Tm〉, then the operation is op(p1:T1, . . . , pm:Tm). If we
have an issue Ix(e1, . . . , em), calling the operation op using e1, . . . , em as its input
(that is, op(e1, . . . , em)) solves the issue. For example, solutions (b) and (d) may
be achieved by executing the following operations respectively:

context System : : opb (gs : Genera l i za t ionSe t , n : Str ing)
post : gs . g e n e r a l i z a t i o n . s p e c i f i c . ownedAttribute−>s e l e c t (

a | a . name = n)−>isEmpty ()
post : a . oclIsNew () and a . oc l I sTypeOf (Proper ty) and

a . name = n and gs . g e n e r a l i z a t i o n . general−>
any (t rue) . ownedAttribute−>i n c ludes (a)

context System : : opd (gs : Genera l i za t ionSe t , n : Str ing)
post : gs . isComplete = f a l s e

A manual action is an operation op that has more parameters than the types
included in the scope. The signature of such an operation is therefore op(p1:T1,
. . . , pm:Tm, pm+1:Tm+1, . . . , pm+l), where the first m parameters match the scope
of the issue type, and the other l are new, additional parameters that have to
be initialized by the conceptual modeler. These additional parameters make the
operation manual, for they can not be automatically determined. For example,
solutions (c) and (e) may be obtained by executing the following operations
respectively:

context System : : opc (gs : Genera l i za t ionSe t , n : String , a : Proper ty)

80

5.6. SUMMARY

pre : gs . g e n e r a l i z a t i o n . s p e c i f i c . ownedAttribute−>i n c ludes (a)
pre : a . name = n
post : (Proper ty . a l l Ins tances@pre () − Proper ty . a l l I n s t a n c e s ())−>

i n c ludes (a)

context System : : ope (gs : Genera l i za t ionSe t , n : String , s : Str ing)
pre : not gs . g e n e r a l i z a t i o n . s p e c i f i c . name−>i n c ludes (s)
post : c . oclIsNew () and c . oc l I sTypeOf (C la s s) and c . name = s and

g . oclIsNew () and g . oc l I sTyepOf (Genera l i za t i on) and
g . genera l = gs . g e n e r a l i z a t i o n . genera l . any (t rue) and
g . s p e c i f i c = c and
gs . gene ra l i z a t i on−>i n c ludes (g)

Note that opc includes an additional parameter a:Property, which is the at-
tribute to remove, and ope includes an additional parameter s:String, which is
the name of the class that has to be created and added to the GeneralizationSet.

These actions are manual because they require the conceptual modeler to
manually specify the additional parameters before the operation opm can be ex-
ecuted. However, when the operation is called with the proper parameters, the
modifications to the conceptual schema are performed automatically.

5.6 Summary

In this chapter we have formalized the concepts of quality issue type and quality
issue instance—both introduced in Chap. 4—and we have presented their rela-
tionship. Hence, we have focused on the different aspects that define a quality
issue type, how the instances of an issue type can be computed, and how they
can be fixed. This formalization was published in [4].

First, we have seen that an issue of type Ix is basically a fact of the form
Ix(e1, . . . , em), where e1, . . . , em are schema elements. In order to determine the
tuples 〈e1, . . . , em〉 that raise an issue of type Ix , our formalization includes the
scope of an issue—that is, the metatypes Ti such that ei ∈ Ti—, and the appli-
cability and issue conditions (φx and ρx , respectively) that filter the tuples in
T1 × . . .× Tm. We have also seen that issue types may be classified according to
their kind—which defines an issue as a problem (i.e. something that the method
engineer defines as incorrect and, therefore, has to be fixed) or a checking issue

81

CHAPTER 5. FORMALIZATION OF QUALITY ISSUES

type (i.e. something the conceptual modeler has to be aware of, either because
it may lead to an error or because it is troublesome)—and their acceptability.
Section 5.2 has described the lifecycle of the instances of an issue type depend-
ing on its kind and acceptability. Section 5.3 has introduced the concept of issue
precedence, which is basically used to filter the amount of information the user is
exposed to by not considering certain issue types while instances of other issue
types (the former’s precedents) exist.

Next, we have presented an algorithm to compute the issues that a concep-
tual schema has. The algorithm can be executed under demand—i.e. when the
conceptual modeler is interested in knowing which issues her schema contains—
or periodically. The process of computing issue instances is divided into five main
stages, which are repeated for each issue type: (1) select the issue type whose
instances are to be computed, (2) compute its potential set, (3) filter the poten-
tial set taking into account the precedents, (4) build the raised set of tuples, and
(4) inherit the states of those issue instances that existed in previous iterations
and hold still.

Finally, Section 5.5 has introduced issue actions as a mechanism that provides
some insights to conceptual modelers on how issues can be fixed. Thus, we
have seen that issue actions are basically operations whose execution fix issue
instances.

Our formalization should be powerful enough to define in a uniform way
most (if not all) of the quality properties proposed in the literature, which is a
necessary prerequisite for fostering their integration and use in the diverse de-
velopment environments used by professionals and students. In the next chapter
we address this issue by building a catalog of quality issues that includes many
quality properties.

82

Property is theft!

P.J. Proudhon, What is property?

6
Catalog of Quality Issues

As we have already seen in Sect. 1.2, the work presented in this thesis is following
the main ideas of the Design Science Research methodology. The fundamental
principle of design-science research is that knowledge and understanding of a
design problem and its solution are acquired in the building and application of
an artifact [62].

The method we have introduced in Chap. 4 aims to improve the quality of
conceptual schemas by detecting and fixing quality issues. In the previous chap-
ter, we have presented a formalization for quality issues. In principle, all quality
properties proposed in the literature could be defined in terms of this formaliza-
tion, and they could therefore be included in a unified catalog.

This chapter presents the catalog of quality issues we have built so far for UML
class diagrams [6]. It contains all UML metamodel constraints plus 65 additional
issue types that are available in the literature, including conceptual modeling
conferences, journals, and books, as well as current modeling environments. Al-

83

CHAPTER 6. CATALOG OF QUALITY ISSUES

though the issues we present here are targeted at UML conceptual schemas, our
method can be applied to other conceptual modeling languages and DSLs and,
therefore, the issues may be defined and/or used for them too.

The compilation of this catalog is important for two main reasons. On the
one hand, it validates the expressiveness of our formalization, since almost all the
quality issues we found in the literature could be expressed using our method.
On the other hand, the catalog makes quality issues openly and easily accessible
to conceptual modelers, students, and practitioners, who could use it as a refer-
ence catalog to improve the quality of their conceptual schemas, especially if IDE
developers integrate them into their tools.

The chapter is structured as follows. Section 6.1 presents a classification of
issue types that ease the presentation and analysis of the catalog. In Sect. 6.2,
we present a list of all the quality issue types we have defined so far using our
formalization. For each issue type, we include a name and a brief description, as
well as its scope, kind, and acceptability. Section 6.3 presents some quality issues
that could not be defined using our formalization, discusses the rationale behind
this problem, and proposes a solution. Section 6.4 evaluates the usefulness of our
catalog. We conducted an experiment where we selected 13 conceptual schemas
developed by students as part of their final projects—i.e. during the last year
of their Computer Science degree—, and we evaluated how many issues they
contain. Finally, Section 6.5 summarizes the chapter.

6.1 Classification of Issue Types

In Chap. 5, we formalized the concepts of issue type and issue instance. This
formalization does not include any particular classification of issue types and,
therefore, we can classify them as we please. For analysis and presentation pur-
poses, in this thesis we classify issues according to their source. When integrating
the catalog in a real modeling tool, the categories in which issue types are classi-
fied may be different than the ones we use in here. Table 6.1 shows a few more
quality issues, classified using the following categories:

Syntactic An integrity constraint defined in the UML metamodel. An example is
the above mentioned problem issue of I1 = “There is a cycle in a general-

84

6.1. CLASSIFICATION OF ISSUE TYPES

Table 6.1. Examples of quality issues.

Source/Kind Problem Issue Checking Issue

Syntactic I1 = There is a cycle in a generaliza-
tion hierarchy

I7 = A constraint expressed in natural
language evaluates to a Boolean value
[93, p. 57]

Syntactic+
I2 = An attribute has no type
I3 = A property has no stereotype
[19]

I8 = A derivation rule gives consistent
number of values

Basic property
I4 = A property derived by union does
not have specific properties

I9 = An n-ary association defines all
non-graphical cardinality constraints
that are relevant [77]

Naming guideline I5 = An attribute does not start with a
lowercase letter

I10 = The name of the entity type is
semantically meaningful

Best practice I6 = The type of an attribute is an en-
tity type

I11 = The aggregation kind of a prop-
erty is correct [19]

ization hierarchy”.

Syntactic+ A syntactic integrity constraint applicable when UML is used as a
conceptual modeling language (i.e. redefining and limiting an already ex-
isting UML constraint) or a constraint that is defined in a UML profile. One
example is the problem issue I2 = “An attribute has no type”. In UML
it is not mandatory that attributes have a type, but it is so in conceptual
modeling.

Basic property A fundamental property that conceptual schemas should have
to be semantically correct, relevant, and complete [75]. An example is
the above mentioned checking issue of I9 = “An n-ary association defines
all non-graphical cardinality constraints that are relevant” [77], which is
required for completeness.

Best practice A practice (not including naming guidelines) recommended by
some authors in some contexts that aims to improve the quality of con-
ceptual schemas. For example, some authors recommend that the type of
an attribute should not be an entity type [108, p. 189]. This becomes the
problem issue I6 = “The type of an attribute is an entity type”. Another
example is the checking issue I11 = “The aggregation kind of a property
is correct” which may be enforced by a method that analyzes conceptual
schemas in terms of collaboration patterns and determines that an aggre-
gation could be better expressed by a composition [19].

85

CHAPTER 6. CATALOG OF QUALITY ISSUES

Naming guideline Any naming guideline presented in [5]. For example, the
guideline that recommends attributes to start with a lowercase letter [93,
p. 54] corresponds to the problem issue I5 = “An attribute does not start
with a lowercase letter”.

6.2 Issue Types

In this section, we present the catalog of conceptual schema quality issues we
have compiled so far. The goal of the catalog is to demonstrate the expressiveness
of our formalization. The catalog includes all UML metamodel constraints and
65 additional issue types that are integrated in current modeling environments1

or published in conceptual modeling conferences2.

Research articles published in literature related to the field of quality of con-
ceptual schemas were extracted from the ER and the CAiSE conferences. We first
selected the papers whose title included any of the following terms:

• quality

• refactor*

• design AND (critique* or flaw*)

• antipattern* or anti-pattern* or pattern*

• conceptual and model*

• measure*

• constraint

A total of 97 papers were found as a result of the simple search process. Next,
we read the abstracts of the papers and selected those that provide measures or

1When compiling this catalog we realized that many modeling environments include quality is-
sues that are not relevant for conceptual modeling activities, but for the design stage. We have not
included these issues in our catalog, but as we shall see in Chap. 9, it is possible to do so.

2Chapter 9 analyzes the support provided by current IDEs, with a special emphasis on Ar-
goUML and SDMetrics .

86

6.2. ISSUE TYPES

guidelines for evaluating and improving the quality of a structural conceptual
schema. As a result, 21 papers were selected. For each of them, we read the
full paper and selected those that present specific quality properties in terms of
guidelines that conceptual models should follow, excluding the papers that focus
on the process of defining the conceptual schema.

6.2.1 Syntactic

As we have already stated, syntactic issue types correspond to metamodel con-
straints. Since we focus on conceptual schemas written in UML, the 92 syntactic
quality issues included in our catalog correspond to UML metamodel constraints
[93]. In order to create a quality issue from a metamodel constraint we simply
need to:

• use the context of the constraint as the scope of the issue type,

• define the applicability condition as True, and

• define the issue condition as the negation of the metamodel constraint’s
expression.

Consider, for example, the metamodel constraint “Generalization hierarchies
must be directed and acyclical” [93, p. 53], which is formalized as follows:

context C l a s s i f i e r inv : not s e l f . a l l P a r e n t s ()−>i n c ludes (s e l f)

When we want to transform a metamodel constraint into a quality issue type
we have to decide, on the one hand, whether it is acceptable or non-acceptable
and, on the other hand, whether it is a problem or a checking issue type. Clearly,
all metamodel constraints correspond to non-acceptable issue types because, by
definition, all metamodel constraints have to be satisfied (at least) when the
schema is finished. On the other hand, all metamodel constraints that are for-
mally defined in OCL can be defined as problem issue types. For instance, the
previous example would be defined as:

There is a cycle of generalizations

Non-acceptable Problem Issue Type
S : 〈 C l a s s i f i e r 〉

87

CHAPTER 6. CATALOG OF QUALITY ISSUES

φ (C l a s s i f i e r) : t rue
ρ (C l a s s i f i e r) : s e l f . a l l P a r e n t s ()−>i n c ludes (s e l f)

Nonetheless, the UML metamodel has a few constraints that cannot be de-
fined as problem issue types—i.e. they are not formally defined in OCL. These
constraints require the conceptual modeler to ensure (i.e. to check) that some-
thing is correct. Consider, for example, the constraint “Evaluating the value spec-
ification for a constraint must not have side effects” [93, p. 58]. When trans-
forming this constraint into a non-acceptable checking issue type, we have:

Evaluating the value speci�cation for a constraint does not have side e�ects

Non-acceptable Checking Issue Type
S : 〈 Cons t ra in t 〉
φ (Cons t ra in t) : t rue
ρ (Cons t ra in t) : t rue

which is an issue type that, by default, exists for every single Constraint in the
schema. The conceptual modeler is now responsible of checking that no Con-
straint has side effects.

6.2.2 Syntactic+

This section presents the list of syntactic+ quality issue types included in our
catalog. They correspond to syntactic integrity constraints applicable when UML
is used as a conceptual modeling language, and thus they are non-acceptable.
We define these issues as problem quality issue types. Note that the name of
a problem issue indicates the specific defect that the schema contains and that
needs to be fixed by the conceptual modeler.

A binary association has both member ends as aggregate

Scope 〈Association〉

Information Problem Issue Type

Description According to the CrMultipleAgg critique in [105], aggregation
and composition are used to indicate whole-part relationships, and by
definition, the “part” end cannot be aggregate.

88

6.2. ISSUE TYPES

An n-ary association has a navigable association end

Scope 〈Association〉

Information Problem Issue Type

Description According to the associationNaryNavEnds metric in [109], n-
ary associations must not indicate navigability at any of the association
ends.

A class has no name

Scope 〈Class〉

Information Problem Issue Type

Description According to the classUnnamed metric in [109] and the CrMiss-
ingClassName critique in [105], as well as other authors in the litera-
ture [38, 97], classes should have a descriptive name that reflects the
concept they represent.

A class has specializations and it is marked as leaf

Scope 〈Class〉

Information Problem Issue Type

Description When a conceptual modeler sets the isLeaf property of a class
to True, then no further specialization of this class are allowed. This
issue controls this situation.

An OCL expression does not compile

Scope 〈Constraint〉

Information Problem Issue Type

89

CHAPTER 6. CATALOG OF QUALITY ISSUES

Description OCL expressions must be syntactically and semantically correct
[92].

A data type has no name

Scope 〈DataType〉

Information Problem Issue Type

Description According to the classUnnamed metric in [109], data types sho-
uld have a descriptive name that reflects the concept they represent.

A named element has an illegal name

Scope 〈NamedElement〉

Information Problem Issue Type

Description According to the CrIllegalName critique in [105], the names
used in a model should only use letters, digits and underscore charac-
ters.

Please note that this requirement is of special importance in MDD en-
vironments, where code is usually very sensitive to variable names.

A derived attribute has no derivation rule

Scope 〈Property〉

Information Problem Issue Type

Description According to [84, 97], derived entity or relationship types, as
well as attributes, require a derivation rule. This derivation rule is an
expression that defines the necessary and sufficient conditions for the
derived entity or relationship type to be an instance of the given type,
or for the attribute to determine its value(s).

Therefore, a derived attribute without a derivation rule is incomplete.

90

6.2. ISSUE TYPES

An attribute has no name

Scope 〈Property〉

Information Problem Issue Type

Description According to the CrMissingAttrName critique in [105], attributes
should be named.

An attribute has no type

Scope 〈Property〉

Information Problem Issue Type

Description According to [84] and the propertyNoType metric in [109], a
property has to define its type. Otherwise, the attribute has no mean-
ing at all.

An attribute overrides an inherited attribute without explic-
itly redefining it

Scope 〈p:Property, inherited:Property〉

Information Problem Issue Type

Description When UML diagrams are graphically drawn, attribute overrid-
ing is “implicit”—an attribute as whose name is the same as the name
of an attribute ag in a superclass automatically redefines ag .

However, when considering the UML metamodel and its instantiation,
as has to explicitly redefine the inherited attribute ag . Otherwise, the
schema contains two indistinguishable attributes, which is forbidden
by the UML metamodel [93].

91

CHAPTER 6. CATALOG OF QUALITY ISSUES

6.2.3 Basic Quality

Fundamental properties that conceptual schemas should have to be semantically
correct, relevant, and complete [75] are classified into the Basic Quality category
as non-acceptable issue types.

A recursive association with a mandatory member end does
not imply an infinite population

Scope 〈Association〉

Information Checking Issue Type

Description According to [97, p. 203], many binary recursive relationship
types have particular properties that may be defined as constraints.
In conceptual modeling, the most important properties are symmetry,
transitivity, and reflexivity.

When defining a recursive association, the modeler has to take special
care in the multiplicities of the association.

This issue controls these special associations and warns the modeler
to be aware of this situation.

Example

robb

eddard catelyn

rickard

edwyle

hoster minisa
IsParentOf

parent 2
*
child

Person
name:String

instantiation
example

Figure 6.1. Example of a recursive binary association that results in an infinite population.

92

6.2. ISSUE TYPES

Consider, for instance, the typical recursive association IsParentOf(pa-
rent:Person, child:Person[*]) depicted in Fig. 6.1. This association represents
the concept that each person in a domain has two parents (her father and
her mother). Therefore, a modeler may be tempted to define the associa-
tion with the multiplicities shown in Fig. 6.1—each Person has two parents
exactly, and each Person may have any number of children.

Moreover, the IsParentOf association has to fulfill the following con-
straints:

• asymmetry: if Eddard is Robb’s parent, then Robb cannot be Eddard’s
parent,

• intransitivity: if Rickard is Eddard’s parent and Eddard is Robb’s parent,
then Rickard cannot be Robb’s parent,

• irreflexivity, a Person cannot be her own parent, and

• a more general constraint stating that “the ancestors of a Person’s par-
ent cannot be parents of that Person” (for example, Edwyle cannot be
Robb’s parent, because he is an ancestor of Eddard).

As a result, given all these constraints and taking into account that one of
the multiplicities in the relationship IsParentOf is mandatory—each Person
has two parents—, the information base has an infinite population: for each
new Person we introduce in the information base, we potentially need to
introduce her two parents, and then the parents of her parents, and so on.

Therefore, there are some situations in which the domain cannot be pre-
cisely represented in a conceptual schema. In this particular example, we
have to define the multiplicity of the parent member end as optional—i.e.
[0..2].

A recursive binary association needs a constraint enforcing
the reflexivity property

Scope 〈Association〉

93

CHAPTER 6. CATALOG OF QUALITY ISSUES

Information Checking Issue Type

Description According to [97, p. 203], many binary recursive relationship
types have particular properties that may be defined as constraints.
In conceptual modeling, the most important properties are symmetry,
transitivity, and reflexivity.

A recursive association can be reflexive, irreflexive, or none of these. If
it is reflexive or irreflexive, an OCL constraint specifying this behaviour
has to be defined by the modeler.

Note that R(p1 : E, p2 : E) is

• reflexive if E(x)→ R(x , x)

• irreflexive if E(x)→¬R(x , x)

Example

IsDisjointWith

*

IsSubsetOf

*
superset

subset * * properSubset

IsProperSubsetOf

*
child

Set

* disjointSet

Figure 6.2. Examples of recursive associations.

Figure 6.2 depicts three recursive associations types in the domain of
sets and their relationships, as first presented in [97, p. 203]: IsSubsetOf,
IsProperSubsetOf, and IsDisjointWith.

When considering the reflexivity property for these associations, we have
that the association IsProperSubsetOf is reflexive (i.e. a set x is a proper
subset of itself), and the association IsDisjointWith is irreflexive (i.e. a set x
cannot be disjoint with itself).

94

6.2. ISSUE TYPES

A recursive binary association needs a constraint enforcing
the symmetry property

Scope 〈Association〉

Information Checking Issue Type

Description According to [97], many binary recursive relationship types
have particular properties that may be defined as constraints. In con-
ceptual modeling, the most important properties are symmetry, transi-
tivity, and reflexivity.

A recursive association can be symmetric, asymmetric, antisymmetric,
or none of these. If it is symmetric, asymmetric, or antisymmetric, then
an OCL constraint specifying this behaviour has to be defined by the
modeler.

Note that R(p1 : E, p2 : E) is

• symmetric if R(x , y)→ R(y, x)

• asymmetric if R(x , y)→¬R(y, x)

• antisymmetric if R(x , y)∧ R(y, x)→ x = y

Example

Consider, for example, the recursive binary associations depicted in Fig. 6.2.
When considering the symmetry property for these associations, we have
that the association IsDisjointWith is symmetric (i.e. if a set x is disjoint with
a set y , then y is also disjoint with x), the association IsProperSubsetOf is
asymmetric (i.e. if x is a proper subset of y , then y cannot be a proper
subset of x), and the association IsSubsetOf is antisymmetric (i.e. if a set x
is subset of a set y and y is subset of x , then x and y are the same set).

A recursive binary association needs a constraint enforcing
the transitivity property

Scope 〈Association〉

95

CHAPTER 6. CATALOG OF QUALITY ISSUES

Information Checking Issue Type

Description According to [97], many binary recursive relationship types
have particular properties that may be defined as constraints. In con-
ceptual modeling, the most important properties are symmetry, transi-
tivity, and reflexivity.

A recursive association can be transitive, intransitive, or none of these.
If it is transitive or intransitive, then an OCL constraint specifying this
behaviour has to be defined by the modeler.

Note that R(p1 : E, p2 : E) is

• transitive if R(x , y)∧ R(y, z)→ R(x , z)

• intransitive if R(x , y)∧ R(y, z)→¬R(x , z)

Example

Consider again the recursive binary associations depicted in Fig. 6.2. When
considering the transitivity property for these associations, we have that the
associations IsProperSubsetOf and IsSubsetOf are transitive (i.e. if x is a
[proper] subset of y and y is a [proper] subset of z, then x is a [proper]
subset of y).

The schema is not strongly satisfiable because of a recursive
association

Scope 〈Association〉

Information Problem Issue Type

Description According to [59, 60] and [97, pp. 88+], a schema S is satisfi-
able if it admits at least one legal instance of an information base. For
some constraints, it may happen that only empty or nonfinite infor-
mation bases satisfy them. In conceptual modeling, the information
bases of interest are finite and may be populated.

96

6.2. ISSUE TYPES

We then say that a schema S is strongly satisfiable if it admits at
least one nonempty and finite legal instance of the information base.
Schemas that are not strongly satisfiable are considered to be incor-
rect. This issue implements a necessary condition for a conceptual
schema to be satisfiable. The method is able to deal with the cardinal-
ity constraints of a recursive binary association.

Example

IsParentOf

parent 2
3
child

Person

(a)

Person

parent

child

1/3

3

2

1/2

(b)

Figure 6.3. A recursive relationship type with nonsatisfiable cardinality constraints (as
presented in [97, p. 90]).

The method we described in the Issue Type “The schema is not strongly
satisfiable because of two binary associations” also applies to recursive types.
An example is shown in Fig. 6.3. The schema (a) includes the constraints
that each person must have two parents and three children. The corre-
sponding graph (b) has a critical cycle, which proves that the schema is not
strongly satisfiable.

The schema is not strongly satisfiable because of two binary
associations

Scope 〈x:Association, y:Association〉

Information Problem Issue Type

Description According to [59, 60] and [97, pp. 88+], a schema S is satisfi-
able if it admits at least one legal instance of an information base. For
some constraints, it may happen that only empty or nonfinite infor-
mation bases satisfy them. In conceptual modeling, the information
bases of interest are finite and may be populated.

97

CHAPTER 6. CATALOG OF QUALITY ISSUES

We then say that a schema S is strongly satisfiable if it admits at
least one nonempty and finite legal instance of the information base.
Schemas that are not strongly satisfiable are considered to be incor-
rect. This issue implements a necessary condition for a conceptual
schema to be satisfiable. The method is able to deal with the two car-
dinality constraints that we can define for binary relationship types.

In the following, we provide an example and a brief explanation of the
method, as described in [97, pp. 88+].

Example

Person Company

2..* worker

1 owner

0..1

property 1..*Owns

WorksIn

Figure 6.4. Example of unsatisfiable cardinality constraints (as presented in [97,
pp. 88+]).

In [97, pp. 88+], the author describes a method that determines whether
a schema with a set of cardinality constraints is strongly satisfiable or not.
The method is able to deal with the two cardinality constraints may be de-
fined for binary relationship types. It is based on building a directed graph
G and checking that it does not contain cycles of a particular type.

Consider, for example, the conceptual schema depicted in Fig. 6.4. There
is no nonempty finite population of the four types that satisfies the four car-
dinality constraints. Figure 6.5 shows the graph that corresponds to the
example in Fig. 6.4. The graph G contains a vertex for each entity or re-
lationship type in the schema. There are two arcs for each participant in a
relationship type: one from the relationship type to the participant entity
type and the other in the opposite direction.

Each arc is weighted as described in [97, p. 89]. A schema is strongly
satisfiable if the graph G does not contain a critical cycle. A critical cycle of
G is a non-empty sequence of arcs(v0, v1), (v1, v2), . . . , (vk−1, vk) such that

• v0 = vk,

98

6.2. ISSUE TYPES

Person Company

WorksIn

Owns

1/2∞

1

11

1

∞

∞

Figure 6.5. The graph G corresponding to the schema of Fig. 6.4.

• v1, . . . , vk are mutually distinct, and

• the product of the weights of each arc in the cycle is less than 1.

In Fig. 6.5 there are some critical cycles, such as:

(Works, Company), (Company, Owns), (Owns, Person), (Person, Works)

A class cannot have instances

Scope 〈Class〉

Information Problem Issue Type

Description According to [93, p. 49], “a class describes a set of objects that
share the same specifications of features, constraints, and semantics”.
Clearly, we are only interested in those classes that are instantiable—
i.e. they must have a nonempty population [97, p. 52].

A Class A is instantiable if it is not abstract or, if it is, there is a complete
GeneralizationSet in the schema whose general classifier is A, and the
specific classes in A are instantiable. This issue type points out that the
referenced class is not instantiable.

A class has really so many attributes

Scope 〈Class〉

99

CHAPTER 6. CATALOG OF QUALITY ISSUES

Information Checking Issue Type

Description According to the CrTooManyAttr critique in [105], classes with
too many attributes may be a maintenance bottleneck, and may reduce
the understanding of the class. Furthermore, such situation may also
evidence that a class hierarchy or a set of classes is being collapsed to
a single class, which generally is a bad modeling practice. This issue
notifies the modeler of this situation. By default, the issue is raised if
the number of attributes is higher than ten. However, we assume the
conceptual modeler is able to configure this value.

A class is really involved in so many associations

Scope 〈Class〉

Information Checking Issue Type

Description According to the CrTooManyAssoc critique in [105], classes with
too many associations may be a maintenance bottleneck and may re-
duce the understanding of the model. The class referenced by this
issue type may have too many associations. By default, the issue is
raised if the number of associations in which the class participates is
higher than ten. However, we assume the conceptual modeler is able
to configure this value.

A class really has more than 60 attributes and operations

Scope 〈Class〉

Information Checking Issue Type

Description According to the GodClass metric in [109], classes with too
many attributes may be a maintenance bottleneck, sources of unrelia-
bility, indicate a lack of (object-oriented) architecture and architecture
enforcement, and may reduce the understanding of the class. This is-
sue notifies the modeler of this situation. By default, the issue is raised

100

6.2. ISSUE TYPES

if the number of attributes and operations is higher than sixty. How-
ever, we assume the conceptual modeler is able to configure this value.

A class without generalizations or associations is relevant

Scope 〈Class〉

Information Checking Issue Type

Description In general, isolated classes are very rare in conceptual mod-
eling [113, p. 106]; they are more frequent during the design stage
where utility classes are used. This issue type notifies the modeler
of this situation (see UnusedClass rule in [109] and CrNoAssociations
critique in [105]).

A cycle of composition relationships needs a constraint that
enforces there are no composition cycles at the instance
level

Scope 〈Class〉

Information Checking Issue Type

Description According to the CrCircularComposition critique in [105], a se-
ries of composition relationships (associations with black diamonds)
that form a cycle is not permitted.

An abstract class that has a concrete parent class is relevant

Scope 〈Class〉

Information Checking Issue Type

Description According to [71], a child class should be substitutable for the
parent class. Since the parent class can be instantiated, but the child
class can not, substitution is not possible anymore. This issue type
notifies of this situation.

101

CHAPTER 6. CATALOG OF QUALITY ISSUES

An abstract general classifier has one specific class only

Scope 〈Class〉

Information Problem Issue Type

Description According to [97], a schema should not include redundant en-
tity types. Two entity types are redundant if they must have always
the same population.

A generalization A1 IsA A such that A is abstract and A1 is concrete is
redundant if there is not, at least, another class A2 such that A2 IsA A.

There are no attributes missing in a class without attributes

Scope 〈Class〉

Information Checking Issue Type

Description According to [84] and the CrNoInstanceVariables critique in
[105], classes usually define instance variables. When they only de-
fine static attributes and/or methods, they should then be given the
stereotype utility. However, this stereotype usually applies at a design
level. As a result, this issue type points out that the class may either
be unnecessary at a conceptual modeling stage or it may lack some
relevant attributes.

Two classes with synonym names do not represent the same
concept

Scope 〈a:Class, b:Class〉

Information Checking Issue Type

Description This issue type identifies classes that may represent the same
concept. In [113, p. 167], the author recommends reducing the possi-
bility of synonyms for attributes within a class. According to [93], the

102

6.2. ISSUE TYPES

named elements within a certain namespace must be distinguishable.
Assuming the same namespace, two names are distinguishable if they
are different.

It may be the case that two classes with different names (and, thus,
distinguishable) represent the same concept, because the names are
synonyms. Clearly, this may be a conceptualization error and lead to
further errors, so the modeler has to make sure the schema is correct.

Example

Customer
name: String

address: String

Client
name: String

Purchaser
name: String

email: String

Customer
name: String

address: String [0..1]

email: String [0..1]

Figure 6.6. Example of three different entity types representing the same concept.

Figure 6.6 depicts a conceptual schema with three different entity types:
Customer, Client, and Purchaser. These three names are synonyms. There-
fore, it may be the case that they are representing the same concept but, for
some reason, the modeler created three different entity types.

This issue type detects these entity types may be representing the same
concept and requires the modeler to check this situation. In the example,
the conceptual modeler realises that there should be one entity type only,
and thus she merges them into only one entity type.

An abstract class is the general classifier of a single gener-
alization set that is incomplete

Scope 〈GeneralizationSet〉

Information Problem Issue Type

Description According to [97], a generalization E Gens E1, . . . , En satisfies

103

CHAPTER 6. CATALOG OF QUALITY ISSUES

the covering constraint if the instances of E must be an instance of at
least one Ei. Formally,

E(e)→ E1(e)∨ ...∨ En(e)

Therefore, if a generalization set is incomplete (i.e. it is not covering),
then an instance of E is not necessary an instance of Ei . As a conse-
quence, if E is set as abstract, it is not possible (in general) to create
instances of E that are not instances of Ei , which means that either (a)
E is not abstract or (b) the generalization set is not complete.

The default completeness and disjointness constraints are
correct for a generalization set

Scope 〈GeneralizationSet〉

Information Checking Issue Type

Description The default values of a GeneralizationSet’s constraints are over-
lapping and incomplete. In practice, generalization set generally define
different constraints than defaults (like, for example, the disjointness
constraint). This issue type serves as a warning to the modeler to
check that the default values apply.

The specific classes of a disjoint generalization set are (in)-
directly related to each other via generalizations

Scope 〈GeneralizationSet〉

Information Problem Issue Type

Description Let G be a disjoint GeneralizationSet, and A1, . . . , An its specific
classes. The following necessary condition must hold for the satisfia-
bility of G [97, p. 219]:

104

6.2. ISSUE TYPES

• There are no (direct or indirect) Generalizations in the schema
between A j and Ak (j, k : 1..n).

This issue type points out that there are two classes A j and Ak such
that, even though they both participate in a disjoint GeneralizationSet,
they are (in)directly related to each other via generalizations.

An element is not relevant

Scope 〈NamedElement〉

Information Problem Issue Type

Description One basic property all conceptual schemas have to satisfy is
completeness, which states that “all relevant general static and dynamic
aspects—i.e. all rules, laws, etc.—of the universe of discourse should
be described in the conceptual schema” [57]. An elements is relevant
if, and only if, the conceptual schema is not complete when the ele-
ment is taken away. In practice, this means that the element is used in
an event type or in a constraint.

6.2.4 Best Practice

Best practices are recommended by some authors in some contexts to improve
the quality of conceptual schemas. The section presents the 18 best practices in-
cluded in our catalog. One of the main differences between best practices (as well
as naming guidelines) and issue types in the previous categories is their accept-
ability. The acceptability of a best practice depends on the conceptual modeler
(or the project or context in which the conceptual schema is being developed).
Thus, for example, the conceptual modeler may decide that redundant gener-
alizations are non-acceptable—and therefore each time a redundant generaliza-
tion is detected, the modeler has to change the schema so that the redundancy
disappears—, but he may consider that it is sometimes acceptable that the type
of an attribute is a class.

105

CHAPTER 6. CATALOG OF QUALITY ISSUES

An association class has no attributes nor relations

Scope 〈AssociationClass〉

Information Problem Issue Type

Description According to [97], UML provides the association class con-
struct for defining reified relationship types. Reifying a relationship
consists in viewing it as an entity. Usually, an association is reified in
order to represent additional information (i.e. attributes or associa-
tions) that could not be represented if it was not.

This issue type points out the fact that the referenced association class
does not include any additional information like attributes or rela-
tions. Therefore, the modeler has determine if there is some informa-
tion missing and, if there is not, she has to remove the unnecessary
association class.

A class has a specialization that is not included in a gener-
alization set

Scope 〈Class〉

Information Checking Issue Type

Description According to [97, pp. 220+], a generalization may be any set
of IsA relationships with the same supertype. In practice, however, it
makes sense to group into a generalization the IsA relationships that
belong to the same dimension.

Whenever a class has several specializations, they are usually grouped
into a GeneralizationSet. For example, a class Person may be special-
ized with the classes Man and Woman, which clearly belong to a Sex
generalization set.

Example

Figure 6.7 depicts a small conceptual schema with the entity types Person,
Man, and Woman. Man and Woman are defined as subtypes of the entity

106

6.2. ISSUE TYPES

Person

Man Woman

{disjoint, complete}

name: String
Person

Man Woman

name: String

Figure 6.7. Example of two specializations that are not included in a GeneralizationSet
and should be defined as a partition.

type Person.

In general, Man and Woman are a partition of the entity type Person. In
other words, each instance of Person is either an instance of Man or Woman.
In order to make it clear, the entity types Man and Woman have to be in-
cluded in a complete and disjoint generalization set, as depicted in the sec-
ond version of the conceptual schema.

A class is identifiable

Scope 〈Class〉

Information Checking Issue Type

Description Entity types have to be identifiable [97, 113]. An entity type
is identifiable if all its instances are identifiable. The rationale behind
this requirement is that when an entity type is identifiable, the users
and the information system have a shared means to refer to its in-
stances. If, on the other hand, an entity type is not identifiable, then
the users and the information system will be unable to share informa-
tion about instances of it.

Informally, an entity is identifiable if there is an expression formed by
lexical entities that denotes it [97, p. 107]. For example, the expres-
sion ‘The person called Mark’ is a reference to a person, formed from
the lexical entity ‘Mark’.

In order to make an entity type externally identifiable, an identifier
constraint is required. Identifier constraints specify the set of proper-
ties that uniquely identify each instance of an entity type.

107

CHAPTER 6. CATALOG OF QUALITY ISSUES

Example

Car
plateNumber:String

(a)

Hotel
name:String

Room
number:Natural

1..*
room

1

(b)

A car is clearly identified

by its plate number

A hotel can be identified,

for example, by its name
A room has to be identified,

not only by its number, but also

by the hotel in which it belongs

Figure 6.8. Two examples of identifiable entity types.

In order for the users of an information system and the information sys-
tem itself to share information about the instances the system has, these
instances have to be identifiable.

In Fig. 6.8, we present two small examples that illustrate how entity
types may be identified. In [97, pp. 107–108], the author describes the six
different ways we have to identify an entity. Figure 6.8 (a) presents a single
entity type Car with a plateNumber attribute. Presumably, Cars are identified
by their plateNumbers, which means that two different cars cannot have the
same plate number. Therefore, the modeler has to define an identifiability
constraint 3 stating that two different cars cannot have the same plate num-
ber [34]. On the other hand, Figure 6.8 (b) is modeling a domain where we
have Hotels and their Rooms. We may consider, for example, that Hotels are
identified by its name (two different hotels have two different names neces-
sarily), and Rooms are identified by the combination of the Hotel to which
they belong and their number.

An attribute named id is needed at the conceptual level

Scope 〈Class〉

Information Checking Issue Type

Description In conceptual modeling, classes do not require an id attribute
to be uniquely identified [113, p. 184+]. These artificial attributes

3Please note that version 2.5 of the UML metamodel, introduced an attribute isID for Properties.
According to its definition, if this boolean attribute is set to True, it specifies that the Property can be
used for to uniquely identifying an instance of the containing Class.

108

6.2. ISSUE TYPES

(called “surrogate keys”) are usually added on a design stage, where
instances have to be identifiable in a, for instance, relational database.
These symbols are generated internally by the system and are not vis-
ible outside it.

It is a bad practice in conceptual modeling to create these attributes for
identifying entites externally. As stated in [97, p. 109], “the identifia-
bility requirement is independent of the symbols used in the informa-
tion base to denote the domain objects; these symbols are generated
internally by the system and are not visible outside it; therefore, they
cannot be used to identify entities externally.” Consequently, the con-
ceptual modeler has to select which attributes in the domain identify
the entities.

A data type is related to at least one class by a binary
association

Scope 〈DataType〉

Information Problem Issue Type

Description Good object oriented analysis and design depends on careful
choices about which entities to represent as full objects and which to
represent as attributes of objects. According to the CrNonAggDataType
critique in [105], data types should not be associated with classes. In
principle, they should be used as the type of an attribute.

A generalization is redundant

Scope 〈Generalization〉

Information Problem Issue Type

Description In UML, multiple inheritance is allowed—i.e. a class A may
have two superclasses B and C (A IsA B and A IsA C).

According to [74] and [97, p. 51], “the representation of objects and
entity types in an information system, and the classification of objects

109

CHAPTER 6. CATALOG OF QUALITY ISSUES

into entity types must all satisfy certain properties (. . .) including the
nonredundancy property. This issue type points out redundant gener-
alization, which should be avoided because they make the conceptual
schema more complicated. We say that a generalization A IsA B is re-
dundant if there is an indirect inheritance hierarchy between A and B
(for instance, A IsA C IsA B).

Example

LandVehicle

{disjoint, complete}

MotorVehicle

Car
plateNumber:String

Motorcycle
maxSpeed:Natural

Figure 6.9. Example of a redundant generalization.

Figure 6.9 presents a conceptual schema with a redundant Generaliza-
tion. As we can see, there is a direct Generalization between Car and Land-
Vehicle (Car IsA LandVehicle). However, the schema also contains the gener-
alizations Car IsA MotorVehicle and MotorVehicle IsA LandVehicle. Therefore,
the former Generalization Car IsA LandVehicle is redundant.

A generalization set is not complete, but it behaves as such
because of type or type and multiplicity redefinitions

Scope 〈GeneralizationSet〉

Information Problem Issue Type

Description As D. Costal and C. Gómez describe in [33]:

Theorem 4.6: Let A and B be two classes and R a binary association
between them. Let b be the association end that connects R to class
B and a the opposite end that connects R to class A with multiplicity
n. Let gs1 be a generalization set that specializes superclass A into
subclasses A1, . . . , An. Let gs2 be a generalization set that specializes

110

6.2. ISSUE TYPES

gs1 {complete} gs2 {complete} (entailed)

A

A1

An

B

Bn

B1

b

R

... ...b {redefines b}n

b {redefines b}1

a
n

lower bound of n>0

Figure 6.10. Complete constraint entailed by type or type and multiplicity redefinitions.

superclass B into subclasses B1, . . . , Bn. Assume that b1, . . . , bn are
type or type and multiplicity redefinitions of the end b with their cor-
responding multiplicities, that each bi is connected to Bi and that the
opposite end of bi is connected to class Ai . Then, if the lower bound
of n is greater than zero and gs1 is complete, the complete constraint
of gs2 is entailed by the type or type and multiplicity redefinitions (see
Figure 6.10).

A generalization set is not disjoint, but it behaves as such
because of disjoint multiplicity redefinitions

Scope 〈GeneralizationSet〉

Information Problem Issue Type

Description As D. Costal and C. Gómez describe in [33]:

gs1 {disjoint} (entailed)

A

A1

An

B
bR

...

m b {redefines b}11b {redefines b} mn n
m , ..., m are

mutually disjoint
1 n

Figure 6.11. Disjointness constraint entailed by disjoint multiplicity redefinitions.

Theorem 4.3: Let A and B be two classes and R a binary association
between them. Let b be the association end that connects R to class
B. Let gs1 be a generalization set that specializes superclass A into
subclasses A1, . . . , An. Assume that b1, . . . , bn are multiplicity redef-
initions of the end b with their corresponding multiplicities m1, . . . ,

111

CHAPTER 6. CATALOG OF QUALITY ISSUES

mn, that each bi is connected to B and that the opposite end of bi is
connected to class Ai . Then, if each pair of multiplicities mi and m j

, where 1 ≤ i ≤ n and 1 ≤ j ≤ n and i 6= j, are mutually disjoint
(i.e. each intersection is empty), the disjointness constraint of gs1 is
entailed by the multiplicity redefinitions (see Figure 6.11).

A generalization set is not disjoint, but it behaves as such
because of type and disjoint multiplicity redefinitions

Scope 〈GeneralizationSet〉

Information Problem Issue Type

Description As D. Costal and C. Gómez describe in [33]:

gs1 {disjoint} (entailed) gs2 {disjoint}

A

A1

An

B

Bn

B1

b

R

... ...b {redefines b}n

b {redefines b}1

mn

m1

m , ..., m are
mutually disjoint

1 n

Figure 6.12. Disjointness constraint entailed by type and multiplicity redefinitions.

Theorem 4.5: Let A and B be two classes and R a binary association
between them. Let b be the association end that connects R to class
B. Let gs1 be a generalization set that specializes superclass A into
subclasses A1, . . . , An. Let gs2 be a generalization set that specializes
superclass B into subclasses B1, . . . , Bn. Assume that b1, . . . , bn are
multiplicity redefinitions of the end b with their corresponding mul-
tiplicities m1, . . . , mn, that each bi is connected to Bi and that the
opposite end of bi is connected to class Ai . Then, if each pair of multi-
plicities mi and m j , where 1≤ i ≤ n, 1≤ j ≤ n and i 6= j, are mutually
disjoint (i.e. each intersection is empty), the disjointness constraint
of gs1 is entailed by the type and multiplicity redefinitions (see Fig-
ure 6.12).

112

6.2. ISSUE TYPES

A generalization set is not disjoint, but it behaves as such
because of type and multiplicity redefinitions

Scope 〈GeneralizationSet〉

Information Problem Issue Type

Description As D. Costal and C. Gómez describe in [33]:

gs1 {disjoint} (entailed) gs2 {disjoint}

A

A1

An

B

Bn

B1

b

R

... ...b {redefines b}n

b {redefines b}1

mn

m1

n-1 lower bounds of
m , ..., m > 01 n

Figure 6.13. Disjointness constraint entailed by type and multiplicity redefinitions.

Theorem 4.4: Let A and B be two classes and R a binary association
between them. Let b be the association end that connects R to class
B. Let gs1 be a generalization set that specializes superclass A into
subclasses A1, . . . , An. Let gs2 be a generalization set that specializes
superclass B into subclasses B1, . . . , Bn. Assume that b1, . . . , bn are
multiplicity redefinitions of the end b with their corresponding multi-
plicities m1, . . . , mn, that each bi is connected to Bi and that the oppo-
site end of bi is connected to class Ai . Then, if n− 1 lower bounds of
m1, . . . , mn are greater than zero and gs2 is disjoint, the disjointness
constraint of gs1 is entailed by the type and multiplicity redefinitions
(see Figure 6.13).

A generalization set is not disjoint, but it behaves as such
because of type redefinitions

Scope 〈GeneralizationSet〉

Information Problem Issue Type

Description As D. Costal and C. Gómez describe in [33]:

113

CHAPTER 6. CATALOG OF QUALITY ISSUES

gs1 {disjoint} (entailed) gs2 {disjoint}

A

A1

An

B

Bn

B1

m
b

R

... ...b {redefines b}n

b {redefines b}1

lower bound of m>0
Spec constraints

of gs1 hold

Figure 6.14. Disjointness constraint entailed by type redefinitions.

Theorem 4.2: Let A and B be two classes and R a binary association
between them. Let b be the association end that connects R to class
B and let m be its multiplicity. Let gs1 be a generalization set that
specializes superclass A into subclasses A1, . . . , An. Let gs2 be a gen-
eralization set that specializes superclass B into subclasses B1, . . . , Bn.
Assume that all specialization constraints of gs1 hold. Assume that b1,
. . . , bn are type redefinitions of the end b, that each bi is connected
to Bi and that the opposite end of bi is connected to class Ai . Then,
if the lower bound of m is greater than zero and gs2 is disjoint, the
disjointness constraint of gs1 is entailed by the type redefinitions (see
Figure 6.14).

An attribute is repeated among all specific classes of a com-
plete generalization set

Scope 〈gs:GeneralizationSet, n:String〉

Information Problem Issue Type

Description As Fowler states in [51], if subclasses are developed indepen-
dently, or combined through refactoring, you often find that they du-
plicate features. In particular, certain fields can be duplicates. If they
are being used in a similar way, you can generalize them. Doing this
reduces duplication in two ways. It removes the duplicate data dec-
laration and allows you to move from the subclasses to the superclass
behavior that uses the field.

When we have a complete GeneralizationSet, any attribute that is re-
peated among all its specific classes should be removed from them

114

6.2. ISSUE TYPES

and should be placed in the superclass instead. As a result, we obtain
a simplified model that is easier to understand.

Example

Person

Man Woman

{disjoint, complete}

name: String name: String

Person

Man Woman

{disjoint, complete}

name: String

Figure 6.15. Example of a complete generalization set with an attribute repeated among
all its specific classes.

Figure 6.15 depicts a small conceptual schema with the entity types Per-
son, Man, and Woman. Man and Woman are defined as a partition of the
entity type Person, which means that any instance of Person is either an in-
stance of Man or Woman.

Both Man and Woman have an attribute named name. Since all Persons
have to be either a Man or a Woman, then all Persons have also a name.
However, the first version of the conceptual schema does not make it clear,
because the attribute is placed in the specific classes instead of the general.

In this situation, a better solution is applying Fowler’s pull-up property
refactoring and, thus, placing the name attribute within the entity type Per-
son.

An attribute repeated among all specific classes of an in-
complete generalization set is correct

Scope 〈gs:GeneralizationSet, n:String〉

Information Checking Issue Type

Description As Fowler states in [51], if subclasses are developed indepen-
dently, or combined through refactoring, you often find that they du-
plicate features. In particular, certain fields can be duplicates. If they

115

CHAPTER 6. CATALOG OF QUALITY ISSUES

are being used in a similar way, you can generalize them. Doing this
reduces duplication in two ways. It removes the duplicate data dec-
laration and allows you to move from the subclasses to the superclass
behavior that uses the field.

When we have an incomplete GeneralizationSet, any attribute that is
repeated among all its specific is very likely (but not necessary) to be
a feature of the general class too. This issue type serves as a warning
to the modeler—it is possible the modeler made a mistake and did not
include the attribute in the general class, as the domain may suggest.

Example

Employee

Director Salesperson

{disjoint, incomplete}

wage:Money wage:Money

Employee

Director Salesperson

{disjoint, incomplete}

wage:Money

(a)

Employee

Director Salesperson

{disjoint, incomplete}

wage:Money [0..1]

(b)

Figure 6.16. Example of an incomplete generalization set with an attribute repeated
among all its specific classes.

Figure 6.15 depicts a small conceptual schema with the entity types Em-
ployee, Director, and Salesperson. Director and Salesperson represent some
(but not all the) specific types of Employee. In other words, an instance
of Employee may be a Director, a Salesperson, or none of these two. Both
Director and Salesperson have an attribute named wage.

Assuming that the original solution is correct—i.e. not all Employees
have a wage, but only Directors and Salespersons, the first solution proposes
to apply a pull-up property refactoring (Solution (a)). In order for the orig-
inal and alternative (a) schemas to be equivalent, the property’s cardinality
constraint has to be optional. The resulting schema (a) is simpler, because
there is only one attribute in the upper class instead of multiple attributes
scattered among the subclasses4.

116

6.2. ISSUE TYPES

Another possibility is Solution (b). Even though not all instances of Em-
ployee may be a Director or a Salesperson, it looks very suspicious that both
entity types have an attribute named wage but an Employee does not. This
issue type detects this situation and requires the modeler to make sure that
the attribute wage is not a property that all Employees have. If that was the
case, she would have to apply Fowler’s pull-up property refactoring (whose
result is depicted in the upper-right alternative).

There are two different elements with very similar names

Scope 〈Namespace〉

Information Checking Issue Type

Description According to the CrNameConfusion critique in [105], when two
names in the same namespace have very similar names—i.e. differing
only by one character—, it could potentially lead to confusion.

All attributes in the schema are mandatory

Scope 〈Package〉

Information Checking Issue Type

Description The default multiplicity constraint for an attribute in UML is
“mandatory”. In general, a conceptual schema may contain optional
attributes. If all attributes of a conceptual schema are mandatory—i.e.
they use the default multiplicity value—, it may be the case that the
modeler is not modeling the domain properly.

4In order to make this solution semantically equivalent to the original one, the conceptual modeler
has to define some additional integrity constraints.

117

CHAPTER 6. CATALOG OF QUALITY ISSUES

An attribute is being used instead of an association between
its owner and a class when the attribute and the class have
the same name

Scope 〈Property〉

Information Checking Issue Type

Description The names in a conceptual schema play a key role. They are
important, because they help describing the knowledge behind them.

If a conceptual schema has a class C1 with an attribute A named n,
and another class C2 named n, it may be the case that the knowledge
behind the attribute A and the class C2 is the same. If this is the case,
a better solution is to replace the attribute A in C1 by an association.

Example

Telephone

areaCode: int

number: int

Person

name: String

telephone: int

1
owner 0..1

Has
Telephone

areaCode: int

number: int

Person

name: String

Figure 6.17. Example of a conceptual schema where an attribute is being used instead of
a relationship type.

Figure 6.17 depicts a conceptual schema with the entity types Person
and Telephone. Both Person and Telephone have two attributes: name and
telephone, and areaCode and number, respectively. The attribute telephone
looks very suspicious, because it may represent the same knowledge as the
entity type Telephone. If that is the case, the relationship between the two
entity types has to explicit using an association, not the attribute. The sec-
ond version of the conceptual schema fixes this situation by removing the
attribute owner from the entity type Company and creating an explicit asso-
ciation named Owns between both entity types.

118

6.2. ISSUE TYPES

The name of an attribute needs to include the name of the
class that owns the attribute

Scope 〈Property〉

Information Checking Issue Type

Description As stated in [13], the name of an attribute should not contain
the name of the entity.

The type of an attribute is a class

Scope 〈Property〉

Information Problem Issue Type

Description In general, the type of a property has to be a datatype. Using
a full class as a property’s type is discouraged.

6.2.5 Naming

Naming guidelines are a special kind of best practices, whose focus is on the
names given by conceptual modelers to the elements of a conceptual schema.
These issue types are important because the names used in a conceptual schema
have a strong influence on the understandability of that schema.

A binary association does not define any of the three names
it may define

Scope 〈Association〉

Information Problem Issue Type

Description According to the guidelines we present in [5], a binary asso-
ciation has to define, at least, one of the three possible names it may

119

CHAPTER 6. CATALOG OF QUALITY ISSUES

define: the association’s name or a member end’s name. If there is
no explicit name, we do not know the information abstracted by this
association.

Example

Person
2..* 0..1 Company

?

? ?

(a) Person
2..* 0..1 Company
worker

(b) Person
2..* 0..1 Company

(c) Person
2..* 0..1 Company

WorksIn

workplace

Figure 6.18. Example of a binary association with no explicit names and three possible
solutions.

According to the guidelines we present in Appendix A, a binary associ-
ation in UML may define up to three names: the association’s name itself
and the names of its member ends. Figure 6.18 depicts a binary association
between the entity types Person and Company, without any names on it. As
a result, it is unclear which concept from the domain is being modeled:

1. Does a Person own a Company?

2. Is a Person a cusomter of a Company?

3. Does a Person work in a Company?

4. . . .

If we, for example, assume that the binary association represents the
relationship between a Person and the Company where she works (that is,
the third option), we may define (at least) one of the following names:

120

6.2. ISSUE TYPES

(a) a Company has two or more workers.

(b) a Person has zero or one workplaces.

(c) a Person works in zero or one Companies.

The name of a binary association is not a singular third-
person verb phrase

Scope 〈Association〉

Information Problem Issue Type

Description Let R(p1:E1 [min1,max1], p2:E2 [min2,max2]) be a binary as-
sociation between entity types E1 and E2, playing roles p1 and p2. In
UML there may be up to three explicit names related with this associ-
ation (all are optional): the name of the association R and the names
of the two roles p1 and p2.

According to the guidelines we present in [5], the name R of a binary
association should be a verb phrase in third-person singular form.

The name of a binary association is not a verb phrase

Scope 〈Association〉

Information Problem Issue Type

Description Let R(p1:E1 [min1,max1], p2:E2 [min2,max2]) be a binary as-
sociation between entity types E1 and E2, playing roles p1 and p2. In
UML there may be up to three explicit names related with this associ-
ation (all are optional): the name of the association R and the names
of the two roles p1 and p2.

According to the guidelines we present in [5], the name R of a binary
association should be a verb phrase in third-person singular form.

121

CHAPTER 6. CATALOG OF QUALITY ISSUES

The name of a binary association makes sense

Scope 〈a:Association, n:String〉

Information Checking Issue Type

Description Let R(p1:E1 [min1,max1], p2:E2 [min2,max2]) be a binary as-
sociation between entity types E1 and E2, playing roles p1 and p2. In
UML there may be up to three explicit names related with this associ-
ation (all are optional): the name of the association R and the names
of the two roles p1 and p2.

According to the guidelines we present in [5], (a) the name R of a
binary association should be a verb phrase in third-person singular
form, written in the Pascal case and (b) the following sentence has to
be grammatically well-formed and semantically meaningful:

– If min2 = 0 and max2 = 1:
[A|An] lower(E1) lower(R) at most one lower(E2).

– If min2 = 1 and max2 = 1:
[A|An] lower(E1) lower(R) [a|an] lower(E2).

– If min2 = 0 and max2 = ∗:
[A|An] lower(E1) lower(R) zero or more lower(plural(E2)).

– If min2 = 1 and max2 = ∗:
[A|An] lower(E1) lower(R) one or more lower(plural(E2)).

This issue type requires the modeler to manually check whether the
pattern sentence makes sense or not.

The name of a class is a noun prhase with a plural head

Scope 〈Class〉

Information Problem Issue Type

122

6.2. ISSUE TYPES

Description According to the guidelines we present in [5], the name of an
entity type should be a noun phrase whose head is a countable noun
in singular form. The name should be written in the Pascal case.

This issue type points out the fact that the name of this class is not a
noun phrase with a singular head.

The name of a class is not a noun phrase

Scope 〈Class〉

Information Problem Issue Type

Description According to the guidelines we present in [5], the name of an
entity type should be a noun phrase whose head is a countable noun
in singular form. The name should be written in the Pascal case.

The name of a class is not properly capitalized

Scope 〈Class〉

Information Problem Issue Type

Description According to the guidelines we present in [5], the name of an
entity type should be a noun phrase whose head is a countable noun
in singular form. Moreover, the name should be written in the Pascal
case.

Therefore, the name must start with a capital letter.

The name of a class is uncountable

Scope 〈Class〉

Information Problem Issue Type

123

CHAPTER 6. CATALOG OF QUALITY ISSUES

Description According to the guidelines we present in [5], the name of an
entity type should be a noun phrase whose head is a countable noun
in singular form. The name should be written in the Pascal case.

This issue type points out the fact that the name of this class is not a
noun phrase with a countable head.

A named element has a name that is too complex to be
automatically processed

Scope 〈NamedElement〉

Information Problem Issue Type

Description The naming guidelines we present in [5] require the names to
follow certain rules. Thus, for example, entity types have to be “noun
phrases with countable heads in singular form” and binary associa-
tions have to be “verb phrases written in third-singular form”. This
rules constraint the variability of names we may assign to entity types
and binary associations.

Our name processor has to automatically determine whether the name
of an element follows the associated rule or not. However, if the name
is too complex—i.e. it is too long, or it has too many complements—,
the processor is unable to perform the analysis. When this occurs, it
is assumed that the modeler is using a name that is no appropiate for
conceptual modeling and, hence, she is required to simplify it.

The name of a boolean attribute is not a third-person sin-
gular verb-phrase

Scope 〈Property〉

Information Problem Issue Type

Description According to the guidelines we present in [5], the name of
a boolean attribute should be a verb phrase in third-person singular
form, written in the Camel case.

124

6.2. ISSUE TYPES

The name of a boolean attribute is not a verb-phrase

Scope 〈Property〉

Information Problem Issue Type

Description According to the guidelines we present in [5], the name of
a boolean attribute should be a verb phrase in third-person singular
form, written in the Camel case.

The name of a boolean attribute makes sense

Scope 〈p:Property, s:String〉

Information Checking Issue Type

Description According to the guidelines we present in [5], the name of
a boolean attribute should be a verb phrase in third-person singular
form, written in the Camel case. Moreover, the following sentence
must be grammatically well-formed and semantically meaningful:

– [A|An] lower(E) lower(withOrNeg(A)) [, or it may be unknown].

where the last optional fragment is included only if min is equal to
zero.

The function withOrNeg(A) extends A with the insertion of “or nega-
tive(A)” after the verb of A, where negative(A) is the negative form of
the verb of A. For example:

withOrNeg(isDerived) = isOrIsNotDerived

withOrNeg(hasChildren) = hasOrHasNotChildren

The name of a non-boolean attribute is not a noun-phrase
in singular form

Scope 〈Property〉

125

CHAPTER 6. CATALOG OF QUALITY ISSUES

Information Problem Issue Type

Description According to the guidelines we present in [5], the name of
a non-boolean attribute should be a noun phrase in singular form,
written in the Camel case.

The name of a non-boolean attribute is not a noun-phrase

Scope 〈Property〉

Information Problem Issue Type

Description According to the guidelines we present in [5], the name of
a non-boolean attribute should be a noun phrase in singular form,
written in the Camel case.

The name of a non-boolean attribute makes sense

Scope 〈p:Property, s:String〉

Information Checking Issue Type

Description According to the guidelines we present in [5], the name of
a non-boolean attribute should be a noun phrase in singular form,
written in the Camel case. Moreover, one of the following sentences
must be grammatically well-formed and semantically meaningful:

– If min= 0 and max= 1:
[A|An] lower(E) may have [a|an] lower(A).

– If min= 0 and max> 1:
[A|An] lower(E) may have zero or more lower(plural(A)).

– If min=max= 1:
[A|An] lower(E) has [a|an] lower(A).

– If min> 0 and max> 1:
[A|An] lower(E) has one or more lower(plural(A)).

Note that plural(A) is a function that gives the plural form of A.

126

6.3. LIMITATIONS

Person
{disjoint,
complete}

Man
name: String

Woman
name: String

Person

Man Woman

{disjoint, complete}

name: String

Figure 6.19. Example of an issue instance that is related to the graphical facet of a UML
conceptual schema.

The name of a property is not properly capitalized

Scope 〈Property〉

Information Problem Issue Type

Description According to several naming guidelines [1, 5, 93, 120, 134],
property names must begin with a non-capital letter.

6.3 Limitations

The UML is a graphical modeling language. As such, the layout in which ele-
ments are distributed, font faces, or element sizes might be relevant. In fact,
these “graphical properties” do also have an impact on the quality of the result-
ing conceptual schema. Thus, for example, in [10] the author proposes sev-
eral guidelines for distributing and presenting the elements of a UML conceptual
schema. These guidelines should be represented as quality issues but, as we shall
see, they cannot.

Consider, for example, a layout quality issues stating that “in a generalization,
the specific classes have to be drawn below the general class” [10]. Figure 6.19
depicts two versions of the same conceptual schema—the former contains the
issue, the latter does not.

Our method is not able to represent this issue. As we have seen in Chap. 5,
quality issue types are defined using the metamodel of the language for which
they are defined. However, the UML metamodel does not include any compo-
nents for describing the specific layout of its schemas. As a result, it is impos-

127

CHAPTER 6. CATALOG OF QUALITY ISSUES

sible to define the previous issue type. Nonetheless, it is important to note that
this limitation is not a limitation of our method, but a limitation of the UML
metamodel—if the metamodel included graphical-related information of a con-
ceptual schema, we could use it to define the quality issue.

On the other hand, our method has also limitations for defining quality issues
that cannot be evaluated looking at the schema directly. Thus, for example, we
cannot define issue types that check the completeness or correctness of a concep-
tual schema.

6.4 Evaluation

This section demonstrates the feasibility of a quality assurance approach based on
the catalog—i.e. the usefulness of our method. For this, we analyze the presence
of quality issues in a set of conceptual schemas. In Sect. 9.2, we compare the
number of quality issues detected by this catalog and the number of quality issues
detected by two current modeling tools, and we demonstrate that our catalog
leads to the detection of more quality issues.

The starting point of the experiment was the random selection of 13 concep-
tual schemas that were developed by students as part of their final projects dur-
ing the last year of their Computer Science degree at the Universitat Politècnica
de Catalunya. The conceptual schemas were defined using different modeling
environments. Table 6.2 summarizes, for each conceptual schema, the number
of classes, association classes, associations, attributes, and invariants present in
the conceptual schema.

According to our method, conceptual schemas can and should be improved as
long as they contain issues. Table 6.3 summarizes the number of issues we found
for each category and conceptual schema. Clearly, all conceptual schemas have
a lot of issues the conceptual modeler should have addressed before releasing it.
The high number of quality issues—both problem and checking—found in each
schema makes it clear that the catalog we propose in here is relevant and would
help conceptual modelers deliver better schemas.

Consider, for example, the three conceptual schemas fragments depicted in

128

6.4. EVALUATION

Table 6.2. Characteristics of the conceptual schemas developed by students.

Assoc-
Project Classes Classes Assocs Attributes Invariants

P1 10 1 8 16 3
P2 16 3 9 45 -
P3 31 3 23 109 5
P4 18 - 10 75 -
P5 15 4 6 33 6
P6 11 1 5 91 2
P7 14 - 19 11 15
P8 44 6 18 117 9
P9 15 1 15 50 16
P10 18 - 27 73 19
P11 20 6 12 42 23
P12 28 6 7 56 23
P13 366 55 264 1144 386

Table 6.3. Issues detected by our catalog [7].

Syn+ BasicProp. BestPract. Naming
Project Prob Chk Prob Chk Prob Chk Prob Chk

P1 - - 53 11 - 10 13 -
P2 - - 74 9 - 20 15 6
P3 4 - 197 21 - 50 49 8
P4 - - 87 9 15 24 24 -
P5 - - 78 8 - 20 21 2
P6 - - 68 8 - 11 16 -
P7 1 - 91 9 3 14 24 3
P8 - - 170 41 3 52 45 13
P9 - - 106 6 - 22 21 -
P10 2 - 171 16 - 33 38 21
P11 13 - 104 14 14 29 25 11
P12 6 - 87 24 14 34 10 1
P13 221 - 2031 395 271 407 284 21

Fig. 6.20. As we shall see, these small fragments contain several quality issues
that were detected by our method.

On the one hand, fragments (a) and (b) conceptualize the concept of a Mes-
sage within a system where users can post their comments/messages. According
to both conceptualizations, a Message has an identifier (attributes messageId and
id), it has some content (attributes text and content), and it may reply to another
Message (recursive association). Fragment (a) contains the following checking
issues:

• The recursive association RepliesTo does not include any constraints regard-

129

CHAPTER 6. CATALOG OF QUALITY ISSUES

Tool
url: String
properties: String

for Users
name: String

properties: String

public: Boolean

{disjoint, complete}

for Groups
name: String

properties: String

public: Boolean

Activity
date: String
documentId: String

actionType: Boolean

* 0..1

(c)

Message
messageId: Natural

text: String

0..1

RepliesTo ▸

*

Message
id: String

content: String

1 parent

*
answer

(a) (b)

Figure 6.20. Fragments of three conceptual schemas, each fragment with several quality
issues.

ing the properties of symmetry, transitivity, or reflexivity. In this particu-
lar case, they were not defined by the modeler, even though they seem
necessary—e.g. a Message cannot reply to itself.

• The attribute messageId includes the name of the entity type (Message). In
general, this situation should be avoided.

• If the name of the previous attribute is actually id instead of messageId,
then another issue would have raised: the one asking the modeler to make
sure whether a Message needs an attribute named id.

whereas fragment (b) contains the following checking issues:

• The recursive association does not include any constraints regarding the
properties of symmetry, transitivity, or reflexivity.

• The recursive association has one member end that is mandatory, which
looks very suspicious (do all messages have to reply to another message?

• Does the entity type Message need an attribute named id?

130

6.4. EVALUATION

On the other hand, fragment (c) corresponds to a conceptual schema of a
collaborative website. The fragment depicts the entity type Activity which is
somehow related to Tool. Tools can either be for Users or for Groups. The schema
also contains several attributes for each entity type. In our opinion, this tiny
fragment is very complicated to understand because of the problem issues it
contains:

• All attributes in the entity types for Users and for Groups are repeated,
despite they participate in a disjoint generalization set. Clearly, these at-
tributes should be removed from these entity types and defined in Tool
instead.

• If all attributes are removed from the specific classes (as the previous is-
sue points out) and taking into account that they are not related to any
other classes, another issue would be raised pointing out that, probably,
these specific classes are unnecessary. A better solution would probably
be an enumerated attribute in the superclass that classifies tools into the
appropriate type—i.e. “for users” and “for Groups”.

• The attribute properties is specified both in the superclass and the specific
classes.

• The entity types for Users and for Groups do not seem to follow any naming
guidelines in general. Their names are not properly capitalized and they
are not noun phrases. Probably, the name the conceptual modeler should
have used was ToolForUsers and ToolForGroups.

• The association between Tool and Activity does not define any of the three
possible names it may define. As a result, it is completely unclear the rela-
tionship from the domain that is being conceptualized (does a tool “gener-
ate” an activity? Does an activity “use” any tools? Does an activity “require”
tools? . . .)

• The entity type Activity contains a Boolean attribute named actionType,
which does not follow our naming guidelines for boolean attributes—i.e.
it has to be a verb phrase written in third-person singular form.

131

CHAPTER 6. CATALOG OF QUALITY ISSUES

6.5 Summary

In Chap. 4, we have introduced the notion of quality issues and the three phases
of our method: (i) the definition of quality issue types using a specific formaliza-
tion, (ii) the compilation of quality issue types in a catalog, and (iii) the usage of
quality issue types during the development of a conceptual schema. In Chap. 5,
we have focused on the first phase of our method and we have presented a for-
malization of quality issues.

This chapter has focused on the second phase of our method. Its main con-
tribution has been to present the catalog of quality issues we had built so far.
We have used the catalog to analyze the expressiveness and the usefulness of our
method. For analysis and presentation purposes, we have also introduced a clas-
sification of issue types based on its source. The results of this chapter were
published in [6].

Throughout Sect. 6.2 we have presented the list of issue types our catalog
contains. These issue types have been obtained from the literature and current
modeling environments. The compilation of this catalog demonstrates that our
formalization is powerful enough to express almost all existing quality issues with
it. We have also seen in Sect. 6.3 that there are some issues for the UML—like,
for example, those that are related to the layout of a conceptual schema—that
cannot be expressed using our formalization. We have discussed the rationale
behind this problem and realized that it is not a limitation of our formalization,
but a limitation of the UML itself: our formalization can only define issues based
on the information available in the metamodel.

In Sect. 6.4 we have evaluated the usefulness of our method. In order to do
so, we analyzed the presence of quality issues in a set of conceptual schemas.
The conceptual schemas had been randomly selected and were developed by
students as part of their final projects during the last year of their Computer
Science degree at the Universitat Politècnica de Catalunya. We have seen that all
conceptual schemas contain several quality issues. All these issues could have
been avoided if the conceptual modelers had been aware of them.

132

It is much more difficult to judge one-
self than to judge others.

A. de Saint-Exupéry, The Little Prince

7
A Conceptual Modeling Assistant

based on Quality Issues

Throughout the previous chapters of this thesis, we have discussed the impor-
tance of developing high-quality conceptual schemas. We have claimed that, in
order to do so, conceptual modelers may benefit a lot from the support a mod-
eling tool can provide. In particular, we envision a Conceptual Modeling Assis-
tant (CMA) as an Integrated Development Environment (IDE) that analyzes and
criticizes the conceptual schema under development so that its modeler can im-
prove it. Thus, our prototype tool [2, 3] implements the detection of conceptual
schema quality issues. As a result, it provides useful feedback by pointing out the
issues the conceptual schema has1.

The aim of this chapter is to describe the implementation of our method

1Please note our prototype tool implement issue detection only. A complete implementation of
our method would also include the actions a modeler can perform to fix issues.

133

CHAPTER 7. A CONCEPTUAL MODELING ASSISTANT

in a real IDE. Section 7.1 presents an overview of Eclipse. Eclipse is an IDE
that can be easily extended by means of plugins. The section also describes the
architecture of our plugin and its main components—i.e. an Issue Type Manager,
which is responsible of downloading and managing the available issue types;
an Issue Processor, which is responsible of computing the issues a conceptual
schema has; and an Issue View, which is the graphical component responsible
of showing feedback to the modeler. Section 7.2 outlines the publication of the
catalog presented in Chap. 6. In Sect. 7.3 we discuss how our method can be
integrated in the development of a conceptual schema by providing a continuous
non-disruptive feedback view. Finally, Section 7.4 summarizes this chapter.

7.1 Overview and Architecture

We conceived our prototype tool [2, 3] as a plugin for Eclipse—an open-source
IDE that consists in a core project that includes a generic framework for tool
integration and a Java development environment built using it, and hundreds of
plugins that extent its basic functionalities [32]. Eclipse can be used as a UML
modeling environment by installing the UML2 Tools [41].

In this section, we introduce the Eclipse Platform briefly, taking special care
to its architecture and the plugin mechanism it provides. We also present the
architecture of our plugin and the set of plugins we implemented in order to
integrate our method in Eclipse. Finally, we introduce an OCL interpreter avail-
able in Eclipse and how it can be extended to evaluate OCL-defined quality issue
types.

7.1.1 Introduction to the Eclipse Platform

Eclipse is an open-source IDE launched by Borland, IBM, MERANT, QNX Soft-
ware Systems, Rational Software, Red Hat, SuSE, TogetherSoft and Webgaint
[42], whose purpose is to provide a highly integrated tool platform. It is basi-
cally a core project that includes a generic framework for tool integration and
a Java development environment built using it. Other projects extend the core
framework integrating additional features and thus supporting specific kinds of

134

7.1. OVERVIEW AND ARCHITECTURE

tools, methods, and development environments. Since Eclipse is implemented
in Java, it can run on many operating systems, including Linux, Mac OSX, and
Windows [118].

Workbench

Eclipse Platform

Team

Workbench

Standard
Widget
Toolkit Help

Platform Runtime

Plugin

Java
Development

Tools

Web
Tools

Plugin

Plugin

Figure 7.1. The Eclipse’s Architecture—the kernel and its plugin system.

Figure 7.1 depicts the architecture of the Eclipse Platform. The basic com-
ponent in Eclipse is a plugin: whenever a developer wants to add a new func-
tionality in Eclipse, she has to create one or more plugins that contribute that
functionality. The Platform Runtime Engine is responsible for discovering and
running plugins. As expected, a plugin includes everything needed to be run,
both regular assets—such as the Java code, images, internationalization texts,
and so on—and a “manifest file” that identifies and describes the plugin—i.e. it
specifies, among other things, its dependencies and how it can be extended by
other plugins. What is interesting about this architecture is that plugins can be
extended and refined by other plugins, which makes it easy for developers to
create tools by reusing other people’s work.

Eclipse as a UML Modeling Environment

The Eclipse Modeling Framework (EMF) aims to create and promote a model-
based development technology under the Eclipse Platform [118, p. 22]. EMF
provides the basic framework for modeling. Other modeling sub-projects built on
top of the EMF framework provide additional capabilities such as model trans-
formation, database integration, or graphical editors, among others.

The Model Development Tools (MDT) project converts Eclipse into a mod-
eling environment. In particular, Eclipse can be used as a UML modeling envi-
ronment by installing an MDT’s subproject called UML2 Tools, a set of editors

135

CHAPTER 7. A CONCEPTUAL MODELING ASSISTANT

that enable Eclipse to view and edit UML models [41]. Moreover, MDT does
also provide a parser and interpreter for OCL constraints and expressions on any
EMF-based metamodel.

Java - PhD Examples/models/SimpleModel.uml - Eclipse SDK

File Edit Navigate Search Project Run UML Editor Window Help

Selected Object: <Package> SimpleModel+

Packa

PhD Examples

src

JRE System Lib

models

SimpleModle

+ Plug-in De... Java+c+ +

SimpleModel.uml

<Package> SimpleModel

<Class> Person

<Class> Man

<Class> woman

<Property> age : Natural

<Property> age : Natural

Problems Console

Figure 7.2. Screenshot of Eclipse with a UML model editor opened.

We chose to develop our prototype tool on top of Eclipse because of the UML
support it offers, as well as because of the popularity and the maturity of this
project. Furthermore, the open-source MDT’s OCL interpreter permits a straight-
forward evaluation of issue types defined in OCL and can be extended to support
(as we shall see in the next section) more complex operations easily.

7.1.2 CMA’s Architecture

We have already said that we envisioned our prototype implementation of a CMA
as an Eclipse extension. As we have just seen, Eclipse uses a plugin system to
include new functionalities. Figure 7.3 depicts the architecture of our prototype.
We can see that the CMA’s architecture consists in two parts basically. On the one
hand, there is a remote server that contains a catalog of all available quality issue
types2 which, in principle, are described using OCL. On the other hand, there is
the Eclipse plugin that loads this remote catalog into the environment and, by
implementing the algorithm presented in Sect. 5.1, detects the issues that are

136

7.1. OVERVIEW AND ARCHITECTURE

present in the conceptual schema that is being developed.

Eclipse Platform

Workspace

Workbench
JFace, SWT, ...

P
lu

gi
n
s

Issue Catalog
UML2 Tools

CMA Plugin

LoadsIssuesFrom

</>

XML

Issue n
32

</>

XML

Issue 1

...

(Defined in UML/OCL)
Issue

Processor
(algorithm)

Issue Type
Manager

OCL
interpreter

Remote Web Server

</>

XSLT

Style
+

Issue View
(feedback)

Figure 7.3. CMA’s Architecture—an Eclipse plugin that extends the UML2Tools.

The CMA plugin is divided in the following three components:

The Issue Type Manager is responsible of downloading the issue type defini-
tions available in the catalog. As described in Sect. 5.1, an issue definition
includes the scope, the applicability and issue conditions, the precedents, and
so on. Moreover, issue definitions included in the catalog also contain use-
ful information for conceptual modelers, such as, for instance, a description
of the issue type or the label to be shown when an issue instance is detected.

The Issue Processor is responsible of computing issue instances. This compo-
nent implements the algorithm presented in Sect. 5.13 and keeps track of
all issue instances present in the conceptual schema. As expected, the is-
sue processor computes the instances of an issue type if, and only if, it has
already computed the instances of its precedents.

The Issue View simply displays the list of issue instances that are present in the
conceptual schema. This view provides relevant feedback about each issue,
such as a definition of the issue type, the scope of the issue instance, or the
actions that may solve it.

2See Sect. 7.2 for further details on how this catalog was implemented.
3Our prototype tool implements an incremental algorithm too, as described in Chap. 8. This alter-

native implementation provides better response times when dealing with larger conceptual schemas
and many issue types.

137

CHAPTER 7. A CONCEPTUAL MODELING ASSISTANT

In the following, we provide a more detailed description of these components.

7.1.3 The Issue Type Manager

In Chap. 6 we have introduced the catalog of quality issues we have compiled
given the current state of the art. As we shall see in Section 7.2, this catalog
has been published in a public web server for anyone to access it. The Issue Type
Manager is responsible of downloading the issue type definitions available in this
catalog, parse their information—i.e. names, descriptions, applicability and issue
conditions, and so on—, and load them into the CMA.

It also permits the conceptual modeler to enable or disable issue types, so that
the CMA will only evaluate those that are relevant for her project. In Sect. 7.3
we describe how the conceptual modeler can select the relevant issue types.

7.1.4 The Issue Processor

As we have already stated, the Issue Processor is responsible of computing issue
instances. This component implements the algorithm presented in Sect. 5.1 and
is responsible of keeping track of any issue instance present in the conceptual
schema.

The algorithm for computing issue instances can be used as a batch process
or periodically. Our CMA implements the algorithm as a background process that
is executed periodically, after a certain amount of time has passed by4. The time
interval between executions may be configured by the conceptual modeler. When
the timeout triggers, the background process computes the issue instances that
appeared or disappeared due to the changes the conceptual modeler performed
after the last execution. Since the issue computation is only performed once in a
while as a background process, this computation does not affect, in general, the
responsiveness of the conceptual modeling tool.

4When testing the prototype implementation, we detected that some low-spec machines had prob-
lems in executing the background process in a non-disruptive manner. Therefore, we permitted the
conceptual modeler to disable the periodic evaluation of issue types and perform an on-demand
evaluation instead.

138

7.1. OVERVIEW AND ARCHITECTURE

Given a certain issue type, the algorithm has to evaluate its applicability and
issue conditions in order to determine the issue instances of this type. Our CMA
is able to deal with two kinds of issue types: (a) those whose applicability and
issue conditions are defined using OCL, and (b) those that are computed by an
external, “black-box-like” tool. In the following, we describe OCL issue types and
Black-Box issue types in more detail.

OCL Issue Types

In order to determine the issue instances of a particular issue type, it is necessary
to evaluate both the applicability and the issue conditions. Assuming that these
conditions are defined using OCL, a tool that implements the issue types included
in our catalog can either:

• translate the OCL expressions into a platform-specific programming lan-
guage (such as, for example, Java), or

• use an OCL interpreter to evaluate the OCL expressions over an instantia-
tion of the UML.

The Issue Processor we implemented in our tool uses the MDT’s OCL inter-
preter to evaluate OCL expressions. As a consequence, our CMA prototype can
directly benefit of any new issue type we define in OCL: it is only necessary
to include it in the catalog, and our CMA is capable of downloading its defi-
nition using the Issue Type Manager and evaluate the OCL expressions when
required. Moreover, as we shall see in Chap. 8, we also implemented an incre-
mental method for the efficient evaluation of OCL expressions, providing instant
feedback to conceptual modelers.

The experience we acquired building our catalog demonstrates that almost all
issue types can be defined using regular OCL. Nonetheless, there are certain situ-
ations in which defining (a part of) an issue type in OCL can be extremely compli-
cated. In the following, we describe how to extend MDT’s OCL interpreter—i.e.
we extend the OCL language by adding new, additional functions that simplify
the resulting OCL expressions.

139

CHAPTER 7. A CONCEPTUAL MODELING ASSISTANT

How to Extend MDT’s OCL Interpreter
Consider, for example, a naming guideline stating that “the name of class has
to be a noun phrase whose head is a countable noun”. We could divide this
guideline into the following two issue types:

1. The classname is a noun phrase.

2. The head of the classname is a countable noun (assuming the previous
issue type is a precedent of this one).

The definition of both issue types using natural language is straight-forward.
Probably, all conceptual modelers can understand what each issue type means
and, therefore, check whether the name of a certain class has issues or not.
Unfortunately, defining these issue types in OCL is not easy, because we need to
(a) determine whether a String is a noun phrase or not, and (b), assuming it is a
noun phrase, find its head and determine whether it is countable or uncountable.
The easiest way to overcome this problem is to assume we have some “helper
operations” that can deal with these complex situations. Thus, for example, we
may agree that we have the following String operations available:

context Str ing : : isNounPhrase () : Boolean
post : −− i t r e t u r n s t ru e i f the s t r i n g i s a noun phrase ;

−− f a l s e o t h e r w i s e .

context Str ing : : getHead () : Str ing
pre : −− s e l f i s a noun phrase

post : −− i t r e t u r n s the head o f the Noun Phrase

context Str ing : : i sCountab le () : Boolean
pre : −− s e l f i s a noun

post : −− i t r e t u r n s t ru e i f s e l f i s c oun tab l e ;
−− f a l s e o t h e r w i s e

which can be used in an OCL expression. By using them properly, we can easily
write the previous two issue types as follows:

I1 : The classname is a noun phrase.

φ1 (C la s s) = t rue
ρ1 (C la s s) = not s e l f . name . isNounPhrase ()

140

7.1. OVERVIEW AND ARCHITECTURE

I2 : The head of the classname is a countable noun5.

φ1 (C la s s) = t rue
ρ1 (C la s s) = not s e l f . name . getHead () . i sCountab le ()

The MDT’s OCL plugin allows the customization of its evaluation environ-
ment. That is, we can define additional variables and operations that can be
used within the context of an OCL expression. In our case, we can define one or
more helper operations whose body is defined in Java. Using a full programming
language to define a helper operation is very powerful and permits us to over-
come almost any trouble we may find such as, for example, finding the head of
a noun phrase or accessing an online dictionary to determine the grammatical
form of a word.

In principle, there are no limitations on what can be done within a helper
operation: MDT’s OCL plugin provides whole access to the UML model through
a Java interface. In our thesis, however, we only define helper operations that
(a) deal with basic data types (i.e. String, Boolean, Integer, and so on) and (b)
all the information required for the operation’s execution is available through its
parameters (i.e. it does not require access to the UML schema). Note that all the
examples we have seen so far follow this rule. If we need to define a “complex”
issue type that requires more powerful operations, then we have to use Black-Box
Issue Types, which are discussed below.

Black-Box Issue Types

There are some situations in which defining an issue in OCL is not feasible or
practical. On example is, for instance, the following quality issue type: “The
OCL expression of a Constraint does not compile”. Clearly, we want our OCL
constraints to be correct, and their compilation is the first step in this direction.

Any issue type for which a tool that detects its instances already exists (or
can be easily implemented) can be integrated into our CMA using Black-Box Is-
sue Types. Black-Box issues are regular issue types whose applicability and issue
conditions are described using (probably) natural language, and their implemen-
tation and computation are performed in an external tool. In our example, we

5Being I1 is an instance precedent.

141

CHAPTER 7. A CONCEPTUAL MODELING ASSISTANT

Black Box Issue Type

</>

XML

Descr

CMA Plugin

IBlackBoxIssueType
getPotentialSet(): Set(Tuple)
doesRaiseAnIssue(t:Tuple): Boolean

«interface»

OclExprCompilerIssueType
getPotentialSet()
doesRaiseAnIssue(t:Tuple)

External Tool

defines

uses

Figure 7.4. Integration of Black Box Issue Types in our CMA using an interface.

know that there are many tools that, given a conceptual schema and an OCL
expression, compile the expression and report the encountered errors (if any).
Eclipse itself packages such a tool.

Figure 7.4 depicts the architecture of our solution. Basically, the CMA defines
a simple interface IBlackBoxIssueType with two methods6: getPotentialSet and
doesRaiseAnIssue. When a method engineer wants to add a Black-Box Issue Type
inside our CMA, she simply implements this interface and connects her tool to
the concrete class. The former method returns the potential set (as described in
Sect. 5.1) and the latter evaluates, for each tuple in the potential set, whether it
raises an issue of the associated issue type.

7.1.5 The Issue View

The Issue View displays the list of issue instances that are present in the concep-
tual schema. It also offers some relevant and useful feedback for the conceptual
modeler. These issues may be classified into categories (such as, for example,
“priority”) for the ease of use. By using this list, the conceptual modeler can
check or accept a particular issue instance, view the description of the issue type
to gather more knowledge about the issue at hand, or review the actions that
may solve the issue. In Sect. 7.3 we can see this view in action.

6Our interface provides a few additional methods and hooks to provide full access to the Eclipse
environment. As a result, the method engineer can obtain all the required information the external
tool needs to perform its computations.

142

7.2. ONLINE CATALOG (FOR OCL ISSUE TYPES)

7.2 Online Catalog (for OCL Issue Types)

Chapter 6 presented a catalog of quality issue types. This catalog included more
than 60 issue types from the literature, which we defined using our method.
We believe that such a catalog has a lot of value to the conceptual modeling
community and hence we granted anyone access to this catalog, uploading it to
a public web server.

Each issue type included in our catalog is defined in XML. The Extensible
Markup Language (XML) is a simple, very flexible text format. Originally de-
signed to meet the challenges of large-scale electronic publishing, XML is also
playing an increasingly important role in the exchange of a wide variety of data
on the Web and elsewhere [130].

Each XML entry in our catalog includes the different elements of the for-
malization presented in Sect. 5.1, as well as some additional meta-data like the
name, the description, the references where it is originally described, or the cate-
gory, among others, of an issue type.

Consider, for example, the issue “a generalization is redundant”. The XML
file for this issue in our catalog is the following:

<i ssue
nid=" 038 "
id=" BEST−PRACTICE−gen−redundant "
kind=" problem "
acceptance=" non−accep tab le ">

<contex t>Genera l i za t i on</ contex t>
< t i t l e>A g e n e r a l i z a t i o n i s redundant</ t i t l e>

<labe l>
S p e c i a l i z a t i o n ’ ’ _ _ s e l f . s p e c i f i c . printName () __ extends
_ _ s e l f . genera l . printName () __ ’ ’ i s redundant

</ labe l>

<categories>
<category>Pr io r i t y : :Manda to ry</category>
<category>Source : :Be s t P r a c t i c e</category>

</ categories>

<descr ipt ion>

143

CHAPTER 7. A CONCEPTUAL MODELING ASSISTANT

In UML, mul t ip l e i n h e r i t a n c e i s allowed . However ,
g e n e r a l i z a t i o n s have to be c a r e f u l l y used , in order
to avoid c o n f l i c t s . In t h i s p a r t i c u l a r case , i t may
be the case tha t a g e n e r a l i z a t i o n _A_ IsA _B_ i s
redundant , because there i s an i n d i r e c t i n h e r i t a n c e
h ie ra rchy between _A_ and _B_ (fo r ins tance , _A_ IsA
C IsA _B_) .

</descr ipt ion>

<app l i cab i l i t y−condition>
t rue

</ app l i cab i l i t y−condition>

<issue−condition>
Genera l i za t i on . a l l I n s t a n c e s ()−>s e l e c t (g |

g <> s e l f and
g . s p e c i f i c = s e l f . s p e c i f i c and
(g . genera l . a l l P a r e n t s ()−>i n c ludes (s e l f . genera l)

or
g . genera l = s e l f . genera l)

)−>notEmpty ()
</ issue−condition>

<precedents>
<precedent type=" g loba l ">

Non d i r e c t ed and a c y c l i c a l h i e r a r c h i e s
</precedent>

</precedents>

<issue−act ions>
<issue−action

name=" removeGeneral izat ion "
params=" g :Ge ne ra l i z a t i on ">

Remove the redundant g e n e r a l i z a t i o n .
</ issue−action>
<issue−action

name=" removeAnotherGeneral izat ion "
params=" g :Genera l i za t ion , h :Gene ra l i z a t i on ">

I f there i s an i n d i r e c t path between g . genera l
and g . s p e c i f i c , remove the g e n e r a l i z a t i o n h tha t
p a r t i c i p a t e s in the i n d i r e c t path .

</ issue−action>
</ issue−act ions>

</ i ssue>

144

7.3. USER INTERACTION

The applicability and issue conditions are defined in OCL. The usage of an
XML representation provides two key benefits: on the one hand, the catalog and
the specification of an issue type can be downloaded and parsed by an IDE auto-
matically. On the other hand, they can be presented in a user-friendly manner by
means of Extensible Stylesheet Language Transformations (XSLT) sheets, which
allow these XML files to be browsed by conceptual modelers and practitioners
using a web browser.

Figure 7.5 shows our catalog as it is seen by a conceptual modeler that is
browsing our catalog using a web browser. As we can see, there is a list of all
issue types available in our catalog. When the conceptual modeler clicks on one
issue type, the information is presented in a human-friendly fashion, with full
formatted texts, links to external references, and so on.

7.3 User Interaction

One of the premises of our work is to provide assistance in a non-disruptive
manner. Therefore, we envision our CMA as passive element within an IDE that
analyzes the schema without disturbing the conceptual modeler.

In Sect. 4.2, we have presented an overview of our method. The method is
divided in three main phases: (i) formalization of issue types, (ii) compilation
of a quality issue catalog, and (iii) using quality issues in practice. The CMA
implements the third phase of our method which require:

• selecting the issue types that are relevant for the conceptual schema under
development,

• analyzing the conceptual schema in order to provide feedback on the issue
it contains, and

• fixing these issues.

In this section, we describe how a conceptual modeler interacts with the CMA.

145

CHAPTER 7. A CONCEPTUAL MODELING ASSISTANT

Issue Catalog
ID Name

035 A recursive binary association may

036 A recursive binary association may

037 A recursive binary association may

040 Non strongly satisÞable schema be

039 Non strongly satisÞable schema be

020 Recursive association with a mand

021 AssociationClass without attributes

016 An abstract class requires a non-ab

023 An isolated class was detected

022 Class with specializations and no G

001 Classes must be identiÞable

CMA - Issue Catalog - Mozilla Firefox

Firefox CMA - Issue Catalog

helios.lsi. /phd/catalog/issues.php?select=BEST-PRAupc.edu Google
CMA - Issue Catalog - Mozilla Firefox

Firefox CMA - Issue Catalog

helios.lsi. /phd/catalog/issues.php?select=BEupc.edu Google

In UML, multiple inheritance is allowed. However, generalizations have to be carefully used, in order
to avoid conßicts. In this particular case, it may be the case that a generalization A IsA B is redundant,
because there is an indirect inheritance hierarchy between A and B (for instance, A IsA C IsA B).

Label

Selector Condition

1
2
3

Generalization.allInstances()->select(g |
 g <>
 g.specific = self.specific

Description

1 true

Issue Condition

#038 :: BEST-PRACTICE-gen-redundant

Specialization < is redundant .specific.printName()self .general.printName()self

 self and
 and

Figure 7.5. Screenshot of a web browser displaying an issue type from our catalog.

7.3.1 Selecting the Relevant Issue Types

According to our CMA’s architecture, the set of quality issue types the CMA is
able to deal with is defined in an external server. This solution offers an endlessly
growing, up-to-date catalog of issue types. However, when defining a conceptual
schema, not all issue types are relevant—the conceptual schema has to satisfy a
subset of them only. When the conceptual modeler starts the CMA, she is able to
select which issue types her conceptual schema has to satisfy.

Issue Type Selection

ID | Name | Context | Category | Type

020
035
036
037
064
059
025

A recursive association with a man...
A recursive binary association need...
A recursive binary association need...
A recursive binary association need...
A class has really so many attributes
A class is really involved in so many...
The default completeness and disj...

Associ...
Associ...
Associ...
Class
Class
Class
Gener...

Basic Qu...
Basic Qu...
Basic Qu...
Basic Qu...
Basic Qu...
Basic Qu...
Basic Qu...

Che...
Che...
Che...
Che...
Che...
Che...
Che...

☐
☑
☑
☐
☑
☑
☑

OKCancel

Figure 7.6. Mockup of our CMA showing the “Issue Type Selection” dialog.

Figure 7.6 shows a mockup of the CMA’s “Issue Type Selection” dialog. This
dialog lists the issue types defined in the catalog and permits the conceptual
modeler to select those that are relevant. For each issue type, the modeler can

146

7.3. USER INTERACTION

Java - PhD Examples/models/SimpleModel.umlclass - Eclipse SDK

File Edit Navigate Search Project Run UML Editor Window Help

Selected Object: <Package> SimpleModel+

Packa

PhD Examples

src

JRE System Lib

models

SimpleModel

+ Plug-in De... Java+c+ +

SimpleModel.umlclass

Name

Class name motorcycle is not properly capitalized

Generalization Car < LandVehicle is redundant

Problems Issue List

Attribute «plateNumber» is repeated in all subtypes of MotorVehicle

Figure 7.7. Screenshot of our CMA (built on top of Eclipse) with the conceptual schema
depicted in Fig. 4.1.

see at a glance whether it is enabled or not, its name, its scope, its category, and
its kind.

7.3.2 Defining the Model and Obtaining Feedback

Once the conceptual modeler has selected the relevant issue types, she can start
defining her schema. Our implementation does not modify Eclipse’s default
workflow for defining conceptual schemas. The detection of issues is performed
as a background process that runs constantly. Therefore, the conceptual modeler
can work on her model and modify it as she pleases without the CMA getting
into her way.

Whenever an issue is introduced in the schema, it is shown in a specific view
within the Eclipse Platform. This view, which can be shown and hidden according
to the conceptual modeler’s will, provides all necessary feedback to identify and
fix any present issue.

147

CHAPTER 7. A CONCEPTUAL MODELING ASSISTANT

As an example, consider the conceptual schema presented in Sect. 4.1.1,
which has been modeled using Eclipse (Fig. 7.7). The Issue View presents a list
with all the issues the schema has like, for example, “class name motorcycle is
not properly capitalized” or “attribute ‘plateNumber’ is repeated in all subtypes
of MotorVehicle”.

7.3.3 Fixing Issue Instances

When the conceptual modeler wants to fix some of them, she only needs to click
on an issue in the issue list in order to view the list of automatic or manual
actions she can perform to fix it. Then, she selects the most appropriate action
and executes it. Once the issue has been fixed, it disappears from the list.

The mockup depicted in Fig. 7.8, shows two issue actions for the issue type
“The name of a class is not properly capitalized”. The conceptual modeler has
selected a manual operation, which triggers a new view that requires the con-
ceptual modeler to introduce any data required to perform the operation (such
as, for example, the new name). This user interaction is like the one provided
by ArgoUML, and requires the engineers of a specific IDE to provide some sort of
user interface for manual operations that guide conceptual modelers.

7.4 Summary

In this chapter we have demonstrated the feasibility of our method by imple-
menting a prototype tool of a Conceptual Modeling Assistant. We built this pro-
totype as a plugin for the Eclipse platform—one of the most popular, open-source
development environments available. The plugin is divided in three main com-
ponents: an Issue Processor that implements the algorithm presented in Sect. 5.1.
The algorithm is executed periodically as a background process to detect the is-
sues that are present in a conceptual schema. This component uses the MDT’s
OCL framework to evaluate OCL expressions. We have also described how MDT’s
OCL framework can be extended to support more complex operations and, thus,
ease the definition of complex issues.

Secondly, we have seen the Issue Type Manager, the component responsible

148

7.4. SUMMARY

Java - PhD Examples/models/SimpleModel.umlclass - Eclipse SDK

File Edit Navigate Search Project Run UML Editor Window Help

Selected Object: <Package> SimpleModel+

+ Plug-in De... Java+c+ +

SimpleModel.umlclass

MotorVehicle

plateNumber : String

[0..*]
motorVehicle

< Owns

Car

plateNumber : String

motorcycle

plateNumber : String

Name

Class name motorcycle is not properly capitalized

Generalization Car < LandVehicle is redundant

Problems Issue List

Attribute «plateNumber» is repeated in all subtypes of MotorVehicle

Packa

PhD Examples

src

JRE System Lib

models

SimpleModel

Issue Actions

[auto] Capitalize motorcy...
[manual] Rename motorcycle

New Name: Motorbike

Operation - Rename class

OKCancel

Figure 7.8. Mockup of Eclipse showing the available actions that may fix an issue.

of downloading and managing the issue types Eclipse is able to deal with. This
component downloads the definition of issue types from a public catalog. The is-
sues included in this catalog are defined using XML files. We have also seen that,
by using XSLT transformations, we are able to make this catalog user-friendly.

Finally, the third component of our plugin is the Issue View. This view is
responsible of providing feedback to the modeler, as well as the set of actions
that may fix each of them. Each time the Issue Processor executes the algorithm,
the set of issues the schema has is updated and displayed in the Issue View.

149

“Begin at the beginning,” the King
said, very gravely, “and go on till you
come to the end: then stop.”

L. Carroll, Alice in Wonderland

8
Incremental Evaluation of

OCL-defined Quality Issues

According to the method we present in this thesis, the quality of a conceptual
schema can be measured in terms of the number of issues it contains: the less
issues, the more quality. Conceptual modelers are responsible of ensuring their
conceptual schemas match the expected degree of quality, which means that their
conceptual schemas must not contain any issues at all. Nonetheless, having issues
temporarily in a conceptual schema under development is not a problem, as long
as they get fixed sometime in the future.

During the development of a conceptual schema, new quality issues may arise
and old ones may be solved because of the changes the conceptual modeler per-
forms to that schema. Since the conceptual modeler is the one responsible for
correcting these issues, she has to be aware of their presence. Given a conceptual
schema under development, the issues it contains can be computed (1) when re-

151

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

quested by the conceptual modeler (usually, when it is complete); (2) in a periodic
fashion, after a pre-established time interval goes by; or (3) continuously, that is,
every time the schema is modified. In evaluations (1) and (2), a process—which
can be manual or automated—analyzes the whole schema and reports all quality
issues that have been found. In (3), on the other hand, an automated process an-
alyzes the changes to a schema and points out the quality issues that have arisen
due to those changes.

In this chapter we discuss the importance of an incremental evaluation in
order to provide continuous feedback instantly. First, Section 8.1 introduces
the main ideas behind incremental evaluation. It presents a simple conceptual
schema with several naming-related issues and discusses how these issues can be
detected using (a) a batch process executed periodically and (b) an incremental
method. Section 8.2 reviews the available literature on incremental evaluation,
paying special attention to those works related to incremental evaluation of OCL
expressions. Next, in Sect. 8.3 we formally describe incremental methods in gen-
eral. We also discuss how one specific method (in particular, the one presented
in [44]) can be adapted to our formalization of issue types. In this sense, we
present a new version of the Alg. 1 in Sect. 5.4 that computes issue instances.
Section 8.3.4 evaluates the improvements we obtain in terms of response time
when using incremental methods instead of simple batch processes. Finally, Sec-
tion 8.4 summarizes the key points of this chapter.

8.1 Understanding Incremental Evaluation

Conceptual modeling is a complex activity. In this thesis we present a method
for defining an treating conceptual schema quality issues. Its ultimate goal is, as
we already know, to improve the quality of a conceptual schema. Unfortunately,
conceptual modelers can easily get overwhelmed by the difficulties entailed by
fixing and keeping track of quality issues. Thus, we believe that a modeling tool
that automates the management of quality issues can be very helpful, especially
if it is able to provide feedback instantly as issues arise.

In Chap. 5, we presented our formalization to define quality issues in a uni-
form way, along with an algorithm that computes the issue instances that are
present in a conceptual schema. We believe that our work is the first step to-

152

8.1. UNDERSTANDING INCREMENTAL EVALUATION

wards this necessary integration of quality issues into modeling environments.
Chapter 7 describes a prototype integration of our method into Eclipse. In order
to obtain continuous feedback, our prototype integrates the algorithm presented
in Sect. 5.4 as a batch process that may be executed periodically. As a result,
the conceptual modeler can get relevant feedback in “real-time”—i.e. whilst the
schema is being developed. Unfortunately, the checking process may take too
long to complete when there is a large number of elements in the conceptual
schema as well as a large number of quality issue types to consider1, making the
tool unresponsive and, thus, worsening the user experience. In order to over-
come this problem and to achieve an immediacy in the process, an incremental
approach is, as we shall see, very important.

This section introduces incremental methods and outlines the main advan-
tages they offer with respect to non-incremental methods. In order to do so, we
use the conceptual schema first introduced in Sect. 4.1.1 as a running example.
In Sect. 8.1.2 we describe a list of changes aimed to evolve the conceptual schema
and how these changes affect the set of issues the schema contains. Using this
example, we show the problems that arise when using non-incremental methods
and how we may overcome them using an incremental method instead.

8.1.1 A Motivating Example

In Sect. 4.1.1 we presented a simple conceptual schema with several quality
issues. For ease of reading, we reproduce the schema in Fig. 8.1. The schema
contains several problem and checking issues, including:

a) the cardinality constraint [1..0] of the participant person in association
Owns is syntactically incorrect,

b) the entity type motorcycle does not start with a capital letter, despite several
naming guidelines recommend that entity types start with a capital letter
(e.g. [10]),

c) the specialization Car IsA LandVehicle is redundant.

These issues correspond to the following issue types:
1Note this process evaluates each issue type for each instance in the scope every time it is executed.

153

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

IsParentOf

parent 2
3
child

Vehicle

LandVehicle

{disjoint, complete}

MotorVehicle Person
1..0

Car
plateNumber:String

motorcycle
plateNumber:String

* Owns

Figure 8.1. A conceptual schema with several quality issues.

• Ia: Cardinality constraints are syntactically incorrect.

• Ib: The name of a class is not properly capitalized.

• Ic: A generalization is redundant.

which can be formalized as the following OCL expressions2:

context Proper ty inv Ia :
s e l f . lower > s e l f . upper

context Clas s inv Ib :
s e l f . name . at (1) <> s e l f . name . at (1) . toUpperCase ()

context Genera l i za t i on inv Ic :
Genera l i za t i on . a l l I n s t a n c e s ()−>s e l e c t (g |

g<>s e l f and
g . s p e c i f i c = s e l f . s p e c i f i c and
(g . genera l . a l l P a r e n t s ()−>i n c ludes (s e l f . genera l)

or
g . genera l = s e l f . genera l)

)−>notEmpty ()

that return True when there is an issue of the associated type and False otherwise.

2For the sake of simplicity and to ease the understanding of incremental methods, we define the
issue using the OCL expression that corresponds to the issue condition, and we ignore any other
aspects of the issue formalization we presented in Chap. 5 such as, for example, the applicability
condition, any precedents it may have, or its acceptability.

154

8.1. UNDERSTANDING INCREMENTAL EVALUATION

8.1.2 Computing Issue Instances as the Schema Evolves

During the development of a conceptual schema, the set of issues it contains
change as the schema evolves. Consider, for example, the changes described in
Tab. 8.1. Our goal is to detect the issues the schema contains after each set of
changes.

Table 8.1. Timeline of changes and issues in Fig. 8.1.

Time Change

t1 Renaming motorcycle. New name: Motorcycle
Changing multiplicities of person to [0..1]

t4 Creating new class c
Naming the new class c. New name: Man

t5 Removing the generalization Car IsA LandVehicle

At t0 After t1 After t4 After t5

Ib(motorcycle) Ib(motorcycle)
Ia(person[1..0]) Ia(person[1..0]) Ia(person[0..1])
Ic(Car IsA LandVehicle) Ic(Car IsA LandVehicle) Ic(Car IsA LandVehicle) Ic(Car IsA LandVehicle)

In Sect. 5.4, we proposed an algorithm to compute the issues that are present
in a conceptual schema. The algorithm is, in principle, intended to be executed
as a batch process—given a conceptual schema and a set of issue types, the
algorithm evaluates all issue types for each instance in the scope and, thus, it
computes all the issue instances the schema contains. In our running example,
the algorithm would have to compute the value of the following expressions in
order to determine the issues contained in Fig. 8.1:

– Ia(motorVehicle[0..*]) = False – Ib(Vehicle) = False
– Ia(person[1..0]) = True – Ib(LandVehicle) = False
– Ia(parent[2]) = False – Ib(MotorVehicle) = False
– Ia(child[3]) = False – Ib(Car) = False
– Ia(Car::plateNumber[1]) = False – Ib(motorcycle) = True
– Ia(motorcycle::plateNumber[1]) = False – Ib(Person) = False

– Ic(Car IsA MotorVehicle) = False
– Ic(motorcycle IsA MotorVehicle) = False
– Ic(MotorVehicle IsA LandVehicle) = False
– Ic(LandVehicle IsA Vehicle) = False
– Ic(Car IsA LandVehicle) = True

155

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

A naive approach to get “continuous” and up-to-date feedback consists in
executing the algorithm presented in Sect. 5.4 periodically (like, for example,
after each t i). Each time the algorithm is run, it evaluates each issue type Ix for
each instance of its scope. Clearly, this periodic approach results in completely
unnecessary evaluations—on the one hand, if there were no changes at all (i.e. at
t2 and t3), the issues also remain unchanged; on the other hand, if, for example,
LandVehicle’s name is never changed, it will never raise an issue of type Ib.

At a specification level, the number of unnecessary executions of the algo-
rithm is not a problem. However, when this solution is implemented into a mod-
eling environment, it might be a problem—the computation of issue instances
takes some time. For small conceptual schemas and not many issue types, this
time may be short enough to provide “instant” feedback, but as the schema and
the number of issue types get bigger, a full continuous evaluation becomes ex-
tremely inefficient quickly.

In order to overcome this efficiency problem, the best solution is to per-
form an Incremental Evaluation. Incremental methods aim to perform the re-
evaluation of an expression if, and only if, its result may have changed. The only
way a result may have changed is because the schema itself has changed. Thus, if
no changes occur at, for example, t2 or t3, there is no need to re-compute the is-
sue instances at t2 and t3, because they are exactly the same ones that existed at
t1. Moreover, in general not all changes may affect the truth value of an expres-
sion, but only a few. Therefore, renaming, for instance, the class motorcycle at t1

has nothing to do with having the redundant generalization Car IsA LandVehicle.

The goal of an Incremental Method is to re-evaluate an expression
using a certain input if, and only if, its result may have changed with
respect to the previous one. Incremental methods need to:

• determine which changes over the conceptual schema may
modify the truth value of an expression, and

• monitor the changes that occur in the schema and see if any of
them were included in the previous set, since it would require
the affected expressions to be re-evaluated.

156

8.1. UNDERSTANDING INCREMENTAL EVALUATION

Examples of Incremental Methods

An incremental method has to determine which changes over the conceptual
schema may modify the truth value of an expression. In general, the set of
changes that actually modify an expression is much, much smaller than the set of
all possible changes over the schema. Therefore, the more accurate the method
is when it comes to determine this set of changes, the better. In the following,
we briefly outline three examples of incremental methods.

Consider the conceptual schema of our running example and the timeline
of changes presented in Tab. 8.1. If we focus on the issue type Ib and its
evaluation over the class motorcycle—i.e. Ib(motorcycle)—, it is clear that re-
evaluating Ib(motorcycle) periodically as aforementioned is unnecessary as long
as the schema remains unchanged (t2 and t3).

The incremental method m1 re-evaluates Ib(motorcycle) if, and only
if, the schema has changed. Thus, for example, the expression is not
re-evaluated at t2 or t3, but it is at t1 or t4.

We have said that the set of changes that may actually modify the result of
an expression is much smaller than the set of all possible changes. However,
m1 follows a naive approach and re-evaluates an expression whenever a change
occurs. If we focus on the issue type Ia, we will see that it checks that the name
of a Property is properly capitalized. Therefore, it is clear that only those changes
that modify the name of a Property may require Ia to be re-evaluated:

The incremental method m2 re-evaluates Ib(motorcycle) if, and only
if, a Class has been renamed. Thus, for example, the expression is
not re-evaluated at t2 or t5, but it is at t1 or t4.

If we take a closer look to m2, we will realize it still performs unnecessary re-
evaluations. The only “class-naming event” that may actually change the result
of Ib(motorcycle) is, precisely, renaming the class motorcycle itself:

157

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

The incremental method m3 re-evaluates Ib(motorcycle) if, and only
if, the Class motorcycle has been renamed. Thus, for example, the
expression is not re-evaluated at t2, t4 or t5, but it is at t1.

In the next section, we review some incremental methods for the efficient
evaluation of OCL expressions. The reviewed works precisely describe how meth-
ods like m2 or m3 can actually determine the set of changes that may modify the
truth value of an expression.

8.2 Related Work on Incremental Evaluation

Quality issues may be seen as some sort of integrity constraints at a metamodel
level. There are several proposals in the literature devoted to the problem of
efficient integrity checking. Many of them deal with integrity checking in the
database field [24, 25, 122, 126, 127]. However, in what follows we focus on the
most representative proposals on incremental integrity checking in the UML/OCL
language.

8.2.1 Efficient Evaluation of OCL Integrity Constraints

An integrity constraint defines a condition that must be satisfied in each state of
the information base. In principle, an information system has to guarantee that
the state of the information base is always consistent with respect to the integrity
constraints of its conceptual schema. Therefore, the efficient evaluation of any
integrity constraint becomes crucial for ensuring this consistency. Incremental
methods exploit available information about the structural events applied during
modifications of the information base in order to avoid re-computing the truth
values of unaffected constraints. A structural event is defined as “a change in the
population of an entity or a relationship type”, including inserting a new entity
type, changing the value of an attribute, or deleting a relationship type, among
others.

158

8.2. RELATED WORK ON INCREMENTAL EVALUATION

In [22, 23], Cabot and Teniente propose an incremental checking of OCL in-
tegrity constraints for UML conceptual schemas3. Their method is fully automatic
and works at the conceptual level (which means it is technology-independent).
The main goal of Cabot and Teniente’s method approach is to consider as few
entities of the information base as possible during the evaluation of an integrity
constraint.

ic'

ic'

ic'

ic'

ic'

ic'

...

...

...

...

...

...

...

...

...

ic1

PSE
...
PSE

ic1,1

PSE
...
PSE

ic1,p

PSE
...
PSE

ic1

PSE
...
PSE

ic1,1

PSE
...
PSE

ic1,p

PSE
...
PSE

...

...

...

ic1

PSE
...
PSE

icn

PSE
...
PSE

Step 1

Step 2

Step 2

ic

ic

...

Step 0

Step 3

1

n

1,1

1,x

n,1

n,y

1,1

1,c

1,c+1

1,f

1,m

1,x

n,1

n,e

n,e+1

n,k

n,r

n,y

1

1,1

1,p

n

n,1

n,q

Figure 8.2. General schema of Cabot and Teniente’s method [22, 23].

Figure 8.2 depicts the general schema of the method presented in [22, 23],
which consists of three main steps (steps 1-3) plus a preliminary step (step 0).
These steps are applied to the original OCL expressions so that they result in a
different, alternate representation that allows an efficient evaluation:

• Step 0: simplification of OCL expressions OCL expressions are simplified
by reducing OCL expressiveness (only a subset of OCL operators can be

3Despite this work addresses the efficient evaluation of integrity constraints over an information
system, the presented approach can be clearly applied to the metamodel level, where the “concep-
tual schema” is the “metaschema”, the “integrity constraints” are “metamodel constraints”, and the
“information base” is “the conceptual schema under development”.

159

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

thus used).

• Step 1: determining potentially-violating structural events (PSE) This
step associates to each constraint of the conceptual schema a set of PSE,
which are drawn from the syntactical definition of the constraint. These
include updating the value of an attribute, inserting a new relationship in
a specific relationship type, and so on.

• Step 2: obtaining an appropriate syntactic representation for each
constraint For each integrity constraint ici and each event ev ∈ PSE, this
step determines an appropriate alternative syntactic representation ici, j

with respect to ev.

• Step 3: Redefining the constraints to evaluate over the relevant in-
stances Finally, each constraint resulting from step 2 is redefined to be
evaluated only over the instances of its context type affected by events
instance of the event types included in its particular subset of PSEs.

8.2.2 Inconsistency Management

For a conceptual schema to be syntactically correct, all metamodel constraints
have to be satisfied. The violation of a metamodel constraint is known as an
inconsistency. Classically, inconsistencies are forbidden—i.e. the modeler can-
not perform any change such that her conceptual schema becomes inconsistent.
However, some authors consider inconsistencies inevitable and, therefore, they
encourage working with them, as long as they get fixed sometime in the (near)
future [44, 49, 115]. The rationale is that developing a conceptual schema is a
creative process and, as such, inconsistencies inevitable arise whilst exploring dif-
ferent alternatives, or simply because of different stakeholders having different
(inconsistent) views of the system under development. This view is completely
compatible with our definition of quality issues: during the development of a
conceptual schema, we allow the existence of issues and we expect the concep-
tual modeler to fix them before the schema is finished.

When inconsistencies are allowed, inconsistency handling becomes a key
piece in the development of a schema. Inconsistency handling involves, on the
one hand, detecting the insertion of an inconsistency into the model and, on the

160

8.2. RELATED WORK ON INCREMENTAL EVALUATION

other hand, deciding a response on how to deal with this newly found inconsis-
tency: should it be rejected or should it be accepted?

Inconsistencies, as a concrete instance of quality issues, can be detected (1)
when requested by the conceptual modeler, (2) in a periodically fashion, where a
complete check of the schema is performed after a certain amount of time went
by; or (3) continuously, that is, every time that the conceptual modeler makes a
change to the schema. Since conceptual modelers are better off knowing about
the existence of inconsistencies to avoid follow-on errors and unnecessary rework
[44], the sooner the inconsistencies are detected and reported (2 and 3), the
better. There are several works in the literature that deal with the efficient and
incremental detection of inconsistencies as they arise.

In [15, 112], the authors propose an incremental consistency checker based
on the idea of representing models as sequences of primitive construction opera-
tions. The four elementary operations they define are: create, delete, setProperty,
and setReference. In order to detect an inconsistency, they define Inconsistency
Detection Rules. Any inconsistency rule is a logic formula over the sequence of
model construction operations: if a set of operations is triggered in a specific or-
der, it can be assured that an inconsistency has been introduced into the model.

In [43, 44], Egyed proposes an instant consistency checking for the UML. He
evaluates up to 24 consistency rules for UML class, sequence, and statechart dia-
grams. His work assumes that consistency rules are stateless and deterministic—
i.e. if any rule is evaluated on the same portion of the model twice, then it will
perform the same actions and return the same truth value.

Consistency rules are typically defined (and evaluated) from a context ele-
ment, and are defined as follows:

ConsistencyRule= 〈Contex tElement, Condit ion〉 → Boolean

where ContextElement ∈ MetaModelElements.

Clearly, a consistency rule is affected by any change over the instances of its
context element. However, it may also be affected by many other model elements
that are not explicitly identified (i.e. the elements referenced in the Condition ex-
pression). Therefore, the problem is to determine efficiently the model elements
that may affect the truth value of a consistency rule and (re)evaluate it if, and

161

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

only if, one of these elements is modified.

To this end, Egyed defines two main concepts: (1) a ConsistencyRule – In-
stance (CRI) that represents the evaluation of a consistency rule over an in-
stance of its context, formally defined as the pair 〈Consistenc yRule, Model-
Element〉, and (2) the Scope of a CRI , which includes the set of elements ac-
cessed during the evaluation of the CRI . Specifically, this Scope is the set of
〈ModelElement, F ield〉 pairs that have been accessed during the evaluation of
a CRI .

Every CRI starts its evaluation at a different instance e of the context element
and references/accesses different model elements. As a result, the truth value of
the Condition depends on the specific instance e that it has been evaluated over.
Obviously, each CRI is affected differently by model changes. The same type of
model change (for example, “changing the name of a Class c”), may affect one
CRIx1 = 〈crx , e1〉 and not another CRIx2 = 〈crx , e2〉, just because CRIx1 depends
on the name of c, whilst CRIx2 does not. A change in the schema is defined as
〈ModelElement, F ield〉 : oldValue→ newValue. A CRI has to be re-evaluated
if, and only if, the scope of CRI contains the same pair included in the change.

At this point, the problem of efficiently evaluating inconsistencies becomes
creating and destroying CRIs and determining its scope as it changes over the
time. On the one hand, Egyed’s approach simply creates CRIs when context ele-
ments are created and destroys them once their context elements are destroyed.
On the other hand, the scope can be easily computed by using a model profiler:
when a CRI is (re)evaluated, the profiler monitors all the elements that are ac-
cessed in order to evaluate the truth value of the consistency rule’s condition
(more details on this approach and its validity are described in [44]).

According to Egyed, the approach he presents is outstanding, as the checking
of the consistency rules can be considered “instant” regardless of the size of the
conceptual schema. Apparently, the only drawback of their method is the ad-
ditional memory it requires. In order to be time-efficient during the evaluation
of consistency rules, their approach requires more memory to store information
about CRIs and their scopes. However, their empirical studies demonstrate that,
given a concrete number of consistency rules, the required memory increases lin-
early with respect to the size of the conceptual schema, and that the size of the
scopes is bounded.

162

8.3. INCREMENTAL EVALUATION OF QUALITY ISSUES

8.3 Incremental Evaluation of Quality Issues

In this section, we first formalize the main concepts involved in an incremental
evaluation of expressions. Next, we describe how to integrate one incremental
approach to our formalization of issue types. Finally, we compare the results of
evaluating quality issues using (a) the algorithm we described in Sect. 5.4 and
(b) an incremental approach.

8.3.1 Formalization of Incremental Evaluations

Let S be a schema that consists of n schema elements e1, . . . , en, which are
instances of the corresponding schema metatypes. Let ψx(T) be an expression
that has to be evaluated for each instance ei ∈ T . Let r〈x ,i〉 be the result of
evaluatingψx(T) using ei as its input. We define the “evaluation of an expression
using a certain input” E〈x ,i〉 as follows:

E〈x ,i〉 = 〈ψx(T), ei〉 → r〈x ,i〉

We have seen that r〈x ,i〉 remains unchanged as long as the schema remains
unchanged too. Moreover, we have also seen that not all changes that may be
applied to a schema affect it, but only a subset of them. Let C be the set of
changes that may be applied to the conceptual schema, such as creating classes,
deleting associations, or setting the name of properties, to mention a few. We
define C(E〈x ,i〉) as the set of changes over the schema that may change r〈x ,i〉. It
is expected that the number of changes included in C(E〈x ,i〉) will be smaller than
the set of all possible changes—formally, C(E〈x ,i〉) ⊆ C.

Consider the running example we presented in the previous section as defined
at t0. The set of changes we may apply to the schema are4:

C = {SetAttr(LandVehicle, name), SetAttr(motorcycle, name), . . .

CreateProperty(), CreateClass(), . . .

Link(LandVehicle, attr:Property), . . . }

4These changes are only used for illustrative purposes. Thus, for the sake of simplicity we only
include a subset of all possible changes.

163

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

which correspond to changing the names of LandVehicle or motorcycle, creating
new properties or classes in the schema, or adding a new attribute to the class
LandVehicle. Next, ψc(Class) for the input motorcycle is defined as:

E〈c,motorcycle〉 = 〈ψc(Class), motorcycle〉 → True

And, finally, the set of changes5 that may actually change the result of E〈c,motorcycle〉
is:

C(E〈c,motorcycle〉) = {SetAttr(motorcycle, name)}

As we have said, the goal of an incremental method m is to determine a
subset of changes of C that may affect the result of evaluating a certain expression
using a certain input. Formally, we define Cm(E〈x ,i〉) as the set of changes that,
according to the incremental method m, may change the result of E〈x ,i〉. Clearly,
this set has to include all the changes included in C(E〈x ,i〉)—formally, C(E〈x ,i〉) ⊆
Cm(E〈x ,i〉).

In Sect. 8.1.2, we outlined three examples of incremental methods. In the
following, we summarize each method using the formalization of incremental
methods we have just described:

• m1 re-evaluates any expression whenever a change occurs, no matter which
one:

Cm1
(E〈c,motorcycle〉) = C

• m2 re-evaluates an expression if the triggered change may affect, at a “type
level”, the result. Thus, for example, if the expression to re-evaluate is
E〈c,motorcycle〉, any change that modifies the name of a Class (a type) would
force its re-evaluation. Thus:

Cm2
(E〈c,motorcycle〉) = {SetAttr(LandVehicle, name),

SetAttr(motorcycle, name),

. . . }

5Obviously, deleting the instance motorcycle affects C(E〈c,motorcycle〉).

164

8.3. INCREMENTAL EVALUATION OF QUALITY ISSUES

• m3 re-evaluates an expression if the triggered change may affect, at an
“instance level”, the result. Thus, for example, if the expression to re-
evaluate is E〈c,motorcycle〉, only a change modifying the name of motorcycle
(an instance) would force its re-evaluation. Hence:

Cm3
(E〈c,motorcycle〉) = {SetAttr(motorcycle, name)}

8.3.2 Integrating an Incremental Approach to our Method

In Chap. 5 we have presented a formalization for defining conceptual schema
quality issue types. Section 5.4 presented an algorithm for computing the issue
instances of a certain issue type Ix . Issue instances are basically computed using
the following information:

• the applicability condition φx , which computes the Potential set of ele-
ments that may raise an issue of type Ix and

• the issue condition ρx , which determines whether a tuple in the Potential
set actually raises an issue of type Ix .

Clearly, these two expressions can be computed using an incremental method.
In this thesis, we have decided to use Egyed’s method mEgyed [44], even though
any method reviewed in Sect. 8.2 might serve. We chose this method instead of
the others because, on the one hand, it is one of the quickest methods available,
and, on the other hand, it is very easy to integrate to our prototype tool—i.e. it
does not require to change the definition of issue conditions to another language,
and it works for issues defined in OCL and Java, once we integrated the profiler
in the CMA.

When evaluating an expression ψx(T) using an instance ei (formally, E〈x ,i〉 =
〈ψx(T), ei〉) with Egyed’s method, not only the regular result (r〈x ,i〉) is returned,
but also the list L of elements in the conceptual schema that were accessed dur-
ing the evaluation E〈x ,i〉:

E〈x ,i〉→ 〈r〈x ,i〉,L〉

If we focus on the applicability and issue conditions of an issue type Ix , we
have:

165

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

• the Potential set and the elements that were accessed for building it. For-
mally:

EP x → 〈Pot(Ix),Lφx
〉

• For each tuple 〈e1, . . . , em〉 in Pot(Ix), whether it raises an issue or not, and
the element that were accessed for determining it. Formally:

ERx ,〈e1,...,em〉 = 〈ρx(T1, . . . , Tm), 〈e1, . . . , em〉〉 → 〈〈True, False〉,LIx (e1,...,em)〉

Consider, for example, the issue type Ia = “Cardinality constraints [of a mem-
ber end] are syntactically incorrect”. The scope of Ia is a single Property, and the
applicability and issue conditions may be formally defined as:

φa(Proper t y) : s e l f . a s so c i a t i on−>notEmpty ()
ρa(Proper t y) : s e l f . lower > s e l f . upper

In order to compute the potential set Pot(Ia) of tuples that may actually raise
an issue of type Ia, φa has to be evaluated over all Properties of the schema.
Clearly, we can evaluate φa incrementally using Egyed’s method:

Pot(Ia) = {motorVehicle, person, parent, child}
Lφa

= {motorVehicle, motorVehicle.assoc=Owns,

person, person.assoc=Owns, . . .

Car::plateNumber, Car::plateNumber.assoc=;,
. . .}

where Pot(Ia) is the regular result we expect from the evaluation of φa and Lφa

includes all the elements of the conceptual schema that were accessed during
the computation of Pot(Ia). If we take a closer look to Lφa

, we see that, on the
one hand, it contains all properties of the schema (note that φa is evaluated for
each Property in the schema and that φa starts with an access to self, i.e. to a
Property) and, on the other hand, any association (if any) that is related to a
Property (because of the self.association navigation).

Similarly, when evaluating ρa using an element in Pot(Ia) as its input (e.g.
person), the result consists in:

ρa(person) = True

LIa(person) = {person, person.upper, person.lower}

166

8.3. INCREMENTAL EVALUATION OF QUALITY ISSUES

where ρa(person) indicates whether person actually raises an issue of type Ia

and LIa(person) includes all the elements of the conceptual schema that were ac-
cessed during the evaluation of ρa over the Property person. In this case, the only
elements that were accessed for evaluating the expression are person (because of
the self clause) and the upper and lower attributes of the Property.

In the following we present an algorithm for incremental evaluation of quality
issues, and we describe how the new information provided by Egyed’s method is
used for preventing unnecessary re-computations.

Adapting the Algorithm for Computing Issue Instances

In Sect. 5.4 we presented an algorithm for computing the issues that are present
in a conceptual schema. This algorithm can be run as a background process
in order to provide “continuous” feedback, at the expense of performing sev-
eral unnecessary re-evaluations. In this section we describe a new algorithm
for computing issue instances using an incremental approach6. The algorithm is
presented in Alg. 2.

The three main differences with respect to Alg. 1 are:

1. The algorithm requires new parameters:

• C, the set of changes that occurred in the schema since the last exe-
cution,

• Πprev, the set of Potential sets that were computed in the previous
execution (along with the elements that were accessed for each com-
putation), and

• ξprev, the set of ERx ,〈e1,...,em〉, i.e. the results of evaluating ρx for each
tuple in Pot(Ix) (along with the elements that were accessed for this
evaluation).

2. Instead of computing the potential set of an issue Ic each time (see line 7
in Alg. 1), Algorithm 2 checks if the previous evaluation of Pot(Ic) is still
valid (lines 7 to 9).

6For the ease of understanding, we do not consider precedents.

167

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

Consider, for instance, the example presented in Sect. 8.3.2. When Pot(Ia)
was computed, the list of accessed elements included, among many oth-
ers, the navigation motorVehicle.assoc = Owns. If there has been a change
such that motorVehicle.assoc is no longer Owns, but a different association
or none association at all, then we clearly have to re-compute Pot(Ia), be-
cause it may be the case that motorVehicle is no longer a member end of an
association and, therefore, it cannot be in Pot(Ia).

3. Similarly, instead of checking whether a tuple 〈e1, . . . , em〉 in Pot(Ic) raises
an issue (see line 10 in Alg. 1), Algorithm 2 checks if the previous evalua-
tion of ρc(e1, . . . , em) is still valid (lines 11 to 13).

Consider, again, the example presented in 8.3.2. If the set of changes that
occurred since the last execution of the algorithm include, for instance,
changing the value of the person’s upper attribute (say, from 0 to 3), then
we have to re-compute whether person still raises an issue of type Ia or not
(and, in this case, it does not, because, finally, the upper value is greater or
equal than the lower).

Please note that, in order to simplify the algorithm, we defined the following
auxiliary functions:

• computePotential(S, φx) = 〈Pot(Ix ,Lφa
)〉, which computes the potential

set of an issue type Ix using the elements of the schema S and the applica-
bility condition φx , and returns this potential set, as well as the elements
that were accessed for this computation.

• computeInstance(S, ρx , e1, . . . , em) = 〈〈True, False〉,LIx (e1,...,em)〉, which de-
termines whether the tuple e1, . . . , em from Pot(Ix) raises an issue of type Ix

or not, returning True or False, along with the elements that were accessed
for this computation.

• affects(C, Ex) = 〈True, False〉, which returns whether a change in C may
have modified the result of Ex . For example, if C includes a change such
that “class c has been renamed”, and the evaluation of a certain expression
using a certain input Ex accessed c.name, then this function returns True.

168

8.3. INCREMENTAL EVALUATION OF QUALITY ISSUES

Algorithm 2 Computing Issue Instances Incrementally (without Precedents)
Input – S: a set of n schema elements e1, . . . , en,

– T : the set of issue types I1, . . . , Ip ,
– Ψprev: the set of pairs 〈Ix (e1, . . . , em),ε〉 computed in the previous execution,

where Ix (e1, . . . , em) was a raised issue and ε was its state.
– Πprev: the set of EP x ,
– ξprev: the set of ERx ,〈e1 ,...,em〉, and
– C: the set of changes that occurred in the previous evaluation.

Output – Ψnew: the set of pairs 〈Ix (e1, . . . , em),ε〉 computed in this execution, where
Ix (e1, . . . , em) is a raised issue and ε is its state,

– Πnew: the set of EP x , and
– ξnew: the set of ERx ,〈e1 ,...,em〉.

1: procedure updateIssues(S,T ,Ψprev,Πprev,ξprev) : 〈Ψnew,Πnew,ξnew〉
2: Ψnew,Πnewandξnew← ;
3: Tpending← T
4: while Tpending 6= ; do
5: Ic ← Ix | (Ix ∈ Tpending ∧ (@I y | I y ∈ Tpending ∧ I y ∈ Px))
6: CandidateIssues← ;
7: Ec ← EP c | EP c ∈ Πprev
8: if Ec = ; ∨ affects(C,Ec) then Ec ← computePotential(S,φc)
9: Πnew← Πnew ∪ Ec

10: for all 〈e1, . . . , em〉 ∈ getResultFrom(Ec) do
11: Ei ← ERc,〈e1 ,...,em〉 | ERc,〈e1 ,...,em〉 ∈ ξprev
12: if Ei = ; ∨ affects(C,Ei) then Ei ← computeInstance(S,ρc , 〈e1, . . . , em〉)
13: ξnew← ξnew ∪ Ei
14: if getResultFrom(Ei) then
15: CandidateIssues← CandidateIssues∪ 〈e1, . . . , em〉
16: end if
17: end for
18: IssuesToKeep← {〈e1, . . . , em〉 | 〈Ic(e1, . . . , em),ε〉 ∈Ψprev ∧

〈e1, . . . , em〉 ∈ CandidateIssues}
19: IssuesToCreate← CandidateIssues− IssuesToKeep
20: Ψnew←Ψnew ∪

{i = 〈Ic(e1, . . . , em),ε〉 | i ∈Ψprev ∧ 〈e1, . . . , em〉 ∈ IssuesToKeep} ∪
{〈Ic(e1, . . . , em), Pending〉 | 〈e1, . . . , em〉 ∈ IssuesToCreate}

21: Tpending← Tpending − {Ic}
22: end while
23: return 〈Ψnew,Πnew,ξnew〉
24: end procedure

How Precedents Affect Incremental Evaluation of Issues?

In Sect. 5.3 we have seen that there are cases in which the issues of a given
issue type Ix should only be considered if there are no other unsolved issues

169

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

of some specific types. For example, In = “The name of a class is not properly
capitalized” should only be considered for a class c if there is not an issue Ip =
“A class has no name” for that same class c. This relationship between issues has
been formalized by means of issue precedents7.

Algorithm 1 (presented in Sect. 5.4) evaluates the instances of an issue type
Ix after it has evaluated all its precedents (line 5). Then, for each tuple in
Pot(Ix), it checks whether the precedents are satisfied or not. If they are, the al-
gorithm evaluates ρ(e1, . . . , em) in order to determine whether 〈e1, . . . , em〉 raises
an issue of type Ix or not. If, on the other hand, the precedents are not satisfied,
ρ(e1, . . . , em) is not evaluated.

When evaluating the issue instances of an issue type Ix incrementally, we may
already have the result of evaluating ρ(e1, . . . , em). As we have seen throughout
this chapter, the incremental method has to determine whether this previous
result is still valid or has to be re-computed.

Algorithm 2 integrated an incremental approach to Alg. 1, without taking
into account precedents. When using precedents and evaluating a certain issue
type Ix , there are only three possible scenarios for the algorithm to deal with:

1. Ix does not have any precedents, which means that Algorithm 2 will oper-
ate properly,

2. Ix does have precedents, but they are all satisfied for all tuples in Pot(Ix),
which means that, again, Algorithm 2 will operate properly, and

3. Ix has precedents and one tuple 〈e1, . . . , em〉 in Pot(Ix) has a precedent that
is not satisfied. When this third scenario occurs, it may be the case that:

a. ERc,〈e1,...,em〉 = ;, which means that ρ(e1, . . . , em) had not been evalu-
ated in a previous execution of the algorithm. Since the precedents
are not satisfied, we do not need to evaluate it now either.

b. we do have a previous evaluation ERc,〈e1,...,em〉, but the set of changes
that occurred in the schema since the previous execution of the algo-
rithm would require ERc,〈e1,...,em〉 to be re-evaluated. Again, since the
precedents are not satisfied, we are not performing this evaluation
now.

7In our example, Ip is an issue precedent of Ix .

170

8.3. INCREMENTAL EVALUATION OF QUALITY ISSUES

c. we do have a previous evaluation ERc,〈e1,...,em〉 and the set of changes
that occurred in the schema since the previous execution of the algo-
rithm do not affect its result. In this case, we do not include a raised
issue in Ψnew (because that issue should not be considered by the
modeler), but we do save ERc,〈e1,...,em〉 in Πnew for future reference.

8.3.3 Integrating the Incremental Evaluation of Quality
Issues in our CMA

In this section we describe the changes that we applied to our CMA—which is
based on the Eclipse Platform—so that it can incrementally evaluate issue types
defined in OCL. Given that we have full access to the source code of both our
CMA and the Eclipse Platform, the integration of an incremental method to our
prototype tool is easy8.

When using an incremental approach, the algorithm for computing issue in-
stances has to be executed each time the conceptual schema is modified—i.e.
whenever a set of structural events is triggered. As we have seen throughout this
chapter, when the incremental algorithm is executed, it only re-evaluates the ex-
pressions that might have been affected by the issued changes. In essence, this
depends on (a) the structural events that were issued and (b) the elements of
the conceptual schema that were accessed during a previous evaluation of the
expression. As a consequence, our CMA has to simply modify two components
of the Eclipse Platform:

The UML Editor. When the conceptual modeler modifies her conceptual schema,
the UML editor has to generate the list of structural events that correspond
to the changes applied to the model.

In principle, Eclipse provides two different editors for creating, viewing,
and modifying UML conceptual schemas—(a) the default UML Editor, which
uses a tree-based view (as depicted in Fig. 7.2), and (b) a graphical UML
editor, which is based on the Graphical Modeling Framework (GMF). GMF
editors use an Eclipse component called Transactional Editing Domains.

8Note that it is also possible to extend software components without changing them and assuming
there is no access to the source code [45].

171

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

These components generate events whenever the model they work with
is used by the modeler. Thus, for example, the UML GMF editor triggers
one or more change events whenever the modeler moves a class around
the diagram, adds a new association, or deletes a class.

In order to use an incremental approach, our CMA simply listens to all
the events generated by the GMF editor and filters those that are relevant.
The relevant events are those that modify the instantiation of the UML
metamodel. When there is one or more events of these kind available, the
incremental algorithm is executed using these events as an input parame-
ter.

The OCL Evaluation Environment. We need to add a profiler in the Eclipse
component that evaluates OCL expressions—the OCL evaluation environ-
ment. The profiler is responsible of logging the list of elements L that are
accessed during the evaluation of any OCL expression.

In Sect. 7.1, we have seen that the MDT’s OCL Interpreter can be easily
extended. The plugin provides access to the evaluation environment. We
use this access to integrate a profiler that tracks all the navigations that
are performed through the UML metamodel during the evaluation of an
expression.

8.3.4 Comparison of Regular and Incremental Evaluation
of Quality Issues

In [43], the author compares the efficiency of evaluating a set of OCL expres-
sions as (a) a batch process, (b) following a type-based approach, and (c) fol-
lowing the instance-based approach he proposes. Figure 8.3 depicts the results
of “empirically evaluating model changes on 24 UML metamodel rules and 29
sample models”. A type-based consistency checking is scalable for conceptual
schemas with up to 10,000 elements, whereas the batch process can only deal
with schemas with up to 1,000 elements. The instance-based approach, on the
other hand, remains constant.

In this section, we present the results of a similar experiment we conducted.
In particular, we measured the evaluation times per model change for computing
the issue instances of the issue types presented in Chap. 6 (excluding syntactic is-

172

8.3. INCREMENTAL EVALUATION OF QUALITY ISSUES

ev
alu

at
io

n
tim

e
in

 m
ilis

ec
on

ds

100 1,000 10,000 100,000

3,000

2,500

2,000

1,500

1,000

500

model size

batch consistency checking consistency checking
with type-based scope

consistency checking
with instance-based scope

Figure 8.3. Comparison of evaluation times per model change using a batch process, a
type-based approach, and an instance-based approach, as reported in [43].

sue types) using (a) the algorithm we presented in Chap. 5 and (b) the algorithm
presented in this chapter. The issue types were tested over the 13 conceptual
schemas first introduced in Sect. 6.4.

Table 8.2 shows the results of the experiment, which are quite conclusive.
The incremental approach is able to evaluate the less than half a second, even
for the biggest conceptual schema (250 milliseconds). The regular algorithm,
on the other hand, takes up to 27.8 seconds for computing issue instances for
conceptual schemas with less than 500 elements (even though the average time
is 9 seconds). However, the required time this algorithm takes for the biggest
conceptual schema (over 5 minutes) makes the approach very ineffective.

There are two main reasons for getting these results. Firstly, the time that
evaluating an expression takes depends on the expression itself. Thus, it may
be possible that certain expressions, as written by the method engineer, are not
the most efficient alternative. Secondly, the use of OCL helper operations (as
described in Sect. 7.1) can also be extremely inefficient. Consider, for example,
our naming guidelines. These guidelines require some “complex” operations to
determine, for instance, whether a String is a noun phrase (isNounPhrase) and,
if it is, whether its head (getHead) is a noun (isNoun) that is countable (isCount-

173

CHAPTER 8. INCREMENTAL EVALUATION OF QUALITY ISSUES

Table 8.2. Characteristics of the conceptual schemas developed by students.

Number of Regular Incremental
Project Elements Eval. Time (s) Eval. Time (s)

P1 136 2.8 0.056
P2 181 8.1 0.063
P3 511 11.1 0.071
P4 204 12.0 0.067
P5 200 9.3 0.058
P6 169 4.6 0.061
P7 221 7.3 0.070
P8 402 27.8 0.083
P9 258 4.4 0.059
P10 449 5.3 0.063
P11 346 14.3 0.062
P12 361 4.8 0.059
P13 7,500 350.0 0.263

able). These operations were implemented using an online dictionary whose
response time is not very fast and may be a few seconds. Therefore, it is clear
that avoiding unnecessary calls to the online service—as intended by the incre-
mental method—is an extremely efficient way to improve the responsiveness of
our method.

8.4 Summary

In this chapter we have seen the importance of an incremental evaluation of
quality issue types. Incremental methods re-evaluate expressions if their result
may have changed with respect to the last time they were evaluated. The result
of an expression can only change if the schema itself has changed.

In Sect. 8.1 we have introduced the necessity of an incremental evaluation
by means of a simple example. We have seen that issues can be incrementally
evaluated. In Sect. 8.2 we have reviewed some of the available literature on in-
cremental evaluation, focusing our attention on those works related to incremen-
tal evaluation of OCL expressions and integrity constraints. Finally, in Sect. 8.3
we have formalized incremental methods and we have focused on an instance-
based method that was originally presented in [44]. Next, we have adapted this
method to our formalization of issue types. We have seen that we can incremen-
tally evaluate the applicability and issue conditions of an issue type. Moreover,

174

8.4. SUMMARY

we have also seen how issue precedents affect an incremental evaluation of issue
types.

175

Age brought wisdom (. . .)

C. McCullough, Too Many Murders

9
Quality Assessment in

Current IDEs

Throughout the previous chapters of this thesis we have argued the important
role that conceptual schemas play in information system development. In Chap. 4
we presented a method to ensure that a conceptual schema satisfies the quality
criteria required by the methods used in their development [18, 28, 69, 75, 85,
111]. The method is based on the notion of “quality issues”, which are defined
as “an important topic or problem for debate or discussion”. According to our
method, conceptual schema have to be “issue-free”. This implies that during
its development (or once it is finished) it should be checked that the schema
contains no issues and, if there are some, that the appropriate actions are taken
to fix them before the schema is released.

In this chapter we analyze the support provided by current IDEs in the en-
forcement of quality criteria, as published in [6]. The goal of this chapter is

177

CHAPTER 9. QUALITY ASSESSMENT IN CURRENT IDES

two-folded. On the one hand, we want to analyze the support that is being cur-
rently offered—i.e. which issue types they do enforce now. Hence, in Sect. 9.1
we review 29 UML IDEs in order to determine (a) which and (b) how issue types
are being enforced by each tool. On the other hand, we want to know whether
this tools provide extension mechanisms so that, given their current implemen-
tations, they can easily improve their support by integrating the issues we pre-
sented in Chap. 6. Next, Section 9.2 evaluates the benefit that would be gained
if current IDEs included all quality issues defined in the catalog. In Sect. 9.3, we
formalize their definition of issue type and compare it to ours. Finally, Section 9.4
summarizes the key points discussed in the chapter.

9.1 Current Support of Quality Issues

In Chap. 7 we argued that one of the most effective ways of increasing the qual-
ity of conceptual schemas is by using an IDE that assists conceptual modelers
in detecting and tackling quality issues. As a result, we presented a prototype
implementation of our method on top of Eclipse and evaluated the usefulness
of such assistance. Here, we analyze the support provided by current IDEs on
dealing with issues.

The list of tools presented in Tab. 9.1 has been obtained from the Open Direc-
tory Project (ODP) [88] mainly, and complemented with some additional tools
that, according to [37], are being used by UML practitioners nowadays. After
a quick analysis of the tools included in ODP, we decided to exclude from our
analysis the tools that are not intended for conceptual modeling tasks1.

The analysis we perform in this chapter also includes ArgoUML and SDMet-
rics. As we introduced in Sect. 3.2.3, both tools are good examples of how to
assist conceptual modelers in creating high quality conceptual schemas. How-
ever, it is important to point out that only ArgoUML is a UML modeling tool.
SDMetrics is does not provide any means for defining the conceptual schema;
it is a “measurement tool for the UML” that includes several UML design rules.
SDMetrics permits a conceptual modeler to check whether her UML conceptual
schemas adhere to these design rules. We believe SDMetrics is a relevant tool for

1Some IDEs focus on other activities like code generation, reverse engineering, or transformations
from natural language specifications to UML conceptual schemas, among others.

178

9.1. CURRENT SUPPORT OF QUALITY ISSUES

Table 9.1. Quality issue enforcement in current IDEs.

Tool
Issue Type Issue

Ext.
Corr.

S S+ Ba NG Be Tole. Act.

ArgoUML G# 3 3 3 5 ALL #
Astah G# - - - - FOR # #
Blueprint Software Modeler G# - - - - MIXED # #
Cadifra UML Editor # - - - - NONE # #
Design Pattern Autom. TK G# - - - - NONE # #
Dia # - - - - NONE # #
Eclipse UML2Tools G# - - - - MIXED # #
Enterprise Architect G# - - - - MIXED # #
Fujaba G# - - - - MIXED # #
Gaphor # - - - - NONE # #
Generic Mod. Env. (GME) G# 1 - - - MIXED #
IBM Rational Rose G# - - - - MIXED #
MagicDraw UML G# - - - - MIXED #
MetaEdit+ # - - - - NONE # #
MosKITT G# - - - - MIXED # #
ObjectiF G# - - - - FOR # #
Oclarity - - - - ALL # #
Poseidon for UML CE # - - - - NONE # #
SDMetrics G# 6 3 2 2 ALL #
Umbrello UML Modeler G# - - - - FOR # #
UML Sculptor # - - - - NONE # #
UML/INTERLIS-editor G# - - - - MIXED # #
UMLet # - - - - NONE # #
UModel - - - - FOR # #
USE - - - - FOR # #
Violet # - - - - NONE # #
Visio G# - - - - FOR # #
Visual Case # - - - - NONE # #
Visual Paradigm (VP) G# - - - 1 MIXED #

our analysis because, as we shall see in this chapter, it is the only tool, along with
ArgoUML, that includes many design rules.

9.1.1 The Analysis

In this section, we aim to analyze, on the one hand, how many and which issue
types are enforced by current IDEs and, on the other hand, how IDEs deal with
the issue types they enforce. We obtained this information by reviewing the fea-

179

CHAPTER 9. QUALITY ASSESSMENT IN CURRENT IDES

ture list that is published in each tool’s website and, moreover, manually testing
each tool. Table 9.1 presents the results for the following criteria:

Issue Types: It shows the number of issue types enforced by the IDE in each
category. The results are presented according to the categories introduced
in Chap. 6. For the syntactic category, the symbols used are:

• full (), if the IDE claims it controls all metamodel constraints,

• partial (G#), if the IDE controls only a subset of these constraints, and

• none or unknown (#), otherwise.

Issue Tolerance: IDEs that enforce one or more quality issues react differently
when they detect an issue is about to be introduced in the conceptual
schema. The introduction of an issue may be:

• Forbidden, which means that the IDE does not allow a schema change
such that it raises the issue, and therefore it “rolls back” the modeler’s
change to avoid the issue,

• Allowed, which means that the change is accepted, and the IDE noti-
fies the modeler somehow of the issue,

• Mixed, which means that the IDE allows having some issues raised
and prohibits others.

Extensibility: IDEs enforcing issue types may offer one or more mechanisms to
extend the issue types they deal with. New issue types may be added using
a constraint language such as OCL, or creating a plugin that implements
an issue type interface. The symbols used are:

• , if the tool suggests some sort of extension mechanism, and

• #, otherwise.

Corrective Actions: Whenever an issue is raised in the conceptual schema, the
conceptual modeler has to take some action to fix it. IDEs that enforce
some quality issues and permit them to be raised should include the set of
actions that may fix these issues. The symbols used are:

• , if the tool offers issue actions to fix a particular issue, and

• #, otherwise.

180

9.1. CURRENT SUPPORT OF QUALITY ISSUES

Syntactic Support

9 None

17 Partial

3 Full

Issue Tolerance

7 Forbidden

10 Mixed

3 Allowed

Non-Syntactic Support

15

0

ArgoUML

5

10

SDMetrics

Best
Pratice

Naming

Basic
Property

Syntactic+

Figure 9.1. Summary of quality issue enforcement in current IDEs.

The analysis of the 29 IDEs showed very interesting—as well as unexpected—
results, which we summarized graphically in Fig. 9.1. First of all, we can see that
the vast majority of the analyzed IDEs assist modelers in dealing with syntac-
tic issue types. However, only three IDEs fully support these category of issue
types, whilst the others only deal with them partially. After testing each IDE
individually, we discovered that many IDEs do not control syntactic issue types
like having, for example, (1) a cycle in a generalization hierarchy, (2) a property
whose lower multiplicity has a greater value than the upper, or (3) a namespace
that contains two different elements that are indistinguishable.

Second, our analysis also shows that, in general, IDEs have little or no support
on issue types that are not syntactic—only four tools include non-syntactic qual-
ity issue types in their own catalogs and, in fact, only two of them (ArgoUML and
SDMetrics) include a significant number of issue types2 (14 and 13 respectively).
Table 9.2 shows the 21 conceptual schema quality issue types that are included
in ArgoUML, SDMetrics, Generic Modeling Environment, and Visual Paradigm.

Next, we also detect a trend in issue tolerance. In the literature, we may find
some authors who agree that inconsistencies should be tolerated—that is, model
consistency has not to be preserved at all times—, and it is the IDE’s responsibility
to manage the “detection of inconsistencies” [15, 49, 115]. If we look at the

2It is important to mention that in this analysis we only considered those quality issues that are
related to the conceptual modeling phase of software development. Both ArgoUML and SDMetrics in-
clude many more quality issue types (over 90 and over 140 respectively), mainly related to the design
phase.

181

CHAPTER 9. QUALITY ASSESSMENT IN CURRENT IDES

Table 9.2. Conceptual Schema Quality Issues included in some IDEs.

A
rg

o
U

M
L

SD
M

G
M

E

V
P

Syntactic+
1. Overriding attribute does not redefine the overrides one # # #
2. Named element has an illegal name (invalid characters) # #
3. Unnamed class # #
4. Unnamed attribute # # #
5. Unnamed datatype # # #
6. Property without a type # # #
7. Class has specializations and it is marked as a leaf # # #
8. n-ary association has a navigable member end # # #

Basic Properties
9. Binary association with both member ends as aggregate # #
10. Abstract class is not instantiable # #
11. Cycle of composition relationships # # #
12. Abstract class has a parent class that is concrete # # #

Naming Guidelines
13. Class name is not properly capitalized # #
14. Property name is not properly capitalized # #
15. Namespace contains two elements with very similar names # # #

Best Practices
16. Data type as a member end of a binary association # # #
17. Class without attributes # # #
18. Class with too many associations # # #
19. Class with too many attributes # # #
20. Class with too many attributes and operations # # #
21. Isolated class #

results, we will realize that two thirds of the analyzed IDEs that include quality
issues permit the “introduction” of issues, and thus only one third of the analyzed
IDEs forbid their introduction at any time. Another interesting thing that is worth
mentioning is that the four IDEs that include non-syntactic issue types tolerate
issues: they allow issues of (some or all) types to be raised.

Correcting quality issues is as important as detecting and tracking them.
Therefore, issue correction is another important aspect where IDEs can (and sho-
uld) contribute. IDEs that permit issues to be raised could and should include
corrective actions. Unfortunately, solely two IDEs include these kind of actions,
which means that the provided assistance is very poor.

182

9.2. COMPARING IDES VS OUR CATALOG

Untitled - Class Diagram - ArgoUML *

File Edit View Create Arrange Generation Critique Tools Help

79 M used of 455M max

Medium
High

Low

Revise Package Name untitledModel
Add Associations to person
Add Operations to person

Add Constructor to person
Name Conßict Caused by person
Add Associations to person
Add Operations to person
Add Instance Variables to person
Capitalize Class Name person

By Priority 11 Items

Order By Type Name

untitledModel
ProÞle ConÞguration

* *
p

Source Constraints Stereotype Tagged Values Checklist

Properties Documentation Presentation

Change the class name to start with an uppercase letter.

< Back Next > Finish Help

ToDo Item

Package-centric

PersonCapitalize Class Name person

Figure 9.2. Screenshot of ArgoUML, where a corrective action is being executed.

In Fig. 9.2, we can see an example of a corrective action being executed in
ArgoUML. The screenshot depicts a conceptual schema with only one class named
person. According to ArgoUML’s issue types, the class is improperly capitalized.
Thus, it offers a corrective action to change its first letter to an upper-case letter.
ArgoUML automatically proposes Person as the new name.

Finally, our analysis also shows that extension mechanisms are not widely
present in current IDEs. Only four of them provide a powerful mechanism—that
is, OCL or a similar language—to define new issue types. In the next section
we discuss the extensibility of these IDEs in-depth, comparing the issue type
formalization they implement to ours.

9.2 Comparing IDEs vs Our Catalog

In Sect. 6.4 we have described experiment aimed to evaluate the usefulness of
our method. In order to do so, we analyzed the presence of quality issues in a

183

CHAPTER 9. QUALITY ASSESSMENT IN CURRENT IDES

Table 9.3. Summary of conceptual schema characteristics.

UML Element Average Minimum Maximum

Classes 47 10 366
Associations 33 5 264
Association Classes 7 0 55
Specializations 19 2 158
Attributes 144 11 1144
Invariants 39 0 386

set of thirteen conceptual schemas developed by students. Table 9.3 summarizes
the characteristics of these schemas.

Here, we present a parallel experiment where we defined the previous con-
ceptual schemas using the two current tools that provide better support to detect
quality issues: ArgoUML and SDMetrics. As indicated in Tab. 9.1, ArgoUML de-
tects 3 syntactic+ issue types, 3 basic properties, 3 naming guidelines and 5 best
practices, whereas SDMetrics detects 6 syntactic+ issue types, 3 basic properties,
2 naming guidelines and 2 best practices. Both tools partially check syntactic
issue types but we do not consider them in this evaluation. We found that all the
conceptual schemas present quality issues. Tables 9.4 and 9.5 show the problem
issues detected for each category and for all conceptual schemas by ArgoUML and
SDMetrics, respectively.

Table 9.4. Issues detected by ArgoUML [11].

Syntax+ Basic Prop. Best Pract. Naming Total Avg.

Problem 0 15 500 23 538 41.38
Avg. 0 1.15 38.46 1.77 41.38

Table 9.5. Issues detected by SDMetrics [109].

Syntax+ Basic Prop. Best Pract. Naming Total Avg.

Problem 91 15 178 23 307 23.62
Avg. 7 1.15 13.69 1.77 23.62

ArgoUML detects, on average, 42 problem issues for each conceptual schema
whereas SDMetrics detects 24. If we compare these results with the ones we
obtained in Sect. 6.4 (which are summarized in Tab. 9.6), it is clear that the
“best” support that practitioners and conceptual modelers can get today when
defining conceptual schemas can be much greater. The use of a broader catalog
with relevant quality issue types for conceptual modeling increases, as expected,

184

9.3. EXTENDING CURRENT IDES WITH THE CATALOG

Table 9.6. Issues detected by our catalog [7].

Syntax+ Basic Prop. Best Pract. Naming Total Avg.

Problem 247 3317 320 585 4469 343.77
Checking 0 571 726 86 1383 106.38
Total 247 3888 1046 671 5852 450.15
Avg. 19 299.07 80.46 51.61 450.15

the number of detected issues and, therefore, fosters the improvement of the
quality of the developed conceptual schemas.

9.3 Extending Current IDEs with the Catalog

In Sect. 9.1 we have seen up to which extent current IDEs integrate issue types.
Surprisingly, only four tools include non-syntactic issue types, making it clear
that the assistance a conceptual modeler can get from these tools is very poor.
The results of our analysis also show that only four tools provide extension
mechanisms—i.e. they permit the definition and, hence, assessment of new issue
types. In this section we analyze their extensibility capabilities in detail. Specif-
ically, we try to determine whether it is possible to integrate into these tools the
issue types (that can be) included in our catalog.

9.3.1 Comparing Issue Type Formalizations

All IDEs that include syntactic and/or non-syntactic issue types describe them
using a certain formalism. In general, this formalism is basically the same used
to describe UML metamodel constraints—i.e. they include a context, which cor-
responds to the metatype of the instances for which issues may exist, and a con-
dition, which determines whether the issue exists or not for each instance of the
context. Besides these two components, our tests determined that IDEs may also
include additional elements to their formalization. Basically, IDEs use a formal-
ization that may include (1) permitting the modeler to ignore issues and (2) one
or more operations that automatically solve (or help the modeler solve manually)
an issue instance. Formally, the four IDEs that can be extended implement the

185

CHAPTER 9. QUALITY ASSESSMENT IN CURRENT IDES

following definition of issue type:

Zy = 〈Cy ,θy ,Iy ,Oy〉 (9.1)

where

• Cy is the context in which the issue type has to be evaluated,

• a condition θy that determines whether the issue exists or not for each
instance of the context,

• a Boolean value Iy that specifies whether the issue can be or cannot be
ignored by the modeler, and

• a set Oy of operations that solve (or help solving) the issue.

It is important to emphasize that the previous formalization represents the
best case scenario. If we take a look at the reviewed tools, only ArgoUML inte-
grates all these components into its issue type formalization. Moreover, it is also
important to remember that, unfortunately, ArgoUML does not provide any ex-
tension mechanism (even though it is an open source project and, thus, anyone
can modify its code an integrate new issue types).

Now, in order to determine whether this formalization can integrate the issue
types we can define using our method, we shall compare it to our issue type
formalization. For the ease of reading, we reproduce our formalization in the
following:

Ix = 〈Sx ,φx ,ρx ,Kx ,Ax ,Ox ,Px〉 (9.2)

where

– Sx is the scope of the issue type – Kx is the kind of the issue type
– φx is the applicability condition – Ax is the acceptability of the issue type
– ρx is the issue condition – Ox is the set of issue actions

– Px is the set of precedents.

Clearly, formalization (9.1) is less expressive than 9.2. The main problems
we will encounter when trying to integrate an issue type defined using our for-
malization into an IDE that follows formalization (9.1) are:

186

9.3. EXTENDING CURRENT IDES WITH THE CATALOG

• The context Cy permits one metatype only, whereas our scope Sx permits
one or more metatypes.

• Applicability and issue conditions (φx and ρx respectively) have to be con-
densed into one unique condition θy .

• It is not possible to differentiate between Problem and Checking issues.

• It is not possible to define precedents.

All these problems are further discussed in the remaining of the section.

9.3.2 Adapting Scopes

The first problem we encounter when adapting an issue type from our formaliza-
tion to theirs is the scope. Our formalization allows an issue type to have more
than one metatype as a scope, whereas theirs only uses one. Using more than one
metatype provides better feedback to the modeler under certain circumstances.

Consider, for example, the pull up property refactoring, which consists in re-
moving an attribute named n from one (or more) specific classes and defining it
in the general class [51]. A situation in which this refactoring would be highly
recommended is when the attribute is repeated among all specific classes of a
complete generalization set (see Fig. 9.3). We may consider formalizing this sit-
uation as a problem issue type. As one may expect, one of the issue actions that
fixes an issue of this type is applying the refactoring.

Vehicle

Car
plateNumber: String
maxSpeed: Natural

numOfSeats: Natural

Motorcycle
plateNumber: String
maxSpeed: Natural

{disjoint, complete}

Car
numOfSeats: Natural

Motorcycle

{disjoint, complete}

Vehicle
plateNumber: String

maxSpeed: Natural

Figure 9.3. Example of a conceptual schema with a complete GeneralizationSet that has
repeated attributes.

187

CHAPTER 9. QUALITY ASSESSMENT IN CURRENT IDES

Using our formalization (9.2), we may define the scope of this issue type as
follows:

Sx = 〈gs : GeneralizationSet, n : String〉

where n is the name of the attributes that are repeating among all the specific
subclasses of the GeneralizationSet gs. When looking at the example depicted in
Fig. 9.3, the only two issue instances of this issue type that would be raised:

• 〈gs, “plateNumber”〉

• 〈gs, “maxSpeed”〉

If, on the other hand, we use formalization (9.1), we have to determine the
metatype we will be using to define the context of the issue type. In this case,
it is clear that the best candidates are (a) GeneralizationSet or (b) Property. If
GeneralizationSet was to be used as the context (Cy = GeneralizationSet), only
one issue instance would be raised:

• 〈gs〉

which would point out that “all subclasses in the GeneralizationSet gs have one
or more attributes with the same name”. Note we have no specific information
on which attributes, but only some attributes; the modeler is thus responsible of
figuring out the specific attributes.

Alternatively, if Property was to be used as the context (Cy = Property), four
issue instances would be raised:

• 〈Car :: plateNumber〉

• 〈Car :: maxSpeed〉

• 〈Motorcycle :: plateNumber〉

• 〈Motorcycle :: maxSpeed〉

188

9.3. EXTENDING CURRENT IDES WITH THE CATALOG

where each issue instance would point out that “this Property is an attribute of
a class that belongs to a complete GeneralizationSet and, moreover, the name of
the attribute is repeated among all subclasses in the GeneralizationSet”.

Clearly, a scope that permits the inclusion of more than one metatype pro-
vides, in general, a more accurate and concise feedback. If, on the other hand,
we can only use one metatype, it is still possible to define the issue type, but there
are some cases (a) where the feedback will come short, and there are some cases
(b) where there will be too many issue instances pointing out the same problem.

9.3.3 Adapting Applicability and Issue Conditions

Throughout the whole thesis, we have described issues as “important [quality]
topics or problems for debate or discussion” which, in essence, are nothing more
than conditions. In order to improve the understandability of issue types, we
find it convenient to define two different conditions in our formalization for each
issue type Ix : the applicability condition φx and the issue condition ρx .

Consider, for example, the following problem issue type:

• Ia: “a binary association does not define any of the three names it may
define”.

Clearly, the scope Sa is Association and the associated conditions are:

• φa(a:Association): “a is binary”.

• ρx(a:Association): “a nor any of its member ends (a.memberEnd) define
an explicit name”.

In principle, translating these two conditions into a single one—as required
by formalization (9.1)—entails no problems. The condition θa(a:Association)
would thus be defined as follows:

context IDE : : Ia (a : A s soc i a t i on) :
i f φa(a) then ρa(a)
else f a l s e endif

189

CHAPTER 9. QUALITY ASSESSMENT IN CURRENT IDES

In Chap. 8, we have seen that incremental methods try to minimize the num-
ber of expression re-executions. In particular, we have seen that we can store the
potential sets computed using applicability conditions and, thus, minimize the
number of executions.

9.3.4 Adapting Checking Issues

Another important problem IDE developers would face when trying to integrate
our catalog in their tools is that they cannot define checking issue types. In gen-
eral, a checking issue type requires the modeler to check something or perform
some action manually, and then notify the tool that the check has been per-
formed.

When the action modifies the schema in a way such that the issue instance is
no longer raised, current IDEs would have no problem in integrating a checking
issue type. However, there are some cases in which issue types have to remain
raised and can only be checked and, unfortunately, current IDEs do not provide
any mechanisms to the modeler to perform this notification.

To overcome this problem, an IDE developer may be tempted to map a check-
ing issue type from our formalization to an ignorable issue type in (9.1). However,
according to the dictionary, to ignore [an issue]means to “refuse to take notice of
or acknowledge [the issue]; disregard [the issue] intentionally”, so this mapping
would be semantically incorrect and, thus, inaccurate.

9.3.5 Adapting Precedents

Finally, IDEs do not allow the definition of precedents. Precedents filter the
amount of feedback the modeler receives, because only those issues that may
be triggered are actually triggered. Currently, IDEs may be able to implement
a similar behaviour by duplicating the definition of a precedent inside their is-
sue condition. However, duplicating information is usually a source of errors,
and makes the maintenance and comprehension of an issue type catalog more
complicated.

Consider, for example, the following issue types (all available in our catalog

190

9.3. EXTENDING CURRENT IDES WITH THE CATALOG

[7]):

• Ig : “generalization hierarchies must be directed and acyclical” [93].

• Ir : “a generalization is redundant”.

• Is: “An abstract class that has a concrete parent class is relevant” [71].

One may consider, for example, that issue types Ir and Is should only be
considered if there were no issue instances of type Ig . We believe this assumption
is reasonable because we have to make sure that generalization hierarchies are
syntactically correct before considering further issues with regard to them.

Assuming the issue conditions of the previous issue types are ρg , ρr , and ρs,
our formalization may define these issue types as follows3:

context CMA: : Ig (Genera l i za t i on) : ρg

context CMA: : Ir (Genera l i za t i on) : ρr

context CMA: : Is (C la s s) : ρs

where Ir and Is would have Ig as a global precedent.

On the other hand, formalization (9.1) may define these issue types as fol-
lows:

context IDE : : Ig (Genera l i za t i on) :
ρg

context IDE : : Ir (Genera l i za t i on) :
i f ρg then f a l s e
else ρr endif

context IDE : : Is (C la s s) :
i f ρg then f a l s e
else ρs endif

where the guard ρg is being repeated in both issue types Ir and Is.

3For the sake of simplicity, we only include those components that are relevant for the understand-
ing of these example.

191

CHAPTER 9. QUALITY ASSESSMENT IN CURRENT IDES

9.4 Summary

The starting point of this chapter has been the view that one of the most effective
ways of increasing the quality of conceptual schemas in practice is by using an
IDE that enforces all relevant quality issues. With that view, we have analyzed
the support provided by twenty-nine IDEs in the enforcement of quality issues.
In particular, we were interested in determining (a) which issue types each IDE
includes, (b) how IDEs deal with issue types, (c) whether IDEs permit or not
the inclusion of new issue types, and (d) whether IDEs provide or not corrective
actions to tackle the issues they find. The results are quite discouraging—only
two IDEs (ArgoUML and SDMetrics) provide some significant support.

In Sect. 9.2, we have compared the support provided by current IDEs with
the one that could be provided by those IDEs if they enforced all quality issues
defined in our catalog. As a result, we have seen that there is still a lot of room for
improvement—SDMetrics and ArgoUML can detect several quality issues but, as
it is expected, not as many as our catalog. The benefit of the additional support
provided by our catalog in the quality of the conceptual schemas developed by
students is significant.

Finally, we have compared the formalization IDEs ideally implement—which
includes a context and an issue condition, the possibility to ignore an issue in-
stance, and the set of operations that solve it—to ours. This comparison make it
clear that the formalization IDEs are currently using is much less powerful than
ours. Only a few IDEs include non-syntactic issue types, set aside additional sup-
port like corrective actions. Nonetheless, we have discussed how an issue type
from our catalog can be adapted to this other formalization and we have pointed
out the problems they may encounter. The results of this chapter were published
in [6].

192

Anyone can love a thing “because”, but
to love something “despite”. . .

P. Rothfuss, The Wise Man’s Fear

10
Conclusions and Further Work

As the role played by conceptual schemas in software development becomes
more relevant, assessing their quality becomes crucial. The quality of a con-
ceptual schema can be analyzed in terms of “quality properties”. All conceptual
schemas should have the fundamental properties of syntactic and semantic cor-
rectness, relevance and completeness, as well as any other quality property that
has been proposed in the literature and that may be required or recommended
in particular projects. The most effective way to achieve quality is to adopt a
systematic and organized approach. Throughout the different chapters of this
thesis, we have proposed a method that, on the one hand, permits the definition
of these quality properties in a unified way and, on the other hand, fosters the
improvement of the quality of the conceptual schemas.

This chapter summarizes the results of the thesis and points out some pos-
sible directions for further work. First, Section 10.1 focuses on the problem we
address in this thesis and its relevance, and reviews our main contributions to

193

CHAPTER 10. CONCLUSIONS AND FURTHER WORK

solve it. Section 10.1.1 aligns our research with the problem of developing high-
quality conceptual schemas and enumerates the key points of our method. Sec-
tion 10.1.2 focuses on the formalization our method uses to define quality issues.
The section also reviews the experiments we conducted to demonstrate the ex-
pressiveness and usefulness of our method when it comes to define quality issues
and benefit from using them, respectively. Section 10.1.3 discusses the proto-
type implementation of our method and its integration to Eclipse. Section 10.1.4
shows the necessity of using an incremental approach to evaluate quality issues.
Next, in Sect. 10.2 we discuss some new research lines aimed to improve the sup-
port offered by our method. Finally, Section 10.3 lists the publications related to
this thesis.

10.1 Summary of the Results

This thesis presents a method for the unified definition and treatment of con-
ceptual schema quality issues. Ultimately, the method is aimed at improving
the quality of conceptual schemas in a systematic way during its development.
In this section, we summarize the main contributions of the research presented
throughout the previous chapters.

10.1.1 The Challenge of Quality in Conceptual Modeling

Nowadays, conceptual schemas are becoming more and more relevant in the soft-
ware development process. As a result, assessing their quality becomes crucial.
Engineering is about getting results of the required quality within the schedule
and budget [114, p. 8]. The most effective way to do so is to adopt a systematic
and organized approach, and software engineering is no exception to this rule.

In Chap. 1, we have stated that the main goal of this thesis is to improve the
quality of conceptual schemas. We have seen that the quality of a conceptual
schema is the degree up to which a set of properties are met, and that this thesis
focus on the syntactic correctness of a conceptual schema and the proper appli-
cation of any guidelines and/or best practices that are required by the company
or project in which the schema is defined.

194

10.1. SUMMARY OF THE RESULTS

Following the main ideas of the Design Science Research methodology, we
have studied the relevance of the problem we try to solve—i.e. creating high-
quality conceptual schemas—, and we have analyzed the different approaches
and contributions in the literature related to quality properties and their efficient
evaluation (Chapters 6, 8, and 9). As a result, we have proposed a method that
permits the unified definition and treatment of these quality properties in terms
of conceptual schema quality issues. The method is outlined in Chap. 4 and
detailed in the subsequent chapters. Its main components are:

• the definition of quality issue types using our formalization,

• the compilation of quality issue types in a catalog, and

• the usage of quality issue types during the development of a conceptual
schema.

10.1.2 Formalization of Quality Issues and Compilation of
a Catalog

In Chap. 5 we have seen that issues are “important quality topics or problems for
debate or discussion”. In Sect. 5.1 we have formally described the concepts of
quality issue type and quality issue instances, focusing on the different elements
that constitute an issue. In the thesis, we have focused on conceptual schemas
written in UML/OCL. The quality issues included in our catalog are thus targeted
at this language. However, the method could be applied to both DSLs and other
conceptual modeling languages.

Two of the most relevant parts of our formalization are (a) the classification
of issues according to their kind (which is tightly related to the above definition
of issues), and (b) the differences between issue types and issue instances. On
the one hand, problem issues point out a “problem” that has to be solved by the
modeler, whereas checking issues notify the modeler of “situation” she has to be
aware of (because they may lead to defects in the schema). On the other hand,
issue types describe the issue “in general”, whereas issue instances point out that
a certain issue type actually occurs in a concrete conceptual schema.

Chapter 5 continues detailing the different components of our formalization.

195

CHAPTER 10. CONCLUSIONS AND FURTHER WORK

This mainly include the lifecycle of an issue instance, an algorithm to detect the
issues that a conceptual schema contains, and a mechanism to tackle issues—i.e.
issue actions. The quality issues we can define with our method improved the
empirical and syntactical quality dimensions of a conceptual schema.

One of our main concerns when proposing our method was to provide a
highly expressive formalization. In Chap. 6 we have presented a catalog of 65
issue types that has been compiled from the literature. The catalog demonstrates
that the vast majority of issue types can be defined using our formalization, only
excluding those issues that require information that is not defined in the UML
metamodel. Moreover, in Chap. 9 we have analyzed how current IDEs implement
issues. We have seen that their formalizations are less expressive and, therefore,
they lack several issues our catalog is able to include (e.g. the checking ones).

Another important facet of the method is its usefulness. In this sense, in
Sect. 6.4 we have presented a small experiment were we had selected 13 projects
developed by students as part of their final degree’s projects. All conceptual
schemas, developed using current1 modeling tools, presented several quality is-
sues. These issues could have been avoided if our method had been used. Fur-
thermore, in Sect. 9.2 we have demonstrated that the issues types our catalog
includes, compared to those IDEs include, are also useful, because all conceptual
schemas presented issue instances of these types (which were originally unde-
tected).

10.1.3 Implementation and Integration of our Method in
an Integrated Development Environment

A fundamental principle of the design-research methodology is that knowledge
and understanding of a problem is acquired in the building of an artifact that
solves that problem. In the previous section, we have reviewed the catalog of
quality issues as one output artifact of our work. Another relevant artifact we
have built is the Conceptual Modeling Assistant (CMA).

The CMA is a prototype tool built on top of Eclipse. Its architecture is divided
in three main components: (i) the I (()TM) Issue Type Manager, (ii) the Issue

1At the time they were developed.

196

10.1. SUMMARY OF THE RESULTS

Processor (IP), and (iii) the Issue View (IV). The ITM is responsible of download-
ing the issue type definitions available in the catalog and controlling which ones
are enabled (or disabled) for a particular conceptual schema. The IP is responsi-
ble of computing issue instances. This computation was originally performed by
the algorithm presented in Sect. 5.1, but it was later changed by the incremental
version described in Sect. 8.3. Finally, the IV provides a user interface for the
conceptual modeler to see which issues her schema contains.

Another interesting feature of our prototype implementation is its relation
with the catalog of issue types. The catalog defines issue types using an XML
format and has been made publicly available. The XML permits the definition of
all the different elements of our formalization, as well as some additional meta-
data like the name, the description, the references where the issue was originally
described, or a category, among others, of an issue type. By using XSLT sheets,
the catalog can be browsed by conceptual modelers and practitioners using a
web browser in a user-friendly manner. Moreover, we have defined applicability
and issue conditions as OCL expressions, so that Eclipse’s OCL interpreter can
directly use the specification of an issue type as its implementation, reducing the
amount of work required to integrate new issue types into a tool.

10.1.4 Efficient Evaluation of Quality Issue Types using
Incremental Methods

We have discussed that one of the most effective ways of using our method is by
integrating it into a modeling environment. Thus, the tool can detect the issues
that a conceptual schema contains as it is being developed. Unfortunately, when
we started testing our prototype implementation, we realized that we were facing
efficiency problems: as the number of issue types we wanted to track and the size
of the conceptual schema grew, the time required to compute the issues within
the conceptual schema became too large. In order to overcome this problem, we
have analyzed and integrated an incremental approach in evaluating issue types.

In Chap. 8 we have introduced the necessity of using incremental approaches
for computing issue instances. Since our online catalog defines issue types in
OCL, Chapter 8 reviews some of the most recent and relevant publications on
incremental evaluation of OCL expressions. We have adapted the approach pre-

197

CHAPTER 10. CONCLUSIONS AND FURTHER WORK

sented in [44] to our method and proposed a new algorithm for computing issues
that incrementally determines the Potential and Raised sets of issues.

We have also compared the efficiency improvement between this new al-
gorithm and the original one. The results have been conclusive and demon-
strate that providing instant feedback to modelers as they are creating conceptual
schemas is possible.

10.2 Directions for Further Research

There are several research lines that can be further investigated, provided our
work. In this section, we sketch the most interesting ones.

10.2.1 Extending the catalog

The first and most obvious research line is to continue expanding the number
of issue types our catalog includes. So far, we have only focused on conceptual
modeling quality issues—i.e. issue types that are specifically targeted to concep-
tual schemas—and, more precisely, those that deal with structural subschemas
defined in UML. In order to provide a better catalog for the conceptual modeling
stage, the catalog has to contain issues related to the behavioral subschema, as
well as examples of quality issues for other modeling languages and/or DSLs. On
the other hand, there is plenty of issue types in the literature for design models
(many of which are already integrated in tools like ArgoUML or SDMetrics). It is
also interesting to include these issues in our catalog and, thus, provide a quality
control throughout the whole process of developing an information system.

Another problem that may require further addressing is managing a large cat-
alog of quality issue types. As we have described in Chap. 4, quality issue types
are defined by method engineers and used by conceptual modelers. Since several
issue types are best practices or naming guidelines (i.e. they are “recommenda-
tions”), it may be the case that different method engineers propose different
issues, which may be conflicting (for example, one naming guideline might state
that binary association names have to start with a capital letter, whilst another
one might state that they have to start with a lower one). This kind of “conflicting

198

10.2. DIRECTIONS FOR FURTHER RESEARCH

issues” has to be controlled somehow.

10.2.2 Validation with Real Users and Projects

In this thesis we have claimed that “one of the most effective ways of creating
high-quality conceptual schemas is by using a modeling tool that enforces all the
relevant quality criteria”. Unfortunately, we have seen that conceptual schemas
created by students using current modeling tools contain errors, mainly because
these tools “do not enforce all the relevant quality criteria”. In order to overcome
this problem, we have presented a prototype implementation that integrates is-
sues on top of Eclipse and, as a result, it is able to analyze the conceptual schema
as it is being developed.

We believe that the feedback our tool provides can be helpful to conceptual
modelers when it comes to improve their schemas. Our tool analyzed the concep-
tual schema in a non-disruptive manner and offers information on which quality
issues are present in a schema and how the conceptual modelers can fix them.
Current IDEs follow a similar approach for providing feedback (see Chap. 9), but
we have not tested with real users whether this interaction between the concep-
tual modeler and the modeling tool is the most appropriate. In order to evaluate
this particular aspect, we plan to work in two different directions. On the one
hand, we have released our prototype tool—i.e. the Eclipse plugin—as an open
source project. The source code can be found in [8] and is available for any-
one to test and modify. The feedback we may get from real users will help us
improve and evolve the prototype tool. On the other hand, we plan to conduct
some experiments where students are asked to develop conceptual schemas us-
ing our CMA. These controlled experiments will let us determine whether the
tool can be used as we expect—i.e. without interrupting the regular tasks of the
conceptual modeler, and providing useful feedback.

10.2.3 Automatic Reparation of Conceptual Schemas

Although this thesis focuses on detecting quality issues, it also includes a mecha-
nism to fix them—i.e. issue actions. As we have defined issue actions, whenever
a conceptual modeler wants to fix a particular issue, she is the responsible of

199

CHAPTER 10. CONCLUSIONS AND FURTHER WORK

selecting the appropriate issue action and execute it. Since quality issues are, in
general, independent between them, fixing one issue may lead to new issues.

Another interesting research area is the automatic generation of reparation
plans. A reparation plan would be defined as the set of issue actions the concep-
tual modeler has to execute so that all (or as many as possible) issue instances are
fixed. There is a lot of work to do in here, because there are situations in which
more than one issue action can be executed, but their consequences differ2.

10.2.4 Integration with Other Methodologies

The ultimate goal of this work is to improve the quality of a conceptual schema.
There are other approaches in the literature that pursue the same goal. One
notable example is the creation of conceptual schemas using testing [123, 124].
The testing approach presented in [123] is based on the notion of “test cases”,
which represents “expected user stories that represent the knowledge that is ex-
pected and correct, according to the stakeholders of the system”. Thus, a test
case is defined as a sequence of states of the information base and certain asserts
about them. The conceptual modeler is responsible for defining (with the help of
the stakeholders) test cases and making sure they can be successfully executed.

The integration of our method with this testing approach can be done from
two different perspectives. On the one hand, the creation of test cases is error
prone—test cases have to comply with their metamodel and may have to follow
certain guidelines and practices. Therefore, issue types for defining proper test
cases may be defined, thus simplifying their creation. On the other hand, the
failure of a test case can be seen as a conceptual modeling issue, because “all test
cases are expected to end successfully”.

10.3 Impact of the Thesis

An important component of the design science research methodology is the com-
munication of the results. In this section, we enumerate the scientific publica-

2Consider, for example, executing the pull-up property action in an incomplete generalization set,
as described in Fig. 6.16 (a) and (b).

200

10.3. IMPACT OF THE THESIS

tions that are related to this thesis, as well as a degree’s final project I co-directed.

10.3.1 Publications

Formalization of Conceptual Schema Quality Issues

AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. A method for the definition
and treatment of conceptual schema quality issues. In ER (2012),
vol. 7532 of LNCS, Springer, pp. 501–514

Abstract: In the literature, there are many proposals of quality properties of con-
ceptual schemas, but only a few of them (mainly those related to syntax) have been
integrated into the development environments used by professionals and students.
A possible explanation of this unfortunate fact may be that the proposals have been
defined in disparate ways, which makes it difficult to integrate them into those envi-
ronments. In this paper we define quality properties in terms of quality issues, which
essentially are conditions that should not happen, and we propose a unified method
for their definition and treatment. We show that our method is able to define most
of the existing quality properties in a uniform way and makes it possible to integrate
quality issues into development environments. The method can be adapted to sev-
eral languages. We present a prototype implementation of our method as an Eclipse
plugin. We have evaluated the potential usefulness of our method by analyzing the
presence of a set of quality issues in a set of conceptual schemas developed by students
as part of their projects.

201

CHAPTER 10. CONCLUSIONS AND FURTHER WORK

A Catalog of Quality Issues

AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. Enforcement of conceptual
schema quality issues in current Integrated Development Environ-
ments. In CAiSE (2013), vol. 7908 of LNCS, Springer, pp. 626–640

Abstract: We believe that one of the most effective ways of increasing the quality of
conceptual schemas in practice is by using an Integrated Development Environment
(IDE) that enforces all relevant quality criteria. With this view, in this paper we
analyze the support provided by current IDEs in the enforcement of quality criteria
and we compare it with the one that could be provided given the current state of
the art. We show that there is a large room for improvement. We introduce the
idea of a unified catalog that would include all known quality criteria. We present
an initial version of this catalog. We then evaluate the effectiveness of the additional
support that could be provided by the current IDEs if they enforced all the quality
criteria defined in the catalog. We focus on conceptual schemas written in UML/OCL,
although our approach could be applied to other languages.

Conceptual Modeling Assistant

AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. An eclipse plugin for improv-
ing the quality of UML conceptual schemas. In ER Workshops (2012),
vol. 7518 of LNCS, Springer, pp. 387–390

Abstract: The development of an information system requires its conceptual schema
to be of high quality. Classically, this quality comprises properties such as syntactic
and semantic correctness, relevance, and completeness, but many other quality prop-
erties have been proposed in the literature. In this demonstration we integrate some
published quality properties in Eclipse by extending the core functionalities of MDT.
These properties include syntactic issues, naming guidelines, and best practices. A
quality property is defined using OCL and is specified in an XML file. The set of qual-
ity properties included in our tool is available on an online public catalog that can be
extended to include new quality properties. We use XSLT to present this catalog in a
friendly manner to users that access it using a web browser.

202

10.3. IMPACT OF THE THESIS

Naming Guidelines for the UML

AGUILERA, D., GARCÍA-RANEA, R., GÓMEZ, C., AND OLIVÉ, A. An eclipse
plugin for validating names in UML conceptual schemas. In ER Work-
shops (2011), vol. 6999 of LNCS, Springer, pp. 323–327

Abstract: Many authors agree on the importance of choosing good names for con-
ceptual schema elements. Several proposals of naming guidelines are available in
the literature, but the support offered by current CASE tools is very limited and, in
many cases, insufficient. In this demonstration we present an Eclipse plugin that
implements a specific proposal of naming guidelines. The implemented proposal pro-
vides a guideline for every kind of named element in UML. By using this plugin, the
modelers can automatically check whether the names they gave to UML elements are
grammatically correct and generate a verbalization that can be analyzed by domain
experts.

AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. A complete set of guidelines
for naming UML conceptual schema elements. Data Knowl. Eng. 88,
0 (2013), 60–74

Abstract: We focus on the problem of naming conceptual schema elements in UML,
which is faced by conceptual modelers every time they define a new element that re-
quires a name. The problem is significant because in general there are many elements
that require a name, and the names given have a strong influence on the understand-
ability of that schema. We propose a guideline for every kind of element to which a
conceptual modeler may give a name in UML. The guideline comprises the grammar
form of the name and a pattern sentence. A name complies with our guideline if it
has that form and the sentence generated from the pattern sentence is grammatically
well-formed and semantically meaningful. The main novelty of our proposal is that
it is (as far as we know) the first that provides a naming guideline for each kind of
element of conceptual schemas in UML.

203

CHAPTER 10. CONCLUSIONS AND FURTHER WORK

10.3.2 Degree’s Final Project

GARCÍA-RANEA, R. Desarrollo de un plug-in de Eclipse para validar
los nombres de los elementos de un esquema conceptual. In Fac-
ultat d’Informàtica de Barcelona, Universitat Politècnica de Catalunya
(2011), (co-directed by David Aguilera and Cristina Gómez)

Abstract: Conceptual schemas are a key component in information system develop-
ment, since they provide an abstraction of the real-world. Generally, a conceptual
schema comprises a structural schema and a behavioural schema. The names given to
conceptual schema elements play an important role in the schema understandability.
Several proposals of naming guidelines are available in the literature, but the support
offered by current CASE tools is very limited. In this work, Raúl presents an Eclipse
plugin that implements a specific proposal of naming guidelines. The implemented
proposal provides a guideline for every kind of named element in UML.

204

Bibliography

[1] ADOBE. ActionScript 2.0 Best Practices.

[2] AGUILERA, D., GARCÍA-RANEA, R., GÓMEZ, C., AND OLIVÉ, A. An eclipse
plugin for validating names in UML conceptual schemas. In ER Workshops
(2011), vol. 6999 of LNCS, Springer, pp. 323–327.

[3] AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. An eclipse plugin for improving the
quality of UML conceptual schemas. In ER Workshops (2012), vol. 7518
of LNCS, Springer, pp. 387–390.

[4] AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. A method for the definition and
treatment of conceptual schema quality issues. In ER (2012), vol. 7532 of
LNCS, Springer, pp. 501–514.

[5] AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. A complete set of guidelines for
naming UML conceptual schema elements. Data Knowl. Eng. 88, 0 (2013),
60–74.

[6] AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. Enforcement of conceptual schema
quality issues in current Integrated Development Environments. In CAiSE
(2013), vol. 7908 of LNCS, Springer, pp. 626–640.

[7] AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. Issue catalog, http://helios.lsi.
upc.edu/phd/catalog/issues.php.

[8] AGUILERA, D., GÓMEZ, C., AND OLIVÉ, A. Conceptual Modeling Assistant
(CMA) for Eclipse, http://helios.lsi.upc.edu/phd/downloads.

[9] AKOKA, J., COMYN-WATTIAU, I., AND CHERFI, S. S.-S. Quality of conceptual
schemas an experimental comparison. In RCIS (2008), pp. 197–208.

205

http://helios.lsi.upc.edu/phd/catalog/issues.php
http://helios.lsi.upc.edu/phd/catalog/issues.php
http://helios.lsi.upc.edu/phd/downloads

BIBLIOGRAPHY

[10] AMBLER, S. W. The Elements of UML 2.0 Style. Cambridge University, 2005.

[11] ARGOUML. ArgoUML, http://argouml.tigris.org.

[12] ATKINSON, C., AND KÜHNE, T. Model-driven development: A metamodeling
foundation. IEEE Softw. 20, 5 (2003), 36–41.

[13] BARKER, R. CASE Method: Entity Relationship Modelling, 1st ed. Addison-
Wesley, 1990.

[14] BECKER, J., DELFMANN, P., HERWIG, S., LIS, L., AND STEIN, A. Formalizing
linguistic conventions for conceptual models. In ER (2009), vol. 5829 of
LNCS, Springer, pp. 70–83.

[15] BLANC, X., MOUGENOT, A., MOUNIER, I., AND MENS, T. Incremental detection
of model inconsistencies based on model operations. In CAiSE (2009),
vol. 5565 of LNCS, Springer, pp. 32–46.

[16] BOEHM, B. W., AND BASILI, V. R. Software defect reduction top 10 list. IEEE
Comput. 34, 1 (2001), 135–137.

[17] BOGER, M., STURM, T., AND FRAGEMANN, P. Refactoring browser for UML.
In NetObjectDays (2002), vol. 2591 of LNCS, Springer, pp. 366–377.

[18] BOLLOJU, N., AND LEUNG, F. S. Assisting novice analysts in developing
quality conceptual models with UML. Commun. ACM 49, 7 (2006), 108–
112.

[19] BOLLOJU, N., AND SUGUMARAN, V. A knowledge-based object modeling ad-
visor for developing quality object models. Expert Syst. Appl. 39, 3 (2012),
2893–2906.

[20] BOOCH, G. Object-Oriented Design with Applications. Benjamin-Cummings,
1991.

[21] BUTLER, S., WERMELINGER, M., YU, Y., AND SHARP, H. Relating identifier
naming flaws and code quality: An empirical study. In Proceedings of the
2009 16th Working Conference on Reverse Engineering (2009), WCRE ’09,
IEEE Comput. Soc., pp. 31–35.

[22] CABOT, J. Incremental Integrity Checking in UML/OCL Conceptual Schemas.
BarcelonaTech – PhD Thesis, 2006.

206

http://argouml.tigris.org

BIBLIOGRAPHY

[23] CABOT, J., AND TENIENTE, E. Incremental integrity checking of UML/OCL
conceptual schemas. J. of Syst. and Softw. 82, 9 (2009), 1459–1478.

[24] CERI, STEFANOAND WIDOM, J. Deriving production rules for constraint
maintainance. In 16th International Conference on Very Large Data Bases,
Proceedings (1990), Morgan Kaufmann, pp. 566–577.

[25] CERI, S., FRATERNALI, P., PARABOSCHI, S., AND TANCA, L. Automatic genera-
tion of production rules for integrity maintenance. ACM Trans. Database
Syst. 19, 3 (1994), 367–422.

[26] CHEN, P. The entity-relationship model – toward a unified view of data.
ACM Trans. Database Syst. 1 (1976), 9–36.

[27] CHEN, P. English sentence structure and entity-relationship diagrams. Inf.
Sci., 2-3 (1983), 127–149.

[28] CHERFI, S. S.-S., AKOKA, J., AND COMYN-WATTIAU, I. Conceptual modeling
quality - from EER to UML schemas evaluation. In ER (2002), vol. 2503
of LNCS, Springer, pp. 414–428.

[29] CHERFI, S. S.-S., AKOKA, J., AND COMYN-WATTIAU, I. Measuring UML con-
ceptual modeling quality, method and implementation. In BDA (2002).

[30] CHERFI, S. S.-S., AKOKA, J., AND COMYN-WATTIAU, I. Perceived vs. measured
quality of conceptual schemas: An experimental comparison. In ER (Tuto-
rials, Posters, Panels & Industrial Contributions) (2007), vol. 83 of CRPIT,
ACM, pp. 185–190.

[31] CHERFI, S. S.-S., COMYN-WATTIAU, I., AND AKOKA, J. Quality patterns for
conceptual modelling. In ER (2008), vol. 5231 of LNCS, Springer, pp. 142–
153.

[32] CLAYBERG, E., AND RUBEL, D. Eclipse Plug-ins. Addison-Wesley, 2008.

[33] COSTAL, D., AND GÓMEZ, C. On the use of association redefinition in UML
class diagrams. In ER, vol. 4215 of LNCS. Springer, 2006, pp. 513–527.

[34] COSTAL, D., GÓMEZ, C., QUERALT, A., RAVENTÓS, R., AND TENIENTE, E. Fa-
cilitating the definition of general constraints in UML. In Model Driven
Engineering Languages and Systems, vol. 4199 of LNCS. Springer, 2006,
pp. 260–274.

207

BIBLIOGRAPHY

[35] CURLAND, M., AND HALPIN, T. A. Enhanced verbalization of ORM models.
In OTM Workshops (2012), vol. 7567 of LNCS, Springer, pp. 399–408.

[36] CYCORP. Cyc Ontology.

[37] DAVIES, I., GREEN, P., ROSEMANN, M., INDULSKA, M., AND GALLO, S. How do
practitioners use conceptual modeling in practice? Data Knowl. Eng. 58,
3 (2006), 358–380.

[38] DEISSENBOECK, F., AND PIZKA, M. Concise and consistent naming. Softw.
Qual. Control 14 (2006), 261–282.

[39] DENNIS, A., WIXOM, B. H., AND TEGARDEN, D. System Analysis and Design
with UML Version 2.0. Wiley, 2005.

[40] DINH-TRONG, T. T., KAWANE, N., GHOSH, S., FRANCE, R. B., AND AM-
SCHLER ANDREWS, A. A tool-supported approach to testing UML design
models. In ICECCS (2005), IEEE Comput. Soc., pp. 519–528.

[41] ECLIPSE COMMUNITY. MDT-UML2Tools, http://wiki.eclipse.org/MDT-

UML2Tools.

[42] ECLIPSE FOUNDATION. Eclipse project, http://www.eclipse.org.

[43] EGYED, A. Instant consistency checking for the UML. In ICSE (2006), ACM,
pp. 381–390.

[44] EGYED, A. Automatically detecting and tracking inconsistencies in soft-
ware design models. IEEE Trans. Softw. Eng. 37, 2 (2011), 188–204.

[45] EGYED, A., AND BALZER, R. Integrating cots software into systems through
instrumentation and reasoning. Automated Software Eng. 13, 1 (2006),
41–64.

[46] EMBLEY, D. W., KURTZ, B., AND WOODFIELD, S. Object-Oriented Systems
Analysis: A Model-Driven Approach. Yourdon Press, 1992.

[47] ENDRES, A., AND ROMBACH, D. A Handbook of Software and Systems Engi-
neering: Empirical Observations, Laws and Theories. Addison-Wesley, 2003.

[48] FAGAN, M. E. Advances in software inspections. IEEE Trans. Softw. Eng.
12, 7 (1986), 744–751.

208

http://wiki.eclipse.org/MDT-UML2Tools
http://wiki.eclipse.org/MDT-UML2Tools
http://www.eclipse.org

BIBLIOGRAPHY

[49] FINKELSTEIN, A. C. W., GABBAY, D., HUNTER, A., KRAMER, J., AND NUSEIBEH,
B. Inconsistency handling in multiperspective specifications. IEEE Trans.
Softw. Eng. 20, 8 (1994), 569–578.

[50] FLIEDL, G., KOP, C., AND VÖHRINGER, J. Guideline based evaluation and ver-
balization of OWL class and property labels. Data Knowl. Eng. 69 (2010),
331–342.

[51] FOWLER, M. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[52] FRANCE, R. B., AND RUMPE, B. Model-driven development of complex soft-
ware: A research roadmap. In FOSE (2007), pp. 37–54.

[53] GARCÍA-RANEA, R. Desarrollo de un plug-in de Eclipse para validar
los nombres de los elementos de un esquema conceptual. In Facultat
d’Informàtica de Barcelona, Universitat Politècnica de Catalunya (2011),
(co-directed by David Aguilera and Cristina Gómez).

[54] GARVIN, D. A. What does “product quality” really mean? Sloan Manag.
Review 26, 1 (1984), 25–43.

[55] GENERO, M., FERNÁNDEZ-SÁEZ, A. M., NELSON, H. J., POELS, G., AND PIAT-
TINI, M. Research review: A systematic literature review on the quality of
UML models. J. of Database Manag. 22, 3 (2011), 46–70.

[56] GOGOLLA, M. UML and OCL in conceptual modeling. In Handbook of
Conceptual Modeling, D. W. Embley and B. Thalheim, Eds. Springer, 2011,
pp. 85–122.

[57] GRIETHUYSEN, J. V. Concepts and Terminology for the Conceptual Schema
and the Information Base. ISO TC97/SC5/WG3, 1982.

[58] HALPIN, T. Information Modeling and Relational Databases: from Concep-
tual Analysis to Logical Design. Morgan Kaufmann, 2001.

[59] HARTMANN, S. On the consistency of int-cardinality constraints. In ER,
vol. 1507 of LNCS. Springer, 1998, pp. 150–163.

[60] HARTMANN, S. Coping with inconsistent constraint specifications. In ER
(2001), vol. 2224 of LNCS, Springer, pp. 241–255.

209

BIBLIOGRAPHY

[61] HAY, D. C. Data Model Patterns: Conventions of Thought, 1st ed. Dorset
House, 1996.

[62] HEVNER, A. R., MARCH, S. T., PARK, J., AND RAM, S. Design science in
information systems research. MIS Q. 28, 1 (2004), 75–105.

[63] IEEE COMPUT. SOC. IEEE 1320.2: Standard for Conceptual Modeling Lan-
guage Syntax and Semantics for IDEF1X97 (IDEFobject), 1998.

[64] INTERNATIONAL STANDARDS ORGANIZATION (ISO). ISO TC97/SCS/WG3:
Concepts and terminology for the conceptual schema and the informa-
tion base, 1982.

[65] INTERNATIONAL STANDARDS ORGANIZATION (ISO). ISO Standard 9000-2000:
Quality management systems: Fundamentals and vocabulary, 2000.

[66] INTERNATIONAL STANDARDS ORGANIZATION (ISO). ISO Standard 9126: Soft-
ware product quality, 2001.

[67] KALJURAND, K., AND E. FUCHS, N. Verbalizing OWL in Attempto Controlled
English. In Proceedings of Third International Workshop on OWL: Experi-
ences and Directions (2007), vol. 258.

[68] KLEPPE, A. G., WARMER, J., AND BAST, W. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley, 2003.

[69] KROGSTIE, J. Model-Based Development and Evolution of Information Sys-
tems – A Quality Approach. Springer, 2012.

[70] KROGSTIE, J., SINDRE, G., AND JØRGENSEN, H. Process models representing
knowledge for action: a revised quality framework. Eur. J. Inf. Syst. 15, 1
(2006), 91–102.

[71] LANGE, C. F. Empirical Investigations in Software Architecture Complete-
ness. Master’s Thesis, Department of Mathematics and Computing Sci-
ence, Technical University Eindhoven, 2003.

[72] LARMAN, C. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3 ed. Prentice-Hall, 2005.

[73] LAUESEN, S., AND VINTER, O. Preventing requirement defects: An experi-
ment in process improvement. Requir. Eng. 6, 1 (2001), 37–50.

210

BIBLIOGRAPHY

[74] LEMAITRE, J., AND HAINAUT, J.-L. Quality evaluation and improvement
framework for database schemas – using defect taxonomies. In CAiSE,
vol. 6741 of LNCS. Springer, 2011, pp. 536–550.

[75] LINDLAND, O. I., SINDRE, G., AND SØLVBERG, A. Understanding quality in
conceptual modeling. IEEE Softw. 11, 2 (1994), 42–49.

[76] MAES, A., AND POELS, G. Evaluating quality of conceptual models based
on user perceptions. In ER, vol. 4215 of LNCS. Springer, 2006, pp. 54–67.

[77] MCALLISTER, A. Complete rules for n-ary relationship cardinality con-
straints. Data Knowl. Eng. 27, 3 (1998), 255–288.

[78] MELLOR, S. J., AND BALCER, M. Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley, 2002.

[79] MEYER, B. Reusable Software: the Base object-oriented component libraries.
Prentice-Hall, 1994.

[80] MEYER, B. Object-Oriented Software Construction, 2nd ed. Prentice-Hall,
1997.

[81] MEZIANE, F., ATHANASAKIS, N., AND ANANIADOU, S. Generating natural lan-
guage specifications from UML class diagrams. Requir. Eng. 13, 1 (2008),
1–18.

[82] MICROSOFT. .NET Framework General Reference (v.1.1): Naming Guide-
lines.

[83] MICROSOFT. .NET Framework General Reference (v.4.0): Capitalization
Conventions.

[84] MOODY, D. L. Metrics for evaluating the quality of entity relationship mod-
els. In ER, vol. 1507 of LNCS. Springer, 1998, pp. 211–225.

[85] MOODY, D. L. Theoretical and practical issues in evaluating the quality of
conceptual models: current state and future directions. Data Knowl. Eng.
55, 3 (2005), 243–276.

[86] MOODY, D. L., AND SHANKS, G. What makes a good data model? evaluating
the quality of entity relationship models. In ER, vol. 881 of LNCS. Springer,
1994, pp. 94–111.

211

BIBLIOGRAPHY

[87] MOODY, D. L., SINDRE, G., BRASETHVIK, T., AND SØLVBERG, A. Evaluating the
quality of information models: Empirical testing of a conceptual model
quality framework. In ICSE (2003), pp. 295–307.

[88] MOZILLA. Open Directory Project (ODP) – List of UML tools, http://www.
dmoz.org.

[89] NELSON, H. J., POELS, G., GENERO, M., AND PIATTINI, M. A conceptual
modeling quality framework. Softw. Qual. Control 20, 1 (2012), 201–228.

[90] NIJSSEN, G. M., AND HALPIN, T. A. Conceptual Schema and Relational
Database Design. Prentice-Hall, 1989.

[91] NUGROHO, A., AND CHAUDRON, M. Evaluating the impact of UML modeling
on software quality: An industrial case study. In MoDELS, vol. 5795 of
LNCS. Springer, 2009, pp. 181–195.

[92] OBJECT MANAGEMENT GROUP (OMG). Object Constraint Language, 2010.

[93] OBJECT MANAGEMENT GROUP (OMG). Unified Modeling Language (UML),
Superstructure, 2011.

[94] OLIVÉ, A. Conceptual schema-centric development: A grand challenge
for information systems research. In CAiSE (2005), vol. 3520 of LNCS,
Springer, pp. 1–15.

[95] OLIVÉ, A. A method for the definition of integrity constraints in object-
oriented conceptual modeling languages. Data Knowl. Eng. 59 (2006),
559–575.

[96] OLIVÉ, A., AND RAVENTÓS, R. Modeling events as entities in object-oriented
conceptual modeling languages. Data Knowl. Eng. 58 (2006), 243–262.

[97] OLIVÉ, A. Conceptual Modeling of Information Systems. Springer, 2007.

[98] OLIVÉ, A., AND CABOT, J. A research agenda for conceptual schema-centric
development. Conceptual Modelling in Information Systems Engineering
(2007), 319–334.

[99] PASTOR, O., AND MOLINA, J. C. Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling. Springer,
2007.

212

http://www.dmoz.org
http://www.dmoz.org

BIBLIOGRAPHY

[100] PIPINO, L., LEE, Y. W., AND Y. WANG, R. Data quality assessment. Commun.
ACM 45, 4 (2002), 211–218.

[101] POSNER, R. Charles morris and the behavioral foundations of semiotics.
In Classics of Semiotics (1987), Plenum, pp. 23–57.

[102] PRICE, R., AND SHANKS, G. G. A semiotic information quality framework:
development and comparative analysis. J. of Inf. Tech. 20, 2 (2005), 88–
102.

[103] QUERALT, A., ARTALE, A., CALVANESE, D., AND TENIENTE, E. OCL-Lite: Finite
reasoning on UML/OCL conceptual schemas. Data Knowl. Eng. 73 (2012),
1–22.

[104] QUERALT, A., AND TENIENTE, E. Verification and validation of UML concep-
tual schemas with OCL constraints. ACM Trans. Softw. Eng. Methodol. 21,
2 (2012), 13:1–13:41.

[105] RAMÍREZ, A., VANPEPERSTRAETE, P., RUECKERT, A., ODUTOLA, K., BENNETT, J.,
TOLKE, L., AND VAN DER WULP, M. ArgoUML user manual: A tutorial and
reference description. Tech. rep., 2000–2009.

[106] RELF, P. A. Achieving software quality through identifier names. In Qualcon
2004 (2004), pp. 33–34.

[107] RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., AND LORENSEN, W.
Object-oriented modeling and design. Prentice-Hall, 1991.

[108] RUMBAUGH, J., JACOBSON, I., AND BOOCH, G. The Unified Modeling Language
Reference Manual (2nd Edition). Addison-Wesley, 2005.

[109] SDMETRICS. The software design metrics tool for the UML, http://

sdmetrics.com.

[110] SELIC, B. The pragmatics of model-driven development. IEEE Softw. 20, 5
(2003), 19–25.

[111] SHANKS, G., TANSLEY, E., AND WEBER, R. Using ontology to validate con-
ceptual models. Commun. ACM 46, 10 (2003), 85–89.

[112] SILVA, M. A. A. D., MOUGENOT, A., BLANC, X., AND BENDRAOU, R. Towards
automated inconsistency handling in design models. In CAiSE (2010),
vol. 6051 of LNCS, Springer, pp. 348–362.

213

http://sdmetrics.com
http://sdmetrics.com

BIBLIOGRAPHY

[113] SIMSION, G. C., AND WITT, G. C. Data Modeling Essentials, 3rd ed. Morgan
Kaufmann, 2005.

[114] SOMMERVILLE, I. Software Engineering, 9 ed. Addison-Wesley, 2010.

[115] SPANOUDAKIS, G., AND ZISMAN, A. Inconsistency management in software
engineering: Survey and open research issues. In In Handbook Of Software
Engineering and Knowledge Engineering (2001), World Scientific, pp. 329–
380.

[116] STAMELOS, I., ANGELIS, L., OIKONOMOU, A., AND L. BLERIS, G. Code quality
analysis in open source software development. Inf. Syst. J. 12, 1 (2002),
43–60.

[117] STARR, L. Executable UML: How to Build Class Models. Prentice-Hall, 2002.

[118] STEINBERG, D., BUDINSKY, F., PATERNOSTRO, M., AND MERKS, E. EMF: Eclipse
Modeling Framework, 2 ed. Addison-Wesley, 2008.

[119] STRAETEN, R. V. D., MENS, T., AND BAELEN, S. V. Challenges in model-driven
software engineering. In MoDELS Workshops (2008), vol. 5421 of LNCS,
Springer, pp. 35–47.

[120] SUN MICROSYSTEMS. Code conventions for the Java Programming Language,
1997.

[121] TAKEDA, H., VEERKAMP, P., TOMIYAMA, T., AND YOSHIKAWA, H. Modeling
design processes. AI Mag. 11, 4 (1990), 37–48.

[122] TENIENTE, E., AND URPÍ, T. On the abductive or deductive nature of
database schema validation and update processing problems. Theory
Pract. Log. Program. 3, 3 (2003), 287–327.

[123] TORT, A., OLIVÉ, A., AND SANCHO, M.-R. An approach to test-driven devel-
opment of conceptual schemas. Data Knowl. Eng. 70, 12 (2011), 1088–
1111.

[124] TORT, A., OLIVÉ, A., AND SANCHO, M.-R. On checking executable concep-
tual schema validity by testing. In DEXA (1) (2012), vol. 7446 of LNCS,
Springer, pp. 249–264.

214

BIBLIOGRAPHY

[125] TORT, A., OLIVÉ, A., AND SANCHO, M.-R. The CSTL processor: A tool for
automated conceptual schema testing. In ER Workshops, vol. 6999 of
LNCS. Springer, 2011, pp. 349–352.

[126] URPÍ, T., AND OLIVÉ, A. A method for change computation in deductive
databases. In VLDB (1992), Morgan Kaufmann, pp. 225–237.

[127] URPÍ, T., AND OLIVÉ, A. Semantic change computation optimization in
active databases. In RIDE-ADS (1994), IEEE Comput. Soc., pp. 19–27.

[128] VAISHNAVI, V., AND KUECHLER, W. Desing research in information systems,
2004.

[129] VAN VLIET, H. Software Engineering: Principles and Practice, 2 ed. John
Wiley & Sons, 2000.

[130] W3C. Extensible Markup Language (XML).

[131] W3C. Web Ontology Language (OWL).

[132] WAND, Y., AND WANG, R. Y. Anchoring data quality dimensions in ontolog-
ical foundations. Commun. ACM 39, 11 (1996), 86–95.

[133] WAND, Y., AND WEBER, R. Research commentary: Information systems and
conceptual modeling – a research agenda. Inf. Syst. Research 13, 4 (2002),
363–376.

[134] WIERINGA, R. J. Design methods for reactive systems - Yourdon, Statemate,
and the UML. Morgan Kaufmann, 2003.

[135] WOHED, P. Tool support for reuse of analysis patterns: a case study. In ER
(2000), vol. 1920 of LNCS, Springer, pp. 196–209.

[136] Y. WANG, R., AND M. STRONG, D. Beyond accuracy: What data quality
means to data consumers. J. of Manag. Inf. Syst. 12, 4 (1996), 5–33.

215

Appendices

217

A word is nothing but a painting of a
fire. A name is the fire itself.

P. Rothfuss, The Name of the Wind

A
Naming Guidelines for the

Unified Modeling Language

The names conceptual modelers give to the elements of a conceptual schema
have a strong influence on the understandability of that schema. It is widely
recognized that good names make it easier for requirement engineers, conceptual
modelers, system developers and users to understand conceptual schemas [1, 38,
79, 82]. However, choosing good names is one of the most difficult aspects of
conceptual modeling [107, p. 46].

The conceptual modeling quality framework proposed by Lindland et al. [75]
distinguishes among three types of quality: syntactic, semantic and pragmatic.
The goal of pragmatic quality is comprehension, meaning that all concerned par-
ties completely understand the statements in the model that are relevant to them
[102]. Giving good names to the elements of a conceptual schema makes that
schema easier to understand. On the other hand, in the related field of program-

219

APPENDIX A. NAMING GUIDELINES FOR THE UML

ming, it has been reported statistically significant associations between the num-
ber of identifiers that violate naming guidelines (an adaptation of Relf’s guide-
lines [106]) and the program code quality in a set of eight established open
source Java application libraries [21].

In this appendix we put forward a proposal of naming guidelines for UML
structural and behavioral conceptual schemas [5]. In UML, the structural schema
consists of a set of classes, association classes and data types (collectively called
here entity types), with their generalization relationships, a set of attributes of
those classes, a set of associations, and a set of invariants (integrity constraints).
The behavioral schema in UML is defined by either event types or system oper-
ations, with their pre/postconditions and state machines [56, 72, 103, 104, 97,
123]. Figure A.1 shows a fragment of the UML metamodel [93] comprising the
main NamedElements used for defining UML conceptual schemas.

In the literature, there have been several proposals of naming guidelines
for conceptual schema elements. Here, we systematically review most of them.
Some of the guidelines we propose are built on existing proposals, while others
are new. Our main contributions are: (1) a naming guideline for each kind of
element of conceptual schemas in UML; (2) the definition of a guideline in terms
of a grammatical form of the name, and its pattern sentence; and (3) the pattern
sentence of each guideline. There has been similar work for other languages,
notably ORM [90, 58, 35], but ours is the first to deal with UML.

The structure of the rest of this appendix is as follows. Sections A.1 to A.6
present the naming guidelines. Each section starts with a review of the relevant
literature. Section A.1 deals with entity types and related concepts. Section A.2
describes the naming guidelines for attributes, which take into account their car-
dinality constraints. Section A.3 describes the naming guidelines for associations,
also taking into account their cardinality constraints. Section A.4 presents the
naming guideline of invariants, which in UML are the non-graphical static con-
straints. Section A.5 presents the naming guidelines for event types and related
concepts. Section A.6 presents the naming guidelines for UML states, the basic
components of the popular state machine or statecharts diagrams.

220

A.1. ENTITY TYPES

Element

NamedElement
name:String

Type

Classifier

Class

memberEnd 2..* * ownedAttribute

0..1

0..1

0..1*Property
lower: Natural[0..1]

upper: UnlimitedNatural[0..1]

Association

AssociationClass

DataType

Enumeration

State Operation Constraint
0..1

postContext
*

preCondition
0..1
preContext

*
postCondition

* constrainedElement

*

Figure A.1. Main NamedElements used for defining conceptual schemas in UML.

A.1 Entity types

In this section we propose a naming guideline for UML constructs related to en-
tity types. Our guideline applies to UML classes, association classes and data
types (including enumerations). We first summarize a literature review on simi-
lar naming guidelines and then we present our proposal.

A.1.1 Literature review

[27] was one of the first works that analyzed the correspondence between En-
glish sentences and entity types. With respect to entity types, [27] proposed two
rules (or guidelines): the first states that “a common noun (such as person, chair)
in English corresponds to an entity type in an ER diagram” [27, p. 130] and the
second that “a gerund in English corresponds to a relationship-converted entity
type in ER diagrams” [27, p. 135]. The first rule was adopted by most of the
later work. [10, 13, 46, 61, 79, 80, 90] suggested that the name of an entity type
should be a singular noun (possibly qualified), a recommendation that has been
widely followed. The standard IDEF1 observed that the name may be “a noun or
a noun phrase” [63, p. 35].

221

APPENDIX A. NAMING GUIDELINES FOR THE UML

[81] examined 45 class diagrams from the object oriented literature, mainly
textbooks, and found that “the names given to classes are either a noun (N), a
pair of nouns (NN) or a sequence of three nouns (NNN). These represent 97% of
all the names surveyed in this study. An exception to these rules is an adjective
followed by a noun (AN), which is found in nearly 3% of the surveyed class
names”. In the field of programming, [38, p. 6] reports that about 80% of all
identifiers in large programs are compounds.

A similar approach has been taken by the proposers of guidelines for naming
OWL classes. [67, p. 7] added that “named classes are denoted by singular
countable nouns”. [50, p. 335] observed the need for delimiters in OWL class
names: if a class “consists of more than one term, a definite delimiter between the
terms must be used. Here we follow the guideline that an upper case character
works as delimiter” and “a class should always start with upper case”. Some
works call “the Pascal1 case” to this capitalization form [82].

The above guidelines have been adopted for similar contexts by a few popular
professional best practices [1, 82, 120].

In summary, we can say that the literature shows a consensus on how to name
entity types. The guideline we propose below is in line with this consensus.

A.1.2 Naming guideline

The first guideline G1 deals with the names of UML classes, association classes
and data types (collectively called entity types). The guideline consists of the
form of the name G1 f and the pattern sentence G1s (see next page).

It is easy to see that names such as Person, Chair, Invoice or Category (classes),
Job or Enrollment (association classes), Date or AmountOfMoney (data types),
and Sex or Color (enumerations) follow the guideline. An example of a complex
name that also follows the guideline, taken from the Cyc ontology [36], is Path-
ForWheeledVehicles. In this example, the head of the name (Path) is a countable

1Pascal or Camel case is the practice of writing compound words or phrases in which the elements
are joined without spaces, with each element’s initial letter capitalized within the compound. In
computer programming if the first letter is capitalized, it is called Pascal case; if not, then Camel case
(from Wikipedia, CamelCase).

222

A.1. ENTITY TYPES

Entity Types

G1 f The name of an entity type should be a noun phrase whose head is a countable
noun in singular form. The name should be written in the Pascal case.

G1s If N is the name of an entity type, then the following sentence must be grammat-
ically well-formed and semantically meaningful:

An instance of the entity type named N is [a|an] lower(N).

where lower(N) is a function that gives N in lower case and using blanks as
delimiters.

When the entity type is implicit from the context, the pattern sentence is just:

An instance of this entity type is [a|an] lower(N).

noun in singular form, and the sentence generated from this name by using the
pattern sentence G1s is:

An instance of this entity type is a path for wheeled vehicles.

which is grammatically well-formed and semantically meaningful. The UML
metamodel [93] also uses many complex names that follow this guideline, such
as DirectedRelationship, NamedElement, ValueSpecification, AssociationClass, Gen-
eralizationSet, and ProtocolStateMachine, among others.

Note that guideline G1 f requires the head of the noun phrase to be a “count-
able noun in singular form”. This excludes entity type names such as Water or
Gold, which are uncountable (or mass) nouns and whose instances are portions
or amounts of a substance or thing. For these (rare) cases we could suggest a
different pattern sentence, such as:

An instance of this entity type is a portion of lower(N).

but we refrain from doing it because in general the added complexity of the
guideline is not strictly needed. In these cases, we suggest to add a prefix to the
name such that it becomes countable. For example: AmountOfWater or PortionOf-
Gold. This is what we did before in the example of Money (AmountOfMoney).

Our guidelines adopt the capitalization rules proposed in [83] for acronyms
that appear in the noun phrase of G1 f . For ease of reference we reproduce the

223

APPENDIX A. NAMING GUIDELINES FOR THE UML

rules below. Examples of the application of the capitalization rules could be ER-
ConferenceEdition, CaiseConferenceEdition and OmgStandard, assuming that ER,
CAISE and OMG, respectively, are acronyms.

Capitalization rules for acronyms [83]

1. Capitalize both characters of a two-character acronym, except if it is the first
word of a name in Camel case.

2. Capitalize only the first character of an acronym with three or more characters,
except if it is the first word of a name in Camel case.

3. Do not capitalize any of the characters of any acronym, if it is the first word of a
name in Camel case.

A.2 Attributes

In this section we propose a naming guideline for attributes. Our guideline ap-
plies to attributes of classes, association classes and data types. We first summa-
rize a literature review on similar naming guidelines and then we present our
proposal.

A.2.1 Literature review

[27] was one of the first works that analyzed the correspondence between parts
of English sentences and attributes of entity and relationship types in ER dia-
grams. [13, pp. 7–20] indicated that “any attribute name must be simple and
singular, and must not contain the name of the entity”. [79, p. 99] suggested
the same guideline, and added a guideline for Boolean valued attributes: “use
either an adjective which suggests a true or false property or a name of the form
is_prop, where prop denotes a property”. IDEF1 highlighted that “an attribute
name is a role name for the value class. An attribute role name is a name used
to clarify the sense of the value class in the context of the class for which it is a
property” [63, p. 88].

In the analysis of the use of attributes in 45 class diagrams [81, p. 7] found

224

A.2. ATTRIBUTES

that “nouns are frequently used for attributes and 85% of the strings are single
nouns, pair of nouns, triplets of nouns or a noun preceded by an adjective. Verbs
are rarely used and if used, they are in the past tense. Only the verb be is found
to be used in some cases in the present tense and only in the first position of verb-
adjective strings and they usually denote attributes of type Boolean”. Concerning
the style of attribute names, it has been often suggested to use the Camel case
[1, 93, 120, 134].

A.2.2 Naming guideline

Let E::A:T [min..max] be an attribute named A of type T of the entity type E and
whose minimum and maximum multiplicities are min and max, respectively. For
presentation purposes, in this appendix we assume that min is either 0 or 1, and
that max is either 1 or * (unlimited); the extension to the general case is straight-
forward. The naming guideline G2 we propose for UML attributes is also in line
with the previous work summarized above. However, we distinguish between
two kinds of attributes (depending on whether T is or is not the Boolean data
type) and in both cases the pattern sentence takes into account the multiplicities
min and max. We call G2 the guideline when T is not Boolean, and G2′ when it is.

Guideline for non-boolean attributes

If T is not the Boolean data type, then the form of the name G2 f and the pattern
sentence G2s are:

Non-Boolean Attributes
Let E::A:T [min..max] be a non-boolean attribute.

G2 f The name A should be a noun phrase in singular form, written in the Camel case.

G2s One of the following sentences must be grammatically well-formed and semanti-
cally meaningful:

– If min= 0 and max= 1:
[A|An] lower(E) may have [a|an] lower(A).

(continues in the next page. . .)

225

APPENDIX A. NAMING GUIDELINES FOR THE UML

– If min= 0 and max> 1:
[A|An] lower(E) may have zero or more lower(plural(A)).

– If min=max= 1:
[A|An] lower(E) has [a|an] lower(A).

– If min> 0 and max> 1:
[A|An] lower(E) has one or more lower(plural(A)).

Note that plural(A) is a function that gives the plural form of A.

In the example of Fig. A.2 there are seven non-boolean attributes, which
follow the guideline suggested here. The sentences generated from them are:

A sale offer has a price.
A sale offer may have an expiration date.
An amount of money has a value.
A shop has a name.
A product has zero or more images.
A product has one or more colors.

As we indicated before, in this appendix we adopt the capitalization rules
proposed in [83] for acronyms. An example of its application to attribute names
is the attribute ISO code of Currency (Fig. A.2). According to the rules, the
attribute must be written in Camel case as isoCode and the generated sentence
is:

A currency has an ISO code.

Note that in this case we define lower(isoCode) as “ISO code”.

Currency

isoCode: String

«datatype»

AmountOfMoney

value: Real
1..0*

Shop

name: String
opensAllDay: Boolean[0..1]

isOnline: Boolean

Product

isPerishable: Boolean
image: Url[*]

color: Color[1..*]

SaleOffer

price: AmountOfMoney

expirationDate: Date[0..1]

*

1

Figure A.2. Examples of boolean and non-boolean attributes.

226

A.3. ASSOCIATIONS

Guideline for boolean attributes

If T is Boolean, we assume that min is either 0 or 1, and max equals 1. The form
of the name G2′ f and the pattern sentence G2′s are:

Boolean Attributes
Let E::A:Bool [min..max] be a boolean attribute.

G2′ f The name A should be a verb phrase in third-person singular form, in the Camel
case.

G2′s The following sentence must be grammatically well-formed and semantically
meaningful:

[A|An] lower(E) lower(withOrNeg(A)) [, or it may be unknown].

where the last optional fragment is included only if min is equal to zero.

The function withOrNeg(A) extends A with the insertion of “or negative(A)”
after the verb of A, where negative(A) is the negative form of the verb of A. For
example:

withOrNeg(isDerived) = isOrIsNotDerived
withOrNeg(hasChildren) = hasOrHasNotChildren

Figure A.2 shows three Boolean attributes, which follow the guideline sug-
gested here. The sentences generated from them are:

A shop opens or does not open all day, or it may be unknown.
A shop is or is not online.
A product is or is not perishable.

A.3 Associations

In this section we propose naming guidelines for UML associations. We distin-
guish between binary and n-ary associations because the guidelines are quite
different. In each case, we first summarize the existing literature and then we
present our guideline.

227

APPENDIX A. NAMING GUIDELINES FOR THE UML

A.3.1 Binary associations

Literature review

There is an abundant literature on naming binary associations. Existing proposals
can be classified along two dimensions: what is named (association, roles, or
both) and how it is named. In the simplest case, there is only one name, which
is given to the association. An example is OWL [50, 131]. As stated in [81,
p. 6], “the names of the associations are in most cases composed of a single verb
in third person singular (V) or followed by a preposition (VP), a noun (VN),
a preposition and a noun (VPN) or a preposition and a verb (VPV)”. It is also
common the guideline “association names should start with a capital letter, since
an association represents a classifier” [72, p. 153] [134, p. 81]. A variant is the
Object-Relationship Model [46], a successor to ER [26], in which associations
may have two names (verbs), one in each direction.

Other languages choose to name only the two roles. Examples are the CASE*
Method [13], a variant of ER, and Object-Role Modeling (ORM) [58], a successor
to NIAM [90]. There are two approaches on naming roles: noun-based and
verb-based. In the noun-based approach, role names are nouns, while in the
verb-based approach, role names are verbs [97]. In the CASE*Method, ORM,
and in Executable UML [78, 117, 90], role names are verbs, but most methods
suggest the use of nouns. In UML, if a role name is missing, it is assumed that it
is the name of the corresponding entity type starting with a lowercase character
[93, p. 19] [92, p. 17]

Finally, there are languages that allow naming both the association and the
two roles. Prominent examples are ER and UML, for which up to three names can
be given: the association and two roles. The most complete language is IDEF1X,
which allows defining two names for the association and one name for each of
the two roles [63].

Naming guideline

Let R(p1:E1 [min1,max1], p2:E2 [min2,max2]) be a binary association between
entity types E1 and E2, playing roles p1 and p2, with multiplicities [min1,max1]

228

A.3. ASSOCIATIONS

and [min2,max2], respectively. In UML, the participants of an association are
ordered. This order is graphically shown by a solid arrowhead next to the name
R [93, p. 41]. When the order is left to right or top to bottom, the arrowhead is
usually omitted.

In UML there may be up to three explicit names related with this association
(all are optional): the name of the association R and the names of the two roles p1

and p2. The roles p1 and p2 always have an implicit name that is used only when
there is no explicit name. The implicit name of a role is that of the corresponding
entity type, starting with lower case. When E1 = E2 then either p1, p2, or both
must have an explicit name. There are no implicit names for associations. Two
different associations may have the same name. In UML, there are two special
associations, aggregation and composition, that have predefined names and need
not be named by the modelers.

The naming guideline G3 we propose for UML binary associations is in line
with the consensus of the work summarized above. The guideline has two parts:
one for the name of the association R (G a

3), and one for the names of the roles
p1 and/or p2 (G r

3). The guideline for the form of the name of the association G a
3 f

and the pattern sentence G a
3s is:

Binary Associations
Let R(p1:E1 [min1,max1], p2:E2 [min2,max2]) be a binary association.

G a
3 f The name of the association R should be a verb phrase in third-person singular

form, written in the Pascal case.

G a
3s The sentences generated by the following pattern sentence must be grammati-

cally well-formed and semantically meaningful:

– If min2 = 0 and max2 = 1:
[A|An] lower(E1) lower(R) at most one lower(E2).

– If min2 = 1 and max2 = 1:
[A|An] lower(E1) lower(R) [a|an] lower(E2).

– If min2 = 0 and max2 = ∗:
[A|An] lower(E1) lower(R) zero or more lower(plural(E2)).

– If min2 = 1 and max2 = ∗:
[A|An] lower(E1) lower(R) one or more lower(plural(E2)).

229

APPENDIX A. NAMING GUIDELINES FOR THE UML

As we have seen, role names may be implicit or explicit. We distinguish
between two types of explicit role names: external and internal. External role
names must follow the guideline explained below. Internal role names are names
needed for technical reasons, and are not intended to be verbalized. Internal role
names may be distinguished by using a special prefix, such as an underscore.

The guideline we propose for the external name of roles is based on the
view that a role can be seen as a non-boolean attribute of the entity type at the
other end [107], and therefore the guideline for roles can be the same as that
of attributes. More specifically, if R(p1:E1 [min1,max1], p2:E2 [min2,max2]) is a
binary association, then the roles p1 and p2 are seen as the attributes:

• E2::p1:E1[min1,max1]

• E1::p2:E2[min2,max2]

and they must follow the guideline G2 that we proposed for the attributes. For
ease of reference, we reproduce the guideline in the following, adapted to role
names:

External Role Names in Binary Associations
Let R(p1:E1 [min1,max1], p2:E2 [min2,max2]) be a binary association.

G r
3 f Assuming pi (i = 1,2) is an external role name, the name pi should be a noun

phrase in singular form, written in the Camel case.

G r
3s One of the following sentences must be grammatically well-formed and semanti-

cally meaningful:

– If mini = 0 and maxi = 1, i 6= j:
[A|An] lower(E j) may have [a|an] lower(pi).

– If mini = 0 and maxi > 1, i 6= j:
[A|An] lower(E j) may have zero or more lower(plural(pi)).

– If mini =maxi = 1, i 6= j:
[A|An] lower(E j) has [a|an] lower(pi).

– If mini > 0 and maxi > 1, i 6= j:
[A|An] lower(E j) has one or more lower(plural(pi)).

Note that plural(pi) is a function that gives the plural form of pi .

230

A.3. ASSOCIATIONS

As an example, consider the nine associations shown in Fig. A.3. Four associ-
ations have an explicit association name that follow guideline G a

3 f , and generate
the following sentences:

A publisher publishes zero or more journals.
A paper cites zero or more papers.
A person writes zero or more papers.
A person was born in a town.

There are eight roles with an explicit name that follow guideline G r
3 f and

generate the following sentences:

A paper has zero or more references.
A paper has one or more authors.
A town has zero or more natives.
A person has a place of birth.
A journal has one or more editors in chief.
A journal has one or more members of the editorial board.
An organization has zero or more employees.
A person may have an employer.

Note that in the example of Fig. A.3 the role named _editedJournal is internal
and it is not intended to be verbalized. In this example, the name is needed to
satisfy the UML constraint that an entity type (such as Person) cannot participate
in two associations such that the other participants have the same role name.
Without the internal name _editedJournal, Journal would have the same role
name (the implicit name journal) in its two associations with Person.

Also note that in the example of Fig. A.3 there are two associations that are
compositions (Journal–Issue and Issue–paper), and therefore they need not be
named explicitly.

A.3.2 n-ary associations

Literature review

n-ary associations (associations among three or more entity types) are much less
common than binary ones, and there are very few published guidelines that deal
with them. One exception is the Object-Role Modeling (ORM) language [58,

231

APPENDIX A. NAMING GUIDELINES FOR THE UML

Publisher Journal

Issue

Paper

Person

Organization

Town

1 *

*

*
*

* reference

*

author 1..*

memberOfThe
EditorialBoard 1..* 1..2 editorInChief

* employee

* native

employer 0..1

placeOfBirth 1

* _editedJournal

*
Publishes

Writes

Cites

Figure A.3. Examples of associations and roles.

p. 84+], which proposed a combination of role names such that a pattern sen-
tence can be generated from it. In UML, [97] observed that it is difficult to
generate pattern sentences for n-ary associations and suggested to define instead
explicit ones. However, these explicit pattern sentences should be defined as
stereotyped comments in UML, which is not very practical. The guideline we
propose below formalizes the ORM approach for the UML.

Naming guideline

Let R(p1:E1, . . . , pn:En) be an n-ary association (n > 2) between entity types
E1, . . . , En, playing roles p1, . . . , pn, respectively. In UML there may be up to
n+ 1 explicit names related with this association (all are optional): the name of
the association R and the names of the roles p1, . . . , pn. The roles p1, . . . , pn

always have an implicit name that is used only when there is no explicit name.
The implicit name of a role is that of the corresponding entity type, starting with
lower case. When Ei = E j then either pi or p j or both must have an explicit name.
There are no implicit names for n-ary associations. Two different associations
may have the same name.

The naming guideline G4 we propose for UML n-ary associations builds upon
the previous work summarized above. The guideline for the form of the name of
the association G4 f and the pattern sentence G4s are:

232

A.4. INVARIANTS

n-ary Associations
Let R(p1:E1, . . . , pn:En) be an n-ary association (n> 2).

G4 f The name of the association R should be a verb phrase in third-person singular
form, written in the Pascal case. The name must include n− 1 substrings of the
form <pi>, one for each of the roles p2, . . . , pn, where pi is the explicit name of
the role or (if it has not one) the implicit name. Role names are written in the
Camel case.

In UML the participants of an association are ordered, but for n-ary associa-
tions the order is not graphically shown. Therefore, in the above guideline it may
be unknown which is the first participant (p1). The convention we follow is that
p1 is the only participant that does not appear in R.

G4s The sentences generated by the following pattern sentence must be grammati-
cally well-formed and semantically meaningful:

[A|An] lower(E1) lower(expanded(R))

In the sentence, expanded(R) is a function that gives the result of substituting
“[a|an] (Ei)” for each of the <pi> substrings. Note that the name of the roles are
not taken into account in expanded(R), but they may be embedded into the verb
phrase of R.

The examples of Fig. A.4 illustrate the proposed guideline.

• Supplies<product>To<project> generates the pattern sentence:
A vendor supplies a product to a project.

• Sells<product>Of<vendor>In<country> generates:
A salesperson sells a product of a vendor in a country.

• CanSubstitute<substitute>In<project> generates:
A product can substitute a product in a project.

A.4 Invariants

In UML, an invariant is a static constraint targeted at an entity type [95]. The
constraint may be defined as a boolean OCL expression in the context of that
entity type. The expression must be true for each instance of that entity type.
Invariants can be named [92]. For example:

233

APPENDIX A. NAMING GUIDELINES FOR THE UML

Product

Vendor Country

Project

Salesperson

Supplies<product>To<project>

CanSubstitute<substitute>In<project>

*

*

*

* * substitute

*

* *

*

Sells<product>

Of<vendor>

In<country>

Figure A.4. Examples of n-ary associations.

context Department inv hasEnoughEmployees :
s e l f . numberOfEmployees > 50

is an invariant named hasEnoughEmployees.

In UML, untargeted constraints must be defined as invariants whose context
is a singleton entity type. For example, in a system that manages a conference
facility the untargeted constraint “There must be at least one large room” can be
defined by the following invariant:

context C o n f e r e n c e F a c i l i t y inv hasAtLeastOneLargeRoom :
Room. a l l I n s t a n c e s ()−>s e l e c t (s i z e = Size : : l a rge)

−>s i z e () > 0

where it is assumed that ConferenceFacility is a singleton entity type, that size is
an attribute of Room, and that Size is an enumeration.

As far as we know, in the literature there are not proposals on naming guide-
lines for invariants. We have only found a general recommendation in [80,
p. 899] stating that “you should label assertion clauses to make the text more
readable”. The guideline that we propose in the following tries to follow the
style of the guidelines for the other elements.

234

A.4. INVARIANTS

A.4.1 Naming guideline

The guideline we propose for naming the invariant I has two parts: the form of
the name G5 f and the pattern sentence G5s:

Invariants

G5 f The name of an invariant should be a verb phrase in third-person singular form.
The name should be written either in the Camel or, if no confusion can arise2, in
the ordinary case.

G5s If I is the name of an invariant whose context is the entity type E, then the follow-
ing sentence must be grammatically well-formed and semantically meaningful:

[A|An] lower(E) lower(I)

The following examples illustrate the application of the guideline (we omit
the OCL expression):

context Person inv i s Ident i f i edByHisName

context Marriage inv i s a r e l a t i o n s h i p between a woman and a man

context Sec t ion inv is Identi f iedByCourseAndName

context Course inv cannotBeASucces sorOf I t se l f

context Course inv c o n s i s t s of s e c t i o n s whose teacher s are exper t s in
the course ’ s t o p i c s

which generate the following pattern sentences:

A person is identified by his name.
A marriage is a relationship between a woman and a man.
A section is identified by course and name.
A course cannot be a successor of itself.
A course consists of sections whose teachers are experts in the course’s topics.

It can be seen that the names of the invariants tend to be long, because
they constitute almost the complete sentence. However, such names convey an

2In OCL, the name of the invariant is the string starting after the keyword inv and ending in a
colon.

235

APPENDIX A. NAMING GUIDELINES FOR THE UML

accurate meaning of the invariant, which makes it easier to develop (and to
understand) the corresponding OCL expressions. In some development contexts,
it may even be possible to omit the OCL expression and define the name of the
invariant only.

A.5 Event Types

We now deal with the behavioral part of conceptual schemas. In general, a
behavioral schema consists of a set of event types or system operations, and/or
a set of state transition diagrams. In this section, we deal with event types or
system operations, and in the next section we deal with state transition diagrams.

An event can be modeled as an instance of an event type [96] or as an in-
vocation of a system operation [72]. Both event types and system operations
have preconditions and postconditions. Event types have characteristics, which
are the set of attributes and associations in which they participate. System op-
erations have parameters. Event attributes and operation parameters are similar
to entity attributes discussed in Sect. A.2, and can follow the same guidelines.
Event associations are similar to ordinary associations, and can follow the guide-
lines presented in Sect. A.3. In the following we present our naming guidelines
for event types, operations, preconditions and postconditions.

A.5.1 Event Types

As far as we know, [97, pp. 254, 281] is the only proposal on naming guidelines
for event types published in the literature. We adopt here the above mentioned
proposal because it follows the style of the guidelines for the other elements and
it is highly consistent with the examples of event types published in the literature.

Let Ev be an event type. The guideline we propose for naming Ev has two
parts: the form of the name G6 f and the pattern sentence G6s:

236

A.5. EVENT TYPES

System

MakeNewSale(): Sale

EnterItem(sale:Sale, item:Product, quantity:Natural): SaleItem

EndSale(sale:Sale)

Sale

isComplete: Boolean = False

«event»

EndOfSale
«event»

NewSale

«event»

NewSaleItem

quantity: Natural

Product

quantityOnHand: Natural

SaleItem

quanitty: Natural

CorrespondsToEnds

Buys

Buys

0..1

1

1

*

*

* 1

1

*

Figure A.5. Fragment of a structural schema and its behavioural specification using event
types and system operations.

Event Types

G6 f The name of an event type should be a noun phrase whose head is a countable
noun in singular form. The name should be written in the Pascal case. Note that
this guideline is the same as G1 f , which we proposed for entity types.

G6s If Ev is the name of an event type, then the following sentence must be grammat-
ically well-formed and semantically meaningful:

An instance of the event type named Ev is [a|an] lower(Ev) event.

When the event type is implicit from the context, the pattern sentence is just:

An instance of this event type is [a|an] lower(Ev) event.

Figure A.5 shows an example (taken from [72]) with three event types: New-
Sale, NewSaleItem and EndOfSale, which generate the sentences:

An instance of this event type is a new sale event.
An instance of this event type is a new sale item event.
An instance of this event type is an end of sale event.

237

APPENDIX A. NAMING GUIDELINES FOR THE UML

A.5.2 System Operations

There is a wide agreement on naming operations with verbs: “Modifier opera-
tions should be named with active verb phrases such as Draw or Move” [20]; “It
improves clarity to start the name [. . .] with a verb [. . .] since it emphasizes
these are commands or requests” [72, p. 178]; “Use verbs or verb phrases to
name methods, in Pascal case” [82]; “Methods should be verbs, in mixed case”
[120]; “Name operations with strong verbs” [10]. We adopt here this guideline.

Let Op be a system operation. The guideline we propose for naming Op has
two parts: the form of the name G7 f and the pattern sentence G7s:

System Operations

G7 f The name of a system operation should be a verb phrase. The name should be
written in the Pascal case.

G7s If Op is the name of system operation, then the following sentence must be gram-
matically well-formed and semantically meaningful:

An invocation of the operation named Op requests the system to
perform the Op command.

When the operation is implicit from the context, the pattern sentence is just:

An invocation of this operation requests the system to perform the
Op command.

Note that in the pattern sentence we have written Op, and not lower(Op) as it
could be expected from previous sentences. The reason is that most operation na-
mes given in practice are compact descriptions of the command to be performed,
and it does not seem possible to give a general rule for its verbalization.

As an example, Figure A.5 shows also the three system operations, named
MakeNewSale, EnterItem and EndSale, corresponding to the above mentioned
event types. The sentences generated from those names are:

An invocation of this op. requests the system to perform the MakeNewSale command.

An invocation of this op. requests the system to perform the EnterItem command.

An invocation of this op. requests the system to perform the EndSale command.

238

A.5. EVENT TYPES

A.5.3 Preconditions

A precondition is a condition that must be satisfied by the event characteristics
or operation parameters and/or information base when the event occurs or the
system operation is invoked [97]. In UML, preconditions can be named and
formally specified in OCL.

As far as we know, in the literature there are no proposals on naming guide-
lines for preconditions. We have found only a general recommendation: “You
should label assertion clauses to make the text more readable” [80, p. 899].

The guideline we propose for naming Pre tries to follow the style of the guide-
lines for the other elements. It has two parts, the form of the name G8 f and the
pattern sentence G8s:

Preconditions

Let Pre be a precondition of event type Ev or of system operation Op.

G8 f The name of a precondition should be a phrase. The name should be written in
either the Camel or the ordinary case.

G8s If Pre is the name of a precondition, then the following sentence must be gram-
matically well-formed and semantically meaningful:

[Before the occurrence of lower(Ev) | Before the operation
lower(Op) is invoked], lower(Pre).

When the event type or system operation is implicit from the context, the
pattern sentence is just:

[Before the occurrence of this event | Before this operation is
invoked], lower(Pre).

In the example of Fig. A.5, event type NewSaleItem (or the equivalent system
operation EnterItem) has two preconditions with names: “the sale is not com-
plete”, and “there is enough stock”:

context NewSaleItem : : e f f e c t ()
pre the s a l e i s not complete :

not s a l e . isComplete
pre there i s enough s tock :

quant i t y >= product . quantityOnHand

239

APPENDIX A. NAMING GUIDELINES FOR THE UML

which generate the sentences:

Before the occurrence of this event, the sale is not complete.

Before the occurrence of this event, there is enough stock.

A.5.4 Postconditions

The effect of events or system operations is described by means of one or more
postconditions. A postcondition is a condition that must be satisfied by the in-
formation base after the occurrence of the event or the execution of the system
operation [72]. In general, a postcondition may also include assertions on out-
puts produced (queries or communications) [97]. In UML, postconditions can be
named and formally specified in OCL.

As far as we know, in the literature there are not proposals on naming guide-
lines for postconditions. The one that we propose in the following tries to follow
the style of the guidelines for the other elements.

The guideline we propose for naming Post has two parts: the form of the
name G9 f and the pattern sentence G9s:

Postconditions

Let Post be a postcondition of event type Ev or of system operation Op.

G9 f The name of a postcondition should be a phrase. The name should be written in
either the Camel or the ordinary case.

G9s If Post is the name of a postcondition, then the following sentence must be gram-
matically well-formed and semantically meaningful:

[After the occurrence of lower(Ev) occurs | After the execution of
lower(Op)], lower(Post).

When the event type or system operation is implicit from the context, the
pattern sentence is just:

[After the occurrence of this event | After the execution of this
system operation], lower(Post).

In the example of Fig. A.5, event type NewSale (or the equivalent system
operation MakeNewSale) has one postcondition named “a sale has been created”:

240

A.6. STATES

context NewSale : : e f f e c t ()
post a s a l e has been crea ted :

s . oclIsNew () and s . oc l I sTypeOf (Sale)

which produces the sentence:

After the occurrence of this event, a sale has been created.

Similarly, the event type NewSaleItem (or the equivalent system operation En-
terItem) has two postconditions with names: “a sale item has been created”, and
“the product’s quantity on hand has decreased”, which generate the sentences:

After the occurrence of this event, a sale item has been created.
After the occurrence of this event, the product’s quantity on hand has decreased.

A.6 States

In UML, a state is a “condition or situation during the life of an object in which it
satisfies some condition, performs some activity or waits for some event” [108,
p. 597]. States are the basic components of the popular state machine or state-
charts diagrams.

As far as we know, [97, p. 302] is the most detailed proposal on naming
guidelines for states published in the literature. [78, p. 152] acknowledges that
“it is important to choose good, meaningful state names”, but no specific guide-
line is suggested. [10, p. 105] indicates that “state names should be simple but
descriptive”. [134, p. 112] suggests that “state names start with an initial upper-
case letter”. We adopt here the above mentioned proposal because it follows the
style of the guidelines for the other elements and it is highly consistent with the
examples of states published in the literature.

A.6.1 Naming guideline

The guideline we propose for naming S has two parts: the form of the name G10 f

and the pattern sentence G10s:

241

APPENDIX A. NAMING GUIDELINES FOR THE UML

States

Let S be a state of entity type E.

G10 f The name of a state should be an adjective, an adjectival phrase or other noun
modifier, written in the Pascal case.

G10s If S is the name of a state of the entity type E, then at least one of the following
sentences must be grammatically well-formed and semantically meaningful:

[A|An] lower(E) is lower(S).
[A|An] lower(E) is in the state of lower(S).

The following examples, taken from the literature, illustrate the application
of the guideline:

• MicrowaveOven: ReadyToCook, DoorOpen, CookingInterrupted, Cooking,
CookingComplete. [78]

• Patient: Entering, Admitted, UnderObservation, Released. [39]

• PhoneCall: Idle, DialTone, Dialing, Connecting, Busy, . . . [108]

A few examples of the sentences they generate are:

A microwave oven is ready to cook.
A microwave oven is in the state of door open.
A patient is entering.
A patient is under observation.
A phone call is busy.

242

	Cover
	Acknowledgments
	Abstract
	Contents
	I Preface
	Introduction
	Motivation and Antecedents
	Research Approach
	Research Contributions
	A Formalization of Conceptual Schema Quality Issues
	A Catalog of Conceptual Schema Quality Issues
	A Conceptual Modeling Assistant

	Overview of the Thesis

	II Background on Conceptual Modeling and Quality
	Basic Concepts on Conceptual Modeling
	Conceptual Modeling
	Conceptual Schemas
	Structural Subschema
	Behavioural Subschema

	Modeling Languages
	The Entity-Relationship (ER) Model
	The Unified Modeling Language (UML)

	Metamodeling
	Summary

	Quality in Conceptual Modeling
	Frameworks for Evaluating Quality
	Related Work on Improving Quality
	Working with Inconsistencies
	Quality Properties in the Literature
	Tool Support to Assess Quality

	Summary

	III Contributions
	Overview of Our Method
	A Brief Introduction to Quality Issues
	Motivating Example
	Informal Definition of Quality Issues

	General Structure of our Method
	Defining Quality Issue Types
	Compilation of Quality Issue Types in a Catalog
	Using Quality Issues on Schema Development

	Summary

	Formalization of Quality Issues
	Definition of Issue Type and Issue Instance
	Potential Issues: the Scope and Applicability Condition
	Raised Issues: the Issue Condition
	Kind and Acceptance of an Issue Type

	The Lifecycle of an Issue Instance
	Issue Precedence
	On Computing Issues Instances
	Issue Actions: Tackling Issues
	Summary

	Catalog of Quality Issues
	Classification of Issue Types
	Issue Types
	Syntactic
	Syntactic+
	Basic Quality
	Best Practice
	Naming

	Limitations
	Evaluation
	Summary

	A Conceptual Modeling Assistant
	Overview and Architecture
	Introduction to the Eclipse Platform
	CMA's Architecture
	The Issue Type Manager
	The Issue Processor
	The Issue View

	Online Catalog (for OCL Issue Types)
	User Interaction
	Selecting the Relevant Issue Types
	Defining the Model and Obtaining Feedback
	Fixing Issue Instances

	Summary

	Incremental Evaluation of Quality Issues
	Understanding Incremental Evaluation
	A Motivating Example
	Computing Issue Instances as the Schema Evolves

	Related Work on Incremental Evaluation
	Efficient Evaluation of OCL Integrity Constraints
	Inconsistency Management

	Incremental Evaluation of Quality Issues
	Formalization of Incremental Evaluations
	Integrating an Incremental Approach to our Method
	Integrating the Incremental Evaluation of Quality Issues in our CMA
	Comparison of Regular and Incremental Evaluation of Quality Issues

	Summary

	Quality Assessment in Current IDEs
	Current Support of Quality Issues
	The Analysis

	Comparing IDEs vs Our Catalog
	Extending Current IDEs with the Catalog
	Comparing Issue Type Formalizations
	Adapting Scopes
	Adapting Applicability and Issue Conditions
	Adapting Checking Issues
	Adapting Precedents

	Summary

	Conclusions and Further Work
	Summary of the Results
	The Challenge of Quality in Conceptual Modeling
	Formalization of Quality Issues and Compilation of a Catalog
	Implementation and Integration of our Method in an Integrated Development Environment
	Efficient Evaluation of Quality Issue Types using Incremental Methods

	Directions for Further Research
	Extending the catalog
	Validation with Real Users and Projects
	Automatic Reparation of Conceptual Schemas
	Integration with Other Methodologies

	Impact of the Thesis
	Publications
	Degree's Final Project

	Bibliography
	Appendices
	Naming Guidelines for the UML
	Entity types
	Literature review
	Naming guideline

	Attributes
	Literature review
	Naming guideline

	Associations
	Binary associations
	n-ary associations

	Invariants
	Naming guideline

	Event Types
	Event Types
	System Operations
	Preconditions
	Postconditions

	States
	Naming guideline

