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Chapter 1

Introduction

Air transportation is an essential factor in the economic and social progress
of the modern world. It provides the principal means for long distances and
international passenger traveling [1], which is crucial for global business and
tourism development. According to [2], 40% of international tourists travel by
air and 25% of sales in companies are dependent on air transport. Nowadays,
facing the notable growing of tra�c is one of the major challenges of the
aviation industry. The considerable rise in the number of passengers carried
in last years has led to increasingly congested airports, negative impact on
the environment and important 
ight delays [1]. In 2012, around 35% of
European 
ights were more than 5 minutes late with an average of 30 minutes
[3]. Increasing airport capacities or building new infrastructures is an expensive
and di�cult solution. Hence, a better planning and an e�cient use of the
resources is decisive for a sustainable growth of this important industry.

Moreover, air transport is a very complex system, where various intercon-
nected processes should be performed in compliance with numerous regulations
and security restrictions. Di�erent actors are involved in the di�erent processes
and each of them aim at optimizing their own resources and maximize their
bene�ts. However, the goals and decisions made are con
icting in most of
the cases. An integration of the planning decisions of each partner is needed
to optimize the overall utilization of the limited infrastructure. In this sense,
the Collaborative Decision Making (CDM) [4] approach was introduced with
the aim to achieve a more collaborative coordination among airports, airlines,
air tra�c management, ground handlers, etcetera. CDM is the base of di�er-
ent e�orts and important projects which are currently carried out such as the
Airport-Collaborative Decision Making (A-CDM) [4] and the Single European
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2 Introduction

Sky ATM Research (SESAR) program [5], particularly focused on the Air Traf-
�c Management. The TITAN Project [6] proposes to improve the e�ciency of
the turnaround through sharing reliable and timely information between the
concerned actors.

Turnaround is a critical airport process. It is de�ned as the period of time
the aircraft is on the ramp between an inbound and outbound 
ight, and dif-
ferent ground handling operations are performed. Ground handling comprises
the activities, operative procedures, equipment requirements, and personnel
necessary to prepare an aircraft for the next 
ight. Since ground tasks are
very interdependent, each operation is a potential source of delays which could
be easily propagated to other ground operations and other airport processes
[7, 8]. Moreover, planning decisions about each vehicle required to perform an
operation a�ect the scheduling of other activities and the performance of other
resources. According to [6], the lack of integration of the di�erent activities
and an ine�cient use of the resources during turnaround are important causes
of 
ight delays.

Divisions of either airports or airlines have historically performed these
operations. With the aim to improve competitiveness and the quality of the
services provided, a process of deregulation of ground handling market was
promoted at European airports [9]. In this sense, the number of self-handling
services was limited and the subsidiary initiatives were encouraged. Since the
Council Directive 96/67/EG was established in 1996, a notable increase in the
number of third party companies has taken place [10]. In practice, and caused
by the hierarchy of the overall airport planning, ground handlers are generally
not included in the decision making of airlines, airports or other stakeholders.
This means that handling scheduling procedures are conditioned to these prior
decisions [11]. For instance, 
ight schedules de�ned by airlines determine the
available time to complete ground activities and aircraft parking positions are
set by the airport stand allocation.

This scenario with several ground handlers providing multiple services fur-
ther increases the importance of e�cient scheduling of ground activities [12].
Particularly, logistics in ground handling [13] and cooperative planning deci-
sions are among the major challenges to improve the quality of the ground
handling services. This context suggests the development of new tools that
can help on the decision making process.

This thesis aims to contribute to the operational e�ciency of ground han-
dling facing the problem from a global perspective. To the best of our knowl-
edge, this is the �rst time the problem is treated as a whole in the literature.
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So far, other approaches have been developed to optimize the operations in
isolation [12, 14, 15], but they do not consider the relations and entanglements
between all the involved activities. We do explicitly consider these relations
in our approach, and di�erent operations and types of vehicles, each of them
with their own available 
eet, are modeled. We introduce a multi-objective
approach for scheduling the ground handling vehicles that perform this set of
interconnected activities. Solving this problem consists of obtaining a schedule
for the vehicles that service aircraft at an airport during one working day. The
schedule has to satisfy temporal, precedence, and capacity constraints. Besides
obtaining optimized schedules for each activity, it is important to take into ac-
count the impact on other tasks. This way, we can integrate the scheduling
decisions made for each service and contribute to optimize the overall ground
handling process.

Two objectives are de�ned in order to integrate the scheduling of each re-
source and to improve the global solution: (i) minimizing the waiting time
before an operation starts and the total reduction of the available time win-
dows, using the vehicles e�ciently; and (ii) minimizing the total completion
time of the turnarounds. A method we call Sequence Iterative Method (SIM)
has been developed to address the multi-objective problem. With the aim to
achieve a more 
exible and accurate decision process, the method was imple-
mented to produce a range of solutions according to the Pareto concept of
optimality [16]. This set of solutions with trade-o� between the objectives
gives decision makers the possibility of selecting the one that better suits the
problem.

In order to apply e�cient techniques to solve the problem, a decomposi-
tion scheme inspired by the workcenter-based decomposition for the Job Shop
Scheduling [17] has been chosen. This schema provides a consistent method to
solve the complete problem and simpli�es the model and the solution process.
First, a planning problem is solved and a time window for each operation is
calculated according to the temporal and precedence restrictions. One Vehicle
Routing Problem with Time Windows (VRPTW) is identi�ed for each type of
vehicle involved, which leads to multiple VRPTWs. These are solved individ-
ually and decisions made on each routing problem are propagated to the other
VRPTWs through reductions on the available time windows.

The main features of this approach are modeled and implemented in Con-
straint Programming (CP). CP is a promising paradigm for solving real-life
combinatorial optimization problems. It provides 
exibility for modeling prob-
lems with side constraints and an e�cient mechanism to discard infeasible so-
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lutions by the constraint propagation mechanism. CP is used to obtain the
operations' time windows and to keep the consistency of the global solution.
Furthermore, CP is used in combination with Variable Neighborhood Descent
(VND) and Large Neighborhood Search (LNS) as a part of a hybrid method-
ology [18] to solve each of the routing problems. The well-known Insertion
Heuristics method [19] has been applied to produce a quick �rst solution which
is later improved using the hybrid methodology.

Finally, a version of the approach is proposed with the goal to allow a more
exhaustive exploration to �nd Pareto solutions. In this case, solutions are
obtained using only the Insertion Heuristic method and just the most promising
are improved by the hybrid methodology. Two strategies are suggested to
determine which solutions are the most promising and these rules can be also
employed to guide the decision maker towards the selection of the best schedule
to implement.
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1.1 Objectives

The objectives of this thesis are:

• The development of an e�cient approach to tackle the ground handling
scheduling problem from a holistic perspective.

• The modeling of ground handling services during turnaround as a multi-
objective optimization problem with the aim to integrate the planning
decisions about each resource and enhance the performance of the global
process.

• The development of an e�cient method to address the de�ned multi-
objective optimization problem. This method should provide reliable
solutions that can satisfy the preferences of the decision maker.

• The employment of hybrid strategies to solve the general vehicle schedul-
ing problem on ground handling operations. The study and application
of a methodology based on Constraint Programming, Variable Neighbor-
hood Descent, and Large Neighborhood Search to solve the approach is
proposed.

• The assessment of the developed approach by its application over real
airport data.

1.2 Structure of this Thesis

A brief description of the research context and the motivation of this thesis is
introduced in this chapter. Moreover, the objectives of this work are de�ned.
In Chapter 2, a background of the ground handling process in airports is pre-
sented. A state of the art of previous work related to vehicle scheduling in
ground handling is also included. The principal technologies and techniques
used to implement our approach are described in Chapter 3. The proposed
approach is explained in detail in Chapter 4, as well as the variation developed
to increase the exploration of the algorithm. Chapter 5 outlines the instances
used to assess this methodology and the computational results obtained. Fi-
nally, conclusions and contributions of this thesis are provided in Chapter 6,
as well as possible future research lines.
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Chapter 2

Ground handling process

Airline operations are typically based on a 
ight network structure where an
aircraft perform a set of consecutive 
ight legs over a period of time. An
inbound 
ight arrives at an airport and passengers reach their destination
or a connecting point to continue their journey. The aircraft is immediately
prepared to an outbound 
ight during a turnaround or overnight stay. Between
two 
ight legs, di�erent activities are executed. These activities are known as
ground handling operations.

Ground handling procedures are usually divided into two types: terminal
and ramp. Terminal activities are performed inside the terminal buildings and
concern passenger services. These include: check-in at counters for departing
passengers, assistance at boarding gates, baggage handling and claim, etc.
Ramp operations comprise most of the ground handling works and take place
at aircraft parking position between the time of arrival at the stand (In-Blocks)
and the departure (Off-Blocks). Figure 2.1 shows an example of the principal
activities during a typical turnaround, when the aircraft is parked at a contact
point, i.e. the aircraft is connected to the terminal via bridge.

• Deboarding and Boarding : These are key activities during turnaround.
They can be carried out in di�erent ways depending on the type of park-
ing position assigned to the aircraft: contact or remote stands. When
aircraft are parked at a contact point, loading bridges directly connected
to the gate are used. Sometimes, when the stand is close enough to the
terminal, passengers are allowed to walk to the aircraft [20]. Passenger
buses and stairs are needed in case of remote stands.

• Catering : This is the main on board service and provides the required

7
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In-Blocks
(IB)

Deboarding 
(Db)

Unloading 
Baggage (UL)

Potable water 
servicing (PW)

Cleaning 
(Cl)

Catering 
(Ca)

Toilet 
Servicing (TS)

Loading 
Baggage (L)

Fueling 
(F)

Boarding 
(B)

PushBack 
(PB)

Off-Block 

Figure 2.1: Example of activity 
ow during a turnaround at a contact point

meal for passengers according to the 
ight duration and the airline policy.
Food is packed into trolleys at the catering airport facilities and stored at
a handling station to be later carried to aircraft. Catering transportation
is performed using high-loader trucks that permit trolleys to be rolled on
and o� the aircraft, for new food and waste [21] , respectively.

• Cleaning : Depending on the turnaround time available, cleaning cabin
operation consists in taking out the garbage, or can include a larger
number of tasks: empty seat-pockets, vacuum cleaning, galley and toilet
disinfecting, exchange pillows and blankets, etc [7].

• Fueling : This is also an important and usually critical activity in short
turnarounds. It can be performed using two systems. For small aircraft



9

or airports with low tra�c, fuel can be transported by a tanker. On
the other hand, the hydrant system is the preferred method for larger
aircraft and airports. In this case, the fuel is provided by underground
pipelines and a dispenser vehicle is used to connect a valve located at
the apron with the aircraft. This method is safer than the �rst one. The
dispenser vehicle can also service di�erent types of aircraft [20].

• Potable water and lavatory service: Supply fresh water and collect the
toilet waste are subject to many sanitary rules to avoid any contamina-
tion. Vehicles must not be parked in the same area and the personnel
carrying out these services must be di�erent.

• Unloading and loading baggage: Baggage handling is one of the most
complex airline processes and requires a large number of resources and
personnel. Baggage can be stored at aircraft in bulk or using containers
depending on the type of aircraft. According to the type of storage,
a conveyor belt or a container vehicle is used to unload and load the
baggage in the aircraft.

• Pushback : It is the most common and safest way for an aircraft to leave
the parking position [20]. A tug is connected to the nose gear and pushes
back the aircraft out the stand, where the engines can be started to
proceed under its own power.

Other activities are conducted to inspect the aircraft or to provide air
conditioning and electric power. In general, theses operations do not have
precedence relations and can be performed in any moment during turnaround.
Other procedures are only required in special situations such as deicing services
in winter.

Ground handling operations are provided by Ground Support Equipment
(GSE), which can be mobile or �xed. Each operation is served by a speci�c
type of GSE, therefore di�erent ground units or vehicles are necessary. Ac-
cording to the task, some vehicles with a given capacity have to transport
some quantity of resources to the aircraft stand (catering, fueling, and potable
water operations), or collecting waste from the aircraft (also catering, lavatory
services, and cleaning tasks). Likewise, there are some vehicles that do not
transport any resource (pushback, baggage loader, and the fuel dispenser by
underground pipelines).

Handling activities and GSE performance are regulated by the Airport
Service Committee (ASC). The ASC is responsible for the management and
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speci�cation development of all the International Air Transport Association
(IATA) airport services. GSE functional speci�cations and maintenance pro-
cedures, handling operation requirements, sta� training, etc, are de�ned by
this organization according to the IATA Standard Ground Handling Agree-
ment [22].

Following these regulations, all the needed vehicles are located around the
aircraft on the parking position to perform the associated operations. Some
activities are carried out simultaneously, while other tasks are related by prece-
dence constraints imposed due to security issues, space requirements or airline
policies. For instance, fueling cannot be performed at the same time as pas-
senger deboarding or boarding due to a security standard. In some cases,
airlines can avoid this restriction with prior airport authority permission, e.g
when a �re extinguisher is available. Because of hygienic reasons, the toilet
and potable water servicing (collect the waste and re-equip with fresh water)
cannot be conducted at the same time, but any of them can be performed �rst.
Catering process usually has to be �nished before boarding starts and, some-
times, they can only begin when deboarding is �nished because it obstructs
passenger ways. At small aircraft galleys are placed at the back and cater-
ing can be conducted simultaneously with boarding and deboarding without
problems. A similar situation happens regarding cabin cleaning, which would
preferably be performed between disembarking and embarking of passengers.

Activities duration, as well as turnaround time, depends on many di�erent
variables. These include operational variables related to the aircraft type (size,
number of seats) and the service time required to carry them out (full servicing
or minimum servicing). Handling vehicles have to visit the stand where the
aircraft is parked, perform the assigned operation during a determined service
time, and travel to next stands to perform next activities. Moreover, operations
have to be executed in a prede�ned, and usually limited, turnaround time and
precedence restrictions between tasks have to be met.

2.1 Planning in ground handling

Decision-making process in airlines can be classi�ed into three levels accord-
ing to the moment they are implemented: strategic, planning and operations
[23]. Strategic level involves long term decisions and often takes place more
than six months before the day of operation. Investments in new aircraft 
eets
or personal according to the forecast market demand are examples of strate-
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gic decisions. Planning or tactical decisions occur between six months and
one day before the execution and is concerned with the e�cient use of the
available resources de�ned on the strategic step. An airline planning is a com-
plex process subject to many aircraft and maintenance regulations, personnel
constraints, and large numbers of resources have to be synchronized. Flight
scheduling is an example of decisions made at this level, which is an essen-
tial step determining the airline operations for next season. Usually, a new
timetable is generated taking previous schedules as a base, where key aspects,
such as origin-destination pairs, 
ight arrival and departure times, operation
frequency, etc, are de�ned or updated. Others decisions made at this stage
are the assignment of an aircraft type to each 
ight according to the number
of passengers expected, among other considerations. Later, a speci�c aircraft,
as well as pilots and cabin crew, are also assigned. Finally, the operation de-
cisions take place the day of operation and they are veri�ed or even changed
every hour. This includes carrying out possible recovery actions to response
to unexpected events or 
ight delays.

Decisions regarding ground handling operations are also made at each level.
Buying new equipment or bidding for new contracts are examples of strategic
decisions. At tactical level, resources and sta� required to handle the expected
demand for next season is de�ned. Shifts for workers and vehicles are designed
according to the resource availability and labor regulations. Concerning vehi-
cle scheduling procedures, they are generally taking place closer to the day of
operation. Tasks to be carried out are assigned to shifts and a detailed execu-
tion plan for each day is generated [12]. Finally, during the day of operation,
processes are replanned to adapt the schedule to external perturbations, such
as arrival and departure 
ight changes or even internal disruptions.

With the liberalization process of the European airports started in 1996 [9],
most of ground services are performed by independent companies. Due to the
hierarchy of the overall airport planning, ground handlers are generally not in-
cluded on the decision making of other scheduling processes (
ight scheduling,
stand allocation, etc). This means ground handlers have to �t their planning
around a set of hard constraints. These include: aircraft arrival, departure,
turnaround time, and parking position, among others [24]. Moreover, ground
handling operations planning is usually limited to execute daily plans and react
to external changes, rather than a real optimization process [12].

Airlines have a limited control over other actors in the system. For that
reason, new strategies for improving 
ight punctuality are addressed to a better
design of the 
ight schedule and the operational e�ciency of ground handling
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services [11]. The turnaround is a complex process and there are several tasks
involved that have to be coordinated. Since some activities have to be �nished
before others can started, any perturbation can produce delay propagation to
other operations and cause departure delays.

In order to ensure ground activities are �nished within the scheduled turn-
around, a bu�er time is incorporated to absorb arrival delays and unexpected
events during handling operations. Scheduled turnaround service time com-
prises the mean time to accomplish all the tasks satisfying the constraints
imposed between them, and a speci�c bu�er time. The right design of the

ight schedule and the size of the bu�er time have been a relevant issue of re-
search [8, 11, 25] due to it is a trade-o� situation not always easy to solve. Long
turnaround time gives airlines a margin to cope with uncertainty and minimize
delays. On the other hand, this reduces the utilization of the aircraft and the
productivity. Since airlines revenue is associated to maximize the number of

ights, reducing the time aircraft are on the ground is a desired goal. This
principle is followed by the so called Low Cost Airlines, which usually work
with very short turnaround times.

The bu�er time gives also a leeway of action to ground handlers to plan
their resources. In this sense, a time window can be assigned to each service.
Figure 2.2 shows the available time to perform each ground handling activity
during a turnaround subject to some precedence constraints.

2.2 Delays in ground handling

When the planned time of arrival or departure is not met, it is said a 
ight delay
occurred. Ground processes at airport are the main cause of late departures,
and in turn, they are the principal reason of arrivals delays [25]. Delays on

ight schedule are frequently taking place and have an important impact on the
airlines operational cost and passengers satisfaction. There are other causes of
delays, such as not enough airport and airside capacities to face the demand
of tra�c, adverse weather conditions, technical problems of equipment, etc.

These unexpected events could be classi�ed into two groups: internal or
boundary [25]. Internal problems are associated directly to ine�ciencies in
the ground handling performance, e.g. when a service vehicle arrives late at
the parking position. When disruptions are originated externally to ground
handlers they are called boundaries.
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Deboarding

Cleaning

Fueling

Boarding

Water

Toilet

Catering

Available time

16:55 17:35
Turnaround Time

Unloading/Loading 
baggage

Activity duration

Figure 2.2: Time available to perform each ground handling activity

2.2.1 Internal events

As mentioned, airlines de�ne the scheduled arrival and departure times for each

ight during the planning process, as well as the turnaround time, including
the bu�er to deal with uncertainty. Turnaround operations are regulated by
aircraft manufactures and the mean time to perform ground services is calcu-
lated using these standards. However, airlines can modify these speci�cations
within certain limit to cope with their operational needs, which are usually
con�dential.

In this sense, airlines revenue interests can be a source of con
icts with a
right de�nition of the turnaround time and the performance of ground han-
dlers. Or viceversa, the cost impact associated to a departure delay lies princi-
pally on airlines so they need to ensure a correct ground handling accomplish-
ment. Often, service level agreements are speci�ed between these two partners
in order to guarantee the e�ciency of the turnaround process [11].

Due to bad scheduling or when the turnaround time established by airlines
is insu�cient, ground handlers often incur in safety violations to arrive on time,
such as reckless driving [25]. In order to go faster or take a short cut, drivers
usually move across prohibited zones, e.g. under aircraft wings, or sometimes
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do not yield other vehicles when it is necessary. This increases the probability
of collision and damage, even to aircraft, and can be an important cause of
delays.

Other disturbances come from the ine�cient use of ground handling equip-
ment that can lead to an excessive usage of resources without the adequate
maintenance period. Also, when a disruption occurs, a usual solution is allo-
cating more vehicles to accelerate ground activities and reduce the risk of delay
propagation [11]. When a vehicle breaks down, a spare vehicle is needed and
it has to arrive from ground handling facilities, which are usually located near
the terminal. This situation can cause major delays, particularly at remote
stands.

2.2.2 Boundary events

External problems often cause major disruptions to the turnaround process.
Many problems are associated with lack of airport or airside resources due to
a poor planning or a wrong tra�c prediction. Taxiway congestion, missing
the assigned take-o� slot time, last minute parking position changes, etc, lead
important delays and signi�cant modi�cations of the handling schedule.

One of the most common cause of incidents is adverse weather conditions.
Regarding the performance of ground activities, the state of the pavement
and low visibility make vehicles go slow and can produce operation delays
and increase the risk of collision. Furthermore, wet pavement can produce
incidents during aircraft taxiing and delay the beginning of the turnaround.
Soil particles, such as sand or stones, can cause engines 
aw, or aircraft can
slide and hamper ground vehicles routes or even other aircraft [25].

Passengers are also another source of delays in ground handling. Long dis-
tance to arrive to the gate or long security procedures cause usually missing
passengers, particularly when they are in transfer. Likewise, emergency sit-
uations due to ill passengers or speci�c requirements with people that need
special attention can lead to unexpected issues.

In general, many of these events could be avoided or faced without resulting
in a departure delay if they are considered when de�ning the turnaround time
and vehicles are properly scheduled. When the turnaround is too short or
resource planning is poor, it is di�cult possible to absorb disruptions, reduce
the risk of late departures and knock-on delays.
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2.3 Scheduling vehicles. State of the art

Scheduling ground handling means have received less attention than other
resources, both in industrial solutions and scienti�c literature. Expensive re-
sources like aircraft or crews [26], or key processes, like the gate assignment
problem [27], have been more relevant to airlines and airports and also an
important subject in research. The growing competence between handling
companies and the pressure to comply with airlines service level agreements
have increased the necessity of new strategies and tools for assisting ground
handling process. The adoption of novel technology solutions contributes to
more accurate and timely performance and to an e�cient use of the resources.

2.3.1 Industrial applications

Air transportation has bene�ted much from the development of information
and telecommunication technologies. Air Tra�c Control (ATC), airline and
airport processes are supported by di�erent kind of Information Technology
(IT) applications that permit the expected achievements in this complex en-
vironment. A global overview of information systems used to assist di�erent
areas at a major airport is presented in [25].

There are few industrial solutions speci�cally designed to manage ramp
operations and vehicles. Most of the current systems address terminal activities
such as passenger and baggage handling. There are applications to handle
operations at the apron providing speci�c functionalities, but in practice they
are not widely used at present. In some cases, even at important airports,
basic procedures like load sheet [28, 29] �lling and delivery are carried out
manually and using hard copies. Voice-based communication for dispatching
and manual tracking vehicles are other common practices conducing to errors
and reducing productivity [30].

According to marketing brochures, novel applications that propose ad-
vanced IT solutions have been developed for monitoring ground handling op-
erations during turnaround both at airside and terminal area. Most of them
are information support systems that supervise activity progress, as well as
personnel and resource coordination. Main functionalities are updating and
transmitting real time information, such as 
ight plan, task and vehicle engine
status, using mobile communications. Fleet tracking is another common fea-
ture where Global Positioning System (GPS) technology is commonly used to
know actual vehicle positions.



16 Ground handling process

GroundStar system [31] is one of the most relevant examples developed by
the Airport Systems Division of the software company INFORM [32]. The au-
tomatic generation, assignment and reassignment of tasks taking into account

ight data, parking position or aircraft changes is the essence of this applica-
tion. Di�erent modules are included to deal with diverse functionalities: GS
GroundFleet permits vehicles to be localized and tracked using a GPS system;
operation status and vehicle positions are transferred by GS RealTime module,
which provides a framework to manage information updating process. A wide
amount of information and statistics is also provided and full daily reports
about vehicles utilization can be obtained.

GroundStar application has also contributed to the Total Airport Manage-
ment Suite (TAMS) [33]. This is an international e�ort based on the Euro-
control A-CDM initiative aiming at integrating airport process management
into one control operation center. TAMS project joins global IT leaders like
Siemens Mobile with partners from the air transport sector, such as the Ger-
man Aerospace Center and the Airport of Stuttgart. GS HubControl module
controls and guides the progress of each aircraft turnaround in real time and
provides early detection of bottlenecks and delays [34].

Other IT companies like Zebra Technologies or Huawei propose ground
handling applications. Zebra Enterprise Solution [35] division has developed
the Fleet Management System, which other functionalities in addition to ve-
hicle track utilization are included. Management of the emptying and re�lling

uid process (fuel, fresh or waste water), security issues monitoring (speed lim-
its and vehicle collisions) and equipment maintenance control are examples of
features provided by this application. Radio-frequency identi�cation (RDIF)
technology is the base of Zebra hardware to locate vehicles.

Huawei Wireless Ground Handler Solution [30] uses a 4G wireless network
to transmit information including picture and video. Vehicle track and man-
agement solution is based on Geographical Information Systems (GIS), where
vehicle location is sent every few seconds or minutes to the dispatching center.
The system permits modifying the schedule according to the current situation
and �nd the nearest available vehicle to service a speci�c task.

Finally, major airlines (e.g. Lufthansa [36]), or airports (e.g. Frankfurt
[37]) have developed their own solutions to manage handling activities.

Regarding vehicles scheduling, this kind of tools are limited to automate
resource allocation taking into account their availability. Classical heuristics
like �rst-come �rst-served are the most common algorithms for dispatching
vehicles [7, 14, 38] and important parameters, such as traveling distance or
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service time duration, are rarely considered when resources are assigned to
tasks [39]. GroundStar application comprises a planning module focused on
the resource demand calculation and the sta� shifts de�nition. That is, it
is more about determining the number of resources or crews needed to cope
with a certain workload than scheduling resources itself. Actually, obtaining
optimized vehicle routes considering resource capacity limitations as well as
time windows to begin services are future action lines of INFORM [40].

2.3.2 Scientific literature

Ground handling has neither been a rich research �eld and few examples of
vehicle scheduling can be found in the literature. Moreover, most of studies
are focused on one type of resource. To the best of our knowledge, none of
these works address the scheduling of ground handling vehicles as a whole.

Fueling trucks

Du et al.[14] proposed a model to schedule the fueling tank truck vehicles based
on Vehicle Routing Problem with Time Windows (VRPTW) with multiple
objectives. They considered the minimization of the number of vehicles, the
start time of the service and the total servicing time of the trucks, following
this order of importance. Given a number of 
ights to serve ordered by their
earliest service start time and a number of trucks with di�erent capacities,
a service schedule of the trucks is obtained. They solved the problem using
Ant Colony System [41], which is inspired on the real ant behavior looking
for food. Arti�cial ants, or vehicles in this case, update the pheromone using
a de�ned updating rules and trace the search avoiding to get trapped into a
local minimum.

The procedure built an initial solution using the Earliest Start Time First
strategy, i.e. a 
ight with the earliest start time is fueled �rst. Then, the solu-
tion is improved regarding the objectives of the problem, which are encoding
in the pheromone. A heuristic function is often used in the ant colony system
to select next node to visit. In this case, a combination of di�erent criteria
is considered: earliest service time, shorter travel and waiting time and ear-
lier latest service time. In order to reduce the exploration time and improve
the performance of this algorithm, the authors include an auxiliary ant that
generates a solution using the Earliest Due Date First heuristic [42], i.e. the

ight with the earlier latest start time is served �rst. When the best solution
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obtained in an iteration is worse than the auxiliary solution, the auxiliary one
is taken as the best.

Catering process

Ho and Leung [15] proposed a sophisticated solution to tackle airline catering
operations including sta� workload. The research was focused on a major
catering company that provides services to a considerable number of airlines at
many airports, including Hong Kong International Airport. Generally, vehicles
performing catering operation at aircraft require two workers: a driver and a
loader. Food trolley transportation and loading procedures depend on the
airline policy and the type of plane. Workers need speci�c skills to perform
the operation and often they are not quali�ed to service all the possible aircraft
or airline con�gurations.

The authors tackle the problem as a Site-Dependent Vehicle Routing Prob-
lem with Time Windows and Multiple Trips (SDVRPTWMT). Vehicles have
to be scheduled to service aircraft at a given time window, during worker shifts
and ful�lling skills requirements. The solution method was developed in two
stages. A paring problem is solved in the �rst step and worker teams are
obtained through a greedy heuristic approach. Next, aircraft operations are
assigned to teams and scheduled in the second step. A Tabu Search meta-
heuristic is presented to solve this step, which is also divided into two stages
to improve execution times.

First, an initial solution is built. Operations are selected in a random way
and are allocated to the team in which time window, shift time, and skill con-
straints are satis�ed and less tasks are assigned. Due to this method does not
guarantee all operations are assigned, remaining tasks are attributed to some
team anyway, provided that time windows are not violated. That is, the global
problem is treated as a Manpower Scheduling problem [43] and the objective
function maximizes the number of assigned jobs favoring balanced workloads.
The solution is improved in the second stage considering this optimization
goal.

This is a very complete approach for dealing with a particular ground
handling operation. Di�erent formulations and solution variants have been
proposed at each step to deal with diverse situations or drawbacks produced
by the decomposition. Moreover, the algorithm was developed using another
approach (Simulated Annealing) in order to compare results obtained.
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Connecting baggage transportation

Clausen [12] focused on baggage transportation for passengers in transit. Con-
necting baggage is not treated as regular baggage and the process can be dif-
ferent depending on the airport. In general, bags are carried from the inbound

ight to a dispatching center, where the next step is decided according to the
available time. There are two common possibilities: (i) bags are transferred to
a baggage station if the regular bags delivery to the outbound 
ight has not
started yet or (ii) baggage is directly transported to the 
ight. The problem is
to obtain vehicle routes to transport bags either to the station or immediately
to the 
ight according to the time windows associated to each option.

The author presents two views of the same problem, also called o�ine
(static) and online (dynamic) optimization problem, as a case of study in a
major European Airport. The o�ine version of the problem is tackled as a
VRP with multiple time windows and multi-trips and an Integer Programming
model is proposed. Minimizing the number of undelivered bags is the principal
optimization objective, where the total travel time can be included as a second
objective.

On the other hand, the online aspect of the second version means that,
sometimes, all data required for scheduling is not known in advance. The
author proposes dynamic optimization to address the operational planning in
ground handling due to di�erent reasons. Information updating and sharing
processes at airports are not precise and reliable enough. Then, sometimes it
is preferable scheduling resources only with the available data to avoid wrong
assumptions. Also, airports are a complex environment subject to many per-
turbations and it is not always easy to accomplish a schedule made ahead of
the day of operation and based on expected events. Furthermore, connecting
baggage transportation has usually to be performed within a very tight period
of time, which makes more di�cult to cope with uncertainty.

There are two common classes of strategies to solve dynamic routing prob-
lems according to the way the "dynamism" is tackled: local and local ahead
approaches [44]. In the former, routes are constructed only with the available
information at the moment and a static problem is solved at each decision
epoch. The planning horizon is divided into a set of sequences of time or
decision epochs, where a new decision should be made. The latter includes
probabilistic or predicted information into the static problem at each decision
epoch.

Local approach is used to solve this problem. The lack of accurate infor-
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mation which is the principal motivation for "dynamic" solutions, means often
a considerable simpli�cation of the optimization problem. In this case, the
following modi�cations regarding the o�ine problem are considered: (i) only
bags already arrived at dispatch facilities are considered, (ii) only available
vehicles are scheduled and, (iii) vehicles are scheduled individually and for
just one trip. The problem is transformed into a Traveling Salesman Problem
(TSP) with pro�ts, where the objective function in this case is an aggregation
of three criteria. Route length and departure favors short routes and large
di�erences between the expected bag delivery time and the 
ight departure,
respectively. Alternating between handling station and 
ight positions is pe-
nalized by Location parameter.

A greedy algorithm is proposed to solve the problem, which is developed
in two phases aiming at simulating a real dispatching environment. First,
the route is obtained using the de�ned cost function and considering all the
restrictions as well as the expected traveling times. Then, the route is tested
using random traveling times in the second step. If the vehicle arrives late to
the handling station, it is redirected to the 
ight as an extra visit before other
deliveries. In contrast, if the vehicle did not arrive on time to the 
ight, the bag
is considered as undelivered. Bag arrival times to the dispatching center besides
traveling times are de�ned as stochastic variables. A log-normal distribution
is selected to generate values for bag arrivals, while a normal distribution was
chosen to model traveling times.

Passenger buses

Diepen et al. [38] present an alternative approach to cope with uncertainty and
insu�cient retrieval information: generating a robust schedule. They present
a column generation algorithm for planning passenger buses at Amsterdam
Schiphol Airport such that small disruptions can be absorbed without requiring
huge reschedules. They considered robustness from an e�ective perspective:
maximize the idle times between two pairs of trips assigned to the same bus.

Usually, passenger and regular baggage transportation present particular
features in relation to other ground handling activities. They can be considered
special cases of the Pickup and Delivery with Time Window problem (PDTW).
In this sense, pickup passengers or bags from (or to) di�erent 
ights is not
allowed in the same trip. At each route, a bus performs a certain number of
trips where each trip consists in three parts. First, passengers are picked up
at the gate. Then, they are transported to the remote aircraft stand. Finally,
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they get o� the bus to board the aircraft for departure 
ights. In case of
arrival 
ights, origin and destination are exchanged. Moreover, luggage and
passengers transportation often need more than one trip to carry out one
operation due to vehicle limited capacity or safety standards. Even when such
trips can be done with di�erent vehicles, they should not arrive at the gate at
the same time for inbound 
ights.

An Integer Programming model is proposed based on a previous work for
solving the gate assignment problem. A Column Generation algorithm is used
to simplify the solution. Just a subset of bus plans (number of trips planned for
each bus) is selected in such a way each trip is included in one of the selected
bus plans.

A schedule for next day of operation using the expected arrival and de-
parture 
ight times is obtained with this proposal. In order to evaluate the
algorithm at an operational level, both the proposal and the method used at
the airport were simulated. Flight times were updated as often as in the real
process. The current system is based on �rst-come-�rst-serve heuristic and
has a three hours scheduling horizon. Computer experiments show that the
schedule obtained with the proposed procedure is less a�ected by arrival and
departure changes than the current planning.

During operational planning, the schedule has to be recalculated each time
a disturbance occurs. The authors suggested two alternatives for adjusting the
algorithm to produce fast solutions. First, reducing the time horizon from one
day to three hours ahead and lose the advantage of having a global overview
of the planning. On the other hand, avoiding to calculate the whole schedule
each time a change produces a con
ict. In this case, it is possible to update
trips associated to the disrupted 
ight and reschedule or create new routes to
cover other trips that have become unfeasible.

Generic approach

A multi-vehicle version of the online scheduling is proposed as a part of the
Car Management on Aprons (CARMA)Project [45]. CARMA initiative aims
to spread the Advanced Surface Movement Guidance and Control System (A-
SMGCS) [46] concept to vehicles at the apron in order to support the activities
during turnaround. Most A-SMGCS implementations have been focused on
o�ering guidance and surveillance to direct aircraft during runway or taxiway
operations. Moreover, integrating this technology with 
eet management per-
mits a more accurate prediction of aircraft on-block times and a more e�cient



22 Ground handling process

use of resources.

In this case, the solution addresses the handling vehicle scheduling problem
in a generic fashion without considering speci�c characteristics of one type of
vehicle or operation. Authors of this work present several simple heuristics
for planning vehicles that get bad solutions. Considering they are able to
detect and identify vehicles in the apron, an improved algorithm solving the
static scheduling over a short period of time is presented. The planning is
executed every 10 minutes over a 60 minutes scheduling horizon, i.e. only
aircraft requests with in the next 60 minutes period will be scheduled.

This approach permits a better dispatching avoiding poor suppositions.
The drawback of this proposal is that arriving late to the aircraft position is
allowed, as well as, operations do not have time windows to be serviced. This
suggests the algorithm is may be best suited for solving a disruption problem
than a planning problem.

2.4 A global approach

In the state of the art presented in Section 2.3, we �nd two main actions ad-
dressed to optimize ground handling operations during turnaround. First ac-
tion focuses on improving vehicle monitoring and coordination process through
a reliable and timely information transmission. Planning resources by using
more suitable vehicle scheduling procedures is the goal of the second e�ort.
This thesis deal with the second objective.

In general, ground handling activities are planned as a black box event
taking place during the turnaround [11, 25]. The impact each individual op-
eration has on others, airport processes and over the entire network, has been
hardly outlined. Moreover, operation time stamps such as beginning, dura-
tion and ending time are rarely registered and this makes more di�cult their
study. According to the TITAN project [25] the turnaround is an essential
component in the 
ight network and it has to be addressed in an explicit way
to deal with the reactionary delays. Even in the A-CDM initiative [4], the
turnaround has been treated as a single continuous process and the milestones
de�ned have focused in the airside operations of the airport, the runway and
the surface movement of the aircraft during taxiing. The TITAN project has
expanded the scope of the A-CDM de�ning a set of milestones in order to
control the progress of the di�erent activities during turnaround. Some other
examples can be found in the literature showing the importance of recognizing
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this relationship as well as the need of collecting time stamps. [11, 39].

Closer to the objective of this thesis is the work proposed by Norin et al.
[7]. They introduced the Airport Logistics concept that study the resource
management at airports with a global vision of di�erent logistic operations,
resources and actors involved. Focusing on the turnaround process, authors
proposed to get this whole overview through a simulation model of various
operations during turnaround at Stockholm Arlanda airport. A detailed rep-
resentation of turnaround is modeled and a set of checks are created to validate
the simulation results with the schedule provided by airport experts.

An interesting integration between the simulation model and the schedule
of deicing trucks obtained by a greedy optimization algorithm is outlined. They
aimed to evaluate the turnaround performance in two situations: when one
service is planned using an optimization process and when simple scheduling
rules are adopted. Total delay and operation waiting time are de�ned as
indicators to assess performance.

A formulation based on VRPTW with some further constraints to model
the particular characteristics of deicing process is described. During winter, de-
icing operations are carried out to remove snow or frost from the aircraft. Two
types of 
uids are used: a warm liquid to eliminate the ice and an anti-icing
to avoid new frost or ice covering the aircraft again before takeo�. Minimiz-
ing delays, as well as the traveling time of the trucks, are the optimization
goals, which are summed into the objective function using weight parameters.
Greedy Randomized Adaptive Search Procedure (GRASP) [47] is employed to
solve the optimization problem. Two schedules were selected to be included
in the simulation model from the set of solutions obtained with a balance be-
tween two objectives. The solution GRASP 1 with the least traveling time
and solution GRASP 2, which produces the schedule with less total delay.

Three scenarios were created to test the inclusion of the optimized schedules
in the model. In the �rst scenario, deicing trucks are planned using a basic rule
based on the �rst-come-�rst-served procedure, where the 
ight with the earliest
departure time is served �rst. The other two represent di�erent optimization
strategies. A �rst context is designed from the deicing operator perspective and
aims to improve the performance of deicing trucks. So, the schedule GRASP
1 which have the best results in terms of traveling time is the preferred. In
contrast, the goal of the third scenario is to provide the best solution for the
overall turnaround in terms of delays. Therefore, the schedule GRASP 2 is
selected in order to enhance the global process through the reduction of deicing
delays.
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Experiments show that the schedule optimized for the third scenario gives
better results according to the total airport performance. This is a simple
but e�ective mean of con�rming the need of solutions that consider the in-

uence the scheduling decisions about each resource have on the e�ciency of
the turnaround. Furthermore, the waiting time for the de-icing activity is re-
duced when schedules obtained with the optimization process are used. Results
shows the bene�t of employing a veritable optimization process for scheduling
resources, both at a tactical level to increase the resource utilization and at
operational level for better dealing with perturbations [7].

In this thesis we propose a global approach for scheduling ground handling
vehicles at a tactical level. By tactical level we understand vehicle schedules are
calculated using expected 
ight arrival and departure times, foreseen duration
of operations, and using a planned gate assignment. Performing replanning
actions to face short-term changes on the 
ight schedule or disruptions caused
by internal or external incidents are out of the scope of this work. Instead, we
aim to provide robust solutions that reduce ine�ciencies in the resource usage.
Moreover, we focus on solving this problem as a whole, taking into account
relations between di�erent tasks and their in
uence on the turnaround.

Tasks belonging to the same aircraft are related by precedence restrictions,
as well as the time available to perform the each operation. The time when an
operation begins could reduce the time windows of other activities depending
on these restrictions, and therefore a�ect the performance of vehicles servicing
them. For example, boarding has an earliest start time assigned to begin,
but it has to wait until cleaning, fueling and catering have �nished. If fueling
does not start at its possible earliest time, boarding cannot begin at the earliest
point of its time window. This conduces to a reduction of the original boarding
time window and a new earliest start time has to be de�ned. This situation is
represented in Figure 2.3.

The punctuality of each operation a�ects other operations and is a key as-
pect to ensure on-time 
ight departure. Scheduling vehicles to perform tasks
as closer as possible to the start of their time window leaves some room to deal
with unexpected events. This way, we can obtain a more robust global solu-
tion. While activities began at their corresponding original time windows, the
turnaround can be completed on time and a reschedule is avoided. However,
visiting the activities as early as possible leads to a higher number of vehicles
required. Even though minimizing the number of vehicles is not an explicit
optimization objective for us, it should be considered to solve the problem.

We aim to minimize the operation waiting time, i.e. serving each operation
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Figure 2.3: Scheduling decision about a resource cause time window reduction
on other activities. The very and actual earliest start times are represented by
a green line and dashed green line respectively.

as early as possible regarding its original time window, minimizing the total
reduction of time windows and considering vehicle utilization. This leads to a
second objective: to minimize the total completion time of the ground services
at each aircraft. It is important to serve each operation as early as possible in
such a way that the completion time of the turnaround is minimized. Having
waiting time on the preceding operation does not always imply that successive
operations could not be started at the earliest point of their time windows.
For example, cleaning and fueling have di�erent durations and they have to be
�nished before boarding. The task with the shortest service time (in this case,
cleaning) will end before, but boarding operation have to wait for fueling task
anyway. Hence, it is possible to use vehicles more e�ciently allowing waiting
time on certain activities (like cleaning) without a�ecting the completion time
of the overall process.
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Chapter 3

Technologies

In this chapter, we review the main technologies used to implement the ap-
proach proposed. The �rst section 3.1 describes the Constraint Programming
(CP) paradigm and its principal features and mechanisms. Section 3.2 provides
a background of the Vehicle Routing Problem with Time Windows (VRPTW)
problem. The methods used for solving the VRPTW in this work are also ex-
plained, such as the Insertion Heuristic, Variable Neighborhood Search (VNS),
and Large Neighborhood Search (LNS). Finally, the multi-objective optimiza-
tion problem is discussed in Section 3.3.

3.1 Constraint Programming

CP is a very attractive paradigm due to the expressiveness and 
exibility for
modeling problems with side constraints. It has received much attention during
last decades due to its potential for solving particularly real-world combina-
torial optimization problems [48]. These applications often involve a hetero-
geneous set of side constraints and typically they have to deal with frequent
update/addition of constraints [49]. The 
exibility of CP is then a powerful
characteristic, since adding constraints is a modeling issue and does not a�ect
the search process.

In CP, the problems are described by means of three elements: variables,
their corresponding domains, and the constraints relating these variables. Con-
straints represent logical relations among variables, each taking a value from
a set of accepted values called domain, which can be a range with lower and
upper bounds or a discrete list of numbers. This representation of the problem

27
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in terms of constraints results in short and simple models that can be quickly
implemented and modi�ed to cope with updating requirements. Moreover,
this permits testing di�erent models until the best and fastest program for a
particular problem has been found [18].

In general, CP concepts are embedded in a programming language, par-
ticularly in logic programming languages, such as Prolog. In this case, it is
called Constraint Logic Programming (CLP). The algorithms developed in this
thesis have been implemented using the CLP platform ECLiPSe [50]. Other
typical languages are also employed to solve CP problem such as C/C++, e.g.
COMET [51] or ILOG [52], and Java, e.g. Cream [53].

3.1.1 Constraint Satisfaction Problem

Since CP is the study of computational systems based on constraints, its idea
is to solve problems by stating constraints (requirements) about the problem
area and, consequently, �nding a solution satisfying all the constraints. This
class of problems is usually termed Constraint Satisfaction Problems (CSP)
and the core mechanism used in solving them is constraint propagation [54]. It
involves deleting from variable domains values that cannot satisfy the problem
constraints. When a value is assigned to a variable, it is propagated through
the associated constraints to the rest of the variables involved in these con-
straints. If there are values in other variables domains that are incompatible
with propagated assignments, they are also removed [49].

A CSP problem P can be formulated as a triple P= (X,D,C) [55] where:

• X is a �nite set of variables x1, x2, ..., xn;

• D is the corresponding set domains D1, D2, ..., Dn such that x1 ∈ Di

• C is a �nite (possibly empty) set of constraints C1, C2, ..., Ct

Each constraint c is a relation de�ned on a set of variables such that
X(c) = (xi1 , ..., xi|X(c)|) where |X(c)| is called the arity of the constraint, i.e.
the number of variables involved. A constraint can be intentionally de�ned
using a formula which the variables of the constraint have to satisfy or ex-
tensionally, where the set of satisfying values are explicitly established. Con-
straints with arity one are unary and with arity two are called binary. When
the arity is greater than two it is said non-binary, and global constraints are
de�ned by a formula of arbitrary arity [54].
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Solving a CSP problem involves the assignment of values to the vari-
ables (labeling) that satisfy all the constraints. A solution is an n-tuple
A = a1, a2, ..., an such that ai ∈ Di and Cj is satis�ed. A deeper de�nition and
an example of how constraint propagation mechanism works are presented in
[18].

Depending on the problem we may need to obtain: (i) just one solution,
if exists, with no preference to which one; (ii) the set of all solutions; or (iii)
an optimal, or at least a good solution, given some objective function de�ned
in terms of some or all of the variables. In the last case the CSP becomes a
Constraint Optimization Problem (COP). If the set of solutions is empty it is
said that the CSP is unsatis�able.

Inference and search are in general combined in the solution process of
a CSP. Trough constraint propagation, unfeasible alternatives are eliminated
in advance reducing the exploration of the search space. If all the variables
are instantiated after the propagation algorithm is triggered, a solution of the
problem is found. Otherwise, a search process is launched through the possible
assignments of values to variables, generating the whole search tree.

3.1.2 Constraint propagation

Most of the e�orts to improve the performance of backtracking have been
focused on constraint propagation and making possible early inconsistency
detection that avoid fail instantiations [54]. Di�erent consistency techniques
are proposed, the most common are:

• Node-Consistency : it removes values from variables' domains that are in-
consistent with constraints involving one variable, i.e. unary constraints.
It is the simplest consistency technique.

• Arc-Consistency : it removes values from variables' domains which are
inconsistent with constraints involving two variables, i.e. binary con-
straints.

• Path-Consistency : it requires for every pair of values of two variables x
and y satisfying the respective binary constraint that there exists a value
for each variable along some path between x and y such that all binary
constraints in the path are satis�ed.
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• K-Consistency and Strong K-Consistency : a constraint graph is k-consistent
if for every system of values for k−1 variables satisfying all the constraints
among these variables, there is a value for an arbitrary kth variable such
that the constraints among these variables are satis�ed. A constraint
graph is strongly k-consistent if it is j-consistent for all j ≤ k. All previ-
ously mentioned techniques can be generated by k-consistency and strong
k-consistency.

In general, consistency methods are incomplete and a search process is
necessary to obtain a solution [56]. In any case, they o�er good mechanism to
remove inconsistent values from variables' domains during search. However,
keeping certain level of consistency on the constraints can lead to long running
times. Thus, special attention should be paid to designing search algorithms
in order to achieve the equilibrium between reduction of the search space and
e�ciency.

3.1.3 Search methods in CP

Search space can be explored either systematically, e.g. using backtracking,
or using variants of local search. Backtracking search is a basic procedure
for solving CSPs which performs a depth-�rst traversal of the search tree,
where each node describes a choice of a value for a variable, and each branch
represents a candidate partial solution. The process consists in extending
incrementally a partial instantiation, that contains feasible values for some of
the variables, to a complete solution by repeatedly choosing a value for another
variable consistent with the values in the current partial solution. Variables are
assigned sequentially and when all the variables associated to a constraint are
labeled, the method veri�es if the constraint is satis�ed. If a partial solution
violates any of the constraints, backtracking undoes the last assignment made
and tries with the most recently instantiated variable that still has alternatives
available. Hence, it does not has to wait until a complete solution has been
generated to check consistency. Backtracking is a high-consuming time method
mainly caused by three aspects [18]: (i) the so-called thrashing where repeated
exploration of failure subtrees is performed because they di�er in assignments
to variables no relevant to the failure [55]; (ii) redundant work due to con
icting
values are not remembered which makes the exploration fail the same way in
di�erent branches of the tree; and (iii) late detection of con
icts.

Some alternatives have been proposed in order to deal with these problems.
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Backjumping aims to overcome trashing performing the backtrack to the last
recent con
icting variable instead of the last instantiation. Backchecking or
Backmarking address the redundant work reducing the number of compatibil-
ity checks. The looser avoid also redundant discoveries of inconsistencies.

The way of combining the reasoning provided by constraint propagation
with the search process a�ects the detection of inconsistencies and two prin-
cipal schemes can be identi�ed. Backtracking search, as well as the variants
mentioned above such as backjumping, backchecking, and backmarking, belong
to the look back group. Look back schema performs compatibility checks among
already instantiated variables conducing to a late detection of the con
ict. On
the other hand, look ahead approaches aim to prevent future violation of con-
straints. Forward Checking is the most common example and enforces arc
consistency between pairs of uninstantiated and instantiated variables. When
a variable is labeled, any inconsistent value in the domain of the still unla-
beled variables which con
icts with this assignment is (temporally) removed
from the domain. Other methods such as Partial Look Ahead or Maintain-
ing Arc Consistency remove more incompatibilities but are more expensive in
computational e�ort.

Other aspects having a crucial impact on the e�ciency of backtracking are
the order the variables are instantiated and the order values from their domain
are selected [57]. Variable ordering is a very important decision since it can
transform signi�cantly the shape of the search tree. Value ordering selects
which subtrees are �rst explored and this choice can in
uence how soon a very
good solution, or even an optimal one, may be found. Backtrack search may
be considerably improved with a right combination of both strategies, while
a wrong choice could conduce the algorithm to explore infeasible parts of the
search tree.

Variable and value ordering can be either �xed, where sequences are de-
�ned a priori, or dynamic, where ordering decisions are made according to the
information available at that point of search. Dynamic approaches have been
widely studied and di�erent strategies have been proposed with interesting
results. First-fail is one of the most typical heuristic where variables with the
smallest domain size are preferred. With a similar goal, the most-constrained
heuristic is used, but if several variables have the same domain size, the one
with the largest number of attached constraints is selected. Other strategies
are based on domain values of the variables, such as smallest heuristic, where
the variable with the smallest value is favored. Regarding the value ordering,
di�erent approaches have also been proposed, such as selecting the values in in-
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creasing order, starting from the middle of the domain or employing a random
selection. Most of these variable and value ordering heuristics are implemented
in most CP solvers.

3.1.4 Constraint Optimization Problem

As mentioned in Section 3.1.1, solving a CSP implies to �nd an optimal, or
quasi optimal solution that minimizes or maximizes a cost function. In order to
deal with COP, backtracking search is generally adapted and called Branch-
and-Bound (BB). During the search, BB keeps the current best cost of the
objective function (bound) and, each time a solution with a smaller cost is
found, its value is updated. There are many variations of the BB method.
One consideration is what to do after a solution is found with a new best cost.
The simplest approach is to restart the algorithm with the bound variable
initialized to this new best cost. A less naive strategy is to continue the
search for better solutions without restarting. In this case, the cost function
upper bound is constrained to the bound variable value. Each time a solution
with a new best cost is found, this cost is dynamically imposed through this
constraint. The constraint propagation triggered by this constraint leads to a
pruning of the search tree by identifying the nodes under which no solution
with a smaller cost can be present.

Depending on the problem, using only BB to �nd an optimal or good
solution may need excessive execution time. Hybrid algorithms combining
backtracking search and local search appear to be a good alternative to solve
complex problems like VRPTW.

3.2 VRPTW

The Vehicle Routing Problem (VRP) [58] is one of the most popular combi-
natorial optimization problems. It is aimed at determining an optimal set of
routes for an available 
eet of vehicles in order to service a set of customers,
subject to di�erent constraints. These constraints depend on the speci�c prob-
lem to solve and several VRP variants have been studied to cope with more
common situations.

The Vehicle Routing Problem with Time Windows (VRPTW) [59] is a
widely researched VRP version and states that each customer has a time win-
dow within the vehicle has to begin the service. These time windows can be
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hard, like in our particular problem, or soft. In the former, the service can-
not begin at all before the earliest start time, as well as after the latest start
time. Nevertheless, vehicle waiting time is generally allowed, i.e. a vehicle can
arrive early at the customer site and wait until the time window is open. It
should be notice that vehicle waiting time and operation waiting time is not
the same concept. The later refers to the di�erence between the lower bounds
of the time window and the moment the operation begin. In the soft case,
time window violations are permitted at the expense of having penalty cost.

The VRPTW is an extension of the Capacited Vehicle Routing Problem
(CVRP). CVRP is the most basic VRP version, where a �xed 
eet of vehicles
with uniform capacity should deliver goods to a set of customers. Each vehicle
starts and �nishes its route in a central depot.

The symmetric CVRP can be considered as a complete undirected graph
G = (I, E), connecting the vertex set I = {1, 2, ..., n} through a set of undi-
rected edges E = {(i, j) | i, j ∈ I}. The edge eij ∈ E has associated a travel
cost cij, supposed to be the lowest cost route connecting node i to node j. Each
vertex i ∈ I \ {1} has a nonnegative demand qi, while node 1 corresponds to
a depot without associated demand. A �xed 
eet of m identical vehicles, each
of capacity Q, is available at the depot to accomplish the required tasks. Solv-
ing the CVRP consists of determining a set of m routes such that: (i) each
customer is visited exactly once by a single vehicle, (ii) each route starts and
ends at the depot, and (iii) the total demand of the customers assigned to a
route does not exceed the vehicle capacity. In case of the 
eet size is not �xed,
minimizing the total number of used vehicles becomes an additional objective.

The VRPTW extends the CVRP by associating a travel time tij to each
edge eij ∈ E. Each vertex i ∈ I \ {1} has a time demand ti required to
perform the service, which has to start within a de�ned time window [ai, bi].
The primary objective of the VRPTW is to �nd the minimum number of
routes, i.e. use the minimum number of vehicles. A secondary objective is
imposed to minimize the total cost of routes, that can be expressed in terms
of the total traveled distance or the total scheduled time. The depot may also
have a time window associated.

The VRPTW has been extensively studied and several formulations and
exact algorithms have been proposed [60]. Solving this combinatorial opti-
mization problem is NP-hard [61] and the use of heuristic algorithms [62],
metaheuristics [63] and recently hybridization methods [64] have been inten-
sive subjects of research.

In relation to the heuristic algorithms, they can be classi�ed in constructive
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and improvement methods. A route construction heuristic select nodes (or
arcs) sequentially (or in parallel) until a feasible solution has been created.
Nodes are chosen based on some cost minimization criteria, often subject to
the restriction that the selected nodes do not create a violation of vehicle
capacity or time window constraints. Most popular constructive algorithms for
VRPTW are those proposed by Solomon in 1987 [19], which in general have
higher solution quality/time ratio [62]. One of the most successful methods
is the Insertion Heuristic and we have described it in more detail in Section
3.2.1. Solomon provides three variants of Insertion Heuristic: I1, I2, I3. We
have adopted the I3 version for solving the routing problem in our approach.

Improvement methods are concerned to the concept of local search, which
iteratively improves the solution by exploring the neighborhood. Edge-exchange
based algorithms are the most typical improvement methods employed to solve
the VRP [62]. The disadvantage of local search methods is they are likely to
get trapped into a local minimum. They perform a myopic exploration and
only accept solutions that improve the objective function [62]. Thus, the out-
come has a strong dependence on initial solutions and the mechanism applied
for neighborhood generation.

Metaheuristics are used to overcome this situation providing a guide for
exploring the search space. A successful metaheuristic should provide a bal-
ance between the diversi�cation, i.e identify parts of the search space with
high quality solutions, and intensi�cation, i.e. intensify the search in promis-
ing regions [65]. Developing and applying this high level strategy for solving
combinatorial optimization problems has been an important �eld of research
and a considerable variety of examples can be found in the literature.

Metaheuristics can be classi�ed according to several criteria, and the more
basic distinction is the number of solutions generated at each time [66]. In
this sense, methods can be divided into Single-Solution Based and Population-
Based groups. Methods from the �rst group work on a single solution at each
iteration and, in general, are based on a local search process. Most popular
methods for solving routing problems, such as Tabu Search [67], Simulated
annealing [68], Guided Local Search [69], and Greedy Randomized Adaptive
Search Procedure (GRASP) [70], are part of this group. Another interesting
example is Variable Neighborhood Search (VNS) [71], where a set of neighbor-
hoods is employed in order to improve the diversi�cation and intensi�cation of
the search. We have selected VNS for solving the VRPTW and it is explained
in more detail in Section 3.2.2.

In contrast, Ant Colony Optimization [72], Genetic algorithms and Evolu-
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tionary Algorithms [73] are examples of population-based metaheuristics. In
this group, the exploration is based on the evolution of a set of solutions in
the search space. A recent overview of the more representative methods of
both groups is presented in [65] and exhaustive reviews of the application of
metaheuristics for solving VRPTW and others VRP variants can be found in
[18, 63, 74].

Finally hybridization of exact and heuristic methods has raised an increased
interest in the research community in last years. Promising results have been
obtained combining the strengths of both approaches, particularly for real life
problems. A hybrid methodology which exploits the advantages of Constraint
Programming (CP) in combination with Large Neighborhood Search (LNS)
and VNS [18] has been used in our problem. CP and LNS are described in
details in Section 3.1, 3.2.3 respectively.

3.2.1 Insertion Heuristic method

As mentioned in Section 3.2, di�erent methods for solving the VRPTW were
proposed by Solomon[19]. In general, the goal was adapting the main VRP
heuristics to cover the time restrictions of VPRTW problems. In this sense,
besides the distance, the time dimension was included in the heuristic process.
Insertion Heuristic is one of these heuristics and we have adopted it in our
research work. In spite of being proposed more than twenty years this method
is still frequently used by researchers and very recent examples can be found
in the literature [75, 76, 77]. In general, Insertion Heuristic is employed to
obtain fast and acceptable good initial solutions, which are later improved by
more sophisticated methods.

Basically, this procedure constructs the routes by inserting one unrouted
customers at each iteration in a sequential way. At �rst, a route is generated
and initialized with the best visit according to di�erent criteria. Then, one of
the remaining unrouted clients is selected to be added in the current route in
the best feasible position. Both criteria to decide the selection of the customer
and position are de�ned by two cost functions c1 and c2. When no more
customers with feasible insertion positions can be found, a new route is created.
If all the clients are already routed, the algorithm is stopped. In detail, the
general Insertion Heuristic consists of the following steps:

1. Initialization
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Solomon proposes three alternatives to select the �rst client on the route:
(i) the farthest unrouted customer in relation to the depot, (ii) the client
which has the lowest deadline to begin the service, and (iii) the customer
which the combination between distance and time to get to it from the
depot is the minimum.

2. Checking feasibility

Feasible conditions have to be examined before determining the best
insertion place. For adding a client in the current route, both time
and capacity constraints have to be respected. In this case, capacity
restrictions are quite easy to check and do not depend on the position
that the client is inserted in. In fact, it is su�cient to verify that the new
demand plus the total cumulative demand on the route does not exceed
the vehicle capacity.

On the other hand, temporal restrictions require particular attention. A
position is feasible if the time windows of the new customer, as well as
those of all the customers already included in the route are satis�ed. The
start time of the visits after this position may be modi�ed.

3. Find the best feasible position

The best feasible position between two consecutive customers i and j
on the emergency route is calculated for each unrouted customer u by
c1 (i, u, j) such that:

c1 (i(u), u, j(u)) = min [c1 (ip−1, u, ip]) p = 1 ...m (3.1)

where m is the number of customers already included on the route

4. Select the customer

In the next step, c2 is used to choose the customer u∗ (with a feasible
position on the emerging route) to be inserted in the position found with
c1.

c2 (i (u∗) , u∗, j (u∗)) = optimum [c2 (i(u), u, j(u)]) (3.2)

5. Build a new route

If no unrouted customers have feasible insertion positions in the current
route, a new route is initialized.
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Solomon proposed three variants of the Insertion Heuristic method called
I1, I2 and I3. The goal of including not only the distance but also the time
dimension in the construction of the route is presented in the three heuristics.
Nevertheless, the de�nition of the cost criteria depends on each variant and
the approach followed in each case. Solutions found with each heuristic were
analyzed in terms of number of vehicles, total scheduling time, total distance
and vehicle waiting time. The total schedule time is the sum of the travel time,
the total service time and and the vehicle waiting time.

I1 variant

In the I1 version, the best position is the one minimizing the weighted com-
bination of the additional distance and time required to add the customer in
the current route. Cost c1 of inserting the unrouted customer u between the
two consecutive customers i and j is calculated with function 3.3. The two
elements of c1, c11(i, u, j) and c12(i, u, j), are described in equations 3.4 and
3.5. The cost c2 used to select the customer is formulated in equation 3.6. I1
chooses the customer with the largest di�erence between the distance cost of
visiting this client in a new route and the cost of insert it in the current route.

c1 (i, u, j) = α1c11 (i, u, j) + α2c12 (i, u, j) (3.3)

α1 + α2 = 1; α1, α2, α3 ≥ 0

c11 (i, u, j) = diu + duj − µdij; µ ≥ 0 (3.4)

where d represent the direct distance between two customers

c12 (i, u, j) = bju − bj (3.5)

bj is the time for begin the service at customer j and bju is the new start time
at j, given that u is in the route.

c2 (i, u, j) = λd0u − c1 (i, u, j) ; λ ≥ 0 (3.6)

That is, in the �rst variant I1, the distance remains as a critical decision
rule and the time dimension is still only considered in a partial way. For that
reason, I1 can be viewed as the most 'classic' of the three insertion heuristics
and gives the best distance results. According to Solomon, even if the di�er-
ence with the other two methods is not exceptional, particularly regarding the
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number of vehicles, I1 version was able to �nd the best known solution for
an appreciable number of instances when it was proposed. In next variants,
the goal of including the distance as well as the time dimension is taken into
account with the same importance in both decisions.

I2 variant

Function c1 (i, u, j) introduced in equation 3.3 is used again to determine the
best insertion place in I2. Regarding c2 (i, u, j), I2 prefers customers which
produce the minimum cost regarding the total distance and the total scheduled
time of the route. Function c2 is presented in equation 3.7.

c2 (i, u, j) = β1Rd(u) + β2Rt(u) (3.7)

where β1+β2 = 1; β1 ≥ 0 β2 > 0. Rd(u) and Rt(u) are the total route distance
and time of the current partial route, if u is inserted.

I3 variant

The third version I3 gives priority to the most pressing customers. A third
parameter is incorporated in the c1 function 3.3 in order to prioritize the
customer having the lowest deadline to begin the service. The formulation of
the function c1 is presented in relation 3.8 and the new component c13(i, u, j)
is introduced in equation 3.9. Function c2 is de�ned in equality 3.10.

c1 (i, u, j) = α1c11 (i, u, j) + α2c12 (i, u, j) + α3c13 (i, u, j) (3.8)

α1 + α2 + α3 = 1; α1, α2 α3 ≥ 0

c13 (i, u, j) = lu − bj (3.9)

where lu is the latest start time to begin the service at j

c2 (i, u, j) = c1 (i, u, j) (3.10)

The principal di�erence regarding the other two variants is that the same
criterion is used to select both the best place for insertion and the best client.
Therefore, the individual cost of the client to be added is in this case taken as
a measure rather than the total route cost proposed in I2.
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In our problem, we aim to minimize the operation waiting time without
sacri�cing the number of vehicles required. Hence, the insertion of unrouted
customers should be guided by both geographical and time criteria with the
same importance. Cost c1 de�ned in 3.3 appears as a suitable function to
decide the best feasible position and the best customer to insert. In this sense,
either I1 and I3 heuristic can be adopted and become equivalent using the
following weight combinations: (λ = 0, α1, α2) for I1 and (α1, α2, α3 = 0) for
I3. However, the third parameter included in I3 contributes to reduce the
vehicle waiting time which in turn can lead to reduce the number of vehicles
required [16]. Thus, we have decide that I3 is the most appropriate variant for
solving our problem.

3.2.2 Variable Neighborhood Search

Compared with other popular metaheuristics such as Simulated Annealing
(1983) [78] or Tabu Search (1986) [79], Variable Neighborhood Search (VNS) is
a recent metaheuristic which was introduced in 1997 by [71]. It has received a
fast growing attention and promising results have been reported when applying
it to solve di�erent VRP problems [63, 80, 81, 82, 83]. VNS adopts the principle
of changing the neighborhoods systematically either in the descent phase to
�nd a local minimum as well as in the perturbation phase in order to escape
from the corresponding valley. In this sense, the search process using a set of
neighborhoods is based on two main observations:

1. A local minimum with respect to one neighborhood structure is not nec-
essarily a local minimum for another neighborhood structure.

2. A global minimum is a local minimum with respect to all possible neigh-
borhood structures.

Moreover, experiments show that, for many problems, local minima with
respect to one or several neighborhoods are relatively close to each other [84].
This implies that a local optimum often provides some information about the
global optimum and it is used in VNS to guide the search. Regarding other
metaheuristics, VNS and its variants are simple and require few, and some-
times no parameters. A complete description for the VNS and the di�erent
extensions are presented in [18, 85, 84, 86].
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Algorithm 1 Variable Neighborhood Descent (VND)

Initialization: - Find an initial solution x.
- De�ne a set of neighborhoods Nk(x), k = 1, .., kmax

Repeat the following sequence until no improvement is obtained:

1. Set k ← 1.

2. Repeat the following steps until k = kmax:

(a) Exploration of neighborhood: �nd the best neighbor x′ of x (x′ ∈
Nk(x)).

(b) Move or not: if the solution x′ thus obtained is better than x, set
x← x′ and k ← 1; otherwise, set k ← k + 1.

Variable Neighborhood Descent (VND)

The Variable Neighborhood Descent (VND) is the simplest VNS variant. The
change of neighborhoods is performed in a deterministic way. It is often used
as a local search method for more complex frameworks, such as VNS itself.
Departing from an initial solution and a neighborhood structure, if an im-
provement is reached the process is restarted with the best value; otherwise,
a change of neighborhood is enforced. The VND steps are presented in Algo-
rithm 1.

Let Nk, (k = 1, ..., kmax) be a �nite set of pre-selected neighborhood struc-
tures, and Nk(x) the set of feasible solutions in the kth neighborhood of x. An
optimal solution xopt (or global minimum) is a feasible solution where a mini-
mum of the problem is reached. Let X be the set of feasible solutions, x′ ∈ X
is a local minimum with respect to Nk if there is no solution x ∈ Nk(x′) ⊆ X
such that f(x) < f(x′). We assume that an initial solution x is given.

When the best accepted strategy is used to explore the neighborhood, the
accepted move lead to the best neighbor. In this case, the chances to reach a
global optimum are larger when using VND than with a single neighborhood
structure. However, performing a complete search in huge neighborhoods can
be very expensive in computational time. A fast alternative is a first accept
strategy where the �rst improvement of the solution is approved for making a
move.

VND is a very simple and e�ective algorithm. Nevertheless, some issues
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have to be considered in order to get an e�cient exploration of the search
space [18]. First, the complexity of the di�erent moves used to determine
the neighborhoods has an important impact on algorithm's performance. In
general, a move de�ned over a simple elementary change may generate a very
large neighborhood. If exploring such a neighborhood involves checking too
many elementary changes, the resulting heuristic may be very slow and often
take more time than an exact algorithm on small or medium size examples
[18].

Another relevant aspect when implementing a VND method is the sequence
in which the di�erent neighborhoods are applied. This decision can a�ect the
running time and the quality of solutions obtained. A frequent implementation
consists of ranking neighborhoods by order of complexity of their application.

Finally, it is crucial that the moves considered lead to a thorough explo-
ration of the region containing x. For some problems, elementary moves are not
su�cient to escape from a narrow valley, and heuristics using them only can
give very poor results. This is also related to the desired quality of the VND
�nal solution. In most situations, a better solution will be pursued when VND
is used alone, while poorer solutions may be accepted when it is embedded in
a larger framework, such as VNS itself.

3.2.3 Large Neighborhood Search

Large Neighborhood Search (LNS) is a search algorithm proposed by Shaw [87]
and consists in gradually improving an initial solution by alternately destroy-
ing and repairing it. A complete description for the LNS is provided in [18, 88].
LNS is considered a Very Large Scale Neighborhood search (VLSN) heuristic
and as its name suggest, this kind of local search methods try to escape from
local minima generating large neighborhoods [89]. VLSN algorithms are based
on the perception that searching a large neighborhood results in �nding bet-
ter local optima and hence better �nal solutions. However, searching a large
neighborhood is time consuming, therefore di�erent �ltering techniques are
used to reduce the search [88]. For that reason, the neighborhood is typically
restricted to a subset of the solutions, which can be explored e�ciently.

LNS has proved to be competitive with other local search techniques, espe-
cially when combined with CP [18]. In this sense, the CP framework bene�ts
from the the e�ciency of the search process provided by LNS while LNS bene-
�ts from the propagation achieved with CP [90]. Actually, LNS was originally
introduced to solve the VRP problem in combination with CP [91]. In this
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work, the search operates by choosing in a randomized fashion a set of cus-
tomer visits. The selected customers are removed from the schedule, and then
reinserted at optimal cost. To create opportunities for interchanging customer
visits between routes, the removed visits are chosen so that they are related.
A BB method combined with CP is then used to reschedule removed visits.
Due to high computational requirements, this approach can be applied only to
problems with relatively low number of customers per route. A similar work
is presented in [87], which uses constraint-based limited discrepancy search in
the reinsertion of customers within the BB procedure. The number of visits
to be removed is increased during the search each time a number of consecu-
tive attempted moves has not resulted in an improvement of the cost. Limited
discrepancy search is applied to explore the search tree with an increasing num-
ber of discrepancies, a discrepancy being a branch against the best reinsertion
places, e.g. inserting a customer at its second cheapest position.

In LNS, neighborhoods are implicitly de�ned by destroy and repair meth-
ods (often heuristics), which are used to destroy part of the current solution
and to restore the subsequent partial solution. The destroy method usually
includes a component of stochasticity such that di�erent parts of the solution
are destroyed in every invocation of the method. The neighborhood N(x) of a
solution x is then de�ned as the set of solutions that can be generated by �rst
applying the destroy method and then the repair method. Since the destroy
method can destruct a large part of the solution, the neighborhood contains a
large amount of solutions.

The steps of the LNS method are outlined in Algorithm 2. Three variables
are included in the algorithm: xb is the best solution observed so far during
the search, x is the current solution, and x′ is a temporary solution that can
be discarded or promoted to the status of current solution. The function d(·)
is the destroy method while r(·) is the repair method. More speci�cally, d(x)
returns a copy of x that is partially destroyed. Applying r(·) to a partly de-
stroyed solution repairs it, i.e. it returns a feasible solution built from the
destroyed one. Both destroy and repair methods can be implemented in dif-
ferent ways obeying di�erent criteria. In step 2 the new solution is evaluated,
and then the heuristic determines whether this solution should become the new
current solution or should be rejected. The accept function can be developed
in di�erent ways. The simplest choice is to only accept improving solutions,
but some works propose an acceptance criteria borrowed from SA [92], that is,
accepting solutions that may be worse than the incumbent aiming to diversify
the search. As it can be noticed in Algorithm 2, LNS does not explore the
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Algorithm 2 Large Neighborhood Search

Initialization: Find an initial solution x and set xb ← x as the best solution
found so far; choose a stopping condition.

Repeat the following sequence until the stopping condition is met:

1. x′ ← r(d(x))

2. If accept(x′, x) then x← x′

3. If c(x′) ≤ c(xb) then xb ← x′

entire neighborhood of a solution, but merely samples this neighborhood [18].

The destroy method is a crucial component of LNS. The most important
decision when implementing the destroy method is the degree of destruction:
if only a small portion of the solution is destroyed then the goal of leaving
local minimums through exploring large neighborhoods is lost. If a very large
part of the solution is destroyed, then the LNS heuristic almost degrades into
repeated re-optimization or a multi-start process. This can be time consuming
or yield poor quality solutions depending on how the partial solution is rebuilt.
Shaw [93] proposed to gradually increase the degree of destruction, while Ropke
and Pisinger [92] choose the degree of destruction randomly at each iteration
from a speci�c range according to the instance size. The destroy method must
also be chosen such that the whole search space can be reached, or at least the
interesting part of the search space where the global optimum is expected to be
found. Therefore, it cannot focus on always destroying a particular component
of the solution but must make it possible to destroy every part of the solution.

The selection of the repair method permits much more freedom when im-
plementing a LNS heuristic. A �rst decision is whether the repair method
should be optimal in the sense that the best possible full solution is built from
the partial solution, or should be a heuristic assuming that one is satis�ed
with a good solution constructed from the partial solution. An optimal repair
operation will be slower than a heuristic one, but may potentially lead to high
quality solutions in a few iterations. However, from a diversi�cation point of
view, an optimal repair operation may not be attractive: only improving or
identical-cost solutions will be produced and it can be di�cult to leave valleys
in the search space unless a large part of the solution is destroyed at each
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iteration.

Intuitively, searching a very large neighborhood should lead to higher qual-
ity solutions than searching a small neighborhood. Nevertheless, in practice,
small neighborhoods can provide similar or superior solution quality if embed-
ded in a metaheuristic framework because they typically can be searched more
quickly. Large neighborhoods generally lead to local solutions of better quality,
but the search is more time-consuming. Hence, a natural idea is to gradually
extend the size of the neighborhood, each time the search gets trapped in a
local minimum.

3.3 Multi-objective optimization

Many real-world optimization problems, including the VRPTW, involve more
than one objective to be either minimized or maximized. According to [16] and
considering a minimization of each function, a Multi-objective Optimization
Problem (MOP) can be formulated as:

min fi (x) = (f1 (x) , f2 (x) , ..., fn (x)) s.t x ∈ X (3.11)

where f is the vector of n objective functions to be optimized, x = (x1, x2, .., xm)
the decision variable vector and X the feasible set of decision vectors.

In general, there is not a single solution optimizing all the objectives simul-
taneously. Instead, di�erent solutions could be found with a trade-o� among
the di�erent objectives. The concept of domination or Pareto Optimality is
used to determine this set of optimal solutions. It is said that a solution fi (x∗)
is non-dominated i� there is not another solution fi (∗) such that:

∀i ∈ {1, ..., n} |fi (x) <= fi (x∗) ∧ ∃i ∈ {1, ..., n} |fi (x) < fi (x∗) (3.12)

As equation 3.12 states, a solution f (x) dominates another f (x∗) if and
only if f (x) is better than f (x∗) in at least one objective and not worse in
the other ones. That is, a solution is Pareto optimal if there is no other one
that improves at least one objective function without sacri�cing the others.
Therefore, the set of non-dominated points obtained determine the Pareto
optimal solutions of the MOP.
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3.3.1 Methods for solving multi-objective optimization
problem

In general, solving a MOP involves helping a decision maker in the presence
of multiple and often con
icting objectives and providing a solution or a set
of solutions that satisfy the requirements. In this sense, the methods to deal
with MOP can be classi�ed according to the role of the decision maker in the
decision process [94]. The more common classes are: a priori, a posteriori, and
interactive methods. The a priori approach uses speci�c information about
the relevance of the objectives and the user preferences before the solution
process. As a result, one solution is found according to these preferences. In
the a posteriori schema, a set of Pareto optimal solutions is generated and the
preference information of each objective is used to select the most satisfactory
one. Finally, in the interactive methods the preference information is updated
during the solution process. Di�erent examples of methods according to the
above classi�cation can be found in the literature, each having strengths and
drawbacks. A good summary is presented in [94, 95, 96].

The advantage of the a priori approach is to produce a single compro-
mise solution without requiring a further participation of the decision maker.
One of the methods more widely used due to its simplicity is the weighted
method [94]. It is precisely used in the mentioned deicing trucks scheduling
[7] discussed in Section 2.3. It involves aggregating all the objectives into one
composite function with di�erent weights that are used to indicate the relative
importance among the criteria. However, there are problems where express-
ing the preferences through values or correlate di�erent objectives in a unique
objective function may give inaccurate solutions [94, 97].

Other common algorithm is the ε−constraint method, where one of the ob-
jective functions is optimized and the others are transformed into constraints.
In this case, the function to be optimized should be selected, as well as the
upper bounds associated to each objective-constraint according to the user
requirements. Comparing with the weighted method, de�ning bounds seems
more evident to the decision maker than assuming weights for representing the
relation between the objectives. On the other hand, promising solutions which
are not within the de�ned boundary but very close are discarded.

In the hierarchical method, also known as lexicographic method, the objec-
tives are ranked in decreasing order of priority. Then, the problem is solved
optimizing only the most relevant objective function subject to the original
restrictions. The value obtained is added as constraint in order to ensure the
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best value for the most important function, and the next relevant objective is
optimized. If not many objective functions are present in the problem and the
preference between them is clear enough for the decision maker this is a quite
simple and practical method to solve a MOP.

Proposed in 1955 by Charnes et al., Goal programming [98, 99] is one of
the �rst methods specially developed for solving MOP. It is an extension of
linear programming for dealing with multiple objectives [96]. In this case, the
decision maker should specify a target value or a goal for each objective which
represents the level of achievement required. Deviation variables are included
in the model in order to minimize the absolute deviations between the targets
and the objectives. When an order of preference between the objectives is
indicated by the decision maker the method is called lexicographic goal pro-
gramming. In this case, the resulting deviation of the target with the highest
priority has more importance than the rest of goal variations. In contrast, if
the direct relation of the objectives has more relevance to the decision maker,
the deviations are associated with coe�cients. These values are summed into
a single function in a similar way to the weight method and the procedure is
known as weighted goal programming. Goal programming is a popular method
and has been successfully applied to solve real application problems [94]. Rep-
resenting the MOP in terms of goals makes this methodology simple and easy
to understand. However, the aspiration levels should be overoptimistic enough
to produce Pareto optimal solutions [94].

The a posteriori approach uses the concept of Pareto dominance and pro-
vides a set of solutions to the decision maker. This schema makes the decision
process more 
exible and no preference requirements should be speci�ed be-
forehand. In contrast, depending on the problem, it can be very expensive in
computational time and having a large number of alternatives may create dif-
�culties for making a choice. With the goal of �nding a set of non-dominated
points, basic and usually a priori methods can be used as a posteriori approach
modifying the parameters. However, in the weighted method, the performance
of the algorithm is highly a�ected in case of non-convex problems where ob-
taining the Pareto optimal points is not guaranteed [100]. In contrast, the
convexity does not represent an obstacle for the ε-constraint procedure and it
is commonly used in a posteriori way. The problem is solved with respect to
one objective and at each iteration the value of the second objective is used as
a constraint to limit the search space [76, 94, 100].

The use of Evolutionary Algorithms (EA) for solving combinatorial prob-
lems including MOP has received an increasing attention in last years. As
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mentioned in Section 3.2, EA are population-based methods and work with a
set of solutions at each iteration. This feature seems quite suitable for dealing
with MOP due to several Pareto optimal solutions can be generated in a sin-
gle round of the algorithm [101, 96]. Evolutionary computation is inspired by
the Darwin' theory of evolution: a population of individuals (set of solutions)
are generated; the �ttest (best solutions) are modi�ed using recombination
and mutation operators in order to produce solutions that increase the �tness
(improve the objective function) [102].

Interactive approaches can be seen as an attempt to overcome the draw-
backs of a priori and a posteriori methods. The participation of the decision
maker in the optimization process avoids an early, usually inaccurate, speci�-
cation of preferences. Moreover, this produces only relevant Pareto solutions,
improving the performance of the algorithm. The interactive methods can
be grouped into three classes depending on the way the preference informa-
tion is indicated [95]: (i) trade-o� information, (ii) reference points, and (iii)
classi�cation-based methods. In trade-o� approaches such as Z-W [103], the
decision maker provides a measure of how much is possible to sacri�ce one
objective with the aim to achieve an improvement in another objective. In the
second group, desired values for the objective functions are procured at each
iteration according to the accumulated experience along the search process. Fi-
nally, in classi�cation-based method, the decision maker gives di�erent kinds
or classes of modi�cations in order to transform a current Pareto solution into
the most preferred one, e.g which function needs to be improved, which one
could be deteriorated or even wished improvement or deterioration [104, 105].

3.3.2 Multi-objective optimization problem and VRPTW

The �eld of MOP has seen a growing interest among researchers particularly in
VRPTW problems. Di�erent examples can be found in the literature applying
either the most basic methods or sophisticated mechanisms. An overview of
the research in this area is presented in [106].

Gambardella et al. [41] implemented the hierarchy method to minimize
the number of vehicles and the traveling distance in this order of importance.
In [14] (see Section 2.3), a similar approach is used to solve a multi-objective
model for scheduling fueling vehicles. In both cases, the Ant Colony Optimiza-
tion metaheuristic is adopted to perform the search.

A goal programming model is proposed by Ghoseiri and Farid [75] where
also the vehicles required and the traveling distance are minimized, but in this
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case with the same level of priority. A genetic algorithm is employed to solve
the problem generating a range of Pareto solutions. Hong and Park [107] also
used a goal programming model to minimize the total travel time and the
total customer waiting time. A two-phase heuristic based on the cluster-�rst
route-second procedure is introduced in order to improve the performance of
the algorithm. Altering the aspiration levels of the goal, a set of solutions is
obtained.

Liu et al. [108] proposed a multi-objective heuristic in three phases to min-
imize the traveling distance among the vehicles and to balance the workload
and the delivery time. In fact, only the �rst objective is optimized and the sec-
ond and third functions are converted into constraints de�ning the maximum
value allowed for each of them.

In a soft time window context, Muller [76] used the ε− constraint method
to minimize the total cost and the penalties associated with the violations of
the time windows. Here, the total cost consists of the number of required
vehicles and the total distance. It is optimized and the cumulative penalties
is transformed into a constraint. At �rst, any violation is permitted, thus
the solution with the worst cost is generally obtained. At each iteration, the
penalty limit allowed is increased and the problem is solved with the new
conditions producing a set of solutions.

Tan et al. [109] presented a hybrid multi-objective evolutionary algorithm
(HMOEA), which combines evolutionary search with a local search process
for dealing simultaneously with travel distance and 
eet size. Hybridization
between EA and other metaheuristics is included in [110] and [111]. In the
former, the number of vehicles is minimized in a �rst step using evolution
strategy and then the distance is minimized with Tabu Search. Simulated
Annealing and evolution search operators are used in the second work in order
to minimize the distance and the imbalance of the routes.



Chapter 4

Multi-objective global approach

In this chapter we describe our global approach to deal with the ground han-
dling problem. Di�erent activities and vehicles are considered in order to
combine scheduling decisions about each resource in an overall planning.

As discussed in chapter 2, we address the scheduling of ground handling
vehicles at a tactical level. With a tactical scope we have further available
time for executing more sophisticated scheduling algorithms and �nd better
solutions than at operational level. However, the scheduling process usually
needs to be performed very close to the day of operation aiming to use more
reliable expected information about number of passengers, gates, etc. Hence,
we are concerned to obtain good solutions with a reasonable computational
e�ort.

A decomposition schema has been adopted to model the problem and it
is described in Section 4.1. In a �rst level, the time windows to begin the
operations at each aircraft are calculated considering the duration of each task,
the precedence constraints and the available time to complete the turnaround.
Then, the vehicles that perform each task are scheduled independently, where
a VRPTW problem is solved for each type of vehicle involved. Two procedures
have been modeled to tackle each level and both formulations are presented in
Section 4.2.

Regarding the solution method, this is depicted in Section 4.3. All the
VRPTWs, one for each type of vehicle, are solved one after another follow-
ing a speci�c sequence. Each routing problem is solved in two steps: a quick
initial solution is obtained using the Insertion Heuristics method (see Section
3.2.1) and a CP-based VND-LNS methodology is applied after as a local search
process see Sections 3.1, 3.2.2, 3.2.3). In addition, an updating time window

49



50 Multi-objective global approach

process is implemented in order to propagate the routing decisions made for
each type of vehicle and avoid infeasible global solutions. As mentioned, we
have tackled the ground handling problem as a multi-objective problem. A
heuristic is proposed to improve the global solution in this decomposition con-
text and to deal with the MOP. Modifying the sequence the sub-problems are
solved it is possible to �nd approximations to the non-dominated solutions of
this problem.

Finally, a variant of the proposed approach is introduced in Section 4.4
aiming to provide a more exhaustive method to �nd the Pareto solutions. The
scheduling process has been carried out in two stages: solutions are obtained
using only the I3 heuristic and just the most promising are improved with
the local search process. In order to decide which solutions are the best, two
strategies are proposed. In the �rst rule, solutions with the best global results
according to the values of the objectives are selected. Solutions having the
best resource planning for critical activities are preferred in the second rule.

4.1 Problem decomposition

As mentioned, we aim at scheduling ground handling services as a whole tak-
ing into account di�erent activities and vehicles. At each aircraft, several
operations related by precedence constraints are executed during turnaround
and they have to be completed within a prede�ned time (see Chapter 2). At
the same time, each operation is performed independently employing speci�c
resources that are not used by other activities, e.g. one speci�c type of ve-
hicle, independent vehicle station, etc. So, it is possible to decompose the
problem and schedule each operation separately but taking into account the
precedence relations. This way, the global perspective of the approach is kept
and the whole process can be optimized. Also, we want to tackle the prob-
lem as a whole designing and implementing an approach for solving it in a
reasonable time.

Representing and solving this multiple VRPTW by a unique model that
cover all the operations could be very expensive in e�ort and computational
time. Then, decomposing the problem permits to simplify the model and the
solution method. With this goal in mind, temporal restrictions to serve each
operation due to the de�ned turnaround time and precedence constraints have
to be tackled in a global way. That is, time windows to begin the operations are
calculated considering all the operations included and ensuring that routing
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solutions for each type of vehicle can be integrated to obtain a feasible complete
solution. A routing problem for each type of vehicle is solved separately using
the time windows obtained. Available vehicles from the associated 
eet are
assigned to service the corresponding operations and the corresponding routes
are generated.

This decomposition schema is based on the workcenter-based decompo-
sition for the Job Shop Scheduling [17]. Due to each operation has to be
performed by just one type of vehicle, this decomposition method can be ap-
plied to our problem in a natural way. A workcenter is a group of machines
performing similar operations. In this approach, the overall problem is broken
down into workcenter based sub-problems and they are solved independently.
The operations of a sub-problem are related to other sub-problem operations
by the precedence restrictions. Each time a sub-problem is scheduled, new
constraints for the other operations are generated. Thus, a method that in-
tegrates the sub-solutions and keeps the consistency of the overall solution is
needed. In our problem, each type of vehicle could be viewed as a workcenter,
and the vehicles available in the 
eet as machines. Therefore, instead of solving
a global VRPTW, it is possible to solve a local VRPTW for each of them. In
addition, scheduling each type of vehicle separately permits the development
of speci�c methods to tackle special features according to the operation they
perform.

The decomposition schema adopted is outlined in Figure 4.1. A procedure
we called Temporal Constraints Level Procedure (TCLP) was de�ned to satisfy
the temporal restrictions. For each type of vehicle, one VRPTW sub-problem
is identi�ed and modeled using the Routing Level Procedure (RLP) also de-
�ned. The F1 and F2 are the optimization objectives. Formulation of both
procedures as well as the objective functions are presented in section 4.2.

4.2 Problem formulation

The main features of the proposed approach are modeled and implemented in
CP. As mentioned in Section 3.1, problems in CP are expressed by means of
three elements: variables, their corresponding domains, and the constraints re-
lating these variables. Therefore, the problem formulation is de�ned according
to these elements.

The parameters of the ground handling problem are described as follow:

• N = {1, ..., n}: is the set of scheduled aircraft performing a turnaround.
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Figure 4.1: Problem decomposition schema

For each aircraft n ∈ N the STAn and STDn are the scheduled time of
arrival and departure, respectively.

• A = {1, ..., a} is the set of aircraft types where an ∈ A represents the
type of the aircraft n

• � = {1, ..., γ} is the set of parking positions, and γn ∈ � is the stand
where the aircraft n is parked during the turnaround. πij ∀i, j ∈ � is
the traveling cost between stands and π0 i is the traveling cost between
stand i and the vehicle depot.

• T = {1, ..., nt} are the tasks to be performed on the aircraft at its parking
position. According to the aircraft type a ∈ A, each task t ∈ T has a
duration δta, a demand ρta, and precedence restriction rules 	ta, which
represent the set of tasks that need to be �nished before task t starts.
Each task has to be served by one type of vehicle.

• V T = {1, ..., nvt} describe the di�erent type of vehicles which serve the
tasks, where each vt ∈ V T has its own homogeneous 
eet Mvt = {1..mvt}
with a capacity Qvt.

Then, there are O = T × N operations to be performed by vehicles from
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V T . An operation otn is a task t performed at an aircraft n according to an,
the type of aircraft of n.

Temporal Constraint Level Procedure (TCLP)

In this level, precedence and temporal restrictions at each aircraft are modeled
in CP. With this procedure the earliest and latest start time for each operation
are obtained. Let the variable τtn be the start time of each operation otn with
a discretized initial domain τ :: [STAn..STDn]. Precedence restrictions are
described by the following constraint:

τtn ≥ τt′n + δt′an ∀t ∈ T ∀t′ ∈ 	tan ∀n ∈ N (4.1)

Equation 4.1 ensures that precedence relations among the tasks are ful�lled
according to the type of aircraft they belong to. Specifying the domain of τtn,
we guarantee that operations are performed within the available turnaround
time. This can be done either with the domain de�nition or with an extra
constraint, (4.2):

STAn ≤ τtn ≤ STDn ∀t ∈ T ∀n ∈ N (4.2)

When restriction 4.1 is propagated, the domain of the start time variable of
each operation is reduced such that τtn :: [esttn..lsttn] where est and lst are the
lower and upper bounds of τ and represent the earliest and latest start time of
the operation, respectively. An example is presented in Figure 4.2. Suppose
an aircraft where two operations should be performed, o11 and o21 such that
o11 has to be �nished before o21 could start, that is t21 ≥ t11 + δ1a. At �rst the
domain of both operations is [STA..STD]. After applying 4.1, feasible time
windows are obtained.

t11

t21

STA STD

t11

t21

est11

STA STD

δ11

δ21

t11

lst11

δ11

lst21

δ21

t21

propagation

est21

Figure 4.2: Propagation of the domain after applying precedence constraints
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TCLP is also used to update the time windows with the aim to propagate
the routing decisions made for each type of vehicle. Along the operations
scheduling process, these time windows are modi�ed due to the precedence
restrictions. As a result of routing the vehicles separately, an explicit update
process of the time windows is required to avoid inconsistency among the sub-
problems. Suppose the same operations o11 and o21 on the same aircraft. The
di�erence between est11 and est21 is the duration of o11, as well as between
lst11 and lst21. Suppose also that the type of vehicle which serves o11 is routed
�rst and o11 is scheduled such that τ11 ≥ est11. The value of est21 is now
τ11 + δ1a. Then, the time window of o21 has to be reduced. Otherwise, when
the type of vehicle associated with o21 is routed with the original time window,
an infeasible solution might be obtained. Notice both the earliest and the latest
start time could be reduced. For example, if o21 is solved �rst, the lst11 will be
τ21 − δ1a. The strategy followed to update the time windows and ensure the
consistency of the solutions is further explained in Section 4.3.1.

Routing Level Procedure (RLP)

The CP model corresponding to each VRPTW sub-problem is based on Kilby
and Shaw formulation [112]. This model represents a basic VRPTW that can
be enriched to cope with the particularities of each ground handling vehicle
type. Taking advantage of CP 
exibility new constraints could be introduced
with minimum modi�cations in the model and the solution process.

When the time windows for each operation are calculated, a sub-problem
is identi�ed for each vt ∈ V T . We get the set of operations to serve by each
vt, Ovt = {o1, ..., on}, as well as the duration do and the requirements of goods
ro for each o ∈ Ovt according to the task and the aircraft type where the
operation takes place. Thus, this set of operations represents the set of visits
to be performed by vehicles. There is one visit per operation plus two special
visits per vehicle. This special visits describe the depot from which the vehicles
start and �nish their routes. Due to each routing problem is solved separately
and in order to simplify the notation, we identify the set Ovt as O = {1, .., n}.
Let V = O ∪ F ∪ L be the set of visits which is described by the following
subsets:

• O = {1, .., n} represents the operations, i.e the aircraft to be serviced.

• F = {n+ 1, .., n+m} is the set of �rst visits, i.e the depot in outbound
trips.
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• L = {n+m+ 1, .., n+ 2m} is the set of last visits, i.e the depot in
inbound trips.

Furthermore, m is the number of vehicles needed to serve all the operations
from the 
eet M = {1..m} with capacity Q. It should be noticed that m is
a parameter at this level. Its value is determined as a solution of the �rst
stage procedure for solving the routing problem (details are provided in section
Section 4.3).

The indexes fk and lk express the �rst and last visit of a vehicle k ∈ M
respectively:

• fk = n+ k, fk ∈ F is the �rst visit of vehicle k

• lk = n+m+ k, lk ∈ L is the last visit of vehicle k

In order to model the routes, the following variables are de�ned:

• pi, ∀i ∈ V − F is the direct predecessor of a visit i with domain p ::
[1..n+m]

Besides predecessors, a variable that represent the customer's successor in
a route is de�ned. In principle, only one of both variables is required to model
routes. Nevertheless, this redundant formulation allows making additional
inferences and prune the search tree in a notable way.

• si, ∀i ∈ V − L represents the direct successor of a visit i with domain
s :: [1..n, n+m+ 1..n+ 2m]

By convention, the �rst visit of a vehicle has as predecessor the vehicle's
last visit such that pfk = lk, ∀k ∈M . Similarly, each last visit of a vehicle has
as successor the vehicle �rst visit slk = fk, ∀k ∈M .

In order to restrict a visit to have one and only one predecessor and succes-
sor the difference constraints (4.3) and (4.4) have been introduced. That is,
these inequalities force predecessor and successor sets to contain no repetitions.

pi 6= pj ∀i, j ∈ V − F ∧ i < j (4.3)

si 6= sj ∀i, j ∈ V − L ∧ i < j (4.4)
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In addition, the coherence constraints (4.5) and (4.6) are established to
keep the consistency between the successor and predecessor variables.

spi = i ∀i ∈ V − F (4.5)

psi = i ∀i ∈ V − L (4.6)

Restrictions (4.5) and (4.6) link the successor and predecessor concepts,
such that i is the successor of its predecessor and i is the predecessor of its
successor, respectively.

• vi ∀i ∈ V is the vehicle which perform each visit i with domain v :: [1..m]

The variable vi is established to cope with multiple vehicles. Also, the
following path constraints are included in order to guarantee that all visits are
performed by the same vehicle along the route: constraints (4.7) and (4.8)
ensure a visit, its predecessor and successor, are assigned to the same vehicle.

vi = vpi ∀i ∈ V − F (4.7)

vi = vsi ∀i ∈ V − L (4.8)

Likewise, the �rst and last visit of this vehicle are associated with equation
(4.9).

vfk = vlk = k ∀k ∈M (4.9)

Another two sets of variables are de�ned to represent cumulated capacities
and the time for each visit:

• ti, ∀i ∈ V is the time when the visit i is performed with domain t ::
[esti..lsti].

• qi, ∀i ∈ V is the accumulated capacity after each visit i, with domain
q :: [0..Q]

Notice the est and lst values are those obtained from the TCLP procedure.
The domain of the time variable determines the time window of the customer
and is equivalent to time windows constraints (4.10).

esti ≤ ti ≤ lsti ∀i ∈ V (4.10)



4.2. Problem formulation 57

Equation (4.10) as well as the time domain, speci�es that customer i must
be visited between times est and lst. In general, the concept of scheduling
horizon is de�ned by the time windows of the depots.

To ensure the temporal precedence in a route, time constraints (4.11) and
(4.12) are enforced. The �rst equation states that the time to visit a client
i is at least the time its predecessor is visited plus the sum of traveling time
(πpii) from pi to i and the duration of the service (dpi) in the predecessor. In a
similar way, the time to visit a client is at most the time its successor is visited
minus the sum of traveling time (πisi) from i to si and the duration of the
service (dsi) at si. Notice (4.11) and (4.12) are inequalities because waiting
time is normally allowed.

ti ≥ tpi + πpii + dpi ∀i ∈ V − F (4.11)

ti ≤ tsi − πisi − dsi ∀i ∈ V − L (4.12)

The capacity constraints (4.13) and (4.14) are de�ned to maintain the load
in the vehicles at each point in their route. The amount of goods picked up
(ri > 0) or delivered (ri < 0) in the route are counted to keep the load along
the route.

qi = qpi + ri ∀i ∈ V − F (4.13)

qi = qsi − rsi ∀i ∈ V − L (4.14)

The domain of the variable qi limits the accumulated capacity demand
according to the capacity of the vehicle Q. This can also be restricted using
an speci�c constraint such that:

0 ≤ qi ≤ Q ∀i ∈ V (4.15)

In addition, we state the objective function of the routing problem. As
mentioned, one of the optimization goals is serving the operations as early
as possible. Therefore, the objective function aims at minimizing the total
di�erence between the earliest possible time a vehicle could perform each visit
and the corresponding earliest service time. Let (4.16) be this di�erence, that
is, the client waiting time, the objective function for the routing problem is
formulated as (4.17).

wi = ti − esti (4.16)
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min
n∑

i=1

wi (4.17)

Multi-objective functions

Finally, the objective functions of the global problem are formulated. The
�rst criterion aims at improving the robustness of the solution minimizing
the operation waiting time. As a result of the decomposition, the operation
waiting time is calculated by the RLP with the updated time window (if it
is reduced). If the size of the time window becomes smaller, probably the
waiting time would be also smaller, although it does not contribute to the
solution robustness. So, in order to obtain a more robust scheduling, operations
should be performed as early as possible within their original time windows.
Therefore, our �rst objective aims at performing operations as soon as possible
through two arguments: minimizing the total operation waiting time (4.16)
and the reduction of the time windows.

Let �i be the reduction of the time window de�ned in (4.18), where oesti
and olsti mean the original values of the time windows obtained from the
TCLP, i.e., the very earliest and latest start time for each operation.

The wi is the client waiting time set in equation (4.16). An aggregate
function f1 is de�ned in order to describe how early operations are performed
at each routing problem:

�i = (oesti − esti) + (olsti − lsti) (4.18)

f1vt =
n∑

i=1

(�i + wi) ∀i ∈ Ovt (4.19)

Thus, the �rst objective F1 is de�ned as the total f1 value of each type of
vehicle:

F1 = min
∑

vt∈V T

f1vt (4.20)

The goal of the second objective is to minimize the completion time of the
aircraft turnaround. Let τnt be the start time of the last operation on each
aircraft, i.e. the pushback. The second objective F2 of this problem is therefore
de�ned as:
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F2 = min
∑
N

τnt (4.21)

4.3 Solution method

In this section, we describe the algorithms developed for solving the ground
handling problem modeled using the decomposition schema outlined in Section
4.1 and formulated in Section 4.2.

Most workcenter-based decomposition methods are solved using the Shift-
ing Bottleneck procedure [17] developed by Adams et al. [113]. This decompo-
sition heuristic was originally implemented for the classical job shop schedul-
ing problem and then extended to model other versions like the sequence-
dependent times [114] and the workcenter problems [17], also called parallel
machine problem. At each round, a critical unscheduled sub-problem accord-
ing to the optimization criterion is identi�ed and solved as a one-machine (or
workcenter) scheduling problem. Using this result, each sub-problem solved in
the previous iterations is re-optimized by solving again a one-machine problem,
while the rest of machines already scheduled remain �xed. This re-optimizing
cycle is repeated a number of times modifying the order in which the machines
are solved.

The Shifting Bottleneck is computationally intensive and involves solving
many single machine scheduling problems [115]. Applying this procedure in
our particular case, where each sub-problem is a VRPTW, can lead to long
execution times and becomes impractical to solve the problem. Thus, we
followed a similar schema but combining two processes in order to obtain a
complete solution at each iteration.

Two important aspects have to be considered to solve this problem as a
result of the decomposition applied: (i) to avoid an infeasible global solution
and (ii) to improve the global solution obtained. In the �rst developed pro-
cess, which we call Solving Process (SP), all sub-problems are solved one after
another given a prede�ned sequence. Each time a sub-problem is solved, the
time windows of the remaining sub-problems are updated in order to keep
the consistency among the sub-solutions. The SP is embedded in an iterative
schema which we call Sequence Iterative Method (SIM) and is further described
in Section 4.3.4. The goal of this second process is to improve the overall solu-
tion while dealing with the multi-objective optimization problem de�ned. The
sequence for solving the sub-problems is modi�ed at each iteration according
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to the solution obtained and the SP is repeated with the new sequence. The
relation between SP and SIM method is summarized in Figure 4.3.

Sequence Iterative Method
(SIM)

Stop
Condition

Solving
Process
(SP)

Initial
sequence

Solution
Obtained

Modify
sequence

New
Sequence

Set of
solutions

Y N

Figure 4.3: Solution method schema

Solving Process

In the SP, the problem is solved according to an specific sequence. This se-
quence defines the order in which the type of vehicles are scheduled, that is,
the order in which the routing problems associated to each type of vehicle are
solved. A schema of this process is shown in Figure 4.4.

First, the TCLP is used to find the initial time window to begin each
operation. Time windows to begin the operations are calculated considering
the duration of each task, the precedence constraints and the available time
to complete the turnaround at each aircraft as it is described in Section 4.1.
Time windows are obtained through the domain reduction provided by the
propagation mechanism of CP. Then, the sub-problems associated to each
type of vehicle are identified. This means operations performed by the same
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type of vehicle are grouped in order to solve each VRPTW separately. Then,
sub-problems are solved by means of the RLP following the given sequence.

Solving 
sequence

Obtain the initial  
time windows

Identify all the        
sub-problems 

Are all the sub-
problems solved? Exit

Update the time 
windows

N

Y
Routing a subproblem

Find an initial 
solution

Make a local 
search process

RLP

Select 
sub-problem 

TCLP

Figure 4.4: Flow diagram for the SP

The RLP procedure is developed in two steps, as will be further described
in Section 4.4. At the �rst step, a well-known route construction heuristic
is used to obtain a reasonable good initial solution: the Insertion Heuristic I3
method (see Section 3.2.1). In order to use the I3 to solve our speci�c problem,
the parameters of the heuristic have been tuned and are introduced in Section
4.3.2. The number of vehicles obtained in this step is taken as an upper bound
of the vehicles needed to serve the operations. Imposing this value as the size
of the available 
eet, a CP local search process [18] is applied in the second
step. This methodology is described in Section 4.3.3. The aim of this step
is to improve the initial solution by minimizing the operation waiting time



62 Multi-objective global approach

according to the formulation of the RLP procedure given in Section 4.2.

After solving a sub-problem, an explicit process to update the time windows
is needed to ensure consistency with the other sub-problems, as explained in
Section 4.2. Once again, taking advantage of CP propagation through the
TCLP, a simple strategy described in 4.3.1 is applied to keep this consistency.
Finally, when all the sub-problems are solved, the process is stopped.

4.3.1 Update time windows

This step aims to ensure a feasible complete solution for the global problem.
Due to precedence constraints between operations, the decomposition process
can lead to obtain an infeasible global solution. An explicit time windows
updating process is de�ned in order to integrate the sub-solutions. It is outlined
in Algorithm 3.

Let S be the set of routing sub-problems to be solved, where |S| = |V T |.
F is the set of sub-problems already solved such that F ⊆ S and S \ F are
the sub-problems not solved yet. τs is the set of start times corresponding to
the visits in sub-problem s, s ∈ S. τF and τS\F are the set of start times of
sub-problems in F and S \ F , respectively.

To ensure the coherence among the sub-solutions, each time a sub-problem
is solved, the scheduled decisions are propagated to the rest of sub-problems
not solved yet, keeping already scheduled sub-problems �xed. At �rst, no sub-
problem has been solved. The very earliest and latest start time of each opera-
tion is obtained by means of the TCLP. When a sub-problem is scheduled, the
start times of the operations belonging to this sub-problem are calculated. Af-
terward, the TCLP is recalled with the start times of the sub-problems already
solved. These values are propagated to the operations of the unscheduled sub-
problems and their time windows are updated. This process is repeated for
each sub-problem, always keeping the preceding scheduling decisions. There-
fore, infeasible intermediate solutions are avoided using this strategy.

Time window reduction depends on the order sub-problems are solved and
a�ects the quality of the global solution. In fact, in the decomposition pro-
cedures based on Shifting Bottleneck, determining the next machine to be
scheduled is one of the more important steps. According to [17] the sequence
in which machines are included in the partial schedule can reduce the re-
optimization process without loss in solution quality. Then, the iterative pro-
cess SIM is developed aiming at improving the solution by modifying the order
the sub-problems are solved.
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Algorithm 3 Solving Process (SP)

Initialization:
- Set τ :: [STAn..STDn]
- Obtain the initial time windows by means of TCLP ⇒ τtn :: [oesttn..olsttn]
- Set F ← 0
Repeat until |F | = |V T |

1. Choose s ∈ S. τs is a subset of τtn which de�ne the start times of
operations t included in sub-problem s.

2. Sub-problem solution by means of the RLP

(a) Obtain an initial solution for s using the I3 Insertion Heuristic

(b) Apply the CP-based local search process (Algorithm 4)

3. Time windows update process for the sub-problems in S \ F by means
of the TCLP

(a) τs ← start times obtained solving s with RLP

(b) Set F ← F ∪ {s}
(c) TCLP(τF ) ⇒ τS\F :: [esttn..lsttn]

4.3.2 Initial solution

As discussed in Section 3.2.1, one of the more interesting features of the Inser-
tion Heuristic method is that both time dimension and distance are included in
the route building process. Moreover, the parameters de�ned for each criterion
give a considerable degree of freedom to adapt the solution method for solving
di�erent problems. This parameters can be adjusted to obtain solutions that
improve classical objectives like distance as well as more time-oriented goals.
In this case, the Solomon study [19] was focused on the total scheduling time
and the vehicle waiting time in addition to the distance and the number of
vehicles, being the last one the main objective.

Minimizing the operation waiting time is the objective of the routing prob-
lem in our case. So, the parameters have been adjusted for tuning the heuristic
to this optimization objective. It should be remarked that we are also inter-
ested in obtaining good solutions regarding the number of vehicles. Thus, we
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have assigned the weights to the parameters in order to accommodate the al-
gorithm to improve the operation waiting time without sacri�cing the number
of routes needed to serve the clients.

In the I3 method the same cost function is used to build the routes i.e
to select the best place and the best client to insert in this place. This cost
function c1 formulated in Section 3.8 involves three criteria: (i) the distance,
(ii) the schedule time to begin the visit, and (iii) the urgency of serving the
customer (see equations (3.4), (3.5), and (3.9), respectively in Section 3.2.1).
Each criterion has an associated weight which de�nes the relevance of the goal
in the cost function: α1, α2, and α3, respectively, where α1 +α2 +α3 = 1, and
α1, α2, α3 ≥ 0.

The second rule seems the goal we would prioritize to bene�t the operation
waiting time. However, making α2 too high can increase signi�cantly the
number of routes required. In order to get a compromise between minimizing
operation waiting time and the number of vehicles, parameters α1 and α2

are set to have similar weights. Regarding α3, this parameter contributes to
reduce the vehicle waiting time [19]. Due to our main objective can be critically
a�ected by this feature, we gave α3 the lowest importance in the cost function.

With these ideas in mind, we de�ned an interval for each parameter, such
that: α1 = [0.4, 0.5], α2 = [0.4, 0.5], and α3 = [0.01, 0.1] and tested the algo-
rithm over the di�erent combinations. The best results are obtained with a low
α3. In general, the customer waiting time begins to rise when α3 takes values
greater than 0.05 and its in
uence is bigger in case of operations with larger
time windows. Combination (0.49, 0.49, 0.02) gives the best result for most of
the instances tested (see Section 5.2). Therefore, we have selected these values
to specify the parameters. Notice that this procedure gives the initial solution
of the routing problem and a local search process is then executed in order to
improve it.

Furthermore, we have adjusted the initialization criterion to minimize the
operation waiting time. As described in Section 3.2.1, initializing the route is
the �rst step of the Insertion Heuristic method. According to Solomon [19],
the rule to select the �rst client has an appreciable impact on the quality of
the solution. Three main criterion were proposed: (i) the farthest unrouted
customer, (ii) the unrounted customer with the earliest deadline, and (iii) the
customer which the minimum weight combination between distance and time.
In our problem, the client having the earliest start time to begin the service
was inserted �rst at each new route generated.
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4.3.3 Local search process

A hybrid methodology that combines modeling and constraint propagation
advantages of CP with local search methods is applied to improve the ini-
tial solution. The drawback of local search strategies is they are likely to
get trapped in a local minimum when no better solution can be found in a
neighborhood. To overcome this obstacle, the methodology employs VNS as
a metaheuristic to guide the search, speci�cally the VND version explained in
Section 3.2.2.

During local search, a sequence of moves is performed to transform a cur-
rent solution into another solution in its neighborhood. This process may
violate a basic operating principle in CP, the so-called chronological backtrack-
ing. If a worse solution or even an infeasible one is obtained during search,
some decisions made can be always undone. Under chronological backtracking,
decisions must be undone in the reverse order they were made. So, in order
to undo the last decision made during search, all operations performed since
that time would have to be undone too, which would be unacceptable from
a local search point of view. In order to avoid this undesirable situation the
changes made at the local search level are embedded in CP using the concept
of operators. An operator determines a neighborhood and a set of solutions
can be found when the operator is applied to one solution [80].

Many of these operators are based on Large Neighborhood Search (LNS),
described in Section 3.2.3, which destroys and repairs the solution in order
to re-optimize parts of the problem. Destroy in this case means identifying
a set of customers to be removed from a solution. Repair refers to �nding a
better way to reinsert these customers into the partial solution. One iteration
of removal and re-insertion can be considered as a move to �nd a new solution
in the neighborhood. If the re-insertion process is successful and results in a
lower cost than the best solution found so far, this new solution is kept as the
current one.

Employing LNS with a VND, the methodology allows the exploration of
the search space in a systematic way as depicted in Algorithm 4 proposed
by [18]. Using VND, the algorithm moves from one operator to the next in
order to escape from local minima. Anytime an improving solution is found,
the process is reset to the �rst operator; otherwise, the algorithm changes
to the next operator. Operators are used to destroy the solution and a CP-
based branch-and-bround (BB) procedure is employed as the repairing method.
Constraint propagation provides e�ciency to this process pruning the search
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Algorithm 4 VND-LNS

Initialization:
- Select the set of operators Ok, for k = 1, ..., kmax, that will be used;
- Find an initial solution x (using I3 Insertion Heuristics)
- Choose a stopping condition (limited execution time) - Set k ← 1.

Repeat the following steps until k = kmax:

1. Apply the Ok operator to obtain the solution x′ (LNS)

2. If the solution x′ is better than x (f(x′) < f(x)), set x← x′ and k ← 1;
otherwise, set k ← k + 1

tree each time the upper bound is updated when a better solution is found.
Due to this process is an exact repairing procedure, a limited execution time is
established to avoid excessive computational time. Also here, the combination
of VND and LNS plays an important role because di�erent neighborhoods can
be explored and revisited iteratively with improved upper bounds [18].

RPOP and SMART Operators

Rousseau et al. [80] propose a set of constraint-based operators for searching
in large neighborhoods with the aim to solve the VRPTW. They use the VND
strategy to take advantage of the di�erent solutions generated by the di�erent
operators. According to this work, the neighborhood structure de�ned by used
operators should be di�erent in order to succeed with the VND. Following this
idea, we have implemented: the Random Pivot OPerator (RPOP) proposed by
[18] in which individual customers are removed and re-inserted and the SMAll
RouTing (SMART) [80] concerning arc exchanges. The VND schema using
both operators is outlined in Figure 4.5.

Two key aspects should be considered when implementing operators: (i)
how to select customers, and (ii) how many, i.e. the size of the neighborhood.
Concerning the �rst point, a typical strategy is removing clients that are re-
lated according to some criteria, i.e geographic proximity. As for the second
consideration, small neighborhoods are usually preferred to large ones due to
computational time reasons. Also, small neighborhoods can provide similar or
superior solution quality if they are embedded in a metaheuristic framework
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Figure 4.5: Flow diagram of the VND schema using operators RPOP and
SMART

[18].

In RPOP, which is described in Algorithm 5, a pivot customer is randomly
selected and removed from the solution. Then, a set of the nearest customers
according to their geographic proximity is also removed forming a hole around
the pivot [18]. In our particular problem, di�erent operations (clients) can
have the same parking position due to the length of the schedule time hori-
zon. Hence, establishing temporal criteria seems more suitable to associate
visits than using geographical rules. In the ground handling problem, the time
windows to serve the operations are generally tight, particularly when the ac-
tivities have precedence restrictions. So, we have de�ned the closeness of the
time windows as the proximity metric of the RPOP.

Regarding the number of clients, RPOP operator is de�ned such that the
number of visits removed is gradually increased each time the search gets
trapped in a local minimum. One single pivot is again selected when an im-
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Algorithm 5 RPOP LNS-based operator

Initialization:
- Select a maximum number of pivots kmax to be used;
- Select the number of customers l around each pivot to be removed;
- Let x be the initial solution;
- Set k ← 1.

Repeat the following steps until k = kmax:

1. Choose randomly k pivots from the solution x ⇒ xk

2. Choose the l closest neighboring visits around each pivot k⇒ xl =
⋃

k xlk

3. Assign the partial labeling x′ = x \ {xk ∪ xl}

4. Repair the partial solution x′ using branch-and-bound during tmax time
to get x′′

5. If the solution x′′ is better than x (f(x′′) < f(x)), set x← x′′ and k ← 1;
otherwise, set k ← k + 1

provement is found. That is, a VND exploration strategy is adopted to deter-
mine the size of the neighborhood. An upper limit on the number of pivots is
de�ned to avoid exploring neighborhoods that are too large. We selected the
same strategy in our case.

In the SMART operator, outlined in Algorithm 6, sequences of arcs in
di�erent routes are removed instead of customers. The incomplete solution
generated by the SMART operator can be viewed as small VRPTWs. In
this case, a set of consecutive arcs is selected from each route and �rst and
last customers of the removed sequences are considered the new depots. Also
here, the sequences of customers to be removed from each route need to be
close in order to ensure feasible movements. First, a random primary pivot
is identi�ed and a certain number of clients after and before the pivot are
disconnected making a hole in its route. Then, a set of secondary pivots is
selected, that is, the one customer in each other route that can be visited in
that hole making a minimal detour.

In relation to the neighborhood dimension, this operator is more likely to
produce large neighborhoods than the RPOP. Rousseau et al. [80] suggest to
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use Limited Discrepancy Search (LDS) [116] for repairing the solution. LDS
is a form of incomplete search where only the most promising values on the
domain are tried during the exploration. Considering that a value ordering
heuristic has been applied (see Section 3.1), the best value correspond to the
left-hand branch of the search tree, the second preferred to the next branch and
so on. LDS explores the tree according to a number of de�ned discrepancies
which means the number of values tried besides the �rst. With LDS, large
search spaces can be explored more quickly without compromising notably the
quality of the solution.

The most-constrained heuristic described in Section 3.1.3 has been adopted
to repair the solution in both operators.

Algorithm 6 SMART LNS-based operator

Initialization:
- Select the number of predecessors p and successors s to be removed
- Let x be the initial solution;

1. Choose randomly one primary pivot P from the solution x ⇒ xP

2. Choose p and s customers before and after P

3. Assign the partial labeling xp = x \ {xP ∪ xp ∪ xs}

4. Obtain the set of secondary pivot SP to be removed x ⇒ xSP

5. Choose p and s customers before and after each sp ∈ SP

6. Assign the partial labeling x′ = xp \ {xSP ∪ xSPp ∪ xSPs}

7. Repair the partial solution x′ using branch-and-bound and LDS with
dmax discrepancies during tmax time to get x′′

8. If the solution x′′ is better than x (f(x′′) < f(x)), set x← x′′

4.3.4 Sequence Iterative Method (SIM)

The ground handling problem has been de�ned as a particular Multi-Objective
Problem (MOP), in particularly as a bi-criteria optimization problem. The
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�rst criterion relates to the quality of the local routing decisions, and also
depends on the reduction of the time windows along the process. The second
criterion can be seen as a global objective; minimizing the completion time
of the turnarounds. The iterative process was implemented to improve the
global solution as a result of the decomposition regarding the two objectives
de�ned. In our particular case, tackling the vehicle scheduling problem as
a MOP contributes to the global approach of the ground handling problem,
although it is not easy to de�ne the relation and the importance between the
objectives. For that reason, we aim to obtain a set of solutions with a trade-o�
between the objectives in order to avoid inaccurate speci�cations of preferences
and give the possibility to select the solution that better suits the problem.

Using a posteriori methods, the solution of the MOP is the set of the non-
dominated solutions, also called the Pareto optimal set. Depending on the
problem, obtaining all the Pareto optimal solutions is not guaranteed or can
take high computational times [94, 100]. Due to an heuristic approach is used
to solve the problem in our case, approximations to the Pareto optimal set
will be obtained. A de�nition of an approximated Pareto optimal solution is
presented in [117]: a solution y obtained by an algorithm A is Pareto optimal
relative to A, if A does not �nd another solution z, such that z dominates y.
In general, the heuristic methods have to be developed with two important
principles: (i) �nd non-dominated points as close as possible to the optimal
set and (ii) �nd solutions diverse enough to provide a good coverage of this set
[117].

Many methods such as the weighted method, the ε-constraint, and goal
programming among others (see Section 3.3.1) solve the MOP by scalarization
[106, 94, 100], i. e. transforming the problem into a single objective or a
set of single objective problems. This strategy employs e�cient and already
tested single-objective algorithms existing in the literature and applies them
to solve the MOP. Following this scalarization schema, we developed SIM to
�nd the potential non-dominated solutions for our problem. The problem is
solved with respect to the �rst objective and the value of the second objective
is calculated from the obtained solution. At each iteration, the sequence for
solving the sub-problems is modi�ed in order to �nd a solution in the Pareto
set to cover it in the best possible way.

The end of the turnaround process is determined by the O�-Block Time
(OBT), when all the doors are closed, bridge removed, pushback vehicle present
and the aircraft is ready for start up and push back [6]. Although this opera-
tion might not be necessary for aircraft parked at a remote position, pushing
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away the aircraft (pushback) is the most typical way used for leaving the park-
ing position. For that reason, we have de�ned pushback as the last task of the
ground handling service in our problem. We used this information to create
an initial sequence to obtain a lower bound of F2. That is, the turnaround
is planned to be performed in the minimum time possible at the expense of
reducing the operation time windows on the same aircraft. Moreover, when
time windows are too tight, the number of vehicles needed to serve the tasks
increases signi�cantly. At each iteracion of the algorithm, we selected opera-
tions to be scheduled before pushback in order to improve the robustness but
a�ecting the completion time as less as possible. Thus, the sub-problems are
ordered and solved in such a way that a promising search space will be ex-
plored to improve F1 while a new value for the second objective is obtained.
This method is described in Algorithm 7.

Let S be the set of sub-problems, where each sub-problem corresponds to
each vehicle type, |S| = |V T |. The order in S describes the sequence the sub-
problems are solved, slo is the sub-problem corresponding to the last operation,
B the set of sub-problems to solve before slo such that B ⊆ S \ slo and R the
rest of sub-problems, such that R = S − slo −B.

In the �rst step of the algorithm, an initial sequence in S is created such
that the slo is the �rst sub-problem to solve. When a sub-problem is solved
�rst, the operations are scheduled within their original time windows. If this
sub-problem is the pushback, a lower bound of F2 is obtained. On the other
hand, this reduces the original time windows of the other tasks on the same
aircraft, i.e. the time windows of the elements in R. So, a worse value of F1
is obtained.

At �rst, the elements in R are ordered by the values that were assigned
to identify the sub-problems. In principle, when solving the last operation
�rst, the best value of F2 is obtained regardless the order of the elements
in R. However, solutions found should be as close as possible to the Pareto
optimal set, i.e. a solution with a lower bound of F2 with the minimum value
of F1. Therefore, after obtaining a solution with the initial sequence, the sub-
problems in R are ordered by f1, that is, the total operation waiting time of
the associated routing problem. Then, we repeat the process in order to obtain
a better sequence of R.

In the second step, we aim to improve the value of F1 planning the rest
of sub-problems before the last operation. At each iteration, the sub-problem
with the highest value of f1 in R is chosen to be included in B and solved
�rst. Adding sub-problems to B, that is, prioritizing the other operations with
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Algorithm 7 Sequence Iterative Method (SIM)

1. Sequence to obtain a lower bound of F2

(a) Create an initial sequence in S
- B ← φ
- R ← sort R by the values of the operation associated to each
sub-problem
- S ← {slo} ∪R
- F1← SolvingProcess(S)

(b) Repeat until no improvement is found
- R′ ← sort the elements in R by their f1 in a decreasing order
- S ′ ← {slo} ∪R′
- F1′ ← SolvingProcess(S ′)
- if (F1′ < F1) then

i. S ← S ′

ii. F1← F1′

2. Sequence to improve F1

(a) Repeat until |B| = |S \ {slo} |
- b← b ∈ R|b = maxR {f1}
- B ← {b} ∪B
- R← R \ b
- S ← B ∪ {slo} ∪R
- F1← SolvingProcess(S)

(b) Repeat until no improvement is found
- R′ ← sort the elements in R by their f1 in a decreasing order
- B′ ← sort the elements in B by their f1 in a decreasing order
- S ′ ← B′ ∪ {slo} ∪R′
- F1′ ← SolvingProcess(S ′)
- if (F1′ < F1) then

i. S ← S ′

ii. F1← F1′
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respect to slo, usually leads to a F1 decreasing. Similar to the above step, the
sub-problem selected is scheduled within its original time windows which lead
to a lower bound of its f1. In order to �nd a range of solutions that represent
the Pareto set, we have included one sub-problem at each iteration. Thus, an
improvement of F1 is reached while a new value of F2 is found.

Finally, the process is repeated every time a new sub-problem is chosen.
The goal of this part is to explore the search space modifying the sequence of
the sub-problems in each subset keeping the position of slo. Up to now, we
have focused on the relation between the last operation and the rest of the ac-
tivities to improve the F1 value. At this last level, we address the relationship
between the operations itself, particularly, activities having precedence con-
straints between them. The order in which these sub-problems are solved can
also in
uence the value of the objectives. So, we perform a similar procedure
to the step 1 in Algorithm 7: sub-problems in R and B are ordered by f1 and
the procedure is launched following this new sequence.

4.3.5 Solution method discussion

In this section we have described the solution method developed for solving the
proposed multi-objective approach. Algorithms implemented permit schedul-
ing ground handling vehicles with a global perspective and to obtain better
global solutions according to the optimization objectives de�ned: F1 and F2.
Furthermore, the SIM procedure provides an easy and fast way to �nd a set
of Pareto solutions that allows the decision maker to select the best solution
according to its preferences.

The SIM method consists in modifying iteratively the sequence in which
the operations are scheduled according to the solution found at each iteration.
To obtain a solution for the global problem, each involved resource is sched-
uled following this sequence, that is, one VRPTW for each resource is solved.
Solving this set of VRPTWs is an expensive procedure in computational time.
Moreover, the process should be repeated several times in order to improve
the global solution and obtain a range of Pareto solutions. For that reason,
the SIM method was de�ned with the aim to generate the minimum number
of solutions required to provide an adequate representation of the Pareto set.
With this goal, the sequence for solving the sub-problems is modi�ed at each
iteration such that an improvement of F1 is reached, but a�ecting as little as
possible the value of F2. This way, each new solution could represent the best
trade-o� between the objectives and a good coverage of the Pareto set could
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be obtained.

Nevertheless, the number of sequences explored with the SIM may be not
su�cient depending on the decision maker requirements. Applying a more ex-
haustive method might be necessary to guarantee solutions as close as possible
to the optimal Pareto points or to provide a wider Pareto set. In addition,
the computational time required to produce this minimum set of solutions can
be a disadvantage if the planning is not performed with enough time from
the moment operations will take place. Although the goal of this approach is
to tackle the problem at a tactical level, carrying out the scheduling process
as close as possible to the time the operations occur ensures the schedule is
generated on the basis of more accurate information.

4.4 Solution method variation

In this section we propose a variation of the solution method presented in
Section 4.3 with the goal to increase the number of explored sequences. These
sequences have a strong in
uence on the quality of the solution. However,
computing all the possible combinations, or even a high number, can be too
expensive in computational e�ort. Solving one VRPTW is already a complex
problem and one VRPTW for each type of vehicle has to be solved for each
sequence.

As explained in Section 4.3 we have developed the RLP procedure in two
steps. A quick, reasonable good initial solution is found by a constructive
heuristic and a local search process is applied in order to improve the solution.
The local search process is clearly the most time-consuming part of the algo-
rithm. Thus, we direct our e�orts to reduce the number of times the routing
problem is solved using both steps. The solution method proposed (see Figure
4.3) is used in a similar way except that local search process is not executed
every time the VRPTW for each sub-problem is solved during SolvingProcess.
Only the most promising solutions obtained will be improved by the hybrid
methodology. A schema of this variation is outlined in Figure 4.6.

With this purpose we aim to determine di�erent criteria to select a subset
of promising sequences of tasks. A set of sequences is explored using only
the I3 heuristic and just the most convenient found solutions according to the
de�ned criteria will be improved.

Depending on the degree of 'exhaustiveness' desired, di�erent procedures
could be used to explore sequences using only I3, including SIM. In the �rst
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Figure 4.6: Schema of the solution method variation

approach, the SIM modified the sequence at each iteration in order to generate
the potential Pareto solutions of the problem. With the new version, we aim
at employing the SIM to find the sequences which could generate the best
solutions. In this sense, we run the SIM without applying the local search
process in any case. Next, we select the best sequences from the solutions
found. Finally the SolvingProcess is executed with each promising sequence
chosen, including the local search process in this occasion.

Selecting promising sequences

A range of solutions is obtained as a result of exploring a set of sequences with
I3. The next step is identifying the best solutions and select corresponding
sequences as promising.

In general, identifying the best solution(s) in a multi-objective context is
not a trivial task. Many variables can influence the decision and even lead to
contradictory results. Hence, the aim of this section is to provide simple rules
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to guide the decision-making process in order to select the most representative
solutions. According to some speci�c pattern or based on the experience, we
can select solutions that better suit the problem in practice.

First, we select the non-dominated solutions in the same way as in the
original schema. Then, two criteria are suggested to select a subset of the
Pareto solutions. The goal of the �rst strategy is to �nd the best relation
between the objectives which can produce the best global solutions, i.e. the
points giving the best results for all the vehicles. In the second rule we focus
on prioritizing certain operations that in practice could become part of the
critical path due to di�erent reasons.

In the �rst rule, an intuitive idea is to identify points that represent di�er-
ent ranges from the complete set of Pareto solutions. In this sense, we split
the Pareto frontier into three areas according to the objective values. In the
�rst area we have solutions where the completion time of the turnaround is
prioritized. Both objectives are balanced in the second area and minimizing
the robustness of the solution is favored in the third range. An example is
presented in Figure 4.7. Notice that the number of areas the Pareto frontier
is divided can be di�erent and can be speci�ed according to di�erent needs.

F2

F1

First Area

Third
Area

Second
 Area

Figure 4.7: Pareto frontier division into three areas

Then, we select a speci�c number of points from each area such that the
relation between the objectives is the best. Let L be the set of solutions in
the Pareto frontier and K = {1, 2, 3} the areas established. The best relation
between two points i, j in the area lk is de�ned as:
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r(i, j) = (|F1i − F1j|)/(|F2i − F2j|)|F2i < F2j ∀i, j ∈ lk ∀k ∈ K (4.22)

r(i∗, j∗) = max r(i, j) (4.23)

Relation (4.22) aims to measure how the improvement of F1 a�ects the F2
function. If the value of r(i, j) is greater than 1, the �rst objective is improved
to a greater extent than the second one is worsened. In this case, the solution
j is considered better than the solution i. In contrast, if F1 is less improved at
expenses of a higher increase of F2, solution i is the preferred. Two solutions
are equivalent with respect to the relation between objectives when r is close
to 1.

The second rule proposed is applied sequentially after this criterion. That
is, it is used to decide which solutions are the best from the set of 'best points'
obtaining.

For the second criterion, we consider the operations individually and how
they are scheduled in the di�erent solutions. For instance, the number of
vehicles required to perform certain operation might be a measure to determine
the preferred solution. Most e�cient resource planning of activities prone to
be involved in delays may contribute to improve 
ight punctuality. With this
idea in mind, we have de�ned two patterns to guide the selection process and
choose schedules where the minimum number of vehicles is required in two
kinds of operations:

• Complex activities with expensive vehicles

The availability of resources for performing the operations is a key as-
pect to guarantee 
ight on-time, particularly when these resources are
expensive or complex to use. Fueling is one of the most complex tasks
during the turnaround and strict precautionary measures have to be ful-
�lled in order to guarantee safety. A right con�guration and a proper
maintenance of all the necessary equipment, including fueling vehicles
are crucial in this operation. So, saving in vehicles utilization particu-
larly in this task permit reducing cost and favors the e�ciency of the
process.

• Operations with longer duration
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These operations have little margin to deal with unexpected events or
incidents with vehicles. Employing fewer resources in longer activities
contributes to the robustness of the solution since they leave spare vehi-
cles that could be used in case of complications.

These patterns are also applied sequentially, i.e. if two solutions require
the same number of vehicles for performing fueling, the second rule is used to
decide.

With the criteria proposed we can select a small subset of promising solu-
tions and reduce the computational e�ort of the approach. It should be stated
that these rules can be employed to select the points to be explored with the
local search process, but also to determine which solution is the best to be
implemented in a particular case.

4.4.1 Discussion

This version of the approach is an interesting alternative to overcome time
limitations without compromising quality as results show in Section 5.4 and
permits to increase the number of sequences that can be explored. This schema
can be implemented since the heuristic and the local search process have similar
minimization criteria. That is, although the I3 Insertion Heuristic method
adopted to �nd the initial solution does not minimize explicitly the operation
waiting time, this criterion is considered when clients are selected to be inserted
in the routes. Moreover, earliest start time criterion has been used to initialize
any route, contributing to reduce the waiting time.

The main objection to the schema is that sequences obtained only with I3
method are not necessarily the same as the original approach. This means that
some sequences which can generate Pareto solutions may not be found using
just the I3 method. Furthermore, good sequences may be rejected because they
appeared as dominated in the �rst step, and therefore they are not explored.
However, experiments presented in Chapter 5 show that the Pareto fronts
obtained with both versions are very similar.



Chapter 5

Results

Experiments performed to assess the proposed multi-objective approach are
presented in this chapter. We have used real data from two important airports
in Spain and developed instances are described in Section 5.1. Results obtained
with the original solution method, which we called �rst approach, are analyzed
in Section 5.3. Solutions found with the solving method variation, which we
called second approach, are outlined and compared with the �rst approach in
Section 5.4. Finally, simple rules are suggested to guide the most promising
solution selection process and enhance the second approach performance.

5.1 Instances generation

To the best of our knowledge, no benchmark instances exist for the ground
handling problem. Therefore, a set of scenarios was developed to validate the
proposed approach. In order to test the algorithm we need information about
three crucial aspects: 
ight schedule, aircraft parking distances and tasks to
be performed. For specifying the 
ight schedule and parking distances we
have used real data from two important airports in Spain: Palma de Mallorca
(PMI) and Barcelona (BCN).

The main di�erence between the two 
ight schedules is the number of air-
craft planned to serve. In the case of PMI, we considered all aircraft performing
a turnaround during a working day. On the other hand, we focused on a han-
dling company that provide services at BCN airport. That is, we have used
the 
ight information used by the company to plan operations. It should be
stated that using data with very di�erent characteristics is quite useful to test
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the e�ciency of the approach. Besides parking distances, the main di�erence
between the two used datasets is the 
ight arrival frequency and the types of
aircraft planned to be serviced.

Regarding activities' information, we have employed the standards pro-
vided by aircraft manufactures [118, 119, 120, 121, 122, 123, 124]. It is a fact
that most airlines adapt speci�cations to their own business model. However,
these modi�cations usually remain con�dential as discussed in Section 2.2.1.
So, applying aircraft standards is a common method to study the turnaround
[11].

As described in the problem formulation in Section 4.2, operation properties
such as duration and precedence restrictions depend on the aircraft type. Three
types of aircraft with di�erent sizes have been modeled for PMI instances.
Scheduled aircraft have been associated to the most appropriate type according
to the turnaround time. Regarding BCN dataset, there is more variety of
aircraft sizes covering scheduled 
ights. Thus, we have modeled all aircraft
types presented in the 
ight schedule (9).

Palma de Mallorca instances

PMI is one of the busiest airports in Europe during high season, with around
22 million passengers in 2012 [125]. Due to we have considered all the aircraft,
the instances generated using these data are larger than the instances from the
BCN airport.

In summary, the following datasets were used in order to create the in-
stances:

1. One day 
ight schedule: a real 
ight schedule corresponding to a summer
business day was selected for evaluating the approach. This includes the
list of aircraft performing a turnaround during the day, the scheduled
arrival and departure times, the type of aircraft, and the parking position.

2. Distances between the parking positions and between them and the de-
pot. PMI airport has 180 parking stands, 27 of them remote stands. A
constant speed was used to calculate vehicle's traveling time.

3. Task information: Using speci�cations [119, 122], aircraft types I,II, and
III were modeled. According to precedence relations and operations'
duration, type I corresponds to aircraft with a turnaround time between
30 and 40 minutes. Type II and type III are the aircraft with a 40-50
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minutes and 50-60 minutes turnaround, respectively. For each operation
included in the problem and according to each type of aircraft, we have
de�ned the duration, the precedence restrictions regarding other tasks,
and the type of vehicle used.

The precedence restrictions between tasks for each de�ned aircraft type
are outlined in Figure 5.1. We have represented the main operations during a
typical turnaround, when the aircraft is parked at a contact point (e.j. Figure
2.1). The vehicle that unloads and loads baggage for any given aircraft is
usually the same. Therefore, we represented both operations as one task, the
UL/L. The other operations are: deboarding (Db), boarding (B), catering
(Ca), cleaning (Cl), fueling (F), potable water (PW), and toilet services (TS).
In addition, the number in parentheses denote the type of vehicle servicing
each operation.

We do not consider aircraft parked at remote stands. When aircraft are
parked at a contact point, the Db and B operations do not have vehicles
associated because they are performed by means of bridges connected to the
gate. Nevertheless, these activities are very important during the turnaround
service. They appear in precedence relations and their calculation a�ect the
time windows of other operations.

The di�erent characteristics of a turnaround, particularly precedence re-
strictions between operations at each aircraft, in
uence their time windows
and, consequently, the obtained solutions. Due to airlines can modify the
standard turnaround services, we have tested the algorithm using di�erent
precedence relations. Three sets of instances, C1, C2 and C3, were generated
changing the precedence constraints presented in Figure 5.1. The �rst set was
associated to the original precedence rules. In the second set, relations be-
tween PW and TS were changed in aircraft types I and II, so TS is always
performed before PW. In the set C3, Ca is performed independently of the
Db/B operations in all aircraft types.

We have divided the daily 
ight schedule in order to plan each period
separately. This division was done according to the airport workload. At the
given data set, the 
ight arrival frequency is relatively uniform during the
day and the expected workload is also uniform. We have selected eight-hour
periods for dividing the schedule because this is the maximum duration of
shifts. Shift duration can vary between 2 and 8 hours depending on several
aspects, such as sta� policies, workload etc. In general, the employees who
drive the vehicles should come back to the depot when they �nish their shift.
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Figure 5.1: Precedence relations between tasks according to the modeled air-
craft type: a) Type I, b) Type II, and c) Type III. The number of the associated
vehicle type is indicated in parentheses

Nevertheless, during these eight hours, a shift change can be performed or
vehicles can be planned to come back to the depot for other reasons. A �rst
group J1 was created between 23:00 and 7:00 hours with 42 aircraft. The
time interval between 7:00 and 15:00 hours with 64 aircraft corresponds to
the J2 group. The last shift, J3, has 83 aircraft between 15:00 and 23:00.
J1 has fewer aircraft scheduled than J2 and J3. However, the workload is
similar because most of aircraft are planned to arrive between 4 and 7 in the
morning. Each group was scheduled with the precedence rules de�ned at each
set. The algorithm was tested over a total of 9 instances from PMI, where each
instance is enumerated with the number of the set and the shift used: C1J1,
C1J2, C1J3, C2J1, C2J2, C2J3, C3J1, C3J2, C3J3.

Barcelona instances

Barcelona-El Prat (BCN) is the second largest airport in Spain by passenger
tra�c and the 34th in the world according to the Airports Council Interna-
tional [125]. With more than 35 million passengers in 2012 and a growing
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tendency, Barcelona airport is also the most important of Catalonia and the
Mediterranean Sea. The handling company that provided the data, which
for con�dential reasons we cannot disclose its name, gives service to di�er-
ent airlines. Similar datasets to the PMI case were employed to generate the
instances.

1. One day 
ight schedule: The 
ight schedule includes aircraft planned to
be serviced during a typical working day in June, the scheduled arrival
and departure times, the type of aircraft, and the parking position.

2. Distances between parking positions and between them and the depot.
Barcelona airport has 263 parking stands. Using the geographical coor-
dinates of each stand we have calculated the distance while a constant
speed was used to determine vehicles traveling time.

3. Tasks information: Duration, precedence restrictions regarding other
tasks, and the type of vehicle used have been speci�ed for each oper-
ation according to the type of aircraft they belong. We have used the
information provided by the aircraft manufacturers [118, 119, 120, 121,
122, 123, 124] to model each type of aircraft planned to be serviced, 9 in
total.

We have identi�ed six di�erent precedence relations in the represented air-
craft and they are outlined in Figure 5.2. Most common restrictions are pre-
sented in a), where three independent groups of activities can be distinguished.
First, the deboarding and boarding group, where catering, fueling and cleaning
are performed between them; a second branch for water and toilet services,
and �nally, baggage handling. We have discussed in Chapter 2 that prece-
dence constraints between tasks rely on several issues, such as safety or space
requirements. These restrictions imply longer turnaround times and better co-
ordination between handle operators. So, they can be adjusted within certain
limits according to the airline policy. Aircraft speci�cations re
ect possible
variations, particularly regarding �rst group also known as the critical path.

According to these precedence relations and operations' duration, we can
obtain the minimum turnaround time associated to each aircraft type. It is
shown in Table 5.1. Notice this is the minimum time required. In general,
the time scheduled to perform the turnaround is higher because airlines add a
bu�er to deal with uncertainty, as we described in Section 2.1. As part of the
TITAN project [25], an study has been done to estimate the average of a bu�er
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Figure 5.2: Precedence relations between tasks according to the modeled air-
craft type: a) Type I; b) Type II; c) Type III;IV;VIII;IX; d) Type V; e) Type
VI; and f) Type VII. The number of the associated vehicle type is indicated
in parentheses

time. The analysis shows that most aircraft have between 5 and 22 minutes of
bu�er, being 12 minutes the mean size. With the goal to make instances more
realistic we have veri�ed that the di�erence between the minimum turnaround
time and the scheduled time are in this interval for most aircraft. This way,
we ensured that aircraft standards we have used are similar to those employed
by airlines. It should be remarked that aircraft types I,II and III modeled for
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Table 5.1: Minimum turnaround time, in minutes, for each modeled aircraft
type

AT T.Time Prec. Relat.
I 27 a
II 35 b
III 43 c
IV 51 c
V 56 d
VI 40 e
VII 53 f
VIII 29 c
IX 36 c

PMI instances are the same as aircraft I, II and III in the BCN case.

In the same way as the PMI instances, three sets, C4, C5 and C6, were
generated modifying precedence constraints. The �rst set was associated to the
precedence rules described in Figure 5.2. In the second set, relations between
PW and TS were changed in a) and b), so TS is always performed before PW.
In the set C6, the Ca is performed independently of the Db/B operations in
all the precedence relations.

In the BCN case, 
ight arrival frequency is lower due to only a subset of the
arriving aircraft during a day is handled by the company. In addition, aircraft
are more uniformly distributed in the timetable with respect to PMI. Due to
the company only has aircraft planned between 6:00 and 22:00 hours, the 
ight
schedule was divided in two eight-hour shifts. A �rst group J4 was created
between 6:00 and 14:00 hours with 56 aircraft. The time interval between
14:00 and 22:00 hours with 37 aircraft corresponds to the J5 group. Also here,
each group was scheduled with all di�erent precedence sets. Hence, 6 instances
were generated from the BCN set. Instance is enumerated with the number of
the set and the shift used: C4J4, C4J5, C5J4, C5J5, C6J4, C6J5.

5.2 Parameters setting

In this section we describe the set of parameters used in the di�erent proposed
algorithms. First, we present the results of the process used to tune the In-
sertion heuristic method. Then, the values used in the CP-based VND-LNS
methodology are introduced.

Main parameters in the I3 heuristic are α1, α2, and α3. As discussed in
Section 4.3.2, an interval was de�ned for each parameter, such that: α1 =



86 Results

[0.4, 0.5], α2 = [0.4, 0.5], and α3 = [0.01, 0.1]. We have tested the algorithm
over di�erent combinations and we have selected the weights that give the best
results for most of the instances. Instances C1J1, C2J2, C3J3, C4J4 and C4J5
have been employed to carry out the experiments.

Initially, we have run the �rst approach with the I3 heuristic only over all
instances using the weight combinations de�ned by the intervals. For each
instance we have selected the two parameter settings giving the best results.
Next, we have analyzed the obtained solutions using this "best combination
set" over all the instances. The �ve weight combinations from the best set giv-
ing the best solutions for all instances were �nally chosen. We have calculated
the average of the solutions found for each instance and they are outlined in
Figure 5.3.
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Figure 5.3: Results of sensitivity analysis performed for tuning the I3 heuristic

In general, the best results are obtained with lower values of α3. In all
the instances, but C4J5, better solutions are found using α3 between 0.01
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and 0.03 although the di�erence is less signi�cant in C1J1. Combinations
(0.49, 0.50, 0.01) and (0.49, 0.49, 0.02) appear as the best ones for most cases.
However, in the case of C4J5, the di�erence with the best solution is more
notable in (0.49, 0.50, 0.01), so we have decided to select (0.49, 0.49, 0.02) as
the weights in our problem.

With respect to the parameters of the CP-based VND-LNS methodology
they have been speci�ed in the following way. Concerning SMART operator,
we assigned 2 and 3 to the number of customers to be disconnected before and
after the pivots. In addition, the number of discrepancies has been limited to
2. As for the RPOP, the maximum number of pivots to be chosen is set to 5
and the number of close customers to be removed around the pivot is set to 7.
Due to operations generally have tight time windows in our problem, remov-
ing customers closer to the pivot is more likely to produce feasible movements
than random selection. Thus, we give a higher value to the second parameter.
Furthermore, the branch-and-bound method used to repair the solution is lim-
ited to a maximum execution time of 30 seconds in both operators. The whole
local search process is applied during a maximum of 250 seconds in order to
ensure the improvement of the initial solution found by the I3 heuristic.

5.3 First approach

In this section, we present the results obtained with the original solution
method over the generated instances. Both the �rst and the second approach
described in this thesis have been implemented in Java and linked to the open-
source CP software system ECLiPSe 6.0 [50].

Palma de Mallorca instances

The detailed results of the instance C1J1 (precedence constraints rules C1,
shift J1) for each iteration of the SIM are presented in Table 5.2. Results are
obtained running the algorithm only one time. Besides the value of objectives
F1 and F2, the obtained sequences and the number of vehicles used for each
operation are shown. It should be stated that if a solution obtained after an
iteration has not improved any of the two objectives regarding the previous
iteration, it is rejected. In this instance the sequence was modi�ed 13 times but
one solution was discarded for that reason. So, this problem has 12 solutions.
As mentioned, the value of F1 is usually improved when the sub-problem
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Table 5.2: Solutions obtained for the instance C1J1 at each iteration of the
SIM

N. F1 F2 Sequence #Vehicles
S. UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)
1 2383 1594 (7,1,2,3,4,5,6) 19 12 12 10 4 8 4
2 2165 1613 (6,7,1,2,3,4,5) 18 12 12 9 6 7 4
3 1980 1621 (5,6,7,1,2,3,4) 18 11 11 9 4 7 4
4 2425 1619 (6,5,7,4,3,2,1) 18 11 12 9 6 7 4
5 1850 1655 (4,5,6,7,1,2,3) 18 11 11 9 4 7 4
6 2154 1646 (6,5,4,7,3,2,1) 18 11 12 9 6 7 4
7 1709 1695 (3,4,5,6,7,1,2) 18 11 11 9 4 7 4
8 1998 1681 (6,5,3,4,7,2,1) 18 11 11 9 6 7 4
9 1565 1715 (2,3,4,5,6,7,1) 18 10 11 9 4 7 4
10 1816 1687 (6,5,3,4,2,7,1) 17 10 11 9 6 7 4
11 1510 1736 (1,2,3,4,5,6,7) 16 10 11 9 4 7 5
12 1792 1714 (6,5,3,4,2,1,7) 16 10 11 9 6 7 5

with the highest f1 is included in B to be solved �rst (see Section 4.3.4). In
contrast, modifying the sequence of sub-problems keeping the position of PB
is less likely to produce an F1 improvement. The set of solutions is presented
in Figure 5.4.
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Figure 5.4: Found solutions for the instance C1J1. Each solution is labeled
according to the iteration in which it is obtained. Non-dominated solutions,
represented by bullets, de�ne the trade-o� curve between the two objectives.
The crosses indicate dominated solutions

The �rst solution in Table 5.2 corresponds to the �rst step of the algorithm
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and shows the sequence to obtain the lower bound of F2. Regardless of the
problem, the process is always started with the same initial sequence of vehicles
(7, 1, 2, 3, 4, 5, 6) (see Algorithm 7, step 1). As can be seen, vehicles' numbers
have been assigned following the order of the operations presented in Figure
5.1. Each time a new sequence is obtained, the Solving Process is invoked and
the routing problem associated to each type of vehicle is solved.

In the next iteration, the operation with the highest value of f1 is scheduled
before PB, in this particular case TS. The value of f1 depends on the result
of the routing problem and the reduction of the time windows. In general,
it is possible to identify activities or groups of activities without precedence
relations in the turnaround. Regarding precedence restrictions and tasks du-
ration, an activity or group of activities could be more restrictive than the
others. The less constrained operations have larger time windows, i.e. the
service may be scheduled to begin with higher tolerance. This situation is
similar to the case in which two operations with di�erent duration have to be
�nished before a third one. The operation with the shortest duration or the
largest time window may have some waiting time without a�ecting the third
task. When the less constrained operations are included in B before the other
ones, the value of F2 is less a�ected. Due to we use an upper bound for the
number of vehicles, scheduling operations with larger time windows usually
results in high waiting times. So, in general, the less constrained operations
has high f1. Usually, TS and PW are operations with short durations and
we could say they belong to the less restrictive group in C1. The UL/L does
not have precedence relations with other operations but it is the longest one.
Operations F, Cl and Ca are constrained according to the precedence rules
de�ned at each aircraft type, and are usually longer than TS and PW. Each
time a new sub-problem is included in B, vehicles are ordered again by their
f1 and the process is repeated. Activities PW and TS are interdependent and
so, the one which is solved later will have a higher value of f1. In C1, PW
is always performed before TS. When TS is scheduled before PW, a better
value of F2 is reached at expense of reducing the time window of PW. Notice
in Table 5.2 the increase in the number of vehicles whenever TS is scheduled
�rst.

An important aspect of how scheduling decisions of a resource a�ect the
other ones is the vehicle utilization. Notice, for instance, the increase in the
vehicles needed to serve the operations whenever PB is solved �rst, particu-
larly in the most constrained operations. Obtaining lower values of F2 implies
a time window reduction on the operations at the same aircraft, and conse-
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quently an increment of used vehicles. At the �rst iteration, the UL/L needs
19 vehicles while it uses 16 when PB is scheduled last (solution 11 and 16).
As discussed in Section 4.4, this might be an interesting criterion to select
a solution or prioritize an operation according to the particular situation of
a vehicle type. For instance, the schedule associated with solution 9 is very
similar to that of solution 11 regarding F1 and F2. However, the UL/L needs
18 vehicles in the former and 16 in the latter. The UL/L is usually the longest
operation. If a delay or an unexpected event occurs, it is more likely to need
a spare vehicle, and therefore the solution 11 might be a good choice. On the
other hand, the PB requires 4 and 5 vehicles, respectively. If the vehicles to
perform PB are more limited in number, or they are more expensive to use,
solution 9 might be better.

A summary of the results obtained for all instances is outlined in Table 5.3.
The non-dominated solutions are marked with an asterisk and are presented
in Figure 5.5. In addition, the total time spent by the algorithm to solve
each instance is outlined. The obtained sequences for the three shifts are very
similar for each set, because precedence relations between operations are the
same. Nevertheless, the number of aircraft of each type is di�erent at each
instance. In the case of C2, the relation between operations PW and TS was
modi�ed in two aircraft types. The service time of PW is shorter than TS in
all the aircraft, but in type I the di�erence is very small. The values of the
objective functions are very similar in the shift J1, because most of the aircraft
are type I. On the other hand, the variation is more important in J2 due to
there are more aircraft of type II. Regarding the C3 set, Ca does not have
precedence relations with the rest of tasks. This favors the value of F2 due to
the group of Db and B is less restrictive. This also increases the time window
of Ca, because the operation is less constrained and therefore less vehicles are
needed to serve it.
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Figure 5.5: Pareto solutions for PMI instances C1J2, C1J3, C2J1, C2J2, C2J3,
C3J1, C3J2, and C3J3

Barcelona instances

In the case of BCN instances, the number of resources required to perform op-
erations is one of the main di�erences regarding PMI instances. Many factors
can in
uence these results, such as task durations or turnaround times at each
schedule. Moreover, the 
ight arrival frequency has a considerable impact in
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Table 5.4: Solutions obtained for the instance C4J5 at each iteration of the
SIM

No. F1 F2 Sequence #Vehicles
Sol. UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)

1 4049 1359 (7,1,2,3,4,5,6) 11 7 7 6 2 4 2
2 3577 1468 (5,7,1,2,3,4,6) 10 6 6 5 2 3 2
3 3825 1449 (6,5,7,1,2,3,4) 10 6 6 5 4 3 2
4 2999 1494 (5,6,7,2,4,1,3) 10 6 6 6 2 3 2
5 2680 1595 (4,5,6,7,2,3,1) 9 6 6 5 2 3 2
6 3252 1558 (6,5,4,7,2,3,1) 9 6 6 5 4 3 2
7 2398 1681 (3,4,5,6,7,1,2) 8 6 6 5 2 3 2
8 2928 1649 (6,5,3,4,7,1,2) 9 6 6 5 4 3 2
9 2263 1715 (2,3,4,5,6,7,1) 8 6 6 5 2 3 2
10 2846 1698 (6,3,2,5,4,7,1) 8 6 6 5 4 3 2
11 2118 1754 (1,2,3,4,5,6,7) 8 6 6 5 2 3 2

the number of vehicles. For instance, C1J1 and C4J5 have a similar number
of scheduled aircraft 42 and 37, respectively. However, C1J1 requires more
resources as shown in Table 5.4. The set of solutions obtained is presented in
Figure 5.6.
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Figure 5.6: Found solutions for instance C4J5. Each solution is labeled ac-
cording to the iteration in which it is obtained. Non-dominated solutions,
represented by bullets, de�ne the trade-o� curve between the two objectives.
The crosses indicate dominated solutions

A summary of solutions found for BCN instances is depicted in Table 5.5.
The non-dominated solutions are marked with an asterisk and are presented
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in Figure 5.7. Slightly higher values of F1 are obtained when J5 is coupled
with the preference set C5. Unlike J1, a higher number of aircraft with dif-
ferent durations of PW and TS are present in J5. When precedence relations
between these operations are changed, obtained results can be a�ected. Solu-
tions found for C6 showed similar behavior for both shifts J4 and J5. Being
Ca less constrained than in the set C4, the available time windows to perform
the operation are longer and a lower number of vehicles is required. In general,
this conduces to obtain worse values of F1 because waiting times are increased.
Nevertheless, having waiting time in the less constrained operation permits ve-
hicles to be used more e�ciently without a�ecting the overall performance of
the turnaround.
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Figure 5.7: Pareto solutions for instances C4J4, C5J4, C5J5, C6J4, and C6J5

5.4 Second approach

Results presented in Section 5.3 shown that the proposed approach permits
scheduling ground handling vehicles as a whole in an acceptable time. In this
sense, a set of Pareto solutions were obtained modifying the order in which
vehicles are scheduled. However, the number of explored sequences might not
be su�cient to ensure the best Pareto set. Moreover, the computational e�ort
required could be an obstacle depending on the available time for the schedul-
ing process. As described in Section 4.4, we have conceived a variation of the
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approach allowing more sequences to be explored, as well as the improvement
of algorithm's performance. BCN instances C4J5 and C4J4 have been used to
test this variation.

First, we aim to compare the non-dominated solutions obtained with both
approaches. With this goal, the SIM is employed to generate the sequences.
Each routing problem is solved using only the I3 heuristic as explained in
Section 4.6, i.e, the local search (LS) process is not performed. Obtained
solutions for instance C4J5 are shown in Figure 5.8.
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Figure 5.8: Obtained solutions with the second approach using only the I3
heuristic for instance C4J5. Each solution is labeled according to the iteration
in which it is obtained. Bullets and crosses represent non-dominated and
dominated solutions, respectively.

Then, the Pareto solutions are improved using the CP-based VNS-LNS, i.e
1,2,3,5,6,7,8,9, and 11. Solutions obtained by applying the local search process
(I3+LS), as well as using only the I3 heuristic, are depicted in Figure 5.9.

As expected, better values are found when LS is applied. However, notice
that the F2 improvement regarding I3 has been reached at the expense of
increasing the F1 objective in solutions 1 and 3. Detailed results are presented
in Table 5.6. For each improved solution, the associated sequence and objective
values are shown. Likewise, the reduction of the original time windows (�)
and the operation waiting time (w) are also included.

In the �rst iteration, sub-problem PB(7) is scheduled �rst with the aim
to �nd a lower bound of F2. In this case, F2 value depends directly on



98 Results

●

● ●

●

●

●

●

●

●

2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

1300

1350

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

C4J5. I3 vs I3+LS

F1

F
2

●

I3

I3+LS

1

2 3

5
6

7

8

9
11

1

2 3

5

6

7
8

9
11

Figure 5.9: Non-dominated solutions found with the I3 heuristic and later
explored with the local search process for instance C4J5. Crosses and bullets
represent I3 and I3+LS solutions, respectively.

the routing problem and the quality of the found solution. The lower the
value of the waiting time, the lower the value of F2. On the other hand,
this reduces the original time windows of other operations, so a worse value
of F1 is expected if F2 is lower. Nevertheless, this relation does not need
to be in inverse proportion. The value of F1 depends not only on F2 and
the waiting time of each vehicle type, but also on the reduction of the time
windows produced by activities having precedence relations.

Di�erences (in percentage) for the most important parameters are summa-
rized in Table 5.7. We see that, in general, a greater reduction of completion
time provokes an increase in the time window reduction. This reduction shoots
up the di�erence in the waiting time. As explained in Section 4.2, when time
windows are reduced, it is more likely to have also smaller values of waiting
time.

For comparison purposes, Pareto solutions found using the �rst and second
approach are presented in Figure 5.10. As discussed in section 4.4, di�erent
sequences can be obtained using each approach, for instance, solutions 5,7,8,9,
and 11. The problem is that we cannot ensure that sequences found with
the I3 method produce Pareto solutions with respect to solutions generated
with the original approach. In this case, solutions 9 and 11 obtained applying
the �rst approach dominate solutions found with the second approach in the
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Table 5.6: Results obtained for instance C4J5 at each iteration of the SIM
using I3. Non-dominated solutions are later explored using LS. � and w
represent the reduction of the available time window and the waiting time,
respectively.

N. Sequence I3 I3+LS
S. F1 F2 ∆ W CPU(s) F1 F2 ∆ W CPU(s)
1 (7,1,2,3,4,5,6) 4019 1381 3621 398 0.046 4021 1360 3702 347 1178.57
2 (5,7,1,2,3,4,6) 3716 1575 2597 1119 0.075 3519 1451 2855 722 1311.39
3 (6,5,7,1,2,3,4) 3800 1569 2510 1290 0.059 3812 1449 3085 740 1173.71
4 (5,6,7,4,1,2,3) 3348 1671 1926 1422 0.075 - - - -
5 (4,5,6,7,1,2,3) 3034 1708 1567 1467 0.059 2632 1608 1511 1121 1339.00
6 (6,5,4,7,2,3,1) 3294 1644 1988 1306 0.059 3266 1581 2358 894 1123.91
7 (2,4,5,6,7,1,3) 2879 1724 1308 1571 0.059 2463 1671 1159 1304 1180.00
8 (6,5,2,4,7,3,1) 3200 1700 1614 1586 0.06 3043 1614 1903 1140 1227.86
9 (3,2,4,5,6,7,1) 2752 1768 1094 1658 0.065 2320 1730 889 1431 1253.00
10 (6,5,3,2,4,7,1) 3044 1754 1357 1687 0.059 - - - -
11 (1,3,2,4,5,6,7) 2697 1793 924 1773 0.343 2159 1771 629 1530 1095.12

Table 5.7: Di�erences for the most important parameters using I3 and I3+LS

No.Sol. F1 (%) F2 (%) ∆ (%) W (%)
1 0.05 -1.52 1.57 -13.82
2 -5.30 -7.87 10.28 -41.47
3 0.32 -7.65 23.11 -44.03
5 -13.25 -5.85 -3.57 -23.59
6 -0.85 -3.83 14.99 -24.96
7 -14.45 -3.07 -11.39 -17.00
8 -4.91 -5.06 17.91 -28.12
9 -15.70 -2.15 -18.74 -13.69
11 -19.95 -1.23 -31.93 -13.71

similar iterations 9 and 11. On the other hand, although sequences 5 and
7 are di�erent, the four solutions are non-dominated. A similar situation is
presented in the case of solution 8, where both solutions are non-dominated
between them. However, they are dominated by the other solutions, either in
the �rst or the second approach.

It should be remarked that CP-based VNS-LNS is a non-deterministic pro-
cedure, and di�erent solutions can be found with the same sequence. The same
sequences have been generated in iterations 1,2,3,4,6. In this sense, another
inconvenience is that sequences that have produced non-dominated solutions
with the original approach, could be refused when using only I3. For instance,
solution 4 was refused in the �rst step (see Table 5.6) because it was dominated
and therefore it was not chosen to be explored. This sequence could generated
a non-dominated solution if the local search process had been applied (see
Figure 5.6).
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Figure 5.10: Solutions obtained using the �rst and second approach for in-
stance C4J5. Crosses and bullets represent �rst and second approach solutions,
respectively.

Finally, results obtained for instance C4J4 are presented in Figures 5.11
and 5.12. In this case, almost the same sequences (1,2,4,5,8,10) have been
obtained using both the �rst and second approach.

Analyzing the results obtained by means of both methods, we consider that
the second approach may be a proper option depending on the situation. It is a
fact that found sequences are not identical. However, solutions are similar and
the produced Pareto frontiers are close. The �rst approach is more appropriate
at a tactical level, where the quality of solutions is a crucial aspect. When
the available time for performing the scheduling process is lower, the second
approach might be more useful. With the latter we can explore the most
interesting solutions and, this way, reduce the number of times the routing
problem is solved with the local search process. In this case we have chosen all
non-dominated solutions found in the �rst step in order to compare the results
with the original approach. Nevertheless, the goal of the second approach is to
improve only the most promising solutions. Results in next subsection show
the subset of selected Pareto solutions according to the criteria introduced in
Section 4.4.
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Selecting the most promising solutions

Considering the results obtained for the problem C4J5 with the I3 heuristic, an
example of how the proposed selection rules are applied is described as follows.
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Using the �rst de�ned criterion (see Section 4.4), the Pareto frontier is divided
into three areas according to the objective values. For each area we select the
solution where the greater improvement of F1 is reached with the lower growth
of F2, according to equation (4.23). The relation r(i, j) established in equation
(4.22) is calculated for each pair of solutions at each area. Results are presented
in Table 5.8. Values are sorted in descendent order, so, the �rst pair represents
the best relation. Due to all values are greater than 1, solutions 2, 5 and 9
are the best according to the relation between the objectives. This criterion
can be seen as a �rst step to sort the obtained Pareto solutions permitting the
selection of promising sequences in a fast and simple way. Depending on the
available time for scheduling the vehicles or the decision maker preferences,
the number of solutions to be selected can vary. If the goal is to select one
solution at each area, we have �nished the selection process in this case, and
these three solutions will be improved using the local search process.

Table 5.8: Relation between each pair of solutions obtained with I3 according
to the objective values at each area of the Pareto frontier. Values are sorted
in descendent order.

Area 1 Area 2 Area 3
i-j r(i,j) i-j r(i,j) i-j r(i,j)
3-2 14.00 8-5 20.75 7-9 2.89
1-2 1.56 6-5 4.06 7-11 1.67
1-3 1.16 6-8 1.68 9-11 1.56

Nevertheless, there are other situations where we need to consider the sec-
ond rule proposed in Section 4.4 and analyze the operations individually in
order to select the best solutions. A �rst situation is when the value of r(i, j)
is close to 1 and both solutions i and j can be considered equivalents. Suppose,
we aim to select the �rst two best points of each area. In the third area, the
r value of the second best pair is r(7, 11) = 1.67. Depending on the problem,
we may determine that solutions 7 and 11 are equivalents due to the r value
is around 1. In this case, the second rule is used to decide which solution to
select.

Another example where we may need to focus on how the operations are
scheduled is when two pairs of solutions have similar values of r. For instance,
in the �rst area is clearer that solution 2 is better than solution 3. However,
solutions 1 and 3 are more similar with respect to the relation between objec-
tives (r(1, 2) = 1.56 and r(1, 3) = 1.16) and in this case may be more useful
to decide which is the best using the second rule. Hence, we followed the two
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criteria included in Section 4.4 in order to make a decision in these two situ-
ations. In any case, both criteria can be combined from the beginning of the
selection process.

Table 5.9: Number of vehicles required for performing operations at each
Pareto solution found using I3 and explored with LS for the instance C4J5.

#Vehicles. I3
N.S. Sequence UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)

1 (7,1,2,3,4,5,6) 11 8 7 6 2 4 2
2 (5,7,1,2,3,4,6) 9 6 7 4 2 4 2
3 (6,5,7,1,2,3,4] 8 6 6 5 3 3 2
5 (4,5,6,7,1,2,3) 8 6 7 4 2 3 3
6 (6,5,4,7,3,2,1) 9 6 7 5 3 3 2
7 (2,4,5,6,7,1,3) 8 6 7 5 2 3 3
8 (6,5,2,4,7,3,1) 8 6 6 5 3 3 2
9 (3,2,4,5,6,7,1) 8 6 6 5 2 3 3
11 (1,3,2,4,5,6,7) 8 6 6 5 3 3 3

The schedules where the most complex operations, as well as the activity
with longer duration, require less resources are the preferred in this order.
The number of vehicles needed for each operation when the problem is solve
using I3 is presented in Table 5.9. As shown, 6 vehicles are required to carry
out operation F in solution 1 against 5 vehicles used in solution 3. Fueling
is the most complex task according to the pattern de�ned. Hence, we choose
solution 3. Regarding solutions 7 and 11, the same number of vehicles are
used to perform fueling. So, we applied the second criteria. As mentioned,
a more e�cient use of resources in longer operations could contribute to the
robustness of the solution. In this example, the two solutions need the same
number of vehicles to perform UL/L, Cl, and F. Only Ca requires one vehicle
more when the problem is solved using sequence 7. Therefore, we opted for
solution 11.

Solutions 2, 3, 5, 6, 9, and 11 were chosen using both criteria to be improved
by the local search process. In order to evaluate this decision we analyzed the
case when all the non-dominated solutions were explored with I3+LS (see
Table 5.6). That is, we aim to verify if the selected promising sequences are
also the best solutions after applying the local search.

Three areas with the same points found with I3 are identi�ed using local
search and the relation between the objectives are shown in Table 5.10. So-
lutions 2 and 5 are also the best according to the �rst objective. In the case
of the third area, sequence 11 are the best solution according to this criterion
and not 9 as using I3.
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Table 5.10: Relation between each pair of solutions obtained with I3+LS ac-
cording to the objective values at each area of the Pareto frontier. Values are
sorted in descendent order

Area 1 Area 2 Area 3
i-j r(i,j) i-j r(i,j) i-j r(i,j)
3-2 146.50 8-5 68.50 9-11 3.93
1-2 5.52 6-5 23.48 7-11 3.04
1-3 2.35 6-8 6.76 7-9 2.42

Regarding the number of vehicles, it should be remarked that the value
obtained with I3 is imposed as an upper bound in the local search process.
That is, regarding the routing problem, the number of vehicles needed to
serve an operation is at last the same independently of the method used.
However, the available time window of an operation can be di�erent at each
case. The time window reduction caused by precedence relations depends on
the results obtained along the scheduling process. In other words, the variation
of the objective functions as a result of solving the problem using I3 or I3+LS
can result in a di�erent number of required vehicles. The number of vehicles
required for performing each operation when applying I3+LS is presented in
Table 5.11.

Table 5.11: Number of vehicles required for performing operations at each
Pareto solution found using I3+LS for the instance C4J5.

#Vehicles. I3+LS
N.S. Sequence UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)

1 (7,1,2,3,4,5,6) 11 7 7 6 2 4 2
2 (5,7,1,2,3,4,6) 10 6 6 4 2 3 2
3 (6,5,7,1,2,3,4] 10 6 6 5 4 3 2
5 (4,5,6,7,1,2,3) 8 6 6 4 2 3 3
6 (6,5,4,7,3,2,1) 9 6 7 5 4 3 2
7 (2,4,5,6,7,1,3) 8 6 6 5 2 3 2
8 (6,5,2,4,7,3,1) 8 6 6 5 4 3 2
9 (3,2,4,5,6,7,1) 8 6 6 5 2 3 2
11 (1,3,2,4,5,6,7) 8 6 6 5 4 3 2

In this particular example, we have considered the number of vehicles to
select between solutions 1 and 3, as well as 7 and 11. In the former, both
methods give the same vehicle values for operation F. In the second case, we
have refused sequence 7 because Ca needed one more vehicle. However, when
the problem is solved with I3+LS, the same number of vehicles is obtained
either for solution 7 and 11. So, both solutions are equivalent regarding this
strategy.
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In summary, only a small subset of sequences is improved with the local
search process using the proposed criteria. With this schema, the computa-
tional e�ort can be reduced without compromising too much the quality of the
solutions. The promising sequences, selected from the non-dominated points
found with SIM using only I3 are, in most of the cases also the best sequences
when the local search is applied. However, selecting the most promising solu-
tions may be a di�cult task. Di�erent situations should be a priori de�ned,
e.g. when two solutions can be considered equivalent, what to do when two
pairs of solutions have similar values of r, etc. In some cases, solutions are
very similar and the speci�ed criteria are not enough to decide which solutions
are the best.

5.4.1 A more exhaustive method to find the Pareto so-
lutions

In this subsection, we aim to use the second approach to provide a more ex-
haustive exploration of sequences which could produce better Pareto solutions.
The maximum number of sequences is a permutation of all considered vehicle
types. In this problem, we have 7 vehicle types. Exploring all permutations
requires an acceptable CPU time taking into account that I3 spends less than
0.1 seconds to solve one sequence. SIM takes less than 1 second to gener-
ate a set of solutions and the algorithm spends about 8 minutes to produce
all sequences. Figure 5.13b shows all solutions for instance C4J5 as well as
sequences found by SIM using I3. Solutions obtained for instance C4J4 are
depicted in Figure 5.13a. It should be remarked that sequences produced by
I3 do not need to be the same than using the original approach. However, this
gives an idea of the performance of SIM.

Notice that solutions are more homogeneously distributed in the case of
C4J4. This situation can explain the similarity of sequences obtained with the
general and the second approach, shown in Figure 5.13a. SIM solutions are
very close to the best Pareto solutions and they provide a good coverage of
the frontier. Regarding C4J5, the coverage is more discrete, particularly in the
second area, i.e. where both objectives are balanced. This can be caused by
the fact that there is less density of points in the Pareto set and non-dominated
solutions are far from the rests. The behavior of SIM appears better in the
area where the function F1 has the best values, i.e. the �rst area.

After producing the sequences, the next step is to apply the described
criteria to select the most promising sequences from the Pareto solutions. We
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Figure 5.13: Solutions obtained with the exhaustive method and with SIM
using I3 for instances (a) C4J4 and (b) C4J5. Bullets and crosses represent
SIM and all solutions, respectively.

have also chosen C4J5 to illustrate this step. Non-dominated solutions are
outlined in Table 5.12.

The relation between objectives has been determined according to the �rst
criterion (See Section 4.22) and is shown in Table 5.13. We have also divided
the Pareto frontier in three areas. However, there is only one solution (1) in the
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Table 5.12: Non-dominated solutions for instance C4J5 obtained using the
exhaustive method

N. F1 F2 Sequence #Vehicles
S. UL/L(1) Cl(2) Ca(3) F(4) PW(5) TS(6) PB(7)
1 3955 1373 (7,1,2,3,4,5,6) 11 8 7 6 2 2 2
2 3354 1524 (4,7,5,6,3,1,2) 10 7 7 5 2 4 2
3 3339 1563 (3,7,1,5,4,2,6) 10 6 6 5 2 4 2
4 3301 1620 (4,5,7,6,2,1,3) 9 6 7 6 2 4 2
5 3268 1635 (2,4,7,5,1,3,6) 8 6 6 5 2 4 2
6 3128 1652 (4,5,2,7,1,3,6) 8 6 6 5 2 4 2
7 2950 1653 (3,4,7,1,2,5,6) 9 6 6 5 2 4 2
8 2690 1707 (2,4,3,7,1,5,6) 8 6 6 5 2 4 2
9 2562 1758 (1,4,2,3,7,5,6) 8 6 6 5 2 4 2

�rst area. Then, we have directly selected sequence 1. Regarding the other two
areas, we aim to select the �rst two best solutions. In this case, there are several
pairs of solutions where the value of r(i, j) is lower than 1. As mentioned in
Section 4.4, in these cases the F1 objective is less improved at expenses of a
higher increase of F2 and solution i is the preferred. Thus, we should also
analyze these relations besides the maximum value of r(i, j). Solution 6 is the
best point and it is not part of any relation lower than 1. Solution 5 seems the
second best. However, solution 2 is better than 5 according to the value of r
in the pair 2 − 5. For that reason, we select solutions 6 and 2 in the second
area. In the case of the third area, we opted for sequences 8 and 9.

Table 5.13: Relation between each pair of non-dominate solutions obtained
according to the objective values at each area of the Pareto frontier. Values
are sorted in descendent order

Area 2 Area 3
i-j r(i,j) i-j r(i,j)
5-6 8.24 7-8 4.81
4-6 5.41 7-9 3.7
3-6 2.37 8-9 2.51
4-5 2.20
2-6 1.77
3-5 0.99
2-5 0.77
3-4 0.67
2-4 0.55
2-3 0.38

In Section 5.4, the SIM was used to generated the sequences, where the
most promising solutions have been selected to be improved. Figure 5.14 shows
the solutions found with each schema after applying the local search process.
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Notice that Pareto frontiers are similar in spite of the di�erence between SIM
and the exhaustive method outlined in Figure 5.13b.

Taking into account that only a small subset of solutions is explored in a
minimum time, we consider that SIM provides a good representation of the
Pareto set. Nevertheless, better Pareto solutions can be obtained applying a
more exhaustive exploration. The second approach permits exploring a greater
number of sequences without increasing the computational time. In this sense,
the SIM method can be adapted to be used with the second approach in order
to intensify the exploration and improve the coverage of the Pareto frontier.
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Figure 5.14: Final solutions found using SIM and the exhaustive exploration
for the instance C4J5. Bullets and crosses represent SIM and exhaustive
method solutions, respectively.



Chapter 6

Conclusions and Future
Research

In the present thesis we have introduced a new approach for scheduling ground
handling services. Di�erent operations and types of vehicles, as well as the in-
terconnections between activities during a typical turnaround, have been mod-
eled in order to study this problem as a whole. Furthermore, ground handling
is tackled as a multi-objective optimization problem, where two objectives were
determined: (i) minimizing the waiting time of the operations and the total
reduction of the available time windows; and (ii) minimizing the completion
time of the aircraft turnaround. This way, scheduling decisions made for each
resource are combined in order to favor the robustness of the solution and to
contribute to the optimization of the overall process.

A new method, called Sequence Iterative Method, has been developed to
enhance the global solution while dealing with the multi-objective problem.
SIM is an a posteriori heuristic that modi�es iteratively the sequence for
solving the VRPTW sub-problems in such a way that approximations to the
non-dominated solutions of the problem are obtained. This set of solutions
representing the best compromise between objectives facilitates the selection of
the most satisfactory solution under diverse circumstances. Furthermore, this
avoids specifying preferences beforehand that can lead to inaccurate solutions.
Considering that solving each VRPTW is a complex problem, the SIM was
de�ned to �nd a minimum set of Pareto solutions that can provide a proper
representation of the Pareto frontier.

As described in Section 4.1, the problem has been decomposed into two
levels that interact along the solving process. The �rst level ensures that

109
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precedence restrictions between activities are respected and the turnaround
is �nished on time. For that reason, time windows are calculated consider-
ing all involved operations. In the second level, each type of vehicle servicing
a speci�c operation is scheduled independently, which leads to solving a set
of VRPTW sub-problems. They are solved sequentially and decisions made
at each sub-problem are propagated to the other VRPTWs by reducing their
time windows. This decomposition schema, which comes from the Job Shop
Scheduling problem, is an appropriate representation of the ground handling
problem. Each operation is performed independently using speci�c resources
and, at the same time, they are interdependent due to the precedence restric-
tions. Furthermore, this schema permits the reduction of the computational
e�ort to embrace the complete problem. Solving a routing problem for each
type of vehicle is more e�cient than a unique model including all vehicles,
although it does not guarantee reaching a global optimum. Local routing solu-
tions can be integrated to obtain a consistent complete solution so the global
approach of the proposal is kept. Moreover, planning each type of vehicle sepa-
rately allows the development of speci�c methods to address the particularities
of each operation.

Both levels are modeled using the Constraint Programming paradigm. Time
window calculations, as well as their reduction process, have been accomplished
in a very e�cient way through the propagation mechanism of CP. In order to
deal with the routing problems, we have employed a VRPTW model derived
from Kilby and Shaw formulation [112], where minimizing the operation wait-
ing time is the objective function in our case. The 
exibility of CP facilitates
the extension of this formulation to cope with the special features of each
handling activity. In addition, scheduling vehicles using CP is bene�ted from
the expressiveness provided by this paradigm to model di�erent operational
constraints.

The application of pure CP methods to solve the VRPTW is expensive in
computational time. For that reason hybrid strategies combining the advan-
tages of CP with the e�ciency of the search process provided by heuristics
are adopted to schedule the vehicles. Each routing problem is solved in two
stages in order to improve the performance of the approach. First, a quick
initial solution is obtained using the Insertion Heuristics method [19]. A CP-
based methodology combined with Variable Neighborhood Search and Large
Neighborhood Search [18] is applied after as a local search process.

As explained in Section 3.2.1, the I3 variant of the Insertion Heuristic
is selected due to it is the most suitable for dealing with our optimization
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objective. In this method, the route construction is guided by geographical
and time criteria with similar importance. In addition, the included parameter
giving priority to the most pressing customers can lead to reduce the number
of required vehicles. The parameters of the heuristic have been adjusted in
Section 4.3.2 in order to tune the algorithm to get a compromise between
minimizing operation waiting time and the number of routes. In the CP-
based VND-LNS methodology described in Section 4.3.3, local search process
is enclosed in CP through two operators based on LNS. A variation of the
RPOP operator proposed in [18], and the SMART [80] are included in our
case. Finally, VND is used in this methodology to guide the search and escape
from local minima. As result show, this procedure has demonstrated to be
e�ective to improve these initial solutions.

Due to the sequence for scheduling the di�erent types of vehicles has an
important in
uence on the solution quality, we also propose a version of the
approach that explores exhaustively all sequences. With this purpose, the
scheduling process is performed in two steps. First, solutions are calculated
solving the routing problems with the constructive heuristic I3. Then, a set of
promising solutions is selected to be improved with the local search process,
being the most time expensive procedure of the approach. This variation
permits a greater number of sequences to be explored leading to obtain better
Pareto solutions or a wider Pareto set.

Two criteria are de�ned in order to decide which solutions to improve
by the hybrid methodology. With the �rst criterion, the Pareto frontier is
divided into di�erent areas according to the values of the objective functions.
Solutions with the best relation between objectives are selected at each area,
i.e. solutions where the greater improvement of one goal can be reached with
the least impact on the other goal. Thus, we select the solutions that best
represent di�erent ranges from the total set of Pareto points. The second
criterion is used to decide which solutions are the best from the set of points
obtained after applying the �rst rule. It chooses solutions where the minimum
number of vehicles is required to perform complex operations, such as fueling or
activities with longer duration. Saving in fueling vehicles, which are resources
that have to be thoroughly maintained, reduces company costs and contribute
to avoid delays caused by unavailability. Moreover, schedules where longer
operations use less vehicles could favor the robustness of the solution since
they leave spare vehicles that could be used in case of unexpected events or
delays.

The �rst approach was assessed using real-life data from Palma the Mal-
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lorca and Barcelona airports and speci�cations from aircraft manufacturers.
Results included in Section 5.3 show our approach is able to schedule ground
handling vehicles as a whole obtaining better global solutions according to the
de�ned optimization objectives. Di�erent solutions representing a trade-o�
between objectives were found modifying the order in which operations are
scheduled. Moreover, the number of vehicles needed to serve the activities can
change according to this order. In these cases, the second criterion de�ned in
the second approach can be very useful to select between two solutions with
similar values of the objective functions. In addition, allowing some waiting
time on the less constrained operations leads to savings on resources utilization
without a�ecting the completion time of the turnaround.

Finally, the second approach has been tested using instances from Barcelona
airport data. First, instances were solved with SIM using only the I3 and all
non-dominated solutions were improved using the local search process. Final
solutions were compared with the results obtained with the �rst approach. As
experiments show, an acceptable number of the same sequences were produced
with both schema, and obtained Pareto frontiers are very similar. Then, the
second approach was employed to provide a more exhaustive exploration of
sequences. The two proposed criteria were applied in both cases to select the
most promising solutions from the non-dominated points. Although solutions
generated with all combination were better, the coverage of the Pareto frontier
reached by SIM is comparable to the exhaustive set.

With these approaches we propose two alternatives to solve the problem
according to the particular situation. The �rst approach provides an e�cient
and easy method to obtain a set of good solutions with an acceptable com-
putational e�ort. Any parameter or criterion for selecting promising solutions
needs to be de�ned beforehand, which simpli�es the decision process. In con-
trast, the time required can be a drawback depending on the available time
for scheduling the vehicles. In this case, the second approach is more useful.
Additionally, if the quality of Pareto solutions or the Pareto set coverage is a
crucial issue, the second method can be more appropriate. However, special
attention should be paid to criteria de�nition in order to select the most in-
teresting solutions regarding decision maker' preferences. Moreover, it should
be considered the potential of the constructive heuristic to produce sequences
that can generate non-dominated solutions. Taking into account these consid-
erations both approaches are able to schedule handling vehicles as a whole in
real scenarios.
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6.1 Contributions of this work

In the previous section we have discussed the contributions of this thesis. They
are summarized as follows:

• A �rst approach has been proposed for solving the ground handling
scheduling problem with a global perspective.

• The scheduling decisions made for each operation during turnaround
have been integrated in order to improve the global process. This in-
tegration contributes to the scheduling robustness and to reduce the
completion time of aircraft turnarounds using vehicles e�ciently.

• The ground handling scheduling problem has been modeled as a multi-
objective optimization problem. Two objective were de�ned: (i) mini-
mizing the total operation waiting time and the reduction of time win-
dows, and (ii) minimizing the total completion time of the turnaround.

• A new method has been developed to solve the multi-objective optimiza-
tion problem. Modifying the sequence in which operations are scheduled,
a range of potential Pareto solutions is generated. Providing a set of so-
lutions avoids a priori speci�cations of preferences and allows decision
makers to select the solution that better suits the problem.

• The ground handling scheduling problem has been decomposed using a
workcenter-based decomposition schema. This schema permits modeling
and solving the problem globally, in a natural and e�cient way.

• A CP method has been implemented to ensure temporal and precedence
restrictions between activities during turnaround. Constraint propaga-
tion provides a fast and e�ective resource to deal with this kind of process.

• The scheduling of vehicles performing each operation has been devel-
oped in two steps in order to reduce the computational e�ort. The I3
heuristic has been implemented to obtain a quick �rst solution for the
routing problem, which is later improved using a CP-based VND-LNS
methodology.

• A variation of the approach has been implemented in order to increase the
number of explored sequences to obtain the Pareto solutions. Solutions
are �rst calculated with the I3 heuristic and only the most promising
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solutions are improved with the local search process. In addition, this
schema can be used to reduce the time to produce a set of solutions
without compromising the quality of the decision process.

• A set of instances has been developed using real-data from two important
Spanish airports in order to test the proposed approaches. With the �rst
approach, a set of good solutions with a trade-o� between objectives is
produced in an acceptable time. Depending on the problem and the de-
sired number of solutions, the second approach appears as an interesting
alternative for reducing the execution time and improving the quality of
the Pareto solutions set.

Publications

The work presented in this thesis has been partially included in the following
journal article:

• S. Padron, D. Guimarans, J.J. Ramos, S. Fitouri-Trabelsi. A bi-objective
approach for scheduling ground handling vehicles in airports. Journal of
Computers and Operations Research (Submitted)

6.2 Future Research

The work presented in this thesis is a �rst approach to cope with the ground
handling scheduling problem as a whole, so many open lines remain for further
research. In this section, we introduce a review of some of these aspects:

• Other operations are to be modeled, such as baggage transportation
and the passenger transfer when aircraft are parked at a remote stand.
Passenger and baggage transportation have special features in relation
to other ground handling activities. Vehicles perform these operations
in two parts: passengers or bags are picked up at a speci�c location,
such as gates or baggage facilities (or at an aircraft stand), and they are
delivered to an aircraft stand (or to any location). Vehicles performing
these operations can be considered as special cases of the Pickup and
Delivery with Time Window problem (PDTW). In this sense, picking
up passengers or bags from (or to) di�erent aircraft is not allowed in
the same trip. Furthermore, they can be also modeled as an instance
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of the Split Delivery Vehicle Routing Problem (SDVRP). Usually, due
to vehicle limited capacity or safety standards, more than one trip is
needed to carry out these activities. Even when such trips can be done
with di�erent vehicles, they should not arrive to the stand at the same
time. The CP model corresponding to each VRPTW sub-problem may
be easily extended to other VRPTW, particularly this special case of
PDTW.

• Heterogeneous 
eets are to be considered. Usually, vehicles are compat-
ible with a speci�c type of aircraft and cannot serve other types. In this
sense, the 
exibility of the adopted CP-based local search process allows
introducing new constraints in the model with minimum modi�cations
in the methodology.

• The SIM method is to be enhanced to explore a larger number of se-
quences when it is used in the second approach. More intensive strategies
are to be studied for modifying sequences in order to improve the ob-
tained Pareto solutions. In the current method, the sub-problem with
the highest value of f1 is selected to be included in B and the process
is launched with the new sequence. This step can be repeated with
the second or third sub-problem with the highest f1. The sub-problem
which gives the greater improvement of F1 is to be �nally selected to be
included in B.

• Other criteria are to be de�ned to select the most promising solutions
in the modi�ed version of the approach. Operations with more prece-
dence constrains are very likely to produce delays during the turnaround.
Scheduling these activities with the minimum operation waiting time can
contribute to the overall process optimization.
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