Segmentation and indexation of complex objects in comic book images A dissertation submitted by **Christophe Rigaud** at Universitat Autònoma de Barcelona to fulfil the degree of **Doctor of Philosophy**. Bellaterra, December 11, 2014 ### UNIVERSITÉ DE LA ROCHELLE ### ÉCOLE DOCTORALE S2IM Laboratoire Informatique, Image et Interaction (L3i) ### THÈSE présentée par : ### **Christophe RIGAUD** soutenue le : 11 décembre 2014 pour obtenir le grade de : Docteur de l'université de La Rochelle Discipline: informatique et applications # Segmentation et indexation d'objets complexes dans les images de bandes déssinées JURY: Bart LAMIROY Professeur associé, Université de Lorraine (France), Examina- teur, Président du jury Simone MARINAI Professeur associé, Université de Forence (Italie), Rapporteur Apostolos Antonacopoulos Professeur associé, Université de Salford (Grande-Bretagne), Rapporteur Koichi KISE Professeur, Université d'Osaka (Japon), Examinateur Jean-Philippe DOMENGER Professeur, Université de Bordeaux (France), Examin. Jean-Philippe DOMENGERProfesseur, Université de Bordeaux (France), ExaminateurJean-Christophe BURIEProfesseur, Université de La Rochelle (France), Directeur de thèse Dimosthenis KARATZAS Professeur associé, Université Autonome de Barcelone, Enca- drant de thèse Jean-Marc OGIER Professeur, Université de La Rochelle, Encadrant de thèse #### Director ### Prof. Dr. Jean-Christophe Burie Laboratoire Informatique, Image et Interaction Université de La Rochelle (France) #### Co-Directors #### Dr. Dimosthenis Karatzas Centre de Visió per Computador Universitat Autònoma de Barcelona (Spain) #### Prof. Dr. Jean-Marc Ogier Laboratoire Informatique, Image et Interaction Université de La Rochelle (France) ## Thesis committee #### Prof. Dr. Bart Lamiroy Laboratoire Lorrain de Recherche en Informatique et ses Applications Université de Lorraine (France) #### Prof. Dr. Koichi Kise Department of Computer Science and Intelligent Systems Osaka Prefecture University (Japan) ### Prof. Dr. Jean-Philippe Domenger Laboratoire Bordelais de Recherche en Informatique Université de Bordeaux (France) ## European evaluators #### Dr. Simone Marinai Dipartimento di Ingegneria dell'Informazione Università degli Studi di Firenze (Italy) #### Dr. Apostolos Antonacopoulos The School of Computing, Science & Engineering University of Salford (United Kingdom) This document was typeset by the author using LATEX 2ε . The research described in this book was carried out at the Laboratoire Informatique, Image et Interaction, Université de La Rochelle and at the Centre de Visió per Computador, Universitat Autònoma de Barcelona. Copyright © 2014 by Christophe Rigaud. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the author. ISBN: XXX Printed by Ediciones Gráficas Rey, S.L. Nothing in life is to be feared, it is only to be understood. Maria Sklodowska-Curie (1867 - 1934) Live as if you were to die tomorrow. Learn as if you were to live forever Mahatma Gandhi (1869 - 1948) ## Acknowledgement First of all I would like to thanks Dr. Simone Marinai and Dr. Apostolos Antonacopoulos to have reviewed this European thesis and for sharing interesting comments and discussions. I am also grateful to Pr. Dr. Koichi Kise and Pr. Dr. Jean-Philippe Domenger for accepting to be part of the jury and to Dr. Bart Lamiroy to have presided the jury. Sincere thanks to my supervisors Pr. Dr. Jean-Christophe Burie, Dr. Dimosthenis Karatzas and Pr. Dr. Jean-Marc Ogier for their valuable expertise, friendship, dynamism, review of this thesis and join supervision of this work between the Centre de Visió per Computador (CVC) of the Universitat Autònoma de Barcelona (UAB), and the Laboratoire Informatique, Image et Interaction (L3i) of the Université de La Rochelle (ULR). Also, thank you to Remy Mullot for accepting me in his lab (director of the L3i until 2012) and both institutions for providing me all the facilities to carry out this work in a great environment and atmosphere. I would like to thanks all the people from the Intelligent Media Processing Group of Osaka Prefecture University (Japan) for giving me opportunity of doing research stays with a Manga s team: Pr. Dr. Koichi Kise, Dr. Motoi Iwata, Dr. Weihan Sun, the secretaries and all the master s students including Atsushi Ito and Masaki Tukada which have benefited of a research stay in France. I have learnt so many things about research, work, life style and food (thank you Hideto!). Thank you to the CVC members for having welcomed me on several occasions (European doctorate and then joint supervision), especially people from the document analysis group: Josep Lladós, Dimosthenis Karatzas, Marçal Rusinol, Oriol Ramos, Volkmar Frinken, Alicia Fornes, Jon Almazan, Lluis Gómez, Lluís Pere De las Heras, Anjan Dutta, Prass, David Fernández, Nuria Cirera, Francisco Cruz and Claire Pérez-Mangado from the secretary. Thank you to the eBDtheque projects team for all the fruitful meetings we had together, Karell Bertet, Jean-Christophe Burie, Arnaud Revel, Alain Bouju, George Louis, Jean-Marc Ogier, Clément Guérin, Antoine Mercier (annotation tool and datasets website), Norbert Tsopze and Nam Le Thanh. Thanks to the L3i lab members that participated to the ground truth day and also to the trainees that contributed to this project. Sincere thanks to the authors and publishers that have kindly agreed to share part of their works with scientists which allowed us to evaluate, share and make reproducible this three year thesis work. In alphabetical order: Pascal Boisgibault, Cyb, Fred, Sergio Garcia, Olivier Jolivet, Lamisseb, Gérald Lub- bin, Winsor McCay, Midam, Marion Montaigne, Nicolas Roudier, Alain Saint Ogan, Trébla and Lewis Trondheim. Thanks also to their editors: Actes Sud, Ankama, Bac@BD, Clair de Lune, Dargaud, Delcourt, Doc En Stock, Dupuis, Hachette and Studio Cyborga. Finally, a special thank to the CIBDI¹, Free Public Domain Golden Age Comics and the Department of Computer Science and Intelligent Systems of Osaka Prefecture University who kindly provided material from their personal collection. Thank you to the people who have taught me how to teach, Vincent Courboulay, Anthony Bourmaud, Karel Bertet, Armelle Prigent, Arnaud Revel and Renaud Peteri. I would like to thanks the European Doctorate founds of the University of La Rochelle, European Regional Development Fund, the region Poitou-Charentes (France), the General Council of Charente Maritime (France), the town of La Rochelle (France), the Spanish research projects TIN2011-24631, RYC-2009-05031 and the Sakura project of Campus France for the financial support of this work including the different research stays in Spain and Japan. Kind thanks to all the volunteer contributors of operating system, software, programming language and libraries related to the completion of this work (Fedora, NetBeans, Sublime Text, Gimp, Inkscape, Firefox, LATEX, Python, IPython Notebook, Numpy, SciPy, Matplotlib, OpenCV). I would like to thanks people that gave me the taste of academic research of image processing during the last year of engineering school and the research master final year project. You helped me a lot in the application process of this unique and wonderful thesis project, thank you so much. Thank you to the members of the association of the Ph.D. students of La Rochelle (ADocs) for all the local events we organised together and the help for making and promoting a short film about my research work for young audience. Grateful thanks to all the Ph.D. candidates, young doctors, engineers and administrative affiliated to the L3i with whom I spend most of the time (Romain, Clément, Guillaume, Cyril, Sébastien, Omar, Van, Giap, Sophea, Dounia, Maroua, Rouaa, Marcela, Bich, Imen, Hind, Phuong, Jane, Muzzamil, Benjamin, Joseph, Bruno, Olivier, Kathy, Caro, Sarah, Dom, Stéphane & Arnold and those I have forgotten sorry...). Special thanks to the 121 bis office team (Nat, Mika, Toí, Elo, Nam, Bao, the Roundabout, the Cow and the Space invaders) for these three years of gentleness, happiness and teasing that we shared together in this unique open space where science and creativity grow on the walls, roof and in the air. And finally, I would like to infinitely thanks my parents, brother and all my family for their endless love and support at a distance of five hundreds and twenty six kilometres as the crow flies. Special thanks to my love for having followed me throughout this adventure with patience, dynamism, joy of living and also many contributions to this work (ground truthing, thesis review, etc). ¹Cité Internationale de la Bande Dessinée et de l'Image ## Abstract Born in the 19th century, comics is a visual medium used to express ideas via images, often combined with text or visual information. It is considered as a sequential art, spread worldwide initially using newspapers, books and magazines. Nowadays, the development of the new technologies and the World Wide Web is giving birth to a new form of paperless comics that takes advantage of the virtual world freedom. However, traditional comics still represent an important cultural heritage in many countries. They have not yet received the same level of attention as music, cinema or literature about their adaptation to the digital format. Using information technologies with classic comics would facilitate the exploration of digital libraries, faster theirs translations, allow augmented reading, speech playback for the visually impaired etc. Heritage museums such as the CIBDI (French acronym for International City of Comic books and Images), the Kyoto International Manga Museum and the digitalcomicmuseum.com have already digitized several thousands of comic albums that some are now in the
public domain. Despite the expending market place of digital comics, few researches have been carried out to take advantage of the added value provided by these new media. Document analysis is the corresponding field of research which is relatively application-dependent. The design process of comics is so typical that their automated analysis may be seen as a niche research field within document analysis, at the intersection of complex background, semi-structured and mixed content documents. Being at the intersection of several fields combine their difficulties. In this thesis, we review, highlight and illustrate the challenges in order to give to the reader a good overview about the last research progress in this field and the current issues. We propose three different approaches for comic book image analysis relying on previous work and novelties. The first approach is called sequential because the image content is described in an intuitive way, from simple to complex elements using previously extracted elements to guide further processing. Simple elements such as panel text and balloon are extracted first, followed by the balloon tail and then the comic character position in the panel from the direction pointed by the tail. The second approach addresses independent information extraction to recover the main drawback of the first approach: error propagation. This second method is called independent because it is composed by several specific extractors for each elements of the image content. Those extractors can be used in parallel, without needing previous extraction. Extra processing such as balloon type classification and text recognition are also covered. The third approach introduces a knowledge-driven system that combines low iv ABSTRACT and high level processing to build a scalable system of comics image understanding. We built an expert system composed by an inference engine and two models, one for comics domain and an other one for image processing, stored in an ontology. This expert system combines the benefits of the two first approaches and enables high level semantic description such as the reading order of panels and text, the relations between the speech balloons and their speakers and the comic character identification. Apart from that, in this thesis we have provided the first public comics image dataset and ground truth to the community along with an overall experimental comparison of all the proposed methods and some of the state-of-the-art methods. ## Résumé Née au 19ème siècle, les bandes dessinées sont utilisées pour l'expression d'idées au travers de séquences d images, souvent en combinaison avec du texte et des graphiques. La bande dessinée est considérée comme le neuvième art, l'art séquentiel, diffusé grace aux progrès de l'imprimerie puis de l'Internet à travers le monde dans les journaux. les livres et les magazines. De nos jours, le développement grandissant des nouvelles technologies et du World Wide Web (la toile Internet) donne naissance à de nouvelles formes d'expressions s'acquittant du support papier pour profiter de toute la liberté du monde virtuel. Cependant, la bande dessinée traditionnelle continue a perdurer et représente un patrimoine culturel important dans de nombreux pays. À la différence de la musique, du cinéma ou encore de la littérature classique, elle n a pas encore trouvée sont homologue dans l'univers du numérique. L'utilisation des technologies de l'information et de la télécommunication pourrait faciliter l'exploration de bibliothèques en ligne, accélérer leur traduction et exportation, permettre de faire de la lecture augmentée (enrichissement du contenu lors de la lecture, à la demande et personnalisé) ou encore permettre l'écoute du texte et des bruitages pour les mal-voyants ou les apprenants. Les organismes de préservation du patrimoine culturel comme le CIBDI à Angouleme (Centre International de la Bande Dessinée et de l'Image), le musée international du manga à Kyoto (Kyoto International Manga Museum) ou encore le site digitalcomicmuseum.com aux États-unis ont déjà numérisé des centaines d'albums dont certain sont du domaine public. Malgré la part de marché grandissante de la bande dessinée numérique dans les pays développés, peu de recherches ont été menées à ce jour pour valoriser ces contenus au travers des nouvelles technologies. L'analyse de document est une thématique de recherche qui traite ce genre de problème. Une de ces particularités est sa dépendance au type de document qui requiert souvent des traitements spécifiques. Le processus de création d'une bande dessinée est propre à cet art qui peut etre considéré comme une niche du domaine de l'analyse de document. En réalité, cette niche est à l'intersection de plusieurs problématiques de recherche qui compte les documents constitués d'un fond complexe, semi-structurés et avec un contenu varié. L intersection entre plusieurs thématiques de recherche combine leurs difficultés. Dans ce manuscrit de thèse, nous détaillons et illustrons les différents défis scientifiques liés à ces travaux de recherche de manière à donner au lecteur tous les éléments concernant les dernières avancées scientifiques en la matière ainsi que les verrous scientifiques actuels. Nous proposons trois approches pour l'analyse d'image de bandes dessinées vi RÉSUMÉ composé de différents traitements dont certains améliorent des travaux antérieurs et d'autres étant de nouvelles pistes d'exploration. La première approche est dite séquentielle car le contenu de l'image est décrit progressivement et de manière intuitive. Dans cette approche, l'extraction des éléments se succède, en commençant par les plus simples tels que les cases, le texte et les bulles qui servent ensuite à guider l extraction d'éléments complexes tels que la queue des bulles et les personnages au sein des cases en fonction de la direction pointée par les queues. La seconde méthode propose des extractions indépendantes les unes des autres de manière à éviter la propagation derreur entre les traitements. Dans cette approche, les différents extracteurs peuvent etre utilisés en parallèle puisque qu'ils n ont pas d'inter-dépendance. D'autres éléments tel que la classification du type de bulle et la reconnaissance de texte y sont associés. La troisième approche introduit un système fondé sur une base de connaissance à priori du contenu des images de bandes dessinées qui permet d interagir entre des traitements de bas et haut niveaux pour construire une description sémantique de l'image. Nous proposons un système expert composé d'un système d'inférence et de deux modèles sous forme d ontologies, un pour modéliser le domaine de la bande dessinée, et l'autre pour modéliser les traitements d'images associés. Ce système dirigé par les modèles, combine les avantages des deux approches précédentes et permet une description sémantique de haut niveau pouvant inclure des informations telles que l ordre de lecture des cases, du texte et des bulles, des relations entre les bulles et leurs locuteurs ainsi que la distinction entre les personnages. Dans cette thèse, nous introduisons également la première base d images de bandes dessinées ainsi que la vérité terrain associée comportant des informations bibliographiques, spatiales et sémantiques. Cette base d images annotées a été mise à disposition de la communauté scientifique. Des expérimentations basées sur les méthodes proposées et une comparaison avec des approches de la littérature sont également détaillées dans ce manuscrit. ## Resumen Nacido en el siglo 19, los historietas se utilizan para la expresión de ideas a través de secuencias de imágenes, a menudo en combinación con el texto y los gráficos. El cómic esta considerado como un noveno arte, arte secuencial, salida con los avances en la impresión y la Internet en todo el mundo en periódicos, libros y revistas. Hoy en día, el creciente desarrollo de las nuevas tecnologías y la World Wide Web (el lienzo Internet) da lugar a nuevas formas de expresión que lleva el papel a disfrutar de la libertad del mundo virtual. Sin embargo, el cómic tradicional persiste y es un patrimonio cultural importante en muchos países. A diferencia de la música, el cine o la literatura clásica, que aún no ha encontrado son homólogos en el mundo digital. El uso de tecnologías de la información y de las telecomunicaciones podría facilitar la exploración de bibliotecas en línea, la traducción y acelerar su permiso de exportación a la mayor lectura (enriquecimiento de los contenidos durante la reproducción, a la carta y personalizado) o permitir la escucha de texto y efectos de sonido para los estudiantes con discapacidad visual o allumnos. Agencias de la preservación del patrimonio cultural como CIBDI en Angouleme (Centro Internacional del Cómic y de imagen), el Museo Internacional de Manga en Kioto (Kyoto International Manga Museum) o el sitio digitalcomicmuseum.com de los Estados Unidos han digitalizado cientos de álbumes, algunos son públicos. Pese a la creciente cuota de mercado de los cómics digitales en los países desarrollados, poca investigación se ha llevado a cabo hasta la fecha para desarrollar estos contenidos a través de las nuevas tecnologías. El análisis de documentos es un tema de investigación que se ocupa de este problema. Una de estas características es la dependencia del tipo de documento que a menudo requiere un tratamiento específico. El proceso de creación de un cómic es exclusivo de este arte que puede ser considerado como un nicho en el campo de análisis de documentos. En realidad, este nicho está en la intersección de varios documentos de investigación que cuenta consiste en un fondo complejo, contenido semi-estructurada y variada. La intersección de varias investigaciones combina sus dificultades. En esta tesis de doctorado, se describen e ilustran los diversos retos científicos de esta investigación con el fin de dar al lector toda la evidencia acerca de los
últimos avances científicos en el campo, así como las barreras científicas actuales. Proponemos tres enfoques de análisis de imagen cómica compuesta por diferentes tratamientos que mejora algunos trabajos previos y otros que son nuevas vías de exploración. El primer enfoque se denomina secuencial porque los contenidos de la imagen se describe gradualmente y de manera intuitiva. Simples artículos como cajas y texto y las burbujas se extraen viii RESUMEN primero y luego siguen la cola de las burbujas y los personajes de los cuadros de acuerdo a la dirección apuntada por las colas. El segundo método ofrece extracciones independientes unos de otros a fin de evitar la propagación del error entre aplicaciones, que es la principal desventaja del primer método. En este enfoque, los diversos extractores se pueden utilizar en paralelo, ya que no tienen la interdependencia. Otros elementos como la clasificación del tipo de burbuja y el reconocimiento de texto están asociados. El tercer enfoque introduce un sistema basado en un conocimiento a priori del contenido de las imágenes de dibujos animados que interactúa entre los tratamientos bajos y altos niveles para construir una descripción semántica de la imagen. Proponemos un sistema experto consiste en un sistema de inferencia y dos modelos de la forma de ontologías, un modelo para el campo de los cómics y el otro para modelar el procesamiento de imágenes asociado. Este sistema experto combina las ventajas de ambos enfoques anteriores y proporciona un alto nivel de descripción semántica puede incluir información como el orden de lectura de los cuadros, el texto y las burbujas, burbujas relaciones entre habladas y sus altavoces y el distinción entre los caracteres. Además, se describen los primeros cómics públicas basadas en imágenes y la realidad sobre el terreno que incluye que se han propuesto a la literatura científica, la información espacial y semántica. Un experimento de todos los métodos propuestos y una comparación de los enfoques de la literatura también se detallan en este manuscrito. ## Contents | A | cknov | wiedgement |] | |--------------|-------|---|-----| | \mathbf{A} | bstra | ct | iii | | R | ésum | é | v | | R | esum | en | vii | | 1 | Intr | oduction | 1 | | | 1.1 | Presentation | 1 | | | 1.2 | Motivations | 3 | | | 1.3 | Objectives and contributions | 5 | | | 1.4 | Outlines | 7 | | 2 | Stat | te-of-the-art | 9 | | | 2.1 | Document image analysis | 9 | | | 2.2 | Comic book image analysis | 12 | | | | 2.2.1 Panel extraction and layout analysis | 12 | | | | 2.2.2 Balloon segmentation and tail detection | 13 | | | | 2.2.3 Text extraction and recognition | 14 | | | | 2.2.4 Comic character detection | 15 | | | 2.3 | Holistic understanding | 17 | | | 2.4 | Existing applications | 17 | | | 2.5 | Conclusion | 18 | | 3 Sec | | uential information extraction | 19 | | | 3.1 | Introduction | 19 | | | 3.2 | Panel and text | 19 | | | 3.3 | From text to balloon | 24 | | | | 3.3.1 Regular balloon extraction | 25 | | | | 3.3.2 Implicit balloon extraction | 27 | | | 3.4 | From balloon to tail | 32 | | | 3.5 | From tail to comic character | 35 | | | 3.6 | Conclusions | 37 | x CONTENTS | 4 | Ind | ependent information extraction 39 | |---|----------------------|--| | | 4.1 | Introduction | | | 4.2 | Panel extraction | | | 4.3 | Text localisation and recognition | | | | 4.3.1 Introduction | | | | 4.3.2 Bi-level segmentation | | | | 4.3.3 Text/graphics separation | | | | 4.3.4 Text line generation | | | | 4.3.5 Text recognition | | | 4.4 | Balloon extraction and classification | | | | 4.4.1 Balloon segmentation | | | | 4.4.2 Balloon classification | | | 4.5 | Comic character spotting | | | | 4.5.1 Colour quantization | | | | 4.5.2 Input query | | | | 4.5.3 Query descriptor | | | | 4.5.4 Object retrieval | | | 4.6 | Conclusions | | | 1.0 | Conclusions | | 5 | Kno | owledge-driven analysis 6 | | | 5.1 | · | | | 5.2 | Proposed models | | | | 5.2.1 Image processing domain | | | | 5.2.2 Comics domain | | | | 5.2.3 Model interactions | | | 5.3 | Expert system for contextual analysis 6 | | | | 5.3.1 Interactions between low and high level processing 6 | | | | 5.3.2 Constrains for the low level extractions | | | 5.4 | Processing sequence | | | 0.1 | 5.4.1 Simple element extraction | | | | 5.4.2 Complex element extraction | | | 5.5 | Conclusions | | | 0.0 | Conclusions | | 6 | Exp | perimentations 79 | | | 6.1 | Dataset and ground truth | | | | 6.1.1 Dataset description | | | | 6.1.2 Ground truth information | | | 6.2 | Metrics | | | 0.2 | 6.2.1 Object localisation metric | | | | 6.2.2 Object segmentation metric | | | | 6.2.3 Text recognition metric | | | | 6.2.4 Tail detection metric | | | | 6.2.5 Semantic links metric | | | 6 2 | | | | 6.3 | Panel extraction evaluation | | | | 6.3.1 Arai s method | | | | 6.3.2 Ho s method | CONTENTS xi | | | 6.3.3 | Sequential approach | 36 | |--------------|------|---------|----------------------------------|----| | | | 6.3.4 | Independent approach | 36 | | | | 6.3.5 | Knowledge-driven approach | 36 | | | | 6.3.6 | Comparison and analysis | 37 | | | 6.4 | Text e | xtraction evaluation | 88 | | | | 6.4.1 | Arai s method | 39 | | | | 6.4.2 | Sequential approach | 39 | | | | 6.4.3 | Independent approach | 90 | | | | 6.4.4 | Knowledge-driven approach | 90 | | | | 6.4.5 | Comparison and analysis | 90 | | | 6.5 | Text re | ecognition evaluation | 91 | | | 6.6 | Balloo | n extraction evaluation | 92 | | | | 6.6.1 | Arai s method | 93 | | | | 6.6.2 | Ho s method [62] | 93 | | | | 6.6.3 | Sequential approach | 94 | | | | 6.6.4 | Independent approach | 94 | | | | 6.6.5 | 0 11 | 95 | | | | 6.6.6 | ı v | 95 | | | 6.7 | Balloo | | 97 | | | | 6.7.1 | v | 00 | | | 6.8 | | etection evaluation | | | | | 6.8.1 | Result analysis | | | | 6.9 | | |)2 | | | | 6.9.1 | Sequential approach | | | | | 6.9.2 | Independent approach | | | | | 6.9.3 | Knowledge-driven approach | | | | | 6.9.4 | Comparison and analysis | | | | 6.10 | | Ů , |)9 | | | | | | 9 | | | | | | 10 | | | 6.11 | Conclu | sions | .2 | | 7 | Con | clusion | ns 11 | 5 | | • | 7.1 | | ary and contributions | | | | 7.2 | | e perspectives | | | | 1.2 | 1 dourc | perspectives | .0 | | \mathbf{A} | Pre- | proces | ssing 11 | 9 | | | | | | 19 | | | | A.1.1 | | 19 | | | | A.1.2 | | 20 | | | | A.1.3 | Contour-based | 20 | | | | A.1.4 | Bi-level grey-scale thresholding | 21 | | | | A.1.5 | Multi-level colour thresholding | | | | | | | | | \mathbf{B} | | | straction 12 | | | | B.1 | Conne | cted-component labelling | 23 | xii CONTENTS | \mathbf{C} | Dat | aset | 125 | |--------------|-------|---------------------------------|-----| | | C.1 | Image categories | 125 | | D | Gro | und truth | 127 | | | D.1 | Ground truth construction | 127 | | | | D.1.1 Visual annotation | 128 | | | | D.1.2 Semantic annotation | 131 | | | | D.1.3 File structure | 132 | | | D.2 | Ground truth quality assessment | 135 | | | D.3 | Terms of use | 137 | | \mathbf{E} | List | of Publications | 139 | | Bi | bliog | raphy | 143 | ## List of Tables | 3.1 | Values of the horizontal and vertical shifts and panel s corner selection according to the eight directions of the tail | 36 | |------|---|-----| | 6.1 | Panel extraction evaluation results | 88 | | 6.2 | F-measure results for fixed and adaptive threshold selection method corresponding to combined and separated colour to grey conversion | | | | methods | 90 | | 6.3 | Text localisation results | 91 | | 6.4 | Text recognition accuracy results from automatic text line localisation | | | | using edit distance | 93 | | 6.5 | Implicit balloon performance evaluation at object and pixel levels using | | | | the original form and the proposed energy functions | 94 | | 6.6 | Balloon localisation result summary | 96 | | 6.7 | Classification result accuracy for different descriptor configuration | 99 | | 6.8 | Confusion matrix for smooth, wavy and spiky balloon contour classifi- | | | | cation results | 100 | | 6.9 | Tail tip position and tail direction extraction results from automatic | | | | and manual balloon contour extractions | 101 | | 6.10 | Character detection performance | 106 | | 6.11 | Comic character localisation result for the sequential approach from | | | | ground truth and automatic panel and balloon element extractions | 107 | | 6.12 | F-measure score evolution for panel, balloon, text and characters through- | | | | out the two iterations | 110 | ## List of Figures | Z.1 | Application domains of graphics recognition | 10 | |------|---|----| | 2.2 | Document degradation sources | 12 | | 2.3 | Flow diagram of comic balloon detection | 14 | | 2.4 | Illustration of the diversity of comics character postures | 16 | | 3.1 | Panel extraction process | 22 | | 3.2 | Descendant histogram of the connected component bounding box heights | 23 | | 3.3 | Topological pruning of panel bounding box extraction | 23 | | 3.4 | Text component horizontal and vertical alignments | 24 | | 3.5 | Text line to text paragraph conversion illustration | 25 | | 3.6 | Text positions in speech balloons | 25 | | 3.7 | Sequential balloon extraction process illustration | 26 | | 3.8 | Illustration of the vertical and horizontal alignment differences between | | | | balloon and text region barycentre | 26 | | 3.9 | Speech balloon contour types | 27 | | 3.10 | Active contour energies for open balloon extraction | 29 | | 3.11 | Active contour initialization based on text region convex hull | 31 | | 3.12 | Examples of low resolution contour detection for balloon extraction | 32 | | 3.13 | Examples of high resolution contour detection for balloon extraction . | 32 | | 3.14 | Examples of type of
speech balloon tails | 33 | | 3.15 | Convex hull and convexity defects of a speech balloon | 34 | | 3.16 | Tail tip position precise position | 35 | | 3.17 | Tail tip position and direction detection | 36 | | 3.18 | Illustration of the character region of interested computation for each | | | | of the eight directions of the tail | 37 | | 4.1 | Independent panel extraction process | 41 | | 4.2 | Different threshold selection applied on a grey-scale image | 44 | | 4.3 | Inter-connected letters | 45 | | 4.4 | Mean and standard variation values of connected-component bounding | | | | boxes | 45 | | 4.5 | Examples of text lines from comics images | 46 | | 4.6 | Balloon extraction process | 47 | | 4.7 | Balloon content alignment measures | 48 | | 4.8 | Relation between speech balloon shape and contour informations | 50 | |------|--|-----| | 4.9 | Balloon contour time series | 51 | | 4.10 | Contour signal decomposition | 52 | | 4.11 | Colour image smoothing and quantization for comic character extraction | 55 | | 4.12 | User defined comic character selection | 56 | | 4.13 | Comic character query description | 57 | | 4.14 | Colour mask corresponding to five colour of the query descriptor | 58 | | 4.15 | Multi-scale comic character spotting | 59 | | 5.1 | Example of semantic information understanding | 61 | | 5.2 | Examples of comic panels that reflect the diversity of comics | 62 | | 5.3 | A representation of the image model involved in the expert system | 63 | | 5.4 | Initial comics model | 65 | | 5.5 | Complete comics model | 66 | | 5.6 | Specification of concepts Character, Balloon and TextLine | 67 | | 5.7 | Interaction between the two ontologies | 68 | | 5.8 | Generic representation of the expert system and the relationship be- | | | | tween knowledge base, the inference engine and the low-level algorithms | 69 | | 5.9 | Process loop of the knowledge-driven system | 70 | | 5.10 | | | | | sequence | 71 | | | Initial hypothesis about the content of a given image | 72 | | | Validation of the hypothesis using the constraints of the knowledge base | 73 | | 5.13 | Inference of the speech balloons, narrative balloons, spoken text lines | | | | and narrated text lines using the semantic properties of the knowledge | | | | base | 74 | | 5.14 | Hypothesis, refinement and spotting of comic character regions from | | | | the speech balloon regions | 75 | | | Validation of the character regions by the expert system | 76 | | 5.16 | Inference of the speaking characters and their corresponding semantic | | | | links to speech balloons | 76 | | 6.1 | Distribution of the number of elements per text lines | 82 | | 6.2 | Division line detection for panel extraction | 85 | | 6.3 | Panel extraction process of Ho | 86 | | 6.4 | Panel extraction score details for each image of the eBDtheque dataset | 87 | | 6.5 | Sample of text extraction process of Arai s method | 89 | | 6.6 | Text line extraction score details for each image of the eBD
theque dataset | 92 | | 6.7 | Distribution of the number of letter per speech balloon | 95 | | 6.8 | Implicit balloon recovering by closing open panels | 96 | | 6.9 | Balloon extraction score details at object level for each image of the | | | | eBDtheque dataset | 98 | | 6.10 | Tail removal for balloon classification | 99 | | 6.11 | Correct classification examples for spiky and smooth classes 1 | 100 | | 0.12 | wrong classification examples which have been classified as smooth | | |------|--|-----| | | instead of wavy in the first row and wavy instead of smooth in | | | | | 101 | | 6.13 | Examples of difficult balloons for tail tip position and tail direction | | | | extractions | 102 | | 6.14 | Example of comic character region prediction | 103 | | 6.15 | Character extraction score details at object level for each image of the | | | | eBDtheque dataset | 104 | | 6.16 | Character spotting descriptor size validation | 105 | | 6.17 | Character extraction score details using Method K for each image of | | | | the eBDtheque dataset | 107 | | 6.18 | Character spotting result sample | 108 | | 6.19 | Percentage of panels, balloons, text lines and characters from the eBDtheq | ue | | | dataset that fit the proposed model | 109 | | 6.20 | Knowledge-driven extraction performance evolution | 111 | | C.1 | Categories of the images in the eBD
theque dataset $\ \ldots \ \ldots \ \ldots$ | 126 | | D.1 | Panel annotation | 128 | | D.2 | Speech balloon contour annotation | 129 | | D.3 | Position annotation of text lines | 130 | | D.4 | Comic character position annotation | 130 | | D.5 | Balloon contour styles | 132 | | D.6 | Annotation rendering in a browser | 133 | | D.7 | Distance to the mean position | 136 | | D.8 | Image used for ground truth quality assessment | 137 | ## Chapter 1 ### Introduction In this chapter we give the thesis context concerning its particular application to comic books. We remind the origin of comics in the different places in the world, the evolution from the creation to our digital word and its market place. Then the objectives and contributions of this thesis work are highlighted followed by the outlines of this manuscript. ### 1.1 Presentation Comic art is difficult to define due to its intersection of several artistic mediums: graphic art, art film and the literature. More precisely it is drawing, film, writing, all combined together to form a new art (the ninth art) with an extremely varied set of expressions [42]. Wikipedia¹ defines comics as a visual medium used to express ideas via images, often combined with text or visual information. Comics frequently take the form of juxtaposed sequences of panels of images. Often textual devices such as speech balloons, captions, and sound effects (onomatopoeia) indicate dialogue, narration or other information. Elements such as size and arrangement of panels and balloons control narrative pacing. Scott McCloud defines the comics as a juxtaposed pictorial and other images in deliberate sequence, intended to convey information and/or to produce an aesthetic response in the viewer [107]. There were early attempts to formalize the study of comics. Coulton Waugh attempted the first comprehensive history of American comics with *The Comics* in 1947 [179]. Will Eisner s *Comics and Sequential Art* in 1985 [46] and Scott McCloud s *Understanding comics: The Invisible Art* in 1993 [107]. The evolution of comic books The storytelling form we know today as comic book goes back tens of thousands of years to the painting of animals, hunters, and ¹http://en.wikipedia.org/wiki/Comics 2 INTRODUCTION shamans on caves walls for Christy Marx [24]. Nowadays, the history of comics must be described considering the three main centres of artistic creation. Europe where it is born, the United States to whom we owe its popularity and Asia that now represents the largest production of comics with Japan and Korea. Rodolphe Topffer, a Francophone Swiss artist, is considered as the inventor of comics in the early part of the 19th century (1799-1846). He sequentially illustrated stories, with text compartmentalized below images and his art were reprinted throughout Europe and the United States. Magazine-style comic books emerged as a mass medium in the US in the thirties. From the fifties, Japan started a massive production of Japanese comic book called manga under the influence of Osamu Tezuka (comic artist) [18]. Laurence Grove mentions that current trends in French comic are at the harbinger of more general phenomena: globalization of critical traditions, acceptance of popular culture, blurring of borders between subject areas, a corresponding move away from a strict author-based canon, and high reliance on new technologies [55]. Magali Boudissa confronts the theoretical approaches developed around the paper medium to the changes brought by the story on the computer, focusing mainly on the management of a new space (screen and not a paper sheet) and the hypermedia aspect of the digital world [100]. Market place In France, after a period of crisis suffered by the sector during the years 1980-1990, the editorial production has enjoyed unprecedented growth, the number of publication was constantly increasing as well as the diversify of genres (e.g. manga, graphic novels, comics) [23]. In 2012, the French market reached the figure of 5,327 books published among which 72% were new (the rest being divided between re-editions, book art and testing). The annual sales reached 320 million Euro. In 2013, we saw a first drop of 7.3% that reflects the stabilization of the market and probably the emergence of the digital comics [136]. Japan is leading the sequential art market in terms of sales, about \$5.5 billion in 2009 [163], and exportation volumes. In Europe and the Middle East the market is worth \$250 million [38]. In 2008, in the U.S. and Canada, the manga market was valued at \$175 million. Japanese culture is spread out all over the world through manga and anime. In 2014, the Japan Book Publishers Association published a handbook to take advantage of every opportunity to broaden and deepen overseas knowledge about the Japanese publishing world [30]. The US market is between Europe and Japan, whether single issues, collected editions or digital downloads, were \$870 million for 2013 (up from \$635 million for 2012) according to the Comichron², a comics research site that tracks industry figures [116]. Digital sales rose from \$70 million to \$90 million. ²http://www.comichron.com/ 1.2. Motivations 3 ### 1.2 Motivations Nowadays, comic books, or bandes dessinées in French, represent an important part of the cultural heritage of one or two past centuries in many countries as mentioned above. Unfortunately, they have not yet received the same level of attention as music, cinema or literature about their
adaptation to the digital format. Using information technologies with classic comics would facilitate the exploration of digital libraries [8], assist translators [13], provide a tool for augmented reading [70,149], speech playback for the visually impaired [14,131], story analysis etc. Nevertheless, the process of conversion and adaptation is not as simple as for films and novels. The comic differs from the latter in that the media itself is intimately linked to the medium. Indeed, a film can be decomposed into a series images plus a soundtrack. Just watching these images in the right order and at the right frame rate allow to reconstruct the initial content, regardless of the medium. In the same way a novel is ultimately a sequence of words. Reading these words in the correct order, on paper or on a screen does not change neither the content nor the artistic dimension of the work. However, it differs from the films on the form and the spatial positioning of the images. Where the latter pictures are all of equal size and each new image replaces the previous one, comic panels vary in size and spatial organisation in a limited space (paper sheet). These two features, added to the fact that the reader has the opportunity to see all the boxes of a same page, but not those of the next page, are tools at the service of the author to stage the story. Therefore, changing the medium, the reading surface format or the sequence order involves a modification of the staging that may in some cases be detrimental to the story. Moreover, space and time are closely related in comic art as demonstrated in the Cortsen's thesis that explores the complexity of spatio-temporality and also focus on how comics are structured in a network made up by individual elements and how they connect [32]. The challenge of digital comics is how to take advantage of the added value provided by these new media such as personal computers, mobile devices and the Internet. Gilles Ratier, secretary of the French association of comics, critics and journalists Association des Critiques et journalistes de Bande Dessinée (ACBD) stressed in the 2013 budget of the association that the meaning of digital cartoon remains unclear [165]. It is commonly used to describe a wide range of heterogeneous content, from scanned comics to turbo-media works (e.g. interactive animated stories) through webcomics³ (mainly self-published) and augmented reality to extend the art work through the use of the new technologies. Web platforms propose free reading service of heritage art such as The Digital Comic Museum⁴, the Cité internationale de la bande dessinée et de l'image⁵ in France and the Grand Comics Database⁶, an ongoing international project that aims to build a detailed comic book database that will be easy to use and understand, and also ³http://xkcd.com or http://phdcomics.com ⁴http://digitalcomicmuseum.com/ ⁵http://collections.citebd.org/ ⁶http://www.comics.org/ 4 INTRODUCTION easy for contributors to add information to it. In parallel, contemporary and independent artists self-publish their work on different platforms such as Webcomics.fr⁷, EspritBD⁸ and TRILLBENT⁹ that recently proposed a promising per month subscription model. Well known publishers are also starting to provide digital comic book on pay-what-you-want hubs for original comic book platforms such as Koomic¹⁰ and Panel Syndicate¹¹ from Spain, Izneo¹² and digiBiDi¹³ from France, DC Comics¹⁴ from Warner Bros, and comiXology¹⁵ recently acquired by Amazon.com. In fact, we are seeing a bifurcation in the digital comics market, between companies tied to large global media conglomerates, that maintain a fervent faith in the need for some kind of digital right management (DRM) control for their multi-billion dollar intellectual properties, and the smaller publishers more concerned with creator autonomy and exposure [94]. Others focus on innovative application for mobile devices to provide new reading experience by proposing their own reading application for mobile devices, integrating their technology. For instance Marvel¹⁶ uses augmented reality and AveComics¹⁷ from a French company Aquafadas proposes special transition and zooming effects that improve the reading experience through screens. Other initiatives, such as Sequencity¹⁸, a project from the start-up company Actialuna in Paris, focus specifically on the ergonomics of the reading by transposing the bookstore experience into tablets (e.g. allowing rapid foliation and integrating communication systems with book sellers, able to provide personal recommendations). The connectivity to the Internet makes also possible to enrich comic books with additional information from the web, allowing the reader to get extra content about the events, the places or characters related to the story being read. These new uses generate technical needs related to several scientific issues when applied to large-scale processing. The International Digital Publishing Forum (IDPF) is currently working on a free and open e-book standard called EPUB 3 in order to make sequential art also benefit from the last advances of publishing technologies. EPUB 3 is a next-generation portable document format based on HTML5 and other Web Standards. As mentioned above, several services propose printed to digital format conversion for comic books, mainly to facilitate reading on mobile devices. However, the conversion process is both tedious because done by hand, and simplistic as it is too often ⁷http://www.webcomics.fr/ 8https://www.comixology.com/ 9http://thrillbent.com/ 10http://www.koomic.com/ 11http://panelsyndicate.com/ 12http://www.izneo.com/ 13http://www.digibidi.com/ 14http://www.dccomics.com/ 15http://www.comixology.com/ 16http://marvel.com/mobile/ 17http://www.avecomics.com/ 18https://www.sequencity.com/ reduced to the successive display of panel interspersed with user selected transitions. The ideal approach would be to understand the process used by authors to draw the paper-based comics and automatically transform it into a new form adapted to the medium in which the work is read (e.g. smartphone, web page, 3D book). This challenge is addressed by analysis of the digitalized comic books in order to extract the different components (e.g. panel, balloon, text, comic characters) and their relations (e.g. read before, said by, thought by, addressed to). Once this initial work is done, it is necessary to reconstruct the story by retrieving the initial order of the extracted elements and also the links between elements in order to keep the story coherent. This is the role of knowledge representation research field that address semantic understanding. The computer analysis of comic book images is particularly challenging because they are semi-structured document with mixed content. Comic documents are at the intersection between unstructured (e.g. teaching board [125], free-form document [40]) and complex background (e.g. advertising poster [26], real scene [47,121,180]) images which are nowadays active fields of research for the community. Being at the intersection of several fields of research increase the complexity of the problem. This is one of the reasons why the analysis of comics is a recent (in the document analysis history) and not solved field of research. ### 1.3 Objectives and contributions Comic books contain many heterogeneous elements that are difficult to process in once. Our objectives are to propose different approaches to retrieve all these elements in order to have a high level description of the comic book images. In this thesis we propose three approaches from supervised sequential approach to unsupervised method using domain knowledge. The first approach profits from the relations between elements to guide the retrieval process. For instance, the panels are first extracted then balloons containing text that are inside panels and finally comic character regions of interest are defined from the speech balloon tail indications. This approach is quite intuitive but suffers from error propagation issue between the different extraction steps. The second approach consists in making the extraction independent from each other, in order to avoid error propagation issue. The third proposition adds contextual information to the independent extractions. The context is retrieved by matching extracted element relations with a generic model of the domain knowledge. This last approach allows a semantic description of the images. For instance, text region that are detected inside balloon are inferred as being speech text and comic characters that are pointed by a tail as speaking characters. We have constructed the first publicly available dataset and ground truth of comic book images to evaluate our contributions together with giving to the community the opportunity to work on identical data in order to make comparable and reproducible research. The last approach detailed above and the dataset are the results of a collaboration with Clément Guérin, a Ph.D. student working on data mining applied 6 INTRODUCTION to comic book contents. To meet the above objectives, we have made the following contributions in this thesis: - 1) Panel extraction: Comic books are mixed content documents that require different techniques to extract different element. The first particularity of comics is the sequence of panels that we extract using connected component classification and topology analysis in sections 3.2 and 4.2 respectively. - 2) Balloon detection: Balloons or bubbles are key elements in comics, they link graphical and textual elements and are part of the comics style. They can have various shapes (e.g. oval, rectangular) and contours (e.g. smooth, wavy, spiky, absent). In this work we propose a method for closed balloon extraction and classification based on the analysis of the blob content (Section 4.4.1) and contour analysis (Section 4.4.2) respectively. A different approach for
open balloons has been developed, it is based on active contour model to extract open balloons from text line positions (Section 3.3.2). Also, a tail detection and description are proposed (Section 3.4). - 3) Text localization: Text can be of different nature in comics, there are sound effects (onomatopoeias), graphic text (illustration), speech text (dialogues) and narrative text (captions). Speech text represents the majority of the text present in comics, we propose an adaptive binarisation process from a Minimum Connected Component Thresholding followed by a text/graphic separation based on contrast ratio and then a text line grouping algorithm. Finally, an OCR system filters out non text regions (Section 4.3). - 4) Comic character detection: Unsupervised comic character extraction is a difficult task as soon as we aim to process heterogeneous comic styles in order to cover all the comic books. In this context, learning-based approaches can not handle such dimensionality induced by the difference of styles. We first propose to define the region of interest of the comic character locations according to the contextual elements (e.g. panel contents, speech balloon position, tail position and direction) in Section 3.5. Second, we go one step further by spotting all the comic character instances in the album given an example and assuming that it have been digitized under the same conditions (Section 4.5). - 5) Comics understanding: Enabling a computer to understand a comic strip is a really challenging task, especially because it is even hard for human sometimes (e.g. ambiguous reading order or speaker location). Putting comic domain knowledge in an ontology-based framework enables to interact between image processing and semantic information in order to progressively understand the content of a document (Chapter 5). - 6) Dataset and ground truth: The eBDtheque dataset is the first publicly available 19 dataset and ground truth of comic book images. Such dataset is im- ¹⁹Dataset website: http://ebdtheque.univ-lr.fr 1.4. Outlines 7 portant for the community to make comparable, reproductive and growing research. The dataset consist in a mixture comic images coming from different albums with the goal of being as representative as possible of the comics diversity. The ground truth contains the spatial position of panels, balloons, text lines, comic characters and their associated semantic annotations. Also, bibliographic information are given for each image. This work is presented Chapter 6.1. ### 1.4 Outlines The rest of the thesis is organized as follows: - Chapter 2 presents a detailed review of the state-of-the-art methods for the analysis of comic images. This chapter details several image processing methods in the four first subsections and then we review the holistic understanding systems that have been applied to document analysis so far. The last section review the more advanced services related to comics that are available on the market. - Chapter 3 introduces a sequential comic book image analysis approach. The sequence starts by extracting panel and text using connected-component labelling and clustering. Then balloons are segmented from text locations followed by a tail position and direction detection on the balloon contour. The tail is used to define the region of interest for comic characters inside the panel regions. - Chapter 4 addresses independent information extraction assuming no interaction between the extractions unlike Chapter 3. Different approaches are presented for panel, balloon, text and comic character extractions. Balloon type classification and text recognition are also discussed here. - Chapter 5 presents a system that combines low and high level processing to build a scalable system of comics image understanding and enable a semantic description of the extracted elements. - Chapter 6 presents the dataset and its associated ground truth, the metrics and an evaluation of the three proposed approaches. This dataset consists in a mixture images coming from different albums with the goal of being as representative as possible of the comics diversity. We also detail its indexation structure based on a Scalable Vector Graphics (SVG) format. - Chapter 7 concludes the thesis and defines the future directions of comic book document analysis. 8 INTRODUCTION ## Chapter 2 ### State-of-the-art In this chapter we introduce the document image analysis principles and give an overview of the comics image analysis, holistic understanding of documents and the state-of-the-art of the applications related to comics in the society. ### 2.1 Document image analysis Document image analysis is a sub-domain of computer vision systems that includes methods for acquiring, processing, analysing and understanding images in order to produce numerical or symbolic information. The organization of a document analysis system is highly application-dependent. Many functions are specific to the application. However, there are typical functions which are found in many computer vision systems. - **Document creation** The first time a document containing a information for humans is transferred to a physical support (e.g. paper sheet, tracing paper, carbon paper, transparent sheet). This operation can be performed using various techniques and tools such as plume, pencil, pen, brush, stamp or machine-printed. - Image acquisition A digital image produced by the sensors of various devices (e.g. scanner, camera, web-cam) from the physical document. The digital image is an ordered set of pixels with a set of associated colour values from a given colour space. - **Pre-processing** Before a document analysis method can be applied to digitalised image in order to extract some specific piece of information, it is usually necessary to process the image in order to assure that it satisfies certain assumptions implied by the method and its application domain (e.g. noise removal, contrast enhancement, segmentation) [10,99,127]. Figure 2.1: Application domains of graphics recognition [72]. - Feature extraction Feature extraction involves reducing the amount of data accurately. Image features are from different levels depending on their distance to pixel information (low level) and human understanding (high level). Low level feature such as line, corner, edges and blobs are computed directly from the spatial organisation of pixels [45]. However, high level information are usually computed from a global view of the image to extract texture and shape for example. - **Detection/classification** At some point in the processing, decisions are made about which images, point of interests or regions are relevant for further processing. - **High-level processing** Integration of domain knowledge and making the final decision required for the application. This operation may require a user interaction that is sometimes taken into account for future automatic decisions. The content of a document is generally divided into textual and graphical information. This corresponds to two active research fields, the first one, text recognition aims to convert the text into a character-encoding scheme such as ASCII. The second one, graphics or symbol recognition, focuses on the recovery of graphical information in documents. Graphics consist of spatial arrangements of symbols; examples include engineering drawings, maps, architectural drawings, music scores, formulas, tables, charts and some parts of the comic book image content (Figure 2.1). Beside its content, a document is usually structured according to its intend of use. Tang mentioned in 1996 "A document has two structures: geometric (layout) structure and logical structure. Extraction of the geometric structure from a document refers to document analysis; mapping the geometric structure into logical structure deals with document understanding" [169]. Knowing the structure of the document being processed is always an helpful information that is related to domain knowledge information [15, 31]. Layout analysis consists in segmenting the image into several geometrical blocks that contain the same type of information: text, graphics, table, image, drawing etc. Then logical information can be retrieved using domain knowledge and the spatial position of the elements (e.g. header and title on the top, page number on the bottom-right corner, reading order). Layout analysis is not trivial for mixed content documents such as advertisements, posters and comic books. Those documents use non standard text fonts, sizes and orientations mixed with graphics, images and logos. Comic book images are composed of text and graphics that can be decomposed as drawings and line drawings. The diversity of text that can be found in comic book images is large. From speech text which are mostly handwritten to sound effects that are sometimes close to drawing. Some of the graphics can be assimilated to symbols if we talk about the panels or balloons which have a sort of conventional representation among most of the comic albums. However, drawings contained in the panel regions do not follow any convention (free art) but contain repeated elements (e.g. comic characters) throughout the album or collection. This is related to comics art that implies the drawing to be different from others in order to be easily distinguished and recognised by the public. Comic images are mixed content documents with complex background, especially in the region of panels, that concerns the above mentioned field of research. Document image analysis being application-dependent, we briefly detail the design process of a comic image: - Synopsis and scenario Imagine a story and its decomposition in a sequence of image (storyboard), view angles and format. - **Pencil drawing** First rough drawing of the scenario, at this stage, the layout of the page if defined without any details. - Inking The best pencil strokes are inked (permanent) for the final version.
- Flatting and colouring Here comes the colours (if any) into all stroke defined regions. Gradient, shadow and other effects are added according to the desired rendering. - Lettering and sound effects Addition of text in reserved areas and sound effects over the graphics at the end. The first challenge of comics book image analysis is to retrieve the layers that corresponds to each step of the comic image design process (e.g. stroke, text, colour). Processing each layer separately would greatly simplifies layout and content retrieval. Unfortunately, this decomposition is not obvious because in the final image, the elements are mixed with overlapping and transparency. Another important issue of document analysis is the noise information added from the creation of the physical document to its digital version. The main sources of noise are the manual operations variabilities, the degradation over time, the acquisition and storage techniques (Figure 2.2). Figure 2.2: Document degradation sources [186]. # 2.2 Comic book image analysis Comics images are mixed content documents combining textual and graphical information to create stories. Depending on the purpose, the document analysis techniques involved for comics image processing varies a lot between panel, balloon, text and comic character extractions. The contents of different nature are related to each other to produce a story. Treating each of the content separately has a limit that can be exceeded in a holistic understanding approach by reaching a higher level of semantic. ## 2.2.1 Panel extraction and layout analysis Panel extraction and ordering have been mainly studied for panel to panel reading. The need is increasing since the first generation of mobile devices with small screens in colour or B&W. In fact, people want to continue reading their favourite comics or manga on the way, without caring kilos of books. Printed comics require tedious work to be manually scanned and split into screen size parts small enough to avoid zooming and scrolling. Several techniques have been proposed to automatically extract panels as [67], assuming that panels are small enough elements to be comfortably read on mobile devices. They are based on white line cutting algorithm [20, 44, 91], recursive X-Y cut [60] or gradient [168]. Those methods do not consider empty area [67] and border free panels. These issues have been corrected by connected component approaches [6] but they are sensible to region that sometimes connect several panels and increase the detection error rate. Another approach based on growing region and morphological mathematics can remove such connecting elements but also remove information on the panel border [62]. After the region segmentation step, heuristic filtering is often applied to classify panel region according to the size ratio according to the page size, which depends on the page format [7,62]. More recently, new methods have shown interesting results for manga and European comics with different background colours. They are based on watershed [132], line segmentation using Canny operator and polygon detection [91], region of interest detection such as corners and line segments [152,172]. Panel retargeting have been addressed for manga by Matsui [105]. Page layout analysis has been studied to calculate the reading order of the panels. The page layout influences the reader at choosing pathway [29], nevertheless few studies [5, 56, 131] demonstrated the possibility of calculating such Z-path (left-to-right and down) or right-to-left and down (e.g. Arabic, Japanese) according to the arrangement of the panels [92, 95, 172]. ### 2.2.2 Balloon segmentation and tail detection Balloons are a graphic convention used most commonly in comic books, comic strips and cartoons to allow words (and much less often, pictures) to be understood as representing the speech or thoughts of a given character in the comic¹. Balloons are developed into a more-or-less oval shape, with a pointer or tail to indicate to which character they belong [51,140]. There are many specialized forms of balloons, either traditional or invented [103]. In comics content understanding, speech balloons present a lot of interest since they offer the links between the textual content and the comic characters providing information about the localization of the characters and the tone of speech. Apart from being crucial for document understanding, balloon detection is also beneficial in applications such as comic character detection [158], content re-targeting [105], translation assistance and reading order inference [56]. Few works about balloon extraction have been done until now and mainly closed speech balloon have been studied. Arai [7] proposed a blob detection method based on connected component detection with four filtering rules applied to manga analysis. The rules are based on blob minimum size, white pixel occurrence, inclusion of vertical straight lines and width to length ratio (Figure 2.3). Another connected component approach proposed by Ho [62] uses HSV colour space to make a first selection of bright blobs and then consider as balloons the blobs with a ratio between the text area and the blob bounding box higher than sixty percent. The analysis of open balloons with an open or implicit contour is quite different than the closed ones which are mainly based on blob analysis and have not been studied before. In most of the cases, including when contours are implicit, the location of text is generally a good clue to guess where the balloon is. The problem of speech balloon outline detection can therefore be posed as the fitting of a closed contour around text areas. The active contour [76] model is a deformable model, also known as snake, which tries to minimize an energy associated to the current contour ¹http://en.wikipedia.org/wiki/Speech_balloon **Figure 2.3:** Flow diagram of comic balloon detection using comic blob extraction method proposed by Arai [7]. as a sum of an internal and external energy. Kass [76] proposed the original energy functions able to shrink around an object contour, Xu [181] proposed the Gradient Vector Flow external force to attract snake from further and handle broken object edges and subjective contours. Another extension was proposed by Cohen [27] to make the curve behave like a balloon which is inflated by an additional force. Finally, active contour in a multi-resolution context have been studied to speed up the process on multi-resolution image and the multi-resolution model itself [88]. Balloons provide also an extra information about speech tone according to the different patterns which are along the contour of the balloon. The shape of the balloon does not provide a lot of information about how the text is spoken, it is more related to the style of the comics and the structure of the panel. Therefore, we focus on contour classification methods. In the literature, contour classification is strongly related to shape classification purposes [96, 155]. It has been applied for video [9, 81, 138], trademark retrieval [89], speech recognition [54]. Also, wavelet decomposition [170] and invariant moments [120]. From our knowledge, tail detection has not been studied before, we propose to analyse the contour patterns in order to locate the tail and then perform a local analysis to find its direction (Section 3.4). Balloon classification and tail detection are also important in a context of dialogues and emotions understanding [117]. ## 2.2.3 Text extraction and recognition Text localization in real scenes and video frames is an active research topic [73,75,145]. However, applying existing real scene text detection methods to comics would not be optimal to cope with all the different types of text that are combined in comic book documents (e.g. typewritten, handwritten, graphic sound). If we consider typewritten text, the most similar application to comics is car plate recognition because the text is in a salient and contrasted area with a complex background around the plate such as speech balloon for comics [4]. The documents that have attracted of lot a attention are newspaper, administrative documents, cheques, maps, floor plans and engineering drawings. Nevertheless, text localization in comic images opens up several interesting applications such as image compression [153], OCR training and also translation, speech synthesis and re-targeting to different mobile reading devices [105]. Comics differ from classical documents in that they comprise complex backgrounds of a graphical nature. Furthermore, they belong to the class of non-structured documents meaning there is no regular structure allowing to extract easily the layout and to predict the location of the text. Comics being unstructured graphical documents, combine the difficulties of both domains, making the task of text localization especially challenging. Text localization in complex images has been previously studied in scene images [47,112,121,177,180], video sequences [79,147] and digital-born images (Web and email) [74]. Text localization in unstructured documents has been studied for teaching boards and slide show presentation [122,125,174]. However, text localization in documents which are both unstructured and have complex background has received relatively little attention [26]. Few works concern text extraction in comics, they all rely on speech balloon regions. Bottom-up approaches use connected component which often relies on the segmentation step [132]. Su [153] uses Sliding Concentric Windows as text/graphic separation and then apply mathematical morphology and a Support Vector Machine (SVM) classifier to classify text from non-text components. Li [93] proposed unsupervised speech text localization for comics that trains a Bayesian classifier on aligned connected component and then detect the rest of the text using the classifier for text/non text separation. Top-down
approaches starting from balloons (white blobs) detection followed by mathematical morphology operations have been proposed by Arai [7], Yamada [184] and Sundaresan [161]. From our knowledge, there are no published work concerning graphic sounds (onomatopoeia) and illustrative text extraction. Text recognition applied to comics is really challenging because it includes most of the difficulties from text recognition in document analysis domain if we consider all the type of text that composed the comics. From typewritten to handwritten and freeform text in uniform to complex background including image noise, text deformation and overlapping. Nevertheless, Ponsard [132] solved a sub part of the problem by focusing on speech text of a single typewritten font and language for which an OCR system is trained for. #### 2.2.4 Comic character detection Human detection in computer vision field has been largely studied during the past decades, mainly based on greyscale image and gradients. colour information is rarely relevant for human detection because of clothing and skin colour difference. In videos, moving regions are often used as region of interest. Although, comics are often a reproduction of human life situations, it is a domain where we can not directly apply human detection based methods. The main difference is that comic characters (e.g. protagonist, hero) are hand drawn and therefore more variant in terms of deformation, shape and appearance than real life humans (Figure 2.4). In coloured comics, the colour information gives the identity of characters and plays a main role for character spotting with speech balloon positions. The simplistic character design allows for easy identification and representation and goes along with how human process visual information [2,28,110]. This is a big difference compared to natural images and human detection, since comics are designed in a way that the information (e.g where are the comic characters, who is talking, where is it going) can be quickly found. **Figure 2.4:** Examples of comics character postures. This example shows deformation, pose, rotation, translation and occlusion variations. Image credits: [133]. Recent studies have been published for partial manga copy detection [157], mainly based on shape information because of the absence of colour information. This work has been extended to Manga copyright infringement protection [156,159] using Maximally Stable Extremal Regions (MSER) [104] or faces [175] for region detection and Histogram of Oriented Gradients (HOG) [37] as region descriptor. A recent study discuss the local feature extraction and the approximate nearest neighbour (ANN) search [69]. This work shows good results for manga part retrieval which is a subset of the whole comics world. Coloured comics may be compared to cartoon images sequence, for which a first work based on HOG, SVM and colour attributes has been published in 2012 [78]. Preliminary work about cartoon and comics faces recognition have been carried out by Kohei [167] and Cheung [21]. More recently, graph theory has been used to find redundant colour structure in order to automatically localize the most frequent colour group apparition and label them as main characters [63]. The thesis of Ta [166] (section 1.1 and 1.2) gives a good overview about stroke-based image analysis similar to comics, it defines the issues of poor information, occlusion, deformation, inter-class and intra-class variations, scale, spatial and/or temporal relations and structured data. Ta [166] also mentions that story board scene understanding still remains an open problem, few results are available in the literature about stroke images. Another work uses HOG descriptor with redundant information classification to also find the most frequent elements [160]. Both graph and descriptor based methods need an image preprocessing step to remove irrelevant redundant elements such as text and speech balloons. Other interesting approaches try to automatize comic generation [171,178] using image cartoonification and script analysis. # 2.3 Holistic understanding One of the original goals of image or graphical document analysis was to fully understand the content of any image [85]. This requires solving several sub-tasks simultaneously, for instance region detection, labelling of meaningful regions and semantic understanding using layout analysis. In the past, researchers have developed classifiers for tackling each of these sub-tasks independently [102]. However, these sub-tasks can help each other. For instance, in a comics page, if we know the panel positions, then we can make a better guess at the location of the comics characters (they are usually inside the panels). However, it is not easy to combine different related sub-tasks together. Previous works concern real scene image analysis [12], retrieval [143] and understanding [50, 90], medical image annotation using description logic and inference engine [65], object-based image retrieval [114, 142] (between keyword-based and query-by-example) and image interpretation [66,124] that mentions the importance of using topological information, distances, directional relative position and much complex relations such as between and surround and among. Also, Geographic Object-Based Image Analysis (GEOBIA) [12] makes extensive use of ontologies to interpret maps. Recently, comics book images have been also considered. An ontology of comics has been proposed from a philosophical approach [113], a semantic annotation tool [61] makes use of previous knowledge and consistency information to suggest new knowledge to the user in a interactive way. Spatial inferences have been used to infer the comic books reading order, for panel in the page and balloon in the panel [56]. In [143], they highlight the benefit of using contextual information of simple object to build more complex ones. # 2.4 Existing applications Comic books are a graphic art form combining text and images to tell a story. Comics are now used in a wide variety of styles, not only on paper (e.g., magazines, newspapers, TV show) but also as electronic content (smartphone apps, e-books, websites). Comics are one of the most popular and familiar forms of graphic content. People read comics easily and learn many things, so even children can learn about cultures and trends, among other things, through comics even unconsciously. From this background, we can divide comic-based computer systems into two categories. One type would be using comics to represent complex information such as online communication in a form of comics [82] and generating video or story log summaries [3,146,173] (computer graphics domain). Also, it is possible to listen to manga [148] which have been recorded by people reading the story or to use mobile app for automatic translation [16,17] (requires user text selection). These systems are useful to add value to the content while making it more funny and interesting. The other category concerns the comic design by enabling novices to create comics interactively using a computer for augmenting an individual user s memory [154], turning photo albums into a comic [25,129], making comic-like video [137], making collaborative comics [97] and exchanging rich message [141]. ## 2.5 Conclusion Some of the challenges of comics image analysis can be highlighted from the above state-of-the-art reviews. First, comics image suffer from noise as any other document image processing. It comes from hardware processes (e.g. drawing techniques, printing and digitization) and software (e.g. image compression). So efficiently handling noise is crucial for image analysis and understanding. Knowing the design process of the comics creation helps for image denoising. Second, according to the results of the reviewed methods, we can order them by level of difficulty, from the simplest to the hardest: panel, balloon, text, comic character and holistic understanding of an image or album. Third, most of the works in the literature use different copyrighted images which can not be shared publicly. Moreover, the authors usually do not share their code. This is a key issue for researchers which can not share, reproduce and compare results on identical data in a collaborative way. This is one of the reasons that retains comics analysis to progress as fast as other field of research of document analysis. In the next chapter, we are going to present a sequential content extraction approach that profits from the relations between elements to guide the retrieval process. We first apply panel and text region extraction followed by speech balloon and tail segmentation. Then, speech balloon tail indications are used to compute a comic character region of interest according to the spatial organisation of previously extracted elements in each panel. # Chapter 3 # Sequential information extraction This chapter presents a sequential information extraction approach for comic book content retrieval. The sequence of extraction starts from elementary elements such as panel and text that initiate further processing. Once the text regions are discovered, we use them as seeds to search for balloons and then we analyse the balloon contours to detect the tails. From the tail position and location, comic character regions are computed according to previously extracted element positions. ## 3.1 Introduction In comics art, the page structure depends on the author style, this is why so many different structures and drawing types exist. It is unavoidable because it gives an unique graphical identity to the comics and contributes to attract the curiosity of the readers. Despite the differences of style, the comics drawings follow general use characteristic intrinsically to the design process [108]. For instance, the inking process requires to magnify the main strokes that defines regions which are then filled with flat colours (Section 2.1). We propose to rely
on these main strokes to automatically extract non coloured image content (e.g. panel boundary, text, speech balloon background) using a connected-component labelling approach. Then, the analysis of speech balloon contour allows to detect the tail precisely and its direction is used to compute the regions of interest where comic characters are supposed to be. In this section, all the processes are related to each other, for instance, the text extraction output is the input of the balloon extraction process and so on. ## 3.2 Panel and text This section proposes a method to automatically extract the panels and text regions contained in comics pages. This method is not limited to text which is included into speech balloon such as most of the work in the literature. Here we consider all the text regions of the image using connected-component labelling approach and k-means clustering. To be clustered, the connected components have to be extracted from the image first. A commonly used method is to segment the original image pixels into two categories called foreground and background. The foreground category corresponds to the set of pixels of interest, here the pixels of the panel border strokes. The background includes other pixels. This is usually performed using binary segmentation techniques which assign each pixel to one of the two categories. From the foreground pixels, a structural analysis (connected-component labelling) allows us to group connected pixels into components according to their connectivity. Connected component approaches are commonly used for stroke-based document analysis, there are also simple and computationally efficient. Once extracted, their can be clustered according to different features (e.g. size, shape ,colour, location). We use this approach to extract panels and text which can be easily differentiated using size and topological information. The process can be summarize as below: - 1. Image segmentation - 2. Connected-component extraction - 3. Connected-component clustering - 4. Candidate regions pruning #### Image segmentation The first step consists in a colour to grey level (3 to 1 channel) conversion. Several methods exits for such conversion, combining the three channels of the red, green, blue (RGB) colour space with different preponderation as given in [134] or using one channel from the Hue Saturation Lightness (HSL) or Value (HSV) representation of the RGB colour space. Here we use the lightness channel because the panel border strokes and text are usually darker than other element in the image, including the background. Then, a global binary segmentation (Appendix A.1.4) is applied with a threshold determined dynamically (Figure 3.1a). The threshold is computed from the median value of the border page pixels where pixels with a value lower than the median value are considered as part of the foreground (we are interested in black strokes). We assume that the border pixels of the page are representative of the page background (depending on the digitization process). If the median value is closer to black than white grey level, then, image inversion is applied and we redo the complete process in order to always get a white background at the end of this step. The binary conversion step is very important for the rest of the method because the background part will not be considered for further processing. #### Connected-component extraction The connected-component algorithm (Appendix B.1) is applied on the binary image and the bounding box of each black component is computed to facilitate subsequent processing (Figure 3.1b). We do not consider white connected-component here because we assume that panel border and text elements are darker than other elements in the page (segmented as black region). #### Clustering By looking at the figure 3.1b, we can clearly see that the bounding boxes of the panel are bigger than the others. Also, they include more regions than others. Classifying those regions according to their size allows us to classify panel and text region at the same time while ignoring noise information. Knowing the number of cluster facilitate the clustering, here we set the number of clusters k=3 according to the domain knowledge of comics. They aim to reflect the panel (the highest), the text (medium height) and the noise (few pixels height) as shown on figure 3.2. One of the most popular clustering algorithm is k-means clustering method (Appendix A.1.5). This clustering is performed dynamically on each image which makes this method parameter-free (for a given number of clusters) and invariant to page format and resolution. This method assumes that the image is highly contrasted and contains a high disparity between stroke sizes otherwise the binary segmentation or the clustering process may fail. ## Panel pruning The results from the clustering operation can be pruned using domain knowledge. First, a panel is rarely included in another so we take out components which are included in other regions of the panel cluster. Given the set of component bounding boxes from the panel cluster $R = R_1 R_2 R_n$, we filter out panel candidates that do not verify this relation $R_i R_j j i = j$ (Figure 3.3a and 3.3b). Concerning the text cluster, we clearly see in figure 3.1b that the spatial organisation is a characteristic of text regions (regardless of the language). We group text candidates into text lines according to alignment and ignore text candidate that can not be part of any text line. #### Letter to text line The gap between text component (e.g. letter or attached letters, word) and text lines can vary significantly. In fact, handwriting generates a lot of artefacts such as alignment variations, mergers between letters and text lines. We propose a simple Figure 3.1: Panel extraction process. Image credits: [35]. 3.2. Panel and text 23 **Figure 3.2:** Descendent histogram of the bounding boxes in figure 3.1b. Vertical black lines represent an example of three cluster limits labelled as "panel", "text" and "noise". Note that the lowest part of the "panel" cluster do not correspond to panel regions, we present how we pruned them in the next paragraph. Figure 3.3: Topological pruning of panel bounding box extraction. method that handles the two first aforementioned artefacts considering only the height of the connected component. We first search for the first letter (connected component) of each text line. A letter is considered first if it is positioned on the left, on the same horizontal line and if there is no intersection found with any other letters at a distance equal to the letter height. Then the other letters on the right are added by checking their relative horizontal and vertical positions. For this purpose, we defined two conditions that are auto-adaptive to each letter (Figure 3.4): - The horizontal inter-letter distance d should be smaller than the maximal height of the letters $(d < max(h_1, h_2))$; - The vertical alignment is considered as correct if the vertical coordinate of the centre of the next letter c_2 passes through the first letter $(y_{min}(letter_1) > c_{2y})$ and $y_{max}(letter_1) > c_{2y})$; The principle is similar to the one presented in [26] but adapted to take into **Figure 3.4:** Text component horizontal and vertical alignments. The two rectangles represent the bounding boxes and c_1 and c_2 their centres. account the horizontal alignment of text lines. Our method does not consider the letter width as we never know how many letters correspond to the CC. This method can easily be used for vertical text (e.g. Japanese, Chinese, Korean) by switching horizontal and vertical measurements. #### Text line to paragraph We post-process the result of the text line detection to group text lines into text area (paragraph), according to two rules. First, we require that the candidate text lines to group have similar heights (or width in case of vertical text) and second that the inter-line distance is smaller than the average text line height of the potential paragraph region (Figure 3.5). ## 3.3 From text to balloon For comics content understanding, speech balloons are of significant interest since they offer the links between the textual content and the comic characters providing, in this way, information about the localization of the characters and the tone of speech. As mentioned Section 2.2.2, speech balloons are the more frequent type of balloon in comics and are highly related to speech text regions. In this section, we propose two approaches for balloon extraction based on text region location detection using the methods presented Section 3.2 or 4.3. The first method defined as balloon the smallest connected-component that contains several text-like regions. The second method groups text lines into paragraphs and initializes an active contour model (snake) on its outline. From the initial position, the snake is pushed away from the text and attracted by surrounding edges at the same time in order to stick to any potential balloon stroke close by. The main difference with the first approach is its ability to detect implicit or partially drawn balloons as well as the closed ones. **Figure 3.5:** Illustration of the text line to text paragraph conversion from left to right for vertical and horizontal text. Image credits: [35,68] ### 3.3.1 Regular balloon extraction Regular balloon are defined as closed balloon with a completely drawn contour unlike implicit contour discussed in the next Section 3.3.2. Closed balloon are easily extractable using blob detection method similarly to the panel and text extraction presented above. The main difference lies in their dominant colour which is generally white and implies to extract white connected-components instead of black ones as for panels and text. One particularity of text inside balloons is its vertical and/or horizontal alignment in the balloon (Figure 3.6). We propose to use this
characteristic to compute a confidence value to each connected-component that includes one or more text regions. **Figure 3.6:** Example of text positions in speech balloons. Image credits [35, 68, 106]. #### Blob extraction A typical "closed" balloon is surrounded by a black stroke that defined a white region (blob) inside it, with holes created by the presence of text letters. We propose to make a binary segmentation of the comics image and then use connected-component labelling method to extract white blobs (Figure 3.7). Closed balloons are usually surrounded by a black stroke with no difference from one to another in a given image. We use a global binary segmentation method to separate the page background from its content (black strokes). Here, we do not use a local segmentation approach because it has more chances to split the balloon border and over-segment them. **Figure 3.7:** Balloon extraction process. Original image, binary segmentation, contour detection (connected components) and result mask from left to right. Image credits: [115]. #### Balloon extraction For each extracted blob that includes a text paragraph (Section 3.2), we compute the difference of alignment on the horizontal d_x and the vertical d_y axis between the balloon barycentre c_1 and the text paragraph barycentre c_2 (Figure 3.8). We use the difference of alignment as a confidence value $C_{balloon}$ for balloon and non balloon classification (Chapter 6). **Figure 3.8:** Vertical d_y and horizontal d_x alignment differences between balloon barycentre c_1 and text region barycentre c_2 . Both differences d_x and d_y are normalized between zero and one as a percentage of the balloon width B_{width} and height B_{height} respectively. The average of the vertical and horizontal alignments gives a confidence value for each balloon candidate (Formula 3.1). $$C_{balloon} = 1 - \frac{1}{2} * \left(\frac{d_x}{B_{width}} + \frac{d_y}{B_{height}} \right)$$ (3.1) If the sum of differences of alignment is higher than the balloon size $(d_x > B_{width})$ and $d_y > B_{height}$ then $C_{balloon}$ becomes negative which is considered as $C_{balloon} = 0$. ### 3.3.2 Implicit balloon extraction Balloon contour is not always completely drawn, it may be implied by contrast difference or other surrounding elements (Figure 3.9c). In most of the cases, the location of text is a good clue to guess where the speech balloons are. The problem of speech balloon outline detection can therefore be posed as the fitting of a closed contour around text areas, with the distinctiveness that the outline might not be explicitly defined in the image. For the examples given in Figure 3.9, this would be a smooth contour with relatively constant curvature (Figure 3.9a), an irregular one with high local curvature (Figure 3.9b), and an implicit one with missing parts (Figure 3.9c). **Figure 3.9:** Example of speech balloons with different contour types. Image credits [35]. Observing the heterogeneity of balloons, and considering the difficulty to manage open or implicit balloons, it appears necessary to use a dynamic and adaptive outline detection algorithm. Active contours appear to be suitable to the problem. The active contour framework was developed for delineating an object outline in an image. The algorithm attempts to minimize the energy associated to the current contour, defined as the sum of an internal and an external energy term (Section A.1.3). In this section we propose two adaptations of the active contour theory to the domain of comic balloon detection. Specifically, we handle the case of balloons with missing parts or implicit contours, while we adopt a two-step approach to fit irregular outline types such as peak and cloud type balloons. To achieve this, we propose new energy terms making use of domain knowledge. We adapt the active contour framework to the domain of comics to detect speech balloons given a prior detection of text regions, introducing new energy terms based on domain knowledge about the relationship between text and balloons. For the discussion below, we assume that text has been already detected in the image (Section 3.2 and 4.3). The introduction of statistical shape knowledge has already been studied in the literature [33] but can not be applied here because of the lack of knowledge about the contour shape to detect. Hence we introduce a new energy term, denoted E_{text} (see equation 3.2) that conveys information about the relative placement of the balloon outline and the enclosed text. $$E = E_{int} + E_{ext} + E_{text} \tag{3.2}$$ #### External energy We consider edges as features of interest because we expect the speech balloon to be delimited by strong edges, at least partially. Here we perform edge detection using the well known Sobel operator (Figure 3.10). The original Kass [76] external energy (Equation A.2) is appropriate for natural scene images with smooth gradients but not for stroke-based images such as comics that comprise uniform coloured regions with strong edges. In our case, we require that edges attract the snake from relatively far away (distances where the original edge gradient has already dropped to zero). The method of Xu [181] would be appropriate here, although we have decided to use the equivalent distance transform of the edge image instead for computational efficiency reasons. We therefore define the external energy function as: $$E_{ext} = \gamma \min A(i \ j) = \gamma \min \overline{(x_i - x_j)^2 + (y_i - y_j)^2}$$ (3.3) where E_{ext} is the minimum Euclidean distance (A) between a point i and the nearest edge point j, γ is a weighting parameter. Since it is not desirable for edges corresponding to text to attract the snake, any edges that fall within the text regions are removed before computing the distance transform and do not contribute to the external energy. ### Internal energy We use the original definition of the internal energy (see equation A.1) which can by decomposed in two energy terms: $E_{cont} = \mathbf{v}(s)^2$ and $E_{curv} = \mathbf{v}(s)^2$. The energy E_{cont} forces the contour to be continuous by keeping points at equal distance, spreading them equally along the snake according to the average inter-point distance of the contour. It becomes small when the distance between consecutive points is close to the average, see equation 3.4. **Figure 3.10:** Example of original image (top left) and its corresponding non-text edge detection (top right), E_{ext} energy (bottom-left) and E_{text} energy (bottom-right). In the bottom part, white corresponds to high energy. Image credits: [35]. $$E_{cont} = \alpha \left| \bar{d} - \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2} \right|$$ (3.4) where \bar{d} is the average distance between two consecutive points i and j of the snake and α is a weighting parameter. The energy E_{curv} enforces smoothness and avoids oscillations of the snake by penalizing high contour curvatures (minimizing the second derivative). It becomes small when the angle between three points is close to zero, see equation 3.5. $$E_{curv} = \beta \left((x_{i-1} - 2x_i + x_{i+1})^2 + (y_{i-1} - 2y_i + y_{i+1})^2 \right)$$ (3.5) where i is a point of the snake and β a weighting parameter. ### Text energy The text energy E_{text} conveys domain specific knowledge about the relative locations of text areas and their associated balloon contours. It is necessary in this domain to consider the lack of explicit information in the cases of implicit balloons, where parts of the outline are missing. The E_{text} energy aims at pushing the snake outwards toward the most likely balloon localization, given the position of the text area. This energy term has two effects. First, it acts collaboratively to the external energy, by moving the snake towards non-text edges (hopefully corresponding to the balloon outline). Second, in the case of implied contours where no explicit edge exists (the external energy term is not informative), E_{text} assists the algorithm to converge to an approximate contour position based on prior knowledge on the expected localization given the corresponding text area. We define the text energy term at a localization i of the image as follows: $$E_{text} = \begin{cases} \kappa \frac{N}{\min_{j \in T} A(i,j)} & \text{if } A(i,j) > 0 \\ \kappa N & \text{else} \end{cases}$$ (3.6) where j is a pixel in the text area T, N is an experimentally defined constant expressing the expected distance in pixel between the text area and the corresponding balloon boundary and κ is a weighting parameter that controls the contribution of E_{text} with respect to the other energy terms in eq. 3.2. Note when i is on the border of T, the distance $A(i \ j)$ is equal zero and the energy becomes maximal as if it was inside T. #### Proposed method In this section we detail how to localize speech balloons using active contours based on the definitions given above. First we generate the static external energy map E_{ext} for the whole image and then for each text area we compute the E_{text} energy. The internal energy E_{int} is calculated for each point of the snake before each iteration. We iteratively examine each point of the snake in a clockwise fashion and move it within a neighbourhood region of size M in order to minimize equation 3.2. This operation is repeated until no point moves in one turn (Algorithm 1). We perform a first smooth-contour approximation of the balloon boundary (low resolution) and then we fit the contour better to the balloon shape (high resolution) using the same algorithm Active contour initialisation The active contour is initialized on the outline of the text paragraph region. This corresponds to the convex hull of all the text lines that are included in the balloon (Figure 3.11b). Note that the convex hull of the text area also corresponds to the E_{text} maximal value border
(Figure 3.10). The initial number of points impacts the way that the snake moves and the precision of the final detection. During the first low resolution localization step, we perform a spaced equipartition of the points (Figure 3.11c) to quickly localize the global shape avoiding unnecessary stops on image details. In the subsequent high resolution fitting stage, we add more intermediate points to fit the exact shape more precisely. Low resolution contour localization Following a two stage process, we first aim to obtain a rough localization of the balloons by fitting a smooth contour using a few contour points during initialization. The idea is to progressively push the snake away from the text area and towards the balloon boundary giving an increased weight ## Algorithm 1 Open balloon detection loop ``` compute E_{ext} energy for each text area do compute E_{text} energy active contour initialization stop = False while stop = False do n = 0 for each points of the snake do examine neighbourhood position energies if one position reduce the current energy then move point to this position n = n + 1 end if end for if n = 0 then stop = True end if end while end for ``` a) Group of text lines b) Text area convex hull c) Snake initialization Figure 3.11: Active contour initialization based on text region convex hull. Image credits: [35]. to both the E_{ext} and E_{text} energy terms. If the balloon has an explicit boundary then E_{ext} will attract the snake to it. If there is no explicit contour close enough to attract the snake then the E_{text} term will push the snake to the suggested position of the balloon contour. Also the internal energies are important at this stage to maintain a certain rigidity of the snake. At the end of this step, we obtain a preliminary localization of the speech balloons (Figure 3.12). **High resolution contour shape fitting** Figure 3.12 shows that the global shape of the top balloon has been detected although it is still far from a perfect fit **Figure 3.12:** Example of low resolution balloon contour detection (red line) for irregular closed (top) and smooth open (bottom) speech balloons. Image credits: [87,119]. because, as we can see on the bottom part of the balloon, the snake was not able to fit precisely balloon outline, for instance peaky and tail regions are not well segmented. To achieve a better fitting, we increase the resolution of the snake by adding new points between the current ones and by changing the weighting parameters of the energy function, and go through a second fitting process. At this stage, we relax the E_{curv} energy to make the snake to thinner parts of the boundary and we set E_{cont} strong enough to keep a regular inter-point distance all over the contour. Also, we reduce the E_{text} energy weight because at this step, the snake is already far from text and this term is not informative any more. This new configuration allows the snake to fit more precisely to the balloon contour as shown in Figure 3.13 (to compare with Figure 3.12). Figure 3.13: Examples of high resolution contour detection (red line) for closed (left) and open (right) balloons. # 3.4 From balloon to tail Speech balloons indicate dialogue using tails pointing at their respective speakers [140]. They are usually represented by a discontinuity on balloon contour (Figure 3.14). We propose to detect the tail position and direction based on the balloon contour analysis. We limit this study to the tail types that can be considered has an extension of the inside region (background) of the speech balloon namely types "comma", "zigzag" and "absent" in Figure 3.14, because they can all be extracted from the segmentation of the balloon background. Other types require a specific study from the speech balloon extraction that should consider the contour stroke and surrounding elements. Figure 3.14: Examples of type of speech balloon tails. From left to right: stroke, comma, circle, zigzag, absent. We propose a method to detect "comma", "zigzag" and "absent" (no tail) tail types. The tail can be decomposed into four elements: origin, path, tip and pointed direction. The contour of a speech balloon is mainly convex except in the region where the tail is connected to the balloon (origin) which produces the highest convexity defects. If the speech balloon has no tail, there is no particular convexity defect. A convexity defect is defined by a triangle from one segment of the balloon convex hull to the farthest point on the balloon contour (Figure 3.15). The set $F = \{f_0, f_1, ..., f_n\}$ represents farthest points from the corresponding hull segments $S = \{s_0, s_1, ..., s_n\}$ where n is the number of hull segments. We define the top two farthest points f_a and f_b corresponding to the two farthest points of the convex hull segments s_a and s_b , as the coordinates of the tail origin (Figure 3.15). We assume that the tail tip corresponds to one of the vertices $V = \{v_0, v_1, ... v_n\}$ of the convex hull (Figure 3.15), which is the case for most of the speech balloons except when the tail is partially surrounded by the balloon (in a recess). Such cases are not considered in this thesis and require a different approach. The optimal vertex is computed by comparing five features that corresponds to the Euclidean distances: - ds_a the distance to the segment s_a - ds_b the distance to the segment s_b - \bullet dc the distance to the centre of mass c of the balloon - df_a the distance to the tail origin f_a - df_b the distance to the tail origin f_b This can be formulated as: $$v* = argmax(max(dc + df_a + df_b) + min(ds_a + ds_b))$$ (3.7) where v* is the optimal vertex from the set of vertex V. In Figure 3.15, the optimal vertex is v_7 . **Figure 3.15:** Convex hull and convexity defects of a speech balloon (top part). Bottom-left figure represents the two biggest convexity defects that defines the tail origin f_a and f_b . Bottom-right figure represents the distances related to the vertex v_7 to illustrate the variables of Equation 3.7. In this case $ds_b = 0$ because v_7 coincides with an end of segment s_b (distance equal to zero). From our knowledge, all closed or implicit balloon extractors proposed so far, consider the inside balloon region and ignore the balloon contour (black stroke) region. This is acceptable for localising the tail on the balloon contour (angular position) but it is not accurate enough to detect the tail tip in the sense of human understanding. In fact, the tail tip is often located at the extremity of black stroke surrounding the inside balloon region (Figure 3.16). We propose to detect the external border line of the balloon contour in the region of the optimal convex hull vertex v* presented above and define its extremity as the tail tip position. Image pre-processing and contour detection are performed in the same way as presented Section 3.3.1. From all the detected contours, we select the contour O that has the closest point o_i from v* (Euclidean distance). Then we run through all the points of the sequence of points that defines the contour $O = \{o_0, o_1, ..., o_m\}$ and define as tail tip position o* the one at the first maximum Euclidean distance to the tail origin. The tail origin is a virtual point midway between f_a and f_b (Figure 3.17). The tail direction is given by the last part of the tail which corresponds to the vector $\overrightarrow{v*o*}$. Note that starting from v* is more accurate than the tail origin point because the last segment of the tail is oriented towards the speaker while the tail origin is just "getting out" of the balloon. We also propose to compute the confidence value of the tail position prediction C_{tail} , related to the mean of the depths d_a and d_b over the mean balloon size **Figure 3.16:** Tail tip detection differences considering the balloon border line or not. In each vignette, the green point represent the tail tip position detection by considering the balloon inside region only. The red point is the tail tip position considering also the border line. meanBalloonSize (Formula 3.8). The confidence value is minimal when the mean of the two convexity defects (used for tail position detection) is very small compare to the balloon sizes in the current image. It is maximal when equal or higher than the mean balloon size. $$C_{tail} = \frac{(d_a + d_b)/2}{meanBalloonSize}$$ (3.8) where d_a and d_b are the depth of the two biggest convexity defects in number of pixels (Figure 3.15) and meanBalloonSize is defined in equation 3.9. $$meanBalloonSize = \frac{\sum_{i=0}^{n} W_{b_i} + \sum_{i=0}^{n} H_{b_i}}{n*2}$$ (3.9) where W_{b_i} and H_{b_i} correspond to the width and the height of a speech balloon i and n the number of speech balloons in the image. The confidence value C_{tail} may be useful for further decision making processes. ## 3.5 From tail to comic character As we know which balloons are in which panel (total inclusion), we can estimate from the position and direction of the tail, which part of the panel may contain the speaking character. The tail orientation is quantized in eight cones of $\pi/4$ radius so we can consider that, in a rectangular-shaped panel (or its bounding box), the tail **Figure 3.17:** Tail tip position and direction detection. From left to right, the optimal vertex v* in green and the local contour detection in blue, the closest point to v*, o_i in red and its first stop at the maximal distance with the tail origin (dark green point) o*. The last vignette on the right hand side represents the tail direction vector $\overrightarrow{v*}$, $\overrightarrow{o*}$ by a white arrow. is either pointing towards a corner or towards a border of the panel. We define the ROI for the character as a squared region beside the speech balloon. The maximum width w_{max} and height h_{max} of the ROI are equal to the mean widths and
heights of all the balloons in the image (Equation 3.9). The position of the ROI around the speech balloon is defined by two opposite points of a square A_{xy} and B_{xy} according to formula 3.10 which is sometimes constrained by a panel border that is why the term min appears (Figure 3.18). $$A_{x} = v_{x}^{*} - min(Pi_{x} - v_{x}^{*}, w_{max}) *O_{x}$$ $$A_{y} = v_{y}^{*} - min(Pi_{y} - v_{y}^{*}, h_{max}) *O_{y}$$ $$B_{x} = [A_{x} + min(Pi_{x} - A_{x}, w_{max})] *O_{x}$$ $$B_{y} = [A_{y} + min(Pi_{y} - A_{y}, h_{max})] *O_{y}$$ (3.10) where v^* is the coordinates of the tail tip (Section 3.4), Pi the coordinates of one of the four corners of the panel bounding box $P = \{P0, P1, P2, P3\}$ and O a shift value. The shift value allows an horizontal and vertical translation of the ROI position relatively to the tail tip direction. For instance, if the tail direction is SE (South Est) the ROI will be shifted by 75% on the right and 75% to the bottom. The shift O is quantized in heigh values for horizontal and vertical axis. The panel's corner P_i is chosen between two opposite corners in order to always give a positive value in the computation of the ROI position (Table 3.1). **Table 3.1:** Values of the horizontal and vertical shifts and panel's corner selection according to the eight directions of the tail. | | N | NE | E | SE | S | SW | W | NW | |-------|-----|-------|------|------|-----|-------|------|-------| | O_x | 0.5 | 0.75 | 1.0 | 0.75 | 0.5 | -0.75 | -0.5 | 0.75 | | O_y | -1 | -0.75 | -0.5 | 0.75 | 1.0 | 0.75 | -0.5 | -0.75 | | Pi | P1 | P1 | P1 | P1 | Р3 | Р3 | Р3 | Р3 | 3.6. Conclusions 37 **Figure 3.18:** Illustration of a panel with four corners P0, P1, P2, P3 and the different ROI position and size that can be defined for each of the eight directions of the tail. ## 3.6 Conclusions In this section we have presented how to benefit from simple element to retrieve more complex ones in a comics image by following the relations between elements. This approach is similar to the reader's reading behaviour opening a new comic book for the first time: first looking for traditional elements such as the panels, text and speech balloons and then, reading their content and retrieving the links with the comic characters and other graphics in the panel. Despite the intuitiveness of this approach, the main drawback of this sequential approach is the dependency of the processes which propagates detection errors. The experiments, presented in Chapter 6, evaluate the processes proposed here. In the next chapter a non sequential approach will be presented in order to extract comics image content using independent processing and so, avoid error propagation which is the main drawback of applying several consecutive processing. # Chapter 4 # Independent information extraction In this chapter we propose an independent extraction of each element contained by comic book images. This content retrieval approach tries to fill the weaknesses of the sequential approach presented in the previous chapter. New approaches for extracting panels, text, balloons and comic characters are presented successively but they can be used in any order or in parallel as they are completely independent from each other. More domain knowledge are embedded in the low level processing in order to process each image in an autonomous way with a similar performance. # 4.1 Introduction Image content retrieval methods are useful for the community and the society when they can easily be applied on various type of images sharing similar properties independently from other pre or post processing. Another important aspect is to propose methods with a minimum number of parameters or at least that do not make the method too specific but generic in order to be usable for a maximum of applications. The first approach presented in Chapter 3 is very specific to images from comic books because each extraction of element requires one or several pre-processing (other element extractions). In this chapter we present several contributions to extract elements independently from each other. Each contribution is then easily reusable for other applications and comparable. The independence between the processing is also useful in a content of fully automated system to allow local optimisation without influencing the whole sequence and output. Independent panel, text and balloon extraction methods are proposed, additionally, text recognition and balloon classification complete the amount of information that are retrieved from the image content, towards a semantic description. The problem of comic character retrieval is simplified here as a character spotting giving an example as query for the reason presented Section 1.3. ### 4.2 Panel extraction The previous clustering-based method presented in Section 3.2 is particularly useful for simultaneous extractions, as illustrated panel and text while removing noise region at the same time. Nevertheless, the panel extraction can be improved if we focus on panel elements only. We propose to use a second characteristic of panels which is their topological relations with other elements in the image. Figure 3.1b shows that outermost or external contours actually corresponds to panels. We base this method on this criterion, considering the panels to be the outermost contours. This is especially true for general comics using gutter (white space) between panels. Making the outermost contour as panel can be seen as a binary classification method deriving from a more generic concept. The general concept would attribute a confidence value to each contour in the image, inversely promotional to their percentage of inclusion in other contours. Non included contour (outermost) would have the maximum confidence and fully included ones the lowest confidence in being a panel. Panel contours (border line) are usually dark and similar for all the panels of a comics page. Sometimes panel contours are implicit as shown Figure 4.1a (considered as a difficult case). In this case, the reader distinguishes them by comparing the difference of colour between the panel content and the page background. We use a global binary segmentation method (Appendix A.1.4) to separate the page background (expected to be clear) from its content (dark elements such as panel border lines), considered as foreground here (Figure 4.1b). An binary inversion should be performed when the image background is darker that the content of the panels. We do not use a local segmentation approach here because it has higher chances to split the panel border and over-segment its content. Then, a connected-component labelling algorithm (Appendix B.1) is used to extract outermost contours from the binary image, (Figure 4.1c). Note, we filter out contours below a minimum area relative to the image size minAreaFactor in order to avoid considering isolated elements (e.g text, logo, page number) as panel in a later stage (Figure 4.1d) Finally, the convex hull or the bounding box of the panel contours can be computed in order to recover from discontinuous contour detection (Figure 4.1e and 4.1f). In this example, some of the panel borders have low contrast compared to the page background which makes difficult their extraction. Such issue can be post processed using line detection and layout analysis. # 4.3 Text localisation and recognition In this section we present a method for automatic text localization in scanned comic books, an essential step towards an automatic comics understanding. Our first intention is to localize multi-oriented text regions, independently from script and language, and separate them from the graphical content (text/graphic separation). In document analysis systems, text recognition quality often relies on text localization. This is par- Figure 4.1: Panel extraction process. Image credits: [98]. ticularly the case for comics which have a complex background. We present how to take advantage of Optical Character Recognition systems (OCR) in order to improve text localisation. #### 4.3.1 Introduction In comic book documents, text is mixed with graphical content which produces a lot of false detections if we submit the whole image directly to an OCR system, usually coupled with a layer analysis pre-processing to avoid trying to recognize text in graphical region (e.g images, tables and formulas). The mixture of typewritten, handwritten-like and handwritten text makes the task particularly difficult for comics. Moreover, text presents a lot of variations (e.g. stroke, orientation, colour, size) that can cause many issues at both the localization and recognition levels. Text localization aims to provide text-only (or graphics-free) images to a text recognition system in order to improve its accuracy and reduce computing time. Knowing the positions of other elements in the image is a good clue for predicting text position because they are related to speech balloons (e.g. dialogue, thought), characters (e.g. graphic sound, illustration), panels (e.g. captions) or the page itself (e.g. page number, title, author name). This approach is discussed Chapter 5. Few works concern text extraction in comics analysis literature (Section 2.2.3) and most of them rely on speech balloon regions which make them dependent on other processing quality. Here we want to avoid such dependency between processes. From our knowledge, only Li [93] proposed an independent and unsupervised speech text localization. It is a two step analysis that first generates text lines using a set of very rigorous rules to test each pair of connected component and decide if they are candidate text regions or not. From the first-round generated text lines, the method automatically learns a font set which is propagated to all text lines in the second-round and filters out non font-matched candidate regions. The font set is generated from the distribution of heights and widths of the connected components
that compose the candidate text line (composed by multi-segment characters). The method is promising but there are nine rules in total that must be met to achieve text line extraction with several heuristics that are not discussed. The experiments have been performed on 1000 images from 10 countries (balanced) but they are unfortunately not publicly available to assess their diversity and the genericity of this approach. The genericity is always a challenge for document image analysis, especially because this field of research is highly application dependent (Section 2.1). Moreover, comic book images differ from classical documents in that they comprise complex backgrounds of a graphical nature. They belong to the class of non-structured documents meaning there is no regular structure present for the prediction of text locations and no layout analysis method applicable if we consider all the diversity of comics. Comics being unstructured graphical documents, combine the difficulties of both domains, making the task of text localization especially challenging. To solve the particular problems which are provoked by the combination of complex background and unstructured documents, we propose a new text localization method. The contributions come at different levels. First, an adapted binary segmentation method is presented followed by a text/graphic separation algorithm based on the local contrast and neighbourhood similarities and finally, text recognition is used to verify the presence of textual information in the result. # 4.3.2 Bi-level segmentation Segmentation is a crucial step in many text localization methods. Comic speech text is made of strokes, generally black on white, that we would like to isolate from the rest of the image content (background). A perfect text segmentation would result to individual text letters represented by single connected components (Appendix B.1). The complex background of comic documents complicates this step. Separating text from other elements in once is quite hard since we have no information about its position (independent approach) and it is similar to many other stroke in the image. Therefore, we propose first to separate bright from dark regions and then classify text and non text regions using size and alignment properties only. This approach is unsupervised and do not requires any training step. Bright/dark region separation can be done using a bi-level segmentation algorithm. Several approaches exist and their performance relies on the input data distribution. If the input data are composed by only black or white pixels, any methods will do the work but it is rarely the case. The best input would be a highly contrasted image where the features of interest are concentrated in one of the extrema. As we do not use the colour information, we convert the 3 channel colour image (RGB) into a single channel image (grev-level or grey-scale image). There are several manners to create a grey-scale image from a colour image. The first approach is to combine each pixel value from each colour channel with different weighting coefficients corresponding to the measured intensity perception of typical trichromat humans¹, in order to produce a single value per pixel. Another approach is to use only one channel but as the text we are interested in is not in red, green or blue (RGB colour space) it is irrelevant in our case. Nevertheless, RGB colour space can easily be converted to a different colour space such as HSV or HSL that encodes colours as Hue, Saturation, Value or Luminance. The luminance channel is particularly appropriate for bright and dark region separation [62]. Both colour layer combination and separation are experimented Section 6.4.3. From the grey-scale image, we determine the threshold value that will best divide the grey value distribution into two clusters. The ideal would be a cluster containing pixels from text regions (foreground) and another one with the rest of the content (background). In practise, the foreground cluster often contains text plus other similar grey value regions and the second one other pixels with a different grey values. Fixing a threshold value like Arai s method [7] works only for few comics type with a same text background intensity (Figure 4.2). This phenomenon is intrinsic to the nature of comics, as due to the design process, they contain textured areas and loosely connected strokes that give rise to merged components at different thresholds. This is intensified by the digitization and image compression process that add further noise to the page (Section 2.1). Instead of using a fixed threshold, we use the well known Otsu s threshold selection method that has been extensively use since decades for this purpose (Appendix A.1.4). Otsu s threshold is computed for each image and applied to the whole image assuming that the image has not been degraded locally. In case of such local degradation (e.g. holes, crossed text, partial erasure, highlighting, tearing paper, stain), a local threshold selection method should be used (Appendix A.1.4). As an alternative segmentation method, we also tried to extract text region using the Maximally Stable Extremal Region (MSER) algorithm [104]. This algorithm was better than the proposed method only for text region of type onomatopoeia but produced an excess of false detections as in general a lot of the graphical elements are equally stable as the text (flat regions). ¹http://en.wikipedia.org/wiki/Grayscale Figure 4.2: Different threshold selection methods applied on the luminance channel of several comics types. First row shows the original image of a selection of comic book parts. Second row shows the corresponding luminance channel of HSL colour space in a 8 bits grey-scale image. The third row represents the bi-level segmentation of the grey-scale image with a fixed threshold at 250 (as Arai [7]) and the fourth row shows the corresponding results using the automatic Otsu s threshold selection method. Image credits: [35,68,106,123]. ## 4.3.3 Text/graphics separation After the binary segmentation step we apply the connected-component (CC) labelling method (Appendix B.1) to extract the black strokes as many previous work in the literature (Section 2.2.3). At this stage, the extracted components may correspond to part of drawing, single letters or a sequence of letters if some are connected (Figure 4.3). The objective of this section is to separate the last two categories from the first one. Note that connected letters will not affect our results (if they are part of the same word) because the expected output is at text line level. Due to the wide variety of text usage in comic albums, text and graphics separa- # POULET! TROP **Figure 4.3:** Example of connection between connected components. On the left, a word with six well separated letters, on the right a word detected as two pairs of attached letters because of the handwriting variability and segmentation process. tion is not obvious, the method should be size, position, rotation, scale and contrast invariant. In addition, it should be robust to text-less pages which may appear randomly within an album. From all the components extracted by the CC algorithm, we select only the ones corresponding to potential textual elements based on contrast ratio measure. We compare the standard deviation of the pixel grey level distribution of each CC bounding boxes (Figure 4.4) with the contrast ratio of the page to make a low/high local contrast CC separation, similarly to [93] using the Mahalanobis distance. Mahalanobis distance measures how many standard deviation away a point is from the mean of the distribution [39, 101]. We call this distance d_m and assume a Gaussian distribution of the grey level pixels but other distribution are under study. The contrast ratio of the page is the absolute difference between the minimum and the maximum grey-levels found on the page. **Figure 4.4:** Example of mean (μ) and standard deviation (σ) values of two CC bounding box regions. For the letter "N", $\mu, \sigma = [167, 84]$ and for the eyebrow $\mu, \sigma = [110, 57]$. ## 4.3.4 Text line generation As already mentioned Section 3.2, the gap between text component (e.g. letter or attached letters, word) and text lines can vary significantly. Here we use the same method as presented in Section 3.2 to group text component into text lines considering only the text height (or width for vertical text). # 4.3.5 Text recognition Automatic text recognition has been studied for many years, today OCR systems are very efficient for standard fonts but not optimized for comics fonts which are mostly handwritten. The principal interest of text recognition is the ability of searching images by using keywords which opens up many applications (Section 2.2.3). Text recognition applied to comics is really challenging because it includes most of the difficulties from text recognition in document analysis domain if we consider all the type of text that composed the comics. The difficulties are due to typewritten, handwritten or free-form text in uniform or complex background including image noise, text deformation and overlapping (Figure 4.5). Note that the text is mainly written in upper case for Latin scripts in comics which reduce the complexity of recognition. Figure 4.5: Examples of text lines from comics images. Text recognition for comics requires an extensive work to be addressed properly, which is out of the scope of this thesis work. Even if standard OCR recognition rate is not yet acceptable yet for full-text based application in comics, they can help at separating text/non text regions. We pass each text line candidate through an OCR system to validate its content. The validation criterion is that the OCR recognize at least one alphabetical symbol within the candidate region, else it is rejected. The text line are composed by 12 characters in average which give
a good chances to OCR to recognize at least one of them (Section 6.1.1). ## 4.4 Balloon extraction and classification In this section we present a method for pixel level balloon extraction and for balloon classification. Balloon extraction does not require previous text extraction unlike the method presented Section 3.3.1 but uses a careful analysis of the region content (e.g. similarities, spacial organisation) to predict which are most likely balloon regions. Balloon contour and shape information differences are presented and a contour-based classification method is detailed for "smooth", "wavy" and "spiky" classes that may correspond to "dialogue", "thought" and "exclamation" in a higher level context (Chapter 5). ### 4.4.1 Balloon segmentation From the reviewed methods Section 2.2.2, we can see that the text position often help in the localization and then segmentation of speech balloons. The issue in relying on text extraction is that we become dependent of its performance. The text extraction in comics images is still a challenging problem (Section 4.3), it is a very hard assumption to assume the text extraction will work perfectly. Instead of relaying on the text detection we propose to keep both processes independent in order to avoid errors of propagation. In a similar way, Arai's method [7] does not use text position but connected component filtering based on heuristics (fixed thresholds for binary image segmentation, blob size, number of white pixels, number of contained straight lines and width to length ratio). We propose a more adaptive method in order to handle various comics styles (e.g. colour, B&W), image formats (e.g. A4, A5, portrait, landscape) and digitization variations (e.g. scanning device, camera capture). The use of fixed thresholds for the segmentation process such as [7], is a strong assumption about the image background nature. It only works for comics from the same style and digitized under the same light condition. We propose to relax the constraint by using Otsu's threshold selection method [126] to make a global binary segmentation of the grey-scale image. The binary segmentation creates a lot of small connected components on textured images, we prune it by removing the connected components that are classified as "noise" by the algorithm presented Section 3.2. We extract connected components from the binary image and analyse their parent-child relationship to make a first selection of candidate components and then analyse the spatial organisation of the set of children $CH = \{ch_1, ch_2, ..., ch_n\}$ to compute a confidence value for each parent $P = \{p_1, p_2, ..., p_m\}$ that serve as final filtering criterion (Figure 4.6). **Figure 4.6:** Balloon extraction process. Original image, binary segmentation, contour detection (connected components) and result mask from left to right. Image credits: [115]. We assume that a balloon has a minimum of children minNbChildren which are horizontally or vertically aligned and centred inside the balloon region (property of text). The percentage of alignment align is computed for each child ch_i considering $CHA(ch_i)$ the subset of children that are aligned to ch_i (Equation 4.1). $$align(ch_i) = \frac{|CHA(ch_i)|}{n} \tag{4.1}$$ where $|CHA(ch_i)|$ is the number of aligned children and n the total number of children. For instance, if we consider two children E and F, they are considered as aligned (vertically) if the following conditions are verified $centroidF_x \in [minE_x, maxE_x]$ and $centroidE_x \in [minF_x, maxF_x]$ where min_x and max_x are the left and right limits on the horizontal axis. The child F is also considered to be aligned (horizontally) to E by changing x to y which become the top and bottom bounding box limits. We use the difference of alignment between the balloon candidate and its children as a clue about its probability of being a real balloon in image. This is similar to the text dependent balloon extraction method presented Section 3.2. The difference is that here we have no idea about the nature of the children (not detected as text before). This independent balloon extraction method can be seen as an "intelligent" balloon extractor that embeds a part of the domain knowledge related to text (balloons are expected to contain text). The difference of alignment is computed for the horizontal (d_x) and the vertical (d_y) axis from the Euclidean distance between the parent and children hull centroids (Figure 4.7). Figure 4.7: Horizontal and vertical alignment measurement between the centroids of the balloon (dark cross) and the children hull (clear cross). The children hull is the grey region included in the balloon. Both differences d_x and d_y are normalized between zero and one as a percentage of the balloon (parent) width and height respectively. The average of the alignments, \overline{align} , d_x and d_y gives a confidence value for each candidate of P (Formula 4.2). $$C_{balloon} = \frac{1}{3} * \left(\overline{align} + d_x + d_y \right) \tag{4.2}$$ The confidence value is used for balloon and non balloon decision (Section 6.6). Tail detection is not treated as an independent extraction because it is part of balloons and never appears without being related to a regular or implicit balloon. Please refer to Section 3.4 for more detail about tail detection. #### 4.4.2 Balloon classification Speech balloon classification is a real challenge if we consider a lot of different comics styles. First, each author has his own representation of the speech sounds. Second, the reader interpretation is subjective (each balloon style is interpreted in comparison to the already read balloon styles). For those reasons, it is really hard to directly define the purpose (e.g. dialogue, thought and exclamation) of a speech balloon without knowing its context in the story. In fact, the context is defined by both graphic (e.g. other strokes, protagonists personality) and textual (e.g. vocabulary, punctuation) elements. For instance, Figure 4.8 shows six different speech balloon comics styles where we can note the difficulty to assign one class for each balloon without knowing others balloon shapes and reading the contained text. The input of the proposed method is a pixel-level balloon contour detection, such as proposed in Sections 3.3.1 and 4.4. The shape and the contour of a balloon contain different type of information. The shape (e.g. rectangle, square, circle, oval) does not provide a lot of information about how the text is spoken, it is more related to the style of the comics and the structure of the panel. However, the contour contains the speech tone information according to the different patterns which are along the boundary of the balloon. #### Shape/contour separation As introduced in Section 2.2.2, the discriminant information for speech balloon classification is not provided by the global shape but by the contour variations. First, we propose to represent the speech balloon as a time series (one dimensional signal over 360°) which corresponds to the distance in number of pixels between the balloon barycentre and the contour points. Second, we perform a shape/contour separation to be able to analyse only the contour variation. Note that the consideration or not of tail region has an impact on the final classification (Section 6.7). We approximate the global shape s by smoothing the original signal o using a sliding window of size M and subtracting the result from the original signal to preserve only the contour information c independently from the shape: c = o - s. The smoothed contour s is a centred local average of o (Formula 4.3). Examples are given Figure 4.9. $$s(o) = \frac{1}{M} * \int_{-M/2}^{+M/2} o$$ (4.3) **Figure 4.8:** Examples of speech balloons from 6 comics albums (rows) that represent 3 different expressions (columns). # Contour description Contour description encodes the contour variations relatively to the balloons size in order to be invariant to page format and definition. The level of variation can be computed from different features, the main difficulty Figure 4.9: Balloon detection, time series representation and shape/contour separation. Left column represents balloon detection with the barycentre (white star) and the starting point (top left half square). Middle column represents the distance between the barycentre and the balloon boundary over 360° (clockwise) where the original signal o is in blue and the smoothed signal s in red. Right column is the difference between s and o. is to be invariant to the comics drawing diversity. In this study, we describe the contour signal c by using a variance-based two dimensional descriptor, more precisely the standard deviation σ . The variance or the standard deviation have the advantage to be simple and generic at describing any data distribution by measuring the data dispersion which is what we need if we aim at measuring the difference of dispersion between the original and the smoothed contours. In order to be invariant to the image definition and scale, we normalize each feature of the descriptor by the original signal average \bar{o} (average radius). The first dimension aims to differentiate contours which have high variations ("spiky" type) from the others ("wavy" and "smooth" types). The second dimension aims to discriminate "wavy" and "smooth" types according to the standard deviation of the superior and inferior signal part from the average \bar{c} . For instance, if a contour has a higher standard deviation in the below signal part than the above signal part (according to the average \bar{c}) then the contour has more peaks in the direction of its barycentre than the opposite, which is not a characteristic of the "smooth" type but "wavy". The first feature f_1 consists in measuring the standard deviation σ_c of the contour signal c normalized by the original signal average \bar{o}
(Formula 4.4). $$f_1 = \frac{\sigma_c}{\bar{\rho}} \tag{4.4}$$ where f_1 is the feature one, σ_c the contour standard deviation normalized by \bar{o} the average of the signal o. In order to measure the second feature f_2 , we split the contour signal c in two signals c_{pos} and c_{neg} which correspond to the signal parts that are strictly above and below the average \bar{c} (Figure 4.10) and then we measure the standard deviation differences (Formula 4.5). $$f_2 = \frac{\sigma_{neg} - \sigma_{pos}}{\bar{\varrho}} \tag{4.5}$$ where f_2 is the feature two, σ_{pos} and σ_{neg} are the standard deviations of the signals c_{pos} and c_{neg} respectively. The difference is normalized by \bar{o} . **Figure 4.10:** Contour signal decomposition. Left part is the concerned speech balloon, middle part is its contour profile and right part is the positive and negative decomposition according to the contour average \bar{c} . Both signal have not the same length because we ignore values that are equal to the average value \bar{c} in order to not bias the standard deviation. #### Contour classification Contour classification is performed according to the selected contour descriptor (Section 4.4.2) by using a naive Bayesian Classifier [118]. This classifier has been chosen because it requires a small amount of training data. Let a label set $L = (l_1, l_2, l_3)$ represent the three contour classes "smooth", "wavy" and "spiky". Given a new unlabelled contour c described by its descriptor $D = (f_1, f_2)$, the naive Bayes approach assigns D to a class l_{MAP} as follow: $$l_{MAP} = \operatorname{argmax}_{l} P(l \ D) = \operatorname{argmax}_{l} \frac{P(l)P(D \ l)}{P(D)} = \operatorname{argmax}_{l} P(l)P(D \ l) \tag{4.6}$$ where P(l) is the *a priori* probability of class l and P(D | l) is the conditional probability of a given descriptor D to be in the class l. This conditional probability follows a Gaussian distribution for which we learn the parameters during the training step. # 4.5 Comic character spotting Human detection in computer vision field is an active field of research. Extending this to human-like drawings such as the main characters in comic book stories is not trivial. The detection of the main comic characters is an essential step towards a fully automatic comic book understanding. This section presents a colour-based approach for comic character spotting using content-based drawing retrieval and colour palette descriptor. In this section we detail how to localize comic characters in all pages of a given album. We aim at detecting the apparitions of a comic characters (non-rigid object) with a minimum of user interaction. This is a content based image retrieval problem where the result highly depends on the quality of the given example, that should be noise free (no background, target only). A close up view of comics drawings shows that the most invariant information between texture, shape and colour is the colour information. We believe that this feature is the only information which is invariant to scale, object deformation, translation and rotation transformations which are very frequent in comics. The typical drawback of using colour features is that they are sensitive to illumination and contrast variations. This is an important issue for natural images but not for hand drawings if they are drawn and digitized under the same conditions. For all those reasons we based our method on colour information only. Given a comic page, we first ask the user about the position of one object example and then we perform an exhaustive search in all the pages of the same album or collection. The proposed method can be summarized as follows (for a given comic book): - Compute and apply a reduced colour palette to all pages - Get the object colours from input query - Compute the query descriptor - Retrieve similar objects The retrieval (search) step can be extended to other albums from the same collection (similar comic characters). #### 4.5.1 Colour quantization Once the user has highlighted the query region, we reduce the number of colours of all the images of the album (including the query region) according to a colour palette P_c . Colour reduction or quantization generally involves two steps. The first step is to choose a proper colour palette and the second step is to reconstruct an image by replacing original colours with the most similar colour from the palette. Before quantizing the image colours, we smooth the image in order to reduce the impact of printed dithering effects that sometimes appear during the printing and scanning process, in order to obtain flat colours. We use a state of the art method for image smoothing that as shown very good results for cartoonification and image compression denoising [182]. An alternative can be used for halftoned colour print scanned at high resolution and dithering [80] (Figure 4.11). We use K-means clustering method for colour quantization into N colours in order to compute a palette of N colours representative of the image content. The number of colour/cluster can vary according to the type of image (e.g. flat, realistic, watercolour), we fixed N=256 because comics are generally colourful drawings that contain a limited number of colour, N=64 or N=32 can also be used in most of the cases (Figure 4.11). Then we create a quantized image where each pixel colour corresponds to the colour of the closest cluster centre. The selection of the closest centre is performed by comparing the original colour of the pixel with the three channels (RGB) of each cluster centre. This process should be applied to the full album in order to insure that the colours will be identical from one page to another. This limited amount of colours allows to describe and retrieve the object with only few representative colours. ## 4.5.2 Input query A minimal user interaction is necessary to tell the system what to retrieve in the album or collection. We only ask the user to give information about the object s colours by selecting few pixels from the query object. We propose to use a pointing device (e.g. mouse, finger on touchscreen) to click, drag and release over the object colours and make the selection of pixels (Figure 4.12). This selection can be assisted using a scribble-based tool [183]. # 4.5.3 Query descriptor The query descriptor we use is a non ordered colour vector that contains the information of presence of certain colours in the query $(D \cap P_c)$. It is not composed by spatial or quantitative information (e.g. region positions, number of pixels) because these parameters are not scale and deformation invariant. The colour subset D is composed by the N colours the most represented in the query region and that are the most discriminating in the image or collection. We **Figure 4.11:** Colour image smoothing and quantization effects for comic character extraction. From left to right columns: original image, smoothing [182] and k-means clustering (N = 32). Image credits: [34,71,86,98]. define two metrics for each colour of the query region in order to determinate which ones will be used for the query description. The first metric L_{1c} corresponds to the number of pixels of a colour c in the query region (colour histogram Figure 4.13) and the second one L_{2c} , the discriminability level of the colour c in the whole image. The discriminability level can be formalized as a TF-IDF [22] (Term Frequency - Inverse Document Frequency) numerical statistics that allows us to identify the importance weights of the different colour values in the query image. In our application, the term frequency (tf) corresponds to the ratio of pixels of a particular hue value h_i in the set of hue values that compose the query region $qH = \{h_0, h_1, ..., h_n\}$. The inverse document frequency (idf) corresponds, for a given hue value h_i , to the logarithm of the total number of pixels in the image |p| (corpus) over the number of pixels of hue value h_i in the image $|p| \cup |h_i|$. The score for each hue value h_i in qH corresponds to $L_{2c_i} = tf_i * idf_i$ and the N hue values that have the N highest scores are used as colour descriptor of the query region $D = \{h_0, h_1, ..., h_N\}$. See Equations 4.7 and 4.8. **Figure 4.12:** Examples of comic character colour selection using a pointing device (click, drag and release). Selected pixels are highlighted in red, they constitute the query given by the user. Image credits: [34,86,115,133]. $$tf = \frac{nbPixelMatchInQuery}{nbPixInQuery}$$ $$(4.7)$$ $$idf = \log \frac{nbPixInImage}{nbPixelMatchInImage}$$ (4.8) The discriminability level L_{2c} allows us to ignore colours that are dominant both in the query region and in the rest of the image. For instance, black and white colours are often in the query region but also in many contour and background regions which will not help the retrieval process if we include them in the query description (they are not discriminant colours). Each value of L_{1c} and L_{2c} are normalized as a percentage between 0 and 1, the score for each colour is the average of both term: $Score(c) = 1/2 * (L_{1c} + L_{2c})$ (Figure 4.13). # 4.5.4 Object retrieval Comics have a particular structure that allows different approaches for object retrieval. An interesting point is that a same instances of objects often appears in different panels and therefore several times in each page of the album. First, for a given page, we consider each colour value in the descriptor and compute the corresponding colour mask (Figure 4.14). Second we find the object position in each pages by using a sliding window approach at different window sizes and for Figure 4.13: The left part represents a query example after the colour reduction process and its original image. Top-right part shows the colour histogram of the 6 first colours with the highest number of pixels in the query as a
percentage from the total number of pixels in the query (L_1) . Middle-right figure represents the corresponding discriminability level for each colour according the other pixel in the page. Bottom-right figure represents the corresponding query descriptor of N=3 colours. Image credits: [86]. each mask. The window sizes are defined according to the user query size (maximum between the query width or height) which gives an information about the definition of the document $S = \{s_0, s_1, ..., s_n\}$ in order to retrieve the object at different scales. Each window position is computed with 50% percent overlapping with its four neighbouring windows. We define the detection confidence C_{w_i} according to the number of identical colours between the query descriptor D and each sliding window position $W = \{w_0, w_1, ..., w_n\}$ (Equation. 4.9). This is equal to the cardinality of the intersection between the two colour sets $D \cap w_i$. The confidence is maximal when all the colours in the query descriptor are contained by the window (high probability of the object to be at this location). The confidence C_{w_i} is defined as follow: $$C_{w_i} = \frac{|D|}{|D \cap w_i|} \tag{4.9}$$ where C_{w_i} is the confidence value for the region w_i , |D| the cardinality of the colour set D and $|D \cap w_i|$ the cardinality (number of elements) of the intersection between D and w_i . **Figure 4.14:** Example of colour mask corresponding to the 5 first colours in the top histogram of Figure 4.13. Image credits: [86]. The confidence value is compared to a threshold value T to decide whether the detection is correct or not. See detection part of Algorithm 2. The threshold T is discussed Section 6.9. By using a multi-scale approach, a same region may be detected at different scales. In order to keep only the smallest region that includes a minimal amount of background information, we compute a score p for each detected regions, which is the percentage of pixel that are of a colour from the descriptor. A post processing step removes multiple object detections by keeping only the regions (windows) that are not overlapped by other regions with a higher score p (best detected). See filtering part of Algorithm 2 and the illustration Figure 4.15. 4.6. Conclusions 59 #### Algorithm 2 Object retrieval ``` //Detection for each s in S do for each w in W do if C(w) >= T then add w to the detected region list R end if end for end for //Filtering for each r in R do if r does not overlap better detected region then r is a candidate region end if end for ``` **Figure 4.15:** Multi-scale spotting example. The left image shows the detections at different scales, the colouration depends on to the p value, blue to red for low to high. The right side image shows the remaining best detection after the filtering step. Image credits: [34]. ### 4.6 Conclusions In this chapter we have proposed independent extraction methods for panel, text, balloon and comic characters. The panel extraction method is simple, fast and efficient for comics layout that have disconnected panels as the method relies on outermost contour analysis. This method is experimented Section 6.3. The proposed approach for text extraction consists in an adapted bi-level segmentation followed by a filtering process of three steps based on contrast, topology and local similarities to classify the connected-components as graphics or text region. A final text line level verification valid the textual content of the candidate regions using an OCR system. The method does not requires previous knowledge about the image content unlike the sequential approach proposed Section 3.2 that is implicitly linked to the panel regions. This method is experimented Section 6.4. Independent balloon extraction and classification methods have been presented. The balloon extractor relies on topological and spatial relations similarly to the text extraction method. In fact, balloon and text extractions are often correlated in the literature as well because those regions are often associated to convey most of the textual information of comics. As mentioned earlier, tail detection without previous balloon segmentation makes no sense because it is a specific region of the balloon contour. This method is experimented Section 6.6. Unsupervised comic characters extraction is a real challenge, here we proposed a user-defined query-based approach but it can be replaced by a comic character region of interest, automatically computed from surrounding information (context) (Section 3.5). In each extraction process, we strive to produce indicators of confidence, conscious that it could be useful for a higher level processing system such as that presented in the next chapter. In the next chapter, a high level approach for understanding the image content and its semantic is presented. We propose a model to embed the domain knowledge of both comic books and image processing. This model allows consistency analysis of extracted information and inference of the relations between all the extracted elements such as the reading order, the type of text (e.g. spoken, onomatopoeic, illustrative) and the positions of the speaking characters. # Chapter 5 # Knowledge-driven analysis In this chapter we address the problem of understanding comics by automatically improving the consistency of the extracted elements according to the domain knowledge and by inferring new information and launching further processing iteratively. Detecting these elements and establishing their relationship is crucial towards complete comics understanding. Low level and high level information is used in a complementary and unsupervised way, to progressively identify the different elements of a digitized comic book image and theirs semantic relations. ## 5.1 Introduction Document image analysis is an active field of research which can attain a complete understanding of the semantics of a given document. One example of the document understanding process is enabling a computer to understand a comic strip story. In this chapter we propose a knowledge-driven system that can interact with bottom-up and top-down information to progressively understand the content of a document at a semantic level (Figure 5.1). **Figure 5.1:** Example of semantic information understanding. The left panel P_0 represents a comics character labelled as C_0 saying the content of balloon B_0 to another character labelled as C_1 . In the right panel P_1 , the character C_1 is saying B_1 to C_0 . Image credits: [36]. The proposed framework is based on interactions between low and high level processing in order to reduce the challenging semantic gap. Low level image content extractors provide a set of regions that feeds a knowledge base. The knowledge base is associated with properties and constraints that form an ontology. An expert system uses the ontology to assert the relations between regions and an inference engine to deduct new information in order to perform further image processing. Note that in the rest of this chapter character is used in the sense of actor or protagonist of the comics, not as a piece of text. The main difficulty is to extract but also to model the diversity of styles, format, definition and the differences between design and printing techniques (Figure 5.2). Figure 5.2: Examples of comic panels that reflect the diversity of comics. This work is the result of an extensive collaboration with Clément Guérin, a Ph.D. student working on data mining applied to comic book contents. All the details about the knowledge models, inference engine and the interactions between the elements can be found in his thesis [57]. # 5.2 Proposed models In this section we introduce the ontologies developed for automatic analysis of comics. First, we present a first ontology formalising the concepts related to image processing, data type, the inputs and outputs. Secondly, we conceptualise the field of comic books oriented to digital image analysis. Finally, we explain how these ontologies communicate with each other, so they can be used together. #### 5.2.1 Image processing domain We initially developed a model formalizing the primitive notions of image processing. This model does not deliberately includes any generic concept for comics in order to be used in other areas related to document analysis systems. It provides support for structuring data from image processing algorithms for subsequent semantic enrichment. The data produced by such algorithms are generally limited to spatial data, lines, areas, which we will reference under the unique term of regions of interest or ROI (Region Of Interest) later in this document. They are defined by their Cartesian coordinates in the orthonormal image from which they are extracted. From this coarse analysis, we define the first two concepts of our model: Image and ROI. Then, a third concept called Extractor is create to represent the low level algorithms that are getting the ROI from the image pixels. Figure 5.3 shows a visual representation of these concepts altogether. **Figure 5.3:** A representation of the image model involved in the expert system. Concepts are represented by the oval-shaped items, the arrows are the object properties linking them to each other. The dashed rectangles contain the data properties of the concepts they are attached to. Image concept The concept of *Image* models the notion of image as a digital object, the input material for image processing systems. This is the most general concept from which are derived the other concepts of our ontology. An image processing algorithm works by directly manipulating the pixels of the image, its elementary components. It can analyse the pixels independently, or grouped in sets of pixels but, in the end, the value and the intensity of each pixel have their importance in the analysis process, and can affect the output results. Note that for two
visually similar images, the individual value of each pixel can vary greatly from one image to another (e.g. high definition, quantization, dithering). Furthermore, the encoding of the visual information in each pixel also varies depending on the image format and the degree of compression applied. It is important to integrate these information into the model as they define the context of the processing tools. They greatly help the understanding of the result quality. **Region Of Interest concept** The concept *ROI* derives from the concept *Image* (a region of interest is part of an image). This concept formalises the notion of region of interest as perceived by the image analysis. It is composed of connected pixels with visual features corresponding to a certain class of desired visual objects. The fact that a region of interest is a two-dimensional surface, allows us to represent ROIs as polygons. **Region extractor concept** A region of interest identified by an algorithm of image segmentation corresponds to the proposal by the latter of a spatial area of the image containing one of the elements that the extractor is designed to detect. This region can actually contain an element of this type or contain anything else (false alarm). The accuracy of the segmentation algorithm is dependent on the characteristics of the image, the complexity of the region to extract and of course the quality of its implementation. Regions of interest are produced only as proposals requesting to be checked. We call such image analysis systems *Extractors* later in this document. The notion of extractor is incorporated into our model as *Extractor*. Linked to the *ROI* concept, it expresses a close connection between the image processing algorithm and the regions of interest that are produced from an image with given characteristics (Figure 5.3). This set of concepts provides an initial framework for the integration of a ROI in a more complete system where it will have to interact with other entities. A region of interest from an image is produced by a single extractor. #### 5.2.2 Comics domain We present in this section a conceptualization of the comics domain and its ontological formalisation. This conceptualisation has been designed keeping in mind the purpose of use in the context of image analysis. See Clément Guérin thesis for its adaptation to other applications [57]. **Album and pages** As seen Section 1.1, a comic book page is defined as a series of images conveying a message. These images are spatially juxtaposed in a plane that is called *page* or *board*. In classical comic strips, a story is told through an ordered succession of pages. These are represented by the printed pages grouped in an album, which can be from a collection telling a larger story. The webcomics also make use of pages, materialised by digital images. In the case of printed comics, a page may extend over one or two pages, rarely more. A webcomic page is always represented by a single image. The first two concepts are introduced as Comic and Page. These two concepts are related by the property hasPage. A page is only part of one album. Bibliographic information of each album are represented by attributes associated to the concept *Comic*. The album title, the collection (if it exists), its authors, date of publication and ISBN can be given via the corresponding attributes. The reading direction (left to right or right to left) may be indicated through a boolean attribute called *right2Left*. **Figure 5.4:** Concepts *Comic* and *Page* with their corresponding relations and attributes. Page content We consider that a page consists of panels, which contain drawings such as comic characters and speech balloons. We initially chose to focus on the relationship between these two types of content. The consideration of other elements is beyond the scope of this work, although, extracting relevant terms from WordNet might be interesting as well [187]. Balloons contain text lines, embodying the words of the comic characters and the narration of the story. Panels are represented by the concept Panel with the attribute hasRank which indicates the reading order in the corresponding page. Balloons or phylacteries, whether they are spoken, thought or narrated, are represented by the concept *Balloon*. In a similar manner to panels, the balloons must be read in a appropriate order defined by their spatial position in their corresponding panel. We consider *attached* and not *overlapped* panel because, according to the comic book styles, the balloons are not necessarily spatially positioned within a panel. Sometimes they are slightly outside or straddle several panels. Instead, each panel illustrates one action taking place at a fixed time. Balloons are an integral part of the staging and are attached to a given panel, independently from their relative position to this panel. Their position in the reading order of a panel is defined by the attribute *hasRank* and the property *hasNextBalloon* binds balloons together. The balloon tail is represented as the concept *Tail*, and its direction by the attribute *hasDirection*. A balloon may be related to several tails through the property *hasTail*. Text lines a designed by the concept *TextLine*. They are grouped inside balloons with a reading order from top to bottom. Similarly to panels and balloons concepts, the attribute *hasRank* indicates their position in the reading order inside the balloon through the property *hasNextTextLine*. Text transcription is stored via the attribute *hasText*. The concepts *Panel*, *Balloon*, *Tail*, *TextLine* and *Character* are disjoint, each element can only be an instance of one of them. Figure 5.5 illustrates the addition of these concepts to the ontology. **Figure 5.5:** Integration of concepts *Panel, Balloon, Tail, TextLine* and *Character* to the initial model Figure 5.4. Several properties are introduced into our ontology to represent the links between the various components of a panel. A panel being relative to the page, the property hasPanel binds an instance of Page to an instance of Panel. Properties has Balloon and has Character are formally defined and represents the existing membership between, on one hand, a box and, on the other hand, an instance of Balloon and Character. The property has TextLine represents the link between a text line and a balloon. Specialisation of the content The semantic level of the presented concepts remains at a degree of granularity quite rude, here we present how to refine them. Balloons might be categorized into two subsets according to their relation to comics character or not. On one hand the balloons emitted by characters (spoken or thoughts) or elements of the scene (radio, television, etc.), and on the other hand, narrative balloons. The shape of the speech balloon varies from one author to another. One feature which seems to be a consensus to discriminate narrative balloons from others, is the presence or not of a tail pointing to the source of the sound. Concepts SpeechBalloon and NarrativeBalloon are introduced to represent balloons equipped with a tail or not respectively. The semantic of text lines in these newly specialised balloons can then be refined accordingly. Some text lines are carrying elements of speech, while others are for storytelling. The two corresponding concepts are *SpokenTextLine* and *NarrativeTextLine* respectively. They are simply defined as text lines belonging to an instance of *Speech-Balloon* or *NarrativeBalloon*. Speech balloons are usually issued by a character present in the panel. The link between a character and a speech balloon is expressed through the property says, whose domain *Character* and range *SpeechBalloon*. The concept *Speaker* represents a character which is emitting a speech balloon. Figure 5.6 illustrates the relations de introduced for the concepts *Balloon*, *TextLine* et *Character*. Figure 5.6: Specification of concepts Character, Balloon and TextLine #### 5.2.3 Model interactions In this section we present the interactions between the image and comics ontologies so that they can communicate and combine their reasoning capabilities. We call \mathcal{O}_{image} and \mathcal{O}_{comics} the ontologies of image and comics respectively presented Sections 5.2.1 and 5.2.2. Figure 5.7 illustrates the interactions between the ontologies. Figure 5.7: Interaction between the two ontologies. The image and comics models are linked through two bridges. First, the *Image* concept from \mathcal{O}_{image} and the Page concept from \mathcal{O}_{comics} are made equivalent. This ensures that all extracted content related to an image are equally related to a corresponding page in the comics domain $Page \equiv Image$. Second, the classes Cl = Panel, Balloon, Tail, TextLine, Character are defined as equivalent to the corresponding set of regions of interest roiType = panels, balloons, tail, textlines, characters (Equation 5.1). $$Cl_i \equiv \text{ROI and } (hasExtractor some } (roiType \text{ value } Sr_i))$$ (5.1) ## 5.3 Expert system for contextual analysis In this section we refer to the algorithmic part related to image processing as *low level* processing. The proposed system composed by the developed ontologies and an inference engine (*high level* processing) is called *expert system* for clarity. A dynamic communication is maintained between low and high level processing of the overall analysis system, this section will detail its operation. # 5.3.1 Interactions between low and high level processing We consider the ontologies \mathcal{O}_{image} and \mathcal{O}_{comics} developed as integral parts of an expert system that provides an interpretation framework for low level image content. The purpose of the expert system is to interact with the low level iteratively in order to progressively understand the content of an image, moving from simple to more complex elements.
This approach is similar to [143] except that in our case the definition of the complex object is not a composition of simple objects but context-driven. The expert system, represented by the diagram in Figure 5.8, includes both ontologies forming our knowledge base. This knowledge base, once populated by data from the low-level system, is queried by an inference engine (e.g. Racer [59]] or Pellet [150]) to extract logical conclusions, depending on the data and their consistency compared to the formalised knowledge. These logical conclusions may include a validation of extracted elements, rejection or creation of elements referred to the image processing system. Figure 5.8: Generic representation of the expert system and the relationship between knowledge base, the inference engine and the low-level algorithms. The low level algorithms have been designed to extract specific information from the whole image or a specific region. Low and high level systems interact in a loop to feed the knowledge base until there is a complete and consistent understanding of the document, according to the knowledge domain. Figure 5.9 illustrates this loop interacting between the two level of information. In step 1, the low level system propose to the expert system assumptions about a first set of segmented regions in the image. These regions are labelled according to their supposed type according to the extractor (panel, balloon, text, etc.). In the second step, the expert system evaluates these assumptions, valid correct ones and delete others. In the third step, new information are inferred from valid assumptions, put in perspective of the domain knowledge. These are referred to the corresponding low level extractor that will use them, during the following iteration, to extract more Figure 5.9: Process loop of the framework. complex elements such as the comic characters. This loop can be run as many times as new information is discovered. #### 5.3.2 Constrains for the low level extractions In our model, knowledge is modelled though the categorization of each element composing a page, combined with a set of topological relation with these elements. In our context, the elements that compose a given image I are panels P, balloons B, tails Q, text T and characters C, as well as the set of topological and semantic relations between them. Because comics, as an art form, do not follow any strict specifications it is really hard to build a perfect model which is valid for all kinds of comics. There are some instances of comic books without balloons or without panels. If webcomics are also considered, then a comic is not even necessarily composed of pages. A model that would be true for every type of comic book would be too general to be of any use in this work. Instead we define a general comic book model with more constrained properties that represent a large subset of comics (Franco-Belgian, Japanese and American). The main advantage is that it can be adapted to any kind of document images by defining properties according to the application domain. We define the general properties of comics as follows: - A panel P is related to one and only one comics page - A balloon B is related to one and only one panel - A character C is related to one and only one panel - A text line T is related to one and only one balloon B Despite the fact that authors are entirely free in their layout choices, they follow few conventions widely adopted by comic book authors in order to avoid the reader to be confused [43,83]. The depicted elements and their place in the layout must be clearly identifiable at first sight, meaning, for instance, that balloons and characters should be included inside panels. Whereas one can find some instances of balloons breaking out of their frame, these are usually kept to a minimum. Therefore, the term related refers to the situation where an object is overlapped (a fortiori, contained) by another over a *significant* proportion of its surface. In the case of multiple intersections, only the smallest container is considered. When the element is fully contained in several other items, the smallest container is consequently the direct container (e.g. a text line must be considered as being included inside a balloon before being included inside the panel containing that balloon). # 5.4 Processing sequence The expert system asserts the extraction of simple elements such as panels, text, balloons and tails in order to infer speech balloons before searching for more complex elements (e.g. comic book characters) based on the context defined by the simple elements and their relations. This can be demonstrated with the first two iterations of the process loop (Figure 5.9). The first iteration treats simple elements such as panels, balloons and text lines. They are called simple because they have a relatively regular structure. During the second iteration of the process loop, the detection of the comic characters, more complex in their visual diversity is discussed. The different stages of the process are illustrated through the couple of panels presented in Figure 5.10. Figure 5.10: Original panels used to illustrate the different stages of the processing sequence. Image credits: [128]. # 5.4.1 Simple element extraction Iteration 1 - step 1 (hypothesis) The initial extraction of panels, text and balloons feeds the knowledge base. All the elements are extracted independently using the method proposed Chapter 4. All these elements are assumptions to be validated by the expert system. In Figure 5.11, dashed elements represent the initial hypotheses and each colour a result from a different extractor. Note that extraction errors can take place at this stage which the system can recover from at a later stage. **Figure 5.11:** Initial hypothesis (dashed elements) about the content of a given image I after the initial extractions of panels P, text T and balloons B with tails Q. **Iteration 1 - step 2 (validation)** At the second step, the hypotheses proposed by the low level system are compared to the constraints formalized in the ontology. The extracted regions are first categorized as panels, balloons and text lines thanks to the rules presented in Section 5.2.3, interpreted by the inference engine. Then each element e is linked to its direct container E. This is selected from the set of extracted regions as described in Section 5.3.2. If the system is unable to find a container for an element e from the set of extracted regions, the page is then considered as the container of e. In order to validate the assumption of all the elements in E, they are simply considered as instances of the concept ROI_i . We voluntarily do not take into account of their class in the ontology \mathcal{O}_{bd} . This has for effect to introduce inconsistencies between the type of container and the domain of a property resulting from hasContent, making the model inconsistent. These inconsistencies allow to highlighting possible errors made during the low-level processing. The inference engine is stated again on the ontology and inconsistencies are treated one after the other. In this work, we focused on optimizing the reliability of the results. We have chosen to focus on increasing the extraction precision rather than completeness by deleting the elements that did not fit the proposed model. The detection of misclassified elements (e.g panel actually being a balloon) and the proposition of missed elements (e.g. a missed balloon around a group of text lines) are both short term perspectives of this work. For the time being, our system can handled, without being limited to, the following inconsistencies: - A page (p) contains a balloon (b), a text line (t): b or t is deleted. - A panel (p1) contains a panel (p2) or a text line (t): p2 or t is deleted. - A balloon (b) contains a panel (p): if p contains some balloons and b does not contain any text lines, b is deleted, otherwise, p is deleted. - A balloon (b1) contains a balloon (b2): if b1 does not contain any line then b1 is deleted, otherwise b2 is deleted. - A text line (t) contains a panel (p): if p does not contain any balloon then p is deleted, otherwise t is deleted. - A text line (t) contains a balloon (b): if b does not contain any text line then b is deleted, otherwise t is deleted. - A text line (t1) contains a text line (t2): if t1 contains other lines then t1 is deleted, otherwise t2 is deleted. The term "related" refers to the relation of membership of an element to another, as described in Section 5.3.2. Figure 5.12 illustrates the current organisation of the extracted elements. They have been structured according to the model definition Section 5.2.2. Validated elements are illustrated in solid lines while other still dashed. **Figure 5.12:** Validation of the hypothesis using the constraints of the knowledge base. Valid elements have a solid border. Iteration 1 - step 3 (inference) At this step of the first iteration, the inconsistencies have been resolved and the remaining elements are in accordance with our model. They are organized in the hierarchy of concepts in \mathcal{O}_{comics} . The ontology being consistent, the inference engine is able to classify instances of Balloon and TextLine into SpeechBalloon, NarrativeBalloon, SpokenTextLine and NarratedTextLine according to their properties and constraints. The classification of the region instances is shown Figure 5.13. ## 5.4.2 Complex element extraction This is the beginning of the second iteration of the process (Figure 5.9) where we focus on more complex elements such as the comic characters. At this point, the expert system has some information about the content of the page from the analysis carried out during the first iteration. **Figure 5.13:** Inference of the speech balloons SB, narrative balloons NB, spoken text lines ST and narrated text lines NT using the semantic properties and constraints of \mathcal{O}_{comics} .
Iteration 2 - step 1 (hypothesis) The information discovered during the first iteration of the process is used to formulate hypotheses about the probable location of the characters in the panels in order to guide their detection by the low level processing. We first focus on characters that are emitting at least a speech balloon (considered as main characters). It is reasonable to consider that the speech balloon and the character emitting the balloon belong to a same panel. It is therefore possible to restrict the search space of the character inside the panel. In addition, the position of the character in the panel can be estimated according to the direction pointed by the tail which is a characteristic of speech balloons (Figure 5.14a). The estimation of the position of the comic character from the tail position and direction have been presented in Section 3.5. The estimated region of interest are given as seeds to the image processing algorithm (extractor of characters) which refines the regions according to the image content (Figure 5.14b). The last step from the low level processing consists in spotting all the comic characters from the estimated examples (Figure 5.14c). The method used for ROI refinement is currently under investigation and a first approach could be to fit the estimated ROI to the set of regions that are mainly overlapped by the ROI and exclude the others. The spotting approach is relevant for retrieving non speaking characters as demonstrated Section 4.5 but it is currently only appropriate for colourful comics. **Iteration 2 - step 2 (validation)** The validation of the new regions is performed in the same way as for the first iteration. This new batch of extraction is submitted to the constraints of the ontology as following: - A page (p) contains a character (c): p is deleted. - A balloon (b) contains a character (c): c is deleted. - A text line (t) contains a character (c): c is deleted. Figure 5.14: Hypothesis, refinement and spotting of comic characters regions C from the speech balloon SB regions. The regions that are not related to ST have been shaded in the graph and removed from the image to make it more comprehensible. - A character (c) contains a panel (p), a balloon (b) or a text line (t): c is deleted. - A character (c1) contains a character (c2): c2 is deleted. Validated elements are represented with a solid line Figure 5.15. Iteration 2 - step 3 (inference) The final step of this process is to deduce from all validated characters those that are actually linked to speech balloons. Among the validated characters, we consider as being potential speakers those who intersect with the initial estimation of region of interest (Figure 5.14a). An abstract straight line is drawn from each speech balloon tail tip in the direction indicated by the tail to its related panel border. The first region of a potential speaker that it touched is considered to be the source of the speech balloon (the emitter). This relation was asserted into the ontology with the property isSaidBy, between the selected character **Figure 5.15:** Validation of the character regions C by the expert system and the corresponding image I. and the corresponding balloon. Since the range of this property was set to the concept of *speaker*, it automatically classifies the character instance involved into this class (Figure 5.16). Figure 5.16: Inference of the two speaking characters SC and their corresponding semantic links to speech balloons SB regions. The two semantic links are represented by a grey stroke in the image over the regions concerned and a non-oriented horizontal edge in the graph. At the end of the two iterations we obtained both a topological and a semantic description of the image content, illustrated in a single graph here. Further iteration could be processed by extracting other low level elements such as faces or vehicles and by adding extra domain knowledge. ### 5.5 Conclusions We presented a new framework for understanding documents that can interact with low and high level information suitable for semi structured and complex background 5.5. Conclusions 77 documents such as comics. Several key improvements to information extraction and processing methods have been developed. Two ontologies have been presented in this chapter, the first one is formalizing the concepts implemented for image analysis and the second one for formalizing the comics domain. The image processing ontology has the advantage of being completely independent of any application. The proposed comics ontology is composed of concepts that reflect the classic structure of a comic book. This conceptualization has been developed with the target of image analysis interfacing the image ontology through equivalence relations between some of their concepts. The proposed system provides a novel generic and unsupervised approach for comic book document understanding mixing visual and semantic information. It relies on an inference engine that interacts with the two proposed models. We detailed a use case for comic character localisation associated with their corresponding speech balloons, taking into account the spatial organisation of the rest of the elements in an image. In the future we plan to add more iterations of the process in order to retrieve new information such as other objects in the panels and sound effects. In addition, the expert system will be used to improve text extraction and recognition using system feedback in order to automatically extract open speech balloons from text locations. A semantic tag can also be given to the speech text regions according to a deeper analysis of the type of balloon presented Section 4.4.2. In the next chapter, we are going to experiment the different contributions presented in this thesis and compare them to other methods from the literature. The dataset is first introduced along with the metrics we used to evaluate information retrieval. # Chapter 6 # Experimentations With the analysis and processing of data comes the need of the output results evaluation. Traditionally, this evaluation is made by validating the results of an algorithm with a ground truth that represents what an ideal output should be [48,53,151]. Ideally, such a ground truth is made publicly available so anyone can challenge his own algorithm to the community [84]. This can be applied to any kind of results from image segmentation to classification or information retrieval. In this chapter we present the dataset and ground truth we provided to evaluate comic book related works. We describe the metrics we used to evaluate each of the contributions proposed in Chapter 3, Chapter 4 and Chapter 5 and evaluate our work compared to previous works from the literature. Note that we call these three approaches Method I (independent), Method S (sequential) and Method K (knowledge-driven) respectively in the rest of this chapter. # 6.1 Dataset and ground truth Being in need of comic books material and an associated ground truth to evaluate our work, we noticed that there is not such dataset publicly available for scientific purpose. Therefore, we decided to gather the first publicly available comic books dataset in association with several comic books authors and publishers and to build up the corresponding ground truth according to document analysis and understanding concerns. The comic book images were selected to cover the huge diversity of comic styles with the agreement of the consenting authors and publishers that have the objective to foster innovation in this domain trough academic research. It took almost one year to define which type of comics are the most interesting for researchers, meet and convince comic book authors and publishers, get copyright authorizations for the scientific community, develop a specific annotation tool and finally to hire people to manually create the ground truth. A selection of hundred comic pages were annotated in one day by twenty volunteers affiliated to the L3i lab. In order to provide a common basis for evaluating research work, the ground truth have been published in 2013 [58] and made available to the scientific community through a dedicated website¹. It has been enriched in 2014 by adding the location of the principal comic characters and semantic information to the already annotated elements. The content of the dataset and its terms of use, the ground truth construction protocol and its quality assessment are detailed in the four next sub sections. #### 6.1.1 Dataset description Scott McCloud defined comics as juxtaposed pictorial and other images in deliberate sequence, intended to convey information and/or to produce an aesthetic response in the viewer [107]. This definition is intentionally broad enough to encompass the spectrum of the majority of works produced so far. The dataset composition should reflects this heterogeneity to give everyone the opportunity to compare its algorithms to a globally representative dataset of the comics world. We contacted authors with different comic styles and have selected a corpus of one hundred images, representing single or double comics page. The images were partly processed by the French company A3DNum² which was commissioned to digitize 14 albums. Among all the files, scanned at a resolution of 300 dots per inch and encoded in uncompressed Portable Network Graphic (PNG) format, we used 46 pages to integrate the eBDtheque corpus. The remaining 54 images were selected from webcomics, public domain comics³ and unpublished artwork with different styles from 72 to 300 dots per inch. We encoded all the images of the eBDtheque dataset in Joint Photographic Experts Group (JPEG) format with a lossy compression to facilitate file exchange. Hereafter we describe the characteristics of the selected pages and their content. **Albums** The albums have been published between 1905 and 2012. 29 pages were published before 1953 and 71 after 2000.
Quality paper, colour saturation and textures related to printing technique changes can vary a lot from one image to another. The artworks are mainly from France (81%), United States (13%) and Japan (6%). Their styles varies from classical Franco-Belgium bandes dessinées to Japanese manga through webcomic and American comics. **Pages** The pages themselves have very diverse characteristics. Among all, 72 are printed in colours and according to the authors and periods, there are a majority of the tint areas, watercolours and hand-coloured areas. Among the remaining 28, 16 ¹http://ebdtheque.univ-lr.fr ²http://www.a3dnum.fr http://digitalcomicmuseum.com have are greyscale and 12 are simply black and white. One album has two versions of each page, one in colour and the other one in black and white. We have integrated an examples of each of them in order to allow performance comparison of algorithms on the same graphic style by using colour information or not. Five of the 100 images are double page, others are single page and 20% are not A4 format. Panels The panels contained in the pages are of various shapes. Although most of them are bounded by a black line, a significant proportion has at least one part of the panel which is indistinguishable from the background of the page (framele panel). Two pages consist only of frameless panels, the visual delimitation uses background contrast difference between the panel and image. Nine images contain overlapping panels, twelve contain only panels without border and several have panels connected by a straddle object. **Balloons** The balloons also contain a great diversity. Some of them are completely surrounded by a black stroke, some partially and others not at all. They have a bright background with a rectangular, oval or non geometric shape with smooth, wavy or spiky contour in general. Most of them have a tail pointing towards the speaker, but some have not. There is text without any surrounding balloons on 33 images of the corpus. **Text** The text is either typewritten or handwritten, mainly upper-case. The text lines contains 12 elements in average (Figure 6.1) and there are more than hundred text lines that are composed by only one letter corresponding to punctuation or single letter words such as I or A; this is a particularity of comics. Most pages are from French artworks, where the text is written in French. Only 13 pages contain English text and 6 images are in Japanese. Onomatopoeia appears in 18 pages. **Comic characters** The comic characters or protagonists are specific to each album. They all have eye, harm and leg but at least 50% are not humanoid, depending on the interpretation. #### 6.1.2 Ground truth information We give all the details about the ground truth construction process in Appendix D. The annotation of visual information such as the location of panels, balloons, text lines and comic characters is detailed. Also, present the annotation of semantic information about the type of text, relationship between speech balloons and speaking characters; and bibliographic information about the images (e.g. page number, author, ISBN, release date). Finally, the file structure, the annotation quality assessment and the terms of use are defined. Figure 6.1: Distribution of the number of elements per text lines. ### 6.2 Metrics The contributions of this thesis are from different nature and need to be evaluated separately using appropriate metrics. Object localisation developments are evaluated using the commonly used recall and precision metrics and other contributions are evaluated using accuracy. # 6.2.1 Object localisation metric We evaluate the different extractions (panel, balloon and text regions) in terms of object bounding boxes such as the PASCAL VOC challenge [49]. The detections are assigned to ground truth objects and judged to be true or false positives by measuring bounding box overlap. To be considered as a correct detection, the overlap ratio a_0 between the predicted bounding box B_p and the ground truth bounding box B_{gt} (Formula 6.1) must exceed 0.5. The predicted objects are considered as true positive TP if $a_0 > 0.5$ or false positive FP (prediction errors) otherwise. $$a_0 = \frac{area(B_p \quad B_{gt})}{area(B_p \quad B_{gt})} \tag{6.1}$$ Detections returned by a method are assigned to ground truth objects satisfying the overlap criterion ranked by the confidence output (decreasing). Multiple detections of the same object in an image are considered as false detections (e.g. 5 detections of a single object counted as 1 correct detection and 4 false detections). The number of TP, FP and false negative (missed elements) FN are used to 6.2. Metrics 83 compute the recall R, precision P and F-measure F of each method using Formulas 6.2. $$R = \frac{TP}{TP + FN} \qquad P = \frac{TP}{TP + FP} \qquad F = 2 * \frac{P * R}{P + R} \qquad (6.2)$$ #### 6.2.2 Object segmentation metric Object bounding box based evaluation is appropriate for surface comparison but not for detailed region extraction evaluation. In Section 4.4.2 we extract balloon contour at the level of pixel for analysis and classification purposes. In order to make the difference between the errors sources we need to use a more precise evaluation framework. Here we keep using recall and precision metrics as introduced in the previous section but instead of counting the number of objects that valid a certain criterion, we simply count the number of pixels that have been detected correctly (TP), incorrectly (FP) or missed (FN). #### 6.2.3 Text recognition metric Even if text recognition would require more investigation to be fully treated, we give a first baseline evaluation in Section 6.5 using commercial OCR systems on the eBDtheque dataset. We evaluated the text detection accuracy $A_{textReco}$ at a given string edit distance between the predicted recognition and its corresponding transcription in the ground truth [58]. #### 6.2.4 Tail detection metric Tail tip and tail direction are not surfaces, therefore they can not be evaluated using recall and precision metrics presented Section 6.2.1. Thus, we define two accuracy metrics $A_{tailTip}$, the accuracy of the predicted position of the tail tip and $A_{tailDir}$ the accuracy of the tail direction prediction. The Euclidean distance d_0 between the predicted position of the tip and its ground truth is measured relative to balloon size (Formula 6.3). Note that we consider as incorrect the predicted positions at a distance d_0 superior to the balloon size ($A_{tailTip} < 0$). $$A_{tailTip} = 1 - \frac{d_0}{0.5 * (B_{width} + B_{height})}$$ $$(6.3)$$ where B_{width} and B_{height} correspond to the balloon width and height respectively. The direction accuracy $A_{tailDir}$ was measured according to the distance d_1 within the eight cardinal coordinate sequences defined in Section 3.1 (Formula 6.4). $$A_{tailDir} = 1 - \frac{d_1}{8} \tag{6.4}$$ For instance if the detected direction was S (south) and the ground truth was SE (south-east) then $d_1 = 1$. Note that our method can also detect when there is no tail on the balloon contour $C_{tail} = 0\%$ (confidence equal to zero percent); in this case $A_{tailTip} = A_{tailDir} = 100\%$ if there was effectively no tail to detect or $A_{tailTip} = A_{tailDir} = 0\%$. #### 6.2.5 Semantic links metric The semantic links between speech text and speech balloon are called STSB and the ones between speech balloon and speaking character SBSC; they characterise a dialogue. They are considered true or false according to their existence or not in the ground truth. We evaluated the semantic relations STSB and SBSC according to the metadata in the ground truth of the eBDtheque dataset [58] called <code>isLineOf</code> and <code>isSaidBy</code>, which represent 3427 and 829 relations respectively. We defined two accuracy metrics A_{STSB} and A_{SBSC} to measure the percentage of correctly predicted semantic links (Formula 6.5). $$A_{STSB} = \frac{nbRetrievedSTSBLinks}{nbSTSBLinks} \quad A_{SBSC} = \frac{nbRetrievedSBSCLinks}{nbSBSCLinks} \quad (6.5)$$ ### 6.3 Panel extraction evaluation In this section we evaluate our three approaches (Method S, I and K) and compare them to two methods from the literature. We compare our results to Arai [6] and Ho [62] that are two state of the art methods (Section 2.2.1). The first one use connected-component analysis similarly to our proposition and the second is based on growing region. All the evaluations are performed on the 850 panels of the eBDtheque dataset (Section 6.1) at object bounding box level, using the recall and precision metrics introduced in Section 6.2.1. #### 6.3.1 Arai s method We have implemented the comic panel extraction method presented in [6] except the division line detection by lack of detail in the original paper. This method consists in a bi-level segmentation with an empiric threshold value of 250 followed by a connected-component extraction, binary image inversion and blob selection. The final blob selection is based on a minimal size of $Image\ Width\ 6$ and Image.Height/8. From the selected blobs, a line detection approach is applied as final decision. This line detection approach is able to cut overlapped panels on a page size basis which is appropriate for pages with a single panel per strip as illustrated Figure 6.2. The author did not share the code and we were not able to re implement this part by lack of detail in the original paper. Anyway, the line division method works only for panels that are as large as the page which is not so common and would not have affected the result significantly (Figure 6.2). Figure 6.2: Division line detection from [6] (figure 5 in the author's paper). The score of this method was in average for recall and precision of 20.00% and 18.75% (Figure 6.4a). #### 6.3.2 Ho's method We have implemented the Ho's method [62] with the original parameters and set the minimal and
maximal lower brightness difference of the region growing method to 20 (not mentioned in the original paper). The image border is filled with the average five-pixel page border colour and four seeds are initialized on the four corners of the image. When the region growing algorithm stops, the background is removed which separated panel blocks. Mathematical morphology (dilatation) is then applied until blocks become smaller than 1/6 of the page size and then the same number of erosion is applied in order to give back to the objects their initial size. This manipulation separates the connected panels but has the disadvantage of creating unwanted holes as well (Figure 6.3). The score of this method was in average for recall and precision of 49.76% and 68.74% (Figure 6.4b). Figure 6.3: Panel extraction and separation process of Ho [62]. #### 6.3.3 Sequential approach The method presented in Section 3.2 is parameter free except for the number of cluster for k-means clustering algorithm that we fixed to k=3 for the reason explained in the presentation of the method (Section 3.2). Note that the method also extract text region at the same time which does not interfere with panel (Section 6.4). The score of this method was in average for recall and precision of 64.24% and 83.81% (Figure 6.4c). ## 6.3.4 Independent approach The method presented in Section 4.2 requires only a minimal area factor. Assuming that a panel is a big region, we ignored the panel detection with a area lower than 4% (minAreaFactor) of the page area according to a validation on the eBDtheque dataset. This parameter avoids to consider small and isolated elements (e.g text, logo, page number) as panel. The score of this method was in average for recall and precision of 62.94% and 87.30% (Figure 6.4d). ## 6.3.5 Knowledge-driven approach The knowledge-driven method can be used as a post processing of the panel extraction. It validates or rejects panel candidates using the proposed model (Section 5.4). In the model, the only rule about the panel is that they should be contained in a image. The score of this method for the independent panel extraction (Method I) was in average for recall and precision of 61.88% and 87.42% (Figure 6.4e). **Figure 6.4:** Panel extraction score details for each image of the eBDtheque dataset (Appendix C). ## 6.3.6 Comparison and analysis Table 6.1 compares the average results we obtained for the three proposed methods and two methods from the literature. Note that some of the dataset images were digitized with a dark background surrounding the cover of the book. We automatically remove this by cropping the image where a panel with an area greater than 90% of the page area is detected. The main drawback of the Arai s method is the binary segmentation with a fixed value that works best for comic book with a white background but it is not appropriate for digitization defaults and paper yellowing. This method is only appropriate for webcomics with a perfectly white background clear separation between panels | able 0.1: I allel extraction evaluation result | | | | | | | | |--|-------|-------|-------|--|--|--|--| | | R (%) | P (%) | F (%) | | | | | | Arai [7] | 20.0 | 18.75 | 19.35 | | | | | | Ho [62] | 49.76 | 68.74 | 57.48 | | | | | | Method S | 64.24 | 83.81 | 72.72 | | | | | | Method I | 62.94 | 87.30 | 73.14 | | | | | | Method K | 61.88 | 87.42 | 72.46 | | | | | Table 6.1: Panel extraction evaluation results. (Figure 6.4a). Ho s method is adaptive to background variation but considers as panel all the elements that are directly included (first topological level) in the page background. This produce an over-segmentation by including some text which are inside the frameless panels or inside implicit balloons. When those out of panel elements are small, they prevent the connected panel separation process to work properly because the stopping criterion is based on element size. The first method we proposed (Method S) extracts panel and text simultaneously and then other elements in a sequential manner. It assumes that there are the distinguishable cluster of connected-component height in the image which is not always the case in this dataset. Anyway, it still more powerful that the two method from the literature, mainly because of the more generic pre-processing steps. The second proposed panel extraction method (Method I), based on connected-component clustering, is simple to implement, fast and efficient for comics with disconnected panels (separated by a white gutter). This method is not appropriate for gutterless comics (e.b. some mangas) or strip without panel borders such as those with an extra frame around several panels. Another weakness is when panels are connected by other elements, they may not be split as desired but will remain clustered as panel anyway. Method K benefits form the domain knowledge to filter out irrelevant panel candidates from the independent extraction approach (Method I). Nevertheless, the validation by the expert system was not significant here because the low level processing had already reached the limits of the model (Section 5.2.2). #### 6.4 Text extraction evaluation In this section we evaluated our three propositions for text extraction and compare them to a methods from the literature. We selected Arai s method as it is the most advanced method that have been applied to comic book images. All the evaluations of text localisation were performed on the 4691 text lines of the eBDtheque dataset [58] at object bounding box level (Section 6.2.1). Text recognition evaluations have been performed on the same dataset but using the accuracy metric presented in Section 6.2.3. #### 6.4.1 Arai s method We implemented Arai s method [7] which is a sequential approach that requires panel and balloon extraction as input, as presented in Sections 6.3.1 and 6.6.1 respectively. This method was developed for grey-scale Japanese mangas and is divided in five steps: pre-processing, blob extraction, feature extraction, text blob selection and text blob extraction. Pre-processing consists in an adaptive bi-level segmentation at 30% (chosen empirically) above the average pixel value and mathematical morphology to group potential text letters into block (similar to the Run Length Smoothing Algorithm). Note that the threshold selection method can exceed the maximal pixel value and then produce an empty segmentation. The size of the kernel was not specified in the original paper, we used 3 * 5 pixels. Blob extraction is performed by imposing a minimal size of the blob relatively to the size of the balloon in which they are included (Balloon width 20 and Balloon hight 40). The extracted features are the average text blob width and the horizontal coordinate of its centroid. These features are used to classify text / non-text blobs according to two rules based on blob inter-distances and alignments. Text blob are then extracted from the original image and directly sent to an OCR system (Figure 6.5). **Figure 6.5:** Sample of text extraction process. (a) Original balloon text image; (b) Threshold; (c) Morphology-Erosion filter; (d) Morphology-Opening filter; (e) Extracted blob from original image. Image from the original paper [7]. This approach was only developed for vertical text block extraction but we adapt it to also handle horizontal text. Its adaptation to horizontal text consists in switching width and height related parameters in the pre-processing and feature extraction steps. Also, the kernel used for mathematical morphology is rotated of 90° . The score of this method was in average for recall and precision of 2.81% and 1.63% (Figure 6.6a). ## 6.4.2 Sequential approach The method proposed in Section 3.2 does not require any particular parameter, only the number of clusters has to be fixed k = 3 for the reason explained in the presenta- tion of the method (Section 3.2). Note that the method is designed to simultaneously extract panel regions which does not interfere with text. The score of this method was in average for recall and precision of 54.68% and 56.92% (Figure 6.6b). #### 6.4.3 Independent approach The method presented in Section 4.3 consists in a bi-level segmentation, text/graphic separation, text line generation and finally text line recognition. A comparison between two threshold selection methods and two colour-to-grey image conversion are shown in Table 6.2. **Table 6.2:** F-measure results for fixed (th = 250) and adaptive threshold selection method corresponding to combined (RGB to grey) and separated (Luminance layer) colour to grey conversion methods. | | Fixed | Otsu | |-----------------|-------|-------| | RGB to grey | 11.74 | 51.35 | | Luminance layer | 11.66 | 51.31 | Text and graphics separation is performed using the Mahalanobis distance which is related to the number of standard deviations. A validation on the eBDtheque dataset shown that the best Mahalanobis distance is $d_m = 2$. Text line recognition is used as last filtering operation to validate the presence of text inside the candidate regions, its average benefit is shown in Table 6.3. The score of this method was in average for recall and precision of 64.14% and 70.28% (Figure 6.6c). ## 6.4.4 Knowledge-driven approach The knowledge-driven method can be used as a post processing of the text extraction. It validates or rejects text candidates using the proposed model (Section 5.4). In the model, the only rule concerning text location is that they should be contained in a panel. Considering the best method for panel and text extraction method from Tables 6.1 and 6.3 respectively, the score of this method was in average for recall and precision of 39.99% and 64.88% (Figure 6.6d). ## 6.4.5 Comparison and analysis Table 6.3 summarise the recall, precision and f-measure of the experimented methods. Arai's method is a sequential approach that requires panel and balloon regions
as input. As shown in Table 6.6, balloon extraction is very low using this approach thus, it narrows down the text extraction in turn (Table 6.3). Moreover, this text extraction method uses several thresholds which reduces its fields of application. Table 6.3: Text localisation results. | | R (%) | P (%) | F (%) | |------------------------|-------|-------|-------| | Arai [7] | 2.81 | 1.63 | 2.07 | | Method S | 54.91 | 57.15 | 56.01 | | Method I (without OCR) | 67.21 | 41.54 | 51.35 | | Method I (with OCR) | 64.14 | 70.28 | 67.07 | | Method K | 39.99 | 64.88 | 49.48 | Method S improves by far the recall thanks to its genericity, moreover, even if the panel extraction is performed at the same time, it does not bias the text extraction because text areas are extracted from the whole page and not from panel regions. Method I is slightly better using RGB to grey image conversion than the luminance layer only (Table 6.2). It outperforms Method S in recall only when not using the last OCR filtering step and both recall and precision when using the OCR. The difference for Method I when using or not the OCR system is about an increase of 26.74% of precision and a loss 3.07% of recall. The validation by the expert system in Method K improved the precision as expected but also resulted in a drop in recall. The drop of Method K can be explained by the fact that the text extractor is also able to detect texts which are not in the speech balloons but the model considers them as noise (rejected). All the methods still encounter difficulties with certain types of text that can be found in the comics (e.g. illustrative text, graphic sounds) due to strong deformation or colour variations. ## 6.5 Text recognition evaluation We evaluated text transcription using string edit distance between a predicted text transcription given by the OCR and its corresponding transcription in the ground truth (Section 6.2.3). The eBDtheque dataset is composed of English, Japanese and French texts. We evaluated the transcription given by the OCR engine Tesseract version 3.02.02 with the provided training data for each language⁴. This was performed at the text line level, taking as correct the text lines that were transcribed exactly as the ground truth transcription, ignoring case (lower/upper case) and accents for predicted and ground truth regions. Table 6.4 shows text recognition results given the text line position from the ground truth (best reachable score) and from the best automatic text localisation method (Method I in Table 6.3). We obtained a score of $A_{textReco} = 11 11\%$ for perfect transcription from the automatic text extraction and OCR method which constitute a baseline for future work on text recognition on the eBDtheque dataset [58]. Table 6.4 shows the results for a more relaxed evaluation where we also considered as correct the text lines at a text edit distance equal to one and two, the accuracy rise up to 20.67%. Note that the ⁴https://code.google.com/p/tesseract-ocr/downloads/list **Figure 6.6:** Text line extraction score details for each image of the eBDtheque dataset (Appendix C). average text line length is quite short in comic books compared to other documents, the distribution is given Figure 6.1. ## 6.6 Balloon extraction evaluation In this section we evaluate our three balloon extraction approaches (Method S, I and K) and compare them to two methods from the literature. We compare our results to Arai [6] and Ho [62] that are two state of the art methods (Section 2.2.1). The evaluations are performed on the 1091 balloons of the eBDtheque dataset [58] at object and pixel levels in order to provide a performance evaluation for localisation and contour analysis purposes (Sections 6.2.1 and 6.2.2). In the eBDtheque ground truth, 84.5% of the balloons are closed and 15.5% are not (implicit). Thus we do not expect to reach 100% recall and precision for the regular balloon extraction methods because they are not designed for implicit balloons. One the other hand, implicit balloon extraction method is able to extract closed balloon **Table 6.4:** Text recognition accuracy $A_{textReco}$ results from automatic text line localisation at an edit distance (ED) of 0, 1 and 2. | Text extraction method | ED = 0 | ED = 1 | ED = 2 | |------------------------|--------|--------|--------| | Method I | 11.11 | 16.53 | 20.67 | as well. #### 6.6.1 Arai s method Arai's method in a sequential method that extracts balloon inside panel regions in order to extract text inside [7]. It it similar to its panel extraction work-flow also presented in the same paper (Section 6.3.1), without image inversion which basically detect white blobs (assuming speech balloons have a white background). Not all the white blobs correspond to balloons in the comic book images, especially for the monochrome ones. The method selects blob candidates according to four rules based on blob size, white pixel occurrence, vertical straight line detection and width to length ratio. We re-implemented all the rules and heuristics of the original paper except for the straight line detection that we rotated of 90 degrees for images using horizontal text. The score of this method was in average for recall and precision of 13.40% and 11.76% (Figure 6.9a). ## 6.6.2 Ho s method [62] Ho s method is a sequential approach, similarly to Arai s approach, that extracts balloon inside panel regions in order to extract text inside [62]. First it converts the image from RBG to HSV colour representation and select candidate regions with a high value (V) and low saturation (S) level. To reduce the number of candidate regions, a second selection is applied according to size and shape. Small regions are removed and only regions with a ratio between the number of pixel in the region over the number of pixel in its bounding higher than 60% are kept. In the original paper, only the ratio between the region area and its bounding box was given (60%). Low value (V) and high saturation (S) values were not mentioned in the original paper, we decided to combine them by removing the value (V) from the saturation (S) to compute a brightness level B = S - V in order to reduce the number of parameters. We fixed B = 200, only region with a higher brightness level are kept. We considered as small regions the region with a width or height inferior to three pixels. The score of this method was in average for recall and precision of 13.96% and 24.73% (Figure 6.9b). #### 6.6.3 Sequential approach In Sections 3.3.1 and 3.3.2 we have presented two sequential approaches for regular and implicit balloon extraction from text line positions. Here, we evaluated them separately and detail the benefits of energies used for implicit balloon extraction by active contour model. For both regular and implicit balloon extraction, the input text is given from the sequential text extraction method (Section 3.2) since it is the previous step of this approach. **Regular balloons** Regular balloon extraction method is based on a white blob selection according to the central position of text lines in the balloon. This central position is converted as confidence value $C_{balloon}$ for each balloon candidate. The best score of $R=37\ 25\%$ and $P=45\ 19\%$ was obtained by considering only balloons with $C_{balloon}>50\%$ (Figure 6.9c). Implicit balloons The implicit balloon extraction method was evaluated using three different scenarios in order to highlight the benefits of both active contour theory and domain specific knowledge. First, the performance using active contour model with only the internal energy, then with the distance transform based external energy described section 3.3.2 and third, we added the domain knowledge energy E_{text} from Section 3.3.2 (Table 6.5). The best score for object level detection (R = 57.76% and P = 41.62%) are detailed for each image of the dataset in Figure 6.9d. | Table 6.5: Implicit balloon | performance evalu | ation at object | and pixel levels | |-------------------------------------|--------------------|---------------------|------------------| | using the original form and | the proposed (with | E_{text}) energy | functions. | | | Object level | | | Pixel level | | | |------------------------------------|--------------|-------|-------|-------------|-------|-------| | Energy function | R (%) | P (%) | F (%) | R (%) | P (%) | F (%) | | $E = E_{int} + E_{ext}$ | 56.01 | 40.40 | 46.94 | 69.40 | 83.98 | 76.00 | | $E = E_{int} + E_{ext} + E_{text}$ | 57.76 | 41.62 | 48.38 | 74.80 | 82.67 | 78.55 | ## 6.6.4 Independent approach We introduced Method I in Section 4.4.1, it is a independent approach that does not require any previous other element extraction. This method requires one parameter which is the minimum number of children minNbChildren of a balloon (number of included connected-components). We set minNbChildren = 8 according to the parameter validation, just before the first peak in the distribution of the number of letters per speech balloon (Figure 6.7). Note that in Figure 6.7, there are about 3.5% of the balloons below the selected threshold that contain one or two letters, usually punctuation marks. We voluntary omitted them here to avoid detecting a lot of non balloon regions. **Figure 6.7:** Distribution of the number of letter per speech balloon in the eBDtheque dataset [58]. This regular balloon extraction method attributes a confidence value $C_{balloon}$ to each balloon candidate according to the alignment of the connected-components it contains (children), similarly to regular balloon extraction of Method S. The best score of R = 52.68% and P = 44.17% was obtained for $C_{balloon} > 50\%$. Note that we observed a drop in the performance when considering only balloons with a confidence value $C_{balloon}$ higher than 60%. Figure 6.9e confirms that our method works best for images where the balloons are closed, well segmented and with non cursive text inside (in order
to create a sufficient number of connected-components). ## 6.6.5 Knowledge-driven approach The knowledge-driven approach can be used as a post processing of the balloon extraction. It validates or rejects balloon candidates according to contextual information from the proposed model (Section 5.4). In the model, the rules concerning balloon are that they should be contained in a panel and not contain other balloon, panel or comic character. Considering the best method for balloon extraction (Method S implicit in Table 6.6), the score of this method was in average for recall and precision of 39.56% and 48.65% (Figure 6.9f). ## 6.6.6 Comparison and analysis Balloon localisation aims to evaluate how the presented methods are good at predicting where the balloons are in the image. Object localisation are performed at the level of object bounding box (Section 6.2.1). Table 6.6 compares the average results we obtained for the best performance of the three proposed methods and two methods from the literature. | | Object level | | | Object level Pixel level | | | |---------------------|--------------|-------|-------|--------------------------|-------|-------| | Method | R (%) | P (%) | F (%) | R~(%) | P (%) | F (%) | | Arai [7] | 13.40 | 11.76 | 12.53 | 18.70 | 23.14 | 20.69 | | Ho [62] | 13.96 | 24.76 | 17.84 | 14.78 | 32.37 | 20.30 | | Method S (regular) | 37.25 | 45.19 | 40.83 | 47.75 | 44.58 | 46.11 | | Method S (implicit) | 57.76 | 41.62 | 48.38 | 74.80 | 82.67 | 78.55 | | Method I (regular) | 52.68 | 44.17 | 48.05 | 69.81 | 32.83 | 44.66 | | Method K (regular) | 39.55 | 48.64 | 43.63 | 56.65 | 41.89 | 48.17 | Table 6.6: Balloon localisation result summary. Our methods outperforms [7] thanks to its genericity, since it can process all the image styles of the eBDtheque dataset. This was expected as [7] was specifically developed for manga comics that have certain stylistic particularities. Method A (regular) detects less than half of the balloons of this dataset (about 37.25% recall). This approach is not originally designed for detecting implicit balloons but knowing the position of the panels allows closing open panels by drawing their bounding box. The bounding box creates an artificial frame that sometimes recover implicit balloons extraction (Figure 6.8). **Figure 6.8:** Implicit balloon recovering by closing open panels. From left to right: original panel, panel bounding box detection, panel with artificial frame from its bounding box that closes two balloons. The implicit balloons are now regular (closed). However, it has two advantages in comparison with the proposed active contour based method. First, as the connected-component is considered as balloon, when correct, the precision at the pixel level is maximal. Second, it is faster to compute. The presented implicit balloon extraction version of Method S highly depends on the active contour initialization success. In this study, we relied on text detection as we assume it is the most common feature that balloons include, while past experiments have shown that its accurate detection is feasible and stable. A side-effect of this choice is that balloons sometimes can not be detected because they contain non text information (e.g. drawings, punctuation). We believe there is room for improvement of the different energy terms we used. For example, one could use the Gradient Vector Flow proposed by Xu [181] for the external energy, especially in the case of missing data balloon boundaries. On the other hand, the ground truth of implicit balloons is at best questionable, as the exact localization of the balloon is quite subjective. A way to circumvent this problem could be to either define the boundary in a flexible way. Our results using active contour with distance transform shows a significant improvement compared to the regular balloon extraction, thanks to the active contour theory that detect much more balloons both open or closed than connected component based methods (Table 6.6). Sequential approaches such as Arai, Ho and Method S suffer from limitations of dependency between the different processing. For instance, in Method S the performance of our text extractor was 56.01% (Table 6.3) which was used as input for balloon extraction so the balloon extraction was inevitably affected. Also, such approaches search for balloon inside the panel region, as a consequence, these methods can not extract balloons that overlap several panels. This is easily handled by independent method such as Method I because it does not consider panel positions and search for balloons everywhere in the image. The post validation by the expert system (Method K) reached the maximum precision but decreased the recall of the extraction which resulted in a drop of the overall f-measure by almost 5% compared to Method S. The drop in recall was due to the balloons that were correctly extracted but which contained undetected text regions. ## 6.7 Balloon classification From our knowledge, this is the first work that tackles speech balloon classification. We analyse the effects of the two features and the prior knowledge we presented in Section 4.4.2. We evaluate the proposed method using a subset of 914 balloons from the 1091 balloons present in the original eBDtheque ground truth (only smooth , wavy and spiky balloons). The repartition of the balloon types is 87.96%, 8.75% and 3.29% of type smooth , wavy and spiky respectively. This unbalanced repartition reflects the usual speech balloon types repartition in comics. In the shape/contour separation process (Section 4.4.2), we first cast the original signal o into 360 values and then smooth it in order to approximate the shape signal s. The shape signal is also composed by 360 values where each of them corresponds to the local mean in a window of size M from the original signal (Equation 6.6). Note that in order to avoid side effects we copy M 2 values from the opposite side when needed (wrapping). A validation of parameter M have been performed and its best value was M=7. **Figure 6.9:** Balloon extraction score details at object level for each image of the eBDtheque dataset (Appendix C). $$s(i) = 1 M \int_{j=i-M/2}^{i+M/2} o(i)$$ (6.6) We evaluated our method based on a one-versus-all scenario. Classification results are presented in Table 6.7 for different descriptors. First we show the effect of the two features f_1 and f_2 separately without a priori information $P(l_1) = P(l_2) = P(l_3)$ and then using the prior probabilities about the classes repartition from the eBDtheque dataset $P(l_1) = 0.88$, $P(l_2) = 0.09$ and $P(l_3) = 0.03$. We detailed our best results for balloon contour extraction (for $D = (f_1, f_2)$) in the confusion matrix Table 6.8. As mentioned Section 4.4.2, the region of the tail may influence balloon classification. In order to measure this influence, we remove the tail by ignoring the points of the contour that are between the two points defined as tail origin (Section 3.4), see Figure 6.10. Note that this process relies on the tail detection performance (Section 6.8). Figure 6.10: Two examples of tail removal for balloon classification. From left to right, original contour detection in red, corresponding mask and partial contour removal between the two green points that represent the tail origin. The final contour is represented in purple in the right figures. **Table 6.7:** Classification result accuracy for different descriptor configuration. The global accuracy represents the number of good classification divided by the number of elements to classify independently from the class. | | Accuracy per class (%) | | | | | | |---------------------------|---------------------------------|-------|-------|-------|-------|--| | | Smooth Wavy Spiky Average Globs | | | | | | | $D = (f_1)$ | 22.51 | 68.75 | 33.33 | 41.53 | 26.91 | | | $D = (f_2)$ | 79.73 | 36.25 | 70.00 | 61.99 | 75.60 | | | $D = (f_1, f_2)$ | 76.62 | 60.00 | 73.34 | 64.33 | 75.05 | | | $D = (f_1, f_2) + priors$ | 98.26 | 11.25 | 63.34 | 57.62 | 89.50 | | The different accuracy results Table 6.7 show that the first feature f_1 is more appropriate for separating "wavy" from the rest while the second feature f_2 is more efficient for "smooth" and "spiky" separation. Their combination (f_1, f_2) is therefore the best solution for dividing the balloons into these three classes. Adding the prior knowledge about the testing classes repartition improves the score of the "smooth" class and decrease the two others. This is due to the consideration of the probability | cour classification results with $D = (J_1, J_2)$. | | | | | | | | | |---|---|--------------|-----|----|----------------------|-----|-----|--| | | | Ground truth | | | Ground truth no tail | | | | | | S | W | Z | S | W | Z | | | | Prediction | S | 616 | 180 | 8 | 114 | 349 | 341 | | | | W | 30 | 48 | 2 | 7 | 53 | 20 | | | | Z | 4 | 4 | 22 | 4 | 13 | 13 | | **Table 6.8:** Confusion matrix for smooth (S), wavy (W) and spiky (Z) balloon contour classification results with $D = (f_1, f_2)$. of 88% to be in the "smooth" class by the Bayesian classifier. The confusion matrix Table 6.8 shows good classification results for the "spiky" class even for cases that are quite different in terms of drawing styles (Figure 6.11). Concerning the "smooth" and "wavy" classes, some speech balloons are very hard to classify out of context causing confusion (Figure 6.12). Also, the tail of the balloon creates some noise and the radius average (\bar{o}) we use to normalize the descriptor features may not be appropriate for elongated balloons. Figure 6.11: Correct classification examples for "spiky" (top) and "smooth" classes (bottom). ## 6.7.1 Results analysis As mentioned in Section 4.4.2, the balloon contour contains part of information that is also important to retrieve in the context of understanding comic book documents (e.g. tail, tone
information). In this context, the location of the balloon is not enough sufficient. Such analysis requires a finer extraction of the balloon contour at pixel level (Table 6.6). The proposed method covers the comics balloon classification in general, except for open balloons. However, in this particular case, we can probably use extra features (e.g. tail type recognition, language analysis) to get more information about the text tone. Also, other distortion measures have to be investigated, especially for "wavy" contours that are the most difficult contour to classify using the proposed method. Concerning the tail region, its removal is not has significant as expected, it only **Figure 6.12:** Wrong classification examples which have been classified as "smooth" instead of "wavy" in the first row and "wavy" instead of "smooth" in the second row. improves the accuracy of "wavy" balloon classification (Table 6.8). This is probably due to the reduction of the number of points of the balloon contour to 360 values which also reduce the impact of the tail region. #### 6.8 Tail detection evaluation In this section we evaluate the tail extraction method on the 1091 balloons of the eBDtheque dataset [58] from three balloon extraction methods, one manual and two automatic extractions. The automatic extraction methods are the two best methods for regular (Method I) and implicit (Method S) from the summary given in Table 6.6. The manual method is the balloon contours from the eBDtheque dataset. The comparison of the three balloon extraction method will highlight the part of error which comes from the balloon extraction and the proper tail extraction method's error when there is not possible error from the balloon extraction. As introduced in Section 6.2.4, we use two accuracy metrics, one for the predicted position of the tail tip $A_{tailTip}$ and the other one for the tail direction $A_{tailDir}$ (Table 6.9). **Table 6.9:** Tail tip position $(A_{tailTip})$ and tail direction $(A_{tailDir})$ extraction results from automatic and manual balloon contour extractions. | Balloon extraction method | $A_{tailTip}$ (%) | $A_{tailDir}$ (%) | |---|----------------------|-------------------| | Ground truth | $\boldsymbol{96.61}$ | 80.40 | | Automatic (regular balloons) | 55.77 | 27.59 | | Automatic (regular + implicit balloons) | 64.34 | 20.21 | ## 6.8.1 Result analysis The proposed method is very good at locating the tail tip when it existed and also at giving a confidence value equal to zero when the balloon has no tail. The few mistakes concerning the tail tip position detection is due to very small tails or when there are variations along the contour but no tail to detect which confuse the vertex selection process. The tail direction is sensitive to the quality of the pixel-level balloon contour extraction in the area of the tail tip. Sometimes, the inside balloon region extraction is not sufficient to retrieve the tail direction, the balloon border has also to be considered. For instance, in Figure 6.13, the tail positions are represented by a green line on the balloon contour and tail directions are written in blue (from the eight cardinal coordinates). Left hand side balloons have not been detected without tail because of the contour variations, a tail have been mistakenly predicted. For the right hand side balloons, the tail tip position have been correctly predicted but not the tail direction because of the change of direction of the last segment. The direction have been predicted according the white balloon background region and not from the balloon boundary that indicates a different direction (NE and SE instead of S and E). The tail tip position and tail direction highly rely on the performance of the balloon contour extraction. They are satisfactory when balloon contours are perfectly extracted (manual in Table 6.9) but decreases quickly according to the automatic balloon extractor method performance. The importance of a precise pixel-level segmentation in the region of the tail tip is illustrated by the difference of 7.38% for $A_{tailDir}$ between the regular and implicit automatic methods due to the lack of precision of the active contour extraction method. **Figure 6.13:** Examples of difficult balloons for tail tip position (left column) and tail direction (right column) extractions. ## 6.9 Comic character extraction evaluation We evaluated the detection of comic characters on the 1597 characters of the eBDtheque dataset. In the eBDtheque ground truth, only 829 (52%) of the character instances are speaking (and 48% are not). Therefore, we do not expect to reach 100% recall and precision with the Method S and K because they are only able to extract speaking characters. The independent Method I is potentially able to retrieve all the character instances of colourful comics, given one example for each of them. This limitation requires a lot a manual work thus we selected only 22 different characters which represent 352 instances in total. Similarly to the other object extraction methods, the overlapping ratio between a predicted character region and a region from the ground truth should be above 50% $(a_0 > 0.5)$ for the predicted region to be considered as valid (Section 6.2.1). This ratio can be relaxed according to the application (e.g. face only, full body, cropped body). An example of the impact of this ratio on validation and rejection of predicted regions is shown on Figure 6.14. For instance, the predictions that are presented in the panels of Figure 6.14 could be accepted if the target was to roughly detect comic character locations. In this case, all the predicted regions would have been accepted as correct with a validation criterion set to $a_0 > 0.1$. Figure 6.14: Example of predicted region considered as true (green) or false (red) positives according to the validation criteria $a_0 > 0.5$ (dashed lines in the right hand side figure). Thin grey rectangles are the ground truth regions and the red numbers in the top left corner of each ground truth region is the value of the overlapping ratio a_0 . Image credits: [36]. ## 6.9.1 Sequential approach Method S is a sequential approach that computes a region of interest for comic characters from the tail tip position and tail direction inside a panel region (Section 3.5). Its position is shifted in the region of the tail tip according to the tail direction which is quantized in eight cones of $\pi/4$ radius. We evaluated the performance of this method given the input information of panel, balloon and tail from the eBDtheque ground truth and from the best automatic extraction methods from Table 6.1, 6.6 and 6.9 respectively (Figure 6.15a and 6.15b). Also, two set of images have been tested, one including all the comic character instances of the eBDtheque dataset and an other one with only the speaking characters as this method is only able to predict speaking character location from the tail direction (Table 6.11). **Figure 6.15:** Character extraction score details at object level for each image of the eBDtheque dataset for speaking and non speaking characters (Appendix C). ### 6.9.2 Independent approach Method I consists in an independent comic character instance spotting given an example. To perform this experiments, we asked the users to manually highlight the object position as described in Section 4.5.2. The selection usually includes hair, head and top body colours because lower body parts are often hidden by the frame border or the posture. From the user pixel selection, we computed the bounding box to show that the system does not need a precise object colour selection. We fixed the descriptor size to N=3 according to the evaluation shown on Figure 6.16. In the retrieval process, we set T=N which means that the confidence of the candidate region equal 100% (all the query colours must be present in the candidate region to be considered as a correct detection). We used three squared window sizes according to the query height: half of the query height, query height and twice the query height. The following results were obtained with the common evaluation measures of recall, precision at object level which means that we considered as correctly detected the objects that are overlapped by a detected region without considering the percentage of overlapping. Recall (R) is the number of correctly detected object divided by the number of objects to detect. Precision (P) is the number of correctly detected objects divided by the number of detected objects. We consider as candidate regions, regions that have C = 100% confidence (contains at least all the descriptor colours). We evaluated our method on a subset of 34 comic book images from 10 different albums which represent 22 comic characters that appear 352 times in total. This subset have been chosen from relevant images from the eBDtheque dataset that are coloured and with a sufficient amount of character instances. We obtained 90.3% recall and **Figure 6.16:** Descriptor size validation. Measure of recall (blue square) and precision (red diamond) detection for different descriptor sizes from a testing set of 17 comics pages. The maximum recall is for N=3. 46.7% precision in average. Results are detailed in Table 6.10 where album 1 to 10 correspond to image identifier in the eBDtheque dataset: MIDAM_GAMEOVER_T05, TARZAN_COCHON, CYB_COSMOZONE, CYB_MAGICIENLOOSE, CYB_MOUETTEMAN LAMISSEB_LESNOEILS1, LUBBIN_LESBULLESDULABO, MIDAM_KIDPADDLE7, PIKE_BOYLOVEGIRLS_T41 and TRONDHEIM_LES_TROIS_CHEMINS_005 (C). ## 6.9.3 Knowledge-driven approach The knowledge-driven method can be used as a post processing of the comic character extraction using only the properties of the comics model or an extra processing if we consider ROI refinement and non-speaking character spotting as illustrated Section 5.4. Here we use only the validation part of the expert system without ROI refinement
and extra character spotting because these last approaches are still under development. The expert system validates or rejects character candidates according to contextual information from the proposed model (Section 5.2.2). In the model, the rules concerning comic book characters are that they should not contain any other extracted region because we assume that a character can not contain panel, balloons, text or another character (Section 5.4). If they do, they are automatically deleted. We post processed the output of the automatic extractions from the sequential approach (Method S) and we obtain an average score for recall and precision of 3.59%, 12.68% (Figure 6.17). | Album | Nb pages | Nb character | ID | Recall | Precision | |-------|----------|--------------|----|--------|-----------| | 1 | 10 | 2 | 0 | 92.3% | 16.8% | | | | | 1 | 91.8% | 65.0% | | 2 | 1 | 1 | 2 | 75.0% | 26.5% | | 3 | 5 | 4 | 3 | 100.0% | 50.0% | | | | | 4 | 93.3% | 60.9% | | | | | 5 | 100.0% | 33.3% | | | | | 6 | 100.0% | 100.0% | | 4 | 1 | 1 | 7 | 85.7% | 85.7% | | 5 | 4 | 2 | 8 | 100.0% | 75.0% | | | | | 9 | 50.0% | 27.8% | | 6 | 5 | 2 | 10 | 71.8% | 10.1% | | | | | 11 | 100.0% | 29.9% | | 7 | 2 | 2 | 12 | 100.0% | 13.8% | | | | | 13 | 100.0% | 54.5% | | | | | 14 | 100.0% | 55.6% | | 8 | 2 | 2 | 15 | 81.8% | 75.0% | | | | | 16 | 100.0% | 12.7% | | 9 | 2 | 1 | 17 | 83.3% | 58.8% | | 10 | 2 | 4 | 18 | 81.3% | 35.1% | | | | | 19 | 100.0% | 48.4% | | | | | 20 | 92.9% | 17.1% | | | | | 21 | 90.9% | 24.4% | | | | | | 22.26 | | | 10 | 34 | 22 | 22 | 90.3% | 46.7% | Table 6.10: Character detection performance #### 6.9.4 Comparison and analysis The comic characters extraction are presented in Table 6.11 for Method S and K. Method I is evaluated separately on a smaller subset of the dataset. Note that the scores in Table 6.11 are given for the whole dataset including the characters that are not speaking. This low level of performance comes from various reasons. First, the limitation of the extractor to process speaking characters. When we focused on the subset of 829 speaking characters, the recall and precision increased by 14.45% and 4.85% respectively with panel and balloon regions from the ground truth (GT). Second, the variability of character styles in the eBDtheque dataset; third, the error propagation of previous processes (panel, text, balloon, and tail extractions) that are required to guess comic character locations (differences between GT and auto results in Figure 6.17: Character extraction score details using Method K for each image of the eBDtheque dataset (Appendix C). **Table 6.11:** Comic character localisation result for method S from ground truth (GT) and automatic (auto) panel and balloon element extractions. | | Speaking only | | | Al | l characte | ers | |-----------------|---------------|-------|-------|-------|------------|-------| | Methods | R (%) | P (%) | F (%) | R~(%) | P (%) | F (%) | | Method S (GT) | 30.04 | 28.03 | 29.00 | 15.59 | 23.18 | 18.64 | | Method S (auto) | 11.77 | 11.82 | 11.79 | 6.84 | 12.13 | 8.75 | | Method K (auto) | 6.15 | 12.30 | 8.20 | 3.59 | 12.68 | 5.60 | #### Table 6.11). As mentioned Section 6.9.2, Method I have been evaluated on a subset of the eBDtheque dataset composed by coloured images and with a sufficient amount of character instances. The experiments shown interesting detection results based on a user-defined colours query descriptor. Detection result examples are illustrated Figure 6.18. The detected region aims to localize the smallest regions containing all the colours of the query descriptor. This region is usually smaller than the ground truth region which is defined at character bounding box level. A post-processing is needed to compute the character bounding box from the detected region by extending it to the colour region boundaries. Correct detections show the variety of comics character position and deformation that we are able to detect with the presented framework. There are few missing detections and over detections are essentially due to other comics character detection and image pre processing (colour reduction). The proposed framework gives promising results for contemporary comics, we also tried on historical one such as FRED_PHILEMON12 and MCCALL_ROBINHOOD from the eBDtheque dataset (Appendix C) but the printing process generates a lot of noise (thickness of ink). A pre-processing smoothing is required in this case [80, 182]. The colour palette we used has 256 colours, we believe that we can improve the presented method by computing the palette from the user's query in order to ignore **Figure 6.18:** Each line shows a character query region bounding box in white (left column), a correct detection (middle column) and a wrong detection (right column). Green rectangles represents the ground truth region and the red rectangle corresponds to the region detections. The corresponding character IDs in Table 6.10 are 12, 8, 0, 10, 16 and 2 from top to bottom. unwanted colours and speed up the process. The sliding windows approach does not allow to segment comics character at a pixel level, a distance measure between the colour mask regions could solve this. Also, once we retrieved all colour similar objects, we could learn a deformable shape model and try to find more objects occurrences based on shape information in a second stage. These proposal will be the subject of future works. ## 6.10 Knowledge-driven analysis overall evaluation In this section we evaluate the proposed knowledge-driven analysis system as a whole. Conversely, in the previous four sub-sections we evaluated and compared each low level content extraction separately. Here we take advantage of the independent content extraction method (Method I) and the knowledge base proposed in Chapter 5, to evaluate the performance of the expert as the whole, which includes visual and semantic elements. First we evaluated the two models and then the proposed sequence presented Section 5.4. #### 6.10.1 Comics model evaluation Considering the lack of accurate numbers on the overlapping ratio of comic book elements in the literature, we estimated statistically what this *significant proportion* would be using the eBDtheque dataset [58]. Figure 6.19 shows the percentage of panels, balloons, text lines and characters that fit the proposed model (Section 5.3.2, as a function of their covered area. Figure 6.19: Percentage of panels, balloons, text lines and characters from the eBDtheque dataset 6.1 that fit the definition given in 5.3.2 according to the area proportion that need to be covered. Considering ideal proportion covered for each type of element, we obtained the following overall scores: 99.6% of the panels, 87.4% of the balloons, 81.6% of the text lines and 94.9% of the characters are in accordance with the assumed constraints in the eBDtheque dataset. #### 6.10.2 Framework evaluation We evaluated our framework during the two iterations of the process loop introduced in Section 5.4 and particularly at the beginning (Step 1: hypothesis) and at the end (Step 3: inference) of each iteration. Low level content extraction such as panels P, balloons B, text T and comic characters C have been evaluated separately in the four previous subsections, here we combine them throughout the two iterations of the process loop. Two high level element retrievals are also evaluated here, the semantic link between the spoken text and speech balloons STSB, and also between the speech balloons and speakers SBSC. We evaluate our framework using the F-measure of panel P, balloon B, text T and character C extractions. Also, the accuracy of the two semantic links STSB and SBSC is measured (Section 6.2.5). Results are presented in Table 6.12 and the change in the amount of information discovered throughout the process is illustrated in Figure 6.20. **Table 6.12:** F-measure score evolution for panel (P), balloon (B), text (T) and characters (C) throughout the two iterations. Scores for the semantic links STSB and SBSC are given as accuracy. | Step | P | B | T | C | STSB | SBSC | |----------------------------|-------|-------|-------|-------|-------|-------| | 1 - Hypothesis | 73.14 | 48.38 | 67.07 | 0 | 0 | 0 | | 1 - Validation & inference | 72.46 | 43.63 | 49.48 | 0 | 47.61 | 0 | | 2 - Hypothesis | 72.46 | 43.63 | 49.48 | 11.79 | 47.61 | 0 | | 2 - Validation & inference | 72.46 | 43.63 | 49.48 | 8.20 | 47.61 | 18.23 | **Process details** Figure 6.20 shows the evolution of the performance of the knowledge-driven system after the first and second iteration of analysis (Section 5.4) over the eBDtheque dataset [58]. We also represented the maximum reachable limit using the proposed model (Section 6.10.1) using a dashed line in the same figure. The performance of the first iteration is measured after the initial extraction of simple elements which are considered as hypotheses by the expert system (Figure 6.20a) and after validation by the expert system (Figure 6.20b). Between the first initialization (1 - Hypothesis) and validation (1 - Validation), the F-measure remains stable for P (less than 1% difference) and decreases by 4.75% for the balloon B and 17.59% for the text T while more than 47% of the semantic links between speech text and speech balloon (STSB) are retrieved. The global decrease is related to the actual behaviour of the expert system which is only able to filter out elements. Nevertheless, remaining elements are consistent and allow semantic relation inference. The expert system applies the inference rules to automatically specify the balloons that have a tail and their included text as speech balloon SB and speech text ST respectively to create the semantic links STSB between each pairs. At this point, no comic book characters are discovered because their rules in the Figure 6.20: Change in performance for panels P, balloons B, text lines T, comic characters C and the semantic links STSB and SBSC at the hypothesis and
evaluation steps during the two loops of the process. The dashed blue line represents the best score using our model on the data extracted from the ground truth data (optimal condition). The solid red line is the performance of the framework using all the automatic extractions and semantic link inferences. ontology are related to elements that are not yet discovered. The newly inferred links are processed by the expert system along with previously validated regions during a second iteration in order to get more information by trying to apply more rules from the knowledge base. This time, the expert system can make use of rules related to characters because the speech balloons are now part of the knowledge base. Panels and speech balloons are used to create hypotheses for the location of characters and then the low level processing locates them more precisely within these regions (Figure 6.20c). Finally, the expert system validates the newly discovered regions and infers the semantic links between speech balloons and speaking characters SBSC (Figure 6.20d). Low level processing The best extraction performance is obtained for the panels that are usually the easiest elements to extract from a page. The lowest extraction performance is for the comic characters C. There are various reasons for this. First, the limitation of the extractor to process speaking characters; second, the variability of character styles in the eBDtheque dataset; third, the error propagation of previous processes (panel, text, balloon, tail and semantic link extractions) that are required to guess comic character locations. **Semantic links** The expert system is able to retrieve 47.6% of the STSB and 18% of the SBSC relations, which represents more than 25% of what could possibly be detected using the proposed model. It should be stressed that these numbers represent the efficiency of the last process of the whole framework pipeline. Individual errors at each recognition and validation step of the pipeline are propagated to the final semantic association between elements (SBSC). Therefore a single improvement in the detection or the validation of any kind of element would have an impact at the semantic association level. Note that given the panel, balloon and character position from the ground truth, the accuracy of the expert system in predicting the semantic relations is about $A_{STSB} = 96.9\%$ and $A_{SBSC} = 70.66\%$. The 3.1% of missed isLineOf relations came from balloons that are not compliant with our model. In the same way, among the 829 isSaidBy relations, that link speech balloons to speaking characters, 9.5% are undetectable because they are generated from balloons outside the panel. This comparison clearly demonstrate that the expert system is very good at predicting semantic link as soon as the low level extractions are efficient. ### 6.11 Conclusions In this chapter we have first introduced the dataset and the metrics we use. Then, we evaluated each of the contributions for content and semantic element retrieval and compared them to methods from the literature. Finally, proposed models combined with independent content extraction methods have been evaluated. We presented the eBDtheque dataset, the first comic image dataset and associated ground truth on comic books containing spatial and semantic annotations, publicly available for the scientific community. The corpus can easily be extended to enlarge the diversity of the dataset and provide consecutive page or full album in order to allow a wider level of comic books analysis. New semantic annotations can be added, such as the view angle and the shot type for panels, text at the level of letters, comic character s role, profile and relationships. The sequential approach (Approach S) is an intuitive approach like most of the 6.11. Conclusions previously proposed methods in the literature. It efficiency is maximal when all the image content is present and structured in classical comic books. It gives the best average and precision score for text, balloon and character extraction which demonstrate that linking different content extractions at low level processing is relevant for comic book image analysis. The independent approach (Approach I) is similar to the previous approach only for panel extraction and more appropriate for unusual comic image (e.g. no panel, no text or no balloon). However, it is slightly less powerful than sequential approach in average on the eBDtheque dataset because this dataset is mainly composed by classical comics. Nevertheless, this approach can easily handle particular issues as it does not require previous element extraction. The knowledge-driven approach (Approach K) is able to improve the overall precision but not the recall in the presented configuration because it uses only rejection constraints. The strength of this approach is that it uses a standard and exchangeable description of the image content, from visual to semantic level, that can be easily be enriched or adapted to specific or large collections. The addition of conversion and creation constraint types (not only rejection) can give the ability to this intelligent system to recover missing information. Processing time are quite short for the sequential and independent approach but the knowledge-driven approach requires reasoning operations that are very time consuming. Panel and balloon extraction can run in real time on a regular laptop or smartphone. Text extraction process highly depends on the OCR speed. Comic character region of interest are almost computed instantaneously (calculus of maximal rectangle coordinates) but character spotting is very slow due to colour quantization and multi-scale sliding window processes. ## Chapter 7 ## Conclusions Throughout the dissertation several methods for images analysis and understanding applied to comic book images have been presented. This chapter summarizes each main chapter by revisiting their contributions, strengths and weaknesses. Finally, a overview of the future research possibilities in the area of comic analysis and understanding is discussed. ## 7.1 Summary and contributions In this thesis we have presented three different approaches for comic book image analysis. Chapter 1 has summarized the evolution of sequential art from its creation to the 21st century with the impact of the Internet, its market place and the growing interest of the investigation of this research field. In Chapter 2, an overview of the state-of-the-art methods have been presented. Here we have handed the method in their context of document analysis and then highlighted the challenges of comic book document analysis due to their specific design process. All the past studies related to comic book image analysis have been reviewed into four different categories for panel, balloon, text, comic character respectively. Literature review in each of these categories have been presented along with the advantages, disadvantages in different scenarios. Also, state-of-the-art methods for holistic understanding of document images have been reviewed and a list of the more advanced existing applications is given. Then, we have introduced, in Chapter 3, the first approach of sequential analysis of comic book image content by extracting elements using their relations one after others in order to guide the retrieval process. The major contribution in this work is to take advantage of previous extracted elements for predicting the region of interest of speaking characters. The main motivation of this work came from the idea of an intuitive approach for retrieving simple elements in order to facilitate the retrieval 116 CONCLUSIONS process of more complex ones. Chapter 4 has presented a independent analysis technique based on the separation of each extraction process. The main contribution was the introduction of a text extraction method independent from balloon locations and able to detect out-of-balloon text regions such as illustration, page number, caption, author names and some graphic sounds. The benefit of standard OCR systems is also stressed. The next contributions of this work were balloon contour type classification and comic character spotting based on partial user-defined example. In the Chapter 5, we have introduced a knowledge-driven analysis system for comic book images. The main contribution was the introduction of two models, one for comics and another one for related image processing. The two models are queried by an inference engine to guide independent image processing, retrieve the contents and its interactions in order to provide a higher level of description. There are certain limitations of the independent extraction approach presented in Chapter 4 that can be recovered using this models. This contribution solves the limitation of error propagation which is implicit to the sequential approach presented in Chapter 3, while using relations between elements defined by the domain knowledge. Finally in Chapter 6, we have provided an experimental evaluation of all the proposed methods compared to some state-of-the-art methods. Moreover, advantages and disadvantages of each method have been pointed out. In general, in this thesis we have proposed different contributions to improve previous works from the literature as for panel, text and regular balloon extraction. Other contributions are first studies such as implicit balloon extraction, balloon type classification, tail detection and semantic analysis. Detailed experimentations were performed to evaluate each of the methods and for comparison with some state-of-the-art algorithms. In order to compare objectively the methods, a first dataset and ground truth have been provided. ## 7.2 Future perspectives There are ideas that have come out during this thesis work but could not be explored in the three year time. Some of the future perspectives of this thesis are listed below. Panel extraction is the
more studied part of comics analysis so far and still require some efforts for implicit panel detection (e.g. when the panel border is partially or not drawn) and connected panels. Gutter-free panel extraction methods also require more experiments to assert their robustness against a huge variety of comics but datasets are lacking. Text extraction is an essential challenge that have been tackle only partially. Current methods focus on speech text and further efforts has to be made to detect other types of text such as illustrative text (e.g brand name, storefront), caption, page number, author signature, and sound effects (onomatopoeia). The next step will be text recognition which is an open issue as comics can be handwritten or typewritten with various specific fonts. Semi-automatic font learning methods are probably one of the solutions to overcome the lack of performance of standard OCR systems. Balloon extraction shown good performances when combined with text extraction but requires more efforts when processed independently in order to extract balloons that does not contain text as well (e.g. symbol, drawing, punctuation). Implicit balloons are important to consider as well but it is at best questionable as the exact localization of the balloon is quite subjective. Balloon classification is at his early stage, more balloon types have to be investigated and multi-segment classification would be more accurate for balloons with non homogeneous contour variations (e.g implicit, adjacent to other elements). Speech balloon classification can also be improved by analysing the nature of the contained text using natural language analysis. The balloon classification should be completed by a semantic analysis to give a meaning to each class given a particular album (e.g. smooth for dialogues, wavy for thoughts) and finally characterize the contained text. The first work about tail detection presented here gave promising results that allow one-to-one connections between speech balloons and speaking characters but multi connections have to be considered as well (e.g a speech balloon with two tails pointing to two different characters saying the same thing). Comic character localization and identification is still an open issue for both supervised and unsupervised methods due to the variability of character styles and postures. Nevertheless, combining colour and multi-part shape description seems to be a good way to follow in order to describe the characters for spotting purposes but unsupervised localisation and identification require a higher level of description taking into account heterogeneous elements in the image (e.g. ontologies, graphs). Finally, we published the first public dataset to initiate collaborative research but more data are needed to be fully representative of the comics diversity, train algorithms and evaluate research works of comics understanding. 118 CONCLUSIONS # Appendix A ## **Pre-processing** Through out this thesis work we have used several pre-processing methods to extract image content. The typical pre-processing task are noise removal, segmentation, enhancement, perspective correction, page curl removal, skew correction (text) and skeletonization. In this appendix we detail some of the segmentation methods which are related to comic book image analysis. ## A.1 Segmentation Image segmentation is a division or separation of the image into regions of similar attribute. The most basic attribute is image luminance amplitude for monochrome image or colour components for a colour image. Image edge and texture are also useful attributes for segmentation [135]. ## A.1.1 Region-growing Region-growing methods are region-based segmentation algorithm that mainly rely on the assumption that the neighbouring pixels within one region have similar values. The common procedure is to compare one pixel with its neighbours. If a similarity criterion is satisfied, the pixel can be set as belonging to the cluster as one or more of its neighbours. The selection of the similarity criterion is significant and the results are influenced by noise in all instances¹. One of the most famous region-growing segmentation is the seeded region-growing method [1,111]. This approach examines neighbouring pixels of initial seed points and determines whether the pixel neighbours should be added to the region and so $^{^{1} \}verb|http://en.wikipedia.org/wiki/Image_segmentation\#Region-growing_methods$ on. The result of the method highly rely on the selection of the seed points. From the seed points, we grow a 4 or 8-connected neighbourhood for the pixels adjacent relationship. Different parameters can be added, such as the minimum area threshold that will define the minimal region area returned by the algorithm. The similarity measure is the criterion which should be verified to accept a neighbouring pixel in the current region [52]. The segmentation by watershed, developed with mathematical morphology, belong to this category as well. ### A.1.2 Split and merge Split-and-merge segmentation is a region-based segmentation based on a quadtree split of the image. This method starts from the whole image (root of the tree) and if it is non-uniform (not homogeneous pixel repartition), then it is split into four son-squares (the splitting process), and so on so forth. Conversely, if four sub-squares are homogeneous, they can be merged as several connected components (the merging process). The node in the tree is a squared or set of squared regions. This process continues recursively until no further splits or merges are possible [64, 77]. #### A.1.3 Contour-based This approach wants to take advantage of the fact that there is a detectable transition between two related areas. The oldest methods use edge detector such as the well know Canny filter, to highlight the pixels that appear to belong to a contour [19]. The reconstruction of closed contours is often difficult. See Section B.1 for closed contour extraction. Irregular and partial contour segmentation have been studied as well, using deformable models that are more permissive. The most famous model have been proposed by Kass, it is called the active contour model or snake [76]. A curve $\mathbf{v}(s) = [x(s) \ y(s)] \ s = [0 \ 1]$ is initialized in the region of the contour to detect and it moves through the spatial domain of an image to minimize the energy function (Equation A.1) until perfectly fitting the image region. $$E = \int_{0}^{1} \frac{1}{2} \left(\alpha \mathbf{v}(s)^{2} + \beta \mathbf{v}(s)^{2} \right) + E_{ext}(\mathbf{v}(s)) ds$$ (A.1) where α and β are weighting parameters that respectively control the snake s tension and rigidity, and \mathbf{v} and \mathbf{v} denote the first and second derivatives of $\mathbf{v}(s)$ with respect to s. This functional energy is also called E_{int} for internal energy. The external energy function E_{ext} is computed from the image so that it takes on its smaller values at the features of interest, such as boundaries [181]. One of the proposed energy functions by Kass [76] is equation A.2 which attracts the contour to edges with large image gradients. $$E_{ext} = - \quad \mathbf{I}(x \ y)^2 \tag{A.2}$$ 121 #### A.1.4 Bi-level grey-scale thresholding A survey counts forty thresholding methods from histogram shape-based to spatial and local methods [144]. The most famous method is Otsu s method [126] that assumes that a single channel image is dividable in two main clusters: the background and the foreground. It calculates the optimum threshold separating the two clusters so that their intracluster variances are minimal in the image histogram. Applying the Otsu s threshold selection to a grey-level image returns a binary image where foreground pixel are separated from background pixels. The major problem with thresholding is that it considers only the intensity, not any relationships between the pixels (no spatial information). Another problem with global thresholding approaches is that changes in illumination across the scene may cause some parts to be brighter and some parts darker in ways that have nothing to do with the foreground and background objects (e.g. light and shadow variation). Those issues have been partially handled by local approaches determining thresholds locally instead of the whole image. #### A.1.5 Multi-level colour thresholding A first approach for multi-level thresholding is to apply bi-level thresholding to each of the colour layer in one or several colour space and merge them to give a single output. Two more natural approaches are divisive clustering and agglomerative clustering. In divisive clustering, the entire image is regarded as a cluster, and then clusters are recursively split to yield a good clustering. In agglomerative clustering, each pixel or region is regarded as a cluster and then clusters are recursively merged to yield a good clustering. There are two major issues in thinking about clustering: - What is a good inter-cluster distance? - How many clusters are there? Addressing both issue automatically still an open issue if we don't have strong knowledge about the image content. Common clustering algorithm like k-means partitions the data (pixels values) into k sets by minimizing the within-cluster sum of squares [130]. It does not require any probabilistic reasoning or modelling [11]. K-means clustering aims to partition $(x_1 \ x_2 \ x_n)$ observations into k clusters (k <= n) $S = S_1 \ S_2 \ S_k$ in which each observation belongs to the cluster with the nearest mean. This optimisation problem is formulated as formula A.3. $$\underset{i=1 \ n_j \ S_i}{argmin} x_j - \mu_i^2 \tag{A.3}$$ where μ_i is the mean of points in the cluster S_i . # Appendix B # Feature extraction In this appendix we recall the principle of one of the most famous feature extraction approach used for stroke-based documents: connected-component labelling. ## B.1 Connected-component
labelling Connected-component (blob) labelling scans all pixels from an image and groups them into components based on their connectivity [164]. All pixels in a so called connected-component share similar intensity values and are in some way connected with each other (part of the same component). Connected component labelling was original designed for binary and grey-level images with different measures of connectivity, but it can also operate on colour image [41]. Blob extraction is generally performed on a binary image from a thresholding step (Chapter A). Then, blobs can be described, filtered and tracked for many applications. It is a two pass algorithm that process rows and then columns. The first pass assigns temporary labels and record equivalences whereas the second pass replaces each temporary label by the smallest label of its equivalence class that gives an already existing or new label to each pixel according to their 4 or 8 neighbourhood connectivity. Connected-component labelling can also be useful to retrieve the topology of the image content [162]. See outermost contour extraction for panel detection in Section 4.2. # Appendix C # **Dataset** This appendix shows an overview of the eBDtheque dataset images and they categories. The corresponding ground truth annotations are described in the next Appendix D. ## C.1 Image categories Table C.1 represents the composition of the eBD theque dataset grouped by categories. Corresponding images to the identifiers are available in the previous section and on the dataset website $^{\rm 1}$ http://ebdtheque.univ-lr.fr/database/?overview=1 126 DATASET | IDs | Date | Category | Colour | Nb | |--------------------------------|------|------------------|--------|----| | CYB_BUBBLEGOM | 2009 | French webcomics | Grey | 10 | | CYB_COSMOZONE | 2008 | French webcomics | Colour | 5 | | CYB_MAGICIENLOOSE | 2011 | French webcomics | Colour | 1 | | CYB_MOUETTEMAN | 2011 | French webcomics | Colour | 4 | | CYB_PSYCOCHON | 2010 | French webcomics | Colour | 1 | | CYB_SUPERCOMPTOIR | 2011 | French webcomics | Colour | 1 | | CYB_TRAFFIC | 2009 | French webcomics | B&W | 3 | | FOX_CHILLINTALES | 1953 | American comics | Colour | 4 | | FRED_PHILEMON | 2004 | French comics | Colour | 5 | | INOUE_KYOUMEN | 2008 | Japanese manga | B&W | 6 | | JOLIVET_BOSTONPOLICE | 2010 | French comics | Colour | 2 | | JOLIVET_BOSTONPOLICE | 2010 | French comics | B&W | 3 | | LAMISSEB_ETPISTAF | 2012 | French webcomics | B&W | 5 | | LAMISSEB_LESNOEILS1 | 2011 | French comics | Colour | 5 | | LUBBIN_LESBULLESDULABO | 2012 | French webcomics | Colour | 2 | | MCCALL_ROBINHOOD | 1946 | American comics | Colour | 4 | | MCCAY_LITTLENEMO | 1905 | French comics | B&W | 1 | | MCCAY_LITTLENEMO | 1905 | French comics | Colour | 2 | | MIDAM_GAMEOVER | 2009 | French comics | Colour | 2 | | MIDAM_KIDPADDLE | 2001 | French comics | Colour | 2 | | MONTAIGNE_TUMOURRASMOINS | 2011 | French webcomics | Colour | 5 | | PIKE_BOYLOVEGIRLS | 1953 | American comics | Colour | 3 | | ROUDIER_LESTERRESCREUSEES | 2011 | French comics | Colour | 5 | | SAINTOGAN_PROSPER | 1934 | French comics | Colour | 5 | | SAINTOGAN_ZIGPUCE_ET_ALFRED | 1952 | French comics | Colour | 5 | | SAINTOGAN_ZIGPUCE_MILLIONAIRES | 1928 | French comics | Colour | 5 | | TRONDHEIM_LES_TROIS_CHEMINS | 2000 | French comics | Colour | 2 | | WARE_ACME | 2005 | American comics | Colour | 2 | **Figure C.1:** Categories of the images in the eBDtheque dataset. IDs column corresponds to the beginning of the image identifier (file name and title of the corresponding grand truth file), Date is the release date and Nb the number of image of the category. # Appendix D # Ground truth This appendix details the ground truth construction process, the visual (regions) and semantic information annotation, the file structure, the annotation quality assessment and finally the terms of use. This work is the result of an extensive collaboration with Clément Guérin [57] and many meetings with the eBDtheque project team of the L3i lab. ### D.1 Ground truth construction The ground truth has been defined in accordance to existing formalism in order to fulfil the needs of a large amount of researchers related to comics material. It integrates low and high level information such as spatial position of the elements in the image, their semantic links and also bibliographic information. The comics art is extremely heterogeneous and our dataset voluntarily integrates albums that can be classified as unconventional. This leaves room for interpretation on the form which increase annotation variations by different people and decrease the uniformity of the ground truth. This precision level is used in several, widely used datasets [48, 185]. In order to cover a wide range of possible research matters, it has been decided to extract three different type of objects from the corpus: text lines, balloons and panels. We decided to do this first ground truth by drawing horizontal bounding boxes as close as possible from the feature and including all its pixels. We chose this level of granularity in order to limit the subjectiveness of the person making the annotation. Hereafter we detail the two levels of annotation (visual and semantic) that form the ground truth and how they are indexed in a file. The combination of visual and semantic annotation provides the advantage of making this ground truth relevant for document analysis and semantic evaluation which are both part of the comics understanding process. 128 GROUND TRUTH #### D.1.1 Visual annotation The first annotation consists in defining the spatial region where elements are located in the image. We describe here how the visual annotations have been performed for the panels, balloons, texts and comic characters. Panels The frame or panels are defined as an image area, generally rectangular, representing a single scene in the story. There is always at least one panel per page, the entire page region can be used as panel if necessary. When a panel has a black border, the bounding box is placed as close as possible to its frame. Sometimes, images have not been scanned perfectly horizontally, it is then impossible to have an horizontal bounding box sticking exactly to the border. When the panel border is partially absent or suggested by the neighbourhood, the bounding box just defines the content of the panel. In all cases, the other elements (balloon, text, drawings) extending from the frame are truncated (Figure D.1). **Figure D.1:** Example of three panel annotations. The bounding box (transparent red) is defined without taking into account of non panel elements in all cases. Balloons We define a balloon (phylactery or bubble) as the region of an image including one or several lines of text, graphically defined by an identifiable physical boundary or suggested by the presence of an arrow pointing to the speaker (the tail). Although rare, empty balloons (not containing lines of text) are also annotated if they are clearly identifiable by their shape or the tail representation. Pixel level annotation follows the contour of the balloon (Figure D.2c), while bounding box annotation does not consider the contour of phylactery and truncates the tail. Sometimes it crosses the entire panel and generates an unrepresentative position of the desired balloon (Figure D.2a). When the balloon is not closed (e.g. open contour) the annotated contour has to stick as close as possible to the contained text (Figure D.2b). Note that the first version of the ground truth (2013) have been defined at bounding box level ignoring the tail and the second version (2014) at pixel level following the contour variations and the tail region. **Figure D.2:** Example of balloon clipping: a) using bounding box excluding the tail, b) bounding box of non closed balloon, c) pixel level contour annotation. Text lines The text lines are defined as a sequence of text characters aligned in the same direction (Figure D.3a). This definition encompasses both speech text and narrative text, often located inside balloon, onomatopoeia (graphic sound) that are written or drawn directly in the panel without particular container. Comics are static graphics, the expression of emotions of a comic character is the joint action of drawing and text, sometimes in the form of a single punctuation symbol. For instance, an exclamation mark for surprise or a question mark for a misunderstanding. These isolated symbols convey information and are segmented as text line as well (Figure D.3b). Similarly, we have chosen to include in this category the illustrative text, such as a road sign or storefront (Figure D.3c). Although at the boundary between text and graphic, these elements are still invariably read by the reader and their annotation is potentially interesting for multiple purposes, including story and scene analysis. Comic characters The comic characters position have been included in the second version of the ground truth only (2014). The concept of character may have different interpretations when used for comics and must be specified. Characters in a comic have not necessarily a human-like, or even living being appearance. Even so, it would be appropriate to annotate every character instance appearing in a box while some are only part of the scenery. Therefore, we have chosen to limit the annotation to the comic characters that emits at least one speech balloon in the album (minimal impact in the story). Their bounding box has been defined to maximize the region occupied by the comic character inside the box region. Therefore, some parts of the character such as arms or legs, are clipped sometimes (Figure D.4). 130 GROUND TRUTH (b) Unique symbol (punctuation) (c) Illustrative text (non horizontal) Figure D.3: Examples of text line position annotations. **Figure D.4:** Example of comic character annotation: sniper s arms are not included in the bounding box in order to maximize the region
occupied by the sniper in its bounding box. The two snipers and the two characters in the car are annotated because they emit a speech balloon in a different panel. Image credits: [71]. #### D.1.2 Semantic annotation This second level of annotation complete each spacial region with additional information about its semantic. Also, the image itself is annotated with extra information about its origin (e.g. album, collection, author, publisher). Images The images, often assimilated as pages, has been annotated with bibliographical information, so that anyone using this ground truth is free to get is own paper copy of the comic books for extra uses. The first annotation is the page number (pageNumber) then the comic book title, from which the page has been picked up, and its release date (albumTitle, releaseDate), the series it belongs to (collectionTitle), the authors and editor names (writerName, drawerName, editorName) and, finally, the website and/or ISBN (website, ISBN). The album title is not mandatory for webcomics. Structural information about the page content has been added as well, such as resolution (resolution), reading direction (readingDirection), main language of the text (language) and single or double page information (doublePage). **Panels** The panels are annotated with a rank metadata which stands for its position in the reading sequence. The first panel to be read on a given page has its rank property set to 1, while the last one is set to n, where n is the number of panels in the page. Balloons Balloons are also annotated with a rank property that defines their reading order relatively to the image because balloons are not always included in panels. For a page containing m balloons, the first balloon s rank will be 1 and the last will be m. A second information concerns the shape of the balloon. This feature conveys an information about how the contained text is spoken (tone). The type of shape is given from the following list smooth, wavy, spiky, suggested, other as pictured in Figure D.5. Finally, the tail tip position (extremity) and its pointing direction have been added into the second version of the ground truth. There are given through the tailTip and tailDirection properties. The possible values of the direction are reduced to the eight cardinal directions plus a ninth additional value for the lack of tail: N, NE, E, SE, S, SW, W, NW, none. In the second version of the ground truth (2014), we added the identifier of the comic character which is emitting the balloon idCharacter. Text lines The text lines are associated with their transcription and the identifier of the corresponding balloon is added in idBalloon if the text line is included in a balloon. In a second step, the function of each text line was specified through metadata textType. We identified six distinct categories of text. The text that is used to tell the story and that can be either spoken (speech) or thought (thought) or narrated (narrative). On the other hand, there are textual information that bring 132 GROUND TRUTH **Figure D.5:** Balloon contour styles, from top-left to bottom-right: cloud, spiky, suggested and two smoothed contour type. Note that the two last ones are not labelled as rectangle or oval because here we annotated the type of contour and not shape (Section 4.4.2) timely and contextual information, they are the onomatopoeia (onomatopoeia) and drawn text (illustrative) as part of the drawing such as license plate, storefront, brand. The sixth category have been defined as notes (note) for embedded text in the page, such as the signature of the author, the page number, the title (every other readable text type). Comic characters The comic characters are identified by idCharacter in order to be easily referred. Currently, it is the only metadata concerning the comic characters but it can be extended with information about character name, gender, posture, relationship etc. #### D.1.3 File structure The ground truth file structure have been thought according to existing comics related formalism such as Comics Markup Language (ComicsML) [109], Comic Book Markup Language (CBML) [176], Periodical Comics¹, A Comics Ontology [139], Advanced Comic Book Format (ACBF)² and the Grand Comics Database (GCD)³. See the Ph.D. thesis of Guérin [57] for an extended review. As we wanted to keep the ground truth file system simple and easy to share, visual and semantic annotations about a given page are gathered in a single full-text file following the specifications of Scalable Vector Graphics (SVG). Besides being an open-standard developed by the World Wide Web Consortium (W3C) since 1999, the SVG format fulfils two essential needs for this database. First, using a recent Internet browser or your favourite image viewer, it provides a simple, fast and elegant way to display the visual annotation of any desired object over ¹http://www.w3.org/wiki/WebSchemas/PeriodicalsComics ²https://launchpad.net/acbf ³http://www.comics.org a comic book page using layers. No need to install software such as Matlab, Adobe Illustrator or equivalent open source to visualize the ground truth information. It is an XML-based vector image format that allows to display and interact with the annotated region, stored as polygon object in the SVG file, as desired using the Cascading Style Sheets (CSS) properties (Figure D.6). **Figure D.6:** Example of rendering for each class of element. For example, red for panels (a), cyan for balloons (b) and green for text (c). The opacity is set to 50% to allow seeing the corresponding image by transparency. Each layer can be displayed or not in order to enhance the clearness of the annotations when browsing the database. Secondly, SVG being a XLM-based language, it makes the integration of semantic annotation very easy via the use of the predefined metadata element. One ground truth file contains the complete description of one comics image. There is no hierarchical link between pages from a same comic book. Following the basic XML encoding information, a SVG file starts with a root <svq> element containing the title of the document, <title>, and five <svq> children with different class attributes. These contain annotations collected on five types of elements which are the page, panels, balloons, text lines and comic characters. The type of element in a tag is specified by its class attribute. The first tag, class contains description on the image and has two daughters. The first one, image has several attributes which specifies a link to the image file in the dataset xlink: href and two specifying the width and height of the image. The second, metadata, contains bibliographic information about the album and page properties described in Section D.1.2. The four following <svg> siblings, <svg class= Panel >, <svg class= Balloon >, <svg class= and <svg class= Character > respectively contain the annotations about panels, balloons, text lines and comic characters. They all contain SVG <polygon> elements with a list of five or more points in a point attribute that define the position of the bounding box corners or the pixel-level contour. Note that the last point 134 GROUND TRUTH is always equal the first one to close the polygon according to the SVG specifications. Those points are used by the viewer to draw polygons with the corresponding CSS style. Each <polygon> has a <metadata> child to store information on the corresponding polygon, according to the attributes list described Section D.1.2. An example of ground truth file content is given Listing D.1. ``` <?xml version="1.0" encoding="UTF-8" standalone="no"?> <title>CYB BUBBLEGOM T01 005</title> <svg class="Page"> <image</pre> x = "0" v="0" width="750" height="1060" href="CYB_BUBBLEGOM_T01_005.jpg" /> <metadata collectionTitle="Bubblegom Gom" editorName="Studio_Cyborga" doublePage="false" website="http://bubblegom.over-blog.com" albumTitle="La_Legende_des_Yaouanks" drawerName="Cyborg 07" language="french" resolution="300" ISBN="979-10-90655-01-0" readingDirection="leftToRight" writerName="Cyborg 07" releaseDate="2009" pageNumber="5" /> </svq> <svg class="Panel"> <polygon points="53,95 268,95 268,292 53,292 53,95"> <metadata idPanel="P01" rank="1" /> </polygon> . . . </sva> <svg class="Balloon"> <polygon points="61,103 143,103 143,172 61,172 61,103"> <metadata idBalloon="B01" shape="smooth" tailTaip="153,167" tailDirection="SE" rank="1" ``` ``` /> </polvgon> </sva> <svg class="Line"> <polygon points="373,121 432,121 432,132 373,132 373,121"> <metadata idLine="L01" idBalloon="B01" LIKE YOU. </metadata> </polygon> . . . </svg> <svg class="Character"> <polygon points="84,153 261,153 261,298 84,298 84,153"/> <metadata idCharacter="C01"/> </svg> <svg class="LinkSBSC"> <polygon points="34,234 56,235 79,340 79,339 34,234"/> <metadata idLinkSBSC="LSBSC01" idBalloon="B01" idCharacter="C01" /> </sva> </svq> ``` **Listing D.1:** Example of ground truth information stored in a SVG file ### D.2 Ground truth quality assessment When several persons are involved in the creation of a graphical ground truth, it is very difficult to obtain a perfectly homogeneous segmentation. Indeed, it could vary from one person to another because each person has a different sensitivity at reading comics and at integrating instructions. Therefore, in addition to the package of pages he was in charge of, each participant has been asked to annotate the panels of a extra page. This extra page was the same for everybody and was chosen for its graphical components heterogeneity. It contained ten panels from which, four were full-framed, five half-framed and one was frameless. We defined an acceptable error for the position of a corner given by several persons. The images of dataset being of different definitions, using a percentage of the page size makes more sense than using a specific number of pixels. We set this percentage p at 0.5% of the page height 136 GROUND TRUTH and width in x and y.
Given the definition of the test image of 750×1060 pixels, this makes a delta of +/-5 pixels in y axis and +/-4 pixels in x axis. We asked to each one of the twenty involved persons to draw the four points bounding box of the panels ignoring text area. A mean position from the twenty different values has been calculated for each of them. Then, the distance of each point to its mean value is computed. Figure D.7 shows the amount of corners for a distance, centred on zero. **Figure D.7:** Number of corners for a given standard deviation value. This has been calculated on y axis and x axis and produces similar plot. Given the threshold th=0.5, 87.5% of pointed corners can be considered as being homogeneous over the group of labelling people. The overall mean standard deviation on this page reaches 0,15% (1.13 pixels) for the width, and 0.12% (1.28 pixels) for the height. The two bumps, at -40 and 15, are related to the missegmentation of 13 of the 80 panels. Indeed, instructions have been misunderstood by some people who included text area outside of the panels or missed some panel's parts. Figure D.8 shows the difference between areas labelled as a panel by at least one person and areas labelled as a panel by every participants. However, such mistakes have been manually corrected before publishing the ground truth. Even though the error criterion has only been estimated on panels, it is reasonable to extend it to balloons and text lines as well. Indeed, the segmentation protocol being quite similar for all features (bounding box as close as possible to the drawing), the observed standard deviation of panel corner positions has no reason to be different from balloons and text lines. The pixel-level balloon and the comic characters visual annotation have been carried out by a single person, the homogeneity is only subject to the regularity of the person over time and is, therefore, difficult to assess quantitatively. D.3. Terms of use **Figure D.8:** Image used for error measurement. Red hatched areas are the difference between areas labelled as panels by at least one person and areas labelled by everybody. Image credit: [35]. ### D.3 Terms of use We obtain the minimum rights for sharing and publishing image material from the right holders but we had to make sure the user accept it before using the data. In collaboration with the intellectual property department of the University of La Rochelle, we established the following: In order to use this database, you must firstly agree to the terms. You may not use the database if you don't accept the terms. The use of this database is limited to scien138 GROUND TRUTH tific and non-commercial purpose only, in the computer science domain. For instance, you are allowed to split the images, through the use of segmentation algorithms. You can also use pieces of this database to illustrate your research in publications and presentations. Any other use case must be validated by our service. If you do agree to be bound by all of these Terms of Use, please fill and email the request form and then use the login and password provided to download the selected version below. The concerned request form requires the identity, affiliation, address and intended use of the person who wishes to use data. # Appendix E # List of Publications This dissertation has led to the following communications: ## Journal Papers • Christophe Rigaud, Clément Guérin, Dimosthenis Karatzas, Jean-Christophe Burie and Jean-Marc Ogier. Knowledge-driven understanding of images in comic books. (pending acceptance). ## **Book Chapters** - Christophe Rigaud, Dimosthenis Karatzas, Jean-Christophe Burie and Jean-Marc Ogier. Adaptive contour classification of comics speech balloons. In Graphic Recognition. New Trends and Challenges. Lecture Notes in Computer Science, Vol. 8746, 2014. - Christophe Rigaud, Norbert Tsopze, Jean-Christophe Burie and Jean-Marc Ogier. Robust frame and text extraction from comic books. In Graphic Recognition. New Trends and Challenges. Lecture Notes in Computer Science, Vol. 7423, pp. 129-138, 2013. ## **Conference Contributions** • Clément Guérin, Christophe Rigaud, Karell Bertet, Jean-Christophe Burie, Arnaud Revel and Jean-Marc Ogier. Réduction de l'espace de recherche pour les personnages de bandes dessinées . In the Proceedings of the 19ème congrès national sur la Reconnaissance de Formes et l'Intelligence Artificielle (RFIA), Rouen, France, July, 2014. - Christophe Rigaud, Dimosthenis Karatzas, Jean-Christophe Burie and Jean-Marc Ogier. Color descriptor for content-based drawing retrieval. In the Proceedings of the 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 267-271, Tours, France, April, 2014. - Christophe Rigaud, and Clément Guérin. Localisation contextuelle des personnages de bandes dessinées. In the Proceedings of the 13ème Colloque International Francophone sur l'Ecrit et le Document (CIFED), pp. 367-370, Nancy, France, March 2014. - Clément Guérin, Christophe Rigaud, Antoine Mercier, Farid Ammar-Boudjelal, Karell Bertet, Alain Bouju, Jean-Christophe Burie, Georges Louis, Jean-Marc Ogier and Arnaud Revel. eBDtheque: a representative database of comics. In the Proceedings of the 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 1145-1149, Washington DC, USA, August, 2013. - Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie and Jean-Marc Ogier. An active contour model for speech balloon detection in comics. In the Proceedings of the 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 1240-1244, Washington DC, USA, August, 2013. - Christophe Rigaud, Dimosthenis Karatzas, Jean-Christophe Burie and Jean-Marc Ogier. Speech balloon contour classification in comics. In the Proceedings of the 10th IAPR International Workshop on Graphics RECognition (GREC), pp. 23-25, Bethlehem, PA, USA, August, 2013. - Hoang Nam Ho, Christophe Rigaud, Jean-Christophe Burie and Jean-Marc Ogier. Redundant structure detection in attributed adjacency graphs for character detection in comics books. In the Proceedings of the 10th IAPR International Workshop on Graphics RECognition (GREC), pp. 109-113, Bethlehem, PA, USA, August, 2013. - Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie and Jean-Marc Ogier. Automatic Text Localisation in Scanned Comic Books. In the Proceedings of the 8th International Conference on Computer Vision Theory and Applications (VISAPP), pp. 814-819, Barcelona, Spain, February, 2013. • Christophe Rigaud, Norbert Tsopze, Jean-Christophe Burie and Jean-Marc Ogier. Extraction robuste des cases et du texte de bandes dessinées . In the Proceedings of the 10ème Colloque International Francophone sur l Ecrit et le Document (CIFED), pp. 349-360, Bordeaux, France, March 2012. #### Websites - eBDtheque project: http://l3i.univ-larochelle.fr/eBDtheque - eBDtheque dataset: http://ebdtheque.univ-lr.fr - Christophe Rigaud s homepage: http://www.christophe-rigaud.com ### Social networks - ResearchGate: http://www.researchgate.net/profile/Christophe_ Rigaud - GitHub: https://github.com/crigaud/publication - Mendeley: http://www.mendeley.com/profiles/christophe-r/ # **Bibliography** - [1] Rolf Adams and Leanne Bischof. Seeded region growing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(6):641–647, 1994. 119 - [2] Hafiz Aziz AHMAD, Shinichi KOYAMA, and Haruo HIBINO. Impacts of manga on indonesian readers self-efficacy and behavior intentions to imitate its visuals. *Bulletin of JSSD*, 59(3), 2012. 16 - [3] Tiago Alves, Ana Simoes, Rui Figueiredo, Marco Vala, Ana Paiva, and Ruth Aylett. So tell me what happened: Turning agent-based interactive drama into comics. In *Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems Volume 3*, AAMAS 08, pages 1269 1272, Richland, SC, 2008. International Foundation for Autonomous Agents and Multiagent Systems. 18 - [4] C-N E. Anagnostopoulos, Ioannis E Anagnostopoulos, Ioannis D Psoroulas, Vassilis Loumos, and Eleftherios Kayafas. License plate recognition from still images and video sequences: A survey. *Intelligent Transportation Systems*, *IEEE Transactions on*, 9(3):377–391, 2008. 15 - [5] Kohei Arai and Herman Tolle. Automatic e-comic content adaptation. *International Journal of Ubiquitous Computing (IJUC)*, 1(1):1–11, 2010. 13 - [6] Kohei Arai and Herman Tolle. Method for automatic e-comic scene frame extraction for reading comic on mobile devices. In Seventh International Conference on Information Technology: New Generations, ITNG 10, pages 370–375, Washington, DC, USA, 2010. IEEE Computer Society. 12, 84, 85, 92 - [7] Kohei Arai and Herman Tolle. Method for real time text extraction of digital manga comic. *International Journal of Image Processing (IJIP)*, 4(6):669–676, 2011. 13, 14, 15, 43, 44, 47, 88, 89, 91, 93, 96 - [8] M. Back, R. Gold, A. Balsamo, M. Chow, M. Gorbet, S. Harrison, D. MacDonald, and S. Minnerman. Designing innovative reading experiences for a museum exhibition. *Computer*, 34(1):80–87, Jan 2001. 3 - [9] Thomas Bader, René Rapple, and Jurgen Beyerer. Fast invariant contour-based classification of hand symbols for hci. In Xiaoyi Jiang and Nicolai Petkov, editors, Computer Analysis of Images and Patterns, volume 5702 of Lecture - Notes in Computer Science, pages 689–696. Springer Berlin Heidelberg, 2009. 14 - [10] Siddhartha Bhattacharyya. A brief survey of color image preprocessing and segmentation techniques. *Journal of Pattern Recognition Research*, 1(1):120 129, 2011. 9 - [11] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. 121 - [12] Thomas Blaschke, Geoffrey J. Hay, Maggi Kelly, Stefan Lang, Peter Hofmann, Elisabeth Addink, Raul Queiroz Feitosa, Freek van der Meer, Harald van der Werff, Frieke van
Coillie, and Dirk Tiede. Geographic object-based image analysis towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87(0):180 191, 2014. 17 - [13] Michal Borodo. Multimodality, translation and comics. Perspectives, pages 1 20, 2014. 3 - [14] DC Brandon. Graphic novels and comics for the visually impaired explored in award-winning paper, 2014. 3 - [15] Thomas M Breuel. High performance document layout analysis. In Proceedings of the Symposium on Document Image Understanding Technology, pages 209 218, 2003. 10 - [16] Christopher Brochtrup. Ocr manga reader for android, 2013. 18 - [17] Christopher Brochtrup. Capture2text, 2014. 18 - [18] Chrysoline Canivet-Fovez. Le manga Une synthèse de référence qui éclaire en image l'origine, l'histoire et l'influence de la bande dessinée japonaise. Eyrolles, 2014. 2 - [19] John Canny. A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-8(6):679 698, Nov 1986. 120 - [20] ChungHo Chan, Howard Leung, and Taku Komura. Automatic panel extraction of color comic images. In HoraceH.-S. Ip, OscarC. Au, Howard Leung, Ming-Ting Sun, Wei-Ying Ma, and Shi-Min Hu, editors, Advances in Multimedia Information Processing - PCM 2007, volume 4810 of Lecture Notes in Computer Science, pages 775–784. Springer Berlin Heidelberg, 2007. 12 - [21] S.C.S. Cheung, City University of Hong Kong. Run Run Shaw Library, and City University of Hong Kong. Department of Computer Science. Face Detection and Face Recognition of Human-like Characters in Comics. Outstanding academic papers by students. Run Run Shaw Library, City University of Hong Kong, 2008. 16 - [22] G. Chowdhury. Introduction to Modern Information Retrieval, Third Edition. Facet Publishing, 3rd edition, 2010. 55 [23] Evans Christophe and Gaudet Francoise. La lecture de bandes dessinées en france [ce-2012-2]. Technical report, Ministère de la Culture et de la Communication, Paris, France, 2012. 2 - [24] Marx Christy. Writing for Animation, Comics, and Games, chapter 5, pages 79 132. Focal Press, Taylor and Francis Group, Waltham, Massachusetts, Middlesex, US, 1 edition, 2007. 2 - [25] Wei-Ta Chu and Chia-Hsiang Yu. Optimized speech balloon placement for automatic comics generation. In Proceedings of the 3rd ACM International Workshop on Interactive Multimedia on Mobile and Portable Devices, IMMPD 13, pages 1 6, New York, NY, USA, 2013. ACM. 18 - [26] Antonio Clavelli and Dimosthenis Karatzas. Text segmentation in colour posters from the spanish civil war era. In *Proceedings of International Conference on Document Analysis and Recognition*, ICDAR 09, pages 181–185, Washington, DC, USA, 2009. IEEE Computer Society. 5, 15, 23 - [27] Laurent D Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53(2):211–218, March 1991. 14 - [28] Neil Cohn. The limits of time and transitions: Challenges to theories of sequential image comprehension. *Studies in Comics*, 1(1):127–147, 2010. 16 - [29] Neil Cohn. Navigating comics: an empirical and theoretical approach to strategies of reading comic page layouts. *Frontiers in psychology*, 4(April):186, 2013. - [30] International Committee. *Introduction to publishing in Japan*. Japan Book Publishers Association, Tokyo, Japan, 2014. 2 - [31] Robert S Cooperman. System for document layout analysis, 1998. US Patent 5,784,487. 10 - [32] Rikke Platz Cortsen. Comics as Assemblage: How spatio-temporality in comics is constructed. PhD thesis, University of Copenhagen, 2012. 3 - [33] Daniel Cremers, Florian Tischhauser, Joachim Weickert, and Christoph Schnorr. Diffusion snakes: introducing statistical shape knowledge into the mumford-shah functional. *International Journal of Computer Vision*, 50:295-313, 2002. 28 - [34] Cyb. Cosmozone. Studio Cyborga, Goven, France, 2008. 55, 56, 59 - [35] Cyb. Bubblegôm Gôm. Studio Cyborga, Goven, France, 2009. 22, 25, 27, 29, 31, 44, 137 - [36] Cyb. Le Magicien Lose. Studio Cyborga, Goven, France, 2011. 61, 103 - [37] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, International Conference on Computer Vision & Pattern Recognition, volume 2, pages 886–893, INRIA Rhone-Alpes, ZIRST-655, av. de l Europe, Montbonnot-38334, June 2005. 16 - [38] Danica Davidson. Manga grows in the heart of europe, 2012. 2 - [39] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. The mahalanobis distance. *Chemometrics and intelligent laboratory systems*, 50(1):1 18, 2000. 45 - [40] Adrien Delaye and Cheng-Lin Liu. Multi-class segmentation of free-form online documents with tree conditional random fields. *International Journal on Document Analysis and Recognition (IJDAR)*, pages 1 17, 2014. 5 - [41] Michael B Dillencourt, Hanan Samet, and Markku Tamminen. A general approach to connected-component labeling for arbitrary image representations. *Journal of the ACM (JACM)*, 39(2):253–280, 1992. 123 - [42] B. Duc. L'art de la B.D.: Du scénario à la réalisation graphique, tout sur la création des bandes dessinées. Editions Glénat, 1997. 1 - [43] Bernard Duc. L'art de la BD Tome 1 Du scénario à la réalisation. Glénat, 1982. 70 - [44] Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect lines and curves in pictures. *Commun. ACM*, 15:11–15, January 1972. 12 - [45] ffivind Due Trier, Anil K Jain, and Torfinn Taxt. Feature extraction methods for character recognition-a survey. *Pattern recognition*, 29(4):641–662, 1996. 10 - [46] Will Eisner. Comics and Sequential Art. W. W. Norton and Company, 1985. 1 - [47] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural scenes with stroke width transform. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2963—2970, june 2010. 5, 15 - [48] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88(2):303–338, June 2010. 79, 127 - [49] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *International journal of computer vision*, 88(2):303–338, 2010. 82 - [50] S. Fidler, Jian Yao, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. 2013 IEEE Conference on Computer Vision and Pattern Recognition, 0:702-709, 2012. 17 - [51] Joyce Goggin. The Rise and Reason of Comics and Graphic Literature: Critical Essays on the Form, volume 1, chapter 4, pages 56–74. McFarland, Book News, Inc., Portland, OR, 1 edition, 2010. 13 - [52] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1992. 120 - [53] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology, 2007. 79 [54] A Grigoriu, JP Vonwiller, and RW King. An automatic intonation tone contour labelling and classification algorithm. In Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on, volume 2, pages II 181. IEEE, 1994. 14 - [55] Laurence Grove. Bande dessinée studies. French Studies, 68(1):78-87, 2014. 2 - [56] Clément Guérin. Ontologies and spatial relations applied to comic books reading. In PhD Symposium of Knowledge Engineering and Knowledge Management (EKAW), Galway, Ireland, 2012. 13, 17 - [57] Clément Guérin. Enrichissement sémantique d'images de planches de bandes déssinées numérisées. PhD thesis, Université de La Rochelle, Technoforum -23, avenue Albert Einstein BP 33060 - 17031 La Rochelle - France, 2014. 62, 64, 127, 132 - [58] Clément Guérin, Christophe Rigaud, Antoine Mercier, and al. ebdtheque: a representative database of comics. In *Proceedings of International Conference* on *Document Analysis and Recognition (ICDAR)*, Washington DC, 2013. 80, 83, 84, 88, 91, 92, 95, 101, 109, 110 - [59] Volker Haarslev, Kay Hidde, Ralf Moller, and Michael Wessel. The RacerPro knowledge representation and reasoning system. Semantic Web, 3(3):267–277, 2012. 69 - [60] Eunjung Han, Kirak Kim, HwangKyu Yang, and Keechul Jung. Frame segmentation used mlp-based x-y recursive for mobile cartoon content. In Proceedings of the 12th international conference on Human-computer interaction: intelligent multimodal interaction environments, HCI 07, pages 872–881, Berlin, Heidelberg, 2007. Springer-Verlag. 12 - [61] Alice Hermann, Sébastien Ferré, and Mireille Ducassé. Guided semantic annotation of comic panels with sewelis. In EKAW, volume 7603 of Lecture Notes in Computer Science, pages 430–433. Springer, 2012. 17 - [62] Anh Khoi Ngo Ho, Jean-Christophe Burie, and Jean-Marc Ogier. Panel and speech balloon extraction from comic books. In 2012 10th IAPR International Workshop on Document Analysis Systems, pages 424 428. Ieee, 2012. xi, 13, 43, 84, 85, 86, 88, 92, 93, 96 - [63] Hoang Nam Ho, Christophe Rigaud, Jean-Christophe Burie, and Jean-Marc Ogier. Redundant structure detection in attributed adjacency graphs for character detection in comics books. In *Proceedings of the 10th IAPR International* Workshop on Graphics Recognition (GREC), Bethlehem, PA, USA, 2013. 16 - [64] Steven L Horowitz and Theodosios Pavlidis. Picture segmentation by a tree traversal algorithm. *Journal of the ACM (JACM)*, 23(2):368–388, 1976. 120 - [65] B. Hu, S. Dasmahapatra, P. Lewis, and N. Shadbolt. Ontology-based medical image annotation with description logics. In *Tools with Artificial Intelligence*, 2003. Proceedings of the 15th Int. Conf. on Tools with Artificial Intelligence (ICTAI'03), 2003. 17 [66] Céline Hudelot, Jamal Atif, and Isabelle Bloch. Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets and Systems, 159(15):1929 1951, 2008. From Knowledge Representation to Information Processing and
Management Selected papers from the French Fuzzy Days (LFA 2006). 17 - [67] Yusuke In, Takashi Oie, Masakazu Higuchi, Shuji Kawasaki, Atushi Koike, and Hitomi Murakami. Fast frame decomposition and sorting by contour tracing for mobile phone comic images. *Internatinal journal of systems applications*, engineering and development, 5(2):216–223, 2011. 12 - [68] Eri Inoue. Kyoumen gensoukyoku. Kyoumen gensoukyoku, Osaka, Japan, 2008. 25, 44 - [69] Motoi Iwata, Atsushi Ito, and Koichi Kise. A study to achieve manga character retrieval method for manga images. In *Document Analysis Systems (DAS)*, 2014 11th IAPR International Workshop on, pages 309–313, April 2014. 16 - [70] Raulet Jérémy and Boyer Vincent. Comics reading: An automatic script generation. In Proceedings of the 21st International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), pages 88–96, 2013. - [71] Olivier Jolivet. BostonPolice. Clair de Lune, Allauch, France, 2010. 55, 130 - [72] Llados Josep. Recognition of textual and graphical patterns. Second International Document Image Processing Summer School (IDIPS 2014), 2014. 10 - [73] Keechul Jung, Kwang In Kim, and Anil K. Jain. Text information extraction in images and video: a survey. *Pattern Recognition*, 37(5):977 997, 2004. 14 - [74] D. Karatzas and A. Antonacopoulos. Colour text segmentation in web images based on human perception. *Image and Vision Computing*, 25(5):564 577, 2007. 15 - [75] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. Gomez i Bigorda, S. Robles Mestre, J. Mas, D. Fernandez Mota, J. Almazan Almazan, and L.-P. de las Heras. Icdar 2013 robust reading competition. In *Proceedings of International Conference on Document Analysis and Recognition (ICDAR)*, pages 1484–1493, Aug 2013. 14 - [76] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331, 1988. 13, 14, 28, 120 - [77] D. Kelkar and S. Gupta. Improved quadtree method for split merge image segmentation. In Emerging Trends in Engineering and Technology, 2008. ICETET '08. First International Conference on, pages 44–47, July 2008. 120 - [78] Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost van de Weijer, Andrew D. Bagdanov, Maria Vanrell, and Antonio Lopez. Color attributes for object detection. In Twenty-Fifth IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), 2012. 16 [79] Wonjun Kim and Changick Kim. A new approach for overlay text detection and extraction from complex video scene. *Image Processing*, *IEEE Transactions on*, 18(2):401 411, feb. 2009. 15 - [80] Johannes Kopf and Dani Lischinski. Digital reconstruction of halftoned color comics. ACM Trans. Graph., 31(6):140:1 140:10, November 2012. 54, 107 - [81] Gerald Kuhne, Stephan Richter, and Markus Beier. Motion-based segmentation and contour-based classification of video objects. In *Proceedings of the ninth* ACM international conference on Multimedia, pages 41–50. ACM, 2001. 14 - [82] David Kurlander, Tim Skelly, and David Salesin. Comic chat. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques -SIGGRAPH '96, 96:225 236, 1996. 18 - [83] Jean-Marc Lainé and Sylvain Delzant. Le lettrage des bulles. Eyrolles, 2010. 70 - [84] Bart Lamiroy, Daniel Lopresti, Hank Korth, and Jeff Heflin. How Carefully Designed Open Resource Sharing Can Help and Expand Document Analysis Research. In Christian Viard-Gaudin Gady Agam, editor, *Document Recognition and Retrieval XVIII - DRR 2011*, volume 7874, San Francisco, United States, January 2011. SPIE, SPIE. 79 - [85] Bart Lamiroy and Jean-Marc Ogier. Analysis and interpretation of graphical documents. In David Doermann and Karl Tombre, editors, Handbook of Document Image Processing and Recognition. Springer, 2014. 17 - [86] Lamisseb. Les noeils Tome 1. Bac@BD, Valence, France, 2011. 55, 56, 57, 58 - [87] Lamisseb. Et Pis Taf! Bac@BD, Valence, France, 2012. 32 - [88] Bertrand Leroy, Isabelle L. Herlin, and Laurent D. Cohen. Multi-resolution algorithms for active contour models. In Marie-Odile Berger and Deriche et al., editors, ICAOS'96, volume 219 of Lecture Notes in Control and Information Sciences, pages 58–65. Springer Berlin Heidelberg, 1996. 14 - [89] Wing Ho Leung and Tsuhan Chen. Trademark retrieval using contour-skeleton stroke classification. In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on, volume 2, pages 517–520. IEEE, 2002. 14 - [90] Congcong Li, Adarsh Kowdle, Ashutosh Saxena, and Tsuhan Chen. Toward holistic scene understanding: Feedback enabled cascaded classification models. *IEEE Trans. Pattern Anal. Mach. Intell.*, 34(7):1394–1408, 2012. 17 - [91] Luyuan Li, Yongtao Wang, Zhi Tang, and Liangcai Gao. Automatic comic page segmentation based on polygon detection. *Multimedia Tools Applications*, 69(1):171–197, 2014. 12, 13 - [92] Luyuan Li, Yongtao Wang, Zhi Tang, and Dong Liu. Comic image understanding based on polygon detection. Proc. SPIE, 8658:86580B 86580B 11, 2013. [93] Luyuan Li, Yongtao Wang, Zhi Tang, Xiaoqing Lu, and Liangcai Gao. Unsupervised speech text localization in comic images. In Proceedings of International Conference on Document Analysis and Recognition (ICDAR), pages 1190–1194, Aug 2013. 15, 42, 45 - [94] Bruce Lidl. Surveying digital comics after amazon-comixology, 2014. 4 - [95] Dong Liu, Yongtao Wang, Zhi Tang, Luyuan Li, and Liangcai Gao. Automatic comic page image understanding based on edge segment analysis. In *Proc.* SPIE, volume 9021, pages 90210J 90210J 12, 2013. 13 - [96] H-C Liu and Mandyam D. Srinath. Partial shape classification using contour matching in distance transformation. Pattern Analysis and Machine Intelliquence, IEEE Transactions on, 12(11):1072–1079, 1990. 14 - [97] Ricardo Lopes, Tiago Cardoso, Nelson Silva, and ManuelJ. Fonseca. Calligraphic shortcuts for comics creation. In Andreas Butz, Brian Fisher, Marc Christie, Antonio Kruger, Patrick Olivier, and Roberto Therón, editors, Smart Graphics, volume 5531 of Lecture Notes in Computer Science, pages 223–232. Springer Berlin Heidelberg, 2009. 18 - [98] Gérald Lubbin. Les bulles du labo. Doc en Stock, Paris, France, 2012. 41, 55 - [99] L Luccheseyz and SK Mitray. Color image segmentation: A state-of-the-art survey. Proceedings of the Indian National Science Academy (INSA-A), 67(2):207 221, 2001. - [100] Boudissa Magali. La bande dessinée entre la page et l'écran : étude critique des enjeux théoriques liés au renouvellement du langage bédéique sous influence numérique. PhD thesis, University Paris 8 Vincennes Saint-Denis, Paris, France, 2011. 2 - [101] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. Proceedings of the National Institute of Sciences (Calcutta), 2:49–55, 1936. 45 - [102] Song Mao, Azriel Rosenfeld, and Tapas Kanungo. Document structure analysis algorithms: a literature survey. In Tapas Kanungo, Elisa H. Barney Smith, Jianying Hu, and Paul B. Kantor, editors, DRR, volume 5010 of SPIE Proceedings, pages 197–207. SPIE, 2003. 17 - [103] Christy Marx. Writing for Animation, Comics, and Games. Focal Press, 2006. - [104] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide-baseline stereo from maximally stable extremal regions. *Image and vision computing*, 22(10):761-767, 2004. 16, 43 - [105] Yusuke Matsui, Toshihiko Yamasaki, and Kiyoharu Aizawa. Interactive Manga retargeting. In ACM SIGGRAPH 2011 Posters on SIGGRAPH '11, page 1, New York, New York, USA, 2011. ACM Press. 13, 15 - [106] Ted McCall and Charles Snelgrove. Robin Hood And Company. Anglo-American, Canada, 1946. 25, 44 [107] Scott McCloud. Understanding comics: The Invisible Art. Kitchen Sink Press, 1993. 1, 80 - [108] Scott McCloud. Making Comics: Storytelling Secrets of Comics, Manga and Graphic Novels. HarperCollins, 2006. 19 - [109] Jason McIntosh. ComicsML, 2011. 132 - [110] Stuart Medley. Discerning pictures: How we look at and understand images in comics. Studies in Comics, 1(1):53-70, 2010. 16 - [111] Andrew Mehnert and Paul Jackway. An improved seeded region growing algorithm. *Pattern Recognition Letters*, 18(10):1065–1071, 1997. 119 - [112] Quan Meng and Yonghong Song. Text detection in natural scenes with salient region. In *Document Analysis Systems (DAS)*, 2012 10th IAPR International Workshop on, pages 384—388, march 2012. 15 - [113] Aaron Meskin and Roy T. Cook. The Art of Comics: A Philosophical Approach Ch 2 The Ontology of Comics, volume 1, pages 218 285. John Wiley and Sons, New York, USA, 2011. 17 - [114] Vasileios Mezaris, Ioannis Kompatsiaris, and Michael G. Strintzis. An ontology approach to object-based image retrieval. In *In Proc. IEEE Int. Conf. on Image Processing (ICIP03*, pages 511–514, 2003. 17 - [115] Midam. Kid Paddle. Dupuis, Marcinelle, Belgium, 2011. 26, 47, 56 - [116] John Jackson Miller. Yearly rankings for comic book sales, 2014. 2 - [117] G.S. Millidge. Comic Book Design. Watson-Guptill Publications, 2009. 14 - [118] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 1997. 52 - [119] Marion Montaigne. Tu mourras moins bête La science, c'est pas du cinéma! Ankama, Roubaix, France, 2012. 32 - [120] Ramakrishnan Mukundan and KR Ramakrishnan. Moment functions in image analysis: theory and applications, volume 100. World Scientific, 1998. 14 - [121] L. Neumann and J. Matas. Real-time scene text localization and recognition. Computer Vision and Pattern Recognition, pages 1485–1490, 2012. 5, 15 - [122] Nhu Van Nguyen, Jean-Marc Ogier, and Franck Charneau. Bag of subjects: Lecture videos multimodal indexing. In *Proceedings of the 2013 ACM Symposium on Document Engineering*, DocEng 13, pages 225–226, New York, NY, USA, 2013. ACM. 15 - [123] Alain Saint Ogan. Zig, Puce et Alfred. Hachette, Paris, France, 1952. 44 - [124] J.M. Ogier, R. Mullot, J. Labiche, and Y. Lecourtier. Semantic coherency: the basis of an image
interpretation device-application to the cadastral map interpretation. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 30(2):322–338, Apr 2000. 17 [125] Daniel M. Oliveira and Rafael D. Lins. Generalizing tableau to any color of teaching boards. In *Proceedings of the 2010 20th International Conference on Pattern Recognition*, ICPR 10, pages 2411–2414, Washington, DC, USA, 2010. IEEE Computer Society. 5, 15 - [126] N. Otsu. A threshold selection method from gray level histograms. IEEE Trans. Systems, Man and Cybernetics, 9:62–66, March 1979. minimize inter class variance. 47, 121 - [127] Nikhil R Pal and Sankar K Pal. A review on image segmentation techniques. Pattern recognition, 26(9):1277–1294, 1993. 9 - [128] Jay Scott Pike. Boy Love Girls. Lev Gleason, New York City, US, 1953. 71 - [129] Plasq. Comic life 3, 2014. 18 - [130] J Ponce and D Forsyth. Computer vision: a modern approach. Prentice Hall (2 edition), 2012. 121 - [131] Christophe Ponsard. Enhancing the accessibility for all of digital comic books. e-Minds, 1(5), 2009. 3, 13 - [132] Christophe Ponsard, Ravi Ramdoyal, and Daniel Dziamski. An ocr-enabled digital comic books viewer. In Computers Helping People with Special Needs, pages 471–478. Springer, 2012. 13, 15 - [133] Vicky Portail-Kernel and Cédric Kernel. Prunelle, la fille du cyclope. Ankama, Roubaix, France, 2010. 16, 56 - [134] Pratt and William K. Digital image processing (2nd ed.). John Wiley & Sons, Inc., New York, NY, USA, 1991. 20 - [135] William K. Pratt. Digital Image Processing: PIKS Inside. John Wiley & Sons, Inc., New York, NY, USA, 4th edition, 2001. 119 - [136] Gilles Ratier. 2013: l'année de la décélération, 2013. 2 - [137] J. Raulet and V. Boyer. A sketch-based interface to script comics reading. In SIGGRAPH Asia 2011 Sketches, SA 11, pages 3:1 3:2, New York, NY, USA, 2011. ACM. 18 - [138] Stephan Richter, Gerald Kuhne, and Oliver Schuster. Contour-based classification of video objects. In *Proceedings of SPIE*, volume 4315, page 608, 2001. - [139] Paul Rissen. A Comics Ontology, 2012. 132 - [140] Gibbons Robin Varnum, Christina T. The Language of Comics: Word and Image. Studies in Popular Culture. University Press of Mississippi, 2007. 13, 32 - [141] Antti Salovaara. Appropriation of a mms-based comic creator: From system functionalities to resources for action. In *Proceedings of the SIGCHI Conference* on Human Factors in Computing Systems, CHI 07, pages 1117–1126, New York, NY, USA, 2007. ACM. 18 [142] Sohail Sarwar, Zia Ul Qayyum, and Saqib Majeed. Ontology based image retrieval framework using qualitative semantic image descriptions. *Procedia Computer Science*, 22(0):285 294, 2013. 17th International Conference in Knowledge Based and Intelligent Information and Engineering Systems - KES2013. - [143] Eugenio Di Sciascio, Francesco M. Donini, and Marina Mongiello. Structured knowledge representation for image retrieval. CoRR, abs/1109.1498, 2011. 17, 69 - [144] Mehmet Sezgin et al. Survey over image thresholding techniques and quantitative performance evaluation. *Journal of Electronic imaging*, 13(1):146–168, 2004. 121 - [145] A Shahab, F. Shafait, and A Dengel. Icdar 2011 robust reading competition challenge 2: Reading text in scene images. In *Proceedings of International* Conference on Document Analysis and Recognition (ICDAR), pages 1491–1496, Sept 2011. 14 - [146] Ariel Shamir, Michael Rubinstein, and Tomer Levinboim. Generating comics from 3d interactive computer graphics. *IEEE Comput. Graph. Appl.*, 26(3):53 61, May 2006. 18 - [147] P. Shivakumara, T.Q. Phan, and Chew Lim Tan. A robust wavelet transform based technique for video text detection. In *Proceedings of International Con*ference on Document Analysis and Recognition (ICDAR), pages 1285—1289, july 2009. 15 - [148] Shueisha. Vomic, 2014. 18 - [149] Siddharth Singh, Adrian David Cheok, Guo Loong Ng, and Farzam Farbiz. 3d augmented reality comic book and notes for children using mobile phones. In Proceedings of the 2004 Conference on Interaction Design and Children: Building a Community, IDC 04, pages 149 150, New York, NY, USA, 2004. ACM. 3 - [150] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pellet: A Practical OWL-DL Reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2):51-53, 2007. 69 - [151] A.F. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns and treevid. In Proceedings of the 8th ACM international workshop on Multimedia information retrieval, pages 321–330. ACM, 2006. 79 - [152] Martin Stommel, Lena I Merhej, and Marion G Muller. Segmentation-free detection of comic panels. In Computer Vision and Graphics, pages 633–640. Springer, 2012. 13 - [153] Chung-Yuan Su, Ray-I Chang, and Jen-Chang Liu. Recognizing text elements for svg comic compression and its novel applications. In *Proceedings of International Conference on Document Analysis and Recognition (ICDAR)*, pages 1329–1333, Washington, DC, USA, 2011. IEEE Computer Society. 15 [154] Yasuyuki Sumi, Ryuuki Sakamoto, Keiko Nakao, and Kenji Mase. Comicdiary: Representing individual experiences in a comics style. In *Ubicomp*, pages 16–32, 2002. 18 - [155] Kang B Sun and Boaz J Super. Classification of contour shapes using class segment sets. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 727–733. IEEE, 2005. - [156] Weihan Sun and K. Kise. Detecting printed and handwritten partial copies of line drawings embedded in complex backgrounds. In *Proceedings of Inter*national Conference on Document Analysis and Recognition (ICDAR), pages 341–345, July 2009. 16 - [157] Weihan Sun and Koichi Kise. Similar partial copy detection of line drawings using a cascade classifier and feature matching. In Hiroshi Sako, Katrin Franke, and Shuji Saitoh, editors, ICWF, volume 6540 of Lecture Notes in Computer Science, pages 126–137. Springer, 2010. 16 - [158] Weihan Sun and Koichi Kise. Similar Manga Retrieval Using Visual Vocabulary Based on Regions of Interest. In 2011 International Conference on Document Analysis and Recognition, pages 1075–1079. Ieee, 2011. 13 - [159] Weihan Sun and Koichi Kise. Detection of exact and similar partial copies for copyright protection of manga. *International Journal on Document Analysis and Recognition (IJDAR)*, 16(4):331–349, 2013. 16 - [160] Weihan Sun, Koichi Kise, Jean-Christophe Burie, and Jean-Marc Ogier. Specific comic character detection using local feature matching. In *Proceedings of International Conference on Document Analysis and Recognition (ICDAR)*, Washington, USA, 2013. 17 - [161] M. Sundaresan and S. Ranjini. Text extraction from digital english comic image using two blobs extraction method. In *Pattern Recognition*, *Informatics and Medical Engineering (PRIME)*, 2012 International Conference on, pages 449 452, March 2012. 15 - [162] Satoshi Suzuki et al. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing, 30(1):32 46, 1985. 123 - [163] Saira Syed. Comic giants battle for readers, 2012. 2 - [164] Richard Szeliski. Computer Vision: Algorithms and Applications, chapter 8, pages 201–213. Springer-Verlag New York, Inc., New York, NY, USA, 1 edition, 2010. 123 - [165] Richard Szeliski. HORS-THÈME/OPEN TOPIC, chapter 2, pages 80 89. University of Alberta, Edmonton, Canada, 6 edition, 2013. 3 - [166] Anh-Phuong TA. Inexact Graph matching techniques: Application to Object detection and Human action recognition. PhD thesis, INSA de Lyon, 20, rue Albert Einstein, 69621 Villeurbanne Cedex, France, 2010. 16 [167] Kohei Takayama, Henry Johan, and Tomoyuki Nishita. Face detection and face recognition of cartoon characters using feature extraction. In *Image Electronics* and Visual Computing Workshop (IEVC'12), Kuching, Malaysia, 2012. 16 - [168] Takamasa Tanaka, Kenji Shoji, Fubito Toyama, and Juichi Miyamichi. Layout analysis of tree-structured scene frames in comic images. In *IJCAI'07*, pages 2885–2890, 2007. 12 - [169] Yuan Y Tang, Seong-Whan Lee, and Ching Y Suen. Automatic document processing: a survey. *Pattern recognition*, 29(12):1931–1952, 1996. 10 - [170] Quang Minh Tieng and WW Boles. Recognition of 2d object contours using the wavelet transform zero-crossing representation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(8):910–916, 1997. 14 - [171] Hiroaki Tobita. Comic engine: Interactive system for creating and browsing comic books with attention cuing. In *Proceedings of the International Confer*ence on Advanced Visual Interfaces, AVI 10, pages 281 288, New York, NY, USA, 2010. ACM. 17 - [172] Chia-Jung Tsai, Chih-Yuan Yao, Pei-ying Chiang, Yu-Chi Lai, Ming-Te Chi, Hung-Kuo Chu, Yu-Shiang Wong, and Yu-Shuen Wang. Adaptive manga relayout on mobile device. In ACM SIGGRAPH 2013 Posters, SIGGRAPH 13, pages 57:1 57:1, New York, NY, USA, 2013. ACM. 13 - [173] Shingo Uchihashi, Jonathan Foote, Andreas Girgensohn, and John Boreczky. Video manga: Generating semantically meaningful video summaries. In Proceedings of the Seventh ACM International Conference on Multimedia (Part 1), MULTIMEDIA 99, pages 383–392, New York, NY, USA, 1999. ACM. 18 - [174] Szilárd Vajda, Leonard Rothacker, and Gernot A. Fink. A method for camera-based interactive whiteboard reading. In Masakazu Iwamura and Faisal Shafait, editors, Camera-Based Document Analysis and Recognition, volume 7139 of Lecture Notes in Computer Science, pages 112–125. Springer Berlin Heidelberg, 2012. 15 - [175] Paul Viola and Michael J Jones. Robust real-time face detection. *International journal of computer vision*, 57(2):137–154, 2004. 16 - [176] John A Walsh. Comic Book Markup Language: An Introduction and Rationale. Digital Humanities Quarterly (DHQ), 6(1):1 50, 2012. 132 - [177] Kai Wang and Serge Belongie. Word spotting in the wild. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer
Vision ECCV 2010, volume 6311 of Lecture Notes in Computer Science, pages 591 604. Springer Berlin / Heidelberg, 2010. 15 - [178] Meng Wang, Richang Hong, Xiao-Tong Yuan, Shuicheng Yan, and Tat-Seng Chua. Movie2comics: Towards a lively video content presentation. *IEEE Transactions on Multimedia*, 14(3-2):858–870, 2012. 17 - [179] Coulton Waugh. The Comics. Univ. Press of Mississippi, 1947. 1 [180] J.J. Weinman, E. Learned-Miller, and A.R. Hanson. Scene text recognition using similarity and a lexicon with sparse belief propagation. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 31(10):1733–1746, 2009. 5, 15 - [181] C Xu and J L Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3):359–369, 1998. 14, 28, 97, 120 - [182] Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. Image smoothing via l0 gradient minimization. In *Proceedings of the 2011 SIGGRAPH Asia Conference*, SA 11, pages 174:1 174:12, New York, NY, USA, 2011. ACM. 54, 55, 107 - [183] Pengfei Xu, Hongbo Fu, Oscar Kin-Chung Au, and Chiew-Lan Tai. Lazy selection: A scribble-based tool for smart shape elements selection. ACM Trans. Graph., 31(6):142:1 142:9, November 2012. 54 - [184] Masashi Yamada, Rahmat Budiarto, Mamoru Endo, and Shinya Miyazaki. Comic image decomposition for reading comics on cellular phones. *IEICE Transactions*, 87-D(6):1370–1376, 2004. 15 - [185] B. Yao, X. Yang, and S.C. Zhu. Introduction to a large-scale general purpose ground truth database: methodology, annotation tool and benchmarks. In Energy Minimization Methods in Computer Vision and Pattern Recognition, pages 169–183. Springer, 2007. 127 - [186] Peng Ye and D. Doermann. Document image quality assessment: A brief survey. In Proceedings of International Conference on Document Analysis and Recognition (ICDAR), pages 723–727, Aug 2013. 12 - [187] S. Zinger, C. Millet, B. Mathieu, G. Grefenstette, P. Hède, and P. a. Moellic. Extracting an ontology of portrayable objects from wordnet. In MUSCLE / ImageCLEF workshop on Image and Video retrieval evaluation, pages 17–23, 2005. 65 #### Segmentation et indexation d'objets complexes dans les images de bandes déssinées #### Résumé: Dans ce manuscrit de thèse, nous détaillons et illustrons les différents défis scientifiques liés à l'analyse automatique d'images de bandes dessinées, de manière à donner au lecteur tous les éléments concernant les dernières avancées scientifiques en la matière ainsi que les verrous scientifiques actuels. Nous proposons trois approches pour l'analyse d'image de bandes dessinées composé de différents traitements. La première approche est dite "séquentielle" car le contenu de l'image est décrit progressivement et de manière intuitive. Dans cette approche, l'extraction des éléments se succède, en commençant par les plus simples tels que les cases, le texte et les bulles qui servent ensuite à guider l'extraction d'éléments complexes tels que la queue des bulles et les personnages au sein des cases. La seconde approche propose des extractions indépendantes les unes des autres de manière à éviter la propagation d'erreur entre les traitements. D'autres éléments tel que la classification du type de bulle et la reconnaissance de texte y sont associés. La troisième approche introduit un système fondé sur une base de connaissance à priori du contenu des images de bandes dessinées qui permet de construire une description sémantique de l'image. Ce système dirigé par les modèles de connaissances, combine les avantages des deux approches précédentes et permet une description sémantique de haut niveau pouvant inclure des informations telles que l'ordre de lecture des cases, du texte et des bulles, des relations entre les bulles et leurs locuteurs ainsi que la distinction entre les personnages. Mots clés : traitement d'images, reconnaissance de formes, analyse de documents, compréhension de bandes dessinées. #### Segmentation and indexation of complex objects in comic book images #### Summary: In this thesis, we review, highlight and illustrate the challenges related to comic book image analysis in order to give to the reader a good overview about the last research progress in this field and the current issues. We propose three different approaches for comic book image analysis that are composed by several processing. The first approach is called "sequential" because the image content is described in an intuitive way, from simple to complex elements using previously extracted elements to guide further processing. Simple elements such as panel text and balloon are extracted first, followed by the balloon tail and then the comic character position in the panel. The second approach addresses independent information extraction to recover the main drawback of the first approach: error propagation. This second method is called "independent" because it is composed by several specific extractors for each elements of the image without any dependence between them. Extra processing such as balloon type classification and text recognition are also covered. The third approach introduces a knowledge-driven and scalable system of comics image understanding. This system called "expert system" is composed by an inference engine and two models, one for comics domain and an other one for image processing, stored in an ontology. This expert system combines the benefits of the two first approaches and enables high level semantic description such as the reading order of panels and text, the relations between the speech balloons and their speakers and the comic character identification. Keywords: image processing, pattern recognition, document analysis, comics understanding. Laboratoire L3i - Informatique, Image, Interaction Pôle Sciences et Technologies, Université de La Rochelle, avenue Michel Crépeau 17042 La Rochelle - Cedex 01 - France