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cal, Imanol Gomez, Jorge Garćıa, Juanjo Bosch, Leny, Vinceslas, Sergio
Giraldo, Zacharias Vamvakousis, Panagiotis Melidis, Andreas Neocleous,
Alastair Porter, Ricard Marxer, Saso Musevic, Sertan Şentürk, Stanislaw
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Abstract
Computational approaches for modeling expressive music performance have
produced systems that emulate human expression, but few steps have been
taken in the domain of ensemble performance. Polyphonic expression and
inter-dependence among voices are intrinsic features of ensemble perfor-
mance and need to be incorporated at the very core of the models. For this
reason, we proposed a novel methodology for building computational mod-
els of ensemble expressive performance by introducing inter-voice contextual
attributes (extracted from ensemble scores) and building separate models
of each individual performer in the ensemble. We focused our study on
string quartets and recorded a corpus of performances both in ensemble and
solo conditions employing multi-track recording and bowing motion acqui-
sition techniques. From the acquired data we extracted bowed-instrument-
specific expression parameters performed by each musician. As a prelim-
inary step, we investigated over the difference between solo and ensemble
from a statistical point of view and show that the introduced inter-voice
contextual attributes and extracted expression are statistically sound. In
a further step, we build models of expression by training machine-learning
algorithms on the collected data. As a result, the introduced inter-voice
contextual attributes improved the prediction of the expression parameters.
Furthermore, results on attribute selection show that the models trained
on ensemble recordings took more advantage of inter-voice contextual at-
tributes than those trained on solo recordings. The obtained results show
that the introduced methodology can have applications in the analysis of
collaboration among musicians.
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Resum
L’estudi de l’expressivitat musical ha prodüıt models computacionals ca-
paços d’emular l’expressivitat humana, però aquests models encara no es
poden aplicar al cas dels conjunts musicals. Per estudiar l’expressivitat
dels conjunts musicals, s’han de tenir en compte dues caracteŕıstiques prin-
cipals: l’expressió polifònica i la interdependència entre veus. Per aque-
sta raó, proposem una nova metodologia que es basa en la introducció
d’una sèrie d’atributs intervocals, que hem extret de la partitura, que es
poden utilitzar per construir models d’expressivitat individuals per a cada
un dels músics. Hem col.leccionat un conjunt de peces musicals a partir
de l’enregistrament multipista i de la captura de moviments d’un quartet
de cordes, en un corpus que recull peces concretes tocades tant en grup
com individualment. D’aquestes dades, hem extret diversos paràmetres
que descriuen l’expressivitat per a cada un dels músics d’un conjunt de
corda. El primer pas ha estat estudiar, des d’un punt de vista estad́ıstic,
les diferències entre l’actuació d’una mateixa peça tant en solitari com en
grup. Després, hem estudiat les relacions estad́ıstiques entre els atributs
intervocals i els paràmetres d’expressivitat. A continuació, hem constrüıt
models d’expressivitat a partir de la utilització d’algoritmes d’aprenentatge
automàtic amb les dades col.leccionades. Com a resultat, els atributs inter-
vocals que hem proposat han millorat la predicció del paràmetres d’expressi-
vitat. Hem pogut demostrar com aquests models que han après d’actuacions
en grup utilitzen més atributs intervocals que aquells que ho han fet d’ac-
tuacions en solitari. Aquests resultats mostren que la metodologia i models
introdüıts es poden aplicar en l’anàlisi de la col.laboració entre membres
d’un conjunt musical.
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Resumen
El estudio de la expresividad musical ha producido modelos computacionales
capaces de emular la expresividad humana, pero estos modelos todav́ıa no
se pueden aplicar al caso de los conjuntos musicales. Para estudiar la ex-
presividad de los conjuntos musicales, se deben tener en cuenta dos car-
acteŕısticas principales: la expresión polifónica y la interdependencia entre
voces. Por esta razón, proponemos una nueva metodoloǵıa que se basa en la
introducción de una serie de atributos intervocales, que hemos extráıdo de
la partitura, que se pueden utilizar para construir modelos de expresividad
individuales para cada uno de los músicos. Hemos coleccionado un conjunto
de piezas musicales a partir de la grabación multipista y de la captura de
movimientos de un cuarteto de cuerdas, en un corpus que recoge piezas con-
cretas tocadas tanto en grupo como individualmente. De estos datos, hemos
extráıdo varios parámetros que describen la expresividad para cada uno de
los músicos de un conjunto de cuerdas. El primer paso ha sido estudiar,
desde un punto de vista estad́ıstico, las diferencias entre la actuación de una
misma pieza tanto en solitario como en grupo. Después, hemos estudiado
las relaciones estad́ısticas entre los atributos intervocales y los parámetros
de expresividad. A continuación, hemos construido modelos de expresivi-
dad a partir de la utilización de algoritmos de aprendizaje automático con
los datos coleccionados. Como resultado, los atributos intervocales que
hemos propuesto han mejorado la predicción de los parámetros de expre-
sividad. Hemos podido demostrar cómo los modelos que han aprendido de
actuaciones en grupo utilizan más atributos intervocales que aquellos que
lo han hecho de actuaciones en solitario. Estos resultados muestran que la
metodoloǵıa y modelos introducidos se pueden aplicar en el análisis de la
colaboración entre miembros de un conjunto musical.
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Chapter 1

Introduction

“My freedom will be so much the greater and
more meaningful the more narrowly I limit my
field of action and the more I surround myself
with obstacles. Whatever diminishes constraint
diminishes strength. The more constraints one
imposes, the more one frees one’s self of the
chains that shackle the spirit”

Igor Stravinsky, Poetics of Music

1.1 Motivation

Music performance plays an important role in our culture. Crowds of people
fill up concert halls to listen to performers play scores by acclaimed com-
posers. In classical music, performers are required to respect the written
score; however, even in this case, each performance sound somehow differ-
ent, i.e. the interpretations of the same piece performed by two different
musicians may differ considerably. The score only codifies a part of the
instructions for the performer; most details of the performance are instead
implicitly deduced from the context (historic period, composer and perfor-
mance praxis) or provided by performer’s artistic interpretation of the piece
(Gabrielsson, 2003; Palmer, 1997). Many of these implicit instructions are
known as expressive deviations.

In the western tradition, music notation arose from the need to specify music
on paper so that it could be preserved, stored, transported and performed.

1
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The ancients used to write down the choir’s melodic line by specifying pitch
sequence without necessarily specifying note duration (Cresti, 1970). The
purpose was not to specify every detail of the music piece but just to write
down on paper the main musical idea. Improvisation was, indeed, a common
practice and on the basis of few notes an entire performance would be built.
Later on, in the middle ages, it was together with the rise of polyphony
that music notation became an essential tool to handle the complexity of
multi-voice compositions.

During the course of history, music notation evolved so to include more and
more information about the music. The manuscripts gradually started to
look similar to modern scores including meter, key, and the exact pitch and
duration of each note. This was achieved also through a series of treatises on
music theory rationalizing and revolutionizing the art of performing music
(e.g. the Music treatises by Jean-Philippe Rameau’s in the 18th century).
In this process, also performance practice evolved together with the way mu-
sic was thought and encoded. A creative cycle, represented in Figure 1.1,
gradually emerged in which the composer and the performer assumed dif-
ferent roles but still interacted with each other. In the latest centuries, it
is possible to observe an increase in the number of annotations included in
the score. Composers seemed to claim control over the performance. It was
not enough including in the score the exact pitch and duration of each note,
or even how the instrument should be tuned; composers started to specify
how the performance should “feel”, also providing indications for how such
effect could be realized with modulations of tempo and dynamics.

The study of expressive performance focuses on the right part of the artistic
cycle of Figure 1.1: it studies the transformation process from written score
to music performance. In some sense, this process arises from the need to
compensate for missing information in symbolic scores. At the same time,
performers’ renderings of a score are themselves an artistic form of expres-
sion as well as an attempt to interpret the original intent of the composer.

In the last 30 years, with the advent of computers and MIDI instruments,
we have learned a lot about expressive performance though an increasing
amount of studies. Technology has allowed us to record very accurately the
intensities of individual notes played on different instruments. Nowadays,
Music Information Retrieval (MIR) techniques enable ever more sophisti-
cated analysis and transcription of audio signal. Moreover, we have been
able to extract distinctive performing patterns employed by musicians, and
build systems capable of emulating human expression.
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Figure 1.1: Creative cycle involving composers and performers. Expressive
performance modeling focuses the right part of the circle.

However, most of the studies on expressive performance have been limited
to solo expressive performance and have not addressed the problem of play-
ing expressively in an ensemble. In approaching the new problem, research
could be inspired by existing systems that address the problem of play-
ing polyphonic solo performances, i.e., with the presence of harmony and
multiple-voices. Some studies of piano expressive performance have already
addressed the problem of polyphony (see Chapter 2). Nonetheless, Ensem-
ble Expressive Performance (EEP) raises many more complex interactions
between different musicians (who play several harmonies and melodic lines
concurrently). It is thus unclear whether such discoveries can be extended
to ensemble performances.

In the case of an orchestra the conductor takes charge of controlling tempo
and dynamics (among other things). All of the music events somehow seem
to be triggered by his/her movements. In the case of smaller conductor-less
ensembles, such as string quartets, each musician, in principle, is supposed
to follow all the others in an equal manner. It is during rehearsals when a
shared interpretation of the piece emerges: musicians discuss verbally how
each part should be played, how to coordinate attacks at specific points,
which notes to stress, which articulations to use, and so on. Whilst this
verbal agreements play an important role for structuring the performance,
repeated ensemble rehearsals builds up in musicians’ minds a solid implicit
knowledge of what to expect from their fellows and how much they can
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rely on each other at each moment. When playing together, each performer
plays his own part in synchrony with his fellow’s parts so as to blend in a
coherent interpretation. Performing expressively together requires keeping
a balance among the individual expressive performance actions to achieve
an artistic rendering of the piece.

A series of interesting issues arises when considering the problem of play-
ing expressively in an ensemble (e.g., representation, synchronization, and
leadership). Probably for this reason, most of the literature has focused on
very specific synchronization music skills, in an attempt to reveal hidden
mechanisms underlying ensemble performance. However, to the best of our
knowledge, the relations between score and expressive choices in ensemble
performance have never been investigated using a data-driven approach.

1.2 Objectives

In this dissertation we aim at studying EEP by building models capable
of predicting how and when musicians employ expression parameters in the
context of ensemble performance. Our goal is not only to obtain better then
chance predictions, but also, more importantly, to obtain new insights about
how musicians make expressive choices when playing in an ensemble. We
ask question such as: can we detect pattern arising from ensemble dynamics
inside the quartet? Can we find statistical evidence of differences between
playing solo and playing in ensemble? How do different playing conditions
affect the models?

We focus on string quartets since in this type of ensemble there is no con-
ductor; there are enough instruments to carry on a meaningful analysis but
not too many as to render the analysis unfeasible. In order to acquire the
necessary data we employ audio and motion capture acquisition systems.
We investigate how to extract expression parameters specific to bowed in-
struments by employing multi-modal recording technologies.

We introduce a methodology for computational modeling of EEP from au-
dio and gesture recordings of ensemble music performance. We propose a
method to deal with two main issues arising in ensemble music:

• polyphonic expression: each musician plays their melody with possibly
a different expression respect to the one of the other concurrent voices;

• inter-dependence among musicians: each musician takes into account
information about concurrent voices to shape their expression.
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Firstly, to deal with polyphonic expression, we assign separate models of ex-
pression to each musician. This means that, as it happens in human perfor-
mances, simultaneous voices might have different expression (e.g. the case
where a voice containing the leading melody is played loud while the accom-
paniment voices are played soft). Secondly, to deal with inter-dependence
among musicians, we extend the music analysis procedure in order to in-
clude information about accompanying voices as input of each model. The
models can thus take advantage of information about accompanying voices
(including score melodic/rhythmic information and also expression param-
eters used by other) to predict outcome of expression parameters. Our
hypothesis is that we can achieve a better prediction of expression when
musicians are considered integrated in the ensemble; and thus by consider-
ing also the extended context derived from fellows’ voices.

The purpose of training expressive performance models on each musician
separately and introducing inter-voice dependencies is two-fold. First, this
work can be viewed as a proof-of-concept application of expressive perfor-
mance modeling in music ensembles. And second, by comparing models
obtained on different expression parameters, different musicians and differ-
ent playing conditions we investigate on several aspects of ensemble per-
formance. Rather than presenting final answers to broad ensemble perfor-
mance aspects, which might require a considerably larger amount of data,
we discuss results on specific aspects, which highlight the potentials of using
this method to study ensemble expressive performance. In particular, the
difference between playing solo and in ensemble was considered both as a
sanity-check test — to see whether the models make sense of the data —
and as a mean to understand in which part of the trained models should
we look for signs of inter-dependence. Additionally, we look for differences
between the considered expression parameters to understand which of them
was shaped as a result of inter-dependence among ensemble voices, and
which only a product of the individual voices.

1.3 Scientific Context

The core investigation on EEP lies at the intersection of several areas of re-
search (Figure 1.2). Data acquisition is challenging, and not only because of
the technical requirement to build an acquisition system. The correct pro-
cessing and storage of data might indeed require techniques derived from
the fields of gesture recognition, signal processing, source separation and
automatic music transcription. Additionally, we need to consider prob-



6 introduction

Ensemble 
Expressive 

Performance 
Modeling

Machine 
Learning

Signal 
Processing

Gesture 
Recognition

Automatic 
Music 

Transcription

Source 
Separation

Music 
Representation

Figure 1.2: Research areas related to ensemble expressive performance mod-
eling: machine-learning, gesture recognition, signal processing, source sep-
aration, automatic music transcription and music representation.

lems of music representation, in order to store the music in a way that
it algorithms can process it and understand it. Lastly, we use techniques
of machine-learning to “give sense” to the data, finding recurrent patters
which describe the phenomena underlying EEP.

One of the main problems for the analysis of ensemble performances is
the need to acquire the expressive actions of each musician independently.
For acoustic instruments (without a MIDI output) this is problematic since
musicians have to play together in the same room. This means that any
ambient microphone placed in the room to record a single musician will re-
ceive leaking sounds from the other musicians. One solution to the problem
is to employ techniques of source separation.

Source separation is an active research field whose aim is solving the problem
of stream segregation. We, humans, perform stream segregation constantly,
for example when we walk in the streets and we are able to distinguish
the sound of a car from the sound of a crying baby. Humans are good at
this task; however, it is still a very challenging task for computers. A good
source separation system would enable research in EEP to be carried out



1.3. scientific context 7

on commercial audio recordings in which only one (possibly stereo) audio
track of the whole performance is available.

Now assume that the problem of source separation is solved and we have the
sound of each musician in a separate audio track. There is still the problem
of transcribing each audio track to a sequence of note events in order to un-
derstand the underlying music content. This task, called Automatic Music
Transcription, is also one of the most challenging tasks of Music Information
Retrieval (MIR). What makes this task difficult is not only the problem of
recognizing note events from sound, but also the quantization required to
make a representation meaningful. The analysis of sound with computa-
tional tools often reveals many details about the transitions between notes,
which do not necessarily produce note event splitting. This happens because
sound is a continuous phenomenon, but through the process of listening, we
quantize it in time and in frequency (Bregman, 1990). Some trajectories of
pitch within notes are perceived as embellishments and do not produce the
splitting into smaller note units. When we listen to music we spontaneously
perceive note events and thus compress complex sounds into compact note
sequences. It is at this level of representation that we generate expectations
on upcoming note events and we compare melodies one with each other.

In this dissertation we overcome the problems of source separation by lim-
iting the analysis only to custom recorded performances, aided by the use
of specifically designed multi-modal acquisition technologies. Additionally
we do not address the problem of automatic music transcription since we
have access to the score of each of the recorded material. The problem of
music transcription is thereby restricted to the simpler problem of score-
performance alignment. In other words, we just need to find the time of
onset and offset of each note on each analyzed recording.

Music Representation is an important area of research studying how mu-
sic is represented symbolically. Music Representation plays an important
role in EEP since it provides a very convenient shorthand representation
to describe the musical content with few relevant descriptors. The music
content becomes obvious in its symbolic representation, by discarding all
of the unnecessary details of the sound. Note events are ordered in time
and have pitch and duration attributes. The events might also be organized
in a hierarchy consisting of multiple time spans, from motives to phrases,
from phrases to sections. In multi voice scores, notes are organized into
parts (i.e. first violinist, second violinist, viola and cello) with an implicit
relation of precedence and simultaneity among note events. In this disser-
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tation we propose a new way to represent the local musical context in order
to characterize each note in a multi-part score. We use such representa-
tion to derive a set of independent variables, which are then processed by
machine-learning algorithms.

Machine Learning is a very important research area within the field of
Artificial Intelligence. It is also integrated in Statistics since its main goal
is to study independent variables and dependent variables, relating one with
the others by means statistical models. In this dissertation we use machine-
learning algorithms as a tool for learning models of ensemble expressive
performance, relating score contextual variables with performance variables.
The performance variables are the dependent variables of the models of EEP
i.e., what such models are supposed to predict. Those can include any aspect
of the performance that is not already included explicitly in the score e.g.,
intensity of each note, timing deviations from score, intonation deviations,
and articulation.

We use machine-learning algorithms to build models of EEP. The algorithms
make use of training data from real performances to output the models.
This means that we need to provide the machine-learning algorithms with
example values of each dependent variable from real performances. In or-
der to measure the expression parameters, the earliest studies used analog
machines that would produce continuous measurement on paper or photo-
graphic film. Seashore (1938) employed a piano camera system to record
gestural data from hammer and foot-pedal movements. For voice or violin
sounds he used the Henrici’s Harmonic Analyzer, a Signal Processing ana-
log machine that would track the pitch of a recorded waveform. In the last
decades signal processing has been extended to the digital domain providing
methods to execute ever more sophisticated analyses of audio in the digital
domain. This research area has grown significantly in the digital era accu-
mulating a consistent set of algorithms to extract features from audio and
gesture signals. Needless to say, signal processing nowadays enables a much
faster, cheaper, widespread and automatized processing of audio signals.

In some cases the analysis of music performance aims at detecting certain
patterns in time and space. This task consists of recognizing a continuous
signal by assigning it to one of several possible categories. Gesture Recogni-
tion aims at analyzing human gestures in order to extract meaningful infor-
mation and patterns. This research area takes advantage of several pattern
recognition algorithms. The study of gestural communication among musi-
cians is beyond the scope of this dissertation. Nevertheless, we adopt some
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basic gesture analysis tools to detect sound producing gestures.

1.4 Summary of contributions

This thesis extends both research in expressive performance and research
in ensemble performance proposing a methodology where both fields can
benefit from each other. Due to the multidisciplinary character of the top-
ics addressed we can divide the contributions into three categories, each
dependent on the others: multi-modal data acquisition, automatic music
transcription and expressive performance modeling. The main contribu-
tions of the thesis can be therefore summarized as follows:

Multi-modal data acquisition

• Proposal of a recording setup for acquiring multi-modal performance
(audio and gesture) in string quartets (Chapter 3).

• A public database of string quartets multi-modal performance record-
ings.

• A mathematical model of bow deflection based on physics of hair
ribbon.

• Parameter optimization of the bow deflection model based on record-
ings of sensor data.

• A novel methodology for estimating bow force from motion capture
data avoiding thus the need to introduce additional intrusive force
sensors.

Automatic music transcription

• An heuristic-based extension of previous methods for score-performance
alignment based on acquired gestural data and estimated force.

• Parameter optimization for score-performance alignment based on real
performances.

• Quantitative evaluation of gesture-based score-performance alignment
method with respect to a baseline approach (i.e., audio only).
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Music analysis

• Methodology for the extraction of contextual descriptors in multi-
voice music scores.

Expressive performance modeling

• Statistical analysis of timing, dynamics, vibrato and inter-musicians
synchronization.

• Comparison of machine-learning EEP models in solo and ensemble
context, based on feature predictive power and feature selection.

• Comparison of machine-learning EEP models in mechanical, normal
and exaggerated expressive intentions based on predictive power.

1.5 Thesis Outline

The organization of this Ph.D. dissertation is the following. In Chapter 2 we
introduce the topics of expressive performance and ensemble performance
reviewing the related existing research. We thereby focus on computational
models of expressive performance with a special attention to the points of
contact between polyphonic expressive performance and ensemble perfor-
mance. Additionally, we give account for the literature on the expressive
capabilities of bowed instruments and the acquisition of bowing gestures.

In Chapter 3 we present the corpora that was acquired and analyzed within
the scope of this Ph.D.. We describe the recording set-up procedure em-
ployed in order to capture multi-modal data of each performance. We there-
fore present the data processing procedure employed to extract meaningful
time-series from the raw acquired data. These data include bowing gestures
and low-level audio features. We follow the work of Maestre (2009) to ex-
tract bowing performance descriptors; we extend his work by presenting a
novel methodology to estimate the bow pressing force (based on Marchini
et al. (2011)).

In Chapter 4 we extensively describe the attributes extracted from the score
and introduce inter-voice contextual descriptors. Contextual descriptors are
thereby categorized depending on their music significance (melodic, har-
monic, rhythmic. . . ) and/or depending on the voices that they span (hor-
izontal and vertical contextual descriptors). Additionally, we describe and
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evaluate the multi-modal (audio and gestures) score-performance alignment
procedure that we employed for extracting note on-set/off-set times in the
performance data. We then describe the procedure to extract note-by-note
expression parameters on which we focused our analysis.

In Chapter 5 we analyzed the following aspects in the acquired corpora: the
relations between score contextual descriptors and expression parameters;
the differences between solo and ensemble performances; and the difference
between various degrees of expressiveness (mechanical, normal and exagger-
ated performances). We start with a statistical analysis of timing on a short
exercise performance, which highlights several fundamental differences be-
tween solo and ensemble. We then analyze statistically a set of pieces to find
the difference between the degrees of expressiveness. We demonstrate the
statistical validity of vertical score contextual features. We then perform
a further analysis based on machine-learning modeling in which we incor-
porate a multitude of contextual descriptors and discuss on the predictive
power of the derived models. In such analysis, rather than focusing on one
contextual descriptor at a time, we compare the predictive capabilities of a
multitude of models.

Finally, Chapter 6 summarizes the contributions of the thesis and draws
directions for future research and applications of this work.





Chapter 2

Scientific Background

In this chapter we introduce the relevant scientific background for this dis-
sertation. Expressive music performance is introduced first, which is a cen-
tral topic in this thesis (Section 2.1). We then give a general summary of the
studies on ensemble performance (Section 2.2). We then specifically address
the literature on computational models of expressive performance (Section
2.3). Since in this dissertation we address expression in string quartets,
we summarize literature on expressive capabilities of bowed instruments
(Section 2.4) and acquisition of bowing gestures (Section 2.5).

2.1 Expressive music performance

The path that leads a musician from an initial reading of the score to a well-
rehearsed stage performance involves many different interacting phenomena
(social, psychological, perceptual, physiological, musicological and didactic
to cite a few). There are several different performance-related tasks like
sight-reading, performing well-learned music from memory or from notation,
improvising, playing by ear. Depending on the task, the musician’s attention
might be concentrated on one aspect rather than another. As described in
Palmer’s (1997) review on expressive performance, the performance process
can be summarized by the following sentence:

During a performance, musical structures and units are retrieved
from memory according to the performer’s conceptual interpre-
tation, and are then prepared for production and transformed
into appropriate movements. (Palmer, 1997)

13
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Whereas there is a wide interest from a psychological standpoint to under-
stand all those underlying cognitive and motor mechanisms, research on
expression in music performances (Gabrielsson, 1999, 2003) investigates the
manipulation of sound properties such as pitch, timing and amplitude in
an attempt to understand and recreate expression in performances. Al-
though we tend to highlight the differences among performers, there are
indeed many commonalities across performances arising from similar way
to process the music content: note grouping, unit identification, thematic
abstraction, elaboration, and hierarchical nesting.

Many studies have focused on expressive performance actions such as tim-
ing, dynamics, intonation and vibrato. Swedish psychologist Carl Emile
Seashore carried out the first studies during the 1930s in Iowa. Some of
those early measurements can be found in his book “Psychology of Music”
(Seashore, 1938), which also includes measurements of violin performances.
Seashore divided the psychology of music in three large fields dealing with
the musician, the music, and the listener, respectively. By including the
music as a field per se, he highlighted the idea that psychology of music
needs to include a good understanding of the musical medium in order to
understand how this affects the performer and the listener. He stated as
fundamental proposition the following sentence, which can be seen as the
germ of future research in expressive music performance.

The artistic expression of feeling in music consists in esthetic
deviation from the regular–from pure tone, true pitch, even dy-
namics, metronomic time, rigid rhythms, etc. (Seashore, 1938)

Following the Seashore’s early directions, studies of expressive performance
have therefore analyzed such deviations. The strategies and changes which
musicians apply to the music, but that are not marked on the score, are
referred to as expressive performance actions: expressive dynamics, expres-
sive timing, expressive articulation, expressive vibrato and more. Music
is intrinsically a multi-dimensional phenomenon and thus several expressive
performance actions might co-exist and interact during the performance. In
this dissertation, the term expression parameter refers to a continuous value
specifying of how much a performed note deviates from the score nominal
value. For each note, we might consider many different kinds of expression
parameters: note lengthening, intonation deviation, vibrato rate, vibrato
extent, peak intensity, attack slope, sustain time, bow velocity etc. . . .
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Early researches have shown that musicians instructed to play in a strictly
mechanical way would still exhibit timing variations of the same type as in
expressive performance but on a reduced scale (Bengtsson and Gabrielsson,
1983; Palmer, 1989). This sparkled a debate in the research community re-
garding to which extent musicians are able to really control independently
each of the expression parameters. There are probably many different phe-
nomena causing the observed deviations (Gabrielsson, 2003). The discus-
sion in the literature led to the emergence of three main hypotheses. The
hypotheses are (a) the use of performance actions to highlight the musical
structure to the listeners, (b) a compensation for perceptual bias for which
the perception of one expression parameter might be affected by another
independent (e.g. pitch and timing), (c) the existence of certain preferred,
biomechanical motor patterns and constraints which are also dependent on
the instrument. No research has been able to exclude any of the three
hypotheses suggesting, on the contrary, that all of the three factors might
contribute with different degrees of importance to the emergence of the de-
viations. The performing task and the amount of expertise of the musician
might in fact affect the relative contribution of each factor. This debate was
especially directed towards explaining timing variations, but the previous
hypotheses could be applied to other expressive performance actions alike.

The relation between music structure and expression (the hypothesis (a)
above mentioned) is in the literature one of the most supported factors for
introducing expressive deviations (Palmer, 1997; Gabrielsson, 2003). Analy-
sis of music structure is one of classical objectives of systematic musicology.
Such an analysis is classically based on harmony, motives, melodic trans-
formations and repetitions. Jackendoff and Lerdahl (1983) have introduced
one of the most influential theories in their book A generative theory of tonal
music (GTTM) where they described the procedure of understanding the
music through a set of hierarchical rules. There have been computational
approaches attempting to automatize this task although with big problems
of combinatorial explosion, which have favored approaches based on cog-
nition and heuristics. The approach by Narmour (1992) employs gestalt
expectation to derive a classification of pitch sequences.

In the late 1960s, expressive performance research revived with studies on
systematic rhythmic deviations (Bengtsson and Gabrielsson, 1977). Lastly,
it was during the 1980s, with the advent of MIDI and personal computers,
that research in expressive music performance gradually started drawing the
attention of larger number of researchers. The release of the first Disklavier
MIDI piano by Yamaha in 1987 made the piano the test bed instrument of
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most of the research in expressive music performance.

Repp (1992) carried out extensive measurements of timing and dynamics
on piano performances of Schumann’s Träumerei. He compared students’
and expert pianists’ timing patterns showing that students were much more
homogeneous among themselves than the experts. The use of dynamics
in Träumerei was also showed to be similar and consistent over repeated
performances (Repp, 1996). Palmer (1996a,b) also studied pedal timing
and arpeggio performance by a concert pianist, showing consistent pedal
patterns before note onsets to avoid dissonances with successive note-events.

In this dissertation we are especially interested in computational models of
expressive music performance. For this reason, we will devote Section 2.3 to
computational approaches in expressive music performance. But first, since
we will pose a special focus on the models addressing ensemble performance
issues, we preliminary introduce the literature on ensemble performance in
the following section.

2.2 Ensemble performance

Research in ensemble performance has been carried out from different view-
points. Probably one of the most general approaches is provided by the
literature of joint action. Clark (1994) described the problems arising in
day-life conversations (vocalization, attention, misunderstandings etc.) and
the main dynamics individuals employ for preventing and correcting them.
One of the main hypotheses of this research field is that when the problems
are shared among a group of individual, their solution requires joint action.
In other words, each member of the group needs to take decisions based on
their fellow’s actions and, at the same time, pro-actively provide them with
instructions to solve encountered problems. This idea is applicable in many
contexts such as sports, self-management teams, dance performers, theaters
actors, and music ensembles.

One of the main aspects considered in the studies of joint action is the
social hierarchy underlying certain coordination dynamics (Pacherie, 2012).
Whilst this idea can be fruitfully applied to certain music ensemble, it is
less clear how this can be applied on small conductor-less ensembles such
as string quartets. In the case of orchestras we can easily imagine the
conductor on top of the hierarchy followed by the main section of violinists,
and then the rest of the instruments. In this paradigm the individuals at a
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higher node of the social hierarchy need to control their lower fellows and
provide them with directions to solve encountered problems.

In the case of musical ensembles, the musicians are required to direct their
attention continuously to the performance to keep in-sync with their fel-
lows. Theoretical research (Keller, 2008) has pointed out three key cogni-
tive processes present in ensemble musicians: auditory-imagery, where the
musicians have their own anticipation of their own sound as well as the
overall sound of the ensemble, prioritized integrative attention, where mu-
sicians divide their attention between their own actions and the actions of
others, and adaptive timing, where each musician adjusts the performance
to maintain temporal synchrony. This perspective makes it possible to iden-
tify the following important points: first, that each musician incorporates
the ensemble score as well as the performance of the rest of the ensemble
into an anticipation of the produced result. Second, the musician defines
the saliency of each performed note with respect to the ensemble as a whole,
shaping their performance so that it integrates both with the ensemble’s ac-
tions as well as personal expressive choices. Lastly, the above choices must
be made while maintaining ensemble synchrony at the same time.

Most of the literature has focused on studying timing asynchrony among
performers to understand the synchronization mechanism. Such studies
have either reduced the task to tapping or have neglected the role of score
context. Repp (2005) has extensively studied the synchronization on the
task of tapping together developing a theory of synchronization based on
simple phase and frequency correction mechanisms.

More recently, Wing et al. (2014) applied first-order linear phase correction
model for studying synchronization in string quartets. The study shows how
each musician adjust tempo with respect to the fellows. This revealed two
different contrasting strategies employed by two string quartets going from a
first-violin-led autocracy versus democracy. Moore and Chen (2010) studied
two string quartet members synchronizing bow strokes at high speeds. He
showed how an alternating renewal process could model such specific mu-
sical skills. Goebl and Palmer (2009) studied the synchronization among
musicians also taking into account musician’s role and the effect of auditory
and visual feedback.

The literature did not address systematically the problem of playing ex-
pressively in ensemble. To the best of our knowledge the only (pioneering)
work considering this issue was the one by Sundberg et al. (1989). In this
dissertation we have taken inspiration from that paper, especially for the
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derivation of ensemble descriptors (see Section 4.1). However, Sundberg’s
approach was carried out from an analysis-by-synthesis perspective (we ex-
plain it in the next section) whereas here we use a data-driven approach.

2.3 Computational models of expressive
performance

Expressive music performance was also studied from a computational per-
spective. Building computational models of expressive music performance
means to develop algorithmic procedures capable of predicting or emulat-
ing expressive music performance. Most current computational models of
expressive music performance can be described using the diagram of Fig-
ure 2.1 (see Kirke and Miranda (2013) for a detailed overview). The core
of any performance system is the Performance Knowledge module, which
encodes the ability to generate implicitly or explicitly an expressive per-
formance. This module can be in any mathematical form taking as input
the Music Analysis module and giving as output a representation of the
generated performance, including expressive performance actions.

There are several reasons for building computational models of expressive
music performance. The most obvious reason is for synthesizing expressive
performance from music data files. There are many files available on the
Internet (MIDI and MusicXML being the most popular) containing non
expressive scores, which are used by musicians for storing and sharing pieces
as well as for having a preview listening of the rendering. The rendition with
common software is robotic and rather unattractive and could be easily
improved using computational models of expressive music performance.

Similar tools could aid composers by improving realistic playback on music
typesetting and composition tools. Additionally, computer generated music
systems could exploit expressive performance models for gaining naturalness
of synthesized rendition. Another motivation for computational models of
expressive music performance is automatizing the task of music accompa-
niment. A system for automatic music accompaniment would have a range
of applications from music didactics to experimental concert scenarios.

RenCon1 (contest for performance rendering systems) is a formal compe-
tition happening each year since 2002 where a jury of experts evaluates
computational models of expressive performance. The evaluation is based

1http://www.renconmusic.org

http://www.renconmusic.org
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on rendering of a compulsory score chosen by the jury. There is also an open
section where researchers can propose their own pieces. The jury gives scores
for “humanness”, “expressiveness” and “preference” to each generation and
the consequent final ranking dictates the winner of the competition.

We left out the most straightforward motivation for building computational
models of expressive performance: investigating human expressive perfor-
mance. In fact, studying the Performance Knowledge module of Figure 2.1
can provide great insights on the nature of expressive music performance.
This is also the motivation underlying this thesis dissertation. We indeed
develop models of ensemble expressive performance in an attempt to under-
stand simultaneously the problem of playing expressively and the problem
of playing in ensemble.

Performance 
Examples

Music 
Analysis

Performance 
Context

Adaptation 
Process

Performance 
Knowledge

Instrument 
Model

Sound

Figure 2.1: Model of current systems for expressive music performance.

We present here some of the models of expressive performance in the lit-
erature. We distinguish between empirical models, where the adaptation
process is manually obtained through expert observations on re-synthesis,
and models based on machine-learning, where the adaptation process is
handled by an algorithm fitting live music performance examples.

2.3.1 Empirical models of expressive performance

A long-term research on expressive performance has been carried out at
Royal Institute of Technology (KTH) in Stockholm. Director Musices (DM)
has been an ongoing project since 1982 devoted to the development and
study of rules of expressive performance. The approach of DM distinguished
itself from the previous studies of expressive performance based on measur-
ing expressive performance. DM has been based on an analysis-by-synthesis
approach since the beginning (Sundberg et al., 1983; Friberg, 1995). This
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approach is based on intuitively defining rules of expressive performance and
then verifying their correctness by listening to synthesized performances of
several scores. The whole system has accumulated a set of around 30 rules
defined by simple mathematical equations. Such rules can be fine-tuned by
tweaking their parameters to produce performances with different “charac-
ters”, which can also be more or less plausible. Johnson (1992) proposed
another similar expert system where the rules are devised from interviews
with expert musicians.

The approach based on analysis-by-synthesis has an additional applica-
tion, not present in the machine-learning based approaches. Analysis-by-
synthesis, by manually adjusting the rules parameters, can lead to producing
completely new pleasing expressive performances that would even be phys-
ically impossible to reproduce by humans due to motor constrains. This
allows for a series of applications to performance creativity, allowing the
user to create novel performances with low effort. This is less likely to
happen in the machine-learning approaches since the algorithms generally
learn motor constraints together with expression contained in the provided
recording examples.

One of DM’s rules is the phrase arc rule which results in a deceleration of
tempo near phrase boundaries. Applying these rules might require some
amount of manual work for annotating the start and the end of each phrase
in the score, since DM provides no music analysis algorithm to perform this
task. Todd (1992) proposed structure-level models of timing and dynamics
based on hierarchy of phrases, thus extending the phrasing idea even fur-
ther. Todd Model (as it is collectively called) contains a greater expressive
representation since the transformation that is finally applied to each note
is the results of multiple layers of transformations acting on each level of the
hierarchy. The system was based on GTTM rules to derive the multi-level
hierarchy and proposed a simple rule the-faster-the-louder linking together
timing and dynamics performance actions. The model, though interesting,
lacked of a thorough evaluation on real performances and lacked of flexibility
since the relation between the hierarchy and the expressive transformation
was complex and this made it difficult to “hack” it for applications in dif-
ferent contexts.

2.3.2 Models based on Machine Learning

Machine learning (ML) is a branch of artificial intelligence concerning the
construction of systems that can learn from data. Systems of Machine
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Learning differ significantly from each other but they all attempt to solve
the following problem (at least the ones for which we are concerned in this
thesis). Suppose to have a set of input variables x1, . . . , xn and having to
predict the outcome of an output variable y. The problem is to find a
function f such that f(x1, . . . , xn) is equal or, at least, as close as possible
to y. In other words, the function f encodes the dependency relationships
between the input variables x1, . . . , xn and the output variable y. An ex-
plicative toy example is weather forecast, which can be obtained using the
input variables x1 =temperature, x2 =pressure, x3 =wind speed direction.
Now assume that we want to predict y =true/false, the answer to the ques-
tion “it going to rain tomorrow?”. To find such f one could apply a set
of complex models of weather forecasting, which involves a lot of knowl-
edge about how weather works. Instead, the approach of machine-learning
system is to automatically learn the function f from a series of m training

examples X = (x
(k)
i )m×n with known output Y = (y(k)); i = 1, . . . , n and

k = 1, . . . ,m. Depending on the machine-learning system the function f
might be encoded in different ways (a linear function, a set of rules or more
complex function). In some cases the knowledge encoded by f is explicit
and thus can be understood from a human; on other cases, the function
f can be very good at predicting the variable y although the knowledge is
implicit and thus difficult to understand.

Machine-learning models of expressive music performance are the ones that
make use of machine-learning systems to implement the adaptation process
of Figure 2.1. Several machine-learning techniques have been used as an
approach to investigate expressive performance. Widmer and Goebl (2004)
and others have trained expressive models from real piano-performance
data. Widmer’s work is supported by the largest corpora of recordings
ever studied in research of expressive performance (Widmer, 2002). The
corpora consists of hundreds of thousands of notes played on a Bösendorfer
grand piano allowing for high precision recording of every key and pedal
movement. The derived system was used both for deriving explicit knowl-
edge about simple and general “performance rules” employed by musicians
and for implementing systems that can generate expressive renditions of
input score files.

Some works have considered other instruments and genres (e.g., De Man-
taras and Arcos (2002); Ramirez and Hazan (2006)), therefore addressing
additional expressive manipulations that are absent in piano performances
(e.g., vibrato and glissando). Bresin (1998) developed a hybrid system
combining artificial neural networks with KTH rules obtained through an
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analysis-by-synthesis procedure. Other works have studied expressive ma-
nipulations as a mean to carry emotions. Kendall and Carterette (1990);
Gabrielsson and Juslin (1996) have approached the concept of expressive
intention and emotion in expressive performance. These works led to the
proposition of the GERM model (Juslin et al., 2002), which enables the
generation of expressive performance with a continuous set of emotions in
the valence-arousal space.

Computer systems of expressive music performance generally employ music
analysis procedures in which score is translated into a sequence of feature
vectors, each describing one note (Kirke and Miranda, 2013). Each feature
vector describes the nominal properties of a note as well as the score context
in which the note appears (e.g. melodic/rhythmic contours and harmony).
Computational models of expressive performance take feature vectors as
input to produce predictions of expression parameters (e.g. intensity and
timing transformations). In data-driven systems, the computational models
are built automatically by feeding machine-learning algorithms with train-
ing examples. Training examples are collected by extracting note expression
parameters from recordings of human music performances along with fea-
ture vectors from the score. Such computational models can therefore be
used to reproduce expressive performance of new untrained music scores by
applying the predicted expression parameters to (otherwise robotic) com-
puter score renderings. Computational models are also used as a mean
to investigate how humans play music expressively. This is possible ei-
ther when the knowledge of the trained models is explicit and can thus be
easily translated to human readable rules revealing recurrent performance
patterns (Widmer, 2002), or when models trained on different musicians
and/or different performing conditions are compared (Poli, 2004).

All the models of expressive music performance based on Machine Learning
have been implementing some music analysis procedure to derive the input
variables and attempt to predict the expression parameters. However, most
systems apply a music analysis based on one single part and it is not clear
how this can be extended to the case of ensemble score where more parts are
playing concurrently. At the same time, there are some interesting questions
that arise when analyzing ensemble performance and could be addressed by
building EEP models.

2.3.3 Models addressing polyphony

Vernon (1937) showed for the first time that piano players introduce sys-
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tematic delays of finger pressure between main melodic line and accom-
paniment. In compositions with polyphonic voices such as Bach’s canons,
one of the required skills for the musician is exactly to attempt to recre-
ate the impression of ensemble orchestration by giving a different musical
character to each of the simultaneous voices. Palmer (1996a,b) studied the
so-called melody lead in piano performance: melody notes in chords come
somewhat earlier (20-50 ms) than other notes in the chord; this effect was
more pronounced for expert performers than for student performers.

Most of the systems of music expressive performance do not address explic-
itly the problem of polyphony, or are limited to monophonic/homophonic
scores. To the best of our knowledge, little work has been devoted to address
the problem of polyphony in an exhaustive way. This problem is present
in instruments capable of producing harmonies (such as piano or guitar)
where different voices can be reproduced simultaneously, although they are
all triggered by the same musician. The challenges are similar to the ones
we have to address in the case of EEP.

Hashida et al. (2007) considered the problem of integrating individual rule
of expression in a multi-voice score. The system renders expression on a
polyphonic score by applying timing and dynamics transformations to each
of the individual voices. As a consequence of applying note time stretch-
ing to each individual voice the voices accumulate time lags among them.
This problem is solved in a post-processing step identifying “synchronization
points” and reinforcing them. Hashida et al.’s (2007) system involves an
interesting approach for addressing the issue of rendering ensemble scores.
However the basic assumption of the system is that each musician is fo-
cused on his own voice, trying to make it expressive, and then on top of it
a between-voices synchronization procedure is added in a post-processing
step. In this way the system does a good job in rendering different musi-
cal characters on each job, but does not consider the possibility that the
expression of each of each voice may also be dependent on other voices.

Polyhymnia is an automatic piano system developed by Kim et al. (2011)
that won the first place in the autonomous section of RenCon 2010. This
system takes into account polyphonic expression that can occur in a poly-
phonic instrument such as the piano. This means that two concurrent
melodies played on the left and right hand can be realized with differ-
ent expression parameters (e.g. one melody played staccato and the other
legato). The system employs a probabilistic approach in modeling depen-
dencies among voices, although it is not clear to us how to scale this ap-
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Displacement

Tilt

Bridge Distance

Figure 2.2: Schematic visualization of some bowing parameters (namely tilt,
bow displacement and bridge distance) that depend on the relative position
of the bow on the violin.

proach to more than two voices. The good performance of the system at the
RenCon context confirms that considering dependencies among voices is a
missing part of current systems of expressive performance which should be
explored further not only for ensemble but also for polyphonic instruments.

2.4 Expressive capabilities of bowed instrument

Violin is regarded as among the most complex musical instruments, mak-
ing different control parameters available for the performer to freely shape
rich timbre characteristics of produced sound. Seashore (1938) included
several pioneering measurements from the audio recordings of violin perfor-
mance showing a degree of expressiveness comparable with human voice.
Not only the performer is able to give a particular character to each note,
but also he/she can continuously move in the control parameter space real-
izing smooth transitions from one note to the next (Schoonderwaldt, 2009a;
Woodhouse and Galluzzo, 2004).

Both performer’s hands are important in the production of the sound. The
left hand controls the length of the string played thus modulating the pitch
while the right hand excites the strings through bowing gestures (see Fig-
ure 2.2). The bowing gestures can be described as an evolution in time of
a set of bowing control parameters which have been described in the litera-
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ture: bow velocity, bow-bridge distance, bow force, bow position, bow tilt,
and bow inclination (Maestre, 2009; Pérez, 2009; Schoonderwaldt, 2009a).
With the left hand, string players can modulate continuously pitch curve
since such instruments are fretless. This not only allows for adjusting of
the tuning on-the-fly, but also to produce voice-like vibratos (Prame, 1997;
Seashore, 1938).

2.5 Gesture acquisition in bow instruments

The expressive capabilities of string instruments derive from the physical
properties of the instrument and how this is played. A significant re-
search effort has been devoted to methods for accurate acquisition of con-
trol parameter signals (Schoonderwaldt et al., 2006; Schoonderwaldt, 2009b;
Askenfelt, 1986; Young, 2003; Maestre et al., 2007; Demoucron et al., 2009;
Guaus et al., 2009; Paradiso and Gershenfeld, 1997). In those studies, vari-
ous acquisition system based on placing sensors on the bow and/or the violin
have been developed demonstrating how it is possible to acquire right-hand
control parameters with motion capture techniques. The left hand yet re-
mains difficult to be tracked without great intrusiveness. (Kinoshita and
Obata, 2009) showed that tracking force applied by the left hand on the
neck is highly informative about the score, the speed and dynamics of the
performance.

Within the different bowing control parameters, only the bow transver-
sal velocity could be considered as of comparable importance as the bow
pressing force exerted by the player on the string Cremer (1984). The
measurement of bow pressing force not only has received special attention
because of its key role in timbre control, but also because of a number
of measurement-specific issues that appear as harder to overcome, as it is
accuracy, robustness, or intrusiveness. An early attempt to pursue the mea-
surement of bow pressing force from real violin practice dates back to 1986.
Askenfelt (1986) used wired strain gages at the frog and the tip in order
to infer the bow pressing force applied on the string. Although useful for
the instrument-modeling purposes of the authors, significant intrusiveness
would make difficult the use of such a system in a real performance scenario.

Intrusiveness improved significantly by a first wireless acquisition system
proposed by Paradiso and Gershenfeld (1997), who attached a resistive strip
to the bow that was driven by an antenna mounted behind the bridge of the
cello. A measurement relative to the bow pressing force was carried out by
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using a force-sensitive resistor below the forefinger. Despite the reduction on
intrusiveness, the obtained measure resulted rather unrelated to the actual
force exerted on the string, as it happened to Young’s approach (Young,
2003), who measured downward and lateral bow pressure with foil strain
gages permanently mounted around the midpoint of the bow stick.

The first effort to relate the strain of the bow hair as a measure of force was
carried out by Rasamimanana (2003), although the technique reached its
first state of maturity (in terms of accuracy) with the technique introduced
by Demoucron and Caussé (2007) and more recently reused and improved
by Guaus et al. (2009): the deflection of the hair ribbon is measured at the
frog (and also at the tip in one of the earlier versions) by using a strain
gage attached to a plate laying against the hair ribbon which bends when
the string is pressed. This technique, while providing surprisingly good es-
timations of bow force, suffers from remarkable intrusiveness and reduced
robustness, making difficult its prolonged use in stage or performance con-
texts.

In Chapter 3 we provide a novel mathematical model of bow deflection that
we used to estimate force from motion capture data without the need for
introducing further intrusive sensors. In the scope of this dissertation, due to
the complex recording setup, we favored easy setup and minor intrusiveness
to high accuracy in bowing force estimation. The derived estimated bowing
force proved useful for the alignment of the performance to the score.

2.6 Conclusions

Expressive music performance is a highly multidisciplinary research field
that has been approached in the past from cognitive psychology, sensory-
motor psychology, musicology, and artificial intelligence standpoint of views.
The multidisciplinary nature of this field can be traced back to Seashore’s
(1938) ternary sub-division into the study of the performer, the music and
the listener. Although there is still a debate over the nature of expressiveness
in music, this field has reached the sufficient maturity to produce systems
that emulate human expression.

The study of ensemble music performance has been approached in more re-
cent years, thanks to ever-more-ubiquitous sensor technologies. The studies
mostly focused on the performers and their skills, without considering the
musical dimension and the listeners. We believe that ensemble performance



2.6. conclusions 27

studies could be highly enriched by integrating methods coming from the
expressive music performance literature.

We therefore focused on computational models of expressive performance
and highlighted the points of contact between polyphonic performance and
expressive performance from which our research could draw some inspira-
tion.

Lastly, we introduced the literature on the expressive capabilities of bowed
instruments and the acquisition of bowing gestures that is the core techno-
logical tool through which we carried out the work in this Ph.D. dissertation.





Chapter 3

Data Acquisition

In this chapter we introduce the music material and the methodology for
data acquisition of Ensemble Expressive Performance. The data presented
in this dissertation is part of a larger collection of recordings which we
recorded during two research stays at McGill University in a collabora-
tion between the Music Technology Group1 (Universitat Pompeu Fabra,
Barcelona), the Centre for Interdisciplinary Research in Music Media and
Technology2, the Input Devices and Music Interaction Laboratory3 (McGill
University, Montreal), and the International Laboratory for Brain, Music,
and Sound Research4 (Université de Montréal and McGill University). All
the data analyzed in this dissertation were acquired from performances by
professional string quartets, and consist of both audio and gestural data.
The members of the quartet had been performing together for more than a
year, had more than 10 years of music experience, and had an average age
of 30 years.

We start presenting the music material (Section 3.1) and then the proce-
dure employed for data acquisition. In Section 3.2 we describe the record-
ing setup, which included acquisition of audio and motion data. We then
overview the procedures for extracting bowing (Section 3.4) and audio de-
scriptors (Section 3.3) that are relevant in this dissertation. Finally, in
Section 3.5 we focus on the specific problem of bow force estimation, which
represents a contribution of this work to the field of bowing gesture ac-

1http://www.mtg.upf.edu
2http://www.cirmmt.org
3http://www.idmil.org
4http://www.brams.org

29

http://www.mtg.upf.edu
http://www.cirmmt.org
http://www.idmil.org
http://www.brams.org


30 data acquisition

quisition that we will use for improving note-by-note segmentation of the
recordings (see Sections 4.2.2 and 4.2.2). We describe a procedure that we
devised for estimating the force applied by the bow on the string without
the need of additional intrusive sensors. We evaluate such procedure on a
dedicated set of force measurement recordings that we present later in this
chapter (see Section 3.5.4).

3.1 Music material

The music material used in this dissertation consists of solo scales played
with different articulations, short exercises for string quartets, excerpts
from the repertoire of the string quartet, and an entire movement from
a Beethoven’s concerto. We had access to the digital version in MusicXML
file format of all the scores we recorded.

Both the scales and the exercises were selected in a preliminary workshop
with a professional string quartet player (not taking part in the recordings).
Those excerpts are easy enough to be played after a short rehearsal. In
the case of the pieces, we asked the performers to give us their current
repertoire as well as propose which pieces they felt most comfortable with
when performing in a concert.

We recorded the musicians in an ensemble condition, where they would
interpret together all the parts an ensemble score. For some recordings, we
also recorded the musicians in a solo condition. In the solo condition each
musician would play his own part alone; in the case of the exercises, without
even knowing the parts of the others (see . In the ensemble condition they
would play together; in this case we also asked the musicians to play with
non-normal expressive intentions such as mechanical and exaggerated.

We mixed the different experimental conditions, although timing constraints
in the recording schedule limited the possibility of realizing all the condition
combinations for all music material. For example, recording the solo condi-
tion would lengthen the recording time since the score had to be recorded
four times (one of each musician playing solo).

We provided labels to refer to each of the recordings. The scale exercises
were all recorded in solo conditions and were realized by the musicians
with legato (S.1), martelé (S.2), detaché (S.3), staccato (S.4) and staccato
on string (S.5) articulations. The phrasing exercise (EX.1) was recorded
both in solo and ensemble conditions. Beethoven’s movement is played in
ensemble three times with increasing degrees of expressiveness: mechanical
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(I.1), normal interpreted (I.2), and exaggerated (I.3). Finally the pieces
excerpts were recorded both in solo and ensemble condition (P.1-P.4). In
Table 3.1 we summarize all of the music recordings used in this dissertation.

Table 3.1: List of recordings analyzed in this dissertation.

Label Name Condition
Number of pitched note events Aprox.

recording
timeVl1 Vl2 Vla Cello Total

S.1 Scale Legato solo 288 288 288 288 1152 15 mins

S.2 Scale Martelé solo 288 288 288 288 1152 15 mins

S.3 Scale Detaché solo 288 288 288 288 1152 15 mins

S.4 Scale Staccato solo 288 288 288 288 1152 15 mins

S.5 Scale Staccato on String solo 288 288 288 288 1152 15 mins

EX.1 Phrasing Exercise solo/ens. 64 64 64 64 256 5 mins

I.1 Beethoven’s Allegro-Pres-
tissimo mechanical

ens. 840 630 561 472 2503 5 mins

I.2 Beethoven’s Allegro-Pres-
tissimo normal

ens. 840 630 561 472 2503 5 mins

I.3 Beethoven’s Allegro-Pres-
tissimo exaggerated

ens. 840 630 561 472 2503 5 mins

P.1 Solo vs. Ensemble (bars
54-78 from Allegro ma non
tanto)

solo/ens. 135 104 106 100 445 5 mins

P.2 Solo vs. Ensemble (bars
138-151 from Allegro ma
non tanto)

solo/ens. 94 144 164 192 594 8 mins

P.3 Solo vs. Ensemble (bars 8-
50 from Menuetto)

solo/ens. 156 204 206 196 762 5 mins

P.4 Solo vs. Ensemble (bars
28-45 from Allegro-
Prestissimo)

solo/ens. 55 83 73 56 267 5 mins

Articulations on musical scales

As a first approach to the analysis of gestural and audio performance we
started recordings musicians playing simple scales. The main idea behind
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Figure 3.1: Musical scale recorded with different articulations. The same
ascending scale is repeated three times, each time with a shorter notes.

these recordings was to sample a standard way of executing simple notes
with various articulations, durations and dynamics.

Each musician played alone the score in Figure 3.1 in several takes, each
with a different articulation: legato, martelé, detaché and two types of stac-
cato. Such articulations were decided together with the musicians. For
each articulation the musician repeated the score of Figure 3.1 three times
in order to realize three increasing levels of dynamics: piano, mezzo forte,
fortissimo.

Ensemble phrasing exercise

In order to obtain reliable results using computational means, the existence
of valid hypotheses is of very high value; for that reason, we devised an
experimental framework that provided a set of recordings where the studied
relationships among the musicians are well defined and unambiguous. The
corpus is based on an exercise handbook for string quartets5, intended for
improving the “ensemble skills” of the quartet members. The material
is divided into six categories, with each category containing a number of
short exercises dealing with a different aspect of ensemble performance:
Intonation, Dynamics, Unity of Execution, Rhythm, Phrasing, and Tone
production/Timbre. An exercise consists of a simple, low difficulty score,
together with annotations on what is the specific goal that must be achieved
by the quartet.

5Mogens Heimann - Exercises for the String Quartet.



3.1. music material 33

B

o

31

4

1



 

























































44

44

44

44








  

 



  

     

  
 

 

   

   

  

  

 

 

 

 





  

  







 


















 1

 4

 4

 1

Violoncello

Viola

Unity of Execution 2

Violin II

Violin I

Figure 3.2: Phrasing exercise, where the musicians are divided in two groups
and have to follow each other to form a scale in thirds.

In Section 5.2 we will present the analysis the phrasing exercises EX.1,
where the challenge for musicians is to play together “as one instrument”.
The exercise consists of the ascending and descending D major scale in
thirds shown in Figure 3.2. In this exercise, the quartet is divided in two
sub-groups (violins in the first sub-group, viola and cello in the second sub-
group) performing short sixteenth note sequences in alternation. Musicians
were instructed to play the score as if it was played by one instrument. We
did not impose on them further constraints such as to follow an external
metronome. The goal of this exercise is self-evident in the score. The notes
within each group have to blend together while allowing the blocks of semi
quaver notes (sixteenths notes) formed by each group to slot together in a
temporal order. In addition to that, the requirement of achieving a good
“unity of execution” (as suggested by the title chosen by Mogens Heimann
for this exercise) means that the parts played by each group have to be
connected to the part of the subsequent section without disruptions in terms
of tempo and dynamics. It is also worth to notice that the slurs contained
in the scores, by requiring the musicians to keep a certain bow direction
might also pose some constraints to the synchronization process.

For the EX.1 exercise, and for the other exercises that are not analyzed in
this dissertation6, we recorded the musicians in three experimental condi-

6We employed an alternative approach to measuring inter-dependence among mu-
sicians for studying this set of exercises. The approach, based on time series analysis,
investigates on the (linear and non-linear) correlations among musicians’ performance.
We compared correlations among musicians playing their exercise part alone and in en-
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tions: solo (first sight), rehearsal, and ensemble. In the first condition (solo),
each musician had to perform their part alone without having access to the
full ensemble score nor the instructions that accompany the exercise. In this
way we wish to eliminate any type of external influence on the performance,
be it restrictions imposed by other voices of the ensemble or instructions
by the composer that are not in relation to the individual score of the per-
former. In the second condition (rehearsal) , following the solo recordings
of each quartet member, the group of musicians was provided with the full
ensemble score plus the composer instructions; they were then left to re-
hearse the exercise alone until they were able to fulfill the requirements of
the exercise. In the third condition (ensemble), following the rehearsal, the
quartet was finally recorded performing the exercise as a group.

For each case we recorded 4 consecutive repetitions of the score in Fig-
ure 3.2. The analyzed material thus consists of 512 notes as each of the four
musicians played 64 notes both in solo and in ensemble.

Expressive intentions

In addition to the exercises we wanted to acquire the performance of already
rehearsed scores, to acquire data from the most natural performing condi-
tion. We were not able to give them the time to learn a new piece because,
on one hand, it would have made the performance less natural given the
timing constraints of the recording schedule. We contacted the musicians
few weeks before the recording and asked them to propose a list of pieces
from their rehearsed repertoire.

We selected the longest (and most recently performed) piece in the quartet’s
current repertoire: Beethoven’s String Quartet No. 4 (Opus 18) Allegro-
Prestissimo movement. The musicians were instructed to perform the entire
piece three times, once for each of the following expressive intentions:

• Mechanical, where the musicians stayed as “faithful” to the score as
possible without introducing expressive deviations.

semble. We defined a different time series for each exercise which related with the goal of
the exercise, e.g. we used pitch deviation for the intonation exercise, we used sound level
for the dynamics exercise. Lastly, we found correlation measures for which the overall
quartet interdependence increased in the ensemble performance with respect to the solo
performance. We refer the reader to Papiotis et al.’s (2014) article for the details of this
approach, and to Panos Papiotis’ Ph.D. dissertation (Papiotis, in preparation).
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Figure 3.3: Starting bars of the Beethoven’s String Quartet No. 4 (Opus
18) 4th movement.

• Normal, where the musicians performed the piece as they would in
a concert scenario.

• Exaggerated, where the musicians introduced “extreme” expressive
deviations from the score, in comparison to the “normal” condition.

The instructions regarding the performers’ expressive intent have been shown
to be clearly understood by musicians and non-musicians alike (Kendall and
Carterette, 1990). The purpose of the above scenario was to capture differ-
ent degrees of “deviating from the score”, i.e., introducing personal choices
which are not explicitly stated.

In total, the three repetitions consisted of 7508 notes (2520 notes for violin
1, 1889 for violin 2, 1683 for viola and 1416 for cello).

Solo vs. Ensemble conditions

As we did for the short phrasing exercise we wanted to compare solo and en-
semble conditions in selected excerpts from the string quartet’s repertoire.
We selected short excerpts from the quartet’s repertoire: four excerpts from
the same Beethoven’s String Quartet No. 4 (Opus 18). The selected ex-
cerpts correspond to bars 54-78 (P.1), 138-151 (P.2) from Allegro ma non



36 data acquisition

tanto, bars 8-50 (P.3) from Menuetto, and bars 28-45 (P.4) from Allegro-
Prestissimo respectively (see Table 3.1). These short excerpts were then
recorded under the following two conditions:

• Solo, where the musicians each performed their own part alone (with-
out listening to pre-recorded material or a metronome signal).

• Ensemble, where the entire quartet performed together following a
brief rehearsal.

The purpose of the above scenario was to observe whether the musicians
would perform their parts differently from one condition to the other, given
that in the solo condition there were no external perturbations to the per-
formance. The solo and ensemble recordings were carried out on different
days.

In total, the four excerpts comprised of 2068 notes (440 notes for violin 1,
535 for violin 2, 549 for viola and 544 for cello). Considering then that each
excerpts was played twice by each musician, the total amount of measured
notes amounts to 4136.

3.2 Recording setup

The recording setup required interconnecting several devices to acquire the
performance of the four musicians simultaneously. Besides the sensing tech-
nology used in this dissertation, As we are collecting a database of ensemble
performances to be shared with the research community, we acquired not
only the sound produced by each musician in a separate tracks and the in-
strumental motion that were used in this dissertation, but also body motion
and ambient audio.

The complete setup involved acquiring (1) sound through two ambient mi-
crophones and four piezoelectric contact microphones, (2) motion through
eight Electro-Magnetic-Field (EMF) motion capture wired markers and 84
wireless infra-red markers, and (3) video through an HD video-camera. In
Figure 3.4 the reader can see a picture taken during one of the recording
sessions, we blurred out musician’s faces for privacy. In this dissertation
we focus on analyzing data coming from contact microphones and EMF
motion capture system only, although we briefly describe in the following
paragraphs the whole recording setup.
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Figure 3.4: A picture from one of the recording sessions. Musician’s faces
have been blurred out for privacy.

The audio data include four individual audio tracks (one for each musician,
all sampled at 44100 Hz) from piezoelectric bridge pickups (models: Fish-
man V-100 and Fishman C-200) installed on the instruments. Pickup gains
were manually set with the aid of level meters in the recording equipment
to avoid clipping of individual audios. To balance the sound level of the
quartet as a whole, we employed an iterative procedure, based on listening
to the mix of the pickups on the headphones while adjusting the four gains.
Additionally, we acquired the ambient audio with a cardioid microphone
and a binaural microphone.

The video was acquired with a Canon VIXIA HF R200 camera to which we
fed the SMPTE signal. This allowed synchronizing start and stop recording
position in a post-processing step.

Bowing and body motion was acquired through two motion capture systems.
The first is a Qualisys system7 that we used to acquire the position of 84
markers, 7 placed on each instrument, and 14 placed on each musician.
The second system is a Polhemus Liberty8 wired motion capture system
(based on EMF sensing). This last system acquired bowing motion data

7http://www.qualisys.com
8http://polhemus.com/motion-tracking/all-trackers/liberty

http://www.qualisys.com
http://polhemus.com/motion-tracking/all-trackers/liberty
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at a sample rate of 240 Hz and was used as detailed in Maestre’s (2009)
and Pérez’s (2009) Ph.D. Theses. We extended software running as a VST
plug-in for the acquisition of audio and EMF motion data simultaneously
(see Figure 3.6 for a screen-shot).

The acquisition of infrared MoCap was handled via proprietary software
(the Qualysis Tracker Manager) developed for the Qualisys system that
was hardware synchronized to the audio card via SMPTE time-code signal.
For this reason, we the audio and the infrared MoCap did not need any ad-
ditional synchronization procedure. The synchronization of audio and EMF
motion capture data was instead handled by a custom synchronization sys-
tem. We integrated into our VST plug-in software a module that generate
periodic pulses synchronized with the audio card clock and outputted to
a dedicated analog audio output line. The analog signal is converted to a
standard 5 Volts on/off signal pulse by a custom sync circuit realized at
Universitat Pompeu Fabra. The on/off pulse is fed to the Polhemus board
that, as a result, returns time-stamped data. Our software compares output
pulses with incoming time stamps to continuously adjust potentials drifts
between Polhemus and audio frames by dropping or repeating Polhemus
frames when necessary. The schematics of the synchronization system is
illustrated in Figure 3.5.

PC running 
VST plugin

Polhemus 
EMF

Violin1

Violin2 Viola

Cello

Audio Card
Custom sync 

circuit

sync in
sync pulse

signal

Time-stamped
MoCap data

Figure 3.5: Schematics of the system used to synchronize the audio card
with the Polhemus EMF MoCap system.
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Figure 3.6: Screen-shot of the VST plug-in user interface for recording audio
and EMF motion data.

3.3 Audio features

Audio data post-processing included the extraction of audio features on each
individual instrument track. The purpose of those features was twofold.
First, we used them to automatically segment the performance using the
score-alignment algorithm that will be explained in Section 4.2.2. Second,
we use the audio features to describe each note with a set of expression
parameters, such as note sound level and vibrato, that will be explained in
Section 4.2.3. For simplicity we extracted all the audio features at the same
sampling rate as the EMF motion data. Thus we have both audio features
and motion at 240 Hz.

The extracted audio features are the following:

• Sound pressure level (SL)

• Pitch fundamental frequency (F0)

• Pitch aperiodicity (AP0)

• Harmonic Pitch Class Profiles (HPCP)
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Sound level was estimated for each note as follows. First, the audio signal
corresponding to each voice was divided into frames of 23ms with an 82%

overlap so as to obtain 240 Hz. Let (x
(i)
1 , . . . , x

(i)
N ) be the samples of the i-th

frame. The energy of the frame was computed as the root mean square of
its samples:

RMS(i) =
1

N

√
(x

(i)
1 )2 + · · ·+ (x

(i)
N )2

We then obtained the sound level SL(i) by expressing the RMS energy in
dB:

SL(i) = 20 log10(RMS(i))

Fundamental frequency and aperiodicity were obtained via an autocorrelation-
based method as described by De Cheveigné and Kawahara (2002). The F0
was used as the pitch performed by each musician at each frame instant
i. The aperiodicity measures by how much the signal is non-periodic. We
used the aperiodicity as a measure of how pitched the sound is at each in-
stant, which was useful to discard non-pitched transient for vibrato extent
estimation (see Section 4.2.3).

Chroma is a common audio feature useful for extracting information about
active pitch classes at each instant in time. More specifically here we com-
pute the Harmonic Pitch Class Profiles (HPCP) as described by Gómez
(2006) in her Ph.D. thesis. In order to extract such feature we used the
HPCP vamp plug-in available at the MTG website9. We used the default
parameters of the vamp plug-in with the exception of the hop size that was
set so to obtain 240 frames per second (the same number as the motion
data). At each frame i, corresponding to an instant in time, the algorithm
returns a 120-dimensional vector Chr(i) of positive weights summing to one;
these weight represent the amount of activation of a certain pitch class at
that instant.

3.4 Bowing motion features

Bowing motion features were important in our work as they enabled to
improve automatic performance alignment (see Section 4.2.2) and to use
bow velocity as and additional expression parameter (see Section 4.2.3).
A complete set of continuous bowing descriptors can be acquired using
EMF motion sensing technology. Position and orientation of the two 6DOF

9www.mtg.upf.edu/technologies/hpcp

www.mtg.upf.edu/technologies/hpcp


3.4. bowing motion features 41

sensors are tracked at 240Hz. The first is attached to the violin back plate,
in the upper bout, at the neck edge. The second one is affixed to the bow
wood, close to its center of gravity. From the data provided by these sensors,
a set of motion descriptors is extracted by means of the data processing steps
outlined in this section. For a more detailed description of the procedure
for obtaining relevant bowing motion parameter streams, refer to Maestre’s
(2009) Ph.D. Thesis.

Initially, a calibration of the string and hair ribbon ends is performed. The
exact position of the eight string ends (four at the nut and four at the bridge)
can be tracked by previously annotating (during calibration) their position
relative to the coordinate system defined by the position and orientation of
the 6DOF sensor placed in the violin. In a similar manner, the positions
of the two hair ribbon ends (at the frog and at the tip) are estimated from
the position and orientation of the 6DOF sensor placed on the bow. Both
the violin plane and the bow plane (respectively defined by their normal
vectors vn and bn) are estimated. The former is estimated from the eight
string ends, and the latter is estimated from both the sensor position and
from the two hair ribbon ends (see Figure 3.7). With this information for
each instrument, we are additionally able to extract a 3D image of the
performance to be visualized in real-time as displayed in Figure 3.6.

We estimate the bow tilt by measuring the angle between the violin plane
normal vector vn, and a vector bo being simultaneously parallel to the bow
plane and perpendicular to the bow plane normal vector bn (the vector bo is
obtained as the vectorial product of the hair ribbon vector h and bn). In a
similar manner, the string being played is estimated by measuring the angle
between vn and h (see Figure 3.7). By defining a line between the ends of
the string being played (depicted as sb and sn), and another line between
the ends of the hair ribbon (depicted as hf and ht), a segment P is defined
by a line perpendicular to both ph and ps. The bow transversal position is
defined as the distance between ph and hf , and the bow-bridge distance is
defined as the distance between ps and sb. Bow velocity is obtained as the
time derivative of the bow transversal position.

The force that the bow exerts on the string is a further important feature
of bowed instruments playing but could not be captured directly. However,
we can extract from the MoCap data a correlated variable that comes from
the deflection of the hair ribbon: the pseudo-force. The derivation of the
pseudo-force also follows simple geometric projections that are displayed in
Figure 3.8. The pseudo-force is defined as the shortest distance between
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Figure 3.7: Schematic representation of relevant positions and orientations
tracked in the extraction of bowing motion parameters with EMF sensing
technology.

the virtual position of the hair ribbon (assuming it as a rigid object that do
not interact with the string) and the string that is being played. For more
information about the procedure employed for the extraction of bowing
features we refer the reader to Maestre’s (2009) Ph.D. Thesis.

3.5 Bow Force Estimation

Whereas most of the extraction of bowing motion features was based on
reproducing existing state-of-the-art systems, the extraction of estimated
bow force represents a contribution of our work. In this section, we present
the methodology for the estimation of bow pressing force by using a simpli-
fied physical model of the hair ribbon deflection which makes use of only
position and orientation (6DOF) measurements on the bow and violin. The
motivation is to minimize the intrusiveness by avoiding the use of addi-
tional sensors, and therefore construct a more reliable system that can be
used spontaneously by musicians and for longer periods of time. The princi-
pal source of information comes from measuring the pseudo-force, as it was
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already proposed by Maestre et al. (2007). The distance between the ideal
(no deflection) segment defined by the ends of the hair ribbon, and the seg-
ment defined by the ends of the string being played. A simplified physical
model of the hair ribbon deflection is constructed and calibrated from real
data measurements using a load cell, and used later for estimating the bow
force in real performances. For more information about the estimation of
bowing force we refer the reader to our NIME paper (Marchini et al., 2011).

3.5.1 Measurement of applied force

In order to both design and evaluate our system for the estimation of bow-
ing force, we used a linear load cell transducer to measure the actual force
being applied by the bow, as suggested by Schoonderwaldt (2009a) and im-
plemented in Guaus et al. (2009). The cell is fixed to a wooden support,
while a thin methacrylate cylinder is placed over the cell to simulate a vir-
tual string. By using another EMF sensor attached to the wooden support,
we are able to track the ends of the cylinder and thus acquire a number of
simultaneous bowing parameters (including bow displacement and pseudo-
force) along with the output of the load cell (the actual force in Newtons).

The output of the linear load cell itself is calibrated using a set of precision
weights; the force produced by these weights on the load cell is derived from
Newton’s second law of motion, F = Mg, with the gravity constant g =
9.8m/s2. The voltage output of the load cell is post-processed to match the
corresponding unit of Newtons by applying a simple linear transformation
of the form y = γx + φ, where γ equals the voltage gain and φ equals the
voltage offset.

3.5.2 A simplified physical model of hair ribbon deflection

In this section we present a simplified physical model of a flexible thread,
and then we extend it to the case of multiple hairs and generalize it to
describe the complete hair ribbon. We use such physical model in order
to approximate, given solely information extracted from 6DOF sensors, the
force exerted on the string regardless of the displacement or tilting of the
bow. An important simplification was to assume the bow stick as rigid.

The thread

The simplest approximation of the bow hair-ribbon is a single elastic thread
stretched between two points A and B (see Figure 3.9). At its rest position
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Figure 3.8: Measured string and hair ribbon segments, computed from their
extracted end points, versus their actual configuration. Deformations have
been exagerated in order to illustrate the importance of segment SP .

A B

C

α β
x

y

Figure 3.9: Single elastic thread attached at the extremities A and B and
pushed at a point C.

the thread has length `, which coincides with the distance between the
points A and B. When a force is applied on a point C, the thread stretches
and is elongated until an internal equilibrium of the system is reached.

In its rest position, we consider such thread as the limit of an array of masses
connected by springs, presenting a mass-to-mass distance approaching zero.
We parameterize the thread by a function u : [0, 1]→ R2, and express the
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potential energy of the thread as

1

2

T

`

∫ 1

0
u′(t)2dt,

where T is the tension of the thread. If u is the parametrization of the thread
of Figure 3.9 with u(0) = A, u(ν) = C, and u(1) = B where ν ∈]0, 1[, the
potential energy is given by

1

2

T

`

(
x2 + y2

ν
+

(1− x)2 + y2

1− ν

)
.

The internal equilibrium, i.e. the minimum potential energy, is reached for
ν = νeq, where

νeq =
x2 + y2

x2 + y2 +
√

((l − x)2 + y2) (x2 + y2)
. (3.1)

In this equilibrium state, the point C is subject to two forces
−→
f1 and

−→
f2 in

the direction CA and CB respectively. Their magnitude is the following:

‖
−→
f1‖ = T (`1 − νeq`) (3.2)

‖
−→
f2‖ = T (`2 − (1− νeq) `) (3.3)

Let’s denote `1 and `2 the length of the AC and CB parts respectively, α
and β the angles CAB and ABC respectively, and ∆` = `1 + `2− ` the total
en-lengthening of the thread. The total force that the thread exerts on C

is
−→
F =

−→
f1 +

−→
f2 . If we set a coordinate system at point A oriented as shown

in Figure 3.9, the point C will be described by its coordinates (x, y). Now,

writing
−→
F = (Fhorz, Fvert) where Fhorz is the horizontal component of

−→
F

and Fvert the vertical component, the vertical component of the force can
be considered as the force applied to the string, and written (observing that
sin(α) = y

`1
and sin(β) = y

`2
) as

Fvert(x, y) = ‖
−→
f1‖

y

`1
+ ‖
−→
f2‖

y

`2
. (3.4)

The Hair Ribbon

A more precise approximation of the hair ribbon is to consider it as a strip of
parallel threads, assuming that the force exerted by the ribbon is the sum of
the contributions of each thread. Considering an homogeneous distribution
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of threads with density ρ and defining w to be the width of the strip, we
can define the force applied to the string as

Force = ρ

∫ w

0
f(z)dz, (3.5)

where f(z) is the force density of the thread situated at position z on the
strip.

Let m := y(0) and M := y(w) be respectively the measured left-hand side
and right-hand side bow-string distance. We then have

y = m+
(M −m)

w
z. (3.6)

Figure 3.11 schematically depicts the possible relative positions (displace-
ments) that we considered for the hair ribbon (transversal view) as relative
to the string. The displacement of the string with respect to the bow is
determined by the linear relation y(z) = az + b. Only the threads where
y is positive are contributing to the force (as they are in contact with the
string). This happens10 when z > − b

a =: c. Having the diagram of Figure
3.10 as a reference, we considered the variable x as constant with respect
to z while, depending on the changes of y, we reduce the problem to three
main cases, defined as

Case I : The y are negative (the ribbon is not touching) with respect to
all z ∈ [0, w], having

f(z) = 0 ∀z;

Case II : y is positive for 0 < z < c < w reaches 0 for z = c and is negative
for z > c, with

f(z) =


0 for z ∈ [0, c]

F (x, y(z)) for z ∈ (c, w]

; (3.7)

Case III : y is positive for all z ∈ [0, w], so

f(z) = F (x, y(z)). (3.8)

10Considering, for the moment, the case where a > 0 without any loss of generality.



3.5. bow force estimation 47

x

l

y

α β

F vert

0

y

x

f 2

F 

f 1

Figure 3.10: Decomposition of the internal forces exerted by a single elastic
thread.

Case I is of little significance, since the force is zero. In the other two cases,
applying equation (3.6) in the equations (3.7) and (3.8), we may completely
rewrite equation (3.5) using the definition of f and ∆` canceling thus all
the implicit dependencies to the variable y. Applying then the substitution
z = w

M−m(y − m) to the integral we can write the results in term of the
function

F̃ (z) :=
1

T

∫ z

0
Fvert(x, y)dy, (3.9)

where we divide by T so that F̃ do not depend on the tension. We will
handle this parameter in the further formulae.

z

y

0 w

A

z

y

0 wc

B

z

y

0 w

C

violin string

hair ribbon

Figure 3.11: I. Non touching ribbon. II. Partially touching. III. Fully
touching.

For the fundamental theorem of calculus plus taking into account the term
w

M−m of the substitution, we conclude, for the three considered cases, as
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Case I : The y are negative (the ribbon is not touching) with respect to
all z ∈ [0, w], thus

Force = 0;

Case II : y is positive for 0 < z < c < w reaches 0 for z = c and is negative
for z > c, having

Force = Tρw
F̃ (max(M,m))− F̃ (0)

|M −m|
; (3.10)

Case III : y is positive for all z ∈ [0, w], so

Force = Tρw
F̃ (M)− F̃ (m)

M −m
. (3.11)

Finally, we observe that:

1. The final force only depends on the variables x, M and m plus the
constants T , ρ and w.

2. The cases I, II and III can be identified only looking at the value taken
by M and m. Case I holds when both are negative, case II when they
differ in sign and case III when both are positive.

3. Considering a > 0 did not cause a loss of generality. Indeed, for a < 0,
due to a symmetry of the problem, we could just switch M with m
but this, thanks to the way equation (3.10) has been expressed, does
not change the result. Finally we can interpret the case a = 0 as
a limit case of equation (3.11) when (M − m) → 0. The results of
the limit is, in fact, Force = ρwFvert(x,M) corresponding to an equal
contribution of all the threads to the final force.

4. The function F̃ has an analytical formulation which can be ob-
tained expanding the integral in Equation (3.9) using Equations (3.1)
to (3.4).

3.5.3 Optimization Procedure

The described model is parameterized by a single scalar value given by
the product Tρw of the tension T , the thread density ρ and the width
w of the hair ribbon. The whole force will be scaled by the factor Tρw.
It is not necessary to estimate the three constants since we are interested
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Figure 3.12: The function Map applied to a rectangle. For this example
exaggerated parameters used are r = 0.5, b = 1.5, θ = 0.1rad.

only on their product. Thus, we need to infer the size of this factor from
an experiment; however, there are additional conditions in the real case
which are not addressed by the physical model. First, the motion tracking
sensor placed on the bow stick might rotate by a small angle θ after the
calibration has been performed, causing a rotation of all the data. Secondly,
due to the movement of the sensor, it might be necessary to adjust the bow
displacement adding an offset constant a, and the pseudo-force with an
offset constant b. Lastly, in order to address the problem of the bending
of the stick, another constant r is added defining a transformation which
will compensate, the effect of the stick bending by dividing the pseudoforce
by a value depending on the bow displacement. The final transformation is
given by the following formula:


x′ = a+ x

M ′ = Map(x,b,θ,r)(M)

m′ = Map(x,b,θ,r)(m)

, (3.12)

where

Map(x,b,θ,r)(y) :=

(b+ y

(
1 + r

2
+

(−1 + r)
(
− l

2 + x
)

l

)
Cos[θ] + xSin[θ]) (3.13)
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Description

Suppose we have a training set {(xi,Mi,mi)}i=1,...,n where xi is the bow
displacement, Mi is the pseudo-force of left side and mi is the pseudo-force
of right side at time i. Given the parameters T , θ, a, b and r we consider
the prediction

Forcei(T, θ, a, b, r) =

Force(xi + a,Map(xi,b,θ,r)(Mi),Map(xi,b,θ,r)(mi)). (3.14)

We want to find the better values for the parameters in order to minimize
the absolute error:

J(T, θ, a, b, r) =
1

2

n∑
i=1

(Forcei(T, θ, a, b, r)− nidaqi)
2.

where nidaqi is the load cell measured force at time instant i. We thus aim
at finding the parameters:

(T ∗, θ∗, a∗, b∗, r∗) = arg min
(T,θ,a,b,r)

J(T, θ, a, b, r)

We use the Nelder-Mead simplex method Lagarias et al. (1999) in order to
find a local minimum, starting from the identity transformation parameters:
T = r = 1, θ = a = b = 0. In order to reduce the computation time, we
down-sampled the signal to 8 samples a second. Before the optimization
of the parameters we also filtered the dataset, to remove noisy data. We
removed the samples where the measurement of the Force cell was less than
0.2. In fact the sensitivity of the sensor for small forces was reduced and
noisy.

3.5.4 Results

Using the acquired gesture parameters along with the Force cell data, we
recorded three evaluation datasets. In the dataset 1, an almost constant
force was applied with different bow transversal positions and different tilts.
In the dataset 2, the pseudo-force was changing constantly from positive
to negative while changing tilt and bow transversal position in order to
simulate the way violin is normally played. In the dataset 3, bow transversal
positions was kept fixed while the force and the tilt where changing. This
was done for many different bow transversal positions. Each recording was
around one minutes long. We created a Joint Dataset, with the samples
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of the three recordings and we performed a 10-fold cross validation, with a
performance going as low as 84.01 mean correlation.

Finally, in order to investigate on the best calibration procedure, we also
compared the three different datasets. The table 3.2 shows the results of
each possible combination of training-set with test-set. It clearly shows that
the third dataset is good enough to predict the rest. We can conclude that,
a short calibration of one minute, with static bow displacement positions
results sufficient for general-purpose force estimation. This last type of
calibration was indeed eventually used before each performance to calibrate
the musician’s bows.
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Figure 3.13: An excerpt of the recorded force signal (continuous gray line)
along with its prediction (blue dashed line) after the optimization has been
performed.

3.5.5 Bow force estimation in string quartet recordings

The introduced physical model hair ribbon deflection produced good results
in laboratory tests. One of the main advantages of this method respect to
a black-box machine-learning approach is that the model depends on very
few parameters that can be adjusted in a post-processing step if something
goes wrong during the recording. Given the results of our investigation
on bowing force estimation and on the optimization of the parameters, we
decided to adopt the following procedure in each of the carried out recording
sessions:
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Table 3.2: Correlation and relative error (both in percentage) between the
force prediction and the measured force for each training set and test set
coupling.

Test Set

Dataset 1 Dataset 2 Dataset 3 Joint

corr rel err corr rel err corr rel err corr rel err

T
ra

in
in

g
S

e
t Dataset 1 89.21 16.75 96.18 23.68 98.84 14.67 97.29 17.03

Dataset 2 95.03 13.78 97.76 16.75 98.37 20.13 97.4 16.88

Dataset 3 84.95 23.61 95.87 22.64 98.88 12.18 96.13 19.82

Joint 94.1 13.04 97.3 19.73 98.94 12.19 98.12 13.75

1. At the beginning of the session we asked the musicians to set the
tension of their bows to the desired amount.

2. We explicitly asked them not to change the tension of the bows during
the whole session.

3. At the end of the session we calibrate each bow on the load cell.
Each calibration involves a recording of around two minutes where we
record the force obtained with different degrees of tilt, pseudo-forces,
and bow displacements.

In a post-processing step we employed each calibration recording to derive
the optimal tension parameter T ∗. The remaining parameters θ∗, a∗, b∗

and r∗ are specific of the calibration procedure and they could not be ap-
plied equally well to the playing on the instrument. Those parameters were
therefore adjusted manually in a post-processing step in which we com-
pared resulting force estimation with audio and other bowing parameters.
We adjusted the parameters individually on each string to account for the
distorting effects of the electromagnetic field sensor at various orientations.
This procedure was realized on each of the recording sessions focusing on
small parts of the recording to derive the parameters on each string.
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There was no ground truth measurement of the bowing force applied by
the musicians on their instruments, so that a complete evaluation of the
method was impossible. However, the audio track provided a guideline to
our manual parameter adjustments since transitions from silence to sound
could be spotted out and compared with spikes of force. In order to carry
out the manual estimation of the force parameters we developed an interface
(showed in Figure 3.14) in which it was possible to interactively see the effect
of manipulating the parameters. Whereas the transition between no-force to
force could be spotted out relatively well by our model, the amount of force
undergoes slight fluctuations along the recording due to the movement of the
musician in space. For the scope of this dissertation we used force estimation
to improve the score-performance alignment algorithm by exploiting the
force and bow velocity transitions (see Section 4.2.2).

In the rest of the dissertation we will use bow velocity and estimated bow
force for the analysis of expressive performance. Since we used the sam-
pling frequency of 240Hz for both audio and gesture descriptors, we have
240 measurements of bow velocity and estimated bow force per second.
Those values are parameterized by the frame number i = 1, . . . ,m where
m depends on the duration of the recording. We will use the following
shorthand notations:

BV(i) = Bow velocity along the direction of the bow, measured at frame i
in cm/s

EBF(i) = Estimated bow force, measured at frame i in Newtons
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3.6 Conclusions

Data acquisition was crucial in this work and represents a contribution per
se. To the best of our knowledge, no work had before acquired string quartet
performance to such level of detail. We believe that the collected data
represents a valuable dataset that could be used not only to study ensemble
expressive performance but also other aspects of ensemble performance such
as non-verbal communication or synchronization.

In this chapter we reported the procedure followed to acquire the data and
discussed on the choice of the music material and on the time scheduling
constraints that forced some of our decisions. We listed the recordings ana-
lyzed in this dissertation along with the underlying motivations that pushed
us to choose such scores. We presented the solo and ensemble conditions
specifying which excerpts were recorded in one or both conditions.

We took great advantage from previous work on the extraction of bowing
parameters and extended it to also include bowing force estimation. A great
advantage of our dataset is given by the possibility to focus on the perfor-
mance of each musician separately. Performance actions of musicians were,
in fact, acquired simultaneously and independently one from the others.
Furthermore, the use of individual piezoelectric pickup allowed an indi-
vidual extraction of audio feature on each musician, even in the ensemble
condition when they shared the same room.

The release of the open access dataset for research purposes enables addi-
tional studies and the possibility for each researcher to test their models. We
hope that the free availability the dataset will foster research in ensemble
performance.





Chapter 4

Score & Performance Analysis

One of the main goals of research on expressive performance is relating
score contextual information to expression parameters. However, both the
MusicXML scores and the raw performance data need to be interpreted from
a musical perspective before any analysis of expressive performance can be
carried out. In this chapter we cover the extraction of score contextual
descriptors and performed expression parameters, which we will then use in
Chapter 5 to analyze expressive performance.

In the first part of the chapter (Section 4.1), we cover the extraction of
score context. On the surface, each note is defined by its basic properties
such as pitch and duration. However, as soon as a note appears within
a context (e.g. a melody), it can assume a wide variety of connotations.
This is analogous to the language domain; the very same word can assume
different meanings when we place it in alternative sentences. In this latter
case, the context helps discriminating between different acceptations of the
same word. Similarly, in music, the score context helps understanding the
function of a particular note in the melody.

In music, the context is not only given by previous and following notes. In
fact, due to polyphony, there might be notes played simultaneously which
also participate in defining the function of a particular note. For these
reason we distinguish between two main types of context in music scores:
the horizontal context and the vertical context. The horizontal context is
defined by the information about previous and following notes constituting
the melody where the note appears. The horizontal context can be seen as
analogous to the context in written text because of its sequential nature.
The vertical context is instead typical of music polyphony as it is defined

57
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by the information about concurrent melodies being played.

In this first part of the chapter (Section 4.1), we show that in machine-
learning algorithms both horizontal and vertical contexts can be represented
and encoded as feature vectors. We provide a methodology to extract hori-
zontal and vertical context features from string quartet scores. Features can
be numeric, categorical or boolean. The procedure could be easily extended
to other types of ensemble music.

In the second part of this chapter (Section 4.2), we preliminarily focus on
the procedure employed for deriving score-performance alignment of the
recorded material. As already mentioned in Chapter 1, such procedure is
a critical part of our analysis and replaces an otherwise impractical mu-
sic transcription procedure. Thereafter, we define a set of note expression
parameters computed from note durations and from the acquired data on
each note. These parameters represent a varied sub-set of the expressive
capabilities of the bowed instruments. The expression parameters that we
employed in this dissertation are represented by numeric values.

4.1 Score Analysis

The recorded material was accompanied by corresponding scores in Mu-
sicXML, an XML-based file format for representing Western musical nota-
tion. This format, although proprietary, can be freely used under Public
License. In a MusicXML, data are organized in parts (which we also refer to
as voices) comprehending parts for first violin, for second violin, for viola,
and for cello. In this section we describe the process we have employed to
analyze the parts and extract a set of score descriptors.

In ensemble scores we have more than one concurrent voice being played
simultaneously. In the analysis of expressive performance we focus on one
voice at a time (e.g. first violin) characterizing the context of each note
in that reference voice. The note that is being characterized is referred to
as the reference note (see Figure 4.1). By analyzing the reference voice we
can already extract horizontal melodic/rhythmic context of the reference
note (see Figure 4.1). However, the same melodic line can assume different
connotations if the accompaniment is altered and, in this case, the musician
might decide to render it employing different expression. For this reason,
contextual information that only describes one melodic line is not sufficient
for predicting the performance. In this case we deal with four voices, which
is a good compromise between a duet and an orchestra; there being enough
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inter-voice relations and contextual information to make a specific analysis
meaningful, but not too many to dramatically increase the complexity and
make the analysis impossible.

Figure 4.1: An example demonstrating the Horizontal and Vertical contexts
as they are derived from the score.

We introduced a set of ensemble context descriptors which can be extracted,
in theory, from any ensemble score. Figure 4.1 graphically depicts the kind
of score contextual descriptors we considered on a real score example. Hori-
zontal context descriptors were computed based solely on a musician’s indi-
vidual voice, ignoring the voices of the others (see Table 4.1). These include
both properties of the note itself, as well as properties of the neighboring
notes (preceding and subsequent) in that voice. Different temporal context
window sizes can be considered by adding more or less neighboring notes to
the feature set.

Vertical context descriptors include information from the score about the
notes played by other musicians concurrently with the reference note (see
Table 4.2). In each of the three other voices, the corresponding concurrent
note event was selected as the one note (or rest) that is active (or starts)
at the beat position where the reference note starts. Vertical descriptors
are extracted from the list of concurrent notes by either relating their prop-
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erties to the reference, or combining their properties to compute resuming
descriptors. The horizontal context of each concurrent note event was also
considered as a vertical context of the reference note (see the selected con-
text from the voice of the viola in Figure 4.1).

In Tables 4.1 to 4.3 we list a set of score contextual descriptors, which we
will use extensively in Chapter 5. We provide the formula of each descriptor
employing the following mathematical notation. Assume that the reference
note N0 is fixed and has its onset at beat b0 in the score, has pitch p0,
and duration d0. At beat b0 the other three musicians are playing the

concurrent note events N
(1)
0 , N

(2)
0 and N

(3)
0 respectively. Note how we

use the superscripts to identify the concurrent notes in other voices. We

analogously use superscripts to refer to properties of such notes; e.g., p
(2)
0 is

the pitch value of the second of the other musicians. We use the subscripts
to indicate neighboring notes; e.g. d−1 and d1 refer, respectively to the
duration of the previous and the following note in the voice line of N0. We
combine both subscripts and superscripts to refer to neighboring notes in

the voice of other musicians; e.g., p
(1)
−1 is the pitch of N

(1)
−1 , which is the

previous to the concurrent note, in the voice line of the first of the other
musicians. In the following sections we explain how melodic, rhythmic and
harmonic descriptors are defined and extracted from the score.

4.1.1 Melodic Descriptors

We include the nominal pitch of the reference note and a set of melodic
descriptors to characterize the melodic line of the target voice. The In-
tervallic contour (see Table 4.1, 6th row) is represented by a collection of
melodic intervals (signed difference of pitch semitones) for each couple of
consecutive notes.
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Figure 4.2: Prototypical Narmour structures.

Furthermore, we implement the Narmour implication realization model in
each group of three consecutive notes (Narmour, 1992). The Narmour group
Narmour(x, y, z) of three consecutive pitches x, y and z describes how the
expectation that is built over the sequence of pitches (x, y) is fulfilled by
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Table 4.1: Horizontal context descriptors.

Horizontal Context Descriptors (HCD)

Descriptor Units # Formula Range

N
o
m

in
a
l

Pitch Semitones 1 p0
[36, . . . , 96] (corresponding to

C2–C7 midi range)

Duration Beats 1 d0 ]0,+∞[

Melodic Charge Circle of Fifth Steps 1 c0 [0, 1, 2, 3, 4, 5, 6]

Metrical Strength Label 1 MetricalStrAt(b0)
{‘strongest’, ‘strong’, ‘weak’,
‘weaker’, ‘weakest’}

N
e
ig

h
b

o
ri

n
g

n
o
te

s
(±

2
n

o
te

s
c
o
n
te

x
t)

Narmour Group Label 3

Narmour(p−1, p0, p1)
{‘P’, ‘D’, ‘ID’, ‘IP’, ‘VP’, ‘R’,
‘IR’, ‘VR’, ‘P ’, ‘ID ’, ‘IP ’,
‘VP ’, ‘R ’, ‘IR ’, ‘VR ’, ‘none’}

Narmour(p−2, p−1, p0)

Narmour(p0, p1, p2)

Intervallic Contour Semitones 4

p1 − p0

{−60,−59, . . . , 0, . . . ,+59,+60}
p2 − p1

p0 − p−1

p−1 − p−2

Rhythmic Contour Ratio (positive real) 4

d1/d0

]0,+∞[
d2/d1

d0/d−1

d−1/d−2

Rest Boolean 4

r1

true/false
r2

r−1

r−2
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the pitch z. We encoded this as class labels; of which there are 15 possible
labels (see Table 4.1) to which we add an additional “none” label for the
case that one of the three notes is a rest. Figure 4.2 shows some prototypical
Narmour structures.

C G

D
A

E

B
F#C#

G
#
D
#
B
b

F

Figure 4.3: The circle of fifths. The pitch classes are organized by intervals
of fifths. Notes further away from the tonic degree sound more dissonant,
the distance can be counted as number of steps in the circle. As an example,
in the tonality of C major, the note D has melodic charge 2 since there are
two steps to reach D from C in the circle: C→ G → D.

The melodic charge c is a descriptor of note salience, which is defined as
the smallest number of steps required to reach the note in the circle of
fifths (see Figure 4.3) from the tonic note (a number from zero to six).
The melodic charge is considered a horizontal descriptor since it can be
computed independently from the concurrent melodic voices by knowing
the tonality alone.

4.1.2 Rhythmic Descriptors

Rhythmic information of the target voice was included by describing the du-
rations of neighboring notes, relations to the meter and eventual pauses. We
employed the metrical strength and rhythmic contour as well as a Boolean
variable indicating the presence of neighboring rests (see Table 4.1).

Metrical strength depends on the position of the note relative to the bar
meter and is encoded by a single class label from strongest to weakest de-
pending on the beat position b0 of the reference note. For the 4:4 meter we
define the metrical strength, per case, as follows, where the first case that
matches apply:
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Table 4.2: Vertical context descriptors.

Vertical Context Descriptors (VCD)

Descriptor Units # Formula Range

N
o
m

in
a
l

Rest Boolean 3

r
(1)
0

true/falser
(2)
0

r
(3)
0

R
e
la

ti
v
e

to
T

a
rg

e
t

Inter-Beat Interval
(IBI)

Beats 3

b
(1)
0 − b0

]−∞, 0[b
(2)
0 − b0

b
(3)
0 − b0

Relative Pitch Semitones 3

p
(1)
0 − p0 {−60,−59, . . .

. . . , 0, . . .

. . . ,+59,+60}
p
(2)
0 − p0

p
(3)
0 − p0

Relative Duration

Ratio
(positive
real)

3

d
(1)
0 /d0

]0,+∞[d
(2)
0 /d0

d
(3)
0 /d0

R
e
su

m
in

g
D

e
sc

ri
p

to
rs

Harmonic Descrip-
tors

Real, and
a Boolean

2
HarmChAt(b0) [0, 6[

c0 ≥ max(c
(1)
0 , c

(2)
0 , c

(3)
0 ) true/false

Minimum IBI Beats 1 max(b
(1)
0 , b

(2)
0 , b

(3)
0 )− b0 ]−∞, 0[

Minimum Relative
Duration

Ratio 1
min(d

(1)
0 /d0, d

(2)
0 /d0,

d
(3)
0 /d0)

]0,+∞[

Maximum Relative
Duration

Ratio 1
max(d

(1)
0 /d0, d

(2)
0 /d0,

d
(3)
0 /d0)

]0,+∞[

Minimum Relative
Melodic Charge
(minRMC)

Difference
(integer)

1
min(c

(1)
0 − c0, c

(2)
0 − c0,

c
(3)
0 − c0)

{−6,−5, . . .

. . . , 0, . . .

. . . ,+5,+6}

Maximum Relative
Melodic Charge
(maxRMC)

Difference
(integer)

1
max(c

(1)
0 − c0, c

(2)
0 − c0,

c
(3)
0 − c0)

{−6,−5, . . .

. . . , 0, . . .

. . . ,+5,+6}



64 score & performance analysis

MetricalStrAt(b0) =



“strongest”, if b0 is at the 1st beat of the bar

“strong”,
if b0 is at the up-beat (3rd beat of
the bar)

“weak”,
if b0 is a quarter division of the bar
(that is not already stronger)

“weaker”,
if b0 is an eighth division of the bar
(that is not already stronger)

“weakest”, in all other cases

The pieces in our recordings have the following meters: 2:2, 4:4 and 3:4. We
treated 2:2 and 4:4 in exactly the same way. In the case of the ternary meter
we applied the same definition as 4:4 except that there are two up-beats in
the 2nd and the 3rd positions. In the ternary meter, since quarter divisions
are all marked as “strong” or “strongest” there are no “weak” notes, but
there can be “weaker” or “weakest” notes.

Rhythmic contour was characterized by the ratios between consecutive nom-
inal durations of neighboring notes. For example the sequence ˇ “ ˇ “== ˘ “ ˇ “===̌ “‰ has
rhythmic contour [1, 4, 1

8 , 3]. We applied this definition since multiplying
each note value by a factor produces the same rhythmic pattern at a dif-
ferent speed. For example the rhythmic pattern of ˘ “ ˇ “ ˇ “

==
would produce the

same the rhythmic contour as the one of ¯ ˇ “ ˇ “.
Employing a similar approach, we also introduced vertical rhythmic infor-
mation derived from the other voices of the ensemble (see Table 4.2, Relative
Duration). For each concurrent note, we computed the relative duration
with respect to the reference note (ratio of nominal durations). In order
to quantify the phase difference between notes we compute the inter-beat
interval (IBI) as the difference of start times between the reference note and
each of the concurrent notes (in beats). Additionally, as resuming descrip-
tors, we computed maximum and minimum values across all the concurrent
relative durations and the minimum IBI.

4.1.3 Harmonic Descriptors

Harmonic relations between voices are very important in ensemble perfor-
mances, especially where string instruments are concerned given that into-
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Table 4.3: Score context of other voices.

Score Context of Other Voices (SCOV)

Descriptor Units # Formula Range

N
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ig

h
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n
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s
(±

1
n

o
te

s
c
o
n
te

x
t)

Intervallic Contour Semitones 6

p
(1)
1 − p

(1)
0

{−60,−59, . . . , 0, . . . ,+59,+60}

p
(1)
0 − p

(1)
−1

p
(2)
1 − p

(2)
0

p
(2)
0 − p

(2)
−1

p
(3)
1 − p

(3)
0

p
(3)
0 − p

(3)
−1

Rhythmic Contour Ratio (positive real) 6

d
(1)
1 /d

(1)
0

]0,+∞[

d
(1)
0 /d

(1)
−1

d
(2)
1 /d

(2)
0

d
(2)
0 /d

(2)
−1

d
(3)
1 /d

(3)
0

d
(3)
0 /d

(3)
−1

Narmour Group Label 3

Narmour(p
(1)
−1, p

(1)
0 , p

(1)
1 )

{‘P’, ‘D’, ‘ID’, ‘IP’, ‘VP’, ‘R’,
‘IR’, ‘VR’, ‘P ’, ‘ID ’, ‘IP ’,
‘VP ’, ‘R ’, ‘IR ’, ‘VR ’, ‘none’}

Narmour(p
(2)
−1, p

(2)
0 , p

(2)
1 )

Narmour(p
(3)
−1, p

(3)
0 , p

(3)
1 )

Rest Boolean 6

r
(1)
1

true/false

r
(1)
−1

r
(2)
1

r
(2)
−1

r
(3)
1

r
(3)
−1
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nation is not fixed to specific intervals but rather continuous. We computed
the harmonic charge (Friberg, 1995) on all the notes active within the beat
b0 of the reference note. To compute the harmonic charge, the pitches of
notes active within the beat are preliminarily collected in a list. By using
the implementation from the open project music211 we constructed a chord
with the list of pitches and then estimated its root note. We then computed
the melodic charge of each note in the chord with respect to the root note.
Lastly, we calculated the mean of the obtained melodic charges resulting in
the value of harmonic charge HarmChAt(b0).

Other harmonic descriptors were provided by the relative melodic charge.
We computed the difference in melodic charge of every concurrent note
with the reference note. We stored the minimum and the maximum value
of those differences (minRMC and maxRMC, see Table 4.2). The maxRMC
descriptors has been used in the past to define note salience in the vertical
context. In particular, Sundberg et al. (1989) extracted a sync-line from
the polyphonic score by keeping only the most salient note at each instant.
The most salient note was defined as the one note active at each moment
for which maxRMC ≤ 0.

4.2 Performance Analysis

The raw data acquired in the recording sessions can be analyzed in various
ways. In this dissertation we extract the characteristics of each performed
note. For this reason score-performance alignment is a necessary front-end
procedure that we had to carry out on all of the analyzed recordings.

We begin the performance analysis with an analysis of the articulations
acquired in the recordings S.1-S.5, which are used as our reference tem-
plate dictionary of bowing articulations. We then present a score-alignment
algorithm motivated by observations on the extracted note profiles. We op-
timize and evaluate the aligner algorithm on a subset of our dataset. Lastly,
with the support of the semi-automatic score aligning procedure, we define
a set of note expression parameters which can be extracted from audio, ges-
tures and timing. We will study how musicians employed such expression
parameters in the next chapter in the various pieces/conditions which were
recorded in our dataset.

1http://mit.edu/music21/
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4.2.1 Note profiles

As a first approach to studying gestures employed by musicians, we per-
formed a note profile analysis of the datasets S.1-S.5. We manually aligned
musicians’ performance for all the recordings in S.1-S.5, leading to a precise
ground truth note onset/offset time of each note. This manual alignment
was obtained marking on screen the onset and offset of each note on top
of the sound waveform and a set of audio/gesture descriptors2. Once the
manual alignment was completed, we looked at the intra-note evolution of
descriptors both in the audio and in the gestural domain. To have an ho-
mogeneous representation we re-sampled each note trajectory to 25 samples
(this number was enough for our analysis but we could have used more);
this allowed us to compare notes that would otherwise have different length
in samples.

We group notes by musician, by articulation, by dynamics, and by dura-
tion. This results in a totality of 180 categories because we have four musi-
cians (first violin, second violin, viola and cello), five articulations (staccato,
legato, martelé, staccato on string and detaché), three dynamics ranges (pi-
ano, mezzo forte, fortissimo), and three durations (quarter notes, eighth
notes and sixteenth notes). For each of the 180 categories (cat) we have

recorded 32 notes, each represented by a 25-dimensional vector v
(feat,cat)
i for

i = 1, . . . , 32 and for each feature (feat). The 32 notes within each cat-
egory (cat) were performed with similar durations (in milliseconds). For
this reason, the re-sampling resulted in negligible stretching factors among
notes within each category. We thus define the note profile of every given
category as the mean trajectory of descriptors. This consisted, in our case,
in computing the mathematical center of mass of the 32 vectors in each

category v(feat,cat) = 1
32

∑32
i=1 v

(feat,cat)
i .

We used the note profiles derived in each category to study evolution of
intra-note performance descriptors in qualitative terms. Such analysis is
far from a thorough modeling of bowing articulations because by averaging
trajectories we remove many individual note details focusing only on the
coarse characteristics of each category. For a thorough study of articulations
in bowed instruments we refer the reader to Maestre’s (2009) Ph.D. Thesis.
The purpose of our qualitative analysis is motivating the score-alignment
heuristics method that we will introduce later in this section. We are thus
interested in understanding how each prototypical note is realized in terms

2The GNU General Public License software Sonic Visualiser was used for this purpose.
Visit http://www.sonicvisualiser.org for more information.

http://www.sonicvisualiser.org
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of bowing gestures and audio descriptors. We first present note profiles in
the velocity-force space, and then we consider features in the audio domain.

The velocity-force space

We focused on force and velocity as they are the most important bowing
parameters defining note attack and sustain (Askenfelt, 1989). Figure 4.4a
shows bow velocity and bow force profiles of an eighth note played mezzo
forte staccato. In Figure 4.4b the same two functions in time are plotted as
a 2-dimensional trajectory in a velocity-force space. This last representation
is particularly convenient since the two parameters are notoriously linked
for the production of sound in bowed instruments. For example, with zero
force no string excitation is produced regardless of bow velocity; neither any
string excitation can be produced with positive force but zero velocity (the
result in this case being a stopping of any vibration of the string). Sound
can thus be produced when the 2D trajectory travels across the inside of
one quadrant and away from the axes in the velocity-force space. Indeed,
in this case the bow transmits energy to the string.

Figures 4.5 to 4.7 show note profiles resulting from the performance of
first violinist legato, martelé and staccato respectively. Similar trajectories
are obtained for the other musicians and thus we omit here the complete
set of plots. In the presented graphs the bow velocity is always positive
because, before computing the center of mass, we changed sign to bow
velocity trajectories for all the notes where bow velocity was prevalently
negative (i.e. when the median bow velocity value was negative).

The difference between the three articulations is self-evident from the plots.
The legato articulation is (in average) realized with constant force and ve-
locity so that it appears as a steady point in the velocity-force space (see
Figure 4.5). Notice that in the legato profiles any eventual force-velocity
transition at note start/end was canceled out by the averaging. In the
resulting note profiles, the amounts of force and velocity are modulated de-
pending on note duration and dynamics. The martelé articulation is instead
realized with clock-wise oval shapes starting at zero velocity and positive
force. The ovals become bigger in louder notes and rounder in shorter notes
(see Figure 4.6). The staccato articulation is similar to the martelé but the
trajectories are sharper for short notes (see Figure 4.7) and force is zero in
the last part of the note.

The purpose of note profile analysis was deriving general heuristics to be
applied to a score alignment algorithm based on gestures. As it can be seen
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Figure 4.4: Intranote trajectory of bow velocity and force for a mezzoforte
staccato note. The same trajectory in Figure (a) can be represented as the
2-dimensional trajectory in (b), which forms a clock-wise closed shape.

in Figures 4.5 to 4.7 note offsets are not well defined, but there are some
general principles that we can apply to detect onsets by looking at velocity-
force space trajectories. In the profiles of legato notes it is difficult to locate
the onsets because we are looking at an average trajectory. However, bow
direction changes (where the trajectory crosses the y-axis in the velocity-
force space) represent very clear signs of onsets. In staccato and martelé
onsets generally occur concurrently with a sudden rise of velocity and/or
force. We have thus identified three cases where onsets are more likely
to happen: force attack, direction change, and velocity attack. The three
cases are graphically described in Figure 4.8 were each case corresponds to
a drawing in the velocity-force space.

We implemented a simple detection mechanism of the above onset cases
which is explained in details in Algorithm 1. In a first stage, the algorithm
detects onset candidates based on velocity-force trajectory. Consequently,
it defines the onset log-likelihood gatt(i) at each frame i depending on the
distance in time from the closest onset candidates. The gatt likelihood is a
Gaussian mixture distribution over time with means at onset candidate in-
stants. This code assumes a sampling frequency of 240Hz and consequently
uses a window size of 4 frames (17 ms); however, the pseudo-code can easily
be adapted to other sampling frequencies. In Figure 4.9 we show an ex-
ample of the onset likelihood computed on an excerpt recording. In such
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plot, the gatt likelihood has peaks near onset positions, which correspond
to visible onsets in the sound waveform.

From our experience, a good aspect of the defined likelihood gatt is that
within the onset candidates there are few false positives. False negatives
are more common, for example in the case that notes are played legato, an
thus two or more notes are played within one bowing direction. However,
by mixing the gatt with other complementary information from the audio
the algorithm is able to recover the missing onsets. Furthermore, each
onset candidate is assigned with a different peak value in gatt depending
on its type (force attack, velocity attack or direction change attack), which
tells us how confident we can be that the onset candidate corresponds to an
actual performed onset. Lastly, our heuristic formulation of likelihood could
still be improved in various ways; for example by adapting the variance of
each Gaussian around the candidate onsets depending on further bowing
parameters such as bow acceleration.

Intra-note evolution of audio features

Whilst for bow motion it makes sense to compute profiles and show results
on different articulations, for audio features we adopt another approach.
Computing averages in this domain might, in fact, be counter-productive
due to the higher variation of ranges (different pitches and sound level
gains). Nonetheless, looking at the recording we could spot out some gen-
eral and obvious principles. We explain here what we expect from chroma
features and sound level at the beginning of a note and in its sustain part.

Not all the sound signal within the duration of a note is considered equally
important. We only take into account a sustain period s of s = 350 ms
between the frame tk (the note beginning) and t+k (the end of the sustain)
or the beginning of the following note tk+1 (in the case that IOI< s).

Chroma Figure 4.11 shows five seconds of violin performance recorded
with the pickup microphone. At the top, the sound waveform is shown with
vertical lines marking the segmentation into notes (as obtained manually).

In Figure 4.11 we can compare HPCP output (see Section 3.3) with a tem-
plate chroma generated from score pitch information. The template chroma
ChrTempl(p) for a set of pitches p = {h1, h2, . . . , hñ} is a 120-dimensional
vector defined as follows. Start from the zero vector v and then for each
pitch height hj (for j = 1, . . . , ñ) add to v a Gaussian shaped distribution
(positive only within half semitone) around the bin location corresponding
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Algorithm 1 Algorithm to extract the log-likelihood of onsets from bow
velocity and force.
Require: EBF(i) = Force at frame i
Require: BV(i) = Velocity at frame i

for each frame i do
if (EBF(i − 2) = EBF(i − 1) = 0) ∧ (EBF(i) > 0) ∧ (EBF(i + 1) >
0) ∧ (|BV(i)| > velThr) then

IsForceAttack ← true
else

IsForceAttack ← false
end if
if (max(BV(i− 2),BV(i− 1)) < 0) ∧ (min(BV(i),BV(i+ 1)) ≥ 0) (or
reversed inequalities and min-max signs) and (|BV(i + 1)| > velThr)
then

IsDirectionChange ← true
else

IsDirectionChange ← false
end if
if (max(|BV(i − 2)|, |BV(i − 1)|) < velThr) ∧ (min(|BV(i)|, |BV(i +
1)|) ≥ velThr) then

IsVelocityAttack ← true
else

IsVelocityAttack ← false
end if
if IsForceAttack then
a← lnLogistic(|BV(i)|;µ = 100, σ = 5)
for each frame k do
L
(1)
k ← L

(1)
k + a+ lnGauss(k;µ = i, σ = 1.85)

end for
else if IsDirectionChange then
a← lnLogistic(EBF(i);µ = 0.1, σ = 0.005)
for each frame k do
L
(2)
k ← L

(2)
k + a+ lnGauss(k;µ = i, σ = 1.85)

end for
else if IsVelocityAttack then
a← lnLogistic(EBF(i);µ = 0.1, σ = 0.005)
for each frame k do
L
(3)
k ← L

(3)
k + a+ lnGauss(k;µ = i, σ = 1.85)

end for
end if

end for
for each frame i do

gatt(i)← max(−20, L
(1)
i , L

(2)
i , L

(3)
i ) #

Minimum probability is -20
since there might be on-
sets without bowing attacks
events.

end for
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Figure 4.10: Sound waveform of a note with marked sustain period consid-
ered and the time instants tk,t

+
k and tk+1.

to hj (the vector v of pitch classes is circular so that if we arrive to the end
position we have to continue to the first position). After adding the gaussian
shaped bins, normalize v so that is sums to one, the result is ChrTempl(p).
To better illustrate the procedure, Figure 4.12 we represent the chroma
template obtained for the C major chord p ={C,E,G}. At each frame i we
can now check how well the set of pitches p fits the sound by computing the
Chroma Activation of p at frame i as the dot product between measured
chroma and template chroma:

ChrAct(i,p) = 〈Chr(i),ChrTempl(p)〉 =
120∑
k=1

Chr(i)[k] ChrTempl(p)[k]

The chroma activation ChrAct(i, p) is a value in the range [0, 1] since both
Chr(i) and ChrTempl(p) contain positive weight components and they each
sum to one. The highest values are obtained if Chr(i) and ChrTempl(p)
have activations of pitches at the same location of the octave and in similar
proportions. In a good performance segmentation the template chroma of
each note in the score should match with the corresponding audio chroma
within the boundaries of the notes. However, a high matching is sometimes
only measured in the sustain period after the note onset and not in the last
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Figure 4.12: Template chroma vector ChrTempl(p) for the C major chord,
p ={C,E,G}.

part of the note. This is generally due to transitions to the next note which
might be realized with a ‘fade away’ in loudness or a ‘glide’ in frequency.
For example, in Figure 4.11 (on the second plot from the top) one can notice
how the next-to-last note contains a glissando of one third when going from
note B to note D. We set the duration of the sustain period to s = 350ms for
our alignment, corresponding to a duration of sf = 84 frames (due to our
fixed sampling rate of 240Hz). We expect the highest match between the
template and the sound to happen during this period of time. We therefore
define the note chroma matching ChrMatch(p, tk, tk+1) between the pitch
class p and the audio as an average of the matching between the template
chroma and the audio chroma during the sustain period. We calculate the
end of the sustain period as t+k := min(tk+1 − 1, tk + sf ). For a note with
pitch p starting at frame tk ending at frame tk+1 the note alignment chroma
matching is therefore defined as:

ChrMatch(p, tk, tk+1) =
1

t+k − tk + 1

t+k∑
i=tk

ChrAct(i, p)

Sound and silence Distinguishing between silence and sound is a first
step in order to understand when a note is played or rather there is a pause
or a transition. Ideally, we could compress the sound level value to just the
two states on (playing) or off (not playing) since we do not care (at this
stage) about the loudness of each note. However, such compression would
result in discontinuities in the jumps from one state to the other which we
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want to avoid. For this reason we define a playing likelihood signal ssus as:

ssus(i) = lnLogistic(SL(i);µ = silenceThr, σ = compressionFactor)

where we define the lnLogistic(x;µ = m,σ = s) as the logarithm of the
sigmoid function with parameters m and s:

lnLogistic(x;µ = m,σ = s) = ln

(
1

1 + exp(− (x−m)
s )

)

in which the silence threshold is set manually depending on the instrument
and the pickup (usually we set it to -55 dB under audio clipping level), and
the compression factor controls how wide the border region between playing
and not playing is (we usually set it to 15 dB). An example value of ssus is
shown in the fourth plot of Figure 4.11. For reasons analogous to the case
of chroma, during the sustain period we expect the value of ssus to stay
near one (i.e. there is a sustained sound). Mathematically we can express
this condition by stating that the value of SustainMatch(tk, tk+1) is globally
maximized for each note, where:

SustainMatch(tk, tk+1) =
1

t+k − tk + 1

t+k∑
i=tk

ssus(i).

We expect the SustainMatch to be close to one for pitched notes. In the
case of pauses we instead expect the mean of ssus(i) whithin the whole pause
boundaries to be close to zero:

PauseMatch(tk, tk+1) =
1

tk+1 − tk

tk+1−1∑
i=tk

ssus(i).

A further observation on ssus is that notes usually start on a rise of sound
level which can be detected using the derivative of ssus. This consideration
is well known in the literature of the most basic onset detector algorithms.
By taking the positive part of the derivative of ssus and then convolving it
with a Gaussian window we obtain the signal displayed in the last sub-plot
of Figure 4.11 and which we refer to as δssus.

4.2.2 Score-performance alignment via dynamic
programming

For the analysis of expressive performance it is fundamental to have a precise
score alignment. Here we describe a score-performance alignment algorithm
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using audio and motion capture data together with score symbolic data to
automatically obtain note-by-note segmentation of performance. All of the
corpora studied in this dissertation were score-aligned using this algorithm.
Manual inspection was performed on each aligned performance, and wrongly
aligned notes were corrected manually for the analysis of Chapter 5.

In this dissertation we employ a dynamic programming algorithm inspired
by Maestre (2009), although the complete procedure was revisited here.
We provide in the following sections a description of the algorithm in math-
ematical formalism and an evaluation on real recordings. We show that
introducing bow motion data improves the alignment respect to a baseline
approach of only audio features.

General overview of the score-alignment algorithm

The problem of score-alignment can be formalized as follows. The recorded
performance is a list of sampled features (Xt)t=1,...,m where Xt ∈ X , being X
the set of all possible feature states (e.g. each Xt can be a vector containing
sound level, chroma, and gatt at time t or more features). The performance
is sampled at f = 240Hz and the duration of the recording is thus m

f in

seconds3. The score is a list of n note events, (ti, ti+1, pi)i=1,...,n where
ti > ti−1 are the note onsets and offsets as obtained from the duration of
the notes in beats converted to frames at average tempo (the average tempo
is the tempo value such that the starting note onset and the ending note
offset are correctly aligned while the remaining notes in the middle respect
score durations proportionally in time). Each pi is a list of pitches: empty
for pauses, with a singleton for monophonic notes, and with more than one
pitch for chords.

Our system of score-performance alignment does not need to address the
problem of polyphony since we align each musician independently of the
others. In many classical scores for string quartet, each individual part is
homophonic; in other words, it is either monophonic or notes belonging
to each chord are rhythmically dependent (they all start and end simulta-
neously). This assumption was always verified in our corpora, except for
small passages with tied arpeggios4. Another important assumption is that

3Here we assume for simplicity that all the features are acquired at 240Hz. Sound
was acquired at 44100Hz, but for the alignment we only used the derived audio features
which have a much lower sampling frequency.

4In a tied arpeggio the notes of a chord are played sequentially. Each note is held to
the next so that when the last note is hit the full chord is sounding. This can be realized
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musicians play the exact same notes dictated by the score. In the context
of classical music this is usually the case unless musicians make mistakes
or there is an error in the digital score. In our case we had to correct the
score several times before it would be exactly as the one performed. Most
of the errors were arising due to problems of digitalization of the score (e.g.
missing sharp or flat marks) rather than musicians’ mistakes. In very few
cases we found different played pitches respect to the ones dictated by the
score although musicians used different pitches which had musical sense. In
those few cases we manually “corrected” the score pitch so as to fit with the
musicians performance, otherwise the automatic alignment would produce
undesired mis-aligned segments.

The problem of finding the score alignment is formalized as a problem of
maximizing the likelihood of a candidate alignment given the recorded ob-
servations. The likelihood of an alignment (t∗i )i=1,...,n+1, given the observa-
tions (Xt)t=1,...,m, is the product of the likelihoods of each individual note
alignment:

P ((t∗i )i=1,...,n+1|(Xt)t=1,...,m) =

n∏
i=1

P (ti = t∗i , ti+1 = t∗i+1|(Xt)t=1,...,m)

(4.1)
where

log(P (ti = t∗i , ti+1 = t∗i+1|(Xt)t=1,...,m)) = Li(t
∗
i , t
∗
i+1) (4.2)

The most likely score-alignment (t∗i )i=1,...,n+1 can thus be found by maximiz-
ing the likelihood in Equation (4.1). The maximum can be found through a
Viterbi algorithm. In a forward stage, the algorithm proceeds sequentially
frame-by-frame computing the likelihood of each possible note and each
possible duration5 (see Algorithm 2). In this way it writes two matrices
M and D storing the best accumulated likelihood and the corresponding
duration, respectively. In Figure 4.13 we plot one part of the matrix M
along with the final detected alignment obtained from a real recording. In
a second stage, the two matrices are used to find the most likely alignment
through a backtracking procedure (see Algorithm 3). The described Viterbi
algorithm has a complexity of the order of O(nm2), although if we know
that the deviation of the alignment to the score is bounded by a constant
(‖ti − t∗i ‖ < maxdev ∀i) we can reduce the complexity to O(n) since we do
not need to compute all of the possible durations and onset positions.

on bowed instruments using a different string for each note.
5The notation bxc (in Algorithm 2) refers to the round down (or floor) integer of x.

Analogously, dxe refers to the round up (or ceil) integer of x.
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Algorithm 2 Forward step algorithm to accumulate the likelihood sequen-
tially.

Require: di the score duration (in frames) of each note i
Require: Li(x, y) the likelihood of the i-th note alignment as a function of

start-time x and end-time y as defined in Equation (4.5).
# Initialize the matrices M and D

M(k, i) = −∞ for each frame k, each note i
D(k, i) = 0 for each frame k, each note i
for each frame k = 1, . . . ,m do

for each note i = 1, . . . , n do
dmin ← b0.4× dic
dmax ← d1.7× die

# avoid negative onset times
dmin ← min(dmin, k − 1)
dmax ← min(dmax, k − 1)

# initiate best likelihood
bestL← −∞
for each duration d = dmin, . . . , dmax do
t← k − d
if i = 1 and t 6= 1 then

continue
else

# likelihood of i-th note starting at t and ending at k
l← Li(t, k)
accumL← l +M(t, i− 1)
if accumL > bestL then

bestL← accumL
bestD← d

end if
end if

end for
M(t, i)← bestL
D(t, i)← bestD

end for
end for
return M,D
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Figure 4.13: Visualization of the matrix of accumulated likelihood M of
Algorithm 2. The dots connected by lines show the most likely alignment
obtained in the backtracking process of Algorithm 3.

Algorithm 3 Backtracking step to find the most likely alignment.

Require: M,D as returned from Algorithm 2.
t∗n+1 ← m
for i = n, n− 1, . . . , 2, 1 do
d = D(t∗i+1, i)
t∗i = t∗i+1 − d

end for

The Viterbi algorithm computes the log-likelihood of each note Li (i.e. the
term appearing in the right-hand-side product-sequence of Equation (4.1))
depending on candidate note onset and offset positions x and y. Thus Li
needs to be defined for each note and each possible onset and offset. To
define Li we used an heuristic approach motivated by the previous observa-
tions on note profiles. Firstly, we assume that the likelihood of having the
i-th note starting at frame x and ending at frame y (where x and y are in-
tegers satisfying 1 ≤ x < y ≤ m) only depends on the observed descriptors
recorded in the temporal range x, x+ 1, . . . , y. This formally translates into
the following identity:

Li(x, y) := logP (ti = x, ti+1 = y|(Xt)t=1,...,m) (4.3)

= logP (ti = x, ti+1 = y|(Xt)t=x,...,y) (4.4)
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We thus have to define the last term of Section 4.2.2, i.e the probability that
the i-th note coincides with the recorded segment (Xt)t=x,...,y. To define
the likelihood of each note, we heuristically combined aspects that increase
the possibility of having a specific note event. We consider such aspects
as independent variables indicating that the data contain a particular note
event at a particular time. The considered aspects are detailed in Table 4.4.
Most of the aspects only apply to pitched note events while some other apply
to pauses.

Consequently, we define the final log-likelihood of each note as the following
weighted list of descriptors:

Li(x, y) =

9∑
r=1

wrlr(x, y) (4.5)

In Table 4.4 we defined a set of heuristic terms quantifying the likelihood of
each aligned note based on a set of audio and gesture descriptors. We have
manually defined some parameters such as the µ and σ of each distribution.
Such parameters depend on the particular range of the descriptors used;
however, it is less clear how to assign values to the set of weights wr that
defines the balance among factors in Equation (4.5). In the following section
we detail the procedure to obtain such weights wr thorough an optimization
procedure.

Likelihood weights optimization

The balance among factors wr of the previous section is very important
for achieving a stable and reliable score alignment. We provide here an
example of how such factors work together. In case too much importance
is given to factor w1, then the algorithm would seek solutions where note
onsets are aligned to corresponding to the peaks of δssus. However, whereas
some notes barely display any loudness attack at all, some peaks of δssus
do not correspond to note onsets. This bias towards δssus peaks are likely
to produce irregular timing respect to score. In this sense the weights w5

and w6 help preventing this issue by penalizing irregular tempi. On the
contrary, if too much importance is given to tempi weights, notes would get
assigned same durations as score regardless of any observation of loudness,
chroma and gesture. The difficulty here is finding the optimal balance of
weights wr, which we empirically seek on real data as explained below.

We run some preliminary tests guided by our intuitions to define a set of
meaningful weights. We therefore run an iterative optimization procedure
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starting from the initial weights. The procedure is based on coordinate
descend ; the algorithm modifies one weight at the time and verifies how this
impacts on the mean alignment error (the root mean squared deviation):

RMSD =

√√√√ 1

n

n+1∑
i=1

(t∗i − ti)
2

After having tested the aligner with a set of neighboring weight values, the
best one is kept and the procedure is repeated on the second weight. When
all the weights have been processed, the algorithms starts again from the
first. If no improvement is found on a complete cycle around all the weights
the step-size is reduced.

We run the optimization for the first violinist jointly on the databases S.1-
S.5. Since this algorithm needs to execute the aligner many times we had to
make it fast enough for completing the calculation in a reasonable amount of
time. For this reason, we under-sampled all of the descriptors to a common
sampling frequency of 20 Hz after applying a Gaussian convolution to each
descriptor to remove high frequency components higher than 10 Hz (the
corresponding Nyquist frequency).

We repeated the optimization twice: once using the whole set of weights
wr for r = 1, . . . , 8, and once using only audio and timing descriptors, thus
fixing to zero the weights w7 and w8. In Figure 4.14 the RMSD value is
showed as a function of the iteration number. The algorithm improved the
results both with or without gestures; however, using audio and gesture was
always better than audio only.

Evaluation on piece extracts

We tested the final weights derived by the optimization algorithm on another
dataset derived from the real pieces. We selected three short excerpts with
heterogeneous characteristics from the Beethoven’ piece (Bars 1–16, 32–
79 and 79–95). We manually aligned the corresponding performance of
first violin in the recordings I.1 (mechanical) and I.3 (exaggerated) and
used them as a test set. We run the aligner on this test set using the
weights obtained in the previous optimization procedure, we also tested
other sampling rates since in this case we did not have the same restrictions
of computational time (i.e. we run the algorithm only once).

In Figure 4.15 we compare the results of the two aligning methods obtained
at different sampling rates. Note how using gesture descriptors improves
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Figure 4.14: Root mean squared deviation for the performance sampling
database a number of iterations has been executed. We compare the re-
sults obtained using only audio with the results obtained by also employing
gestural data.

the alignment at all the sample rates. Additionally we can observe that
the same weights we have derived using a sample rate of 20Hz consistently
produce better results at higher sampling rates. This means that we have
defined the problem in a way that it can work at different sampling rates. At
120Hz, although the result is still better that with 20Hz, we have a decrease
in performance respect to 80Hz. There might be two reasons explaining
such a performance decrease. The first is that the algorithm might still
require a minor adjustment of the parameters depending on the sampling
rate. The second reason is that down-sampling was preceded by a Gaussian
smoothing and this might improve the results because of an improved blend
in time among the different likelihood components.

This completes the discussion on the semi-automatic alignment procedure
used for building our datasets. Once the score-performance alignment pro-
cedure was completed we extracted several expression parameters for each
aligned note. We explain such parameters in the following section.
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Figure 4.15: Root mean squared deviation obtained by running the aligner
on the test dataset. We used the weight parameters obtained from the
two optimizations on the performance sampling dataset: both audio only
and audio plus gestures. Keeping the same weight parameters we perform
several alignments using different sampling rates.

4.2.3 Performed expression parameters

In Chapter 3 we have shown several low level features extracted from audio
and motion data. Additionally, in the previous section, we have shown how
to use the extracted features to derive automatically a score performance
alignment. Once the score alignment procedure has been completed and the
alignment has been manually verified we extract the performed expression
parameters. Such parameters estimate higher level music descriptors about
deviations that musicians introduced in the performance, and are thus the
core subject of study in this dissertation.

In the context of ensemble performance, we can make a distinction between
individual and collective expression parameters. For example, as will be
explained below, tempo curve can be computed on the performance of one
specific musician (individual) or on the performance of the whole quartet
(collective).
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The possibility of computing both individual and collective expression pa-
rameters allows the further step of computing participatory discrepancy pa-
rameters. Participatory discrepancy parameters have been studied in the
literature (Keil, 1987; Prögler, 1995). One of the most popular example of
such parameter is swing factor, which is usually computed with respect to
an external reference (e.g. a metronome) rather than from an estimated
collective expression parameter. As will be explained later we also dis-
tinguish between a collective beat asynchrony (the amount of asynchrony
among musicians on common note attack) and an individual participatory
asynchrony (amount of anticipation/deferral of note onset time respect to
collective tempo, this is similar to the mentioned swing factor).

SOUND 
LEVEL (dB) 

PITCH (cents) 

BOW 
VELOCITY 
(cm/s) 

Note Sound Level 

Vibrato extent 

Note duration 

Note bow 
velocity 

Figure 4.16: An example of the Sound Level, Pitch and Bow Velocity time
series along with the descriptors extracted at the note level.

There is no sole way of extracting expression parameters, nor there is yet a
set of parameters that can be considered complete. In this thesis dissertation
we focused on few expression parameters related to timing, dynamics and
articulations. We present here the extracted parameters divided into timing-
based, audio-based and gesture-based.

Timing-based expression parameters

Timing-based expression parameters results from note onset-offset time po-
sitions of each note as obtained in the alignment procedure. The score
dictates note nominal durations in beats. In performance time the beat
duration can change during the course of the performance resulting in per-
ceived tempo changes. Also abrupt changes of note duration can be mea-
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sured in the performance and are instead perceived as phase changes since
they do not accumulate in the long term to produce a change in tempo
(Repp, 2005). There are many ways in which this data can be employed to
derive meaningful expression parameters. We describe here note lengthen-
ing, tempo curve and asynchrony.

Note lengthening We consider note lengthening as being relative to the
local tempo of the ensemble. We define note lengthening as the ratio be-
tween the actual performed duration and the nominal duration of a note
(defined in second by applying the local tempo of the ensemble). We chose
to consider duration as being such in an attempt to remove the effect of
broad tempo modulations and focus only on residual timing deviations, as
it is often done in studies of expressive performance (Widmer and Tobudic,
2003).

A necessary pre-processing step is estimating ensemble tempo for each note
in a local context, thereby making it possible to express a nominal duration
in seconds. A first approach to estimating the tempo would be to divide the
total number of beats recorded by the total performance duration in sec-
onds to derive an average tempo. However, this approach totally neglects
possible changes of tempo, which might occur during the performance. For
this reason we divided each piece into phrases6 with the help of a profes-
sional musicologist and looked for possible changes of tempo. By looking
at the distribution of note durations in each performance it became evident
that abrupt changes of tempo appear at section changes. On the other
hand, tempo stays nearly constant within sections (see next section and
Figure 4.17 for an example). For these reasons, we chose the average tempo
of the section as the reference tempo for each note.

The note lengthening is computed via the formula:

NLk =
notePerformedDuration

noteScoreDuration
× sectionBPS

where notePerformedDuration is the performed duration in seconds, note-
ScoreDuration is the nominal duration of the note in beat units and sec-
tionBPS is the average beats per second of the section in which the note is
played. Where the note was followed by a pause we included the duration

6This procedure led to 128 phrases from the four excerpts (P.1-P.4, see Section 3.1)
jointly and 53 phrases for each of the expressive intention piece (I.1-I.3). The phrases
were hierarchically linked so as to merge in higher time spans, up to whole sections of the
piece.
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of the pause in the note enabling us to use the inter onset interval (IOI) to
estimate notePerformedDuration.

It is worth mentioning that in the case of ensemble recordings we used the
same sectionBPS of the four musicians. On the other hand, for the solo
recordings we use a different value of sectionBPS for each musician since
they each employed slightly different tempi.

Tempo curve Tempo curve is a complementary way to look at timing
phenomena that transcends single notes. If, instead of looking at the dura-
tion of each note, we sum durations on groups of two, three or more notes
we can compute stabler beat-per-minute (BPM) tempo curve. There is not
one sole way of computing tempo curve and in the literature several differ-
ent techniques have been used. Many of the studies on tempo curves are
based on beat tracking (either manual or automatic) of performances or
tempogram methods (Cemgil et al., 2000; Chuan and Chew, 2007; Grosche
et al., 2010).

While in most studies beat tracking is still more convenient, this approach
is not enough to address some problems typical of ensemble performances.
The first issue is how to compute the collective tempo curve based on the
overall ensemble performance. This means that all the musicians contribute
to collective tempo curve in an equal manner. The second and last issue
is how to define the tempo curve in a way in which we can systematically
study discrepancies among musicians respect to a common reference.

We give two operative definitions of tempo curves which we will use for the
analysis of macro-timing in Chapter 5, each addressing one of the problems
above mentioned. The first definition is based on averaging tempo in larger
time-spans than a single note. It regards tempo as a smooth continuous
phenomenon by providing a definition of instantaneous tempo, at each in-
stant of the performance. The second definition is based on the idea by
Todd (1992) (also known as phrase-arc rule) of a tempo curve modeled by a
parabola per phrase. It regards tempo as a continuous phenomenon within
each phrase but allows a discontinuity at phrase boundaries. We refer to the
first kind of tempo curve as Smooth tempo, and to the second as Parabola
tempo.

Smooth tempo Given the a score onset sequence expressed in beats bk
and with corresponding performance onset times tk, k = 1, . . . , n. If we
assume the tempo to be constant within each note, we can compute an
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instantaneous tempo as the following piecewise constant function:

bpm0(b) = 60
bk+1 − bk
tk+1 − tk

∀b ∈ [bk, bk+1[ .

This curve has discontinuities at each note onset and is noisy due to the dif-
ferences in duration of consecutive notes. In order to remove high frequency
content, we convolve it with a Gaussian curve of variance σ > 0.

bpmσ(b) = (bpm0 ? φσ)(b) =

∫ bn
b0

bpm0(x)φσ(x− b)dx∫ bn
b0
φσ(x− b)dx

where φσ(x) := 1√
2πσ2

e−
x2

2σ2 is a Gaussian centered in zero of variance σ2.

By changing the parameter σ we can control the time span used to compute
tempo and thus view how tempo changes at different levels (see Figure 4.17).

Parabolic tempo and time curve Parabolic tempo is based on the
assumption that there exists a continuous function τ : R → R, which we
call time curve, that at each instant t in the performance time associates
the corresponding beat position b in the score. The parabolic tempo curve
is thus the time curve derivative function τ ′ = dτ

dt . In order to have a tempo
curve with a parabola for each phrase k = 1, . . . , ρ, we impose that τ is a
continuous piecewise cubic function:

τ(t) =



c1,0 + c1,1t+ c1,2t
2 + c1,3t

3 : p0 ≤ x < p1

c2,0 + c2,1t+ c2,2t
2 + c2,3t

3 : p1 ≤ x < p2

...
...

cρ,0 + cρ,1t+ cρ,2t
2 + cρ,3t

3 : pρ−1 ≤ x < pρ

where p0, . . . , pρ are the phrase boundaries time positions. We also impose
the following time curve the continuity constraints at phrase boundaries:

τ(pr) = lim
t→pr−

τ(t) r = 1, . . . , ρ

We optimize the coefficients cp,d, using a least square fitting procedure so
as minimize the least square sum:

n∑
k=1

(τ(tk)− bk)2
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Figure 4.17: Collective tempo curve computed on the performance of record-
ing I.2 with three different smoothing factors: at the level of the section,
phrase, and bar. The vertical bars mark boundaries of the sections in the
rondó structure.

where here the ti and bi in the sum are drawn from the performed notes by
all the musicians (since we compute the collective time curve).

Several studies have shown how variations in tempo tend to follow simi-
lar rules as bodies subject to gravity (Todd, 1992), therefore resulting in
parabolic tempo curves. In our study, we have chosen this representation
since (1) it is flexible enough to fit the time changes adopted by the mu-
sicians, (2) it depends on just three parameters per phrase, and thus pre-
vents over-fitting (3) it allows discontinuities of tempo at the boundaries of
phrases. In Figure 4.18 we show the onset times by different musicians play-
ing together four phrases from the I.1 performance, the fitted time curve
is drawed on top of the raw onset data. The example of the plot shows
an extreme case where musicians performed two fermate; nonetheless the
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cubic interpolation manages this situation correctly and the discontinuities
at phrase boundaries correspond quite closely to musicians timing.

Figure 4.18: Representation of the onset times of the notes in performance
time versus score time. The vertical lines mark phrase boundaries and the
red line marks the collective time which was obtained with a locally cubic
regression with imposed continuity at phrase boundaries. In the plot, two
fermatas are evident at time 20, and at time 28 seconds.

Asynchrony and note participatory asynchrony We make a clear
distinction between beat asynchrony and note participatory asynchrony.
Beat asynchrony does not require any common time reference and it is only
defined for group of notes having common score onset time. The amount of
asynchrony of the group is then intuitively proportional to the amount of
being spread out in performance time. We measure the beat asynchrony in
each group of (at least 2) notes as the standard deviation of their perfor-
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mance onset times t1, . . . , tn:

BeatAsynch =

√√√√ n∑
i=1

(ti − t)2 where t =
1

n

n∑
i=1

ti.

In Figure 4.19 we visually represent the idea of beat asynchrony, each group
of notes played by different musicians at the same score position can be more
or less spread out in performance time. The figure also represents with a
red line the collective time as derived from the cubic interpolation although
this line is irrelevant for the computation of beat asynchrony.

Figure 4.19: Visualization of asynchrony of each group notes with same
score onset position. In red the collective time is displayed as obtained
through the regression procedure.

Note participatory asynchrony, differently to previous descriptor, is defined
for every note in the score with respect to the collective time τ(t). A note N
with onsets at b∗ in score beats and at t∗ in performance has the following
participatory asynchrony:

ParticAsync(N) = τ(t∗)− b∗

The value is measured in beats and it can be seen also as a measurement of
swing factor. The value can be either positive if note was anticipated respect
to collective time, or either negative if note was delayed (see Figure 4.20).

Audio-based expression parameters

Note Sound Level Through the use of pickup microphones and the con-
sequential acquisitions of each musician’s sound in separate audio tracks we
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Figure 4.20: Visualization of participatory asynchrony note in the score.
The participatory asynchrony is positive if the arrow points downward and
negative if the arrow point upward. Its absolute value is the difference in
milliseconds from the collective time which is displayed by the red line.

were able to define note sound level (NSL) in the simplest possible way.
The NSL expression parameter for each note Ni was computed as the max-
imum sound level value SL(k) (as defined in Chapter 3) within the note
boundaries (see Figure 4.16):

NSL
i

= max
ti≤k<ti+1

SL(k)

The obtained NSLi value for each note is an approximation of note loudness.
NSL is related to loudness, also refered to as peak sound-pressure level, and
it has also been used as a reference to calibrate key-pressed velocity in
expressive performance acquisition of piano (Goebl and Bresin, 2003).

Vibrato Vibrato is an expressive manipulation of pitch corresponding to
a frequency modulation of F0 (fundamental frequency) characterized by
its rate and extent (Prame, 1997). We considered only the extent of the
vibrato since the rate is only defined for notes with vibrato and thus plays
a secondary role on expression. However, the procedure we implemented to
extract the vibrato estimates both rate and extent at the same time.

We estimated the vibrato of each note from a filtered F0 time series within
the note boundaries. The procedure is based on finding the amplitude of the
sinusoid that correlates best with the filtered F0 trajectory. Such amplitude
is used as the estimated vibrato extent of the note. Modulations of vibrato
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extent within the note boundaries were thus implicitly discarded favoring
the selection of the highest vibrato extent reached within the note.

The first step was to filter from the F0 trajectory the transitions from one
note to the next characterized by low aperiodicity. Suppose that note k has
nk frames within its onset and offset. Each of such frames j = 1, . . . , nk is

described by the triplet (t
(k)
j , f

(k)
j , a

(k)
j ) with, respectively, the frame time,

the fundamental frequency (F0) and the aperiodicity as obtained with the
autocorrelation-based F0 estimation algorithm (De Cheveigné and Kawa-

hara, 2002). We use the threshold A to assign weights w
(k)
j to each frame

in the following manner:

w
(k)
j =

{
1, if a

(k)
j ≤ A

0, if a
(k)
j > A

We then computed for each note the weight center of mass (in time) µ(k)

and the standard deviation σ(k) for each note using the formulae:

W (k) =

nk∑
j=1

w
(k)
j , µ(k) =

1

W (k)

nk∑
j=1

w
(k)
j t

(k)
j , σ(k) =

√√√√ 1

W (k)

nk∑
j=1

w
(k)
j (t

(k)
j − µ(k))2

The select part of note k is then obtained by removing all the frames j such
that:

|t(k)j − µ
(k)| ≥ Bσ(k)

where B is an opportune positive threshold.

Comparing the plots of F0 and aperiodicity we noticed that the F0 is gen-
erally reliable when the aperiodicity is lower than A = 0.2. We then tested
several values for B and selected B = 1.8 as a good compromise between
discarding too much data and getting the most reliable part of the F0. This
value is such that most times the whole note is selected, except for very
long sustained notes where some boundaries at the end are discarded. Fur-
thermore, in order to avoid octave jumps (due to octave error) we mapped
the obtained F0 values to a common octave.

Once the F0 time series has been filtered we proceeded to estimate the
vibrato extent on the selected part of F0. We employed frequency-domain
analysis following a similar procedure as the one described in (Herrera and
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Bonada, 1998). We performed a Fourier analysis of the filtered F0 and
looked for peaks in the spectrum ranging between 4 and 8 Hz (we employ
parabolic interpolation of the peaks in the spectrum). If one or more peaks
were found in this range we select the one corresponding to the sinusoidal
component with the highest amplitude. The amplitude of such sinusoid (in
pitch cents) is our estimation of vibrato extent whereas its frequency is the
vibrato rate. Where no salient peak was detected or the select part of F0
was shorter than every possible vibrato period (125 ms), the vibrato extent
was set at zero. In Figure 4.21 we show an example of vibrato detection
from real data.
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Figure 4.21: Estimated vibrato extent for a short sequence of note from
violin 1. The red rectangles mark detected vibratos and their height is
proportional to the (detected) vibrato extent of each note.

Gesture-based expression parameters

Bow velocity Bow transversal velocity is one of the main control param-
eters available for the string player to convey expression, affecting timbre
and loudness (Askenfelt, 1989). We measured bow transversal velocity from
each frame of motion capture data as described in (Maestre, 2009), leading
to a bow velocity time series expressed in cm/s and sampled at 240 Hz.
Bow transversal velocity can be positive (down-bow) or negative (up-bow),
but since we were interested in the speed of bowing we first computed the
absolute value of bow velocity samples across each note. Then, in order to
extract a representative bow velocity value for each note, we computed the
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interquartile mean on the absolute values of each note segment.

Figure 4.16 shows an example of the time series that are extracted from the
raw data as well as the descriptors computed for each note segment.

4.3 Conclusions

In this chapter we have discussed on how to extract score contextual infor-
mation and expression parameters. For both types of descriptors we have
introduced a classification in which we distinguish between horizontal and
vertical score context, as well as between individual and collective expres-
sion parameters.

The extraction of score contextual information involved projecting a multi-
dimensional musical surface to several score contextual descriptor at-
tributes. This required in some case the comparison of notes or groups of
notes. In the case of expression parameters, we had to go through an align-
ment procedure in order to segment the performed notes. We described
a dynamic programming algorithm that takes into account the acquired
bowing gestures. After describing the score-performance alignment algo-
rithm, we showed how to use the basic features introduced on Chapter 3 for
defining note level expression parameters.

Whereas a complete list of performance descriptors was beyond the scope of
this dissertation, we described a set of important performance descriptors
that we will use in Chapter 5 to study expressive performance. In Chapter 5
we will study the relations between the introduced contextual variables and
performance variables in with a statistical approach and a machine-learning
approach.



Chapter 5

Analysis of Ensemble
Expressive Performance

5.1 Introduction

In this chapter we present some analyses of ensemble expressive performance
combining various approaches. The aim, as in all studies of expressive
performance, is to study the relationships between contextual descriptors
and expression parameters.

In the previous chapter we have shown how to analyze both score and
performance to extract score context and expression parameters. We expect
the introduced descriptors to contribute to the understanding of ensemble
expressive performance (EEP) and we propose a distinction between two
different types of context related to different theoretic performing behaviors.

The first distinction is between horizontal and vertical score descriptors,
which has been already introduced in the previous chapter. Of course when
playing expressively musicians take into account horizontal features as it
has been showed by most studies of expressive music performance. We
discuss what it means to play considering the vertical context or not. This
discussion rises several research questions that we later attempt to address
in our experiments and analyses.

The second distinction is introduced in Section 5.1.2, and makes the dif-
ference between two theoretical modes of performing music: auto-regressive
and memoryless. The term auto-regressive is taken from statistics literature
on time-varying processes. In statistics, both linear and non-linear auto-
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regressive models apply to the case when a particular outcome at a certain
time depends on its own previous values. In nonlinear auto-regressive ex-
ogenous model, the outcome of a output variable depend on its own previous
values and also on the concurrent and past values of a driving exogenous
series (Billings, 2013). In this dissertation we model the expressive perfor-
mance of each musician in a similar way, where the exogenous driving time
series is given by the performance of all the other musicians. We make the
distinction between auto-regressive and memoryless behaviors to explain
how this translates in different modes of performing. However, this dis-
tinction is theoretic as it is hard to imagine a human musician playing in
a purely auto-regressive mode or in a purely memoryless mode. Although
we can think of particular cases where we can assume that one mode is
dominant respect to another, in the majority of cases we believe that musi-
cians employ both modes simultaneously (we explain in Section 5.1.3 how
we combine both).

Musicians might perform based only on score context, but that means that
they could have already decided off-line all the details (including the exact
amount of each expression parameter) of the performance before going on
stage. This is of course an over-simplification since the performance also
evolves continuously respect to itself in an on-line fashion. Many studies
of expressive performance do not need to make explicitly this distinction
because either they focus only on one behavior, or they already include this
aspect in their definition of expression parameters. In the case of ensemble
performance, making this distinction is very important since the dependen-
cies with past values might also be “spread” across different musicians.

After making the distinctions between different performing behaviors, we
consider some related research questions and attempt to empirically an-
swer them through analyzing performance data by following two different
approaches. The first approach, which we will refer to as statistical analy-
sis, involves the formulation of specific hypotheses and their verification by
means of controlled experiments.

The second approach is to use machine-learning modeling of performance.
This second approach has the advantage that we can relate a high number of
variables, and study performance contexts by comparing the overall proper-
ties of the trained models. Employing this approach becomes natural when
datasets start growing in size and there are many variables to control. In
this context, the distinctions we make between different modes of perform-
ing become handy since we can control the way models are built to test to
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which degree musicians consider vertical, horizontal, score or auto-regressive
variables.

5.1.1 Horizontal and Vertical score context

We have showed in the Chapter 4 how analyzing ensemble scores naturally
leads to the concept of horizontal and vertical context. A second step is
to understand whether this distinction has any importance at all to the
performance. In other words, does the performance of the same melody
change if the accompanying voices in the score are changed or removed?
Or, equivalently, can we improve the expressive performance model of each
musician by feeding it with knowledge about other musicians’ voices, namely
the score vertical context? When performers play their part solo (without
the accompaniment of the others), will they play it in the same way?

The idea here is to test whether some of the introduced vertical descriptors
correlate with expression parameters. We do this in the two experiments
presented in Section 5.2 using the statistical approach. Then, we aim at
understanding how these two types of contexts (horizontal and vertical) can
in combination produce models of ensemble expression in different playing
conditions. We do this in Section 5.3 where we adopt several strategies to
test the importance of horizontal context and vertical context in different
performing contexts.

5.1.2 Auto-regressive behavior in expressive performance

Some studies of music performance have neglected completely the score
context to focus on specific musical skills employed by musicians (Moore
and Chen, 2010). Indeed, there are some cases where the score context
does not play any important role at all. As an example, you can easily
imagine the case of a score consisting of a single note repeated endlessly.
Assume also that there is no meter indication and thus the local context of
each note (at a moment sufficiently after the start) is exactly the same as
the context of its previous note (since each note is also at the same metrical
position). In such case any deterministic model of expressive performance
based on local score context would have no option but assigning the same
expression parameter to each note.

However, even in this extreme scenario, a musician would very likely intro-
duce expressive deviations. One performance strategy could be for example
accentuating one every two subsequent notes (each musician might have a
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different preferred grouping tendency, e.g. one every three or four). We
can easily predict if a note will be accentuated by checking if the musician
accentuated the previous note. We say that a performance strategy has an
auto-regressive behavior if expression parameters depend on the expression
parameters employed on previous notes. When a performance has such be-
havior, little errors on some notes may affect following notes accumulating
and producing a different performance each time.

To the best of our knowledge, the term “auto-regressive behavior” has not
been used in the expressive music performance literature although this issue
is addressed implicitly by most (if not all) studies. Some researchers define
the expression parameters as discrete classes defined when relating a note
expression parameter with respect to previous notes. For example, Widmer
(2002) divided the notes into two classes “louder” and “softer” based on
whether they are louder than the previous note events and the average
loudness of the piece. This means, that the derived model is already taking
into account variations respect to previous performed notes.

In this dissertation we use the term Auto-Regressive (AR) context to refer
to a set of previously played expression parameters, which can help in pre-
dicting the expressiveness of the current note. Note that this has nothing
to do with the term performance context appearing in Figure 2.1 which in
our case refers to the various playing conditions: solo/ensemble, mechanical,
normal, exaggerated. In this chapter, AR descriptors are implicitly included
in the statistical analysis (Section 5.2) and explicitly in the machine-learning
analysis (Section 5.3).

5.1.3 Verifying hypotheses and analyzing EEP models

The set of contextual descriptors to be used for the prediction of expres-
sion parameters lays in four main categories, which are given by all possible
combinations of vertical vs. horizontal descriptors and auto-regressive vs.
memoryless descriptors. Table 5.1 gives examples of each category of de-
scriptors.

The first aspect we verified was whether the introduced vertical descrip-
tors play a role in ensemble performance. In Section 5.2 besides showing
how different playing conditions affect the expression parameters we also
demonstrate how some vertical features correlate with the studied expres-
sion parameters. We first arrange performed notes into several context
groups depending on their score context. We should observe different dis-
tributions of expression parameters in each context group. The analysis
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Table 5.1: Categorization of different types of contexts for the prediction of
expression parameters. Some examples are included in each category.

Horizontal Vertical

M
em

o
ry

le
ss

◦ Own-voice note nominal
pitch
◦ Own-voice Narmour group

◦ Other-voice concurrent note
nominal pitch
◦ Other-voice Narmour group

A
u

to
-R

eg
re

ss
iv

e ◦ Performed Note Sound
Level of preceding note in
own-voice
◦ Performed Note Vibrato Ex-

tent of preceding note in
own-voice

◦ Note Sound Level of other-
voice concurrent note as
performed by the respective
musician
◦ Performed Note Vibrato Ex-

tent of other-voice concur-
rent note as performed by
the respective musician

revealed simple relations between different context groups and expression
parameters (see Section 5.2), justifying to a certain extent the choice of
some vertical descriptors. However, the fact that some context descriptors
do not show any effect on the performance does not imply we have to remove
them. Not all of the descriptors might be important at the same time, for a
certain score and performance context. For this reason we limited our anal-
ysis to comparing the performance in different playing conditions. We never
compare expression parameter distribution recorded from the performance
of two different scores.

Simple relations are not enough when analyzing complete pieces, so the
machine-learning approach proved to be useful for extending our analysis.
As in the example presented in previous subsection, expression parameters
might sometimes be explained only in relation to the expression parameters
of previous notes. In other moments the score might be the only essen-
tial information modeled. Analogously, horizontal context might sometimes
prevail on vertical context or the contrary. In general it is through a com-
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bination of memoryless/AR contexts and horizontal/vertical contexts that
we can achieve best prediction of the outcome. The key question here is
how to combine them to produce good prediction. In which case do we
expect to need more of one type or more of another type of descriptor? We
mainly focused on horizontal and vertical descriptors and tried to answer
this question using statistical and machine-learning approaches.

5.2 Statistical analysis

We present two experiments where we applied statistical techniques to ana-
lyze how context affects expressive performance. In the first experiment
we analyzed the timing of performances of a short exercise, comparing
solo and ensemble performances. In the second experiment we analyzed
timing and dynamics in performances of Beethoven’s Allegro-Prestissimo
movement (I.1-I.3 in Table 3.1) at three different expressive intentions (me-
chanical, normal, and exaggerated) and we show how the distribution of
expressive performance descriptors changed with the expressive intention.
In this case we also include an exploratory analysis of the synchronization
among the musicians suggesting different entrainment behaviors in different
sections of the piece.

5.2.1 Experiment I: timing in solo vs ensemble

We present an experimental framework through which we assign the mu-
sicians of a string quartet the task of playing specifically chosen exercises
after a brief rehearsal period. In this context we have shown a set of prelimi-
nary results on timing synchronization phenomena observing the differences
between musicians playing alone or in ensemble.

Material

This experiment is based on the exercise EX.1 of Table 3.1. As already
explained in Section 3.1, the exercise (see Figure 3.2) was conceived by Mo-
gens Heimann for training the ability of musicians to coordinate timing and
dynamics. The requirement of the exercise is that it should be played “as
one instrument”, which is a challenging task as musicians need to keep the
tempo together and respect time continuity when switching from one group
of semi-quavers (sixteenth-notes) to the next. The musicians repeated the
exercise four times in a row. Score-performance alignment was obtained
using the method described in Section 4.2.2. We cross-checked and ad-



5.2. statistical analysis 107

justed manually the automatic alignment by visual/aural inspection of the
individual sound waveforms, and of the audio/gesture descriptors (see Sec-
tion 4.2.2) to obtain very accurate note onsets positions.

Method

In this experiment we focus on timing, comparing the solo and ensemble
performances, dividing the analysis into macro-timing and micro-timing
analysis. Whereas macro-timing can be related to global properties of the
performance such as phrases or repetition patterns, micro-timing is usually
related to local characteristics of the score within the bar such as metrical
position and/or note duration.

For the macro-timing analysis, we extract the Gaussian tempo curve bpmσ

described in Section 4.2.3. We considered several values for σ and selected
the value σ = 1.67 beats. This value was preferred to others since it is such
that 78% of the distribution falls within half of the repetition (4 quarter
notes), and 98% of the distribution encloses the full repetition (8 quarter
notes). The tempo value which this σ produces is thus local enough to mea-
sure variations of tempo within each repetition and large enough to ignore
irrelevant local fluctuations of note duration. In the ensemble performance
we also compute the joint tempo curve (see Section 4.2.3) by averaging on-
set times for notes with same beat position. In this way since the score has
only two voices at any time (see score in Figure 3.2) the middle between
each of two corresponding onset times is selected. This procedure provides
an middle onset time for each chord in the scale, which we then use for
extracting the joint tempo curve (see Section 4.2.3) as it is done for each
individual voice. The sequence of chord onsets is here referred to as joint
ensemble performance. As a further inspection of macro-timing variations
we include statistics of quarter note durations. At this macro-timing level,
we compare performed durations of pauses with performed duration of each
block of sixteenth notes.

For the micro-timing analysis, we focus on sixteenth notes, the smallest note
value in the score. We compute the ratio between the performed duration
of the first note in each block with the corresponding performed duration
of the second note. This ratio is referred to as Semi-Quaver Duration Ratio
(SQDR). Following the discussion in Section 5.1.2, the SQDR is a per-
formance descriptor that by its definition presupposes an auto-regressive
behavior.
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Results

Macro-timing From the tempo curves derived in the solo and ensemble
cases respectively we find that not only the mean tempo of the four mu-
sicians becomes the same, but also the variance of the tempo curve gets
significantly smaller in the ensemble case. We can interpret this result both
as an indicator that the freedom of the musicians gets restricted and as a
result of the collaborative way in which the tempo is jointly shaped. Fig-
ure 5.1 shows tempo derived with σ = 1.67 for the solo and ensemble case.
As it is clear from the plots, the individual tempo curves contract to the
same tempo when the musicians play together.
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Figure 5.1: Individual tempo curve of the four instruments for the solo (left)
and the ensemble case (right). Vertical grid lines mark the boundaries of
the repetitions (full line) and the beat start time (dashed line).

Figure 5.2 shows the joint tempo curve. The most evident feature of this
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Figure 5.2: Tempo curve of the joint ensemble performance. Vertical grid
lines mark the boundaries of the repetitions (full line) and the beat start
time (dashed line).
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tempo curve is that it correlates with the repetition structure of the exercise.
In fact, while remaining relatively constant (just slightly increasing through
the performance) the tempo was indeed oscillating by speeding up in the
center of the repetition and slowing down towards its boundaries. In this
exercise, the structure of the repetition is mirrored by the up-down profile
of the pitch sequence. For this reason, we use the pitch sequence1 as a
reference for the repetition structure. In Table 5.2 the correlation between
the tempo curve and the pitch sequence is shown for all the cases. In the
joint ensemble performance the correlation coefficient is 0.56. This confirms
the overall tendency of the performance to speed up at higher pitches. This
is predicted by the well-known phrase-arch rule of Friberg et al. It is thus
probably unrelated to pitch, and occurs only because the high pitches are in
the middle of the phrase. However the performance we are analyzing here,
far from being expressive, is just an exercise scale.

Table 5.2: Correlation between pitch and joint ensemble tempo curve.

Solo Ensemble Joint Ensemble

Corr Cov Corr Cov Corr Cov

Violin 1 -0.54 -33.65 0.59 2.87

0.56 2.78
Violin 2 0.5 8.5 0.75 3.34

Viola 0.05 0.92 0.59 3.01

Cello 0.72 6.1 0.35 1.01

Despite the fact that we only have recoded few repetitions, the correlation
coefficient value is highly improbable to arise by chance. To quantify the sig-
nificance we have used an empirical (Monte-Carlo) method. We generated
surrogate performances by perturbing the score onset times with Gaussian
noise of standard deviation σ. For each surrogate performance we have car-
ried out the same macro-timing analysis as the one carried out for the real
performance. We generated five groups of 2000 surrogate performances with
standard deviations σ of 0.1, 2.5, 5, 10 and 25 ms respectively. From each σ
value we calculate the 2000 surrogate correlation coefficient values and use
their distribution to derive one-tailed p-values. Each empirical Monte-Carlo

1The pitch sequence has values in number of semitones and has been constructed by
taking the higher pitched note of each chord in the score of Figure 3.2.
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Figure 5.3: The plot shows p-values of the observed 0.56 correlation co-
efficient (in the joint ensemble) for increasing values of σ. The standard
deviation σ by affecting the variance of the Gaussian noise introduced to
the score onset times for the empirical significance test.

estimation of the p-values was obtained as

p =
#{surrogate correlation coefficient values c | c ≥ 0.56}

#{surrogate correlation coefficient values c}

The resulting p-values, as shown in Figure 5.3 are bounded by 2.5%. Re-
markably, an increase of σ yields a decrease of p-values and not the other
way around. This means that, it is even less likely to get large correla-
tion coefficients by increasing the noise. We can, in conclusion, assume a
confidence level of 97.5% for the observed correlation coefficient of 0.56.

Note that the excursion of the tempo curve is below the just-noticeable-
difference (JND). Recent studies (Thomas, 2007) confirmed the Weber’s
Law in the perception of tempo change with a JND threshold of 6-8%. In
our experiment the fluctuation was of around 2%, as is shown in Figure 5.2
(tempo spanned the range of 79-81 BPM). This means that the musicians
were not aware of this fluctuations of tempo. Moreover, we can not distin-
guish if this mechanism is directly related to repetition structure, pitch or
to some more complex underlying mechanism governing the performance.

The duration of each block of sixteenths notes and the pauses revealed
revealed larger variations in the solo performance than in the ensemble
performance. In the solo case, tempo was kept differently by the musicians
in the case of pauses than in the case of semi-quavers blocks. In the ensemble
case, the discrepancy between pause and semi-quavers block duration gets
smaller because of the interdependence among musicians. Box-and-whisker
diagrams of the analysis for the first violin are shown in Figure 5.4. It is
evident that the difference between the two cases disappears in the ensemble
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case in which the musician has to count tempo with the other musicians.
Running t-tests revealed a significant difference between pauses and semi-
quavers duration in the cases of solo violin 1 and solo viola (p< 0.05).
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Figure 5.4: Duration of pauses and semiquavers blocks for violin one: solo
vs ensemble.

Micro-timing At the micro-timing scale, we found a correlation between
the duration of each semi-quaver and its position within the block of four
semi-quavers. An ANOVA test confirmed at a significance level below 1%
the effect of metrical position on the joint-performance.

Differences have been found also when comparing the solo performance with
the ensemble performance. Since the general tendency is to play the first
note of the block longer than the second we have focused only on the first
semi-quaver duration ratio (SQDR) of each semiquavers block. Since the
ratio between consecutive durations is not directly dependent on tempo, we
were able to compare executions at different tempi. In particular we could
compare the solo performance with the ensemble performance.

Remarkably, we could prove at a significance level lower than 2% the effect
of the two scenarios (solo/ensemble) to the SQDR for first Violin, Viola and
Cello. We can thus report an overall tendency to exaggerate timing accent
of consecutive strong-weak semi-quaver couples in the ensemble case respect
to the solo. Whereas the second violin keeps a positive SQDR of 1.19 in
both cases, the first violinist and the cello increase theirs from 1.07 to 1.27
and from 1.0 to 1.24 respectively. A different behavior was measured for
the viola, for which the SQDR decreased from 1.29 in the solo to 1.02 in the
ensemble. Box-and-whisker diagrams of SQDR values are shown for both
solo and ensemble in Figure 5.5.
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Figure 5.5: SQDR of solo vs ensemble.

A further analysis of the precedence of the onsets seems to explain the
different micro-timing results of the musicians in the ensemble case. The
onsets of the cello were preceding the ones of the viola by a mean of 8 ms,
and the onsets of first violin were preceding the onsets of second violin by
13 ms.

Discussion

In the macro-timing and we have observed broad reduction of the mean
tempo and its total excursion in each single instrument. This confirms
the hypothesis that, when playing in ensemble, the synchronization among
musicians favors a steadier macro-timing. Furthermore, the residual os-
cillations of ensemble macro-timing significantly correlated to the phrase
structure of the repetition.

On the contrary, results on micro-timing showed relatively larger the con-
trasts of contiguous note durations in the ensemble condition than in the
solo condition. By also looking at onset asynchronies between musicians
we have formulated the hypothesis that a bigger contrast between contigu-
ous short notes might be the result of coordinated actions constituting an
entraining mechanism. In fact, musicians employing a higher SQDR are
also anticipating their fellow on the average. This suggests that the use of
contrast in successive notes could be the result of a synchronization mech-
anism.

5.2.2 Experiment II: timing and dynamics with increasing
expressiveness

Material

We present a statistical analysis of I.1-I.3 in Table 3.1. We recorded a profes-
sional string quartet performing the last movement of Beethoven’s quartet
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n. 4 in C minor (opus 19 n. 4, allegro-prestissimo movement). After the
quartet had played their first version (“normal”) we asked a “mechanical”
and an “exaggerated” execution. The three executions were each around 5
minutes long.

The piece is in the classical Rondó form and thus its sections follow a struc-
ture ABACABA. With the assistance of a professional musicologist, sections
were further segmented into phrases, leading to phrases of around 4 bars.

Method

Analogously to the previous experiment we carry out an analysis of the
data at two complementary time-scales. The micro-scale analysis includes
Statistics over individual note properties whereas the macro-scale analysis
includes Statistics over time spans of the size of a phrase.

We carry out macro-scale analysis by analyzing the excursion of note sound
level (see Section 4.2.3) and tempo curve (see Section 4.2.3) in the three
executions I.1-I.3. The excursion values are computed on moving windows of
four bars (the average length of a phrase) with a hop size of 1 quarter value.
We thus collect one excursion value for each beat. We compute compare
statistics over the excursion values in different expressive intentions.

At a micro-scale level, our analysis focused on note sound level, note length-
ening, and participatory asynchrony (see Sections 3.3, 4.2.3 and 4.2.3).
Since we want to exclude eventual relations between note value and ex-
pression parameter, we restricted statistics to the sub-sample set of eighth
notes (the most common in this particular score) discarding any shorter or
longer note. This restriction left us with 2946 notes (495 for violin 1, 861
for violin 2, 861 for viola and 729 for cello) counting the three expressive
intentions together.

For the statistical analysis of the micro-scale, we use n-way ANOVA to study
how note sound level, note lengthening, and participatory asynchrony were
affected by the following six note contextual factors: metrical strength,
melodic charge, Narmour group and two harmonic descriptors (see Sec-
tion 4.1.3). In this analysis we quantized all the considered factors to avoid
strongly unbalanced levels (some levels highly populated and others with
few notes). This also resulted in a reduction of the degrees of freedom of
the ANOVA model. The quantization of the contextual descriptors was
obtained in the following way.
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1. Metrical strength (Factor 1) was quantized to 3 levels: “strongest”
and “strong” as defined in Section 4.1, whereas all the weak metrical
positions were merged together into a third level.

2. Melodic charge (Factor 2) was not quantized, and thus consisted of 6
levels.

3. Narmour group (Factor 3) was reduced to the 11 classes appearing in
the score (see Figure 5.6 to see how the notes were distributed in the
datasets).

4. The two harmonic descriptors of Table 4.2 were used to define har-
monic factors. The first one (Factor 4) is the harmonic charge of the
chord quantized into two levels depending on the results of the test:
HarmChAt(b0) ≤ 1.75. Such threshold was set so that notes were
evenly distributed between both levels.

5. The second harmonic factor (Factor 5) was not quantized since it
already consists of only the two levels true and false resulting from

the formula c0 ≥ max(c
(1)
0 , c

(2)
0 , c

(3)
0 ). We refer to Factor 5 as “vertical

melodic charge” since it describes the ranking of melodic charge across
musicians at a certain instant.

6. Finally the last factor of ANOVA (Factor 6) was the musician who
played the note; there were thus 4 levels: first violin, second violin,
viola, cello. We are not interested in how the expressive descriptors
correlate with the musician since some differences might appear due
to the calibration (for example due to the calibration of individual
sound level gains). We introduced this last factor to guarantee that the
observed differences in distributions do not arise because of musicians
differences.

We complement the analysis by looking at the participatory asynchrony,
and musicians asynchronies (see Section 4.2.3). To compute the participa-
tory asynchrony we used the musicologist segmentation of the piece into
phrases to define the boundaries of tempo curve parabolas. We study mean
musician asynchronies per section and the correlation of expressive intention
to participatory asynchrony per section.
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Figure 5.6: Narmour class histogram of eighth notes in the datasets I.1-I.3.

Results

Macro-scale The tempo curves for the first 90 bars of the Beethoven’s
piece for the three expressive intentions can be seen in Figure 5.7. The
tempo oscillates at each phrase between a high and a low value. The excur-
sion between the high and low values increases from mechanical, to normal,
to exaggerated execution.

We compute the excursion of sound level in dB whereas the excursion of
tempo in percentage respect to the section mean tempo. The distribution of
excursion values is represented in Figure 5.8 with box-wiskers-plots. We can
see that our previous observation on tempo is statistically valid on average
throughout the whole piece. Additionally, we can see that the same happens
for the excursion in sound level. A one-way ANOVA on the three expressive
cases revealed that the difference is significant (p<0.05) both for tempo and
sound level.

Micro-scale The resulting p-values of the ANOVA analysis are shown in
Table 5.3. Besides showing that some vertical descriptors affect the con-
sidered expression parameters, the results of ANOVA show the statistical
significance of vertical context. Note that Factor 4 (harmonic charge) and
Factor 5 (vertical melodic charge) are derived from the melodic charge de-
scriptor, in the case of Factor 5 the derivation is straightforward (see Sec-
tion 4.1 and Table 4.2). In very broad terms, the derived factors are con-
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Figure 5.7: Tempo curves for the beginning of the piece in the three expres-
sive intentions.
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Figure 5.8: The two box plots show the distribution of tempo ((a)) and
sound level ((b)) on each expressive intention performance.

structed combining the note melodic charges with concurrent notes from
the voices of other musicians. Now notice (from Table 5.3) how Factor 5
affects both note lengthening and note sound level (p-value<0.05) whereas
the simple melodic charge alone (Factor 2) does not affect note lengthening.
This result suggests that certain expression parameters do not depend on
the melodic charge value of the note played but rather on if such value is
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salient in the vertical context (Factor 5). In other words, this confirms our
hypothesis that the vertical context plays a role in the choice of expres-
sion parameters. Additionally this analysis confirms that the introduced
deviations are not noise but are rather related to contextual descriptors.

Table 5.3: P-values of the 6-way ANOVA analysis of the eighth notes in
dataset I.1-I-3. We highlight in bold the p-values lower than p=0.05 below
which the effect of each factor is considered statistically significant.

Note
Lengthening

Note Sound
Level

Participatory
Asynchrony

Metrical strength (Factor
1)

<0.001 0.001 0.024

Melodic charge (Factor 2) 0.235 <0.001 0.225

Narmour group (Factor 3) <0.001 <0.001 0.001

Harm. charge (Factor 4) <0.001 0.064 0.261

Vert. melodic charge (Fac-
tor 5)

<0.001 0.014 0.429

Musician (Factor 6) <0.001 <0.001 0.006

Discussion

Expressive intentions were realized by modulating tempo and dynamics with
different amounts of excursion. For both tempo and dynamics the excur-
sion increased towards more expressive executions. This confirmed that the
difference between mechanical, normal and exaggerated performance was
interpreted clearly by the four musicians. In particular they performed the
two extra versions without rehearsing them or discussing them in details.
Furthermore, the result suggests that the extracted performance character-
istics are related to expressiveness of the performance.

At a micro-scale, the effect of a number of score contextual descriptors was
found to be statistically significant. In particular, we found that in the case
of note lengthening, the melodic charge was significant only when compared
with the other voices (vertical melodic charge). This partially confirms
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from the data (with a very high significance) the intuition by Sundberg
et al. (1989) that comparing melodic charge of simultaneous note is useful
to define the synchronization voice.

5.2.3 Limitations of statistical methods in the analysis of
EEP

The statistical methods employed in the above two experiments are a tool
for verifying specific hypotheses on the nature of the performance. However,
this approach requires controlled experiments in order to obtain balanced
levels across all factors. In Experiment I, where repetitions and simplicity
of the score favored the analysis, such statistical analysis was meaningful for
studying timing. The application of the statistical analysis to Experiment
II was instead more difficult, where we had to quantize some descriptors to
avoid unbalanced observations and discard some notes.

Another limitation of the statistical approach is that we can check few fac-
tors at a time and only on specific hypotheses. Indeed, the more hypotheses
one tests, the more likely it is to incur in false positives. In case many hy-
potheses are checked, a Bonferoni correction should be applied, which means
that the significance level has to be divided by the number of hypotheses
tested. For example, if 5 hypotheses are tested, then to guarantee a signifi-
cance level of 5% the p-values have to be smaller than 0.01.

There is no way to apply the complete set of descriptors defined in Chapter 4
to a statistical analysis of our recordings. Nevertheless, different approaches
such as the one of expressive performance modeling can be applied. This
change in the approach requires a shift in the way the data is analyzed
and interpreted. We need to model the quartet as a group of four agents
that output expression parameters depending on a multitude of attributes.
The results of such investigation also have to be interpreted differently.
We introduce in the next section our last approach to modeling expressive
performance, which is based on machine-learning algorithms.

5.3 Machine-learning approach

We present here a different approach from the one of verifying statistical
hypotheses. This approach has been used already in the past for example
by Widmer (2002); Ramirez and Hazan (2006, 2005). The aim is to build
a model of expressive performance without any a priori hypothesis on the
nature of the dependency between context and expression parameters. This
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approach becomes more natural when a large number of variables need to
be tested at the same time. It is based on building a model of expression
for each musician and then comparing the overall properties of the models.

In this section we build models of ensemble expressive performance assum-
ing that each musicians is an independent entity from the other musicians
but that can be influenced by the other voices and the performance of such
accompanying voices. We build computational models of ensemble perfor-
mance that are also used as a mean to investigate how humans play music
expressively in an ensemble. Additionally we aim at measuring quantita-
tively the difference between different performing conditions such as solo and
ensemble. The results of this section are tightly based on Marchini et al.’s
(2014) article, which represents the core contribution of this dissertation.

First we present the learning task given to the machine-learning algorithms.
We iterate the same task on each musicians and corpus using various feature
sets and machine-learning algorithms. On each case we obtain a function
that predicts the expression parameters based on the context attributes.
We then introduce the machine-learning algorithms that we have used.
Thereafter, we introduce the different feature sets and the feature selec-
tion procedure. We then present describe the datasets on which we run the
experiments and how we constructed them.

We evaluate the individual parts of the method by comparing the predic-
tive power of the models in various conditions and with different settings.
We divide the result section in various parts. After discussing the method-
ological details we present the results on the expressive intention. We then
present the analysis of the differences between solo and ensemble models in
two steps. First we quantify the predictive power of the two models, then
we discuss on the results of feature selection in the two cases.

5.3.1 Learning Task

Data-driven performance models predict note-level expressive transforma-
tions given a set of contextual descriptors of the note. Here, we are inter-
ested in learning a function f of the form

f(Note)→ (SL,BV,VE,NL)

where Note is a note characterized by the set of descriptors described in
Section 4.1, and SL, BV, VE, and NL are, respectively, the predicted sound
level, bow velocity, vibrato extent and note lengthening. Each expressive
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manipulation of the note is here a different learning task on which we per-
form a regression.

Each regression is performed by a machine-learning algorithm using a train-
ing set. The machine-learning algorithms focus on one form of f and at-
tempt to minimize the error between the prediction and the target. We
present in the next section the algorithms that have been used in this anal-
ysis. We used various machine-learning algorithms in order to experiment
different forms of relating the feature set to the expression parameters.

5.3.2 Algorithms

The machine-learning techniques considered in this approach are the fol-
lowing:

• K-Nearest Neighbor (kNN). This is one of the simplest non-parametric
machine-learning algorithms. It predicts the value of a test instance
by assigning to it an average value of the k closest instances in the
training set. The distance between instances is based on the Euclidean
distance in the feature space. In this approach we use it with k=1.

• Model Trees. A decision tree classifier recursively constructs a tree
by selecting the most relevant attribute at each node. This process
gradually splits up the training set into subsets until all instances at a
node have the same classification. The selection of the most relevant
attribute at each node is based on the information gain associated
with each node of the tree (and corresponding set of instances). A
model tree, instead of predicting a class, takes into account all in-
stances in a leaf of the decision tree and generates a linear regression
in order to compute a real value as prediction. We have applied the
model tree algorithm implemented in the Weka data mining software
(Hall et al., 2009).

• Support Vector Machines (SVM). SVM (Cristianini and Shawe-
Taylor, 2000) take great advantage of using a non-linear attribute
mapping which enables them to be able to predict non-linear models
(though they remain linear in a higher dimension space). Thus, they
provide a flexible prediction, but with a higher computational cost nec-
essary to perform all the calculations in a higher dimensional space.
The classification accuracy of SVM largely depends on the choice of
the kernel evaluation function and the parameters which control the
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amount to which deviations are tolerated (denoted by epsilon). In
this thesis we have used SVM with a polynomial kernel.

We evaluated the above algorithms by means of a cross-fold validation pro-
cedure obtaining an average value of correlation coefficient. The folds were
created using phrases of around 16 beats (as provided by the musicologi-
cal analysis of Section 4.2.3) in order to avoid phrases spanning both test
and training set. In order to further guarantee the validity of the results,
when creating each fold we removed all repetitions of notes, due to repeated
sections (notated with and/or without repeat signs), in the test set from
the training set. Doing so left 27 folds for each of the expressive intention
corpus and 25 folds for each of the excerpt corpus.

We used the correlation coefficient to measure how well the algorithm was
capable of generating a meaningful prediction. In Section 5.3.6 we compare
correlation coefficients on different performing scenarios.

5.3.3 Feature Sets

In a preliminary study (Marchini et al., 2013) we tested different combi-
nations of score contextual features considering, among other aspects, the
size of the temporal window. We considered a range of window sizes span-
ning from one to five neighboring notes. This was repeated either for a
set of only horizontal score features or a set of both horizontal and vertical
score features. We found no evidence that window sizes larger than two
improved the prediction. For this reason we limited the extended study to
a fixed context length of two neighboring notes. The introduced restriction
allowed us to focus mainly on the type of attribute by limiting the number
of attributes to a reasonable number.

We selected five different Feature Sets (FS) containing an increasing number
of contextual attributes of different types. In the first three feature sets
we start with information of one’s individual voice and progressively add
attributes referring to vertical context:

• FS1) Horizontal score context of the target voice (Table 4.1)

• FS2) FS1 + vertical score context of concurrent notes (Table 4.2)

• FS3) FS2 + horizontal context of concurrent notes (Table 4.3)
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In addition to score context we also incorporate the expression parameter
values employed in the two previous notes in this performance of the score.
We include first the expression parameters of the target musician, and then
add concurrent expression parameters of the other musicians:

1. FS4) FS3 + expression parameter values in the two previous notes of
the target voice

2. FS5) FS4 + expression parameter values in the concurrent and the
previous note of the other voices.

The defined feature sets contain respectively 19, 38, 59, 61 and 67 attributes.

5.3.4 Feature Selection

The number of attributes is reduced when training the system by running
a feature selection algorithm. After building each fold following the proce-
dure explained in Section 3.2, we randomly split the training set into two
halves. In the first half, we perform a feature selection algorithm in order to
reduce the amount of attributes. We then train the regression of expression
parameter on the second half of instances using the attributes selected in
the first half. Lastly, we used the regression to compute the predictions on
the test set.

The employed feature selection algorithm attempts to find a subset of fea-
tures f1, . . . , fk maximizing the Correlation Feature Selection (CFS):

rcf1 + rcf2 + · · ·+ rcfk√
k + 2(rf1f2 + · · ·+ rfifj + · · ·+ rfkf(k−1))

where each rcfi is the correlation between each feature and the classified
attribute and rfifj are correlations between features (Hall, 1999). The
idea behind CFS is that a good set of features is made out of attributes
poorly correlated with each other while highly correlated with the predicted
variable.

In order to find a set of features maximizing the CFS in a reasonable amount
of time we reduced the number of combinations to test by employing a
greedy step search. The algorithm starts with an empty set and adds one
feature at a time. The feature that maximizes the CFS is selected at each
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step. The algorithm stops adding features when no further improvement of
CFS is possible.

5.3.5 Building the Datasets

Before applying any machine-learning algorithm we needed to construct our
dataset. The dataset is a collection of note instances, each characterized by
a set of descriptor attributes and a target value. We created each dataset
by choosing a musician, a corpus and a feature set (FS) to which one of the
four corresponding expression parameters was assigned as target value.

From the recorded excerpts and pieces we create 5 corpora:

• Normal Piece: I.1 in Table 3.1

• Mechanical Piece: I.2 in Table 3.1

• Exaggerated Piece: I.3 in Table 3.1

• Ensemble Excerpts, where all the note instances of the four excerpts
played in ensemble are merged in one dataset. It includes all ensemble
takes from P.1-P.4 in Table 3.1.

• Solo Excerpts, where all the note instances of the four excerpts played
solo are merged in one dataset. It includes all solo takes from P.1-P.4
in Table 3.1.

For each of the five corpora we create 80 individual datasets with all the
combinations given by:

1. learning tasks: sound level / bow velocity / vibrato extent / note
lengthening

2. feature sets: FS1 / FS2 / FS3 / FS4 / FS5

3. target musicians: violin 1 (vl1) / violin 2 (vl2) / viola (vla) / cello
(cello)

In the case of the first three feature sets (FS1-FS3), datasets differing only
by learning task (thus having been built on the same corpus, learning task,
feature set and target musician) also contain the exact same attribute val-
ues. However, in the case of the last two feature sets (FS4-FS5) the type
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of expression parameter on the previous notes is conventionally the same
as the one of the target (and thus the learning task). As a consequence, in
the case of FS4-FS5 the models predicting each expression parameter ac-
cess to different expressive performance values. For example, where vibrato
extent was the target expression parameter then the past expression param-
eter values were drawn from previous note vibrato extent values, whereas if
sound level was the target expression parameter then the past expression
parameter values were drawn from previous note sound level values.

Another important aspect to notice here is that that in the case of the
solo excerpts, the concurrent expressive performance values included in the
feature set FS5 were not heard by the performers. However, we take it from
the other musicians’ solo performance when building FS5. This aspect will
be important in our final discussion, since we want to investigate in which
sense the ensemble performance was different from the solo performance.

Each dataset was then used for executing one experiment using the pre-
viously described cross-validation per phrase resulting in 400 experiments.
Each experiment yielded an individual correlation coefficient we collected.
As a final approach, we used the model trees algorithm, removing repetitions
from the test set and using cross-fold evaluation per phrase (as explained in
Section 5.3.2) and applying feature selection (as explained in Section 5.3.4).
We used the correlation coefficients obtained on each experiment as an es-
timation of the predictive power of the model. Our results in Section 5.3.6
consists of a statistical analysis of the relations between the factors just
introduced (corpus, learning task, feature set and target musician) and the
correlation coefficients achieved on the corresponding experiments.

Additionally, we tested another two machine-learning algorithms (SVM
and kNN), another type of validation (10-fold cross validation), the ef-
fect of feature selection and removing repetition. In total we performed
3x2x2x2x400=9600 individual experiments. We discuss how these addi-
tional factors affect the correlation coefficient in Section 5.3.6.

5.3.6 Results

We computed correlation coefficients (using cross-validation) by running
the machine-learning algorithms once for each feature set (FS), each cor-
pus, each musician and each learning task. At stage one we compared the
performance of each of the collected setups by looking at how each factor
considered affects it. In Figure 5.9 we show an example of the collected
predictions along with the performed value of the four instruments.
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Figure 5.9: We represent the note sound level of the four musicians along
with the predicted value (using model trees with the FS1 and FS5). The
example is taken from Beethoven’s String Quartet No. 4 (Opus 18) 4th
movement. We show the exaggerated expressive execution.

As already mentioned in Section 5.3.5 we use the correlation coefficient
as an estimation of the predictive power of each model. The sample cor-
relation coefficient however is not normally distributed since its variance
becomes smaller for higher values of correlation. We employed the Fisher
z-transformation to correct each correlation coefficient r, which distributes
the variance equally across all levels of correlation. The Fisher transforma-
tion is given by the following formula:

z =
1

2
log

(
1 + r

1− r

)

We performed an Analysis of Variance (ANOVA with interaction) of the
z coefficients (after applying the Fisher z-transform in order to distribute
the variance equally across all levels of correlations) obtained from all the
considered factors (musician, FS, learning task and corpus). The learning
task was responsible for the largest variance encountered. This means that
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on average some expression parameters are easier to predict than others.
Taking into account the variance, the learning task is followed by the feature
set, the dataset and the musician, in that order. For these reasons, the
results are more intelligible when each dataset is presented by feature sets,
learning tasks and musician.

We present our results with model trees for the expressive intentions dataset
(Section 4.1) and then for the performing conditions dataset (Section 4.2).
We make some observations about how learning task, musician and feature
set affect the result.

Furthermore, we show that our observations are consistent with other re-
gression classifiers (SVR and kNN) and how other corrections we introduced
in the evaluation procedure (removing repetitions and using cross fold val-
idation per phrase) affected the result (see Section 4.3).

Lastly, we show that the feature selection procedure, despite removing some
of the attributes from the training set, does not worsen the prediction with
respect to training with the full set of attributes. Hence, we report that the
feature selection procedure tends to select an appropriate subset of features
for each of the setups. We, then, present the results of feature selection
on the excerpts datasets (without cross-validation) using the largest feature
set FS5 for the solo vs. ensemble scenario. We demonstrate how the se-
lected attributes differ depending on the condition (solo or ensemble). In
particular, the amount of horizontal features is predominant in the solo case
whereas the vertical features are predominant in the ensemble case (Section
4.4).

Expressive intentions

For each expressive intention, we report the best correlation coefficients
achieved for each musician and target in Table 5.4. The correlation coef-
ficient of the first violin was higher than that of the other musicians most
times. Another interesting phenomenon is that the correlation increased
with the degree of expressiveness (increasing from mechanical to exagger-
ated) for sound level, vibrato and bow velocity. In the case of note length-
ening we did not find this trend, which suggests some relation to different
tempi (the mechanical was played slower than the other two cases).

If we look at the results more closely by also considering the difference
among feature sets we can draw more interesting observations: firstly, we
notice that sound level and bow velocity improve on subsequent FS whereas
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Table 5.4: Correlation coefficient on each expressive intention. Each cell
contains the best correlation coefficient across feature sets for the specific
musician and task. The highest value of each column is shown in bold.

Mechanical Normal Exaggerated

SLev Vib BVel Dur SLev Vib BVel Dur SLev Vib BVel Dur

vl1 0.70 0.48 0.66 0.29 0.76 0.65 0.73 0.25 0.81 0.68 0.84 0.18

vl2 0.46 0.28 0.5 0.26 0.46 0.70 0.53 0.19 0.6 0.65 0.67 0.14

vla 0.67 0.42 0.49 0.26 0.65 0.63 0.47 0.48 0.68 0.54 0.58 0.32

cello 0.44 0.17 0.49 0.14 0.69 0.63 0.61 0.31 0.76 0.54 0.80 0.20

note lengthening and vibrato stay nearly constant (see Figure 5.10). Sec-
ondly, we observe that the improvement, when present, follows different
profiles depending on the musician and the learning task. An example of
this is shown in the left plot (Sound Level) of Figure 5.10 (Exaggerated).
The profile of the first violin distinguishes itself from the rest because it fea-
tures a leap between the FS1 and FS4 and then mildly increases from FS4
to FS5. Other musicians distribute more evenly the improvement across
different datasets. The profiles of each instrument are consistent across ex-
pressive intentions, and the first violin exhibits the largest improvement in
correlation coefficients across feature sets.

An ANOVA on the z coefficient restricted to the results of this dataset
confirms our observations. We used an ANOVA model that considers the
interaction effects between variables.

The factors showing a significant effect (p<0.01) in order of explained vari-
ance (ss: mean sum of squares) are the following: learning task (1.60 ss),
expressive intention (0.73 ss), FS (0.59 ss), FS-learning task (0.25 ss), musi-
cian (0.23 ss), learning task-intention (0.22 ss), musician-learning task (0.18
ss), musician-intention (0.12 ss), FS-musician (0.03 ss). No significant in-
teraction between the FS and intention was found.

Solo Vs Ensemble

Results for the solo vs ensemble scenario are comparable with those ob-
tained in the previous scenario. The main factors (in terms of explained
variance) are the learning task (0.69 ss), the interaction between musician
and learning task (0.16 ss) and the FS (0.15 ss). The ANOVA analysis in
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Figure 5.10: Resulting correlation coefficient for each expressive intentions,
targets and musicians.
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this case revealed an interaction of the condition (solo/ensemble) with the
learning task (0.06 ss) and the musician (0.04 ss). There is no evidence
of any interaction between the condition and the FS (p=0.86). We can, in
fact, observe similar profiles of improvements in the solo and in the ensemble
case (see Figure 5.11) for every given musician and target.
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Figure 5.11: Resulting correlation coefficient for different learning tasks and
musicians in the “solo vs. ensemble” scenario.

Surprisingly, on average, when adding the concurrent expression parameters
of the other musicians (in FS5) there is an improvement on the prediction
both in the ensemble and in solo performance (see Figure 5.11). The sim-
ilarity between the two conditions can be explained as an effect of being
accustomed to performing that material together; since the recorded ex-
cerpts were part of the ensemble’s repertoire, the musicians were already
accustomed to performing those excerpts together and could anticipate the
expressive actions of the rest of the ensemble even if they were not present.
Nonetheless, we have to consider that the correlation profiles display no in-
formation about the underlying process of feature selection through which
they were obtained. We comment on the results of feature selection in
Section 4.4.
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Effect of Different ML Algorithms and Evaluation Method

The results presented in Section 4.1 and 4.2 were obtained by removing notes
in the training set which were repetitions of notes in the test set. In order
to further validate our results we considered three additional factors. The
first is the type of machine-learning algorithm; in order to account for this
factor we repeated all of the tests using the SVM and kNN instead of model
trees. The second factor is the influence of repetitions in the dataset arising
from refrain marks in the score. We wanted to discover what happens if
we do not remove the repetitions, and so repeated all the tests without this
correction. The third factor was to use a 10-fold cross validation instead
of using phrases as folds. In a 10-fold cross validation, instead of using the
phrases to build the folds we randomly split the dataset into 10 subsets,
which are used, one at a time, as test sets.

We ran an ANOVA on all z values, considering the classifier, the removal
of repeated notes and the evaluation method among the factors. All three
effects were, alone, found significant (with p<0.03). In particular, the cross-
validation per phrase yielded lower values of correlation coefficient with
respect to a simple 10-fold cross-validation. Regarding the effect of the
classifier, the model trees provided best results, followed, in order, by SVM
and kNN. Removing the repetitions also significantly lowered the correla-
tion coefficients, which was expected from the resulting reduction in size of
the training sets. We found interaction between classifier and the effect of
removing repetitions (p<0.03). Indeed, the effect of removing repetitions
was significant (the mean correlation coefficient dropped by 0.10) in the case
of kNN whereas both SVM and model trees were less affected (for both the
mean correlation coefficient dropped by 0.04). This confirms that removing
repetitions was important for guaranteeing that there is no over fitting, es-
pecially for the case of kNN. Additionally, we can conclude that model trees
and SVM are not reliant on those few repeated instances as much as kNN
is and are thus more reliable for building a robust model of expression.

Analysis of Feature Selection on the Solo vs. Ensemble scenario

On each of the setups we computed the difference between the correlation
coefficient after and before applying feature selection. The mean of such
differences across all the tests was 0.03 although this value became higher
in the models employing larger feature sets. This means that the more
features there are, the better the improvement we can achieve by applying
feature selection. By considering the difference in terms of z coefficients
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we also performed a t-test, which showed that this average difference, is
significantly positive (p<0.01). We can deduce that the feature selection
procedure improves the prediction.

Table 5.5: Results of feature selection. We report the mean percentage of
horizontal features (PHF) across musicians for the solo and the ensemble
excerpts dataset after the feature selection. Notice how PHF is higher in
the solo than in the ensemble case (except for bow velocity). We report the
one-tailed p-values for each percentage.

Solo Ensemble

PHF p-value PHF p-value

Sound Level 54.06% <0.001 45.26% 0.02

Bow Velocity 35.58% 0.22 38.92% 0.059

Vibrato Extent 60.27% <0.001 42.98% 0.079

Note Lengthening 52.38% 0.007 23.96% 0.173

The totality of 67 features is divided into 21 horizontal features (all the
attributes of Table 4.1 plus 2 expressive performance attributes) and 46
vertical features (all the attributes of Tables 2 and 3 plus 6 previous notes
performance attributes). The Percentage of Horizontal Features (PHF) was
therefore 31.3% in the FS5. We analyzed how this percentage changed after
the feature selection in the solo vs. ensemble scenario.

Table 5.5 reports the mean across musicians of the PHF for each learning
task and condition. Overall, we can observe how feature selection tends to
select horizontal and vertical features more uniformly with respect to the
31.3% of the starting feature set. The horizontal features were in fact rela-
tively more numerous after feature selection with respect to what they were
in the full FS5. We computed p-values for each percentage based on the
null-hypothesis that feature selection is modeled by an urn extraction with-
out replacement. This statistic is thus based on a sample percentage mean
computed over the results of independent draws with hyper-geometric dis-
tributions. We report one-tailed p-values for each mean percentage. Small
p-values (<0.05) indicate that the obtained percentage cannot be attributed
to chance. PHF is generally higher in the solo than in the ensemble. In the
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case of solo percentages were higher than 50% (except for bow velocity),
which is very unlikely, given that by pure chance the expected percentage
should be close to the original 31.3%. In the case of sound level, vibrato
extent and note lengthening the PHFs are large enough to reject the null
hypothesis that they arise from chance (see second column of solo in Ta-
ble 5.5). In the case of ensemble, the percentages are all lower than 50%
and thus more vertical than horizontal features were selected.

5.3.7 Discussion

In this section we have built models of expressive performance using a
machine-learning approach. We quantified the predictive power of various
subsets of the descriptors combining horizontal/vertical, and score/auto-
regressive descriptors. We also discussed the main differences obtained
using three different machine-learning algorithms, two types of cross val-
idation and the effect of refrained notes. Furthermore, we presented the
distribution of features after the process of feature selection both on the
solo and the ensemble case.

The analysis of feature selection exhibited a clear tendency of the mod-
els to prefer horizontal features (individual voice context) in the solo case,
and to prefer vertical features (inter-voice relation context) in the ensem-
ble case. This further confirms the validity of the introduced inter-voice
features in the context of ensemble expressive performance. In light of the
obtained results, we offer some thoughts on how they can be explained from
a musical standpoint involving the musicians and the listeners. The aver-
age difference in predictive power among expression parameters suggests
different management of each nuance. Sound level and bow velocity are re-
lated to expressive amplitude variations. The increase in predictive power
towards models with representation of inter-voice context implies that the
inter-voice features helped the models. The fact that this improvement can
be measured both in solo and ensemble recordings suggests that even when
a players are playing solo, they have in their minds the imagined parts of
the other members of the quartet. Also, for the listener, expressive use
of amplitude variation will simply not be heard if masked by other instru-
ments playing at the same time, so this is highly dependent on simultaneous
notes. In the case of vibrato, we believe that, since musicians know from
experience that it is more difficult to perform a vibrato in short notes, they
might reserve it for notes that are longer. As a result, vibrato extent might
be already well predictable based solely on the individual voice. In the
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case of note lengthening the results were, instead, not sufficient to prove a
substantial advantage of using neither horizontal nor vertical descriptors.
This suggests that, in the case of timing, the excess of timing unrelated fea-
tures corrupted the performance of the models and, thus, simpler models
based on time keeping correction mechanisms (Repp, 2005) and phrasing
(Widmer and Tobudic, 2003) might still be more suited. However, it is still
possible that if trained on larger datasets this method might autonomously
discover such synchronization mechanisms and achieve better predictions.
We noticed that the predictive power of the models tends to improve when
musicians play more expressively. Differences in predictive power across
musicians tend to favor the first violin as the musician whose expression is
easier to predict in terms of sound level, bow velocity and vibrato extent.
We believe that this tendency is a good sign, since it means that the model is
capturing the intentional expressive deviations employed by the musicians,
and not some perceptually irrelevant byproduct of playing an instrument.

5.4 Conclusion

In this chapter we introduced an approach to analyzing expressive per-
formance in string quartets. In the context of ensemble expressive perfor-
mance, the models take advantage of the correlations between a set of input
variables and the output expression parameters. We characterized the mod-
els into horizontal, vertical and memoryless and auto-regressive, depending
on the type of input variables that the model have access to.

The approach is based on the introduction of a set of ensemble-specific con-
textual descriptors. These contextual descriptors are built by relating each
note to neighboring notes belonging either to its part or the part of others.
The statistical approach provided a great tool for showing how the intro-
duced descriptors behaved in various experiments. In this context we also
focused timing and dynamics in macro-scale time spans. This exploratory
study highlights the potentials of using this method not only on modeling
expressive performance but also in understanding the importance of inter-
voice relations in ensemble performance. With the statistical approach we
could point out how some descriptors that were individually irrelevant (i.e.
the melodic charge) assumed an important role when considered in relative
terms (i.e vertical melodic charge).

By employing machine-learning techniques, we abandoned the idea of prov-
ing hypotheses specific of the individual descriptors approaching an holistic
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view over the data. We introduced an approach to modeling expressive per-
formance in string quartets allowing for polyphonic expression and inter-
dependence among voices. We recorded string quartet performances and
extracted a set of expression parameters related to sound properties of each
performed note by exploiting multi-track audio data and bowing motion
data. We assigned an expressive model to each musician and trained it on
the collected data using supervised machine-learning algorithms (i.e. re-
gression algorithms in this case). We gradually instilled into the models
the ability to represent score and performance inter-voice relations by in-
corporating into the feature set of the models a number of ensemble-specific
contextual descriptors, thus creating ensemble models of expressive perfor-
mance. We evaluated how well models built on different feature sets were
fit for predicting the expressive performance data by quantifying their pre-
dictive power by means of a cross validation scheme. The type of feature
set was found crucial for determining the accuracy of the induced expres-
sive model. As expected, the predictive power tended to increase when
introducing inter-voice-relation attributes and recent performed history.

The ensemble models were able to adapt to various degrees of expressive-
ness and to solo and ensemble performances, proving to be flexible for var-
ious styles. Furthermore, similar results were obtained with three different
machine-learning algorithms tested (although the nearest neighbor algo-
rithm proved less robust than support vector machines and rule trees). We
concluded that the results were mostly dependent on the data being fed
to the models. We questioned the difference between models trained on
solo performance and models trained on ensemble performance. Both mod-
els achieve similar results in predicting the data and, even in the case of
solo performance data, ensemble models resulted better than solo models.
We concluded that the solo performance data might have a bias from the
fact that the musicians were accustomed to play this pieces together, which
creates correlations among the individual solo performances. However a
more detailed look at the models build in the two cases revealed a signifi-
cant disparity between the selected horizontal and vertical features in the
two cases. The models trained on solo performances selected a majority
of horizontal features, and models trained on ensemble selected a majority
of vertical features. We concluded that although some residual correlation
among solo performances was inevitable, the models trained on ensemble
performance could entirely discard some information about the individual
voice and replace it with the vertical features.



Chapter 6

Conclusion

6.1 Introduction

In this dissertation we defined the hypothesis that expressive performance
analysis can be applied to ensemble performance and used as a tool for
studying inter-musicians interaction. We proposed a methodology for mod-
eling ensemble expressive performance (EEP) that accounts for the following
aspects:

• Polyphonic expression: the simultaneous expressive deviation on each
voice might differ with one another.

• Inter-dependence among musicians: the expressive deviations of each
musician are shaped partially in accordance with the score context
given by simultaneous voices and partially as a reaction to the expres-
sive deviations introduced by other members of the group on stage.

We dealt with polyphonic expression by building independent models of
expressive performance for each musician. We allowed inter-dependence
among musicians by feeding ensemble local context into each model. Within
this framework we defined the further hypothesis that each musician incor-
porates the expression of other voices in their expressive deviations. Based
on these hypothesis, we set ourselves three main goals: to acquire a corpus
of string quartet performances containing detailed information about each
musician performance both in solo and in ensemble playing, to extract a
set of meaningful vertical score context attributes, and to show differences
among the models trained in various contexts.

135



136 conclusion

Within the scope of the dissertation we have met such main goals. In Chap-
ter 3, we introduced a corpus of pieces and excerpts that we recorded, and
we advanced the state of the art in bowing force estimation in order to
reduce the complexity of the multi-modal recording setup. In Chapter 4
we introduced a number of ensemble-specific score contextual descriptors.
In Chapter 5 we showed that some of the introduced descriptors corre-
lated significantly with the ensemble performance. Furthermore, we built
machine-learning models of EEP using the acquired corpus. The analysis
of the models suggested a number of implications over the nature of the
ensemble interaction. Among such implications we found that the models
trained on solo performance made use of a majority of horizontal context
features whereas the models trained on ensemble performance made use a
majority of vertical context features.

6.2 Summary of contributions and key results

The contribution of this dissertation were introduced in Section 1.4. We go
over them again, referencing to the chapters where each contribution was
realized and organizing them into their fields of contribution.

6.2.1 Multi-modal data acquisition

Recording setup In Chapter 3, we proposed a recording setup for ac-
quiring sound, motion and video of string quartet where each musician’s
performance is independently recorded as a set of multi-modal time series.
We discussed the main technical issues arising in this complex recording
system and proposed solutions for each of them: the synchronization be-
tween device clocks for multi-modal signal acquisition, the extraction of a
bowing gesture parameters with minimal intrusiveness, and the selection of
music corpus.

Bowing force estimation model With the aim of reducing both the
complexity and the intrusiveness of the recording setup, we developed (in
Section 3.5) a mathematical model of bow deflection allowing for a non-
intrusive estimation of the force applied by the musician on the bow. The
model was constructed based on the physics of hair ribbon and depends
on the size and the tension of the hair ribbon. We described a methodol-
ogy for calibrating these parameters with an optimization procedure that
was applied to each recording. Furthermore, the resulting force estimation
improved the score performance alignment.
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Ensemble expressive performance dataset The string quartet record-
ings represent a valuable resource for both research in ensemble expressive
performance as well as research in music information retrieval. We com-
piled the subset of recordings analyzed in this dissertation and we made it
available online1 for research purposes. The dataset contains the acquired
audio and gesture data, as well as the MusicXML scores and the relative
score-alignment segmentations. We plan in the future to release the full
set of recording that are, at the moment of writing this dissertation, an
undergoing work.

6.2.2 Automatic music transcription

Score-performance alignment In Section 4.2, we introduced an algo-
rithm for score-performance alignment which takes advantage of both ges-
tural and audio data. The algorithm is an extension on the heuristic-based
dynamic programming described by Maestre (2009). We extended the pre-
vious algorithm by handling force and velocity as two linked parameters to
define bowing (gesture) attacks events. In Section 4.2.2 we also provided,
for the first time, a systematic procedure for optimizing the parameters of
the algorithm. We showed that the integration of bowing gestures improved
the results with respect to the audio-only baseline algorithm.

6.2.3 Music Representation

Extraction of contextual descriptors in multi-voiced music score
In Section 4.1 we introduced a methodology for extracting contextual de-
scriptors in multi-voiced music score. Besides some early work by Sundberg
et al. (1989), we could not find in the literature a systematic approach
for characterizing a multi-voices score in terms of inter-voice context. We
believe that the introduced ensemble contextual descriptors provide a rel-
atively easy computational tool that can find further applications in the
study of ensemble music performance.

6.2.4 Ensemble expressive performance modeling

Definition and extraction of expression parameters We gave a clear
definition of ensemble expression parameters extracted from timing, audio
and bowing gestures. We distinguished between individual and collective
expression parameters. We showed how it is possible to define participatory

1www.mmarchini.com/EEPdataset

www.mmarchini.com/EEPdataset
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discrepancy parameters as individual deviations from collective expression
parameters. Following this distinctions we gave a few operative definitions
of tempo curves and asynchronies in music ensemble performances.

Statistical analysis of ensemble performance In Section 5.2 we ana-
lyzed several performance descriptors in two experiments. First, we ana-
lyzed the expression parameters employed by each musician across repeated
executions of the same voice in various conditions. We showed how the
detected differences related to the various performance conditions: solo,
ensemble, mechanical, interpreted, and exaggerated. We noticed how it
was fairly easy to spot out macroscopic differences among the conditions in
terms of dynamics and tempo excursion.

At a micro-level, local differences where hard to find and interpret from
a basic statistical analysis standpoint. One of the main reasons was an
explosion of the number of hypothesis we could test due to the large pos-
sible combinations. This analysis, by showing the possible pitfalls of this
method, might be useful for other researchers willing to design experiments
in ensemble performance to test very precise hypothesis. Using the basic
statistic approach, we could also inspect differences across groups of notes
within each part, thanks to the introduced ensemble contextual descrip-
tors. ANOVA analysis provided a valuable tool for detecting correlations
between score context and expression parameters. Although we abandoned
the idea of testing all the possible hypotheses, we found examples of vertical
score context descriptors correlating with the expression parameters, which
supported the introduction of ensemble score contexts.

Towards a methodology for modeling ensemble expressive perfor-
mance In Chapter 5 we aimed at discovering the mapping between contex-
tual features and expression parameters. We thereby defined some theoret-
ical modes of playing: horizontal, vertical, auto-regressive, memoryless. We
could avoid the imposition of a particular playing mode by using machine-
learning algorithms to train the expressive models. Nevertheless, we showed
how we can further investigate on the derived models to test whether they
are prevalently of one or another mode. In particular, we showed that the
models built on ensemble performance make a relative higher use of vertical
context descriptors than models built on solo performance, and thus reflect
a “prevalently vertical” mode of playing.
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6.3 Critique

In this dissertation, we focused on the first problems that a data-driven
research on EEP must address: acquiring a dataset of ensemble perfor-
mances, extracting ensemble specific context features, training EEP models
and interpreting the results. In approaching each of those problems, we
had to make choices that might be legitimately criticized. We provide here
some seeds that might sparkle the debate in the future and might lead to
improvements in future works.

Dataset size One main limitation of this work was given by the absence
of databases with annotated ensemble recordings and this is why one of our
contributions was to carry out multi-modal ensemble recording of string
quartets. We believe that on larger datasets we could investigate in-depth
information about musicians, roles and music interaction in ensembles al-
lowing a comparison among different music styles and different quartets.

Orthogonality and completeness of contextual features The set of
score contextual descriptors of Section 4.1 have, in principle, no redundancy
(e.g. pitch and rhythm can be assumed uncorrelated). However, in prac-
tice, cross correlations among contextual features can appear depending
on the piece structure, recurrent motifs, recurrent counterpoint relations,
and recurrent harmonic sequences. In probabilistic terms, we could say
that distinct feature sets are not orthogonal. If this happens the boundary
between horizontal and vertical score context might become blurry. Our
results on the percentage of features seem to partially exclude this case
(see Section 5.3.6). However, a thorough analysis of the correlations among
different score descriptors might help clarify this aspect.

We could say that a set of contextual features is complete if it contains
enough information in order to reconstruct the score. This was never the
case in this dissertation, since we, at least, discarded dynamic marks, artic-
ulation marks and ornaments. These information might have been helpful
in improving the results and should be considered in the future. Whether
it will be possible to derive a complete feature set (to be used on any score
and style) is still questionable.

It is because of a possible score bias that we could not compare models
built on different corpora. In the case of statistical analysis, the main
issue was balancing the levels of the ANOVA since in different music scores
the contextual variables might need to be quantized in different ways (see
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Section 5.2.3). Analogously, the music score can bias results in ensemble
model analysis. The accuracy of each model might be affected by the score,
making unsuitable any comparison between performances of different scores.
It is questionable whether it would be possible to derive universal features
sets as the cross correlations might depend on music genre. However it
might be feasible to investigate whether such set exist in a particular music
style/genre. Such analysis might have interesting implications not only in
EEP but also in the field of music representation and music generation.

6.4 Outlook

We regard this work as the very preliminary step towards expressive perfor-
mance analysis of ensemble performance. We can foresee a range of applica-
tions and extensions of this work. On one side there are direct applications
which could reproduce our method to analyze additional performances. On
the other side, we can imagine ways in which the method could be extended
to other type of data and for additional purposes.

Study of rehearsals One interesting aspect that could be studied is the
evolution of musical interpretation during rehearsals. From a psychology
standpoint, some studies have studied team roles in ensemble rehearsals
(King, 2006). By using the proposed recording setup, we could monitor the
evolution of the interpretation and the coordination during rehearsals of
a string quartets. Such an analysis could complement the interviews with
the musicians that are currently one of the main methodological tools of
psychologists. Such a research could have applications in the didactics of
ensemble playing.

Another interesting aspect of ensemble performance is how the different
musical characters of each member of the ensemble blend with each other
to constitute a joint interpretation of a piece. The study of rehearsals could
give some insights over how this blend happens. Another objective could
be to model the dynamics of the negotiations (implicit and explicit) hap-
pening during the rehearsals among musicians. This would be particularly
interesting from a social science standpoint. Additionally, it could lead to
the possibility of predicting how several individual solo models merge into
an ensemble performance model.

Study of other types of ensembles A direct application could be ap-
plying the same score contexts and machine-learning tools to other types
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of ensembles. In such a study, an important preliminary step would be to
understand the expressive capabilities of the music instruments composing
the ensemble. It would be particularly interesting to see if it is possible to
derive similar results on other types of ensemble. In the case of improvised
music such in the case of Jazz, the analysis might considerably differ be-
cause of the lack of a pre-established music score. In that case the goal of
the musicians would be intrinsically different requiring thus to adapt the
contextual features, or even to change completely the approach.

Non-verbal communication With the addition of other sensors, and
motion capture data the study could be extended for including non-verbal
communication elements. In particular the body gesture of fellow musicians
could be integrated in each model as a set of features. Embodiment in
music performance is an aspect that has been studied in the recent past,
finding correlations between body gestures and sound produced during the
performance (e.g. Wanderley et al.’s (2005) work). Such an extension of our
method would allow studying the importance of non-verbal communication
in comparison with auditory cues in different ensemble contexts.

Model extension The study of rehearsals could lead to models of each
performer that do not only react to other musicians, but that also negotiate
with other musicians. This would result in models that are able to address
conflict-resolution problems typical of game theory and multi-criteria opti-
mization. We believe this could be a direction of research where a major
leap could be achieved.

Large ensembles It is unclear how our method would scale to large en-
sembles such as orchestras. A grow in the number of musicians would
produce exponentially increasing number of features. In that case some
approach of automatic dimensionality reductions might be considered, but
could still be insufficient. It might be needed to make further assumptions
on the interaction among musicians, by dividing the group in hierarchical
sections of musicians and focusing on the prediction of collective perfor-
mance features. It would be interesting if the hierarchy could emerge as a
result of the analysis of the individuals’ behaviors thus justifying the ap-
proach.

Expressive performance generation Expressive performance genera-
tion is also another important future application of our approach. In or-
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der to implement a system that generates string quartet expressive perfor-
mances, some additional steps will be required. Firstly, there is the need
to find a proper synthesizer of string instruments that is able to correctly
reproduce different intensities and vibratos. One straight-forward candidate
system could be the spectral synthesis model developed in the Ph.D. thesis
by Pérez (2009). The system works by directly synthesizing the violin sound
from the bowing gestures trajectories; the problem of generating such trajec-
tories from the score and expression parameters has already been considered
by Maestre (2009). However, respect to these works there is the additional
requirement to synthesize vibrato trajectories and, since we did not predict
it, the force. Other options for the synthesis of string quartets sounds are
commercial software based on sound banks that provide relatively realis-
tic results albeit the reduced flexibility. Secondly, once a synthesizer has
been selected, there is the need to map the predicted expression parameters
to synthesizer parameters, thus calibrating loudness levels to avoid percep-
tual bias. Thirdly, each note in the score should be predicted sequentially,
eventually switching from one model to another so that the auto-regressive
features on the past events are fed to the models correctly. Lastly, the note
durations should be adjusted to prevent from accumulating time lags among
voices. The approach by Hashida et al. (2007) might be a good candidate
(see Section 2.3.3) to perform such post-processing adjustment of durations.

Music accompaniment task In the last years we have increasingly as-
sisted to the appearance of music accompanying systems for training and
didactic purposes. Band-in-a-Box2 is a MIDI music arranger software that
allows to generate an accompaniment for a given sequence of chords and
a given style. Such system provides an easy way to overcome the need of
having a band to practice a given performance. However the result accom-
paniment is generally robotic and does not adapt to the performance of the
musician in terms of loudness and/or tempo. Using the method developed
in this dissertation it would be possible to build ensemble models for each
instrument from the data acquired from human bands performances. We
could use the models to render the output of the software more human and
adaptive to the performance.

2http://www.pgmusic.com

http://www.pgmusic.com
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