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I. Abstract 
Ensuring good water quality is becoming a major challenge in urban areas. 

Urban aquifers may suffer pollution from different recharge sources such as water 

leakage from sewer and septic systems, seepage from rivers, seawater intrusion, and 

losses from water supply network among others. As a result, a wide range of organic 

pollutants are found in urban aquifers. Since these pollutants enter the groundwater 

environment through the aforementioned sources, their occurrence depends on the 

transport mechanisms as well as the chemical and biochemical processes that occurred 

simultaneously. Thus, a proper assessment of groundwater quality requires an 

understanding of all the processes that affect these pollutants. However, the 

quantification of these processes is not an easy task. The aims of this thesis are to 

investigate the occurrence of emerging organic contaminants (EOCs) and the processes 

that affect them in an urban aquifer. 

An extensive review including the occurrence and fate of EOCs in Spanish 

groundwater and the evaluation of potential sources of contamination was carried out. 

Among organic contaminants found in groundwater, we have analysed pharmaceutically 

active compounds (PhACs), drugs of abuse (DAs) and personal care products in urban 

groundwater of Barcelona. The main sources of pollution of EOCs in urban areas are 

sewer leakage loss and infiltration from waste water treatment plants.  

Once these contaminants enter the aquifer, their concentrations are affected by 

numerous processes, including dilution, adsorption and degradation. Many EOCs are 

removed from water by transformation or degradation, especially if the water has 

undergone a broad range of redox states. Therefore, identifying and quantifying the 

redox processes along a flow line is a key issue. 

In order to quantify such processes, we have proposed an approach using mixing 

ratios. The application of environmental isotopes coupled with hydrochemistry data 

using mixing ratios has provided the isotopic quantification of groundwater recharge 

sources and the occurrence of redox processes such as sulphate reduction, aerobic 

respiration and denitrification. The approach enabled us: (1) to quantify the mixing 

ratios into groundwater (2) to evaluate redox processes. 
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II. Resumen  
Garantizar una buena calidad del agua se está convirtiendo en un gran problema 

en zonas urbanas. Los acuíferos urbanos pueden sufrir contaminación a través de 

diversas fuentes de recarga, como fugas de agua de alcantarillado y fosas sépticas, las 

filtraciones desde los ríos contaminados, intrusión marina, y pérdidas de la red de 

abastecimiento de agua, entre otros. Por ello, en los acuíferos urbanos se encuentran 

numerosos contaminantes orgánicos. La presencia y evolución de estos contaminantes 

en los acuíferos depende de los mecanismos de transporte, así como de los procesos 

químicos y bioquímicos. Por lo tanto, una correcta evaluación de la calidad del agua 

subterránea requiere la evaluación de todos los procesos que afectan a estos 

contaminantes. Sin embargo, la cuantificación de estos procesos no es una tarea fácil. 

Los objetivos de la presente tesis son determinar la presencia de contaminantes 

orgánicos emergentes (COEs) y los procesos que los afectan en un acuífero urbano. 

Se ha llevado a cabo una extensa revisión bibliográfica de la presencia de COEs 

en las aguas subterráneas de España y la identificación de posibles fuentes de 

contaminación. Entre los contaminantes orgánicos que se encuentran en las aguas 

subterráneas, se han analizado numerosos fármacos, drogas de abuso y productos de 

cuidado personal en las aguas subterráneas urbanas de Barcelona. Las principales 

fuentes de contaminación de los COEs en zonas urbanas suelen ser las pérdidas de las 

redes de alcantarillado y los efluentes de las estaciones depuradoras de aguas residuales.  

Una vez que estos contaminantes están presentes en el acuífero, sus 

concentraciones se ven afectadas por numerosos procesos, incluyendo dilución, 

adsorción y degradación. Muchos COEs pueden ser eliminados del agua subterránea por 

procesos de transformación o degradación, especialmente si en el acuífero ha pasado 

por diferentes estados redox. Por ello, la identificación y cuantificación de los procesos 

redox en el acuífero es una cuestión clave. 

Para cuantificar estos procesos, se ha propuesto un método que utiliza las 

proporciones de mezcla. La aplicación de los isótopos ambientales junto con los datos 

hidroquímicos ha proporcionado la cuantificación isotópica de fuentes de recarga de 

agua subterránea y la ocurrencia de procesos redox, como la sulfato reducción, la 

respiración aeróbica y desnitrificación. El uso de estas metodologías ha permitido: (1) 

cuantificar las proporciones de mezcla en el agua subterránea y (2) evaluar los procesos 

redox. 
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III. Resum 
Garantir una bona qualitat de l'aigua s'està convertint en un seriós problema en 

les zones urbanes. Els aqüífers urbans poden patir contaminació de diverses fonts de 

recàrrega, com fuites d'aigua de clavegueram i fosses sèptiques, filtracions des dels rius 

contaminats, intrusió marina, i pèrdues de la xarxa de proveïment d'aigua, entre d'altres. 

Per això, en els aqüífers urbans es troben diversos contaminants orgànics. La presència i 

evolució d'aquests contaminants als aqüífers depèn dels mecanismes de transport, així 

com dels processos químics i bioquímics. Per tant, una correcta avaluació de la qualitat 

de l'aigua subterrània requereix un enteniment de tots els processos que afecten aquests 

contaminants. No obstant això, la quantificació d'aquests processos no és una tasca fàcil. 

Els objectius d'aquesta tesi són investigar la presència de contaminants orgànics 

emergents (COEs) i els processos que els afecten en un aqüífer urbà. 

S'ha dut a terme una extensa revisió bibliogràfica de la presència de COEs en les 

aigües subterrànies d’Espanya, juntament amb l'avaluació de possibles fonts de 

contaminació. Entre els contaminants orgànics que es troben en les aigües subterrànies, 

s'han analitzat nombrosos fàrmacs, drogues d'abús i productes de cura personal en 

l'aigua subterrània urbana de Barcelona. Les principals fonts de contaminació dels 

COEs en zones urbanes són la pèrdua de les xarxes de clavegueram i els efluents de les 

estacions depuradores d'aigües residuals. 

Una vegada que aquests contaminants són presents a l'aqüífer, les seves 

concentracions es veuen afectades per nombrosos processos, incloent dilució, adsorció i 

degradació. Molts COEs poden ser eliminats de l'aigua subterrània per processos de 

transformació o degradació, especialment si l'aqüífer ha passat per diferents estats 

redox. Per això, la identificació i quantificació dels processos redox a l'aqüífer és una 

qüestió clau. 

Per quantificar aquests processos, s'ha proposat un mètode que utilitza les 

proporcions de mescla. L'aplicació dels isòtops ambientals juntament amb les dades 

hidroquímiques ha proporcionat la quantificació isotòpica de fonts de recàrrega d'aigua 

subterrània i l'ocurrència de processos redox, com la sulfato reducció, la respiració 

aeròbica i desnitrificació. L’ús d’aquestes metodologies ha permès: (1) quantificar les 

proporcions de barreja en l'aigua subterrània i (2) avaluar els processos redox. 
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VI. List of figures 
Figure 2.1. Spanish map with the spatial distribution of the EOCs studies included in 

this review. Note that the studies of Hildebrandt et al. (2007 and 2008) have been 
located in the Aragón region (n=2) but they spatial extent also includes Castilla 
León, Galicia, Navarra, la Rioja and Catalonia regions (*).The study of Bono-Blay et
al. (2012) has not been included because groundwater samples were collected all 
around Spain. 

Figure 2.2. Most studied EOCs in the groundwater of Spain (%). The number of studies 
(n) performed was 33 and pesticides are by far the most reported compounds, 
followed by industrial compounds, PhACs and estrogens. Note that are represented 
the compounds reported in n  5 (15%). 

Figure 2.3. Maximum EOCs concentrations in the groundwater of Spain (ng/L). (3a) 
Concentrations are higher than 400 ng/L and (3b) Concentrations range from 100 
ng/L to 400 ng/L. 

Figure 2.4. Measured concentrations of some EOCs in the Rivers Llobregat (grey) and 
Besòs (black) versus the concentrations reported in the aquifers of Barcelona. Note 
that aquifer concentrations are consistently much lower than surface waters for a 
wide array of compounds, suggesting the natural attenuation capacity of the aquifer. 
1Boleda et al. (2009) ,2López-Roldán et al. (2004), 3Rodríguez-Mozaz et al. (2004a), 
4Tubau et al. (2010), 5Quintana et al. (2001), 6Kampioti et al. (2005) and 7Jurado et 
al. (2012a). 

Figure 2.5. Maximum concentration of some EOCs in the groundwater (GW) of Spain 
versus the maximum concentration reported in the study of Loos et al. (2010). The 
EOCs include PhACs, pesticides, industrial compounds and life-style compounds. 

Figure 2.6. Maximum Spanish groundwater concentrations versus maximum European 
groundwater concentrations for some pesticides. References: 1Silva et al. (2006), 
2Andrade and Stitger (2009), 3Morvan et al. (2006), 4Baran et al. (2007), 5Lapworth 
et al. (2006), 6Haarstad and Ludvigsen, (2007) and 7Guzzela et al. (2005). Note that 
black dots (8) are the maximum Spanish groundwater concentrations of pesticides 
summarised in Table S1 (Annex I). 

Figure 2.7. Maximum Spanish groundwater concentrations versus maximum European 
groundwater concentrations for (A) PhACs, (B) Industrial compounds, (C) Personal 
care products, (D) Life-style compounds and (E) Estrogens. References: 1Hohenblum 
et al. (2007), 2Osenbrück et al. (2007), 3Ternes et al. (2007), 4Strauch et al. (2008), 
5Reinstorf et al. (2008), 6Wolf et al. (2012), 7Rabiet et al. (2006) and 8Stuart et al. 
(2012). Note that black dots (9) are the maximum Spanish groundwater 
concentrations of the aforementioned EOCs summarised in Table S1 (Annex I). 

Figure 3.1. On the left, schematic description of the hydrogeology of Barcelona: (1a) 
Llobregat Delta made up of gravels, sands, silts and clays (Holocene, Quaternary), 
(1b) Besòs Delta composed of gravels, sands, silts and clays (Holocene, Quaternary), 
(1c) Barcelona Plain consisting of carbonated clays ( Pleistocene, Quaternary), (2)  
Barcelona Plain made up of marls, sandstones and sands (Tertiary) and (3) Collserola 
Range consisting of  shale and granites ( Palaeozoic). On the right, a piezometric 
map of the study zone, which is divided into three zones: (Z1) MS, (Z2) PS and (Z3) 
BRD. The contour intervals are 2 m (continuous purple line), for heads ranging from 
5 to below 25 m (continuous blue line) and 25 m above (continuous black line). At 



ix

the bottom, observation points on each zone, including the depth of the screen :(u) 
upper, (m) middle, (l) lower and (a) totally screened. 

Figure 3.2. DAs (drugs of abuse) levels (ng/L) at the three sites: (Z1) MS, (Z2) PS and 
(Z3) BRD. 

Figure 3.3. CO (circles) and BE (triangles) levels (ng/L) for some multilayered 
piezometers at Z1. In black: GRA-1, GRA 2 and GRA-3, dark grey: ACO-1 and 
ACO-2 and light grey: SO-30 and SL-17. 

Figure 3.4. Mixing ratios evaluated at 36 wells accounting for 6 recharge sources. Note 
the average mixing ratios of each zone (Z1, Z2 and Z3) and the detailed scheme of 
each zone. 

Figure 3.5. Measured concentrations of DAs in (Z1) MS, (Z2) PS and (Z3) BRD versus 
the concentration estimated from the end-members (squares) with the mixing ratios 
of figure 4.Note that measured concentrations are consistently much lower than 
expected. Note also that none of DAs behave conservatively and only the drugs that 
are representative of each zone are plotted. 

Figure 4.1. (a) Hepatic metabolism pathway of CBZ and (b) CBZ oxidation by 
leucocytes based on Breton et al. (2005). Note the chemical structures of the target 
compounds are included (CBZ, 3OH CBZ, 2OH CBZ, CBZ EP, ACRIN and 
ACRON). * The pathway of 3OH CBZ is not presented. 

Figure 4.2. On the left, schematic description of the hydrogeology of Barcelona: (1a) 
Llobregat Delta made up of gravels, sands, silts and clays (Holocene, Quaternary), 
(1b) Besòs Delta composed of gravels, sands, silts and clays (Holocene, Quaternary), 
(1c) Barcelona Plain consisting of carbonated clays ( Pleistocene, Quaternary), (2)  
Barcelona Plain made up of marls, sandstones and sands (Tertiary) and (3) Collserola 
Range consisting of  shale and granites ( Palaeozoic). On the right, a piezometric 
map of the study area, which is divided into two distinct zones: Poble Sec and Besòs 
River Delta. The contour intervals are 2 m (continuous green line), for heads ranging 
from 5 to below 25 m (continuous blue line) and 25 m above (continuous orange 
line). At the bottom, observation points on each zone, including the depth of the 
screen: (u) upper, (m) middle, (l) lower and (a) totally screened 

Figure 4.3. Concentrations (ng/L) of (a) carbamazepine (CBZ) and its metabolites (2OH 
CBZ, 3OH CBZ, CBZ-EP, ACRON and ACRIN) (b) only metabolites in Poble Sec 
(left) and Besòs River Delta (right) aquifers. 

Figure 4.4. Main pathways of  CBZ and its metabolites in the urban aquifers of Poble 
Sec (pathway 1) and Besòs River (pathway 2). 

Figure 4.5. Spatial distribution of the six target compounds, ammonium, nitrate and 
boron in Poble Sec and Besòs River Delta aquifers. 

Figure 4.6. Concentrations of the target compounds (ng/L) in the recharge sources and 
in the aquifers of (a) Poble Sec and (b) Besòs River Delta.  

Figure 5.1. Plot of a conservative specie over a reactive specie considering two end-
members. Note that the concentration of the conservative solutes in a mixture is 
obtained by linear combination of the end-members, represented by the black straight 
line, but when deviations from perfect mixed solutions exist; they may be due to the 
chemical processes controlling the system. 

Figure 5.2. Schematic description of the hydrogeology of the study area. The study area 
is bound by the Besòs River and it is close to the underground car park at Plaça de la 
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Vila site. The screen depths of the pumping wells and the piezometers are 
represented. 

Figure 5.3. Comparison between the average concentration at the Besòs River and the  
average concentration in the aquifer for a several number of species as major and 
minor ions, metals, redox indicators, pesticides drugs of abuse (DAs, Jurado et al., 
2012) and pharmaceutical active compounds (PhACs, López-Serna et al., 2013).  The 
river data set is collected monthly by the Catalan Water Agency (ACA) 2 Km 
upstream of the study zone and it can be downloaded from http://www.gencat.cat/. 

Figure 5.4. Plots of measured vs. estimated concentrations of all species at three end-
members and observation points not including the geochemical processes. Notice 
that chloride and electrical conductivity behave conservative while dissolved oxygen, 
total organic carbon, nitrate did no (end-members concentration need to be 
dramatically reduce). This figure was modified from Tubau et al. (submitted). 

Figure 5.5. Plots of measured vs. estimated concentrations of all species at all end-
member and sampled points including the geochemical processes. Notice the better 
fit of the reactive species calcium, total nitrate, ammonium, dissolved oxygen, total 
organic carbon and nitrate.  

Figure 5.6. Schematic cross-plot sections of concentration, x (mmol/l), at each 
observation point for the species that take part in the reactions accounting for the 4 
campaigns. The reactions are: (R1) calcite dissolution, (R2) magnesite dissolution, 
(R3) Denitrification, (R4) Aerobic respiration, (R5) Nitrification. 

Figure 6.1. On the left, schematic description of the hydrogeology of Barcelona: (1a) 
Llobregat Delta made up of gravels, sands, silts and clays (Holocene, Quaternary), 
(1b) Besòs Delta composed of gravels, sands, silts and clays (Holocene, Quaternary), 
(1c) Barcelona Plain consisting of carbonated clays ( Pleistocene, Quaternary), (2)  
Barcelona Plain made up of marls, sandstones and sands (Tertiary) and (3) Collserola 
Range consisting of  shale and granites ( Palaeozoic). On the right, a piezometric 
map of the study area, which is divided into two distinct zones: Poble Sec (PS) and 
Besòs River Delta (BRD). The contour intervals are 2 m (continuous green line), for 
heads ranging from 5 to below 25 m (continuous blue line) and 25 m above 
(continuous orange line). At the bottom, observation points in each zone, including 
the depth of the screen: (u) upper, (m) middle, (l) lower and (a) totally screened. 

Figure 6.2. Plot of 18OH2O- DH2O accounting for the recharge sources (and standard 
deviation) and groundwater samples collected in both zones: Poble Sec (PS, 
rhombus) and Besòs River Delta (BRD, rounds). Note that the different field 
campaigns are represented by the shade of grey: c2 is light grey, c3 is grey and c4 is 
dark grey. The local meteoric line (LML) represents the monthly isotopic 
composition of a long-term sampling period (1985-1992) at the monitoring station of 
Barcelona. 

Figure 6.3. Plot of 34SSO4- 18OSO4 accounting for the recharge sources (and standard 
deviation) and groundwater samples collected in both zones: Poble Sec (PS, 
rhombus) and Besòs River Delta (BRD, rounds). Note that the different field 
campaigns are represented by the shade of grey: c2 is light grey, c3 is grey and c4 is 
dark grey.  

Figure 6.4. Plots of measured and computed concentrations and isotopic compositions. 
Note that measured concentrations of the recharge sources fail to envelope the 
measured concentrations in several samples in both Poble Sec and Besòs River Delta 



xi

(Chloride versus sulphate, total nitrogen, 34SSO4 and 18OSO4). Conversely, computed 
recharge sources perfectly encircle the computed concentrations and isotopic 
compositions of considered tracers. Concentrations are in mg/L and isotopic 
composition in ‰. 

Figure 6.5. Computed versus measured concentrations and isotopic composition at all 
recharge sources and groundwater samples in Poble Sec (PS) and Besòs River Delta 
(BRD). Note that 34SSO4 and 18OSO4 isotopes of dissolved sulphate do not behaved 
conservatively at Besòs River Delta. Concentrations are in mg/L and isotopic 
composition in ‰. 

Figure 6.6. Spatial distribution of mixing ratios evaluated for c3 and c4 at both zones. 
Note the average mixing ratios considering all sampling campaigns of each zone (PS  
and BRD). 

Figure 6.7. Relationship between 34SSO4 and 18OSO4 in groundwater samples of the c3. 
Grey and black colours represented the observation points located near and far from 
the river, respectively. The encircled values are those expected by simple mixing of 
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1. Introduction 
 

1.1 Motivation and objectives 

High population growth coupled to industrial and agricultural activities may 

result in both an increasing demand for water and the generation of wastewater. 

Groundwater is an alternative resource for water supply, especially during drought 

periods in semi-arid regions such as Spain. But groundwater may suffer pollution from 

different sources, including water leakage from sewer and septic systems, seepage 

from rivers and application of fertilizers and agrochemicals, among others (Foster; 

2001; Vàzquez-Suñé et al., 2010). As a result, a wide range of organic pollutants can 

be found in aquifers posing a risk to groundwater quality (Wolf et al., 2004). Thus, a 

proper assessment of groundwater quality requires the identification of the 

aforementioned pollutants and also the understanding of all the processes that affect 

them.  

Among organic pollutants, emerging organic contaminants (EOCs) are of 

particular concern for several reasons. First, different classes of EOCs such as 

pharmaceuticals, drugs of abuse, surfactants and personal care products have been 

detected in waste water treatment plants (WWTPs) effluents (Petrovic et al., 2003; 

Radjenovic et al., 2007; Boleda et al., 2009; Martinez Bueno et al., 2012). 

Consequently, WWTP effluents may be the main source of pollution to groundwater 

due to the continuous entrance of EOCs into the aquatic environment. In addition, 

research has provided growing evidence that many EOCs are endocrine disrupting 

compounds (EDCs) (Liu et al., 2009). Another cause for concern is that EOCs may be 

toxic and persistent. Despite their low concentrations, they may produce potentially 

harmful effects on ecosystems and human health (Jones-Lepp et al., 2004; Postigo et 

al., 2008; Reungoat et al., 2010), not to mention that the degradation products (DP) of 

some compounds such as alkylphenols are even more toxic than the parent product 

(Soares et al., 2008). 

The concentration of EOCs in aquifers is affected by numerous processes, 

including concentration at the source, dilution, adsorption and degradation. Moreover, 

the aforementioned processes are linked. Some common sources of EOCs in urban 

aquifers areas are sewer leakage loss and infiltration from waste water treatment 

plants. These sources provide organic carbon to the water and may promote 
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biodegradation reactions of a variety of EOCs. In addition to the tendency to sorb onto 

both organic and inorganic solids, many EOCs are removed from water by 

transformation (e.g. Barbieri et al., 2012) or degradation, especially if the water has 

undergone a broad range of redox states (e.g. Christensen et al., 2001; Barbieri et al., 

2011). Biodegradation processes are related to the redox state of water. Therefore, 

identifying the redox evolution along a flow line is a key issue.  

In order to quantify such processes, modelling tools providing extensive 

biogeochemical capabilities are needed (Prommer et al., 2000). Reactive transport 

models describe the spatial and temporal evolution of a set of chemical species subject 

to transport phenomena and chemical reactions. But there are hard to build because a 

reliable flow and conservative transport model is required, involving the management 

of much information to characterize in great detail the study zone. Hence, simpler 

approaches are needed. 

Assuming that transport can be thought as mixing of different water types 

along a groundwater flow path in an aquifer, mixing calculations are an alternative to 

reactive transport models. Mixing calculations include: (1) End Member Mixing 

Analysis (EMMA) (Hooper et al., 1990; Christophersen et al., 1990; Christophersen 

and Hooper, 1992; Hooper, 2003) and also (2) mixing ratios which are defined as the 

proportion of each of the mixing waters in a sample (Schemel et al., 2006). Mixing 

ratios are useful because they can be quantified from conservative chemical species 

even when the end-members are uncertain (Carrera et al., 2004; Ruedi et al., 2005). 

Their application is simpler than reactive transport modeling because only chemical 

data and a previous conceptual model of the study zone are needed. The concentration 

of the conservative solutes in a mixture is obtained by linear combination of the 

recharge sources. However, when deviations from perfect mixed exist; they may be 

due to the chemical processes. 

The aims of this thesis are to assess the fate of selected EOCs in urban 

groundwater and to quantify the redox processes that may contribute to removal of 

EOCs from urban aquifers. Specific objectives have been: 

(1) Review the state of art of the studies concerning EOCs in urban 

groundwater in Spain. 

(2) Assess the fate of selected EOCs such as DAs and PhACs in an urban 

aquifer. 

(3) Quantify the hydrogeochemical processes that might affect EOCs. 



Chapter 1: Introduction

3

 

This thesis has been developed in several aquifers of the city of Barcelona. 

 

1.2. Thesis outline 

The thesis consists of 5 chapters plus introduction, conclusions and the 

references list. The body of the thesis is based on papers that have already been 

published, accepted or submitted to international journals. The references to the papers 

are contained in a footnote at the beginning of each chapter. 

Chapter 2 reviews the presence of emerging organic contaminants (EOCs) that 

have been found in the groundwater in Spain in both rural and urban areas. The list of 

compounds includes pesticides, pharmaceutical active compounds (PhACs), selected 

industrial compounds, drugs of abuse (DAs), estrogens, personal care products and 

life-style compounds. The main sources of pollution and possible pathways have been 

summarised in this review. EOCs are likely to enter to the aquifer mainly through 

waste water treatment plants (WWTPs) effluents. They are present in groundwater at 

concentrations of ng/L to g/L. The most studied compounds in Spanish groundwater 

were pesticides followed by industrial compounds and PhACs. It is important to 

mention that compared to other water bodies, such as rivers, groundwater is 

considerably less contaminated, which may be indicative of the natural attenuation 

capacity of aquifers. However, some EOCs have sometimes been detected at higher 

concentration levels in aquifers than in rivers, indicating the need for further research 

to understand their behaviour in the aquifers. For a wide array of compounds, their 

maximum concentrations show values above the European groundwater quality 

standard for individual pesticides (0.1 g/L). Therefore, to preserve groundwater 

quality against deterioration it is necessary to define thresholds for the non-regulated 

compounds. 

Chapter 3 is concerned with drugs of abuse (DAs) and their metabolites in 

urban groundwater at field scale in relation to (1) the spatial distribution of the 

groundwater samples, (2) the depth of the groundwater sample, (3) the presence of 

DAs in recharge sources, and (4) the identification of processes affecting the fate of 

DAs in groundwater. To this end, urban groundwater samples were collected in the 

city of Barcelona and a total of 21 drugs were analyzed including cocainics, 

amphetamine-like compounds, opioids, lysergics and cannabinoids and the prescribed 

drugs benzodiazepines. Overall, the highest groundwater concentrations and the 
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largest number of detected DAs were found in zones basically recharged by a river 

that receives large amounts of effluents from waste water treatment plants (WWTPs). 

In contrast, urbanized areas yielded not only lower concentrations but also a much 

smaller number of drugs, which suggests a local origin. In fact, cocaine and its 

metabolite were dominant in more prosperous neighbourhoods, whereas the cheaper 

(MDMA) was the dominant DA in poorer districts. Concentrations of DAs estimated 

mainly from the waste water fraction in groundwater samples were consistently higher 

than the measured ones, suggesting that DAs undergo removal processes in both 

reducing and oxidizing conditions. 

Chapter 4 presents the fate of carbamazepine (CBZ) and five of its metabolites 

in Barcelona’s groundwater at a field scale under different redox conditions in 

connection with (1) the physicho-chemical properties of the target compounds, (2) the 

occurrence of common contaminants in urban groundwater of Barcelona and (3) the 

groundwater redox conditions. To this end, groundwater samples were collected in 

two distinct zones of Barcelona city: (1) Poble Sec and (2) Besòs River Delta in May 

2010. Overall, the highest concentrations and the largest number of detected target 

compounds were found in Besòs River Delta, which is basically recharged by a river 

that receives large amounts of effluents from waste water treatments plants (WWTPs). 

Conversely, Poble Sec presented not only lower concentrations but also a smaller 

number of compounds. The results of this study show that CBZ was more susceptible 

to be removed under the oxidizing conditions of Poble Sec aquifers than the reducing 

conditions of Besòs River Delta. In the latter, the metabolites 2-

hydroxycarbamazepine (2OH CBZ) and 3-hydroxycarbamazepine (3OH CBZ) and 

acridone (ACRON) were found to be highly persistent whilst 10,11-epoxy 

carbamazepine (CBZ-EP) and acridine (ACRIN) did not. 

Chapter 5 presents a methodology to quantify chemical reactions using mixing 

ratios. This chapter is motivated by the understanding of geochemical processes that 

affect emerging organic contaminants in an urban aquifer. When such contaminants 

entered the groundwater environment through different sources, such as water leakage 

from sewer or septic systems, seepage from rivers, seawater intrusion, and losses from 

water supply networks among others, the identification of processes is highly 

uncertain. In order to estimate such processes we propose the use of mixing 

calculations. The concentration of a conservative solute in a mixture is obtained by 

linear combination of the end-members. If deviations from perfect mixed solutions 



Chapter 1: Introduction

5

exist; they may be due to the chemical processes. We propose an easy methodology to 

quantify such processes that consist of the following steps: (1) End-member mixing 

analysis to identify the recharge sources, (2) Identification of the chemical processes at 

the study area and selection of the non-conservative species to be considered in the 

analysis and (3) Evaluation of the mixing ratios including the chemical processes.  

Chapter 6 investigated the different recharge sources and their mixing ratios in 

water samples from an urban aquifer. The application of environmental isotopes 

coupled with hydrochemistry provided the necessary information to isotopically 

quantify groundwater recharge sources and evaluate the occurrence of redox 

processes. In Besòs River Delta, a decrease in dissolved sulphate concentration and an 

increase in 34SSO4 and 18OSO4 values were observed in groundwater samples, both 

indicating sulphate reduction. Moreover, other chemical indicators supported a 

reducing environment, such as low or null levels of dissolved oxygen and nitrate, the 

presence of ammonium and an increase in dissolved iron and arsenic. The reducing 

conditions were probably induced by the organic carbon dissolved in water infiltrating 

from the River Besòs. In Poble Sec, the relationship between 34SSO4 and 18OSO4 

presented a strong influence of sewage water infiltration into the aquifer. However, the 

aquifer is oxic and there is no influence of sulphate reduction. 

Chapter 7 summarizes the main conclusions of the thesis. 

There are three annexes that summarized the following information: 

Annex I: Supplementary material of the chapters 

Annex II: Scientific papers accepted in international journals 

Annex III: Impact on the media 

 

1.3. Articles and reports related to the development of the thesis 

This thesis is the result of two complementary aspects: Scientific articles and 

technical reports. The list of scientific articles and technical reports related to the 

thesis are listed below. 

1.3.1. Scientific articles 

Jurado, A., Mastroianni, N., Vàzquez-Suñé, E., Carrera, J., Tubau, I., Pujades, E., 
Postigo, C., López de Alda, M., Barceló, D., (2012a). Drugs of abuse in urban 
groundwater. A case study: Barcelona. Sci. Total Environ. 424, 280-288. Doi: 
10.1016/j.scitotenv.2012.02.074. 

Jurado, A., Vàzquez-Suñé, E., Carrera, J., López de Alda, M., Pujades, E., Barceló, 
D., (2012b). Emerging organic contaminants in groundwater in Spain: A review of 
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sources, recent occurrence and fate in a European context. Science of the Total 
Environment 440, 82-94. 

Jurado, A., Vàzquez-Suñé, E., Soler, A., Tubau, I., Carrera, J, Pujades, E., Anson, I., 
(2013). Application of multi-isotope data (O, D, C and S) to quantify redox processes 
in urban groundwater. Applied Geochemistry 34, 114-125. 
http://dx.doi.org/10.1016/j.apgeochem.2013.02.018. 

López-Serna, R., Jurado, A., Vàzquez-Suñé, E., Carrera, J., Petrovic, M., Barceló, D., 
(2013). Occurrence of 95 pharmaceuticals and transformation products in urban 
groundwaters underlying the metropolis of Barcelona, Spain. Environmental 
Pollution 174, 305-315. 

Jurado, A., López-Serna, R., Vázquez-Suñé, E., Carrera, J., Pujades, E., Petrovic, M., 
Barceló, D., 2012. Occurrence and fate of carbamazepine and 5 metabolites in an 
urban aquifer under different redox conditions. Submitted HESS. 

Jurado, A., Tubau, I., Vàzquez-Suñé, E., Carrera, J., Pujades, E., (Submitted). Using 
mixing ratios to quantify chemical reactions. Submitted to Science of the Total 
Environment. 

1.3.2. Technical reports 

GHS-(UPC-CSIC), 2009a. Avaluació i seguiment d’un pla de drenatge del freàtic a 
l’entorn de la Plaça de la Vila de Sant Adrià del Besòs (III)” (GHS-(UPC-CSIC), 
2009a). Grup d’Hidrologia Subterrània (UPC-CSIC), Ajuntament de Sant Adrià de 
Besòs. 

GHS-(UPC-CSIC), 2009b. Model hidrogeològic al pla de Barcelona i delta del Besòs 
per a l’obtenció d’alternatives d’aprofitament per a la producció d’aigua de 
consum.2a part: Caracterització de les zones pilot. Grup d’Hidrologia Subterrània 
(UPC-CSIC), Agència Catalana de l’Aigua, Aigües Ter Llobregat, Entitat 
Metropolitana de Sanejament. 

GHS-(UPC-CSIC), 2013. Avaluació i seguiment d’un pla de drenatge del freàtic a 
l’entorn de la Plaça de la Vila de Sant Adrià del Besòs (IV)” (GHS-(UPC-CSIC), 
2013). Grup d’Hidrologia Subterrània (UPC-CSIC), Ajuntament de Sant Adrià de 
Besòs. 

1.4. Participation in congresses

Event: Asociación Internacional de Hidrogeólos: Desafíos de la gestión para el siglo 
XXI 2011, Zaragoza, Spain, September 2011  

Title: Drogas de abuso en las aguas subterráneas urbanas de la ciudad de Barcelona. 
Poster presentation 

Authors: A. Jurado, E. Vazquez-Suñé, J. Carrera, I. Tubau, E Pujades, N. 
Mastroianni, C. Postigo, M. López De Alda, D. Barceló 

 
Event: General Assembly 2012, Viena, April 2012 
Title: Drugs of abuse in urban groundwater. A case study: Barcelona. Poster 

presentation 
Authors: A. Jurado, N. Mastroianni, E. Vàzquez-Suñé, J. Carrera, I. Tubau, E. 

Pujades, C. Postigo, M. López De Alda, D. Barceló 
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Event: 3rd International conference on industrial and hazardous waste management 

2012, Crete, Greece, September 2012 
Title: Organic contaminants of emerging concern in agricultural and urban 

groundwaters. Catalonia and Barcelona (Spain) case studies. Oral presentation 
Authors: D. Barceló, M. Petrovic, C. Postigo, R. López-Serna, M. Köck-Schulmeyer, 

N. Mastroianni, M. López de Alda, M.S. Díaz-Cruz, M.J. García-Galán, A. 
Ginebreda, A. Jurado, E. Vàzquez-Suñé, J. Carrera  

 
Event: International conference. Pharmaceutical Products in the Environment: Is there 

a problem?, June 2013, Nîmes, France 
Title: Occurrence and fate of carbamazepine and 5 metabolites in an urban aquifer 

under different redox conditions. Poster presentation 
Authors: A. Jurado, R. López-Serna, E. Vàzquez-Suñé, J. Carrera, E. Pujades, M. 

Petrovic, D. Barceló 
 
Event: 23 Goldschmidt, August 2013, Florence, Italy 
Title: Modeling the Fate of the Pharmaceuticals in an Urban Aquifer. Besòs River 

Delta Case Study (Barcelona, Spain). Oral presentation. 
Authors: A. Jurado, Vàzquez-Suñé, J. Carrera, E. Pujades, M. Petrovic, D. Barceló 
 
Event: 246th ACS National Meeting, September 2013Indianapolis, Indiana, EEUU. 
Title: Occurrence and fate of carbamazepine and 5 metabolites in an urban aquifer 

under different redox conditions. Oral presentation 
Authors: D. Barceló, A. Jurado, R. López-Serna, E. Vàzquez-Suñé, J. Carrera, E. 

Pujades, M. Petrovic  



Chapter 2: Emerging organic contaminants in groundwater in Spain. A review. 

This chapter is based on the paper: Jurado, A., Vàzquez-Suñé, E., Carrera, J., López de Alda, M., 
Pujades, E., Barceló, D., (2012b). Emerging organic contaminants in Spain: a review of sources, 
recent occurrence and fate in a European context. Sci. Total Environ. 440, 82–94. 

2. Emerging organic contaminants in Groundwater in 
Spain: A review of sources, recent occurred and fate in a 

European context 

2.1. Introduction 

High population growth coupled with industrial and agricultural activities may 

result in both an increased demand for water and the generation of wastewater. 

According to directive 2006/118/EC, groundwater is the largest body of fresh water in 

the European Union. But it is also the most sensitive. Groundwater may suffer pollution 

from many sources, including water leakage from sewer and septic systems, seepage 

from rivers and application of fertilizers and agrochemicals, among others (Foster; 

2001; Vàzquez-Suñé et al., 2010). As a result, a wide range of organic pollutants can be 

found in aquifers posing a risk to groundwater quality (Wolf et al., 2004). Thus, a 

proper assessment of groundwater quality requires the identification of such pollutants. 

Among the different organic pollutants, emerging organic contaminants (EOCs) 

are of particular concern for several reasons. First, different classes of EOCs such as 

pharmaceuticals, drugs of abuse, surfactants and personal care products have been 

detected in waste water treatment plants (WWTPs) effluents (Petrovic et al., 2003; 

Radjenovic et al., 2007; Boleda et al., 2009; Martinez Bueno et al., 2012). 

Consequently, WWTP effluents may be the main source of pollution for groundwater 

due to the continuous entrance of EOCs into the aquatic environment. Second, research 

has provided growing evidence that many EOCs are endocrine disruptor compounds 

(EDCs) (Liu et al., 2009). EDCs are found in a wide range of products, including plastic 

bottles, detergents, flame retardants, food, toys, cosmetics, pesticides, etc. and are 

thought to have adverse developmental and reproductive effects in both humans and 

wildlife (Campbell et al., 2006). Third, EOCs may be toxic and persistent and, despite 

being detected in low concentrations, may produce potentially harmful effects on 

ecosystems and human health (Jones-Lepp et al., 2004; Postigo et al., 2008a; Reungoat 

et al., 2010), not to mention that the degradation products (DP) of some compounds 

such as alkylphenols are even more toxic than the parent products (Soares et al., 2008).  

To tackle the aforementioned problems it is necessary to define groundwater 

quality standards. To date, legislation on groundwater contamination by organic 
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contaminants has only affected pesticides. The environmental quality standards for both 

individual substances, including their relevant metabolites and degradation and reaction 

products (0.1 μg/L) and for the sum (0.5 μg/L), have been established (European 

Parliament and Council of the European Union, 2006). 

Most EOCs research has focused on both surface and waste waters. 

Groundwater has been much less studied. In the last decade, there have been some 

reviews on the occurrence and/or fate of specific EOCs such as pharmaceuticals in 

aquatic environments (Herberer, 2002; Mompelat et al., 2009) and EDCs (Campbell et

al., 2006; Liu et al., 2009; Silva et al., 2012). Similarly, recent reviews have included a 

vast array of EOCs  in freshwater sources (Murray et al., 2010; Pal et al., 2010), such as 

the Llobregat River Basin (Gonzalez et al., 2012) and in waste waters (Bolong et al., 

2009; Muñoz et al., 2009). Díaz-Cruz and Barceló (2008) reviewed priority and 

emerging organic micropollutants in different water resources intended for aquifer 

artificial recharge. But there is a lack of comprehensive reviews concerning a wide 

range of EOCs in groundwater. Only Stuart et al. (2012) reviewed the risk of emerging 

contaminants in the UK groundwater and Lapworth et al. (2012) summarised the 

sources, fate and occurrence of EOCs in the groundwater of Europe, the Middle East, 

North America and Asia. Here, we have extended the work of Lapworth et al. (2012) to 

other studies that have reported the occurrence of EOCs in Spanish groundwater. 

In this paper, we review the presence of EOCs in the groundwater of Spain and 

evaluate the potential sources of contamination, the occurrence and the fate of such 

EOCs. Among the organic contaminants found in groundwater, we analyse 

pharmaceutically active compounds (PhACs), selected industrial compounds, drugs of 

abuse (DAs), estrogens, personal care products and life-style compounds. We have also 

addressed pesticides trying to focus on the more polar ones and transformation products. 

Special attention has been paid to the most frequently detected compounds and they 

have been compared with other studies carried out across Europe. 

2.2. Identification of the potential sources of contamination 

Groundwater pollution can be classified as point and non-point (or diffuse) 

source pollution. Point source pollution refers to contamination from discrete locations 

that can be easily identified with a single discharge source. Examples include municipal 

sewage treatment plant discharges, industrial discharges, accidental spills and landfills, 
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among others (Lerner, 2008). In contrast, non-point source pollution is caused by 

pollution over a broad area and often cannot be easily identified as coming from a single 

or definite source. Agriculture is the main non-point polluter of groundwater in irrigated 

areas where fertilizers and other agrochemicals are applied (Chowdary et al., 2005). 

Similarly, runoff from urban and agricultural areas and leakage from urban sewage 

systems are non-point sources of pollution (Trauth and Xanthopoulos, 1997; Vàzquez-

Suñé et al., 2007a). Since non-point source compounds are usually applied over large 

areas, they may have a larger impact on the groundwater quality than point sources. 

Table 2.1 summarises the different sources of pollution and pathways into groundwater. 

It is necessary to identify the different pollution pathways to assess and reduce the 

introduction of contaminants into groundwater. Upon identification, effective reduction 

measures can be adopted to prevent the contamination of groundwater by EOCs. 

 

Table 2.1. Sources and possible pathways of EOCs in the Spanish groundwater. 

 

2.3. Occurrence and concentrations of EOCs in the groundwater of Spain 

Research on EOCs in Spanish groundwater is reviewed in this section. A total of 

33 studies have been included as a part of this review and their spatial extent is shown 

in Figure 2.1. Table S1 summarised the reported EOCs including the number of studies 

and the maximum concentrations found in the cited sources for each compound (see 

supplementary information Table S1 in Annex I for details). 
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Water Catchment Agencies are responsible for monitoring groundwater quality 

and specifically EOCs. But, to the author’s knowledge, information about EOCs is not 

published. In some cases the information can be found in their web services but data are 

not compiled and interpreted in a public report. Yet, some of the data have been 

published in scientific journals and have been included in this review. 

 

 

Figure 2.1. Spanish map with the spatial distribution of the EOCs studies included in this 

review. Note that the studies of Hildebrandt et al. (2007 and 2008) have been located in the 

Aragón region (n=2) but they spatial extent also includes Castilla León, Galicia, Navarra, la 

Rioja and Catalonia regions (*). 

2.3.1. Pesticides 

Pesticides are substances or mixtures of substances intended for preventing, 

destroying, repelling or mitigating pests. Pesticides are often categorised into four main 

classes according to the type of pest they control: herbicides; fungicides; insecticides 

and bactericides. We have addressed pesticides trying to focus on the more polar ones 

and transformation products. Note that less studied pesticides have also been 

summarised in Table S1 (supplementary material Annex I). 

Studies

Garrido et al. (2000) carried out a survey to study the quality status of 13 

different hydrological units and analysed 19 organophosphorous and 7 triazine 

herbicides. Similarly, 10 years later, Postigo et al. (2010a) and Köck-Schulmeyer et al. 

(2012) studied the occurrence of 22 pesticides in different aquifers of Catalonia where 
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agricultural practices are significant. The presence of pesticides in groundwater of the 

Llobregat area has also been widely studied (Quintana et al., 2001; López-Roldán et al., 

2004; Rodriguez-Mozaz et al., 2004a; Kampioti et al., 2005; Teijon et al., 2010) in 

2000, 2002, 2003 and 2007-2008, respectively. Triazine herbicides, phenylureas and 

organophosphorous herbicides have been the most studied pesticides in the Llobregat 

basin. García-Galan et al. (2010a) analysed 9 triazine herbicides in groundwater 

samples collected in the province of Barcelona in March 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Most studied EOCs in the groundwater of Spain (%). The number of studies 

(n) performed was 33 and pesticides are by far the most reported compounds, followed 

by industrial compounds, PhACs and estrogens. Note that are represented the 

compounds reported in n  5 (15%). 

 

In some regions of Spain, the occurrence of specific pesticides has been studied 

according to the crops that are present in the agricultural areas. Sanchez-Camazano et

al. (2005) analysed atrazine and alachlor in the Castilla León region, where corn crops 

are concentrated in four provinces (Salamanca, Avila, Zamora and Valladolid). Besides, 

in the area of Salamanca and Zamora in the same Castilla-León region, Carabias-

Martínez et al. (2000 and 2003) studied the pollution due to currently used herbicides 

(ureas, triazines, amides) in the Guareña and Almar River basins. The main crops in the 
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area are cereals followed by sunflower. Hildebrandt et al. (2007 and 2008) investigated 

the impact of atrazines, anilides and organosphosphorous herbicides in the aquifers of 

the Duero (in Castilla León region), the Ebro (in la Rioja, Navarra, Aragón and 

Catalonia regions) and the Miño (in Galicia region) River basins (Figure 2.1), where 

there are extensive areas of vineyards even though corn crops dominate. Finally, 

Arráez-Román et al. (2004) found carbamate insecticides used for agriculture in 

greenhouses in Almería (Andalucía region, SE Spain). The occurrence of pesticides has 

been recently studied in the Canary Islands (Gran Canaria) by Estévez et al. (2012). 

They screened the occurrence of several pesticides, including atrazines, 

organophosphorous insecticides, ureas and anilides, among others, in groundwater used 

for both irrigation and water supply purposes. In the same line, Bono-Blay et al. (2012) 

evaluated the presence of pesticides on groundwater intended for bottling. 

The study of Belmonte et al, (2005) has not been included in this review because 

they analysed different compounds in both groundwater and surface bodies but results 

did not differentiate between matrices. 

Concentrations and spatial distribution 

In the aforementioned studies performed across Spain, the most ubiquitous 

compounds were: the triazine herbicides atrazine, simazine, the atrazine transformation 

product desethylatrazine (DEA), terbuthylazine (TBA) and terbutryn, the phenylureas 

isoproturon and diuron and the anilide alachlor (Figure 2.2). The maximum individual 

concentrations have been observed for the anilides alachlor (9.95 μg/L) and metolachlor 

(5.37 μg/L), malathion (3.5 μg/L), atrazine (3.45 μg/L), chlorfenvinphos (2.5 μg/L), 

dimethoate (2.3 μg/L), DEA (1.98 μg/L), chlortoluron (1.7 μg/L), simazine (1.69 μg/L); 

parathion-methyl (1.5 μg/L), TBA (1.27 μg/L) and linuron (1.01 μg/L). Many others, 

such as prometryn, the atrazine transformation product desisopropylatrazine (DIA), 

azinphos-ethyl, chlorpyrifos, fenitrothion and tributyl phosphate presented 

concentrations higher than 0.5 μg/L. Consequently, the environmental quality standard 

of 0.1 μg/L set for individual pesticides in groundwater by the EU directive 

2006/118/EC was surpassed in several cases. The studies carried out in groundwater 

bodies from Catalonia showed high concentrations for some of these pesticides. Garrido 

et al. (2000) found high concentrations (exceeding 0.1 μg/L) of organophosphorous 

(malathion, parathion-methyl, fenitrothion, chlorfenvinphos, diazinon and dimethoate) 

and triazines (atrazine, prometryn and simazine) in groundwater samples collected from 

Catalonia between 1997 and 1998. Fenitrothion, diazinon and dimethoate, were found at 
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lower concentrations 10 years later but atrazine and simanize, were found at similar 

concentrations (Postigo et al., 2010a). This might indicate that: (1) organophosphorous 

insecticides are currently less applied but atrazine is still used despite being banned in 

the European Union in 2007 (Köck-Schulmeyer et al., 2012) or (2) atrazine is more 

persistent than organophosphorous insecticides in the aquifer. Postigo et al. (2010a) also 

reported considerably high concentrations of the ureas linuron, diuron and chlortoluron. 

It is important to mention that the triazines atrazine, simazine and TBA presented 

decreasing concentrations over time in groundwater of the River Llobregat. As an 

example, atrazine concentrations in groundwater samples collected near the Sant Joan 

Despí waterworks were 0.025 μg/L in 2000, from 0.007 μg/L to 0.014 μg/L in 2002 

and, 0.0023 μg/L in 2003. In the Ebro River catchment (NE-Spain), pesticide 

concentrations in groundwater were much higher than in the River Llobregat area but 

triazines also decreased in concentration over time. Hildebrandt et al. (2007 and 2008) 

reported high concentrations of some triazines in groundwater (1.42 μg/L, 1.25 μg/L, 

0.79 μg/L and 0.54 μg/L for atrazine, DEA, DIA and simazine, respectively) and 

metolachor (0.26 μg/L) from samples collected in 2000-2001. However, in 2004 

triazines concentrations decreased dramatically while metolachlor presented higher 

concentrations with a maximum concentration of 5.37 μg/L. The latter was detected at 

very low concentrations (0.0033 μg/L) in the River Llobregat area (Kampioti et al., 

2005). In central Spain (Castilla León region), triazine concentrations did not display a 

clear trend. Sánchez-Camazano et al. (2005) evaluated the inputs of atrazine in 

groundwater in 1997-1998 and reported concentrations from 0.04 μg/L to 3.45 μg/L 

while, in the same period, Carabias Martínez et al. (2000) found lower concentrations, 

ranging from 0.02 to 0.22 μg/L in 1998 and 0.16 μg/L in 1999 but found high 

concentrations of chlortoluron (0.4 to 1.7 μg/L). One year later (2000-2001), atrazine 

concentrations increased significantly, varying from 0.76 to 1.67 μg/L. These 

observations are related to the land use. High concentrations of atrazine were reported 

when corn was the main crop whereas high concentrations of chlortoluron were found 

when other cereal crops dominate. In the NW of Spain (the River Miño basin) only high 

concentrations of DEA and metalaxil were reported. In contrast, Canary Islands 

presented very low values of triazines (< 0.01 μg/L) and only chlorpyrifos-ethyl 

exceeded the 0.1 μg/L (up to 0.29 μg/L). Another group of pesticides found in 

groundwater in the South of Spain are carbamates but concentrations reported were 
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always below the prescribed concentration established for individual pesticides in 

groundwater by the Directive 2006/118/EC.  

To sum up, a wide range of pesticides has been studied in the groundwater of 

Spain over the last 10 years. The most studied pesticides have been triazines 

(atrazine>simazine> DEA>TBA=terbutryn>DIA) followed by phenyl urea herbicides 

(diuron=isoproturon>chlortoluron>linuron), anilides (alachlor>methachlor) and 

organophosphorous herbicides (diazinon>dimethoate). Out of the 80 pesticides that 

have been studied, 61 were reported in less than four studies and 30 were not detected in 

any groundwater sample (see Table S1 in Annex I).  

2.3.2 Pharmaceuticals 

The PhACs found in groundwater have been divided in the following therapeutic 

groups: Analgesic and anti-inflammatories, lipid regulators and cholesterol lowering 

statin drugs, psychiatric drugs, histamine receptor antagonists, tetracyclines, macrolides,  

fluoroquinolines, -lactams, sulfonamides and other antibiotics, -blockers,  and  

agonist, barbiturates, diuretics, antidiabetics, anti-cancer, cardiac agents, contrast media 

agents, angiotestin agents, antifungals, dyspepsia drugs , anaesthetics, anthelmintics and  

antiseptics (see Table S1 in Annex I) .

Studies

Sulfonamide antibiotics (SAs) and their degradation products have been the 

most frequently reported group of PhACs in groundwater from Catalonia (Díaz-Cruz et

al., 2008; García-Galán et al., 2010b, 2010c and 2011), mainly in the rural area but also 

in urban areas. Radjenovic et al. (2008) studied pharmaceuticals detected in the 

groundwater of the River Besòs aquifers (NE Spain) which are used as inflow to a 

drinking water treatment plant. The compounds analysed were analgesics and anti-

inflammatory drugs such as ketoprofen, diclofenac, acetaminophen, mefenamic acid and 

propyphenazone, -blockers such as sotalol and metoprolol, the antiepileptic drug 

carbamazepine, the antibiotic sulfamethoxazole, the lipid regulator gemfibrozil, the 

diuretic hydrochlorothiazide and the antidiabetic glibenclamide. Similarly, Huerta-

Fontela et al. (2011) studied the occurrence of 48 PhACs in the raw water intended for 

drinking water production in the Llobregat area (South of Barcelona city), where 

groundwater is combined with treated surface water to improve the quality of the 

finished water. Jurado et al. (2012a) studied the psychiatric drugs alprazolam, 

lorazepam and diazepam in the aquifers of the Besòs River Delta and Barcelona Plain. 

Finally, Teijon et al. (2010) and Estévez et al. (2012) investigated the occurrence of a 
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wide variety of PhACs (around 80 in both studies) in groundwater from the area of 

Llobregat and from the Canary Islands, respectively, including analgesics and anti-

inflamatories, psychiatric drugs and SAs, among others (Table S1 in Annex I).

Concentrations and spatial distribution 

In general, PhACs have been detected in lower concentrations than pesticides. 

Out of 161 PhACs investigated, 84 have never been detected (see Table S1 in Annex 

I).The most studied compounds (n 4) have been in descending order 

sulfamethaxole>sulfapyridine=sulfadiazine=sulfathiazole>sulfadimethoxine=sulfamethi

zole=sulfamethazine>sulfamethoxypyridazine=sulfisoxazole=sulfamerazine=N4-

acetylsulfamethazine=carbamazepine. The maximum individual concentrations have 

been for sulfacetamide (3461 ng/L), hydrochlorothiazide (2548 ng/L), sulfamerazine 

(744.7 ng/L), iopromide (687 ng/L), gemfibrozil (574 ng/L), sulfanitran (568.8 ng/L), 

diclofenac (477 ng/L) and sulfamethazine (446 ng/L). Several compounds such as 

iopamidol, codeine, ibuprofen, ketoprofen, mepivicaine, naproxen, propyphenazone, 

carbamazepine, nifuroxazide, furosemide, sulfamethoxazole, sulfapyridine, 

sulfaquinoxaline, benzalkonium chloride, N-acetyl-4-amino-antipiryne (4-AAA), N-

formyl-4-amino-antipiryne (4-FAA), venlafaxime and atenolol have also been detected 

at concentrations above the reference threshold of 100 ng/L. We have chosen this 

reference threshold because it is the quality standard set for individual pesticides in 

groundwater by the EU directive 2006/118/EC. 

 As commented before, SAs have been widely studied in Catalonian aquifers 

over the last five years. The occurrence of some of these compounds seems to follow 

similar pattern. Sulfadimethoxine, sulfamethazine and sulfamethoxazole were 

repeatedly present in groundwater. In contrast, sulfamethiazole was infrequently 

detected. Livestock waste in rural areas could contribute to the occurrence of 

sulfadimethoxine and sulfamethazine because these two SAs are generally used in 

veterinary practices. In contrast, sulfamethoxazole, which is mainly used in humans, 

was found more often than expected in groundwater from rural areas (García-Galán et

al., 2010c) and presented the highest concentrations and detection frequencies in urban 

aquifers (Díaz-Cruz et al., 2008; García-Galán et al., 2010c). Sulfamethoxazole was 

also present in groundwater samples from the Llobregat River Delta area. Its high 

occurrence could be attributed to contamination from both point sources (WWTPs 

discharges into the rivers) and a diffuse source (losses from sewage systems) in densely 

populated areas. Apart from SAs, X-ray contrast media (iopamidol and iopromide), 
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psychiatric drugs (carbamazepine, phenytoin and velafaxine), cardiac agents 

(hydrochlorothiazide and diltiazem), analgesics (4-AAA, 4-FAA, ibuprofen, codeine 

and diclofenac), fluoroquinolone antibiotics (ofloxacyn), -blockers(acebutolol, 

atenolol, metoprolol, propanol and sotalol), angiotensin agents (ibesartan and valsartan) 

and antihistaminics (salbutamol) were also detected in groundwater of the Llobregat 

area (Boleda et al., 2009; Teijon et al., 2010; Huerta-Fontela et al., 2011). 

Comparatively, fewer compounds were detected in the Besòs aquifers (North of 

Barcelona city), including analgesics (acetaminophen, ketoprofen, propyphenazone, 

mefenamic acid and diclofenac), cholesterol lowering statin drugs (gemfibrozil), 

psychiatric drug (carbamazepine), -blockers (metoprolol and sotalol) and antidiabetics 

(glibenclamide) (Radjenovic et al., 2008). 

2.3.3. Industrial compounds 

This category includes surfactants such as alkylphenol polyethoxylates 

(APEOs), which are used in a variety of industrial and domestic products (cleaning 

products, degreasers and detergents) and bisphenol A (BPA) and phthalates, mainly 

used to make plastics.

Studies

These compounds have been detected in rural groundwater as a result of 

agronomic practices and also in urban aquifers. Lacorte et al. (2002) and Latorre et al. 

(2003) reported the presence of the APEOs degradation products (DPs) nonylphenol 

(NP) and octylphenol (OP) and of BPA in agricultural areas of Catalonia. These 

agricultural areas are located near large cities with heavy industrial activity. At Sant 

Joan Despí waterworks, located in the Llobregat River area (South of Barcelona), 

López-Roldán et al. (2004) studied the presence of the bis (2-ethylhexyl) phthalate 

(DEHP), NP, OP and phenols such as 2,4 dichlorophenol, 4-chloro-3-mehylphenol, 4-

chloro-2-methylphenol and 4-tert-butylphenol in groundwater. In the same area, BPA 

was monitored by Rodriguez-Mozaz et al. (2004a). Tubau et al. (2010) investigated the 

occurrence of surfactants, including linear alkylbenzene sulfonates (LAS) and APEOs 

DPs in Barcelona’s urban groundwater. Sánchez-Avila et al. (2009) found that 

groundwater from the Maresme area (North of Barcelona) was contaminated by the 

phthalate dimethyl phthalate (DMP), the APEO DP nonylphenol monoethoxylate 

(NP1EO) and BPA due to a wastewater leak. In the rest of Spain, there was little 

research about the industrial compounds. Bono-Blay et al. (2012) panneresented a study 

that evaluated the presence of phthalates, alkylphenols and BPA in groundwater 
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resources intended for bottling and Hildebrandt et al. (2007) evaluated the presence of 

BPA, NP and OP in agricultural areas of the Ebro Basin.  

Concentrations and spatial distribution 

In general, industrial compounds have seldom been studied in groundwater 

samples. The most studied compounds have been NP, OP and BPA. The highest 

maximum individual concentrations have been observed for nonylphenol dicarboxylate 

(NP2EC, 11.24 μg/L), DEHP (5.67 μg/L), NP (5.28 μg/L), LAS (5.06 μg/L), 

nonylphenol monocarboxylate (NP1EC, 2.46 μg/L), OP (1.8 μg/L), BPA (1.5 μg/L) and 

diethyl phthalate (DEP, 1.12 μg/L). The maximum concentrations of APEOs DPs and 

LAS have been found in the aquifers of Barcelona, which reflects not only the industrial 

part of the city, but also a high sampling density. In this area, LAS are the surfactants 

most used at present and APEOs, which were banned in the 1990s, have also been 

detected in WWTPs (Gonzalez et al., 2004) and in the River Besòs (Tubau et al., 2010). 

In the Maresme area (North of Barcelona), only NP1EO (0.45 μg/L) was detected 

whereas NP and OP were not detected (Sánchez-Avila et al., 2009). Among the 6 

phthalates analysed only DMP was detected and BPA was found at concentrations of 

0.12 μg/L and 0.78 μg/L, respectively. In Llobregat River Delta aquifers, NP and OP 

were detected at considerably high concentrations (1.61 μg/L and 0.37 μg/L, 

respectively), but the highest concentration corresponded to the phthalate DEHP (5.67 

μg/L). In contrast, BPA was detected at very low concentrations in Llobregat 

groundwater (0.007 μg/L). Groundwater of the Ebro River basin was free of BPA and 

NP and OP was detected at low concentrations (0.15 μg/L) (Hildebrandt et al., 2007).  

2.3.4. Drugs of abuse 

Drugs of abuse include a long list of chemicals that are used with non-

therapeutic purposes.

Studies

Little research is available about the presence of DAs and their metabolites in 

groundwater. DAs have been studied in a well used for pumping at a Spanish drinking 

water treatment plant (DWTP) located in NE Spain (Boleda et al., 2009; Huerta-Fontela 

et al., 2008a). The first comprehensive study that has specifically addressed the 

contamination of aquifers by DAs was developed in the Barcelona aquifers by Jurado et

al. (2012a). DAs have also been reported in the aquifers of Canary Islands (Estévez et

al., 2012).  
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Concentrations and distribution

Thirteen of the 23 DAs analysed in groundwater have not been detected either in 

Barcelona or in Canary the Islands (see Table S1 in Annex I). Cannabidiol and 

ethylamphetamine were detected at the Canary Islands aquifer but the frequency of 

detection and the concentrations of the DAs measured were not specified, so the 

following results are based on Barcelona studies. Only trace concentrations of 

methadone (0.5 ng/L) and EDDP (2.3 ng/L) were reported in the River Llobregat 

aquifers (Boleda et al., 2009). In Barcelona urban groundwater, the most frequently 

detected DAs were methadone (86%) and ecstasy (or MDMA) (64%). The highest 

values of concentrations corresponded to methadone (68.3 ng/L), cocaine (60.2 ng/L) 

and MDMA (36.8 ng/L). The largest number of detected DAs (opiods, cocaininc 

compounds and amphetamines) were found in a zone recharged by the River Besòs, 

which receives large amounts of effluents from WWTPs (total concentrations of 200 

ng/L in some sampling points). Whereas, the urbanised areas presented fewer DAs and 

at lower concentrations. It is interesting to note that identified DAs correlate with social 

class. Jurado et al. (2012a) found cheap DAs (e.g. ecstasy) in groundwater from 

working class quarters, whereas cocaine was found in the groundwater of more affluent 

neighbourhoods. 

2.3.5. Life-style compounds 

A few studies reported the presence of nicotine and its metabolite cotininine and 

caffeine and its metabolites methylxanthine, paraxanthine, theophylline and 

theobromine and also caffeine c13. They were studied in Llobregat delta area (Huerta-

Fontela et al., 2008a; Teijon et al., 2010) and in Canary Islands (Estévez et al., 2012). 

Caffeine and Nicotine were frequently detected in aquifers of Gran Canaria (both 100 

%) and also in Llobregat River Delta (77.4 % and 71.7%, respectively). However, in the 

same area, neither nicotine nor caffeine were detected in groundwater intended to 

improve raw water quality in a DWTP. Other compounds detected, at lower 

percentages, were theobromine and theophylline (50% each in Canary Islands) and 

paraxanthine (6% in Llobregat area). Neither caffeine c13 nor methylxanthine and 

cotinine were detected in groundwater. The maximum concentrations were for caffeine 

(505.5 ng/L), theobromine (252.5 ng/L), paraxanthine (147 ng/L) and nicotine (144 

ng/L). 

2.3.6. Estrogens and related compounds 
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Estrogens are a group of steroid compounds named for their importance in the 

estrous cycle and function as the primary female sex hormone. Some of the studies 

related to estrogens were developed in the River Llobregat aquifers in the municipality 

of Sant Joan Despí (Rodriguez-Mozaz et al., 2004a and 2004b; Farre et al., 2007; 

Huerta Fontela et al., 2011). Farre et al. (2007) have also studied 3 isoflavones. 

Regarding the rest of Spain, only Estévez et al. (2012) studied the presence of the 

estrone in groundwater. The most studied compounds were the three major naturally 

occurring estrogens estrone (E1), estradiol (E2) and estriol (E3) and the synthetic 

estrogen Ethynyl Estradiol (EE). However, none of the compounds reported in the 

aforementioned studies were detected in the groundwater samples. 

2.3.7. Personal care products 

Personal care products are mainly used for beautification and in personal 

hygiene. These compounds were only reported by Teijon et al. (2010) in the 

groundwater of the Llobregat aquifers where polycyclic musks (galaxolide and 

tonalide), sunscreens (ethylhexyl methoxycinnamate), bacteriocide and antifungal 

agents (triclosan), among other compounds were found (see table S1 in Annex I). Only 

3 of them were reported in groundwater at significantly high detection frequencies. The 

most detected was galaxolide (98%), followed by the antioxidant BHT (92.3%), and the 

sunscreen ethylhexyl methoxycinnamate (50%). The maximum concentrations were for 

BHT and galaxolide, 455 ng/L and 359 ng/L, respectively.  

 

2.4. Assessment of the fate of EOCs in Spanish aquifers 

Many EOCs have been found in Spanish groundwater at concentrations higher 

than 100 ng/L (Figure 2.3), highlighting the need to understand their fate in aquifers. 

The fate of EOCs in groundwater depends both on the physico-chemical properties of 

the contaminant and on the aquifer, notably the redox potential. The former tends to 

control mobility, the latter degradability (Christensen et al., 2001; Barbieri et al., 2011).  

2.4.1. Physico-chemical properties of EOCs 

Among contaminants properties, the octanol-water partition coefficient (Kow) 

and the water solubility (Sw) are valuable parameters. The octanol-water partition 

coefficient is usually expressed as log Kow. It measures how hydrophilic (log Kow < 4) or 

hydrophobic (log Kow > 4) an EOC is. Hydrophobic EOCs tend to bioaccumulate and 

usually have a high adsorption capacity especially onto organic matter (Choi et al., 

2005a; Jones-Lepp and Stevens, 2007). Conversely, EOCs with low log Kow values tend 
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to have high Sw and both lower bioaccumulation potential and soil/sediment adsorption 

coefficients (Silva et al., 2012). However, care must be taken because log Kow does not 

always correlate with adsorption capacity onto mineral sediments (de Ridder et al., 

2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Maximum EOCs concentrations in the groundwater of Spain (ng/L). (a) 

Concentrations are higher than 400 ng/L and (b) Concentrations range from 100 ng/L to 400 

ng/L. 
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Table 2.2. Physicochemical properties and CAS number of the most reported EOCs. Values of 

water solubility Sw and log Kow were extracted from http://www.syrres.com/what-we-

do/databaseforms.aspx?id=386.
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Concerning pesticides, another relevant parameter used in many studies 

(Hildebrandt et al., 2007; Postigo et al., 2010a; Bono-Blay et al., 2012; Köck-

Schulmeyer et al., 2012) is the Groundwater Ubiquity Score (GUS) index (Gustafson, 

1993). The GUS index is used to assess the leachability capacity of a pesticide 

indicating its intrinsic mobility. If GUS is higher than 2.8, the pesticide will likely be a 

"leacher".If GUS is less than 1.8, the pesticide will be a "non-leacher". Table 2.2 

summarizes the GUS index for pesticides and the physico-chemical properties (log Kow 

and Sw) of most of the EOCs plotted in Figure 2.2. Note that some PhACs, DAs, 

industrial compounds and life-style compounds (n  3) are also included (Table 2.2). 

The pesticides’ profile is dominated by the presence of triazines. Despite being fairly 

hydrophobic some of them were widely detected in groundwater samples (e.g. 80 %, 

64%, 56% and 56% for simazine, atrazine, DEA and diuron, respectively in the study 

developed by Köck-Schulmeyer et al. (2012) and 89% and 87% for alachor and atrazine 

in the study performed by Sánchez-Camazano et al. (2005)). In contrast, the other 

triazines, phenylureas, organophosphorous and anilide pesticides were less frequently or 

not detected at all. For instance, cyanazine and fenitrothion were detected in less than 

5% of the samples (Postigo et al., 2010a). Linuron, chlortoluron and dimethoate were 

not detected in groundwater samples from the Llobregat area (Kampioti et al., 2005). 

These frequencies of detection are more in accordance with the GUS index than the 

physico-chemical properties of the pesticides. Most of the frequently detected 

compounds (mainly triazines) have GUS indexes higher than 3. Conversely, 

fenitrothion, dimethoate and cyanazine are non-leacher pesticides (GUS index < 1.8, 

Table 2.2).  

With regards to PhACs and DAs, few compounds are expected to present 

hydrophobic behaviour (log Kow > 4 and low solubility). These compounds are the -

blocker propanolol, the analgesics ketoprofen and mefenamic acid, the lipid regulator 

gembifrozil and the cannabinoid THC. The remaining PhACs and DAs, according to 

their physico-chemical properties (Table 2.2), should present more hydrophilic 

behaviour being more frequently detected in the aquatic environment. In fact, some 

PhACs and  in particular carbamazepine, have been qualified as suitable markers for 

anthropogenic influence in the aquatic environment (Clara et al., 2004; Gasser et al., 

2012; Muller et al., 2012) since it is highly recalcitrant towards elimination in 

water/sediment (Löffler et al., 2005).  
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Industrial compounds (NP, OP and DEHP) as well as both natural and synthetic 

estrogens have moderately low Sw and high log Kow values and hence can be considered 

moderately hydrophobic compounds (Table 2.2). Estrogens have also been found to 

sorb in aquifer sediments. According to Ying et al. (2005) their soil sorption 

coefficients, expressed as log Koc, range from 3.3 to 3.7. Therefore, it is not surprising 

that they have not been detected in groundwater in Spain. Finally, caffeine and nicotine 

showed hydrophilic behaviour with considerably high water solubility (Table 2.2).  

2.4.2. Transformation and degradation processes 

The concentration of EOCs in aquifers is affected by numerous processes, 

including concentration at the source, dilution, adsorption and degradation. Most studies 

are motivated by testing of pollution hypotheses. Therefore, they provide a biased 

picture of the actual state of groundwater bodies. In addition to the tendency to sorb 

onto both organic and inorganic solids, many EOCs are removed from water by 

transformation (e.g. Barbieri et al., 2012) or degradation, especially if the water has 

undergone a broad range of redox states (e.g. Christensen et al., 2001; Barbieri et al., 

2011). This, together the long residence time of water in aquifers, suggests that the most 

EOCs will tend to disappear. Unfortunately most studies do not reflect the redox state of 

water or its age. Old groundwaters are indeed free of EOCs (e.g. Teijon et al., 2010), 

but this may reflect that EOCs had not been in use at the time of recharge. It is therefore 

clear that (1) EOCs analyses should be associated to groundwater studies in order to 

understand the representatively of observations, and (2) further research on degradation 

and transformation processes is needed to assess the long term fate of EOCs in 

groundwater. 

2.4.3. River-groundwater interaction 

Rivers are usually heavily polluted because of the effluents of WWTPs, 

industries and agriculture runoff. Understanding the interactions between groundwater 

and surface water is a key issue to assess the fate of EOCs in the aquifers, especially in 

heavily pumped aquifers, where rivers are the main source of groundwater recharge. 

This is certainly the case at the River Llobregat (Vàzquez-Suñé et al., 2007b). There are 

some studies where the concentrations of some EOCs in the river (Llobregat and Besòs) 

can be compared with those of the aquifers (Quintana et al., 2001; López-Róldan et al., 

2004; Rodríguez-Mozaz et al., 2004a; Kampioti et al., 2005; Tubau et al., 2010; Huerta-

Fontela et al., 2011; Jurado et al., 2012a). In general, the concentrations in the surface 

waters were higher than in the aquifers accounting for a wide array of pesticides, 
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PhACs, DAs and selected industrial compounds (Figure 2.4). These should indicate 

natural attenuation capacity in the aquifer due to physical processes, such as sorption 

and dilution and biochemical processes. However, some compounds presented higher 

maximum concentration in the aquifer, such as the pesticides simazine, isoproturon, 

metolachlor, DEA, propanil, cyanazine, TBA and molinate, the industrial compounds 

NP, OP, NP2EC and DEHP and the DAs methadone (METH) and ecstasy (MDMA). 

Note that none of the PhACs presented higher concentration in the aquifer than in the 

river. This fact suggests that further research is needed to understand the behaviour of 

the EOCs in the aquifers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Measured concentrations of some EOCs in the Rivers Llobregat (grey) and Besòs 

(black) versus the concentrations reported in the aquifers of Barcelona. Note that aquifer 

concentrations are consistently much lower than surface waters for a wide array of compounds, 

suggesting the natural attenuation capacity of the aquifer. 1 Boleda et al. (2009) ,2 López-Roldán 

et al. (2004),3  Rodríguez-Mozaz et al. (2004a),4 Tubau et al. (2010),5 Quintana et al. (2001),6 

Kampioti et al. (2005) and 7 Jurado et al. (2012a).  

2.5. Spain - European groundwater EOCs concentrations  

It is not easy to establish criteria to compare the occurrence of EOCs in Spanish 

groundwater with the rest of European groundwater. There are several studies 
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concerning EOCs all over Europe but each of them have analysed different compounds. 

We decided to establish a comparison of the maximum concentrations detected and 

taking into account the most recent works performed in European countries. We used 

the study performed of Loos et al. (2010) to compare the maximum concentrations of 

EOCs because it is the unique representative work that has monitored polar organic 

pollutants in European groundwater. In total, 59 selected organic compounds (PhAcs, 

pesticides, steroids, life-style compounds and industrial compounds) were analysed in 

164 samples from 23 European countries. Out of the 59 organic compounds analysed in 

their survey, 33 have been included in this review. The maximum concentrations 

detected in the groundwater of Spain and in the Pan-European survey for selected 

pesticides, PhACs, industrial compounds and life-style compounds are plotted in Figure 

2.5. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Maximum concentration of some EOCs in the groundwater (GW) of Spain versus 

the maximum concentration reported in the study of Loos et al. (2010). The EOCs include 

PhACs, pesticides, industrial compounds and life-style compounds. 

 

In general, Spanish groundwater presents higher maximum concentrations than 

the Pan-European groundwater survey. The highest concentrations detected in the 

European survey were for NP1EC (11316 ng/L), bentazone (10550 ng/L), NP (3850 

ng/L), ketoprofen (2886 ng/L) and BPA (2299 ng/L). The profile of groundwater 

contamination seems to be dominated by industrial compounds (the APEOs DPs NP 
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and OP and BPA) because they show high maximum concentrations in Spain and the 

European countries’ aquifers. Pesticides (mainly atrazine and its metabolite DEA, 

simazine and TBA and its transformation product desethylterbuthylazine (DET)) also 

contribute to groundwater contamination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Maximum Spanish groundwater concentrations versus maximum European 

groundwater concentrations for some pesticides. References: 1Silva et al. (2006),2 Andrade and 

Stitger (2009),3 Morvan et al. (2006),4 Baran et al. (2007),5 Lapworth et al. (2006),6 Haarstad 

and Ludvigsen, (2007) and 7 Guzzela et al. (2005). Note that black dots (8) are the maximum 

Spanish groundwater concentrations of pesticides summarised in Table S1(Annex I). 

 

There are some comprehensive monitoring surveys of individual EOCs in 

Europe. Pesticide compounds have recently been studied in groundwater in Portugal 

(Silva et al., 2006, Andrade and Stigter, 2009), France (Morvan et al., 2006; Baran et

al., 2007), the UK (Lapworth et al., 2006), Italy (Guzzella et al., 2005), Norway 

(Haarstad and Ludvigsen, 2007) and the Netherlands (ter Lak et al., 2012). The 

presence of PhACs in European groundwater has been reported in Germany (Osenbrück 

et al., 2007; Ternes et al., 2007; Strauch et al., 2008; Reinstorf et al., 2008; Wolf et al., 

2012), France (Rabiet et al, 2006; Vulliet and Cren-Olivé, 2011) and the UK (Stuart et

al., 2012). Hormones and industrial compounds have been less studied than pesticides 
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and PhACs. Hormones and industrial compounds have been reported in Austria 

(Hohenblum et al., 2004) and the latter also in Germany (Osenbrück et al., 2007; 

Strauch et al., 2008; Reinstorf et al., 2008) and the UK (Stuart et al., 2012; Lapworth et 

al., 2012). Personal care products and life-style compounds have been reported in 

Germany (Osenbrück et al., 2007; Ternes et al., 2007; Strauch et al., 2008; Reinstorf et

al., 2008) and the UK (Stuart et al., 2012; Lapworth et al., 2012). The life-style 

compound caffeine has also been found in France (Rabiet et al, 2006). DAs, to the 

author’s knowledge, have only been studied in the aquifers of Spain (Boleda et al., 

2009; Huerta-Fontela et al., 2008a; Estévez et al., 2012; Jurado et al., 2012a). A 

comparison of the maximum concentrations reported in all the aforementioned studies 

allows us to distinguish between Spain and other European countries. This is shown in 

figure 2.6 for pesticides (only medium to polar compounds) and in figure 2.7 for the 

remaining EOCs reviewed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Maximum Spanish groundwater concentrations versus maximum European 

groundwater concentrations for (A) PhACs, (B) Industrial compounds, (C) Personal care 

products, (D) Life-style compounds and (E) Estrogens. References: 1 Hohenblum et al. (2007),2 

Osenbrück et al. (2007),3 Ternes et al. (2007),4 Strauch et al. (2008),5 Reinstorf et al. (2008),6 

Wolf et al. (2012),7 Rabiet et al. (2006) and 8 Stuart et al. (2012). Note that black dots (9) are the 

maximum Spanish groundwater concentrations of the aforementioned EOCs summarised in 

Table S1 (Annex I).
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The lowest maximum pesticide concentrations were for mecocrop and molinate 

(both in Spain, at concentrations of 5 ng/L) whilst the highest maximum concentration 

were for molinate (Portugal, 59.46 g/L) and bentazone (Norway, 20 g/L). It must be 

noted that the maximum concentrations for most of these pesticides were higher in 

European than in Spanish groundwater. With regards the remaining EOCs, plotted in 

figure 2.7, maximum concentrations for PhACs were difficult to compare since the 

studies carried out in each country addressed different compounds. For instance, 

carbamazepine has been widely studied in Germany but, in general, studies covering a 

wide variety of PhACs in European countries are scarce and some of the compounds 

studied have not been detected in Spanish groundwater. For example, diatrizoate, 

clofibric acid and fenofibrate have not been reported in any groundwater sample in 

Spain but they have been measured in German (Wolf et al., 2012) and French 

groundwater (Vulliet and Cren-Olivé, 2011). Meanwhile, the highest maximum 

groundwater concentrations for industrial compounds have mainly been detected in 

Spain. There are two exceptions, nonylphenol diethoxylated (NP2EO), which has been 

not detected, and BPA, which highest maximum concentration has been found in the 

UK (Stuart et al., 2012; Lapworth et al., 2012). The personal care product galaxolide 

has presented its maximum concentration in Spain (Teijon et al., 2010). As regards to 

life-style compounds, the highest maximum concentrations of caffeine (4.5 g/L) and 

nicotine (8.07 g/L) have been found in the UK aquifers (Stuart et al., 2012; Lapworth 

et al., 2012). None of the studied estrogens have been found in Spanish aquifers but 

some of them have been detected in groundwater from the rest of Europe at low 

concentrations (up to 10 ng/L). 

In summary, it is interesting to note that most EOCs are usually detected at low 

ng/L concentrations or not detected at all in groundwater throughout Europe. While an 

increasing number of individual compounds are found at g/L concentrations.  

2.6. Conclusions 

This work has reviewed the occurrence of various EOCs reported in Spain’s 

groundwater. These include pesticides, PhACs, industrial compounds, DAs, estrogens, 

life-style compounds and personal care products. The major point source of pollution of 

these EOCs in groundwater corresponded to the effluents of WWTPs, which is largely a 

consequence of the motivation of the studies. The contamination profile seems to be 

dominated by industrial compounds, followed by pesticides and PhACs. The most 
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relevant compounds contributing to Spanish groundwater contamination with individual 

concentration higher than 1000 ng/L are, in descending order, NP2EC, alachlor, DEHP, 

metolachlor, NP, LAS, malathion, sulfacetamide, atrazine, hydrochlorothiazide, 

chlorfenvinphos, NP1EC, dimethoate, DEA, OP, chlortoluron, simazine, parathion-

methyl, BPA, TBA, DEP and linuron. Moreover, another 53 EOCs have been reported 

at concentrations between 100 and 1000 ng/L. Nevertheless, it is important to mention 

that compared to surface water bodies, such as rivers, groundwater is considerably less 

contaminated, indicating the natural attenuation capacity of the aquifers. However, 

some EOCs, namely, simazine, TBA, isoproturon, metolachlor, DEA, propanil, 

cyanazine, molinate, OP, NP, NP2EC, DEHP, methadone and ecstasy, have sometimes 

been detected at higher concentrations in the aquifer than in the corresponding river. 

This might reflect the persistence of some organic compounds that were banned long 

ago, which is the case of industrial surfactants, and indicates the need for further 

research to understand their behaviour in the aquifers. The presence of some of these 

EOCs in groundwater from other European countries has also been reported with an 

increasing number showing individual concentration in the g/L range. Consequently, 

proper assessment of groundwater quality against deterioration requires the 

investigation of a wide variety of compounds, of the processes they undergo in 

groundwater and perhaps the establishment of environmental quality criteria for a large 

number of contaminants such as PhACs, estrogens, DAs and life-style compounds.  
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3. Occurrence of drugs of abuse in urban groundwater. A 
case study: Barcelona 

3.1 Introduction 

In recent years, drugs of abuse (DAs) and their metabolites have been 

recognized as environmental contaminants. These compounds have become a major 

cause for concern because of their occurrence and because their toxicity and persistence 

are not well known. Despite being detected in low concentrations, DAs may produce 

potentially harmful effects on ecosystems and human health (Jones-Lepp et al., 2004, 

Postigo et al., 2008a). Moreover, the incomplete removal of some DAs during 

conventional waste water treatment represents the main source in surface and ground 

waters. Since both surface and ground waters can be used for water supply purposes, 

DAs and their metabolites have become a matter of considerable concern. 

Numerous studies have reported the occurrence of DAs in the environment. The 

first comprehensive work was carried out by Zuccato et al., (2005) in Italy. These 

authors described the presence of the illicit drug cocaine and its metabolite 

benzoylecgonine in wastewaters and surface waters. They applied at a local level the 

sewage epidemiological approach (Daughton, 2001) employing the measurements of 

benzoylecgonine in sewage water to estimate collective cocaine usage. Since then, a 

number of research groups have applied this methodology all around Europe, e.g. in 

Belgium (Van Nuijs et al., 2011), France (Karolak et al., 2010), Ireland (Bones et al., 

2007),Croatia ( Terzic et al., 2010), Italy (Mari et al., 2009, Zuccato et al., 2008 and 

2011; Castiglioni et al., 2011), Spain (Postigo et al., 2008a, 2008b, 2010b and 2011; 

Huerta-Fontela et al., 2008b; Boleda et al., 2009), Switzerland (Zuccato et al., 2008; 

Berset et al., 2010) and the United Kingdom (Kasprzyk-Hordern et al., 2009; Zuccato et

al., 2008), and also in  the USA( Bartelt-Hunt et al., 2009; Chiaia et al., 2008), Australia 

(Irvine et al., 2011) and Canada (Metcalfe et al., 2010). Trace levels of DAs and their 

metabolites have also been reported in drinking water (Huerta-Fontela et al., 2008a; 

Boleda et al., 2009, 2011a and 2011b). However, the occurrence of DAs and their 

metabolites in groundwater has only been studied in a well water body used as source 

for abstraction of tap water at a Spanish drinking water treatment plant (DWTP) 

(Huerta-Fontela et al., 2008a; Boleda et al., 2009, 2011a and 2011b). Hence, to our 
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knowledge, this is the first comprehensive study to specifically address the 

contamination of aquifers by DAs. 

The objective of this study was to investigate the occurrence of illicit drugs in an 

urban aquifer in relation to (1) the spatial distribution of DAs in Barcelona’s 

groundwater, (2) the depth of the groundwater sample, (3) the presence of DAs in 

recharge sources, and (4) the assessment of the fate of DAs in   Barcelona aquifers. 

To this end, illicit drugs and metabolites belonging to 5 different chemical 

classes (cocainics, amphetamine-like compounds, opioids, lysergics and cannabinoids) 

and the prescribed drugs benzodiazepines were analyzed in groundwater samples 

collected at three sites in the city of Barcelona in May and December 2010. 

3.2 Site description 

The study area includes Barcelona and part of its metropolitan area in north-

eastern Spain. The area is located between the Serra de Collserola (Catalan coastal 

ranges) and the Mediterranean Sea (Figure 3.1), both boundaries running approximately 

NNE–SSW. Other boundaries are constituted by two rivers, the Llobregat (SW) and the 

Besòs (NE). The climate is typically Mediterranean with an average rainfall of 600 mm 

per year.  

Currently, groundwater is used for secondary uses such as streets cleaning and to 

water plants and public gardens. But it can be considered as an alternative tap water 

resource since there are several aquifers, characterized by their geological age, below 

the city (Figure 3.1). The Palaeozoic aquifer crops out at topographic highs to the NW, 

which consist of shales and granites. Quaternary aquifers can be found in the rest of the 

city. In low topographic areas, they are constituted by the alluvial and deltaic sediments 

of the Llobregat and Besòs rivers. In intermediate areas, they are made up of piedmont 

cones and coarse alluvial sediments.  

 

3.3 Materials and methods   

3.3.1 Sampling 

Thirty-seven water samples were collected during two field campaigns in May 

2010 (27 samples) and December 2010 (10 samples). One sample was obtained from 

the River Besòs and thirty-six samples were collected from groundwater: 27 from 

observation piezometers and 9 from pumping wells. The location of the wells and the  

 



Chapter 3: Drugs of abuse in urban groundwater. A case study: Barcelona 

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. On the left, schematic description of the hydrogeology of Barcelona: (1a) Llobregat 

Delta made up of gravels, sands, silts and clays (Holocene, Quaternary), (1b) Besòs Delta 

composed of gravels, sands, silts and clays (Holocene, Quaternary), (1c) Barcelona Plain 

consisting of carbonated clays ( Pleistocene, Quaternary), (2)  Barcelona Plain made up of 

marls, sandstones and sands (Tertiary) and (3) Collserola Range consisting of  shale and 

granites ( Palaeozoic). On the right, a piezometric map of the study zone, which is divided into 
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three zones: (Z1) MS, (Z2) PS and (Z3) BRD. The contour intervals are 2 m (continuous purple 

line), for heads ranging from 5 to below 25 m (continuous blue line) and 25 m above 

(continuous black line). At the bottom, observation points on each zone, including the depth of 

the screen :( u) upper, (m) middle, (l) lower and (a) totally screened. 

 

piezometers and the screen depths are displayed in Figure 3.1. Samples were collected 

in three different zones of the study area: (1) along Mallorca Street (MS) midway 

between the Collserola Range and the sea (a prosperous part of the city); (2) Poble Sec 

(PS), on the hillslope of Montjuich representing a less prosperous neighbourhood; and 

(3) Besòs River Delta (BRD), where groundwater comes mainly from the river. All the 

groundwater samples were obtained after pumping a volume of at least three times that 

of the piezometer. Field parameters measured in situ included electric conductivity, pH, 

temperature, Eh (also called redox potential) and dissolved oxygen. Water samples for 

drug analysis were measured continuously using a flow cell to avoid contact with the 

air. The instruments were calibrated daily by means of standard solutions. Samples were 

collected after stabilization of field parameters and were not filtered in the field. Instead, 

they were stored in a field refrigerator and taken to the laboratory at the end of the 

sampling day. Drug samples were stored in polyethylene terephthalate (PET) containers 

that were amber in colour to avoid photo degradation.  

 

3.3.2 Target drug analytes 

A total of 21 drugs and metabolites were analyzed. They belong to 6 different 

chemical classes: cocainics, cannabinoids, opioids, amphetamine-like compounds, 

lysergic compounds and benzodiazepines (Table 3.1). The investigated cocainic 

compounds were cocaine (CO), its major metabolite benzoylecgonine (BE), and 

cocaethylene (CE), a product formed when cocaine and ethanol are consumed 

simultaneously. The target cannabinoids constituted the main psychoactive component 

of the cannabis plant, 9-tetrahydrocannabinol (THC), cannabinol (CBN), cannabidiol 

(CBD), and the two metabolic by-products 11-nor-9-carboxy- 9-tetrahydrocannabinol 

(THC-COOH) and 11-hydroxy- 9-tetrahydrocannabinol (OH-THC). Opioids surveyed 

were morphine (MOR), heroin (HER), the heroin metabolic product 6-acetylmorphine 

(6ACM), the opioid-agonist methadone (METH), and its main excretion product 2-

ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). The group of amphetamine-

like compounds investigated included amphetamine (AM), methamphetamine (MA), 
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3,4-methylenedioxymethamphetamine (MDMA or ecstasy), and ephedrine (EPH). The 

lysergic compound studied was the most potent known hallucinogenic substance, 

lysergic acid diethylamide (LSD). Benzodiazepines included alprazolam (ALP), 

diazepam (DIA) and lorazepam (LOR). 

3.3.3 Analytical methods 

Water samples collected in May and December 2010 were analyzed for general 

physical-chemical parameters at the ATLL (Aigües Ter Llobregat) laboratory and at the 

AMB (Àrea Metropolitana de Barcelona) laboratory, respectively.  

Analysis of the target drugs and metabolites in the collected groundwater samples was 

carried out by on-line solid-phase extraction (SPE)-liquid chromatography-electrospray-

tandem mass spectrometry (SPE-LC-ESI-MS/MS) following a methodology previously 

described by the authors for analysis of wastewaters (Postigo et al., 2008b and 2011), 

readily adapted and validated for the present study to the analysis of groundwater 

matrices. In this method, samples (spiked with deuterated surrogate standards), aqueous 

calibrations solutions and blanks are analysed in a fully automated way with the aid of a 

Symbiosis-Pico system (Spark Holland, Emmen, The Netherlands) coupled on-line with 

the LC-MS/MS system. Samples (5 mL) are preconcentrated onto previously 

conditioned polymeric PLRPs cartridges (Spark Holland), and after washing of the 

cartridges with HPLC water, the retained compounds are eluted to the LC-MS/MS 

system with the chromatographic mobile phase, which consists of gradient 

acetonitrile/water modified with ammonium formate/formic acid. Chromatographic 

separation is carried out in a Purospher Star RP-18 end-capped column (125 x 2 mm, 

particle size 5 m) and detection is performed in positive ion (PI) mode recording two 

selected reaction monitoring (SRM) transitions per analyte. Quantitation, based on peak 

areas, is carried out by the isotope dilution method. This method allows the 

determination of the compounds at concentrations between 0.4-9.2 ng/L (i.e., the 

method quantitation limits) and 500 ng/L, with satisfactory precision (relative standard 

deviations lower than 15 %) and accuracy (absolute recoveries above 80%) for most 

compounds. 
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Table 3.1. Frequency of detection (%) and average and maximum concentration (ng/L) of drugs 

and metabolites measured in (1a) Barcelona urban groundwater and (1b) detailed in each zone 

of the study area (MS, PS and BRD). 
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3.4 Results of Das in the urban groundwater of Barcelona 

The average concentration and the maximum levels of the target drugs and 

metabolites measured in the groundwater samples and their detection frequency are 

summarized in Table 3.1a. Figure 3.2 shows the measured concentrations. No 

groundwater sample contained all the target compounds and no compound was present 

in all samples. Ten out of the 21 target compounds, namely, all 5 cannabinoids, LSD, 

HER, 6ACM, AM, and MA, were not detected in any sample. The most commonly 

detected drugs were METH, MDMA (or ecstasy) and EDDP (methadone metabolite), 

with detection frequencies of 86 %, 64 %, 45 %, respectively. DIA and CO were 

detected in between 30 % and 40 % of the samples; and the remaining compounds, 

namely, CE, MOR, EPH, and the benzodiazepines ALP and LOR, were detected in less 

than 20 % of the samples. The highest concentrations corresponded to METH (68.3 

ng/L at SAP-4) and CO (60.2 ng/L at GRA-2).  

 

The study area was divided into the three aforementioned zones (Zi). The DAs 

varied radically from one zone to another in terms of both concentrations and 

compounds detected (Table 3.1b). The results are given below.  

Z1: MS 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. DAs (drugs of abuse) levels (ng/L) at the three sites: (Z1) MS, (Z2) PS and (Z3) 

BRD. 
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In the ten groundwater samples collected along MS (Z1), the compounds 

identified, ordered by decreasing frequency of detection, were 

METH>CO>EDDP>BE> MDMA>CE=EPH=DIA. Despite the fact that the ubiquity of 

METH was greater than that of cocainic compounds, it was present in groundwater at 

very low concentrations, on average 0.7 ng/L. 

The highest levels were detected for two cocainic compounds, CO (ranging from 

50 to 60 ng/L) and its major metabolite BE (ranging from 11 to 16 ng/L) at sampling 

points GRA-1 and GRA-2, respectively, where CO levels were higher than BE levels. 

This also occurred at sampling points GRA-3, MODEL, ACO-1, ACO-2 and SL-17 but 

at a lower concentration for both compounds (Figure 3.3).  This finding contrasts with 

the concentrations reported in the literature where BE is higher than CO in surface and 

sewage waters (Table 3.2). CE, another metabolite of CO, was detected in one sample. 

Figure 3.3. CO (circles) and BE (triangles) levels (ng/L) for some multilayered piezometers at 

Z1. In black: GRA-1, GRA 2 and GRA-3, dark grey: ACO-1 and ACO-2 and light grey: SO-30 

and SL-17. 
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Table 3.2. Occurrence of DAs in tap water, influents and effluents of wastewater treatment 

plants (WWTP) and in surface waters ( River Llobregat). LOD = limit of detection; LOQ = limit 

of quantification; n.d. = non detected; a Average concentration ± standard deviation; b Sample 
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collected at Molins de Rei; c Sample collected at St Joan d'Espí. References: 1 Boleda et al., 

2011a; 2 Boleda et al., 2011b; 3 Huerta-Fontela et al., 2008a; 4 Boleda et al., 2009; 5 Huerta-

Fontela et al., 2011; 6 Huerta-Fontela et al., 2007; 7 Huerta-Fontela et al., 2008b; 8 Postigo et al., 

2008b; 9 Boleda et al.,2007 ; 10 Huerta-Fontela et al.,2010 and 11 Köck-Schulmeyer et al., 2011. 

Z2: PS 

Poble Sec was the area with the fewest drugs found in groundwater samples. The 

most commonly detected drug was METH (10 out of 13 samples) but the highest 

concentrations corresponded to the amphetamine-like compound MDMA (or ecstasy) 

detected at an average level of 2.2 ng/L. CO and EDDP were also found, but in less than 

25% of the groundwater samples with an average concentration of 0.4 ng/L and 0.1 

ng/L, respectively.  

Z3: BRD 

Since the River Besòs contains a large proportion of effluents from secondary 

WWTPs, a wide range of DAs were detected both in the river and in groundwater 

samples. The compounds identified in descending order were MDMA=DIA>METH> 

EDDP>ALP=LOR>MOR>EPH=BE.  In contrast to Z1, cocainic compounds were 

absent (CO and CE) or found only in two samples (BE). MDMA was frequently 

detected at an average concentration of 8.4 ng/L but EPH was also found in 15% of the 

samples. DIA was present in all the samples collected and did not vary significantly in 

the aquifer, ranging from 12.9 to 19.4 ng/L. However, ALP and LOR were less common 

whereas ALP levels remained practically constant, 2.3 ng/L on average.LOR levels 

were significantly different, ranging from 1.6 to 39.7 ng/L.As in Z1 and Z2, METH and 

its metabolite EDDP, were commonly detected. METH levels were especially high in 

shallow piezometers near the river (between 53 and 68 ng/L) but were insignificant in 

the deep piezometers located at the same distance from the river.MOR was only found 

in 20 % of the samples near the river, with an average concentration of 3.8 ng/L. 

 

3.5 Discussion 

3.5.1 Spatial distribution of DAs in the groundwater samples 

In view of the results of DAs in the three zones studied, it seems clear that drug 

consumption varies according to the district and is related to social status. CO is an 

expensive drug that was mainly detected in Z1, which is a more affluent district with 
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several nightclubs. By contrast, Z2 is a less affluent area, in which the main drug 

detected was MDMA (or ecstasy), cheaper than CO which was detected in only two 

samples. In Z3, which is a popular area, a mixture of DAs was found because the main 

contribution to groundwater recharge is the river. As in Z2, the most commonly 

detected drug was MDMA. Although it would be interesting to define the relationship 

between drug consumption and affluence, our observations are restricted to the levels 

and zones in the study area. 

3.5.2 DAs profile according to groundwater depth 

The concentrations of most DAs decreased with the screen depth of the 

piezometer, which suggests either some kinetically controlled removal process, as 

residence time generally increases with depth, or an increasing proportion of water from 

the Collserola range. This trend was evident at the piezometers in the three zones. The 

most significant exception took place for  cocainc compounds in Z1. As for CO and BE 

in Z1, the deeper the piezometer, the higher the concentration (Figure 3.3) for some 

multilayered piezometers (Figure 3.1), grouped as follows: (1) GRA-1, GRA-2 and 

GRA-3,(2) ACO-1 and ACO-2 and (3) SL-17 and SO-30. There is no easy explanation 

for these levels given that only a small percentage of a CO dose in humans is excreted 

in urine as the parent drug (5%), whereas a large amount is excreted as BE (45 %) 

(Baselt, 2004).Moreover, the high levels of CO and BE detected at  piezometers GRA-1 

and GRA-2 could indicate that an accidental or intentional disposal of CO occurred at a 

specific site (Zuccato et al., 2005). This is supported by the proximity of a high school 

and a police station to these sampling points. 

 

3.5.3 DAs in recharge sources  

3.5.3.1 Identification of the potential sources of recharge. 

Several recharge sources have been identified in the aquifers of Barcelona 

(Vazquez-Suñe et al., 2010). Direct rainfall recharge occurs in the non-urbanized areas 

in the Collserola Range. Seawater intrusion and water from the heavily polluted River 

Besòs must be considered potential recharge sources in low areas. Additional sources of 

groundwater recharge can be attributed to anthropogenic activities related to city 

development including loss from the water supply network. Barcelona is supplied with 

water from the Ter and Llobregat rivers. This gives rise to a division of the city into two 

zones with a different water quality and hence two different chemical compositions can 
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be found in waste water. Finally, in paved areas, runoff water washes the road and 

atmospheric deposition, and recharges the aquifers through direct infiltration or sewer 

loss. To summarize, up to eight different recharge sources in Barcelona were identified: 

(1) River Besòs (RIV), (2) rainfall recharge in northern non urban area (R_R), (3) Ter 

river water supply (TER), (4) Llobregat river water supply (LLOB), (5) Ter river 

sewage water (SW_T), (6) Llobregat river sewage water (SW_LL), (7) City runoff 

(RUNOFF), and (8) Sea water intrusion (SEA).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Mixing ratios evaluated at 36 wells accounting for 6 recharge sources. Note the 

average mixing ratios of each zone (Z1, Z2 and Z3) and the detailed scheme of each zone. 

 

To compute the mixing ratios of these end-members in groundwater samples the 

approach of Carrera et al., (2004) was used. This methodology identifies mixing ratios 

in the case of uncertain end-members using the concentration of mixed samples to 

reduce the uncertainty, assuming that the samples are a mixing of the end-members in 

an unknown proportion. The spatial distribution of the mixing ratios is illustrated in 
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Figure 3.4. According to the identified sources, in Z1 the main contributor to the total 

recharge was R_R (60%), especially in the deepest piezometers such as ACOPIO-1 and 

GRA-2, followed by the sewage network loss (31%) and water supply network loss 

(9%). In Z2, the main contributors were network sewage (SW_LL) and water supply 

loss (LL), accounting for 96 %. The remaining 4% corresponded to R_R. As for Z3, 

RIV (River Besòs) was by far the largest contributor to the total recharge, representing 

91%. Other contributors to the recharge were network sewage (SW _T) and water 

supply loss (T). When considering the 3 zones as a whole, the average proportions of 

the contributors were the following: 21% from water supply network loss, 28% from 

sewage network loss, 18% due to infiltration in non-urbanized areas and 33% from the 

River Besòs. 

 

3.5.3.2 DAs levels reported in recharge sources. 

The occurrence of the DAs in some of the aforementioned recharge sources has 

been widely reported in the literature. Concentrations for NE Spain are summarized in 

Table 3.2.Cocainic compounds are the most ubiquitous and abundant compounds in the 

influents of the WWTP, especially BE, which reaches levels exceeding 7 μg/L. Some 

studies have also confirmed the ubiquity of the opioids MOR, METH and EDDP at 

relevant levels (ng/L range) in sewage influent. However, HER and 6ACM are seldom  

or not detected. Amphetamine-like compounds are found at comparatively lower 

concentrations than cocainics with maximum concentrations of 688 ng/L AM, 277 ng/L 

MA, 598 ng/L MDMA and 591.9 ng/L EPH. The other compounds such as lysergic, 

cannabinoids and benzodiazepines have been less studied and are found at relatively 

low concentrations. 

Little research has been done on the occurrence of DAs in tap waters. Only the 

cocainics CO and BE and the opioids METH and EDDP have been detected in finished 

waters of a DWTP and at very low trace levels (Boleda et al., 2011a,  2011b and 2009 

and Huerta-Fontela et al., 2008a) (table 3.2). 

 Another recharge source is the River Besòs, but, unfortunately, there are no data 

concerning DAs. We only have one sample from this river but we fear it may not be 

representative because the Besòs flow regime, like other Mediterranean rivers, is 

characterized by its variability, which is controlled by rainfall.  However, the River 

Besòs shares some similarities with the River Llobregat, which has been the subject of 

many studies (Table 3.2). Both rivers undergo anthropogenic pressure, receiving 
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extensive urban and industrial wastewater discharges. Consequently, the presence of the 

DAs can be expected at similar levels. The highest concentrations reported correspond 

to cocainic compounds, BE and CO, ranging from 15 to150 ng/L and from 0.4 to 60 

ng/L, respectively. CE has been found at very low concentrations. The opioids present 

are MOR, METH and EDDP. METH is commonly present at lower levels than its 

metabolite EDDP. HER and 6ACM have not been detected. Amphetamine-like 

compounds have been frequently detected in the Llobregat. MA is present at 

concentrations lower than those of AM and MDMA, ranging from 0.4 to 50 ng/L. 

Levels of EPH have only been reported in one study at concentrations of up to 18 ng/L. 

Cannabinoids and lysergics are absent or found at very low concentrations. 

Benzodiazepine levels vary considerably between LOR and DIA, with maximum 

concentrations of 31.5 and 5 ng/L,respectively. ALP has not been detected in surface 

waters. Overall, as shown in Table 3.2, concentrations of DAs in surface waters are, on 

average, one or two orders of magnitude lower than in WWTP influents. 

 Given the high variability of flow rate and the water quality of the River Besòs 

and the relatively low residence time at the aquifer, it is not sufficient to consider only 

one end-member from the River Besòs. Instead, three were used to account for the 

temporal variability. To this end, since only one sample of the DAs in the River Besòs 

was available, we calculated the concentration of DAs in these river end-members with 

the river flow using a dilution factor (f) that is calculated as follows: 

f= Qs/Qem     (1)  

 

where Qs is the flow rate on the day of sampling and Qem is the flow rate of the 

aforementioned end-members.  

The adopted DAs concentrations for all sources are shown in table 3.3. 

Table 3.3. Levels of DAs in the recharge sources expressed in ng/L. “- “: Not included in the 

analysis. W1: wet period; D1 and D2: dry periods.
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Figure 3.5. Measured concentrations of DAs in (Z1) MS, (Z2) PS and (Z3) BRD versus the 

concentration estimated from the end-members (squares) with the mixing ratios of figure 4.Note 

that measured concentrations are consistently much lower than expected. Note also that none of 

DAs behave conservatively and only the drugs that are representative of each zone are plotted. 
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3.5.4 Assessment of the fate of DAs in Barcelona aquifers. 

Once the mixing ratios were assessed and the levels of DAs in the potential 

recharge source were determined, it was possible to assess the fate of DAs in the 

aquifer.  

Z1: MS 

Only the most commonly detected compounds along Mallorca Street are 

discussed in this study (CO, BE, METH and EDDP).These compounds behaved 

similarly (Figure 3.5). Estimated concentrations were higher than the measured ones, 

suggesting the occurrence of removal processes that depleted DAs in groundwater. The 

presence of species such as nitrate and the levels of dissolved oxygen indicate oxidizing 

conditions in this zone. Moreover, organic carbon is depleted, which indicates redox 

processes and suggests degradation of DAs. Regardless of the actual removal process, 

Figure 3.5 shows a dramatic reduction in the aquifer concentrations compared with that 

derived from simple mixing.  

Z2: PS 

 As in Z1, only the most commonly detected compounds, which were METH, 

EDDP, MDMA and CO, are discussed. Sewage water is the main recharge source that 

contributed to the presence of DAs in the groundwater. But, again, the measured 

concentrations were much lower than the ones estimated from mixing ratios, which 

were the ones that should have been obtained from simple mixing (Figure 3.5). This 

observation lends support to the view that DAs are susceptible to chemical processes 

that result in their removal. As in Z1, oxidizing species and the absence of ammonium 

indicate oxidizing conditions. 

 

Z3: BRD 

Figure 3.5 plots the measured and estimated concentrations for BE, MOR, 

METH, EDDP, MDMA, EPH, DIA and LOR. All DAs, except DIA, behave in a similar 

way. They are significantly depleted in the aquifer, suggesting again removal processes. 

Biodegradation, adsorption and mixing processes can reduce DAs levels when river 

water infiltrates the aquifer. Only DIA levels fall close to the 1:1 line, indicating that 

DIA was less affected than the other DAs by removal processes and that concentration 

at the source may be higher than the assumed ones. 
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3.6 Conclusions 

Groundwater in Barcelona aquifers contains DAs in low but measurable concentrations. 

The following conclusions may be drawn from this study: 

(1) The most commonly detected drugs were CO, BE, METH, EDDP, MDMA, DIA, 

MOR, EPH, DIA and LOR, depending on the zone. 

(2)  The identified drugs appear to reflect distinct consumption patterns in the different 

areas and an intentional or accidental disposal of drugs in some cases. Cocainic 

compounds display higher concentrations in affluent districts whereas MDMA is the 

dominant drug in less prosperous neighbourhoods. 

(3) Concentrations in the aquifer were generally much lower than those expected due to 

dilution, as calculated from the mixing ratios of the recharge sources. This suggests 

significant removal of DAs in the aquifer. 

(4) These results, together with the limited sorption capacity of the sediments, suggest 

the degradation of DAs in the aquifer under different redox conditions: oxidizing 

conditions in Z1 and Z2 and reducing conditions in Z3. 
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This chapter is based on the paper: Jurado, A., López-Serna, R., Vázquez-Suñé, E., Carrera, J., 
Pujades, E., Petrovic, M., Barceló, D., 2012. Occurrence and fate of carbamazepine and 5 
metabolites in an urban aquifer under different redox conditions. Submitted to HESS.

4. Occurrence and fate of carbamazepine and 5 
metabolites in an urban aquifer under different redox 

conditions
4.1 Introduction 

Pharmaceutically active compounds (PhACs), including their metabolites, are a 

matter of growing concern because they might have a negative impact on ecosystems 

and human health. They may enter both surface and groundwater by many pathways, 

but mainly from raw sewer waters and from effluents of waste water treatment plants 

(WWTPs). As a result, a wide range of PhACs can be found in aquatic environments 

deteriorating groundwater quality. Consequently, PhACs are an emerging 

environmental issue. 

Among a wide range of PhACs, carbamazepine (CBZ) is of high environmental 

relevance for several reasons. CBZ presents null or low removal during wastewater 

treatment. Effluent concentrations are often reduced by between 0-10% in most of 

WWTPs (Stamatelatou et al. 2003; Zhang et al., 2008). Moreover, some of its 

metabolites have been detected at higher concentrations in influents from WWTPs than 

CBZ (Gros et al., 2012) and also in finished waters from a drinking water treatment 

(Huerta-Fontela et al., 2011). CBZ has shown a persistent behavior in aquatic 

environments and is negligibly biodegraded (Patterson et al., 2011) 

CBZ is a benzodiazepine commonly used as an anticonvulsant and mood stabilizing 

drug. After the oral administration of CBZ, 72% of the dose is excreted in the urine and 

28% is eliminated in the faeces. Less than 3% of the drug is excreted unchanged in the 

urine (López-Serna et al., 2012a). CBZ is mainly metabolized in the liver through 

different pathways (Figure 4.1a). The main pathway corresponds to the formation of the 

major pharmacologically active metabolite, 10,11-epoxy carbamazepine (CBZ-EP), 

which comes from CBZ oxidation. Then CBZ-EP is hydrate to 10,11-dihydro-10,11-

trans-dihydroxy carbamazepine. Lesser pathways include the formation of hydroxylated 

compounds such as 2-hydroxycarbamazepine (2OH CBZ) and 3-hydroxycarbamazepine 

(3OH CBZ) (Miao and Metcalfe, 2003), and the formation of iminostilbine. A minor 

pathway is the oxidation of CBZ into the leucocytes, ending in the formation of acridine 

(ACRIN) and acridone (ACRON) (Breton et al., 2005) (Figure 4.1b). But up to thirty-

three metabolites have been indentified in urine (Lertratanangkonn and Horning, 1982). 
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Figure 4.1. (a) Hepatic metabolism pathway of CBZ and (b) CBZ oxidation by leucocytes 

based on Breton et al. (2005). Note the chemical structures of the target compounds are included 

(CBZ, 3OH CBZ, 2OH CBZ, CBZ EP, ACRIN and ACRON). * The pathway of 3OH CBZ is 

not presented. 

Most research into CBZ and its metabolites has been focused on wastewater. 

Researchers studied the most successful methods, such as UV irradiation, ozination and 

active sludge treatment, to remove them from wastewater influents and/or from raw 

waters used as source for abstraction of tap water (Kosjek et al., 2009; Lekkerkerker-

Teunissen et al., 2012). High rates of removal have been observed by ozonation (Vieno 

et al., 2007; Hübner et al., 2012) and by UV/H2O2 induced photolytic degradation 

(Vogna et al., 2004) compared with the conventional biological wastewater treatment. 

However, these water treatment technologies may result in the formation of toxic by 

products such as acridine (ACRIN), which is as a mutagenic and carcinogenic 

compound (Chiron et al., 2006). CBZ levels have also been reported in surface waters 

(Vieno et al., 2006; Zhou et al., 2010; Nödler et al., 2011; Valcarcel et al., 2011). In 

groundwater, CBZ has been studied in bank filtration sites (Herberer et al., 2004; 

Massmann et al., 2008), artificial aquifer recharge (Drewes et al., 2003); and irrigated 

farms (Ternes et al., 2006; Chávez et al., 2011; Fenet et al., 2012), where river water 

receiving WWTPs effluents and large discharges of both treated or untreated waste 

water, has infiltrated the aquifer. CBZ is one of the most frequently detected 

pharmaceuticals in groundwater and at highest concentrations (Sacher et al., 2001; 
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Rabiet et al., 2006; Osenbrück et al., 2007; Loos et al., 2010; Chavez et al., 2011; 

Vulliet and Cren Ollivé, 2011; Fenet et al., 2012; Kuroda et al., 2012). Usually, 

measured CBZ concentrations in groundwater were of about 100 ng/L (Fenz et al., 

2005; Teijon et al., 2010; Kuroda et al., 2012) although it has been detected at 

concentrations up to 2100 ng/L in an aquifer highly affected by sewage water discharge 

(Müller et al., 2012). In fact; several authors have proposed CBZ as an anthropogenic 

marker in aquatic environments because of its persistence (Clara et al., 2004; Kahle et 

al., 2009; Wolf et al., 2012). Little research has been done on the occurrence of CBZ 

metabolites in groundwater (Kahle et al., 2009; Fenet et al., 2012) and, specifically, 

there is a lack of works concerning the fate of CBZ metabolites in urban groundwater. 

The objective of this study is to investigate the fate of CBZ and its metabolites in 

urban groundwater at a field scale under different redox conditions in connection with 

(1) the physicochemical properties of the target compounds, (2) the occurrence of 

common contaminants in urban groundwater of Barcelona and (3) the groundwater 

redox conditions. To this end, groundwater samples have been collected in two distinct 

zones of Barcelona city: (1) Poble Sec and (2) Besòs River Delta in May 2010 

  

4.2  Materials and methods 

4.2.1 Site description 

The study area includes Barcelona and part of its metropolitan area in north-

eastern Spain. The area is located between the Serra de Collserola (Catalan coastal 

ranges) and the Mediterranean Sea (Figure 4.2), both boundaries running approximately 

NNE–SSW. Other boundaries are constituted by two rivers, the Llobregat (SW) and the 

Besòs (NE). The climate is typically Mediterranean with an average rainfall of 600 mm 

per year. Currently, groundwater is used for secondary uses such as street cleaning and 

irrigation green areas. But it can be considered as an alternative tap water resource since 

there are several aquifers, characterized by their geological age, below the city (Figure 

4.2). The Palaeozoic aquifer crops out at topographic highs to the NW, which consist of 

shales and granites. Quaternary and Tertiary aquifers can be found in the rest of the city. 

In low topographic areas, they are constituted by the alluvial and deltaic sediments of 

the Llobregat and Besòs rivers. In intermediate areas, they are made up of piedmont 

cones and coarse alluvial sediments. From the geological point of view, Poble Sec is 

located in the Barcelona Plain made up of carbonated clays. Below the Quaternary, the 

Tertiary (Miocene) is present. Miocene is made up of sandstones, marls and sandy 
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Figure 4.2. On the left, schematic description of the hydrogeology of Barcelona: (1a) Llobregat 

Delta made up of gravels, sands, silts and clays (Holocene, Quaternary), (1b) Besòs Delta 

composed of gravels, sands, silts and clays (Holocene, Quaternary), (1c) Barcelona Plain 

consisting of carbonated clays ( Pleistocene, Quaternary), (2)  Barcelona Plain made up of 

marls, sandstones and sands (Tertiary) and (3) Collserola Range consisting of  shale and 

granites ( Palaeozoic). On the right, a piezometric map of the study area, which is divided into 

two distinct zones: Poble Sec and Besòs River Delta. The contour intervals are 2 m (continuous 

green line), for heads ranging from 5 to below 25 m (continuous blue line) and 25 m above 

(continuous orange line). At the bottom, observation points on each zone, including the depth of 

the screen: (u) upper, (m) middle, (l) lower and (a) totally screened
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gravels. The Besòs River Delta is located in the Quaternary Besòs Delta, which is 

bordered by the River Besòs and is close to the underground car park at the Plaça de la 

Vila site (Figure 4.2). The river flow is heavily dependent on seasonal rainfall. 

Groundwater flows generally from the River Besòs to the car park since there is a 

continuous pumping of about 150 l/s to avoid seepage problems. The basement is made 

of Palaeozoic granites and Cenozoic units, which consists of Miocene matrix-rich 

gravels and Pliocene grey marls. The fluvio-deltaic sediments of the Besòs Delta 

Complex are placed on the top of this basement, including 3 aquifers composed of 

sandy and gravelly bodies separated by lutitic units (Velasco et al., 2012). 

Several recharge sources have been identified in the aquifers of Barcelona 

(Vazquez-Suñe et al., 2010): (1) River Besòs (RIV), (2) rainfall recharge in northern 

non urban area (REC), (3) Ter river water supply (TER), (4) Llobregat river water 

supply (LLOB), (5) Ter river sewage water (SW T), (6) Llobregat river sewage water 

(SW LL), (7) City runoff (RUNOFF), and (8) Sea water intrusion (SEA). Direct rainfall 

recharge occurs in the non-urbanized areas in the Collserola Range. Seawater intrusion 

and water from the heavily polluted River Besòs must be considered potential recharge 

sources in low areas. Additional sources of groundwater recharge can be attributed to 

anthropogenic activities related to city development including loss from the water 

supply network. Barcelona is supplied with water from the Rivers Ter and Llobregat. 

This gives rise to a division of the city into two zones with a different water quality and 

hence two different chemical compositions can be found in waste water. Finally, in 

paved areas, runoff water washes the road and atmospheric deposition, and recharges 

the aquifers through direct infiltration or sewer loss.  

 The aforementioned division of the water quality can be observed 

comparing some of the major and minor ions concentrations and some redox indicators 

in both Poble Sec and Besòs River Delta aquifers. Table 4.1 summarized the average 

concentrations (mg/L) and standard deviations of chloride, sulphate, bicarbonate, 

sodium, calcium, magnesium, nitrate, ammonium, dissolved oxygen and total organic 

carbon of the groundwater samples collected in May 2010. Overall, Besòs River Delta 

groundwater is less mineralised than Poble Sec since the average concentrations of 

chloride, sulphate, calcium, magnesium, nitrate and dissolved are much lower in (Table 

4.1). Both zones presented neutral pHs. Some redox indicators such as the high levels of 

dissolved oxygen and nitrate (on average 4 mg/L, and 95.7 mg/L, respectively) and the 

low or null levels of ammonium (on average 0.03 mg/L), have evidenced the oxidizing 
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conditions of the groundwater. Conversely, reducing conditions into groundwater have 

been suggested by the low levels of dissolved oxygen and nitrate (on average 1.5 mg/L, 

and 4.4 mg/L, respectively) and the presence of ammonium (4.3 mg/L, on average).  

 

 

 

 

 

 

 

 

 

Table 4.1. Average concentration (mg/L) and standard deviation of selected species measured 

in Poble Sec and Besòs River Delta aquifers in May 2010. 

4.2.2 Sampling 

Twenty-seven groundwater samples were collected in May 2010. One sample 

was obtained from the River Besòs and twenty-six samples were collected from 

groundwater: 17 from observation points and 9 from pumping wells. The location of the 

wells and the observation points and the screen depths are displayed in Figure 4.2 

(Table S2, Supplementary material Annex I). Samples were collected in three different 

zones of the study area: (1) Poble Sec (PS) and (2) Besòs River Delta (BRD), where 

groundwater comes mainly from the river. All the groundwater samples were obtained 

after pumping a volume of at least three times that of the sampling point. Field 

parameters measured in situ included electric conductivity, pH, temperature, Eh and 

dissolved oxygen. They were measured continuously using a flow cell to avoid contact 

with the air. The instruments were calibrated daily by means of standard solutions. 

Samples were collected after stabilization of field parameters and were not filtered in 

the field. Instead, they were stored in a field refrigerator and taken to the laboratory at 

the end of the sampling day. Samples were stored in polyethylene terephthalate (PET) 

containers that were amber in colour to avoid photo degradation.  

4.2.3 Target analytes 

The selected target compounds are CBZ and 5 metabolites named as 2OH CBZ, 

3OH CBZ, CBZ-EP, ACRON and ACRIN. Their chemical structures and the 
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physicochemical properties are summarized in Figure 4.1 and Table 4.2, respectively. 

The chemical characteristics of the analyzed compounds were calculated using different 

software: Sparc on-line calculator version 4.6 (Sparc, 2011), ACD/I-Lab 2.0 software 

(ACD/Labs, 1996-2013) and ChemAxon Marvin Calulater Plug in (ChemAxon, 2007).  

Table 4.2. Physico-chemical properties of the target compounds analyzed in groundwater 

samples. “n.e.”: non evaluated and “*”: log Dow  calculated at pH=7.5. 
a Sparc predicted values (Sparc, 2011). 
b ACD/I-Lab predicted values calculated using Advanced Chemistry Development software 

(ACD/Labs, 1996-2013). 
c ChemAxon predicted values calculated using ChemAxon Marvin Calulater Plug in 

(ChemAxon, 2007). 

 

4.2.4 Analytical methods 

Analysis of the target compounds in the collected groundwater samples was 

carried out by on-online Solid Phase Extraction – Liquid Chromatography – 

electrospray – tandem Mass Spectrometry (SPE-LC-ESI-MS/MS) following a 

methodology previously described by the authors (López-Serna et al., 2010), readily 

adapted for the analysis of the metabolites (López-Serna et al., 2012b). In this method, 

samples (spiked with surrogate standards), aqueous calibration solutions are analyzed in 

a fully online automated way with the aid of a Symbiosis Pico system (Spark Holland, 

Emmen, The Netherlands) coupled with the LC-MS/MS system. The analytical 
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procedure consisted of two sample injections, both of 2.5 mL in the positive and 

negative electrospray mode (ESI pos and ESI neg, respectively). In every injection, the 

sample is preconcentrated onto previously conditioned polymeric HySphere Resin GP 

cartridges from Spark Holland (Emmen, The Netherlands) and after washing of the 

cartridges with HPLC water, the retained compounds are eluted to the LC-MS/MS 

system with the chromatographic mobile phase, which consists of a gradient of  

ACN/0.1% (v/v) formic acid for ESI pos and a gradient of ACN:MeOH (1:1, v/v)/H2O 

for ESI neg. Chromatographic separation is carried out in the end-capped analytical 

column Purospher Star RP-18 (125x2 mm. particle size 5 μm) from Merck (Darmstadt, 

Germany). Detection is performed in both modes recording two selected reaction 

monitoring (SRM) transitions per analyte and one SRM per surrogate by a 4000QTRAP 

hybrid triple quadrupole-linear ion trap mass spectrometer equipped with a Turbo Ion 

Spray source from Applied Biosystems-Sciex (Foster City, California, USA). 

Quantitation, based on peak areas, is carried out by internal standard approach. This 

method allows the determination of compounds at concentrations of 0.3- 4.10 ng/L (i.e., 

the quantification limits) to 500 ng/L, with satisfactory precision and accuracy for all 

the compounds.  

Table 4.3. Frequency of detection (%) and average and maximum concentrations (ng/L) of 

carbamazepine, metabolites and transformation products measured in urban groundwater of (3a) 

Poble Sec and (3b) Besòs River Delta. Note the River Besòs collected sample is also include. 

“*”: expected concentrations. 
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4.3 Results 

The average concentrations and the maximum levels of the target compounds 

measured in groundwater samples and their frequency of detection at each zone are 

summarized in Table 4.3. Figure 4.3 shows the measured concentrations for the parent 

compound CBZ and its metabolites (3OH CBZ, 2OH CBZ, CBZ-EP, ACRON and 

ACRIN). Note that concentrations at Besòs River Delta were, on average, one order of 

magnitude higher than Poble Sec ones (Figure 4.3). The most commonly detected drug 

was the parent compound CBZ in both zones. Despite the ubiquity of CBZ in both 

zones, it was present at lower concentrations in Poble Sec than Besòs River Delta 

aquifers (on average, 7.1 and 115.4 ng/L, respectively). Target compound 

concentrations of each zone are summarized in Table S3 (Annex I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Concentrations (ng/L) of (a) carbamazepine (CBZ) and its metabolites (2OH CBZ, 

3OH CBZ, CBZ-EP, ACRON and ACRIN) (b) only metabolites in Poble Sec (left) and Besòs 

River Delta (right) aquifers. 
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Poble Sec 

No groundwater sample contained all the compounds. Two out of the 6 target 

compounds, namely 3OH CBZ and 2OH CBZ, were not detected in any sample. The 

most detected compound was CBZ with a detection frequency of 92%. The remaining 

compounds, CBZ-EP, ACRIN and ACRON, were detected in less than 25% of the 

samples. The highest concentrations corresponded to CBZ (17.8 ng/L at MPS-3) and 

ACRIN (15.8 ng/L at PSP-3). 

Besòs River Delta 

Since the River Besòs receives a large proportion of effluents from secondary 

WWTPs, all target compounds were identified at least in two groundwater samples. The 

compounds identified in descending order were: CBZ>2OH CBZ>3OH 

CBZ>ACRON>CBZ-EP>ACRIN (Table 4.3a). CBZ was present in all the samples 

collect and did not vary significantly in the aquifer, ranging from 92.2 to 136 ng/L. In 

contrast to Poble Sec, the metabolites 3OH CBZ, 2OH CBZ and CBZ-EP were widely 

detected (85%, 92% and 69% respectively). Both 3OH CBZ and 2OH CBZ were found 

at significant levels in the shallow part of the aquifer near the river (between 31.4 and 

47.9 ng/L) but were null or insignificant in the deeper one (Figure 4.1). ACRON was 

found at lower levels and presented an average concentration of 3 ng/L. The highest 

concentrations corresponded to CBZ (136 ng/L at ADS-7), 2OH CBZ (47.9 ng/L at 

SAP-4) and 3OH CBZ (39.9 ng/L at SAP-2b). 

4.4 Fate of CBZ and its metabolites in urban groundwater 

The occurrence of the target compounds in aquifers is affected by their 

concentrations in the recharge sources and by the different processes that may occurre 

in the aquifers such as mixing, dilution, adsorption and/ or degradation. The widespread 

presence of CBZ in aquifers enhanced the need to understand its fate in groundwater. 

The fate of CBZ and its metabolites depend both on the physicochemical properties of 

the compound but also on the redox conditions of the aquifer. Mobility of a given 

compound tends to be controlled by the physicochemical properties and its 

degradability by the redox conditions of the aquifer.  

4.4.1 Physicochemical properties of the target compounds 

Among the chemical properties summarized in Table 4.2, the octanol-water 

coefficient (Kow) is usually used to predict the behavior of the target compounds in the 
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environment. It is usually expressed as log Kow and it measures how hydrophobic (log 

Kow >4) or hydrophilic (log Kow <4) a compound is. Hydrophobic compounds usually 

have high adsorption capacity especially onto organic matter (Choi et al., 2005a). 

However, in complex natural systems as aquifers, there are other relevant parameters, 

such as water pH, that control the proportion of ionized and nonionized forms for a 

given compound. Consequently, Kow may not be the most suitable parameter to properly 

predict the fate of the target compounds in environmental conditions (Kwon and 

Armbrust, 2008). Wells, (2006) emphasised the need to considering chemical 

ionogenicity and proposed Dow (the pH dependent octanol–water distribution ratio), 

which is a combination of Kow and pKa, as a more appropriate physicochemical 

parameter to understand the mobility of a compound in environmentally relevant pH 

conditions. In this work, log Dow have been used to identify the ionizable functional 

groups of the target compounds at pH between 7 and 8 since all groundwater samples 

collected are in this range of pH (Table 4.1).  

Based on the aforementioned properties it is possible to assess the mobility of 

the target compounds in the aquifer. CBZ is a moderate polar compound which has a 

pKa of 14.3 related to the deprotonation of the NH2 group and a pKa<1 related to the 

protonation of the amino groups. This means CBZ is present in its neutral form in the 

groundwater environment because it does not contain ionizable functional groups at pHs 

between 7 and 8. As for carbamazepine metabolites, neutral molecules also dominate at 

groundwater pHs. Only low proportions of 2OH CBZ and 3OH CBZ might be present 

in their anionic form when their pKas are 8.69 and 8.2, respectively (Sparc, 2011) 

(Table 4.2). These anionic species correspond to the deprotonation of the hydroxyl 

group of the 2OH CBZ and 3OH CBZ and minor changes in log Dow values can be 

observed with respect to log Kow. Regarding ACRIN and ACRON, they both may exist 

as a neutral form at pHs of studied aquifers. According to Chemaxon (2007), the 

protonated specie of ACRIN might be present in groundwater at pH 7 when pKa is 6.15. 

To sum up, the investigated compounds can be mainly found in groundwater as 

neutral molecules. This might indicate that these compounds do not interact with the 

negative charged minerals in aquifer materials. Also their log Kow values suggest a 

hydrophilic character and these compounds are not expected to be sorbed onto soils. 

However, their sorption behavior is highly dependent on factors such as the soil’s 

organic matter content but several studies highlighted that CBZ is not extensively 

adsorbed onto soils (Clara et al., 2004; Yu et al., 2009; Calisto and Esteves, 2012). 
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These properties might indicate that CBZ and its metabolites can be highly persistent in 

aquifers. 

Figure 4.4. Main pathways of CBZ and its metabolites in the urban aquifers of Poble Sec 

(pathway 1) and Besòs River (pathway 2). 

4.4.2 Occurrence of the target compounds related to generic pollution in Poble Sec 

and Besòs River Delta aquifers 

The occurrence of the target compounds in aquifers depends on the 

concentrations in the recharge sources. A previous work performed by Jurado et al. 

(2012a) evaluated the proportion in which the aforementioned sources (see section 

4.2.1) contributed to both Poble Sec and Besòs River Delta aquifers’ recharge. In Poble 

Sec, the main contributor to the resident water was network sewage loss (50%, SW LL) 

followed by water supply loss (46%, LL). The remaining 4% corresponded to clean 

water recharge flowing from northern non urban area. Concerning the Besòs River 

Delta, River Besòs (RIV) was by far the largest contributor to the resident water, 

representing 91%. It is worth mentioning that River Besòs receives large amounts of 

effluents from WWTPs. Other contributors to the recharge were network sewage (6%, 

SW T) and water supply loss (3%, T). Figure 4.4 shows the potential sources of 

contamination of CBZ and its metabolites in the aquifers of Poble Sec (pathway 1, 
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Figure 4.4) and Besòs River Delta aquifers (pathway 2, Figure 4.4). In fact, the 

occurrence of CBZ and its metabolites have been widely reported in influents and 

effluents of WWTPs (Table 4.4). Levels detected are usually at low ng/L and only 

CBZ-EP has been detected at g/L concentrations (Gros et al., 2012). Most of the target 

compounds are barely or not at all removed and the removal efficiency depends on the 

waste water treatment, being tertiary treatment combined with other technologies (UV 

disinfection) most effective (Lecquer et al., 2008; Teijon et al., 2010). It is interesting to 

note that some metabolites such as CBZ-EP and 2OH CBZ have been detected at higher 

concentrations than the parent compound CBZ (Miao and Metcalfe, 2003; Gros et al., 

2012).  

Table 4.4. Average concentrations of CBZ and its metabolites in influents and effluents of 

wastewater treatment plants (WWTP).”n.d.”: non-detected and “*”: samples from the city of 

Barcelona. References: 1 Teijon et al. (2010); 2 Gros et al. (2012); 3 Martinez-Bueno et al. 

(2012); 4 Miao and Metcalfe (2003) and 5 Leclercq et al. (2008). Letter subscripts indicate the 

different WWTPs treatments: a Tertiary/Ultrafiltration+reverse osmosis+UV disinfection, b 

Secondary with conventional active sludge, c Secondary/Tertiary+UV disinfection, d 

Secondary+chlorine disinfection, e Trickling filter+posttertiary pond and 
f Waste stabilization 

ponds (depths 1.4-3.1 m). 
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Figure 4.5. Spatial distribution of the six target compounds, ammonium, nitrate and boron in 

Poble Sec and Besòs River Delta aquifers. 
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The discussion of the occurrence of the target compounds in groundwater samples has 

been addressed with some of the main tracer species of waste water such as nitrate, 

ammonium and boron (Barrett et al., 1999; Rabiet et al., 2006; Trowsdale and Lerner 

2006; Wolf et al., 2012). The spatial distribution for selected generic contaminants and 

the target compounds is shown in Figure 4.5. Poble Sec groundwater has high levels of 

nitrate and low or null levels of ammonium. Twelve out of 13 samples have exceeded 

50 mg/L of nitrate concentrations. Conversely, Besòs River Delta groundwater 

presented low nitrate levels and ammonium was present in significant concentrations. 

All groundwater samples exceed 1.5 mg/L of ammonium.  

Overall, CBZ concentrations have been  in good agreement with boron concentrations 

in Poble Sec groundwater (Figure 4.5). The highest boron concentrations have 

correlated with high CBZ concentrations. Therefore, the occurrence of CBZ and some 

of its metabolites in Poble Sec aquifers might be mainly related to network sewage loss 

since it has been detected in influents of WWTPs in Barcelona (Table 4.4). This trend 

has not been observed in Besòs River Delta (Figure 4.5). In this area, the highest 

concentrations and the largest number of detected target compounds can be attributed to 

their inefficient removal in WWTPs, whose effluents are directly discharged in the 

river. In both zones, groundwater concentrations of the target compounds were always 

lower than the reported values in WWTPs (Table 4.4), suggesting some removal 

processes that may occur in the aquifer.  

4.4.3  Redox conditions of the aquifers 

Usually, organic compounds may be naturally removed from groundwater, 

especially if this water has undergone a wide range of redox states (Christensen et al., 

2001). However, CBZ and some of their metabolites seem to be highly persistent 

because it occurred in both, oxic and reducing conditions in Barcelona aquifers.  

Poble Sec

As commented before, half of the groundwater recharge in the Poble Sec area 

comes from loss of raw sewage water networks (influents of WWTPs, Figure 4.6). 

Considering an average CBZ concentration of 200-250 ng/L from WWTPs influents 

(Teijon et al., 2010) (Table 4.4), expected concentrations of CBZ in the aquifer should 

be in the range of 100-125 ng/L. However, these expected concentrations are much 

higher than the measured values of CBZ in groundwater samples. This observation 

suggests that CBZ may be degraded due to removal processes (i.e. mixing and redox 

processes) that may have occurred: (1) in the unsaturated zone and/or under the oxic 
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conditions of Poble Sec groundwater (Figure 4.6). Regarding CBZ metabolites, they did 

not contribute to groundwater contamination because they were poorly detected. Two 

observations can be made: (1) metabolites were present at groundwater but at 

concentrations below the limit of detection/quantification and (2) metabolites could be 

naturally removed in the aquifer and/or in the unsaturated zone. The discussion of the 

second observation would be better carried out having a sample from influents of 

Llobregat WWTPs. But these compounds have been reported in influents of WWTPs, 

on average, at low ng/L levels (Table 4.4). Therefore, this observation might support the 

view that CBZ metabolites are susceptible to chemical processes that result in their 

removal under oxic conditions. It is important to mention that ACRIN was found at high 

levels than the parent compound CBZ in two observation points (MSP-2 and PSP-3). 

Consequently, further research is needed to investigate the fate CBZ and its metabolites.  

Besòs River Delta

Recharge in this area comes basically from the River Besòs (Figure 4.6). 

Therefore, understanding the interaction between river water and groundwater is a key 

point to assess the fate of the studied compounds in the aquifer. Natural attenuation 

capacity may occur in aquifers due to physical and biochemical processes (Jurado el al., 

2012b). Groundwater in Besòs River Delta has a more reducing character than Poble 

Sec because redox processes such as aerobic respiration and denitrification could occur 

when river water infiltrates the aquifer. Nitrate and dissolved oxygen concentrations can 

reach, respectively, levels of 15 and 8 mg/L at River Besòs but measured concentrations 

are drastically reduced to null or low levels in the aquifer, supporting the occurrence of 

the aforementioned processes. However, average measured concentrations in the aquifer 

for CBZ, ACRIN and ACRON were higher than those measured in the river and similar 

for 2OH CBZ and 3OH CBZ. Only CBZ-EP presented lower concentrations in the 

aquifer than in the river (Table 4.3b). It is important to mention that the River Besòs 

sample was collected during abundant rainfall events (wet season) and a dilution of the 

target compounds could have occurred. River Besòs flow regime is characterized by its 

variability, which is mainly dependent on the rainfall. The dry season’s concentrations 

can be evaluated using a dilution factor (f) (Jurado et al., 2012a):  

f = Qs/Qd          (1) 

where Qs is the flow rate on the day of sampling (Qs = 8.5 m3/s) and Qd, is the 

average flow rate in dry seasons (Qd, = 3 m3/s). Table 4.3b shows that expected levels of 

these contaminants are higher in dry seasons (D). Therefore, this suggests that levels of 
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Figure 4.6. Concentrations of the target compounds (ng/L) in the recharge sources and in the 

aquifers of (a) Poble Sec and (b) Besòs River Delta. 

CBZ and its metabolites in the aquifer might be higher than those measured in May 

2010. In contrast to Poble Sec, CBZ seemed not to be degraded under the reducing 

conditions of Besòs River Delta groundwater because aquifer concentrations: (1) did not 

varied significantly in the observation points (ranging from 92 to 136 ng/L) and (2) 

presented similar values to those from the river (Figure 4.6). This trend was also 

observed for the metabolites 2OH CBZ and 3OH CBZ. Only the deepest observation 

points located near to the River Besòs, named as SAP-3, SAP-2 and SAP-1 (Figure 4.2), 

presented null or low levels of these metabolites (Figure 4.5). Also, the lowest levels of 
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TOC, oxygen and ammonium and, as the rest of observation points, null or low levels of 

nitrate were measured in these observation points in May 2010. This may suggest (1) 

long residence times in the deepest part of the aquifer and/or (2) that redox processes 

could remove 2OH CBZ and 3OH CBZ in the deepest observation points. Regarding 

CBZ-EP, the higher concentrations were detected in the observation points located near 

to the river and they progressively diminished following the flow lines to the pumping 

area. Therefore, CBZ-EP is found to be removed from groundwater. Although ACRIN 

and ACRON were not detected in the River Besòs, they have been reported in the 

effluents from WWTPs at concentrations of low ng/L. Therefore, they can be found in 

groundwater. Kosjek et al. (2009) found that ACRIN was susceptible to biological 

treatment with activated sludge (90% and 92% under anoxic and aerobic conditions, 

respectively) while ACRON was less efficiently removed (40 under aerobic comparing 

to 23% of anoxic removal. Whether these biological processes could be extrapolated to 

the environmental conditions of aquifer systems, this may indicate that ACRIN would 

be more easily biodegraded than ACRON. In fact, ACRIN and ACRON were detected 

in 15% and 77% of groundwater samples, respectively (4.3b).  

 To sum up, based on the data collected, CBZ, 2OH CBZ, 3OH CBZ and 

ACRON seem to be highly persistent in the redox conditions of Besòs River Delta 

groundwater. Only CBZ-EP seemed to be removed in the aquifer and also significant 

removal of 2OH CBZ and 3OH CBZ was found in the deepest observations points 

where the most strongly reducing conditions and the longest residence times occurred.  

4.5 Conclusions 

The following conclusions may be drawn from this study: 

(1) The parent compound CBZ has been found in both Poble Sec and Besòs River Delta 

in high frequencies of detection but at Besòs River Delta the concentrations have been, 

on average, one order of magnitude higher. 

(2) Metabolites of CBZ have been more widely detected and at higher concentrations in 

Besòs River Delta. This is due to the fact that the River Besòs receives large amounts of 

effluents from WWTPs that infiltrates the aquifer. 

(3) CBZ and its metabolites are mainly present in its neutral form in Poble Sec and 

Besòs River Delta aquifers. This indicates that these compounds do not interact with the 

negatively charged minerals in aquifer materials and their log Kow values suggest a 
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hydrophilic character. These properties might indicate that CBZ and its metabolites can 

be highly persistent in aquifers. 

 (4) CBZ seems to be more degraded under oxidizing conditions of Poble Sec because 

concentrations measured in groundwater have been lower than those expected from the 

recharge sources. Conversely, CBZ and the metabolites 3OH CBZ, 2OH CBZ and 

ACRON have been highly persistent under the reducing conditions of Besòs River 

Delta aquifers. Only CBZ-EP and ACRIN seemed to be removed into the aquifer. 

(5) Concentrations of ACRIN have been found at higher concentrations than the parent 

compound CBZ in Poble Sec aquifers, highlighting that further research is needed to 

understand the fate of these compounds in the aquifers. 
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This chapter is based on the paper: Jurado, A., Vàzquez-Suñé, E., Tubau, I., Carrera, J, Pujades, 
E. Using mixing ratios to quantify chemical reactions. Submitted to Science of the total 
environment.

5. Using mixing ratios to quantify chemical reactions 

5.1. Introduction 

Ensuring good water quality is becoming a major challenge in urban areas. 

Urban aquifers may suffer pollution from different recharge sources such as water 

leakage from sewer and septic systems, seepage from rivers, seawater intrusion, and 

losses from water supply network among others. As a result, a wide range of organic 

pollutants are found in urban aquifers. Since these pollutants enter the groundwater 

environment through the aforementioned sources, their occurrence depends on the 

transport mechanisms as well as the chemical and biochemical processes that occurred 

simultaneously. Thus, a proper assessment of groundwater quality requires an 

understanding of all the processes that affects these pollutants, involving their 

quantification.  However, the quantification of these processes is not an easy task.  

In order to quantify such processes, modelling tools providing extensive 

biogeochemical capabilities are needed (Prommer et al., 2000). Reactive transport 

models describe the spatial and temporal evolution of a set of chemical species subject 

to transport phenomena and chemical reactions. In recent years, several numerical 

models have been suggested (Saaltink et al., 2004; Bea et al.,2009) and applied to 

leachate attenuation (Islam et al., 2001; Van Breukelen et al., 2004), pollution plumes 

(Brun and Engesgaard, 2002; Brun et al., 2002), microbially mediated reactions 

(Schäfer  et al., 1998a and 1998b; Hunter et al., 1998; Tebes-Stevens et al., 1998; Wang 

and Papenguth., 2001), redox geochemistry (Keating and Bahr, 1998) and carbon cycle 

modelling cases (Greskowiak et al., 2005), among others. But their  the performance 

demand previous hard work and effort since a reliable flow and conservative transport 

models are required, involving the management of much information to characterize in 

great detail the study zone. Hence, simpler approaches are needed. 

Assuming that transport can be thought as mixing of different water types along 

a groundwater flow path in an aquifer, mixing calculations are an alternative to reactive 

transport models. Mixing calculations include: (1) End Member Mixing 

Analysis(EMMA) (Hooper et al., 1990; Christophersen et al., 1990; Christophersen and 

Hooper, 1992; Hooper, 2003) and also (2) mixing ratios which are defined as the 

proportion of each of the mixing waters in a sample (Schemel et al., 2006). Mixing 

ratios are useful because they can be quantified accounting for conservative chemical 
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species even when the end-members are uncertain (Carrera et al., 2004; Rueedi et al., 

2005). Their application is simpler because only chemical data and a previous 

conceptual model of the study zone are needed. Mixing calculations are useful for a 

number hydrogeology tasks such as groundwater recharge sources in urban 

environments (Reeudi et al., 2009; Houhou et al., 2010; Vàzquez-Suñe et al., 2010). 

Other applications include the interaction between groundwater and surface water 

bodies (Plummer et al., 1998; Beyerle et al., 1999; Crandall et al., 1999; Lambs, 2003; 

Petita et al., 2010) and with aim of hydrograph separation (Subayongo et al., 2005; 

Ladouche et al., 2000). However, mixing calculations do not provide information about 

hydrogeochemical reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Plot of a conservative specie over a reactive specie considering two end-members. 

Note that the concentration of the conservative solutes in a mixture is obtained by linear 

combination of the end-members, represented by the black straight line, but when deviations 

from perfect mixed solutions exist; they may be due to the chemical processes controlling the 

system. 
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The concentration of the conservative solutes in a mixture is obtained by linear 

combination of the end-members. However, when deviations from perfect mixed exist; 

they may be due to the chemical processes (Figure 5.1). This concept has been often 

conjectured (Pitkanen et al., 1999; Laaksoharju et al., 1999; Balistrieri et al., 2003; 

Morell et al., 2007; Barros et al., 2008; Panagopoulos , 2008), but never formalized.  

In summary, mixing models have been widely used in all branches of hydrology 

but they have never been applied to quantify chemical reactions. The objective of this 

work is to use mixing calculations to identify and quantify hydrogeochemical processes 

that occur when river water infiltrates an alluvial aquifer. This included the 

identification of the recharge sources and the identification and quantification of the 

geochemical processes undergone in each sampling point.  

 

5.2. Materials and methods 

5.2.1 Site description 

The study area is located in north-eastern Barcelona, in the Besòs Delta River at 

the Sant Adrià del Besòs city. The area is bound by the River Besòs and is close to the 

underground car park at Plaça de la Vila site (Figure 5.2). Climate is typically 

Mediterranean with an average rainfall of 600 mm/year.  

5.2.1.1 Previous works developed in Besòs River Delta aquifers 

Vàzquez-Suñé et al. (2010) identified several recharge sources in the aquifers of 

Barcelona. These sources are the following: (1) River Besòs, (2) rainfall recharge in 

northern non-urban area, (3) River Ter water supply, (4) River Llobregat water supply, 

(5) River Ter sewage water, (6) River Llobregat sewage water, (7) City runoff and (8) 

Sea water intrusion. Among them, the River Besòs is the main contribution to resident 

groundwater recharge in the lower parts of the Besòs River catchment, where the 

samples of Besòs River Delta were collected (Ondiviela et al., 2005). In fact, the 

Vàzquez-Suñé et al. (2010) pointed out that groundwater composition in Besòs River 

area change significantly because the seasonal changes in river water quality. 

Consequently, it was necessary to characterize the variability of the River Besòs. This 

work was developed by Tubau et al. (submitted). The authors identified the minimum 

number of the river end-members to explain the variability several recharge sources in 

Besòs River Delta aquifers by means of end member mixing analysis (EMMA). Using a 

large hydrochemical database of the River Besòs, 3 different recharge sources were  
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Figure 5.2. Schematic description of the hydrogeology of the study area. The study area is 

bound by the River Besòs and it is close to the underground car park at Plaça de la Vila site. The 

screen depths of the pumping wells and the piezometers are represented. 
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identified based on 11 tracers. These tracers were chloride (Cl-), sulphate (SO4
2-), 

sodium (Na+), bicarbonate (HCO3
-), calcium (Ca2+), magnesium (Mg2+), potassium 

(K+), nitrate (NO3
-), ammonium (NH4

+), total nitrogen (Ntot) and electrical conductivity 

(EC). Three end-members were identified to characterize the variability of the River 

Besòs were: 2 corresponding to dry season (D1 and D2) and one from the wet season 

(W1). Once end-members were selected according to the aforementioned 11 tracers, the 

concentrations of other less conservative species, such as fluoride (F-), bromide (Br-), 

boron (B), dissolved oxygen (O2), total organic carbon (TOC), phosphate (PO4
3-), 

phosphorous (P), iron (Fe), and arsenic (As) were also evaluated for the 3 river end-

members using the MIX code (Carrera et al., 2004). The three river end-members 

selected have the following characteristics: 

End-Member D1. This end-member presented the highest concentrations for all species, 

excepting for calcium, magnesium, nitrate, bromide, boron, oxygen, iron and arsenic. 

Oxygen and nitrate presented the lowest concentrations. This end-member might be 

representative for water coming from dry periods. 

End-Member D2. Conversely to D1, this end-member presented the highest 

concentrations for oxygen, bromide, calcium, magnesium, boron and iron, and the 

lowest concentration for ammonium. This end-member also corresponded to dry periods 

but with higher concentration in dissolved oxygen than D1. 

End-Member W1. This end-member presented the lowest concentration of all species 

excepting for nitrogen species concentrations. Nitrogen species were similar to end-

member D2 but with lower concentrations for ammonium and total nitrogen. This end-

member presented the highest concentration of nitrate and was attributed to wet periods, 

in which most of the river flow corresponds to rainwater, where nitrogen is in the nitrate 

form. 

The concentrations of some of the aforementioned species are summarised in 

Table 5.1a. On average, the dry river end-members (D1 and D2) contributed more 

significantly to the total aquifer recharge than the wet end-member (W1), representing 

the percentages of 74% and 26 %, respectively. The river end-member D2 was the 

largest contributor to the total recharge, representing the 65% whilst D1 represented the 

remaining 9%.  

Similarly, Jurado et al. (2013) also evaluated the total recharge in three different 

zones of the Barcelona metropolitan area, including the Besòs River Delta aquifers. In 

this work, apart from the River Besòs, two more recharge sources were included: 
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sewage water loss and runoff in paved areas. The tracers used were chloride, electrical 

conductivity, bicarbonate, sulphate, total nitrogen, 18OH2O, DH2O, 34SSO4, 18OSO4 and 
13CDIC. As evaluated by previous works, River Besòs dry end-member was by far the 

largest contributor to the resident water of the aquifer, representing 88 % in total; 60% 

from dry conditions and 28 % from wet conditions. Other contributors to the recharge 

were network sewage loss (SW T) and runoff water in paved areas (RUNOFF) at low 

percentages, representing 6 % each. These end-members only contributed to 

groundwater recharge points located close to the parking site (ADPs, ADS2 and ADS4, 

Figure 5.2). Other studies developed in Besòs River Delta aquifers were concerned with 

the presence of organic micropollutants such as surfactants (Tubau et al., 2010), drugs 

of abuse (Jurado et al., 2012a) and pharmaceutical active compounds (López-Serna et

al., 2013). 

 

 

 

 

 

 

 

Table 5.1 (a) River end-members initial concentrations of selected tracers for mixing ratios 

evaluation. The concentrations are expressed in mg/L and the electrical conductivity is 

expressed in μS/cm. (b) Standard deviations to be considered in MIX code for each tracer in the 

river end-members and groundwater samples expressed as a percentage of the concentration. 

 

In the present work, we have extended the previous works carried out in Besòs 

River Delta aquifers. Only the work developed by Jurado et al. (2013), evaluate the 

possible occurrence of the sulphate reduction process at Besòs River Delta zone using 

the environmental isotopes such as 34SSO4- 18OSO4. However, none of the previous 

works have formalised a methodology to quantify geochemical reactions that may 

occurred when river infiltrates the aquifer using mixing ratios.  

 

5.2.1.2 Hydrogeology of the Besòs River Delta area 

The hydrogeology of the Besòs River Delta area is highly dependent on the 

River Besòs flow regime. Like other Mediterranean rivers, it is characterized by its 
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variability, which is controlled by rainfall. Groundwater flows generally from Besòs 

River to the parking since there is a continuous pumping of about 150 l/s to avoid 

seepage problems.  

From the geological point of view, the study area is placed in the Quaternarian 

Besòs Delta. The bedrock is made of Palaeozoic granites and Tertiary clays (Velasco et 

al., 2012). On the top of this impervious base, are placed the fluvio-deltaic sediments of 

the Besòs Delta River that form two superposed aquifer strata, which constitute the two 

main aquifers. These aquifers are separated by a semiconfined unit make up of clays 

and silts (Figure 5.2). 

5.2.2 Chemical reactions quantification 

The methodology proposed to accomplish the objective consists of the following 

steps: (1) Identification of the recharge sources and selection of the appropriate tracers 

(2) Identification of the chemical processes at the study area and selection of the non-

conservative species to be quantified in the analysis and (3) Evaluation of the mixing 

ratios including the chemical processes.  

The first step is to identify the sources of recharge of the study area, which 

requires an accurate understanding of the system. The application of EMMA is used to 

summarize the information of the data set and to construct and ideal mixing model for a 

specific site. Afterwards, a preliminary choice has to be made to select the appropriate 

tracers that are used for EMMA. A necessary condition is that there are different in 

concentration between the end-members (Hooper et al., 1990). Vázquez-Suñé et al. 

(2010) formalize this requirement. Finally, the evaluation of mixing ratios derived from 

conservative species can be conducted. Mixing ratios describe the contribution to each 

end-member at each sample. To this end, MIX code was used (Carrera et al., 2004). 

This approach identifies mixing ratios in the case of uncertain end-members and it uses 

the concentration of mixed samples to reduce the uncertainty, assuming that the samples 

are a mixing of the end-members in an unknown proportion. This code was previously 

used to study evaluate mixing processes either in surface water such as rivers (Cánovas 

et al., 2012a and 2012b; Galván et al., 2012) and in groundwater (Vàzquez-Suñé et al., 

2010; Jiménez-Martínez et al., 2011; Morales-Casique, 2012; Jurado et al., 2012a and 

2013). 

The idea of this methodology is that ni conservative species coming from ne 

end-members mix in variable proportion in nj wells. The concentrations of the end-
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members are assumed highly uncertain because mixtures may vary over time. The 

purpose is to calculate mixing ratios taking into account that concentration data samples 

contain errors. Then the mixing equation of a mixture j at each observation point can be 

written as: 

 ˆ ˆ ij ej ie
e

X Y , (1)   

where ˆ
ijX and îeY are the concentrations of species i in sample j and end-member e, 

respectively, ej  is the proportion of end-member e in mixture j. The  ej  must satisfy 

the constraints 

                                                                  ,           (2)                                    

                        ,                                                            (3) 

The concentrations of mixtures can be modified by adding the reactions. These 

can be treated as new end-members. Now, the mixing equation of a mixture j at each 

observation point can be written as, 

    
                                                                  ,     (4) 

where ijR is the concentration values of species i in a sample j due to the overall 

chemical reactions  and it is defined as,      

      ,     (5) 

where ik is the stoichoimetric coefficient of the species i in a reaction k and kjr is the 

reaction rate due to the reaction k in mixture j. Therefore, equation (5) can be expressed 

as follows: 

                ,                                        (6)       

Note that the stoichometric coefficient can be treated as a perfectly known end-member, 

while the reaction rates can be treated as unknown mixing ratio. 

5.2.3 Sampling and analytical methods 

Fifty-five water samples were collected from July 2007 to May 2010 during four 

different field campaigns on July 2007, February 2008, October 2008 and May 2010. 

ij ik kj
k

R r

ˆ ij ej ie ik kj
e k

X Y r

ˆ  ij ej ie ij
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Four samples from the main recharge source of the aquifer, the River Besòs. Fifty-one 

samples were collected from the groundwater: 36 from observation piezometers and 15 

from pumping wells. The wells and piezometers location as well as the screen depth of 

groundwater samples collected are illustrated on Figure 5.2. Note that the observation 

points were the same for each field campaign: 1 sample from the River Besòs, 9 from 

piezometers and 4 from the pumping wells except for the first campaign that were 3.  

All the groundwater samples were obtained by pumping until a volume that was at least 

three times that of the piezometer had been extracted. Field parameters measured in situ 

including electric conductivity, pH, temperature, Eh and dissolved oxygen. They were 

measured continuously using a flow cell to avoid contact with the air. The instruments 

were calibrated daily by means of standard solutions. Samples were collected after 

stabilization of field parameters and were not filtered in the field and they were stored in 

a field refrigerator and taken to the laboratory at the end of the sampling day. The 

discussion of the results of this study only addresses some of the major components 

such as chloride, sulphate, sodium, calcium, magnesium, and bicarbonate and the main 

tracer species of waste water such as nitrate, ammonium, and total organic carbon 

(TOC). 

All the samples were analyzed at the laboratory of the ATLL (Aigües Ter 

Llobregat) in Barcelona. Chloride, sulphate and nitrate have been analyzed using ion 

chromatography (IC). Calcium and magnesium were analyzed by ICP-MS and prior to 

the analysis; the solution was acidified with 1% (v/v) HNO3 and centrifuged to 3500 

rpm. Ammonium was analyzed by spectrophotometry (based on indophenol blue 

method) and a commercial reactive kit. The measuring range is 0.02 to 0.25 mg/L. 

Bicarbonate was analyzed manually by chemical evaluation with sulfuric acid, 

accounting for the pH of the sample. Both bicarbonate and ammonium must be 

analyzed within 24 hours of sample collection. TOC was analyzed using the 680 ºC 

combustion-infrared method with a platinum catalyst and using a Non-Dispersive Infra-

Red (NDIR) detector. The amount organic carbon can be determined by the non-

purgeable organic carbon (NPOC). It is based on the subtraction of inorganic carbon of 

the sample by purging the acidified sample, to a pH less than 2.0, with an inert gas. The 

TOC may be determined by means of TC measuring method. The sample is filtered 

through a 0.45 μm filter when turbidity exceeds 6 NTU. 
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Figure 5.3. Comparison between the average concentration at the Besòs River and the  average 

concentration in the aquifer for a several number of species as major and minor ions, metals, 

redox indicators, pesticides drugs of abuse (DAs, Jurado et al., 2012a) and pharmaceutical 

active compounds (PhACs, López-Serna et al., 2013).  The river data set is collected monthly by 

the Catalan Water Agency (ACA) 2 Km upstream of the study zone and it can be downloaded 

from http://www.gencat.cat/. 
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5.3. Results and discussion 

5.3.1 Identification of the biogeochemical processes and selection of the non-

conservative species to be quantified in the analysis. 

As mentioned before, the EMMA analysis in Besòs River Delta area was 

previously performed and three end-members from the river were needed to explain the 

variability of measured concentrations in groundwater (Tubau et al., submitted). The 

recharge sources, RUNOFF and SW T, were not taken into account because previous 

studies demonstrated their low contribution to groundwater recharge in the lower parts 

of the Besòs River catchment, (Jurado et al., 2013). Consequently, in this work the three 

different end-members from the River were used to account for the temporal variability: 

wet conditions (W) and dry conditions (D1 and D2). 

Prior inspection of the data suggested the occurrence of biogeochemical 

processes in Besòs River Delta aquifers. When River Besòs and aquifer average 

concentrations are compared for several tracers such as major and minor components, 

metals, pesticides, drugs of abuse (DAs) and pharmaceuticals active compounds 

(PhACs), it can observed that some species presented higher concentrations in the river 

than in the aquifer (Figure 5.3). As an example, oxidation and reduction processes can 

be deduced on Figure 5.3 where ammonium, nitrate and dissolved oxygen have lower 

concentrations in the aquifer than in the river. Nitrate concentrations at River Besòs can 

reach levels of 15 mg/L but measured concentrations at points located near the river 

(SAP’s and ADS6n, Figure 5.2) are drastically reduced to null or very low levels (on 

average, 0.45 mg/L). This may be indicative that denitrification could occur when river 

water infiltrates the aquifer. 

This fact is supported by the results obtained by Tubau et al. (submitted). In this 

work, only chloride, electrical conductivity, sodium and ammonium and total nitrogen 

behaved conservatively. However, calcium, bicarbonate, sulphate, magnesium, nitrate, 

TOC and dissolved oxygen did not (Figure 5.4). When measured and estimated 

concentrations were compared it could be observed that some samples fall away from 

the 1:1 line, particularly for the less conservative species. Measured concentrations for 

calcium, magnesium and bicarbonate were higher than the estimated ones. However, for 

TOC, nitrate and dissolved oxygen measured concentrations were lower than estimated 

ones. These might indicate that some processes, which depleted or released these 

species from groundwater, were occurring because they could  
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Figure 5.4. Plots of measured vs. estimated concentrations of all species at three end-members 

and observation points not including the geochemical processes. Notice that chloride and 

electrical conductivity behave conservative while dissolved oxygen, total organic carbon, nitrate 

did no (end-members concentration need to be dramatically reduce). This figure was modified 

from Tubau et al. (submitted). 
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not only be explained by pure mixing of Besòs River end-members D1, D2 and W1. 

These deviations may be due to the occurrence of biogeochemical processes that take 

place in the river-aquifer system, including oxidation and reduction processes 

(hereinafter redox processes) and dissolution/precipitation of minerals. The following 

processes were identified in Besòs River Delta aquifers: 

 

 

 

 

 

 

 

Based on the identified processes, the non-conservative species to be quantified 

in the analysis are calcium, bicarbonate, magnesium, total organic carbon (TOC), 

ammonium, nitrate, bicarbonate and dissolved oxygen. 

 

 

 

 

 

 

Table 5.2. Geochemical processes treated as end-members. Note that the geochemical processes 

can be included as a certain end-members because the stoichoimetric coefficients of the reactive 

species are known.   

 

5.3.2 Evaluation of the mixing ratios including the geochemical processes. 

Once geochemical processes were identified, the evaluation of mixing ratios 

including the geochemical processes could be done. The composition of all sampling 

points may be considered as a result of river water mixing (conservative) and 

groundwater-aquifer interactions (non-conservative). This evaluation was performed 

using the MIX code (Carrera et al., 2004). This code allows us to incorporate 

uncertainty in both recharge sources and observation point measurements. Uncertainty 

is mainly related to sampling and analytical errors, lack of data and the occurrence of 
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additional processes, such as geochemical reactions. Measurement uncertainty is 

quantified through covariance matrices. This code requires defining the reliability of 

measurements and the results depend on the assumed standard deviations. 

Consequently, standard deviations have to be selected carefully. Generally, standard 

deviations are selected depending on whether or not the tracers are conservative. For 

instance, some non-conservative species such as TOC and dissolved oxygen were 

expected to have assigned high standard deviations because they participate in 

geochemical processes. However, in this work, each reaction was included as a new end 

member (Table 5.2). For all the reactions considered, the selected value for the species 

involved in the reaction was its molecular weight times ten. As an example, in aerobic 

respiration reaction, organic matter (in terms of total organic carbon) and dissolved 

oxygen are transformed into bicarbonate and protons (not considered). The end-

member’s concentrations were -120 and -320 mg/L for TOC and dissolved oxygen, 

respectively, because they were depleted whilst bicarbonate was released to 

groundwater (610 mg/L). In general, the standard deviations assigned to both 

groundwater samples and recharge sources were significantly low for several reasons. 

First, recharge sources tracers were supposed to be accurately well know because they 

were previously evaluated (Tubau et al., submitted). Secondly, the uncertainty sharply 

decreased in the non-conservative tracers because chemical reactions were included as 

end-members. The standard deviations assigned were a percentage of the concentration 

for a specific tracer and they varied from 5 % to 15% in the recharge sources and 5 % to 

50 % in the observation points (Table 5.1b). 

Table 5.3. Computed concentrations in the end-members from the river for the selected tracers 

expressed in mg/L and in μS/cm for electrical conductivity.
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Figure 5.5. Plots of measured vs. estimated concentrations of all species at all end-member and 

sampled points including the geochemical processes. Notice the better fit of the reactive species 

calcium, total nitrate, ammonium, dissolved oxygen, total organic carbon and nitrate.  
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Figure 5.6. Schematic cross-plot sections of concentration, x (mmol/l), at each observation 

point for the species that take part in the reactions accounting for the 4 campaigns. The reactions 

are: (R1) calcite dissolution, (R2) magnesite dissolution, (R3) Denitrification, (R4) Aerobic 

respiration, (R5) Nitrification. 
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Considering the reactions, the measured composition at a sampled point is the 

combination of River Besòs water mixing and chemical reactions for the less 

conservative species. River water mixing is the most relevant process since mixing 

ratios range from 82.8% (in sampling point SAP 3 in C3) to 93.4% (in sampling point 

ADS2 in C2). Generally, river water from dry periods dominates over wet period. The 

main river end-member contribution is D2 in most of the observation points. The 

contribution of wet end-member river water W1 was more significant in the last field 

campaign (C4) due to high precipitations occurred, which are directly related to River 

Besòs flow. In contrast, chemical reactions represent, on average, 11.4 % in the 

observation points. However, their contribution to the better fit of the reactive species 

was significantly important. The need to consider the reactions as end-members is 

illustrated in Figure 5.5. When measured and computed concentrations for all the tracers 

in recharge sources and observations points were compared (Figure 5.5), several 

observations could be made:

(1) Computed end-members concentrations from the river for all tracers considered 

were similar to measured ones in both zones, falling close to the 1:1 line. They were in 

line with the standard deviations assigned and, as expected, the computed values 

presented little variation (Table 5.3). 

(2) Observation point concentrations for calcium, magnesium, dissolved oxygen, 

total organic carbon and nitrate close from the ideal mixing line, which supported the 

occurrence of the aforementioned processes. There were only some observation points, 

ADS-2 (C1, C3 and C4) and ADS-7 (C2), in which nitrate concentration cannot be 

explained by either mixing of river water and/or chemical reactions. This can be seen on 

Figure 5.5 because the aforementioned sampling points are below from the 1:1 line. 

Consequently, an unidentified end-member with a higher concentration of nitrate might 

be missing.  

One of the most relevant results in this research was the quantification the 

aforementioned hydrogeochemical processes at each observation point for the non-

conservative species. The quantification (mmol/L) of these processes and their spatial 

distribution can be observed in Figure 5.6. The significance of this process and its 

spatial distribution within the aquifer enabled the division of this study zone depending 

on the location of the points: (1) Points located near the river (SAP’s and ADS-6n, 

Figure 5.2) and (2) points located closer to underground car park at Plaça de la Vila site 

(ADS-7, ADS-2, ADS-4 and ADP’s, Figure 5.2). Generally, the significance of the 
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hydrogeochemical processes was more important in points located near the river (SAP’s 

and ADS-6n, Figure 5.2) for all reactions excepting for aerobic respiration. Besides, the 

occurrence of geochemical reactions was usually more significant in the deeper 

observations points (SAP-1, SAP-2 and SAP-3) than in the shallower ones. In the rest of 

observation points, clearly more affected by the continuous pumping of Plaça de la Vila 

site, no clear tendency was observed although the occurrence of geochemical processes 

also happened. The depleted (negative values) or released concentrations (positive 

values) of non-conservative species due to each reaction at each observation point 

accounting for the 4 different field campaigns are summarised in Tables S4 and S5 (see 

supplementary information Table S4 and S5 in Annex I for details). 

 

5.4 Conclusions 

The application of mixing ratios was a useful tool to quantify hydrogeochemical 

processes in a specific study area. The approach enables us to evaluate the occurrence of 

geochemical processes at each observation point. This methodology was validated in 

the Besòs River Delta study area and twelve tracers were used: chloride, sulphate, 

calcium, bicarbonate, electrical conductivity, ammonium, magnesium, dissolved 

oxygen, total organic carbon, nitrate, sodium and potassium. All except chloride, 

sodium, ammonium and electric conductivity, behaved in a non-conservative way when 

only River Besòs water mixing was considered. First, measured concentrations at 

sampling points of nitrate, total organic carbon and dissolved oxygen species were 

much lower than the recharge sources from the river, suggesting degradation processes. 

Second, measured concentrations in the observation points of calcite, bicarbonate and 

magnesium were generally higher than the computed ones, suggesting that a little 

amount of such concentrations may be released to groundwater. Consequently, these 

non-conservative tracers were affected by geochemical processes. When the identified 

reactions were included as end-members, the non-conservative species fall further close 

from the 1:1 line (ideal mixing line) supporting the occurrence of the hydrogeochemical 

processes when river water infiltrates the aquifer. The approach presented in this work 

can be used in any aquifer system not only to identify the recharge sources but also to 

quantify geochemical processes in a fast, simple and effective way. 
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6. Application of multi-isotope data (O, D, C and S) to 
quantify redox processes in urban groundwater 

 

6.1 Introduction 

Deterioration of groundwater quality in urban aquifers has become a matter of 

concern. In such areas, groundwater can be contaminated by a wide range of 

anthropogenic pollutants. Moreover, groundwater can be an alternative source of water 

supply in cities with an arid to semiarid climate (Tubau et al., 2010). A proper 

assessment of groundwater quality requires the quantification of the total recharge and 

the composition of the various sources involved. These quantitative assessments enable 

to identify the origin and the fate of pollutants (from pollution to attenuation) and also 

evaluate management strategies. 

However, evaluating the recharge in urban environments is essentially different 

from rural areas. This is mainly due to the high number of different sources, their 

variable composition, and the geochemical processes undergone by the mixtures. Thus, 

many traditional mixing ratio computations require that the concentrations of end-

members to be different and accurately known. Currently, the concentrations of the 

different species in the end-members are not usually known with certainty. They can be 

highly variable in space and, especially, in time. This could be the reason why studies to 

identify and quantify sources and processes involved in the water quality of an urban 

aquifer are very scarce (see Vàzquez-Suñé et al., 2010 and references therein, for a 

review).  

Some common sources of groundwater in urban areas are sewer leakage and 

infiltration from waste water treatment plants. These sources provide organic carbon to 

the water and promote biodegradation reactions of a variety of pollutants (nitrate, 

sulphate, arsenic-bound to iron, organic micropollutants). Biodegradation processes are 

related to the redox state of water. Therefore, identifying the redox evolution along a 

flow line is a key issue.  

Unlike physical processes such as dispersion, mixing and dilution; 

biodegradation implies a decrease in the total dissolved mass of a solute and may 

involve a variation of its isotopic proportions. This suggests that isotope studies can be 
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helpful to identify and quantify biodegradation processes. In fact, the application of 

environmental isotopes has been employed to characterise and assess different issues in 

urban groundwater recharge. Butler and Verhagen (1997) used water isotopes in the 

study of the city of Pretoria (South Africa) to differentiate between the local water 

recharge and water supply, which had a different isotopic composition. Choi et al. 

(2005b) complemented a hydrochemical study in the city of Seoul (South Korea) with 

isotopic data (water molecules and tritium) to determine the relationship between the 

uses of the soil and degradation of the groundwater quality. The isotopic composition of 

dissolved inorganic carbon has been used to quantify the recharge in Japan (Yasura et

al., 1999) and to identify old landfills (Clark and Fritz, 1997). Nitrate and sulphate 

isotopic compositions have been used to identify the different sources of contamination 

in urban aquifers and geochemical processes taking place in the aquifer (Fukada et al., 

2004; Bottrell et al., 2008; Li et al., 2010; Hosono et al., 2011a). However, there are 

few multi-isotopic studies carried out in urban areas that not only identify the recharge 

sources but also quantify hydrochemical processes that may affect the pollutants 

(Osenbrück et al., 2007; Hosono et al., 2009, 2010 and 2011b). To sum up, isotopes 

have been used successfully to identify and quantify the extent of redox processes, but 

in these approaches, the isotopic composition of the recharge sources was assumed 

constant. Furthermore, no degree of uncertainty was considered either in these sources 

or the observation points. 

The main objective of this study was to investigate the occurrence of redox 

processes in an urban aquifer with environmental isotopes using mixing ratios 

accounting for the uncertainty of both the recharge sources and the observation points. 

This included the identification of the recharge sources and their isotopic composition, 

the evaluation of the mixing proportions for each sample, and the quantification of the 

geochemical processes undergone. To this end, 18OH2O, DH2O, 34SSO4, 18OSO4 and 
13CDIC coupled with hydrochemistry data were analyzed in groundwater samples 

collected at two different areas from the city of Barcelona from February 2007 to May 

2010. Vàzquez-Suñé et al. (2010) previously determined the different sources of urban 

recharge in the aquifers of Barcelona. We used a multivariate statistical analysis method 

using the MIX code (Carrera et al., 2004) to estimate the composition of the recharge 

sources and quantifying the proportions in which the different sources contribute to the 

total groundwater recharge in a given sample.  
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Figure 6.1. On the left, schematic description of the hydrogeology of Barcelona: (1a) Llobregat 

Delta made up of gravels, sands, silts and clays (Holocene, Quaternary), (1b) Besòs Delta 

composed of gravels, sands, silts and clays (Holocene, Quaternary), (1c) Barcelona Plain 

consisting of carbonated clays ( Pleistocene, Quaternary), (2)  Barcelona Plain made up of 

marls, sandstones and sands (Tertiary) and (3) Collserola Range consisting of  shale and 

granites ( Palaeozoic). On the right, a piezometric map of the study area, which is divided into 

two distinct zones: Poble Sec (PS) and Besòs River Delta (BRD). The contour intervals are 2 m 

(continuous green line), for heads ranging from 5 to below 25 m (continuous blue line) and 25 

m above (continuous orange line). At the bottom, observation points in each zone, including the 

depth of the screen: (u) upper, (m) middle, (l) lower and (a) totally screened. 
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6.2. Materials and methods 

6.2.1 Site description 

The study area consists of two distinct zones: Poble Sec and Besòs River Delta, 

which are located in the Barcelona metropolitan area (NE Spain). Barcelona is bordered 

by the Mediterranean Sea, the Collserola range and the Rivers Besòs and LLobregat 

(Figure 6.1). Climate is typically Mediterranean with an average rainfall of 600 

mm/year.  

6.2.1.1 Previous works related to Barcelona urban groundwater 

Vàzquez-Suñé et al. (2010) identified several recharge sources in the aquifers of 

Barcelona by means of end member mixing analysis. Using a large hydrochemical 

database, 8 different recharge sources could be identified based on 8 and 12 tracers. The 

recharge sources identified are the direct rainfall recharge which occurs in the non-

urbanised areas in the Collserola Range. There are also three groundwater recharge 

sources from anthropogenic activities: (1) loss from water supply network (Barcelona is 

supplied with water from the Rivers Ter and Llobregat, which divide the city into two 

zones with a differing water quality), (2) loss from sewage water and (3) the runoff 

water in paved areas that washes the urban surface atmospheric deposition and 

recharges the aquifers through direct infiltration or sewer seepage. Finally, there are two 

inflows from surface water bodies: seawater intrusion and water from the heavily 

polluted River Besòs, which must be considered as a potential recharge sources in lower 

areas of the city. The latter contains a large proportion of effluents from waste water 

treatment plants. Tracers included chloride, sulphate, 18OH2O, DH2O, 34SSO4, boron, 

fluoride, bromide, zinc, total nitrogen, residual alkalinity and EDTA. Some of the 

tracers used appear to be non-conservative and to address this uncertainty mixing ratios 

were computed considering and not considering the questionably conservative species. 

The authors concluded that the results using 8 (chloride, sulphate, 34SSO4, fluoride, 

bromide, 18OH2O, DH2O and total nitrogen) and 12 species were similar in terms of 

mixing ratios and suggested that the results obtained with 12 species were more 

realistic. According to Vàzquez-Suñé et al. (2010), 52% of the average total recharge in 

Barcelona aquifers was from loss in the water supply (22%) and sewage network (30%). 

Runoff water had a variable but locally major impact on the water resources 

representing, on average, 20 %, followed by rainfall recharge in non-urbanised area 

(17%) and the River Besòs (11%).  
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Similarly, Jurado et al. (2012a) evaluated the total recharge in three different 

zones of the Barcelona metropolitan area to investigate the occurrence of illicit drugs in 

an urban aquifer. This included the two pilot zones of Poble Sec and the Besòs River 

Delta. Overall, Poble Sec aquifers were mainly recharged from loss in sewage and water 

supply networks and the River Besòs was by far the largest contributor of the Besòs 

River Delta aquifers. In that work, the tracers used to evaluate the recharge sources were 

not specified. Other studies developed in Barcelona aquifers were concerned with the 

presence of organic micropollutants such as surfactants (Tubau et al., 2010) and 

pharmaceutical active compounds (López-Serna et al., 2013).  

In the present work, we have extended the previous works carried out in 

Barcelona aquifers by the aforementioned authors in two aspects. Firstly, in contrast to 

Vàzquez-Suñé et al. (2010) who evaluated the total recharge at a regional scale, we 

have focused on two specific zones of the Barcelona metropolitan area: Poble Sec and 

Besòs River Delta. Secondly, although these two distinct zones were included in the 

study of Jurado et al. (2012a), they did not used environmental isotopes to evaluate the 

total recharge. Moreover, in both works, the evaluation of redox processes using 

environmental isotopes coupled with hydrochemistry has not been performed. 

 

6.2.1.2 Hydrogeology of the pilot zones  

Currently, groundwater in Poble Sec and Besòs River Delta areas is only used 

for secondary uses such as street-cleaning and to water public gardens. But it can be 

considered as an option as tap water resource, especially in periods of drought, since 

there are several aquifers with different lithologies, characterised by their geological 

age, under the city (Figure 6.1). The Paleozoic aquifer outcrops at the topographic 

heights located NW, which consists of shales and granites. Quaternary and Tertiary 

aquifers are found in the rest of the city. From the geological point of view, Poble Sec is 

located in the Barcelona Plain made up of carbonated clays. Below the Quaternary, the 

Tertiary (Miocene) is present. Miocene is made up of sandstones, marls and sandy 

gravels. Besòs River Delta is located in the Quaternary Besòs Delta, which is bordered 

by the River Besòs and is close to the underground car park at the Plaça de la Vila site 

(Figure 6.1). The river flow is heavily dependent on seasonal rainfall. The average flow 

of the river is 2.5 m3/s, except for heavy rain events. Groundwater flows generally from 

the River Besòs to the car park since there is a continuous pumping of about 150 l/s to 

avoid seepage problems. The basement is made of Palaeozoic granites and Cenozoic 
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units, which consists of Miocene matrix-rich gravels and Pliocene grey marls. The 

fluvio-deltaic sediments of the Besòs Delta Complex are placed on the top of this 

basement, including 3 aquifers composed of sandy and gravelly bodies separated by 

lutitic units (Velasco et al., 2012). 

 

6.2.2 Chemical reactions quantification 

The methodology to evaluate the occurrence of redox processes consist of: (1) 

identification of the potential recharge sources and selection of the appropriate tracers, 

(2) evaluation of the mixing ratios in groundwater recharge and composition of the 

sources by means of multivariate statistical analysis and (3) assessment of the fate of 

environmental isotopes in groundwater samples.  

We used the MIX code (Carrera et al., 2004) to evaluate the occurrence of redox 

processes. The proposed algorithm consisted of the following steps: (1) Definition of 

initial mixing ratios by conventional least squares, assuming that the concentrations of 

end-members are known; (2) given the mixing ratios, maximise the likelihood function 

to estimate the expected values of mixture and end-member concentrations; (3) given 

the expected values of mixture and end-member concentrations, maximise the 

likelihood to obtain the mixing ratios; (4) repeat steps 2 and 3 until convergence. A 

detailed description of these steps and a derivation of the necessary equations can be 

found in Carrera et al. (2004).  

The MIX code can evaluate mixing ratios in cases of uncertain end-members 

using the concentration of mixed samples to reduce the uncertainty. Uncertainty 

depends on several factors. Some of these factors are (1) sampling and analytical errors 

in both sources and measurement points (2) the number of measured samples to 

accurately characterise the recharge source composition, (3) the conservative behaviour 

of a given tracer and (4) the occurrence of unknown processes since recharge source 

water entered the aquifer until the mixture. As an example, flux averaged concentrations 

should be used when characterising aquifer discharges to perform salt balances in rivers. 

However, more proportion of diluted river water could inflow into aquifers during 

floods. Mixing ratios are evaluated assuming that the samples are a mixture of the 

recharge sources in an unknown proportion. The concentration of the conservative 

tracers in a mixture is obtained by a linear combination of the recharge sources. But, 

when deviations from perfect mixture exist they may be due to chemical processes. . 

This code was previously used to study evaluate mixing processes either in surface 
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water such as rivers (Cánovas et al., 2012a and 2012b; Galván et al., 2012) and in 

groundwater (Vàzquez-Suñé et al., 2010; Jiménez-Martínez et al., 2011; Morales-

Casique, 2012; Jurado et al., 2012 and 2013). 

6.2.3 Sampling  

One hundred and six water samples were collected from July 2007 to May 2010 

during four different field campaigns in July 2007 (c1), February 2008 (c2), October 

2008 (c3) and May 2010 (c4). Four samples were from the River Besòs. One hundred 

and two samples were collected from groundwater: 67 from observation piezometers 

and 35 from pumping wells. Data of environmental isotopes 18OH2O, DH2O, 34SSO4 

and 
18OSO4 were available for c2 to c4 and 13CDIC only for c4. The location of the wells 

and the piezometers and the screen depths are displayed in Figure 6.1. The specific 

depth of the observation points is shown in Table S2 (Annex I). All the groundwater 

samples were obtained by pumping until a volume that was at least three times what the 

piezometer was extracted. Field parameters measured in situ included electrical 

conductivity, pH, temperature and dissolved oxygen. They were measured continuously 

using a flow cell to avoid contact with the air. The instruments were calibrated daily by 

means of standard solutions. Samples were collected after stabilization of field 

parameters and were not filtered in the field. They were stored in a field refrigerator and 

taken to the laboratory at the end of the sampling day.  
 

6.2.4 Analytical methods 

Most species were analyzed at the laboratory of the ATLL (Aigües Ter 

Llobregat) in Barcelona. Chloride and sulphate were analyzed using ionic 

chromatography (IC). Basic cations and trace metals were analyzed by ICP-MS. For As 

and Fe prior to the analysis; the solution was acidified with 1% (v/v) HNO3 and 

centrifuged to 3500 rpm. Ammonium was analyzed by spectrophotometry (based on 

indophenol blue method) and a commercial reactive kit. Bicarbonate was analyzed 

manually by chemical evaluation with sulphuric acid, accounting for the pH of the 

sample. Both bicarbonate and ammonium must be analyzed within 24 hours of the 

sample collection.  
18O and D of water samples were analyzed based on Wavelength Scanned 

Cavity Ringdown Spectroscopy (WS-CRDS) for isotopic water measurements with a 

L2120-i Picarro® equipment from Malaga University (Spain). Six replicates for each 
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sample were made, although the last three were selected for statistical treatment. Three 

water samples with known 18O and D were used as Internal standards of NEU (-

11.58,-79.48), SLAP (-6.55,-42.49) and MAR (-0.77, 0.43). 

Dissolved sulphate isotopes were analyzed for 34S and 18O at the laboratory of 

“Mineralogia Aplicada i Medi Ambient” of the research group at the University of 

Barcelona (Spain). The water sample was acidified with HCl and a barium chloride 

solution was added in excess to variable sample volume for precipitating an expected 

amount of around 50 mg of BaSO4. The precipitation was held at ~100°C in order to 

prevent BaCO3 formation. The hot solution rested 1-3 days to settle the precipitate that 

was filtered through a 3 μm paper filter, dried at room temperature (7-10 days) and 

inserted into a Schott glass vial. 34S of dissolved sulphate was analyzed in a Carlo Erba 

Elemental Analyzer (EA) coupled in continuous flow to a Finnigan Delta C IRMS. 18O 

of dissolved sulphate-was analyzed in duplicate using a ThermoQuest TC/EA unit (high 

temperature conversion elemental analyzer) with a Finnigan Matt Delta C IRMS. 

Isotope ratios were calculated using both international and internal laboratory standards. 

Dissolved inorganic carbon DIC measurements were carried out using a gas-bench 

system according to the use of the conventional H3PO4 method developed and described 

by Torres et al. (2005). 

Notation was expressed in terms of delta ( ) per mil relative to the international 

standards (V-SMOW for D, V-SMOW for 18O, V-CDT for 34S and V-PDB for 
13C). Reproducibility of the samples was ±0.2 ‰ for 34S, ±0.5 ‰ for 18O of SO4

- , 

±0.2 ‰ for 13CDIC; ±0.2 ‰ for 18O and ±0.3 ‰ for D of water.  

 

6.3. Results  

6.3.1 General hydrochemistry  

The average concentrations (mg/L) and standard deviations of chloride, sulphate, 

bicarbonate, sodium, calcium, magnesium, nitrate, ammonium and electrical 

conductivity (EC) of the groundwater samples collected at each zone are summarised in 

Table 6.1.  

Poble Sec 

Groundwater samples of the Poble Sec zone were Cl-(HCO3/SO4)-Ca-(Na) type 

and no significant differences were observed among the different field campaigns 

(Table 6.1b). Chloride and sulphate levels were usually above 290 mg/L and the 

average electrical conductivity (EC) was 1900 μS/cm. Some redox indicators such as 
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the high levels of dissolved oxygen and nitrate (on average 3.5 mg/L, and 93 mg/L, 

respectively) and the low or null levels of ammonium (on average 0.03 mg/L), 

evidenced the oxidising conditions of the groundwater. 

 

 

 

 

 

 

 

 

 

 
Table 6.1. Average concentration (mg/L) and standard deviation of selected species measured 

in: (a) Poble Sec and Besòs River Delta and (b) detailed in both zones for each sampling 

campaign. 

 

Besòs River Delta 

Groundwater samples of Besòs River Delta were Cl-(HCO3)-Na-(Ca) type. The 

average concentration of all the species presented little variation between field 

campaigns c1, c2 and c3 (Table 6.1b). In contrast, the last field campaign c4 presented, 

on average, lower concentrations than the first three campaigns for all species. Among 

them, chloride, sodium and ammonium were the species that presented the biggest 

differences (Table 6.1b). This could be related to the geochemistry of the River Besòs 

since it was also Cl-Na-(Ca)-(HCO3) type accounting for c1, c2 and c3. However, river 

water of the last campaign was HCO3-Ca-(Na) type because it was collected when rain 

events occurred and, consequently, presented lower concentrations due to the dilution 

effect. 

Overall, Besòs River Delta groundwater was less mineralised than Poble Sec 

since the average concentration of chloride, sulphate, calcium, magnesium, nitrate and 

EC were much lower (Table 6.1a). In contrast to Poble Sec, reducing conditions into 

groundwater were suggested by the low levels of dissolved oxygen and nitrate (on 

average 0.6 mg/L, and 4 mg/L, respectively) and the presence of ammonium (6.7 mg/L, 

on average). 
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Figure 6.2. Plot of 18OH2O- DH2O accounting for the recharge sources (and standard deviation) 

and groundwater samples collected in both zones: Poble Sec (PS, rhombus) and Besòs River 

Delta (BRD, rounds). Note that the different field campaigns are represented by the shade of 

grey: c2 is light grey, c3 is grey and c4 is dark grey. The local meteoric line (LML) represents 

the monthly isotopic composition of a long-term sampling period (1985-1992) at the monitoring 

station of Barcelona. 

6.3.2. Environmental isotopes 

6.3.2.1 Environmental isotopes in the recharge sources 

The isotopic composition of the recharge sources was evaluated using samples 

collected in different field campaigns. The isotopic composition of 18OH2O, DH2O, 
34SSO4 and 18OSO4 of most of the recharge sources was first analyzed between 1998 

and 1999. Later, between 2006-2007 and 2008-2010, more recharge source samples 

were collected, including 13CDIC. The average isotopic composition of available data 

and the standard deviations of the environmental isotopes 18OH2O, DH2O, 34SSO4, 

18OSO4 and 13CDIC in the groundwater recharge sources are summarised in Table 6.2a. 

We have no data of the isotopic composition for the Llobregat sewage water (SW LL) 

so the values were taken from Otero et al. (2008). The isotopic composition of the water 

supply is slightly lighter than the sewage water for all the isotopes (Figure 6.2). Sewage 

waters have similar isotopic composition accounting for sulphur and oxygen isotopic 
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values of dissolved sulphate but Ter sewage water (SW T) is lighter when considering 

water isotopes. Significant differences also existed between Ter and Llobregat water 

supply for the isotopic compositions of sulphur and oxygen isotopes of dissolved 

sulphate, the former being lighter (Figure 6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Plot of 34SSO4- 18OSO4 accounting for the recharge sources (and standard deviation) 

and groundwater samples collected in both zones: Poble Sec (PS, rhombus) and Besòs River 

Delta (BRD, rounds). Note that the different field campaigns are represented by the shade of 

grey: c2 is light grey, c3 is grey and c4 is dark grey.  

 

6.3.2.2 Environmental isotopes in groundwater 

Figure 6.2 and Figure 6.3 show the values 18OH2O - DH2O and 34SSO4- 18OSO4 

for the groundwater samples collected, respectively. Note that the isotopic composition 

of 18OH2O and DH2O in c4 was lighter than those measured in c2 and also c3 in both 

zones (Figure 6.2). This could be explained by the rainfall events that occurred during 

the c4 field campaign. In Besòs River Delta zone, rain events caused a dilution effect in 

the Besòs flow regime, which directly affected groundwater composition. The average 

isotopic values and their standard deviation of the isotopes 18OH2O, DH2O, 34SSO4, 

18OSO4 and 13CDIC measured in the groundwater samples are summarised in Table 6.2b 

for the two aforementioned zones. The results are given below.  
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Table 6.2. Average isotopic composition, standard deviation and number of samples of 18OH2O 

, DH2O, 34SSO4,
18OSO4 and 13CDIC in (a) recharge sources and (b) detailed in each zone of the 

study area.* Values from Otero et al. (2008). 

 

Poble Sec 

The water isotope values of the groundwater samples displayed compositional 

ranges between -7.3 ‰ and -5.2 ‰ for 18OH2O and -48 ‰ and -38.5 ‰ for DH2O. 

Notably, most of the groundwater samples display a cluster and are in accordance to the 

local meteoric line. Sulphur and oxygen isotope values of sulphate in groundwater 

varied from +7.4 ‰ to +11.5 ‰ and +8.7 ‰ and +10 ‰, respectively. The average 
13CDIC is -11.8 ‰.  

Besòs River Delta 

The isotopic composition of groundwater samples for 18OH2O was similar to 

Poble Sec, ranging from -7.2 ‰ to -5.7 ‰ but the isotope values for DH2O varied in a 

narrow range between -43.6 ‰ and -38.1 ‰. Regarding dissolved sulphate isotope 

values: 34SSO4 ranged from +6.9 ‰ to +12.3 ‰ and 18OSO4 ranged from +10 ‰ to 

+12.5 ‰. At Besòs River Delta, the average 13CDIC is similar to Poble Sec, being -12.4 

‰. 



Chapter 6: Multi-isotope data to quantify redox processes in urban groundwater. 

97

 

6.4. Discussion 

6.4.1 Recharge sources identification and selection of the tracers in the pilot zones 

As previously mentioned, up to eight different recharge sources were identified 

in Barcelona urban aquifers (Vàzquez-Suñé et al., 2010): (1) rainfall recharge in the 

northern non urban area (REC), (2) river Ter water supply (TER), (3) river Llobregat 

water supply (LLOB) (4) river Ter sewage water (SW T), (5) river Llobregat sewage 

water (SW LL), (6) city runoff (RUNOFF), (7) sea water intrusion (SEA) and (8) river 

Besòs (RIV). Among these recharge sources, not all were considered in the pilot zones 

select for this study: Poble Sec and Besòs River Delta. SEA end-member was 

disregarded because neither Poble Sec nor Besòs River Delta were affected by sea water 

intrusion. Water supply in the pilot zones comes from two different rivers: Llobregat 

and Ter (LLOB and TER recharge sources). Poble Sec area is supplied by the River 

Llobregat and Besòs River Delta area is supplied by the River Ter. Consequently, two 

different compositions can also be found also in wastewater. Moreover, River Besòs 

(RIV) presents seasonal variations which reflected changes in water quality (Vàzquez-

Suñé et al., 2010). Therefore, it is not sufficient to consider only one end-member from 

the River Besòs because aquifer samples were collected at a local level during 4 

different field campaigns from 2007 to 2010. Instead, two different end-members from 

this river were used to account for the temporal variability: wet conditions (W) and dry 

conditions (D). The former corresponded to diluted water related to wet periods or water 

supply inputs and the latter represented concentrated waters related to dry periods.  

Selecting appropriate tracers is a critical step in mixing calculations (Morris et

al., 2006) because ideally, tracers should be conservative and their concentrations 

should vary widely from one source to another. Preliminary works developed for 

Barcelona aquifers suggested suitable tracers for differentiating the recharge sources 

adequately could be chloride, sulphate, total nitrogen, 18OH2O, DH2O and 34SSO4. In 

this study we also included electrical conductivity, bicarbonate, 18OSO4 and 13CDIC. We 

selected electrical conductivity because it behaves conservatively and the others because 

they may participate in the chemical reactions to be quantified. Their concentrations and 

isotopic compositions are detailed in Table 6.3a. As shown in Table 6.3a, tracer 

concentrations considering River Ter water supply and the River Besòs in wet season 

are similar. Consequently, we disregarded the water supply source (TER) because its 

contribution to the total recharge was much less significant than the River Besòs in the 
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wet season (Jurado et al., 2012a). Similarly, REC was not taken into account because 

previous studies demonstrated its null contribution to groundwater recharge in the lower 

parts of the Besòs River catchment, where the samples of Besòs River Delta were 

collected (Vàzquez-Suñé et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 6.3 (a) Initial concentrations of tracers selected for mixing ratios evaluation at each 

recharge source. The concentrations of the major ions and total nitrogen are expressed in mg/L, 

the electrical conductivity is expressed in μS/cm and the environmental isotopes in ‰. (b) 

Standard deviations to be considered in MIX code for each tracer in the recharge sources and 

groundwater samples expressed as a percentage of the concentration. 

 

In summary, the recharge sources considered were LLOB, SW LL, REC and 

RUNOFF in Poble Sec zone and SW T, RUNOFF, RIV (W and T) in River Besòs Delta 

zone. The tracers selected were chloride, electrical conductivity, bicarbonate, sulphate, 

total nitrogen, 18OH2O, DH2O, 34SSO4, 18OSO4 and 13CDIC. 
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Figure 6.4. Plots of measured and computed concentrations and isotopic compositions. Note 

that measured concentrations of the recharge sources fail to envelope the measured 

concentrations in several samples in both Poble Sec and Besòs River Delta (Chloride versus 

sulphate, total nitrogen, 34SSO4 and 18OSO4). Conversely, computed recharge sources perfectly 

encircle the computed concentrations and isotopic compositions of considered tracers. 

Concentrations are in mg/L and isotopic composition in ‰. 
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6.4.2. Evaluation of the mixing ratios in groundwater recharge and composition of 

the sources 

Mixing ratios in groundwater recharge were evaluated with MIX code (Carrera 

et al., 2004). In this code, measurement uncertainty is quantified through covariance 

matrices. The need to consider uncertainty in recharge source concentrations is best 

illustrated in Figure 6.4 where measured end-member concentrations fail to envelop 

measurements of several observation points in plots such as chloride vs. sulphate, total 

nitrogen, 34SSO4 and 
18OSO4. The code requires defining the reliability of 

measurements and the results depend on the assumed standard deviations. This suggests 

that standard deviations should be selected carefully. The standard deviations were 

selected depending on whether or not the tracers were conservative. The more 

conservative the tracer, the lower the assigned deviation. For instance, some 

environmental isotopes such as 34SSO4 and 18OSO4 could be non-conservative due to 

chemical processes. The standard deviations assigned to the recharge sources varied 

from 10 % to 75 % of the concentration for a specific tracer (Table 6.3). In general, the 

standard deviations assigned were lower in groundwater samples than those assigned to 

the recharge sources because recharge source composition was more uncertain (Table 

6.3b).  

Once standard deviations were assigned, chemical composition of the recharge 

sources and mixing ratios at each observation point could be evaluated. As shown in 

Figure 6.4, computed recharge source concentrations perfectly enveloped all the 

computed concentrations. However, it is important to analyse, the reliability of the 

computed chemical composition of recharge sources. When measured and computed 

concentrations for all the tracers in recharge sources and observations points were 

compared (Figure 6.5), several observations could be made: 

 

(1) Computed recharge source concentrations for chloride, sulphate, 

bicarbonate and electrical conductivity were similar to measured ones 

in both zones, falling close to the 1:1 line. The same occurred with 

total nitrogen in Poble Sec. Also, computed and measured 

concentrations at the observation points for these species fell close to 

1:1 line, especially for chloride and electrical conductivity. 

(2)  
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Figure 6.5. Computed versus measured concentrations and isotopic composition at all recharge 

sources and groundwater samples in Poble Sec (PS) and Besòs River Delta (BRD). Note that 
34SSO4 and 18OSO4 isotopes of dissolved sulphate do not behaved conservatively at Besòs River 

Delta. Concentrations are in mg/L and isotopic composition in ‰. 
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(2) Computed concentration of total nitrogen at Besòs River Delta for dry end-

member (D) was drastically reduced. Accordingly, measured concentrations for some 

observation points were lower than computed ones (Figure 6.5b). Nitrate concentrations 

at River Besòs can reach levels of 15 mg/L but measured concentrations at points 

located near the river (SAP’s and ADS6n, Figure 6.1) are drastically reduced to null or 

very low levels (on average, 0.45 mg/L). This may be indicative that denitrification 

could occur when river water infiltrates the aquifer. Unfortunately, we did not analyse 

the environmental isotopes of dissolved nitrate in groundwater. 

 

(3) Computed recharge concentrations were in line with the standard deviations 

assigned (Table 6.4). As observed with the general hydrochemistry, the separation of 

the city into two distinct water quality zones was supported by the computed recharge 

concentrations of SW T and SW LL. Overall, sewage waters were the more mineralised 

waters followed by dry end-member of the River Besòs. Among them, SW LL was the 

recharge source with the highest levels of chloride, electrical conductivity, sulphate and 

total nitrogen. Conversely, wet end-member from the River Besòs presented the lowest 

concentrations, except for total nitrogen. A more detailed discussion of the isotopic 

composition of the recharge sources and the assessment of the environmental isotopes 

in groundwater samples can be found in the following sections 6.4.3 and 6.4.4, 

respectively.  

 

 

 

 

 

 

 

 

Table 6.4. Computed concentrations and isotopic compositions in all the recharge sources for 

the selected tracers expressed in mg/L and ‰. 
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Figure 6.6. Spatial distribution of mixing ratios evaluated for c3 and c4 at both zones. Note the 

average mixing ratios considering all sampling campaigns of each zone (PS  and BRD). 
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Computed mixing ratios help in deriving the mass balance of the study zones 

and directly depend on the composition of the recharge sources. Figure 6.6 shows the 

computed mixing ratios spatial distribution at each sampling point accounted for c3 and 

c4 in both zones. Also, it is shown the average mixing ratios for each recharge sources 

considering the four sampling campaigns in both zones. According to the identified 

sources, in Poble Sec the average main contributor to the total recharge was sewage 

network loss SW LL (46%) and no significant differences were observed among the 

different field campaigns. Runoff water in paved areas was highly variable, ranging 

from 24 % to 36 % in c1 and c4, respectively. Overall, it represented the 28 % of the 

resident water. The remaining 26 % corresponded to water supply network loss (20 %) 

and the recharge in non-urbanised areas (REC, 6%). As for Besòs River Delta, RIV 

(River Besòs) was by far the largest contributor to the total recharge, representing 88 % 

in total; 60% from dry conditions and 28 % from wet conditions. Seasonal variations of 

River Besòs dynamics were reflected in groundwater concentrations because wet 

conditions end-member was represented in c4, on average, 42 % of the total recharge. 

This could be explained because c4 samples were collected in a rainy period. In 

contrast, this end-member represented 25 %, 15 % and 29 % in the c1, c2 and c3, 

respectively. Table 6.4 shows the differences that existed between the end-members in 

wet and dry conditions, the latter being the one that presented high levels for all tracers, 

except for total nitrogen and 13CDIC. Other contributors to the recharge were network 

sewage loss (SW T) and runoff water in paved areas (RUNOFF) at low percentages, 

representing 6 % each. Note that both SW T and RUNOFF only contributed to 

groundwater recharge points located close to the parking site (Figure 6.6).  

   

6.4.3. Isotopic composition of the recharge sources at the pilot zones 

Table 6.4 summarises the computed isotopic composition of the environmental isotopes 

at all recharge sources.  

6.4.3.1 Isotopic composition of 18OH2O and DH2O 

The computed isotopic composition of 18OH2O and DH2O from REC presented 

the heaviest values among the other recharge sources. The isotopic composition of the 

water supply LLOB ( 18OH2O= -6.6 ‰ and DH2O= -44.3 ‰) shows similar values to 

those from the River Llobregat ( 18OH2O= -7 ‰. and DH2O= -45.5 ‰, Otero el at. 

(2008)). Both sewage waters (SW LL and SW T) presented similar isotopic 
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composition. As regards to the end-members from the RIV, they presented distinct 

isotopic compositions. During dry conditions (D), values of 18OH2O and DH2O were 

heavier than those in wet conditions (W), ranging from -5.5 ‰ to -8 ‰ for 18OH2O and 

from -36.7 ‰ to -47.4 ‰ for DH2O, respectively. This could be explained taking into 

consideration the variability of the rainfall in the Besòs River Delta watershed, with 

higher values of 18OH2O under warm temperatures (late spring and summer). All the 

computed values were in line with the standard deviations assigned. 

6.4.3.2 Isotopic composition of 34SSO4 and 
18OSO4 

REC presented the lightest isotopic composition with values of 34SSO4=+3.1 ‰ 

and 
18OSO4= +6.5 ‰. The values of 18OSO4 and 34SSO4 for LLOB were in agreement 

with reported values of the River Llobregat (Otero et al., 2008). Moreover, SW LL and 

SW T values were in the range of the isotopic composition measured in several sewage 

water treatment plants located along the River Llobregat and resulted in +7 ‰ to +14 ‰ 

for 34SSO4 and +8 ‰ to +12.5 % for 18OSO4 (Otero et al., 2008). Since the River Besòs 

contains a large proportion of effluents from secondary waste water treatment plants, 

the isotopic composition of its dry end-member correspond to the values of sewage 

waters and treated sewage waters (Vitoria et al., 2004 and Otero et al., 2008). In 

contrast, wet end-member was 20% lighter than the dry end-member because of the 

River Besòs variability, which is controlled by rainfall.  

6.4.3.3 Isotopic composition of 13CDIC 

The computed values of 13CDIC for all end-members were in complete 

agreement with the expected values of the 13CDIC when the dissolved inorganic carbon 

of the groundwater was in equilibrium with the dioxide carbon of the soil/aquifer. These 

values ranged from -12 ‰ to -15 ‰ (Vogel and Ehhalt., 1963) and from -14 ‰ to -16 

‰ (Clark and Fritz, 1997). 

 

6.4.4 Assessment of the fate of the environmental isotopes in groundwater samples 

Once the mixing ratios were computed and the isotopic composition in the 

potential recharge sources determined, it was possible to assess the fate of these 

isotopes in the aquifer.  

Poble Sec 

Figure 6.5a shows the measured and computed isotopic composition of 18 OH2O, 

DH2O, 34SSO4, 
18OSO4 and 13CDIC estimated from mixing ratios. When measured and 

estimated values were compared, it could be seen that a great number of samples fell 
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relatively close to the 1:1 line (ideal mixing line). This fact indicated that the isotopic 

values for water and sulphate isotopes could be explained by a mixing of the different 

recharge sources considered (REC, RUNOFF, SW LL and LLOB). 

Besòs River Delta 

In contrast to Poble Sec, some environmental isotopes in groundwater samples 

of Besòs River Delta presented different behaviour (Figure 6.5b).Water isotopes and 
13CDIC isotopic composition could be explained by a mixing among the recharge 

sources (RUNOFF, W, D and SW T). However, this could not be applied to 34SSO4 and 
18OSO4 because measured values were higher than the computed ones, suggesting the 

occurrence of geochemical processes that depleted sulphate in groundwater. Despite 

dissolved sulphate behaved conservatively, the environmental isotopes of sulphate did 

not (Figure 6.5b). Therefore, groundwater samples may have shifted from their original 

compositions. A general trend of increasing 34SSO4 with decreasing sulphate 

concentration was attributed to bacterial reduction (Grassi and Cortecci, 2005; 

Yamanaka and Kumagai, 2006). The maximum extent value was 4.7 ‰ for 34SSO4 and 

2.5 ‰ for 18OSO4 (Table 6.5). The significance of this process and its distribution 

within the aquifer in terms of increments of 34SSO4 enabled the division of this study 

zone according to the location of the points: (1) Points located near the river (SAP’s and 

ADS-6n, Figure 6.1) and (2) points located closer to underground car park at Plaça de la 

Vila site (ADS-7, ADS-2, ADS-4 and ADP’s, Figure 6.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.5. Quantification of sulphate reduction in terms of enrichment factors of 34SSO4 and 
18OSO4 (‰) at each observation point (ID) for sampling campaigns c2, c3 and c4. 
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The observation points located close to the river, presented constant increments 

of 34SSO4 during the different sampling periods (on average 2.7 ‰). But the average 

enrichment degree of 34SSO4 was more important in the deeper observations points 

(SAP-1, SAP-2 and SAP-3) than in the shallower ones, being 3.3 ‰ and 2.2 ‰, 

respectively. In the rest of observation points, clearly more affected by the continuous 

pumping of Plaça de la Vila site, no clear tendency was observed although sulphate 

reduction was also occurring but to a lower degree (on average 2.1 ‰).  

 

 

 

 

 

 

 

 

 

Figure 6.7. Relationship between 34SSO4 and 18OSO4 in groundwater samples of the c3. Grey 

and black colours represented the observation points located near and far from the river, 

respectively. The encircled values are those expected by simple mixing of the recharge sources 

computed with MIX code. Note that the enrichment factor for 34SSO4 and 18OSO4 are detailed 

for each sampling point (‰). 

 

One of the most relevant results in this research was the quantification of 

sulphate reduction at each observation point (Table 6.5). As an example, Figure 6.7 

shows the expected isotopic composition of 34SSO4 and 18OSO4 for c3 by simple 

mixing of the recharge sources (ranging between 7 ‰ and 8 ‰) and the quantification 

of sulphate reduction in terms of enrichment factors of 34SSO4 and 18OSO4 at each 

sampling point. The enrichment ratio between 34SSO4 and 18OSO4 presented a slope (m) 

of 2 and it was much lower than those values obtained under experimental conditions, 
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ranging from 2.5 to 4 (Mitzutani and Rafter, 1973). However, in application case studies 

the conditions are not as ideal as in lab experiments. The slope between  34S/   18O 

obtained by sulphate reduction in a sandy aquifer was close to 0.70 (Strebel et al., 

1990). Computed values of Table 6.5 allowed evaluating the depleted concentration of 

dissolved sulphate due to sulphate reduction process. It could be quantified according to 

the Rayleigh fractionation equation. The sulphur enrichment factors during sulphate 

reduction can vary from less than 0 ‰ to more than 45‰ (Aravena and Mayer, 2010). 

However, they range between 10 ‰ and 20 ‰ in hydrological settings (Strebel et al., 

1990; Dogramaci et al., 2001; Spence et al., 2001). Consequently, the initial dissolved 

sulphate concentration ([SO4
2-]i) was calculated according to a 34SSO4= 20 ‰ in 

groundwater samples that presented increments of 34S higher than 2 delta units in 

Besòs River Delta. The use of 18OSO4 was disregard because oxygen isotope ratios may 

approach to a constant value during bacterial sulphate reduction (Boettcher et al., 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.6. Evaluation of depleted dissolved sulphate due to the occurrence of sulphate reduction 

in selected groundwater samples for Besòs River Delta ( 34SSO4= -20 ‰.). Note that the 
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difference between residual and initial values of 34SSO4 is the  34SSO4 and [SO4
2-]f and [SO4

2-]i  

are the final and initial dissolved sulphate concentrations in groundwater samples. 

The measured values of dissolved sulphate and the isotopic composition were used as 

final sulphate concentration ([SO4
2-]f) and residual value of 34SSO4, respectively. The 

initial composition of 34SSO4 was computed by the MIX code and this value 

represented a mixture among the different recharge sources. Note that the difference 

between residual and initial values of 34SSO4 is the  34SSO4 presented in Tables 6.5 

and 6.6. Table 6.6 shows the evaluated initial sulphate concentration and the 

concentration depleted due to sulphate reduction in selected groundwater samples. 

Assuming that sulphate reduction occurred in the aquifer, dissolved sulphate was 

reduced, on average, 28 mg/L in Besòs River Delta. These concentrations were in 

agreement with the standard deviations assigned, representing 15% of the initial 

dissolved sulphate ([SO4
2-]i ). The depleted sulphate concentration due to sulphate 

reduction was 18 mg/L when 34SSO4= 30 ‰ (see Table S6 in Annex I).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. On the left axis, iron and arsenic concentrations in groundwater samples collected in 

c4. The ratio between As (III) and the total arsenic is plotted on the right axis. The black dashed 

line divided Besòs River Delta study zone considering the location of the sampling points (close 

or far to the river, Figure 6.1). 
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There were other chemical indicators that supported the occurrence of the 

sulphate reduction process at Besòs River Delta aquifers such as the presence of 

ammonium, the low concentrations of dissolved oxygen and the high levels of dissolved 

heavy metals like arsenic (As) and iron (Fe). As shown in Figure 6.8, As(III) /AsT 

concentration ratio demonstrated that arsenic reduced form (As(III)) was the 

predominant dissolved specie in the observation points located close to the river (SAP’s 

and ADS-6n, see Figure 6.1) and in some points located near the park site (ADPQ and 

ADPW, Figure 6.1) supporting the reducing aquifer environment. According to Pierce 

and Moore (1981), arsenic tends to be adsorbed by amorphous iron hydroxide because it 

is ubiquitous in clays, soils and sediments and might be released in groundwater where 

sulphate reduction can occur (Plant et al., 2005).  

 

6.5 Conclusions 

The application of environmental isotopes coupled with hydrochemistry data 

using mixing ratios has provided the isotopic quantification of groundwater recharge 

sources and the occurrence of redox processes such as sulphate reduction. The presented 

approach enabled: (1) to quantify the mixing ratios into groundwater considering a 

degree of uncertainty in both the recharge sources and the observation points and (2) to 

evaluate the occurrence of redox processes at each observation point. This application 

has been validated into two hydrochemically distinct zones. Poble Sec, where isotopic 

composition of recharge sources has shown a strong influence of sewage water 

infiltration into the aquifers and no sulphate reduction occurred in groundwater samples. 

In contrast, at Besòs River Delta, mainly recharge from river Besòs water, dissolved 

sulphate isotopes could not be explained by only simple mixing of the groundwater 

recharge sources because the measured compositions at the observation points were 

higher than the computed ones, suggesting the occurrence of sulphate reduction. The 

maximum extent value for 34SSO4 was 4.7 ‰. The approach taken in this study can be 

used in other aquifer systems to quantify not only groundwater recharge sources but to 

also quantify processes like nitrification, denitrification and sulphate reduction. 
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7. General conclusions 
 

The following general results may be drawn from the elaboration of this thesis: 

 

An exhaustive review of the occurrence of various EOCs reported in Spain’s 

groundwater was carried out. These include pesticides, PhACs, industrial 

compounds, DAs, estrogens, life-style compounds and personal care products. 

The major point source of pollution of these EOCs in groundwater corresponded 

to the effluents of WWTPs. The contamination profile seems to be dominated by 

industrial compounds, followed by pesticides and PhACs. Most EOCs are 

usually detected at low (ng/L) concentrations or not detected at all in 

groundwater throughout Europe. However, an increasing number of individual 

compounds are found at g/L concentrations. Consequently, proper assessment 

of groundwater quality against deterioration requires the investigation of a wide 

variety of compounds, of the processes they undergo in groundwater and 

perhaps the establishment of environmental quality criteria.  

 

The occurrence of a wide range DAs was studied in the urban groundwater of 

Barcelona. DAs were present at low but measurable concentrations. 

Concentrations in the aquifer were generally much lower than those expected 

due to dilution, as calculated from the mixing ratios of the recharge sources. 

This suggests significant removal of DAs in the aquifer under different redox 

conditions: oxidizing conditions (Poble Sec and Mallorca Street) and reducing 

conditions (Sant Adrià). 

 

The occurrence and fate of CBZ and its metabolites in urban groundwater at a 

field scale under different redox conditions was investigated. The parent 

compound CBZ was found ubiquitously in both Poble Sec and Besòs River 

Delta. Metabolites of CBZ have been more widely detected and at higher 

concentrations in Besòs River Delta. This is due to the fact that the River Besòs 

receives large amounts of effluents from WWTPs that infiltrate into the aquifer. 

CBZ seems to be more degraded in Poble Sec aquifers because concentrations 

measured in groundwater have been lower than those expected from the 
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recharge sources. Conversely, CBZ and the metabolites 3OH CBZ, 2OH CBZ 

and ACRON have not been degraded under the reducing conditions of Besòs 

River Delta aquifers possibly due to the short residence time in this aquifer. 

Only CBZ-EP and ACRIN seemed to be naturally removed into the aquifer. 

 
A methodology to quantify chemical reactions that may affect the emerging 

organic contaminants was presented using mixing ratios. This approach allows 

us to identify and quantify some of the geochemical processes undergone in 

each sampling point. These processes included aerobic respiration, nitrification 

and denitrification. 

 

The application of environmental isotopes coupled with hydrochemistry data 

using mixing ratios has provided the isotopic quantification of groundwater 

recharge sources and the occurrence of redox processes such as sulphate 

reduction. The approach presented can be used in aquifer systems to quantify not 

only groundwater recharge sources but also redox processes.  
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Upper screen depth Lower screen depth
PSP-8 14 13 19 u
PSP-7 14 23 27 m
MPS-1 14.8 11.5 16 u
MPS-2 14.7 25 32 m

Poble PSP-10 12.5 19 23 u
Sec PSP-9 12.2 24 26 m
(PS) PSP-6 12 16 20 u

PSP-5 12 21 25 m
PSP-2 12.8 13 19 u
PSP-3 13.1 23 27 m
MPS-3 11.8 6 27 a
CAL-1 13.1 - - a
CAL-2 13 - - a
SAP-4 5 5.5 7.5 u
SAP-3 5 10.5 12.5 m

SAP-2b 5.25 4.5 6.5 u
Besòs SAP-1 5.25 9.5 11.5 m
River SAP-2 5.25 9.5 11.5 m
Delta ADS-6n 8.4 3 15 a

(BRD) ADS-7 8.56 3 15 a
ADPM 8.75 10.5 17.5 a
ADPW 7.1 11 15 a
ADPQ 8.05 10.5 17.4 a
ADS-2 7.97 - - u
ADS-4 8.9 - - u
ADPR 8.2 9.5 16.5 a

*u: upper screen depth; m: middle screen depth; l: lower screen depth; a: totally screened
"-": Screen depth not available

LABEL*ZONE SAMPLE

HEIGHT 
ABOVE 

SEA 
LEVEL 

(m)

SCREEN DEPTH (m)

Table S2. Screen depths of the observation points of Poble Sec and Besòs River Delta 
zones.



Table S3. Concentrations (ng/ L) for CBZ and its metabolites in Poble Sec and Besòs 
River Delta aquifers.

a) Poble Sec (PS)

SAMPLE
COMPOUND (ng/L) 

CBZ 3OH CBZ 2OH CBZ CBZ-EP ACRON ACRIN 
PSP-8 n.d. n.d. n.d. n.d. n.d. n.d. 
PSP-7 2.43 n.d. n.d. n.d. 0.941 n.d. 
MPS-1 17.8 <LOQ n.d. <LOQ n.d. <LOQ 
MPS-2 0.451 n.d. n.d. n.d. n.d. 6.04 
PSP-10 1.46 n.d. n.d. n.d. n.d. n.d. 
PSP-9 1.83 n.d. n.d. n.d. n.d. n.d. 
CAL-1 3.11 n.d. n.d. n.d. n.d. n.d. 
CAL-2 3.72 n.d. n.d. n.d. n.d. n.d. 
PSP-6 16.3 n.d. n.d. 1.42 n.d. n.d. 
PSP-5 15.3 n.d. n.d. n.d. <LOQ <LOQ 
PSP-2 9.39 n.d. n.d. n.d. 1.4 8.42 
PSP-3 2.42 n.d. n.d. n.d. n.d. 15.8 
MPS-3 17.6 n.d. n.d. n.d. n.d. n.d. 

b) Besòs River Delta (BRD)

Point ID 
COMPOUND (ng/L) 

CBZ 3OH CBZ 2OH CBZ CBZ-EP ACRON ACRIN 
SAP4 92.2 32.9 47.9 8.36 4.74 10.7 
SAP3 116 <LOQ <LOQ 1.14 n.d. n.d. 

SAP2BIS 127 39.9 31.4 7.45 7.17 n.d. 
SAP1 118 <LOQ 9.65 3.66 1.24 n.d. 
SAP2 105 2.98 5.51 1.07 2.52 n.d. 

ADS6N 126 23 36.2 5.04 n.d. n.d. 
ADS7 136 21.7 38 2.73 8.2 n.d. 

ADPM 120 17.5 31.6 3.35 1.07 n.d. 
ADPW 108 15.5 21.3 n.d. 4.11 <LOQ 
ADPQ 126 29.7 38.4 n.d. 6.85 n.d. 
ADS2 112 16.9 31.6 <LOQ 1.84 n.d. 
ADS4 105 24.4 37.9 4.99 1.18 4.45 
ADPR 109 19.9 31.5 <LOQ n.d. n.d. 
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ID POINT
HCO3

-

(mg/l)
Ca2+

(mg/l)
Mg2+

(mg/l)
TOC
(mg/l)

NO3
-

(mg/l)
O2

(mg/l)
NH4

+

(mg/l)
SAP-4 C1 63.2 10.85 6.36 -6.24 -10.48 -9.12 0.00
SAP-3 C1 36.5 3.62 4.40 -3.73 -8.61 -9.38 -2.66

SAP-2b C1 38.9 3.22 5.38 -3.87 -9.28 -8.68 -2.30
SAP-1 C1 62.6 14.07 5.87 -5.17 -11.15 -9.33 -1.56
SAP-2 C1 54.1 9.24 5.87 -4.90 -10.78 -9.42 -1.84
ADS-6 C1 50.5 8.04 6.11 -4.45 -9.28 -8.77 -1.65
ADS-7 C1 76.0 28.13 6.60 -3.46 -1.42 -9.15 -1.01
ADPM C1 62.0 16.48 6.11 -4.14 -9.66 -8.59 -2.02
ADPQ C1 57.7 10.05 7.34 -4.66 -10.26 -9.12 -1.84
ADS-4 C1 53.5 8.84 6.11 -4.83 -10.78 -8.03 -1.19
ADS-2 C1 47.4 8.84 4.65 -4.67 -2.62 -9.42 0.00
ADPR C1 43.7 0.00 7.34 -4.99 -9.43 -9.24 -1.29
SAP-4 C2 74.2 17.28 10.27 -4.36 -8.61 -8.39 -1.38
SAP-3 C2 63.8 11.66 8.56 -4.74 -11.23 -9.18 -2.02
SAP-1 C2 62.6 12.06 8.07 -4.63 -10.71 -9.18 -2.02
SAP-2 C2 87.0 24.12 10.51 -4.69 -10.11 -8.74 -1.56
ADS-6 C2 71.7 19.29 9.54 -3.50 -8.46 -8.41 -2.39
ADS-7 C2 47.5 15.67 0.73 -4.51 -3.67 -8.54 0.00
ADPM C2 60.2 14.07 8.31 -3.50 -5.77 -8.86 -1.93
ADPW C2 54.1 15.27 2.93 -4.51 -10.48 -8.86 -1.93
ADPQ C2 54.1 10.85 6.11 -4.32 -8.68 -9.12 -1.84
ADS-4 C2 43.2 14.07 0.00 -4.54 -2.62 -9.12 0.00
ADS-2 C2 40.1 3.62 5.62 -4.33 -1.05 -9.42 0.00
ADPR C2 46.8 4.82 7.34 -4.32 -3.97 -9.01 -0.55
SAP-4 C3 46.8 10.45 4.16 -3.89 -8.76 -8.97 -2.30
SAP-3 C3 72.4 18.09 7.34 -5.28 -9.58 -9.12 -0.92

SAP-2b C3 66.9 16.88 8.56 -3.73 -9.21 -8.74 -2.48
SAP-1 C3 57.1 9.24 6.11 -5.47 -10.78 -9.50 -1.19
SAP-2 C3 80.3 20.50 9.29 -5.12 -10.33 -8.56 -1.01
ADS-6 C3 47.4 6.03 6.11 -4.42 -9.43 -9.15 -1.93
ADS-7 C3 63.9 19.29 5.87 -4.19 -1.27 -9.15 -0.09
ADPW C3 55.3 11.25 5.87 -4.58 -9.58 -8.74 -1.56
ADPM C3 48.0 9.24 4.89 -4.21 -8.46 -8.80 -1.75
ADPQ C3 60.2 11.25 7.09 -5.04 -9.06 -8.83 -0.92
ADS-4 C3 55.9 10.85 6.11 -4.72 -9.36 -9.00 -1.47
ADS-2 C3 71.8 20.50 7.58 -4.47 -5.24 -7.65 0.00
ADPR C3 57.8 11.66 6.85 -4.65 -7.26 -7.42 -0.18
SAP-4 C4 74.2 22.11 9.29 -3.28 -9.21 -6.47 -1.84
SAP-3 C4 93.7 30.14 10.02 -4.43 -10.41 -7.83 -1.47

SAP-2b C4 79.7 26.12 8.80 -3.39 -9.13 -7.12 -2.02
SAP-1 C4 77.2 23.71 7.58 -4.23 -11.23 -8.00 -2.02
SAP-2 C4 71.7 18.89 7.82 -4.51 -11.08 -8.21 -1.75
ADS-6 C4 62.6 16.48 7.09 -3.76 -10.86 -6.41 -1.65
ADS-7 C4 61.4 19.69 5.87 -3.16 -7.19 -8.09 -2.30
ADPM C4 68.7 20.50 6.85 -3.96 -8.83 -7.53 -1.47
ADPW C4 72.4 21.70 6.85 -4.41 -10.93 -5.06 -0.18
ADPQ C4 65.1 14.87 8.31 -4.19 -10.48 -6.89 -1.29
ADS-4 C4 49.8 7.64 5.87 -4.64 -9.58 -7.65 -0.92
ADS-2 C4 54.7 11.66 6.36 -4.37 -4.19 -7.95 0.00
ADPR C4 62.6 13.67 7.58 -4.62 -7.71 -7.48 -0.37

. Total released or depleted concentration for non-conservative tracers due 
to geochemical processes.



Table S6. Evaluation of depleted dissolved sulphate due to the occurrence of sulphate 

reduction in selected groundwater samples for Besòs River Delta ( 34SSO4= -30 ‰.). 

Note that the difference between residual and initial values of 34SSO4 is the  34SSO4

and [SO4
2-]f  and [SO4

2-]i  are the final and initial dissolved sulphate concentrations in 

groundwater samples. 
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