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Chapter 1

Introduction

The discovery of the cosmic acceleration is one most important developments
of modern cosmology. It raises fundamental questions about the expanding
universe and our understanding of gravity. The cosmic acceleration could
arise from the repulsive gravity of dark energy or it may signal that the
General Relativity breaks down on cosmological scales and must be replaced.
The dark energy term is used for the Einstein’s cosmological constant Λ or
a component of the universe that varies slowly with time and space and acts
like Λ.

The most direct evidence for detection of dark energy comes from obser-
vations of supernovae in 1998. The measurements agree with the relativistic
cosmological model with non zero Λ and no space curvature. While the
dark energy density ΩΛ has been determined to a precision of a few percent,
study its nature by measuring its equation of state parameter, w, is more
challenging.

The primary effect of dark energy is on the expansion rate of the universe;
this affects the redshift distance relation and the growth of structure. While
dark energy has been important at recent epochs, we expect that its effects at
high redshift were very small, since otherwise it would have been di�cult to
large scale structure to have formed in most models (Frieman et al. (2008)).

Apart from the distance measurements using type Ia supernovae, there
are other methods that probes dark energy at recent epoch: the weak gravita-
tional lensing of the matter distribution, the galaxy power spectrum studies
and the galaxy clusters surveys. A task for scientifics is to construct more
sensitive new experiments that employ each of these techniques individually
to provide tight and independent constraints on the dark energy equation of
state, w.

We will focus on the cluster of galaxies which are the largest virialized
objects in the universe. The evolution of their abundance has long been rec-
ognized as powerful tool for constraining cosmological parameters, including
dark energy (e.g., Eke et al. (1996) and Haiman et al. (2001)).
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2 Chapter 1. Introduction

The idea is to compare the predicted space density of massive halos to
the observed space density of clusters, which can be identified via optical,
X-ray, or CMB observables that should correlate with halo mass. But this
mass estimators are noisy, meaning there can be significant scatter between
the observable mass tracer and cluster mass. Since the mass function is
a steeply declining function of mass, a low level of scatter can change the
shape and amplitude of the observed mass function significantly and degrades
the cosmological constraints. Uppscattering of low mass systems into high
mass bins can results in a significant boost to the number of systems with
apparently high mass (Lima and Hu (2005)).

Scatter arises from physical variations in cluster properties at fixed halo
mass, from observational noise, and from low level contamination that pro-
duces small random �uctuations in the observable. These effects are typically
assume to produce a lognormal form of P (XjM, z), i.e. Gaussian scatter in
lnM . The calibration task is then to determine the mean scaling relation
and the standard deviation σlnM called the scatter.

In previous studies, Rozo et al. (2009) constrain the scatter in the mass
richness relation at fixed richness of maxBCG cluster sample with weak
lensing, optical richness estimates and X ray data. Specifically, they use
observational constraints on the mean mass richness relation and the X-ray
measurement of the mean and scatter of the X-ray luminosity as a function
of richness.

In the next few years, a host of large scale optical surveys, such as Dark
Energy Survey (DES) (The Dark Energy Survey Collaboration (2005), the
Hyper-Suprime Camera (HSC)(Miyazaki et al. (2006), Takada (2010)) and
the Large Synoptic Survey Telescope (LSST) ((LSST Science Collaboration
et al. (2009)), are expected to generate galaxy catalogs to su�ciently depth
to reliable detect galaxies at redshift as high as z � 1. Oguri and Takada
(2011) study how these surveys in conjunction with stacked weak lensing
mass calibration, can be used to calibrate the mass observable relation and
the scatter and place tight constraints on the cosmological parameters (self
calibration method).

In this thesis, we present a cross check method, complementary to pre-
vious, to constrain the scatter of the mass richness relation in the DES
large optical cluster catalog. We will use the spatial clustering of the cluster
themselves, as characterized by the cluster correlation function (Estrada et
al. (2009)). Because the bias of halo clustering depend on mass, the am-
plitude and the scale dependence of clustering provides information about
the mass observable relation (Majumdar and Mohr (2004)). However, in our
scales of interest the underlying halo-mass bias is scale-independent.

The halo model (Cooray and Sheth (2002a) provides an analytical ex-
pression for the bias of halos as a function of halo mass. Then, in order to
model the bias for a sample of clusters we need to relate the mass to an easily
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observable quantity. In our case we model the bias for a richness threshold.
Doing this requires a halo occupation distribution (HOD), where the number
of galaxies is specified by the probability distribution P (N jM). In particular
, we use a lognormal distribution with a mean given by an empirical mass
richness relation and the standard deviation or scatter, σlnM . To constrain
the scatter in simulations we assign richness to the dark matter halos of the
light cone by means of this distribution.

In this thesis, first we will study how the halos are biased respect to
the underlying matter distribution using the halo model. It describes the
clustering of dark matter halos and the halo abundances. Theoretical models
for halo bias have been derived from the mass function (e.g., Mo and White
(1996) and Sheth and Tormen (1999)). Sheth and Tormen (1999) generalize
the expression for the Press-Schechter mass function and calibrated the free
parameters using numerical simulations. Later, Tinker et al. (2010), using
higher resolution N-body simulations, also calibrate fitting functions for the
large scale bias. In this thesis we study the accuracy of these models using
dark matter halo simulations. In particular, we use the DESv1.02 light cone
based on the Hubble Volume Simulations SO light cone (Evrard et al. (2002))
that has 5000 deg2 (DES volume).

Then as we explain before we assign richness to the dark matter halos
and study the expected precision to measure the scatter in a DES-like cluster
survey.

This thesis is organized as follows. In Chapter 2 we present the seeds of
modern observational cosmology (i.e., brief introduction to basic cosmology).
We review the Friedmann-Robertson-Walker cosmology and the definition of
the different cosmological lengths. In Chapter 3 we describe the clusters as
cosmological probes. We explain the importance of the calibration of the
mass observable relation with special emphasis on the scatter as a key chal-
lenge in extracting precise cosmological constraints. In Chapter 4 we intro-
duce the Dark Energy Survey and the instrument. We summarize the four
proposed techniques for probing dark energy, focusing on galaxy clusters and
their systematics effects such as the scatter. In Chapter 5 we brie�y sum-
marize some of the results which are more relevant for describing structure
formation quantitatively in the ΛCDM paradigm. This is intended to form
the basis for subsequent chapters, where we will analyze the measurements
of the dark matter halos and galaxy clusters distribution. In Chapter 6 we
study the models for the abundance of dark matter halos. After we explain
the spherical collapse model, we introduce the more accurate calibrated for-
mulas or fitting formulas from N-body simulations. Finally, we test them in
N-body simulations. In Chapter 7 we study the accuracy of the model predic-
tions of the linear halo bias by comparing them with results from numerical
simulation. To conclude in Chapter 8 we propose a model that connect the
halo bias with the bias that is observed in a cluster sample. We explain
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our method to constrain the scatter in the mass richness relation for optical
surveys using the bias measured with cluster correlation functions. We finish
with the forecasts of the performance of the new analysis technique for the
Dark Energy Survey galaxy cluster catalog. We end with a summary and
conclusions in Chapter 9.

The thesis also includes three appendices. The appendix A describes the
work performed on the focal plane detectors for DECam. The appendix B
includes a discussion of the profile of dark matter halos and the C summarizes
the different studies about the behavior of different the two point correlation
function and discuss why the LS is the best option.



Chapter 2

Cosmological Preliminaries

Abstract: This chapter is a brief review of the current cosmological
model and the relevant equations for the remainder of the thesis. First
we present the seeds of modern observational cosmology. We then
introduce the FRW models and the solutions for energy fluids playing
an important role in the dynamics at different epochs. We finish with
a definition of the different cosmological lengths.

2.1 The Smooth, Expanding Universe

2.1.1 Hubble's Law

Hubble’s law was formulated in 1929 by Edwin Hubble when he observed
that galaxies move away from us at velocities, v(t), that are proportional to
their distance from us, d (Hubble (1929))

v(t) = H(t)d =
ȧ

a
d (2.1)

where H(t) is the Hubble parameter, which measures how rapidly the scale
factor changes. For nearby galaxies and for present epoch

v = H0d (2.2)

where H0 is the Hubble constant at current time t0. The dimensions of H0

are inverse time1, but it is usually written

H0 = 100h kms−1Mpc−1 (2.3)

11Mpc = 3.09× 1024 cm = 3.26× 106 light years

5



6 Chapter 2. Cosmological Preliminaries

where h is a dimensionless number that parameterizes the uncertainty on
H. The reciprocal of H0 is Hubble time and the speed of light c times the
Hubble time is the Hubble distance DH

DH �
c

H0
= 3000h−1Mpc (2.4)

The Hubble diagram (Figure 2.1) is still the most direct evidence we have
that the universe is expanding.

Figure 2.1: The Hubble Diagram (Hubble (1929). Velocities of distant galax-
ies are plotted versus distance. The solid line is the best fit to the filled points
which are corrected from the sun’s motion.

2.1.2 Redshift

If the universe is expanding, then galaxies should be moving away from each
other. We should therefore see galaxies receding from us. We do not observe
directly the recession velocity of a galaxy, but the changes in the spectra.
Because the Doppler, the light emitted from receding galaxies with frequency
νe arrives to us with lower frequency ν0. The observed shift of the frequency
(or wavelength) of the spectra is described by a parameter z called redshift:

z + 1 � λ0

λe
(2.5)
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For low redshifts, or small v/c, in the standard Doppler formula applies and

z � v

c
(2.6)

So a measurement of the amount by which absorption and/or emission lines
are redshifted is a direct measurement of how fast the structures in which
they reside are receding from us.
In terms of cosmography, also for small velocities or small changes in fre-
quencies

1 + z =
1
a

(2.7)

Thus, we will use this expression to determine the scale factor at the moment
the light was emitted.

2.2 Theoretical Framework

The Friedmann-Robertson-Walker (FRW) cosmological model provides the
context for interpreting the observational evidence for the acceleration of the
universe as well as the framework for understanding how cosmological probes
in the future will help uncover the cause of acceleration by determining the
history of the cosmic expansion with greater precision.

It consist in two ingredients, the geometry of the curved space (its metric)
and the assumptions about the physical content of the Universe. Therefore,
we will be familiar with the concept of metric, understand geodesic, and be
able to apply Einstein equations to the FRW metric thereby relating the
parameters in the metric to the density of the universe.

Note that we will follow the standard practice of using units in which the
speed of light c = 1.

2.2.1 The Metric

The metric turns coordinate distance into physical distance and so will be
an essential tool to make quantitative predictions in a expanding universe.

The space time metric plays a fundamental role in relativity. It turns
observer-dependent coordinates into invariants

ds2 =
3∑
µν

gµνdx
µdxν (2.8)

where ds is the distance between two nearby points (events) with coordinates
x̄ and x̄+ dx̄ and gµν is the metric tensor. The indices µ and ν range from
0 to 3, with the first one reserve for the time coordinate (dx0 = dt) and
the last three for spatial coordinates. Therefore, the metric gµν provides the
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connection between values of the coordinates and the more physical measure
of the interval ds2.

The great advantage of the metric is that it incorporates gravity. We
can include gravity in the metric and talk about particles moving freely in
a distorted or curved space time. How the metric depends of the position is
determined by the distribution of matter and energy in the Universe.

From the large scale distribution of galaxies and the near-uniformity of
the CMB temperature, we have good evidence that the universe is nearly
homogeneous and isotropic. Under this assumption, the space time metric
can be written in the FRW form in terms of the expansion of the universe,
or the scale factor a(t),

ds2 = dt2 � a(t)2
( dr2

1� kr2
+ r2dθ2 + r2sin2θd2φ

)
(2.9)

where r, θ and φ are comoving spatial coordinates and t is time. The quantity
k is the curvature of the Universe which is measured to be very close to zero
(Komatsu et al. (2011)).

It will be useful to rewrite the last equation in terms of a new distance
coordinate, χ, called comoving distance. If

dχ =
drp

1� kr2
(2.10)

we obtain

ds2 = dt2 � a(t)2[dχ2 + f2
k (χ)(dθ2 + sin2θdφ2)] (2.11)

where

fk =


sinχ k = +1 spherical or closed
χ k = 0 Euclidean or flat
sinhχ k = �1 hyperbolic or open

The symmetries of the Universe have reduced to a single function of time,
the scale factor a(t), and a curvature parameter k.

At least, in a �at Universe (k = 0), the metric is almost identical to
the Minkowski metric, except that distance must be multiplied by the scale
factor. Therefore, the metric in a expanding, �at Universe is

gµν =


�1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)


To summarize, the smooth universe can be describe with the FRW metric,
which implies that physical distances are related to comoving distance with
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Figure 2.2: From bottom to top: �at, spherical and hyperbolic curvature of
a 2D plane.

the time dependent scale factor a(t). Therefore, the comoving distance,
χ remains fixed as the universe expands and the physical distance, x grows
simply because of the expansion and is proportional to the scale factor x = aχ
(see Section 2.3 for more definitions of comoving distances).

2.2.2 Einstein Equations

To determine the evolution of the scale factor a(t) we need to use the Einstein
equation

Gµν = 8πGTµν (2.12)

This relates the metric to the matter and energy of the universe, how the
space-time Gµν of the FRW Universe is curved by the presence of matter
and energy Tµν . Here Gµν is the Einstein tensor which is formed from the
metric tensor gµν , which depends on the metric and its derivatives, G is the
Newton constant; and Tµν is the energy-momentum tensor that describes
the physical content of the universe.

First we will discuss possible forms of the cosmological energy-momentum
tensors Tµν and then using the Einstein tensor Gµν for the FRW background
we solve the evolution of the scale factor as a function of the matter content.
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2.2.3 Evolution of the Energy

The conservation laws for the energy-momentum tensors Tµν in general rel-
ativity implies the vanishing of the covariant derivative. Therefore, in a
expanding universe, the continuity equation reads (Dodelson (2003))

ρ̇ = �3
ȧ

a
(p+ ρ) (2.13)

Rearranging terms, for each component the conservation of energy is ex-
pressed by

d(a3ρi) = �pida2 (2.14)

analogue of the first law of the thermodynamic, dE = �pdV .
The conservation law can be applied immediately to glean information

about the scaling relation of both matter and radiation with the expansion.
Once the equation of state, wi � pi

ρi
, is specified for each energy component

of the universe, the evolution of the energy density can be predicted.
For the general case, wi varies with time, and the evolution of the energy
density in a given component is given by,

ρi / exp
[
3
∫ z

o
[1 + wi(z′)]dln(1 + z′)

]
(2.15)

In the case of constant wi,

ρi / (1 + z)3(1+wi) (2.16)

2.2.3.1 Cosmic Inventory

Since the Universe is a mixture of different components, here we will classify
the different sources by their contribution to the pressure.

Non relativistic matter, which includes both dark matter and baryons,
has effectively zero pressure, so wm = 0 and

ρm / (1 + z)3 (2.17)

For radiation, i.e. relativistic particles, p = ρ/3 so wr = 1
3 and the

energy density of radiation

ρr / (1 + z)4 (2.18)

Dark energy
There is evidence pointing toward the existence of something beyond the

matter and radiation described before. They are not enough to describe the
evolution of the universe.

Observations made by two teams (Riess et al. (1998), Perlmutter et al.
(1999)) revealed that distant supernovae appear fainter than they should
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given a purely matter dominated expansion, suggesting that the Universe
has entered an epoch of accelerated expansion. In order to explain these
observations, we are required to introduce a late-time acceleration into our
cosmological model in the form of a cosmological constant Λ (see Figure 2.3).
When analyzed assuming a Universe with matter and cosmological constant,
their results provided evidence for ΩΛ > 0 at greater than 99% confidence
(Frieman et al. (2008)).

Figure 2.3: Hubble diagram of SNe Ia measured by the Supernova Cosmology
Project and the High-z Supernova Team. Bottom panel shows residuals in
distance modulus relative to an open universe with ΩM = 0.3. Figure based
on Riess et al. (1998), Perlmutter et al. (1999).

For dark energy, the only way to satisfy Equation 2.13 with constant
energy density is if the pressure is equal to �ρ. So w = �1. For other model
of dark energy, w can differ from -1 and vary in time.

Einstein first introduced a cosmological constant term Λ into his field
equations in 1917 to achieve a static Universe. He later removed it when
Hubble observed that the Universe is expanding, since it was no longer re-
quired. In recent years however, Λ has been re-introduced into the field
equations to accommodate the accelerated expansion. It is by far the sim-
plest model that can be constructed to explain current observations and is
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obtained by adding a cosmological constant term Λ to the Einstein de-Sitter
matter model. The left hand side of the Equation 2.12 isn’t uniquely de-
fined. We can add the term �Λgνµ, for some constant Λ, without changing
the conservation of the stress tensor, rνTνµ = 0. In other words, we could
have written the Einstein equation as

Gµν � Λgµν = 8πGTµν (2.19)

The failure of quantum field theory to explain the size of the observed
dark energy has lead theorist to consider more exotic possibilities.

Until now, we have only considered models that contain an additional
term in the stress-energy tensor which have the properties required to ac-
count for the late-time acceleration of the Universe. An interesting alter-
native approach is to modify the geometrical part of the Einstein equation
(modifications of general relativity).

2.2.4 Friedmann Equations

The key equation of cosmology are the Friedmann equations, the field equa-
tions of general relativity (Equation 2.12) for the FRW metric (Equation
2.9) combined with energy-momentum tensor,

H2 =
( ȧ
a

)
2 =

8πGρ
3
� k

a2
(2.20)

ä

a
= �4πG

3
(ρ+ 3p) (2.21)

where ρ is the total energy density of the universe and p is the total pressure
(sum of pressures of each component).

In a FRW background and using the modified form of Einstein’s Equa-
tions 2.19 the Friedmann equations are given by:

H2 =
( ȧ
a

)
2 =

8πGρ
3
� k

a2
+

Λ
3

(2.22)

ä

a
= �4πG

3
(ρ+ 3p) +

Λ
3

(2.23)

In this model, after the matter dominated era, we will enter a dark energy
dominated era.

2.2.5 The Matter Budget Today

In order to know the past and future evolution of the Universe, it would
be enough to measure the present density of radiation, matter and Λ, and
also to measure H0, the Hubble constant. Then, thanks to the Friedmann
equation (2.22), it would be possible to extrapolate a(t) at any time.
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The critical density ρc(z) is defined as the density required to produce
zero spatial curvature (k=0). In that case the total density of matter, radi-
ation and Λ is equal at any time to the critical density

ρc(z) =
3H2(z)

8πG
(2.24)

The present value of the critical density is

ρc,0 �
3H0

2

8πG
= 2.78h−11011M�(h−1Mpc)−3 = 1.88h210−26kgm−3 (2.25)

The density of different forms of energy density can then be written in
units of this critical density today

Ωi,0 �
ρi,0
ρc,0

=
8πG

3
ρi,0 (2.26)

and
ΩΛ =

Λ
3H0

2
(2.27)

The Friedman equation, 2.22, can then be written,

H2 = H2
0

[
Ωr,0a

−4 + Ωm,0a
−3 � k

H2
0

a−2 + ΩΛ,0

]
(2.28)

where we can define the curvature density parameter

Ωk =
k

H2
0

(2.29)

At redshsit z = 0, the equation 2.28 is

1 =
[
Ωr,0 + Ωm,0 �

k

H2
0

+ ΩΛ,0

]
(2.30)

The equation for the evolution of the scale factor a(t), the Friedmann
equation 2.22 is rewrite for constant wi

H2 = H0
2
[ N∑
i=0

Ωi,0a
−3(1+wi) + Ωka

−2 + ΩΛ] (2.31)

Thus, knowing the energy content of the universe, you can get the time
evolution.

Observations of the cosmic microwave background (add reference) and
the large scale structure find that the universe is consistent with being �at.
Figure 2.4 shows the time evolution of the different energy densities for a
�at universe, how the different terms in Equation 2.22 vary with the scale
factor. While today matter, and possibly cosmological constant dominate the
universe, early on, radiation was the dominant constituent of the universe.
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Figure 2.4: Energy density versus scale factor for different constituents of a
�at Universe (Dodelson (2003)).

2.3 Distances Measures in Cosmology

One very important comoving distance is the comoving horizon defined
as the total portion of the universe visible to the observer. In other words,
the distance that light could have traveled (in the absence of interactions)
since t = 0. This is usually expressed as a time, the conformal time, η. If
light travel a comoving distance, it is given by

η �
∫ t

0

dt′

a(t′)
(2.32)

where dη = dx/a = ct/a (c = 1) and dx is the physical distance.
The regions of the sky that are separated by a distance greater that η

are not causally connected. The causally connection implies ds2 = 0. For
the FRW Equation 2.9, in spherical coordinates with θ and φ constants:

χ =
∫ r

0

dµ√
1� kµ2

=
∫ t0

t(a)

dt′

a(t′)
=
∫ 1

a

da′

a′2H(a′)
(2.33)

which is the distance between a distant emitter and us in which the expansion
of the universe is factored out, which is called the line of sight comoving
distance. We have change the integration over t’ to one over z’ using H =
( ȧa)2) and z = 1/(a� 1).
Let us introduce now the normalized Hubble function E(z) by

H(z) = E(z)H0 (2.34)
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Using Equation 2.7 and 2.20 with constant wi

E(z) �
√

Ωr(1 + z)4 + ΩM (1 + z)3 + Ωk(1 + z)2 + ΩΛ(1 + z)3(1+wi)

(2.35)
and the equation 2.33

χ =
∫ z

0

dz′

H(z)
(2.36)

Note that this comoving distance χ depends of the matter and energy
density of the Universe. The current contribution of the species to the total
energy density, as measured from the Cosmic Microwave Background, is
� 10−4 times smaller than that of matter ad dark energy. Consequently the
radiation term Ωr is often neglected.

χ is is the fundamental distance measure in cosmography since, all others
are quite derived in terms of it. Now the causal or particle horizon,dH
is given by:

dH = a(t)χ (2.37)

The comoving distance between two events at the same redshift or dis-
tance but separated on the sky by some angle δθ is χδθ and the transverse
comoving distance DM is simply related to the line of sight comoving
distance χ (Hogg (1999))

DM =


c
H0

1√
Ωk
sinh[

p
Ωkχ

H0
c ] k = +1

χ k = 0
c
H0

1p
|Ωk|

sin[
√
j Ωk jχH0

c k = �1

The angular diameter distance dA is defined as the ratio of an ob-
ject’s physical transverse size l to its angular size θ. It is used to convert
angular separations in telescope images into proper separations at the source.
Assuming that the angle is small, it is given by

dA =
l

θ
(2.38)

In the �at Friedman Universe it is related to the transverse comoving distance
by

dA =
DM

1 + z
(2.39)

Another way of inferring distance in astronomy is to measure the �ux F
from an object of known absolute luminosity L (�standard candle�). Flux
and luminosity are related through

F � L

4πd2
(2.40)



16 Chapter 2. Cosmological Preliminaries

Figure 2.5: Geometry associated with the definition of angular diameter
distance (D=l for Equation 2.38)

since the total luminosity through a spherical shell with area 4πd2 is constant.
Because of expansion, the energy per unit time passing through a comoving
shell a distance χ(a) from the source will be a factor of a2 smaller than the
luminosity at the source. Then the �ux we observe will be

F =
La2

4πχ2(a)
(2.41)

where L is the luminosity at the source. We can keep Equation 2.40 in an
expanding universe as long as we define the luminosity distance in a �at
universe

dL �
χ

a
(2.42)

Figure 2.7 shows the redshift dependence of the three distance measures
dm or χ, dL and dA. Note that all three distances are larger in a universe with
dark energy (in a form of a cosmological constant Λ) than in one without.
As we explain before, this fact was employed in the discovery of dark energy.
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Figure 2.6: Geometry associated with the definition of luminosity distance

Figure 2.7: Distances measures in a �at Universe (Dodelson (2003)), with
matter only (dotted lines) and with 70% dark energy (solid lines). In a dark
energy dominated universe, distances out to a fixed redshift are larger than
in matter universe.





Chapter 3

Cluster as Probes of Cosmic
Acceleration

Abstract: After an introduction to galaxy cluster we describe the
clusters as cosmological probes. We explain the importance of the cali-
bration of the mass observable relation as a key challenge in extracting
precise cosmological constraints. We emphasize in the scatter of the
mass observable relation. Finally, we will summarize the observational
techniques to measure the mass of the clusters, in particular in the
optical observable.

3.1 Clusters

Clusters of galaxies play an important role in observational cosmology. They
are the most massive gravitationally bound structures in the Universe and
therefore mark the most prominent density peaks of the large scale struc-
ture. Originally, clusters were characterized as such by the observed spatial
concentrations of galaxies. Today, we know that although the galaxies de-
termine the optical appearance of a cluster, the mass contained in galaxies
contributes only a small fraction to the total mass of a cluster. It was dis-
covered that galaxy clusters are intense sources of X-ray radiation which
is emitted by a hot gas located between galaxies. This intergalactic gas
(inter-cluster medium, ICM) contains more baryons than the stars seen in
the member galaxies.

Typical galaxy clusters posses masses of the order of 1014M� and radio
of � 2Mpc. The mass of the clusters consist of � 3% contributions from
stars in galaxies and � 15% from intergalactic gas, whereas the remaining
� 80% consist of dark matter which dominates the mass of the clusters. We
deduce the existence of dark matter in galaxy clusters that dominates the

19
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cluster mass from the dynamics of galaxies, from the properties of the X-ray
emission of the clusters, and from the gravitational lens effect (Schneider
(2006)).

The formation of galaxy clusters involves several steps, starting from the
collapse of dark matter halos, followed by the occupation of such haloes
by baryons and the formation of galaxies. Once formed, they are driven
again by gravity and merge to compose the largest structures that can be
approximately considered in virial equilibrium. Small sub-galactic objects
are first to decouple, collapse a virialize. These small objects then collect
into galaxies, and galaxies later collect into clusters of galaxies, whose masses
now top out at roughly 1014 times that of the sun’s. Thus, the growth and
development of clusters directly traces the process of structure formation in
the universe.

Clusters of galaxies are also the largest astrophysical laboratories in the
Universe. Halos are multicomponent systems consisting of dark matter and
baryons in several phases:black holes; stars; cold, molecular gas; warm/hot
gas; and non-thermal plasma. The merging process is of considerable interest
for cluster studies, driving astrophysical signatures that can test physicals
models from the nature of dark matter to the magnetohydrodynamics of hot,
dilute plasmas. But, merging also potentially confuses cosmological studies,
by creating halo pairs that may appear as one cluster in projection and by
introducing variance into observable signals (Allen et al. (2011)).

Therefore, various astrophysical processes play out within the photon-
baryon components of the evolving cosmic web, including hydrodynamic,
magnetohydrodynamics and radiative transfer effects. Except for the imme-
diate vicinity of the black holes, these processes involve classical physics that
is largely known (Allen et al. (2011)).

On the theory side, modeling the development of galaxies and the ICM
medium within a cosmological framework of hierarchical clustering poses a
formidable task. Although the physical processes are now firmly in hand,
the complex, nonlinear interactions that govern their time evolution are an-
alytically intractable. After decades of study via N-body and hydrodynamic
simulations and related methods (see Borgani and Kravtsov (2009)), models
for the detailed evolution of the baryons in clusters are growing in capability
to describe an increasingly large and rich volume of observations.

Hydrodynamics simulations are computationally expensive and they still
have many discrepancies with data. This leads to the necessity to implement
semi-analytic or empirical models(Baugh (2013)). As we will see in Chapter
8, in this thesis we will populate dark matter halos with galaxies with an
empirical model of Halo Occupation Distribution (HOD). Then, the number
of galaxies will be specified by HOD or the probability distribution P (N jM)
for a a halo of fixed virial mass M contains N galaxies. We will combine
cosmological N-body simulations and an optical cluster richness mass relation
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based on optical observations (see Section 3.4.1.2) for the construction of our
cluster catalogs. We will implement empirical models, which in our case of
galaxy clusters refers to the richness mass relation, such that the the mock
catalogues match the observed properties of these objects.

Figure 3.1: Left panel: composite X-ray/optical image of the galaxy cluster
Abell 1689, located at redshift z = 0.18. The map shows an area of 556 kpc on
a side. The purple diffuse halo shows the distribution of gas at a temperature
of about 108 K, as revealed by the Chandra X-ray Observatory. Images
of galaxies in the optical band, colored in yellow, are from observations
performed with the Hubble Space Telescope. The long arcs in the optical
image are caused by gravitational lensing of background galaxies by matter in
the galaxy cluster, the largest system of such arcs ever found (Credit:X-ray:
NASA/CXC/MIT; Optical: NASA/STScI). Right panel: optical image of
cluster Abell 1914 from the Sloan Digital Sky Survey with the superimposed
map of the temperatures of the Cosmic Microwave Background observed
by the Sunyaev-Zeldovich array (SZA). The image illustrates the effect of
up-scattering of the CMB photons by the hot ICM from low frequencies
to higher frequencies. At the frequency of observation, the cluster appears
as a temperature decrement in the CMB temperature map. (Credit: John
Carlstrom and SZA collaboration).

3.2 Clusters as Cosmological Probes

Cluster of galaxies have a long history as cosmological probes (Weinberg.
et al. (2013)). They provide the first line of evidence for the existence of
dark matter (Zwicky (1933)), and cluster mass-to-light ratio measurements
suggested that the matter density of the universe was subcritical (Ωm < 1)
as far as the early 1970’s (Gott et al. (1974)).
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The evidence for low Ωm was substantially strengthened by baryon frac-
tion measurements (e.g., Briel et al. (1992)), and by the discovery of massive
clusters at high redshift (z � 0.8) later that decade (Donahue. et al. (1998)).
This last discovery presaged the ultimate discovery of dark energy from Type
Ia supernova (SNIa) surveys .

Today, clusters remain an important cosmological tool, capable of testing
cosmology in a variety of ways. Here we focus on cluster abundances, the
clustering of cluster and weak lensing. In these studies is very important
understanding the systematics effects associated with the use of directly
observable quantities as proxies for mass. In Chapter 6 and 7 will study the
halo abundance and clustering of halos respectively and later we will connect
them with cluster observable, X.

The abundance of clusters of galaxies is now well established as a stan-
dard cosmological probe. It is sensitive to the amplitude of the matter power
spectrum σ8 (see definition in detail in Section 5.4.3), the matter density Ωm

and the comoving volume element dV .
The mean matter content of a sphere of radius 8h−1Mpc is � 2�1014M�.

Thus, cluster-mass halos form from the gravitational collapse of �uctuations
of about this scale, and their abundance naturally tracks σ8 (i.e., Eke et al.
(1996)).

The quantity most tightly constrained by cluster abundance is a combi-
nation of the form σ8Ωq

m, with q � 0.4 (White et al. (1993)). This degeneracy
between σ8 and Ωm can be broken in many ways. First, one can simply mea-
sure Ωm or σ8 in some other way. Second, one can measure the evolution
of the cluster mass function over a range of masses and rely on a precise
measurement on the mass function’s shape assuming that the CDM power
spectrum (see section 5.3) is valid. Or, third, one can measure the evolution
of the cluster mass function with redshift, which is highly sensitive to Ωm.
This last quantity can be extracted from large solid angle surveys that de-
liver tens of thousands of clusters. Notice that the statistical power of cluster
surveys is ultimate limited by the total number of clusters in the observable
universe, which is of order of 105 (Voit (2005)).

3.2.1 Evolution of the Cluster Mass function and Clustering
of Clusters in Large Area Cluster Surveys

Within the context of the CDM paradigm, the number density of cluster-
sized dark matter halos as a function of redshift and halo mass can be ac-
curately predicted from N-body simulations (e.g., Jenkins et al. (2001) and
Tinker et al. (2008)). Comparing these predictions to large-area cluster sur-
veys that extend to high redshift (z � 1) can provide precise constraints on
the cosmic expansion history (Haiman et al. (2001)).

For a given cluster sample we can measure the number of clusters dN
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within a given solid angle dΩ and a redshift interval [z, z + dz] that fall into
the range [X,X + dX] of the observable. With full knowledge of the mass
observable relation P (XjM, z) as a function of redshift z and the selection
function f(X, z) we can derive the redshift distribution

d2N(z)
dΩdz

=
1

H(z)

(∫ z

0
dz′

1
H(z′)

)2 ∫ ∞
0

f(X, z)dX
∫ ∞

0
dM

dn(M, z)
dM

P (XjM, z)

(3.1)
This evolution of clusters with redshift would then provide strong con-

straints on cosmological models through both the comoving volume factor
d2V/dΩdz and the mass function evolution factor dn

dM . The volume surveyed
is the first term multiplying the integral in Equation 3.1)

Evolution of mass function is high sensitive to cosmology because the
matter density controls the rate at which structure grows. As we will see in
Chapter 6, the evolution of the mass function is controlled entirely by the
growth function D(z), which is well defined function of Ωm, ΩΛ and w. The
effect of how change the growth factor manifest itself most strongly in high-
mass clusters because they are the latest objects to form in a hierarchical
cosmology with CDM power spectrum (Eke et al. (1996)).

Dependence on the mass function on ΩΛ and w is a little more subtle.
Haiman et al. (2001) showed that with future large surveys it should be
possible to obtain precise measurements of the amount ΩΛ and w. These
parameters affect mass function evolution by altering the redshift at which
Ωm(z) departs significantly from unity for a given value of Ωm at z = 0. The
time at which dark energy begins to dominate the dynamics of the universe
is later for both larger values of ΩΛ and smaller (more negative) values of
w, leading to greater evolution of the mass function between z = 1 and the
present (e.g., Battye and Weller (2003)).

The sensitivity of the cluster redshift distribution to w for the South Pole
Telescope (Ruhl et al. (2004)) and the Dark Energy Survey (see Chapter 4)
is illustrated in Figure 3.2 for 3 �at cosmologies with fixed Ωm = 0.3 and
σ8 = 0.9 (Mohr (2005)). Three redshift distribution for Sunyaev Zeldovich
effect (SZ effect) cluster survey are shown; each correspond to a different
value of w. The volume sensitivity dominates at intermediate redshift z <
0.6, and the growth rate sensitivity dominates at high redshift, z > 0.6. Note
that for models with higher w there is less volume, reducing the number of
clusters at z = 0.6, and structures grows less rapidly, increasing the number
of clusters at higher redshift.

For large solid angle cluster surveys, there are additional observables
including the spatial two-point correlation function of clusters (autocorrela-
tion function) and their Fourier transform, the power spectrum, which we
explain in detail in Section 5.4. The strong cluster correlation (Bahcall and
Soneira (1983)) was the first to reveal the universe of large scale structures
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Figure 3.2: The expected redshift distribution (top) and quantified differ-
ences (bottom) for models where only the dark energy equation of state
parameter w is varied. These models are all normalized to produce the same
local abundance of galaxy clusters. Lower panel shows differences between
the models relative to the statistical errors (Mohr (2005)).

to � 50h−1Mpc or more.
Galaxy clusters, like other cosmic objects, act as tracers of the underly-

ing dark matter. The exact relationship between the cluster autocorrelation
function and the dark matter autocorrelation function is well understood
theoretically (e.g., Mo and White (1996)), and this relationship or biasing is
function of cluster mass. Thus, measurements of the cluster correlation func-
tion provide important additional information about cosmology and cluster
masses.

Finally direct measurements through weak lensing provide important ad-
ditional leverage on cosmology on cluster masses.

Combination of these observables (clustering and abundances) and the
weak lensing method will be discussed below (see next Section 3.2.2).

3.2.1.1 Additional Cosmological Information from Clustering

Here we will brie�y describe some techniques that provide cosmological in-
formation with the clustering of clusters although these are beyond the scope
of this thesis.

The broadband shape of the power spectrum is sensitive to the shape
parameter Γ = Ωmh (see Section 5.2.3.1), and thus is useful to establish
the currently favored low matter density concordance model, as well as the
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amount of baryons in relation to the total matter fb = Ωb
Ωm

. .
In addition to the precise measurement of the fullshape of the two point

correlation function and the power spectrum , the spatial distribution of
clusters can be employed in a simpler way by using the baryonic acoustic os-
cillation (BAO) signature as a probe of cosmic distance (see Section 5.2.3.1).
Estrada et al. (2009) and Hütsi (2007) respectively analyzed the correlation
function and power spectrum of clusters in the optically selected maxBCG
catalog (see Section 3.4.1), finding a weak detection of the BAO peak. Re-
cently, Balaguera-Antolínez et al. (2011) found no significant signal of the
peak in the smaller X-ray selected REFLEX II power spectrum.

3.2.2 Calibration of the Mass Observable Relation. Self Cal-
ibration

Testing cosmology with the evolution of the cluster abundance requires that
the theoretical mass function be transformed via the observable mass scaling
relation, P (XjM, z), and a model of the selection process for distribution of
clusters in the space of survey observables, f(X, z) (e.g., X-ray �ux and
redshifts).

In addition to form and calibration of the core of the mass observable
relation and the determination of the selection function, we can identify sev-
eral sources of potential systematics uncertainties: errors in cluster redshift,
incompleteness and purity (see Section 3.4.1) and the theoretical predictions
of the mass function, dn(z)

dM . Here we will focus in the calibration of the scal-
ing relation although we will also study the theoretical predictions in detail
in next chapters.

The goal is to characterize the observable mass relation P (XjM, z). Pop-
ular choices of such observables include X-ray luminosities (e.g., Reiprich and
Böhringer (2002), Mantz et al. (2008) and Rykoff et al. (2008)), X-ray tem-
peratures (e.g.,Finoguenov et al. (2001)), optical richness and weak lensing
shear (e.g., Johnston et al. (2007), Rykoff et al. (2008), Leauthaud et al.
(2010) and Oguri and Takada (2011)) or the Sunyaev-Zel’dovich (SZ) effect
(e.g., Bonamente et al. (2008)). In Section 3.4 we will explain more in detail
the observables properties of clusters that enables us to measure their masses
and the scaling relations. Since we are interested more in photometric cluster
surveys, we will describe more in detail the optical properties and the red
sequence method to detect clusters.

P (XjM, z) is the probability that a halo of mass M at redshift z is de-
tected as a cluster with observable X. This relation is usually described by
parameters that specify the mean relation, the variance or the standard devi-
ation (the scatter) and perhaps a measure of the skewness or kurtosis, all of
which can evolve with redshift. In this thesis we will discuss and emphasize
in the scatter and the impact on cosmological constraints.
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There are three general approaches to determine these parameters and
address the di�culties to calibrate the observable mass relation: simulations,
direct method and statistical calibration. The direct method uses weak lens-
ing and/or X ray hydrostatic mass estimates with a small subset of galaxy
clusters (e.g., Voit (2005)).

Existing cluster cosmology constraints of σ8Ωq
m have come primarily from

X-ray data (e.g., Schuecker et al. (2003)) where the X-ray observables can be
related to mass via simulations and/or analytic approximations and by hy-
drostatic modeling for well observed clusters (e.g., Vikhlinin et al. (2009)).
Cosmological analysis from optical samples have been typically less con-
straining because of the uncertain weak lensing mass calibration (Weinberg.
et al. (2013)).

The final approach to calibrate the mass observable relation is statistical.
Instead of relying on precise mass estimates of a subsample of galaxy clusters,
the relation is calibrated using a large cluster sample complemented with
statistical properties of the clusters that are sensitive to mass. Thus, we can
simultaneously fit for cosmology and the observable mass relation. These
types of analyses are often referred as �self-calibration� because they do not
require direct mass calibration data. Operationally, one parametrizes the
mass observable relation and then uses a standard likelihood methods to
jointly fit for both cosmology and the P (XjM, z) parameters.

One such statistical method uses the spatial clustering of the cluster
themselves and the cluster number counts for self calibration. The clustering
is characterized by the variance of counts in cells (Lima and Hu (2004)),
the sample covariance (Lima and Hu (2005)) or by the cluster correlation
function or power spectrum (e.g., Schuecker et al. (2003); Majumdar and
Mohr (2004)).

Lima and Hu (2005) studied self calibration with cluster counts and sam-
ple covariance. They claim that the exponential sensitivity of number counts
to the cluster mass requires a calibration of the whole observable mass distri-
bution before cosmological information of dark energy can be extracted on
high redshift. They describe the observable mass distribution and the effect
of the scatter, σlnM , in the cluster counts which we discuss in detail in 3.3.

The other statistical method is the stacked weak lensing, that it is the
cluster-shear correlation function, which can be inverted to yield the mean
3D mass profile in the bin (Johnston et al. (2007)). Apart from calibrating
the mass observable relation it can also be used on large scales to measure
and remove the halo bias and thereby provide a direct measurement of σ8Ωq

m

beyond the cluster counting technique.
One can easily obtain high signal-to-noise measurements even for low

mass clusters and large angular distances (Mandelbaumand et al. (2008);Shel-
don et al. (2009)). The underlying halo population is randomly oriented rel-
ative to the line of sight and thus the stacking weak lensing does not suffer
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from orientation biases. However, the possible selection biases involved in
a given cluster selection algorithm need to be explored and they must be
calibrated carefully on simulations.

Cluster mass profiles can be determinate, leading to a virial mass es-
timates independent of a model for the density profiles. In addition, in a
cluster survey we can measure the cluster abundance, n(M, z), binned by
any observable proxy for mass (i.e., richness), and use this inversion method
to calibrate the virial mass observable relation as a function of redshift. This
allow cluster surveys to probe cosmology, including dark energy more pre-
cisely. Rozo et al. (2010) achieved same level of precision as X-ray samples
with comparable levels of systematics errors.

Finally, because this method relies on stacking all galaxy clusters, it only
provides information about the mean of the mass observable relation, so
additional data are required to provide tight constraints on the scatter. To
solve this problem, Rozo et al. (2009) derived an empirical constraint on
the scatter of the richness mass relation for clusters in the maxBCG cluster
catalog. Their measurement is achieved by demanding consistency between
available weak lensing and X-ray measurements of the maxBCG clusters, and
the X-ray luminosity mass relation measured in the 400d survey (Vikhlinin
et al. (2009)). They found that the scatter in the mass at fixed richness was
estimated to be σM |N = 0.45+0.20

−0.18(95%CL) (see Figure 3.3).

Figure 3.3: Marginalized likelihood distributions for σM |N . Solid lines are
the results of the analysis of Rozo et al. (2009). The dashed curve is pre-
sented only to give a sense of how their results would improve with better
understanding of the LX �M relation.

More recent work of Oguri and Takada (2011) also study the self cali-
bration just with optical cluster surveys. Since, stacking weak lensing is the
most promising route to meeting the stringent demands of next generation
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cluster surveys, they combine number counts and cluster-cluster correlation
function with stacked weak lensing measurement. They explore the potential
of future optical cluster surveys, such as The Hyper Suprime-Cam (HSC)
(Miyazaki et al. (2006), Takada (2010)), DES and Large Synoptic Survey
Telescope (LSST) (LSST Science Collaboration et al. (2009)) for constrain-
ing cosmological parameters. Their results show how the combination of
these observables can help self calibrate the mass observable relation (the
mean mass and the scatter, see Figure 3.4 ) and the redshift uncertainty to
obtain robust constraints on cosmological parameters without any priors on
the nuisance parameters that model systematics uncertainties.

To summarize, large cluster surveys extending to z � 1 place much
stronger constrains on the dark energy parameter as long as they are large
enough to permit self-calibration of the mass observable relationship.

Now what it is important to say is that in this thesis we propose and test
in simulations a new method to constrain the scatter for wide-field optical
imaging survey using the bias of the cluster correlation function.

Figure 3.4: Self calibration of systematics (from Oguri and Takada (2011)).
The parameters of the mass observable relation as a function of cluster red-
shift are constrained from the combination of all observables. The errors are
shown for three different cluster masses.
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3.3 The Scatter

As we mention before, the calibration task is to determine the mean relation
and the scatter σlnM of the mass observable relation and to characterize any
deviations from lognormal form that are large enough to affect the predicted
abundance. Although is not our goal to study these deviations, later we will
brie�y discuss about them.

As in previous works which forecast constraints on cosmological param-
eters that can be achieved by cluster surveys (i.e., Ikebe et al. (2002), Lima
and Hu (2005) and Oguri and Takada (2011) ), we have assumed the scat-
ter in the scaling relations to be lognormally distributed around the mean
scaling relation, i.e., Gaussian or normal in lnM. Then the probability of
observing the mass Mobs given the true underlying mass M is

P (MobsjM, z) =
1√

2πσ2
lnM

exp[�x2(Mobs)] (3.2)

with
x(Mobs) �

lnMobs � lnM � lnMbias√
2σ2

lnM

(3.3)

As we will see in Chapter 8, we will use this distribution to create cluster
catalogs and to predict the bias in clusters.

Lima and Hu (2005) describe how an unknown scatter, or, more generally,
uncertainty in the distribution of the observable mass given the true mass
causes ambiguities in the interpretation of number counts and degrades the
cosmological constraints. For simplicity they allowed the mass variance σ2

lnM

and the mass bias lnM bias to vary with redshift but not with mass.
Figure 3.5 shows the expected mass distributions of clusters above an

observable threshold given a constant scatter σlnM = 0.25. The steepness
of the mass function around the threshold in the observable mass determine
the excess due to uppscatter versus downscatter. As the observable thresh-
old reaches the exponential tail of the intrinsic distribution the excess of
upscattered can become a significant fraction of the total. Given the relative
effect of the scatter depends on the slope of the mass function, measuring the
counts as a function of Mobs monitors the scatter in the mass observable re-
lation. As we will see in Chapter 8 we will apply this same effect to calibrate
the scatter using the average bias of the cluster correlation function.

Moreover, it is important to understand how the steepness changes with
redshift and mass (see Figure 3.6). The impact of the scatter on the observed
mass function is significantly greater at high mass and redshift. In other
words, uncertainties in scatter can dominate those of bias for the steep mass
function at high mass and redshift.

They also prospect the self calibration with cluster count and sample
variance and asses the impact of the parameterization of the mass observ-
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Figure 3.5: Expected mass distribution of above a certain Mobs given a
scatter of σlnM = 0.25 (curves). The scatter changes the mass distribution
to provide an excess of clusters scattering up (dark shaded) versus down
(light shaded) across the threshold. The intrinsic mass function (thick line)
has been normalized to M0 = 1014h−1M� and evaluated at z = 0 (Lima
and Hu (2005)).
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Figure 3.6: Local power law index α of the mass function as a function
mass dn

dM / Mα for z=0, 0.5 and 1. The relative importance of the scatter
compared with bias can be scaled through α (Lima and Hu (2005))
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able relation on the dark energy. Figure 3.7 shows how uncertainties in mass
bias and scatter cause degeneracies with dark energy. With only threshold
binning, joint changes to the cosmology, mass bias, and scatter are degener-
ate with the dark energy equation of state w.
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b2σ
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Figure 3.7: Simulations predictions of the sample variance of counts for a
typical volume (R = 50h−1Mpc) and the shape of the mass function as
a function of mass (Lima and Hu (2005)). Self-calibration is assisted by
binning the selection into 5 bins of ∆log10 = 0.2 (solid lines) as opposed to
a single threshold binning of Mobs � 1014.2h−1M�(dotted lines). With only
threshold binning, joint changes to cosmology, mass bias, and scatter are
degenerate with the dark energy equation of state w (long dashed lines).

Oguri and Takada (2011) found that combining cluster observables with
stacked weak lensing allows the mass and redshift dependence of the mean
and mass variance to be parametrized in an extremely �exible way while
retaining enough information to yield strong cosmological constrains. Fig-
ure 3.4 shows the self calibration of systematics for the HSC. It show the
marginalized 68% error on the parameters in the mass observable relation as
a function of cluster mass and redshift. The mass calibration of more massive
clusters are less accurate, simply because of the smaller number of clusters
available for the stacked lensing analysis. They found that the scatter is con-
straint to σ(σlnM ) � 0.07 for a wide range of redshift at M = 1014h−1M�,
indicating that the scatter is determined at 7% precision. The best result
they found is that scatter is constrained to σ(σlnM ) � 0.04 ( 4% precision)
for M = 3� 1014h−1M� at z � 1.1.

As we mention before, there is the possibility that the core of P (MobsjM, z)
deviates from log-normal form. This problem was considered by Shawn et
al. (2008) for wide are surveys, in particular for Sunyaev Zeldovich (SZ) (see
section 3.4.3) and optical surveys such as SPT and DES. They parametrize
the non-Gaussian scatter by incorporating the third and fourth moments
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(skewness γ and kurtosis κ) into the distribution of P (MobsjM, z).
They demonstrate that for low scatter mass proxies like SZ �ux, higher

order moments do not significantly affect the observed cluster mass and red-
shift distributions. However, the impact of the γ is more evident for higher
scatter mass indicators such as optical richness. They found that for high
scatter masses, the limiting mass threshold must be less than 1014h−1M�,
to ensure that the skewness does not significantly effect dN/dz, especially at
high redshift. An unknown level of non-Gaussian scatter is roughly equiva-
lent to an additional uncertainty on the variance σ2

lnM and thus may limit
the constraints that can be place on the dark energy equation of state w.

This discussion demonstrates the value of finding improved optical rich-
ness estimators that have lower scatter relative to mass.

Numerical simulations predict distributions of X-ray observables that are
close to lognormal (see Stanek et al. (2010)). We therefore do not expect
X-ray studies to be sensitive to departures from a lognormal.

Rykoff et al. (2012) describe redMaPPer, a new red sequence photomet-
ric cluster finder algorithm that can deliver the necessary cluster samples
to exploit near future photometric surveys such as the DES. Their goal is
to develop improved richness estimators and reduce the scatter. In Rozo et
al. (2014) is presented a comparison of the SDSS DR8 redMaPPer with SZ
Planck 2013 cluster catalog with high quality mass proxy. They show that
the redMaPPer richness λ is a low scatter mass proxy with high complete-
ness and low impurity. Their results highlight the power of multi-wavelength
observations to identify and characterize systematics errors in galaxy clus-
ters such the scatter. While this work has focused on the application of
redMaPPer to the SDSS DR8 catalog, we emphasize that this algorithm was
developed specifically for upcoming large photometric surveys such as DES
and LSST.

In next chapter, in particular at Section 4.3 we will address the problem
of the scatter within the context of a DES-like cluster cosmology experiment
and study how precisely must the scatter be known for cosmological analysis.
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3.4 Observational Considerations

Here we outline how clusters are observed in all three of these wavebands
and how these observations reveal a cluster total mass. We will discuss
techniques to measure the masses of clusters and observable proxies that
correlate tightly with mass.

A few major cluster detection methods have been used since Abell’s time.
Clusters contain a lot of hot gas, which radiates X-rays in a process known
as Bremsstrahlung radiation; clusters can therefore be found thanks to their
X-ray luminosity. A more exotic method uses the fact that cosmic microwave
background radiation photons will be bumped to higher energies by inter-
acting with the hot cluster gas (the Sunyaev Zeldovich effect).

Since DES is an optical survey, we will emphasize in the optical observa-
tions and the red sequence method.

3.4.1 Optical Observations

Optical identification of galaxy clusters has been going on for quite a long
time. George Abell (Abell (1958)) compiled a catalog of clusters in which
they identified regions in the sky that show an overdensity of galaxies. An
extension of the catalog to southern sky was published in 1989 (Abell et al.
(1989)). Abell’s catalogs contain most of the known nearby galaxy clusters
and are the foundation for much of our modern understanding of clusters, in
particular if these catalogs are to be used for statistical purposes.

The selection of galaxy clusters from an overdensity of galaxies on the
sphere is not without problems. The survey should be as complete ( all
objects which fulfill the selection criteria are contained in the catalog) and
pure (it should not contain any objects that do not belong in the catalog
because they do not fulfill the criteria) as possible.

The main drawback for optical cluster detection is projections effects.
Because of them completeness and purity cannot be expected. Random
overdensities on the sphere caused by line of sight projection may easily
classified as clusters. The reverse effect is likewise possible: due to �uctua-
tions in the number density of foreground galaxies, a cluster at high redshift
may be classified as an insignificant �uctuation and thus remain undiscovered
(Schneider (2006)).

Because the cores of galaxy clusters are dominated by red, early-types
galaxies, an effective way to reduce the impact of projection effects is to use
color information to select for overdensities of red galaxies. Many cluster
are significantly redder than other galaxies at a similar redshift, owing to
their lack of ongoing star formation. The colors of their aging stellar pop-
ulations therefore place these cluster members on a narrow and distinctive
locus known as �red sequence� in a plot of galaxy colors versus magnitude,
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the E/SO ridge line (e.g., Gladders and Yee (2005)). Figure 3.8 shows the
red sequence that is in place in cluster Abell 1084. Multicolor photometry

Figure 3.8: Here’s an example of a red sequence, from the cluster Abell 1084.
Each point describes the color and brightness of an individual galaxy in the
cluster. A clear red sequence is present (the black line). The remarkable
tightness of the correlation is a general feature of all clusters, which is why
a method like this can work.

is needed to cover a broad range of redshift and to track the intrinsic 4000
angstrom break feature of old stellar populations.

While the projection effect systematics has been drastically suppressed
in modern surveys with multi-band photometry and photometric redshift
estimators, one still expects 5% − 20% of photometrically selected clusters
to suffer from serious projection effects (Cohn et al. (2007); Rozo et al.
(2011)).

The importance of projections effects increases with decreasing mass,
so we expect it is projection effects will ultimately set the detection mass
threshold for optical cluster finding in surveys (Weinberg. et al. (2013)).

3.4.1.1 Optical Mass Measurements

Optical observations offer two complementary ways to measure the cluster
mass, through the orbital velocities of the member galaxies and thought
the degree that to which galaxies lying behind the cluster are lensed by the
cluster’s gravitational potential (a review of the gravitational lensing can
be found in Bartelmann and Schneider (2001)). As we discussed before,
the weak lensing method is a very promising method for measure cluster
masses that it is independent of the dynamical state, the cluster’s baryon
content, and mass-light ratio. The stacked weak lensing analysis have proved
successful in calibrating the mass observable scaling relation down to relative
masses.



3.4. Observational Considerations 35

3.4.1.2 Optical Richness and Weak Lensing Masses. The Mass
richness Relation

Weak lensing masses are expected to correlate well with cluster richness. In
this thesis we will use the form of the mean relation between cluster mass
and richness used in Rozo et al. (2009). It is based on the results from the
statistical weak lensing analysis in the maxBCG cluster catalog (Koester et
al. (2007)). We will described this catalog and the mass observable relation
after a few more words about the main observables for optical surveys, the
richness, luminosity and colors.

Abell’s catalog placed the clusters in categories of �richness� correspond-
ing to the net excess of galaxies brighter than the magnitude limit used to
define each cluster. Thus, richness is define as the number of galaxies within
a detection aperture.

Invoking assumptions about the shape of the luminosity distribution
helps to link richness more directly to a cluster’s total luminosity. Cluster
galaxies generally adhere to a luminosity distribution function following the
form proposed by Schechter (1976), with the number of galaxies in luminos-
ity range dL about L proportional to L−αexp(�L/L∗), with α � 1. L∗ is a
characteristic luminosity above which the distribution decrease exponential.
.

The Sloan Digital Sky Survey (SDSS) uses a dedicated 2.5-m wide-angle
optical telescope, and takes images using photometric system of five filters
(named u, g, r, i and z). The maxBCG catalog is a selected volume limited
catalog of 13,823 clusters over the redshift range z 2 [0.1, 0.3]. The clusters
were identified using and algorithm that identifies clusters as overdensities
of red sequence galaxies. It exploits two well-known features of rich galaxy
clusters. First, the bright end of the cluster luminosity function is dominated
by galaxies occupying a narrow region of color-magnitude space (the E/S0
ridgeline). Second, clusters contain a brightest cluster galaxy (BCG) that is
located near the center of the galaxy distribution. maxBCG uses a maximum
likelihood method to evaluate the probability that a given galaxy is a BCG
(brightest cluster galaxy) near the center of a red-sequence galaxy density
excess.

The maxBCG is divided in nine richness bins spanning the range N200 ε
[11, 120]. The richness measurement is defined as the number of red sequence
galaxies brighter than 4L∗ (in the i-band) within a scaled radius R200. R200

is the radius within which the density of galaxies with �24 < Mr < �16 is
200 times the mean density of such galaxies (Hansen et al. (2005)).

The separate statistical weak lensing measurement of Johnston et al.
(2007) and Mandelbaumand et al. (2008)) indicate that N200 is strongly
correlated withy cluster virial mass. These separated weak lensing analysis
are discussed in the Appendix of Rozo et al. (2009) and yield a mean relation
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between cluster mass and richness given by

hM j N200i
1014

= eBM|N200

(
N

40

)αM|N200
(3.4)

3.4.2 X-ray Observation

X-rays are considered the cleanest method for selecting galaxy clusters. The
primary advantages of X-ray are their completeness and purity and the tight
correlation between X-ray observables and mass. However, the main di�-
culty for X-ray selection is a technological one, specially, the need for space-
based observatories which makes their construction relative expensive.

X-rays searches are nearly free from projections effects.. The X-ray emis-
sion is scales as density squared, which enhances the relative contrast of a
cluster in the sky and renders projections effects improbable. The X-ray
temperature and the X-ray luminosity (i.e., Stanek et al. (2006)) are good
indicators for the mass of the cluster. The X-ray temperature provides a very
precise measure for their virial mass, better than the velocity dispersion. Al-
though the temperature is the preferred measure for the cluster’s mass, one
will in many cases resort to the relation between mass and luminosity be-
cause determining the luminosity (in a fixed energy range) is considerable
simpler than measuring the temperature, for which significantly longer ex-
posure times are required (Schneider (2006)). .

3.4.3 Sunyaev Zeldovich Observation

The Sunyaev Zeldovich (SZ) effect was predicted in 1970. The Compton
scattering leads to a reduced number of photons at lower energies, relative
to the Planck spectrum. The energy of photons changes slightly through
the scattering by the hot electrons, in a way that they have an average
higher frequency after scattering. The cosmic microwave background (CMB)
spectrum, measured in the direction of a galaxy clusters, deviates from a
Planck spectrum; the degree of this deviations depends on the temperature
of the cluster gas and on his density (Schneider (2006)).

While detection of SZ effect in know galaxy clusters date back as early
as 1976, it is only recently that instrumentation advances have made large
scale SZ searches feasible. The first large catalogs are currently under con-
struction, using the South Pole Telescope (SPT), the Atacama Cosmology
Telescope (ACT ), and the Planck satellite (Tauber et al. (2010)).

SZ surveys are well suite, in principle, to searches for massive clusters
at high redshift. Challenges to these projects include determining the op-
timal observables (i.e., the best mass proxies) to measure from the survey
data in the low signal-to-noise ratio regime; calibration the mass scaling of
these observables and understanding in detail the impact contamination by
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radio and infrared sources. Projections effects are also expected to be more
significant for SZ surveys than for X-rays (Allen et al. (2011)).





Chapter 4

The Dark Energy Survey
Project

Abstract: In this chapter we introduce the Dark Energy Survey 1

and the instrument, the DECam camera where I was involved in the
CCD R&D program. We summarize the four proposed techniques for
probing dark energy, focusing on galaxy clusters and their systematics
effects. As our goal is to measure the scatter of the mass richness
relation, finally we will delve more into its study under the project
DES.

4.1 Overview

Figure 4.1: Blanco Telescope

1http://www.darkenergysurvey.org

39
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The Dark Energy Survey collaboration (The Dark Energy Survey Col-
laboration (2005)) was established with the objective of developing a new
instrument for the Blanco 4 meter telescope at Cerro Tololo Inter-American
Observatory (CTIO) (see Figure 4.1) in partnership with the National Op-
tical Astronomy observatory (NOAO). The collaboration has been growing
since 2005 and now consist of approximately 120 scientist located at 4 US
national laboratories, 7 US universities, NOAO/CTIO, and consortia from
United Kigdom, Spain, Brazil, Germany and Swizerland.

The survey data will allow us to measure the dark energy, the dark mat-
ter densities and the dark equation of state through four independent meth-
ods: galaxy clusters, weak gravitational lensing tomography, galaxy angular
clustering and supernova distances. These methods constrain different com-
binations of cosmological model parameters and are subjects to different
systematic errors. By deriving the four sets of measurements from the same
data set, the dark energy survey will obtain important cross checks from the
systematics errors and thereby make a substantial and robust advance in the
precision of dark energy measurements. DES will allow to measure the dark
energy equation of state w with a statistical precision of order δw � 5%.

The DES comprises an optical to near infrared survey over 5000 deg2

of the South Galactic Cap to � 24th magnitude in the SDSS grizY bands
and a time-domain griz survey over 30 deg2 with a cadence of approximately
six days. These interleaved surveys are carried out over 525 nights in the
course of five years using the 570-megapixel imager DECam (Flaugher et
al. (2012), Diehl and Dark Energy Survey Collaboration (2012)) mounted
at the prime focus of the Blanco Telescope. DECam was commissioned in
September and October of 2012, followed by an extended testing and sur-
vey commissioning period know as DES Science Verification (SV, November
2012-February 2013). Figure 4.2 shows a photo of DECam mounted at the
prime focus of the Blanco telescope. The first observing season of the Dark
Energy Survey (Y1) (Diehl and et al. (2014)) started on August 2013 and
conclude on February 2014 . The 5000 deg2 DES observing field �wide-field�
(WF) will be accomplished in 10 dither patterns (tilings). Ten 3 deg2 fields
will be imaged repeatedly to produce supernova survey.

The WF has three main regions (see Figure 4.3). A broad roughly cir-
cular region (approximately, RA = [0, 120] degrees and DEC = [�70,�10]
degrees) that provides a large contiguous area for the large scale structure
(LSS) measurements. There is also a wide box-shaped region around SPT
observing area (Ruhl et al. (2004)). Finally, the survey encompasses a part
of SDSS Stripe 82, primarily for calibration purposes (Annis et al. (2011)).
The major components of DECam are a 570 megapixel optical CCD camera
(see Figure 4.4), a wide-field optical corrector (2.2 deg. field of view), a 5-
band filter system with SDSS g,r, i, z and Y filters, guide and focus sensors
mounted on a focal plane, low noise CCD read out, a cryogenic cooling sys-
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Figure 4.2: The Dark Energy Camera, mounted on the Blanco telescope
at the Cerro Tololo Inter-American Observatory in Chile. Credit: Reidar
Hahn/Fermilab.

Figure 4.3: The Dark Energy Survey observing wide fields are shown in black
on this plot of RA and DEC. During Y1 DES planned to observe the areas
outlined in blue, which encompass SDSS Stripe 82 (upper) and SPT area
(lower). The red line is an artifact, showing a previous version of the survey
field.
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tem to maintain the focal plane at 180 K, as well as a data acquisition and
instrument control system to connect to the Blanco observatory infrastruc-
ture. The imager and corrector barrels are supported as a single unit by a

3556 mm 

Camera

       Figure 1: DECam Reference Design
The major components of DECam are a 519 megapixel optical CCD camera, a wide-field optical corrector (2.2 deg. field of view), a 4-band filter system with SDSS g r i and z filters, guide and focus sensors mounted on the focal plane, low noise CCD readout, a cryogenic cooling system to maintain thefocal plane at 180 K as well as a data acquisition and instrument control system to connect to the Blancoobservatory infrastructure. The camera focal plane will consist of sixty-two 2k x 4k CCDs (0.27''/pixel)arranged in a hexagon covering an imaging area of 3 sq. degrees.  Smaller format CCDs for guiding andfocusing will be located at the edges of the focal plane. To efficiently obtain z-band images for high-redshift (z~1) galaxies, we have selected the fully depleted, high-resistivity, 250 micron thick silicon devices that were designed and developed at the Lawrence Berkeley National Laboratory (LBNL) (Holland et al. 2003).  The thickness of the LBNL design has two important implications for DES:fringing is eliminated, and the QE of these devices is > 50% in the z band, a factor of ~10 higher than traditional thinned astronomical devices. Several of the LBNL 2k x 4k CCDs of this design have beensuccessfully used on telescopes, including the Mayall 4m at Kitt Peak and the Shane 3m at Lick.  The DES CCDs will be packaged and tested at Fermilab, capitalizing on the experience and infrastructureassociated with construction of silicon strip detectors for the Fermilab Tevatron program.  The CCDpackaging plan for the four side buttable 2k x 4k devices builds on techniques developed by LBNL and Lick Observatory.The optical corrector reference design consists of five fused silica lenses that produce an unvignetted 2.2odiameter image area, which is calculated to contribute < 0.4'' FWHM to the point-spread function.Element 1, the largest, is 1.1m in diameter and the surface of another is aspheric. The spacing betweenelements 3 and 4 will allow the 600 mm diameter filters to be individually flipped in and out of theoptical path. DECam will be installed in a new prime focus cage.

Filters
Optical Lenses 2.2 deg. FOV 

ScrollShutter 1575 mm 
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Figure 4.4: DECam design

6� 6 hexapod that provides lateral adjustability as well as focus control.
The optical corrector consists of five fused silica lensed that produce an

unvignetted 2o diameter image area. The heart of DECam, the camera focal
plane, consists of 62 2k � 4k CCDs (0.27′′/pixel) arranged in a hexagon
covering an imaging area of 3 deg2. Each device of the camera with 2k� 4k
format have 15 µm� 15 µm pixels and is fitted with two readout amplifier.
Smaller format CCDs for guiding and focusing will be located at the edges
of the focal plane. These detectors will be the same type of CCDs but in a
2k � 2k format.

To e�ciently obtain z-band images (� 1000nm) at high-redshift (z � 1)
galaxies, we have selected the fully depleted, high-resistivity, 250 µm thick
silicon devices that were designed and developed at the Lawrence Berkeley
National Laboratory (LBLN) (Holland et al. (2003)). The thickness of the
LBLN design has two important implications for DES: fringing is eliminated,
and the QE of these devices is > 50% in the z band, a factor of � 10 higher
than traditional thinned astronomical devices (see Figure 4.6)

The bare silicon die were delivered to Fermilab and then assembled and
tested in the Fermilab CCD facility where we take an active part (see Estrada
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Figure 4.5: Left:The Dark Energy Camera features 62 charge-coupled devices
(CCDs), which record a total of 570 megapixels per snapshot. Credit: Reidar
Hahn/Fermilab. Right: A �at-field obtained after shipping with the imager
in the Coude room of the Blanco Dome.
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Figure 4.6: Quantum e�ciency of the LBNL CCDs compared to those in the
Mosaic II Camera previously used at prime focus on the V. M. Blanco 4-m
telescope.
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et al. (2006), Diehl et al. (2008) and Estrada et al. (2010)).
The DECam project introduced a number of new approaches to the con-

struction of a major instrument for a ground based telescope. The major
risks to the project cost and schedule were the CCDs, the front end elec-
tronics (FEE) and the large optics. I was involved in the CCDs R&D pro-
gram efforts, particularly in the initial phase (Campa (2007), Estrada et al.
(2006)). In the Appendix A we will describe the techniques and methods in
which I was involved. We present the results of testing and characterization
for these devices and compare the results with the technical requirements for
the Dark Energy Survey.



4.2. Dark Energy Survey Techniques 45

4.2 Dark Energy Survey Techniques

In Chapter 3 we have discussed in detail the galaxy clusters as a cosmological
probes. Here, we brie�y summarize the four proposed probes that DES will
use for probing dark energy. We provide additional details and context for
the DES project. In next section we will emphasized in galaxy clusters.

� Galaxy Clusters

The primary design driver of the DES is the detailed optical measure-
ment of galaxy clusters, including photometric redshift, in conjuntion
with the SPT Survey. The DES is designed to measure e�ciently and
accurately photometric redshifts for all SPT clusters to z = 1.3.

As we discussed in previous chapter, the cluster counting method de-
pends critically on accurate statistically cluster mass estimates and
on well characterized completeness of the cluster samples as a func-
tion of redshift. The SZ effect �ux is strongly and robustly correlated
with cluster mass. The DES will statistically calibrate SZ effect clus-
ter mass estimates using the cluster-mass correlation function inferred
from weak lensing (Johnston et al. (2007)). In addition to measuring
the photometric redshift of SPT clusters, the DES will detect clusters
optically to lower mass thresholds than the SPT using the red galaxy
color-magnitude sequence (Gladders and Yee (2005)). This will pro-
vide a cross-check on the completeness of the SPT cluster selection
function as well as an important independently selected cluster sample
in its own right.

� Weak lensing tomography

The DES will measure the weak lensing (WL) shear of galaxies as a
function of photometric redshift. The evolution of the statistical pat-
tern of WL distortions and the cross-correlation between foreground
galaxies and background galaxy shear, are sensitive to the cosmic ex-
pansion history through both geometry and the growth rate of struc-
ture (Hu and Jain (2004)).

� Galaxy angular clustering

The DES will measure the angular clustering of galaxies in photometric
shells out to z � 1.1. The matter power spectrum as a function of
wavelength shows characteristics features (see details in Section 5.3 ),
a broad peak as well as baryon wiggles arising from the same acoustic
oscillations that give rise to the Doppler peaks in the CMB power
spectrum. In combination with CMB observations, they serve as a
standard rules for distance measurements, providing a geometric test
of cosmological parameters.
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� Supernova luminosity distances

In addition of the wide-area, the DES will use %10 of its allocated time
to discover and measure well-sample riz light curves for 1900 Type Ia
supernovae in the redshift range 0.3 < z < 0.75 through repeat imaging
of a 30 deg2 region. These SNe will provide relative distance estimates
to constrain the properties of dark energy. Abbott et al. (2012) report
the discovery of the first set of supernovae (SN) from the project .

Figure 4.7 shows a composite 3-color image of one of the DES SN fields.
It is the field-of-view of one exposure.

Figure 4.7: Composite Dark Energy Camera image of one of the sky regions
that the collaboration will use to study supernovae, exploding stars that
will help uncover the nature of dark energy. The outlines of each of the 62
charge-coupled devices can be seen. This picture spans 2 degrees across on
the sky and contains 520 megapixels.
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4.3 Clusters in DES

With the new instrument, DES will go beyond the reach of the SDSS by
virtue of telescope aperture, median seeing, and CCD sensitivity particulary
towards the infrared part of the spectrum. Consequently, the galaxy redshift
distribution is expected to have a median z ∼ 0.8 and a significant tail
beyond z = 1, which enables DES to detect clusters at high redshift (z ∼ 1)
and to use source galaxies for rigorous lensing analysis of clusters beyond
z ∼ 0.5 (Melchior et al. (2014)).

Figure 4.8: Composite DECam image (combining images from 5 filters) of
the cluster of galaxies SPT-CL J2332-5358. The center of the cluster is
indicated by the yellowish galaxies in the middle of the picture. The bright
galaxy in the upper left is in the foreground (closer to us than the cluster).

A key strength of DES is the ability to apply multiple techniques for
both identifying clusters and inferring their masses, each with their own
systematics. The SPT+DES cluster survey can achieve high statistical pre-
cision in constraining dark energy (see Figure 4.8 that shows a composite
DECam image of the cluster of galaxies SPT-CL J2332-5358.). To approach
that we need to understand the sources and the levels of systematics er-
rors and develop methods to control them. Here we present an inventory
of the systematics errors although we emphasize on the scatter in the mass
observable relation. SZ effect method has a clean mass observable relation.
However, work remains to be done in quantifying systematics in the optical
mass observable scaling relations.
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4.3.1 Systematics E�ects

� Theory

As we will see bellow, given the underlying cosmology and a spectrum
of the initial �uctuations, the evolution of the massive peaks in the
density field can be calculated analytically or numerically. Predictions
of the abundance and clustering of massive halos are becoming in-
creasingly accurate. Therefore the main systematic concern for cluster
cosmology is determining the mass-observable relations and, to a lesser
extent, the observable selection functions.

� Selection Function

The cluster sample must be both complete (above some threshold) and
free of contamination, i.e., the cluster selection function must be well
understood (The Dark Energy Survey Collaboration (2005)).

� Scaling relations: The richness mass relation and the scatter for
DES.

We need to measure the mass scaling relations and scatter. As we men-
tion in Section 3.3, theoretically the scatter is a source of uncertainty
in the predicted number of clusters.

Rozo et al. (2011) define quantitatively when a source of scatter is
observationally relevant. They measure how precisely must the scatter
be know in a cluster counting experiment. They addres this problem
within the context of a DES-like cluster cosmology experiment and
adopt a lognormal model for Mobs �Mtrue relation.

Using Fisher matrix technique (Wu et al. (2008)), they estimate what
the cosmological constraints derived from our fiducial cluster sample
would like, assuming that the data is analyzed using the standard self
calibration technique. Given any combination of σtrue and σmodel, they
estimate the ratio ∆p

σ(p) , where ∆p is the offset pobs� ptrue between the
recovered value of the cosmological parameter p and its true value
and σ(p) the statistical uncertainty. Thus, they determine whether
the difference between σtrue and σmodel is observationally relevant or
not. Figure 4.9 shows contours of the ratio ∆p

σ(p) in the inference of
dark energy parameters w0 and wa due to errors in the scatter. The
y-axis σmodel indicates the scatter value we use in the analysis, while
the x-axis σtrue, indicates the underlying true scatter. As can be seen,
if σtrue � σmodel � 0.05, the recovered dark energy parameters will be
significantly biased.

DES employs a very similar richness estimator to the one that Rykoff
et al. (2012) uses. In this paper they tested and optimized the richness
measured proposed by Rozo et al. (2009) with maxBCG clusters in the
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Figure 4.9: Systematics errors in the inference of dark energy parameters w0

and wa due to errors in modeling the scatter. Contours and numbers show
the systematic errors ∆w0 (∆wa) compared with statistical errors σ(w0)
(σ(wa)) (Rozo et al. (2011))

range 0.1 � z � 0.3 . Although the calibration of the mass observable
relation is beyond the scope of this paper, they provide a rough cali-
bration of the mass richness relation that may be used for comparison
purposes as we will see below. They also give an estimation of the
scatter which we will use as the expected value for the DES survey.
They find that the total uncertainty in the mass of any given cluster
is � 0.33 at the 1σ level.

Here we also show the early results related to the mass observable re-
lation from the DES science verification data given by Melchior et al.
(2014). They measure the weak lensing masses and galaxy distribu-
tions of four massive clusters observed during the Science Verification
phase of the survey. By fitting the NFW profiles to the clusters, they
determine weak lensing mass that are in agreement with previous work.
For Abell 3261, they provide the first estimates of redshift, weak lensing
mass, and richness. In addition, the cluster-galaxy distribution show-
case the potential of DECam and DES for detailed studied of degree
scale features on the scale. They also perform a cross-check. Figure
4.10 shows their comparison of the DES data with the best fit solution
from the mass richness relation for low redshift clusters provided by
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Figure 4.10: Lensing mass as a function of redMaPPer ’s richness λ for the
four clusters observed in the SV phase (Melchior et al. (2014)). The dashed
line shows the expected scaling relation from Rykoff et al. (2012) with their
proposed scatter at fixed richness (shaded region)

Rykoff et al. (2012). They also shows their proposed relative scatter of
33% at fixed richness mentioned before. They found that their mea-
surements agree with the expectations, within the considerable scatter
both measurements exhibit.



Chapter 5

Structure Formation and
Statistical Description of
Density Fluctuations

Abstract:
In this chapter we briefly summarize some of the results which

are more relevant for describing structure formation quantitatively in
the ΛCDM paradigm. This includes the analysis of the evolution of
density perturbations over time to construct the linear power spectrum
of matter, as well as the statistical description of density fluctuations
that quantify the clustering of objects. This is intended to form the
basis for subsequent chapters, where we will analyze the measurements
of the dark matter halos and galaxy clusters distribution.

5.1 Introduction

The Universe is approximately homogeneous and isotropic on large scales
(larger than 100 Mpc), but on smaller scales, we observe huge deviation
from the mean density in the form of objects such as galaxies and clusters of
galaxies. By structure formation we mean the generation and evolution of
this inhomogeneity and how these objects are distributed, their clustering.

The current ΛCDM paradigm establish that the main ingredient for
structure formation is a pressurless cold dark matter (CDM) composed of
particles which decoupled from radiation at redshift when these particles
where non-relativistic. The velocity dispersion of CDM is neglected and it
is believed to dominate the other components of the Universe for its last
period, until the cosmological constant becomes relevant. Such period is
very important because is when it is created the potential wells that allow
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the growth of density contrast of the baryons, the components of visible
structures in our Universe.

Therefore, we will study the dark matter perturbations which in principle
are coupled to other perturbations. However, in practice, perturbations to
dark matter depends very little on the details of the radiation perturbations.
Dark matter, by definition, is affected by radiation only indirectly, through
the gravitational potentials (Dodelson (2003)).

5.2 Growth of Inhomogeneities

5.2.1 Introduction

First, we introduce the dimensionless density perturbation field or the rela-
tive density contrast δ(x̄, t) to describe an inhomogeneous universe quanti-
tatively

δ(x̄, t) � ρ(x̄, t)� ρ̄(t)
ρ̄(t)

(5.1)

where ρ̄(t) is the mean cosmic matter density in the Universe at time t.
The evolution of the inhomogeneities is directly observable and the Uni-

verse was less inhomogeneous at high redshift than it is today. The smallness
of the CMB anisotropy suggest that at z � 1000 the density inhomogeneities
must have very small amplitudes, jδj << 1. However, today these amplitudes
are considerably larger; for example a massive cluster of galaxies contains
within a radius of � 1.5h−1Mpc more than 200 times more mass than an
average sphere of this radius in the Universe.

The model of gravitational instability describes the evolution of these
inhomogeneities, and is most likely responsible for structure in the Universe.
The seed of density inhomogeneities from quantum �uctuations grows from
the in�uence of the gravitational forces; the pressure opposes this growth, so
that the balance between pressure forces and gravitational force governs the
temporal behavior of density contrast. This scenario is complicated by the
fact that the Universe is expanding. The expanding rate inhibits the growth
of perturbations and introduces a characteristic length scale, the Hubble
scale .

Taking the expression of the density contrast given by Equation 5.1, the
dynamics of the cosmic Hubble expansion is controlled by the gravitational
field of the average matter density ρ̄(t), whereas the density �uctuations
ρ(x̄, t)� ρ̄(t) generate an additional gravitational field (Schneider (2006)).

5.2.1.1 Three Stages of Evolution and the Power Spectrum

The evolution of cosmological perturbations breaks up naturally into three
stages explained in Chapter 2. We want study how the different ambient
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cosmological conditions (i.e matter or radiation domination eras) alter the
growth rate and the solutions for different modes.

In order to use the correct theory of structure formation is essential to
consider the scales of perturbations. We compare the perturbation scale with
the comoving horizon rH,com(t)

rH , com =
∫ t

0

cdt

a(t)
=
∫ a

0

da

a

c

aH(a)
(5.2)

which is defined as the logarithmic integral of the comoving Hubble radius
1/aH or the total comoving distance that light travels. Perturbation at
subhorizon scales, L � 2π

k < rH,com, can be treated with Newtonian pertur-
bation theory (see Section 5.2.2), but scales which are close to horizon size
or superhorizon, L � 2π

k � rH,com require relativistic perturbation theory,
which is based on General Relativity (see Section 5.2.3.1).

Figure 5.1 shows the gravitational potential as a function of scale factor
for long, medium and short wavelength modes. Short scales enter the horizon
first, large scales enter later.

  

Figure 5.1: (From Dodelson (2003))The linear evolution of the gravitational
potential φ. Dashed line denoted that the mode has entered the horizon.
Evolution in the dashed region is described by the transfer function.

Early on, all the modes are outside the horizon and the potential is
constant. At intermediate times two things happen: the Universe evolves
from radiation domination to matter domination and the modes enter the
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horizon. The large scale modes, which enter the horizon well after aeq, evolve
much differently than the small scale modes, which enter the horizon before
equality. The potential is greatly affected at scales that enter the horizon
during transitions and such scales are special because they characterize the
present structure of the universe (see Section 5.3). Finally, at late times, all
the modes evolves identically (Dodelson (2003)).

We are able to observe the distribution of matter at late epochs, in the
third stage. If we wish to relate the potential during these times to the
primordial potential setup during in�ation, φp(k̄, a), we write schematically

φ(k̄, t) = φp � fTransferFunction(k)g � fGrowthFunction(t)g (5.3)

where we have roughly defined the transfer function and the growth factor.
The transfer function describes the evolution of perturbations through the
epoch of horizon crossing and radiation/matter transition (shaded region in
Figure 5.1), while the growth function describes the wavelength independent
growth at late times.

The potential �uctuations, φ and the density perturbations, δ are related
by the Poisson’s Equation 5.10 that we describe later.

Therefore, the easiest way to probe the potential is to measure the matter
distribution. The Fourier components δk evolve independently following the
effects of the gravitational potential described before.

Since the linear power spectrum of the matter distribution is just the
power spectrum of the linear density perturbation field δ (see Equation 5.27),
we can express the linear power spectrum of the matter distribution in terms
of the primordial power spectrum, the transfer function, T (k) (see section
5.2.3.1, and the growth function, D(t) normalized to get D(z = 0) = 1 (see
Section 5.2.2.2).

Plin(k, t) = AknsT 2(k)D2(t) (5.4)

Thus, we can find the time dependent linear power spectrum of the matter
perturbations as a results of the evolution of the initial spectrum / kns by
a variety of processes. The spectral index, ns, rules the behavior of this
primordial power spectrum. If ns = 1 this spectrum is scale invariant and is
called Harrison-Zeldovich spectrum (Harrison (1970), Zeldovich (1972) and
Peebles and Yu (1970)).
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5.2.2 Results from Newtonian Hydrodynamics in an Expand-
ing Universe.

We summarize some of the most important concepts and results from the
evolution of the perturbations at subhorizon scales using the Newtonian per-
turbation theory. In addition, we assume for simplicity that the matter in the
Universe consist only in dust that is described by the �uid approximation.

We suppose that the universe is filled with an inhomogeneous, pressure-
less di, ideal and non relativistic �uid that is governed by the basic hydrody-
namical equations of Newtonian physics. The continuity and Euler equation
are given by

∂ρ

∂t
+r � (ρū) = 0 (5.5)

∂ū

∂t
+ (ū � r)ū+

1
ρ
rp+rφ̃ = 0 (5.6)

where ρ is the mass density, p is the pressure and ū the velocity field. The
Newtonian gravitational potential φ̃, satisfies the Poisson equation

r2φ̃ = 4πGρ (5.7)

Moreover, our simple ideal �uid does not account for diffusion process which
erase small scale perturbations.

These equations have to be complemented by the equation of state p =
p(ρ) and the equation of the conservation of entropy. Assuming adiabatic
perturbations (δS = 0, where S is the entropy), the equation of state which
links the pressure and the density is usually given in the form of adiabatic
speed of sound

c2
s =

(
∂p

∂ρ

)
(5.8)

The hydrodynamical equations are nonlinear and its very di�cult to find
their general solution. We will solve them at first order (or linear regime)
where δ << 1 and the perturbed quantities are small compared to their
background.

The gravitational potential φ̃ is written as,

φ̃ = φ0 + φ (5.9)

where φ0 is the Newtonian potential for a homogeneous density field, and φ
is the perturbation of the gravitational potential φ that satisfies the Poisson
equation

r2φ = 4πGρ̄δ (5.10)

We write the governing equations in comoving coordinates and we use
the density contrast δ instead of the density.
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Then, the continuity and the Euler equations are combined to form a
single second-order differential equation. If we consider plane wave solutions
and we write these equations in Fourier space we obtain (see Peebles (1980),
Peacock (1999) and Schneider (2006)).

δ̈k + 2Hδ̇k +
[
c2
sk

2

a2
� 4πGρ̄

]
δk = 0 (5.11)

This is sometimes called the Jeans equation (although Jeans considered a
static, not an expanding �uid) and is the one that governs the gravitational
amplification of density perturbations. The term 2Hδ̇k, occasionally referred
as �Hubble Drag�, will serve to slow the growth of perturbations compared
to the exponential form of a non-expanding universe.

The nature of the solution of Equation 5.11 depends on the sign of the
factor in the brackets. The basic forces act in opposite directions. The first
term in brackets is due to pressure gradients and the second term is due
to gravity. Pressure tries to resist compression, so if this term dominates,
we have oscillatory solutions, standing sound waves that are damped by
the 2Hδ̇k term. Thus, the amplitude of oscillations decreases with time as
a damped oscillator. However if the gravity dominates, the perturbations
grow.

There is a critical proper wavelength, know as Jeans length which is the
scale of �uctuation where pressure support equals gravitational collapse.

λJ = cs

√
π

Gρ̄
(5.12)

At this scale we switch from the possibility of exponential growth for long-
wavelenghts modes to standing sound waves at short wavelenghts. However,
owing to the expansion, λJ will change with time, and a given perturbation
may switch between periods of growth and stasis. These effect help to govern
the form of the perturbation spectrum (Peacock (1999)).

5.2.2.1 Cold Dark Matter Perturbations and Meszaros E�ect

Cold Dark matter is believed to be the dominant component in the Universe.
Therefore, we get a reasonable approximation for the behavior of the CDM
perturbations by ignoring the baryon component (ρ � ρcdm).

Since the CDM is pressureless (cs = 0), all scales are larger than the
Jeans length and perturbations grow at all scales. We will get the Equation
5.11 for this particular case

δ̈k + 2Hδ̇k � 4πGρ̄δk = 0 (5.13)

which has the general solution

δk(t) = A(k̄)D1(t) +B(k̄)D2(t) (5.14)



5.2. Growth of Inhomogeneities 57

Figure 5.2: (From Dodelson (2003)) Evolution of perturbations for three
different modes to the dark matter. The small scales enter the horizon well
before matter/radiation equality. The growth is retarded starting at a '
10−5 after the mode has enter the horizon and ending at a ' 10−4 when the
universe becomes matter dominated. Well after aeq all subhorizon modes
evolve identically, scaling as the growth factor in a �at matter dominated
universe.

The partial solutions D1(t) and D2(t) are the growing and decaying
modes that are not dependent on k̄ and A(k̄) and B(k̄) are complex val-
ued initial conditions. If, at some early time, both functional dependences
were present, the increasing solution will dominate at later times, whereas
the solution decreasing with time will become irrelevant. Therefore, for our
purpose only this solution, D1(t) is relevant and we will study the general
solution bellow. Note that D1(t) is the growth function D(t) introduced in
5.2.1.

Now we want to study the linear perturbations from horizon entry to the
present time, therefore we include the growth of perturbations even during
the radiation domination period (see Figure 5.2). In this case, the radiation
component ρr is taken as a smooth background component (ρr = ρs) and af-
fects only the overall expansion rate. These background solution is governed
by the Friedmann Equations 2.20 and 2.21, but the perturbation equations
are the Newtonian perturbations equation (e.g. Peacock (1999)).

We get again the Equation 5.11 when cs = 0. The difference is that
now the �gravity� term still contains only the matter component, but the
expansion law, H(t) comes from the full background energy density ρ̄ =
ρ̄m + ρ̄s.
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At very early times, for scales greater than the horizon in the framework
of Relativistic perturbation theory, perturbations in matter and radiation
can grow together, so �uctuations at early time grow at the same rate, in-
dependent of the wavenumber.

During the radiation domination epoch, CDM perturbations inside the
horizon (aenter < aeq) evolved according the Meszaros effect (Peacock (1999)).
The increased expansion rate due to the presence of a smooth component
slows down the growth of dark matter perturbations. As the horizon gets
larger with time, �uctuations on bigger scales enter the horizon and cease to
grow. However, for large enough scales, �uctuations never enter the horizon
and thus never halted their growth.

For �uids (baryons) is the radiation pressure that prevents the pertur-
bations from collapsing futher. For dark matter the rapid radiation driven
expansion prevents the perturbation from growing until matter radiation
equality (aeq).

As we will see in next section, the Meszaros effect explain the qualitative
behavior of the transfer function and thus, is critical in shaping the power
spectrum.

As the universe get closer to matter domination, the pressure of the ra-
diation becomes less important, and the perturbations begin to grow faster.
When the CDM perturbations enter the horizon during the matter domi-
nated epoch, the growth increases smoothly to δ / a. Finally, in the era
dominated by the cosmological constant, the perturbations are even entirely
frozen (Knobel (2012)).

5.2.2.2 Linear Growth Function

The linear growth factor is easily solvable for any cosmological model. In the
case where there is only matter and vacuum energy, it admits the integral
representation as a function of Ωm and ΩΛ (Heath (1977))

D(a) = H(a)
5Ωm

2

∫ a

0

da′

[a′H(a′)]3
(5.15)

Although this integral can be easily solved numerically, it is common to use
the fitting formula that provides an accurate approximation at low redshift
(Caroll et al. (1992))

D(z) �
(

5
2

)
Ωm(z)/(1 + z)

Ωm(z)
4
7 � ΩΛ(z) + (1 + Ωm(z)/2)(1 + ΩΛ(z)

70 )
(5.16)

In this thesis we will solve it numerically using the interactive software pack-
age iCosmo for low redshift universe. The code is freely available with doc-
umentation at http://www.icosmo.org.
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Figure 5.3: Growth function for Hubble Volume simulation ΛCDM cosmo-
logical parameters

For a �at and matter dominated Universe the growth factor is simply
equal to the scale factor for late times, D(t) = a = 11 + z). Figure 5.3
shows the growth factor for ΛCDM cosmology using iCosmo. If we compare
both models, growth is suppressed at late times for dark energy cosmologies.
Whatever structure is observed today in a dark energy Universe was likely in
place at much earlier times than in a a �at and matter dominated Universe.
(Dodelson (2003)).

5.2.3 Transfer Function

The real power spectra results from modifications of any primordial power by
a variety of process: growth under self-gravitation, the effects of the pressure
and dissipative processes. Now, we sum up the overall effect in the form of
the linear transfer function and consider the dynamics of the perturbations
outside the horizon (Peacock (1999)).

To obtain the precise form of it at all scales, one has to solve the gen-
eral relativistic Boltzmann equation (Dodelson (2003) taking into account
all sorts of energy in the Universe and the effect of these coupled perturba-
tions. It includes the effect of matter and relativistic particles which does
not behave as a simple �uid. Solving for the exact transfer function is a
complicated business, due to the coupling of photons and baryons.

There are in essence two ways in which the power spectrum that exists at
early times may differ from that which emerges at the present, both of which
correspond to a reduction of small scale �uctuations (Peacock (1999)): 1)the
Jean mass effects in CDM or baryon component, and 2) damping effects such
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Figure 5.4: Transfer function for various adiabatics models, in which T (k)!
1 at small k (Peacock (1999)). The opposite is true for isocurvatures models.
A number of possible matter contents are illustrated. For dark matter models
the characteristic wavenumbers scales proportional to Γ, marking the break
scale corresponding to the horizon length at matter-radiation equality, L0.
The scaling for baryonic models (Ωm = 1, h = 0.5) does not obey this exactly
and contains the effect of the BAO.

as Silk damping of baryonic acoustic oscillation (BAO) (Silk (1968)) or free
streaming of CDM.

Eisenstein and Hu (1998) employ the analytic small scale solution to
derive an accurate fitting formula that move beyond those presented by
Bardeen et al. (1986). They develop a formula for the matter transfer func-
tion for adiabatic CDM cosmologies that account for all baryons effects such
acoustic oscillation, Silk damping, and cold dark matter suppression. The
fitting formula is excellent to provide physical insight into the form of the
power spectrum but it has high deviations with respect to the exact solutions
(Sánchez et al. (2008)).

There are numerical codes to solve the multi species Boltzamnn equations
that provide a more accurate calculations . In this thesis we choose the code
called CAMB (Lewis and Bridle (2002)) based on CMBFAST (Seljak and
Zaldarriaga (1996)) that compute the transfer function and the CMB power
spectra.

Figure 5.4 shows the different shapes of the functions which are obtained
for different components. The transfer function for dark matter has an
asymptotical behavior. The bend visible is due to the Meszaros effect which
continues until the universe is matter dominated. We therefore expect a
turnover in the power spectrum around the comoving horizon scale at the
epoch of equality (L0 = rH,com(zeq)). In conclusion, the shape of the transfer
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function for dark matter depends on the combination kL0, and thus on the
shape parameter Γ = Ωmh.

The transfer function for baryons contains the effect of acoustic oscil-
lations (BAO) before the universe become matter dominated leading to a
strong oscillation pattern in Tb(k). These oscillation are then transfered by
gravitational interactions to the spatial distribution of dark matter particles
producing a weak oscillation pattern in T (k).

5.2.3.1 Evolution of baryonic density �uctuations and BAO

The evolution of density �uctuations of baryons differs from that of dark
matter due to the interaction of baryons with photons via Thompson scat-
tering. At early times there is a close coupling between the electrons, nuclei
(baryons) and photons. The radiation pressure of photons is large compared
to the gravitational forces in the perturbations until the recombination be-
gins, with the result that perturbations in the baryon-photon �uid oscillate
as sound waves following the Jeans criteria (Peebles and Yu (1970); Sun-
yaev and B.Zeldovich (1970)) and with a decreasing amplitude due to Silk
damping.

As the Universe passes from radiation to matter domination, CDM �uc-
tuations are allowed to collapse. After recombination, the photons decou-
ple from the perturbations in the baryons and soon become smoothly dis-
tributed. The perturbations in the baryons are now subject to gravitational
instability, just like the dark matter perturbations. The baryonic pertur-
bations are allowed to collapse and fall within the dark matter potential
wells to create the first stars, globular clusters and galaxies, establishing
the bottom-up hierarchical scenario of structure formation. This mechanism
then guaranties that the tiny baryonic �uctuations can grow to generate the
large �uctuations that we observe today.

The acoustic oscillations are present in the matter power spectrum as
series of damped oscillations. In the correlation function, this is translated
into an excess of pairs at approximately (not equal, see Sánchez et al. (2008))
the scale of the sound horizon. This scale can be computed as the comoving
distance that the sound waves could travel from the Big Bang until recom-
bination at z = z� (Hu and Sugiyama (1996); Eisenstein and Hu (1998)).

The first convincing detections of BAO came in 2005 from de SDSS Data
Release (DR3) and final 2dFGRS samples( Eisenstein (2005);Cole (2005)).
Eisenstein (2005) measured the large scale correlation function of Luminous
Red Galaxy (LRG) sample and Cole (2005) measured the power spectrum of
2dFGRS galaxies. After that, the rapid development of the theory became
the BAO as one of the leading methods for study dark energy.
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5.3 Power Spectrum
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Figure 5.5: The linear power spectrum using CAMB code (black line) and
non linear power spectrum using Halo-fit code (red line) for Hubble Volume
Simulations ΛCDM cosmological parameters.

As we explain in the last sections the initial spectrum Pi(k) is processed
to yield P (k) today. We have demonstrated that the linear power spectrum
of the density �uctuations (Equation 5.4) can be predicted in the framework
of a CDM model, except for its normalization A which has to be measured
empirically from observations as we will describe bellow in Section 5.4.3.

Figure 5.5 shows the linear power spectrum today for ΛCDM cosmology.
Small scale �uctuations (large k) were processed as they entered the horizon.
They will be affected first and experience the strong suppression to their
amplitude. The power spectrum follows a power law, P / k−3. Large scale
�uctuations (small k) should retain their primordial shape, P / k. They will
be unaffected until they enter the horizon after matter domination equality.
The turnover point in the processed power spectrum is an indication of the
horizon size at epch of equality.

Since the baryonic component is forced to oscillate displaying acoustic
peaks, this also predicts the presence of BAO in the CDM power spectrum,
though with smaller amplitude.

Rather than working with P (k) itself, it is often more convenient to use
the dimensionless quantity

∆2(k) � k3P (k)
2π2

(5.17)

which is the power per logarithmic interval in wavenumber. Small ∆ corre-
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spond to small inhomogeneities, while large ∆ indicates non-linear pertur-
bations.

The deviations from the linear power spectrum appear due to mode cou-
pling of the Fourier modes at low redshift, generating an increase in the
power at small scales. The contribution of this non-linearities is practi-
cally negligible at early times and becomes more important as perturbations
grow. An important scale to keep in mind is the scale above nonlinearities
can’t be ignored. This is roughly set by ∆(knl) ' 1, which correspond to
knl = 0.2h−1Mpc in most models (Dodelson (2003)). In Figure 5.5 the non-
linear power spectrum is generated using Halo-fit code (Lewis and Bridle
(2002)) and this will be our choice in this thesis. In Chapters 6 and 7 the
non-linearities and their effects will be studied more in detail. In particular,
in Section 7.2.1 we will describe the non linear power spectrum using the
halo model formalism.

5.4 Statistic of Density Fluctuations

In order to characterize the structure in the universe and to compare obser-
vations of δ with theory, the theory of random fields is used. (For a detailed
presentation of the theory of random fields and their realizations see, for ex-
ample, the classical monograph by Adler (1981). We regard δ as a realization
of a homogeneous and isotropic random field with zero mean, hδi = 0. The
main features of such realizations depend on initial conditions and the way
that those initial �uctuations evolve with time.

Since all statistics of random fields are meant to be measured averaging
over ensembles of fields, in cosmology we introduce the concept of ensemble
of universes. N-body simulations of the Universe can be used to create
large set of realizations with the same initial condition. A large statistical
ensemble of universes are equivalent if they density fields δ have the same
statistical properties. They cannot reproduce our Universe; instead, they are
at best able to generate cosmological models that have the same statistical
properties of our Universe.

However, the observable universe constitutes a single realization of this
process, so the question arises how these ensemble averages h...i might be
measured in practice. Because we have only one universe, we can never get
our hands on an ensemble, and we have to suppose that our field are ergodic
or postulate the fair sample hypothesis.

Ergodicity refers to the mathematical property of random fields that
volume averages converge to ensemble averages as the survey goes to infinity.
In general it is hard to prove that a random field has this property. However,
it can be shown that a zero mean, homogeneous, real Gaussian random field
is ergodic if ξ(r) ! 0 for r ! 1 Adler (1981). This condition allows us to
infer statistic of cosmological fields from the study of one realization of the
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Universe and measure the correlation function ξ(r) . Of course, we have must
always keep in mind that it is possible to have a universe with non-gaussian
initial conditions.

On the other hand, the fair sample hypothesis (Peebles (1980)) states
that we should look at widely separated parts of the space since the δ fields
there should be causally unconnected. They can be regarded as independent
realizations of the underlying stochastic process. Therefore the observable
universe would contain many such realizations.

Whichever hypothesis finally applies, most present day galaxy surveys
are too small (especially at high redshift) to constitute a fair sample and
thus averages over the volumes of such surveys are subjected to statistical
�uctuations. This is called sample variance or cosmic variance if the sample
is constrained by the size of the observable universe.

In this thesis we use N-body simulation with a single realization of the
Universe to test our method before test in cosmological observations that
are more di�cult.

5.4.1 Two Point Correlation Function and Power Spectrum

The δ field inhabits a universe that it is isotropic and homogeneous in its large
scale properties (hδi = 0) although it describes inhomogeneities. The two
point correlation function is a second order statistic (second order moment
of the density field) that characterizes these inhomogeneities and describe
the matter density distribution. It traces the amplitude of the clustering of
objects as a function of scale. Its importance in cosmology has been fully
discussed by Peebles (Peebles (1980)).

The two point correlation function has been the mainstay of clustering
studies for over the last forty years. There are two sorts of two point function.
One describing the clustering as projected on the sky, thus describing the
angular distribution of objects in a catalog. This is called the angular two
point correlation function and is generally denoted by w(θ). The other de-
scribes the clustering in space and is called the spatial two point correlation
function, ξ(r). We frequently omit the word "spatial".

In order to provide a mathematical definition of the correlation function
we will only consider the spatial two point function because this will be our
choice for this thesis. The definition of the angular function follows similarly.

The two point correlation function of the overdensity field is given by
(Peebles (1980))

ξ(x̄1, x̄2) = hδ(x̄1)δ(x̄2)i (5.18)

Since our random field is homogeneous and isotropic, the correlation function
can only depend on jr̄j = j(x̄1 � x̄2)j and

ξ(x̄1, x̄2) = ξ(jx̄1 � x̄2j) (5.19)
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For jr̄j = 0,
ξ(x̄1, x̄2) = hδ2i = σ2 (5.20)

where σ2 is the variance if the isotropic random field.
We want to explain the meaning of the two correlation function in a

straightforward manner,so Equation 5.18 can be rewritten as Peebles (1980)

hρ(x̄1)ρ(x̄2)i = n2[1 + ξ(r̄)] (5.21)

where ones defines the mean value of the density field as n = hρ(r̄)i.
If ρ(r̄) represents the density of a distribution of objects in space, the

probability of finding a single object in a differential volume is just δP =
ρ(r̄)δV . Likewise, the joint probability of finding two objects in two differ-
ential volumes δV1 and δV2 is just the product of individual probabilities,
given by

δP = ρ(r̄1)ρ(r̄2)δV1δV2 (5.22)

If one averages this expression over all possible pairs of positions, leaving the
result only in terms of the separation distance r̄ between the two objects,
and applies Equation B.1 then (Peebles (1980))

δP = n2[1 + ξ(r)]δV1δV2 (5.23)

Thus, as indicated by Equation 5.23, the correlation function determines the
probability of finding two objects at separation r in excess of the probability
one would expect for independent distributions. If two distributions are
uncorrelated, the probability of finding two objects, one in each distribution,
is just the product of probabilities, given by n2δV1δV2.

5.4.1.1 Fourier Analysis of Density Fluctuations

The correlation structure is much simpler if we decompose the field in Fourier
modes δ(k̄). The Fourier analysis is the natural tool to study a field as a su-
perposition of many modes for a �at comoving geometry. For other models,
plane waves are not a complete set although normally this is neglected be-
cause the difference only matters on scales of order the present-day horizon
(Peacock (1999)).
We represent the real space �uctuations in the homogeneous density field as
a sum over the Fourier modes

δ(x̄) =
( 1

2π

)3
∫
δ(k̄) exp(ix̄ � k̄)d3k (5.24)

and the inverse
δ(k̄) =

∫
δ(x̄) exp(�ix̄ � k̄)d3x (5.25)

With this definitions the correlation function of our Fourier transformed
quantities is given by
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hδ(k̄1)δ(k̄2i = (2π)3δD(k̄1 � k̄2)P (k̄1) (5.26)

where P (k̄1) is the spectral density of the field called the power spectrum

P (k) = hjδkj2i (5.27)

and δD is the Delta Dirac function which constrains k̄1 = k̄2, meaning that
the Fourier amplitudes are independently distributed.

Because δ(x̄) is real, we have δ(k, t) = δ(�k, t)y and the above formula
can be written as

hδ(k̄1)δ(k̄2i = (2π)3δD(k̄1 + k̄2)P (k̄1) (5.28)

All these equations define the correlation function. Inserting the Fourier
decomposition into Equation 5.18 yields

ξ2(r) =
1

(2π)3

∫
d3kjδ(k)j2 exp(�ik � r) (5.29)

In an isotropic universe, the spectral density cannot contain a preferred
direction and must be a function of the norm k = jkj. Therefore we have a
isotropic power spectrum: hjδj2(k)i = jδj2(k) and the above formula can be
simplified, integrating over angles first. In three dimensions, this yields

ξ(r) =
4π

(2π)3

∫
P (k)

sin(kr)
kr

k2dk (5.30)

5.4.2 Gaussian Density Fields

In general, knowing the correlation function or the power spectrum is not suf-
ficient to unambiguously describe and characterize any random field. How-
ever, the statistical nature of the isotropic homogeneous Gaussian density
field with zero mean is completely specified by them (Bardeen et al. (1986)).

The Gaussian field is the simplest class of random field to describe a
n-point joint probability distribution because it is a multivariate Gaussian

f(δ(x1), ..., δ(xN )) =
1

(2π)
N
2

√
det(V )

exp
(
�1

2

N∑
i,j=1

δ(xi)(V −1)ijδ(xj)
)

(5.31)
where Vij = ξ(jxi � xj j) is the covariance matrix. Hence the correlation
function ξ(r) determines the random field entirely.

An important property of Gaussian random fields is that the Fourier
transform of a Gaussian field is still Gaussian. Each Fourier mode δ(k) has
a real and imaginary part which are independent and Gaussian distributed
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with zero mean and dispersion P (k)/2. Additionally, each k-mode is inde-
pendent from the others in contrast to the values of the δ(x) at different
points in real space.

Moreover, gaussian fields play an important role in cosmology because
the initial perturbation due to in�ation are assumed to be Gaussian in the
linear regime. During the evolution of the structure they evolve gradually
away from Gaussianity. As an example, the matter density field ρ(x) is close
to Gaussian at the beginning, but that tends to be closer to lognormal at
later stages (Coles and Jones (1991)).

The higher-order irreducible correlation functions and spectra of a Gaus-
sian field are identically zero, so their determination from observations is a
good test for Gaussianity of the field. .

5.4.3 Filtering and Normalization of the Power spectrum

In order to normalize the power spectrum and provide a whole set of useful
statistically parameters to characterize a density field, it is very useful to look
at the density fields convolved, or filtered. We have to take into account that
objects have a finite size and we are not interested usually in the behavior
of the field at smaller scales. Mathematically, this is obtained by convolving
the matter density field with some window function W (r;R) on a certain
scale R.

We are often interested not only in the convolved field itself, but in its
variance, for use as a statistic. Therefore, we study the statistical moments of
the filtered linear overdensity field where the variance is the second moment
and can be expressed by the linear power spectrum as

σ(R)2 � hδ(r;R)2i =
1

(2π)3

∫
jW (k;R)j2Plin(k)d3k (5.32)

where W (k;R) is the Fourier transform of the window function W (r;R).
The smoothing functions are selected because they yield simple analytical
expressions and posses a well-defined volume. The most common filters are
the spherically symmetric Gaussian and the top hat. For our calculations
we use a top hat function

W (r;R) =
3

4πR3
θ(R� r) (5.33)

where θ(x) is the theta-function. Its Fourier transform is given by

W (k,R) =
3

(kR)3
(sin(kR)� (kR)cos(kR)) (5.34)

The effective volume for this filter is

V =
4π
3
R3 (5.35)
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The volumes are necessary when we wish to define objects by their mass.
Therefore the two relevant mass and length scales, M and R, are related by
calculating the mass contained in a sphere of the given mean density, that
is, M = 4π

3 R
3ρ̄.

We have demonstrated in previous section that the power spectrum of
the density �uctuations can be predicted in the framework of a CDM model,
except for its normalization which has to be measured empirically.

The first method to set the amplitude of power spectrum is to measure the
�uctuations in the cosmic background radiation (CMB). The COBE satellite
measured them for the first time in 1992. Later, WMAP and Planck missions
complements and improves these observations . These �uctuation are caused
by the �uctuations of the initial gravitational potential, so the �uctuations of
the temperature of the CMB can be used to describe the density �uctuations
at recombination. The main reference for this normalization is the paper by
Bunn and White (1997).

Another method of normalization is by the value of σ8, defined as the
square root of the variance with a window function with radiusR = 8h−1Mpc.
This value of the radius is considered to be approximately the smallest scale
where the dynamics is still almost linear. σ2

8 is given by

σ2
8 = hδ(r;R = 8h−1Mpc)2i (5.36)

This value does not coincide with the observed rms variation of galaxy
counts σ8,g, which differs from σ8 by the bias factor and by the effects of
non-linear dynamical evolution. Thus, σ8 should be treated as only a nor-
malization constant.

Leaving aside non-linear corrections, we know from observed inhomo-
geneities in the local Universe that σ2

8,g = 1. Since the connection between
dark matter and galaxies or cluster of galaxies is parametrized by the linear
bias parameter factor b, we then obtain

σ8 �
1
b

(5.37)

Once we know the CMB normalization and the cosmological parameters,
we can calculate σ8, so it is not really a free parameter.

The clustering analysis focused on the amplitude of the power spectrum
contains degeneracies between cosmological parameters, especially on σ8 and
Ωm. This is due to the fact that these parameters in�uence the strength of
the matter �uctuations in the same way. As we will see in Chapter 3, probes
like cluster abundance have been introduced to break these degeneracies.



Chapter 6

The Abundance of Dark
Matter Halos

Abstract:
One of the exciting developments of 1990s was the evolution of a

number of techniques to study the abundance of galaxy clusters (called
cluster mass function) as a function of mass and redshift. In addition to
the brute-force approach of numerical simulations there are semianalyt-
ical techniques which have been remarkably successfully at prediction
properties and abundances of different galaxy types. The Press and
Schechter theory (Press and Schechter (1974)) forms the basis of this
work and assume that objects collapse spherically to produce spherical
dark matter halos. In Section 6.2 we explain the spherical collapse
model and derive the model for the abundance of dark matter halos.
Later in Section 6.3 we will introduce the more realistic ellipsoidal
collapse and the calibrated formulas or fitting formulas from N-body
simulations which provide more accuracy. Finally in 6.4 we will test
this models in N-body simulations.

6.1 Introduction

The evolution of structures like clusters of galaxies cannot be treated within
the framework of linear perturbation theory described in the last chapter.
The non-linear evolution is more complicated. There are no general ana-
lytical solutions so it is necessary to use numerical methods such N-body
techniques simulation (i.e., Bertschinger (1998) and Kuhlen et al. (2012)) to
study the general case.

Although the full development of the gravitational instability cannot be
solved exactly without N-body techniques, there are some very useful special
cases and approximations that help us to understand the general case such
the model of spherical collapse.

69
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Clusters are formed when density �uctuations δ reach some critical thresh-
old density δC and then collapse. However, in this chapter we will study the
collapse and virialization of dark matter called dark matter halos. The di-
rect link between the dark matter simulations and the observed properties of
the Universe requires understanding of the relation of dark matter and the
observable. We will return to these aspects later.

6.2 The Spherical Collapse Model and the Mass
function

6.2.1 The Spherical Top Hat Collapse

The spherical top hat collapse model was first studied by Gunn and Gott
(1972). Despite being a simplistic model, it represents the fundamental prin-
ciples of gravitational collapse and yields approximate relations for collapse
time and mean density inside the virialized region, as they are found from
numerical simulation (Schneider (2006)).

We will follow the evolution of a spherical density perturbation that is
embedded in a homogeneous background universe, from early times to grav-
itational collapse and virialization (Peacock (1999)). Because of Birkoff’s
theorem and the condition of spherical symmetry, the perturbation and the
background evolves independently.

An overdense sphere is a very useful nonlinear model, as it behaves in
exactly the same way as a closed sub-universe. The density perturbation need
not be a uniform sphere: any spherically symmetric perturbation will clearly
evolve at a given radius in the same way as a uniform sphere containing the
same amount of mass. Therefore, density refers to the mean density inside
the given sphere (Peacock (1999)).

How can we describe the dynamics of the perturbation? We treat the
perturbation as a miniature FRW universe with higher density than the
background. The perturbation is su�ciently large that we can neglect the
local in�uence of cosmological constant.

The equation of motion of the radius is the same as the scale factor given
by the Friedmann Equation 2.20 when ΩΛ = 0. It can be most easily solved
if it is expressed in terms of the conformal time dη = cdt/R. Assuming that
ρ(t) can be written as ρ(t) = ρ0R

3
0/R

3 because of the conservation of the
matter we then have (dR

dη

)2
=

8πGρ0R
3
0

3c2
R� kR2 (6.1)

Defining the characteristic radius R∗ as a useful scaling constant

R∗ �
4πGρ0R

3
0

3c2
� GM∗

c2
(6.2)
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where M∗ is the mass initially enclosed in our overdense sphere or the char-
acteristic mass,the equation 6.1 is rewritten in terms of R∗

[
d

dη

( R
R∗

)]2
= 2

( R
R∗

)
� k

( R
R∗

)2
(6.3)

We are interested in the formation of the object, so we choose the case
k=+1 when the expansion will change to contraction at a certain R. The
solution is the well known cycloid. The two equations which completely
describe the evolution of a spherically symmetry overdensity are thus

R(η) = R∗(1� cos(η)) (6.4)

t(η) =
R∗
c

(η � sin(η)) (6.5)

For simplicity we assume that the equations of the motions of the back-
ground are the same as the scale factor (Friedmann Equation 2.20) for a
matter dominated universe with ΩΛ = 0 and k = 0 (Einstein-de Sitter
model)

ȧ2 =
8πG

3
ρ̄a2 (6.6)

with the solution a(t) / t2/3. Inserting this solution into the Friedmann
equation we obtain the explicit time dependence of the background density

ρ̄(t) =
1

6πGt2
(6.7)

Using the Equations 6.4, 6.5 and 6.7 we can compute the full non-linear
growth of the spherical overdensity as

δ(η) + 1 =
ρ(η)
ρ̄(η)

= (
M

4πR(η)3/3
)/(

1
6πGt(η)2

) =
9(η � sin(η))2

2(1� cos(η))3
(6.8)

We can now take a look to the several states of evolution of the overden-
sity

Evolution for η << 1 (Linear regime) In order to describe the early
expansion of the sphere, we expand the relation 6.8 to the first non vanish-
ing order in η yielding

δ(η) ' 3
20
η2 (6.9)

The leading order terms for 6.4 and 6.5 are given by

R(η) ' R∗
η2

2
(6.10)

t(η) ' R∗
c

η3

6
(6.11)
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so that eliminating η using the last equation we obtain

δ(t) ' 3
20

(6ct
R∗

) 2
3 � δlin(t) (6.12)

We recover the results from linear perturbation theory for a matter domi-
nated Einstein de Sitter universe since δ(t) is small at early time. The sphere
expands with a / t2/3 and density perturbations grow proportional to a, in
accordance with the expansion of background universe.

As time passes, the perturbation grows and leaves the linear regime.
There are three interesting epoch in the final stages of its development, which
we can read from the cycloid solution. We compare the density enhancement
of our evolving sphere relative to the cosmological background

Turnaround The sphere breaks away from the general expansion and
reach the maximum radius at η = π. Therefore, the kinetic energy is zero.
This state mark the epoch when the perturbation decouples entirely from the
Hubble �ow of the homogeneous background. At this stage the overdensity
relative to the background is

1 + δmax =
9π2

16
(6.13)

Collapse If only gravity operates, then the sphere will collapse to a
singularity at η = 2π. This occurs when δlin ' 1.69, which will be renamed
as critical overdensity, δc.

Virialization The sphere will no really collapse to a single point; dissi-
pative physics will eventually intervene and convert kinetic energy of collapse
into random motions. The particles will scatter on these �uctuations in the
gravitational field and will virialize. Nonetheless, the threshold density δc is
useful because it indicates when a perturbation enters the non-linear regime.

At the equilibrium the total kinetic energy is related to the potential
energy by the virial theorem

V = �2K (6.14)

To find the size of the halo, we search for the radius Rvir for which the virial
condition 6.14 is satisfied. Since at the turnaround Etotal = V (Rmax) we
obtain

Rvir =
1
2
Rmax = R∗ (6.15)

In the spherical top hat model, following 6.4, this will occur at η = 3π
2 .

However, some authors prefer to assume that the process of virialization
take a little longer than the predicted by our symmetric model, and it is
common to assume that Rvir is in fact reached at collapse (Peacock (1999)).
In this case the full non-linear density contrast for an Einstein-de Sitter
model is
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∆vir = 1 + δvir �
9(η � sin(η))2jη=2π

2(1� cos(η))3jη= 3π
2

=
9
2

(2π)2 ' 178 (6.16)

Peacock (1999) derives an approximate expression for ΩΛ = 0 models

∆vir = 1 + δvir ' 178Ω−0.7
m (6.17)

For �at Λ dominated models, Eke et al. (1996) give an analytical prescription.
He calculates the lower Ωm dependent critical thresholds from the spherical
collapse solutions of Lahav et al. (1996) and Lilje (1992). The results show
that, while δc is rather insensitive of the presence of cosmological constant,
∆vir decreases for increasing ΩΛ. Bryan and Norman (1998) provide a fitting
formula for the density contrast at virialization of Eke et al. (1996) when
Ωrad = 0 which it is accurate to 1% as

∆vir = 18π2 + 82Ωm(z)� 39Ωmat(z)2 (6.18)

Questions arise about the validity of the assumption of spherical symme-
try in this analysis, especially as we would expect in general that overdense
or underdense regions in our universe will be quite aspherical. It is found,
however, that a density contrast 100-200 turns out to be quite successful at
defining and hence finding halos in N-body simulations. A commonly used
definition of the mass of a halo is M200, defined as the mass encompassed
by a sphere centered on a halo which 1 + δvir = 200. Such a virialized mass
concentration of dark matter is called dark matter halo.

Later in Section 6.3.1 based on these concepts we will describe more the
mass of the halo in numerical simulations.

6.2.2 The Dark Matter Halo Mass Function and the Press
Schecther Theory

The halo mass function dn
dM of dark matter halos is the comoving number

density of halos with mass between M and M + dM at a given redshift z.
It is a key element to understand the distribution of matter and clusters of
galaxies in the Universe. As we will see in next chapter, it sets the relative
weighting for the different mass regimens in integrals used to determine the
statistic of matter density and galaxy number density fields and thus plays
an important role in determining the bias (see Equation 7.40 to obtain the
averaged bias).

Here we start with a derivation of the Press-Schechter (Press and Schechter
(1974)) (hereafter PS) mass function. Later, in Section 6.3, we proceed to
discuss the fits to the halo mass function observed in N-body simulations.
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The PS formalism is an attempt to analytically estimate the abundances
of bound virialized objects in the Universe based on the assumption that
these objects are formed following the spherical collapse model.

PS assume that the distribution of values of this linear density δ is Gaus-
sian. Therefore, the probability that a given point lies in a region with δ > δc
required for a halo to collapse is

p(δ > δc;Rf ) =
1p

2πσ(Rf )

∫ ∞
δc

exp

(
�δ2

M

2σ2(Rf )

)
dδ (6.19)

=
1
2

[
1� erf

(
1p
2

δc
σ(Rf )

)]
(6.20)

where Rf is the radius over which the density field has been smoothed. This
radius is used to computed σ2(Rf ), the variance of the smoothed linear power
spectrum given by Equation 5.32. This expression can be expressed in terms
of the linear power spectrum at z=0 Plin(k) as

σ2(Rf ) = D(z)2σ0(Rf )2 = D2(z)
∫
dk

k

k3Plin(k)
2π2

jW (kRf )j2 (6.21)

where D(z) is the growth function explained in detail in Section 5.2.2.2 and
δc is defined before. As we discuss in 5.4.3, the filter function W (r;Rf ) has
some characteristic length Rf . The typical size of the filtered �uctuations
will be � Rf and they can be assigned a mass M � ρR3

f .
The probability given by Equation 6.20 predicts the fraction of the vol-

ume that has collapsed into objects of mass > M . To get these fraction into
a form more comparable with observations, we differentiate p(δ > δc;Rf )
with respect to M and multiply by a small interval dM . This gives the
fraction of volume collapsed into objects in the range dM . Then multiply
by the average number density of such objects ρ̄m

M to get the number density
of collapsed objects with mass between M and M + dM ,

dn(M, z) =
ρ̄m
M

∣∣∣ dp
dM

∣∣∣dM (6.22)

A factor of 2 had to be added into their model to match with simulations
(Peacock (1999)). Thus, in terms of the variance this is

dn

dM
=
ρ̄m
M2

∣∣∣ dlnσ
dlnM

∣∣∣√ 2
π

δc
σ(Rf )

exp

(
�1

2

(
δc

σ(Rf )

)2)
(6.23)

There is a typical mass scale, M∗ at which the variance is σ(M∗) = δc. For
M << M∗ the mass function is close to a power law dn

dM / M−2, and is
exponentially cut off for M �M∗. Examples of the mass function will given
in Section 6.4.
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The factor 2 has long been recognized as the crucial weakness of the PS
analysis. The problem was resolved after Bond et al. (1991) and Peacock
and Heavens (1990) found physically motivated solutions within the so-called
excursion set approach or extended PS theory.

We learn from this analysis that PS approach is a very simple model,
based on assumptions that are not really justified in detail. Apart from the
ad-hoc modifications, such as the multiplication by a factor of 2, it suffer
from other drawbacks. First, the collapse of dark matter halos is a spherical
symmetric process. Second, the collapse fraction is obtained using linear σ
and finally the distribution of inhomogeneities is gaussian. Nevertheless, its
predictions are in astounding agreement with the number density of halos
from simulations.

6.3 Halo Mass Function in Numerical Simulation

Only since the mid-1990s, the numerical simulations have the precision and
statistic to reach a level on which significants discrepancies with the PS
model become clearly noticiable. The N-body simulations showed that this
model overestimated the abundance of low mass halos and underestimates
the abundance of the haloes in the high mass-tail (see Figure 6.1 taken from
Jenkins et al. (2001) and Warren et al. (2006) paper).

There is a great effort to deal with previous mentioned drawbacks and
more accurate formulae for the mass function of halos have been constructed
using simulations. However the identification of the halo and the determi-
nation of its mass it is not trivial and various methods for this are applied
(White (2001),White (2002), Luki¢ et al. (2007))

6.3.1 Measures of Halo Mass

There are two common algorithms to find halos in simulations. The spher-
ical overdensity algorithm (Lacey and Cole (1994)) is based in identifying
overdense regions above a certain threshold, ρt. The threshold can be set
with respect to the critical density ρc or the background matter density ρ̄m.

The mass M∆ of the halo is defined as the mass enclosed in a sphere of
radius R∆ whose mean density is ∆ times the threshold density, ∆ρt = 3M∆

4πR3
∆
.

The value of ∆ is the overdensity within a sphere of radius R∆ with respect
to ρt, which it is typically chosen to be either the critical or background at
the epoch of analysis

∆ =
3M∆

4πR3
∆ρt

(6.24)

Common values for ∆ range from 100 to 500. The disadvantage of defining
a halo in this manner is that sphericity of halos is implied, an assumption
which may be easily violated (Luki¢ et al. (2007)).
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The other method, the Friend-of-Friend (FOF) halo finder(Davis et al.
(1985)) is based on the percolation algorithm defining dark matter particles
to belong to a FoF group if they are separated by a distance smaller or
equivalent to a linking length, b, of any other particle in the group. The
FOF algorithm leads to halos with arbitrary shapes since no prior symmetry
assumptions have been made. The halo mass is defined simply as the sum
of particles which are members of the halo. While this definition is easy to
apply to simulations, the connection to observations is di�cult to directly
establish. For a discussion of the different mass definitions see White (2001)
paper.

6.3.2 Fitting Functions

Sheth and Tormen (1999) refined the extended PS mass function to give an
improved analytical fit to results of GIF/Virgo simulations. They derive a
parameterization of the mass function in terms of the dimensionless mass
coordinate ν

ν =

(
δc

σ(M)

)2

(6.25)

and obtain,
dn

dM
=
ρ̄m
M
f(ν)

dν

dM
(6.26)

νf(ν) = A(p)
(
1 + (qν)−p)

)(√ qν

2π

)
exp

(
�qν

2

)
(6.27)

where f(ν) is the multiplicity function or the fraction of mass in collapsed
object. A is determinate from

∫
f(ν)dν = 1 to conserve the mass, giving

A = A(p) =

[
1 +

2−pΓ(1/2� p)p
π

]−1

(6.28)

and q � 0.75 and p � 0.3 are their best fits. The extended PS formalism has
the same form if q = 1, p = 0 and A = 1/2.

Later, Sheth et al. (2001) show that the shape of mass function given
by Equation 6.27 is a plausible consequence of extending the excursion set
approach to include the elliptical collapse model (Peebles (1980)). In this
model the barrier height is not constant and depends on mass of the col-
lapsing overdensity. This leads to a excursion set approach with a moving
barrier that generates a first crossing distribution as Equation 6.27.

Jenkins et al. (2001) showed that the halo abundance is well described
by a single functional form

dn(M, z)
dM

= f(σ, z)
ρ̄m
M

dln[σ−1]
dM

(6.29)
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where f(σ, z) is the mass fraction of collapsed object expressed in terms of
lnσ−1(M, z) instead of the mass M and defined by

f(σ, z) � M

ρ̄m

dn(M, z)
dlnσ−1

(6.30)

All dependence on cosmological parameters is in σ(M, z). When it is rescaled
in this way the mass fraction is said to be universal. This means that results
from all output times in simulations trace out the same f(σ) curve and it
does not depend on power spectrum and cosmological parameters.

They found a single formula that fits all mass functions of the Virgo
simulations with an accuracy of 20% for �1.2 � lnσ−1 � 1

f(σ) = 0.315exp(�jlnσ−1 + 0.61j3.8) (6.31)

Jenkins et al. (2001) conclude that the fitting function proposed by Sheth
and Tormen (1999) is a very good fit to the universal mass function they
found, and is close to the best fit they give as Equation 6.31. This is shown
in Figure 6.2, which is taken from Zentner (2007). It compares the extended
PS model for the fraction of mass in collapsed object with the results of a
suite of cosmological numerical simulations.

Tinker et al. (2008) provide a fitting function that predict the halo mass
function for spherical aperture mass defined with an arbitrary overdensity ∆
respect to the mean density of the Universe ρ̄m over a wide range of values.
They choose the functional form given by 6.29 where the function f(σ) is
parametrized as

f(σ) = A

[(
σ

b

)−a
+ 1

]
exp

(�c
σ2

)
(6.32)

The parameters A, a, b and c are constants calibrated in simulations. The
best fit values of these parameters as a function of ∆ were determining by
fitting Equation 6.32 to z=0 simulations using χ2 minimization.

Figure shows the function f(σ) measured for simulations at z = 0 and
z = 1.25 with ∆ = 200. The residuals of the measured mass function with
respect to the best fit at z = 0 demonstrates that the mass function is not
universal in redshift.

They provide redshift corrections to match mass function to simulations.
Figure 6.4 shows the redshift evolution of the ∆ = 200 mass function at four
redshifts. The solid curves shows a model in which the three first parameter
of f(σ) are allowed to vary as a power law of redshift

A(z) = A0(1 + z)−0.14 (6.33)

a(z) = a0(1 + z)−0.06 (6.34)

b(z) = b0(1 + z)−α (6.35)
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Figure 6.1: Comparison of analytic models of the halo mass function plotted
in redshift independent form with results in N-body simulations (Jenkins et
al. (2001)). Dashed line is the Press-Schechter mass function and the dotted
line is the Jenkins fitting formula that fits all the mass function.

Figure 6.2: Collapsed mass fractions from Zentner (2007). The solid line
represents the PS extended approach predictions. The dashed and dotted
lines represent the improved fits of Sheth and Tormen (1999) and Jenkins et
al. (2001) respectively. The red points are the numerical data from a suite
of N-body simulations
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Figure 6.3: (From Tinker et al. (2008)). The solid line for both panels is the
best fit function of Equation 6.32 calibrated at z = 0. Left: The measured
f(σ, z) from all simulations for z = 0 and for ∆ = 200. Right: The measured
f(σ, z) at z = 1.25 and ∆ = 200. They restrict to simulations for which they
have previous redshift outputs. The lower window shows that the z = 1.25
mass function is offset by � 20% with respect to the results at z = 0.

Figure 6.4: (From Tinker et al. (2008)). Redshift evolution of the ∆ = 200
mass function. Each panel shows the residuals of the z=0 mass function with
respect to the measured mass function at z = 0, 0.5, 1.25 and 2.5. The solid
curves represent the z = 0 mass function modified by Equations 6.33, 6.34
and 6.35.
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logα(∆) = �
(

0.75
log(∆/75)

)1.2

(6.36)

where subcript `0’ indicates the value obtained at z=0 listed in Table 6.1.
These are the best fits parameters of Equation 6.32 resulting from fits to
many simulations for 9 values of the overdensity ∆ (see Table 2 of Tinker et
al. (2008) for more details).

∆ A a b c

200 0.186 1.47 2.57 1.19
300 0.200 1.52 2.25 1.27
400 0.212 1.56 2.05 1.34
600 0.218 1.61 1.87 1.45
800 0.248 1.87 1.59 1.58
1200 0.255 2.13 1.51 1.80
1600 0.260 2.30 1.46 1.97
2400 0.260 2.53 1.44 2.24
3200 0.260 2.66 1.41 2.44

Table 6.1: Mass Function Parameters for f(σ) at z = 0

As we will see in Section 6.4.2 we will test the redshift evolution of Tinker
et al. (2008) mass function model and we also perform a fitting method that
correct the deviation from universality in redshift for the Sheth and Tormen
(1999) model.

The accuracies of the halo mass function models should, however, be
taken with caution. Uncertainties in the halo mass function are not only
introduced by the definition of halos in simulations but also by effects due
to the baryonic physics, which may cause larger deviations from the mass
functions in pure DM simulations than the uncertainty stated above. (e.g.,
Stanek et al. (2009)).

All the fitting formulas for the halo mass function that we have mentioned
before are derivate from N-body simulations of cosmological structure start-
ing from Gaussian initial conditions. Pillepich et al. (2010) explored the be-
havior of the mass function in the presence of primordial non-Gaussianities.
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Figure 6.5: Density slice of ΛCDM Hubble Simulation snapshot at z=0.
The volume is 3000� 3000� 100 (h−1Mpc)3

6.4 Mass Function for Simulations Used in this Work

Massive clusters of galaxies have a very low number density. This is directly
related to the exponential decrease of the abundance of dark matter halos
with mass as described by the models. For this reason we need considerably
large volumes to derive statistically meaningful results.

In this thesis, first we have used the z=0 snapshot from �at ΛCDM
Hubble Volume N-body simulations (hereafter HVS)(Jenkins et al. (2001))
that was run in a comoving box with side L = 3000h−1Mpc. This large
volume simulation (V = L3 = 27h−3Gpc3) is particularly well suited to study
the statistical properties of very massive structures like the distribution of
galaxy cluster. It contains 109 particles with a mass of 2.25 � 1012h−1M�.
This means that mass and spatial resolution of this simulation are insu�cient
for studying galaxies. Dark matter halos are identified with a FOF algorithm
with a linking length b = 0.164. Figure 6.5 shows a slice of the snapshot
which is given directly in comoving coordinates.

In addition to the simulation output, we have used the DES v1.02 halo
mock catalog light cone sky survey based on the Hubble Volume PO light
cone output (Evrard et al. (2002)). We choose this catalog because it covers
the same volume as it is predicted for DES. In this case the halo finder
algorithm is the spherical overdensity (SO) where the threshold ∆ = 200 is
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Figure 6.6: ΛCDM Hubble Volume light cone octant of the sky with DES
volume. The observer is in the coordinate origin that corresponds to redshift
z=0.

set with respect to the critical density ρc(z). The value of the mass of the
particle is the same as in the snapshot.

The positions of the halos in the light cone are given in angular and
redshift coordinates (RA,DEC; z). Figure 6.6 shows these positions after
we convert them to cartesian coordinates (x, y, z). Each halo satisfy the
parametric equations

x = χcos(DEC)cos(RA) (6.37)

y = χcos(DEC)sin(RA) (6.38)

z = χsin(DEC) (6.39)

where we have converted the measured redshift to a comoving distance χ
using Equation 2.36 for which a cosmological model is used. The cosmological
parameters used in the simulations are: Ωm = 0.3, Ωb = 0.04, ΩΛ = 0.7,
σ8 = 0.9, h = 0.7.
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6.4.1 Mass Function Result in the Hubble Volume Snapshot
at z=0
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Figure 6.7: Results for HVS snapshot at z=0. Top: Sheth and Tormen (1999)
mass function model with p and q fiducial and measurements. Bottom:
Residuals of the measured mass function with respect to the Sheth and
Tormen (1999) mass function model with p and q fiducial values.

We have measured th z=0 HVS halo mass function by counting the num-
ber of halos ∆N within a logarithmic mass bin of width ∆lnM = 0.12

dn

dM
=

∆N
V∆M

(6.40)

where V is the volume of the simulation box.
Figure 6.7 shows comparison of the measurements with the Sheth and

Tormen (1999) fitting formulae with p and q fiducial values. The vertical
bars are the Poisson errors and the horizontal bars the bin width. Although
Jenkins et al. (2001) provide a more accurate fitting formula for this simu-
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lation we have used this model because it is used to derive the halo biasing
formula in our calculations (see Chapter 7).

We find deviations of less than 1% in the mass range 1014h−1M� �
M � 7� 1014h−1M� and an overprediction for M � 7� 1014h�1M� which
increases with mass. These results are in agreement with the Sheth & Thor-
men model comparison studied in Jenkins et al. (2001). We conclude that
the value of the mass function is well matched by the Sheth and Tormen
(1999) model. Small discrepancies are found in the low mass tail and they
are greater in the highest mass bins where the number of halos is very small.
There are less than 100 halos in the last six bins and one for the last. How-
ever, if we compare the systematic error with the statistic error, the devia-
tions in the high mass tail are not significant.

Moreover, since the mass function sets the weight for the different mass
regimes in the integral to obtain the bias, in the high mass tail the deviations
we have found won’t be significant for the bias results.

6.4.2 Mass Function in DES Light Cone Simulations

The mass function in the light cone is measured as in the previous section
but now N is the number of halos in the redshift dependent comoving volume
V. The volume element is given by

dV = χ2dχdΩ =
χ2(z)
H(z)

dzdΩ (6.41)

where χ is the comoving distance to redshift z and dΩ is the solid angle. The
volume in the redshift bin [z1, z2] is obtained through

V =
∫

Ω
dΩ
∫ z2

z1

χ2(z)
H(z)

dz (6.42)

The light cone has � 247700 halos in a total volume of 1.42� 1010h−3Mpc3.
We divide it in redshift bins of width 0.2 where the volumes are calculated
using Equation 6.42. The results are given in Table 6.2.

z bin Volume h−3Mpc3

0.2� 0.4 5.74� 108

0.4� 0.6 1.26� 109

0.6� 0.8 1.96� 109

0.8� 1 2.59� 109

1� 1.2 3.10� 109

1.2� 1.4 3.49� 109

Table 6.2: Calculated volumes for redshift bins
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First we compare the mass function measured for every redshift bin with
the Sheth and Tormen (1999) model with the p and q fiducial values evalu-
ated at the mean redshift. Figure 6.8 shows that there is a high disagreement
in all the mass range. Therefore we fit the parametric model to the halo cat-
alog measurements where we assume Poisson counts. Our fitting method
consist in a simple χ2 of the difference between the theoretical model and
the measured counts in bins (e.g., Jenkins et al. (2001) and Manera and Gaz-
tañaga (2011)). Table 6.3 shows the best p and q parameters which we have
found fitting over all the mass range of the simulations for every redshift.

z p q
0.3 0.35 0.88
0.5 0.33 0.87
0.7 0.33 0.85
0.9 0.33 0.84
1.1 0.33 0.84
1.3 0.33 0.85

Table 6.3: Best fit values of the Sheth and Tormen (1999) p and q parameters
to the simulation mass function

We also test the Tinker et al. (2008) fitting function and their redshift
evolution. As we explained in Section 6.3.2 they provide mass function pa-
rameters for each ∆ value respect to the mean density of the Universe, ρ̄m.
However, the halo finder algorithm in the light cone define spherical regions
that are overdense with respect to the critical density ρc(z) where the mass
is given by

M∆ =
4π
3

∆ρcR3
∆ =

4π
3

∆
Ωm(z)

ρ̄mR
3
∆ (6.43)

So if we define a overdensity contrast as

∆′ =
∆

Ωm(z)
(6.44)

we can use the Tinker et al. (2008) functional form for any value of ∆′

(Penna (2010)). We calculate the parameters that evolve with redshift using
Equations 6.33, 6.34, 6.35 and 6.36, where

logα(∆′) = �
(

0.75
log(∆′/75)

)1.2

(6.45)

and the values of the parameters at z = 0 are calculated by spline interpo-
lation of the parameters as a function of ∆′. Figure 6.9 shows the results of
the measured mass function for 6 redshift bins and the Tinker et al. (2008)
model.
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In Figure 6.10 we compare the Sheth and Tormen (1999) mass function
with the Tinker et al. (2008) mass function. It shows the ratios of the
measured mass function to the fitting functions. In all the redshift bins we
found that the deviations increase on the high mass tail for both models
where the number of halos is rather small. In Figure 6.11 we compare the
systematic error ∆ dn

dM with the statistical error σ. These results show that
these high deviations are not significant. Moreover, these deviations also
won’t be significant for the bias results.

The results also show that disagreement between models increase with
redshift. We obtain approximately the same accuracy in all the bins with
Sheth and Tormen (1999) model. However, we found that the deviations
increase with redshift with Tinker et al. (2008) fitting function. Although
at z = 0.2� 0.4 both models agree, at z � 0.4 the last model underpredicts
the measurements.

Our conclusion is that we found better results in the redshift evolution
with the Sheth and Tormen (1999) mass function.



Chapter 7

Halo Bias and Clustering

Abstract: We study the accuracy of the model predictions of dark
matter halo bias by comparing them with results from numerical sim-
ulation of non linear gravitational clustering.

7.1 Halo Bias

7.1.1 Introduction

It is now well established that dark matter halos are biased tracers of the
underlying dark matter distribution. The literature contains different usages
of the bias parameter, which are not equivalent to one another and we must
always have careful with which is being used.

The simplest definition of the bias is given by Eq. 5.37 used to normalized
the power spectrum of the galaxies. However, in this section we describe
theoretical approaches designed to determine the linear halo dark matter
bias, without galaxy formation process.

In our first definition, the �uctuations of the number density δh of ha-
los with mass, M can be written as a bias factor b(M) multiplied by the
�uctuations of the underlying matter density δm.

δh(x̄,M) = b(M)δm(x̄) (7.1)

The determination of halo bias is closely related to the description of halo
abundance. They are not independent: an accurate model of halo clustering
is part and parcel of an accurate model of halo abundances. As we describe
below, two theoretical description of the halo abundance and distribution of
halos with respect to dark matter have been designed: the theory of peaks
(Kaiser (1984); Bardeen et al. (1986)) and the excursion set approach (Bond
et al. (1991)).

89
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Figure 7.1: The high peak bias model.

The second definition refers to the relative size of the halo and matter
correlation functions. The halo correlations are amplified as

ξhh(r̄,M) = b2(M)ξ(r̄,M) (7.2)

The bias depends on the mass of the halo, M (and the redshift as we will
see). Moreover, this factor in general depends on the scale. However, it may
well be adequately represent by a constant across some range of scales as
long as we look to large enough scales which in practice more o less means
scales in the linear regime (Liddle and Lyth (2000)). The bias for the non
linear regime would be scale dependent.

7.1.2 Linear Bias from Peak Background Split

The peak background split (Kaiser (1984); Bardeen et al. (1986); Cole and
Kaiser (1989)) applied on large scales shows how the local number of halos
depends on the environment. In the context of clustering of peaks, the central
idea it is to image an overdensity field δ that can be decomposed into a short
wavelength δs and into a long wavelength background δb such that

δ = δs + δb (7.3)

The long wavelength mode modulates the number counts of the short wave-
lengths modes (peaks). The effect of this is to perturb the threshold required
for a peak to collapse

δ̃c = δc � δb (7.4)

The background reduces (or enhances) the threshold and then is more (or
less) probable to find more collapsed objects where δ̃c is large (small or � 0)
than in regions with low (high) background overdensities (Kaiser (1984)).
The �uctuations of a given strength collapse at different places at slightly
different times. This causes the local number density to vary from place to
place depending of δb.

The number density is therefore modulated. Since δb << 1 at large scale,
we can expand the mass function dn/dM

dn

dM
(M) =

dn̄

dM
(M) +

d2n̄

dMdν

dν

dδb
δb + ... (7.5)
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If the mass function is given by PS, then

dn

dM
(M) =

dn̄

dM
(M)

[
1 +

ν2 � 1
σν

δb

]
(7.6)

This gives a bias in the number density of halos in Lagrangian space, in
which particles have fixed coordinates all time.

δLh (M) =
dn
dM �

dn̄
dM

dn̄
dM

=
ν2 � 1
σν

δb (7.7)

where the Lagrangian bias is

bL(ν) =
ν2 � 1
σν

=
ν2 � 1
δc

(7.8)

The discussion above is not rigorous, because it is di�cult to separate the
background and the peak fields. However, it is useful to know that the higher
the large wavelength �plateaus� of a random field, the higher the peak number
density in these regions.

7.1.3 Linear Bias from Excursion Set Approach

Here we will see how Mo and White (1996) calculate the bias by using the
extended PS formalism.

A key step to determine the halo bias is the conditional mass function
which we want to define. First, Bond et al. (1991) derived the merger proba-
bility of masses, collapsed and virialized by an earlier moment, to be included
now in larger masses. The fraction of the mass of a halo of initial radius R0

, variance σ2
0 and linear overdensity δ0 which at redshift z1 < z0 was in sub-

haloes of mass M1, variance σ2
1 and extrapolated linear overdensity limit δ1,

is

f(σ1, δ1jσ0, δ0)
dσ2

1

dM1
dM1 =

1p
2π

δ1 � δ0

(σ2
1 � σ2

0)3/2
exp

[
� (δ1 � δ0)2

2(σ2
1 � σ2

0)

]
dσ2

1

dM1
dM1

(7.9)
which it is described by a similar Brownian walk with two absorbing barriers
(Martinez and Saar (2002)).

Later, Mo and White (1996) used this relation to predict the halo bias
and the enhancement of spatial correlations. The conditional mass function
is the average number of halos of massM1 which collapsed at z1 in a spherical
region with comoving radius R0, volume V0 and mass M0

N(M1, z1jM0, V, z0) =
M0

M1
f(σ1, δ1jσ0, δ0)

dσ2
1

dM1
dM1 (7.10)
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This gives the overdensity of M1 halos in M0:

δh(M1, z1jM0, V0, z0) =
N(M1, z1jM0, V0, z0)

(dn/dM1)V0
� 1 (7.11)

where dn/dM1 is the standard PS mass function (unconditional mass func-
tion) given by Equation 6.23 for a critical density required for collapse at z1:
δc(z1) = δ1 (Martinez and Saar (2002)).

This relation provides a relation between the overdensity of the halo
distribution and that of the matter distribution. The halo bias is explored
comparing the abundance of halos in this cell of size V0 with the overall
abundance given by dn/dM1.

In the large cell limit R0 !1, σ0 << σ1 and δ0 << δ1, the last equation
is

δh(M1, z1jM0, V0, z0) = bLhδ0 =
ν1 � 1
δ1

δ0 (7.12)

where the Lagrangian bias bLh only depends of the mass of collapsed halos
and the redshift at which halos are observed. It also coincides with the result
of previous section (Equation 7.8).

7.1.3.1 Dynamical Evolution of Clustering. Eulerian Bias

The Lagrangian bias is calculated in the initial sphere. To compute the bias
relation in the evolved Eulerian space, Mo and White (1996) relate the initial
density contrast, δ0, and radius R0 to those at the desired redshift z, δ and
R using a spherical collapse model.

First, from the mass conservation

R3
0 = R3(1 + δ) (7.13)

The physical radius R which had initial Lagrangian radius R0 is given for
δ0 >0 by

R(R0, δ0, z)
R0

=
3
10

1� cosθ
jδ0j

(7.14)

and
1

1 + z
=

3� 62/3

20
(θ � sinθ)1/2

jδ0j
(7.15)

If we assume that z = 0 at the time when the clustering haloes is examined,
the relation between these two quantities can be approximated by

δ0 = �1.35(1+δ)−2/3 +0.78785(1+δ)−0.58661�1.12431(1+δ)−1/2 +1.68647
(7.16)

Finally, under the above assumptions the average density of dark haloes
in sphere with current radius R and current mass overdensity δ is obtained
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from equations 6.23 and 7.10

δh(M1, z1jM0, V0, z0) =
N(M1, z1jM0, V0, z0)
(dn/dM1(M1, z1))V

� 1 (7.17)

Where V = 4πR3

3 = V0/(1 + δ0). Then, again for M0 >> M1 and δ0 << δ1,
we have

δh =

(
1 +

ν2
1 � 1
σν1

)δ (7.18)

The resulting bias, referred as to Eulerian bias, is given by

bEh (ν1, z1) = 1 + bLh (ν1, z1) (7.19)

This means that the halo �uctuations have an unbiased component with
respect to the collapsed region (the term +1) while being enhance due to
the bias of the collapsed region with respect to the unclasped background
(the term bLh ).

In order to define the biasing and anti-biasing regimes, we shall define a
mass M∗ by δ1 = σ(M∗). For larger masses the variance σ2(M) is smaller,
so by 7.19 halos with M1 > M∗ are (positively) biased and smaller halos are
anti biased.

7.1.4 Linear Bias Improvements

As we saw in Chapter 4, Sheth and Tormen (1999) showed that a simple
modification of the PS formula provides a good fit to the unconditional mass
function. This allowed to derive a large scale bias relation.

In the large cell limit R0 ! 1, σ0 << σ1 and δ0 << δ1, the bias in
Lagrangian space is computed as in the last section.

δLh (M1, z1jM0, V0, z0) �
[
qν1 � 1 +

2p
1 + (qν1)p

]δ0

δ1
= bL(M1, z1)δ0 (7.20)

When q=1 and p=0 the mass function has the PS form and this form reduces
to the one given by Cole and Kaiser (1989) and Mo and White (1996). The
bias in Eulerian space is obtained by subsititing this expression into Equation
7.19

bEh (ν1) = 1 +
qν1 � 1
δ1

+
2p

δ1(1 + (qν1)p
(7.21)

Later, Tinker et al. (2010) using high resolution N-body simulations, gives a
parameterization of the halo mass bias in terms of six parameters

b(ν) = 1�A νa

νa + δac
+Bνb + Cνc (7.22)

where the parameters A, a and C depend on the density contrast ∆.
In Section 7.3.2 we will compare this numerical fits with direct measure-

ments from N-body simulations with a DES volume.
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7.1.5 The Distribution of Halos at Large scales: Determin-
istic Biasing

The linear halo bias formula is only accurate on large scales. To calculate the
high order moments of peaks and halos or non linearities, Mo et al. (1997)
and Scoccimarro et al. (2001) follows the general formalism developed by
Fry and Gaztañaga (1993). The perturbative analysis assume that the halo
overdensity is a function of the underlying matter overdensity, δh = F (δm).
It can be written as a Taylor expansion

δh =
∞∑
k=0

bk
k!
δk (7.23)

where bk are constant. The term b0 is constrained by the condition hδhi = 0.
By construction, the remaining coe�cients must satisfy

1
ρ̄

∫
dMM

dn

dM
bk(M) =

{
1 if k = 1
0 if k > 1

(7.24)

Following discussion of Section 7.1.3, where we compute the linear halo
bias in the large cell limit using the mass function of Equation 6.27, Mo et
al. (1997) determined the first five bias coe�cients, b0, b1, b2, b3, b4, where
b1 is just given by Equation 7.21.

On large scales where deterministic biasing is a good approximation, the
variance of halo counts in cells is

hδh(M1, z1jM0, V0, z0)2i = h
( ∞∑
k=0

bk
k!
δk
)2
i � b21(M1, z1)2hδ2i (7.25)

where it should be a good approximation to replace hδ2i by the linear theory
estimation.

On smaller scales, the bias is both non linear and stochastic. A stochastic
bias means that the scatter between δh and δ is significant. Accurate analytic
models for this stochasticity are presented in literature (e.g., Dekel and Lahav
(1999) and Manera and Gaztañaga (2011)).

Figure 7.2 taken from Jeong and Komatsu (2009) shows the matter power
spectrum from the Millennium Simulation. It shows and example of how the
analytical calculation of the third order perturbation theory reproduces the
nonlinear matter power spectrum at high redshift up to certain maximum
wavenumber, kmax. Note they assume that the bias is stochastic.

7.2 The Halo Model

The halo model is a simple attempt to describe the clustering of matter,
galaxies and galaxy clusters in the linear and nonlinear regime. The moti-
vation of this model stems from the failure of dark matter models to explain
the observed power spectrum and correlation functions of galaxies.
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Figure 7.2: (From Jeong and Komatsu (2009)). Matter power spectrum at
z = 0, 1, 2, 3, 4, 5, and 6 (from top to bottom) derived from the Millennium
Simulation (dashed lines), the third-order perturbation theory (solid curves),
and the linear perturbation theory (dot-dashed curves).

First, in this section, we would predict only the dark matter halo distri-
butions. We calculate the halo model non-linear dark matter halo correlation
function and their Fourier transform, the power spectrum. In next chapter
(see Section 8.1), we will describe the galaxy and galaxy clusters distributions
in order to check theory with observations.

The halo model was developed by Scherrer and Bertschinger (1991).
They appear to have been the first to write the model for a continuous
density field using Fourier space quantities. It allows one to incorporate a
realistic halo-halo correlation function into the model (7.2.1). The model has
become very popular and there are many literature about it (e.g., Cooray
and Sheth (2002a), Seljak (2000) and Peacock and Smith (2000)).

We have formulae for the abundance, and spatial distribution of halos, as
well as for the halo profile 1. Therefore, now we are in position of construct
the clustering of dark matter halos.

7.2.1 The Two Point Correlation Function and the Power
Spectrum

The calculation of the two point correlation function can be broken into two
parts( e.g., Seljak (2000)). The first term describes the case in which the
distinct mass elements lie in the same dark matter halo, and the second
term is due to mass elements in distinct pairs of halos. Thus the correlation

1In Appendix B we will discuss about the profile of dark matter halos
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function can be written as

ξ(r̄ = x̄� x̄′) = ξ1h(x̄� x̄′) + ξ2h(x̄� x̄′) (7.26)

where the two terms can be computing by enumerating pairs of infinitesimal
mass elements (e.g., Scherrer and Bertschinger (1991)) and require knowledge
of how the halo abundance dn/dM and halo density profile u depend on mass
(see Appendix B where we discuss about the halo density profile).

In the halo model all the mass is bound up into halos which have a range
of masses and density profiles (Cooray and Sheth (2002a)). Therefore, the
matter density at a position x̄ is expressed as a contribution of the matter
density of each halo as

ρ(x̄) =
∑
i

ρ(x̄� x̄ijMi) �
∑
i

Miu(x̄� x̄i)jMi)

=
∑
i

∫
dMd3x′δ(M �Mi)δ3(x̄′ � x̄i)Mu(x̄� x̄′jM) (7.27)

where the sum is done over all haloes. δ(M �Mi)δ3(x̄′ � x̄i) is the number
density of haloes with mass M centered at a position x̄i and u is the nor-
malized profile, which is ρ divided by the total mass contained in the profile∫
d3u(x̄� x̄′jM) = 1.
The halo mass function is given as the ensemble average of the number

density of haloes

dn

dM
=
〈∑

i

δ(M �Mi)δ3(x̄′ � x̄i)
〉

(7.28)

Then the mean density is the average of the total density ρ(x̄)

ρ̄ = hρ(x̄)i =
〈∑

i

Miu(x̄� x̄ijMi)
〉

=∫
dM

dn

dM
M

∫
d3x′u(x̄� x̄′)jM) =

∫
dM

dn

dM
M (7.29)

The one halo term is

ξ1h(x̄� x̄′) =
1
ρ̄2

∫
dMM2 dn

dM

∫
d3yu(ȳjM)u(ȳ + x̄� x̄′jM) (7.30)

which is just the convolution of two similar profiles of shapes u(rjM), weighted
by the total number density of pairs contributed by halos of mass M .

The two halo term is given by

ξ2h(x̄� x̄′) =
1
ρ̄2

∫
dM1M1

dn

dM1

∫
dM2M2

dn

dM2
�∫

d3x̄1u(x̄� x̄1jM1)
∫
d3x̄2u(x̄� x̄2jM2)ξhh(x̄1 � x̄2jM1,M2) (7.31)
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where ξhh(x̄ � x̄′jM1,M2) is the two point correlation function of halos of
mass M1 and M2 centered at x1 and x2 respectively. If u1 and u2 were
extremely sharply peaked, then could replace them by delta functions and
the integrals over x1 and x2 would yield ξhh(x̄� x̄′jM1,M2).

The most commonly utilized assumption is that on large scales, where
biasing is deterministic (see previous section)

ξhh(rjM1,M2) � b(M1)b(M2)ξ(r) (7.32)

In the limit of separations much larger than the sizes of the largest halos
the dark matter halo autocorrelation function is determined by the two halo
term alone ξ2h. Therefore, on scales larger than the typical halo

ξhh(r) = ξ2h � b2hξ(r) (7.33)

where

bh =
∫
dM dn(M,z)

dM b(M, z)∫ dn(M.z)
dM dM

(7.34)

Since we are dealing with convolutions of halo profiles, it is much easier
to work in Fourier space, where expression become multiplications of the
Fourier transform of the halo profiles. Thus, the power spectrum is a sum of
one halo and two halo contributions

P (k) = P 1h(k) + P 2h(k) (7.35)

where the one halo contribution is

P 1h(k) =
1
ρ̄2

∫
dM

dn

dM
M2ju(kjM)j2 (7.36)

and the two halo power is

P 2h(k) =
1
ρ̄2

∫
dM1

dn

dM1
M1u(kjM1)

∫
dM2

dn

dM2
M2u(kjM2)Phh(kjM1,M2)

(7.37)
where u(kjM) is the Fourier transform of the dark matter distribution within
a halo mass M given by Equation B.5 and Phh(kjM1,M2) is the power spec-
trum of halos of mass M1 and M2. On large scales it can be approximated
by

Phh(kjM1,M2) � b1(M1)b1(M2)P lin(k) (7.38)

The halo model concentrates its efforts in modeling the nonlinear clus-
tering of dark matter with the one halo term. Nevertheless, Crocce and
Scoccimarro (2008) showed that the halo model fails to reproduce the ob-
served power spectrum in the nonlinear regime. Moreover, it fails to describe
an important distortion to the baryonic acoustic oscillation. Despite these
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Figure 7.3: Dark matter correlation function computed according to a simple
halo model (from Zentner (2005)). The solid black line show the full halo
model, red line the one halo contribution, blue line the two halo contribution
and green line shows the halo model based fitting formula provided by Smith
et al. (2003)

two drawbacks it has still many applications as we discuss in modeling the
galaxy and galaxy cluster correlation function for clustering analysis.

In this thesis we will use the halo model based fitting formula provided by
Smith et al. (2003) to generate the nonlinear dark matter power spectrum,
the so-called Halo-fit model. They use numerical simulations to model the
nonlinear evolution of density perturbations that change the shape of the
power spectrum. In the Halo-fit model, the power spectrum PNL consist of
two terms:

∆2
NL(k) = ∆2

Q(k) + ∆2
H(k) (7.39)

where ∆2(k) is the dimensionless power spectrum given by 5.17. ∆2
Q(k) is

the quasi-linear term that represents the power generated by the large scale
placement of haloes (the two halo term which dominates at large scales) and
∆2
H(k) is referred as the one halo term, which is important at small scales.
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7.3 Halo Bias and Two Point Correlation Function
estimation in N-body Simulations

In this section we want to study the errors that come from the halo model
predictions with Sheth and Tormen (1999) and Tinker et al. (2010) prescrip-
tion to describe the linear bias for halos. In Section 7.3.2 we will compare
the halo linear bias measurements in simulations with these predictions.

Since the simulation samples are for halos above a mass threshold, the
expected value for the bias predictions for a mass sample b̄ is the effective
bias given by

b̄(M �Mth, z) =

∫∞
Mth

dM dn(M,z)
dM b(M, z)∫∞

Mth

dn(M.z)
dM dM

(7.40)

On the other hand, we will measure the halo linear bias assuming that
on the scales of interest the underlying halo linear bias is deterministic and
scale independent

ξhh(r̄) = b̄2ξm(r̄) (7.41)

Once we have measured the two point correlation function ξhh(r) as we will
explain in next section, we will find the halo linear bias by fitting the matter
correlation function model ξm(r) at a given z to the one estimated with the
simulations ξhh(r) using Equation 7.41. Here the matter correlation function
ξm(r) is obtained via the Fourier transform of the non linear Halo-fit matter
power spectrum calculated using Equation 5.30.

7.3.1 Two Point Halo Correlation Function Estimation

Here we describe how we estimate the two point correlation function ξhh(r̄)
for dark matter halos from N-body simulations. We will use the 3000(h−1Mpc)3

volume ΛCDM Hubble Volume snapshot at z=0 and then DES halo light
cone simulation based on the ΛCDM HV PO light cone described in Chapter
6. Figure 7.4 show a 2D slice of the light cone with volume 3000�3000�200
(h−1Mpc)3 where the clustering evolution with redshift is observed. The ob-
server is at z=0 that corresponds to the coordinate origin (0, 0, 0).

In both samples, to obtain ξ(r) we will calculate the comoving distance jr̄j
between two objects with coordinates (x1, x2, x3) and (x′1, x

′
2, x
′
3) to estimate

the correlation function through

jr̄j =
√

(x1 � x′1)2 + (x2 � x′2)2 + (x3 � x′3) (7.42)

In order to measure the bias as a function of mass, the former catalog
is subdivided in four samples using the following mass thresholds M �
1, 2, 3, 4� 1014M�h

−1. The result numbers of halos for each sample is given
in Table 7.1.
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Figure 7.4: 2D light cone profile with volume 3000� 3000� 200 (h−1Mpc)3.
Here we can see better the clustering evolution with redshift

subsample Nh

M � 1� 1014 910814
M � 2� 1014 314782
M � 3� 1014 154338
M � 4� 1014 86467

Table 7.1: Number of halos Nh in each subsample created in the HVS
snapshot at z=0.
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The light cone is divided in 4 samples of mass thresholdsMth � 4.95, 6, 8, 10�
1013M�h

−1 for six redshifts of width 0.2. .

7.3.1.1 Correlation Function Estimator

In practice, the correlation function is estimated simply by counting the
number of pairs within volumes around point sources (i.e., galaxies or galaxy
clusters) in the sample, and comparing that with the number that would be
expected on the basis of a Poisson distributed sample having the same total
population. There are subtleties however due to the fact that objects lying
near the boundary of the sample volume have their neighbors censored by
the bounding volume. In other words, one need a way of dealing with edge
corrections.

The common practice is to deal with this by means of an equivalent
random catalog with identical geometry to measure the excess of probability.
This random catalog is used to calculate the expected number of pairs in the
absence of clustering. We achieve this by constructing random catalogs with
Monte Carlo Techniques according to the radial and angular distributions of
the catalogs under analysis (see next section for more details).

Correlations functions estimators generally count pairs either within the
two catalogs or between catalogs, giving a variety of possible estimators for
1 + ξ(r) as a ratio of pair counts. In Appendix C we discuss about the
different estimators. In this thesis we choose the Landy and Szalay (1993)
(LS) estimator that give us the most robust results. It is defined by

ξLS(r) =
DD(r)� 2DR(r) +RR(r)

RR(r)
(7.43)

Here we suppose that the data catalog contains ND points and the ran-
dom contains NR points. Since the random catalogs are denser than the
data sample the pair counts are suitably normalized to match the expected
pair counts. Therefore the normalized counts are

DD(r) =
2PDD(r)

ND(ND � 1)
(7.44)

RR(r) =
2PRR(r)

NR(NR � 1)
(7.45)

DR(r) =
PDR(r)
NRND

(7.46)

where PDD(r) represents the clusters pairs in the data separated by a dis-
tance r + ∆r

2 , PRR(r) is the number of pairs in the same separation bin in
the random catalog and PDR(r) is the number of pairs with one member of
the pair from the data sample and the other from the random catalog.
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The simplest way to compute pair counts is to construct a serial code
with a double integral over the catalogs that we are searching pairs. The
number of operations required to calculate the correlation function of N
number of objects by direct pair counting scales as N2. Hence, when we
have random catalogs constructed denser than the data or we need to repeat
the calculation many time to estimate the covariance errors with the jack-
knife resampling method (see Section 7.3.1.4), the serial approach becomes
computational unfeasible. It is too slow when we compute DD, DR and
RR.

Our option is parallelize the code using GPU cores in shared memory
machines using OpenMP 2. We divide the two loops between all available
cores to speed up the calculations. Although we reduce the time we still
need to improve the code in a future work.

There are many other solutions to compute in a faster way the two point
correlation function. Between the solutions are to assign the data field to a
density grid (e.g., Barriga and Gaztañaga (2002)), or perform a k-tree code.

7.3.1.2 Creating Random Samples

Generating random samples from the survey volume is an important com-
ponent of the correlation function. These samples are generated to have not
only the same geometry, but also the same selection function as the real
sample. In this section we describe how we create the random catalogs for
the snapshot and the light cone simulations that we use in this thesis. In
this case we don’t have to determine the selection function derived from
the luminosity function because we treat with dark matter halo simulations.
However, for a real catalog, errors in the selection function generate ad-
ditional errors in the correlation function estimator and, consequently, the
selection function must be determinate carefully.

For the ΛCDM Hubble Volume (hereafter HV) snapshot at z=0 we gen-
erate a uniform distribution of points with Cartesian coordinates (x, y, z) in a
box of side L. We use the algorithm called Mersenne twister (Matsumoto and
Nishimira (1998)) for generating uniform pseudorandom numbers available
in the software libraries of ROOT 3. The algorithm provides an extremely
long period and it is recommended because of its speed and good random
properties.

For the DES light cone simulations we have neither selection effects in the
radial (redshift) distribution nor we have to apply the mask in the angular
distribution as in real catalog. Figure 7.5 shows the redshift and the angular
distributions of the DES light cone cluster catalog.

Although we could generate the random numbers according to the radial

2http://www.openmp.org
3http://www.root.cern.ch
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Figure 7.5: Left:Redshift distribution for the DES light cone . N is the
number of halos per ∆z = 0.02. Right:DES light cone angular distribution.

and angular distribution without divide the simulation in redshift bins, we
prefer divide the sample to proceed in a similar manner that having a real
catalog. We randomly sample each redshift and mass bin until we have
constructed a random catalog of the desired size.

For each redshift bin of the DES light cone , we generate random numbers
according to the declination, right ascension and redshift distributions of the
slice.

Since we assume isotropy in the 3D directions, the density is proportional
to the solid angle Ω which differential element is dΩ = cos(DEC)d(DEC)d(RA).
Hence we generate a RA and sin(DEC) uniform distributions in the region
(0 < RA < 90, 0 < DEC < 90).

Finally, the random redshift distribution of the each bin is generated with
the acceptance-rejection method (Von Neumann) (Beringer et al. (2012)).

Figure 7.6 shows the resulting redshift distributions for two of the six
redshift bins and Figures 7.7 and 7.8 show the results for the angular distri-
butions for the same redshift bins. The distributions of the data and random
halos are in good agreement. In these examples the random catalog have the
same number of points as the halo catalog, however to minimize the shot
noise, we will also create random samples denser than the data sample with
the same technique.
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Figure 7.6: Left: light cone z distribution (red line) and Monte Carlo Ran-
dom generation (black line) for the redshift bin z=0.4-0.6. Right: Light
cone z distribution and Monte Carlo Random generation for the redshift bin
z=1-1.2
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Figure 7.7: Left: Light cone declination distribution (black line) and Monte
Carlo Random distribution generation (red line) for the redshift bin z=0.4-
0.6. Right: Light cone declination distribution (black line) and Monte Carlo
Random distribution generation (red line) for the redshift bin z=1-1.2
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Figure 7.8: Left: Light cone right ascension distribution (black line) and
Monte Carlo Random distribution generation (red line) for the redshift bin
z=0.4-0.6. Right: Light cone right ascension distribution (black line) and
Monte Carlo Random distribution generation (red line) for the redshift bin
z=1-1.2

7.3.1.3 Poisson Error Estimation of the Correlation Function

The Poisson errors are derived assuming that the count pairsDD(r) follows a
Poisson distribution Peebles (1973). This implies that the standard deviation
counts of pairs is just the square root of the count,

σDD(rr) =
√
PDD(rr) (7.47)

Similar expressions are valid for PDR and PRR.
To minimize the shot noise, we create random sample denser than the

data sample. An approximate expression of the Poisson errors associated
with the four estimators is

σξ(r) '
1 + ξ(r)p
PDD

(7.48)

where it has been considered that the terms 1/PDR and 1/PRR vanish when
choosing a large enough random sample. However, instead of using the
previous approximation, we will estimate the full expression of the effect
of standard deviation counts of pairs on the Landy & Szalay correlation
function estimator, the propagation of the uncertainty.

Here we will study how the Poisson error of the correlation function
estimator is minimized for our scales of interest when we increase the density
of the random data. Our samples are the HV snapshot at z=0 and the DES
light conecatalogs. Although our goal is to measure the bias at intermediate
scales we also studied the errors at large scales for BAO studies.

Figure 7.9 show the measurements of the correlation function ξ(r) for
various sizes of the random sample relative to the data sample. It also shows
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the shot noise, σξ, and the noise to signal ratio, σξ(r)
ξ(r) . For the first cut in

mass, we don’t create a random sample denser than the data because it
contains 910814 halos. In this case, the Poisson errors are small enough in
our scales of interest. For the remaining figures, we use two random samples
that contains 910814 and 3 � 106 halos. The results show how the Poisson
errors change and how they are minimized for each halo sample. We find
that although the error values increase when the number of halos decrease,
for each halo sample their values are minimized for the random sample that
contains 910814.

Figure 7.10 shows the results for two redshift slices of the light cone when
M200 > 4.95 � 1013h−1M�h. For each one we create two random samples
five and ten times denser than the data and they yield approximately the
same Poisson errors. Therefore, we find that the shot noise is minimized
when we choose a random sample five times denser.

To summarize we find the following conclusions:
For both catalogs we find that the shot noise σξ(r) and the noise to

signal ratio σξ(r)
ξ(r) is minimized when we create a random data denser that

the data sample. Moreover, the correlation function ξ(r) is smoothed at large
scales when the number of random data increase. The improvement is more
significant at large scales for BAO studies that at intermediate scales where
we estimate the bias. For a given random sample, although the shot noise
decreases at large scales, the noise to signal ratio increases and approaches
to value 1.

Finally, we also find that for a given mass threshold the Poisson error
increases with redshift.
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Figure 7.9: Two point correlation function with LS estimator, Poisson error
and noise to signal for four mass cuts in the HVS snapshot catalog at z=0.
The results are shown in different colors for different sizes of the random
samples and the ratio of random to data points are in the legend. Top
Left: ξ(r), σξ and σξ

ξ(r) when M200 > 1 � 1014h−1M�. Here we only use
one random sample with the same number of points as the data sample
because the Poisson errors are small enough. Top Right:ξ(r), σξ and σξ

ξ(r)

when M200 > 2 � 1014h−1M�. Bottom Left:ξ(r), σξ and σξ
ξ(r) when M200 >

3�1014h−1M�. Bottom right:ξ(r), σξ and
σξ
ξ(r) whenM200 > 4�1014h−1M�



108 Chapter 7. Halo Bias and Clustering

r(Mpc/h)20 40 60 80 100 120

(r
)

L
S

ξ

-410

-310

-210

-110

D=10NRN

D=5NRN

D=NRN

r(Mpc/h)20 40 60 80 100 120

(r
)

ξσ

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016

r(Mpc/h)20 40 60 80 100 120

(r
)

ξ
(r

)/
ξσ

-210

-110

1

10

r(Mpc/h)20 40 60 80 100 120

(r
)

L
S

ξ

-310

-210

-110

1 D=10NRN

D=5NRN

D=NRN

r(Mpc/h)20 40 60 80 100 120

(r
)

ξσ

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035
0.04

r(Mpc/h)20 40 60 80 100 120

(r
)

ξ
(r

)/
ξσ

-210

-110

1

10

Figure 7.10: Two point correlation function with LS estimator, Poisson error
and noise to signal for two redshift bins when M200 > 4.95 � 1013h−1M�h.
The results are shown in different colors for three sizes of the random samples.
Top: Redshift bin z=0.4-0.6. Bottom:Redshift bin z=1.2-1.4
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7.3.1.4 Covariance Estimation

The errors caused by the finite volume of the sample (cosmic variance) are dif-
ficult to estimate. Because these estimates require information about scales
that have not yet been directly observed, we can find these only by using
theoretical assumptions; either using the variance among a large number of
survey mocks (e.g., Manera et al. (2013) with galaxy mocks) or, on large
scales using analytic prediction (e.g., Estrada et al. (2009) estimates the
error covariance for the cluster correlation function assuming Gaussian per-
turbations).

However, there are simpler methods called resampling techniques to esti-
mate the median, the variance and the covariance of the correlation function
by using subsets of the observed data (jackknife) or drawing randomly with
replacement from a set of observed data points (bootstrapping). Both meth-
ods have the advantage of being independent of model assumptions, but it
may not properly account for variance due to modes on scales larger than
those spanned by the survey (Estrada et al. (2009)).

In this thesis we choose the jackknife resampling method because our goal
will be to measure the bias observationally in galaxy surveys. We perform an
estimation of the cosmic variance in a single subsample of the light cone and
postpone a more complete analysis of all the subsamples described before to
understand the systematic effects arising in clustering analysis techniques.

The jackknife resampling method, first described by Tukey in 1958, con-
sists of splitting the data-set into N sub-volumes of approximately equal
area and then systematically omitting each one in turn. The resampling of
the data set consist of N-1 remaining sub-volumes, with volume (N � 1)/N
times the volume of the original data-set. The clustering measurement is
then repeated on the resampling of the original data-set. We quote here the
standard relation used to estimated the jackknife covariance matrix ( e.g.,
Norberg et al. (2009) and Zehavi et al. (2002)). The covariance matrix for
N jackknife re-samplings is estimated using

Cov(ξi, ξj) =
N � 1
N

N∑
l=1

(ξli � ξ̄i)(ξlj � ξ̄l) (7.49)

where ξli is the correlation amplitude in the ith separation bin, ri, for the
subsample l, N is the number of subsample and ξ̄i is the mean expectation
value of ξi measured in the N samples

ξ̄i =
N∑
l=1

ξki
N

(7.50)

The jackknife method also accounts for the lack of independence between
subvolumes with the N-1 term; recall that from one copy to the next, only
two subvolumes are different.
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Note that if the number of regions is increased the estimated covariance
converges to a stable answer.

We estimate the covariance matrix in the light cone subsample forM200 �
4.95�1013h−1M�h at the redshift bin z = 0.4�0.6. First, we divide the RA-
DEC space into 25 equal area regions on a grid. For each recalculation of the
correlation function, one cell of the grid is left out a time. Then, we repeat
the procedure with 400 sub volumes. Figure 7.11 shows an example when a
cell is left out when we want to divide the light cone in 25 sub volumes.
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Figure 7.11: Example of subsample in the RA-DEC space using the jackknife
method when one cell of the 25 subareas is left out.

Figure 7.12 shows the cross correlation coe�cients, defined by

Ci,j �
Cov(ξi, ξj)√

Cov(ξi, ξi)Cov(ξj , ξj)
(7.51)

when we divide the sample in 25 and 400 subsamples. The off-diagonal
elements differs significantly when we increase the number of sub-samples
and we choose N=400 as a stable answer.

Figure 7.13 shows the measured correlation function for the last sub-
sample with the shot noise and standard deviations, σξ(ri) �

√
cov(ξi, ξi),

estimated using the jackknife method. The error comparison shows that
the shot noise is � 50% lower than the jackknife standard deviation. Since
we estimate the covariance matrix in a single subsample, we will apply this
factor to estimate the covariance matrix of the other subsamples using the
Poisson errors of the correlation function.
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Figure 7.12: Comparison of cross correlation coe�cients, Ci,j in the subsam-
ple for M200 � 4.95 � 1013h−1M�h at the redshift bin z = 0.4 � 0.6 when
we divide it in 25 (Left) and 400 (Right) sub volumes.
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Figure 7.13: Measured correlation function for M200 � 4.95 � 1013h−1M�
at the redshift bin z = 0.4� 0.6. The error bars are the standard deviations
σξ(ri) �

√
cov(ξi, ξi) estimated using the jackknife method (black points)

and the shot noise (red points).
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7.3.2 Halo Bias Results in Simulations

First, we will test the linear bias model predictions using the Hubble Volume
snapshot at z = 0. Later we will study the clustering evolution with redshift
in the light cone.

7.3.2.1 Hubble Volume Snapshot at z=0

We have measured the two point correlation function ξhh in the snapshot
for four mass thresholds. Figure shows 7.14 these measurements with the
LS estimator with the Poisson errors. As expected, the more massive the
halos the more biased the correlation function. The correlation function
from the simulation also shows the acoustic peak at � 105h−1Mpc. We
display the measurements made with the denser random catalog to minimize
the Poisson error. As we studied more in detail in 7.3.1.3(see Figure 7.9),
the error bars increase for larger scales and for higher halo mass threshold
where the number of halos is lower. We calculate the halo linear bias by
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Figure 7.14: Data points are the measured two point correlation function
for four mass thresholds of the HVS snapshot at z=0: M � 1, 2, 3, 4 �
1014h−1M� (Green, brown, red and blue respectively). Error bars are the
Poisson errors.

fitting the matter correlation function at z=0 to the one estimated with the
simulations shown before in the interval r = 22.5 � 57.5h−1Mpc (Equation
7.41). The bias is expected to be constant at large scales and we don’t find
scale variations of b. The best fits are shown in Figure 7.15 (solid lines) and
the bias measurements in the four mass thresholds are shown in Figure 7.16.
The predictions for the halo linear bias derived from the Sheth and Tormen
(1999) model using Equation 7.21 are also displayed with the p and q fiducial
values. We observe a good agreement in the four mass threshold.
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Figure 7.15: The same measured two point correlation functions but now
from r = 22.5 � 57.5 h−1Mpc. Solid curves are the best fits for the non
linear Halofit matter correlation function. The bottom black points are the
theoretical predictions for the non linear Halo-fit matter correlation function
at z = 0, ξmm(r).
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Figure 7.16: Comparison of the different measurements of the halo linear
bias with the Sheth and Tormen (1999) model predictions. Black dots are
the measurements for the four mass thresholds using HVS snapshot at z=0
and red line is the model prediction.
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7.3.2.2 DES Light cone simulations

Using the measurements of the halo correlation function for the four mass
thresholds and six redshift bins of the light cone simulations we measure
the halo linear bias. In this case, for each redshift bin we fit the matter
correlation function calculated at the mean of the redshift bin, ξmm(r), to
the one estimated with simulations. Figure 7.17 shows the matter correlation
function, ξmm, at the mean value of the six redshift bins. They are calculated
using Equation 5.30, where PNL(k) is the non linear Halofit power spectrum
at z.
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Figure 7.17: Matter correlation function ξmm for the mean of the six redshift
bins calculated using the Fourier transform of the nonlinear Halo-fit power
spectrum.

To calculate the bias, b(Mth,∆z), we minimize the χ2 when the ξi are
not independent but rather have a covariance matrix, Vij = Cov(ξi, ξj),
described before. Then

χ2(b(Mth,∆z)) =
∑
i,j

(ξi� b2(Mth,∆z)�ξi,mm)V −1
i,j (ξj� b2(Mth,∆z)�ξj,mm)

(7.52)
where ξi and ξi,mm are the measured and matter correlation function respec-
tively for each separation bin, i, and b(Mth,∆z) is the fit parameter. Note
that the inverse of the covariance matrix have to be computed.

Figure 7.18 shows the best fits in the interval r = 22.5�57.55 h−1Mpc at
z = 0.4�0.6 and z = 1.2�1.4 for four mass thresholds,M � 0.45, 0.6, 0.8, 1�
1014h−1M�. For this analysis, we compare the bias results using different
separation intervals (i.e., r = 22.5 � 57.5 h−1Mpc, r = 20 � 195 h−1Mpc
and r = 60 � 195 h−1Mpc) and we don’t find significant scale variations.
The predictions for the halo linear bias are calculated using Equation 7.40.
In this case, apart from the Sheth and Tormen (1999) model, we also study
the Tinker et al. (2010) prescription because the SO algorithm is used in the
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Figure 7.18: Measured correlation function at z = 0.4 � 0.6 h−1Mpc (Left)
and z = 1.2 � 1.4 (Right) for the four samples M � 0.45, 0.6, 0.8, 1 �
1014h−1M� (Red, blue, green and pink points respectively). Error bars
are the jackknife errors. The bottom black points are the theoretical pre-
dictions for the non linear Halo-fit matter correlation function, ξmm(r), at
z = 0.5 and z = 1.3. The solid curves are the best fit models in the interval
r = 22.5� 57.5h−1Mpc (solid curves). Error bars are the jackknife errors.
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light cone. Figure 7.19 shows the comparison of the bias predictions models
with the measurements in simulations. The results shows how the bias errors
increase with increasing mass and redshift because the number of halos is
lower.



Chapter 8

From Halos to Clusters.
Measuring the Scatter of the
Observable-Mass relation

Abstract: We will use the halo model to predict galaxy and cluster
clustering and construct a model for the bias to compare with obser-
vations . Then we will show how measurements of clusters clustering
can constrain the scatter of the scaling relation. In particular, we will
use the DES simulations to study how accurately we will measure the
scatter in the near future DES cluster catalog.

8.1 Halo Model of Galaxy Clustering

As we mention in previous chapter, see Section 7.2, unfortunately it is hardly
possible to measure dark matter halos directly. So it is an important question
how to connect theory that has developed to the Universe which can be easily
observed.

We need a theory on how galaxies form within the dark matter framework
although the details of this process are not well understood.

In the approach of White and Rees (1978), the central galaxies form at
the center of dark matter halos as baryonic matter falls into the halo and
cools. During the evolution of large scale structure, some of the dark matter
halos merge to build larger halos. When a big halo merges with a small one,
the galaxy of the small becomes a satellite galaxy within the resulting halo.

In the course of time more and more galaxies get assembled in the dark
matter halos. In the case of a very huge halo it is called galaxy cluster. More
massive the halos may contain many galaxies and typically low mass halos
may contain no galaxies.

117
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Observable-Mass relation

The halo model (Cooray and Sheth (2002b)) is based in a few straight-
forward assumptions in the framework explained before.

First, all galaxies reside within halos according to a certain spherical
density profile, where there is always a galaxy at the center of the halo.

Second, in order to compute galaxy clustering statistics, it is necessary to
specify the number of galaxies and the spatial and velocity distributions of
galaxies within halos. The number of galaxies is specified by the probability
for a halo of fixed virial mass M, to play host to N galaxies, P (N jM). The
distribution P (N jM) is called halo occupation distribution (HOD) (as we
mentioned in Chapter 3) and it is the main ingredient of the halo model. As
we explain in next subsection, the HOD is one of the most powerful methods
to describe the galaxy bias and it also provides recipes to place galaxies
within dark matter halos (see Section 8.2).

The third assumption is that the galaxy content of halos is statistically
independent of the halo environment and depends only on the mass M of
the halo.

All these assumptions are reasonable to some extent or are warranted by
observations, but they also show the limitations of the halo model. There
is some evidence that this last assumption does not hold to high accuracy.
There are discussion in the literature about the dependency of the HOD on
the cosmic envirement in addition to the mass of the halo (i.e., Croft et al.
(2012)).

In the following we develop the formalism of the halo model keeping as
simple as possible.

8.1.1 The Galaxy Correlation Function and Bias

From the assumption that all galaxies resides within dark matter halos it
follows immediately that given a halo population and a HOD, we can calcu-
late the galaxy autocorrelation function. This correlation is conventionally
written as the sum of two terms.

ξgg(r̄) = ξ1h
gg (r̄) + ξ2h

gg (r̄) (8.1)

The one halo term ξ1h
gg is due to pairs of galaxies at separation r̄ that lie

within the same halo and the two halo term ξ2h
gg is due to pairs of galaxies

that reside in distinct halos. We can derive approximate expressions for these
two terms by counting pairs at fixed separations.

The one halo term is given by

ξ1h
gg (r̄) =

1
n̄2
g

∫
dM

dn

dM
hN(N � 1)jMi

∫
d3yu(ȳjM)u(ȳ + r̄jM) (8.2)
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and the two halo term

ξ2h
gg (r̄) =

1
n̄2
g

∫
dM1

∫
dM2

dn

dM1
hN jM1i

∫
dM2

dn

dM2
hN jM2i �∫

d3x̄1u(x̄� x̄1jM1)
∫
d3x̄2u(x̄� x̄2jM2)ξhh(x̄1 � x̄2jM1,M2) (8.3)

where ξhh is the two point correlation of halos of mass M1 and M2 and n̄2
g

is the mean number density of galaxies given by

n̄g =
∫
dM

dn(M)
dM

hN jMi (8.4)

The one halo term depends upon the HOD through the mean number
of galaxy pairs per halo as a function of mass hN(N � 1)jMi while the two
halo term is sensitive to the mean number of galaxies per halo hN jMi.

Also note that there are more changes respect to the Equations 7.30
and 7.31. First, the u(x̄jM) denotes the mean radial galaxy density profiles
rather than dark matter around the halo center. Second, in the one halo
term for halos which contains only a single galaxy, it is natural to assume
that the galaxy sits at the center of its halo. To model this Cooray and Sheth
(2002a) give an analytic approximation to deal with this complication.

On large scales the two halo term dominates the correlation function.
The pairs come from separated halos and separations are larger than the
virial diameter of largest halos. We can express the two halo term in terms
of the weighted value of the halo bias (Berlind and Weinberg (2002)). Thus,
the galaxy correlation function simplifies to

ξ2h
gg (r̄) = b2galξm(r̄) (8.5)

where bgal is the mean large scale bias of any particular galaxy population
given by

bgal =
1
n̄g

∫
dM

dn

dM
hN jMib(M) (8.6)

and b(M) is the halo bias.

8.2 Construction of the Cluster Catalog with a DES
volume

We create a cluster catalog using the DES v1.02 halo mock catalog light cone
in order to measure the bias for clusters with N � Nth, where Nth is the
richness threshold. Then we will apply our method to constrain the scatter
in the mass richness relation, σlnM .
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Observable-Mass relation

We assign a richness N to dark matter halos by means of a lognormal
conditional distribution P (N jlnM)

P (N jlnM) =
1√

2πσ2
lnM

exp
[
� 1√

2σ2
lnM

(lnhM jNi � lnM)2
]

(8.7)

Note that this expression comes from the Equation 3.2 where the observable
is the richness, N. The true underlying massM is the halo massM200 defined
by the spherical overdensity ∆ = 200 measured in the light cone simulation
and the mass richness relation hM jNi is given by Equation 3.4. In Table 8.1
are the fiducial values of α and B of the mass richness relation or the priors
described by Rozo et al. (2009). For simplicity we ignore the bias term given
in Equation 3.3 and concentrate on the impact of scatter σlnM alone. This
scatter σlnM will not vary neither with redshift nor mass.

Parameter Prior
αM |N 1.06 �0.08(stat)� 0.23(sys)
BM |N 0.95 �0.07(stat)� 0.10(sys)

Table 8.1: Priors from M-N relation

To resume, we have introduced a scatter to each halo with mass M200

lnMmeasured = lnM200 + x (8.8)

where x is a variable generated by a normal distribution with mean zero and
standard deviation σlnM . And then we assign the richness N.

Figure 8.1 shows P (N jlnM) for our HOD model when σlnM = 0.2. Each
point represents the number of galaxies that occupy a particular dark matter
halo showing that the observable mass tracer N is noisy. We create cluster
catalogs with three scatter values (σlnM = 0.1, 0.2 and 0.4) in order to mea-
sure the bias and recover the scatter. Our method, which we discuss below
in Section 8.4, compares the bias measured with a model that we define now
in next section.
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Figure 8.1: P (N jlnM) for our HOD model when σlnM = 0.2.

8.3 Theoretical Predictions of the richness bias us-
ing the Halo Model

In this section we define the model for the bias for a richness cut N � Nth.
This is given by

b(Nth, z) =
∑∞
N=Nth

b(N, z)nmeasured(N, z)∑∞
N=Nth

nmeasured(N, z)
(8.9)

where nmeasured is the number of halos per redshift and richness value mea-
sured in the simulations created as is explained in Section 8.2, and b(N, z) is
modeled using the halo model of galaxy clustering explained before in Sec-
tion 8.1. The bias expected for a richness value is given in terms of the halo
mass function, dn

dlnM (lnM, z) and the underlying bias, b(lnM, z)

b(N, z) =
∫
dlnM dn

dlnM (lnM, z)P (lnM j N)b(lnM, z)∫
dlnM dn

dlnM (lnM, z)P (lnM j N)
(8.10)

where the p(lnM jN) is proportional to the conditional probability of assign-
ing a richness N to a dark matter halo of mass M, p(N jlnM) if we apply the
Bayes Theorem. As we describe in Section 8.2, p(N jlnM) is given by the
lognormal distribution (Equation 8.7) where the mean is given by Equation
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3.4 and a scatter σlnM . Therefore,

P (lnM jN) / exp
[
� 1√

2σ2
lnM

(lnhM jNi � lnM)2
]

(8.11)

Figure 8.2 shows the predictions of the richness bias for the three cat-
alogs created with σlnM = 0.1, 0.2 and 0.4 when we use the Sheth and
Tormen (1999) model for the halo mass light cone function and bias. The
bias is shown as a function of richness threshold for 3 redshift values using
the light cone ΛCDM cosmological parameters. In order to evaluate the
predictions we measure the number of clusters per richness and ∆z value,
nmeasured(N,∆z).
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Figure 8.2: Richness bias predictions for catalogs created with σlnM = 0.1
(red), 0.2 (green), and 0.4 (black) at z=0.3 0.7 and 1.1. The upper value
corresponds to z=1.1 and the lower to z=0.3.

The impact of the scatter is significant greater at high mass and redshift.
The model shows how the decrement of the bias with the scatter increase
with the redshift z and richness threshold Nth. This is due to the shape of
the mass function. As we explained in Section 3.3, the steepness of the mass
function around the threshold determine the excess due to upscatter (left side
of the mean). As the observable threshold, Nth reach the exponential tail of
the mass function, the excess of upscatter versus downscatter can become a
significant fraction of the total (Lima and Hu (2005)) and the bias decrease.
As higher is the scatter more the bias decrease. For a fixed richness, the
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steepness of the mass function is higher at high redshift than at low redshift
and the bias decrement will increase (see left of Figure 8.3). Following the
same reasoning, for a fixed value of redshift the bias will increase more at
higher N since we are further in the exponential tail (see right of Figure 8.3).
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Figure 8.3: Left: Richness bias model as a function of σlnM at z=0.3 and
z=1.1 for Nth = 7. Right: Richness bias model as a function of σlnM at
z=0.3 for Nth = 7 and Nth = 9.

8.4 Likelihood Analysis. Constraining the Scatter

We divide the catalogs in redshift bins ∆z and make cuts in richness to mea-
sure the bias with the two point correlation function. Therefore, we have
a set of n bias measurements, bmeasuredi (N � Nth,∆z) and their bias error,
σmeasuredbi

. We assume a model for the bias, bmodel(Nth, z), with parame-
ters θ = (Λ, αM |N , BM |N , σlnM ). Since our goal is to constrain the scatter
σlnM , we will consider a one dimensional likelihood given by the conditional
probability distribution of the data, L = p(bmeasuredjθ = σlnM )
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p(bmeasured(Nth, z)); θ) =
1p

2πσbmeasured
exp

(bmeasured(Nth, z)� bmodel(Nth, z))2

2σ2
bmeasured

(8.12)
then the probability of all n measurements, the likelihood, is the product of
the probabilities of the individual measurements

L =
n∏
i=1

p(bmeasuredi (Nth, z); θ) (8.13)

We can transform from the likelihood to the probability for the param-
eters given the data p(θ = σlnM jbmeasuredi ) using Baye’s Theorem. This
requires multiplying by a prior p.d.f and divide by the probability of the
data, p(bmeasuredi ).

We set p(bmeasuredi ) = 1. For simplicity, we don’t treat with priors and
assume we know the cosmological parameters of the simulation and the α
and B parameters. Therefore,

p(σlnM jbmeasuredi ) / L (8.14)

where we include the normalization factor in the p.d.f that involve σlnM .
Since we ignore the priors, we can find the most likely σlnM maximizing the
likelihood.

8.5 Forecast and Error Estimation for the Scatter
on DES volume

We want to estimate the error for the scatter σlnM using the likelihood
analysis explained before. Instead of the data values we use the theory
predictions for a fiducial model with scatter σtruelnM . We use the Sheth and
Tormen (1999) and Tinker et al. (2010) models. We assume that each point
has its expected experimental error, σmeasuredbi

, obtained from the fits to the
correlation function. The �data� samples are the same we described in Figure
8.2 except the cut on N=8.

Table 8.2 and Figures 8.4 and 8.5 show the 68% errors on the scatter,
σ(σlnM ) and their recovered values, σlnM . We also show the results when
we take the lower mass limit of the simulation into account to model the
richness bias. These are called σ(σlnM )∗ and σ∗lnM .

The predictions show high accuracy to recover the scatter. The precision
to measure the scatter may be better at higher values because the second
derivative of the bias with the scatter is negative, ∂

2b(Nth,z)
∂σ2
lnM

< 0.
Figure 8.6 show the richness bias as a function of the scatter using the

richness catalog created with σlnM = 0.2. Since we want to perform the
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Figure 8.4: Scatter recovered values, σlnM for different scatter values taken
as fiducial model. The expected errors (68% C.L.) σtruelnM are also shown.
The red dots show the results when the lower mass limit of the simulation
is taken into account.
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Figure 8.5: Expected errors (68% C.L.) for different scatter values taken
as fiducial model, σtruelnM . We loose precision when the lower limit of the
simulation is taken into account (red dots).
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σtruelnM σlnM σ(σlnM )(68 % CL) σ∗lnM σ(σlnM )∗ (68%CL)
0.1 0.108 0.037 0.107 0.041
0.2 0.208 0.020 0.209 0.031
0.4 0.399 0.012 0.400 0.025

Table 8.2: Scatter recovered values, σlnM and expected errors, σ(σlnM ) (68%
C.L.) for different scatter values taken as fiducial model, σtruelnM . The re-
sults when the lower mass limit is taken into account (σ∗lnM and σ(σlnM )∗

(68%CL)) are also shown.

likelihood to obtain the best value, we calculate how vary the richness bias
with the scatter for a given catalog using Equation 8.10. Note that it is
different to the Figure 8.2 in Section 8.3, where we model the richness bias
for each catalog.

Figure 8.7 shows the decreasing slope for two redshift values, z=0.3 and
z=1.1 for Nth = 9 using the same catalog. As it is predicted the slope
decrement increases with the redshift and also with richness. Therefore, we
might also found better precision at higher values of redshift and richness.

Although the dominant systematic we have found is the uncertainty in
the halo mass and bias function, other source of systematics is the mass
resolution of the light cone simulation. The catalog was designed to resolve
the collapse of Coma-sized cluster with 500 particles. The particle mass
is 2.2 � 1012h−1M� yielding a simulation with halos in the range 4.95 �
1013h−1M� �M200 � 2.15� 1015h−1M�.

The minimum halo mass introduces a systematics that affects our rich-
ness bias model predictions specially when our observable mass is closer
to the minimum. Figure 8.8 shows the comparison between the richness
bias predictions at two redshifts when we integrate taken into account the
lower mass limit of our simulations and when we integrate in a wider range
1 � 1012h−1M� � M200 � 1 � 1016h−1M�. We choose the case when
σtruelnM = 0.2. In the first case, since we are removing halos from the left
side of the lognormal distribution where the bulk of the values lies, the de-
creasing slope of the bias with scatter is lower than when we don’t remove
them. Thus we will loose precision to recover the scatter as the results shows
( see Figure 8.5). Moreover, as higher is the scatter the disagreement be-
tween the two cases is higher and the minimum halo mass systematic is more
significant.

Our conclusion is that we may estimate the scatter σlnM with a precision
of � 4%, � 3% and � 2.5% for σtruelnM = 0.1, 0.2 and 0.4 respectively when we
take into account the minimum halo mass. Our precision would be better
without this limitation. For a cluster cosmology experiment instead of the
mass resolution, the systematics would be the minimum observable richness.
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Figure 8.6: Bias model as a function of σlnM and Nth at z=0.3 using the
catalog created with σlnM = 0.2.
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Figure 8.7: Bias model as a function of σlnM at z=0.3 and z=1.1 for Nth = 9
using the catalog created with σlnM = 0.2. The slope of the bias decreases
with the scatter.

As we mention in Section 4.3, we expect a 0.33 of uncertainty at 1 σ level
in the mass richness relation for the DES survey. Thus, we found that we can
estimate the scatter with a precision of � (0.1 � 0.28)% as our predictions
shows. Moreover, based on appendix of Rozo et al. (2011) paper, the dark
energy parameters won’t be significantly biased.
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Figure 8.8: Top left: The squares are the bias model predictions as a function
of σlnM and Nth at z=1.3 using the catalog created with σtruelnM = 0.2. The
magenta circles are the bias measurements with their errors. Top right: The
same results as top left but in this case the minimum halo mass is taken
into account. Bottom left:The squares are the bias model predictions as a
function of σlnM and Nth at z=0.5 using the catalog created with σtruelnM = 0.2.
The magenta circles are the bias measurements with their errors. Bottom
right: The same results as bottom left but in this case the minimum halo
mass is taken into account.
Note: The color code of σlnM for all the figures is σlnM=0.1 (black) , 0.2
(red), 0.3 (green) and 0.4 (blue).
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8.6 Scatter Constraints

We perform a likelihood calculation comparing the richness bias model pre-
dictions with the measurements for the three catalogs created as we explain
before.

Figure 8.9 and Table 8.3 and 8.4 show the scatter constrains and their
68%(C.L.) errors for the two theoretical models. We also show the results
when we take into account the lower bound in mass of the simulation. As
we predict before, at highest σlnM the precision is better and both models
agree. We obtain better accuracy when we take into account the lower limit
in mass although we can’t recover the true scatter value when σlnM = 0.1 in
any case for both models. However, for σlnM = 0.2 we can only recover the
value with the Sheth and Tormen (1999) model because we obtain better
accuracy when model the mass function and bias.

If we interpolate our results, we confirm that we can measure the expected
scatter value for DES survey with a precision of � 0.05.

σtruelnM σlnM σ(σlnM )(68 % CL) σ∗lnM σ(σlnM )∗ (68%CL)
0.1 0.036 0.044 0.013 0.063
0.2 0.172 0.027 0.206 0.035
0.4 0.319 0.017 0.399 0.031

Table 8.3: Scatter recovered values, σlnM and expected errors, σ(σlnM )
(68% C.L.) using Sheth and Tormen (1999) model for the three catalogs
created. The results when the lower mass limit is taken into account (σ∗lnM
and σ(σlnM )∗ (68%CL)) are also shown.

σtruelnM σlnM σ(σlnM )(68 % CL) σ∗lnM σ(σlnM )∗ (68%CL)
0.1 0.071 0.049 0.086 0.060
0.2 0.113 0.039 0.137 0.071
0.4 0.319 0.017 0.398 0.031

Table 8.4: Scatter recovered values, σlnM and expected errors, σ(σlnM ) (68%
C.L.) using Tinker et al. (2010) model for the three catalogs created. The
results when the lower mass limit is taken into account (σ∗lnM and σ(σlnM )∗

(68%CL)) are also shown.
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Figure 8.9: Scatter recovered values, σlnM for the three catalog created with
σtruelnM when we use Sheth and Tormen (1999) (black dots) and Tinker et al.
(2010) (red dots) models. The expected errors (68% C.L.) are also shown.
The squares and dashed lines show the results when the lower mass limit of
the simulation is taken into account.
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values, σtruelnM . We loose precision when the lower limit of the simulation is
taken into account (square dots).
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Conclusions

We have develop a method to measure the scatter in the mass richness re-
lation of galaxy clusters for the future DES cluster catalog using the spatial
clustering of the clusters, as characterized by the cluster correlation func-
tion. Our method compares the bias measured with the cluster correlation
function with the bias predictions. Using only large optical cluster surveys
it can be used as a cross check method to compare with simulations, direct
methods or self calibration.

After an introduction of the basic cosmological notions in Chapter 2, in
Chapter 5 we have described the statistical density �uctuations that quantify
the clustering of objects. In particular, the two point correlation function
and its Fourier transform, the power spectrum. We have also studied the
evolution of the density perturbations over time to construct the power spec-
trum in the ΛCDM paradigm.

In Chapter 3, after a description of the cluster as cosmological probes
we have discussed the importance of the calibration of the mass observable
relation as a key challenge in extracting precise cosmological constraints. We
make emphasis in the scatter and how it cause ambiguities in the interpreta-
tion of the abundance of clusters and degrades the cosmological constraints.
We mentioned how Rozo et al. (2009) measure the scatter in mass at fixed
richness with a 22% precision with 1 σ errors using optical and X-ray ob-
servations. They use it as a external prior for cosmology with the MaxBCG
cluster catalog. We also describe how with large optical cluster surveys such
as HSC, it will be possible to calibrate the mass observable and provide
cosmological constraints (Oguri and Takada (2011)). They combine cluster
observable and weak lensing. Their forecasts shows and e�cient self calibra-
tion of systematics just with optical surveys.

In Chapter 4 we introduced the DES project and the Dark Energy Cam-
era where I worked in the CCD R&D program. The primary driver of DES
is the detailed optical measurement of galaxy clusters. DES employs a very
similar richness estimator to the one that Rykoff et al. (2012) uses. In this
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paper they give an estimation of the scatter and find that the total uncer-
tainty in the mass of any given cluster is � 0.33 at the 1σ level. We will take
this value as a rough estimation of the scatter for the DES mass richness re-
lation. Moreover, Rozo et al. (2011) studied how precisely the scatter must
be known to recover unbiased dark energy parameters using the standard
self calibration method for a DES-like cluster experiment.

In order to properly measure the large scale bias for clusters, first we
need to understand the large scale properties of the dark matter halos. To
achieve this, we use the DES v1.02 halo mock catalog light cone sky survey
with a DES volume to determine the halo abundance, the halo two point
correlation function and the halo bias. Our results shows that the dominant
systematics in our method is the uncertainty in the halo mass function and
bias function.

In Chapter 6 we studied the accuracy of the theoretical models of the
halos abundance using DES simulations. First we explained how the halo
grows from a spherically mass perturbation and then refined the details of
that simplified approach, based on the studies made in numerical simulations.
We studied the more realistic ellipsoidal collapse model of Sheth and Tormen
(1999) and the fitting function for ∆ overdensities of Tinker et al. (2008).
The first model with the fiducial parameter agrees with high accuracy with
the measurement at z = 0. However, in the light cone we had to find the
parameters that best fit to the simulation for every redshift bin for both
models.

At lower redshift bins we found the same accuracy for both models. How-
ever, the disagreement between models increase with redshift and we found
better accuracy with the Sheth and Tormen (1999) model. This difference
is considered as a systematic error of our method.

In Chapter 7 we introduced the linear bias model using the extended PS
formalisms and the improvements made by Sheth and Tormen (1999) and
Tinker et al. (2010). We studied how the determination of halo bias is closely
related to the description of halo abundance. We compared the predictions
of these two models with the measurements in simulations.

We measured the linear halo bias on large scales where is considered scale
independent and deterministic. To calculate the bias we measured the two
point correlation function with LS estimator and study the statistical errors.
In particular, we optimized the Poisson error and made a preliminary esti-
mation of the cosmic variance using the jackknife method. We postpone for
the near future a more complete analysis to understand the cosmic variance
error for more mass and redshift subsamples .

Our results demonstrate that the uncertainty in the mass function pro-
duces a systematic error in our method because the halo bias depends on it.
One of the reasons why we found very accurate results for the linear bias at
z = 0 with the Sheth and Tormen (1999) prescription is because we have a
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good agreement in the halo mass function. However, in the light cone we
obtain a lower accuracy because we have higher deviations for Sheth and
Tormen (1999) and Tinker et al. (2010) prescriptions than the deviations at
z = 0. In addition, as in the last chapter we also considered the difference
between these two models as a systematic error of our method.

After we studied the bias in halos, in Chapter 8 we developed a theo-
retical model of the bias to compare with observations in optical surveys
such as DES. We defined the richness bias using the Halo Model of Galaxy
Clustering. We took an HOD and a empirical mass richness relation with
the same form used by Rozo et al. (2009) to obtain a parametrized model
for the bias. We assumed that the bias only depends on the mass.

Our forecast shows the precision to measure the scatter with a DES
volume. In particular, we showed the 68% C.L errors and their recovered
values for three true scatter values. For simplicity the scatter not varied
neither with redshift nor mass, σlnM = constant, and we ignored the bias
term, lnMbias = 0. We obtained very competitive results to measure the
expected scatter in the DES mass richness relation using this very simple
model for the scatter. The better precision that Oguri and Takada (2011)
found was 4% when the scatter is 30%. Our method produces a precision of
� 2.8% for the same scatter value. These results are not directly comparable
because they are for different masses and scatter model. However, they are
indicative of the performance of the new method.

In the forecast we had taken into account the minimum halo mass of
the simulation as a systematic error. It reduces the precision to constrain
the scatter. However, for a real cluster catalog such the redMaPPer , the
systematic will be the minimum richness instead of the minimum halo mass.

After the forecast, we tested our method to constrain the scatter using
the DESv1.02 simulations. Here we added the uncertainty in the theoreti-
cal models when we compared with simulations. We created three richness
catalogs with three scatter values. After we measure the linear bias for sub-
samples with enough �clusters�, we performed a likelihood and obtained our
scatter constraints. Since our goal is to develop a method to measure the
scatter we assumed we known the mass richness relation parameters and the
cosmological parameters of our simulation. Note that in the future DES
cluster catalog we could also change the form of the scale relation.

As predicted by the forecast, at the highest scatter value, σlnM = 0.4
we obtain the highest precision and the results using Sheth and Tormen
(1999) and Tinker et al. (2010) halo prescriptions agree. However, for lower
values there is a discrepancy between them. Moreover, for the lowest value,
σlnM = 0.1 we can’t not recover the true scatter value in any case while we
can recovered it for σlnM = 0.2 using Sheth and Tormen (1999) prescription.
Since the DES expected scatter value is � 0.33, we conclude that we can
measure it and it will be precise enough for the dark energy parameters
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won’t be significantly biased.
In summary, the new method proposed here could be used as a cross

check method complementary to others such as self calibration with large
optical surveys Oguri and Takada (2011) or the method developed by Rozo
et al. (2009).

In this thesis we ignore the effect of the uncertainty of the redshift of
the redMaPPer clusters. The effect on the three-dimensional correlation
function is a smearing of the acoustic peak and a relative damping of power
on small scales (Estrada et al. (2009)). We postpone to a near future work
the study of how this systematic error will affect to the bias measurement
and the precision of the scatter measurements.

For future cluster surveys such as LSST we will have 20000 deg2. Thus,
we expect the statistical errors will be reduced at high mass and redshift
because the number of clusters will increase considerably. With this, we
forecast higher precision to measure the scatter including the lower values.



Appendix A

Focal Plane Detectors for Dark
Energy Survey

Abstract: DECam has chosen fully depleted 250 µm thick CCD
detectors selected for their higher quantum efficiency in the near in-
frared with respect to thinner devices. The detectors were developed by
LBLN using high resistivity substrate. The characterization of these
detectors and the comparison of these results with the technical re-
quirements was done by the DES team. I was involve in the initial
phase of the R&D program. This phase is important to learn and de-
velop the infrastructure and experience for the production phase of the
characterization to determine the best one that should populated the
focal plane. In this appendix I describe the techniques and methods
in which I was involve and in I which I took data.

A.1 DECam CCDs and the DES Technical Require-
ments

The design of the DECam imager is optimized for DES which requires obser-
vations of galaxies up to z � 1. This establishes strong specifications on the
e�ciency of the DECam detectors in the red and near-infrared range. The
absorption length in the silicon is 205 µm at a wavelength of 1000 µm and
thus thick sensors are required for a better QE at that wavelength. Recent
advances in the CCD technology (Holland et al. (2003)) allow the fabrication
of high resistivity (� 10kΩcm) detectors, up to � 300µm thick which are
fully depleted at relatively low voltages. These CCDs have a significantly
higher e�ciency in the near-IR and for this reason are the optical detec-
tors chosen by groups building new mosaic cameras for astronomy, such as
DEcam.
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A good blue response is reached by choosing a back illuminated design
so that not gate structure absorbs the UV light.

Figure A.1 shows a schematic cross-section of the LBLN CCD. It is a
back illuminated, p-channel CCD thinned to 250µm and biased from the
back side to be fully depleted. The charge collected in the depletion region
is stored in the buried channel established a few µm away from the gate
electrodes. The holes produced near the back surface must be travel the full
thickness of the device to reach the potential well.

Figure A.1: DES CCD cross-section. Back illuminated, 250µm thick, p-
channel CCD. See Holland et al. (2003) for more details.

The DES CCD technical requirements, established as the minimal re-
quirements in order to achieve the science goal for the survey, are summa-
rized in Table A.1. They correspond mostly to standard requirements for
astronomical CCDs with the exception of the average quantum e�ciency in
the near infrared denoted as the �z� filter according to the Sloan Digital Sky
Survey filter set (Fukugita et al. (1996)).

A.2 Packaging and Testing of DECam Detectors at
Fermilab

The DECam CCDs are produced by DALSA 1 and LBLN 2 and delivered to
Fermilab as diced parts. Fermilab has developed a package for these CCDs
that meets the mechanical and thermal requirements established by DES
(see details of DES package in Derylo et al. (2006)). A photography of the
final version of the DECam science package is shown in figure A.2.

1http://www.dalsa.com/
2http://www-ccd.lbl.gov/
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description specification
1 non linearity < 1%
2 full well: > 130.000 e−

3 no residual image
4 readot time <17sec
5 dark current <35e−/pix/hour
6 QE [g,r,i,z]:[60%, 75%, 75%, 65%]
7 QE< 0.5% per degree K
8 read noise < 15 e−1

9 Charge diffusion σ < 7.5 µm
10 Cosmetic defects < 0.5%
11 Charge Transfer Ine�ciency < 10−5

12 Crosstalk for two amplifiers on CCD < 0.001

Table A.1: DECam technical requirements

Figure A.2: DECam science package.

After each detector is packaged, it is installed on a single CCD testing
station where all the DECam technical requirements are verified. An example
of testing station at Fermilab is shown in figure A.3

Fermilab has established a CCD testing lab with three fully instrumented
testing stations for production testing. The dewars are cooled with liquid
nitrogen (LN2) and can be controlled to maintain a stable temperature using
independents PID loops. The design of the dewar shown allows for a quick
detector exchange. Each dewar is illuminated by a 6� integrating sphere
with three ports. The illumination source is connected on the input port,
a photodiode is connected on one of the output ports and the other output
port is connected to the dewar. The sphere is attached 13� from the front
of the cube in order to achieve �at illumination over the whole area of our
detector. A monochromator is used to select the illumination wavelength.
A �at exposure obtained for one of the DECam CCDs is shown in figure
A.4. The 0.5% variations on the signal level produced by the rings of the
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Figure A.3: CCD testing station.

resistivity variation on the silicon substrate are completed removed after a
�at field correction (Estrada et al. (2010))

The electronic of choice is the Monsoon system 3, a very �exible system
specially designed for controlling large mosaic arrays. The design of the CCD
readout electronic was a combined effort of engineers at Fermilab and Spain
(i.e., Shaw et al. (2012)) .

The CCD packaging and testing facilities at Fermilab have been able
to maintain an average testing rate of 4 detector per week. The details of
the production testing facility and procedures are presented in Kubik et al.
(2010).

A.3 Characterization Techniques

The full characterization of the CCDs is done with the goal of finding the
optimal operating parameters for these devices and determining if they sat-
isfy the DES requierements presented in Table A.1. In Estrada et al. (2006)
and Estrada et al. (2010) we can find the complete suite of test. However, in
this appendix, I will brie�y describe the techniques and methods in which I
was involved and in which I took data (see also Campa (2007)). These are
part of first stage tests. If the devices pass these tests more detailed studies

3http://www.noao.edu/nstc/monsoon/
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Figure A.4: Flat exposure with a light level of� 27.000e−. The serial register
is divided in two and in this image the serial overscan is displayed on the
center of the CCD. The parallel overscan is displayed on the top of the image
(Estrada et al. (2010)).

will be done.

A.3.1 Photon Transfer Curve: Gain, Linearity and Full Well
Capacity

The photon transfer curve (PTC) is one of the most valuable tools for cali-
brating, characterizing and optimizing performance (Janesick (2001)). Dur-
ing production testing for DECam several transfer curves are collected for
each CDD. In our case it is used to evaluate CCD parameters such as the
linearity in the response of the signal readout chain, the full well capacity
and the read out noise. This curve also gives the gain of the device.

The photon transfer curve consists on taking pairs of exposures with
�at illumination at different light levels going up to 200000 e−. The gain is
measured by looking at the linear relation between the variance on the image
as a function of the mean. This is the standard procedure to obtain the gain
assuming a fixed electronic noise and Poisson statistic for the number of
photons. Figure A.5 shows an example of the results obtained with this
method. The inverse of gain is obtained as the slope of the curve, in this
case is 0.9ADU/e−. An alternative method for obtaining this conversion
factor between electrons and ADU is to use an image taken with an Fe55

X-ray source (see A.3.4).
DEcam requires it detectors to have a full well capacity larger than

130000 e− and less than 1% non-linearities up to those light levels. In Fig-
ure A.6 the mean of the signal level as a function of the exposure time is
represented and this data are used to confirm this requirements. The non-
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Figure A.5: Photon transfer curve: Variance as a function of mean signal
during production testing of a DECam CCD (Estrada et al. (2010)).

linearity measurements are also shown. The 1% technical requirement for
DECam is satisfied up to 225000 e−.

Estrada et al. (2010)) show more studies about linearity, full well and
noise using the PTC although these results are not presented here. In par-
ticular, this paper studies the CTE variation for high light levels that reduces
the maximum charge that can reliably measured on a single pixel and also
the performance of the readout system at low light levels.

A.3.2 Charge Transfer E�ciency

The charge transfer e�ciency (CTE) for the DECam science is requiered
to be better than 0.99999. It denotes how much of the charge in one pixel
actually gets transferred into the next pixel in a three phase clocking time.
Several methods exist to measure the CTE (Janesick (2001)). During the
initial phase of R&D program the CTE is studied using the extended-pixel-
edge-response (EPER) technique and by the use of a Fe55 (see Estrada et
al. (2006), Diehl et al. (2008) and Campa (2007)).

Because of the high diffusion in back illuminated CCDs and the high
values of the number of pixels, the X-ray technique is very imprecise. How-
ever, the CTI was measured with X-rays in packages built with the front-side
exposed (Diehl et al. (2008)).
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Figure A.6: Photon transfer curve from (Estrada et al. (2010)). Top: Mean
of the signal as a function of exposure time. Bottom: Fractional non-linearity
as a function of the mean signal.

The CTE for DECam science CCDs in the production phase is checked
using the EPER technique. The CCD is illuminated with a light source and
the fraction of the charge transferred from active pixels into overscan region
provides the charge transfer ine�ciency (CTI). Since the CTI depends on
the levels of CCDs clocks, each of the four clock rails (horizontal upper and
lower rail, vertical upper and lower rail) used for the transfer between pixels
is varied. Finally we found a single set of clock voltages for which all the
CCDs pass the technical requirements for both horizontal and vertical clocks.
Figures A.7 and A.8 show an example of these studies.

As mention before, the CTE also changes with illumination.
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Figure A.8: Top: The CTI calculated with values of the EPER plot. CTI as
a function of the H+. Bottom: Noise as a function of the horizontal voltage
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A.3.3 E�ective Threshold. Output Gate Transfer Curve.

Also part of the full characterization of each CCDs is the measurement of
the output transfer gate curve (see description in Janesick (2001)). The goal
of the output gate transfer curve is to measure the voltage at which charge
injection is produced in the device as a function of the reference voltage,
Vref . This technique allows the determination of the channel voltage inside
the CCD, under the output gate. Charge injection occurs when this voltage
is lower than the Vref . The difference between the applied gate voltage
and the channel voltage is typically called Vth and depends on the doping
conditions of the silicon. Figure A.9 shows an example of the results from one
device (Estrada et al. (2006)). The mean value of the signal measured in the
overscan area is represented as a function of the output gate voltage, VOG for
different values of Vref . When charge injection is produced large deviation
from the pedestal values are seen. Taking the line that corresponds to
Vref = �12V , charge injection occurs for VOG < 3V . The effective threshold
voltage is Vth = Vref � VOG = �15V

Figure A.9: Output transfer gate voltage, VOG, require to cause charge in-
jection for different Vref .
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A.3.4 X-ray calibration

As we mention before, an alternative method to obtain the gain is the Fe55

X-ray spectrum (for details see Janesick (2001)). This technique is based
on the assumption that the energy deposited by an X-ray hit its restricted
in one pixel. Because DECam detectors are back illuminated, the charge
diffusion makes the assumption of single pixels hit non valid and this test is
not included in the production phase. However, in the initial phase we use
front illuminated detectors and exposed to X-rays to study this method (see
results in Estrada et al. (2006) and Campa (2007)).

Figure A.10 shows the X-ray spectrum measured for the detector with
an exposure of 40s. The overscan has been subtracted. The plots shows two
main peaks, the leftmost one corresponding to the pedestal, only the dark
counts collected in a pixel, and the rightmost one correspond to 1620 e−

deposited in single pixel hits by X-ray of 5.9 keV (Kα). A less significant
peak corresponding to 6.5 keV (Kβ) is also seen. Knowing the number of
generated electrons by the two peaks, we calculate the gain and compared
with the PTC curve for the same CCD. We found that the measurements
with this two methods agree at 1σ level.

1
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0 500 1000 1500 2000 2500
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Figure A.10: X-ray spectrum with overscan subtracted. The Kα and Kβ are
shown (Campa (2007)).





Appendix B

Profile of Dark Matter Halos

Abstract: In this appendix we will discuss about the profile of dark
matter halos. This quantity is useful in the halo model of non linear
dark matter power spectrum or, equivalently, the correlation function.

B.1 Pro�le of Dark Matter Halos

The radial mass profile can be analyzed in N-body simulations if individual
halos are represented by a su�cient number of dark matter particles. The
ability to obtain halo mass profiles depends on the mass resolution of a
simulation. The result is that halos seem to show a universal density profile
given by

ρ(rjM) = ρs

(
r

rs

)−α(
1 +

r

rs

)−β
(B.1)

Setting (α, β) = (1, 3) and (1, 2) in the last equation gives the Hernquist
(1990) and Navarro et al. (1996), respectively.

These profiles have two parameters rs and ρs, which define a character-
istic radius and the density at that radius, respectively. The parameter rs
marks the radius where the slope of the density profile changes. For r << rs
we find ρ / r−1, whereas for r << rs, the profile follows ρ / r−3. These
two parameters can be calibrated in numerical simulations and expressed
in terms of virialization condition inspired by the spherical collapse model
described in Chapter 6. The edge of the object is its virial radius rvir and
the mean density of the dark matter haloes is ρ̄ = ∆virρcrit(z). The mass is
analytically integrable for the NFW and Hernquist profiles,

M �
∫ rvir

0
dr4πr2ρ(rjM) (B.2)
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The concentration parameter c � rvir
rs

characterizes the matter distribu-
tion in the dark matter haloes. The larger the value of c, the more strongly
the mass is concentrated towards the inner regions. The massive virialized
halos are less centrally concentrated that low mass halos.

Simulations show that the concentration index c is strong correlated with
the mass and the redshift of the halo. There is also an intrinsic scatter
between them that arise because the differences in formation time and merger
history of the halo. For halos of the same mass, there is a distribution
of concentrations c, which is well described by a log-normal distribution
(Bullock et al. (2001), Jing and Suto (2002)). N-body simulations have
shown a power law dependence of the concentration parameter with the halo
mass given by (Cooray and Sheth (2002a)),

c̄(M, z) =
9

1 + z

[
M

M∗

]−0.13

(B.3)

where M∗ is the characteristic mass scale already mentioned in 7.1.3. This
equation quantifies the tendency for low mass halshaloso to be more centrally
concentrated on average than massive halos.

Alternative models, in particular the Einasto profile (Einasto (1965)),
have been shown to represent the dark matter profiles of simulated halos as
well as or better than the NFW profile. Because of the limited resolution
of N-body simulations, it is not yet known which model provides the best
description of the central densities of simulated dark-matter halos.

The normalized Fourier transform of the density profile is useful in the
halo model of non linear dark matter power spectrum or, equivalently, the
correlation function (see Section 7.2).

u(k̄jM) =
∫
d3x̄ρ(x̄jM)exp(�ik̄ ˙̄x)∫

d3x̄ρ(x̄jM)
(B.4)

If we assume spherically symmetric profiles truncated at the virial radius,
this becomes

u(kjM) =
∫ rvir

0
dr4πr2 sin(kr)

kr

ρ(rjM)
M

(B.5)



Appendix C

Two Point Correlation
Function Estimators

Abstract: In this appendix we summarize the different studies
about the behavior of different the two point correlation function and
discuss why the LS is the best option.

C.1 Choosing an Estimator

The simplest edge correction is the natural estimator, first used for the study
of the angular correlation function by Peebles (1974). It is defined by

ξPH(r) =
DD(r)
RR(r)

� 1 (C.1)

Apart from the LS estimator, other common estimators involve also ratios
of galaxy pairs counts to cross-correlated pair counts of data and random
points. Some of them are

ξDP (r) =
DD(r)
DR(r)

� 1 (C.2)

ξH(r) =
DD(r)RR(r)
DR2(r)

(C.3)

where subscripts denote David and Peebles (1983) (DP) and Hamilton (1993)(H).
Some studies have compared the behavior of the different two point corre-

lation function estimators. The results are the same; the differences between
the estimates are more relevant at large scales where ξ(r) << 1 and �uctu-
ations in the mean density affect the estimators more strongly.
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Since our goal in this thesis is not to confirmed the best estimator, we
only test the Landy and Szalay (1993) estimator against Peebles (1974) using
the Hubble Volume Simulation snapshot at z=0. Figure C.1 shows our ξ(r)
results and Figure C.2 compare the Peebles (1974) to Landy and Szalay
(1993) to see better the deviations. Since our goal is to divide the sample in
mass cuts, we shows the results for two subsamples. The ratio of random to
data points used for the biggest sample is 1 and for the smallest is 10. We
confirmed that there is a discrepancy between the two estimators at large
scales.

Pons-Borderia et al. (1999) analyzed 6 estimators and find that at large
scales the Hamilton and Landy-Szalay estimators provide the best results.
Kerscher et al. (2000) compared nine of the most important estimators using
a predetermined and rigorous criterion. He found that the Hamilton and
Landy-Szalay estimators are much better that the others in terms of variance.
While the two estimators yield almost identical results for infinite number of
random points, the Hamilton estimator is considerably more sensitive to the
number of random points employed than the LS version. From a practical
point of view, therefore for astrophysical applications they recommends the
Landy-Szalay estimator.

Later Kazin et al. (2010) and subsequently Labatie et al. (2012) also stud-
ied the uncertainties in four correlation function estimators with simulations.
Their goal were comparing them at large scales for BAO studies, although
they also studied them at small and intermediate scales. They tested the
Landy and Szalay (1993) against the four estimators we mention before and
both studies confirmed that Hamilton and Landy-Szalay have much smaller
variances.

Kazin et al. (2010) compute the mean averaging over 160 realizations ξ̄
and also the rms of the signal σξ =

p
Cii, where Cii is the covariance of ξ. He

found that Landy and Szalay (1993) and Hamilton (1993) agree on all scales
but Peebles (1974) and David and Peebles (1983) deviate from the latter at
large scales. Moreover, he found that Hamilton does not perform as well as
Landy-Szalay at smaller scales because the former has a larger variance at
r < 10 Mpc/h.
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