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Abstract

The Marle-Guillemin-Sternberg (MGS) form is an extremely important tool for the theory
of Hamiltonian actions on symplectic manifolds. It has been extensively used to prove many
local results both in symplectic geometry and in symmetric Hamiltonian systems theory. It
provides a model for a tubular neighborhood of a group orbit and puts in normal form the
action and the symplectic structure. The main drawback of the MGS form is that it is not
an explicit model. Only its existence and main properties can be proved. Moreover, for
cotangent bundles, this model does not respect the natural fibration 7: T#Q — Q.

In the first part of the thesis we build an MGS form specially adapted to the cotangent
bundle geometry. This model generalizes previous results obtained by T. Schmah for orbits
with fully-isotropic momentum. In addition, our construction is explicit up to the integration
of a differential equation on G. This equation can be easily solved for the groups SO(3) or
SL(2), thus giving explicit symplectic coordinates for arbitrary canonical actions of these
groups on any cotangent bundle.

In the second part of the thesis, we apply this adapted MGS form to describe the
structure of the symplectic reduction of a cotangent bundle. We show that, if u € g*, the
base projection of the y-momentum leaf 7(J7!(u)) is a Whitney stratified space. Moreover,
the set J~!(u)/G,, can be decomposed into smooth pieces and each of them fibers over a piece
of the stratified space 7(J7'(u))/G,. In the decomposition of J~!(u)/G,, there is a maximal
piece which is open and dense. Furthermore, this maximal piece is symplectomorphic to a
vector subbundle of a certain magnetic cotangent bundle.

Keywords: Cotangent bundles, normal forms, stratified spaces, singular reduction,
momentum maps.

MSC 2010: 53D20, 70H33, 37J15
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Preamble

In this work we study the symplectic geometry of cotangent-lifted actions induced by a smooth
proper action of a Lie group on a smooth manifold. Symplectic manifolds have their origin
in the geometric formalization of Hamilton’s and Lagrange’s equations of classical mechanics.
The study of symmetries of these manifolds also has its roots on classical mechanics, where
symmetries is the main tool that can be used to simplify the equations of motion.

More precisely, assume that the Lie group G acts on the symplectic manifold (M,w)
leaving the symplectic form w invariant. Under certain conditions, this implies the existence
of an application J: M — g* where g* is the dual of the Lie algebra of the group G. When
this happens the action is called a Hamiltonian action. In this case, the fibers of the map J
are invariant under the flow of any Hamiltonian field associated to a G-invariant function.
The map J is called a momentum map, because it becomes the classical notion of angular
momentum when G = SO(3) acting in R3. This result is the well-known Nother’s Theorem
which implies that the components of the momentum map are preserved under the evolution
of a symmetric Hamiltonian system. In fact, the theory of Hamiltonian actions and their
momentum maps have deep consequences in fields far away from mechanics, such as the
theory of toric manifolds |[Can03] or the space of moduli of flat connections [AB83|.

It is well known that Darboux’s Theorem implies that all symplectic manifolds of the
same dimension are locally symplectomorphic. However, the local geometry of symplectic
manifolds endowed with Hamiltonian actions is surprisingly rich and constitutes a field
originating in the classical papers of Marle [Mar85] and Guillemin and Sternberg |[GS84].
These authors obtain a universal model for a tubular neighborhood of the orbit of a point
under a Hamiltonian action, which puts in normal form both the symplectic structure and
the momentum map.

This model is known as the Hamiltonian tube or Marle-Guillemin-Sternberg form; it is
the basis of almost all the local studies concerning Hamiltonian actions of Lie groups on
symplectic manifolds. This local normal form has been essential both for the development of
singular reduction theory and for the study of qualitative properties of symmetric Hamiltonian
systems. Nevertheless, its applications have been limited by the fact that the proof is non-
constructive.

In the first part of this thesis we are going to study Hamiltonian tubes when the symplectic
manifold is a cotangent bundle. The Marle-Guillemin-Sternberg normal form applied to this
case gives, as for every Hamiltonian action, an equivariant local model of (7@, wq) that puts
in normal form both the symplectic structure and the momentum map. However, in general,
this model does not respect the fibration 7*Q) — (. In the concrete case of cotangent bundles
there is a strong motivation coming from geometric mechanics and geometric quantization
that makes it desirable to obtain explicit fibrated local models.

The first works studying symplectic normal forms in the specific case of cotangent bundles
seem to have been [Sch01; |Sch07]. In these references, T. Schmah found a Hamiltonian tube
around those points z € 7% whose momentum p = J(z) is totally-isotropic (that is, G, = G
with respect to the coadjoint action). One of the main differences between her construction
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and the classical MGS form for symplectic actions is that the one for cotangent bundles was
constructive, unlike the general MGS model. The next step came with [PROSDO0S]; that
work gave a complete description of the symplectic slice of a cotangent bundle, without the
assumption G = G,. Recently, [SS13] constructed Hamiltonian tubes for free actions of a
Lie group G and showed that this construction can be made explicit for G = SO(3).

In this work we obtain a construction of the Hamiltonian tube for a cotangent-lifted
action in a cotangent bundle specially adapted to this kind of manifolds. In other words, we
give a model space Y that models locally the neighborhood of an orbit of the group in 7T*Q).
This local model Y has a fibered structure Y — W, and W is a local model for the base ().
Diagramatically we obtain a commutative diagram

Y —L7*Q

y

W—-0Q.

We emphasize that the construction of the local model T: Y — T™(@ is explicit up to the
integration of a differential equation on G. The basic geometric ingredient of our model are
what we call restricted G-tubes (Definition [5.1.5). These maps are the basic building blocks
of T and are the only non-explicit part of the model. It is worth pointing out that restricted
G-tubes depend only on the group G and its algebraic structure, not on the manifold Q).

Restricted G-tubes can be explicitly computed for small dimensional Lie groups; for
example, for SO(3) and SL(2). For larger groups the computations get more cumbersome.

In the second part of the dissertation we deal with the symplectic reduction of cotangent
bundles. As long as the Hamiltonian action is free, after the work of Marsden and Weinstein
in [MW74], it became clear that the elimination of variables in classical mechanics must be
understood as the construction of the quotient J~*(u)/G,, called the symplectic reduction of
M at p.

This symplectic reduction can be applied to any symplectic manifold with symmetry,
but if the symplectic manifold is a cotangent bundle endowed with a cotangent-lifted action,
then the reduced space has extra structure (see [Sat77; AM78; MP00|). Intuitively speaking,
if T*() is a cotangent bundle endowed with a cotangent-lifted action of a Lie group G, the
cotangent bundle reduction of T*Q) at p can be understood as a subbundle of T*(Q/G,,).

Things become much more complicated when we do not assume that the action of G is
free. The main reason is because neither J~'(u) nor J=*(u)/G,, are even smooth manifolds.
We need to enlarge the category of smooth manifolds to allow the singularities that arise from
quotienting by a group action. In the early 90’s, the work of Sjammar and Lerman [SLI]1|
showed that the reduced space J71(0)/G should be understood as a stratified symplectic space,
a disjoint union of symplectic manifolds. In fact these pieces, called strata, are determined
by the isotropy types of the G-action on M. Later development [BLI7; CSo1} OR04] showed
that for a proper Hamiltonian action the reduced space J~*(1)/G,, is a symplectic stratified
space.

One expects that, as in the free case, the reduced space will admit additional structure if
the symplectic manifold is a cotangent bundle. Up to our knowledge, the first work about
singular symplectic reduction in the case of cotangent bundles is [Mon83], in which the author
imposes several strong conditions to ensure that all the relevant sets are smooth. Later, [ER90;
Sch01] gave a complete description of the zero-momentum reduced space when the action
on the base consists only of one orbit-type. The reduction at momentum zero without the
single-orbit assumption was studied in [RO04; [PROSDO07], where it was shown that J=1(0)/G
admits a “coisotropic stratification”, a partition of J=*(0)/G into coisotropic submanifolds,



that are well behaved with respect to the base projection. Under the assumption that () is of
single orbit type, [HR06; [Hoc08; [PRO09| have developed a description of the orbit-reduced
space JH(G - p) /(G - ).

In this dissertation we show that, for a general cotangent lifted action, the base projection
of the g-momentum leaf, 7(J~*(u)) and 7(J7'(u))/G,, are not manifolds but stratified spaces.
Then we define a partition of J=*(u) and J~'(u)/G,, into submanifolds that are well behaved
with respect to the fibered structure. Each of the pieces of the partition of J™*(u)/G,, is a
fiber bundle and is endowed with a constant-rank closed two-form. Moreover on J~*(1)/G,,
there is an open and dense piece Z endowed with a symplectic form that behaves as in the
free cotangent reduction theory; it can be symplectically embedded onto a cotangent bundle.

This thesis is divided into six chapters. The first three chapters summarize the required
background and fix the notation used throughout the rest of the dissertation. The last three
chapters contain the original contributions.

In Chapter [1| we compile some basic facts about symplectic geometry and regular sym-
plectic reduction. Chapter [2| contains a brief summary of the construction of the standard
Marle-Guillemin-Sternberg normal form for a proper Hamiltonian action. Some results in
this chapter include short proofs because they play a key role in the results of next chapters.
In Chapter [3] we introduce the category of stratified spaces and summarize without proofs the
relevant material on singular symplectic reduction and singular cotangent-bundle reduction.

In Chapter [d we characterize the symplectic slice and the Witt-Artin decomposition of
a cotangent-lifted action. Although the description of the symplectic slice for a cotangent
bundle has already been described in [RO04; PROSDO0S]|, in this chapter we present an
alternative approach. As a by-product, we introduce in Proposition 4.2.1] a Lie algebra
splitting that will be a key result for all the subsequent development.

Chapter [5|is devoted to the construction of Hamiltonian tubes for cotangent-lifted actions.
First we define simple and restricted G-tubes (Definitions [5.1.1] and [5.1.5)). Simple G-tubes
are, up to technical details, MGS models for the lift of the left action of G on itself to T*G.
Their existence is proved in Proposition |5.1.2] Restricted G-tubes are defined implicitly in
terms of a simple G-tube (Proposition and are the main ingredients that we need later
to construct the general Hamiltonian tube.

Using these concepts, we can build a Hamiltonian tube around points on 7% with certain
maximal isotropy properties (Theorem [5.2.2). Besides, generalizing the ideas of [Sch07] we
can write down a I" map (Proposition @ These two maps together give the general
Hamiltonian tube in Theorem for arbitrary points.

In Section we present explicit examples of G-tubes for both the groups SO(3) (where
we recover the results of [SS13|) and SL(2,R). We finish this chapter writing down the
explicit Hamiltonian tube for the natural action of SO(3) on T*R3. This example generalizes
the final example of [Sch07] to the case p # 0.

In Chapter [6] we study the problem of cotangent bundle reduction in the singular set-
ting. We first use the Hamiltonian tube to construct a fibered analogue of Bates-Lerman
lemma (Proposition that describes the set 771(U) NJ ! (u) for any small enough open
neighborhood U C @. Using this fibered description, we introduce in Proposition local
coordinates on () and T*(@Q with good properties with respect to the symplectic structure
and the group action.

With these tools, we study in Section the single orbit case Q = (1) and show that
the projection of orbit types of J7'(u) C T*Q are submanifolds of Q. Alternatively, these
submanifolds can be written as L(H, ) - Qg where L(H, 1) is a submanifold of G.

Motivated by this fact, we show that, even if @ # Q(1), the sets L(H,p) - Qu are
submanifolds of @ and induce a stratification of Q* = 7(J~ (1)) and of Q*/G,, (Propositions
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6.5.7] and [6.5.9)).

Combining this stratification with the orbit-type stratification of [SLI1], we can construct
a partition of J™'(u)/G, into smooth pieces with good topological properties (Propositions
6.6.4] and [6.6.5). This partition can be thought as a generalization of the “coisotropic
decomposition” of [PROSDO7|. After that, in Section we study the symplectic properties
of each of the pieces and show that each piece is endowed with a closed two-form of constant
rank. Moreover, each piece Z is a fiber bundle Z — R and there is a constant-rank map
fz:Z/G, — T*(R/G,) into a magnetic cotangent bundle such that f; pulls-back the
symplectic form of T*(R/G,,) to the closed two-form of Z/G,,.

As a corollary of the symplectic properties of the decomposition, we obtain in Corollary
a nice description of the isotropy lattice of J™*(u) that improves the results of [RO06].
Finally, in Section [6.9] we present two detailed examples that illustrate our results.

In Chapter [7| we study the symplectic reduction of T*R™ by the action of O(n) and the
reduction of T*(R™ x R™) by the action of O(n). In both cases the reduced spaces can be
explicitly identified with certain coadjoint orbits of the symplectic group. It is specially
interesting the symplectic reduction of T*(R™ x R™) because it provides a concrete example
of the general phenomena described in Chapter [6f some pieces of the decomposition of
J71(u) /G, are symplectic and can be embedded into a cotangent bundle, whereas others are
just presymplectic submanifolds that have a constant-rank map into a cotangent bundle.
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Chapter 1

Background

In this chapter we compile some basic facts about symplectic geometry and regular symplectic
reduction. This chapter will also be useful to fix the common notation along different chapters.
Proofs can be found in many standard references; for example [AMTS].

In Section[I.T]we state the notation that we use for several standard concepts in symplectic
geometry. In Section we recall basic results about Lie groups and proper actions of Lie
groups on manifolds. Section contains a brief summary of Hamiltonian group actions and
momentum maps. In Section we present the well-known symplectic reduction results for
the free case, and in Section [L.5| we present the standard theorems regarding cotangent-bundle
reduction for free actions.

We would like to remark that, throughout the thesis, by a manifold we mean a smooth,
separable, Hausdorff and paracompact manifold of constant dimension.

1.1 Symplectic geometry

A symplectic manifold is a pair (M,w) where M is a manifold of even dimension and
w € Q*(M) is a closed non-degenerate two-form. All symplectic manifolds of a given
dimension are locally isomorphic in the sense that for any point z € M there is an open set
U containing z and functions ¢',...¢", p1,...,ps defined on U such that

w‘U = qui A dp;.
i=1

This is the content of Darboux’s Theorem.

By a presymplectic form we understand a closed two-form wy,, on M of constant
rank. We say that a (pre)symplectic manifold (M,w) is exact if there is € Q'(M) such
that w = —d@ and we call 6 a potential for the (pre)symplectic form w.

Let V be a vector space and w a skew-symmetric bilinear form on V. If W is a vector
subspace of V', the symplectic orthogonal or the w-orthogonal is the subspace

We={veV] wlw) =0 YweW}

W is called coisotropic if W« C W, isotropic if W* D W, symplectic if W* "W = () and
Lagrangian if W« = W.

Similarly, if S is a submanifold of the presymplectic manifold (M, w), we call S coisotropic,
isotropic, symplectic or Lagrangian if 7},S' is a coisotropic, isotropic, symplectic or Lagrangian
subspace of T),M respectively for all p € S.



2 CHAPTER 1. BACKGROUND

A smooth map f: (My,w1) — (Ms,ws) between (pre)symplectic manifolds will be called
a (pre)symplectic map if
ffwy = wy.
If f: (My,w;) — (Ms,ws) is a symplectic map then by non-degeneracy of the symplectic
forms it follows that f is an immersion. A symplectic map which is also a diffeomorphism
will be called a symplectomorphism.
A vector field X € X(M) is called a Hamiltonian vector field if it satisfies an equation

of the form
ixw = df
for some function f € C*(M).

Consider now M = T™*(@) the cotangent bundle of a manifold (). Let 7¢: T%Q — Q be
the natural projection, the formula

0q(pq) (qu) = (pg quTQ(qu)>

where p, € T7Q and vy, € T), (T*Q) defines a smooth one-form 6y € Q'(T*Q) the Liouville
one-form. The exterior differential of 6y defines a symplectic form wg = —dbg, the
canonical symplectic form of the cotangent bundle. From now on, unless otherwise
stated, all the cotangent bundles will be endowed with the symplectic canonical form and
the symbol 7 or 7 will always denote the cotangent bundle projection 7%Q) — Q.

1.2 Lie groups

Recall that a Lie group G is a smooth manifold with a group structure such that the
multiplication map is smooth. We will denote by e the identity element of the group, the left
and right translation maps by g € G are denoted by Ly, R;: G — G. When there is no risk
of confusion, the Lie algebra of a Lie group will be represented by the corresponding Gothic
letter, that is, the Lie algebra of G will be g, otherwise we will use Lie(G).

The adjoint action of g € G on g will be denoted as Ad,: g — g and the linear map
n — [§,n] will be denoted as ad¢: g — g. Similarly, adg: g* — g* will be the dual of ade and
the coadjoint action of g € G on g* is given by Adj-.: g* — g".

Let H be a closed subgroup of a Lie group G. We define the normalizer of H in G as

No(H)={geG|gHg ' = H}.

It can be checked that Ng(H) is a closed subgroup of G, and H is normal as a subgroup of
Ng(H). Moreover, if £ € g satisfies

Adp§ —€€h

for all h € H then & € Lie(Ng(H)).
The exponential map
exp: g — G

is a diffeomorphism when restricted to a small enough neighborhood of 0 in g. The derivative
of the exponential mapping can be expressed as a series of commutators (see for example
Lemma 4.27 of [KMS93)]),

Proposition 1.2.1. The exponential mapping satisfies

Id — e~2de (=™
Tg exXp = TeLexpf e} <a—d€) = TeLeng e} (Z madg .

n>0



1.2. LIE GROUPS 3

If the Lie group G is compact there is a volume form Vols that is both left and right
invariant, the Haar measure. This measure will be normalized requiring |, o Volg = 1. The
existence of this bi-invariant measure allows the construction invariant objects related to
compact groups by simply averaging over it.

1.2.1 Lie group actions

A left action of G on a manifold M is a smooth mapping A: G x M — M such that
o Ale,z) =z forall ze M
e A(g, A(h,z)) = A(gh,z) for all g,h € G and z € M.

we will call the triple (M,G,.A) a G-space. Given an element g € @G, the translation
Ay: M — M is a diffeomorphism of M. To simplify notation we often use g - z as a
shorthand for A(g, z) = A,(2) when the action is clear from the context.

Given an action A: G x M — M, the infinitesimal generator &, € X(M) associated to
¢ € g is the vector field on M defined by

d

5M($):%t:0

Aexp(ie) () € T M.

The fundamental vector fields satisfy (Adg-1§)a = Aj(&ar) and [€, ] = —[Ear, mu]. Some-
times we use the notation £ - x to refer to the fundamental field associated to £ at the point
x.

For p € M, the isotropy subgroup of pis G, ={g € G | g-p =p}. Amap f: M; — M,
between two G-spaces is called G-equivariant if f(g-p) = g- f(p) for all p € M; and g € G.
Similarly, a map f: M; — M, is called G-invariant if f(g-p) = f(p) for all p € M; and
ge€@qG.

Note that if f: My — M; is G-equivariant, then G is a subgroup of G(,) for any x € M,
if f is a diffeomorphism then G, = G, for any x € M;.

It is useful to remark that near a fixed point p € M of an action of a compact group G,
the G-invariant open sets form a basis of neighborhoods of p,

Lemma 1.2.2. Let G be a compact Lie group acting on the manifold M. If m is a fived
point of the action, any open neighborhood of m contains a G-invariant open neighborhood
of m.

1.2.2 Proper actions

An action of a Lie group on a manifold can be very wild; the quotient topological space
M /G may even fail to be Hausdorff. The actions of compact Lie groups are much more
well behaved hence it seems reasonable to restrict the study to compact Lie group actions.
However, there is a technical condition called properness which allows the study of more
general groups, but retaining some nice properties of compact group actions:

Definition 1.2.3. Let G be a Lie group acting on the manifold M via the map A: G x
M — M. We say that the action is proper if the map ©: G x M — M x M defined by
©(g,p) = (p, A(g,p)) is proper (i.e. the pre-image of every compact set is compact). This
is equivalent to the condition: for any two convergent sequences {m,} and {g, - m,} in M
there is a convergent subsequence {g,, } in G.



4 CHAPTER 1. BACKGROUND

This technical condition was introduced by Palais [Pal61] who proved that this hypothesis
is enough to ensure that the main properties of compact Lie group actions are available. It
can be easily checked that for any Lie group G the left and right actions on itself are proper.

As most of the actions studied in this thesis are proper, we will recall some of their useful
properties.

Proposition 1.2.4. Let A: Gx M — M be a proper action of a Lie group G on the manifold
M, then,

1. For any m € M the isotropy subgroup G, is compact.
2. The quotient space M /G is Hausdorff.

3. If the action is free, M /G is a smooth manifold and the canonical projection w: M —
M/G defines on M the structure of a smooth principal G-bundle.

4. 1If all the isotropy subgroups of the points of M are conjugated to H C G, then M/G
is a smooth manifold and the canonical projection m: M — M/G defines on M the

structure of a smooth locally trivial fiber bundle with structure group N(H)/H and fiber
G/H.

5. There exists a G-invariant Riemannian metric on M.

6. Let m € M the orbit G - m is an embedded submanifold of M.

Assume that G acts properly on M, let H be a closed subgroup of G and let N an
embedded submanifold of M such that h- N C N for any h € H. Then we can restrict the
G-action on M to an H-action on N and this restricted action is again proper.

1.3 Hamiltonian group actions

An action A: G x M — M, where (M,w) is a symplectic manifold, is called a Hamiltonian
action if

e ( acts by symplectomorphisms, i.e. Lfw=w VgeG

e There is a map J: M — g* called a momentum map such that:
igyw=d({J(),§) VE€g (1.1)

The tuple (M,w,J,G) will be called a Hamiltonian G-space. If J satisfies J(g - z) =
Ady-:(J(x)), we say that the momentum map is equivariant.

Remark 1.3.1. Note that some authors include the equivariance of the momentum map as a
required condition for a Hamiltonian action, for example |[Can01].

The existence of the momentum map (not necessarily equivariant) is the requirement
that the group action not only preserves the symplectic structure but also its fundamental
fields are Hamiltonian. The existence of the momentum map restricts the dynamics of
all Hamiltonian vector fields in the following sense.

Theorem 1.3.2 (Noether’s Theorem). If H € C*°(M) is a G-invariant Hamiltonian on the
G-space (M,w,J,G), then J is conserved on the trajectories of the Hamiltonian vector field
Xy associated with H.
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From the definition it is easy to check that if J; and J, are two momentum maps for the
same Hamiltonian action then J; — J5 is a locally constant function.

If (M, —d#) is a symplectic manifold endowed with a G-action such that the symplectic
potential § € Q'(M) is G-invariant then the map J: M — g* defined by:

(J(2),8) = (0(2), € (2)) = (igy, 0)(2) (1.2)

is an equivariant momentum map for the G-action because

d<J(Z)7€> = (dsz)g = (di&u - L&M)e = _(iﬁMd)e = i&Mw‘

where Lg¢,, represents the Lie derivative respect to the vector field &;.
If (M,w,J, &) is a Hamiltonian G-space and H is a closed subgroup of G then (M, w,J .

. that is, the

H) is a Hamiltonian H-space where J‘h is the function (J‘b)(z) = J(2)

composition of J: M — g with the natural projection ‘h cgt— bhn
Let (M,w,J, G) be a Hamiltonian G-space and fix 2 € J7(u). If v € Ker T,J, from ([I.1]),
w(ém(z),v) =0 for any £ € g, and similarly if v € (g - 2)“ then v € Ker T,J, that is,

KerT,J = (g-2)“ C T.M. (1.3)

Moreover, if J: M — g* is an equivariant momentum map and g = J(z), it can be checked
that

(1, [€m]) = wlm(2),mu(2)  VEmeg (1.4)
and
(g-2)N(g-2)" =g, 2 (1.5)

where g, = {£ € g | ad;u = 0} is the isotropy algebra of u = J(2) € g* under the coadjoint
action.

1.3.1 Coadjoint orbits

Let G be a Lie group and denote O, = {Adj -, | g € G} the coadjoint orbit through an
element ;1 € g*. There are two natural symplectic forms on O, given by

Wb, () (o v, adg,)) = £(v, [61, 6], (16)

for any v € O,,.

O,, has a natural G-action given by g-v = Adj-.v. With respect to this action, (O,, wg)“)
is a G-Hamiltonian space with momentum map J(v) = v € g*. Similarly, ((’)M,wgu) is a
G-Hamiltonian space with momentum map J(v) = —v € g*.

1.3.2 Cotangent lifted actions

If G acts on a manifold ) through A: G x Q — @, taking for each fixed ¢ the transpose
inverse of the tangent lift, we get: T*A,-1: T*Q — T™(Q), which fit together to give a left
action of G on T*(Q. This is called the cotangent lifted action. It can be checked that
this action preserves the symplectic structure. Moreover, as cotangent bundles are exact
symplectic manifolds, there exists an equivariant momentum map (see ) given by

(J(pq), &) = (Pg: €0(4))- (1.7)
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Hence, if we are given an action of G on (), we can build the associated cotangent bundle
Hamiltonian G-space (T*Q,w,J,G). Moreover, if the action of G on @ is proper, then
the cotangent lifted action of G on T*() is also proper.

If we assume that G acts linearly on the vector space V', there is also an action of G on
V* given by the inverse transpose of the GG action on V. The differential of each of these
actions define the fundamental fields € € g - -a € V and £ € g — -0 € V* for each
a €V and b € V*. From these observations we can define the diamond product of a € V'
with b € V* as the element a ¢ b € g* such that

{aobn) = (b;n-a)

for all n € g.
With this notation, if we consider the cotangent lift of the G action on the vector space
V' to the cotangent bundle 7"V = V x V* and the resulting G action is Hamiltonian with
momentum map
J(a,b) =acobe g

Note that if we consider G = SO(3) acting on R?, the diamond product becomes the classical
cross product under the usual identifications.
If b C g is a subspace then

aopb= (a<>b)‘h S (1.8)

the restriction of the form a ¢ b to h*. If b is the Lie algebra of a subgroup H C G, a o4 b is
the momentum map for the H-action on 7*V induced by restriction of the original G-action,
which is in turn the same as the lift of the restricted H-action on V.

1.3.3 Actions on T*G

From now on we identify T'G with G x g and T*G with G x g* using left trivializations
Gxg—TG Gxg — TG (1.9)
(9, &) — TeLy(§) (g,v) — T Ly (v).

Combining them, we can trivialize T(T*G) = G x g X g* X g*.
We need the following well-known properties of the symplectic structure and the cotangent-
lifted actions of G on T*G (see [AMT8])

Proposition 1.3.3. Let G be a Lie group.

o Symplectic structure: Let u; == (&,5;) € Tiy)T*G with i = 1,2, the canonical
one-form of T*G 1is

9(;(u1) = <V7 §1> (]_]_0)
and the canonical symplectic form wg = —dlg is
we(ur, uz) = (B2,&1) — (51, &) + (v, [61, &) (1.11)

e Cotangent-lifted left multiplication: The G-action given by

h'L(g,I/):(hg,l/)

has as infinitesimal generator nt..(g,v) = (Ady,-11,0) and is Hamiltonian with mo-
mentum map J(g,v) = Ady-.v.
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e Cotangent-lifted right multiplication: The G-action given by
h-f(g,v) = (gh~ ', Ad;_1v)

has as infinitesimal generator 13t (g, v) = (—=n, —ad;v) and is Hamiltonian with mo-
mentum map Jgr(g,v) = —v.

Note that the actions described by this result are the cotangent lifts of the natural actions
of G on itself.

1.4 Regular symplectic reduction

Symplectic reduction is the process that builds a symplectic space out of a given Hamiltonian
G-space after the elimination of symmetries and conserved quantities. This strategy can be
used to reduce the dimensionality of a given Hamiltonian system. In this section we assume
that the action of the group is free, proper, and the momentum map is equivariant.

Theorem 1.4.1 (Regular symplectic point reduction [MW74]). Let (M,w) be a symplectic
manifold and G a Lie group with a free, proper and Hamiltonian action on M. Assume that
the momentum map J is equivariant. Let 1 € g* and denote by G, the isotropy subgroup of
i under the coadjoint action of G on g*.

The space M, = I~ (1u)/G,, is a smooth manifold with a symplectic form w, € Q*(M,)
uniquely characterized by the relation

*
Wﬂwu

= 1w
where i, : I (u) = M and 7, I () — I~ (n) /G, denote the inclusion and the projection,
respectively. The pair (M,,w,,) is the symplectic reduced space at momentum p.

In fact, the coadjoint orbits introduced in Section [1.3.1| are reduced spaces of T*G.

Theorem 1.4.2. Let G be a Lie group and p € g*. Using the notation of Proposition|1.5.
the reduced space of T*G by the left action at momentum p, (J;'(1)/Gu,w,) is symplec-
tomorphic to (Ou,wg)#) (see (L.6) ). Moreover, this symplectomorphism is G-equivariant if
J ' (1)/G,, is endowed with the G-action induced by the GE-action on T*G.

If a group G can be written as a direct product G = G X G2, then the symplectic reduction
by G and the double reduction first by G; and then by G, yield the same result. This
important result is known as the commuting reduction, and although it can be generalized
in many ways (see [Mar+07]) we will only use the following version.

Theorem 1.4.3 (Regular commuting reduction [MW74]). Let G and H be two Lie groups
acting properly and Hamiltonially on a symplectic manifold (M,w) with equivariant mo-
mentum maps Jg and Jg, respectively. Assume that both actions are free, commute, Jg s
H-invariant and Jg s G-invariant. This implies that M is a G X H-Hamiltonian space with
G x H-equivariant momentum map (Jo,Jg): M — g* x h*.

Let i € g* and v € b*, G induces a Hamiltonian action on M, = J;'(v)/H, with
equivariant momentum map Kg determined by Kgomy, = Ja. If the G action on M, s free,
then the reduced symplectic space K~ (pn)/G,, is symplectomorphic to (Jg,Iu) " (u,v)/ (G, ¥
H,), the symplectic reduced space of M by the product action of G x H.
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1.5 Regular cotangent bundle reduction

Let ) be a manifold endowed with a proper G-action. The symplectic reduction of a cotangent
bundle T*@ has more structure than a symplectic manifold. In this section we recall the
results that characterize the reduced space as a subset of a certain cotangent bundle. We
assume that the action of G on the configuration space @ is free.

The first result of the theory of cotangent bundle reduction, due to [Sat77], deals only
with the reduction at zero momentum.

Theorem 1.5.1 (Regular cotangent reduction at zero [Sat77]). Let G act freely and properly
by cotangent lifts on T*Q with momentum map J. Denote ng: Q — Q/G, i: J71(0) — T*Q
and mo: IJ71(0) — J71(0)/G the natural quotient maps and inclusions.
Consider
p: I7H0) — T7(Q/G)
defined by
(0(2), Tyma(v)) = (z,v)

Jor every z € T;Q and v € TyQ. The map ¢ is a G-invariant surjective submersion that
induces a symplectomorphism

p:37H0)/G — T7(Q/G)

where J71(0)/G is endowed with the reduced symplectic form wy, that is, the one satisfying
Towo = 1"wg.

The general case u # 0 is more difficult, because to describe the reduced space the
symplectic form needs to be deformed. These twisting terms are the geometric analogues of
the magnetic or Coriolis terms in classical mechanics.

Theorem 1.5.2 (Embedding cotangent bundle reduction [AMT78]). Let G act freely and
properly by cotangent lifts on T™Q) with momentum map J. Denote by mg, the projection

Q— Q/Gy.

There is a G,,-equivariant map o, : Q — T*Q) such that

(@) =p and 7(au(q)) =q  VgeQ. (1.12)

A map o, satisfying these conditions is known as a mechanical connection. Note that o,
can be understood as one-form on Q. Associated to «y, there is a two-form B, € Q' (Q/G,)
such that 7¢; 5, = doy,.

The map @, : I (p) = T*(Q/G,) defined by (p,(2), Tyma, (v)) = (z—au(q),v) for every
z € T;Q and v € TyQ 15 Gy-invariant and induces a smooth map

B 37 (W)/Gy — TH(Q/G).

If I7' (1) /G, is endowed with the reduced symplectic structure and T*(Q/G ) with wgc, —
Té/Guﬂu, ®,, is a symplectic embedding onto a vector subbundle of T*(Q/G).
Moreover, the map p,, is onto if and only if g = g,.

The theorem that we have stated corresponds to what is known as the “embedding pic-
ture”. The “fibrating picture” is an alternative description of the reduced space J™'(u)/G, =
J1(0,)/G as a bundle over T*(Q/G) (see [MP00]). We will not enter into further details
because this interpretation will not be used in this thesis.



Chapter 2

Local normal forms

In many cases, geometric structures on a manifold have simple local models on which the
geometric structure in question has a particularly convenient expression. The importance of
normal forms is that usually these easier expressions can simplify many problems. In this
chapter we study normal forms of G-spaces and of proper Hamiltonian G-spaces. In most of
the results of this chapter we include short proofs because they play a key role in the results
of following chapters.

In Section we study the normal form for G-spaces. We define twisted products
(Proposition the reference model. Then we prove Palais’ theorem (Theorem [2.1.4)
and show that by using the Riemannian exponential of an invariant metric we can explicitly
construct the local normal form of a G-space.

Our next step is to introduce the normal form for Hamiltonian G-spaces, but before
doing so, in Section we state the Witt-Artin decomposition of a symplectic vector space.
This decomposition can be regarded as a linear analogue of the more general MGS form. In
Section we briefly sketch the construction of a symplectic tube, the analogue of twisted
products in the symplectic setting. Later we provide a proof of an equivariant version of
Darboux’s Theorem [2.3.2] Combining this result with the Witt-Artin decomposition, one
can easily obtain Theorem the MGS form or Hamiltonian tube. Finally, in Proposition
we state without proof an important consequence of the MGS form, a local description
of the momentum leaf.

2.1 Proper actions

2.1.1 Twisted products

We first introduce the twisted products, a class of G-spaces that will serve as a local model
for any G-space.

If a subgroup H of the Lie group G acts on the manifold A, then the product manifold
G x A can be equipped with a twisting action of H defined by

h-T(g,a)=(gh™* h-a), heH
and a left action of G defined by
h-*(g,a) = (hg,a), heq.

The left action commutes with the twisting action. This means that both actions can be
merged into an action of the direct product G x H on the manifold G x A.
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Note that if we regard g* as a manifold endowed with the G-action g -v = Adj-.v,
then the actions G* and G of the product manifold G x g* correspond to the trivialized
expressions of the cotangent-lifts of the left and right actions of G on itself (see Proposition
1.3.3).

Remark 2.1.1. When it is necessary we will use, as above, a superindex 7" or L to indicate
the twisting or the left action on a product manifold G x A.

Proposition 2.1.2. Let G be a Lie group and H C G a subgroup. Assume that H acts
properly on the manifold A.
Then,

o the twisting action is free and proper. The quotient space (G x A)/HT is a manifold.
It will be called the twisted product and is represented as G Xy A. Its elements will
be denoted as [g,alg g€ G, a € A.

e the twisted product has a proper G action given by g - [¢',alg = (99, a]n.

2.1.2 Palais’ tube

Let p € M and assume that G acts smoothly on M. The isotropy subgroup G, = {g € G |
g -z = z} acts naturally on the tangent space T,M at p. For proper smooth actions this G,
action on T, M is enough to describe the structure of a whole neighborhood of G - p. In fact,
only the action of GG, on a subspace S C T,M is important.

Definition 2.1.3. Let M be a smooth manifold with a proper G-action and fix a point
p € M. A Gp-invariant complement S of g-p C T,M in T,M will be called a linear slice
at p.

Note that all linear slices at p are isomorphic as Gp-modules to the quotient T,M /g - p
endowed with the natural G)p-action.

The Tube Theorem proved by Koszul in [Kosb3| for compact groups and generalized by
Palais in [Pal61] shows that in fact every proper G-space is locally a twisted product and
this twisted product is determined by a linear slice S.

Theorem 2.1.4 (Tube theorem for G-spaces). Let M be a manifold and G a Lie group
acting properly on M. Fix a point p € M, define H = G),. There exists a G-equivariant
diffeomorphism:

tZGXHST—>U (21)

where U is a G-invariant open neighborhood of G - p and S, is an open H-invariant neigh-
borhood of 0 in a linear slice S at p.

We sketch the proof of this result given in Theorem 2.3.28 of [OR04].

Proof. Consider a metric gy defined on a neighborhood U, of p such that the splitting of
T,M =g-q®S is orthogonal. Using Lemma there is a G/p-invariant open set U; C U
on U;. We can define the averaged metric by

g(2)(u,v) = /H go(h - 2)(T.Ap - u, T, Ay, - v)dh
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where the integral is taken with respect to the normalized Haar measure of H. It can be
checked that A} g = ¢ for any h € H.

There is a neighborhood (7,M), of the origin in 7,,M such that the restriction of the
Riemannian exponential associated to g defines a diffeomorphism

Exp: (T,M)y — Uy C M.
Since ¢ is H-invariant, Exp(T, Ay, - a) = h - Exp(a). Define Sy = (1T, M)y NS and the map

t: GXHSO—)M
l9,a]lm — g - Exp(a)

as Exp is H-equivariant t is well-defined and G-equivariant.
If 7y: G xS — G xp S is the canonical projection, then for any (£,a) € T.G x TpS

Teo)(tomm) - (€,a) = &n(p) +a € T,M.

Then Tieo)(t o mg) - (§,a) = 0 implies £ € b and therefore Tc o7y - (§,a) = 0 so Tje g, t is
an isomorphism. Since being a linear isomorphism is an open condition there is an open
neighborhood S; of the origin in Sy such that Tj. ), t is an isomorphism for any v € Sj.
Again we can assume that S; is H-invariant. Finally, by G-equivariance of t, T, ., t is an
isomorphism for any g € G and v € Sy; that is, the map

tiGXH51—>M

is a local diffeomorphism.

We now show that there must be an H-invariant open neighborhood Siy; of the origin of
Si so that the restricted map t: G x g Sipj — M 1is injective. If we assume the contrary, this
means that there are two sequences [g,, a,|g and [g),, a) ]y on G X g Sip; such that

[gnaan]H 7é [g;wa;]H n

but,
t([gn, anln) = t(lgn, an]u)  Vn

and both a, and a/, converge to zero. Therefore,

t([e, anlm) = t([g, g, atlm) (2:2)

but as [e,a,]m is a convergent sequence, t([e, a,]m) is also convergent and by properness
of the action there is a subsequence such that g, 'g/ is convergent to g € G. This implies
t(le,0]g) = t([g,0]ln) = g - t([e,0]y) so g € H. As t is a local diffcomorphism, there is an
open neighborhood U of [e, 0]y such that t(z) = t(y) implies x = y, but then implies
e, an)u = 9, G, > an, |1, Which is a contradiction. Therefore, there is an H-invariant open
neighborhood Siy; of the origin of Sy so that the restricted map t: G' X g Sinj — M is injective.

As t: G xpg Sinj — M is a local diffeomorphism onto its image and it is injective, it is a
diffeomorphism onto its image. Hence the claim follows if we set S, = Siy;. O]

With this semi-local model, in the sense that is global for the G-action, one can prove
many properties of G-spaces. It is the main tool used to obtain the smoothness of its isotropy
type components, the closeness of group orbits, and many more properties (see [DK00]).
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2.2 Witt-Artin decomposition

If M has a proper Hamiltonian action of G, it is not trivial at all how can we adapt the
Palais’ tube construction in such a way that it becomes a symplectomorphism. The first step
towards that goal is to obtain a normal form for the linear space T, M as a G,-space with a
symplectic form w(p).

Definition 2.2.1. Let (M,w,J) be a Hamiltonian G-space with equivariant momentum
map J. Fix a point p € M, if J(p) = p, any Gp-invariant complement N of g, - p in
Ker T,J C T, M, that is,

Ker T, J =g, - p® N

is called a symplectic slice at p € M.

The symplectic slice is a symplectic vector subspace of (T,,M,w(p)). If the action of G
on M is free then T,mg, establishes a symplectomorphism of N and T, () (J “Hw)/G,). As
it is like a linearization of the reduced space, this subspace plays a key role in the geometry
and dynamics of M. For example, the Energy-Momentum method test to ensure non-linear
stability of a GG invariant Hamiltonian system relies on the evaluation of a certain matrix on
a symplectic slice N.

However, even if the action of GG is not free, we can always choose a symplectic slice at p.
In fact, the symplectic slice is one of the parts of a four-fold linear equivariant splitting of
the tangent space known as the Witt-Artin decomposition (see [OR04] and [CB97]).

Proposition 2.2.2. Let (M,w,J) be a Hamiltonian G-space with equivariant momentum
map J: M — g*. Fiz a point p € M and denote J(p) = u there is a Gp-invariant splitting

T'M=g, pdWoq-p&N
such that
e q is a Gy-invariant complement of g, in g. That is, g = g, @ q.
o N is a symplectic subspace symplectomorphic to a symplectic slice at p.

o W is isotropic and G,-equivariantly isomorphic to (g,/9,)" via the map f: W —
(gu/gp)* defined by
(f(w), &) = wp)(w, &ar(p))

© g, pOW,q-pand N are symplectic subspaces orthogonal with respect to w(z).

This result implies that under this splitting the symplectic form block-diagonalizes as

g.p W q-p N
* 0

w(p) =

S O % O
O X O O

0 0
0 0
0 *

That is,ifu; =& -ptwi+n-p+v, €9, - pOW D q-p® N with i = 1,2 then

w(p)(u1,u2) = w(p) (&1, wa) +w(p)(wi, &) +w(p)(m - p,m2 - p) +w(p)(vi, va)
= w(p) (&1, w2) + w(p)(wi, &) + (1, (71, m2]) + w(p) (v, v2)
= —(&, fwg)) + (§2, f(w1)) + (1, [, ma]) + w(p)(v1,v2)
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2.3 MGS form

If G acts Hamiltonially on a symplectic space M, it possible to have a semi-local model
like the one for G-spaces. This is the content of the Marle-Guillemin-Sternberg normal
form proven by Marle Guillemin and Sternberg in [Mar85}; |(GS84] for compact groups and
extended to proper actions of arbitrary groups with equivariant momentum map in [BL97].
A similar result can be obtained even if we drop the assumption of equivariance of the
momentum map [OR04].

2.3.1 Abstract symplectic tube

Let G be a Lie group, i € g* and K C G, a compact subgroup. As K is compact we can
choose a K-invariant complement of g, in g. This choice induces a K-equivariant linear
inclusion ¢: gy, — g*. Consider the product 7, = G X g, and the embedding

T, — TG
(9,v) ¥ TeLy-a(p+ t(v)).

With this map we can pull-back the canonical symplectic form of T*G (see Proposition |1.3.3)
obtaining the two-form wr, given by

wr, (9, V) (v1,02) = (P2, &) = (91, €2) + (4 1(v), [61, &)

where v; = (T, Ly&;, ;) € Tig.) (G X g;) This form satisfies wy, = —dfr, where

01, (9,v)(01) = (p + 1(v), &) (2:3)

It can be checked that, for any g € G the two-form wy, (g, 0) is non-degenerate, and therefore
there is an open K-invariant neighborhood (g7,), of 0 € g}, such that (G x (g},),,wr,) is a
symplectic space (see Proposition 7.2.2 of [OR04]).

Let (N,wy) be a symplectic linear space with a K-Hamiltonian action with momentum

map
1

(I (0),€) i= suw(€ - v,0)

The symplectic product Z := G x ((g},)» x N) with two-form wr, + wy is a symplectic
space and the natural G* and K7-actions are free and Hamiltonian with momentum maps:

Kgr(g,v,v) = —V‘e +JIn(v), Kee(g,v,v) = Ady-av (2.4)

By regular symplectic reduction (see Theorem , the quotient KI_(IT (0)/KT is a symplectic
manifold. Since G* and K7 actions commute, then the induced G-action on this quotient is
also Hamiltonian.

We now build a useful representation of the abstract reduced space K;T (0)/KT. Choose a
K-invariant complement m of € = Lie(K) in g,,. There are small enough open neighborhoods
my and N, of the origin in m* and N such that v + Jx(v) € (g},), for every v € m; and
v € N,.. In this setting, the map

L: G xg ((m*), x N,) — K5 (0)/K" (2.5)
[97 v, U}K = [97V+JN(U)7U]K
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is a well-defined G-equivariant diffeomorphism onto its image. We can endow the space
Y, = G xx (m} x N,) with the symplectic form

QY (T(g,u,v)ﬂ-K(ul)7 T(g,l/,v)ﬂ-K(UQ)) = <V2 + TvJN(q'JZ); €1> - <V1 + TUJN(Q'}l)v €2>+

+(v + In(v) + u, [&1, &) + w(v1, 02) (2:6)

where u; = (TeLg&; 03, 0;) € Tigu0)(G xm* X N) and mg: G x (m* x N) = G xg (m* x N).
Then L becomes a G-equivariant symplectomorphism between (Y, €y) and Kl_(lT(O) JKT
equipped with the reduced symplectic form.

To sum up,

Proposition 2.3.1. Let G be a Lie group, pn € g*, K C G,, a compact subgroup and (N,wy)
a linear symplectic space with K action preserving the symplectic form wy.

Let Jn: N — € be the momentum map for the K-action on N, that is, (Jn(v),&) =
%wN(é -v,v). Let m be a K-invariant complement of € in g,. There are K-invariant
neighborhoods of the origin m> C m* and N, C N such that the twisted product

Y;Z:GXK<m:><NT)

endowed with the two-form (2.6)) is a symplectic space. Moreover, the G-action ¢ - [g, v, v|x =
[d'g, v, |k is a Hamiltonian action with momentum map

Jy(lg,v,v]K) = Adg-1 (p + v + In(v)). (2.7)

We will say that (Y,,wy) is a MGS-model associated with (G, u, K, (N, wy)).

2.3.2 Equivariant Darboux

Let G be a Lie group acting properly on a symplectic manifold (M, w). In this setting, the
classical Darboux Theorem can be extended to an equivariant version, as the following result
shows.

Theorem 2.3.2 ([BL97], Theorem 6). Let M be a manifold and wy,w, two symplectic forms
on it. Let G be a Lie group acting properly on M and preserving both wy and w,. Let p € M
and assume that:

wo(g - P)(Vgp, Wy.p) = wi(g - P)(Vgps Wyop)

forall g € G and vy.p,wy., € Ty, M. Then there exist two open G-invariant neighborhoods
Uy and Uy of G - p and a G-equivariant diffeomorphism ¥: Uy — Uy such that Vl|g, = Id
and V*w; = wy.

Remark 2.3.3. As in the classical Darboux theorem, we can only state the existence of ¥ as
the solution of a Moser equation, so it is usually very difficult to construct ¥ explicitly or to
have some fine control of its properties even for simple examples.

The proof of this result is just an equivariant refinement of Moser’s proof of Darboux
Theorem. We sketch the proof given in Theorem 7.3.1 of [OR04].

Proof. Using Theorem 2.1.4 at p € M, there is

t: GXGp S, —>t(G Xa, Sr> CcM
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such that t([e,0]g,) = p and S, is a Gp-invariant open subset of a linear slice at p. For any
u = t([g,v]q,) the expression ¢,(u) = t([g, (1 — t)v]g,) defines a diffeomorphism ¢,: U —
¢¢(U) for any t. Then,

Wy — w1 = ¢>{(w1 - wo) - (Wl - Wo)

b d
:/0 230 (w1 —wo)dt

= /01 ¢; (Ly; (w1 — wo))dt
_ /01 65 (diy, (wn — wp))dt
—af 61 i — o))t

where Y; is the vector field defined by Y;(z) = £ (¢(2)). Let o = fol &f (iy, (w1 — wp))dt €
QY(U); note that this one-form is G-invariant, wy — w; = da and a(g - p) = 0.

Consider the family of two-forms wy = wy+t(w; —wyp); since wi(g-p) = wo(g-p) = wi(g-p),
wi(g - p) is non-degenerate for any ¢ € G and t € [0,1]. As non-degeneracy is an open
condition, for any ¢, € [0,1], there is ¢ > 0 and V;, C U G-invariant such that w;(z) is
non-degenerate if z € V. As [0, 1] is compact we can cover it with a finite number of open
sets, and thus there is V' G-invariant open set such that w;(z) is non degenerate if ¢ € [0, 1]
and z € V. Therefore, w; is a family of symplectic forms on V.

Now we apply Moser’s trick to the family w;; the Moser equation

ILx,W =

defines a time-dependent vector field X; on the open set G x V. If U, is the local flow of the
vector field X; then,

As U, = Id, this implies Ujw; = wy. As X; is G-invariant, ¥, is a G-equivariant diffeomor-
phism, and as X;(g - p) = 0 there is a G-invariant neighborhood W C V such that ¥ is well
defined on it. Therefore Wy: W — Wy (W) and Wiw; = wp, as we wanted to show. O

2.3.3 Hamiltonian Tube

From the Witt-Artin decomposition and the G-relative Darboux theorem, Marle Guillemin
and Sternberg in [Mar85; |GS84] built the Marle-Guillemin-Sternberg normal form,
which is the normal form for each proper Hamiltonian action of a Lie group G on a symplectic
manifold M.

Theorem 2.3.4 (Hamiltonian Tube Theorem). Let (M,w) be a symplectic manifold and let
G be a Lie group acting properly and Hamiltonially on M with equivariant momentum map
J: M — g*. Let z € M, denote p = J(2), choose a G,-invariant splitting g, = g, ®&m on g,
and a G .-invariant splitting KerT,J =g, - 2 ® N.
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There exists Y, = G X¢g, (m: x N,) a MGS model associated to (G, u,G., (N,w(z)‘N))
and a map
T:Y, — M

such that

e T:Y, — T(Y,) C M is a G-equivariant diffeomorphism onto the open set T(Y,) C M
and T(le,0,0]q.) = z.

o T'w =0Qy.

A map T:Y, — M will be called a Hamiltonian tube around z if it satisfies the
conditions above.

A detailed proof can be found in Theorem 7.4.1 of [OR04]; here we only briefly sketch
the main points.

Proof. The tangent space T,M can be decomposed using the Witt-Artin decomposition

(Proposition [2.2.2)) as
I'M=g,-206W®q-pdN.

Note that W & N C T, M is a linear slice at z € M. Using this linear slice we can build a
Palais’ tube
t: G xg, (WaeN), -UC M.

Let Y, = G x¢, (m* x N,) be MGS-model associated with (G, u, G, (N,w(z)‘N)), consider
the map

U: G xg, (m x N,) — M
[97 V7/U]Gz — t([ga fﬁl<y) +U]Gz)'

Via ¥ on Y, = G xg, (mf x N,), we can consider the two-form U*w and it can be checked
that ¥*w and Qy are G-invariant forms such that (V*w)(g-2) = Qy(g - 2) for any g € G.
Using Theorem there is a diffeomorphism ©: Uy — U; such that ©*U*w = Qy, then
the map ¥ o © is a Hamiltonian tube at z.

O

One of the most important consequences of the MGS model is that it provides a local
description of the set of points with momentum g, which is very useful in the theory of
singular reduction. This is the content of the following result of [OR04] based on [BL97].

Proposition 2.3.5 (JOR04], Proposition 8.1.2). Let (M,w) be a symplectic manifold sup-
porting a Hamiltonian G-action with momentum map J. Let m € M, p = J(m) and

T: G xg,, (m: x N,) = M a Hamiltonian tube around m. There is an open G,-invariant
netghborhood Uy of G, - m such that

Uy NI (1) =T(2)

where
Z = {[97 Vav]Gm € (‘T_I(UM> | g € G,u7 V= 07 JN(U> = 0}



Chapter 3

Stratifications and singular reduction

In the general case of a Hamiltonian action of a Lie group G on a symplectic manifold (M, w),
neither the quotient M /G nor the quotients J~!(u)/G,, are smooth manifolds. Nevertheless,
they are always topological spaces. In fact, they have much more structure than simple
topological spaces. They have the important property that, although they are not manifolds,
they admit a partition onto locally closed subsets where each of them has the structure of a
smooth manifold.

Following this idea, in Section we introduce the category of stratified spaces and its
properties. In Section we describe how a G-space M can be decomposed into different
submanifolds and how this decomposition endows the quotient M /G with a smooth stratified
structure. Using all these tools, in Theorem we can state the singular analogue of
Marsden-Weinstein reduction procedure. Finally, in Section [3.4] we briefly review recent
developments regarding singular cotangent-bundle reduction.

3.1 Stratified spaces

In the literature, there are several and often non-equivalent ways of defining stratified spaces
and related concepts. In this work we will follow the conventions of [Pfl01].

3.1.1 Decompositions

Definition 3.1.1. Let X be a paracompact Hausdorff space with countable topology and
Z a set of sets of X. The pair (X, Z) is a decomposed space if the following conditions
are satisfied:

1. The pieces S € Z cover X and are disjoint.

2. Every piece S € Z is a locally closed subset of X and it has a manifold structure
compatible with the induced topology.

3. The collection Z is locally finite.
4. If RN'S # 0 for a pair of pieces R, S € Z then R C S. This requirement is usually

called the frontier condition.

Recall that a locally closed subset A of a topological space is a subset such that each of
its points has an open neighborhood U such that U N A is closed in U.

17
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The elements of the set of subsets Z are usually called pieces. The boundary of a piece
R € Z is the set R = R\ R. Note that if S € Z, R # S and RN S # () then the frontier
condition implies that R C 9S. In this case we say that R is incident to S and we write
R=<S.

When a pair (X, Z) satisfies all the properties in Definition except the frontier
condition, we will say that (X, Z) is a generalized decomposition or a generalized
decomposed space. This concept appears in [TT13] under the name of a prestratification.

A continuous mapping f: P — () between (generalized) decomposed spaces (P, Z) and
(@Q,Y) is a morphism of decomposed spaces if for every piece S € Z there is a piece
T € Y such that f(S) C T and the restriction f‘s : S — T is smooth. We say that (X, Z)
is a coarser decomposition than (X, Z5) if the identity mapping (X, Z5) — (X, Z) is a
morphism of decomposed spaces.

If (X1, 2;) and (X3, Z,) are stratified spaces, then the cartesian product X; x Xj is a
decomposed space with pieces the product of pieces of X; and Xs.

Note that a smooth manifold M is a decomposed space if we consider the single piece
decomposition Z = {M}.

In general, a subspace of a decomposed space is not a decomposed space. Let Y be a
subset of (X, Z) even if, for any piece S € Z the intersection X N S is a manifold, the
collection of sets {X N S}sez could not satisfy the frontier condition.

Remark 3.1.2. Consider, for example, X = {(z,y) € R?* | x > 0} stratified by S; = {(z,0) |
r € R} and Sy = {(z,y) | + > 0}. Let Y = {(2,0)} U{(0,v)}; both {S; N N} and {Sy; N N}
are manifolds, but the partition {S; NN, SoN N} does not satisfy the frontier condition. This
example is an adaptation of an example presented in [MTPO03|.

3.1.2 Stratifications

Let X be a topological space; the set germ of a subset A C X is the equivalence class
of subsets [A], defined by [A], = [B]. if A and B are subsets of X and there is an open
neighborhood U of = such that ANU = BNU.

Definition 3.1.3. A map S from X to set germs of subsets of X is a stratification if for
any x € X there is a neighborhood U containing x and a decomposition Z of U such that,
for any y € U, S, = [Z], where Z € Z is the unique piece of Z containing y.

The pair (X, S) is called a stratified space.

Note that any decomposition Z induces a stratification by associating to each of its
points the set germ of the piece on which it is sitting. In some sense a stratification should
be understood as a way of identifying equivalent decompositions of a set. For example,
the set R can be decomposed as {(—o00,0),{0},(0,00)} or as {R\ {0},{0}}, and both
decompositions although different induce the same stratification.

A continuous map f: X — Y between stratified spaces (X,S1) and (Y, S,) is a stratified
map if for every z € X there are neighborhoods V of f(z) and U C f~}V) of z and
decompositions Z; of U and Z, of V' inducing &; ‘U and SQ‘V such that the restricted map
f‘U : U — V is a decomposed map.

In fact, every stratification is induced by a canonical decomposition associated to it, as
the following proposition shows.

Proposition 3.1.4 ([Pf01], Proposition 1.2.7). Let (X,S) be a stratified space; there is a
decomposition Zs with the following maximal property: for every open subset U C X and

every decomposition D of U inducing S on U the restriction of ZS‘U s coarser than D.
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This unique decomposition will be called the canonical decomposition and its pieces
are called the strata of (X,S).

3.1.3 Local triviality

Among the class of stratified spaces, those that around a given strata are the product of a
strata and a stratified space seem to be the simplest ones; this idea is the one behind the
local triviality of a stratified space.

Definition 3.1.5. A stratified space (X,S) is called topologically locally trivial if for
every x € X there is a neighborhood U, a stratified space (F, F), a distinguished point 0 € F’
and an isomorphism of stratified spaces

h:U— (SAU) x F (3.1)

such that h~'(y,0) = y for all y € SN U where S is the stratum of X containing = and F (o)
is the germ set of {o}. In other words, the stratum of (F, F) containing o is {o}. We call the
stratified set (F, F) the typical fiber over z.

3.1.4 Smooth structure

A decomposed or stratified subspace is the union of submanifolds, but the stratified spaces
we are going to work with have even more structure, a set of smooth functions on the whole
space X. This smooth structure is generated by local charts as in usual manifolds.

Definition 3.1.6. Let (X, S) be a stratified space and S the family of its strata. A singular
chart is a homeomorphism x: U — x(U) C R" such that for each stratum S € S the image
x(.9) is a submanifold of R™ and the restriction X‘U ~g: UNS = x(UNS) is a diffeomorphism.
Two charts x;: Uy — x1(U;) C R™ and x9: Uy — x3(Us) C R™ are called compatible if
there is a diffeomorphism H: O; — O, where Oy, O, are open sets of R™ such that

(iny 0x1)(y) = (H 0y, 0X5)(y) Wy € Ui NUs

where 77" is the canonical embedding of R" into R™ = R" x R™~". As in standard differential
geometry, this allows us to define a singular atlas on X as set of compatible charts, and a
maximal atlas will be called a smooth structure on X.

A continuous function f: X — R is called smooth if for each singular chart x: U —
x(U) C R™ there is a smooth function g: R” — R such that gox = f‘U; we will denote by
C>(X) the set (and sheaf) of smooth functions. We say that a map f: X — Y between
two stratified spaces with smooth structures is smooth, continuous and f*g € C*°(X) for all
ge C®(Y).

Remark 3.1.7. The smooth structure we have defined corresponds to the concept of weakly
smooth structures of [Pfl01] and to the concept of stratified subcartesian spaces of
[Sni13]. In the notation of [Pfl01], a singular chart x: U — x(U) C R" satisfies the additional
condition that x(U) is a locally closed subset of R". We are not going to impose this condition
because we will encounter some spaces that do not have smooth structure in the sense of
[PH101], but does have one in the sense of the previous definition.
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3.1.5 Whitney condition

Even in the class of stratified spaces with smooth structure there are spaces that look very
pathological. The Whitney condition is a property concerning how the different strata fit
together and is closely related to the local triviality of the stratification.

Definition 3.1.8. Consider a smooth stratified space X and two embedded submanifolds
R,S. Let x: U — R™ be a chart of X around = € R; we say that (R, S) satisfies Whitney
condition (or Whitney condition (B)) at x € R if:

For any sequences {z,} C RNU and {y,} C SN U such that:

e v, #y, and z, — z and y, — x.
e The sequence of lines x(x,)x(y,) C R™ converges in the projective space to a line ¢

e The sequence of tangent spaces {Tx(y,)(x(S5))} converges in the Grassmann bundle of
dim S-dimensional subspaces of TR" to ¥ C Ty)R"

then
(CX.

If the Whitney condition is satisfied for one singular chart x, they are satisfied for all
singular charts (see [Pl01] Lemma 1.4.4). We say that the pair (R, S) satisfies the Whitney
condition if they for any = € R, (R, S) satisfy Whitney condition at x. Similarly, a stratified
space (X,S) with smooth structure satisfies Whitney conditions if for each pair (R, S) of
strata the pair (R, S) satisfies Whitney condition.

It can be checked that the preimage of a Whitney pair (R, S) under a submersion is again
a Whitney pair.

Lemma 3.1.9 (|Gib+76], Lemma 1.4). Let N, M be two smooth manifolds. If R, S are two
submanifolds of M, f: N — M is a submersion and (R, S) satisfies the Whitney condition,
then (f~Y(R), f~1(9)) satisfies the Whitney condition.

Under mild topological assumptions, the Whitney condition even implies a frontier con-
dition,

Theorem 3.1.10 (|Gib+76], Theorem 5.6). Let (X, S) be a smooth stratified space and M a
set of embedded submanifolds of X . Assume that each pair (R, S) in M satisfies the Whitney
condition.

If Y = Upresm M is a locally compact subspace then the set of connected components of
manifolds in M forms a decomposition of Y.

See |[Pl01] Examples 1.4.8 and 1.4.9 for examples of simple stratified sets that do not
satisfy Whitney condition.

The importance of the Whitney condition is that it provides an easily computable property
ensuring that a given stratification is topologically locally trivial

Theorem 3.1.11 (|Gib+76|, Theorem 5.2). Let (X,S) be smooth stratified space satisfying
the Whitney condition; if X is a locally compact topological space the stratification S is
topologically locally trivial.
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Many interesting classes of sets can be Whitney stratified; for example, real and com-
plex algebraic varieties [Whi65] and semianalytic sets of analytic manifolds |Loj65] admit
Whitney stratifications. However, in this thesis we will only use the more restrictive case of
semialgebraic sets.

A semialgebraic subset of R™ (Definition 2.1.1 of [Cos00]) is a subset of R™ determined
by a Boolean combination of polynomial equations and inequalities with real coefficients.

One important result in semialgebraic geometry is Tarski-Seidenberg’s Theorem
(Theorem 2.3 in [Cos00]), which states that if p: R" — R™ is a polynomial mapping and X
is a semialgebraic subset of R™ then p(R") is a semialgebraic subset of R™.

For our purposes we will not need the fact that each semialgebraic set has a Whitney
stratification; we only need a weaker form that states that the union of a semialgebraic
submanifold X and a single point of its closure X form a Whitney stratified set.

Proposition 3.1.12 (|Loj65], Proposition 19.3). Let X be a semialgebraic subset R" and
let a € (X \ X). If X is an embedded manifold then {X,{a}} is a Whitney stratification of
the subset X U{a} C R™ with the induced smooth structure.

Moreover, {RF x X R* x {a}} is a Whitney stratification of the subset RF x (X U{a}) C
R+,

3.2 Orbit types and quotient structures

The proper action of a Lie group G on a manifold M induces a stratification of M satisfying
Whitney conditions and can be used to endow the quotient M /G with the structure of a
Whitney stratified space. In this section we introduce the partitions induced by the G-action
and their properties.

3.2.1 Orbit types

The conjugacy class of a subgroup H C G is the set of subgroups of GG that are conjugated
to H, that is,

(H)={H'CG|H =gHg™", g€ G}

in the set of conjugacy classes of a group there is a partial ordering defined as
(H) < (K) if 3¢ € G such that gHg™' C K.

In later chapters we will need to refer to conjugacy classes; conjugacy classes where the
conjugation is only allowed on a subgroup and related concepts. In order to be consistent,
we introduce here the notation of Definition 2.4.2 in [OR04]:

Definition 3.2.1. Let GG be a Lie group acting on a manifold M. Let H, J, K be closed
subgroups of G such that H C K C G. We define

(H)={LCG|L=gHg ', g€ G}
(H) ={LCG|L=gHg", geJ}
(H)g ={LCG|L=gHg ' CK, geJ}
(H)k ={LCcG|L=gHg'CK, gcG}.
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Using these sets of subgroups we can define the following subsets of M
My = {z € M | G, € (H)}
My={:eM|G,=H}
M ={zeM|HCG.}.
Similarly, Mg, M H)l, and M), are the subsets of M determined by the condition G, €
(H)!, G, € (H)} or G, € (H)g, respectively.

Analogously, if X is a subset of M, Xz, Xg, XH .. represent the sets MpynX, MgnN
X, MinXx,...

The set My is called the (H)-orbit type set because for any x € My the orbit G- is
G-equivariantly diffeomorphic to G/H; all orbits are of the same type. The set My is called
the H-isotropy type set because all its points have isotropy H. Finally, M is called the
set of H-fixed points.

Proposition 3.2.2 (J[OR04], Proposition 2.4.4). Let G be a Lie group acting properly on a
manifold M, then:

o M is closed in M,
L M(H) = GMH and M(H)K = K-MH.
o My = MHﬂM(H) is closed in M.

If the underlying manifold is a twisted product, many of these sets have a simple descrip-
tion.

Proposition 3.2.3 (JOR04], Proposition 2.4.6). Let A be an H-manifold, and G x g A be
the twisted product with H C G a compact subgroup. Then, relative to the left-action of G
on G X g A we have:

o The isotropy group of [9,aly € G Xz A is Ggay = gHag ™"
.(GXHA)(H):GXHAH
° (GXHA)H:Ng(H) XHAH.

If K is an isotropy group for the G action on Gx g A then: (GxuA) k) = GxuA )
G Xy A(K)H'

There is only a finite number of different G-orbit types on G Xy A.

One important corollary of this result is that, as Palais tubes are local models for proper
G-spaces, if a Lie group G acts properly on a manifold M, then given any point = there is
an open neighborhood V' of x such that for each y € V,

(Gy) < (Gx)§

that is, for neighboring points the isotropy can only be smaller. Similarly, using Palais
tubes,

Proposition 3.2.4 (JOR04], Proposition 2.4.7). Let G be a Lie group acting properly on M ;
let H be an isotropy subgroup of this action and K a closed subgroup such that H C K C G.
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o My, M, MY and My are disjoint unions of embedded submanifolds of M.
o My is open in M.

One problem of the orbit type subsets My is that they can be the disjoint union of
manifolds of different dimensions. To deal with this class of sets, it is convenient to introduce
the following definition.

Definition 3.2.5. A topological space S is a Y-manifold if it is the topological sum of
countably many connected smooth and separable manifolds.

In general, a ¥-manifold is not a manifold unless all its connected components have the
same dimension. A map f: S; — 53 between two »-manifolds is smooth if the restriction
of f to each connected component of S; is smooth as a map between smooth connected
manifolds. Most of the concepts in differential geometry have an analogue in the category of
Y-manifolds; for example, vector fields, bundles, diffeomorphisms, embeddings, ...

The X-submanifolds Mgy C M can be further partitioned into smaller manifolds so that
all the points are locally equivalent with respect to the G-action.

Proposition 3.2.6 ([DK00] Theorem 2.6.7). Let M be a smooth manifold endowed with a
proper action of G. Two points x,y € M are said to be of the same local orbit type if there
is a G-equivariant diffeomorphism f: U, — U,, where Uy, U, are G-invariant neighborhoods
of x and y, respectively. Define

MES ={y € M | x and y have the same local orbit type}
My® = Mgs, N M

o M8 is an open and closed submanifold of Ma,), that is, a union of connected compo-
nents of Ma,)-

e M is open and closed in M, Ng(G,)-invariant and satisfies M8 = G - (M°°).

In fact, using Palais’ tube, two points lie on the same local type manifold only if the
action of G, on T, M /(g - x) is isomorphic to the action of G, on T, M/(g - v).

Proposition 3.2.7 ([DKO00] Theorem 2.7.4). Let G be a Lie group acting properly on M.
The orbit type sets Mgy form a partition of the manifold M. This partition induces a
stratification, called the orbit-type stratification of M. This stratification satisfies the
Whitney condition.

Note that as the local-orbit type sets are unions of connected components of orbit-type
sets, then both local orbit-types and orbit-types induce the same stratification.

Remark 3.2.8. Although the orbit type sets Mg are disjoint, cover M and are locally finite
(see [Pf101] Lemma 4.3.6), they do not form a decomposition because the frontier condition
can be violated. However, the connected components of the orbit type sets do form a
decomposition of M.
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3.2.2 Linear representations of compact groups

We need some results that characterize the stratification and smooth structure of the quotient
of a vector space by a compact linear group. The proof of each of the parts of the Theorem
can be found in [PH01] and [Bie75].

Theorem 3.2.9. Let H be a compact group acting linearly on the vector space V. Denote
by mg: V — V/H the quotient map and by C=(V)H the set of smooth H-invariant functions
onV.

o The sets Vigy/H = mu(Vik)) induce a stratification S of the topological space V/H.
More precisely, the set

Zyyn = {mu(Z) | Z is a connected component of Vi for some K C H}

is a decomposition of V//H that induces the stratification S.

o The stratification S is minimal among all the stratifications of the topological space

V/H.
o There are H-invariant polynomials py,...,pr: V — R such that the Hilbert map

Hilb: V — R*
vi— (p1(v), ..., pe(v)).

induces a homeomorphism Hilb: V/H —s Hilb(V) C R¥ between V/H and the semial-
gebraic subset Hilb(V).

e Hilb: V/H — Hilb(V) C R* is a singular chart of the stratified space (V/H,S).
e The set of smooth functions on V/H induced by Hilb satisfies

C(V/H)={f:V/H—=R|3gec C®V) and forny = g}.

o For any K isotropy subgroup of V', Vi is a semialgebraic subset of V' and Hilb(V k) /H)
is a semialgebraic subset of R¥.

3.2.3 Quotient stratifications

Using a Palais’ tube, we can essentially reduce the problem of the structure of M /G for a
proper action to a quotient of a linear space by a compact group. In this sense, from the
previous theorem:

Theorem 3.2.10 ([Pfl01], Theorem 4.4.6). Let G be a Lie group acting properly on M.
Denote by ng: M — M /G the quotient map, the sets M(yy/G = ma(M ) induce a Whitney
stratification of M/G. This stratification is minimal among all the stratifications of M/G.
M/G has a smooth structure and the set of smooth functions satisfies

C*(M/G)={f: M/G — R |3g € C®(M)® and forg =g}
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Assume that M/G is connected, then there is one strata Z C M/G such that it is
maximal, in the sense that Z = M /G, and not only that, but this stratum is connected. This
is the content of the principal orbit type theorem.

Theorem 3.2.11 ([DKO00|, Theorem 2.8.5). Let G be a Lie group acting properly on M and
assume that M /G is connected. There is a subgroup H such that Mgy is open and dense in
M and My/G is open, dense and connected. (H) is called the principal orbit type.

Remark 3.2.12. The assumption that M /G is connected does not imply any restriction
of generality, since an arbitrary G-manifold can be decomposed as Wal(Z ), where Z runs
through the connected components of M/G. In this case, the theorem ensures that on each
7 of these components there is an open, dense and connected principal orbit type set.

3.3 Singular symplectic reduction

In the general case of a Hamiltonian action of a Lie group G on a symplectic manifold (M, w)
neither the quotient (M,w) nor the quotients J~'(u)/G, are smooth manifolds. [SLI1]
showed that reduction at momentum value p = 0 of a compact group gives a stratified space
in which all the strata are symplectic manifolds. Later, [BL97]| extended this result showing
that for proper actions the set J71(0,,)/G has a symplectic stratification if O, C g* is locally
closed. [OR04] studied the point reduced spaces J~!(1)/G,, and proved that they also have
a symplectic stratification.

Theorem 3.3.1 ([OR04], Theorem 8.3.2). Let (M,w) be a symplectic manifold with a proper
Hamiltonian action with equivariant momentum map J: M — g*. Let u € g* and G, the
isotropy subgroup of .

1. Consider J7*(u) as a topological subspace of M. The connected components of G, -
(I ()i are embedded submanifolds that induce a Whitney stratification of I~ (u).

2. The connected components of M,SK) = (G, - (J7Yw)k)/G, are smooth symplectic
manifolds and they form a Whitney stratification of the quotient M, = J 1 (u)/G,..

3. (Theorem 5.9 of [SLI1]) If W is a connected component of J~(u)/G,,, there is an
1sotropy subgroup K such that M,SK) NW is an open, dense and connected subset of W.

In the singular setting we also have an analogue of Theorem [1.4.3, The first version for
compact group actions at zero momentum appeared in [SLI1]. The general case for proper
actions is discussed in [Mar-+07], but we will only need the following version.

Theorem 3.3.2. Let G and H be two Lie groups acting proper and Hamiltonially on a
symplectic manifold (M,w) with equivariant momentum maps Jg and Jy, respectively. As-
sume that both actions commute, Jg is H-invariant and Jy is G-invariant. This implies
that M s a proper G x H-Hamiltonian space with G x H-equivariant momentum map
(Jg,JH)Z M — g* X h*

Let € g* and v € b* assume that G, H, are compact subgroups and that the coadjoint
orbits O, and O, are embedded submanifolds. G induces a proper Hamiltonian action on
the singular quotient M, = J;f(u)/H,, with equivariant momentum map Kqg determined by
KG OTH, = JG-

The reduced (stratified) symplectic space K;'(1)/G,, is isomorphic as a stratified symplec-
tic space to (Jg,Ju) ' (u,v)/(G, x H,), the symplectic reduced space of M by the product
action of G x H.
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3.4 Singular cotangent bundle reduction

As in the free case, one expects that the reduced space will admit additional structure if the
symplectic manifold is a cotangent bundle. Up to our knowledge, the first work on singular
symplectic reduction in the case of cotangent bundles is [Mon83|, where the author imposes
several strong conditions to ensure that all the relevant sets are smooth.

Later, [ER90] gave an analogue of Theorem when the action on the base consists
of only one orbit type. They showed that J='(0) has only one orbit type and its quotient is
symplectomorphic to a cotangent-bundle. More precisely;

Theorem 3.4.1 ([ER90]). Let G be a Lie group acting properly on a manifold Q and on
T*Q by cotangent lifts. If all the points of Q) have the same isotropy type, that is, Q@ = Q)
for a subgroup H of G, then,

o {G:12€J7N0)} ={G,[qg€Q} = (H).

e J70)/G is a symplectic manifold symplectomorphic to T*(M/G) endowed with the
canonical symplectic form.

Under the assumption that () is of single orbit type [HR06; [Hoc08; PRO09] have developed
a description of the orbit-reduced space J™(G - p)/(G - ).
Even for ;1 = 0 the reduction of a cotangent bundle without the single-orbit presents some

difficulties. The cotangent-bundle projection 7: T*(Q) — () induces the continuous surjective
map 7°: J71(0)/G — Q/G; using the results of [RO06], it can be checked that

((I710) 1) /G) = Qun/G € Q/G.

Therefore, if J7!(0)/G is endowed with the stratification given by Theorem and
Q/G is stratified according to Theorem [3.2.10}, then 7° is not a stratified map because it does
not map strata onto strata. To solve this problem we need to define a finer stratification on

J-10)/G.

Theorem 3.4.2 (|[PROSDO7]). Let G be a Lie group acting properly on the manifold Q) and
on T*Q) by cotangent lifts. Let J: T*Q) — g* be the associated momentum map. Given two
compact subgroups H, K C G, the set

saoi =J7(0) N7 Q) N (T Q) (k) (3.2)
is a Y-submanifold of J71(0). Similarly, its G-quotient
SHoK = SHﬁK/G C Jil(())/G

1s also a X-manifold.

The collection of L-submanifolds {sy_x C J7*(0) | H, K C G} induces a stratification
of J71(0) and the collection {Sg_x C J7(0)/G | H,K C G} induces a stratification of
J=10)/G. Additionally,

1. If Q/G is endowed with the orbit type stratification, then the map
7 J710)/G = Q/G

is a stratified fibration, and T°(8p_ k) = Qu)/G, for any pair K C H C G.
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Su— vk is a coisotropic submanifold of the symplectic strata (J7'(0)x)/G, wéH)) of The-
orem [3.31]

Su_m is an open and dense symplectic submanifold of (J_l(O)(H)/G,wéH)) and it is
symplectomorphic to T*(Qm)/G) endowed with the canonical symplectic form.

This result can be generalized to p totally isotropic (G = G,) (see [RO04]).
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Chapter 4

Witt-Artin decomposition for
cotangent-lifted actions

In this chapter we characterize the symplectic slice and the Witt-Artin decomposition in
the case of a cotangent-lifted action. The computation of the symplectic slice for non-free
cotangent-lifted actions was studied in [Sch01}; [Sch07]; using commuting reduction, T. Schmah
described the symplectic slice for several cases. Later, [RO04; PROSDO0S8] gave a full explicit
description of the symplectic slice for any cotangent-lifted action.

In this chapter we will give alternative proofs of the results of [RO04; [PROSDO0S8| and
extend them to the construction of a full Witt-Artin decomposition. Most of the results in
this chapter can be regarded as a linearization of the Hamiltonian cotangent tube described
in the next chapter.

In Section we define a four-fold splitting of the tangent space that will be used
throughout this chapter. In Section we introduce a splitting of the Lie algebra which will
be crucial for all the thesis (Proposition . With these tools, in Proposition we
describe the symplectic slice for a cotangent-lifted action. This description can be extended
(Proposition to a full Witt-Artin decomposition of the tangent space. In Section [4.6] we
show that, using the appropriate Lie algebra splitting, based on the ideas of [Sch01} [Sch07],
we can give an alternative description of the symplectic slice. Finally, in Section we study
the Witt-Artin decomposition in the case of a homogeneous space. This example will be the
linear analogue of the restricted G-tubes defined in Definition

Throughout this chapter, @) is a smooth manifold acted properly by the Lie group G; T*Q
is a symplectic manifold equipped with the canonical symplectic form w; 7: T*Q — @ is the
natural projection, and 7% is endowed with the cotangent-lifted action with momentum
map J: T"Q) — g* given by . We will fix a point z € T*Q and denote ¢ = 7(z) and
H=d,.

4.1 Initial trivialization

The space of vertical vectors at z € T*(Q), that is, the kernel of T, 7, is a G.-invariant subspace
of T,(T*Q). In fact it is a G,-invariant Lagrangian subspace of T, (T*@Q). The following result
from symplectic linear algebra ensures that there are G,-invariant Lagrangian complements
to Ker T,(T*Q).

Lemma 4.1.1 (Lemma 7.1.2 [OR04]). Let (E, ) be a symplectic vector space with an action
of a compact Lie group G. Then any G-invariant Lagrangian subspace of (E,Q) has a
G-invariant Lagrangian complement.

29
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A choice of a Lagrangian splitting 7, (7*Q) = Ker 7,7 & Hor, is the starting point of a
trivialization of T,(7*@Q) that will be very useful to compute the symplectic slice and the
Witt-Artin decomposition.

Proposition 4.1.2. Let G be a Lie group acting by cotangent-lifts on T*Q). Fiz a point
z € T*Q and denote ¢ = 7(2) € Q and H = G,,.

Fiz a Lagrangian complement Hor, to Ker T, 7, a linear slice S C T,Q) and an H-invariant
complement v to by in g. Let p=J(z) and a = 2|, € S

There is a linear isomorphism

LteaServa S - T.(T°Q)

that is G,-equivariant and symplectic, I(t & S) = Hor, and I(v* & S*) = Ker T,7.
Moreover, there are G,-equivariant linear maps Fy: v — ¢* and Fy: v — S* such that

I(£,0, F1(8), F2(§)) = € -z if e v

and

10,0, —adgp, § - ) =& -z if £ €h

Proof. The linear slice S and t can be used to define an H-equivariant isomorphism

frvd S —T,Q
(f,a)r—>£-q+a

the dual f* of this map can be used to identify 77 with v* & 5*. Under this identification,
the point z € Ty Q satisfies f*(2) = (u, a) € v* ® S*.
Since Hor, is complementary to Ker 7,7, the restriction

T.7l,,,. - Hor, = T,Q
is G,-equivariant linear isomorphism. As T*Q) — @ is a vector bundle, the vertical lift
VertLift, : T,Q — T.(T"Q)

d
Dy — E(z +tp,)

t=20

is a GG,-equivariant linear injective map. Combining both maps,

LteaSerasS — T.(T°Q) (4.1)
(& a,v,0) — (Tor |y, )7 (f(€, @) + VertLift.((f71)* (v, b))

is a GG,-equivariant linear isomorphism.
Since Hor, is Lagrangian,

w(z)(:[(fla aq, 07 0)7 1(627 az, 07 O)) =0
and, as KerT,7 is a Lagrangian subspace,

w(2)(1(0,0,11,b1),1(0,0, v, by)) = 0.



4.2. LIE ALGEBRA SPLITTING 31

Moreover, as the canonical symplectic form of a cotangent bundle satisfies

w(z)(VertLift,(p,), v.) = (pg, To7(v2))

then, if v; = (&, a;, v, 0;) €@ S D D S* withi=1,2

(T'w)(v1,v2) = (10, &) — (11, &2) + (b2, a1) — (b1, a2).

That is, I is a G,-equivariant linear symplectomorphism.

It remains to study the preimage of g - z under I; let £ € ¢, as 7 is G-equivariant,
(T.7)(&rg(2)) = €o(q), but &u(q) = f(&,0). Hence there are two linear maps Fy: v — t* and
Fy: v — S5* such that

ST*Q(z) = 5 T2 = I(S? 07 Fl(f)? FZ(&))
Since T is G .-equivariant, if g € G, F1(Ady€) = Ad,-1(F1(§)) and Fr(Ad§) = g - F2(§).
If £ € b, then 7(exp(t) - z) = q. Therefore exp(t&) - z € T;Q, using H-equivariance of f*,

[ (exp(t8) - 2) = (Adgg (e 1, exp(£E) - @)

but then taking the derivative at t = 0 of this expression

€ -z = VertLift. ((f )" (—adip, & - @),
that is,
5 R = I<07 07 _adZM7§ ’ Oé)
O

Remark 4.1.3. The isomorphism I is a generalization of the identification t & S @ v* @ S* =
T.(T*Q) that appears in [RO04; PROSDO0§|. The main difference is that they do not consider
a Lagrangian splitting of T, (7T*Q); they start from an invariant Riemannian metric on @) and
choose Hor, as the orthogonal to Ker T, 7 with respect to the induced Sasaki metric on T%Q).

The equivariance of the momentum map forces F) to satisfy certain relations, due to (|1.4)

w(&rq(2),nr+q(2)) = (w, [€, ),

but using the I isomorphism,

w(&r-o(2),nr0(2)) = (T'w)((£,0, F1(§), F5(£)). (1,0, Fi(n), Fa(n))
= (F1(n),&) — (F1(&),m) = (F1(n) — F{(n), &)

Hence,
(1, [§ml) = (Fi(n) — FY(n),§)  V&mer (4.2)

where F}': v — t* is the dual of the map Fj: v — t*.

4.2 Lie algebra splitting

The following result shows that if we are given a tuple (G, H, 1) where G is a Lie group, H a
compact subgroup and p € g* satisfying the compatibility condition p € [, h]°, then we can
build a splitting adapted to the triple (G, H, ). This construction will be the starting
point of local models for cotangent-lifted actions.
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Proposition 4.2.1. Let (G, H, ) where G is a Lie group, H a compact subgroup and p € g*
with [, h] € Ker p.
There is an H,-invariant splitting

g=b,Bpeodlan (4.3)
such that:
I.h=bh,®landg,=b,Bp

2. (i, (&1, &) with &1,& € (0 @ [ @ n) defines a non-degenerate H,-invariant 2-form on
the vector space o @ | @ n that block-diagonalizes as

S O *
* O O
S x O

Proof. Let Q" be the skew-symmetric bilinear form on g given by Q#(&,&) = —(u, [&1, &))-
The splitting is a kind of generalization of the Witt-Artin decomposition (Proposition
for the degenerate form Q*, and therefore this proof is based on Theorem 7.1.1 of |[OR04].
As H is compact, we can endow g with a Adg-invariant metric. We will first note that
o then (1, [&m) =0 Vneg;,

m

but if now 7 € g,,, then 0 = (ad; 11, &) = —(u, [§,7]) = (adgp, n) for any n € g. However, this

QF restricted to gi is non-degenerate because if £ € Ker Q¥

implies that ad;p = 0 and as § € gﬁ, then £ = 0. Denote by w = Q#| = the restriction. The

un
form w is symplectic on g/f.

Define now [:=hnN gt and

o={\eg,Nbh" Cgl(adip,m) =0 Vnebh}.

Ifee gt is w-orthogonal to [, then it must lie in 0 & [ because £ can be decomposed as
E=& +& with & € hﬂgj =land & € bt ﬂgi But then as (u, [£2,1]) = (i, [£,n]) = 0 for
any 1 € b, then & € o; that is, [¥ C 0 & [. Conversely, if £ € o then by definition of 0 £ € [+,
and if £ € b for any n € [ we have (i, [€,7n]) = 0 because [ € h and p € [h,h]° so £ € [¥, and
therefore [ =0 & [.

Let £ € 0 No¥. Noting that £ € [¥ we have £ € 0* N[¥ = (0 @ [)¥ = (I*)¥ = [, but as
o N [ =0 this implies that & = 0. Hence, the restriction w| is non-degenerate.

To build the space n we will need a preliminary standard result in linear algebra.

Lemma 4.2.2. Let A,B,C C E be three linear subspaces of a linear space E such that
ACB and ANC =0. Then

BNn(Ca@A)=(BNO)® A

Note that [ C 0¥, and as (i, [§,n]) = 0 for any &, n € [, then [ is an isotropic subset of the
symplectic subspace 0“, but in fact

“No“=0"N(od)=(c"No)dl=1I

where we applied the previous lemma with A = [, B = 0¥ and C' = o. This implies that [
is a Lagrangian subspace of 0* and it is clearly H,-invariant. By Lemma there must
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exist an H ,-invariant complement n C gj of [; that is, using g = g, ® 0 ® [® n and O block
diagonalizes as

0O 0 00
0 Q 00
- <:u’ ['7 ]> = 0 (4.4)
0O 0 0 =
0 0 x 0
O

Note that two different splittings have to be isomorphic as H,-modules because
as vector spaces with an H -action both [ and n are isomorphic to the quotient h/b,,, o is
isomorphic to h% /(KerQ, + b) and p is isomorphic to g,./b,.

The non-degeneracy of (i, [-,-]) on 0 @ [ @ n implies that

orn— " (4.5)
is a linear H ,-equivariant isomorphism. This isomorphism will be used several times through-

out the thesis, both for the linear study of this chapter and for the construction of Hamiltonian
tubes in later chapters.

Remark 4.2.3. Endow the coadjoint orbit O, with the symplectic form wo, (see ([1.6)). The
H-action h - v = Adj, v is Hamiltonian with momentum map Jy: O, = b*, Ju(v) = V‘h.
As e [[)7 b]oa bJH(,u) = [) and

TLO,=1l-p®n-pd0do-pu
b-p w N

is a Witt-Artin decomposition (see Proposition [2.2.2) of 7,0, due to the decomposition

=)

In other words, o is isomorphic to the symplectic slice at p in O, and [ and n are the
remaining parts of a Witt-Artin decomposition. In [PROSDOS| the subspace o was introduced
in this way, as a symplectic slice at p € O, for the H-action.

4.3 Symplectic slice

Recall that we have fixed z € T*Q and we have denoted ¢ = 7(z) and H = G,. Using
the expression of a cotangent-lifted momentum map , we can see that pu € h° because
(1, &) = (J(2),8) = (2,€0(q)) = 0if £ € h. This implies that (G, H, p1) satisfies the hypothesis
of Proposition §.2.1], so there is an H -invariant splitting

g=b,OpDod[®n

and we will represent by
g=h,op @odldn
the induced dual splitting. Choose t = p @ o @ n as a complement to b = b, @ [in g; choose
an H-invariant Lagrangian splitting Hor, @ Ker T,J = T.(T*Q), and let I, F} and F5 be the
maps given by Proposition [4.1.2
Recall that the symplectic slice NV (Deﬁnition is a G ,-invariant complement to g, - z
in Ker7T,J. We first construct a vector subspace V' such that

Vg, z=(v-2)",



34 CHAPTER 4. WITT-ARTIN DECOMPOSITION FOR LIFTED ACTIONS

then, by (LF)), g, -2 C (g-2)* C (h-2)* and using
Veog,-2)nh-2)"=Vnb-2))eg.-2=(-2)"N(- 2" =(g-2)" = KerT.J.

Therefore, N =V N (h - z)¥ will be a symplectic slice at z.
Let v = (n,a,v,b) € t x S x v* x §* and £ € t. Then, using Proposition [1.1.2]

w(I(v), & - 2) = (F1(&),m) — (1, §) + (F2(§), a) — (b, 0)
= <£7 Ff(’l» - <y’ €> + <£7F2*(a>>
= (F1(n) + F5(a) —v,§)
it follows that,
(t-Z)WZ{I(n,CL,I/,b)|I/:F1*(7]>—|—F2*(a,), ner, ac€s, bGS*}

Let B = (b, - «)° C S and choose a G ,-invariant splitting S = B @ C. The induced dual
splitting is S* = B* @ (h,, - «); define

V={I(n.a,v,b) |v="F(n)+F5a), b=Fn+V, ncodn a€S VeB}
(4.6)
Clearly, V C (t- z)“; moreover, if £ € p, using (4.2,
I 2) = (6,0, F1(6), F2(€)) = (£,0, F{ (), F(€)).
Therefore, (p-2)NV =0. If £ € b,
I'(¢-2) = (0,0, —adip, - a) = (0,0,0,¢ - a),
that is, (h,-2) NV =0 and
Vg, z=(v-2)",

as we claimed.

Consider now v = (n,a,v,b) and £ € b; then, using Proposition and the diamond
notation (see (|1.8)

w(I(v),€ - z) = (—adgp, n) + (£ - @, a)
= <:ua _[ga 77]> + <—CL Oy @, §>
= (adyp — a oy, §).

Moreover, if £ € b, then w(I(v),{ - 2) = (—a oy o,§). Hence, v € (h, - 2)* implies that
a€ (b, o) =DBCS,that is

(b -2 ={(n,a,v,b) | ner, ver', aecBCS, beS} (4.7)

Consider now ¢ € [, and decompose 1 € v as 1, +1, + 7. € p D 0 D n, then by Proposition
4.2.1) w(I(v),€ - 2) = (ad;pp — a0y a,§) = (ad; pp — aora, ). Using the isomorphism o of
(4.5)), this implies

(t-2)* ={(n.a,v,0) [n=1p +no+0 " (a0ra), ny€p, MmEo, a€S, bEST} (48)
Therefore, from and ,
(h-2)* ={m,a,v,0) [n=1+1+0 '(aoa), meEP, nMmeco, acB, beSY,
combining this description with ,

Vh-z) ={(nav,b+Fm)|n=n+0c " (aoa),
v=Fn)+Fa), n€o, ac€B, becB}

Note that as a vector space V' N (b - 2)¥ is isomorphic to 0 X B x B*.
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Proposition 4.3.1. In the present context, consider the linear map

Yn:o0Xx Bx B —T,(T*Q) (4.9)
(A a,b) — I(A + 07 (aora), a, FY (n) + F5(a), Fa(n) + )
where n = XA+ o Y(a o). The image of Yn, Imypy C T.(T*Q), is a symplectic slice at

z. Moreover, ¥y is a G,-equivariant symplectomorphism with Imyy if on 0 X B x B* we
consider the G,-invariant non-degenerate two-form

W (A1, a1,01), (Mg, az,b2)) = — (i, [A1, A2]) + (ba, a1) — (b1, az), (4.10)

the associated momentum map for the G.-action on 0 X B X B* is

1
In(\a,b) = SA oy adju+aog b (4.11)

Proof. We only need to check G,-equivariance and compute 13w, because Im )y = VN (h-2)%.
If g € G,, then AdJA+ 07 ((g-a)ora) = Ady(A+ o (a0 a)) and
Un(AdgA, g+ a,g-b) = I(Ad,(A + 0 (a o)), g~ a, FY (Adgn) + F5 (g - a), Fa(Adgn) + g - b)
=L(Ady(A+ 07 (aorq)), g~ a, Ady (Fy () + Fy(a), g - (Fa(n) + 1))
=g-I(A+ o7 (aoa),a, Ff(n) + F3(a), Fa(n) + )
=g- ¢N()\7@a b)7
that is, ¢y is a G,-equivariant linear map
If v; = Yn(\i, ai,b;) and 1, = A\; + 07 (a; or ) for i = 1,2, then
w(vr, v2) = w(I(n, a1, FY (m) + F5 (a1), F2(m) + by),
L(n2, az, FY(n2) + F3(a2), F2(n2) + b2))
= (F7 () + F5 (az2),m) — (FY (m) + F3(a1),72)
+ (Fy(n2) + b2, a1) — (Fo(m) + b1, az)
= (Fy(m2),m) — (FY(m),m2) + (b2, a1) — (b1, az)
= (Fi(m) — F{(m),m2) + (b2, a1) — (b1, az)
= — (1, [m, ma]) + (b2, a1) — (b1, az)
= — (1, [A1, Ao]) + (b2, a1) — (b1, a2)
where we use (4.2)) and the fact that n and o are (u, [+, -])-orthogonal.

Finally, as the momentum map Jy: N — g} of a linear action on a symplectic vector
space satisfies

<']N(>‘aa7b)a€> = %WN(f : (>‘7G7b)’ (Avawb))
= %wN(adg/\u,g ca,&-b), (N a,b))

= LA + 206 @) — e at)

2
.
= §<ad,\,u, adeA) + (b, € - a)
1
= <§/\ og, ady it + b oy, a,§> :

Hence, Jy is given by (4.11])). ]
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Remark 4.3.2. When we choose a G-invariant metric on ) and Hor, to be the orthogonal
complement of Ker T,7 in T, (T*@Q) with respect to the associated Sasaki metric the subspace
Im1y coincides with the symplectic slice given by Theorem 6.1 of [PROSDOS].

4.4 Witt-Artin decomposition

Once we have described the symplectic slice in Proposition 4.3.1| using similar techniques we
can construct the full Witt-Artin decomposition of Proposition [2.2.2]

Note that since 7: T*Q — @ is equivariant, G, C Gy = H. Similarly, since J: T%Q — g¢*
is equivariant G, C G,. Hence, G, C G, N H = H,,. At a linear level, we fix a G-invariant
splitting b, = g. @ s.

Recall that B = (h, - «)° C S and we have chosen a G.-invariant splitting S = B @ C.
Since ¢ — ( - o is a G,-equivariant isomorphism between s and b, - @ C 5™, there is a
G'.-equivariant linear isomorphism s x B* = S*. Therefore, there is a G.-equivariant map
s*—>CcCSs.

Proposition 4.4.1. In the present context, consider the G.-equivariant linear map

w: st xpt — T.(T°Q) (4.12)

(¢, p) > 1(7,T(C), p+ F5(T'(Q)) + FY'(7), Fa(7))

where v = o~ Y(T(C) o) (see ([&5)).

The splitting
T.(T°Q) = (p®s) -z Imyy ® (0@ (B n) - 2B Imyy (4.13)
is a Witt-Artin decomposition in the sense of Proposition [2.2.2,

Proof. By the results of Proposition we only have to check that Im ¢y, is isotropic and
that it is symplectically orthogonal to ((0 & [ n) - 2) & Im vy, but

o if vV, = ¢W<Czup2> for ¢ = 1,2,

w(v1,v2) = (p2 + F5(L(C2)) + FY(12),71) — {p1 + F5(T(C1)) + FY (1), 72)

+ <F2(72)»f(C1)) - <F2(71)uf(C2)>
= (p2; 1) — (p1,72) + (FT (72) — Fi(72), 1)
= (i, [v2,m]) = 0.

because of and (i, [y1,72]) = 0, because 71, v, lie on [ and [ is {(u, [-, -])-isotropic.
o if el
W€ z,9w((,p) = (adgp,7) — (€ o, T(Q))
= (1 &) +~<F(C) o, &)
= (—o(n) + () o, &) =0
because of and v = o {([(¢) ora). If € € 0P,

w(€-2,9w((,p) =w( - 2,Yw((,0)) +w(§ - z1vw(0,p))
=0+ (p,§) =0

because p € p* and in particular p € (0 & n)°.
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o ifv= wN(Aaaa b)7

(v, 9w (¢,0) = (p+ F5(T(Q) + Fr (1), m) — (Fy (n) + F5 (a),7)
+ (F2(7),a) = (Fa(n) +
= {p,n) + (FY () = Fi(7),m) +
= (u, [y, ml) =0
using again (4.2)) and Proposition m
Therefore is a Witt-Artin decomposition of T, (77*Q). O

4.5 Adapted horizontal spaces

The isomorphism of Proposition depends on the choice of a horizontal Lagrangian
subspace at z. We will show that there are horizontal subspaces for which the symplectic
slice and the Witt-Artin decomposition have simpler expressions.

Consider the G,-equivariant endomorphism

Y:teSe (e sS) — (eSS (e s

(€00,6) > (G o+ SF(E) + S FE) + F (), b+ Fo€);

then ¥*(I*w) = I*w, because if v; = (&, a1, 1, b1) and v = (&, ag, Vo, by)

(C0)(S0), ) = (v + SR (6) + 5 F(E) + F(a), &)

~ (o ZFE) + S FE) + B (), &)

+ (ba + F2(&2), a1) — (b1 + F2(&1), az)

= (12,&1) — (1, &) + (b2, a1) — (b1, a2)
FRE) T 3R (6).6) - (GRE) + 3 F(E),6)

= (19, &1) — (11, 82) + (b2, a1) — (b1, az) = (T'w)(v1, va).

The subspace Hor, = I(X(t @ S)) is a G.-invariant Lagrangian subspace of T,(7*Q),
because

W(I(E(gl, ay, 0, 0)), I(E(fg, asg, O, 0)) = W(I(fl, ay, 0, 0), I(gz, as, 0, O) =0
and as I(X(v* @ S*)) = Ker T, 7, the splitting
T,(T*Q) = Hor, ® Ker T, 7

is a G.-invariant Lagrangian splitting. Applying Proposition [f.1.2) to this splitting, we get a
map I: (¢v* ® S*) @ (t® S) — TL(T*Q) ), but by (4.1]

I(, a,v,b) = (o7 |5 ) 7 (F(€, @) + VertLift, ((f71)"(v,b))
I(X(¢,a,0,0)) +1(0,0,v,b)
I
(

)
(2(£,a,0,0)) +I(3(0,0,v,0))
IToX)(& a,v,b).
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__ Since I=1Io Y2, this implies that the fundamental fields have a simpler expression under
I, because if £ € ¢

~ 1 1

(6 2) = 5760, K (€), F2(6) = (60, 3 Fi(€) — S FE(€),0) = (6,0, sadiys 0).

This computation implies that we can choose the horizontal space adapted for our decompo-
sition more precisely,

Proposition 4.5.1. Let G be a Lie group acting by cotangent lifts on T*Q. Fix a point
z € T*Q and denote ¢ = 7(z) € Q and H = G,,.

Fiz a linear slice S C T,Q) and an H-invariant complement ¢ to b in g. Let p = J(z) and
o= Z‘S e S,

There is a Lagrangian complement Hor, to Ker T, 7 and a linear isomorphism:

Lt S S — T.(T°Q)

G ,-equivariant and symplectic such that I(v @ S) = Hor,, I(t* ® S*) = Ker T,7 and

(6,0, —adi,0) = £z if <
I<Oa07_adZU>€a) zfz nge [J

Note that using the adapted splitting given by Proposition as F1(§) = —%adZu and
Fy(€) = fadip, the expressions of both ¢y and ¢y ((4.9) and [{@.12)) are simplified to

1
Un(\a,b) =I(A+ o0 Hao a),a, §ad;,u, b)

1 1
=I\+o0 Y aoa),a, §ad§,u + 5(@ o), b)

Dw(Cp) =10, F(Q), p+ 5adp0)

=107, F(Q).p + 5 T(C) v 0,0,

4.6 Alternative approach: Commuting reduction

In this section we will prove Proposition [4.3.1)again using a different technique. The advantage
is that the proof is clearer and more direct, but the disadvantage is that we are going to
obtain an abstract model for the symplectic slice; we are not going to realize it as a subspace
of T,(T*Q). The approach we use is based on commuting reduction and is a generalization of
the study of symplectic slices done in [Sch01; Sch07]. In those works, T. Schmah computed
the symplectic slice either when H C G, and when o = 0. Now, using (4.3)), we check that
her approach can also give the symplectic slice in the general case.

The starting point of this proof is the following tangent-level commuting reduction theo-
rem

Theorem 4.6.1 ([Sch07], Theorem 10). Let G and H be free symplectic, commuting actions
on a symplectic manifold (M,w) with equivariant momentum maps Jg and Jy, respectively.
The product action G x H has momentum map Joxp(z) = (Jo(z),Ju(z)) € g° X h*. Let
v € M and (u,v) = Joxu(z). Let mg,: Jg (1) = J&' (1) /G, be the projection and denote

2] = mq, (2).
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There is an induced quotient action of H on J@l (1)/ G, symplectic and with equivariant
momentum map E that satisfies E omg, = Jy.

The map (g, k) — k is a Lie group isomorphism from (G x H), to Hy and we will refer
to both groups by K. Then,

(Ker ToJ ) /(9 @ + by - ) — (Ker Tjo I )/ (b, - [2])
v+ gy + b, — Tomg, (v) + (b, - [2])

18 a K-equivariant linear symplectomorphism.

In particular, this result implies that the symplectic slices are isomorphic if one first
reduces by GG and then by H, or if one first reduces by H and then by G.
Using Theorem [2.1.4] the linear splitting 7,Q = g- ¢ @ S can be extended to a Palais’
tube
t: G x uS—UC Q

that maps [e, 0]y to g. The cotangent lift of this diffeomorphism gives
Tt TG xyg S) = T*U C T*Q

As in Section the product G x S can be endowed with a left G-action and a twisting
H-action, both of them free. These actions can be cotangent-lifted to 7*(G x S) and then,
using Theorem [1.5.1] the space T*(G xy S) is the H-reduced space of T*(G x S) by the
HT-action at zero-momentum.

Using left-trivializations and similarly to the computations in , the HT-momen-
tum of a point (g,v,a,b) € G x g* x S x S* X T*(G x 9) is —V‘h +aoyb.

By the definition of the cotangent bundle reduction map ¢: J7(0) — T*(G x g S) (see
Theorem , e, i, 0, ) = (T*t)(2) if p = J(2) and a = Z‘S.

Therefore, by Theorem [£.6.1], the symplectic slice for the G-action at z must be sym-
plectomorphic to the symplectic slice for the H action at 7, (e, 11,0, ) of the Gr-reduced
space J ; (n)/ Gﬁ . One can check using Theorem that the reduction at momentum p
of T*(G x 9) is the space

(0, x T*S,w,)

where O, is endowed with the symplectic form Wo,» TS is endowed with canonical symplectic
form and the induced H action is

h-(v,a,b) = (Adj_1v,h-a,h-b)
with equivariant momentum map
Ju(v,a,b) = —V‘b +aoybe b

Denote z = 7g,(e,it,0,a) € Jéi (1)/Gy. To build the symplectic slice we need to
compute Ker T,J . As T,M = 17,0, ® S @ S*, using the isomorphism o ® (& n — 1,0,
¢ = adgp the linearized momentum map 7, J g is

Tod(ad g e, 11, 0,0) = —(adig e, 1) | + a0y a = —(adg,p) + a0y a
but then using (4.5) and B = (h,-a)° C S

KerTmE:{(adZ,u,d,i))|§:a_1(d<>[oz)+§o—|—§[, t, €0, &€el, aeB, beS).
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If £ € [ then
5'*1' = <_adzuaoag'a)a
if £ € b, then
g'l’: (0,07§'Oé).

These expressions imply that
{(adip,a,b) | € =0 aora)+&, &€Eo, a€B, be B}
is a symplectic slice at x. And the map

Yn:ox Bx B — T,(0, x T*S) (4.14)
()\7 a, b) — (ad§+0*1(ao[a)#7 a, b)

is a symplectic map if 0 x B x B* has the symplectic structure (4.10)), because

(¢_N*wu)((A1’ aq, bl)? ()‘27 asz, bQ)) =
= —(u, [, me]) + (b2, a1) — (by, az)

wo, (ady p1, ady, 1) + (b, a1) — (b1, az)
—(
— {1ty [A1; Aa]) + (b2, a1) — (b1, az)

o
o
where n; = \; + o Ha or ) and (i, [n1,1m2]) = {(p, [A1, A2]) due to the block-decomposition
()

Remark 4.6.2. Note that if H C G, then the [ term in the decomposition (4.3) vanishes and
the map o is the zero map. Similarly, if & = 0, the term o~!(a o @) vanishes and in both

cases ([4.14)) is simplified to ¥ (), a,b) = (adiu, a,b). These are the two cases for which the
symplectic slice was computed in [SchO1} [Sch07].

4.7 Example: T*(G/H)

Let G be a Lie group and H a compact subgroup, the quotient space G/H is a smooth
manifold and 7g: G — G/H is a submersion. The left action of G' on itself induces a
G-action on G/H. We endow T*(G/H) with the canonical symplectic structure weg/y and
the cotangent-lifted action of G on G/H. As an example, we compute the Witt-Artin
decomposition at a point z € T7 . (G/H).

As we observed on the last section, 7*(G/H) is the symplectic reduced space of (T*G, w¢)
by the cotangent lift of the HT-action h-g = gh™! on G (see Proposition . This action
is Hamiltonian, and using the left trivialization the momentum map for the H”-action
is

Jyr(g,v) = —I/‘h.

By Theorem there is a submersion
p: Jr(0) = T(G/H)

that induces the symplectomorphism @: J;-(0)/H” — T*(G/H). Therefore, there is p € g*
such that ¢(e, u) = z and p lies in h° because Jyr(e, u) = 0.

As 1 € h° C [b, b]°, Proposition [4.2.1] gives an H,-invariant splitting g = h, ®@pSodIEn
and the induced dual splitting g* = b}, @ p* @ 0" @ [* & n*. Using the left trivialization

J000)={(g,v) |geG, vep'@o@dn}cGxg =TG
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and therefore,

*
T T
N N

-~ -~ -

p@odn)®(pP ®o"dn") — T.(T"(G/H))
(ﬁ, V) — (T(e,u)gp) (5’ V)

is a linear isomorphism. Using this trivialization of 7,(7*(G/H)), the vertical subspace is
Ker T,7 = {(T(e,y0)(0,v) | v €p* D 0" & 0"}

the most reasonable candidate for a horizontal subspace is
{Tlewe)(§,0) | E€epDodn} CT(TQ).

However, it is not a Lagrangian subspace, because (using (L.11)))

wG’/H(Z>((T(6,M)90) (517 0)7 (T(e,u)cp) (527 0)) - WG<67 ﬂ)((gl’ 0) (527 0)) = _<:U’7 [glv 52]>

Nevertheless, the subspace

Hor, = {(Tye o) €. %adz,u) € ep@odn} C TL(T*Q)

is complementary to Ker 7,7 and Lagrangian, because if v; = (§;, %adg i)

waym(2) ((T(e,u)SO)(Ul% (T(e,u)SO)(W)) = wa(e, p)(vi,v2) =
1 * 1 *

= §<ad§2:ua gl) - §<ad§1#’7 §2> + <M7 [gla §2]> = 0.
Let € € p @ 0 @ n; the fundamental field at z (see Proposition [1.3.3)) is

1 1
£ 2= (Liewe)(&0) = (Temp)(& Jaden) — (Tl 0) (0, éadzu).

Therefore, if we apply Proposition the associated Fy map is simply F1(£) = —3adgp,
which means that this horizontal-vertical Lagrangian splitting is adapted in the sense of
Proposition [4.5.1] This means that,

1
&2 =H¢ —gadep) = (Tie9) (€, 0) if £cpdodn
{2 =10, —ad¢p) = (Tie9) (0, —adgpt) = (T, ) (€, 0) if £eh.
In this case and become
Uy o — T(T*(G/H)) Yw: p* = T.(T"(G/H))

1 * *
A= I, Sadip) = (Tiewp) (A adip) p =10, p) = (T(e, ) (0, p).

and
T(T*(G/H)) =g, 2@ Imy & (o ®[@®n)-2)®Imyy
~——
p-z
is a Witt-Artin decomposition of T.(T*(G/H)).
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Chapter 5

Hamiltonian Tubes for
Cotangent-Lifted Actions

In this chapter we obtain a construction of the Hamiltonian tube for a canonical cotangent-
lifted action on a cotangent bundle that puts both the fibration and the symplectic in
a normal form (Theorem . This construction is explicit up to the integration of a
differential equation on G. Moreover, we show that for groups with easy algebraic structure
the Hamiltonian tube can be obtained explicitly.

In Section |5.1{ we introduce simple and restricted G-tubes (Definitions |5.1.1f and [5.1.5)).
Simple G-tubes are, up to technical details, MGS models for the lift of the left action of G on
itself to T*G. Their existence is proved in Proposition [5.1.2] Restricted G-tubes are defined
implicitly in terms of a simple G-tube (Proposition and are the technical tool that we
need later to construct the general Hamiltonian tube.

In Section [5.2| we construct the general Hamiltonian tube for a cotangent-lifted action in
such a way that it is explicit up to a restricted G-tube. First, we construct a Hamiltonian
tube around points in 7% with certain maximal isotropy properties (Theorem . Then,
an adaptation of the ideas of [Sch07] can be used to construct a I' map (Proposition [5.2.4).
The composition of these two maps gives the general Hamiltonian tube of Theorem [5.2.7]

Finally, in Section we present explicit examples of G-tubes for both the groups SO(3)
(where we recover the recent results of [SS13]) and SL(2,R). In Subsection we present
an explicit Hamiltonian tube for the natural action of SO(3) on T*R? which generalizes the
final example of [Sch07] to the case p # 0.

5.1 G-tubes

In this section we define both simple and restricted G-tubes. These maps will be the building
blocks needed to find an explicit Hamiltonian tube for cotangent-lifted actions.

Recall that, as in (1.9)), we use the trivializations TG = G x g, T*G = G x g* and
T(T*G) = G x g x g*xg"
5.1.1 Simple G-tubes

Definition 5.1.1. Let H be a compact subgroup of G and p € g*. Given a splitting
g = ¢, @ q invariant under the H,-action, a simple G-tube is a map

0:GxUsCGx (g, xq) — Gxg =2T"G

such that:

43
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1. Ue is a connected H-invariant neighborhood of 0 in gj, X q.
2. © is a GF-equivariant diffeomorphism onto ©(G x Ug) satisfying O(e, 0,0) = (e, u).

3. Let u; == (T.Ly&, v, )\Z) € Tigu)(G x g, ¥ q) with ¢ = 1,2, then

(O wrea)(ur, uz) = (P2, &1) — (1, &) + (v + p, [€1, &]) — (1, [M, Aa)). (5.1)

4. O is Hg-equivariant.
5. Let u = (§,7,\) € Te00)(G x g, x q), then

(Te0,0)©)(u) = (£ + AU+ adju) € g x g" = T(e0)(T"G). (5.2)

If q is defined as above; note that the symplectic slice for the cotangent-lifted left multipli-
cation of G on TG at (e, u) € T*G is precisely q. Indeed, as T{. I (e, p)-(§,7) = —adgu+v,
then a complement to g, - (e, ;1) can be chosen to be the space {(£,ad{u) | £ € g}, and using
(L.11), this linear space is symplectomorphic to (q, Q“‘q).

According to Theorem , the MGS model at (e,u) € T*G for the free cotangent-
lifted left multiplication of G on T*G will be of the form G x g, x q, and in this case the
symplectic form is precisely the one given by . In other words, a simple G-tube is a
Hamiltonian tube for 7*G at (e, 1) (properties 1-3), but we further require H-equivariance
and a prescribed property on its linearization (properties 4-5).

The next result ensures the existence of simple G-tubes. The idea is that an adaptation
of the proof of Theorem [2.3.2] will be enough; the only difference is that we are going to
apply it to an explicit, well-behaved family of symplectic potentials.

Proposition 5.1.2 (Existence of simple G-tubes). Given an H,,-invariant splitting g = g,,®q
there exists an H,-invariant open neighborhood Ug of 0 € g;, X q and a simple G-tube

0:GxUgCGxg,xq—>GXxg"

Proof. As a first approximation, we consider the map

F:Gxg,xq— Gxg" (5.3)
(gu v, /\) — (g eXp(/\)vAd:xp()\)(V + :u))

The map F is G"-equivariant and also H!-equivariant, because
F(glga v,\) = (glg exp(A), AdeXP(/\)(V + 1)),
and

F(gh_17 Ad;;,l]/’ Adh}‘) = (gh_l eXp(Adh/\)a Ad:xp(Adh)\) (Ad;,ly + M)
— (gexp(Vh, Adi A (v + ).

Consider now the one-form on G' x (g, x q) given by

O (9, N (62, 4) = {0 11,6 + 3 o) + ().
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It is clearly G*-invariant and H | -invariant, because

Oy (gh™', Ad; v, Adp\) (Adyé, Ad; o, Ady ) =
1 : : .
- <Ad2*1 (V) + M, Adh§> + §<:u7 [Adh/\a Adh)‘D + <:u7 Adh)‘> = 0Y(97 v, )‘) (gv v, )‘)

Let u; = (&, 05, M) € Tigun (G X g, x q) with ¢ = 1,2. Note that (—dfy)(uy,uz) is the
right-hand side of equation (5.1)). Consider now the family of G" x H[-invariant one-forms

Ht - tF*HT*G + (1 — t)QY
and define w; 1= —d6;. Using (1.11)) and
(TeonF) (&0, A) = (€ + A+ adp)

it can be checked that

(_det)(gvoa())(flv v, /.\1)(527 7./27).‘2> = <D2751> - <7./17§2> + </4L, [51;52]> - <:ua [}‘17 }‘2]>7

but this two-form is non-degenerate because it corresponds precisely to €2y of Theorem [2.3.4
— 90

This implies that Moser’s equation ix,w; = 5 defines a time-dependent vector field X; on
an open set G x V C G x gy, x q. If ¥; is the local flow of X; then Wjw; = wy (see Theorem
for technical details). As 6, and —d#; are G* x H| invariant differential forms, then the
vector field X, is G x HE invariant, and therefore the local flow W, is G* x HE—equivariant
for any .

Note that 0y (g,0,0) = (i, &) + (11, A) and F*07-¢(g,0,0) = (i, &) + (11, A). This implies
that %‘(g,o,o) =0 and X;(g,0,0) =0 so ¥(g,0,0) = (g,0,0) for any ¢ € R, and then there
is an H-invariant open set Ug C V such that ¥, is a diffeomorphism with domain G' x Us.

The simple G-tube will then be the composition © = F o U,: G x Ug — T*G. It
is GF x Hg—equivariant and it satisfies wy = wy = Viw = V] F*wr¢ = O*wr«¢ and
O(e,0) = (e, p). Let ¥, be the local flow of X; and n; be any time-dependent tensor field

then
d

* * d
%‘I’ﬂ?t =V (‘Ctht + E”t) : (5.4)

This expression can be used to compute T(¢0,0)0. To this end, let Y be any time-independent
vector field on G X g% X q not vanishing at (e,0,0). As X; vanishes at (e,0,0) then
Lx,Y = 0. Setting 7, = Y in (5.4)), it gives %\I!j{Y = 0, but this implies T(. 0¥, = Id,

(e,0,0)
and therefore

T(e,0,0)®(£7 v, )‘> = (g + )'\7 v+ ad;'“')

In other words, O satisfies all the five required conditions for a simple G-tube. O

Remark 5.1.3. Note that if g = g, which is the hypothesis used in [Sch07], then q = 0 and
the shifting map

Gxg —Gxg"
(9,v) — (g,v +p)

is a simple G-tube.
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The main shortcoming with the previous existence result is that, as happens with Theorem
it does not produce an explicit map and relies on the integration of a time-dependent
field. However, we will see in Section that in some particular cases we can explicitly
describe these objects. Nevertheless, using momentum maps, we can still find a simpler
expression for the simple G-tube ©. Decompose O as

O(g,v,A) = (A(g,v, A), B(g,v, A)) € G x g
The property of GT-equivariance implies that A(g,v,\) = gA(e,v, ). As ©(e,0,0) = (e, u),
then A(e,0,0) = e and B(e,0,0) = p.

Using Section , we have that the product G x g}, X q is equipped with G and Hg
Hamiltonian actions with momentum maps Kz and K HT respectively (see ) We also
have G and H! Hamiltonian actions on G x g* and their momentum maps are J;z and J HT
(see Proposition . As the difference between two momentum maps is a locally constant
function and both J5z and Kgr are equivariant, then Joz 0 © = Kz, that is

Adjgun-1B(g, v, A) = Adg—i (v + p).

Hence, B(g,v,A\) = Ady,, ) Ady-1 (v + 1) = A1 4,0 (v + 1) = Adyy 0 (v + ). If we
denote E(v,\) = A(e, v, \), then we can write

©:Gxg,xq—TG
(gv v, )‘) — (gE(Va )‘)7Ad2'(y,)\)(y _I_lu)) (55)

Therefore, a simple G-tube is determined by a function E: Ug C g, X q = G.

By rewriting Definition [5.1.1] in terms of the function F, one can obtain necessary and
sufficient conditions for E; that is, if F is a function defined on a connected open neighborhood
Us C g}, x q of (0,0) with values on G that satisfies

e £(0,0)=e.
o If u; = (v, )\1) € T (g, x q) for i = 1,2 then
= (1, [Ar, Ao]) = (0, A1) — (01, A2) + (v + 1, —[As, As)) (5.6)
where A; = T.Ry(, \ T E - (9, Ai) with i = 1,2,
e For any h € H, and (v, \) € g}, x q, E(Adj-.v, AdpA) = hE(v, A)hL
o Let (,\) € T(0,0)(g}, ¥ q) then
TooE - (7,A) =\ €g=T.G.

Then defines a map that satisfies all the properties of Definition . All the conditions

apart from the second one are straightforward consequences of Definition [5.1.1 Equation
(5.6) is just the condition ([5.1]) in terms of the function E. In Section we will show the

equivalence of (5.1 and (5.6) in detail.

Remark 5.1.4. As O is Hg—equivariant, the momentum preservation argument that we used
to define E gives

1 *
Jur(©(g,v,\) =Kpr(g.v,A) = —v| + 3 o, ady. (5.7)
Thus, we have the condition

‘ 1 .
(A (v + 1) ‘hu - ”‘m — A %, adyp.

This property will be useful later during the proof of Proposition [6.2.1]
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5.1.2 Restricted G-tubes

If G acts freely on @), we will see in Section that the simple G-tube is enough to
construct explicitly the Hamiltonian tube for 7@, but for non-free actions we will need to
adapt a simple G-tube to the corresponding isotropy subgroup, the result being the restricted
G-tube.

Definition 5.1.5. Given an adapted splitting g = g, ® 0 @ [ @ n as in Proposition 4.2.1} a
restricted G-tube is a map

P:GxUpCGxg,xoxI"—TG
such that:
1. Us is a connected H,-invariant neighborhood of 0 in g;, x o x [.

2. ®is a G x HI -equivariant diffeomorphism between G' x Ug and ®(G x Us) such that
®(e,0,0;0) = (e, ).

3. Let U; = (TeLg&;, I./i, )‘\Z‘, €z) S T(g7y7)\76)<G X g:l X 0 X [*) with ¢ = 1, 2, then (I)*(,L)T*G is

Wrestr (U1, U2) = (P2, &1) — (01, &) + (v + 1, [0, &) — (. [Ar, Ao)). (5.8)

4. Jr(P(g,v,\ €)) = € for any (g,v, A,e) where Jg is the momentum map for the
G®R-action on T*G (see Proposition [1.3.3)).

5. Let u:= (§,7,1,8) € T(e000)(G x g x 0 x [*) then
(Tie000)@) (W) = (E+ A =071 (&), v +adju+é) € g x g* 2T,y T"G (5.9)

where o: n — [* is the H,-equivariant linear isomorphism ¢ — —(u, [¢,-]) (see (4.5))).

If we are given a simple G-tube O, then we can build a restricted G-tube ® solving
a non-linear equation. In fact, the restricted G-tube will be of the form ®(g,v,\, &) =
O(g, v, A+ ((v, A, €)) for some map (: gj, x 0o x [* — n. This is the main idea behind the
following result.

Proposition 5.1.6 (Existence of restricted G-tubes). Given an adapted splitting
=9, Dod[Dn

as in Proposition there is an H,-invariant open neighborhood Us of 0 € g;, X 0 x [*
and a restricted G-tube
. G xUp — T7G.

Proof. Define q = 0 ® [ & n. Using Proposition there exists a simple G-tube © defined
on the symplectic space Y := G x Ug C G x (g}, X q) with symplectic form wy . As
Ue C g, X q is a neighborhood of 0, there are H -invariant neighborhoods of the origin
(g5)r C @}, 0, C 0 and n, C nsuch that (g5;), x (0, +n,) C Us. Consider now the map

W =Gx((g,)r X0, xn,.) —Y =GxUs CG X (g, Xq) (5.10)
<97V7A7<>H(97V7A+C)
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This map is a G* x Hg—equivariant embedding. By the properties of the adapted splitting
(see Proposition 4.2.1)), Q*(X, () = 0 if A € 0 and ¢ € n. Therefore,

(thywy) (ur, us) = (P2, &) — (01, &) + (v + p, (&1, &) — (1 A, X))

where u; := (fi,m,/'\i,éi) € Tigno) (G x g, X 0 X n) with ¢ = 1,2. In order to obtain the
restricted G-tube, we need to impose the relationship between ¢ and Jz. To do so, define
the map
P:W—Gxg,xoxl
(9,7, 7,0) = (9,7, A =Ir(©(g, 7, A + Q) ).

Note that this map is G" x H!-equivariant because
(g'g, v, X =Ir(O(g'g, v, A +C))|,) = (d'9.v, A =Tr(g'O(g, v, A+ () |,)
- (g,gv v, )‘a _JR(@<97 v, A + C)) ‘[)

and

(T (9,1, A,Q) = (gh™", Adj v, Adp ;s = R(O(h T (9,1, A+ ()]
(gh A, Adp )\ —Jr(h T O((g, v, A+ C) ‘
= (gh™, Adj—1v, Adp); —Ad; . Tr(0((g, v, A + Q)

=h-" (9., X =TR(O(g, 1, A +Q))],) -

)|
)|
)

[

Moreover, if we endow G x gy, x 0 X [* with the two-form (5.8)), then ¢*weste = tjpwy. We
will now check that W is invertible. Let v := (£, 7, A, C) € Tie,000)(G X g;, X 0 X n), then

(Teoo®)(v) = (&7, % ~Tieon (Tl 0 ©) - (€. A+ () (5.11)
@VA ~Tey (Jr],) - £+A+§u+meD
= (&0 4 (7 + adi )]
= (674 (adip) )

where we have used the expression for T(.,0)© given in Definition , and that adj (=0
since o and [ are Q#-orthogonal (see Proposition [4.2.1]).

As the map o: n — [* given by o(¢) = —ad;u [ is a linear H,-equivariant isomorphism
(see ), Tie,0,00% is invertible. By the Inverse Function Theorem, there is a neighborhood
of (¢,0,0,0) € G x g}, x 0 x [* on which ¢)~" is well defined. Due to G" x H,]" equivariance
of W, this neighborhood must be of the form G x Up with Us C g}, X 0 X [ an H -invariant
neighborhood of zero.

Note that the composition © o iy 0 10~ is a restricted G-tube because it satisfies

(6 Olw © wil)*wT*G = (LW © wil)*wY = Wrestr-
It is G* x Hg—equivariant (because it is the composition of G x Hg—equivariant maps), the

origin (e, 0,0, 0) is mapped to (e, u) € T*G, and it is a diffeomorphism onto its image (because
it is a composition of diffeomorphisms onto its images). Finally, if (g,v, A, &) = (g, v, A, ()
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then Jr(©(g,v, A + ())‘[ = —¢, that is (JR‘[ 0O oy o l)(g,v,\ e) = —e, which is the
condition needed fpr a restricted G-tube.
Let u := (57 1)7 )‘78) < T(e,0,0,0)<G X g/*l X 0 X [*)7 USng "

(Teo00®™ )(w) = (&0,A, —07'()),
as @ = O oy oyp! using (5.10) and (5.2),
(T(e,000)®) (1) = (T(,0,0)0 © T(e,00,0)tw © T(e,o,o,o)ZU_l) (u)
= (T(e,o,())@ © T(e,o,o,O)LW) &7, /.\7 _U_l(é))
= (Tle0©)(& 1, A — 07 1())
=E+A—07'(&),r +adju+é)

that is, (5.9) is satisfied.
To sum up, the composition ® = © o vy 0 v~ G x Up — T*G is a restricted G-tube.

This map can also be written as
P:GxUs CGxgyxox ' —TG (5.12)
(9,7, Ai€) — O(g, v, A + (v, As€))

where (: Us C g, X 0 X [ — n is determined by the equation JR‘[(q)(g, v,A\+(,e)) =—e. O

5.2 Cotangent bundle Hamiltonian tubes

Let G be a Lie group acting properly on @, and fix z € T*(Q). In this section we construct
a Hamiltonian tube for the cotangent-lifted action of G on T*@Q around z that will be
explicit except for the computation of a restricted G-tube. This Hamiltonian tube will be a
generalization of the construction in [Sch07] under the hypothesis G, = G.

5.2.1 Cotangent-lifted twisted product

We first reduce the problem on 7*(Q to a problem on T*(G x g S). This first simplification is
already discussed in [Sch07| and is based on regular cotangent reduction at zero momentum

(Theorem [1.5.1]).

Proposition 5.2.1. Let () be a manifold with a proper G action, consider T*(Q) with the
cotangent lifted action. Fixz a point z = (¢,p) € T*Q and a Gg-invariant metric on Q). Define
S:=(g-q)* CT,Q, p:=JIprq(z) and o := Z‘s e s
Then
G. =GN (Gya-

If S, C S is a small enough G -invariant neighborhood of 0 the map
t: G xqg, S, — UCTQ
9. dlc, — g - Exp,(a)

is a G-equivariant diffeomorphism onto the G-invariant open set U where Exp, represents
the Riemannian exponential map at q. The cotangent lift of t induces a G-equivariant
symplectomorphism:

Tt TG Xg, Sp) — T*U C T*Q

and T*t~*(p(e, 1,0,)) = z if ¢ is the Gy-cotangent reduction map (see Theorem[1.5.1]).
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Proof. Let ¢ = 7(2) € @ where 7: T*Q) — @ is the projection and denote H = G|,.

Using Theorem [2.1.4] there is an H-invariant neighborhood S, C S and a G-equivariant
diffeomorphism t: G x gy S, — U C T*Q of the given form such that t([e,0]y) = ¢q. As t is
a diffeomorphism, the cotangent lift 7*t~': T*(G x5 S,) — 771 (U) C Q is a G-equivariant
symplectomorphism onto T*U = 771(U) C T*Q.

The symplectic space T*(G x S,.) that can be identified with G x g* x S, X S* using the
left-trivialization of G and the linear structure of S. In Section 2.1.1] we introduced the G*
and H7 actions on the space G x S,. These actions can be lifted to Hamiltonian actions on
T*(G x S,). More explicitly, using Proposition and the diamond notation, we have

e cotangent-lifted GL-action: ¢’ -L (g,v,a,b) = (¢'g, v, a,b) with momentum map

Jar(g,v,a,b) = Ad;-1v.

e cotangent-lifted H -action: h-T (g,v,a,b) = (gh™*, Ad;_.v, h-a, h-b) with momentum
map
Jyr(g,v,a,b) = —l/‘h +aob.

Then Theorem applied to G x S, with the H”-action gives the diagram

J5(0) T(G x S,) (5.13)

lﬂHT\\\\\\\f;\\\\$

J 5 (0)/HT ————T*(G xp S,)
and the quotient J ;I%F(O) /HT supports a Hamiltonian G-action with momentum map

Jrea: I50(0)/HT — ¢*
mgr(9,v,a,b) — Adj v

If we denote a = Z‘S and p = Jr«g(2), then
Tt ' (¢(e, p1,0,0)) = 2,

because T(p(e, 1, 0,a)) = [e,0]g = t7!(q) and as any v € T,Q can be decomposed as
v=¢&-q+ a with € € g and a € S it follows that

(Trt ™ (e, 1, 0,0)),v) = (e, 1, 0,0), Tyt~ - v) = (p(e, 1,0, ), (§,a)) =
(s ), (§,a)) = (u, &) + {a, @) =
= (Jr-q(2),8) +(2,a) = (2,§ - q) + (2,a) = (z,v).

Moreover,

Gotepo0) = Gryr (o)
={9€G|g-mgr(e,pn,0,a)=myr(e,p1,0,a)}
={9eGlgeH, Adj.p=p g-a=a}
— H,N H, (5.14)
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Therefore, from now on we will assume without loss of generality ) = G xg S, and
z = ¢([e, i1, 0,a]g) with p € g* and o € S*. Note that this simplification is explicit up to
the exponential of a metric.

In this setting, using the adapted splitting of Proposition [.2.1] Proposition and
Theorem , the Hamiltonian tube at z = ¢(e, i, 0, ) must to be of the form

T: G * * B x B* (G S). 5.15
Xa, ((s* ®p*) xo0x N>< ) — T*(G xy S) (5.15)

where s is a G.-invariant complement of g, in b, and B = (b, - a)° C S.

The first difficulty that we find is that the MGS model is a G,-quotient, but the target
space is an H-quotient. For this reason, instead of constructing the tube directly we are
going to split it as the composition of two maps: one that goes from an H,-quotient to an
H-quotient, and another that goes from a G-quotient to an H,-quotient. We will explain
this construction in the following sections.

5.2.2 The a =0 case

In this section we construct a Hamiltonian around a point of the form zy = ¢(e, ,0,0) €
T*(G xy S), which is explicit up to a restricted G-tube. Using (/5.14]), the isotropy of zj is

G.,=H,NnH=H,

and by Proposition 4.3.1] and the adapted splitting of Proposition [4.2.1] the symplectic slice
at zp is
No=0x 8 x 5"

with symplectic form (4.10]). Then the map ({5.15]) reduces in this case to

To: Gxpg, (p° xoxSxS) — TG xgS)
~

m* No

where G Xz, (p* X 0 x S x §*) is equipped with the symplectic form .

As we will later use Ty to construct a Hamiltonian tube around a general point z € T*Q),
we need to ensure that the domain of Ty is large enough. More precisely, we will show that
the domain of Ty contains all the points of the form [e, 0,0,0,b]g, .

Theorem 5.2.2. Consider the point zo = (e, 11,0,0) € T*(G xy S). Let g =g, Sod[En
be an adapted splitting in the sense of Proposition and let ®: G x Up —> T*G be an
associated restricted G-tube.

In this setting, there are H,-invariant open neighborhoods of zero: p; C p*, 0, C 0 and
an H-invariant open neighborhood of zero b C b* such that the map

To: G xm, (py x 0, X (I™5),) — T*(G xg S) (5.16)
[9,v, ;0,0 1, — p(P(g,7,A;a o b); a,b)

18 a Hamiltonian tube around the point zy, where

_ 1 .
I/:V—i-g)\obu adyp +a oy, b

(. S
~~

JNO (A7a7b)

and (T*S), == {(a,b) € T*S | a0y b € b}
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Proof. If we assume the existence of (p*),, 0, and b, such that the map Ty is well defined
then it follows from the properties of ® that

To([e,0,0;0,0]m,) = ¢(®(e, 0,0;0);0,0) = (e, 15 0,0)
and by the G-equivariance of ® it is also clear that
(.T()(g/ ) [gv v, )‘a a, b]HM) = (‘TU([g,gv v, )\; a, b]Hu)

= (9" - (g, 7, \;a o b);
= g/ : 70([97 v, )\a a, b]Hu)

o(®(d'g, 0, X\;a0b);a,b) =
a,b) =g - o(®(g, 7, ;a0 b);a,b) =

We will divide the rest of the proof in three steps. In the first one we prove that there is
aset G Xp, (Piom X 0dom X (IS )dom) such that the map Ty is well defined; it pulls-back the
natural symplectic form of T*(G xy S) to the MGS form G X g, (Pjom X 0dom X (TS5 )dom)
and it is a local diffeomorphism. In the second one we will show that it is injective in a
certain subset, and in the third we will prove that it is a diffeomorphism onto its image.

1- T, is a local symplectomorphism:

Let Ny = 0 x S x S* be the symplectic slice at zg = ¢(e, 11,0,0). As in Section there
must be an H,-invariant neighborhood (g},), such that the product Z := G'x(g},), x (0 x.SxS*)
with wy = wy, + Q, is a symplectic manifold with G* and H Hamiltonian actions with
momentum maps K¢z and Kyr (see (2.4).

We now use the restricted G-tube (see Definition[5.1.5) ®: GxUs C G xgj xoxI* = T*G
to relate Z with 7%(G x S). As ® is only defined on G x Ug, we will define the open set

D :={(v,\a,b) | (v,\,aob) €Us, veE(g,)}Cg,xoxSxS5"
and the map

FGxD—TGxT*S
(9, v, \,a,b) — (®(g,v, \,aob),a,b). (5.17)

The pullback of wr«gxg) by f is wz, because

(ffwre(axs)) (U1, uz) = (P*wr-¢)(g, v, A, a o1 b)(v1,v2) + wr=g(a, b)(wy, we) =

=
= (0,&) = (1, &) + (v + [0, &a]) — (. oo, Aa]) + {ba, @) — (i, b)

J/ (. J/

wr, 2,
where u; = (&, 7, i, i, bz) € Tiguran (G x D).

Note that on G x D there is a GF x HT action, but on T*G x T*S = G x g* x S x S* there
is a G* x HT action. As the map f is G* x Hg—equivariant, it preserves the H,,-momentum,
that is, Kyr = Jgr o f. In particular f(KI_{;IT(O)) C JI_{%(O) However, the [-momentum
property (see Definition of restricted G-tubes allows us to improve this, since for any
el

(Jur(f(g,v,A;:a,0)),€)

(Jr(®(g, v, Asaorb)) +aoyb,§) =
(Jr(®(g, v, A;a0b))| +aoh&) =
= (—aob+aob§) =0.

This means that f can be restricted to a map

f: Ky (0) — J,5(0)
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and this is the key condition that will allow us to relate the H,-quotient G' x g, (p* x No)
with the H-quotient J ;5 (0)/H” = T*(G xy S). To do so, consider the diagram

G x D—f>T*(G>< S)

v ~

G X Ph X 0dom X (T*S)dom —— K;IE<O) —— J;4(0)

| L

G X1, (Miom X Oom % (T*S)dom) —— K (0)/HT —L— J4.(0)/HT — PTG xg S)
To

Composing fwith the projection by HT in the target we get a smooth map K;Ij?(()) —
J+(0)/H" which is G¥-equivariant and H [ -invariant, and hence it induces the smooth
mapping

F: KI‘{%(O)/H;F — I (0)/H".
If K;I,IT (0)/HF is endowed with the reduced form (wz)req and J ;5 (0)/H” with (wr+(Gx$))red

then F*(wr+(Gxs))red = (Wz)red, because f*wpsaxs) = wz. In particular, F' is an immersion.
Also, as the Hg—action on G x D is free

dim K%(O)/HE = dim K;I%(O) —dim b, = dim(G x (g}, x 0)) + 2dim S — 2dimb,,
= dimg + dimg, +dimo — 2dimb, +2dim S
=2dimp + 2dimo + dim [+ dimn + 2dim S
=2dimp + 2dimo + 2dim [+ 2dim S
= 2(dim g — dim h 4+ dim S).

Analogously,
dim J;*(0)/H" = dimJ 3 (0) — dim b = 2(dim g — dim b + dim 5).

This implies that F' is a local diffeomorphism because it is an immersion between spaces of
the same dimension.

By continuity we can choose H-invariant neighborhoods of the origin p} ., C p*, 04om C 0
and an H-invariant neighborhood of the origin b}, C b* such that

1
(v + 5)\ oy, adyp +a oy, b, A, a,b) € D

~ J/
-~

JIng

for any v € P> A € 0dom and a,b € T*S with a oy b € b},,,. The map
L: G xp, (Phom X 9dom X (T )daom) — K7 (0)/H"

given by [g,v,\,a,blg, — [9,v + In, (N, a,D), N a,b]g, is well defined and, as in (2.5)),
L*(wz)rea = Qy. The conclusion of this first step is that the composition Ty := @ o Fo L is
then a local diffeomorphism that pulls-back the canonical form of 7*(G x g S) to the MGS
form on the set G' xp, (Miom X 9dom X (T%S)dom)-
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2- Ty is locally injective
As To: G xg, (Plom X 0dom X (T75)dom) — T*(G x5 S) is a local diffeomorphism, there is
a neighborhood of [e, 0,0, 0, 0]z, such that T is injective on it.

Using that T, is G-equivariant and that the action is proper, this neighborhood can
be chosen to be G-invariant (see for example the proof of Theorem ; that is, Ty will
be injective when restricted to the set G' xp, (p;“nj X 0ipj X (T*S)inj) where P € Plom>
Oinj C Odom are H-invariant neighborhoods and (775, is an H-invariant neighborhood of
0 on (7%S)dom. Note that we cannot ensure that (7%5);,; will be big enough to contain all
the points of the form (0,b) € T*S. This issue will be addressed in the next step.

3- Ty is injective
In this step, we efine an open set (7*5), C (T%5)gom such that the restriction

Tol G XH, (p;knj X Ojpj X (T*S)r) — ‘Io (G XH, (p;knj X Ojpj X (T*S)T))

is a proper map
The key result that we use to prove the properness of Ty is the following topological
result.

Proposition 5.2.3 ([MT03|, Lemma 5). Let H be a Lie group acting on a symplectic vector
space (W,ww) and denote by J: W — b* the associated homogeneous momentum map

(Jw(v), &) = %ww(f-v,v).

Then J is H-open relative to its image; that is, if U is an H-invariant open set of W then
J(U) is an H-invariant open set of the topological space J(W) C b*.

Let U; C S and U, C S* be H-invariant neighborhoods of the origin such that U; x Uy C
(T*S)in;. Using Proposition [5.2.3] there is b} an open neighborhood of 0 € h* such that

by N (S oy §7) = Uroy Uy Ch"

In this setting, define (7*5), := {(a,b) € T*S | a oy b € hi}. From the first step of the proof
we have the following commutative diagram

fol

G X P X 0dom X (T%5)dom J;T(O)
lﬂ-Hu lgpowH
G %11, (Piom X Odom X (IS )dom) ————T*(G %1 S)

The problem is that fol is an injective embedding, but it is not clear if it is proper. We will
now show that Toory, is a proper map onto its image when restricted to G X pji; X 045 X (T 5),..
To this end, let 2, = (gn, Vn; An; @n, by) be a sequence in G x pi; X oy X (T*S), such that

To(ma, () — To(ma, (9,7, \;a,b))

with (g, 7,A\;a,b) € G x pi; X oy X (T™S),. We construct a subsequence {Zgym)} C {2, }
which is convergent on G' X pji; X 0i5 X (T*S),.

The map @ o my: J;7(0) — T*(G xy S) is proper because it is a composition of a
homeomorphism and the projection by a compact group. Since Tpony, = @omyo fo [, then

there is an increasing map o1: N — N such that the sequence {(f o 1) (@, (n)) }n converges



5.2. COTANGENT BUNDLE HAMILTONIAN TUBES 55

inJ ;T(O) C T%(G x ) (we are just taking a subsequence). But then by uniqueness of the
limit there is h € H such that

(f o D)(@oy(ny) — BT ((f 0 1)(g,7, A @, b)).

However, using the expression of f (5.17)) this implies that ay, () — h - @ and by, (ny — h - b.
By the definition of (7*S), we can choose for each n a pair (ay, 5,) € Uy x Us satisfying

Ay O ﬂn = Gy Oy bn

Since U; x U, is a relatively compact subset of (7S5);,;, we can find an increasing map
o2: N = N such that 03(N) C 01(N) and (s, (n), Bes(n)) = (Qoos Boo), but then

{(}Vo l)(QJz(n)>V02( ) >‘02(n)>a02 502(71))}

is a convergent sequence and

(F 0 1) (Go(n)» Vos(nys Mog(m) Cora(mys Boa(m)) — T ((fo1)(g,p,xh*1ao@,h*15w)>.

As (gaz(n), Voo(n)s )\JQ(n), Aoy (n)s @72(”)) lies in GXp;knj X 0jpj X (T*S)mj, using that ':To restricted
to G X piy; X 0 X (T75)iy; is a diffeomorphism and 7y, is proper, there is an increasing
map o3: N — N with 03(N) C 03(N) such that (go,(n); Vos(n), Aos(n)s Qos(n)> Bos(n)) converges in
G X i X 0inj X (T )inj. Therefore, {25, } is a convergent sequence on G X Pig X Oing X (T5),..

This proves that Toomp, : G X pii X 0imj X (T7S), = (To o7y, )(G X piiy; X 01y X (T5),)
is proper. But since mp,: G X pl; X 0ij X (T*5), — G xg, (p;*nj X 03y X (T*S),) is sur-
jective and continuous this implies that Ty: G xg, (pfnj X Ojpj X (T*S)T) — T (G X,
(P X 0y X (T*5),) ) is a proper map.

As T is a local homeomorphism and a proper map, it follows that it is a covering map.
Then if ¢(e, 11,0,0) has only one preimage, this implies that the covering map is in fact
everywhere injective and therefore a global diffeomorphism. But if Ty([g, v, A, a,b]n,) =
(e, 1t,0,0) then it is clear from the expression of Ty that @ = b = 0 and then
[9.,X,0,0]m, € G X, (Pl X 0 X (T*S)inj) C G X, (phy; X 0mj X (I'*S),). Therefore, by
injectivity we have [g, 1, A,0,0]g, = [e,0,0,0,0]g,. To sum up, the restricted map

To: G XH, (p;{nj X Ojpj X (T*S)r) — (.T()(G XH, (pi*nj X Ojpj X (T*S)T)) C T*(G XH S)
9, v, Ay @, blm, — @(P(g, 7, A;aorb); a,b)

where 7 = v + Jn, (A, a,b) = v+ A oy, adip + a oy, b, is a bijection.

5.2.3 The I' map

In this section we introduce the I' map, a technical tool used in [Sch07] to build the Hamilto-
nian cotangent tube when G' = G,. Here we will use it as the final step towards generalizing
the previous Hamiltonian tube at a = 0 to the general case o # 0.

Let p(e, i,0, ) € T*(G x g S) and define K = H,, N H,. Recall that in (5.15) we defined
B := (b, -«)° C S and a K-invariant complement s of € in b,,. As K is compact, we can choose
a K-invariant splitting S = B @ C inducing the K-invariant splitting S* = B* @ (b, - a).

However, the previous splitting of S* is not H -invariant. The following technical result
studies how it behaves with respect to the infinitesimal H ,-action on S. It is a straightforward
generalization to the case g, # g of Lemmas 27 and 28 of [Sch07].
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Proposition 5.2.4. In the above situation:

e I[faec B, ceC and b e B*, then

(a+c)op, (@ +Db) =aoy, b+co, (a+D).

e There is a K-invariant neighborhood (B*), of the origin in B* and a K -equivariant
map
[':s" x(B), — S
defined by
<F(V,b),f(0&+b)+ﬁ>:—<y,€> VBGB*v VSGE. (518)
Moreover, T satisfies T'(v;0) o5 (b+a) = v and T'(v;b) € C for any v € s* and b € (B*),.

Proof. The first part is a generalization of the proof of Lemma 27 of [Sch07],

(a4c)op, (a+Db)=acy, (x+b)+coy, (+b) =
=aoy, b+coy, (a+b) =
=aop, b+ cos (a+b)

where we used a oy, a = 0 because for any § € h,: (a,{-a) =0asa€ B=(h,-a)°. Bya
similar argument c ¢ (o + b) = 0 because if £ € € then £-a=0and {-b € B* but c € C.
The second part is an adapted version of Lemma 28 of [Sch07]. Consider,

t: HM XKB* — S
[h,blx — h - (b+ «)

then Tio o, (&,0) = £-a+bbut as S* = B*® (h, - @) = B*® (s @), Tjeg),t is invertible and,
therefore, there is (B*), small enough such that t: H, xx (B*), = t(H, xx (B*),) C S* is
a diffeomorphism.

Then for any b € (B*),

§X B — T, ,,5" = 5"
(&b) — - (a+b)+b
is a linear K-equivariant isomorphism. But then (5.18)) defines I'(v, b) uniquely for any v € s*

and b € (B*),.
As (I'(v,b),8) = 0 for any 8 € B* it is clear that I'(v,b) € (B*)°=C and if { € 5

(T(v,b) 05 (b+ ), &) = (b+ a,& - T'(v,b))
= _<£ (b+ Oz),F(I/, b)>
= (1,
]

Remark 5.2.5. Note that I'(;0) = f(), where I': 5* — S is the linear map appearing in
Proposition that describes the Witt-Artin decomposition of a cotangent bundle.

With the notation that we have already introduced, the symplectic slice at (e, p,0,0) is
Ny = 0 x T*S, whereas the symplectic slice at (e, i, 0, ) is N, = 0 x T* B (see Proposition
[.3.1). The abstract MGS models at ¢(e, 1,0,0) and @(e, p, 0, ) are G x g, (p* x No) and
G x ((s* @ p*) x N,), respectively. The next result shows that I can be used to build a
well-behaved map between both spaces.
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Theorem 5.2.6. In the above context there is an open K -invariant neighborhood W of zero
in (s ®p*) X 0 x B x B* such that the G-equivariant map

F:GxgW — G xpg, (p*x0x8x8%)
9, vs +vp, A a, bl — [g,1p, A, a, b+ oy,

where a =a+T'(vs —aos b — %)\ og adyu; b), is a local symplectomorphism.

Proof. As in the first part of the proof of Theorem , there is a neighborhood (g},), of
0 € g* such that Zj := G x(g};), X (0 X5 x .§*) is a symplectic space with wz, = wr, +Qy,. We
are in the same setting as in Subsection ; therefore, Z, supports G* and H;f Hamiltonian
actions with momentum maps that were denoted as K5z and K HT-

Similarly, Z, := G x (g};)» x (0 x B x (B*),) is a symplectic space with symplectic form
wz, = wr, + {,, because N, = 0 x B x B*. Note that Z, has G* and K7-Hamiltonian
actions with momentum maps M, and Mgr. Consider now the map

f: Za — ZO
(g, v, A\ a,b) — (g, v, \;a+T(n;b), b+ )

where n = 1/‘5 —a0sb— tNosadjp. As I is K-equivariant, then f is G x KT equivariant.
Note that the potential 8z, (g, v, A; a,b)(&, 7, A; a,b) = (v + p, &) + 3, [\, A]) + (b, ) — (@, @)
generates the symplectic structure wy, (see (2.3)) and

(f*eZo)(ga v, /\7 a, b) U= 0Z0<f(ga v, )‘7 a, b))(T(g,V,/\,a,b)f : U) —
1 . , L
= <:u + v, £> + 5(,&, P‘v >‘]> + <b7 a+ T(l/,/\,a,b)F ) (Va A a, b)> =

= (et w8+ 50 A + (b0

where v = (§,7,a,b) € Tgv.ap)Za- Taking the exterior derivative of this equality, we get

ffwz, = wz,.
Additionally, the Hg—momentum evaluated at f(g,v, A, a,b) is

Kpur(f(g, v, A a,0)) = —v + %)\ op, adyp + (a +T'(n; b)) oy, (b+ ) = (5.19)
= _V‘hu + %/\ oy, adypr +a oy, b+T(n;b) o5 (b+ ) =
= _V‘hu + %)\ op, adyp 4+ a oy, b+1n =
— _V‘hu + %/\ op, adyp 4 a g, b+ V‘s —aosb— %)\ o5 adi
=—v|, + %adjuog A+ aopb.

This means that if £ € s then <KHE(f(g, v, A\ a,b)), &) =0, and as

1
MKT<gv Vv)\aaa b) = _V‘E + Ead;,uOg A+ a ¢ b,

f can be restricted to

f: M2

KT

(0) — K1 (0).
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As in Theorem we can construct from top to bottom all the arrows of the diagram

Lo Zy
M1 (0) ! K (0)
M4 (0)/KT — Ky (0)/H!

using the same arguments as in the first part of Theorem [5.2.2 Therefore, as F' is an
immersion between spaces of the same dimension, it is a local diffeomorphism onto its image.
Adapting the construction of map ({2.5)) to this setting, define the K-invariant open set

1
W= {(vs + 1, \,a,b) € (" Ps") x 0 x Bx(B"), | V5+Vp+§ad§,u<>gA+a<>ng (9,)r}

s

~
INg

and the map Lq: G xx W — M -(0)/KT given by
La([g, Vs + Vp, )\7a7b]K) = [gu Vs + Vyp + JNa<)\7 CL,b), )‘70’7 b]K?
then L, is a G-equivariant symplectomorphism. And similarly,

Ry: K1 (0)/H! — G xp, (p* x 0 x5 x5

defined by [g,v, A, a,bly, — [g,v . A, a,bly, is a G-equivariant symplectomorphism.
Finally, we can conclude that the composition F = Ryo F'oLy: G Xxg W — G Xy, (p* x
0 X S x §%) is a G-equivariant local diffeomorphism that pulls-back the MGS symplectic
form of the target to the MGS symplectic form of G x g W.
m

5.2.4 General tube

In this section we deal with the most general situation and will construct a Hamiltonian
tube around an arbitrary point ¢(e, p,0,). To do so we use Theorem to obtain a
Hamiltonian tube around ¢(e, i, 0,0), and then we compose it with the map F of Theorem
m The result of this composition will be the desired Hamiltonian tube around ¢(e, i, 0, ).

Theorem 5.2.7. Consider the point z € T*(G xg S) defined by z = (e, 1,0,c0). Let
g=9,Po®[Dn be an adapted splitting in the sense of Proposition and let

To: G xpg, (py x 0, X (T"8);) — T*(G xu S)
[g71/7 )‘a aab]Hu = gO(q)(g,l/—FJNO()\,CL,b),)\;GO[ b)?avb)

be a Hamiltonian tube around the point p(e, u,0,0) given by Theorem where
1
JIn, (A, a,b) = 5)\ oy, adyp +a oy, b

and (T*S), == {(a,b) € T*S | a0y b € b}
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Define B = (h,-a)° C S and let the map I': §* x B} — S be the one defined in Proposition
[5:2.4

In this setting there are small enough G .-invariant neighborhoods of zero 5% C §*, p% C py,
0os Co,, By C B and B C B* such that the map

T: G xq, ((sE@pl) xo0sx By x BY) — T*(G xg S) (5.20)
[97 Vs + Vy, A;a7b]G’z — 70([97 Vp7)‘;zia b+ a]hm)

where
- 1 .
a=a+T(vs —aosb— 5)\<>gadxu;b)

is a Hamiltonian tube around the point z = p(e, i, 0, ).
Equivalently,

(‘T([gv Vﬁ + Vp7 A;avb]Gz> = SO(CD(LCL VS + Vp + JNa(Aaa)b)u )‘a€)7d7b+ Oé)

where
. 1 .
a=a+T(vs —aosb— éAoﬁadAu;b),

1
JIn, (A a,b) = 5)\ og, ad\pt + a o4, b,
e=ao (b+ ).

Proof. By Theorem there is a map F: G xg, W — G xp, (p* x 0 x T*5) with
W C (p*@s*) x 0 x Bx B*.

Note that G x g, (p; x 0, x (T*S),) is an open G-invariant subset of G x g, (p* x 0 X
1*S). Since F is continuous, then the preimage of G x g, (p; x 0, x (1*5),) by F is open
and contains the point [e,0,0,0, 0], because F([e,0,0,0,0]q,) = [¢,0,0,0,a]q, C G xg,
(pr x 0, x (T*S),) since 0oy v = 0 € b.

Therefore, we can choose small enough G.-invariant neighborhoods of zero s? C s*,
p: Cpr, 0, Co,, B, C B and B C B* such that the composition

T:=TpoF: G xq, ((s;@p)) x0sx By x BY) > T"(G xp S)

is well-defined and injective. Using Theorem [5.2.2] and [5.2.6] we conclude that T is a
Hamiltonian tube around ¢(e, p, 0, a).

More precisely, as F([g,vs + vy, X a,b]g.) = [9, v, A, @, b + o]y, with @ = a + T'(vs —
aos b — 3X o adyp; b) then (To o F)([g, vs + v, X;a,blc.) = ©(P(9,7, \;€);a,b + ) where
e=ao (b+ «), and

~ 1 .~
vV=1,+ 5/\0% adyp +a o, (b+ ).

However, using exactly the same computations as in (5.19), we get a oy, (b+ ) = a oy, b+
Vs — 2N og adypu, that is 7 = 1, + vs + $A 0y, adjp + a oy, b.
O

Remark 5.2.8. In general, if we consider a tube around ¢(e, i, 0, ), we cannot expect its
image to be global in the B* direction. This is because all the points in the model space
G xq, ((s7®p;) x 0, x B, x Bf) must have G-isotropy conjugated to a subgroup of G. From
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this observation we can conclude that, in general, (s} @ p}) x 0, X B, x B} will not be an open
neighborhood containing points of the form (0,0,0,b) for arbitrary large b € B*. Indeed,
if that was true, we would have (0,0,0,a) € (s @ p;) x 0, X B, x B} which would imply
T([e,0,0,0, —alq.) = ¢(e, i,0,0). But this is a point with G-isotropy H, and in general,
G. € H,, thereby producing a contradiction.

Note that if we assume that ;1 € g* satisfies g, = g, then 0 = 0 and the Hamiltonian tube
J will be of the form

T:G xq, ((s:@pr) x B, x BY) — T*(G xp S)
9, vs + vp; a0, e — (g, 4+ 750,b + @)

where
V=vp+Us+aog b a=a+T(v;—aosb;b).

This map is the content of Theorem 31 of [Sch07]. In other words, the map T coincides with
the results of [Sch07] when we restrict to their totally isotropic hypothesis g = g,. What
happens in this case is that the Hamiltonian tube given by Theorem becomes the trivial

p-shift (see Remark [5.1.3))

To: G xg, (p" xS x8) — T*(G xu S)
[g,V;CL,b]H# |—>go(g,,u—|—u+a<>hu b7a7b)

The other extreme case is when I" becomes trivial. This will happen, for example, if S = 0,
which is equivalent to assuming that locally Q = G/H. Fix a point z = (e, u) € T*(G/H),
as G, = H,, then s = 0, and as S = 0 then B = 0. Therefore, according to (5.20), T becomes

T:G xpy, (p; x0,) —T*(G/H)

| *
19, vp, N, — p(P(g, v + 5)\ oy, adyi, A; 0)).

5.3 Explicit examples

In Proposition we proved the existence of simple G-tubes using Moser’s trick. In this
section we write down the actual differential equation that must be solved. We will see that
if dim q = 2, then the simple G-tube will be a scaling of an exponential map, and we will
compute it explicitly for SO(3) and SL(2,R). From the explicit SO(3) restricted tube in
Subsection we will present the Hamiltonian tube for the natural action of SO(3) on
T*R? generalizing the final example of [Sch07] to u # 0.

We will compute explicitly the flow that determines a simple G-tube. In order to do this,
we are going to use the notation of the proof of Proposition [5.1.2]

Recall that we constructed the simple G-tube as the composition © = F' o ¥y, where

F(gv v, )‘) = (g eXp<)\)7 Adep(A)<V + :u))

(see (5.3)) and Wy is the time-1 flow of the time dependent vector field X; which satisfies the
Moser equation associated with 0, = tF*0r«qc + (1 — t)fy, that is,

. 00
1x, <—d9t) = 8_]:
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This equation for X; can written explicitly in this case. Using the above expression of F

and (|1.10)), we have

F*GT*G(gv v, )\)(£7V7 )‘) = <Ad2xp( )(V+/1J> Ad . £+TL

exp(A

exp(A) TA exp(A))
= (V41 &) + (v + i, Addepn T Lexp()\)T)‘ exp(\))
=Ww+u&+v+u TR, ! T,\exp()\)>

exp(A
Using Proposition the last term can be expressed as a series of Lie brackets

1 .
— 1 I |
M) -\=T, R exp(\) = E>0 nt 1)!ad/\)\.

Furthermore, this series is just the pullback of the right Maurer-Cartan form w”(g) = T.R;"
by the restricted exponential exp‘ IR s G. Therefore, using the Maurer-Cartan relation

(dM)(X,Y) = d(exp* @) (X,Y) = exp*(d=’)(X,Y)
= [exp* @"(X), exp* @™(Y)] = [M(X), M(Y)]. (5.21)
Now, since 0;(g, v, A\)(&, 7, A) = (u + 1v,&) + t{u+ v, M(A) - A) + (1 — )3 {u, [\, A]), (using
(5.21))) the exterior derivative w; = —d#, simplifies to
wi(g, v ) (&1, 1, M) (o, D0, Ao) = (0, &1) — (01, &) + (v + p, (&1, &)+
+ (D, M(N)AL) — (o, M(A) o)
4 — (M) A MO ) — (1= £) ([, o).

Also, the expression daett = 6 — Oy can be written as
00, . 1 ..
5 g, v, (&0, N) = W+, M(N) - N — §ad)\)\ + A). (5.22)

From now on we will assume that dim ¢ = 2. Note that the one-form

wi(g, v, A) (0,0, A) (2, D2, Aa) = (i, A) + £ (v + 1, = [\, M(X) - Al) — (1 = £) (11, [\, o))
=t + 1, =M N[N Aa]) — (1= £){p, [A, Ao])

and (.22) have the same kernel g ® g, ® R - A C T(y,1)(G % g}, X q). Therefore, there is a
real-valued function f such that

00,

wi(g, v, M)(0,0, fF(r, \, )N (Ea, 00, Ng) = >

= (9,7, A) (2, 0, o).

In other words, X;(g,v,A) = f(v, A,t)% and, in particular, ¥,(g, v, A) = (g, v, m(v, \)A) for
certain scaling factor m;: g, X ¢ = R. We will obtain an equation that fully determines m;
and therefore the map ¥, and the simple G-tube.

Taking the time-derivative of the time-dependent pull-back (see ([5.4]))

9
ot

o 09, ) e
(U:0,) = U ((det +ixd)f + ) U (dix,0,) = Ui (dix, (6 + (6, — 6p)) =

= \P:(dZXtGO) = d(‘IjI@XfQO))
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Additionally,

0
Wi (ix,00) = U7 ({, M F (1, X, 8)) = {, M f (v, ma(v, AA 1)) = o (s (v, A)A)
from where we get

0 (U360, — d{p, my(v, \)A)) = 0.

ot
This equation implies that W, satisfies the following equation on one-forms
W0, — d(p, mq (v, \)A) = by — d{u, \). (5.23)

But this equation does not depend on the derivatives of the scaling factor mq, because
01 (&, 0, A) = (u+ v, (Dymy - &+ Dymy - MA + M(my ) - (mgA)) =
= (1, A)(Dymy - &+ Damy - A) + (i + v, M(myX) - (ma\))
and . : .
d(p, maA) (&, 0, A) = (u, AY(Dymy - v+ Dymy - A) + (p, my\).
Since (j1, [\, A]) is a non- -vanishing one-form on the two dimensional space q with kernel R - A,
and (1 + v, M(X) - A) — (u, \) has also kernel R - \, then there is an analytic function h(\, V)
such that _ ' '
With this notation, (5.23) becomes the non-linear equation

h(mi(\ V) A, v) - (my(\,v))? = > (5.24)

Its solution m; (A, v) is enough to write down explicitly the simple G-tube

O(g,v,A) = (g exp(mi(A, V)A), Adexpm )y (V + 1)

In the following lemmas we will see that under some algebraic assumptions on g we can write
down m; in terms of elementary functions.

Lemma 5.3.1. Assume that the subspace q defined by the splitting g = g, © q is a 2-
dimensional subalgebra. Then the equation (5.24) has the solution m(v, \) = E(— tr (ad,\‘q))

where £: R — RT the unique analytic function that satisfies

72
e @ =1 — 2€(z) + 5 (5.25)
and £(0) =
Proof. As the dimension of q is two and ad; is singular, it follows that ad? ‘ —tr (ad ‘ )ad ‘
0 for any 1 € q. Therefore,
(tr ( ad& e —zr—1
Z(/{—I— Id—l—Z €:Id+7ad§

k>0 k>0

where z = tr (adg‘q). Then (5.23) becomes

e —xr—1

(v, MA) - X) =, MV - X) = (g, A) + (s [A A))

Comparing with (5.24)), it follows h(v, A) = M with z = — tr ( adg‘ Hence my (v, \) =
E(—tr (ad,\‘q)), where &£ satisfies (5.25)). O

12
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Figure 5.1: Scaling functions F(z) for SO(3) (left) and &(x) for SL(2,R) (right).

Remark 5.3.2. The function £ can be written in terms of the Lambert W function (see
[Cor+-96|)

Wo(— exp(—l—%x2))+1

z 4
— 2 T
E(x) - {% 1 W_l(fexp(flf%mQ))+1

ifxz>0

ifz <0

T

where W, and W_; are the two main branches of the W function. It can be checked that
&(x) is positive and strictly increasing for all # € R. Additionally, £(x) is asymptotic to 5 if
x — oo, and satisfies £(0) = 1 and E(z) — 0 if # — —oo (see Figure [5.1)).

Lemma 5.3.3. Assume that the splitting g = g,, © q satisfies
1. adz’ +a(§)ade = 0 V€ € q for a certain smooth function a: q — R, and
2. {(p+v, adgn) =0 for any {,m € q and v € q°.
In addition, let b: (g;), — R be the function satisfying (v + p, [, n]) = b(v)(u, [§,n]) for
A

any £&,m € q. Then equation (5.24)) has the solution my(v,\) = F(sz())) ;(A , where

3

F: (—00,1) = RT is the analytic function

wnl)
f((l}) - arcsinh(\/m)

aresbVIe) g < )

Sl

1
Proof. Using the first hypothesis E ﬁadg =1d + Ay (a(§))ade + Az(a(§))ad;, where
n !
n>0

+1)

Aj and A, are analytic scalar functions. Then
(v, M(A) - X) = (u+ v, A) + An(a(N) (e + v, [N A]) = (u, A) + A (a(0)b(v) (s, [, A]),

that is, h(\,v) = Ai(a(N))b(v). It can be checked that A;(x) = 1_%5(\/5) If we assume
a(A) > 0, then using simple formal manipulations (5.24) is equivalent to miy/a(\) =

arccos( — %), and as 2arcsinz = arccos(l — 2z%), then m;(\,v) = F (Zf(?)) ;(A).

If a(\) <0, a similar computation gives the same result.

U
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5.3.1 SO(3) simple tube

Under the hat map, the Lie algebra g = s0(3) can be identified with R? equipped with
the cross product. The standard inner product (-,-) on R? 2 g will correspond to the dual
pairing between g and g*, identifying them.

Fix an element p € g*. We have two different possibilities:

e ;= 0. In this case, the G-tube is trivial (see Remark [5.1.3).

e /v # 0. In this case, g, is the subspace generated by ;1 and we will define q as the
orthogonal complement to g,. The subspace g, being the annihilator of q is also
identified with the subspace generated by pu.

The vector identity a X (a x ¢) = (a,c)a — (a,a)c implies that both conditions of
Lemma hold for s0(3) with a(\) = ||\||>. Therefore, the map
G x g, xq— SO3) xR =T"S0(3) (5.26)
(g7yv >‘) — (gE(V7 A)vE(V7)‘) ’ (V+M))

with E(v, \) = exp <2amsjn( Y “i”2>:\\) is a simple SO(3)-tube at (e, pu) € T*SO(3).

Note that this expression is exactly the same as the one obtained in Theorem 3 of [SS13].
In fact, this map was known in celestial mechanics as regularized Serret-Andoyer-Deprit
coordinates (see [BFGO06| and references therein).

5.3.2 SL(2,R) simple tube

On the Lie algebra g = sl(2,R), the bilinear form (A, B) = —2Tr(AB) is non-degenerate
and we will use it to identify g and g*. If {,n € s[(2,R), it can be checked that adecaden =
(€,m)¢ — (£,€)n, and then for any £ € g we have adz’ + ||€|IPade = 0.

Fix an element u € g*. We now have three different cases:

e ;= 0. In this case, the G-tube is trivial (see Remark [5.1.3))

o ||u||? := (u, p) # 0. Then g, is one dimensional and is the space generated by u. We
will define q to be the orthogonal space to p with respect to the pairing. Since the
norm of 4 is non-zero, g = g, @ q. As before, g, = q° = g, hence we can apply Lemma
5.3.3, obtaining that

G x g, xq— T"SL(2,R)
(gv v, )‘) — (gE(Va )‘)7Adz‘(u,)\)(7/ +M))

E(v,\) = exp (7: (4|(|:Hjl;)) \/z)\)

is a simple SL(2,R)-tube at (e, u) € T*SL(2,R).

with

o ||u]|> =0 and u # 0. In this case, using basic linear algebra, it can be shown that there

is k € SL(2,R) such that yp =k [8 S] k~! with s =1 or s = —1.
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Also in this case, g, is the subspace generated by p, and we will define q as the

1 O}k‘landk{o 0

subspace generated by & [0 1 1 0

} k=1 A generic element in q will be

represented as k Z _Oa} k=1, It can be checked that g,, = q° is the subspace generated
0 0], _,
by k [1 O} k=t

A simple computation shows that q is a subalgebra of g, hence we can apply Lemma
5.3.1, obtaining that the map

G x g, xq— T"SL(2,R)
(9, v, A) — (gE(A), Adg oy (v + 1)#)),

where A =k Z _O(J k7', v € R and E(A\) = exp (£(2a))), is a simple SL(2, R)-tube

at (e, ) € T*SL(2,R). Note that for this tube the domain is the whole space G x g, X .
There are no restrictions on v or A but the map is not surjective.

Remark 5.3.4. If u # 0 satisfies ||u||* = 0, then we cannot choose a G ,-invariant splitting g =
9, @q. In the literature, this situation is known as a non-split momentum and has important
consequences for the structure of Hamilton’s equation in MGS coordinates [RWL02].

5.3.3 A SO(3) restricted tube

Let H be a compact non-discrete subgroup of SO(3). Note that H must be one-dimensional.
We denote by &, € R? the generator of h with unit norm. In this setting the adapted splitting
of Proposition reduces to [ = R-&, p = R-pand n = R- & x u. To obtain the restricted
tube we use (5.12), so we need to find ¢ € n satisfying the condition

JR(®(97V7 C)‘[ = —¢ (527)
as a function of v and . Using the notation of (5.5, © can be written as
6(97 v, )‘) = (gE(V7 /\)7 Ad*E(u,)\)(V + :u))
Using Proposition we can rewrite (5.27)) as
Adp oV + 1) ‘[ =e. (5.28)
Applying the explicit expression (5.26)) for the SO(3) simple tube, we have

§y X
E<V7 C) = exp(p(y, C)—>
1€ > g
Then, solving ([5.28) is equivalent to finding the real parameter p as a function of v and ¢
that satisfies

Since {&, ﬁ, u?ﬁiﬁ ”} is an orthogonal basis, this last equation is equivalent to

. K _
(sin(p) (v + p), ”M”> (€,&)-
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Therefore, if we denote by r the expression arcsin ((g i’;q“ I the equation
Ep X p Ep X
O(g,v;e) = (g exp ( ng A , €Xp ||§: ) (v+u) ) €SOB) xR (5.29)

defines a restricted SO(3)-tube.

5.3.4 Hamiltonian tube for SO(3) acting on T*R?

Consider the natural action of SO(3) on R? and its cotangent lift to T*R?®. Fix a point
z = (q,p) € T*R3. Note that, under the identification of s0(3) with R?, the momentum map
is u = J(q,p) = q¢ x p. We have four different possibilities

e p=gxp#0.

e g=0and p#0.

e ¢ # 0 and p = pq for some p € R.
e g=p=0.

The last three cases have momentum zero and therefore are covered by the Hamiltonian tube
of [Sch07]. However, the first case has non-zero momentum and to compute the Hamiltonian
tube we will need all the theory presented in this chapter.

p=gqgxp#0
As g # 0, the isotropy H := G is the group of rotations with axis ¢. The linear slice
S = (g-q)* = R-pis the subspace generated by ¢, and note that this subspace is fixed
by H. As p1 and ¢ are perpendicular, the groups H,, and G, are trivial. The linear
splitting of Proposition becomes

[(=R-q, n=R-(uxgq), g.=R-pn

Recall that o := z‘ g €57 (see Proposition ; therefore, using standard vector

calculus identities
_p- pXg

Lo=p :
- lal® lql?

Theorem together with the explicit expression for the restricted tube (5.29) give
that

G x gt x T*S — T*(SO(3) x 11 S) (5.30)
(9,v,a,b) — @(g,v + p,a,b+ )

is a Hamiltonian tube at (e, p, 0, ) € T*(SO(3) xg S). In this case the parameter
€ = a ¢o; b always vanishes because £ -a =0 for any £ e hand a € S.

Let S, :={pq | p>—1} C S. Themap t: GxyS, — R? defined by [g,a]g — ¢g-(q+a)
is a Palais’ tube around q. Composing ((5.30)) with 7*t~! and after some straightforward
manipulations the Hamiltonian tube at (¢, p) is

T: G xyq (g, x S x §) — R* x R* = T*R°

q+ta ow X q

(9,v,a,0) — 9%Q+®y'«V+MX-————+b+p————).
llg + alf? lql?
N——

«
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q=0, p#0
In this case H, = H = G = SO(3) is the full rotation group, the linear slice is S = R?
and o = p € R3. The isotropy K = G, of z is the group of rotations with axis p. Under
the identification s0(3) = R3, the Lie algebra g can be split into two terms

E=R-p, s=(p)" CR.

Note that B = (h, - a)* = (g-p)* = R-p, and if we choose C' = (p)* C S and
(B*), ={pp | p > —1} the map I" defined in Proposition is

p+0b

I'v;b) = —vx ———

(v;0) TEE

becauseis
b
CO0E- a0+ 8) = (v x P ey +5)
p+b
:‘<”XM+MW5X@+“>‘

= -, 8).
As H,-acts trivially on B, and by Remark , the cotangent Hamiltonian tube of
becomes
G Xk (8" x B x (B"),) — T*(SO(3) xs0(3) 5)
lg9,v,a,blk — o(g,v,a+T'(v;b),b+ a)
after some simplifications

T: G xg (55 x Bx (BY),) — R* xR =2 T"R?

p+0b
l9,v,a,b]x — (g. <a—yxw>’g.(p+b)>_

q#0, p=pq
Note that H = H, = K, and all equal the group of rotations with axis q. The linear
slice is S = R - ¢, and the adapted splitting of Proposition has only two terms

p:<Q>J—7 b,u:Rq

Let S, = {\q| A > —1}; the map t: G Xy S, — R? defined by [g,a]y — g+ (¢+a) is a
Palais’ tube around ¢. In this case, the I' map vanishes because s = 0. Therefore, the
cotangent Hamiltonian tube ([5.20) becomes

T:Gxpg(p* xS, x §*) — R x R* = T*R?

qg+a
Jv,a,blg — (g+a),g- +u) X — + b+ .
9.7.0. b <g<q D9 (4w x oo p)>

q=p=0
In this last case, H = K = G and the linear slice is S = R3?. Therefore, the cotangent
Hamiltonian tube ([5.20)) becomes the trivial map

T: G xg (S x8*) — R x R* 2 T*R?
lg,a,bl¢ — (a,b).
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Chapter 6

Cotangent-bundle reduction

In this chapter we study topological and geometric properties of the quotient space I~ (1) /G,
of a cotangent-lifted action on T%(Q).

As a first step in this study we check that one of the tubes constructed in the previous
chapter contains in its image the set 775(U) N J~(u), where U is an open set of Q). This
result can be understood as a fibered Bates-Lerman lemma. Using this fibered description,
we introduce in Proposition [6.3.1] a set of coordinates on @ and 7*@) with nice properties
with respect to G, and J~!(u). This set of adapted coordinates is the key result that allows
us to control the local behavior of the projection 7 in the MGS model.

In Section we study the single orbit case () = Q1) and show that the projection
of orbit types of J7'(u) C T*Q are submanifolds of Q). Alternatively, we describe those
projections as certain manifolds of the form L(H, u) - Qp.

In Section we discuss the general case @ # Q). We check that the sets L(H, ;1) - Qp
induce a stratification of Q* = 7(J~!(u)) and of Q*/G,. Using these objects, in Section
we define a partition of J™*(1)/G,, into submanifolds with good properties with respect
to the projection T*@Q) — ) and with respect to the induced symplectic structure. This
partition is finer than the orbit-type stratification of J~*(u)/G,, of Theorem . This
partition is a generalization of the one introduced in [PROSDO07] for momentum zero. As in
that work, we call the elements of that partition seams.

After studying some topological properties of some particular cases in Section [6.7], in
Section we study the symplectic properties of the seams. We show that each seam is
endowed with a closed two-form of constant rank (Proposition and each seam has a
subimmersion to a magnetic cotangent bundle. More importantly, the partition of J~* (1)
has a maximal element which is open and dense (Theorem , and in fact this maximal
element can be embedded into a magnetic cotangent bundle. As a corollary of this study we
have obtained in Corollary a very clean description of the isotropy lattice of J=1 (1)
that generalizes the results of [RO06| and can be regarded as the analogue of the first part

of Theorem for p # 0.

Finally, in Section we present some examples that show how the results of this chapter
can be applied to specific situations.

Throughout this chapter we will use the following notation: ) is a smooth manifold acted
properly by the Lie group G; T*(@ is a symplectic manifold with the canonical symplectic
form w; 7: T*Q) — @ is the natural projection; T*(Q is endowed with the cotangent-lifted
action with momentum map J: T*Q — g* given by (L.7). We fix 1 € g* and we denote by
Q" the set 7(J71(u)).

69
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6.1 Generalities about Q"

One of the crucial differences between regular and singular cotangent-lifted actions is that, in

the singular case, the projection of J™1(u) is not the whole base manifold Q. In other words,

Q" = 7(J71(u)) is a proper subset of ) and in many cases this set is not even a manifold.
Nevertheless, the set Q* has an simple algebraic characterization.

Lemma 6.1.1. ([Sch01;|RO04]) Let q € Q, there exists an element z € T;Q with J(2) = p
if and only if
g, = Lie(G,) C Kerp C g.

Proof. If z € T;Q is such that J(z) = u, then if £ € g,

(1,6) = (J(2), &) = (2,£0(q)) = 0.

Hence, g, is annihilated by px.
Fix a splitting 7,Q = (g - ¢) & S. Conversely, if y annihilates g, we can define z € ;,Q
by
(2,09) = (1,§) vy =Eqlg) +we(g-q)®S.
This is well defined because if £5(q) = ng(¢q) then £ —n € g, and we have assumed that p
annihilates g,. O

This lemma implies
Qr = U G- Qu
Lie(H)CKer p
where H runs through all the possible isotropy subgroups of ). Although one may think that
the sets G, - Qu are a good partition of Q*, the pieces of this partition are too small. We
will see in Section an example for which the partition J ., . G- Qu is not locally
finite. This observation suggests that we need to construct bigger sets to decompose (in the

sense of Definition [3.1.1]) Q*.

6.2 A fibered Bates-Lerman Lemma

Recall that, in some cases, we saw that the domain of the cotangent bundle Hamiltonian
tube is unbounded in the S* direction (see Theorem [5.2.2)). An important consequence of
this fact is that, for cotangent-lifted actions, the open neighborhood U,; in Bates-Lerman
Lemma (Proposition can be global in the vertical direction. In other words, it will be
of the form 771 (Ug) where 7: T*Q — @Q is the natural projection and U is a neighborhood
in Q. In particular, this implies that the set 77! (Ug) NJ ' (x) is fully contained on the image
of a certain Hamiltonian tube.

Proposition 6.2.1. Consider the Hamiltonian tube To: G x g, (b x 0, x (T*5),) = T*(G xq
S) of Theorem at the point p(e,p,0,0) € T*(G xg S). There is a G,-invariant
neighborhood Ug of [e,0ly € G xpg S such that

7 Ug) NI () = To(2) (6.1)
where

1
Z =A{lg,v, N\ a,bly, € (IO_I(T_I(UQ)) lge G, v=0, 5/\ oy, adyp + a oy, b = 0}.
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Proof. As in the previous chapter, Ny = 0 x T*S will be the symplectic slice at (e, i1,0,0)
with the symplectic form . The Hamiltonian tube puts the momentum map J in the
normal form , that is J o Ty = Jy. We now proceed as in the proof of Proposition
in [BL97| and we factorize Jy = v o §, with

ﬂ:GxHu(p*xNo)—>G><H#g;, fy:GxHug;—>g*
l9, v, 0], — [g,v + I, ()] l9,V]H, — Adg- (p+v).

Using this factorization, it is easy to describe J ;1 (). Note that, since the map

ﬂe,O}HH’y : (57 V) = _adZILL +v

is surjective, v is a submersion near [e,0]g,, but by G-equivariance there is a G-invariant
open set Usyom C G X g, g* where v is a submersion. Therefore, v~ () N Ugupm 18 a manifold
of dimension dim G,, — dim H,,. Hence, G, xp, {0} C v~ (), G, x g, {0} must be an open
submanifold of y~!(u) N U, that is, there is an open set Upy, C Usybm With G, X, {0} =
v~ (w) N Upr. By equivariance of 7, we can assume that Uy, is G ,-invariant. Applying 57
on the equality G, x g, {0} =~~"(1) N UpL, we get

{lg,0, 0], € G xm, (p" x No) | Iy (v) = 0} = Iy () N B~ (Upw). (6.2)
In this setting, let Ug be a G} x H}-invariant neighborhood of e € G, p§ C p*, 09 C 0
H ,-invariant neighborhoods of zero and hj C h* an H-invariant neighborhood of zero such
that
{[g,V,A,CL,b]HM | g S UGv IS PSa A S 0o, (l<>h b € [JS}
C (G xp, (pi x 0, x (T*S),)) N B~ (Ugt).
Now let ® be the restricted tube used in the definition of Ty (see Theorem |5.2.2)) and
consider the map
f:Ug % pgy x 09 x by — T*G/H"
1 *
(g,v, A\, p) — mr(P(g, v + 5/\ oy, adyp + p‘hu , /\,p‘[)).

Note the similarity between this expression and (5.16). However, f does not depend on
T*S. We claim that this map is a submersion at (e,0,0,0). Using (5.9)) if v = (¢, 7, \,€) €
Tie,0,0,0)(G % g, X0 X ),

Te000P-v=({+ Ao7l(e), v —é+ ad} )
where o: n — [* is the linear isomorphism (4.5). Applying this result to f, we get

T(e,O,O,O)f : (57 D? /'\7 p) = T(e,,u)ﬂ_HT : (5 + )\ + J_l(p‘[)> v+ ad::u + p) (63)

However, since the splitting of Proposition induces the dual decomposition g* = by, ©
p* ®o* ® " & n*, each element of g* can be expressed as p\hu + v +adjp + ,O\[ + ad, p for
some p € b*, v € p*, A € 0* and n € h. Finally, Ker(T(c,ymur) = {(n,ad;p) [ 7 € b} and
imply that T(c0,0,0)/f is a surjective linear map.

Since f is G-equivariant, f is a submersion on a neighborhood of G - (e, 0,0, 0), and since
submersions are open maps the image of f contains an open neighborhood of G - [e, u]y.
Hence, there must exist a neighborhood Uy of i1 € g* such that

(G X Up) C f(Ug X p5 x 09 X bp). (6.4)
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Define Us = {9 € Us | Adyp € Uy} N{g € Ug | Adyp|, € by}, which is an open
neighborhood of e € G and let Uy = Ug x i S, which is an open nelghborhood of [e,0]y € Q.
We will now check that U satisfies (6.1]).

P Ug) NI (1) S To(2),

This inclusion is trivial because if [¢,0, A, a,blg, € Z, then To([g,0, X, a,b]n,) € 77 (Ug)
and (JoTo)([g9,0, A, a,0]m,) = Iy ([g9,0, X, a,b]m,) = Adj-1 (u+Jn, (N, a,0)) = d =
L.

o 71 (Uy) NI\ (p) C To(2).

Let z € 71 (Ug) NI (). Using the cotangent reduction map ¢ (see (5.13))), there is
an element (g,v,a,b) such that w(g, v,a,b) = z, but as 7(2) € Ug then g € Ug. Since
o(g,v,a,b) € I (), using (2.4) we have Ady-1v = p. Additionally, as (g,v,a,b) €

J - (0), then V‘h = a oy b. Usmg v=Adp thls implies the relation (Adju) ‘h = a oy b.

As g € Ug, using the definition of Ug we have (g, Adju) € G x Uy-. Equation (6.4)
implies that there is a point (¢', 1/, A, p) € Ug x p§ X 09 X b such that f(¢', v/, A, p) =
[9, Adjp]p. Therefore, there is h € H such that

(gh™", Adj- Adjp) = O(g', V' + A% adjp+ pf, . pl,)- (6.5)

Moreover, using (5.7) and (5.12) it can be checked that the H!-momentum of a re-
stricted G-tube is Jyr(P(g,v, A €)) = —V‘ + 2\ oy, adju. Therefore, taking the
In hp‘ 2 K

Hg-momentum on the previous equation
—(Adj,-1Adjp) ‘bu = —5)\ oy, ady i — p‘hu + 5)\ op, adyp = —p by

Now, using item 4. in Definition we have that HT-momentum restricted to [* C g*
in ((6.5)) becomes the equality

—(Adj AL )| = —p],.

In other words, (Adz_lAd;u)‘h = p, but as Ad;u‘h = u‘b = a o b, it follows that
p=Ad;_1(aoyb) = (h-a)oy (h-b), and therefore,

1
~Xop, ad§u+p\b A (h-a)o (h-b);h-a,h-b)

‘:TO([g/a I//a )\a h - a, h - b]H;) = @((D(g/a I// + 5

Ap|sheah-b)

1 .
P(®(g, V' + Aoy, adip+pl,
o(gh™', Ad;- 1Adgye, ho-a,h-b)
¥

(gaAdgluaa7b)_ (g,l/,@,b).

Finally, as g € Ug, Ad*,u‘h € b§ and b is H-invariant, then (h - a) oy (h-b) =
Adj -1 (Adgpf,) € bg. This observation implies that (¢', v/, X', h-a, h-b) € WHH</B Y(Ugy)).
Using the characterization (6.2)), v/ =0, g € G, and Jn,(N,h-a,h-b) = 0, that is
9,0, N, h-a,h-bly, € Z, as we wanted to show.

]
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6.3 Induced fibered coordinates

We can combine the results of Theorem and Proposition to form a set of fibered

coordinates in the sense given by the following result.

Proposition 6.3.1. Fiz ¢ € Q" C Q) and define H = G,.

Letg=b,op@odldn and ®: G x Up — TG be the adapted splitting and restricted
tube of (G, H, 1) given by Proposition |4.2.1] and|5.1.6, Let t: G xg S — @ be a Palais’ tube
around q.

In this setting there are H,-invariant neighborhoods of zero o, C o, p; C p*; H-invariant
neighborhoods of zero by C b, S, C S and a G ,-invariant neighborhood Ug > q such that

1. Denote Im = b NI[*, the map
U: Gy xp, (0, x[FxS,) —Q (6.6)
9.\, €,a]p, — 7'<T*’(1 (go(q)(g, 0,\;¢),a, 0)))
is a well-defined G ,-equivariant diffeomorphism onto an open neighborhood of g € Q).
2. Let (T*S), ={(a,b) € T*S |a € S,, aoyb e b’} the map
To: G xu, (pF x 0, x (I"S),) — T*Q (6.7)
l9,v, A a, by, — Tt (gp((I)(g, U, \;aob);a, b))

with = v+ X oy, adjp + a <y, b is a Hamiltonian tube that satisfies

7(To([e,0,0,0,0]x,) = q.
3. Define
1
Z ={lg,v,\ a,blu, € T (17 (Ug)) | g € Gy, v =0, 57 %n, adip+a oy, b =0},

then,

7 (Uq) NI~ (1) = To(2) (6.8)
and since T 1is surjective, Ug N Q* = 7(To(Z)).
Moreover, if [g,v, A, a,blg, € Z then [g,\,a o by, € G, Xg, (or X [ x ST) and

7(To([g, v, A, a,b]m,)) = ¥([g, A\, a o b,alm,) (6.9)

Proof. Theorem at p(e, 1, 0, ) gives the neighborhoods p¥ C p*, 05 C 0, h* C h* and a

map
To: G Xy, ps x 0, X (T"S)y — T*(G xpg 5)
[9, v, X 0, 0], — o(®(g, 7, A;a o b); a,b)

where 7 = v 4 3A oy, adyp 4+ a <y, b and (T*S), = {(a,b) € S x S* | a oy b € b%}.
Besides, the linearization of ¥ at [e,0,0,0]y, can be easily computed because (5.9)) gives
the linearization of ®. Therefore,

Tie,0,0,000, ¥ - T(e,000)TH,, - (57 A€, a) = T[Z,o]Ht_l Teoymm - (€ + A+ o' (e);a) € T,Q.
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Note that KerTi.oyrg = {(£,0) | £ € b} but then Tie0,0,0, ¥ is injective, because if
Te,0,00)TH, - (f, )\,5’, a) € Ker T'[e,O,O,O]HH\I/ then & + A+ o l(é)ebhbutas € h, DI, NeEo

and 07!(¢) € n we must have £ € b, therefore T 00,0)7n, - (€, N\, €,a) =0.
Additionally,

dim Gy, xg, (05 x [[ x S;) = dim G, + dim o + dim [ 4 dim S — dim H,
=dimb, + dimp + dimo + dim [+ dim S — dim b,
=dimg —dimbh+ dim S = dim Q

that is, ¥ is a mapping between spaces of the same dimension, so it is a local diffeomorphism
near [e,0,0,0]g, .

As V is G-equivariant and the action is proper using the same ideas as in the proof
Theorem [2.1.4] we can conclude that there are H,-invariant neighborhoods of zero o, [, S,
small enough so that ¥ restricted to G, xg, (0, x [¥ x S,) is a diffeomorphism and o, C oy,
[* C b NI*. Moreover, we can assume that there is h’ C hI an H-invariant neighborhood of
zero in h* such that b N [* = [*. Note that we have already checked that the first and the
second claim of the Proposition are satisfied.

It remains to check the third claim. Recall that Proposition [6.2.1] gives a neighborhood
U satistying the relation ; instead we will consider the open neighborhood

Ug =Ug N (10T0) (G xp, (pi % 0, x ((T"S), N (S, x 5)))) .

Proposition gives 771 (Ug) N I () = To(Z). Hence, as T is surjective, Ug N Q =
7(To(2)).

Consider now a point [g, v, A, a, by, € Z, by definition of Z, A € 0,, a € S, and aoyb € b,,
thus, [g,\,ao1b,aly, € G, X, (oT XI5 x S,,). Moreover, using (6.7]), the definition of Z and

T<TO([97 v, >\7 a, b]H;L)) = T(QO(@(Q,;, )‘7 a o b)7 a, b) T(()O((I)(g, 07 >\7 a o b)7 a, b)
= T((')O((I)<ga Oa )\7 a <y b)a a, 0) = \Ij([ga )\a a Oy b> a]H;))

as we wanted to show. O

Fix a point ¢ € Q*; this proposition gives a diagram

G xm, (95 x 0. x (T*9),) — T 7
Gy X, (0, x [XxS;) v Q

where the maps satisfy ¢ = 7(T([e, 0,0,0,0]g,)) = ¥([e,0,0,0]g,). Moreover, if we restrict
the previous maps to the appropriate subsets, we have the following commutative diagram

7 D Y U) NI () ————— T*Q

lpr | |

UH(Ug) = Uq Q

where

pr([g,0, X, a,blm,) = [g, A\, aorb,alm,.
The importance of this set of coordinates (To, ¥) for T*@Q and @ is that, when restricted to
J~1(u), they provide a simple expression for the cotangent bundle projection 7.
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6.4 Decomposition of ()": single orbit-type

Throughout this section we will assume that the base ) of the cotangent bundle T%Q) — @
has only one orbit type, that is, @ = Q) for some subgroup L C G. The first important
consequence of this assumption is that for any point ¢ € () and any linear slice S at ¢ the
action of Gy on § is trivial. This follows from the G-equivariant diffeomorphism

t: G xg, S —Q

because the set of points in G x¢, S with isotropy in (G,) is G x¢, S (Proposition .
Hence, S = S%, and all the points in S are fixed by the whole isotropy subgroup G,.

Similarly, the condition @ = Q(r) implies that the isotropy type of points of 7@ with
momentum g depends only on its projection on (), more precisely,

Proposition 6.4.1. Assume Q = Q). If z € J7*(u) C T*Q, then

G, = GT(Z) N GM.

Proof. Define ¢ = 7(z) and consider a tube on @) centered at ¢: t: G xg, S — @ with
t([e,0]g,) = ¢. The cotangent lift T*t': T*(G x¢, S) — T*Q is also a diffeomorphism.
Using the map ¢ (see Theorem [1.5.1)), there exists a € S* such that z = ¢(e, p,0,a) and
G. = G, NG, N (Gy)a, but as the action of G, on S is trivial (G4)e = G, and then
G, =G, NG,

]

Recall that in singular cotangent-lifted actions, @* = 7(J~!(u)) in general is not even a
manifold. The following results shows that under single orbit-type assumption the projection
Q" is a locally closed subset of ) and the projections of the orbit types of J71(u) are disjoint
unions of embedded submanifolds of () (embedded »-submanifolds using the language of

Definition [3.2.5).
Proposition 6.4.2. Assume QQ = Q(r, then
o Q" is a locally closed subset of Q.
o Let 2o € T*Q, with J(z) = p, (G - (I (p))a.,) C Q is an embedded X-submanifold
of Q.

Proof. o Let ¢ € Q" and define H = (. Proposition at g gives maps Jp, ¥ and an
open set Ug > q.

By the third part of Proposition [6.3.1, Uy N Q" = 7(To(Z)), where
1
Z ={lg, v, \,a,0m, € Tg (771 (Ug)) | g € Gy v =10, 57 on, adyp =0},

because as S = S then aoyb = 0 for any a,b. Define W := {[g, A\, e,a]p, € V" (Up) |
Aoy, adjpu =0, € = 0} we will check that

7(Jo(2)) = ¥ (W), (6.10)

— If [g,v, A, a,b]g, € Z then, using (6.9), 7(To([g, v, A, a,b]u,)) = ¥([g, A, 0,a]n,) C
Ug and it follows 7(T(Z)) C U(W).
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— Conversely, if [g,\,0,a]g, € W then [g,0,),a,0]y, € Z; therefore 7(Ty(Z)) =

Since W is a locally closed set and ¥ is a diffeomorphism, U(W) = Uy N Q" is a locally
closed. As this argument can be applied at each ¢ € R, it implies that R is a locally
closed set of Q).

e Let ¢ € (G- (J7'(1))a., ), choose z € G, - (J7'(p))a,, such that 7(z) = ¢. Define
G, = H, using Proposition G. = H,, which implies that G, - (J7'(1))c., =

G- (J7Y(w))u,. Using Proposition m, there are the maps Ty, ¥ and the open set
U, >q.
Using again the third part of Proposition [6.3.1] G-equivariance of T, and Proposition
Bz B B ]

T (Ug) NGy I (W)n, = To(Z)
where Z = {[g,1, )\, q, b, € To'(t7(Uq)) | g € G, v =0, XA € offv}. Define
W ={lg,\ e,alu, € V" (Ug) | A € 0™#, e = 0}, then by similar arguments as in the

previous part 7(To(Z)) = W(W).

As this argument can be applied at any ¢ € 7(G, - (J7'(1))g.,) this implies that
7(Gp - (71 ()., ) is an embedded Y-submanifold, because locally around each point
7(Gy - (J7'(1))e.,) is a manifold but the different connected components of 7(G,, -
(J7'(1))c.,) can have different dimensions.

[

6.4.1 Algebraic characterization

In this section we give an alternative description of the sets 7(G,,-(J 7' (1)) k) as the translation
by a certain subset of GG of the isotropy type manifolds ()5 of the base.

Definition 6.4.3. If H is a Lie subgroup of the Lie group G and p € g*, we define the
following subset of G:

L(H,p) ={g9 € G| Adjp € b° and 3h € G, such that (gHg " YNG, = hH,h'}.

This set is in fact a 3-submanifold of the group G and has some invariance properties.
Proposition 6.4.4. Let H be a closed subgroup of G and j € g*.

o The subset L(H,p) C G is G-invariant by the left action and Ng(H )-invariant under
the right action.

e L(H, ) is an embedded 3-submanifold of G (possibly empty).

Proof. o Let g € L(Gy,p) and ¢’ € Gy, then, Ad), p = AdjAdy, = Adju € h°. Besides,
(g9 H(g'9) " )NGy =g ((9Hg " )NG,) g ™", but as g € L(Gy, p) there is h € G, such
that ¢'((¢Hg™) N G,)g' ™" = ¢'(hH,h7)g'™" = (¢'h)H,(g'h)~". But since g'h € G,,,
then, ¢'g € L(H, p).
Consider now g € L(H,u) and ¢ € Ng(H), then (Ady,u,&) = (AdyAdu,§) =
(Adypu, Ady€). However, if § € b then Ady¢ € b and this shows that Ad ,u € h°. Also,
((99")H(99) ™) NG, = (9(¢Hg ™ )g™) NG, = (9Hg ") NG, = hH,h™" for some
h € G, because g € L(H, pt), thus g¢’ € L(H, i).
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e Consider the manifold G/H endowed with the natural G-action by multiplication on
the left and its cotangent bundle 7*(G/H) with the cotangent lifted G-action. Denote
by J: T*(G/H) — ¢g*, 7: T*(G/H) — G/H and 7y : G — G/H the momentum map
and the natural projections. We will show that L(H, u) = 75" (7(G,. - (37 () m,.))-

— Let g € L(H, p1), then the isotropy subgroup of the point gH € G/H is gHg™!
and by Lemma gH € 7(J7'(u)) if and only if Lie(gH) C Ker(u), but
Lie(gH) = Ad,bh. However, this is the first condition on the definition of L(H, p),
so there is z € J™*(u) € T*(G/H) projecting on the point gH € G/H, using
Proposition , G.=G,» NG, =(gHg " )NG,) = hH,h™' € (H,)%", that is,
2 € G, (I (1), We can conclude L(H, ) C 75" (7(G, - (37 (1)m,))-

— Conversely, let z € G, - (J7'(u)n, and g € 7' (7(2)), that is, gH = 7(2).
By Lemma Ker(p) D Lie(gH) = Adgh, and by Proposition [0.4.1] G, =
(gHg™ ') NG, € (H,)%. Therefore ¢ € L(H,p) and we have the equality

L(H, p) =y (7(G- (37 (1))m,.))-

Using the second part of Proposition and that 7y is a submersion, it follows that
L(H, ) is an embedded Y-submanifold.
O

Assume e € L(H, ;) and let g = b, & p P 0 S [ @ n be an adapted Lie-algebra splitting
(Proposition . Using the proof of the second part of Proposition and the proof
of Proposition [6.4.2] it follows that the connected component of 7y (L(H, ;1)) through H is
diffeomorphic to G, x g, 0+, Hence, the dimension of the connected of L(H, ;1) that contains
e is equal to

dim b + dim p + dim (0**) .

However, the key property of the set L(H, ) is that it characterizes 7(G,, - (J7' (1)) m,.)
as the set of translates of Qy through L(H, u) C G.

Proposition 6.4.5. Let H be a Lie subgroup of G' and p € g*. Assume QQ = Q(r), then

(G- (37 (1W)m,) = L(H, 1) - Qu
Moreover, if g € L(H, ) - Qu then L(H, 1) - Qu = L(Gy, 1) - Qa,-

Proof. Consider ¢’ € 7(G, - (J7'(1))n,); as @ = Qr) there must be g € G such that
G, = gHg™'. Hence by Lemma , Ker i O Lie(Gy) = Adyh. Consider now a point
2 e 7 H¢) N (G- (I7Y(1)n,), using Proposition [6.4.1] G. = (gHg™') N G, but then
G. € (H,)%. We have proved that g € L(H, u), but then ¢/ = g - (¢7'¢') € L(H, 1) - Qp.

The converse inclusion is analogous; let g - ¢’ € L(H, i) - Qg by the first condition on
L(H,p) and Lemma g-q¢ € 7(J7Y(u)). Then, by Proposition , for any 2 €
7 Hg-¢)NJI Y (n) then G, = (gHg™') NG, € (H,)®". Therefore we have the equality
L(H, 1) - Qi = (G- (3~ (1))

Consider now ¢ € L(H,pn) - Qg = 7(G, - (I (w))u,); take z € 771(q) NI~ (p), by
Proposition G. =G,NG, € (H,), thus, G, - (I w)u, = Gu- (T (1)a,ne,-
Applying the first part to the subgroup G,

L(H, p) = 7(Gu- (3 (1)n,) = 7(Gu - (T (1))a,n6,.) = L(Go, 1)

as we wanted to show.
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6.4.2 Decomposition of Q)"

We will combine the fact that the connected components of the sets G, - (J7! (1)) form a
decomposition of J~!(u) (Theorem [3.3.1) with the results of this section to check that the
connected components of the sets 7(G,, - (J7*(1)) k) form a decomposition of @ (Definition

3.1.1).
Proposition 6.4.6. Assume QQ = Q(r, define

Zow ={G,-Z| Z is a connected component of L(H, 1) - Qu where H € (L)}.

The pair (Q", Zgn) is a decomposed space where Q* = 7(J (1)) is endowed with the relative
topology as a subset of Q).

Proof. For any subgroup H C G we denote QFH] =L(H,p) Qg.

1. The pieces cover ()" and are disjoint
Let ¢ € Q", then e € L(Gy,p) and ¢ € Qq,, s0 q € Qqu}. Conversely, let ¢ €
Q1) N Qlyy sing Proposition A5, L(H 1) - @, = LGy t) Qai, = L(Ha. p) - Q.
that is, Qle] = QfHﬂ.

2. Each piece is locally closed as a subset of * and has a manifold structure
compatible with the induced topology

This follows from the equality Qﬁq] = 7(G, - (J7'(w))u,) of Proposition and
Proposition [6.4.2]

3. The partition is locally finite

Let z € J7'(p) and W be the connected component of G, - (J~*(u))e, which contains
z. Consider w € 771(7(2)) NI~ (p)); the path v: ¢t — tz + (1 — t)w connects z and w
and satisfies J(y(t)) = p and 7(y(t)) = q. Proposition implies G,y = G, for all
t. Hence w € W, that is

P (2) NI €W C G- (T (1))

z

(6.11)

Let ¢ € Q" and take z € 77'(¢) N J7'(x). Theorem states that the connected
components of the orbit types in J7(u) form a decomposition of J=!(u). In particular,
there is an open neighborhood U C T*Q of z and finite set of points {z1,...zy}
such that if TW; is the connected component of through z; of G, - (J7'(u))q., then

I (w)NU c UX, W;. But (6.11) implies a stronger condition

I ) nr () clw

i=1
Applying 7 to this inclusion,
Q'Nr(U) C| J7(W;),
i=1

but 7(W;) is a connected component of the set Qf‘G L As g € 7(U), this implies that
the partition of Q" given by Zgu is locally finite. Z
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4. The partition satisfies the frontier condition

Consider a point g € Qﬁq] ﬂQf 1 This means that there is a sequence {¢, },en converging
to g with each element in Qf‘ 1

Assume I = Gg; the use of Proposition [6.3.1] provides us with diffeomorphisms ¥, T,
and an open set Uy containing ¢ satisfying the properties stated in that proposition.

In particular, there is N > 0 big enough such that ¢, € Ug for any n > N. Using
the characterization of , for each n > N, there are g,, \,, a, such that ¢, =
U([gn, An, 0, anlm, ).

Consider for any n > N, z, = T([gs, 0, An, an, 0], ). Using (6.8)), z, € J7'(x) and in

fact by Proposition zn € Gy - (J7H (1)), Note that, since ¢, — ¢, {2, }nen is a
sequence that converges to zo = T([e,0,0,0,0]5,) € G, - (I (1)) - Hence

20 € Gy (37 (10)) 1, N G (1 ())o.

Let W be the connected component of Gy, - (J7(x))n, through z.. As the connected
components of the isotropy types of J™'(u) form a decomposition (Theorem [3.3.1)),
W G, (37 (), Applying 7,

(W) C (G- (I (1)r,) € 7(Gp- (I (1))r,) = Q-

Since 7(W) is the connected component of Qf #) through g, this implies that (Q*, Zgu)
satisfies the frontier condition.

O

6.5 Decomposition of ()/: general case

In the general case, when @) # Q(r), and motivated by the results of the preceding section,
we study the partition of @* into sets of the form L(H, u) - Qg. We check that these sets
are X-submanifolds of Q" inducing a stratification of Q* and their G,-quotients induce a
stratification of Q*/G,,.

From now on, for any compact subgroup H we write QfH} to represent the set

Qlyy = L(H, 1) - Q.

Note that if there is no g € G such that Lie(gHg ") lies in Ker y, then QfH] = () because
L(H,p) = 0, and if H is not an isotropy subgroup of @ then Qﬁ‘I] = (). From the single
orbit results, we can easily compute under which conditions two subgroups H and L satisfy

B
[H] — *[L]
Lemma 6.5.1.

o Ifqe Q" =T1(I""(n), then q € Qg -
o If QU NQ #0, then

— (H) = (L), that is, there is g € G such that L = gHg™".
— (H,)% = (L)%, that is, there is k € G, such that L, = kH, k™'
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fH] &]’ moreover, if q € Q’ﬁ N Q oL ﬁq] FL]'

Conversely if H, L are subgroups such that (H) = (L) and (H,)%* = (L,)%, then
p p
[H] — <L)
o If Qﬁq] ﬂ% # 0, then (H) > (L) and (H,)%» > (L,)%, that is, there are g € G and
k€ G, such that gHg~' D L and kH,k™* D L,.

Proof. Let g € Q" from Lemma 1 € (gq)°, but then from Definition eec L(G,, p),
and clearly ¢ € L(Gy, pt) - Qc, = Qfgq].

If ¢ € Q[ QL], then ¢ = g1 - q1 = g2 - o with ¢4 € Qy and ¢ € @, but then
g Hg ' = g2L92 "and clearly (H) = (L). As the X-submanifold Q) = Q) is of single-
orbit type, we can apply Proposition and get

L(Gg, ) - Qg, = L(H, p) - Qu = L(L, n) - Qr

and then Qf&q] = ’[}ﬂ ’[‘L}, and there must be k; and ky both in G, such that G, NG, =
kiH, kit = koL, ky " implying (H,)%* = (L,)%".

Conversely, if (H) = (L) and (H,)% = (L,)%, there are g € G and k € G, such that
H =gLg ' and H, = kL,k™". Then, from Definition m

L(L,p) ={¢ € G| Adyp € Lie(L)°, (¢'L(g)") NG, € (L)%}
={¢ € G| Adyp € (Ad,1Lie(H))*, (d'g 'Lg(¢)"") NG, € (H,)"}
= {4 € G| Ad;1Adyp € Lie(H)°,  (¢'g ' Lg(¢')" ) NG, € (H,)""}
={9 €G|dg" €L(H, )} =L(H, p)g.

Therefore,
L(L,p)-Qr=L(H,p) (9-Qr) =L(H,p) - Qn

as we wanted to show. O

Before studying further properties of the sets QFH}, we need to introduce some notation:

let () be a smooth manifold and S C @ a submanifold. Ts() will be the set TT_Clg(S ) where
rg: T'QQ — @ is the canonical projection, that is, T is a vector bundle over S of rank
dim Q. Similarly, T4Q is the set 771(S) where 7: T*Q — @, a vector bundle over S of rank
dim Q). TS is the subset of T of vectors tangent to S; it can be identified with the tangent
bundle 7'S. The annihilator of TS in T§() is the conormal bundle N*S C T5Q).

If @ has a Riemmannian metric, NS C T'QQ will be the normal bundle of S, the vector
bundle over S whose fiber at ¢ € S is given by N,S = (7,S)*. Similarly, T4S will be
the annihilator of NS in T§(Q). Note that, as vector bundles, we have the decompositions
TsQ =TS g NS and T5Q =T5S g N*S where @ represents the Whitney sum of vector
bundles.

Using this notation, we can state the result analogous to Proposition [6.4.5 but without
the assumption ) = Q1.

Proposition 6.5.2. Let g € Q*, and choose a G-invariant metric on @, then,

o if 2z € J N (u) with 7(2) = q and z € Té(c )Q(Gq), then the isotropy satisfies
q

G.=G,NG,
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o define G, = H, then

L(H, 1) - Qu = 7(Cu - (37 (), N T, Q). (6.12)

Proof. e Define S = (g - q)*, where the orthogonal is taken with respect to the metric
(-, )q in T,Q, denote H = G,. By Theorem , the map: t: G xyg S — U C Q,
lg,a]g — g - Exp(a) is a G-equivariant diffeomorphism onto an open neighborhood U
of ¢ such that t([e,0]s) = ¢. The cotangent lift T*t~*: T*(G xx S) — T;Q C T*Q
is a G-equivariant symplectomorphism.

Using Proposition the submanifold of (H)-isotropy type is given by
t_l(Q(H) NU) =G xyzg SH.
With this characterization it is clear that
T,Qm) = Tet - Tieymar - {(&v) | £ € g, v e ST},

where 7g: G xS — G xy S.

The vector subspace S is H-invariant and can be orthogonally split as S = S% @ W
where W := (S#)+. But then, if w € W, £ € g and v € S¥

{(w, 8o(q) + v = (W, &) g + (w, v)g = (w,v))g =0
because S = (g - ¢)- and W = (SH)L. This implies
NeQ) D Teit - Tteyma - {(0,w) [ w € W
However,

dim(N, Q) = dim(Q) — dim(7,Qm))
= dim(G x ) — dim(H) — (dim(G) + dim(S*) — dim(H))
= dim(S) — dim(S¥) = dim(W).

Hence,
NqQ(H) = T[eyo]t . T(e,())T"H . {(O,w) | weW C TqQ}.

This implies that
(T3, Qun) N7 (0) = (N,Q)° = T, 67 - {iple,,0,5) | b W° € °, v € g')
If we further impose momentum

T7Qum N I (p) = 1 t™1 - {p(e,1,0,0) | b e W° C S*}.

e,0lm
Let z = T[’;’O]Ht_1 - (e, 1,0,0) € T;Qey NI~ (p); this point has G-isotropy is G, =
G, N Hy. Using the metric W° C S* is identified with S¥ C S, and as the metric is
H-invariant, W is a subspace of H-fixed vectors. Hence, H, = H and G, = H N G,
as we wanted to show.
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o Let g € L(H, 1) - Qp; as the manifold Q) satisfies single-orbit type condition, we can
apply Proposition , which in particular shows that there is z € T, Q) C T*Qm)
with Jg ., (2) = p and G. € (H,)%. But as we can G-equivariantly identify T*Q s
with Té(H)Q(H), there is 2 € T*Q with 7(2) = ¢, J(2) = p and G; = H,,. Hence, we
have proved the inclusion L(H, i) - Qg C 7(G,, - (I () m, N Té(H)Q(H)).

The second inclusion follows from the same argument; if z € G- (I~ () m,, NI, Q)
then we can associate z € T"Q) ), and using Proposition there is ¢ € L(H, u) -
Qu C Qm) such that 7q , () = ¢, but then 7(z) = ¢. Therefore,

L(H. 1) - Qu = 7(Cyu- (7 (1), N TS, Qun).

as we wanted to show.
O

We will now construct a G-invariant metric in the twisted product ) = G x gy S such that
the cotangent bundles of the isotropy type submanifolds of T*(G x g S) are simpler when
viewed as submanifolds of the symplectic reduction of 7*(G x ).

Lemma 6.5.3. There is a G-invariant metric on Q = G xg S and an H-invariant metric
on S such that the following property is satisfied:
Let g € G xyu S, if ¢(g,v,a,b) € T;(G xpu S) then

o(g,v,a,b) € Té@q)Q(Gq) < (a,b) € Tg(cq)H Sy CT*S

Proof. As H is a compact group, we can assume that g has an Adg-invariant metric and
{(,)s is an H-invariant metric on S. These two objects give a GF x H”-invariant metric on
G x S. As this metric is H”-invariant, the quotient G' x5 S has a quotient Riemmannian
metric. The projection mg: G x S — G xg S is a Riemmannian submersion, that is, for
any (g,a) € G x S the map T(gﬁa)WH‘(KerTma)nH)L : (Ker Tigoymr)t = Tiga)u (G xp S) is an
isometry.

Note that the kernel of the H”-projection is given by
Ker Tigayma = {(=¢,6-a) | £ € b}
Using Proposition , (G xu S)xy=G xu (S(H)K). If [g,a]n € (G X S)(k), then
Tig.a)u (G x )y = {Tgaymu(§w) [ £ € g, w € TuS(x),, }
Besides, as S(k), is invariant with respect to the H-action, § - a € T,S), for any
a € Sk, and £ € h. This implies that if w € NyS(k),, then (w,§ - a))s = 0 for any £ € b.

Therefore, if w € N,S(k),, then the vector (0, w) € T, (G % S) in fact lies in (Ker Ty o7 )*
If we NaS(K)H, Eegandwv e TaS(K)H, then

<<(07 ’U)), (57 U)>>(g,a) = <<'U}, U»S =0.
Hence, T(g.0)7r(0,w) € Nigq, (G x S) (k). Therefore,

N[gﬂ}H(G X S)(K) D {T(g7a)7TH(0,w) | w € NaS(K)H},
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but

dim(Nyg,a],, (G X 5)(x))
=dim(G xyg S) — dim(T[g’a]H(G X S)(K))
= dim(G x §) — dim(H) — (dim(G) + dim(7, 5k, ) — dim(H))
= dim(S) — dim(7,S k), ) = dim(N,S(x),)

and as the dimensions are equal the inclusion above is in fact an equality
Niga)u (G % 5)(x) = {Tig.ymu (0, w) [ w € NoSicy }-
Consider ¢(g,v,a,b) € T*(G xg S) and ¢ = [g,a|lg € G x g 5; clearly,
(g, v,0,0) € Tg . \Qay) == (g, v,0,0),0) =0 Vo € Niga, Qa,)-
However, using the previous characterization of Ny, 4, (G % S)(k), and by definition of ¢ (see
Theorem (L5.1).
(p(g,v,a,b),v) =0 Vv & Njga,Q, < ((1,b),(0,w)) =0 Yw € NoSGy)u

and this is clearly equivalent to b € (N,S(¢q,),)° C S*. O

Using the metric given by Lemma [6.5.3| and the induced coordinates of Proposition [6.3.1},
we can give a local description of the sets Q’ﬁ H]-

Proposition 6.5.4. Let g € Q" and define H = G,. Using Proposition at q there is a
map ¥ and an open set Ug > q such that

Qe N U = ¥({[g,v]n, € V1 (Ug) | g € Gy we o™ x {0} x ST CoxI"x5}).

In particular, for any subgroup H, Qﬁq] 18 an embedded Y-submanifold of ().
Consider an H,~invariant splitting o = o™+ &0 and a H-invariant splitting S = S” & S.
Then
Qfy NUq =Y ({lg,v1 + va], € ¥ (Ug)
g€ G,y v €0 x {0} x ST, vy e XyyCcox I xg}),

where Xr) is an H,-invariant ¥-submanifold of the vector space o x S x S*. Moreover X1
is a semialgebraic set that satisfies the following conical property: if (X, a,e) € X, then
(pA, pa, p*e) € Xy for any p > 0.

Proof. Using Theorem we can assume that @ is G xg S around g = [e, 0]y. Consider
@ with the metric given by Lemma [6.5.3]
For the first part, we consider the set W = 77" (Ug) N G, - (J7 (1)) m, N 14,0, Qi)

using (6.12) 7(W) = Up N 7(G, - (I~ (), N TH, Qun) = Ug N Q- But using as
T W) cC Z
(W) =Y({[g, N\, a,aoblm, | [9,0,\ a,blm, €Ty (W)})

We now check the equality

{lg, A, a,aorblp, | [9.0, ) a,bly, € TgH (W)} =
={lg,\a, 00y, € ¥ ' (Ug) | A€ o™, ac S"}
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Let z = [9,0,\,a,bly, € TgH (W) C Z, as To(z) € (T"Q) (m,yen Gz € (H,)%, but G, =
gH,vt(A’mb)g_1 =g(H,, NH, N Hub)g_1 with g € G,. Therefore A, a,b are H,-fixed. Note
that Té(H)Q(H) is the set of points ¢(g,v,a,b) where a € S¥ and b € (S*)*. Hence, as
To(z) € T, @iy, then a € ST b e (S™)*. For the other inclusion, let y = [g, A, a, 0],
with A € o+ and a € S7, then [g,0, \, a, 0]y, € Ty (W).

For the second part consider the set W = Tfl(UQ)ﬂGu-(Jfl(u))LMﬂTémQ(L) using

T(W) =UgN7(Gy - (37 (1))r, N T, Qury) = Ug N QY. But using as T, '(W) C Z
(W) =¥({lg. A a;a o bla, | [9,0, X, a,b]m, € Tg*(W)})
now we will show
{9, \a,a 0 0]m, | [9.0,)a,8]m, € T (W)} =
= {[g,v1 + vam, € U (Up) | vy € 0T x S x {0}, v, € X €8x S x §*}
Consider (g, X, a,b) € G, x 0 x S x S* such that [9,0,),a,bly, € Ty'(W). We can

decompose the symplectic space N = 0 x S x S§* as (0 x S x (SH)*) @ (3 x S x §%).
w—/

Note that this splitting is H,-invariant and each of the two pieces is symplectic. ]I\Senote
Jy: N = b and Jg: N — b, the homogeneous quadratic momentum maps for the H,-
actions.

Consider the decomposition

(A, a,b) = (A, a1,b1) + (A2, a2, b) € (0" x ™ x (SH)") & N;

then Jn(A,a,b) = Jzx(X2,a2,bs). Hence (A, a,b) € J71(0) implies ()\Q,cig,bgl € J]%l(O).
» C S x S*. Finally,
. On the other hand, the set

As in the previous case using the adapted metric (ag,bg) € T*g(L)
(N\,a,b) € N ., that is (A9, as,b3) € N

(L#)HM (Lu)gi

6 CN (6.13)

Yy = (0 x TSy, ) N I5(0) N Nir, e
is a semialgebraic set of N. The image under the algebraic map (A, a,b) — (X, a,a o b) is
semialgebraic. This is the content of Tarski-Seidenberg Theorem. The image of ¥|) under
this map will be denoted by X|z,.

For the converse, let [g,v; + va] € U71(Ug). Note that vy can be written as vy =
(A2, az, ag o1 by) with (A2, ag, by) € Y(p); clearly all the properties are satisfied.

Note that X|z) is a X-submanifold, because the first part of the Proposition implies that
. is a Y-submanifold of Q.

(L]
[l

Remark 6.5.5. Using Proposition the (L)-orbit type subset of G Xy Sis G xpg §(L)H'

Similarly, the (L,)%-orbit type of G, X1, ]V(L G In other words, Yz # 0 (see (6.13)) if
YO

(L) is an orbit type for the G action on G x g S and (L,)% is an orbit type for the action

of G, on G, xg, N. Using again Proposition , on any twisted product there is only a

finite number of different orbit types. Hence the local characterization given by Proposition

implies that there is only a finite number of sets Qf 1) With Q’[LL] NUg # 0, because only

a finite number of Y|z) can be non-empty.
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6.5.1 (" is a Whitney stratified space

In Proposition we showed that if @ = Q1) the projection of J™*(u1) has a decomposed
structure Zgw. In the case Q # Q1) we are going to partition the base space Q as |y @(m)
and in each Q) we are going to use the decomposition given by Proposition . We
will show that the union of all these decompositions forms a decomposition of the full set
Q" C Q. To prove this result, we will first need a technical lemma ensuring that a certain
union of decompositions is in fact a decomposition.

Lemma 6.5.6. Let (M, Z) be a generalized decomposed space, N a subset of M endowed
with the induced topology, and for each S € Z let (N NS, Zg) be a generalized decomposition
of NNS CS. Define W = Jgez Zs, (N, W) is a generalized decomposition of N.

Proof. We first check that the elements of YW cover N and are disjoint. Let x € N C M; as
Z is a generalized decomposition of M, there is S € Z with € SN N. Therefore as Zg is a
generalized decomposition of N NS, there is R € Zg C W with x € R, that is the elements
of W cover N. Assume Ry N Ry # 0); there are S;, S, € Z such that R; NS} and Ry, NSy, but
S1 N Sy # () implies S; = S, and similarly as Zg, is a generalized decomposition R; = Rs.
Let x € N C M; as Z is a generalized decomposition, there is an open set U > x such that

U C SiU---US;,. For each S, there is an open set V; of M such that V;NS;, C R, U-- -URjnj,

then the open set U NV; N --- N Vy containing x intersects finitely many elements of W.
Hence (N, W) is a generalized decomposition of N. ]

Thanks to this technical result and the local description given by Proposition [6.5.4], we
can check that the proposed pieces do form a decomposition of Q.

Proposition 6.5.7. Consider the set of submanifolds

Zow ={G,-Z | Z is a connected component of QFH] for some H C G}

and Q" = 7(J7Y(u)) C Q endowed with the relative topology. The pair (Q*, Zgu) is a
decomposed space.

Proof. The connected components of the orbit type manifolds @) form a decomposition of
@ (Proposition [3.2.7). By Proposition[6.4.6|and Proposition[6.5.2] each connected component
of Q)N Q" has a decomposition induced by the sets Qﬁq] as H runs through the conjugacy

class (H) C G. Using Lemma [6.5.6] if the frontier condition is satisfied the connected
components of the sets Q’ﬁ ] form a decomposition of Q*.

Consider a point ¢ € Qf}q N % This means that there is a sequence ¢, converging to
q with each element in Q&]' Using Proposition , there exist a map ¥ and an open set
Ug containing ¢q. Hence there is N big enough such that ¢y € Ug N Q’[‘L]. This implies that
there is [g, A, €, a]g, such that ([g, \,¢,aln,) = qn.

We proved that any ¢’ € Qﬁq] N Ug can be expressed as ¢ = ¥([¢', N, 0,d']) for ¢’ € G,,,

A€ol and a € SH but then ¢ € Q’fm, because for any m € N large enough

1 1 1
W([g’7—)\—l—)\’,—25,—a+a’] )6@&]
m m2 ' m i,
and

1 1 1
v ({9/7 EA + N, W&, Ea—l— a’} > — U([¢",X,0,d'lu,) =¢.
Hy



86 CHAPTER 6. COTANGENT-BUNDLE REDUCTION

This implies that Q’[‘L] N Qﬁq] is open in Qﬁq]. As Q’[‘L] N Qf‘m is also closed in QFH],
Q’[‘L] N Qf‘ ) contains at least the connected component Z of Q’[jq] through ¢. More precisely, if
71, is a connected component of Qf 1] such that ¢ € Z, then Z C Z;, and using the G ,-action
G, -ZCG, Z,=G, Zp.

Using Lemma [6.5.6] we can conclude that Zg. is a decomposition of Q. O

As Q" is a subset of the manifold (), the composition of the inclusion ¢: Q* — @) with
charts of ) endows Q* with a smooth structure. More precisely, the set of smooth functions
on Q" is

CQ") ={f: Q" - R | Jg € C(Q) such that f = go}.

Due to the local description given by Proposition [6.5.4] and the semialgebraic property of
the sets under ¥, the decomposition will satisfy the Whitney condition.

Proposition 6.5.8. The decomposition (Q", Zgu) of Proposition satisfies the Whitney
condition and is topologically locally trivial in the sense of Definition |3.1.5,

Proof. Let x € Qﬁq] N % and apply Proposition |6.5.4 at . As the map

(px o x SH) x (3 x " x 5 x5 — Q
(€, A1y a15 Az, €, a2) > W([exp(§), A1 + Az, €, a1 + Clz]HM)

is a diffeomorphism at (0,0,0;0,0,0), its inverse x is a well defined diffeomorphism on a
neighborhood of U C Ug of z. The restriction

x:QNU — RY

is a singular chart for Q*. We will check that the pair of pieces Qf‘H} and Q‘[‘L] satisfy the

Whitney condition at « € Qf};, with respect to the chart x.
Note that Proposition gives:

x(Qfyy NU) = ((o™ x §7) x {0}) Nx(U),

(6.14)
x(QyNU) = ((o™ x §7) x Xppy) Nx(U).
As the set X7 of (6.14) is semialgebraic and has {0} in its closure, from (6.14)) and
Proposition [3.1.12, we can conclude that Qﬁq] and Q’[‘L] satisfy the Whitney condition at x
with respect to the chart x.
Similarly, if Q’fLi] NU # 0 there is a semialgebraic ¥-manifold X[, such that

x(Qf;NU) = (p x 0™ x ST) x Xp.

But then if we define X = {0} U[ ], Xz, with the decomposition induced by connected
components of each Xz, the map x restricted to Q* becomes the stratified smooth homeo-
morphism

x: Q"NU — (p x o x S) x X.

Therefore, Q" is a locally trivial stratified space (see Definition [3.1.5)). n

It seems that the frontier condition and local triviality are consequences of Theorems
[3.1.10 and [3.1.11] if we check Whitney conditions as we did in the previous result. The
problem is that we cannot apply these results because (* does not need to be locally closed.
For this reason we had to prove the frontier condition and the local triviality independently.




6.5. DECOMPOSITION OF Q*: GENERAL CASE 87

6.5.2 Q"/G, is a Whitney stratified space

In Theorem |3.2.10] the orbit-type stratification of a manifold M induced a stratification of
the quotient M /G that made the quotient map M — M /G a smooth map. Using the same
idea, we will induce a decomposition on Q*/G,, from the one given in Proposition .

Proposition 6.5.9. Let (Q", Zgn) be the decomposed space of Proposition . The set
Zauia, = {Z/Gu | Z € Zgu} is a decomposition of Q" /G,.

Moreover, Q*/G,, has a smooth structure induced by the inclusion Q*/G, — Q/G,, and
the set of smooth functions on Q" /G, is

C™(Q"/Gy) ={f: Q"/G, = R |3g € C(Q) and fomc, = g}.

With respect to this structure, Q" /G, is a Whitney decomposed space and is topo-
logically locally trivial.
The G ,,-quotient map

ma,: (Q", Zqu) = (Q"/Gu, Zqu/a,)
1s a smooth decomposed surjective submersion.

Proof. The sets in Zqgu;q, cover Q" and are disjoint because Zqgu is a set of disjoint G-
saturated sets covering Q".

Let z € Q"/G, and fix ¢ € Q" projecting on z. Using Proposition at ¢, the
restriction

U: (G, xp, (orx[*xS))ﬂ\If_l(UQ)%UQCQ

is a G ,-invariant diffeomorphism. Define o and S as in Proposmon . Choose Hilb: o x
[* x S — RF a Hilbert map for the H,, action on o x [* x S and deﬁne

y: Ug/G, — (0" x SH) x RF
7, (¥([g, v1 + va]m,)) — (v1, Hilb(vy))

where, as in Proposition , v; € o x SH and vy € 0 X I* X S. Using Theorem m, y
is singular chart for Q)/G,,. Then,

¥ (76, (Qly N Ug)) = (0" x %) x {0}) Ny (Ug/G,)

this implies that 7¢, (Qf im NUq) =7a,( [H}) N7a, (Ug) is locally closed and has a manifold
structure. As this can be applied for any x € Q"/G,, the sets in Zgu /¢, are locally closed
and have a compatible manifold structure.

Moreover, by the second part of Proposition [6.5.4]

y(76, (Qf; NUg)) = (o™ x ST) x X)) Ny (Ug/G),

but then, as in Proposition , the set Zgu g, satisfies the frontier condition.
As we noted in Remark |6 - there is only a finite number of sets such that Q[ 1NUq =+

(). Moreover, for each L, U~ (Q()NUq) is semialgebraic, and therefore it has a finite number
of connected components. This implies that Zgu /g, is a locally finite partition and therefore
Zqu/a, 1s a decomposition.

As in Proposition [6.5.8] since the sets in the decomposition under y are semialgebraic,
Proposition ensures that Zgu g, is a Whitney decomposition. Again as in Proposition
, the chart y is a trivializing homeomorphism like .
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Let ¢ € Q" and Z € Zgu with ¢ € Z. Taking coordinates centered at g, U= ( f‘H] NUg) =
G xm, (0 x {0} x S™) and exactly as before y( ’FH}/GM) = (ofr x S*)Ny(Ugy/G,). In this
setting, the projection 7g, ‘Z becomes m¢, (¥([g,A,0,alg,) = y ' (A + a,0); that is, mg, ‘Z
is a submersion at ¢ € Z N Ug. As this can be done at any point of Z, for any Z € Zgu
the map 7g, ‘ PR A /G, C Q"/G,, is a surjective submersion. Therefore, the quotient
map 7, : Q" — Q"/G, is a decomposed map and as it is the restriction of the smooth map

Q) — Q/G, it is a smooth decomposed map.
O

Remark 6.5.10. Note that Proposition is the key result that we used to prove that
(Q", Zgn) and its quotient (Q*/G, Zgu/q,) are locally trivial, Whitney stratified spaces.
Although these are the standard notions of regularity in the stratified setting, we would like
to remark that Zg» and Zgu ¢, satisfy stronger conditions. Proposition shows that
¥ induces not only a topological trivialization as the one stated in , but also induces
a smooth isomorphism of stratified spaces. Exactly as is done in [Jull4] for orbit types,
it can be shown that (Q", Zou) satisfies the strong Verdier condition or differentiably
regular condition (see [KTL89; [Tro83|)

6.6 Seams

Combining the sets Qfy; with the stratification of J ~Y(u) given by Theorem , it seems
reasonable to study the sets

saox =T Q) NGy (I 1)k €I (1)
8ok = si-k /Gy C I (1) /Gy

In analogy with the work of [PROSDO07] (compare with (3.2))), we will call sy_x the pre-
seam H — K and Sy_ i the seam H — K. In this section we will see that these sets
are Y-submanifolds and they induce a (generalized) decomposition of J~!(u). With respect
to the appropriate structure, both J™'(u) — Q" and J™'(n)/G, — Q"/G, are smooth
decomposed surjective submersions.

(6.15)

Remark 6.6.1. In [PROSDO07|, the reason for calling these sets seams was that they played a
“stitching” role; they stitch together different pieces symplectomorphic to cotangent bundles.
In our setting, when p # 0, the analogy is not so clear, but we will see in Section [6.8.4]
that some pieces Spy_.x are symplectic and all the other pieces Sy, have a stitching role

between those (see (6.28))).

In this setting, the analogue of Lemma is the following.
Lemma 6.6.2.
o Ifz€J ! (u) then z € sg,_ -q.-
o If sy, i, NSuyx, # 0 then
— (H)) = (Hy), (Hy N G,)% = (Hy N G,)6, (K)o = (K)Cn.
— SH\—»Ky = SHy— K-

Conversely, if Hy, Hy, K1, Ky are subgroups such that (Hy) = (Hs), (Hy N G,)% =
(Ho N G,)%, (K1) = (K2) then su,—x, = Styrc; -
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o If sk, NSmor, # 0, then,
(Hy) > (Hy), (HiNGL)% > (HyNG,)%,  (K) > (Ka).

In other words, there are g € G, k € G,, | € G such that gHig~' D Hy, k(H; N
Gu)kfil D) H2 N GM and lKllil D) Kg.

z)

Proof. 1f 2 € J7} () by Lemma [6.5.1| 7(2) € Q;[LGT(Z)]' As it is clear that z € G, - (J7!(u))e
then z € SG (=G

If 2 € sy, ), N SHy— K, then 7(2) € Qle] ﬂQfHQ] and using the same lemma Qle] = ng]
and (H;) = (H,) and (H; NG,)% = (HyN G,)%. Moreover, as z € (G, - (J7'(u))x,) N
(G- (I (1)), (K1)C = (K3)%. The converse is analogous. O

Let z € sp_; by Proposition there is a Palais’ tube t and a cotangent re-
duction map ¢ such that z = T*t"!(p(e, 1,0,a)). Note that for any n > 0 the point
2, = Tt Yp(e, u,0,/n) is again in sy, because G, = G,, and 7(2) = 7(z,). But
{zn}nen is a sequence converging to z., = T*t 1(p(e, i1,0,0)) and zo, € SH-H,, because
G... = G NG),. Therefore, for any pre-seam sp_,y,,

Zoo

0 # sgon, CSasz = 0#8uon, CS8uoi; (6.16)

that is, the pre-seam sy_, g, is minimal among the family {sy_,1}7c¢ and similarly for the
corresponding seam.
Note that as 7: T*Q) — (@ is a submersion and Qf‘m is a X-submanifold, the preimage

7 (Qfy) is a submanifold. Besides, the set G, - (J7'(n))x is a X-manifold because of

Theorem [.3.1] The first problem to solve is if the intersection (6.15) is a S-submanifold
of T*(@). Using the cotangent bundle Hamiltonian tube, we can show even more that the
intersection is clean. More precisely, sy, k is a X-submanifold of 7*(Q) and, for any x € sy_,

T, (siox) = T (7*1( f‘H]) AT (G- (37 (1)) -
Proposition 6.6.3. Let H, K be closed subgroups of G. The intersection of 771( fH]) and
G, (I )k is clean.

Proof. Let z € sg_.k; by Lemma [6.6.2, without loss of generality, we can assume G, = K
and G,(.) = H. Denote ¢ = 7(2), Proposition m gives the Hamiltonian tube Ty and the
map V. In this setting, there is o € S* such that z = Ty([e,0,0,0,a]q,) and, as G, = K,
H,NH, =K. Let B=(h,-«a)°, using Theorem the map

T: G xp ((52Dpk) x 0y x By x BY) — T*Q
9, Vs + vp, A a, b g — To([g, v, A, @, b+ alm,) (6.17)
where 1
Eza—l—F(Vﬁ—aosb—§>\<>5adf\u;b)

is a Hamiltonian tube centered at z.
Note that, as B = (h, -«)° C S, if v € S¥ for any £ € h, C b

0=(£-v,0) = —(v,§-q),
that is, S C B. But then, restricting to K-fixed vectors,
S# c BE. (6.18)
In this setting, we can check the following equality

T N suor NTH(Ug)) = (G xx ({0} x o™ x ST x (BH))nT (v (Ug)). (6.19)
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e Let z = [9,0,\,a,blx € (G, xk ({0} x offr x SH x (B*)X)) n T} (r71(Ug)), then
J(T(z)) = p because T is a Hamiltonian tube and Jx (A, a,b) = 0. Regarding the
isotropy, we have ¢7'G,g = K\ N K, N K, = K. Therefore, T(z) € G, - (J7*(1))x.

Using ,
7(T(z))

T<TO([97 Oa )‘7 a, b + a]Hu))
7((g,0,\, a0 (b+a);a,b+ )
T((I)(g7 07 )\7 Oa a, 0)) = \P([ga )\7 07 G]HM),

but as A € o, a € SH using Proposition , 7(T(z)) € Q- Then T(z) €
SH%KQT_l(UQ).

e Conversely, let x = [g, Vs + 1y, A, @, b]x with T(z) € sy_x C J*(p). Since
T(x) = Tollg, vy, A @, b+ o,
equation implies that 1, =0, g € G, and Jg, (X, a,b+ «) = 0. Then, using ,

7(T(x)) = 7(To([g,0, A\, @, b+ a]n,))
T(®(g,0, N\, a0 (b+ a);a,b+ a))
U(lg, N, ao (b+a),alg,)

but since this point lies in Q’ﬁ ]’ using the characterization of Proposition ae SH,

However, I" takes values in a complementary of B C S, but as S C B, this implies that
@ = a. Hence, 7(T(x)) = ¥([g, A, 0,a]p, ), and using again Proposition A € ofle,
Finally, as G, € (K)%, then b € BX.

The description (6.19)) implies that the intersection is a Y-manifold. We will now check
that the intersection is clean. Using Proposition [2.3.5| applied to the Hamiltonian tube 7,

TG, - T (k) =
{Tcoo000mrr - (€,0,N;d V) | € €9, N €o”, a € BX Ve (B)} (6.20)
Note that the restriction of 7 to T(G, xx {0} x o+ x S# x {0}) is a submersion on
the manifold Qﬁq] because, using (6.9), if z = [g,0, A, a, 0]k, then 7(T(z)) = ¥([g, A, 0, alm,).
This implies
Tr7HQfy) = T.T(Gy xx {0} x o' x ST x {0}) + Ker T.7.

Therefore, we need to compute Ker 7.7, and to do so we linearize the tube T at [e, 0, 0,0, 0]x.
As the map I' (see (5.18))) is linear with respect to the first variable,

Tl - (7,b) = T(;0).
Using and after some straightforward algebra,
Te0000)(T 0T omr) - (€0 + By, N, @, b) = (E+ A+ 0 @oa))-g+a€T,Q
where @ = @ + I'(2%;0) and o: n — [* is the isomorphism 1 — (4, [-,7]). Then,

Ker T(.00.00) (T 0 Ta 0 mx) = {(€ = X\, 5, A;0,0) [ €€, A€o, iy €p*, be B}
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Hence,

THr Y ﬁﬂ)) = {T1e,0,000)7kT - (&1 + £2,0, 24, A 4 Ao; @, b) |
E€gy, Sa=—Xa+m neb ol \yco, be B*, i, €p*, ac S} (6.21)

After a simple linear algebra computation, comparing the intersection of (6.20]) and ((6.21)
with (6.19) we have

TZ(T_l( FH])) NT.(G- J_l(:u)K) =T.(sH-K).
Therefore, the intersection is clean at z. O

Note that during the proof of this result, in (6.19)), we have obtained a very useful local
description of the pre-seam sy _.x in coordinates induced by a cotangent Hamiltonian tube.

Using that Qﬁq] form a Whitney stratification of Q*, and that G- (J (1)) is a Whitney
stratification of J=!(u), we can show that the connected components of the pre-seams sy _.
form a generalized decomposition of J=!(p).

Proposition 6.6.4. The set of submanifolds

Zy-1() ={Gu - Z | Z is a connected component of sy_x for some H, K C G}

forms a generalized decomposition of J~'(u). Similarly, the set

ZJ?l(P‘)/Gu = {Z/GM | Z e Z‘]fl(pj)}

is a generalized decomposition of J~'(u)/G,,.
If I7Y(u) /G, is endowed with the smooth structure induced by I~ (1) /G, — (T*Q)/G,.,
the quotient map

Ta, (TN 1), Z3-100) = (371 (10) /Gy Z3-10)/6,,)

18 a smooth decomposed surjective submersion.

Proof. Using Lemma W, the sets in Zj-1(,) cover J~' () and are disjoint. Let Z be a
connected component of syx = 71 (Q[y) N Gy - (J7'(1)) k. As in Proposition , the
local description implies that G, - Z is an embedded submanifold of 7*@); in particular,
a locally closed subspace of J=!(p).

Let 2 € J7!(u) and define ¢ = 7(z) using that Zgu is a decomposition (see Proposition
there exists a neighborhood Uy of ¢ such that U, N Q" intersects finitely many elements
of Zgu. Similarly, as the partition of 7*() by G -orbit types is a decomposition, there exists
a neighborhood U, C T*(Q such that U, intersects finitely many G ,-orbit types. But then
U. N7 YU,) NI (p) is an open neighborhood of z in J~!(u) intersecting finitely many
elements of Zj5-1(,).

Using that ng, : T*Q — (T*Q)/G,, is an open map, the set 7¢, (U, N 771 (U,)) intersects
finitely many elements of Zj5-1(,),¢,. And as the sets Zj-1(,) cover J~!(u) and are disjoint,
Zy-1(w)/a, 1s a locally finite partition of the quotient I (w)/Gu. 8 Z € Z3-1, Z/G, is a
manifold, because all the points in Z have the same G/,-orbit type.

Alternatively, we can check this using the local description . In these coordinates
the inclusion 8yx C J ' (u)/G, is

ol x 7 x (B*)* C (o x B x B)/K.

Therefore, 8,k is a locally closed set with a submanifold structure. The fact that ¢, is a

smooth decomposed submersion is identical to Proposition [6.5.9|
O
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6.6.1 Stratawise projection

We now check that the partition into pre-seams (J~* (1), Z3-1,,)) is well behaved with respect
to the base projection 7: T*(Q) — ). More precisely,

Proposition 6.6.5. Let Z € Zy-1(,), then 7(Z) € Zqu and the restricted map 7|,: Z —
T(Z) C Q" is a surjective submersion.
More globally, the restriction of the cotangent bundle projection

T (I (), 2y w) — (Q", Zqn)
is a smooth G, -equivariant decomposed surjective submersion.
Proof. Let Z be a connected component of sy_x and z € Z C sy_,x with K = G, and
H = G;. Asin ,
T Y suox NTHUQ)) = (G xx ({0} x o x ST x (BH)X)) nT (7' (Ug)).

and
U QN Ug) = (G X, o™ x {0} x ST) n ™} (Ug).

Moreover, if 2’ € sy_x N7 (Ug)), then by (6.§)), 2/ = T([g,0, A, a,b]x) and using
T(’ZI> = T<T([ga 07 )‘7 a, b]K) = T(TO([ga 07 )‘7 a, b+ a]Hu) = qj([Q? )\7 07 a]H“)'

Hence, 7" P QFH} C Q" is a submersion at z and clearly G ,-equivariant.

We now check that 7(Z) is the connected component through ¢ of Qﬁq] and not just an
open subset. There is & € S* such that z = Ty([e, 0,0,0, a]y, ). Let ¢’ € L(H, p)- Q¢ C Q’[‘H]
where Q'9¢ is a local isotropy type submanifold (Proposition . Denote H' = G, and let
S’ be a linear slice at ¢’. There is g € L(H, u) such that H' = gHg™ ' and k € G, such that
H| = kH,k='. As ¢ and ¢’ have the same local orbit type, there is a linear isomorphism
A: S — S such that

A(h-v) = (ghg™) - A(v) Vh e H
and
A(h-v) = (khk™1) - A(v) Vh e H,.

Consider the Hamiltonian tube Ty at ¢ given by Theorem associated with the splitting
g=Lie(H'NG,) ®p@o®[dn, that is,

To: G xpy (p* x 3 x §' x (§)) — T*Q.

Then 2/ = ‘AJ:([e,O,O,O,A(a)]HL projects onto ¢ and G = (H})aw) = kLk™' € (H,)%".
This implies that L(H, p) - Q¢ C 7(sg_x) and as the connected component through ¢ of
Qﬁq] is contained in L(H, ) - Q%¢, 7(Z) is the connected component of QFH] through ¢ and
(G- Z) =G, -17(Z) € Zgu.

Globally, as a map of decomposed sets, 7*: J7*(u) — Q" is a decomposed map and
smooth because it is the restriction of the smooth map T*Q — Q. n

Using this result and Propositions [6.5.9 and [6.6.4} it follows that the maps in the com-
mutative diagram

I p) —— 37 (W) /G

| |

Qr ——Q"/G,

are smooth decomposed surjective submersions.



6.7. FRONTIER CONDITION AND WHITNEY CONDITION 93

6.7 Frontier condition and Whitney condition

The main drawback of Proposition is that it only states that the (pre-)seams form a
generalized decomposition. It does not tell us anything about either the frontier condition
or Whitney conditions. In general, we have neither counterexamples nor formal proofs that
(I (1), Z5-1()) or its Gy-quotient (J7'()/G i, Z3-1()/c,,) satisfy the frontier condition. In
this section we study some particular cases in which we can say a little more.

6.7.1 Restriction G, =G, NG,

If instead of considering the whole family of pre-seams {sy_x } i xcq, we only consider the
subfamily {sy_,u, } nca We get a topologically trivial Whitney decomposition. Note that if
we endow () with a G-invariant metric, according to Proposition [6.5.2] these pre-seams cover
the subset

U (5, @un) 134 € 30,

HCG

As we noted in Remark [6.5.10, Proposition was the key tool to check that Q" was

a smooth Whitney stratified space. To prove Whitney conditions in our setting, we will use
an analogue of Proposition [6.5.4]

Lemma 6.7.1. Let z € sy_.g, with G-;) = H, there is a Hamiltonian tube T centered at z
satisfying the following property:

If 19,0, X, a,0lp, € T Hspok) and N € of'r, o/ € S, ¥/ € B, ¢ € G, and p > 0
satisfy [g',0, pA + X, pa +a', pb+ Vg, € G xg, ((s; ®p}) X 05 X By x B) then

(‘T([gla OJ p)‘ + >\/7 pa + CL/7 pb + b,]HH) € SLHK-

Proof. We proceed as in Proposition [6.6.3, Denote ¢ = 7(z), Proposition gives the
Hamiltonian tube T, and the map W. In this setting, there is a € S§* such that z =
To([e,0,0,0,a]y,) and, as G, = H,, H,-oa = a. Let B = (h,-«)° = S, using Theorem [5.2.7]
the map (6.17)) is the stated Hamiltonian tube. Note that as K = H,,, the map I is always
7€T0.

Let w = T([g,0,A,a,0]m,) € sp—x and w' = T([¢,0,pA + X, pa + a’, pb + '], ). Then

JW') = p+In(pA+ N, pa+d, pb+ V) = p+ p*In(A, a,b) =

because X, a',b" are all H,-fixed but for the same reason

Therefore, w' € G, - (J7* (1)) k. But

\1
—~

g\
~—

I

7(To([g', 0, pA + N, pa +d’, pb + ' + ] m,)
U([g", pA + N, (pa + d') o (pb + b + @), pa+ d'|n,)
U([g', pA+ X, (pa) o (pb+ b + ), pa+ d]p,).

Hence, (Gr(w) = (Hpara') = (Hpa) = (Hy) = (Grw)). Note that (Hp)eo(b4a) N (Hy)a =
(H, )ao[(pb—i—b’—l—a) N (H,)a, because if k € (H,) a0 (b+a) N (Hp)a

(aor(b+a)=k-(ao(b+a))=ao (k-b+ a).
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But then
k-(ao(pb+b +a))=ao (p(k-b)+0 +a)=(ao (pb+V + a)).
Hence,
(9/)71((;# N GT(w’))g/ (Hu)pAJr)\’ N (H,U«)(pa)o[(pb-i-b’—i-a) N (Hu)pa+a’

= (Hu)/\ N (Hu)ao[(pb+b’+a) N (Hu)a
= (Hu>/\ N (Hu)am(b-&-a) N (H,u)a
=g (GuN Grw))g

and Lemma implies that w' € s;_ . O

Using this lemma and the same ideas as in Propositions [6.5.8] and [6.5.9

Proposition 6.7.2. The sets of submanifolds
Wi ={Gu - Z | Z is a connected component of sg_,g, for some H C G}

WJfl(#)/Gu = {Z/G;L | Z € WJ—l(u)}

are locally trivial Whitney decompositions of 7' (1) NUy sg—mu, and its G,-quotient
respectively.

Proof. Let z € sy_g, NS5, - Analogously as in Proposition Lemma at z implies

that there is U, an open G,-invariant neighborhood of z and an R*-invariant semialgebraic
subset X C R with the origin in its closure, such that

suom, NU. =T ({lg,v1lu, € T'(U.) | g € G, 1 € 0™v x ST x Br})
spn, NU. =T ({lg,v1 +voly, €T (U.) | g€ Gy, v € ofln x SH x BHe o, € XL}).

From these characterizations, exactly as in Propositions [6.5.8| and [6.5.9] it follows that
Wi-1(u) and Wi-1(,)/a, are locally trivial Whitney decompositions that satisfy the frontier
condition.

]

6.7.2 Decomposition of T_l(Q/ZH))

The subset
T_I(Q/{H)) NI~ (p) = U SH'—K
H'€(H),KCG

is a family of pre-seams that satisfies nicer conditions. As in the previous case, we will use a
smooth trivialization lemma to prove it.

Lemma 6.7.3. Let z € syx with G, = K, G, = H, there is a Hamiltonian tube T
centered at z satisfying the following property:

If H € (H), [9,0,\,a,blg, € T spw—r) and N € o'v, o' € S", ¥ € BX, ¢ € G,
p > 0 satisfy [g',0, pA + X, pa +a', pb + V], € G xp, (55 ;) X 0, X By x BY) then

T(lg', 0, pA+ XN, pa+d', pb+Vp,) € spr—p.-
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Proof. We proceed as in the previous Lemma. Denote ¢ = 7(z), Proposition m gives
the Hamiltonian tube Ty and the map W. In this setting, there is o € S* such that z =
To([e,0,0,0,a]n,) and, as G. = H,,, H,,-o = a. Let B = (h,, - «)°, using Theorem the
map ((6.17)) is the stated Hamiltonian tube.

Let w = T([g,0, A, a,b|x) € Sy—1, then

T(w) = 7—(70([97 07 /\757 b + a]Hu)) = \Ij([.gv )\,50[ (b + a)’a}HM)

asw € 7 HQm)), a = a+ (A o5 adjp + a o5 b;b) € S, but as in Proposition W this
implies that a € S and A o4 adiu = 0. Therefore,

T(w) = W([Q? )‘7 07 a]Hp)’
Let w’' = T([¢, 0, pA+ N, pa+a’, pb+V]p,), exactly as in Lemmal|6.7.1|w’ € G- (J 7' (1)) k-
As
1
r (5([))\ + X)) ogadyy 4 (pa+a’) og (pb +1'); pb + b’) =
1
= (50 2 i+ ) o (g + ¥ ) =T (0300 + ) =0
but then

T(w') = V([¢g, pA+ X,0, pa +ad']g,).

Comparing the G and G-isotropies of 7(w) and 7(w’) by Lemma [6.6.2) we can conclude
that w' € Syg/—- ]

Using this lemma, we can conclude that 7' (Q ) NI ™' () is a Whitney stratified space

Proposition 6.7.4. Let H be an isotropy subgroup of Q*; the sets of submanifolds
Hy-10) ={Gu-Z | Z is a connected component of sg—,x where K C G, H' e (H)}

HJ*I(H)/GM - {Z/Gu | A < 7‘[.]71(#)}

are locally trivial Whitney decompositions of J='(p) N 77 (Qmy) and its G ,-quotient respec-
tively.

We omit the proof of this result because it is exactly the same as Proposition [6.7.2

6.7.3 Frontier conditions if G, = G

For pu = 0, the seams (Theorem [3.4.2)) were introduced in [RO04; PROSDO07] and extended to
cosphere bundles in [DRROO07]. As at that time the Hamiltonian tube for cotangent bundles
was not available they had to rely on mainly topological considerations to show many of the
properties of the seams.

Here, using the local description of the pre-seams given by the cotangent Hamiltonian
tube, we present an alternative proof of the frontier condition if u satisfies G, = G. The
idea will be to prove that

(rgoT): (Jfl(,u))(K) — %/G cQ/G

is an open surjective map. We start with the following elementary lemma in Riemmannian
geometry.
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Lemma 6.7.5. Let X be a complete connected Riemmannian manifold and let'Y be a closed
submanifold. We denote by NY C Ty X the normal bundle of Y. The restriction of the
exponential map to the normal bundle NY , expy: NY — X 1is surjective.

Proof. Let z € X. Choose w € Y and let m = d(z,w) be the Riemmannian distance. The
subset £ = {v € Y | d(z,v) < m} is compact, thus there is a point y € Y minimizing
the distance from x to any point of Y. Then the minimizing geodesic arc from x to y has
tangent vector at y orthogonal to T,Y in T, X; that is, there is v € N,Y = (T,Y)* such that
exp, (v) = x. This proves that exp,- is surjective. ]

This lemma was the main tool in [WZ96| that allowed simpler proofs of certain decom-
positions of reductive Lie groups. Although it seems completely unrelated to our problem,
this lemma is the key ingredient of the following technical result.

Lemma 6.7.6. Let H be a compact Lie group acting linearly on the vector space S. Endow
S with an H-invariant inner product. Let o € S* = S and define K = H,, B= (h-a)* C S.
If v € S satisfies (G,) > (K), then there is w € BX and h € H such that

h-w=nv.

Proof. Using the proof of Theorem at o € S with the slice B implies that there is an
open K-invariant neighborhood B, of B such that

t:HXKBr—>UCS
g, vk —> g (v+ )

is a G-equivariant diffeomorphism. Instead of the restriction to B, we can consider the
G-equivariant map

F:HxgB—S
lg, vk — g+ (v+ ).

Note that F'is not injective, because F([h, —a]x) = 0 for any h € H. However, the previous
Lemma implies that F'is surjective, because H X g B is the normal bundle of the submanifold
H -« and F'is just the Riemmannian exponential for the euclidean metric.

Additionally,

(H-a)nS® ={h-a|h€H k-h-a=h-a VkeK}
={h-a|hecH (h'kh)-a=a Vkec K}
={h-a|h€H h'KhcCK}
={h-a|he& Ny(K)} = Ny(K) - a.

By Lemma using that t is a tube, Sy N U = t(Ny(K) X B,). But as Sk is an open
set of &, T,(t(Ng(K) xx B,)) =S¥, that is

SK = Lie(Ny(K)) - a + B,

Due to the definition of B, Lie(Ny(K)) and BX are orthogonal subspaces, and this implies
that the normal space in S¥ at a to Ng(K) - a is BX.
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Using again the Lemma, each element in v’ = S¥ can be expressed as v/ = g (a + '),

where w’ € BX. However, if v € S is such that (G,) > (K), then there is f € G such that
fG,f~' C K,but so f-v € S¥ and then the result follows because

v=_(f"g) (a+u)
and as o € BX, o +w' € BX. O

Once we have the previous surjectivity lemma, the proof of openness of 7w o 7 is straight-
forward.

Proposition 6.7.7. Assume G, = G, the map

Fr @ ) — Quo /G € Q/G
2z — ma(7(2))

18 continuous, open and surjective.
This 1mplies that, under the assumption G = G, Z3-1,) and Z3-1(,),c are decomposi-
tions, they satisfy the frontier condition.

Proof. We now assume that f is not an open map, therefore there must be z € (J7*(1)) (),
U. C T*Q an open neighborhood of z such that f(U. N (J7'(u))x)) is not an open neighbor-
hood of m¢(7(2)) € Q/G.

Let ¢ = 7(z), H = G, and S be a linear slice at ¢ with an H-invariant metric. Choose a
Palais’ tube t: G xg S, — @ around ¢ and let o = z‘s.

The fact that f(U, N (J7*(u))(x)) is not an open neighborhood of m¢(7(2)) € Qux)/G C
@/G means that there is a sequence m¢(g,) of points in Qk)/G converging to mg(q) such
that 7¢(gn) ¢ f(U. N (I (1)) (k) for any n.

Note that using t locally Q/G is S/H, therefore abusing of the notation mg(¢,) = mu(vy,)
where v, is a sequence in S and for each n (G,,) > (K). Using Lemma at a, for each
v, there is w, in B such that 7y (w,) = 7 (v,). Moreover, as 7y (v,) — 7a(q), w, must
converge to 0 € BX.

In this case, the Hamiltonian tube of Theorem [5.2.7] at z becomes

T:Gxg ((s"@p*) x B, x (B"),) —T*Q
lg,v,a,bl — (g, v+ p;a+T(aos b;0),b+ a))

but if « € BX = B,NBX, then T([e,0,a,0]x) € (J~'(n))x). However, for all n large enough
w, € BJ, and therefore we can consider the points z, = T([e,0,w,,0]x) € (I (1)) x)-
As z, — z, there must be N large enough such that z, € U, N (J7*(1))(x). This is a
contradiction and therefore f is an open map.

From this point the proof is as in Theorem 7 of [PROSD07|, because since f is an open
map the incidence relations of Qx)/G can be lifted to (J7'(1t))(x), and therefore we can

conclude that Zj-1(,) is a decomposition. Then the fact that 7g: T°Q — (1T7Q)/G is a

proper map ensures that Zj-1(,)/¢ is a decomposition, because if T¢(sy—x) NTa(sp—n) # 0
then

0 # ma(su_r) NTa(sionm) = ma(Su—k) N7e(Sioar) = 76 (Su—kx NS 5a1)

and as sy, x C 5,50, T6(Sa—k) C ma(sp—ar). Hence, Zy-1(,/¢ is a decomposition.
]
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An important remark already used in the work of [RO04] is that 0 # syx NSH oK’
implies both ) # sy_x NSpox and O # sp_x NSk, and therefore the inclusions
sgsx C Spoi and spx C Sg g give the inclusion sy ,x C SpLx/. This allows
the study of the frontier condition to be split into the study of pairs (sy_x, Sgx) and
(SH—>K, 3H—>K’)

For pr = 0, using more elaborate arguments, it can be shown that the pairs (sg_x, Sg'—x)
satisfy the Whitney condition. The pairs of the form were studied in the previous section
(SH—K, Sk ) but the problem is that we do not know how to merge these two results to
check the Whitney conditions for the general pair (sy_x, Sy'—x7)-

6.8 Symplectic geometry

In this section we will study the symplectic properties of the pre-seams sy _.x C J (1)
and its quotients Sy_x C J*(u)/G,. We show that each seam 8y x can be endowed
with a presymplectic form. In fact, each space Sy, x can be subimmersed onto a magnetic
cotangent bundle T*(Qﬁq] /G ) and this subimmersion is a presymplectic map. Moreover, we
show that, as in the orbit-type decomposition, there is a maximal seam which is open and
dense.

6.8.1 Mechanical connection

In the regular cotangent bundle reduction (Theorem [1.5.2), the embedding J~'(1)/G, —
T*(Q/G,) is given in terms of a mechanical connection (1.12), a G,-equivariant section
a,: Q@ — J Y () € T*Q. We start by showing that in the singular setting we have an
analogue of the mechanical connection over a piece Q’[‘ H] of Q*.

Lemma 6.8.1. There is a G,-equivariant smooth map
Q,: ﬁq] — T*Q

such that T(a,(q)) = q and J(o,(q)) = p for all g € Qf‘H].
Proof. Let q € QfH] and construct a Palais’ tube t: G xy S — U C @, where H = G, and
S is a linear slice at ¢. Define
Q. fH} NU — TQ
t([g, slu) — Tt (p(g, Adjp, 5,0)). (6.22)

We need to check that this correspondence is well defined. As t([g, s]n) € Q*, Ad,h € Ker p,

and therefore (g, Ad;u, 5,0) has H'-momentum 0 and lies on the domain of ¢. As ¢ is HT

equivariant for any h € H,
a#(t<[gh’_17 h : S]H) = T*t_l(gp(gh_l’ Ad;h*%UQ h : S, O))
= T (pl(gh™!, Ady S, - 5,0))
= Tt ' (@(g, Ad} 1, 5,0)) = a,(t([g, s]u)
Also,
J(u(t(lg, slm)) = T (g, Adjp, 5,0) = Ady - Adjp = p

and clearly 7(a,(t([g, s]i))) = t([g, s]m). This implies that we have a mechanical connection
defined on U N QfH}.
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To obtain a connection over the whole Qf‘H], we can use partitions of the unity. For
any point q € QfH] there is an open set U, containing ¢ that is the image of a Palais’ tube
G Xg, Sq- As Q’[“}{] C (@ is paracompact, there is a locally finite collection {U,, };e; covering

ﬁ,{]. Note that each Uy, is G-invariant, and therefore using properness of the action there

is a partition of the unity p; subordinate to {U,, }ic; with G-invariant functions p;. If o/L is
the section of @y, N Uy, defined using equation (6.22)), the fiberwise sum

_ i
ay, = E picy,
i

is a mechanical connection over Qﬁq]. As the momentum is linear on the fibers

J(a(q) =T (Z pi(Q)aL(q)> = sz‘(Q)J(O‘L(Q)) = sz-(qm = 4,

similarly we can check that the sum is a section and G -equivariant.
O

Remark 6.8.2. Alternatively, we could have defined the mechanical connection using the
singular connection in the sense of [PRO09| or, equivalently, principal connections of a g-
manifold in the sense of [AM95]. Without entering into details, if G acts properly on @ and

@ is of single orbit-type, then
V= U 9/9q

qeQ
defines a vector bundle over (). A singular connection for this action is a continuous
surjective bundle map

A:TQ —V

covering the identity, being G-equivariant and satisfying A({g(2)) = [¢], for all ¢ € Q, € € g.
It is possible to show that, if Q = Q1) for some subgroup L C G, it always exist a singular
connection (see [PRO09; |AM95| for further details).

If 1 € g* and we define Q" = {q € Q | g, C Ker u} then it can be shown that the formula
A,(q) = (A(vy), ) defines a continuous linear map A, : Tpu@ — R that is equivalent to the
mechanical connection «, that given in the previous lemma.

6.8.2 Single-orbit type @)

Assume that () has only one orbit-type, that is, Q = Q(z) for some subgroup L C G. Note
that under this assumption, due to Proposition , the partition of J~!(u) into seams
coincides with the decomposition of J~!(u) into orbit types of Theorem m

Using the mechanical connection introduced in Lemma [6.8.1], we can state the following
generalization of Theorem [I.5.2]

Proposition 6.8.3. Assume Q = Q). Let z € J ' (u) and define H = G,). Given
ay: Qﬁq] — T*Q) a mechanical connection, there is a map F of fiber bundles

(G- (I (W)e.) /Gy ———T*(Qliy/Gy)

| |

tm/ G = Qi /G
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Assume that (G, - (I (w))e.)/G, is endowed with the reduced symplectic form and on
T*( ELH]/GN) we consider the symplectic form WQly /G By, where B, is the unique two-form
that satisfies

nt, B = dag
where @, € QY () is a, regarded as a one-form on Qi and mg, : Q= Qlyy/ Gy is the
quotient projection.

The image of F' is a vector subbundle ofT*(Qf‘H]/G#) and F is a symplectic embedding.

Proof. The idea of the proof is similar to the standard proof of Theorem|[1.5.2. More precisely,
we consider the shifting map

shift,: G, - (I (), — T7( m)

2= (2= au(7(2)))

Tr () Q1

this map is well defined, because if z € G,-(J 7! (1)), then 7(z) € Q- Note that it is fibered
with respect to the cotangent bundle projections and G ,-equivariant. G- (J7*(n))g. — Qﬁq]
is an affine subbundle of the vector bundle T Q — Q ) and therefore the image of shift,,
is a vector subbundle of T' *( ) — Q[ H]-

Since the mechanical Connectlon Q. Q[ m T*@Q is a section, its image lies in T&H Q,

composing with the restriction T*u Q — T™(Qp)s v induces @2 Q= T7(Qpyy)s & G-

invariant one-form on Q[ ) Using thls definition, we can endow 7 ( [ H]) with the symplectic
form

wor  — 1 (day,) = —d (HQFH] + T*Oé_u) :

[H]
Let (¢.) = v € T.(G,, - (37 (1)) then,

(shift”, (eQrH]H*a—M) v) = (B, + 7T T-(shift,,) - v)
a,(7(2)), 4) + (@u(7(2)), 4)
z,q) + (—au(7(2)) + @u(7(2)), 4)
<, 4 > <9Q7 >

This computation implies that shift, preserves the presymplectic potentials, and therefore it
is a presymplectic map.
Similarly, as in Theorem [1.5.1] we can define

(\2

(
=(z -
=
=

PlH] - (gu ) QFH])O — T*<QFH]/GM)

by the formula {(p(m)(2), Tyma,v) = (z,v) for every 2z € T;(Qf)) and v € Ty(Qf) is a
G -invariant surjective submersion that induces the diffeomorphism

o (g Q?H])O)/Gu — T7( l[lH}/Gu)'

As @, is G -invariant, it drops to the quotient, that is, there is 3, € Q%( ﬁq] /G,,) such that
7, By = dag,. Moreover, if i: ( [H}) — T%( [H]) is the inclusion, a simple computation
shows

Pl (wa‘H]/GH —7B,) = i*(wQFH] — 7*da,,).
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Consider € € g, and z € G, - (J7*(1n))g., define ¢ = 7(z) then

(shift,(2), € - q) = (z = au(7(2)), £ - @) = (J(z — au(7(2)), &)
= (J(2) = Jau(7(2))), &) = (b — 1, §) = 0.

This equality shows that the image of shift, is contained in (g, - [H}) C T%( [H}) and we
can then form the composition

QD[H] o Shiftui GM . (J_l(,u))g — T*(Q[H]/GN)
This composition is presymplectic if we consider on G, - (J7'(u))e. /G, the restriction of

the symplectic form wg and on T *( - ] 71/ G ) the symplectic form Wt /Gy 7*/3,. Moreover,

the image of yy) o shift, is a vector subbundle of T*(Q[H] /G,). Finally, as ¢ o shift, is a
G -invariant map, it drops to a smooth map

F = o shift,: G, - (37(0))e /G — T (@i /G,

F is a symplectic with respect to the stated structures and therefore it must be an embedding.
O

Remark 6.8.4. In regular cotangent bundle reduction (Theorem , the (cohomology class
of the) magnetic deformation of the symplectic structure can be related with the curvature
of the principal bundle Q — @Q/G,,. In our setting, using singular connections [PRO09), the
(cohomology class of) magnetic term [, can be related with the curvature of the bundle
Q) = Qfany/ G

Recall that, in regular cotangent reduction, the condition g = g, is equivalent to the fact
that the embedding of Theorem [1.5.2]is in fact a symplectomorphism. In our case we can
state a similar condition.

Proposition 6.8.5. Using the same notation of the previous proposition and assuming
that G, - (371 (w)a. /G, is connected, the symplectic embedding F: G, - (J7'(u))a. /G, —
T*(Qf‘H]/G“) is bijective if and only if

ofln =0
where g = b, ®IEpDBodn is an adapted decomposition of (G, H, j1) in the sense of Proposition
721
Proof. We know that the image of F' is a vector subbundle of 7™( rH] /G,). Therefore, F
is going to be bijective if and only if the dimension of G, - (J7!(u))e. /G, is equal to the

dimension of T*(Q[H]/G#). Let g € Qu C QE‘H}; in the proof of Proposition we saw that
locally Q[H} is G ,-diffeomorphic to
Gy xm, (0" x S),

where S is a linear slice at ¢. Similarly, using (6.19)), G, - (J~*(1))e. /G, is locally diffeomor-
phic to
Gy X, (0™ x S x 5%),

because as we are in the single orbit case S = S¥ = B. Then,
dim(G,, - (I (1))a./G,) = dim o™ + 2dim S,

and
dim T*(Qf;,/G) = 2dim o™ + 2dim S.

Therefore, F' is bijective if and only if 0"+ = {0}. O
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Remark 6.8.6. The work of [Mon83| was, up to our knowledge, the first study of symplectic
reduction of cotangent bundles in the singular case. In that work the author considered a Lie
group G acting on a manifold @), the cotangent lifted action on 7*(Q and a fixed momentum
value p € g*. However, the author imposed several important restrictions to ensure that all
the relevant sets are submanifolds.

In that setting, he showed that the reduced symplectic space J~'(u)/G,, is symplecto-
morphic to a cotangent bundle if and only if

dimg — dimg, = 2 (dimg, — dim (g, N g,)) - (6.23)

Using the adapted splitting of Proposition 4.2.1, g = b, ©p Do DD n, as [ = n* the
condition (6.23)) is satisfied if and only if 0 = {0}. In general, the equality o”» = 0 is weaker
than (/6.23]), but using all the hypothesis of [Mon83] both conditions coincide.

6.8.3 Compatible presymplectic structures

Now we study the general case, when () has more than one orbit-type.
Since Qg is a submanifold of (), there is a natural inclusion of vector bundles T'Qz) —
19, @, and dually there is a natural projection of vector bundles

Pg: Té(}”Q — T*Q(H)

Note that py is G-equivariant. As Qg is G-invariant the cotangent-lifted action on 7" Q (g
is a Hamiltonian action with momentum map Jg): T*Qy) — ¢*. If J: T7Q — g* is the
momentum map for the G-action and z € Té(H)Q, then

J(2) = I (pu(2)), (6.24)
because if £ € g, since £ - 7(2) € Tr(»Qm,

(J(2),6) = (2,6 -7(2)) = (pu(2),£ - 7(2)) = ) (pu(2)), €)-

As 7(syk) C Q ), we can apply pgy to the whole pre-seam sy_x. If 2 € sy_k,
clearly 7(z) € Q‘}”, but then as py(sp—x) C T*Qm) we can apply Proposition and
Proposition [6.4.5( and then py(sp—x) = G, - (J(_Ii)(u))Hu. In other words, the restriction of

pu to the pre-seam sy, i induces the G,-equivariant projection

PHSK: SHoK — Gu : (J(_hlf) (M))HM'

Using a G-invariant metric and the projection map py_,x, we can characterize a pre-
seam sy, as the Whitney sum of a set in 7"Q (g and one piece in the conormal space of
Q) C Q. Loosely speaking, only the conormal part is related to the isotropy subgroup K,
whereas the cotangent part is simply the momentum J (_hl,)(,u) of T*Q(m)-

Proposition 6.8.7. If we fir a G-invariant metric on @), the bundle Té(H)Q can be writ-
ten as the Whitney sum of the cotangent and conormal part T5<H)Q(H) Bu N* Q). Let
Jy: T*Quy — g* be the momentum map for the cotangent lifted action of Q). Define

Nisx ={z € N'Qun | (Gp): € (K)“*},
then
sk = G (Jan (1)m, Son, Nt (6.25)
={znt2lzncG. Jm)u., =»e€Nnk, 7(2n)=1(2)}
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Before proving this result, note that Ny, x is not the same as G, - (N*Qm)) i, Nk is
the subset of elements of N*Q ) such that the G -isotropy is G -conjugated to K, whereas
Gy - (N*Qmy)k is the set of elements with G-isotropy G ,-conjugated to K.

Proof. Let z € sg_,i; using the decomposition Té(mQ = Té(H)Q(H)EBQ(H) N*Qmy, 2 = z1+20
and using our previous notation z; = py_x(2), therefore 2, € G, - (I (1)) . Moreover, if
q = 7(2), then

(K)*>G, =G, NG, =G,NG,NG,, =G,NG,,

because G,, C G,. Note that this equality is equivalent to zo € Ny k.
Analogously, if z = 21 + 20 € Gy - (Jny (1) m, o Nuk, let ¢ = 7(21) = 7(22) by

[H]

Proposition q€ QE‘H]. Using ((6.24) z € J7'(u) and its G-isotropy is
G.=G, NG, =G,NG, NG, =G, NG,
and as 2z € Ny, 2 € G, - (J71 (1)), and therefore z € sy, as we wanted to show. [

Note that, in general, Ny_ g is neither an affine nor vector bundle; it is just a fiber
bundle. Therefore by , unlike in the single orbit case, the pre-seams sy _,x — QfH} are
not affine bundles.

Using py, pr_k and different canonical projections and inclusions, we have the following
commutative diagram:

T*Q(H) PH Té(I_DQ 1H T*Q
JT ¢>T LK)
G- (J(_hlr)(li))Hu St SHoK EEL G- (I7H )k
ﬂ.Hl ﬂ.H—yKl 7-|-(K>
(G (Vo (1)) ,) /G = St (G (I )k /G

In view of this diagram, on the seam Sy _,x we can consider the two-forms Qpy, Qx €
0?(8y k) defined respectively as the only ones such that

(WH%K)*QH = (pH‘)K)*j*wQ(H)

(T Qe = (imk)* (i) wa-

The following result shows that both forms are equal and are presymplectic in the sense that
they are closed forms of constant rank.

Proposition 6.8.8. In the previous notation, the two-forms Qg, Qg on the seam Sy_ i in-
duced by the projection onto (Gu'u&}r) (11)m,)/ Gy and by the inclusion on (G- (I (1)) k) /Gy
respectively are equal. Moreover, Qg = Qk is a presymplectic form.

Proof. Working on local coordinates, it is easy to check the equality

*  ex
PrYWQm) = 'HWQ,

because if (U, x1,...,x,) is a coordinate system on @ adapted to Q ), then U N Qg is de-
scribed as xg11 = - -+ = x, = 0. This coordinates induce fibered coordinates (T*U, x1, ...z,
Y1,---,Yn). Then the pullback of Liouville’s one-form is

n

k
Pibous = > vidr =Y (yida;) \TQ(H)Q = ipbo
1=1

=1
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and the exterior derivative of this equality gives pywq ,, = ixwe-
Using this equality and the commutative diagram

(mE) Qu = (pr-k) " Woy = ¢ Prwou, = ' ihwq

: * ok H—K\*
= (in>k) YW = (7 ) O,
since my_, i is a submersion this implies Qg = Q.

The rank of Qi can be determined using (6.19)), because sy_,x in coordinates induced
by a Hamiltonian tube is the set

G, xx ({0} x offr x SH x (B*)¥).
Hence, in these coordinates the inclusion i 7% becomes
o x SH x (B*)E c o x B x (B")X. (6.26)

With respect to the symplectic structure of o x BX x (B*)X given by (4.10)), the subset
ofli x SH x (B*)X has constant rank. Therefore §y_,x has a closed two-form of constant
rank.

0
Note that if g = 0, then 0 = 0 and so the inclusion i % of ([6.26]) becomes
SH x (B)X ¢ BX x (B)X,

a coisotropic embedding. For this reason, in [PROSDO7| the pieces of the secondary strati-
fication were coisotropic submanifolds. In the general case pu # 0, the seams Sy, x will
only be presymplectic; in fact, the inclusion (6.26)) can be factored as

ofn x SH 5 (BN < offr x BE x (B*)X c of x BX x (B")K

so that the first inclusion becomes a coisotropic embedding and the second one a symplectic
embedding.
Combining this result with Proposition [6.8.3, we can state the following description of

SH*)K-

Theorem 6.8.9. Let z € J7' () and define K = G, H = G,,). There is a map F¥7E of
fiber bundles

H—K
SH-K S T fH}/Gu)

l |

QFH}/ Gu L QFH]/ Gu'

As a map of smooth manifolds, FH7K is a fibration; in particular, it is a subimmersion,
a constant rank map.

Moreover, using a mechanical connection, we can construct a closed two-form [3, on
T*(Q1py/Gu) such that

(3:H—>K)*(WQFH]/GH — Bu) = Qu = Q,

that s,
FHoK: (81, ) — (T*(QFH}/Gu)aWQf‘H]/GH - ﬁu)

is a pre-symplectic map. In fact, the image of FH7K is a symplectic vector subbundle of
(T( fH}/Gu)anf‘H]/GM — Bu)-
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Proof. Let 2/ = p"7%(2). Proposition at 2/ € J(_hl,)(u) C T*Qm) gives a map F and a
two-form 3, on T*(Qf;;;/G,,) such that

F: G (35 ()m,) /G — T*(Qliy /)

is a symplectic embedding onto a vector subbundle of (T™(Q(;/G ), Wk, — B,). Let FH=K =

F o p"=K using Propositions [6.8.7] and [6.8.8], it is clear that 7K satisfies all the stated
properties. O

As the fiber of py_,x is Ng_x, this theorem implies that F77¥ is an embedding if and
only if Ny_ k is the zero section. Hence, 8 y_, x is a symplectic manifold if and only if Ny_,x
is the zero section.

6.8.4 Principal piece

Proposition [6.8.8] shows that each space Sy i is endowed with a closed non-degenerate
two-form of constant rank. Using the cotangent Hamiltonian tube, we can check that the
assumption that 8y, is symplectic implies the algebraic condition K = H N G,,.

Proposition 6.8.10. If a seam Sy .k is a symplectic subspace of the symplectic manifold
(G- (I (1)k)/Gy, then there is a subgroup H such that spgi—x = Sgy—p, and K = H,.
Moreover, there is ¢ € Q" such that H = G|,.

Proof. Let z € sy with G, = K, an element like this always exists, because if 2’ € sy g
is any element as G, € (K)%* there is g € G, such that G,.,, = K but by G,-invariance
g-7' € sgk. Defineq =7(2), H =Gy, S = (g-9)* C T,Q alinear slice at ¢, « = z‘s e S*
and B = (h,-«)° C S. Let g = b, &pPo@[®n a splitting adapted to (G, H, p1) of Proposition
[1.2.1] As in the proof of Proposition [6.6.3 su_x is locally equivalent (see (6.19)) to

Gy xx (oM x S x (B*)K) .
Therefore, the seam Sy _, i is locally equivalent to
offn x St (BM)E

endowed with the restriction of the symplectic form (4.10). Hence, 8y x is symplectic if
and only if dim S¥ = dim(B*)X = dim BX. Note that if we use an H-invariant metric on
S to identify S* and S, then a € B¥ but from the equality S¥ = BX it follows that o is
H-fixed and thus as G, = K = H, N H, = H,,, this implies that sy g = sy_m,.

O

This property of symplectic seams is very important because it gives a very clean descrip-
tion of the isotropy subgroups that appear in the subset J=!(u) C T*Q for any cotangent
lifted action.

Corolally 6.8.11. If G is a Lie group acting properly on a manifold Q) and we consider the
cotangent-lifted action on T*Q with momentum map J: T*Q) — g*, then

{G.|2€I ()} ={G,NG,|q€Q, Lie(G,) CKerpu}.
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Proof. This result is almost an immediate consequence of the previous proposition. Let
z € J7!(u) and define K = G,. Since the manifold (G, - (J7(u))s.)/G, can be written as
a locally finite union of submanifolds {8/, } for different H' there must be a subgroup
L such that 8,k has the same dimension as (G, - (J7'(u))c.)/G,. Therefore, 8/, x is an
open set of the reduced space and, via the inclusion, the reduced symplectic form induces
a symplectic form on 8;_,x. Using the previous proposition, there is ¢ € Q" such that
G.=G,NG,.

To prove the other inclusion, let ¢ € @ with Lie(G,) C Ker pu. Using a Palais’ tube @
around ¢ is G X, S, but then using the cotangent reduction map ¢ the point (e, 1, 0,0) €
T;Q has momentum g and isotropy Gy NG, [

This result can be understood as a generalization of the first part of Theorem to
J7 () and without the single orbit assumption. Note that the description of the isotropy
subgroups of J™*(p) is simpler than the one given in [RO06].

In fact, in our setting we can prove a stronger result, in any connected component of an
orbit-type stratum of the reduced symplectic space there is a principal seam which turns
out to be symplectic, open and dense. We call it principal in analogy to Theorem [3.2.11]
In fact, the idea of the proof is going to be similar to the proof of Theorem [3.2.11| used in
[DKO0O]: using a transversality argument all the seams of codimension greater or equal than
two can be avoided and everything reduces to studying neighborhoods of codimension one
seams. The following lemma ensures that around each point of a codimension one seam there
is only one seam.

Lemma 6.8.12. Let Sy, be a submanifold of codimension one in the reduced space (G, -
(I Y w)k)/Gu, if © € Sy ki there is an open neighborhood U of z in (G, - (I () k)/G,
and a subgroup H' C G such that

U= (SH—)K U SH'*)K) NU.
Proof. Let € 8gy_, as in the proof of |6.8.10} there is z € sy_x with 7¢,(2) =z, G, = K.

Moreover, as sq, ,»x = Sg-K, to avoid unnecessary notation, we can assume H = G(,)
and define ¢ = 7(2).

As usual, define S = (g- ¢)* C T,Q a linear slice at ¢, o = Z‘S €S, B=(h,-a)°CS
and let g = b, © p @ o @ [P n the splitting of Proposition adapted to (G, H, ). The
embedding 8k C (G, - (I (n))k)/G, is locally equivalent (see (6.26)) to

o x SH x (B*)E c of x B x (B")¥.
The hypothesis that the codimension of Sy _, i is one is equivalent to
dim o”* + dim S + 1 = dim o® + dim B¥,

but this equation implies that dim BX = 1 4 dim S¥ because dim o+ + 1 = dim o is
impossible since both o« and 0¥ are symplectic vector spaces and in particular of even
dimension. As S C BX (see (6.18)), dim B¥ = 1+dim S implies that there is v such that
BE =SH QR -v.

Identifying S and S* through an H-invariant metric, o € BX, because H, N H,, = K and
(a, &) =0 for any € € b,. At this point we have two different options: either a € S¥ or

ag¢ SH.

o If « € S” then £-a = 0 for any £ € b, hence B = S, K = H,. In this case, if
T([g,0,\,a,bp,) € G- I (1), then A, a,b are H,-fixed and, using ,

7(T([9,0, X, a,blm,)) = ¥([g, A, a,a 0 (b+ a)lm,).
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As BE = SH @ (v), we can decompose a = ag + p1v and b = by + pyv with p; € R.
But then

aor(b+a) = (ag + p1v) o (by + pov + ) = p1p2(vov) =0,
because ay, by, are all H-fixed. Then,
T(‘I([ga 07 )\7 afg + p1v, b]H;;)) = \I]([ga )‘7 ag + P1v, O]Hu)

Note that? if P1 7é 07 lII([g’ >\a ag + P1v, O]Hu) € Ql[j'-[v] andv if p1 = Oa \P([ga )\7 am, O]HM) S
Qﬁ,ﬂ. Hence

U, = (susrx Usg,»x) NU..

e If @ ¢ S¥ then we can assume that v = a. In this case, if T([g,0,A,a,b]p,) €
G, - I (1) k and we decompose a = ay + prov and b = by + pacy, using (6.9)),

T<T([g7 07 )\7 ag + P1a, bH + IOQOC]H;)) = \II([g’ )\,5,50[ (bH + (1 + 02)05)]1'1;)

where
a=ayg+ pro—((ag + pra) 05 (b + p2ar); )
= ag + prov — P((p1av) 05 (p2cv); b)
=ayg + p1o.
Therefore,

T(T([ga 07 )\7 ag + P14, bH + pQOC]H#))
=V([g,\,ag + pro, (agr + prav) o (b + (1 + p2))]m,,)
- \I}([g’ )‘7 ag + P1C, O]Hu)

As in the previous case, if py # 0, ¥U([g,\,ag + p1,0]m,) € Qﬁ%] and, if p; = 0,
U(lg, N, am,0]m,) € Qf}n; that is,

U. = (sgskx Usp,—x)NU..

]

Theorem 6.8.13. If W is a connected component of (G,-(J~ (1)) k)/G ., there is a subgroup
H C G such that (Sg_p,) N W is open and dense in W.

Proof. Let x1, x5 be points in W with x1 € 8y, ,k, 2 € Sp,,x and assume that
As W is a connected component of a manifold, it is also path-connected and therefore there
is a path v: [0, 1] — W with (0) = x; and (1) = .

For each t € [0, 1] there is an open neighborhood U; 3 ~(¢) such that U; intersects finitely
many seams. As ([0, 1]) is compact, there is a finite collection {¢;} such that

'7([07 1]) C U Uti'
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This implies that v([0, 1]) intersects a finite number of seams. Using a transversality principle
(see for example |GP74]), there is a C* path 7 in |J, U, connecting @1 and x5 that intersects
transversally all the seams. In particular, 7 does not intersect any seam of codimension
greater or equal than two. Moreover, as the intersection with the codimension one seam must
be transversal, there is a finite subset {r;};<;<ny C (0, 1) such that the points of ¥([0, 1]) that
belong to a codimension one seam is exactly {7(r;) h1<i<n-

Note that the condition of the dimensions implies that z; is an interior point
of 8,5k, so 1 > 0, therefore 7([0,71)) C 8u, k. We can apply the previous lemma
at the point ¥(r;) and we have an open neighborhood U; of 5(r1). There is 1 > 0 such
that 7 + €1 < 7o and both ¥(r;y — 1) and (r; + 1) lie in U;. But using the lemma
?(7"1 + 81) S SH1~>K and ?([0,7’1 + 81) \ {7"1}) C 8H1~>K'

Hence, 7([0,72) \ {r1}) C 8u, k. Repeating this argument N times we get

:\Y/ ([07 1] \ U{rl}) - SH1~>K-

We have checked that Sy, ,x = Sy, x and this seam is open and dense in W. ]

Remark 6.8.14. Note that in (6.16) we showed that among the family {Sy .x}xcq the
set sg_,m, was non-empty and minimal. This last result states that among the family
{81=k}rce there is a maximal open dense set and it is of the form 8y_,5, for some H.

Note that the maximal piece given by this result is analogous to the maximal piece
Cr = 8y g given by Theorem 8 of [PROSDO07] for i = 0. However, we would like to remark
an important difference with the momentum zero case: in general, given H an isotropy group
of Q", the seam 8y_,p, does not need to be symplectic or maximal, whereas in the zero
momentum case all the pieces Sy, were symplectic and maximal in the appropriate space.

Now we can clarify the assertion made in Remark [6.6.1} assume that H, L are subgroups
such that 8,5, and 8,1, are open and dense in G,-(J ™' (1)), /G, and G- (I (1)) 1, /G,
respectively and

SH-mH, <3151,

Then 8y, # 0 and
8H—>Hu < SH—>LM =< SL—>LM‘ (628)

In this sense, the piece Sy_,z, “stitches” together the symplectic pieces Sy_,p, and 87,p,.

Nevertheless, even in the singular case we have that the maximal seam of the whole
reduced space J~(u)/G,, can be embedded onto a symplectic vector subbundle of a magnetic
cotangent bundle.

Theorem 6.8.15. If W is a connected component of J~'(u)/G,., there is H a compact
subgroup of G such that (8 p, )W is open and dense in W. Moreover, (8g—m,) W can be
embedded onto a vector subbundle of the magnetic cotangent bundle T*(Qpy;,/Gy).

Proof. Using Theorem [3.3.1] there is K C G such that G, - (J7'(u))x /G, is open, dense and
connected in W. By Theorem [6.8.13] there is H C G such that (8y_u,) N W is open and
dense in (G, - (J7'(p))x/G,) NW. Assume that H belongs to the principal orbit type for
the G action on Q). Then, sy_,py, C Té(H)Q = Té(H)Q(H); therefore, we can apply the theory
of single-orbit type (Proposition and we have the desired embedding.

If we assume that H does not belong to the principal orbit type (Gppine) for the G-action
on () we arrive at a contradiction: from Lemma it follows that 3¢ € Q" N Q¢

princ)
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if Q" # 0 but ¢ cannot be in the closure of the projection of a pre-seam sy, because
(H) < (Gprinc) this contradicts the density of sp_, H,-

-

]

Using that for a compact connected Lie group acting by cotangent lifts on a cotangent
bundle T*Q, the level sets of the momentum J~!(u) are connected (see [Kno02|), we can
show that on each connected component of Q* N Q) there is one piece Qf H] which is open,
dense and connected.

Proposition 6.8.16. Let G be a compact connected Lie group acting properly on a manifold
Q. Let L be an isotropy subgroup for the G action on () and assume that Qr) is connected.
There is H € (L) such that QFH}/GM is open dense and connected on (Q" N Qm))/G,..

Proof. Instead of working with 7™, we will consider the symplectic manifold T7Q); we
denote J: TQ) ) — g* the associated momentum map. As T*Q)(z) is a connected cotangent
bundle acted by a compact connected Lie group, 7%() (1) is a convex Hamiltonian manifold in
the sense of [Kno02J; this implies that J~'(x) is a connected set. Therefore, G, - (J~!(u))/G,,
is also connected. Using last part of Theorem [3.3.1] there is K such that G, - (7' (1)) /G,
is open dense and connected on G, - (J7!(u))/G,. Choose z € G, - (J7*(1n))x and define
H = G (., then by Propositions [6.4.1|and (6.4.5( G, - (J7' (1)) x = G, - (I (1)) m, and

= 7(Gu (I (1)x)-

Therefore, Qﬁﬂ/ G, is connected.

As Gy, - (371 (1) is open in J™H () and Gy - (I (w))x = (771 0 7)(Gy - (371 (1)K
Qﬁq] =7(G, - (J7* (1)) is open. As T is continuous

Q" =77 (1) =7(Gu- I (w)x) € 7(Gu- (I (1))x) C Qi

that is, QFH} N = Q"

6.9 Examples

In this section we present three different examples that illustrate most of the concepts
introduced in this chapter. In the first we consider a general homogeneous space; after stating
some general results we present a result of [Mon83| regarding the symplectic reduction of
symmetric spaces and see that in our setting this algebraic condition has deep consequences.

The second example is more explicit; we consider the cotangent bundle of the homogeneous
space @ = SU(3)/H and describe all the possible reduced spaces J~'(u)/G,. Although the
base has only one orbit type, the stratification of Q* = 7(J~!(u1)) is not trivial because in
J~1(u) there are several orbit-types.

In the third example we consider an SU(3)-action on a twisted product and its cotangent
lift. This simple example already shows that although Q" is a stratified space, it can have
some bad topological properties; for example, @Q* is not locally compact.

6.9.1 Homogeneous spaces

When the base @ is a homogeneous space, that is, Q = G/H, it was already noted in [Mon83|
that the restriction of the projection 7: T*Q — @ to the momentum leaf J~(u)

™ I N () — Q¥
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is a bijection. With the tools that we have developed we can go even further.

Proposition 6.9.1. Let Q = G/H be a homogeneous space where G is a Lie group and H
is a compact subgroup. Consider T*(G/H) with the cotangent lifted action, momentum map
J: T*(G/H) — g and projection 7: T*(G/H) — G/H. Define Q" = 7(J7(1)); T can be
restricted to

T I () — Q"
where J71 (1) and Q" are smooth decomposed spaces. With respect to these structures, T is
a G, -equivariant smooth decomposed isomorphism.

Proof. Let ¢ = gH € Q"; this implies that Lie(G,) = Lie(gHg ') = Ad,h lies in Ker  and
there is z € T;Q NI~ (u). Consider 2’ € T*Q NI~ (p), then J(z — 2’) = 0, but then for any
f€g
(z =7, ¢qq)) =0

as any element in 7;,Q) is of the form £y (¢). This implies z = 2/, therefore 7/ is a bijection. 7#
is smooth because it is the restriction of a smooth map from 7%() — () and it is decomposed
due to Proposition [6.6.5] 7# will be a diffeomorphism if for each ¢ € Q" we can find a local
smooth section for 7# defined on a neighborhood U, of ¢.

Using adapted coordinates at ¢ (Proposition , there exist coordinates W and J so
that we can define a smooth map

o: U, —T17Q
U(lg, A elm,) — T([g,0, A]m,,)-

But then if ¢ = U([g, A\, eln,) € @*, e =0, 0(¢') € I (n) and 7(0(¢')) = ¢ Therefore, o
restricted to Q" is a smooth section for 7#. n

Also in the same work [Mon83], based on [Mis82], remarks that in the case that G — G/H
is a symmetric space the reduced space J~*(u1)/G,, is zero-dimensional. More precisely,

Lemma 6.9.2. Let G be a Lie group, i € g* and assume that G/H is a symmetric space.
If J: T*(G/H) — g¢* is the momentum map for the cotangent-lifted action, then Q" is a
submanifold and for any q € Q"

T(Q") = Ty(Gy - q).

Proof. Denote by 7y : G — G/H the canonical projection. As G/H is symmetric there is a
splitting g = h @ m such that [m,m] C b, [h, m] C m.

Let ¢ € Q" and consider a path 7(t) with v(0) = ¢ such that ~(t) € Q* for all t. Using
a principal connection, 7 can be lifted to a path ¢(t) in G such that 7y (c(t)) = ~(t). Let
= 4| c()(c(0) €.

As v(t) € @, then Ad,yh C Ker p for all ¢, and taking the derivative at ¢ = 0 of this
expression

€, Adoo)h] C Kerp.

We can decompose § = §;+&o, where §; € Ad)h and § € Ad.gym. Then Ad. )b C Ker p
implies (&2, Adcyh] C Ker pi. As [€2, Adyoym] C Adyoym C Ker p then,

[527 g] = [527 AdC(O)b + Adc(o)m} C Ker )

that is, & € gu. As Y'(0) = Tyoymr - TeReo) - & = Tooymu - TeRe(o) - &2. This implies that
7' (0) € Te)(Gy - ¢(0)). Additionally, G, - ¢ C Q*, and therefore T,(Q*) = T,(G,, - q). O
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Using the results stated in this chapter, this last Proposition has important consequences
for non-homogeneous spaces.

Proposition 6.9.3. e [fG is a Lie group, u € g*, H is a subgroup such that Lie(H) C
Ker(u) and G/H is a symmetric space, then the connected components of L(H, )
containing e € G 1s the same as the connected component of G, - H C G. Moreover,

the adapted splitting of Proposition at (G, H, i) has o = 0.

e Consider G a compact, connected Lie group acting properly on @ and its cotangent
lifted action on T*Q. Let H be an isotropy subgroup on Q. If G — G /H is a symmetric
space and Q" N Qg # 0, then

) = GuQu=0Q" N Q).

Proof. e If we consider the cotangent-lift of the G-action on Q = G/H and we denote
by my: G — G/H the canonical projection, Proposition gives gy (L(H, u)) =
(G- (I (1)m,). As H € my(L(H, p)) by G,-invariance

Gy H Crg(L(H, p) =7(G, - (37 (1)m,) € 7(T 7 ().

Taking the tangent of this inclusion at H € G/H and using the previous lemma, it
follows that the connected component of 7wy (L(H, p)) through H € G/H coincides
with the connected component of 7y (G,) = G, - H through H € G/H. Using 75", it
follows that the connected component of L(H, p)) through e € G must be equal to the
connected component of G, - H through e € G.

Recall that o is symplectomorphic to the normal slice at 1 C O, with respect to the
induced H-action, but using commuting reduction as G/H is symmetric, J~! (1) /G,
is zero dimensional and this implies that o = 0.

e Without loss of generality, we can assume that @)z is connected. Let J(g): T"Qm) —
g" be the momentum map and 7g): T"Qx) — Qx) be the bundle projection. As in

the proof of Proposition 6.8.16, Q" N Q) = T(m) (J(_I;)(,u)) and as G is compact and
connected J (_hl,) (u) is connected.

Clearly G, - Qu C T(H)(J(_I_})(u)) and G, - Qg is a closed subset of Q).

Let ¢ € G,,- Qu; there is g € G, such that ¢’ = g- ¢ with ¢ € Q. Using a Palais’ tube
at ¢, Q is the twisted product G xy S, and Qi) = G x i SH. But if [k, a]y is in Q*
and is near enough to [e, 0]y, we saw in the proof of the last statement that k = ¢'h/,
where ¢ € G, and h' € H. Therefore, G, - Qy is open in Q*. As T(H)(J(_hl,)(u)) is

connected, we must have G, - Qn = T(H)(J(_I_})(u)).

]

This Proposition shows that if H is a subgroup such that G/H is symmetric and u € g*,
then Q) N Q" has only one orbit type for the G-action.

6.9.2 Q=SU®3)/H

In this section we present an example for which ) = G/H is not a symmetric space. Although
the base is single-orbit with respect to the G-action, the set Q" will have different orbit types
with respect to the G -action.
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We consider as @) the quotient of the compact group SU(3) by one maximal torus. We

fix the following basis for the Lie algebra g = su(3)

0 7 0 [0 1 0 [i 0 0 0 i
2 2 2 2
512—\2_ i 00 gzz—é_ -10 0 &,:—? 0 —i 0 542—\2_ 00
000 (0 00 0 0 0 00
0 0 1 [0 0 0 [0 0 0 0 0
2 2 2 6
55:—\2[ 0 0 0 56:—\2_ 00 i 57:—‘2[ 0 0 1 58:—\2_ i 0
-1 0 0 0 i 0 0 -1 0 0 —2i

and the metric on g
(& ) = —Trace(&n).

This metric is G-invariant metric because it is a multiple of the Killing form. The proposed
basis is orthonormal with respect to ((-,-)); from now on we will use this metric to identify g
and g*.

We denote by H C SU(3) the maximal torus corresponding to diagonal matrices, in-
finitesimally it is generated by the abelian subalgebra b = (&35,&)r C g. b is a Cartan
subalgebra of g; we denote by ajs = diag{i,—i,0} € b, ay; = diag{0,i,—i} € b and
ay3 = diag{i, 0, —i} € b the three simple roots of g with respect to b.

We study the reduced spaces J~!(u)/G,, for different values of u. Note that if g = 0 then
J71(0) is the zero section of T*(G/H), and thus the reduced space J7'(0)/G is a single point.
Therefore, from now on, we assume p # 0.

Note that, using commuting reduction (Theorem [3.3.2), the reduced space J7'(1)/G,,
is the G-reduction of T*(G/H), which can be seen as an H-reduced space. Therefore, as
stratified symplectic spaces, J7*(1)/G,, must be symplectomorphic to the reduction by the
action of H of the coadjoint orbit O,, C g*.

As a preliminary step, we can describe the different orbit types of 3x3 matrices un-
der the action of H by conjugation: Let A = (ay;) be a complex 3x3 matrix and d =
diag(e?, €2 ) € H, note that dAd~' = (ay;e’®~%)). From this expression it is clear
that if A satisfies dAd~' = A and A is not diagonal, then either §; = 6, = 63 or A belongs
to one of the families

*x 0 0 * % 0 * 0 *
0 * x|, x* x 0], 0 = 0
0 % = 0 0 = * 0 «*

=

and 0y = 03, 0, = 05 or ; = 03, respectively.
subgroups is

his implies that the lattice of possible isotropy

D13

where
Dy, = {diag(e”, ¢, =27 | 6 € R}
Dys = {diag(e?, e, 6) | 0 € R}
Dys = {diag(e % ¢ ¢) | 6 € R}.
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Note that Dys, D13, Dos are all isomorphic to S*.

Let o € g* and denote by {i\1,iA9, iA3} its three eigenvalues with \; € R and A\j+Xo+\3 =
0. With this notation, the set of H-fixed points (O,)) contains the diagonal matrix
diag{(i\1, i)z, 7A3)} and its 6 permutations. The set (O,)(p,,) of points with isotropy Das is
composed of three different connected components:

iAr 00 iAa 0 0 Az 0 0
0 x x|, 0 x x|, 0 * %
0 * = 0 % = 0 % =

It can be shown that each of these components is diffeomorphic to S? because SU(2)/St = S2.
Similarly, (O,)(py,) and (O,)(p,s) are both diffeomorphic to three disjoint S

Let ®: O, — b* be the momentum map for the H-action. Using the Atiyah-Guillemin-
Sternberg theorem, the image of ® is the convex hull of the set of H-fixed points and the set
®~1(0) is connected. Using the above description of the H-isotropy, the H-fixed points are
exactly the intersection of O, with h* C g* the subspace of diagonal skew-hermitian traceless
matrices. In fact, more generally, O, N bh* is exactly an orbit of the Weyl group Nq(H)/H
(see |BHO8] and [Bot79]). Recall that the action of the Weyl group Ng(H)/H = S5 on h* is
generated by the reflections around the different simple roots.

More graphically, in Figure we show ®(0,,). The six black dots represent the six
diagonal matrices in O,. The three horizontal thick lines are ®((O,)p,,)); the three lines

with slope v/3 are ®((0,)(py,)), and the three lines with slope —v/3 are ®((O,)(p,,))-

Figure 6.1: The image ®(0O,,) for p of generic type.

1 singular 1 degenerate
Q23 @13
% Py
< o> Q12
vy R

Figure 6.2: The image ®(0,) for p of singular and degenerate type.
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(a) p generic (b) p singular

Figure 6.3: The reduced spaces J~'(u)/G,, for p generic or singular.

We can classify p # 0 into three different cases

e Generic p, when Aj, Ay, A3 are all non-zero and different. G, is a two dimensional

torus, therefore O, = G/G,, is a compact connected 6 dimensional manifold.

The image under ® of O, is represented in Figure Note that ®~1(0) has only one
H-isotropy and it is Zs. As the isotropy subgroup is discrete, ® is a submersion near
®~1(0), therefore ®71(0) is a connected submanifold of dimension 4.

Hence ®71(0)/H is a compact connected manifold of dimension 2. Using equivariant
cohomology or related techniques (see |[GMO04; Gol99]), it can be shown that in fact
®~1(0)/H must be a sphere.

Singular p, when det z = 0. Then p has eigenvalues {i\;, —iA;,0}. The image of O,
under & is represented in Figure (6.2

In this case, ®~1(0) contains four different isotropy types { D12, Da3, D13, Z3}. Therefore
the reduced space ®~1(0)/H has four pieces. The open, dense and connected one
is (271(0))zy)/H a manifold of dimension 2. (®7'(0))p,,) has dimension 1 and is
connected, thus (27(0))(p,,)/D12 is a single point. The strata corresponding to Do
and D3 are similar. Therefore, as a stratified space ®~1(0)/H, contains an open dense
stratum of dimension 2 and 3 singular points.

Degenerate (i, when p has to equal eigenvalues. Then G, = SU(2) x U(1) and it can
be shown that O, is diffeomorphic to CP?, the complex projective plane (see [BHO8]).
This case is represented in Figure |6.2

®~1(0) contains only points with H-isotropy equal to Zs, thus ®~1(0) is a submanifold
of dimension 2 because dim O, = 4 and ® is a submersion. As ®~1(0) is connected,
®~1(0)/H must be a single point.

In the generic case, as the reduced space is a sphere and there is only one stratum,

G, - J7'(pn) has only one orbit type and is a manifold of dimension 4. Fix p of generic
type and let z € J7'(u). Define L = G,y € (H) then J7'(u) = G, - (J7'(u))z, and
7(Gy - (371 (1)zy) = Qfyy = L(L,p1) - Q1. Note that Qr = Ng(H)/H a set of 6 different
points, as L(H, p) - Qi = J~!(u) and J~!(1) has dimension 4, this implies that L(L, u) has
dimension 4. Therefore, in this case it is not possible that L(L, u) = G, - Ng(H), because if
so L(L, u) - Qy would be of dimension 2.
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Remark 6.9.4. Note that this case implies that in general the partition

Q= |J Gu-Q

Lie(L)CKer

cannot be locally finite, because in this example Q" is of dimension 4 and each of the
sets G, - @, is of dimension 2.

As an example of what happens for singular u, we can choose 1 = &, as Lie(H) € Ker u
the point H € G/H lies in Q. In this case, the adapted splitting of Proposition can
be chosen as

by = Ea)r, [=(&)r, P=(E)r, 0= (&8 &)

If we consider complex coordinates zj, zo in 0 such that (z1, z0) — Re(21)&s + Im(21)&5 +
Re(z2)& + Im(22)&7 € o, then the action of H, = S! on o is isomorphic to the S'-action
e - (21, 29) = (€321,e73%2;). Let J,: 0 — R be the momentum map for the H, action; in
complex coordinates J,(21, 22) = |21]° — |22]>. J;1(0) is topologically a cone of dimension 3,
and after a simple calculation J;'(0)/H, is isomorphic as a smooth stratified space to the
quotient of C by the natural action of Zs by rotations.

Applying Proposition at H € G/H and (6.10), locally around H € G/H, Q" =
G xp, J;1(0). Recall that for homogeneous spaces (Proposition J N w)/G, = Q"/G,.
This implies that the reduced space J~!(u)/G,, has an orbifold singularity equivalent to the
quotient C/Zs. Globally, J!(x)/G,, is a sphere with three orbifold singularities (Figure
and J7(u) C T*Q is a subset of regular dimension 3 with three singular circles.

6.9.3 Q" not locally compact

In this section we present a simple example for which the projection on @ of J=!(u) is not a
locally closed subspace of (); that is, as a topological space Q" is not locally compact.

We consider G = SU(3) and H = SU(2) the subgroup of SU(3) that has Lie algebra
(€1,&2,&3)r. The vector space S = (£, &, &3)r has a natural H-action. With respect to this
action, we can define the twisted product Q = G xg S.

Note that the G-action on () induces the orbit type stratification

Q = Q) UQsy,

where Qg1 is the principal orbit type and Q) = G x g {0} is the 5-dimensional manifold
of isotropy type (H).
Define p = &, ¢ = [e,0]g. As Lie(Gy) = H = (£1,6,&)r C Kerp then g € Q let
z € 7 q) NI (w). After a simple computation G,, = exp((&4, & — \%&QR) therefore
H, = {e} and the adapted splitting is
1
9=1(,6,5)rD <§47§3 ﬁ&S>R on.

[ (.

I
Using the map W of Proposition [6.3.1], locally around ¢, @) is diffeomorphic to
G“ X1d ([* X S)
and using Ty, locally around z, T*@Q is G-symplectomorphic to

G X1d (S X S*)



116 CHAPTER 6. COTANGENT-BUNDLE REDUCTION

As H, is trivial ;! (0) = S x S*. Then by and (6.9),
Q") ={(g,aoba) € G, x " x S| a,be S}
Note that the b action on S is isomorphic to the standard so(3) action on R3, so
{(aorb,a) | a,be S ={(vxww)|v,wecR?} =Y.

However, Y is not a locally closed set because (0,0) € Y, (pe1,0) ¢ Y for any p # 0 but
(pe1,ea\) €Y for any A # 0; that is, (pe;,0) € Y.

This example shows that, in general, Q" is not a locally closed set of () and similarly
for Q" /G,,. Nevertheless, note that Proposition shows that if () is of single orbit-type,
then Q" is locally closed.

Remark 6.9.5. This fact has several non-trivial consequences. First of all it implies that the
stratified space Q" cannot be a cone space in the usual sense, see [Pfl01], because cone spaces
are always locally compact.

Recall that we showed that the partition into pre-seams of J~!(0) satisfied the frontier
condition checking (essentially) the openness of the restriction 7°: J71(0) — Q/G (see
Proposition . However, using point-set topology it can be shown that the image under
an open and continuous map of a locally compact Hausdorff space is again locally compact.
This implies that the restriction 7#: J™'(u) — Q*/G,, cannot be open in general. Therefore,
if the seams form a decomposition, it cannot be proven using the same ideas as in Proposition
0. (. (l



Chapter 7

Orthogonal actions on 7T*R"™ and
TH*(R" x R")

In this chapter we study the symplectic reduction of the following Hamiltonian spaces
e O(n) acting on T*R" by the cotangent lift of the natural action of O(n) on R™.

e O(n) acting on T*(R™ x R™) by the cotangent lift of the diagonal action of O(n) on
R™ x R".

Using the techniques developed in the last chapter we study the reduced spaces J~'(u) /G,
and their partition into seams {8y, i } for each possible value of . The symplectic reduction
of T*R™ by O(n) was already studied using different techniques in [Mon83|. Although the
action is not free, the reduction at p # 0 is quite simple because J~*(u) is a manifold.
However, the reduction at 1 = 0 requires the introduction of stratifications, but this case
could be studied using the techniques of [PROSDO7].

The symplectic reduction of T*(R™ x R™) for generic p is again quite simple because
J71(u) and 7(J7(u)) are submanifolds. Nevertheless, for some special values p # 0 the
reduced space is no longer a manifold. In fact, J7'(u)/G, has to be decomposed into four
different fibered pieces. This setting exemplifies part of the general behavior described on
Chapter [6] while some seams are symplectic and can be embedded into a cotangent bundle,
other seams are only presymplectic and the natural map of Theorem onto a cotangent
bundle is just a constant-rank map.

7.1 The orthogonal group O(n)

We use the symbol e; € R" to represent the vector with a one in the i-th component and zero
on the others and we use (vy, ..., v;) to denote the linear span of the set {vy,...,vx} C R™.
The Lie algebra o(n) of the orthogonal group O(n) of R™ is the set of n x n skew-symmetric
matrices, a vector space of dimension (}). We will identify o(n) with A?(R"™), the second
exterior power of R”. The metric of R" induces a metric on A?(R"™) that can be used to
identify A?(R") and A%(R™)*, that is, o(n) and o(n)*.
After some computations it can be checked that the set

t= {)\161 A ey + )\263 A ey + -+ )\megm,1 VAN €9, € 0(%) | )\z < R} (71)

where m = |7, is a Cartan subalgebra of O(n) (see [Kna02]) and, as O(n) is compact, for
any £ € o(n) there is g € O(n) such that Ady€ € t.

117
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Since each element of 0(n) can be identified with a skew-symmetric endomorphism of R”
we can assign to each & € o(n) its associated rank. Since all the elements in t have even
rank, the rank of an element £ € o(n) can only be even. Note that if £ has rank 2 then
it is conjugate to Ae; A ep for some A € R. Similarly, if ¢ has rank 4, it is conjugate to
A1e1 A ey + Aes A ey with A; € R. The partition of o(n) into subsets of equal rank forms a
decomposition (in the sense of Definition of o(n) into semialgebraic sets.

Throughout this chapter if F' is a subspace of R", O(F') will represent the subgroup of
O(n) that fixes F- and by O(n — r) we will mean O({e;, ey, ...e.)b).

7.2 O(n) action on T*R"

Let @ = R" endowed with its natural O(n) action and 7*Q = R™ x R™ with its cotangent-lift.
@ can be decomposed into two orbit types

Q = Qom) U Qom-1)

where Qo) is just the point 0 € R™ and Q1)) is its complement, because if ¢ # 0
then G, = O({(¢g)*) is conjugated to O(n — 1) If 2= (¢q,p) € T"Q = R™ x R” then the
Conjugacy class of G, depends only on the dimension of the linear subspace (g, p), hence T*Q
decomposes into three orbit-type submanifolds

Q= (T"Q)om U (T"Q)0n-1) U (T"Q)(0(m-2))- (7.2)

Using the identification o(n) = o(n)*, the momentum map J: 7°Q — o(n)* = o(n) can
be written as J(¢,p) = ¢ A p. From that expression

J(T"Q) = {0} U{p € o(n)” | rank(u) = 2},

that is, the image of J is the subset of A%(R") consisting of 0 and the set of decomposable
vectors.

We will now study the reduced space J~'(u)/G,, for p of rank 2 and for u = 0, but before
doing so we introduce a useful map that can be used to the reduced spaces J=*(u)/G,, as
submanifolds of the set of 2 x 2 matrices.

Let Sp(1,R) be the group of linear symplectic transformations of R x R* = T*R. Note
that Sp(1,R) = SL(2,R) and its Lie algebra can be identified with the space of traceless
2 x 2 matrices. Moreover, using the Killing form we can identify sp(1,R) and sp(1,R)*.
Consider the O(n)-invariant smooth map

K: T°Q — sp(1,R)* (7.3)
q-p —q-q
(@.p)— {p-p —q-pl'

Fix u € o(n)*, then K induces K,: J7'(u)/G, — K(J 7' (1)) C sp(1,R)*. The map K,
satisfies some important properties:

e K, is an homeomorphism between J~!(1)/G,, and the semialgebraic set K(J~!(u)) C
sp(1,R)*. In fact, K, is an isomorphism of smooth stratified sets.

o K,(J7'(u)/G,) is the closure of a single coadjoint orbit in sp(1, R)*.

e Let W be a connected component of G, - J ™! (1) /G, then K, (W) is a coadjoint orbit
and K, restricts to a symplectomorphism between W and the coadjoint orbit K, (W).
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These properties are the content of Theorem 4.3 in [LMS93|. If we identify 7@ = R* xR"™
with R” ® R? and we endow this space with the Sp(1,R) action g - (v ® w) = v ® (gw) then
K is the momentum map for this action. The above properties of K, are due to the fact
that the subgroups (O(n), Sp(1,R)) form a dual pair of Sp(T*R").

7.2.1 pu of rank 2

If 11 is of rank 2 then it is conjugated to an element Ae; Aes, A € R, therefore, without loss of
generality we will assume that 1 = Aej Aey. In this case G, = SO(2) x O(n—2), the product
of orientation-preserving rotations in the (e;, e;)-plane and orthogonal transformations of
(e1,ex)t C R™

If (q,p) € T*Q are such that ¢ A p = Ae; A ey then ¢ # 0 and ¢ € (e, e2). Conversely if
q satisfies this two conditions we can find p such that ¢ A p = u, hence

Q"={q€Q|q#0,q€ (er,e2)}.

Note that Q" C Qom-1)), @ is a connected submanifold of dimension 2 and Q*/G, is
diffeomorphic to R.

Let ¢ € @*. Then G, NG, = O(n — 2). Therefore, using Corollary [6.8.11} all the points
in J7!(p1) have isotropy O(n — 2). Since the set J~!(u1) has only one orbit type, by Theorem
J~!(u) is a submanifold of T*Q) with dimension (see (1.3))

dimJ ' (p) = dimT*Q — dimg - 2z = 2n — (Z) + (Z) =3.

Let z € J7'(u). Since G, /G, has dimension, 1 J~*()/G,, is a manifold of dimension 2.
Since all the groups G, with ¢ € Q" are G,-conjugated, by Lemma [6.6.2]

Q" = Qo I (1)/Gu = 80(n-1)50(m-2)
Note that the map of Proposition [6.8.5|is diffeomorphism of fiber bundles
So(n-1)~0mn-2) —— L (Qo(n_17/Gu) = TR

| l

QfO(n—l)]/Gl‘ = 62‘ELO('n—l)]/G/rL =R
Using K, since J7' (1) /G, = 80(n-1)-0(n—2) we have the isomorphism

0

K, (8o(m-1)»0m-2)) = Sp(1,R) - {az

-1 .
O} Csp(1,R)".

7.2.2 =0

Note that J(¢,p) = g A p =0 if and only if p and ¢ are parallel. Therefore, in terms of the
orbit-type decomposition ([7.2)) we have the equality

J7H0) = (T*Q)om) U (T*Q)on-1)-

Since Q" = Q = Qom) U Qom-1)), according to Proposition we have a partition of
J71(0)/G into three different pieces

Zy-10)/¢ = {80(n-1)-0(n-1): SOm)=0(n-1): SOMm)—0m) } -
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AZ AZ

Figure 7.1: In the left plot we have represented the cone K(J7!(0)). This set can be divided
into an open and dense piece, the thick black line Ko(8o(m)—o(m-1)), and the vertex of the
cone Ko(8o(m)—o@m))- In the right plot we have represented K(J~*(x)) for p1 of rank 2, which
is one sheet of a two-sheeted hyperboloid.

The open and dense piece 8o(n—1)—0mn-1) is diffeomorphic as a fiber bundle to T*R. The
piece 8o(m)—o(n—1) is the G-quotient of the pre-seam {(0,p) | 0 # p € R"}. Finally So(m)—om)
is a single point.

Using the map K we have

0 -1 _
KO(SO(n—l)ﬁO(n—l)) = {M =g |:O 0 :| g ! | g€ Sp(LR)? M1,2 7é 0} )

0o —1| _
Ko(8om)y—om-1)) = {M =g [O 0 ] g g€ Sp(L,R), M ,= 0},

0 0 "
KO(SO(n)%O(n)) — [O O:| Cﬁp(l,R) .

Since sp(1,R)* is three dimensional, taking coordinates

T —z .
[erz y_x ] C sp(1,R)

we can graphically represent the image of K for both p of rank 2 and p = 0 in Figure [7.1]

7.3 O(n) action on T*(R" x R")

Let @ = R™ x R" be endowed with the diagonal O(n)-action and 7@ = R" x R" x R" x R"
be endowed with its cotangent-lift.

Let ¢ = (q1,92) € Q. The conjugacy class of the isotropy subgroup G, depends only on
the dimension of (¢, ¢2), therefore @) can be decomposed into three orbit types

Q = Qowm) U Qom-1)) U Qo(m-2)) (7.4)

Note that Qo is just the point (0,0), Qo(m-1)) is a submanifold of dimension n + 1 and
Q(0(n—2)) is an open and dense set. Similarly, the isotropy class of z = (q1, 2, p1,p2) € T*Q
depends on the dimension of (g1, g2, p1,p2) and then T*Q) decomposes into five orbit-type
submanifolds

T"Q = (T"Q)om U (T" Q) 0m-1) U (T*Q) 0m-2) U (T Q) 0m-3) U (T"Q) (0(n-a))-



7.3. O(N) ACTION ON T*(RY x RM) 121

As the momentum map is J(q1, g2, p1, p2) = ¢1 A p1 + ¢2 A po it follows that

J(TQ) ={0}u{p € o(n)" | rank(p) =2} U{u € o(n)* | rank(u) = 4}.
Let Sp(2,R) be the group of symplectic linear transformations of T*R?. As in ([7.3)) the
map
K: T°Q — sp(2,R)”

gi-P1r ¢1-P2 —q@1-q@r —q1-G2
42 P11 42-P2 —Qq2-q1 —42-q2
Pr-P1 P1-P2 —q1-P1 —G2°DP1
P2-P1 P2:-P2 —q1-P2 —q2-(q2

(q1, 92, p1,p2) —

induces isomorphisms K, between J~'(1)/G,, and K(J7*(p)). The image of each K, is the
closure of a coadjoint orbit and the appropriate restriction is a symplectomorphism. See
[LMS93] for more details.

We will now study the reduced space J~'(u)/G,, for all possible values of u depending
on its rank.

7.3.1 pu of rank 4

Assume that p € Im(J(7*Q)) has rank 4. Without loss of generality we can assume that
,u:ael/\e2+beg/\e4 with a,b;«éO.
If J(qlv q2ap1ap2) = M, then

abel/\ez/\eg/\e4:uAu:ql/\pl/\qg/\pg

hence {qi1, g2, p1,p2} form a basis of the subspace (e, ..., e4) and satisfy ¢; A g A u = 0.
Conversely, let q1,q2 € (eq,...,e4) such that ¢; A g2 # 0. After some algebra, there are
z,y € (e,...,ey) satisfying
QANT+@NANYy=p

if and only if ¢; A ¢o A p = 0. Hence

Q' ={q,c(er,...,e0) | @ N2 #0, @ NgAp=0},

and in particular Q" C Qo(n-2))- Let ¢; = Z?Zl x; ;e;, then the condition ¢; A g A =0
can be written as

b($1,1l"2,2 - $1,2I2,1) + a($1,3$2,4 - IE1,4$2,3) =0. (7-5)

Therefore, Q* is a submanifold of ) of dimension 7.
We now need to split our study into two different cases.

e Assume a # b. In this case G, = SO(2) x SO(2) x O(n —4).

Let ¢ = (¢1,¢2) € Q*. Then G,N G, = O(n — 4) because the condition g1 A g2 A pt =0
forbids the cases g1 A ¢a = Ae; A ey and g1 A ¢ = Aes A ey. Using Corollary this
implies that J~'(x) has only one G-isotropy type and it is conjugated to O(n — 4).
Moreover Lemma |6.6.2] implies

— _1 o
Q" = Qo(erenytyr I (1) = 50(ter.e5)1)50(m-1)-

Let ¢ € Q*, since G, /(G,N G,,) has dimension 2, Q*/G,, is a manifold of dimension 5.

Since dim J~(u) = 4n — dimg- 2z = 4n — (}) + (",*) = 10, and dim G,,/O(n — 4) = 2,

then J~!(u)/G,, is a manifold of dimension 8.
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The map of Theorem becomes a symplectic embedding of the 8-dimensional re-
duced space I (1) /G, = 80(n—2)—0(n—1) Onto the magnetic cotangent bundle 7*(Q*/G,,)
of dimension 10.

SO(<e1 e3)1)—=0(n—4) T*( [O({e1,e3) L)]/ )

J l

3
[O(<91ve3>L)}/G’”

I
[O(<61793>l)}/G“

Alternatively, J7'(11)/Gy = 80((e1,es)t)0(n—1), under the isomorphism K, can be
identified with the 8-dimensional Sp(2, R)-coadjoint orbit

0 0 —1 0
0 0 0 -1 .
KH(SO((el,eg)J—)—}O(n—4)) = Sp(27 R) ' a2 0 0 0 - 5p(2,R> :
0 »® 0 0
Assume a = b. Consider on (e, ..., e4) the complex structure J defined by

Je; = ey and Jes = ey.
Then G, = U(2) x O(n —4).
Note that G, NG, = O(n — 4) unless ¢;, J¢1 and ¢, are not linearly independent. But
if a = b, ([7.5) is equivalent to
T1,1%22 — T12T21 T T1,3%24 — T14T23 = 0,

that is, ¢1 - (Jg2) = 0. Therefore if ¢ A ¢ # 0, g2 cannot lie in (g1, J¢1), hence
G,NG,=0(n—4).

Again by Corollary [6.8.11] and Lemma [6.6.2
Q“ = O( e1,e3) L)’ J_l(,u) = S0((e1,e3)+)—=0(n—4)-

Let ¢ € Q*. Since G, /G, is conjugated to U(2), it has dimension 4, therefore Q*/G,,
has dimension 3. Similarly, as G,/O(n — 4) has also dimension 4 and J~!(u) has
dimension 10, the reduced space J~*(u)/G,) has dimension 6.

In this case the map of Theorem becomes a symplectomorphism between the 6
dimensional reduced space J7'(11)/ G, = 80 ((ey )+ )—0(n—1) and the magnetic cotangent
bundle T*(Q"/G,,).

S0 ((er,e5) )= 0(m—1) = T (Qlp 1, o512/ Cu)

| l

@ Id T
[O(<el,es>L)}/G“ [O((m,es)l)}/

Gy

Using the isomorphism K, 8o((e; e3)1)—»0(n—1) can now be identified with the 6-dimen-
sional Sp(2,R)-coadjoint orbit

0O 0 -1 O

0O 0 0 -— X
K,LL(SO(n—Z)—)O(n—4)) = Sp(zu ]R) ' CL2 0 0 0 C Ep(27 R) .

0 a2 0 0
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7.3.2 pu of rank 2

Without loss of generality © = ae; A e;. Therefore G, = SO(2) x O(n — 2).
As for the rank 4 case J(q1, q2, p1, p2) = p implies ¢; A g2 A p = 0, therefore

Q"N Qom-2) C a1, ) €Q i Ng2 #0, q ANga A= 0},

Conversely, let (¢1,q2) € @ such that ¢; A ga # 0 and ¢; A g2 A p = 0. This last condition
implies that the four vectors {qi, g2, €1,€2} span a three dimensional subspace, so we can
choose u € R™ such that {q1, g2, u} is a basis of this subspace. Then there are A, Ay, A3 € R
such that

aey Aey = g1 A g+ Xoqi Au+ Azqe Au= g1 A (Agi + Aou) + g2 A (Asu)

hence
Q"N Qom-2) = {01, 02) €Q |1 N2 #0, @ AgaAp=0}.

The intersection Q" N Qomn-1)) is simpler because

Q"N Q(O(n—l)) = {(Q17Q2) €qQ | 41,92 € <61782>7 (Q17Q2) # (070)7 G NG = 0}-

Let ¢ € Q" N Q(O(nfl))- Then Gq N G# = O(n — 2). However, if ¢1,q2 € Q* N Q(O(nf2))7
either g1 A gz = €1 A ey or g1 A g2 # €1 A es. In the former case G, NG, = O(n — 2) whereas
in the latter G, NG, € (O(n — 3))%~.

Using Lemma we have a partition of Q" in three pieces

_ 14
Q" = Qo ((er 004 Y Qlo(n- 2) Y Qlom=1)
N \—v—"

CQ(O(n—2>> CR(o(n-1))

Similarly, using Corollary [6.8.11] the set J=*(u) can be decomposed as

I (1) = G- (I (1) om—2 UG- (T (1) owm-3)-

With this information Proposition W gives a partition of J7'(u)/G, into six different
pieces. However we are now going to check that two of them are empty.

o Let (q1,G2,P1,P2) € 50((er,e5)L)0n—2)- Then (g1, gz, p1, p2) has to be two dimensional,
since ¢, g2 are independent we have that (q1,G2,p1,02) = (q1,q2). But as J(z) = p this
implies that (g1, q2) = (e1,ez). This is a contradiction with (1, g2) € Q’[z)(<el es) L))"

o Let (Q1;Q2,P1>p2) € S50(n—2)—0(n—3)- Since pt = q1 A p1 + g2 N\ py and <Q1,Q2> = (61762>7
O=q Ap=q AgApa, therefore P2 € {q1,q2) and analogously p; € (g1, ). Then

(q1, G2, p1,2) & (T7Q) (0(n—3))-

Hence the partition of J~!(u)/G,, has four different pieces with the following incidence
relations

S0((e1,e3)L)—0(n—3)

T

80(n—2)—0(n—2)

T

80(n-1)—0(n—3) = 80(n-1)-0(n—2)
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in this diagram A — B means that A < B and there is no other piece C' such that A < C' < B.
Moreover we have the following equalities

) = S0((er.e3)1)=0(n=3) H 50(n-1)=0(n-3)
) = S0(n-2)-0(n—2) U S0(n-1)-0(n-2)

(1) = 50((e1,e3) 1) >O(n—3)

TN Qfo(m_2y) NI (1) = s0(m-2)0(n-2)

T_l(QfLo(nfl)]) NI~ (p)

Using the local description of Proposition [6.3.1| can give more details of each of the pieces.

® 80((er,05)L)0(n—3)- Using Theorem this piece is symplectic, open, dense and
connected. Fix z = (e, e3,ae2,0) € So((e,e4)L)»0n—3)- The dimension of I~ (1) (0 (n—3))
is equal to 4n — (;L) + (";3) =n+6 and since G,,/G, has dimension n — 2 this piece is

of dimension 8.
Fix ¢ = (ey, e3) and let H = G,. We will use Proposition @to model Q’[jq]/GM around
(4.3). Since H = O({e;, e3)*)

q. The first step is to compute the Lie algebra splitting
we have that H, = O(n — 3). Then

h#:<ei/\ej|z'24, j>Z> p:(el/\eQ,e3/\e4,...,e3/\en>
[:<e2/\e4,...,e2Aen> n:<e1/\e4,...,e1/\en>
0= <el/\e3,e2/\e3>.

Note that of» = o # 0. Therefore Proposition implies that 8_,0(n—3) is not
diffeomorphic to T"(Qf/Gy)-

The linear slice at ¢ is S = ((e1,0), (0, e3), (e3,e;)) and then S” = S. Using Proposition
locally Q’ﬁH]/ G, = oflv x SH therefore Q’[jq]/ G, is a 5 dimensional submanifold
of ().

The map of Theorem [6.8.9) gives an embedding of the 8 dimensional piece 85 0(n—3)
onto a symplectic vector subbundle of the 10-dimensional magnetic cotangent bundle

T*(Qly/C).

® So(n-2)—0(n—2)- This piece is open and dense in J _l(u)(o(n,g)), therefore it carries a
symplectic form. Fix the point z = (e1, ey, ae2,0) € Som-2)-0m—2) that lies on this
piece. In this case H = G, = O(n — 2), therefore H, = H and we can choose the
(G, H, p)-adapted splitting

b= (eiNe;|i>3, j>i) p=(erNey)
o=(ejNes, ...,e;Ne,eaNes,...,ex\ey,)

Note that of» = off = {0}.

The linear slice at ¢ is S = {(e},0),(0,ez), (e2,e1)) and clearly S¥ = S. Using
Proposition w Q’[Lo(nﬂ)] /G, is a 3 dimensional manifold.

Moreover, the map of Theorem gives a symplectomorphism between 8o, —2)-0(n—2)
and the magnetic cotangent bundle T’ *(Qfo(n_Q)] /G,).
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® S0(m-1)»0om-3)- Fix z = (e,0,aez,€3) € So(n-1)»0m-1) in this piece. Note that
H=G,=0(n—-1)and H, = O(n—2). We can choose the (G, H, y)-adapted splitting

f)#:<ei/\ej|i23, ]>Z> p:<e1/\e2>
[=(exNes...,ea Ney) n=(ejANes...,e; \e,) (7.6)
0=0.

The linear slice at ¢ is S = ((ey,0), (0,e1),...,(0,e,)) and S¥ = ((e;,0), (0,e;)). Using
Proposition , a = Z‘s = (0,e3). Then

B = (bp : O‘)L ns= <(e17 0)? (07 el)? (07 62)7 (O7e3>>

and B°("=3) = B. Hence, using (6.26)), So(n—1)~0m-3) is a coisotropic submanifold of
dimension 6 of the symplectic manifold J_l(,u)(o(n,g)). The seam 8o (,—1)—0(n—3) fibers
over the 2-dimensional manifold Qfo(n_l)] /G

In this case the map 8o(n—1)—0m-3) — T*(Ql[lo(nq)]/Gu) of Theorem is onto and
has two dimensional fibers.

® 80(n-1)»0(m—2)- Fix z = (e1,0, aey,0). Since H = G4 = O(n—1) we can the use adapted
splitting described in ([7.6)). Similarly, the linear slice is S = ((e1,0), (0,e1),...,(0,e,)).
The difference is that in this case o = 0.

Since S*+ = ((e1,0), (0, €1), (0, €2)) then 8o (m—1)-0(m—2) i a coisotropic submanifold of
dimension 5 of the symplectic manifold J _1(,u)(o(n_2)). The piece 8o (n—1)»0m—2) fibers
over the 2-dimensional manifold Qg 1y/Gp-

The map Som-1)»0m—2) = T7( fb(n_1)]/Gu) of Theorem in onto but has one
dimensional fibers.

Using the K, isomorphism

0 0 -1 0

) 00 0 - .

K,U(GM -J (M))O(nﬁ%)/Gu) = Sp(QvR) ) a2 0 0 0 C 5p(27R)
0 0 0 O

which is a coadjoint orbit that can be decomposed as the image of the seams

KH(SO(<91,e3>L)~>O(n73)) ={M ¢ KM(GM ) J_1<M))O(n73)/Gu) | 1"ank(A]le.2,i’>-.él) =2}
K,.(Som-1)-0(m-3) = {M € K (G- I (1)) om-3)/Gp) | rank(Mi.25.4) = 1}.

The closure of this coadjoint orbit contains the set

KH(GM ) J_l(ﬂ))O(n—2)/Gu> - Sp(?, R) ’ - 5}3(27 R)*

o O O
o O O O
o O O

o O O O

that can be decomposed as

K,u(SO(an)HO(nf%) ={M € K,.(G,- J_l(:u))O(an)/Gu) | rank (M 23.4) = 2}
K, (8o(m-1)—0m-2)) = {M € K,(G,, - I (1)) on-2)/G,.) | rank(M;.53.4) = 1}.
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73.3 u=90

Note that in this case since = 0 we have Q* = ). Since @) has three orbit types (see
(7.4])), Corollary [6.8.11] states that there are only three orbit types in J=1(0). Hence we have

a partition of J7(0) into 6 different pieces with the following incidence relations

80(n—-2)—»0(n—2)

T

80(n-1)=0(n—2) < 80(n—1)»0(n-1)

T T

S80(n)=»0(n—2) +———80(n)=0(n—1) ¥ 80(n)=0(n)-

Since for = 0 the mechanical connection is just the zero section and the condition off» =0
of Proposition is always satisfied we have the symplectomorphisms 8o(,—2)—0mn—2) =
T*(Q(O(n_g))/G), So(n_l)ﬁo(n_l) = T*(Q(O(n—l))/G) and So(n)ﬁo(n) is a single point. The
remaining three seams are coisotropic submanifolds.

Using the K isomorphism we have

00 -1 0
» 00 0 - .
00 0 O

Note that this coadjoint orbit can be partitioned into the images by Kg of 8o(—2)-0(n-2),
80(n—1)=0(n—2)s S0n)—»0m—2) according to the rank (2, 1 or 0) of the upper-right 2 x 2-matrix.
Analogously,

—1

Ko(J71(0)0(n-1)/G) = Sp(2,R) - C sp(2,R)",

o O OO
o O OO
o O O

o O OO

and this coadjoint orbit can be partitioned into the images by Ky of 8o(—1)»0o(n-1) and
80(n)—»0(n-1) according to the rank (1 or 0) of the upper-right 2 x 2-matrix.
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