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1 

 Introduction 

"Whatever terrain the environmental historian chooses to investigate, he has to 

address the age-old predicament of how humankind can feed itself without 

degrading the primal source of life. Today as ever, that problem is the 

fundamental challenge in human ecology, and meeting it will require knowing the 

earth well—knowing its history and knowing its limits."  

(Worster 1990) 

1. The agricultural headaches of Environmental History 

The dominant socio-economic and socio-technical view on industrialisation as a 

gradual process of continuous growth and technological change can be 

complemented by focusing on changes in society-nature relations (Krausmann et 

al. 2008). Hence, by focusing on the mode of appropriation of energy, three 

Socio-Ecological regimes can be described throughout human history (Sieferle 

2001). These are uncontrolled solar energy use (hunter-gatherer societies), 

controlled solar energy use (agrarian societies) and fossil energy use (industrial 

societies). The periods of change between them are usually referred to as 

revolutions, although thinking of them in terms of Socio-Ecological Transitions 

provides more analysis potential (Krausmann et al. 2008; González de Molina 

2010; Krausmann and Fischer-Kowalski 2013; Infante-Amate and González de 

Molina 2013).  

In hunter-gatherer and agrarian societies—always using Siefele (2001) 

conceptualisation—, the supply of energy was ultimately restricted to its solar 

energy catchment area. Agrarian societies could increase the biomass extracted 

per unit of land by augmenting its human labour and draught force, but only to 

find eventually their 'solar' ceilings. Industrialisation is the only Socio-Ecological 

regime that decoupled the supply of energy from land and human labour 

restrictions by increasing the use of fossil fuels—first coal and later oil—

(Krausmann et al. 2008). The industrialisation of agriculture reduced the area and 

the labour needed to increase yields (Krausmann and Haberl 2002; Krausmann et 

al. 2003).  

The narrative of Socio-Ecological Transitions applied to Agrarian Metabolism 

purposed by González de Molina (2010) is focused on fertility. He divides the 

transition towards an industrial regime in agriculture into three waves or stages. 

The first wave entailed increasing the biomass production of the agroecosystems. 
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The spread of synthetic fertilisers allowing for an increase in yields, leaping over 

the restrictions of locally produced biomass characterised in the second wave. 

Finally, the third wave corresponds to the substitution of human labour by fossil 

fuel based processes through machines. This approach allows a framework of 

analysis of the evolution of agriculture within the perspective of Environmental 

History by studying the flows of energy and nutrients. Therefore, in terms of bio-

physical indicators these modern increases in yields have been also associated 

with a decline of the energy return on investment and on a rupture in nutrient 

cycles. This has been the result of the concentration of intensive cropland farming 

and animal husbandry (Foster 1999; Moore 2000; Krausmann et al. 2003; Haberl 

et al. 2004; González de Molina and Guzmán 2006; Martinez-Alier 2011).  

The increasing use of fossil energy and the interference of synthetic fertilisers in 

nutrient cycles created new environmental problems at the point of both extraction 

and disposal of resources. Moreover, this was accompanied with uncertainties on 

the endurance of the model itself as the use of stocks of fossil fuels involve only a 

'temporary emancipation from land' (Mayumi 1991). To understand this, it is 

useful to think in terms of funds and stocks (Georgescu-Roegen 1971). If a 

production process is based on flows of fossil fuels, its duration depends on the 

depletion velocity of the limited stock. Conversely, the land is a fund whose 

velocity flow production simply cannot be increased. The transition towards a 

scenario of low availability or exhaustion of fossil fuels is not simply a matter of 

replacement. Renewable energy sources have lower power densities than fossil 

fuels and will therefore boost the demand for land (Scheidel and Sorman 2012). 

In addition, this bio-physical analysis has the potentiality to show at least some 

part of the environmental degradation caused by agricultural practices. It has 

special relevance when we deal with past agricultural systems: ―Thus, the 

interpretation potential that offers the image projected in the physical world by 

the monetary version of farming systems increases with the process of 

"modernization''(or monetization) of itself and decreases as we move into the past. 

The only way to avoid this problem is to analyze the physical functioning of 

agricultural systems and their technical options in the most complete and realistic 

way, but this analysis looks mediated by its degree of economic and commercial 

projection.‘‘(Naredo 2004a). 

Therefore, using bio-physical indicators and applying the concept of ecosystem to 

the study of agriculture is a matter for the field of Environmental History (Worster 

1990; González de Molina and Toledo 2011). Also, this opens the possibilities of 

research and dialogues with other disciplines, together with abandoning the idea 

of interpreting history in terms of progress (González de Molina 2000; Congost 
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2004; Naredo 2004b; Barca 2011). This applies specially for the comparison of 

industrial and organic based agricultures because during the centuries traditional 

farmers have developed strategies less harmful to nature and have made 

agroecosystems more able to deal with changing situations (Worster 1990; Altieri 

and Toledo 2011). 

In fact, the duality of backwardness versus progress as an analytical tool has been 

strongly criticised by those scholars studying agrarian, rural change or peasant 

societies. It entails a biased simplification of reality towards a unique desirable 

pathway for agriculture development (Díaz-Geada 2013) (as illustrated in Figure 

1). Nevertheless, this does not mean that this duality is not working in practice, a 

good example are the promotion of standardised agricultural practices successful 

in terms of increasing wealth in particular contexts that had disastrous effects in 

different contexts (Bernstein 1990; Borras 2003; McMichael 2008; Ariza-

Montobbio and Lele 2010; White et al. 2012; Scheidel et al. 2013; van der Ploeg 

2014; Mingorría et al. 2014; Ravera et al. 2014). The challenge of these views is 

the definition of a multidimensional framework to address land productivity, 

environmental interactions, food availability and wealth across scales, as the 

choice of one measure, e.g. money or calories may favour one type of production 

or another (van der Ploeg 2014).  

 

Figure 1. "Additive stages of agricultural intensification" from Zhou (2010), cited as ―The imperial 

view of agricultural development‖ in van der Ploeg (2014). This figure exemplifies in a broad 

sense the vision of a unique trajectory of agriculture as a condition to get productivity rises. 
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Source: from Zhou (2010), reproduced with the permission of Syngenta Foundation for 

Sustainable Agriculture (SFSA). 

History does not have a determinate direction, nor do the use of energy and 

materials, therefore Environmental History seeks its meaning by building a 

discourse around sustainability (González de Molina and Toledo 2011). To study 

this social metabolism, there is a series of tools that include bio-physical 

indicators widely used in Ecological Economics field such as human 

appropriation of net primary production (HANPP), the ecological footprint, and 

the energy output/input ratio (or EROI) (Martinez-Alier and Schandl 2002). 

Moreover, the historical point of view offers information about the responses of 

societies to key events, and the effects of these responses (Paavola and Fraser 

2011). 

We intend to follow Naredo‘s criticism addressed to the mainstream economic 

analysis based on a production function accounted only in monetary values. This 

criticism also shares the view put forward by several agrarian and environmental 

historians who have recently challenged the "backwardness paradigm" of Spanish 

agriculture, explained below. They adopted an Ecological Economics and Agro-

ecological approach, bringing into light the role played by the environmental 

endowment that framed the actual frontier of agronomic possibilities of 

agricultural improvement (Pujol-Andreu et al. 2001).  

This approach does not deny that economic incentives, technical changes, agrarian 

class structures, institutional settings, social conflicts and public policies also 

played a role as determinants of historical paths followed by the Spanish 

agricultural systems from the 1860s to the mid-twentieth century. In that sense, 

our results will need to be combined with other perspectives and different data to 

be able to explain the overall economic history of north-eastern Spanish 

agriculture in the period analysed, as it is the case in recent textbooks or readings 

of that subject (Federico 2005; Lains and Pinilla 2008). The same applies to the 

consideration of sustainability. However we defined our system, it will always be 

related hierarchically with other systems, and what is sustainable for one system 

may  not be sustainable for another (Giampietro 1994; Costanza and Patten 1995). 

Nevertheless, our research has a specific focus devoted to the agro-ecological 

reasons that were behind (if any) the end of past organic agricultural management, 

and its links with changing land-use patterns. It does not intend to place itself in 

the midst of the historiography debates of whether the economic performance of 

Spanish agriculture was bad or not. 
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2. Membership to two projects 

This thesis is framed in two projects. One is an international project called 

"Sustainable farm systems: long-term socio-ecological metabolism in western 

agriculture", funded by the Social Science and Humanities Research Council of 

Canada. It is a Partnership Grant shared between the universities of Saskatchewan, 

Michigan, Alpen Adria-Klagenfurt in Vienna, Universidad Pablo de Olavide 

(UPO) in Seville, Barcelona, Nacional de Colombia and la Habana and Matanzas 

in Cuba. It aims at a comparative analysis of the transition experienced by 

agriculture on both sides of the Atlantic from the point of view of the interaction 

with natural systems through the energy and material flows moved across the 

landscape. 

The second project is in Spain ―Sistemas agrarios sustentables y transiciones en el 

metabolismo agrario: desigualdad social y cambios institucionales en España 

(1750-2010)‖ (HAR2012-38920-C02-02). This project is the continuation of a 

previous one ("Environmental History of Mediterranean Agrarian Landscapes: 

Origins, economic driving forces, social agents and ecological impacts of land-use 

change" HAR2009-13748-C03), which assembled three sub-projects at the 

University of Barcelona, University of Lerida and UPO. This project combines 

the long run approach of Social Metabolism with the analysis of social relations, 

trade, conflicts, institutions and landscape ecology. Social inequality appears in 

the headline of this project because one of the main hypotheses is that it was an 

issue in many agro-ecological imbalances that disrupted past organic agricultural 

systems, interrupted their improvement, and lead them towards industrialised 

agricultures based on fossil fuels. 

The Spanish project has five interrelated aims:  

Characterise the long-term historical processes of socio-ecological change 

experienced by Mediterranean agricultural systems and agrarian landscapes. 

Specify their main driving forces, relating the use of energy, nutrients, water and 

other biophysical materials with the prevailing land-use management. 

Identify the major ruling forces behind these agro-ecological changes, such as 

land ownership and tenure, connection with markets, labour relations, income 

distribution, social conflicts or public policies. 

Assess the environmental impact of these land-use and land cover changes, 

especially from the standpoint of agro-diversity, biodiversity and resilience of 

cultural landscapes. 
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Develop new approaches and methodologies in order to highlight the relationships 

between the efficiency in socio-metabolic flows, land-use patterns and ecological 

functioning of landscapes.  

To sum up, this project aims to set the pace and chronology of the three waves of 

Socio-Ecological Transition (SET) (Krausmann et al. 2008; González de Molina 

2010) in Spanish agriculture. That is, to do a historical interpretation on the 

driving and ruling forces that fostered the socio-ecological transition of 

agricultural systems. To support this, a deep historical and trans-disciplinary 

analysis is needed which requires assembling a great deal of interrelated datasets.  

Using the terms from the project, this thesis is focused on the driving forces. Its 

role is to bring information on some of the biophysical flows and to frame them 

within the ruling forces that evolved along the first waves of the SET in Catalonia. 

Then, the differential path followed by the north-eastern Spanish regions will 

become another specific test to be compared with the results obtained using the 

same methodology in other case studies in the South and North-West of Spain, in 

central European regions such as Austria, in the North American Great Plains, or 

in other American places like Cuba or Colombia. Therefore, the contribution of 

this thesis offers relevant results to both Spanish and international networks while 

at the same time benefits from the comparative outcomes of the other partners. In 

addition, efforts have been made to elaborate raw data so that calculations are 

easily replicable  for other team members. . 

3. Agricultural changes at the end of 19th and the beginning of 20th 

century 

By the 1870s, the increasing efficiency of transport along with the extension of 

the North-American frontier and the voluntary mass migration from Europe, 

resulted in grain from North-America flooding European cereal markets thus 

lowering the price of grain (O‘Rourke 2009). In the previous decades, the 

depletion of soil fertility through the loss of soil nutrients was of major concern in 

North America and Europe. That was the scenario for the origin of soil chemistry, 

with the publication of the first edition of Organic Chemistry in Its Applications 

to Agriculture and Physiology' by Liebig in 1840. These years also saw the 

construction of the first factory for the production of superphosphates in 1843 by 

the hand of the English scientist Lawes and the guano race between United 

Kingdom and United States (Foster 1999; Foster 2004). In this sense, the 'grain 

invasion' of the late nineteenth century in European and North American 

agroecosystems literally clashed. Old European agricultures had to deal with 
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forced increases in productivity through highly labour-intensive methods, whereas 

the agriculture practiced by settlers in the New World could take advantage of the 

nutrients accumulated in soils along thousands of years, at least until the 1930s 

(Cunfer and Krausmann 2009).  

In addition, the demand for dairy items of consumption like those derived from 

livestock and horticultural products also increased, and the characteristic degree 

of self-sufficiency of traditional European agricultures began to be limited by its 

growing dependence from markets. The reactions of European agricultures to 

these changes were the same as elsewhere along the twentieth and twenty-first 

centuries:  usingthe maximum productive potential of the land, developing cash 

crops and decreasing production costs. In order to decrease production costs, two 

types of technologies were developed and/or implemented (Chorley 1981; van 

Zanden 1991; Arizpe et al. 2011):  

a) Land-saving technologies such as the use of irrigation or chemical fertilisers. 

The price of additional organic manure had been rising due to the land needed to 

grow fodder and the human labour needed to feed cattle, collect manure and 

spread it on cropland. With chemical fertilisers the integration of livestock with 

cropland was no longer needed, and the previous 'land cost of sustainability' could 

be freed up (Guzmán and González de Molina 2009). According to this, the use of 

concentrated feeds started to grow. The use of improved bred seeds more 

responsive to the application of chemical fertilisers and less tending to 

lodge
1

(McNeill and Winiwarter 2006) was introduced within this period in 

Europe, although they took more time to spread to Spain (Pujol-Andreu 2011) .  

b) Labour-saving technologies such as the replacement of wooden parts of 

agricultural implements by iron and steel. At the beginning of this period a supply 

of automotive power adequate enough for tillage and other tasks needed to toil the 

land was not implemented. Therefore, this first mechanisation of agriculture 

remained mainly limited to those steps of the production process that were 

concentrated in a place (e.g. threshing, butter-making or irrigation pumps) or 

combined with draught animals. These machines, e.g. reaper machines, were first 

developed in the United States where they had a very extensive use of land and 

were of a considerable size and required the use of several animals. In Europe in 

the first third of the twentieth century, these machines were reproduced and 

adapted to smaller scales suitable for a single horse or mule. As the use of fossil 

fuels started to spread, mechanisation was extended to other steps of the 

                                                 

1
 If the nitrogen supply is excessive, the plant grows too tall and  falls over (Shiel 2010) 
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production process, whenever possible; in order to increasingly replace livestock 

and human labour work. 

All these changes were dependent on inputs and price fluctuations, which varied 

from place to place, so their spreading pattern was irregular in time and diverse in 

space. From a socio-metabolic perspective, this period was very interesting 

because it entailed the coexistence of two different ways of managing the 

resources of the agro-ecosystem, they were almost opposite. One based on the 

recirculation of energy (human labour and livestock work), nutrients and 

information (the peasant know-how) and the other one based on imports of fossil 

fuels, nutrients and information (e.g. improved bred seeds, which became 

increasingly appropriated by scientists and then by big enterprises). 

3.1. A Spanish backward agriculture? 

Whereas these technologies were implemented in Atlantic or Central Europe, and 

yields were increasing over all these regions—particularly the European North—, 

Spain remained at the bottom level of agricultural labour and land productivity in 

comparison with its European neighbours (van Zanden 1991; O‘Brien and Prados 

de la Escosura 1992; Simpson 2003). Therefore, when compared to other 

countries, the Spanish agriculture at the end of the nineteenth century and the first 

half of the twentieth century used to be qualified as backward à la Gerschenkron 

(1962).  

The fin-de-siècle agrarian crisis hit Spain strongly; not only the cheap cereals, but 

also the new vegetable oils and the phylloxera plague, which changed the market 

conditions of the markets of olive oil and wine and therefore  constrained the 

competitiveness of Spanish agriculture (Simpson 2003). The way out of the fin-

de-siècle crisis was by the combination of traditional with modern technologies, 

as the protectionist laws on grain went hand in hand with two apparently 

contradictory trends, the modernisation of exploitations—increasing land 

productivity— and also the ploughing of new land—decreasing land productivity 

(Gallego 1986). In this way, fallows coexisted with manure and synthetic 

fertilisers; traditional wooden ploughs coexisted with modern steel ploughs and 

the number of draught livestock increased. Despite this coexistence,  during the 

first decade of the twentieth century, the Spanish agriculture stopped to be a 

lagging sector (Gallego 1986). After World War I, not only agriculture, but the 

entire Spanish economy started a transformation of growth and modernisation up 

to the thirties. Thereafter due to the global depression and a period of societal 

upheaval in Spain there was a process of degeneration in agriculture along with 

other sectors, which bogged down the Spanish economy (Gallego 1986).  
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The most important institutional factors involved with the comparatively low 

labour and land productivity of Spanish agriculture, were the lack of investment in 

irrigation systems, transportation and other services, low fiscal pressures and 

failures in the promotion of agrarian loans (Sudrià and Pascual 2002). Among the 

technical factors, were just mainly focused on increasing the cultivated land 

(Simpson 2003) an opinion concurred by Huguet del Villar, one of the most 

important Spanish geographers of the beginning of the twentieth century (Tello 

and Sudrià 2011). Also, it has been argued that the innovations that permitted 

agricultural growth in countries of the North Atlantic and Europe were ineffective 

with the arid or semi-arid environmental conditions, as most of the regions of 

Mediterranean Spain (Pujol-Andreu et al. 2001; Garrabou and Tello 2010; 

Santiago-Caballero 2013). Certainly, convertible husbandry and rotations 

including leguminous fodder crops allowed high livestock densities and therefore 

better integration of livestock with arable land but could not be implemented in 

most of Spain due to the summer droughts (Simpson 2003). Nevertheless, as the 

same authors argued, regional differences affecting both the institutional and the 

environmental dimensions should be studied, as not all Spain followed the trend 

of dry-farming in interior areas. 

The conditions of the Mediterranean coastal areas were similar to the interior but 

aside fromcereals, perennial wooden crops like vineyards, olive groves and carob 

trees were cultivated. Catalonia, in the Northeast of the Iberian Peninsula is an 

interesting case, as the dynamics of interior dry-farming grain lands and 

specialised vineyard areas coexisted in the late nineteenth and beginning of the 

twentieth century. In addition, there were high differences between interior and 

coastal grain areas. While in the interior the yields were low, unstable and 

comparable to the Castilian ones, in coastal areas there were comparable to other 

European advanced agricultures, even fallow was almost suppressed at the end of 

the nineteenth century (Garrabou et al. 1995). 

Likewise in most of Spain, except in the mountain and intensive irrigated areas, 

Catalan agriculture used high labour numbers concentrated at some moments of 

the year, thus creating a seasonal surplus of labour (Garrabou et al. 1992a). Pure 

wage labourers were almost inexistent and although a big share of rural 

population had access to land, the size distribution was not equilibrated. In 

addition, monetary rents only existed in highly profitable irrigated lands and the 

main mechanism to land access was through sharecropping, whose specific form 

in vineyard lands was the rabassa morta contract (Garrabou et al. 1992a). The 

vineyard specialisation during the nineteenth century relied on this contract. 

Sharecropping in Catalonia did not disappeared until the mid-twentieth century 

(Garrabou et al. 2001a). 
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Although in the mid-nineteenth century, inequality in vineyard areas was lower 

than in grain-specialised areas, it grew faster than elsewhere in the late nineteenth 

century (Badia-Miró and Tello 2014). Therefore, the effects of the fin-de-siècle 

crisis were more exacerbated in vineyard areas, which was expressed with high 

social unrest and violence at the beginning of the twentieth century (Garrabou et 

al. 1992b). Hence, everywhere during the period of the crisis, the rural exodus 

was intensified and the ones who stayed had to adapt to a new situation of 

increasing—but not sufficiently—salaries and low agrarian prices. In addition, 

wine production suffered an overproduction crises in the international market 

(Garrabou et al. 1992a).  

For those who remained in rural societies, the way out of the fin-de-siècle crisis at 

the beginning of the twentieth century passed through increasing land and labour 

productivity together with reducing the seasonality of labour (Garrabou et al. 

1992a). This was made with a change in crop types, for instance there was local 

specialisation in high-input crops such as oranges, rice and nuts (Calatayud 2006). 

Also, in the interior areas, vineyards where converted to grain areas and in the 

most humid areas of the northeast of Catalonia, livestock breeding started to grow 

(Garrabou et al. 2001a). In the grain lands of the interior, yield fluctuation was 

reduced (Saguer and Garrabou 1995a). Agrarian unionism, cooperatives and 

landowners were important stakeholders in the diffusion of industrial fertilisers at 

the beginning of the twentieth century in the southwest of Catalonia (Garrabou et 

al. 2001a). Although there were some attempts to introduce new wheat varieties 

(Garrabou et al. 1992a), it was not until the late twentieth century that high-

yielding semi-dwarf wheat varieties were  used in Spain (Pujol-Andreu 2011).  

4. Focus and structure 

Summing up, this thesis seeks to bring to light the ways followed by 

Mediterranean organic agricultures to overcome its yield ceilings (not necessary 

Mathusian ceilings) in order to be adapted to the structural changes of the 

economy explained above. It also aims to answer the question of whether there 

was or not a room for further organic improvements before the arrival of the 

second and third waves of the Socio-Ecological Transition. That is, when they 

finally outstripped all previous yield ceilings thanks to the spread of the use of 

fossil fuels, directly or indirectly in the form of chemical fertilisers, concentrated 

feed, and  use of adapted seeds, etc.  

Following the previous works in Spain of Campos and Naredo (1980), Carpintero 

and Naredo (2006) and González de Molina and Guzmán (2006), we are going to 
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use the analytical perspective of the social metabolism and agro-ecology applied 

to Environmental History. Within the framework of the projects explained above, 

we are going to focus the study on the following two sets of flows. 

4.1. Energy flows 

Martinez-Alier and Naredo (1989) pointed out that the first study on energetic 

flows in agriculture was made by Podolinsky in the late nineteenth century, 

although in his proposal he omitted the non-labour inputs (Burkett and Foster 

2006). After this first attempt, there have been important studies from time to time 

in the first half of the twentieth century; perhaps the most famous where the ones 

of the 1970s by Odum (1971), Pimentel et al. (1973) and Leach (1975). The basic 

finding was always the same, when comparing less industrialised agricultures 

with industrialised agricultures the energy efficiency declined. The increase in 

energy inputs was larger than the growth in the yields (Martinez-Alier 2011).  

The pioneer energy analysis in Spain was made by Campos and Naredo (1980). 

They analyzed the energy flows of Spanish agriculture from the 1950s to the 

1980s and confirmed the decreasing trend in energy efficiency. The importance of 

their analysis in the rebuilding of the agricultural history of Spain is that they 

included the metabolic approach. Hence, the bio-physical analysis of flows and 

balances allowed them to include the non-monetary factors influencing both 

marketable and non-marketable production, which were of outmost relevance in 

past agricultural systems (Naredo 2004a). Moreover by doing so they introduced, 

perhaps the first, strong scientific criticism to the industrial mode of agriculture 

developed under Franco's dictatorship and since. Since then, a number of Spanish 

historians have conducted adaptations of the Energy Flow Accounting to study 

past and present Spanish agricultural systems (Cussó et al. 2006a; González de 

Molina and Guzmán 2006; Cussó et al. 2006b; Guzmán and González de Molina 

2009). 

Besides energy efficiency, Energy Flow Accounting is used to calculate the 

amount of energy that a particular social metabolism requires for its operation. 

Hence providing a very graphic idea of how to articulate the various components 

of an agro-ecosystem in order to meet societal energy needs (Haberl et al. 2004). 

In addition, from the focus of Systems Ecology, the account of energy flows as 

information carriers of structure and organisation opens the door to relate the 

compatibility of agroecosystems with other subsystems (Giampietro et al. 1992a). 

4.2. Nutrient flows 
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Fertility was of major concern in the European societies of the mid-nineteenth 

century. Even Marx, a contemporary observer of the changes before the grain 

invasion on English agriculture wrote important passages on it (Foster 1999).  

Human practices can spoil or improve fertility; the practices of restoring or 

improving nutrients in the first horizons of the soil were embodied in agricultural 

produce but are not necessarily reflected in the price of agricultural commodities. 

In the same way as reproducing costs of human labour is not included in wages 

(Burkett 1999; Foster 2004; Olarieta et al. 2008). Beyond the intial definition of 

social metabolism processes (Marx 1976), it has to do not only with the creation 

of value (measured in monetary terms), but with the extraction and restoration of 

environmental and social value (Foster 2004). Hence, the metabolic rift in 

agriculture was created by the interruption of the recycling processes of organic 

matter.  

First by the polarisation between rural and urban environments, which increased 

the trade distance of food and clothing resulting in fertility problems of the former 

and ―waste‖ problems of the latter. And later, the rift was widened by 

confinement of livestock breeding, thus exacerbating waste problems and the 

spread of synthetic fertilisers together with  the cultivars responding to them, 

which resolved partially and temporally the issue of fertility (Foster 1999). 

According to Moore (2000) this is a process that started in the XVI century and 

which was accelerated (instead of been solved by technology) with the spread of 

the wide industrialisation of agriculture from the XIX century onwards. Both 

authors coincide, pointing out that the solutions to problems created by the 

metabolic rift are not by means of technology, but by the change in social 

relations (Foster 1999; Moore 2000). In fact, the knowledge about  the importance 

of recycling of organic matter already existed (Marald 2002). 

Some authors have criticised this view of being anchored in the nineteenth century 

knowledge of agronomy and in Marx's argument of urban-rural polarisation 

(Schneider and McMichael 2010). According to them, the analyses of Marx lacks 

an accountancy proving the applications of human excrements were the 

cornerstone is to balance the nutrients in agricultural soils of the time. Schneider 

and McMichael (2010) argued that the use of human excrements would have not  

been enough to maintain soil fertility, as important losses may occur in the 

process to return organic matter to the fields. Other practices embodied in the 

knowledge of farmers, the existence of other lands to extract nutrients from and to 

maintain ecological processes were needed to cultivate in both socially and 

ecologically sustainable ways (Guzmán and González de Molina 2009; Schneider 

and McMichael 2010). In addition, it has been demonstrated that fertility is not 
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just a function of the additions of one single nutrient. The addition of synthetic 

fertilisers incurs diminishing returns as further applications are not so effective in 

increasing yields (Tilman et al. 2002). Besides the chemical balance of main 

macronutrients, the physical condition of soil and soil health are also essential 

aspects of fertility (Doran 2002; Manlay et al. 2007; Feller et al. 2012). 

Understanding that fertility of cropland areas is the result of the complex 

interaction of material and the intangible spheres of societies and natures, we took 

the balance between the flows of nutrients extracted and returned to cropland 

areas as a proxy of the maintenance of fertility. At least, the fertilising methods 

and other agricultural practices embed the information flows that configure the 

agroecosystem (González de Molina and Toledo 2011). Moreover, recent 

methodology has been developed to deal with nutrient balances of agroecosystems 

using historical data (Garcia-Ruiz et al. 2012). In order to assess the fertilising 

management from a nutrients cycling perspective, the objective of the balance is 

to highlight the key role played by reuses and detect whether there was or not a 

soil mining of nutrients. 

Finally, the thesis is organised in the following structure. In the first block we 

make an analytical proposal to study and compare different energy efficiencies of 

agroecosystems and we apply it to a case study in the centre of Catalonia c.1860 

and in 1999 (chapter 1 and 2). The second block is centred on the nutrient 

balances of the cropland areas of Catalan agriculture, hence, chapters 4 and 5 

show two moments of time, c.1860 and c.1920. While chapter 4 analyses one 

municipality (Sentmenat) chapter 5 makes a regional analysis thus using 

provincial sources. This allows for the comparison among regions with different 

features. In the last chapter (3 and 6) of both blocks, we clarify the relations 

between the two chapters of each block, making joined questions and conclusions. 

In addition, we interpret the results in the framework of Socio-Ecological 

Transitions and explore the limitations of the methodology. Finally, in chapter 7 

we summarize the conclusions of both blocks.  
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 Chapter 1. The Energy Return On Investment (EROI) in 

agroecosystems: An analytical proposal to study 

socioecological transitions to industrialized farm 

systems (the Vallès County, Catalonia, c.1860 and 

1999)
1
 

1. Introduction 

Energy analysis of farm systemshas a long tradition (e.g.Pelletier et al. 2011)and 

is an important approach in thesustainability assessment of agroecosystems. 

Analysing the transformation ratios yielded by agroecosystems capable of 

providing more energy carriers than the ones spent in producing them may 

revealusefulways to improve the energy performance of industrialized agricultural 

systems which are usually energy sinks at present(Odum 1984). This is a relevant 

task at a time when long-term global food security is at stake, since agriculture is 

now dependent on fossil fuels even as the world faces peak oil, decreasing energy 

returnsinoil extraction and delivery, and climate change (Murphy and Hall 2011; 

Arizpe et al. 2011; Hall 2011; Scheidel and Sorman 2012; Giampietro et al. 2013). 

After many decades of energy analyses of farm systems a range of different 

approaches and measures of energy returns are available, each calculated adopting 

different system boundaries and accountancy rules. Although it hampers 

comparability of results,this plurality of assessments is not a sign of sloppy 

science but rather a reflection of the epistemological challenges faced by science 

when dealing with a complex, hierarchical reality (Giampietro and Mayumi 2000). 

Different standpoints place system boundaries differently and leadtodifferent 

measures of energy performance that retain their own meaning within the 

analytical entryway adopted.The only workable way to deal with this unavoidable 

complexity is to compile in a transparent way a set of different energy approaches 

and protocolsso that researchers could understand each other and benefit from 

their achievements (Mulder and Hagens 2008; Murphy et al. 2011). 

                                                 

1
This paper was coauthored by E. Tello, V. Sacristán, G. Cunfer, G.I. Guzmán, M. González de 

Molina, F. Krausmann, S. Gingrich, R. Padró, I. Marco, D. Moreno-Delgado. My contributions 

were the original idea, rebuilding all the calculations of the case studies together with I. Marco and 

R. Padró, participating actively in the construction of the model, searching and discussing 

references and the writing of the paper. 
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Being a purpose-oriented and site-specific account, the first step for any energy 

analysis is to make clear what we are looking to use this accountancy for(Jones 

1989).Our approach aims to open a door for further studies linking energy 

accounting of the agroecosystem functioning with the complexity of landscape 

patterns and processes, and the biodiversity it may host.This means placing the 

system boundaries to define the agroecosystem limits, and adopting the standpoint 

of the people that operate it.This energy analysis is addressed to a sustainability 

assessment of farm systems—that is, to what extent the agroecosystem 

functioning yields a final produce while the underlying funds that maintain soil 

fertility and provide biodiversity services are maintained, enhanced or degraded 

(Costanza and Patten 1995).  

Following this cyclical view of the sustainable functioning of farm systems, 

wepresent a workable proposal to the energy accountancy of agroecosystems that 

is exemplified with five Catalan municipalities circa 1860 and in 1999.After 

having recalculated all the data previously published by (Cussó et al. 2006a; 

Cussó et al. 2006b)for this case study, following the criteria and methods 

proposed in this paper, we considered how this approach to the agroecosystem 

functioning can be expressed with the ratio of Energy Return On Investment 

(EROI) that compares a system‘s energy input to its energy output(Costanza 

2013). We end using four EROIs linkedto one another asa way to provide a wider 

energy profile of agroecosystems aimed to allow comparingdifferent farm systems 

alongSocio-EcologicalTransitions (González de Molina 2010; Krausmann and 

Fischer-Kowalski 2013).  

In next section 2 we explainthisagroecosystem approach to energy analysis, our 

conceptual system boundaries, the methodology followed to account for human 

labour, and the relation we deem to exist between unharvested and reused biomass 

with landscape patterns and biodiversity. In section 3we present the four EROI 

proposed and the ways to interrelate them. Section 4 discusses the results found in 

the Catalan examples of organic and industrial farm systems used as examples. 

Finally, section 5 outlines some general conclusions and perspectives for 

forthcoming research. 

2. Analytical approach 

2.1. From ecosystems to agroecosystems 

Agroecosystems are hybrid human-natural systems thatrequire aspecific 

entrywaywhen assessing EROIs. When farm operators invest human labour, 
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animal or mechanical work, seeds, fertilisers and other energy carriers they create 

a new cultural landscape from the existing ecosystem(Odum 2007). As human-

colonized ecosystems,agroecosystemsretain their own ecological processesbut 

cannot maintain and replicate themselves through time. Their maintenance 

requires continuous investment of energy and information by human society, in 

addition to ecosystem services—even though after the industrialisation of 

agriculture humans have tried to reduce the significance of uncontrolled 

ecosystem services replacing them by agrochemicals and other fossil fuel based 

technology(Gliessman 1998; Altieri and Nicholls 2005; Snapp and Pound 2008). 

The human appropriation, transformation, use, consumption and excretion of the 

Net Primary Production (NPP) of agroecosystemsentail an ecological disturbance 

that may lead either to improvement or degradation of for instance soil fertility 

and biodiversity. Whether such appropriation damages natural systems depends 

on the resilience of the transformed ecosystem, and the density or shape of 

human-driven energy and material throughputs (Giampietro 2003). In order to 

analyse this coupled socio-ecological metabolism we have to start looking at 

humans as being components of ecosystems (McDonnell and Pickett 1993)as well 

as agroecosystems as nature transformed by humans (Haberl et al. 2004; González 

de Molina and Toledo 2011).  

Our standpoint ultimately draws on some basic principles of the functioning of 

any kind of living system able to maintain a dynamic stability far from 

thermodynamic equilibrium. The internal cycles always make thermodynamic 

sense because thanks to them a living system can enhance its own complexity, 

increase its energy storage capacity, improve the energy throughput and start an 

ascendancy trend that decreases entropy dissipation thus opening a way to grow 

and develop (Prigogine and Stengers 1984; Morowitz 2002; Ho and Ulanowicz 

2005). In ecosystems these development processes translate into an integrated 

spatial heterogeneity and biodiversity (Ulanowicz 1986; Ho 2013). As Ho (2013) 

suggests, these principles offer some basic criteria to understand what 

sustainability means for agroecosystems: a dynamic closure in nested space-time 

domains that enables a farm system to minimize entropy. Sustainable systems 

develop by interconnecting more life cycles within them so that the wastes from 

one cycle become resources for another (Figure.1.1). 

  



20 

 

 

Figure.1.1. How energy flow and storage characterizes the reproducing life-

cyclesin any living systems andan integrated sustainable farm systemas well. 

 

Source: taken from Ho(2013). 

2.2. Unharvested biomass, reuses and integrated land-use management 

Another key feature of agroecosystems is that some amount of biomass flows 

taken from the land is reused within the land system as an investment into the 

maintenance of its basic funds and services (Giampietro et al. 2013). This requires 

that a certain fraction of the Net Primary Production (NPP) within the study area 

remains unharvested or is returned to the agroecosystem (e.g. as manure), and also 

that a part of the land is set aside or kept sufficiently undisturbed to maintain 

biological diversity and the stability of biochemical cycles. The outcomeis a 

mosaic of land use and land cover types where human energy throughput is 

differentiated either in spatial intensity or temporal sequence. This was a distinct 

feature of preindustrial organic farm systems, where a diversity of cropping, 

grazing and woodland areas were interlinked by an integrated land-use 

management that created a variety of landscape mosaics (Margalef 2006). 

We deem that these agricultural and forest mosaics were aimed to maintain a 

trade-off between exploitation and conservation, in a time when farming had to 

envisage how to achieve stability in the long run(Marull et al. 2008a; Marull et al. 

2010; González de Molina and Toledo 2011). From this perspective, land use 

intensification appears as a process by which human labour supplemented by 

technical energy provided by industrial processes has reduced the requirement for 

less extensive land usages in the land matrix. When an integrated land-use 

management was no longer need, land cover diversity vanished. This could 

degrade the underlying ecosystem services (e.g. biodiversity) if some critical 

thresholds were surpassed, often with a long time lag. Energy analyses of 
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agricultural systems usually neglect these indirect sustainability overheads 

(Giampietro et al. 1994; Giampietro 1997a).  

Organic farmers bear extra burden of land—‗land cost of sustainability‘(Guzmán 

and González de Molina 2009; Guzmán et al. 2011)—compared to industrial ones 

as they take care of additional land per unit of output in order to maintain those 

environmental services provided by a well-integrated farm management. Given 

that this sustainability cost also appears in terms of human labour and energy 

expenditure, we emphasize the internal flows of biomass reused as one way to 

capture its role when accounting energy throughputs (see e.g. the biomass 

reusesthat led to barnyard services in Figure.2). Biomass reused to feed livestock 

is probably the most relevant example here: Apart from providing some 

components of final produce, such as meat, milk, eggs or wool, this often large 

energy flow is the basis for draught power and manure in organic farming systems 

(Krausmann 2004). Green manures, or weed covers in between the strips of wood 

crops, are other good examples. Another, more specific example, is charcoal, 

which can be used as fertiliser or soil conditioner, as well as fuel (Olarieta et al. 

2011). All these internal loops use to contribute to the maintenance of a sound 

land-use integration linked with biodiversity, pest control, prevention of erosion 

and other services(Guzmán and Alonso 2008; Snapp and Pound 2008).Industrial 

farm systems tend to eliminate these loops by using external inputs as a 

substitute—even though they can only be partially substituted for some specific 

roles while this substitution entails a deep change in the whole patterns and 

processes of the agroecosystem. 

Behind these ecosystem services lies an important emerging property of a well-

integrated farm management, which (Marull et al. 2008a; Marull et al. 

2010)labelled ‗landscape efficiency‘. Thanks to tight integration between diverse 

land uses, with different levels of energy throughputs per unit area, integrate 

farming can increase agroecosystem complexity which, in turn, allows to attain 

final produce greater than the invested energy in spite of all the sustainability 

overheads they bear (Giampietro et al. 1994; Giampietro 1997a; Naredo 2004a; 

Carpintero and Naredo 2006; Cussó et al. 2006a; González de Molina and 

Guzmán 2006; Krausmann 2006). This landscape efficiency gives way to many 

additional positive externalities provided by organic farmers, besides their direct 

produce. 

If energy balances are only accounted at the field or farm scale, energy 

efficiencies of industrialized farm systems may appear sometimes greater than of 

organic ones. In such cases the results can mask the positive externalities of the 

latter and the negative externalities of the former. This problem cannot be fully 
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addressed through energy accounting alone, it requires a multi-criteria and 

integrated sustainability assessment. Nevertheless, we aim to bring some aspects 

related to this important issue to light by proposing an agroecosystem approach to 

energy accounting which takes these emerging properties into account. It uses a 

set of interrelated EROIs of agroecosystems aimed to capture the ‗sustainability 

overheads‘ of an integrated land-use management. 

2.3. Modelling energy funds and flows in agroecosystems 

This approach draws on the Fund-Flow distinction put forward by (Georgescu-

Roegen 1971). By funds we mean the permanent (and usually living) structures of 

the system that precede and remain after the time-span taken into account. They 

can provide a set of flows that link these funds one another, but always in a 

limited amount and only at a certain pace. Hence, sustainability means consuming 

an amount and composition of flows which does not undermine the system‘s 

funds—always remembering that only after placing the limits of a system we can 

identify the flows and distinguish them from the funds along the temporal process 

analysed. Unlike other sorts of non-renewable stocks, the renewable biophysical 

funds such as a fertile soil or a cattle herd cannot bring about a flow at any desired 

rate, or in a continuous manner, as they have to receive specific care and rest from 

time to time(Mayumi 1991). 

Figure.1.2 presents a model of the key energy flows that draw the energy profile 

of an agroecosystem seen as a series of intertwined loops.The orange 

arrowsrepresent the flows of energy carriers from one converter to another, in a 

typical mixed farm system combining crop production with livestock husbandry. 

The green rectanglesrepresent the major funds,which act as converters linking one 

or several flows with others. For example, on Farmland (which could be cropland, 

pasture or woodland and scrubland and is measured in hectares) photosynthesis 

converts solar radiation into plant biomass. We also consider the Barnyardto be a 

fund, which represents the livestock and is measured in standardized Livestock 

Units of 500 kg. The animal digestion converts plant energy into animal biomass 

as well asinto barnyard services like draft power and manure. The Community of 

farm operators includes other energy converters, as the rest of Societydoes.  
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Figure 1.2. Basic model of energy flows on farms. 

 

Note: The broken line represents the agroecosystem boundary; the orange lines the energy carriers; 

the green boxes are energy converters;the Net Primary Production in Farmland is the entry gate of 

energy from solar radiation within these boundaries; Final Produce are the energy carriers that exit 

them; External Inputs are the ones entering from the Community or Societal side.Source: Our own. 

Notice that the size of these funds are not constant along time, e.g. in the example 

shown below woodland is bigger in 1999 than in 1860; but we consider that they 

do not change during the time scale of the process that we consider, i.e. one 

year.The definitions, accountancies and equivalences are summarized in Table1.1. 

  

L   

Labour 
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Table 1.1. Terminology, energy valuation and equivalences proposed in our 

bookkeeping of energy carriers of an agroecosystem. 

Energy Carriers Energy Form Accounted Equivalences 

Actual Net Primary Production 

(NPPact) 

Enthalpy NPP= UB+LP 

Unharvested Biomass (UB) Enthalpy UB = NPP–LP 

Total Produce (TP)     

Enthalpy 

TP = LP+BP 

LP = BR+FP-

BP+FW 

 

 Land Produce (LP)      

  

 Barnyard Produce (BP) 

Final Produce (FP)     

Enthalpy 

FP = CS+SP 

  Community Subsistence (CS) 

 Surplus Produce (SP) 

Biomass Reused (BR)    Enthalpy  

Farmland Waste (FW) Enthalpy TP = BR+FP+FW 

Barnyard Services (BS)  BS = DP+M+BW 

Draught Power (DP) Work  

     Manure (M) Enthalpy  

     Barnyard Waste (BW) Enthalpy  

Labour (L) Enthalpy of food intake by farmers multiplied 

by the ratio  work time/total time adjusted by 

the energy requirement of different activities 

(plus the energy embodied in transport when 

food comes from outside) 

Societal Inflows (SI)   Embodied Energy & 

Enthalpy 

(only Embodied Energy 

in food & feed bought 

outside) 

SI = CSI+ASI 

 

 

 Community Societal Inflows (CSI) 

 Agroecosystem Societal Inflows 

(ASI) 

External Inputs (EI)     EI = SI+L 

Total Inputs Consumed (TIC) TIC = SI+L+BR 

Source: Our own. 

Both the Farmland and the Barnyard funds are internal to the agroecosystem, 

while all human functions either local or distant are considered external. Inputs to 

the system include human Labour (L), Community Societal Inflows (CSI) and 

Agroecosystem Societal Inflows (ASI), which together make up External Inputs 

(EI). Outputs include the Final Produce (FP) of cropland, woodland, and livestock 

herds for human use, including subsistence consumption by the local Community 

and any Surplus Produce (SP) sold or transferred by other means to the rest of 

Society. Importantly, Biomass Reused (BR) cycles within the system and is 

accounted as an input to farmland included in the Total Inputs Consumed (TIC). 

Another important distinction arises between Land Produce seen as the harvested 
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share of the Net Primary Production (NPP), and the unharvested (UB) biomass 

left available for all other species. 

Another important issue here is establishing a clear-cut distinction between reuses 

(BR) and wastes (W), particularly when in industrialized farm systems they 

cannot be considered as a proper reuse as defined in section 2.2 because they do 

not contribute to the complexity of the agroecosystem as explained in section 2.1. 

We represent two W flows in the 1999 flowchart (Figure.1.5), one parallel to BR 

(FW) and the other as an exit from the Barnyard (BW). Examples for such waste 

flows are burnt or disposed crop residues and the excess of dung slurry from 

intensive livestock breeding in feedlots. If this dung slurry is e.g. spread over 

cropland where chemical fertilisers are also applied, the ensuing over-fertilisation 

cannot be absorbed by the crops grown thereand most of its nitrogen compounds 

end up as water pollutants or greenhouse gas emissions. Notice that in our case 

study the energy content of this Barnyard Waste was equivalent to 92% of the 

Final Produce in 1999. 

All of these flows are accounted using the Gross Calorific Value (GCV) of their 

Enthalpy when we are dealing with energy carriers obtained from within the 

agroecosystem under analysis (they are detailed in Annex 1.B). When they come 

from outside, we account these Societal Inflows adding also the Embodied Energy, 

i.e. the energy required to produce and supply them to the system 

boundaries(Brown and Herendeen 1996).  

2.4. Accounting for labour by adopting a farm-operator standpoint 

How to include human labour in energy analysis of agricultural systems is a much 

debated topic (Fluck 1981; Odum 1984; Jones 1989; Giampietro and Pimentel 

1990; Fluck 1992; Brown and Herendeen 1996; Murphy et al. 2011; Giampietro 

et al. 2013). According to the agroecosystem approach shown in Figure 1.2 we 

consider human labour as an external input, which is accounted for as the fraction 

of the average diet of farm-operators that corresponds to the work time performed 

in the agroecosystem—taking physiologically different energy requirements of 

human activities into account. The components of their food basket are energy 

assessed following the same rule outlined above: we use gross calorific values 

(GCV) of food produced in the observed farm system, whereas in supplies coming 
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from outside we add the energy spent to process and deliver the food products to 

the population considered (embodies energy).
2
 

We base this labour accounting on what Fluck(1992)has termed the total energy 

of food metabolized while working. The rationale behind the time-budget 

adjustment to the work actually done, out of total time, is to recognize that 

farmers or agricultural labourers eat food to perform many other aims in life 

besides work.
3
 In this way our analysis remains open to the choices made by these 

farm-operators when allocating their own time. 

Another perspective on human labour would be to assesshow many non-farming 

people could be provided with food, fuel and fibre by these farm-operators. In this 

case we would have to take the time allocation made by the local community as 

given and to consider not only the whole food basket consumedby the 

agriculturally active population whatever their time allocation, but also the 

consumption of the dependent non-working population as well—that is, 

considering that the entire local community has to reproduce itself throughout 

time(Norum 1983; Giampietro and Pimentel 1990; Fluck 1992; Brown and 

Herendeen 1996; Odum 2007; Giampietro et al. 2013).  

Both perspectives are necessary, either the one performed from a farm-operator 

vantage point in the agroecosystem or the other performed from a wider societal 

standpoint. They cannot be adopted at the same time, but can be combined in a 

multidimensional and multi-scalar assessment—other authors have done so for 

instance using the MuSIASEM methods (Giampietro et al. 2013; Scheidel et al. 

2013). Here we only apply the former approach to human labour accountancy that 

corresponds with the system boundaries adopted. 

3. A single EROI is not enough 

How can an EROI be calculated of such a cyclic, rather than a linear system? The 

most conventional EROI used inagricultural systems is the one that we call 

external final EROI (see section3.1). However a cyclical approach has to go 

beyond a linear input-output perspective that identifies energy efficiency with a 

                                                 

2
In this very special case, however, we do not extend the embodied accountancy up to the energy 

spent in producing the food coming from outside—because then we would be double counting the 

food grown in one agroecosystem that is going to be consumed by people working in another. 

3
 In contrast to peasant labour, slave labour would be regarded as an internal flow of the 

agroecosystem. Slaves were sustained by landowners only as a means of production and were 

treated similarly to draught animals, or instrumentumvocalelikeancient Romans said. 
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single EROI ratio between the output of consumable agricultural products and the 

industrial or technical inputs that supplement human labour. Since such a linear 

perspective falls short of capturing the significance of the unharvested biomass, as 

well as of that part of harvested biomass reused within the agroecosystem (like 

seeds, green manures or the feed converted into draught power and animal 

manure), we propose a set of four different EROI indicators to adequately capture 

the cyclical character of energy flows in agroecosystems. 

The definition of these four EROIs is based on the inclusion and exclusion of the 

flows of Biomass Reused or External Inputs in the denominator, and by using 

Final Produce or Net Primary Production actually photosynthesizedin the 

numerator. The flow of Barnyard Services,such as draft power and manure, is 

omitted from all final calculations in order to avoid double counting (however, it 

is shown as grey arrow fromFigure 1.3 onwards).In the following sections we 

present this set of interrelated EROIs by using as examples two energy balances 

of the farm systems existing circa 1860 and in 1999 in five Catalan villages of the 

Vallès County (North East of Iberia). The farming systems in thisarea have been 

investigated in a series of interdisciplinary case studies (Cussó et al. 2006b; 

Marull et al. 2008a; Tello et al. 2008a; Garrabou et al. 2010; Olarieta et al. 2011; 

Tello et al. 2012). The broad database created has been thoroughly recalculated 

and calculations and methodological specifications can be found in Marco et al. 

(forthcoming). The list of EROIs appears in Table 1.2. 

Table1.2. List of EROIs obtainedin the five Catalan villages of the Vallès 

County c.1860 and in 1999. 

  c.1860 1999 

Final EROI (FEROI = FP/TIC)   1.05 0.21 

External Final EROI (EFEROI = FP/EI) 10.49 0.23 

Internal Final EROI (IFEROI = FP/(BR+W))   1.17 2.18 

NPP EROI (NPP /TIC)   3.18 0.41 

NPPEROI -Final EROI    2.12 0.20 

Source: our own, recalculated from Cussó, Ramón Garrabou, et al. (2006). 

3.1. The dependence on Societal Inflows: External Final EROI 

External Final EROI relates external inputs to the final output crossing the 

agroecosystem boundaries (Carpintero and Naredo 2006; Pracha and Volk 2011). 

This ratio links the agrarian sector with the rest of the energy system of a 

society—and thus assesses to what extent the agroecosytem analysed becomes a 
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net provider or rather a net consumer of energy. It is also very relevant when 

considering the so-called ‗Podolinsky principle‘ put forward by Martinez-Alier & 

Naredo (1982), according to which the human labour performed in 

agroecosystems provides a surplus of available energy for the rest of human 

society in the form of solar energy converted into biomass.
4

 However, as 

explained above, a more precise assessment of this societal link would require 

adjusting the human labour accountancy adopting a reproductive approach, which 

means adding up the energy requirement of a Total Time Budget Analysis 

including non-farm activities and all members of the local community. Being 

accounted this way, External Final EROI also becomes very important for 

evaluating the agricultural component of the ‗Law of minimum EROI‘ (Hall et al. 

2009; Hall and Klitgaard 2012)—which states that for any social system to 

survive and grow it must attain a minimum EROI able to support continued 

economic activity and social functions. 

Anyhow, as long as we focus our energy analysis on the farm-operators 

standpoint we kept accounting human labour by the energy requirement only 

during farm working time. Recall that, according to the system boundaries 

adopted, human labour and domestic residues was usually the most relevant 

External Input in past organic agricultural systems. Consequently these always 

obtain higher External Final EROIs compared with current conventional ones, e.g. 

in the Catalan example it dropped from 10.49 circa 1860 to 0.23 in 1999 

(Figure1.3).  

  

                                                 

4
We are not interested in discussing here the Podolinsky principle from a history of economic 

thought standpoint. It cannot be any doubt that this principle is very relevant either if (Burkett and 

Foster 2008) are right or not in pointing out the limitations of the original Podolinsky‘s 

proposalsin 1880 (Podolinsky 2004), or when they suggest that Martinez-Alier & Naredo (1982) 

went too far when assigned to him the original idea of assessing if the energy relationship between 

agriculture and the rest of society involves an overall net producing or a net consuming character. 



 

 

29 

Figure 1.3. External Final EROI of the Catalan case study c.1860 and in 1999. 

𝐄𝐱𝐭𝐞𝐫𝐧𝐚𝐥 𝐅𝐢𝐧𝐚𝐥 𝐄𝐑𝐎𝐈 =
𝑭𝒊𝒏𝒂𝒍 𝑷𝒓𝒐𝒅𝒖𝒄𝒆

𝑬𝒙𝒕𝒆𝒓𝒏𝒂𝒍 𝑰𝒏𝒑𝒖𝒕𝒔
=  

𝑭𝑷

𝑬𝑰
 

 

 

 

External Final EROI1860 =
246,634GJ

23,500GJ
= 10.49 External Final EROI1999 =

316,105GJ

1,373,517GJ
= 0.23 

Source: our own. 
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3.2. Meeting human needs: the Final EROI 

Final Produce (FP) is a net supply of energy carriers able to be consumed by the 

local population or for use in other socio-economic systems. This does not mean 

that the rest of intermediate inputs and by-products included in Land Produce but 

excluded in FP are of no use. On the contrary, we have to distinguish the actual 

energy losses occurringin conversions from that part reused as intermediate inputs 

through internal loops of the agroecosystem, which can be defined as energy and 

materials needed for the renewal of its funds and processes (Giampietro 1997a; 

Giampietro and Mayumi 1997). Adding Biomass Reused (BR) to External Inputs 

(EI) we get Total Inputs Consumed (TIC). That is, Final EROI assesses how much 

external and internal input must be invested by a farm operator to get a given 

basket of human consumable biomass products.In the Catalan example it dropped 

from 1.05 circa 1860 to 0.21 in 1999 (Figure 1.4). 

Figure 1.4. Final EROIs of the Catalan case study c.1860 and in 1999. 

𝐅𝐢𝐧𝐚𝐥 𝐄𝐑𝐎𝐈 =
𝑭𝒊𝒏𝒂𝒍 𝑷𝒓𝒐𝒅𝒖𝒄𝒆

𝑻𝒐𝒕𝒂𝒍 𝑰𝒏𝒑𝒖𝒕𝒔 𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒅
=  

𝑭𝑷

𝑻𝑰𝑪
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Final EROI1860=
246,634GJ

234,233GJ
= 1.05 FinalEROI1999 =

316,105GJ

1,518,820GJ
= 0.21 

Source: our own. 

3.3. Reusing to keep up agroecologicalfunctioning: Internal Final EROI 

Internal Final EROI assesses the portion of Land Produce reinvested in the 

agroecosystem as Biomass Reused in order to get a unit of consumable Final 

Produce. The relative amount of these internal flows exposes a clear-cut 

distinction between historic solar-based agricultural systems compared with fossil 

fuelled industrial ones at present, as organic farm systems nearly always bear 

greater internal flows per unit of output. For example, in our Catalan example 

Internal Final EROI increased from 1.17 c.1860 to 2.18 in 1999 (Figure 1.5). In 

this specific case, the directionality of change must be carefully understood given 

that it can mask a greater investment in keeping up the ecological performance of 

the agroecosystem‘s funds—and hence, the fact of bearing a higher sustainability 

cost.  
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Figure 1.5. Internal Final EROI of the Catalan case study circa 1860 and in 

1999. 

𝐈𝐧𝐭𝐞𝐫𝐧𝐚𝐥 𝐅𝐢𝐧𝐚𝐥 𝐄𝐑𝐎𝐈 =
𝑭𝒊𝒏𝒂𝒍 𝑷𝒓𝒐𝒅𝒖𝒄𝒆

𝑩𝒊𝒐𝒎𝒂𝒔𝒔 𝑹𝒆𝒖𝒔𝒆𝒅
=  

𝑭𝑷

𝑩𝑹
 

 

 

Internal Final EROI1860 =
246,634GJ

210,732GJ
= 1.17 Internal Final EROI1999 =

316,105GJ

145,304GJ
= 2.18 

Source: our own. 
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We deem that reusing a relevant share of Land Produce can be related to a 

highdiversity of land covers, ecotonesand habitats in agro-forest landscapes, as 

Marull et al., (2010, 2008a)pointed out for this same Catalan case and periods, or 

as been stated by Gustavsson et al. (2007) for Swedish pastures. This would be 

true as long as BR constitutes a smooth and repeated intermediate disturbance (as 

opposite to climax community) that helps to maintain ecological functionality,as 

suggested by Margalef (2006),and enhances resilience. See Annex 1.A for an 

explanation of BR. However, this working hypothesis on the significance of BR 

and the related EROI indicators requires further research and in particular 

combining EROI analysis with landscape ecology methods. As an additional tool 

to support this type of research we propose a further EROI indicator in the next 

section, which takes the NPP left in agroecosystems for food chains into account. 

3.4. NPPEROI 

NPPEROI expresses the energy return in terms of the whole biomass 

photosynthesized in agroecosystems which is available to sustain humans as well 

as the rest of heterotrophic species. These other species, as well as the ecosystem 

services they provide, continue functioning conditioned by the flow of energy and 

information that farmers invest. Hence, the total biomass annually produced by 

the agroecosystem(NPP) can also be seen from a farm-operator standpoint as a 

result of their investment(Figure 1.6). 
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Figure 1.6. Net Primary Production EROI of the Catalan case study c.1860 

and in 1999. 

𝐍𝐏𝐏 𝐄𝐑𝐎𝐈 =
𝑵𝑷𝑷

𝑻𝒐𝒕𝒂𝒍 𝑰𝒏𝒑𝒖𝒕𝒔 𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒅
=  

𝑵𝑷𝑷

𝑻𝑰𝑪
 

 

 

NPPact EROI1860 =
744,291GJ

234,233GJ
 = 3.18Internal Final EROI1999 = 

622,059GJ

1,518,820GJ
 = 0.41 

Source: our own. 
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In former sections we showed the recalculated energy flows for the farm systems 

described in Cussó, Garrabou, Olarieta, et al.,(2006a).To these we added new data 

requiredto estimate the Unharvested Biomass (UB)c.1860 and in 1999. In 

cropland we considered the share of the crop NPP consumed during the growing 

season by other species (Oerke et al. 1999), and the weeds associated to different 

crops(Bradley et al. 2010; Guzmán et al. 2014; Sheaffer et al. 2014).For other 

land uses we calculate the NPPminus the biomass extracted by humans that year 

(NPPh) to assess the unharvestedNPP,using the data provided byGovierno de 

Navarra(2012) andOlea(2010)forgrassland,byCañellas (1991)for scrublands,and 

byGracia et al. (2000-2004) for forests. The results are summarized in Table 1.3. 

Table 1.3. Values of total (NPP) and harvested (NPPh) Net Primary 

Production estimated in the Catalan study area c.1860 and 1999. 

 

Note: NPPh: Net Primary Production harvested (that equals Land Produce). NPPact: annual Net 

Primary Production in the actual land covers in the study area.Source: our own, calculated as 

explained in the text. 

3.5. Relating Final EROI with its internal and external returns 

The Catalan examplesof c.1860 and 1999 show two rather opposite energy 

profiles (Table 1.2).One of the main characteristics of the latter is that, apparently, 

Final EROI does not need to be high in order to meet human needs. This is so 

because there has been a historical substitution trend from internal (BR) towards 

external inputs (EI) throughout the socio-ecological transition from historic 

organic agroecosystems to industrialized farm systems. To what extent the change 

in final EROI has been due to increased EI, or abandonment of BR? This leads us 

to interrelate Final EROI with its respective internal(IFEROI) and external 

(EFEROI) returns.By substitution
5
, it is easy to reach the following Eq. (1.1) 

                                                 

5
Let us call a the FP, b the EI, c the BR, p the Final EROI, q the External Final EROI and r the 

Internal Final EROI. Then 𝑞 =
𝑎

𝑏
, which is the same as 𝑏 =

𝑎

𝑞
; and 𝑟 =

𝑎

𝑐
, which is the same as 
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which tells us that Final EROI equals the product between its internal and external 

returns divided by their sum: 

 

𝐹𝑖𝑛𝑎𝑙 𝐸𝑅𝑂𝐼 =
𝐸𝐹𝐸𝑅𝑂𝐼  ∙ 𝐼𝐹𝐸𝑅𝑂𝐼

𝐸𝐹𝐸𝑅𝑂𝐼+𝐼𝐹𝐸𝑅𝑂𝐼
Eq. (1.1) 

 

Eq.(1.1) incurs in decreasing returns at any point: to get any increase in the Final 

EROI proportionally greater increases in either internal or external returns or both 

are needed. However, it is possible to address a declining Final EROI by 

substituting to some extent Biomass Reused (BR) for External Inputs (EI). 

Reduction in EI would increase the external return (EFEROI), which in turn 

would compensate the decreasing internal return (IFEROI) to obtain a given Final 

EROI. The opposite is true. A declining Final EROI could be addressed by 

substituting EI for BR to some extent. This reduction in BR would increase the 

internal return (IFEROI), which in turn would compensate the decreasing external 

return (EFEROI) to obtain a given Final EROI.
6
As will be explained in next 

chapter, Eq. (1.1) can be used to perform a decomposition analysis that will 

assessthe relative impact of the changes experienced by either external or internal 

returns in any historical shift experienced from one Final EROI to another, or to 

find out the optimal improvement pathways of energy throughputs existing in any 

agroecosystem at any moment in time. 

The results obtained by applying this decomposition analysis to the Catalan case 

study in 1860 and 1999 led to some interesting conclusions. The sharp decrease in 

final EROI experienced by the latter industrialized farm system was mainly due, 

as expected (Schroll 1994; Dalgaard et al. 2001), to the increase in external 

energy inputs used in tractors, machinery, chemical fertilisers, pesticides and 

feeder cattle imports for feedlotswhich together contributed 116% of the total 

decrease in Final EROI from 1860 to 1999— notice that the huge amount of EI 

was 2.2 higher than the actual NPP in the study area (Figure 1.6). However, it was 

also due to getting rid of reuses and the abandonment of an integrated land-use 

management that counteracted up to 16% the decrease in the joint energy 

                                                                                                                                      

𝑐 =
𝑎

𝑟
. Given that  𝑝 =

𝑎

𝑏+𝑐
, we have =

𝑎
𝑎

𝑞
+
𝑎

𝑟

 , and 𝑝 =  
𝑎

𝑎𝑟 +𝑎𝑞

𝑞𝑟

 , which leads to 𝑝 =  
𝑎

𝑎 𝑟+𝑞 

𝑞𝑟

, and finally to 

𝑝 =  
𝑞𝑟

𝑟+𝑞
. 

6
As explained in section 2.2., these substitutions between BR and EI are only possible in practice 

for some specific functions but not others. They usually entail deep changes in agroecosystem 

functioning. 
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return.Had such a counterbalancing effect not taken place, the drop in Final EROI 

would have been even higher.  

3.6. Relating Final and NPP EROIs: the role of unharvested biomass 

Recall that Final EROI expresses the return on energy invested in terms of the 

final product consumable by humans. Like the obverse of a coin NPP EROI 

expresses the return in terms of energy available to sustain humans as well as the 

rest of heterotrophic species. From this perspective we are assuming that the 

energy invested (TIC) in an agroecosystem by the farm-operators to get a Final 

Produce (FP) is not lineal or single-purpose. They create indeed a set of loops 

from a specific flow of NPPwhose beneficiaries are not only them but other 

species as well. 

We defined above (sections 2.2 and 2.3) the flows that we understand as resources 

left for other species, which are Unharvested Biomass (UB) and Biomass Reused 

(BR). According to Table 1.1: 

𝑁𝑃𝑃 = 𝑈𝐵 + 𝐿𝑃 =  𝑈𝐵 + 𝐵𝑅 + 𝐹𝑃 − 𝐵𝑃                                                 Eq. (1.2) 

Using the above identity we arrive at Eq. (1.3) that relates NPPEROI with Final 

EROI
7
: 

𝑁𝑃𝑃𝐸𝑅𝑂𝐼 − 𝐹𝑖𝑛𝑎𝑙 𝐸𝑅𝑂𝐼 =
𝑈𝐵+𝐵𝑅

𝑇𝐼𝐶
−

𝐵𝑃

𝑇𝐼𝐶
Eq.(1.3) 

If Eq. (1.3) is seen like a zero sum game we arrive at an interesting hypothesis: the 

greater the difference between NPPEROI and Final EROI, the higher the capacity 

of an agroecosystem to shelter other species is. Conversely, the increasing 

dependence on external inputs goes hand in hand with biodiversity loss—as has 

been tested by many observers(Matson 1997). No doubt, this assumption has to be 

checked with wider evidence than the one offered here, and needs to combine 

energy analysis with landscape ecology assessment. For the time being we suggest 

to interpret Eq. (1.3), as well as the results shown in Table 1.3 and Figure.1.5 to 6, 

considering that for an agroecosystem to host a great deal of species there must be 

a balance between unharvested biomass and habitats of low human colonization 

or none
8
. Hence biodiversity would require having the two things at the same time 

                                                 

7
 The second term in the right side of this identity is only an accountancy adjustment needed to 

avoid double counting Barnyard Produce (BP), which belongs to Final Produce (FP) but not to 

Land Produce (LP). Hence, the meaning of Eq. (3) lies in the first term on the right side that relates 

UB and BR with TIC. 

8
 Calculating the set of EROIs here proposed help to reveal how misleading it is to consider many 

less undisturbed agricultural lands as ‗underused‘ or ‗unused‘—as it is currently alleged by the 
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in the same area: habitats and food chains free for a wide range of species. 

Habitats may remain empty if there is not enough biomass free of human 

appropriation (UB). But a lot of unharvested biomass with a low diversity of 

habitats would lead at its turn to big populations of a limited number of species. 

This reasoning can be applied to our set of EROIs as long as we assume that the 

relevance of BR has a lot to do with land cover diversity and the availability of 

habitats in the land matrix—a working hypothesis which we intend to demonstrate 

by developing this approach in further research. 

4. Discussion of results 

If we are right in the above assumptions, more research on the contribution of BR 

and UB to biodiversity in agroecosystems is needed.As explained in section 3.3, 

the lowering of BR in industrial farm systems went hand in hand with a 

homogenization of cropland and a simplification of the landscape matrix. The 

simultaneous decrease observed during the second half of the 20th century in 

agroforest mosaics, as well as in many biodiversity indicators, can be seen from 

this perspective as a kind of big natural experiment for this line of research 

(Tscharntke et al. 2005; Bianchi et al. 2006; Gustavsson et al. 2007; Marull et al. 

2008b; Fischer et al. 2008b; Marull et al. 2010; Tello et al. 2014). 

Trying to replace biomass reused with external inputs characterizes the socio-

ecological transition from traditional organic agricultures to industrialized farm 

systems reliant on fossil fuels.Conversely, organic farmingtends to save external 

inputs by replacing them with internal biomass reused through a strategy called 

Low External Input Technology (LEIT; see Tripp, 2008).Currently, the scientific 

and political interest in land sparing (that is, setting aside of land for biodiversity 

conservation) combined with wildlife-friendly farmingis growing worldwide (see 

a review in (Fischer et al. 2008a). We think thatif ourbasic hypothesis is true, the 

link betweenNPPEROI and Final EROI would provide a useful indicator to assess 

in energy termsthe capacity of an agroecosystem to host biodiversity. 

According to Table 1.3, the NPPin the existing land covers would had been 20% 

higher circa 1860 than in 1999—partly due to the loss of farmland given over to 

built-up land, but also because of the decrease in weeds and other adventitious 

plants. At the same time the NPPh decreased, in proportion of NPP,from 61% to 

44%, mainly due to land abandonment and reforestation. As a result, the total 

                                                                                                                                      

promoters of land-grabbing disregarding the agroecological role they play for many rural 

communities (Scheidel et al. 2013) 
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amount of unharvested biomass became 19% higher in the latter than in the 

former date. Nevertheless, our NPPEROI was nearly eight times higher in 1860 

than in 1999 (Table 1.2)meaning that the available energy flows for other species 

per unit of farm-operators investment (TIC) was clearly wider in the organic 

agroecosystemof 1860 than in the industrial farm system of 1999. This is 

confirmed when Final EROI is subtracted to NPPEROI: the result c.1860 was 

more than ten times higher than in 1999 (Table 1.2). 

These examples help to explain why the path followed by industrialized 

agricultures eliminating internal reuses, and relying on increasing external fossil 

inputs, lead to a loss of habitats. At the same time the amount of unharvested 

biomass increased in absolute terms as a result of the higher Final Produce per 

unit of cropland made possible by direct and indirect inputs of external energy, 

above all from fossil fuels, which in turn allowed limiting cultivation in the best 

land and setting aside many others.However, this has given way to a very 

unbalanced relationship between habitats and biomass left free from human 

appropriation by industrial farm systems at present. A usual outcome has been the 

typical population imbalances that make certain species to become plagues 

because of the lack of regulation that biodiversity provides(Bianchi et al. 2006; 

Tello et al. 2014). 

The opposite LEIT strategy of organic farming also requires a balance between 

the human appropriation of NPP and the keeping of biodiversity. By reinvesting 

as reuses a substantial portion of the Land Produce, and keeping an integrated 

land-use management, farmers seek to balance human disturbance with the 

increasing complexity and resilience of agroecosystems. They will also face an 

upper limit though, given that any increase in harvested biomass (NPPh), either 

reused or consumed by humans, decreases the unharvested biomass (UB) 

available to other species. From a certain point, land-use intensification will cease 

to be sustainable even in an organic agriculture (Erb 2012; Krausmann et al. 

2012).Knowing where these critical thresholds in energy throughputs are placed 

in different agroecosystemswould be very useful for designing more sustainable 

farm systems in the future. Ourenergy assessment has to be understood as a 

starting point for a deeper analysis of biodiversity endowment in agroecosystems 

that is to be developed by taking into account the complexity dimension of 

organized information. 
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5. Concluding remarks 

Ourapproach to characterize and assessthe energy profiles of 

agroecosystems,aimed at comparing them inpast orpresent times and to foresee 

other more sustainable in future, can be summarized in three main points. First of 

all, a single EROI is not enough since a relevant share of energy flows driven by 

the farm-operators cycles again into the agroecosystem as a loop. Therefore we 

propose calculating four interrelated EROIs, each of which captures different 

sides of the agroecosystem functioning: Final EROI, External Final EROI, 

Internal Final EROI and NPP EROI.Secondly, wehypothesize that taken together 

they can bring into light the missing link between energy performance and 

biodiversity. 

Finally, either relying on internal reuses or external inputs any farm system 

always incur in decreasing energy returns that farmers try to compensate up to a 

point by substituting one for another. Hence, a decomposition analysis of Final 

EROI into the external and internal returns is useful in order to highlight the 

contrasting energy profiles adopted by organic or industrial farm systems. The 

results obtained by applying this energy analysis to the Catalan case study in 1860 

and 1999 illustrate how useful this approach can be for a further development of 

this field of study. 
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 Chapter 2. Opening the black box of energy 

throughputs in agroecosystems: a decomposition 

analysis of final EROI into its internal and external 

returns (the Vallès County, Catalonia, c.1860 and 

1999)
1
 

1. Introduction 

Agroecosystems, as hybrid human-natural systems, require a special treatment 

when assessing energy returns on investment (EROI) (Giampietro et al. 2011; 

Hall 2011; Pelletier et al. 2011; Hall and Klitgaard 2012; Giampietro et al. 2013). 

A linear approach in which farm operators invest energy carriers and, after a 

conversion process, obtain an energy output cannot give a proper account of their 

complexity (Leach 1976; Odum 1984; GiamPietro and Pimentel 1991; Giampietro 

et al. 1992b; Giampietro et al. 1992a; Giampietro et al. 1994; Giampietro 1997a; 

Odum 2007; González de Molina and Toledo 2011; Giampietro et al. 2013). Seen 

as nature transformed by human activity, the energy profile of a farm system has 

to be drawn as a series of intertwined loops—like in Figure 2.1, a simplified 

outline of the main energy flows in a Catalan case study c.1860 and in 1999 (see 

also Figure. 2.6 and Annex 1.B).  

  

                                                 

1
 This paper was coauthored by E. Tello, V. Sacristán, G. Cunfer, G.I. Guzmán, M. González de 

Molina, F. Krausmann, S. Gingrich, R. Padró, I. Marco, D. Moreno-Delgado. My contributions 

were rebuilding all the calculations of the case studies together with I. Marco and R. Padró, 

participating actively in the construction of the model and searching and discussing references. 
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Figure 2.1.Energy profiles of farm systems in five municipalities of the Vallès 

County (Caldes de Montbui, Castellar del Vallès, Palau-solità i Plegamans, 

Polinyà and Sentmenat) in Catalonia, Spain, c.1860 and in 1999. 

 

Final EROI1860=
246,634GJ

234,233GJ
= 1.05  
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               Final EROI1999 =
316,105GJ

1,518,820GJ
= 0.21 

Source: our own. 

The primary data of these five Catalan villages has been taken from previous 

publications (Cussó et al. 2006a; Tello et al. 2006; Cussó et al. 2006b; Garrabou 

et al. 2010) and has been improved using additional historical sources and updated 

energy converters, and adapting all accountancies to the bookkeeping method we 

propose in a series of recent articles (Galán et al.; Marco et al.). This paper 

focuses on a specific aspect of this novel approach to agricultural EROI‘s, namely 

the contrasting energy profiles of organic versus industrial farm systems regarding 

their mainly cycling or linear character, and aims to contribute to the 

methodological advance of this field of study. 

Agroecosystems arise when a community of farm operators invests a certain 

amount of energy carriers (like human labour, animal or mechanical work, seeds, 

fertilisers and so on) to create a new cultural landscape from terrestrial ecosystems. 

As human-colonized ecosystems they retain their own ecological processes but 

cannot maintain and replicate themselves over time without a repeated investment 

of energy and information, in addition to naturally occurring solar radiation and 

photosynthesis (Altieri 1989; Gliessman 1998; Altieri and Nicholls 2005; Snapp 

and Pound 2008). Their continuous functioning also requires regulatory services 

mainly performed by ecological processes on less-disturbed land (Odum 1984; 

Giampietro et al. 1992b; Giampietro et al. 1992a; González de Molina and 

Guzmán 2006; Guzmán and González de Molina 2009; Guzmán et al. 2011). 

Thus, besides economic yields any sustainable farm system has to maintain its 

agroecological complexity—sometimes labelled ‗natural capital‘, although we 

prefer using Georgescu-Roegen‘s term of ‗funds‘ meaning that unlike other sorts 

of stocks they have to rest and receive specific care from time to time, and cannot 

bring about a flow at any desired rate or in a continuous manner (Georgescu-

Roegen 1971; Mayumi 1991). In past organic agroecosystems this ecological 

constraint was met by integrating different land units where various levels of 

energy throughput per unit area were applied. These mixed agro-forestry-grazing 

systems historically evolved into a variety of agricultural landscape mosaics, 

adapted to specific bioregions and societal needs, aimed to maintain a trade-off 

between exploitation and conservation (Margalef 2006; Marull et al. 2010). 

Difficulty in maintaining these integrated landscape mosaics has arisen when 

external socioeconomic flows become substitutes for reinvestment of internal 
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flows of organic matter to increase yields per unit of cropland or labour. While 

greater reuse flows seem to be related with a larger complexity of agroecosystems, 

substituting external energy inflows for internal reuse of biomass may entail a 

linear simplification as can be observed in many industrial farm systems. 

Therefore, any sustainable assessment of agroecosystem‘s performance has to 

open the black box of energy throughputs in order to highlight the key role played 

by internal flows of biomass reused. 

In this article we aim to shed some light on this important issue by proposing a 

decomposition approach of Energy Returns On Inputs (EROIs) of agroecosystems, 

which explicitly differs between  internal or external components, and by 

comparing the energy yields at their entrance or exit boundaries (i.e. 

photosynthetic net primary production or final produce). Section 2 summarizes 

the energy profiles of agroecosystems using four interlinked EROIs. Section 3 

presents the equation relating Final EROI with Internal Final EROI and External 

Final EROI, and explores the properties of the conic surface that allows plotting 

their relationships in different agroecosystems. Section 4 uses the same equation 

and graphs to find out the optimal improvement pathways of Final EROI by 

varying internal or external returns. Section 5 develops a mathematical 

decomposition to assess the impact of internal reuses or external inputs in the shift 

experienced by Final EROI from one date to another. Section 6 concludes 

discussing the empirical results, and presents the working hypothesis that organic 

and industrial farm systems may tend to cluster into two main typologies.  

2. Modelling energy funds and flows in agroecosystems 

The starting point of our approach is to emphasize that a single number is not 

enough to give account of energy throughput in agroecosystems. Instead we 

propose four interrelated EROIs which allow drawing a more differentiate picture 

of the sociometabolic profile of farming systems in a way aimed to bring into light 

the relationship between energy efficiency and agroecological performance of the 

underlying funds. These four EROIs are defined by including or excluding the 

flows of Biomass Reused or External Inputs in the denominator, and Final 

Produce or the Net Primary Production actually photosynthesized in the 

numerator (Figure 2.1).  

The first couple of EROIs links the socio-economic and the ecological sides of 

agroecosystem functioning: meeting human needs (with Final EROI), and 

checking (with NPP EROI) whether they are satisfied without undermining vital 

funds that we deem to be related with the maintenance of soil fertility and 
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biodiversity services. The NPP EROI
2
 expresses the return on energy invested in 

terms of the actual Net Primary Production obtained from the photosynthesis 

within an agroecosystem vis-à-vis all internal and external socio-economic energy 

inputs: 

𝑁𝑃𝑃 𝐸𝑅𝑂𝐼 =
𝑁𝑒𝑡 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑
=
𝑁𝑃𝑃

𝑇𝐼𝐶
 

This NPPEROI means looking at agroecosystems as human-colonized ecosystems. 

Nature continues to function in them, but it does so conditioned by the flow of 

internal and external energy carriers (TIC) and information that farmers invest. 

Given that
3
 

𝑁𝑃𝑃 = 𝑈𝐵 + 𝐿𝑃 =  𝑈𝐵 + 𝐵𝑅 + 𝐹𝑃 − 𝐵𝑃 

we arrive at equation (2.1) that expresses the remainder of NPP EROI minus Final 

EROI per unit of TIC: 

𝑁𝑃𝑃 𝐸𝑅𝑂𝐼 − 𝐹𝑖𝑛𝑎𝑙 𝐸𝑅𝑂𝐼 =
𝑈𝐵 + 𝐵𝑅

𝑇𝐼𝐶
−
𝐵𝑃

𝑇𝐼𝐶
                                         𝐸𝑞. (2.1) 

The second term on the right side of this identity is only an accounting adjustment 

to avoid double counting Barnyard Produce (BP), whereas the meaning of this 

expression concentrates in the first term on the right side of Eq. (2.1). It bridges 

the two sides of energy throughput in agroecosystems in a way aimed to assess the 

resources left free for other species. It does so by means of two components: UB, 

which is the amount of biomass available for food chains for the rest of species; 

and BR, whose importance requires an integrated land-use management which in 

turn may increase land cover diversity and the number of habitats in agricultural 

landscapes (Margalef 2006; Marull et al. 2010). Both factors are expressed per 

unit of invested energy (TIC) or, in other words per unit of anthropogenic 

disturbance required to create and maintain an agroecosystem in a desired state. 

Our working hypothesis is that the greater the difference between NPP EROI and 

Final EROI the better the capacity to host biodiversity in an agroecosystem will 

be. While the verification of this hypothesis requires further research, we here 

                                                 

2
We use the ‗actual‘ NPP values, not the ‗potential‘ NPP0 (the vegetation thatwould prevail in the 

absence of human landuse) usually accounted in the HANPP calculations (Krausmann et al. 2012). 

3
For the sake of simplicity, we are not treating here the flows of vegetable waste (LW) separately 

from BR (see Annex 1.B). 
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provide an energy assessment framework based on the four related EROI 

indicators which can support this type of research. 

As TIC are composed of EI and BR, which can be substituted one another, Eg. 

(2.1) can also be written as:  

𝑁𝑃𝑃 𝐸𝑅𝑂𝐼 − 𝐹𝑖𝑛𝑎𝑙 𝐸𝑅𝑂𝐼 =
𝑈𝐵 + 𝐵𝑅

𝐸𝐼 + 𝐵𝑅
−
𝐵𝑃

𝑇𝐼𝐶
                                             𝐸𝑞(2.2) 

According to our interpretation of equation (2.2), increasing EI would result in 

reducing the environmental space left available to other species per unit of human 

disturbance. At the same time, doing this at the expense of BR might also entail 

reducing the need for an integrated land-use management. Thus getting rid of BR 

per unit of TIC might lead to a decrease of the spatial heterogeneity and 

complexity of agro-forest landscapes, and a reduction in the species richness they 

can shelter. Relying on this working hypothesis, we propose using the proportions 

of UB, BR and EI as a proxy to assess in energy terms the conditions needed for 

other species to be hosted in agroecosystems.
4
According to this hypothesis, 

maintaining or improving biodiversity would require having enough UB and BR 

at the same time in the same area. A large amount of UB with a low diversity of 

habitats would lead to big populations of a limited number of species. Conversely, 

having a great share of BR per unit of TIC might translate into a great number of 

habitats that could remain empty if there is not enough biomass free of human 

colonization. 

As shown in the previous chapter, in the Catalan case study shown in Figure 1 

NPPact EROI dropped from 3.18 in the traditional organic farm management 

c.1860 to 0.41 in the industrialized farm system of 1999. At the same time, the 

total amount of unharvested biomass grew by 19% from 290 TJ c.1860 to 346 TJ 

in 1999 mainly due to reforestation ensuing from rural abandonment. These 

results are well in line with findings from studies which have applied landscape 

ecology metrics to land-use maps in the same study area (Marull et al. 2010). 

They show a loss of agro-forestry landscape mosaics that may explain the 

decrease observed in the nearby populations of species that require land-cover 

diversity (e.g. Mediterranean orchids, butterflies, etc.), and the proliferation of 

                                                 

4
 This approach to the role performed by loops of energy carriers inside an agroecosystem draws 

on some very basic principles of the functioning of living systems as dissipative structures that are 

able to maintain a dynamic stability far from thermodynamic equilibrium. Their internal cycles 

always make thermodynamic sense because thanks to them a living system can enhance its own 

complexity, increase its energy storage capacity, improve the energy throughput and start an 

ascendancy trend that decreases entropy dissipation (Prigogine and Stengers 1984; Ulanowicz 

1986; Morowitz 2002; Ho and Ulanowicz 2005; Ho 2013). 
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others (e.g. boars) well adapted to the regrowth of abandoned woodlands that tend 

to behave like pests (Tello et al. 2014). This important issue requires a deeper 

study that we intend to carry out in future. 

Final EROI, which is assessed at the exit side of an agroeocosystem, measures 

how much external and internal input is invested by a community of farm 

operators to get a given basket for human use (Fluck and Baird 1980; Pracha and 

Volk 2011): 

𝐹𝑖𝑛𝑎𝑙 EROI =
𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑
=  

𝐹𝑃

𝑇𝐼𝐶
 

Taken alone Final EROI has an important shortcoming, given that External Inputs 

(EI) are mixed with Biomass Reused (BR) in the Total Inputs Consumed (TIC). 

This aggregation disregards the role we deem BR plays as an investment to keep 

up the renewal of some vital funds that maintain soil fertility and biodiversity of 

agroecosystems. In order to solve this concealment TIC can be broken down into 

its two components, BR and EI. This gives way a pair of interrelated EROIs, the 

External and the Internal Final EROI. 

External Final EROI is defined as the ration of external inputs to the output of 

final produce, which comprises all biomass products for human consumption 

leaving the agro-ecosystem (Figure 2.1): 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑛𝑎𝑙 EROI =
𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠
=  

𝐹𝑃

𝐸𝐼
 

This EROI links the agroecosystem with the rest of the energy system of a society 

(Carpintero and Naredo 2006; Pracha and Volk 2011). Recall that EI are 

composed of farm labour (L) and other inflows from the farming community or 

the rest of society (ASI). In organic agroecosystems with low societal inflows 

External final EROI approaches the meaning of the ‗Podolinsky Principle‘—

according to which the labour performed by farmers has to provide an energy 

surplus to the rest of society (Martinez-Alier and Naredo 1982; Podolinsky 2004; 

Burkett and Foster 2008; Martinez-Alier 2011). A declining External Final EROI 

also expresses the increasing dependence on external societal inflows in 

increasingly industrialized farm systems. It also allows a subsequent estimation of 

how many non-agricultural people a certain farm communities is potentially able 

to support, and becomes very relevant for evaluating the agricultural component 

of the ‗Law of minimum EROI‘ put forward by Hall et al.(2009; Hall and 
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Klitgaard 2012)—which states that for any social system to survive it must attain 

a minimum energy return (Tainter 1988). 

The main shortcoming of External Final EROI is that it neglects the significance 

of biomass reused (BR) for the energy profile of agro-ecosystems. This is 

overcome by a complementary measure, the Internal Final EROI. This EROI 

expresses the investment made by the farm-operators in keeping up the renewable 

funds of an agroecosystem: 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑖𝑛𝑎𝑙 EROI =
𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑢𝑠𝑒𝑑
=  

𝐹𝑃

𝐵𝑅
 

By combining these three EROI measures, we can identify different pathways to 

increase the energy return on investment of farming systems taking into account 

their different impacts on agroecosystem services and socioeconomic outputs. As 

organic farm systems nearly always bear greater internal flows per unit of output, 

just by getting rid of them any industrialized farm management may attain greater 

internal returns per unit of Final Produce (FP). Given that EI can substitute for BR 

and vice versa, three possible strategies for increasing agricultural energy yields 

appear: 1) attain greater output per unit of TIC, whether internal or external, 

which means increasing the joint energy efficiency; 2) reduce inputs consumed 

per unit of output by relying on internal inputs and saving external inputs; and 3) 

reduce inputs consumed per unit of output by relying on external inputs and 

saving internal inputs. Along the sociometabolic transition from past organic to 

industrialized farm systems there has been a substitution trend from internal 

towards external inputs. This leads us to interrelate Final EROI with its respective 

internal and external returns so as to draw a broader energy profile of agricultural 

systems along this historical change. 

3. Relating Final EROI with its internal and external returns 

 Final EROI is related with its returns internal (IFEROI) and external (EFEROI) 

according to the following equation (2.3), that can easily be found by substitution 

as explained in the previous chapter: 

𝐹𝑖𝑛𝑎𝑙 𝐸𝑅𝑂𝐼  𝐹𝐸𝑅𝑂𝐼 =
𝐸𝐹𝐸𝑅𝑂𝐼 ∙  𝐼𝐹𝐸𝑅𝑂𝐼

𝐸𝐹𝐸𝑅𝑂𝐼 + 𝐼𝐹𝐸𝑅𝑂𝐼
                                                 Eq (2.3) 

Expression (2.3) is the equation of the quadratic surface shown in Figure 2.2, 

which happens to be a cone centred at the origin (left side of Figure 2.2) or, to be 
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more precise, a portion of a cone (right side of Figure 2.2), as the values of 

EFEROI and IFEROI can only be positive.
5
 

Figure 2.2. Graphical representation of Final EROI as a function of EFEROI 

and IFEROI. 

 

Source: our own. 

This function incurs in decreasing returns at any point: to get any increase in the 

joint Final EROI proportionally greater increases in either internal or external 

returns or both are needed. In fact, at any point  x, y of the surface, the directional 

                                                 

5
 In fact, equation (3) can be rewritten as 𝑧 =

𝑥𝑦

𝑥+𝑦
 or equivalently −𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 = 0. In terms of 

matrices,  𝑥 𝑦 𝑧  
0 −1 2 1 2 

−1 2 0 1 2 

1 2 1 2 0
  

𝑥
𝑦
𝑧
 = 0 . The previous symmetric matrix has 

eigenvalues −1 with multiplicity 1, and 1 2  with multiplicity 2. Hence the matrix diagonalizes 

and equation (1) reduces to 𝑥2 = (𝑦2 + 𝑧2) 2 , which is the equation of a cone. This cone is 

trivially centred at point (0,0,0). Vector (1,1, −1) is an eigenvector of eigenvalue −1, therefore the 

axis of the cone has its direction. 
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derivative in the direction of the gradient is 
x4+y4

(x+y)4
 is strictly smaller than 1 for all 

points with no null coordinates, and equals 1 when either coordinate is 0.  

If we consider Final EROI as a function of IFEROI and EFEROI then Figure 2.3 

shows the contour lines, or isoquants, of this function. It is easy to show that these 

curves are hyperbolae (in fact, they are conic sections in the horizontal direction, 

which forms an angle with the axis of the cone smaller than the one of the 

generatrix). When restricted to one of such curves, any increase or decrease of one 

of the partial EROIs (internal or external) can be compensated by a decrease or 

increase of the other, respectively. The isoquants being hyperbolae, the relation 

between the two variations is inversely proportional. The proportional factor 

depends on the eccentricity of each isoquant. 

Figure 2.3.Isoquants of Final EROI as a function of EFEROI and IFEROI 

 

Source: our own. 

As we are interested in the role played by external flows and internal reuses in the 

energy performance of agricultural systems, we can delve deeper into this analysis 

in order to reveal how variations in EFEROI and IFEROI affect the position 

adopted by Final EROI along the corresponding conic surface in terms of the 

underlying function that relates Final Produce (FP) with internal (BR) and 

external (EI) inputs. For the time being all we can say is that assuming a constant 

Final Produce, the variation of EFEROI (relative to IFEROI) is inversely 
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proportional to that of EI (relative to BR). Unfortunately, the function –or perhaps 

‗functional‘ according to (Georgescu-Roegen 1971)— relating FP with BR and EI 

is too complex to be determined. In agroecosystems any internal or external 

biophysical flow interacts with a set of funds which can only bring about a final 

produce within a limited range of variation in yields and in a discontinuous 

manner. What really matters are the emerging properties arising out of the whole 

network of synergistic links of flows established among a myriad of funds 

working together to attain a joint performance and outcome—and that is the main 

focus of agroecology as a science (Altieri 1989; Gliessman 1998; Snapp and 

Pound 2008). 

An empirical workable way to deal with such a complex issue is to plot the 

various combinations of IFEROI and EFEROI existing behind any given Final 

EROI attained by an agricultural system, in order to cluster them around 

characteristic typologies. Figure 2.4 shows the organic farm systems existing in 

Vallès County study area c.1860 compared with the industrial one in 1999. It 

depicts the data as points in the conic surface, as well as their isoparametric 

curves. 

Figure 2.4.Plotting the Internal and External final energy returns behind the 

Final EROI 

 

Note: Values for c.1860 are in red and for 1999 in green. Source: our own. 

The two time points express in visual terms the different strategies adopted by 

organic versus industrialized farm systems to improve final energy returns. Circa 

1860 the internal energy return was low (the point is close to the IFEROI=0 axis) 

due to the high amounts of BR invested. However, this low Internal Final EROI 

was compensated up to a point by a much higher external return (the point is 

located some distance above the EFEROI=0 axis) thanks to the strategy of saving 

external inputs which whenever possible were replaced by reuses. In 1999 
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External Final EROI was extremely low and this could be compensated only to 

some (minor) extent by reducing the internal flows of BR.  

The first of these strategies is currently labelled ‗Low External Input Technology‘ 

(LEIT) and fits well with an agroecological approach for sustainable agriculture 

(Tripp 2008)—given that in low-input agriculture, where the harvested flow of 

biomass remains within the range of natural turnover, farm activities interfere 

only to a limited extent with the system of controls regulating matter and energy 

flows in ecosystems (Giampietro 1997a). The opposite strategy corresponds to the 

paths taken by industrialized agricultural systems based on ever greater external 

inputs, mainly fossil fuels. 

4.  Assessing improvement pathways of Final EROI 

The quadratic surface showing the relationships of Final EROI with its external or 

internal returns can also be used to find out optimal improvement pathways. 

Figure 2.5 presents in the left side the gradient vector at each point that indicates 

for each pair of values (EFEROI, IFEROI) the direction to which the function (2.3) 

can be optimally improved. Besides optimal directions, the left figure also depicts 

the improving capacity at each point by means of the length of the gradient vector.  

Figure 2.5.Directions and comparative lengths of the increase on energy 

efficiency 

  

Note: The figure on the left shows the potential gradient vectors for optimal improvements. The 

figure on the right shows the gradient vectors for optimal improvements specifics for the Catalan 

study area c.1860 (red) and 1999 (green).Source: our own. 
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We can observe that potential improvements are higher if Final EROI is lower, 

or/and when the combination of EFEROI and IFEROI is skewed. All these 

pathways led towards points of higher Final EROIs with lower improvement 

capacities that tend to approach the ones along the diagonal with higher 

diminishing returns (where Final EROI = 
EFEROI

2
 = 

IFEROI

2
, and 

EI

BR
= 1). 

This way, we can map the improving capacity of Final EROI in agroecosystems 

by following the optimal combination of internal or external returns, and compare 

the theoretical possibilities with available empirical data (Figure 2.5). In the 

Catalan example c.1860 the gradient vector indicates that a small increase of 

Internal EROI would have resulted in a large increase in Final EROI, given that 

the slope of the isoparametric curve representing its 
FP

BR
 ratio attains in this point 

the highest return compared with the other—meaning that the internal return had a 

much higher impact because external inputs were then comparatively small. 

One way to improve the 
FP

BR
 ratio c.1860 was to further improve the integrated 

land-use management with increasing livestock breeding and thus available 

manure per unit of land, or by reducing losses in manure heaps and other barnyard 

services. To what extent can this be considered feasible in the Valles County 

c.1860? We know that this highly intensive farm system heavily relied on biomass 

reuse: In order to keep up soil fertility, farmers had to feed livestock by growing 

fodder crops and reusing a large fraction of agricultural by-products, sowing green 

manures, and burning or burying a large amount of forest and scrub biomass on 

cropland (Cussó et al. 2006a; Cussó et al. 2006b; Garrabou et al. 2010; Tello et al. 

2012). Land-use intensification, mainly driven by vine-growing specialization 

(Badia-Miró and Tello 2014), seems to have increased agroecological stress 

leading this preindustrial farm system towards lower energy returns—albeit nearly 

to one as we saw in previous chapter. Perhaps a lower population density and 

land-use intensity would have also led to higher IFEROI and Final EROI, thanks 

to a reversal of the well-known sequence towards a growing farming activity on 

the available land that gives way to diminishing returns (Boserup 1965). However, 

adopting more extensive land uses would entail forcing the unemployed rural 

population to emigrate.  

There was a third pathway to increase the 
FP

BR
 ratio: restraining the labour-intensive 

effort by reducing the amount of BR per unit of final produce obtained while 

keeping high land-use intensity. Whereas the first option would rely on improving 

agroecological management, and the second would entail expelling labourers from 
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the land, the latter would led to unsustainable paths—e.g. by mining soils not 

properly fertilised.
6

 The dilemma illustrates the difficult choices many past 

organic farm systems faced just before the onset of agricultural industrialisation, 

when the pressure to increase output arising from local population growth and 

urban markets grew. This issue deserves a comparative analysis about the trade-

offs and limits between land-use intensity and sustainability of farm systems (Erb 

2012; Krausmann et al. 2012). 

5.  Decomposition analysis of the historical shifts in Final EROI 

Another way to delve into the historical changes experienced by agricultural 

systems is disentangling the role played by the internal or external energy returns 

in any shift experienced by Final EROI. This can be achieved by a decomposition 

analysis, considering that FP = h(EI, BR), where h is a function we know that 

exists but the expression of which remains unknown. Using a simpler notation for 

the variables, the situation is written: 

   ℝ2    →       ℝ3     →      ℝ 

 x, y  ↦   x, y, z  ↦ w =
z

x + y
 

According to the chain rule, we know that 

∂w

∂x
=

∂w

∂x

∂x

∂x
+

∂w

∂y

∂y

∂x
+

∂w

∂z

∂z

∂x
 =

∂w

∂x
+ 0 +

∂w

∂z

∂z

∂x
  =

−z

 x+y 2 +
1

x+y

∂z

∂x
  =

−z+ x+y 
∂z

∂x

 x+y 2 . 

Analogously, 

∂w

∂y
 =

−z+ x+y 
∂z

∂x

 x+y 2 . 

                                                 

6
 In our first energy balance for the entire Vallès County we got a Final EROI of 1.41 c.1870 

(Cussó et al. 2006b). Then, in the five municipalities of our study area we obtained a Final EROI 

of 1.67 c.1860 (Cussó et al. 2006a). After a better assessment of the fertilising methods applied 

(Olarieta et al. 2011; Tello et al. 2012), it dropped to 1.23 (Tello and Galán-Del-Castillo 2013). 

Here and in previous chapter we have carried out a thoroughly revision not only using better 

sources and new accountancy rules, but performing a stricter control in order to assess that the 

energy yields we obtain as a reference were not attained at the expense of soil fertility, 

deforestation or livestock malnutrition (Marco et al.). As a result, the Final EROI c.1860 dropped 

again to 1.05. It seems likely that the actual energy yields of this highly intensive organic 

agriculture led to some degree of soil mining and deforestation). 
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Consequently, the effects of x and y on the variation of w are: 

Effect of x =
−z +  x + y 

∂z

∂x

 x + y 2
∆x,                   Effect ofy =

−z +  x + y 
∂z

∂y

 x + y 2
∆y. 

Since the function FP = h(EI, BR) is unknown, we need to estimate the value of 

the partial derivatives of z with respect to x and y. The only approximation 

possible, from the available data, is trivial: 

∂z

∂x
≈

∆z

∆x
,
∂z

∂y
≈

∆z

∆y 
. 

Then, given two situations s1 =  x1, y1, z1 , w1 ands2 =  x2, y2, z2 , w1 , we get: 

∆w = w2 − w1 =
z2

x2 + y2
−

z1

x1 + y1
=  

z2 x1 + y1 − z1 x2 + y2 

 x1 + y1  x2 + y2 
=

=
z2x1 + z2y1 − z1x2 − z1y2

 x1 + y1  x2 + y2 
 

=

 
 
 

 
 z2x1 +  −z2x2 + z2x2 + z2y1 +  −z2y2 + z2y2 − z1x2 − z1y2

 x1 + y1  x2 + y2 

z2x1 +  −z1x1 + z1x1 + z2y1 +  −z1y1 + z1y1 − z1x2 − z1y2

 x1 + y1  x2 + y2 

  

   =

 
 
 

 
  z2x1 − z2x2 +  z2y1 − z2y2 +  z2x2 − z1x2 +  z2y2 − z1y2 

 x1 + y1  x2 + y2 

 z1x1 − z1x2 +  z1y1 − z1y2 +  z2x1 − z1x1 +  z2y1 − z1y1 

 x1 + y1  x2 + y2 

  

   =

 
 
 

 
 −z2 ∆x + ∆y +  x2 + y2 ∆z

 x1 + y1  x2 + y2 
= A

−z1 ∆x + ∆y +  x1 + y1 ∆z

 x1 + y1  x2 + y2 
= B

  

We can hence write: 

 ∆w =  
1

2
 A +

1

2
 B =

−
z1+z2

2
 ∆x + ∆y +

x1+x2+y1+y2

2
 ∆z

 x1 + y1  x2 + y2 
 



56 

 

 

   =
−

z1+z2

2
+

x1+x2+y1+y2

4

∆z

∆x

 x1 + y1  x2 + y2 
∆x + 

−
z1+z2

2
+

x1+x2+y1+y2

4

∆z

∆y

 x1 + y1  x2 + y2 
∆y  

Therefore, the effects of x and y on the variation of w are: 

Effect of x =
−

z 1+z 2
2

 ∆x+
x1+x 2+y 1+y 2

4
 ∆z

 x1+y1  x2+y2 
and 

Effect of y =
−

z 1+z 2
2

 ∆y+
x 1+x 2+y 1+y 2

4
 ∆z

 x1+y1  x2+y2 
, 

Where x = External Inputs, y = Biomass Reused, z = Final Produce, and w = Final 

EROI. That is, 

Effect of variation in EI =
−

FP 1+FP 2
2

 ∆EI+ 
EI 1+ EI 2 + BR 1+B R 2

4
 ∆FP

 EI1+BR 1  EI2+BR 2 
and 

Effect of variation in BR =
−

FP 1+FP 2
2

 ∆BR +
EI 1+ EI 2 + BR 1+BR 2

4
 ∆FP

 EI1+BR 1  EI2+BR 2 
                  Eq. (2.4) 

Notice that in this kind of decomposition analysis negative or positive results only 

mean that the corresponding partial variation has moved in the same direction, 

thus reinforcing it, when the sign is the same as the variation being decomposed. 

Inverted signs exert a counterbalancing effect. In our Catalan case study, Final 

EROI dropped from 1.05 circa 1860 to 0.21 in 1999. Now we want to assess the 

role played by the variation of internal reuses and external flows, and their 

corresponding partial energy returns, in the following variation experienced in 

Final EROI:  
0.21−1.05

1.05
 ×  100 =  −80.2%. 

Applying equation (2.4) we obtain that the variation of −0.84 EROI points (or 

−80.2%) experienced between Final EROI1860 and Final EROI1999 would have 

been explained by a sharp decrease in the corresponding variation between EI1860 

and EI1999, which is equal to 

−
𝐹𝑃1+𝐹𝑃2

2
 ∆𝐸𝐼 +  

𝐸𝐼1+ 𝐸𝐼2  + 𝐵𝑅1+𝐵𝑅2

4
 ∆𝐹𝑃

 𝐸𝐼1 + 𝐵𝑅1  𝐸𝐼2 + 𝐵𝑅2 
 

=
−

246,634+316,105

2
 1,345,664 +  

23,500+ 1,369,164 + 210,732+145,304

4
 69,471

 23,500 + 210,732  1,369,164 + 145,304 
 



 

 

57 

=  −0.98 

This represents 116.3% of the total variation. However, the effect driven by the 

variation of EI was counteracted by the corresponding variation between BR1860 

and BR1999, which is equal to 

−
𝐹𝑃1+𝐹𝑃2

2
 ∆𝐵𝑅 +

𝐸𝐼1+ 𝐸𝐼2  + 𝐵𝑅1+𝐵𝑅2

4
 ∆𝐹𝑃

 𝐸𝐼1 + 𝐵𝑅1  𝐸𝐼2 + 𝐵𝑅2 
 

=
−

246,634+316,105

2
 − 65.428 +

23,500+ 1,369,164 + 210,732+145,304

4
 69,471

 23,500 + 210,732  1,369,164 + 145,304 
 

= 0.14 

This represents −16.3%  of the total decomposed variation. Combining both 

opposite effects we can explain the whole variation experienced, which is 

−0.98 + 0.14 = −0.84 Final EROI points. The result reveals that the decrease in 

Final EROI between 1860 and 1999 was mainly due to a big increase in External 

Inputs, coming directly from fossil fuels or indirectly through feed imports for 

livestock breeding in feedlots, which caused External Final EROI to decline 

significantly—notice that EI1999 was 2.2 times larger than the total NPPact in the 

study area! However, the effect was counteracted to some extent by a parallel 

reduction in internal flows of Biomass Reused and the ensuing increase of Internal 

Final EROI. Had such a counterbalancing effect not taken place, the drop in Final 

EROI would have been even higher. The result brings to light an important feature: 

the grater the change from circularity to linearity in the energy flows going 

through an agroecosystem, the more important this decomposition analysis 

becomes. 

6. Concluding remarks 

In this chapter we presented a method to relate internal and external returns of 

agricultural systems, by drawing their energy profiles and yields within a range of 

possible improvement pathways. It also allows disentangling the respective 

weights of these internal and external returns in any shift of Final EROI. We deem 

that this approach becomes a very revealing tool in order to conceive better 

agricultural farm managements, public policies and consumer preferences in a 

world that faces a worrying crossroads for food security arising from peak oil and 

climate change(Mulder and Hagens 2008; Hall et al. 2009; Giampietro et al. 2011; 
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Arizpe et al. 2011; Hall 2011; Murphy et al. 2011; Manno 2011; Pracha and Volk 

2011; Scheidel and Sorman 2012; Giampietro et al. 2013). This decomposition 

analysis can be used to gain a better understanding of the sociometabolic 

transitions from past traditional organic farm systems to industrial ones, and to 

gain useful knowledge for developing more sustainable agricultures(Fischer-

Kowalski and Haberl 2007; Smil 2010; González de Molina and Toledo 2011) in 

future.  

Gathering more information on Final EROI, IFEROI and EFEROI from a broad 

variety of farming systems in different world regions and from different time 

periods would allow plotting them into three-dimensional graphs like our Figures 

2.4 and 2.5, in order to observe how they cluster or not in some regions of the 

conic surface and the corresponding isoparametric curves. International and 

historical comparisons can be performed this way in order to test whether organic 

and industrialized farm systems have tended to a specific pair of opposite 

‗attractor situations‘. By attractor situations we mean here a set of links 

established between socioeconomic drivers (e.g. the structure of relative prices of 

factors and goods in the markets reinforced by the prevailing landownership or 

institutional settings), and the sociometabolic profile and functioning of 

agroecosystems, that become more likely than others. Societies can overcome 

these situations by moving to other energy profiles and performances, but only by 

changing the underlying set of linkages between agroecological functioning and 

socioeconomic drivers.  

The existence of such attractor situations has been suggested by 

Giampietro(1997a). Once industrial agricultural systems start relying in external 

inputs coming from fossil fuels in search of greater labour and land productivity, 

they also tend to engage in monocultures and reduce internal reuses. This entails a 

reduction in agroecosystem complexity that undermines the regulatory services 

provided by biodiversity. This in turn requires replacing them by other artificial 

controls, such as pesticides and mechanical work that increase again the amount 

of external inputs. This feedback drives the energy profile of industrialized 

agricultural systems towards a high-input combination of lower EFEROIs only 

partially compensated by higher IFEROIs, giving way to a big loss in Final 

EROIs—as seen in our Catalan example. This sounds very familiar to anyone 

aware of the challenges and opportunities that agriculture now faces worldwide. 

Through clustering analysis applied to our decomposition analysis of agricultural 

energy profiles we can test whether this working hypothesis is true or not.
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 Annex 1.A. Disaggregation of BR (Biomass Reused) 

flow for Vallès c.1860 

Table 1.A shows the disaggregation of the BR flow c.1860. Organic matter 

returned to the soil either fresh or burnt was 55%, 2% were seeds and 43% was 

biomass reused in barnyards as feed, fodder, grass and crop by-products eaten by 

livestock or straw used in stall bedding. The former was used to keep soil 

biodiversity and fertility, whereas the latter was directly led to high cropland and 

farmland diversity. The production of fodder and feed involved 42% of cropland 

area, while at the same time livestock was feed in pastures (21% of farmland area) 

or in the grass layers below open forests and other uncultivated land, thus leading 

to maintain landscapes mosaics. Besides these direct contributions to 

belowground biodiversity and aboveground diversity of vegetal covers there were 

others indirect, such as crop rotations, stubble grazing or fallow weed grazing, 

which required keeping vegetal hedgerows that in turn enhanced the mosaic 

pattern in agricultural landscapes.  

Table 1.A. Disaggregation of the BR (biomass reused) flow for Vallès c.1860. 

 

Note: Numbers are in GJ, percentages are weight over total BR flow.Source: (Marco et al.). 
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 Annex 1.B. Value of the flows 

All energy carriers have been valued by their Enthalpy in Gross Calorific Values 

when they came from inside the agroecosystem. In all external inputs the 

embodied energy required to place them within the system has been added. 

Human labour has been accounted by the energy content of food metabolized 

while working in the farm system, and embodied energy has been added 

whenever the components of this food basket came from outside. The internal 

Barnyard Services (draft power, manure) appear as a reminder, but are not 

included in TIC and EROIs to avoid double counting. 

Table 1.B. Funds and Energy flows of farm systems in the Catalan case study 

c.1860 and in 1999 

 
c.1860 1999 units 

 Inhabitants 8,853 11,669 inhabitants 

 Population density 65.6 86.5 inhab./km
2
 

 agricultural active population 1,933 276 AWU
*
 

 heads of family working in agriculture    68.9% n.a. 
 

 Total area 134.9 km
2
 

 Farmland 12,011 11,669 ha 

 Cropland 5,902 3,745 ha 

      vegetables & fruit trees in gardens 179 206 ha 

      irrigated annual crops 314 123 ha 

      rain-fed annual crops 1,724 3,130 ha 

      vineyards 3,235 62 ha 

      olive groves 450 224 ha 

 Pastureland  2,555 827 ha 

 Woodland & scrub 3,623 7,097 ha 

 Livestock density per unit of farmland 8.4 152.1 
LU500/km
2
 

NPP Actual Net Primary Production estimated 744,291  622,059 GJ 

UB Unharvested Biomass 289,965 345,885 GJ 

LP Land Produce 454,326 276,175 GJ 

LP LP—Cropland 260,647 262,023 GJ 

LP LP—Pastureland  24,577 993 GJ 

LP LP—Woodland& scrub 169,103 13,158 GJ 

BP Barnyard Produce 3,040 192,908 GJ 

TP Total Produce 457,366 469,082 GJ 

BR Biomass Reused 210,732 145,304 GJ 

FBR Farmland Biomass Reused 120,728 6,168 GJ 

FBR FBR—seeds 4,307 2,350 GJ 

FBR FBR—buried biomass 79,799 3,818 GJ 

FBR FBR—biomass burnt& ploughed (‗hormigueros‘) 36,622 0 GJ 

BBR Barnyard Biomass Reused 90,005 139,136 GJ 
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BBR BBR—feed crops 9,126 38,317 GJ 

BBR BBR—fodder crops 12,870 32,924 GJ 

BBR BBR—crop by-products to animal feeding 30,229 25,273 GJ 

BBR BBR—grass 24,577 993 GJ 

BBR BBR—other animal feedingfrom woodland 3,882 0 GJ 

BBR BBR—stall bedding 9,322 41,629 GJ 

FP Final Produce 246,634 316,105 GJ 

FP         FP—food and fibre 42,301 206,841 GJ 

FP         FP—food 26,747 205,566 GJ 

FP         FP—grape juice to make wine 11,346 541 GJ 

FP         FP—edible forest products 1,376 0 GJ 

FP         FP—fibre (hemp, wool, hides)  2,832 734 GJ 

FP FP—other industrial crops (rape) 0 6,284 GJ 

FP FP—grapevine & olive oil pomaces sold outside 0 1,056 GJ 

FP FP—forest timber 4,144 
13,158 GJ 

FP FP—forestfirewood 144,569 

FP FP—pruning & vines or trees removed to firewood 54,206 109 GJ 

FP FP—animal feed sold outside 0 88,656 GJ 

BS Barnyard Services 38,821 2,651 GJ 

BS         BS—manure 35,296 2,651 GJ 

BS         BS—draft power 3,525 0 GJ 

BW Barnyard Waste 0 291,936 GJ 

L Labour 3,648 3,320 GJ 

ASI Agroecosystem Societal Inflows 
19,853 1,370,19

7 
GJ 

FSI FSI—human garbage and sewage 19,853 0 GJ 

FSI FSI—machinery  0 213,941 GJ 

FSI FSI—herbicides 0 15,281 GJ 

FSI FSI—chemical fertilisers 0 12,670 GJ 

FSI FSI—seeds bought from outside 0 1,660 GJ 

FSI FSI—water pumping (electricity) 0 4,387 GJ 

BSI Barnyard Societal Inflows 0 
1,122,25

8 
GJ 

BSI BSI—animal feed & fodder bought from outside 0 999,315 GJ 

BSI BSI—energy consumed in feedlots (fuel & electricity) 0 122,943 GJ 

Source: (Marco et al.).*AWU: full-time Agricultural Working Units a year.
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 Chapter 3. The sad hoax. Comparison of the two 

energy balances c. 1860 and 1999 in the Vallès county 

(Barcelona) 

"A whole generation of citizens thought that higher efficiencies in using the 

energy of the sun had arrived. This was a sad hoax, for people of the developed 

world no longer eat potatoes made from solar energy."  

(Odum, 2007[1970]: 190). 

1. Aims and scope 

1.1. The diminishing energy returns of industrial agriculture 

Although the increase in yields per hour of work and economies of scale occurred 

in a paradigmatic industrial monoculture, paradoxically (or not) it is inefficient in 

energy terms. Following the idea of Lotka (1956), Ecological Economists used to 

distinguish between 'endosomatic' and 'exosomatic' use of energy by humans. The 

endosomatic use of energy is that used by human bodies, i.e. the intake of food, 

between 1500-2500 kcal·day
-1 

or 2.3-3.8 GJ·yr
-1

 on average per person. Examples 

of exosomatic uses of energy are energy used for cooking, heating, transport and 

examples of energy carriers are biomass, coal or oil. While all humans have 

similar endosomatic use of energy, the importance of exosomatic use varies 

depending on a number of factors, foremost income (EJOLT 2012).  

In the second step of the industrial metabolic transition, mature industrial 

economies have a flow of exosomatic energy between 200 and 450GJ·yr
-1

, mostly 

from oil and natural gas (Krausmann and Fischer-Kowalski 2013). This situation 

is replicated in industrial agriculture, as agroecosystems are fuelled with fossil 

exosomatic energy. The amount of energy used in industrial agriculture is so high 

that although the energy output increased in comparison with traditional 

agriculture, in relation to its energy inputs it has decreased. In the words of 

Martinez-Alier: "From this point of view, modern agriculture is less productive" 
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(Martinez-Alier 2011) as it incurs diminishing returns
1
(Ho and Ulanowicz 2005; 

Martinez-Alier 2011).  

In pre-industrial agricultures, low energy efficiencies indicated famine risks as the 

main inputs were from endosomatic energy i.e. human work and the exosomatic 

uses were mainly from organic sources (e.g. livestock, biomass). Logically this is 

not the case when the main input is exosomatic energy from fossil sources, but the 

vulnerability of this model increases as long as finite stocks of oil (Campbell and 

Laherrère 1998; Deffeyes 2001) or other materials such as phosphorous (Cordell 

and White 2011) peak. At the same time industrial agriculture lives together with 

some agricultural practices getting high yields per hectare following Low External 

Input Technologies (LEIT) (Tripp 2008) with higher energy returns (Dalgaard et 

al. 2001; Martinez-Alier 2011).  

From the point of view of Environmental History there is not one historical 

pathway designed by science and technological applications, but a multiplicity of 

dynamic equilibriums of human-nature interactions concerning different levels of 

sustainability (González de Molina and Toledo 2011). Could past practices that 

were more sustainable than current ones be recovered? Was there another way for 

the European societies at the end of the nineteenth century rather than developing 

an agriculture with decreasing energy returns? 

1.2. The loss of landscape heterogeneity 

The change towards an industrial agrarian metabolism had a variety of effects in 

the Mediterranean landscape. This has been studiedsince the decade of 1980s, 

when Spain entered in the Common Agricultural Policy of the European Union. 

These changes can be summarised  into two: the cultivation ceased in the least 

productive areas and the intensification of production in the more fertile lands 

(Perez 1990; González-Bernáldez 1991; Sancho Comins et al. 1993).  

Recent studies added landscape metrics to measure the relationship between 

landscape and the modification of agricultural practices specifically in 

Mediterranean regions. Here, the decline of agro-forestry in the mountainous 

areas lead to a homogenisation and fragmentation of the landscape (Bielsa et al. 

2005). Moreover, the general decrease in livestock numbers and the change in 

population types (with a dramatic decrease of sheep) contributed to the loss of 

herbaceous covers at the entrance to scrubland and woodland, which in turn 

                                                 

1
Although the diminishing EROI in agriculture is a general trend in the long run, there could be 

discontinuities in the short run (Pracha and Volk 2011).  
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decreased the livestock potential of the system and increased the risk of fires 

(Lasanta-Martínez et al. 2005).  

The same trend was found for semiarid Mediterranean landscapes where the 

socioeconomic variables promoting pre-industrial agricultural practices created 

more heterogenic landscapes than the ones promoting industrial agriculture (De 

Aranzabal et al. 2008). In the Mediterranean coastal areas, the process of change 

was even more dramatic due to urban sprawl, growth of low-density residential 

area, agricultural abandonment and transport infrastructures (Parcerisas et al. 

2012).  

Therefore, in Mediterranean areas the industrialisation of agriculture has gone 

hand in hand with the loss of landscape heterogeneity, i.e. loss of different 

habitats. In the northeast corner of the Iberian Peninsula this was characterised by 

loss of pastures and cropland in highlands, urban sprawl in coastal areas and 

concentrations of cropland in the plain areas. At field scale, the decrease of 

hedgerows and cultivars also contributed to the homogenisation of cropland areas, 

a trend found globally (Gliessman 1998). Practices of industrial agriculture both at 

local scale e.g. cultivating monocultures of high-yield varieties, or at landscape 

scale e.g. increasing field size or destroying edge habitats, decrease biodiversity 

with the ensuing loss of ecosystem services (Altieri 1999; Tscharntke et al. 2005).  

The importance of biodiversity is well-known for its functional aspect in human 

activities, providing ecosystem services such as pollination enhancement and pest 

control (Loreau et al. 2001; Cardinale et al. 2012; Nicholls and Altieri 2012), or  

in making ecosystems and agroecosystems resilient, i.e. to recover from 

disturbances (Bengtsson et al. 2003; Naeem et al. 2012). The last is very 

important in Mediterranean areas as they are exposed to drastic seasonality 

(Zamora et al. 2007). 

As there are niche differences among species, landscape heterogeneity maintains 

the diversity of between-units or edge species—beta diversity—which together 

with the within community or inner species—alpha diversity—shape the total or 

regional diversity—gamma diversity—(Loreau 2000). Hence, landscape 

structures moderate the biodiversity patterns in a nested hierarchy of multiple 

scales and influence population, community and ecosystem processes. However 

the combined effect of habitats loss and land fragmentation as well as the role of 

beta diversity in overall diversity have yet to be explored, as well as the role of 

alpha and beta diversity. In that sense, specific statements relating biodiversity 

conservation and landscape patterns are as yet formulated as hypotheses 

(Tscharntke et al. 2012). Therefore, the general recommendation for biodiversity 

conservation is to add dynamic reserves—areas of moderate disturbance 
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regimes—e.g. agricultural land, to the static biodiversity reserves, e.g. natural 

parks (Bengtsson et al. 2003).  

Decades ago, Margalef summarised the dialectical relation between exploitation 

and conservation: "To sum up, exploitation as opposed to conservation is a great 

dilemma, and there is probably no solution that could satisfy the aims of both. 

Ecology can devise the most efficient means of exploitation, but conservation 

requires non-interference with nature, even refraining from "protecting" her. 

Probably the best solution would be a balanced mosaic or 'rather a honeycomb', of 

exploited and protected areas." (Margalef 1968). Currently, most  ecologists agree 

with this idea of mosaic, which in general consists on leaving aside non cultivated 

land within large cropland areas (land sparing) to protect biodiversity at landscape 

scale (Fischer et al., 2008; Phalan et al., 2011).  

Nevertheless, agriculture has not always been necessarily confronted with 

biodiversity issues, as it could create edge habitats, as was the case of pre-

industrial European agroforestry areas, i.e. planting food or forage crops along 

with trees (Pimentel et al. 1992; Eichhorn et al. 2006; Plieninger et al. 2006) or 

pastures, hay meadows or moorlands of mountain areas (MacDonald et al. 2000). 

However, they tended to be abandoned along with the industrialisation of 

agriculture(González-Bernáldez 1991; Poyatos et al. 2003; Lasanta-Martínez et al. 

2005; Geri et al. 2010) with the ensuing homogenisation of landscape and loss of 

beta diversity. Some examples are the loss of birds, orchids and dung beetle 

species in Mediterranean landscapes (Zamora et al. 2007; Sirami et al. 2008; Tello 

et al. 2014) or the loss of plant species in Swiss and Swedish grasslands (Fischer 

et al., 2008; Gustavsson et al., 2007).  

What is the relation between the diminishing energy returns and the loss of 

landscape heterogeneity and so biodiversity, experienced by Mediterranean farm 

systems throughout the Socio-Ecological Transition? Although industrialisation of 

agriculture went hand in hand with biodiversity loss, some agricultural practices 

can enhance beta diversity and ecosystem services by creating edge habitats such 

as hedgerows or fallows (Matson 1997; Bianchi et al. 2006). Also less intensive 

agricultural practices which lay in functional biodiversity instead of external 

inputs such as those followed in organic farming which are related with higher 

levels of biodiversity (Gliessman 1998; Altieri 2002; Gabriel et al. 2006).  

Yet, whatever the agrarian metabolism, the food production  will always be  

dependant on a number of ecosystem services strongly linked to biodiversity such 

as fresh water, pollination, biological pest control, N fixation, etc., that cannot be 

substituted by technical capital (Giampietro 1997a). 
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2. Main methodological aspects 

 As will be explained in the next section, we started studying Sentmenat 

municipality c.1860 due to the high amount of available data. For this case study, 

we added one more area under the Marquis of Sentmenat property, Palau-solità-i-

Plegamans and three municipalities more, Polinyà, Caldes de Montbui and 

Castellar del Vallès.  

Around twenty years ago a few Spanish historians specialising in Agricultural 

History found a confluence with Environmental History when they started to 

study the historical change of landscape under the umbrella of the Sociedad 

Española de Historia Agraria (SEHA). See part of this discussion summarised in 

Tello (1999). As will be explained, it is a matter of coincidence and good luck that 

we have good cadastral information c.1860 of the adjacent municipalities. As a 

whole they describe a triangle from the mountainous area of Serralada Prelitoral 

to the centre of the Vallès plain, see Figure 3.1.  

Figure 3.1. Location of the five municipalities in the study area (West and 

East Vallès counties in the Province of Barcelona, Catalonia and Spain). 

 

Source: from Marull et al. (2008a) 

All this information constituted a prolific source for historiography and today we 

have a number of studies available in a variety of interrelated topics. Some 
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examples are: diets and nutritional differences between rural and urban 

populations (Cussó and Garrabou 1992; Cussó and Garrabou 2004; Cussó 2009; 

Cussó and Garrabou 2012); land property and inequality (Garrabou et al. 2010; 

Badia-Miró et al. 2010; Badia-Miró and Tello 2014); change on land uses (Tello 

et al. 2006; Tello et al. 2008a; Tello et al. 2008b); landscape and landscape 

metrics (Tello and Marull 2006; Marull et al. 2008a; Marull et al. 2008b; Marull 

et al. 2010); historical fertilising methods (Olarieta et al. 2011; Tello et al. 2012); 

and even energy flows in agriculture (Cussó et al. 2006a; Cussó et al. 2006b). 

Why was then needed another study on the area? At the beginning of my Ph.D., I 

tried to start a new case study for studying the energy flows in agroecosystems, 

when I realised that the methodology of the studies for this area was not clear 

enough to be replicated. Still, the case studies already done studying energy 

returns of agricultural systems in Spain were comparable enough to draw a very 

general trend: as long as agriculture had become industrial, the external, fossil 

based, energy flows increased, thus reducing the energy efficiency (Carpintero 

and Naredo 2006). Yet, it was easy to see that they were not considering the same 

flows when calculating the Return on Energy inputs in agrarian systems, the same 

was stated for the agri-food systems by Infante-Amate et al. (2014).  

Earlier, we said that we considered agricultural systems as energy transformation 

systems, so we used the EROI (Energy Return on Energy Input), which is the ratio 

of the energy obtained over the energy spent to get an energy source (Hall et al. 

1986). Sometime later, these same authors found that the non-equivalence of 

EROI values, even when calculated for the same process, was one of the common 

problems when comparing energy efficiencies. As they say, the concept is simple 

"but the evil is in the details" (Murphy and Hall 2010). When to stop accounting 

for the energy costs and how to take into account the embodied energy are the two 

main 'evil' source of differences among results (Mulder and Hagens 2008). Hence, 

we agreed that in order to go for more historical case studies to answer the above 

questions, we needed to review the methodology followed in Cussó, Garrabou, 

Olarieta, et al., (2006).  

Calculating energy efficiency requires first, translating into energy units the 

biomass produced within the agroecosystem. Some of this biomass is not 

harvested (e.g. weeds, leaves, branches, etc.) we called it Unharvested Biomass. 

Some part of the biomass harvested goes outside of the system and others are 

harvested but remain inside the system (e.g. as feed for livestock or giving 

consistence to manure piles), we called it Biomass Reused. We called Final 

Produce the part of the harvest that goes outside the system, together with the 

extractions of accumulated wood or livestock products (Barnyard Products in our 



 

 

69 

scheme). We called Net Primary Production (NPP) all the solar energy 

transformed to plant biomass in a year, so it is the sum of Land Produce and 

Unharvested Biomass. Everything is detailed in the previous chapters.  

Second, it requires classifying the energy flows into inputs and outputs. 

Calculating efficiencies—in our case EROI—has meaning with linear processes, 

but the energy flows in an agroecosystem are essentially cyclical, and so the 

beginning and the end are purely defined by the observer. Our challenge was to 

adapt the most common concept of EROI used in agricultural systems to the very 

cyclical nature of agroecosystem because otherwise the diminishing energy 

returns of agriculture when changed towards the industrial mode we describe, is 

lacking analytical potential.  

Then, we decided to distinguish between external and internal inputs. We made 

the differentiation on the input side and not on the outputs because, as explained 

in section 1.2, different types of agriculture use different types of energy inputs, 

which have different implications on landscape configurations. So under this 

scope the flows of Biomass Reused and Unharvested Biomass could be seen as an 

investment in the complexity of landscape and hence in biodiversity. On the other 

hand, this could be seen at the same time as a cost—a Final Produce opportunity 

cost—as past organic agricultures and the ones using Low Energy Inputs (LEIT) 

rely more on ecosystem services than industrial ones. For example, the 

maintaining of these flows (Biomass Reused and Unharvested Biomass) is far 

from optional when using auxiliary fauna for pest control (Gliessman 1998; 

Altieri and Nicholls 2004; Tscharntke et al. 2005; Bianchi et al. 2006). By 

contrast, industrial agriculture substituted them with pesticides.  

Hence, these flows could be seen at the same time as an investment or as a cost, it 

is not for nothing that when comparing organic agricultures with industrial 

agriculture Guzmán and González de Molina (2009) have coined the concept 'land 

cost of sustainability'. Whereas both arguments are equally logical, I took inputs 

as an investment. As recalling our hypothesis, landscape heterogeneity is a result 

of internal inputs (in our case Unharvested Biomass and Biomass Reused) whose 

quantity and quality carry the information that is reflected through landscape 

configurations. In this way, when the output is the Final Produce, the denominator 

of the efficiency ratio or the Total Inputs Consumed (TIC) is a sum of the 

External Inputs (EI) and the internal inputs harvested, which is the part of the 

harvest that remains in the system as Biomass Reused (BR). 

Agroecosystems are designed by information flows of humans e.g. know-how, 

rules and norms, worldviews, etc., this intangible part of societies (González de 
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Molina and Toledo 2011) co-evolves with the ecosystem and is thus reflected in 

different landscapes.  

Ecosystems without human intervention change along time with the process of 

ecological succession and, as Margalef stated, not only the living biomass but 

other structures like the dead trunk of a tree or the carbonate structures of corals, 

which are no longer alive, carry information and give complexity to the system 

(Margalef 1997). These dissipative structures carry the information that orders the 

system and organise it with more or less complexity (Prigogine and Stengers 

1984). Hence the process of succession towards complexity is explained by the 

relation of the energy flows and the standing biomass in the broad sense, 

including dead biomass or exosomatical artifacts such as coral reefs (Margalef 

1997).  

When humans interact with an ecosystem, the diversity drops and this ratio of 

primary production to biomass increases, even if humans introduce manure, other 

fertilisers or other inputs, there is a simplification of the structure of the ecosystem 

with the destruction of many homeostatic mechanisms (Margalef 1968). 

Agroecosystems are then a simplification of ecosystems, but still there are 

significant differences among them depending on the kind of agricultural practices. 

Coherently, from an agroecological point of view, Gliessman (1998) defined the 

Productivity Index as the relationship between the total biomass accumulated in 

the systems and the Net Primary Productivity (NPP), and not only to the biomass 

harvested or the yield of a single species. The higher the non-harvested biomass, 

the higher the Productivity Index because "Ultimately it is this biomass that 

supports the process of sustainable production. In a sustainable agroecosystem, 

therefore, the goal is to optimize the process of productivity so as to ensure the 

highest yield possible without causing environmental degradation, rather than to 

strive for maximum yields at all costs." (Gliessman 1998).  

At the local scale, this applies to unharvested biomass such as weeds and crop 

residues recycled. Indeed, crop residues left on land improve agricultural 

productivity by protecting soil from erosion, water runoff, supplying organic 

matter and nutrients and benefit species diversity (Pimentel et al. 1992). At 

landscape scale, this applies to edge habitats and patches of non-cultivated land.  

Up to this point, it is clear that to analyse the performance of an agroecosystem 

the biomass appropriated by humans is as important as the biomass 'left' within 

the agrecoystem. This has two main implications for our energy analysis: first, to 

compare the energy performance of agroecosystems we need information about 

the internal and external inputs, and second, we need information about the 

biomass accumulated in the system.  
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On one hand, we made three ratios depending on whether the inputs considered 

were from outside the system —External Inputs—, from harvest—Biomass 

Reused—or both—Total Inputs Consumed. 

As they share terms, they could be related, and so placed in a graphic with all the 

EROI values mathematically possible. This would allow us to compare the energy 

performance of different, past and present systems. According to the graphic, the 

higher the internal and external efficiencies, the higher the overall efficiency, 

which will be more affected by marginal increases of one or another depending on 

the location of the system analysed. Beyond these terms, what would the desired 

energy efficiency of an agricultural system be? As a matter of example, Hall et al., 

(2009) dared with a minimum EROI of 3:1, and early in the nineteenth century 

(Podolinsky 2004) bet for 10:1, however I think that having a minimum EROI 

universal reference is worthless due to three main reasons. First, as we said before, 

the details are so evil that it makes nonsense to use a benchmark whose details are 

unknown. Second, as agroecosystems are complex systems, "good scoring" in one 

indicator does not mean an overall desirability or sustainability. It makes more 

sense to analyse a group of case studies and try to find which factors share the 

ones located in nearby areas of the graphic. Third, using just the graphic, we lack 

information about the already mentioned accumulated biomass—Unused 

Biomass—e.g. weeds, from hedgerows, fallows or non-cropland area.  

On the other hand, like the other side of the coin, we proposed to calculate the 

return of energy available to sustain humans as well as the rest of heterotrophic 

species—NPPEROI (Table 3.2). Indeed, to know the energy invested to produce 

energy flows for other species we have to test the human appropriated flows, i.e. 

the Final Produce, that includes the Land Produce going outside the system and 

the Barnyard Produce, e.g. meat—NPPEROI-FEROI (Eq. 3.1). This is coherent 

with what we said in section 1.2 about the relationship between low intensive 

agriculture and a landscape mosaic combining non-crop lands, both combined 

provide a certain level of disturbance and biomass in the system supporting a 

certain level of biodiversity.  

𝑁𝑃𝑃𝐸𝑅𝑂𝐼 − 𝐹𝑖𝑛𝑎𝑙 𝐸𝑅𝑂𝐼 =
𝑈𝐵 + 𝐵𝑅

𝑇𝐼𝐶
−
𝐵𝑃

𝑇𝐼𝐶
Eq. (3.1) 

Summing up, there were two main contributions from the previous two chapters. 

First, we found a way to compare the energy efficiency of different flows in 

different systems by relating the internal and the external efficiencies to the 

overall efficiency. Second, to relate the energy of diminishing returns of 

agriculture and landscape heterogeneity and biodiversity, we reversed the concept 

of EROIs proposed by thinking on the efficiency of the energy invested by 
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humans to produce flows available for non-human species as expressed in Eq. 3.1. 

This is the same as saying that landscape heterogeneity and species biodiversity 

rely both on unharvested and internal biomass used in farm systems. In the last 

two chapters, we adapted the energy analysis to History and left the door open to 

the necessary relation of past agricultural systems with Agroecology.  

3. The Socio-Ecological Transition c.1860-1999 

The changes that occurred in the five Catalan villages between c.1860 and 1999 

do not differ from other places in the Western Mediterranean. While population 

densities quadrupled, livestock densities per cropland area increased 37 times 

(Table 3.1). This would not have been possible without a fossil-fuelled leap over 

the food/feed competition in limited cropland. In Catalonia c.1860 vineyards were 

a way to complement the supply of firewood and feed that the uncultivated land 

covers were barely providing (Tello et al. 2012). The vineyard land almost 

disappeared from the area in 1999 (Cussó et al. 2006a) together with the decrease 

of firewood needed due to the use of gas in domestic kitchens. 

Table 3.1. Main characteristics of the five municipalities of Caldes de 

Montbui, Castellar del Vallès, Palau-solità i Plegamans, Polinyà and 

Sentmenat c.1860 and in 1999. 

 c.1860 1999 

Annual rainfall (mm) 640 

Population density (inhab/km
2
) 71 279 

Cropland density (ha/cap) 0.64 0.10 

% forest, scrubland and pastures over total area 52.2 58.9 

Ratio forest, scrubland and pastures over annual crops
2
 2.9 2.3 

Ratio permanent land covers over annual crops 4.6 2.4 

Livestock density per cropland area (LU 500 kg/km
2
) 17 636 

Source: Cussó, Garrabou, Olarieta, et al., (2006a). 

The comparison between the lists of indicators calculated (Table 3.2) shows the 

paradigmatic trend that agricultural systems followed once they ended the Socio-

Ecological Transition to an industrial regime or mode of appropriation. The 

energy efficiency, either considering only external inputs or the total inputs 

consumed, decreased. On the contrary, the harvested biomass reinvested in the 

                                                 

2
Although questionable, we refer to herbaceous crops and annual crops indistinctly when we want 

to group all the crops that are not wooden and perennial. 
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system decreased (due to e.g. lower straw/grain ratio, less cropland devoted to 

feed, etc.) and the harvest increased, hence the efficiency of the use of the crop 

residues has increased. 

The difference between NPPEROI and Final EROI—recall that we defined it as 

an indicator for the room left for species other than humans—decreased 

significantly in 1999 despite the  fact that the area covered by forest, scrubland 

and pastures increased. More specifically, the area of forest increased while the 

area known as erial, i.e. pastures and scrubland altogether, decreased.  

Table 3.2. List of EROIs obtained in the five Catalan municipalities c.1860 

and in 1999. 

  c.1860 1999 

Final EROI (FEROI = FP/TIC)   1.05 0.21 

External Final EROI (EFEROI = FP/EI) 10.49 0.23 

Internal Final EROI (IFEROI = FP/(BR+W))   1.17 2.18 

NPP EROI (NPP /TIC)   3.18 0.41 

NPP EROI - Final EROI = (UB+BR-BP)/TIC   2.12 0.20 

FP: Final produce; TIC: Total Inputs Consumed; EI: External Inputs; BR: Biomass Reused; W: 

Waste; NPP:Net Primary Production; UB: Unharvested Biomass). Source: our own in Marco et 

al.(n.d.), recalculated from Cussó, Garrabou, Olarieta, et al. (2006). 

Industrial agriculture relies on external inputs coming from fossil fuels in search 

of greater labour and land productivity, it also tends to engage in monocultures 

and reduce internal reuses. Not only techniques, but the selection of cultivars 

followed this trend as was the case in the last decades of the twentieth century in 

Spain, when the wheat to grain/straw ratio decreased due to the use of dwarf 

cultivars, although the straw per unit of area increased slightly due to the higher 

number of stems per plant (Pujol-Andreu 2011). Compared to pre-industrial 

agriculture, this entailed a reduction in agroecosystem complexity as expressed in 

the loss of landscape heterogeneity, with the ensuing biodiversity loss and the 

regulatory services provided overall since 1950s (Tello and Marull 2006; Marull 

et al. 2008a; Marull et al. 2010). This in turn required replacing them by other 

artificial controls, such as pesticides and mechanical work, increasing again the 

amount of external inputs. This feedback is represented in the energy profile by a 

decrease in EFEROI, EFEROI and NPPEROI - Final EROI and in an increase of 

IFEROI. 

In order to compare the relation between Final EROI, Final External EROI and 

Final Internal EROI among the different systems we drew the graphic that 
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represents all the possible cases and we placed our case study c.1860 and 1999 

(Figure 3.2). Increasing Final EROI always depends on the efficiency of the 

management of external inputs (EI) and internal inputs (BR). In our case c.1860 

this would have involved increasing the Final Produce and decreasing the 

Biomass Reused and therefore would give a certain margin to increase the 

external inputs.  

The limitations of cavorting with the indicators of our energy analysis, is that we 

cannot explain only in energy terms new sustainability problems beyond the 

energy analysis: such as less land available for food production, the expelling of 

labourers from land—as some land uses admitted more people than others (Badia-

Miró and Tello 2014)—or decreasing fertility. 

In addition, our model does not predict the interaction among components e.g. we 

cannot predict how a decrease of Biomass Reused would affect Final Produce, or 

how an increase of Biomass Reused would affect Human Labour. However, we 

can speculate with agricultural practices that were used c.1860 to increase fertility 

to see to what extent was possible a better management of the Biomass Reused.  

As we will see in the next chapter, Spanish agronomists at the beginning of the 

twentieth century complained about the bad management of manure and other 

fertilising material, which involved the loss of most nitrogen (Cascón, 1918; JCA, 

1921). Improving infrastructures to protect manure heaps of rain and excessive 

loss of moisture using available technology (De la Cruz-Lazaparán 1924) or using 

the straws as beds instead of leaving them in fields (Cascón 1918) would have 

increased fertility and hence potential harvests without increasing the use of 

internal biomass. That would have been at the expense of increasing external 

inputs in the form of human labour.  

The same would have happened by sowing fallow land with green manure or 

increasing the use of human excrements and other organic waste from households. 

The increase of population densities and the deficient sewage systems in 

Catalonia at the beginning of the twentieth century (García-Faria 1893) made 

some practices tedious and unsafe. Instead of just eliminating this source of 

fertiliser, some of the agronomists of the time recommended mechanisation of the 

collection, such as theuse of pumps to empty deep cesspits. As De la Cruz-

Lazaparán (1924) observed, although it was cheaper, forcing labourers to do it by 

hand was a "misunderstood economy".  
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Figure 3.2. Plotting the Internal and External final energy returns behind the 

Final EROI attained by the farm system of the Catalan study area 

 

Note : c.1860 is in red and 1999 is in green. The arrows illustrate some of the possible trajectories 

resulting from the modification of EFEROI or IFEROI. Source: chapter 2. 

Constraints for the improvement of fertility were not only at the cost of human 

labour. Other social factors could have been very important: land ownership—as 

investing in fertility is a long-run investment—, bargaining power to decide which 

tasks should be implemented, technology to complement or make more efficient 

human labour, conflict—the Catalan countryside, overall vineyard areas, became 

highly conflictive at the beginning of the twentieth century (Giralt 1965; Balcells 

1968; Hansen 1969; Carmona and Simpson 2009; Colomé 2014)—and even the 

reluctance of farmers to change practices and the influence of social pressure and 

individual behaviour on it.  

Climate is a constraint too as some leguminous crops such as clover used 

successfully in other places as green manure are vulnerable to drought as use to 

happen in Mediterranean summers (FAO 2012). However, the use of green 

manures—with other species such as sainfoin that are more drought-resistant 

(FAO 2012)—is difficult to track with our sources since they do not grain and  are 

not included in harvest reports.  

Moving towards other energy profiles would involve changing the underlying sets 

of linkages between agroecological functioning and socioeconomic drivers. This 

is the limit of our own proposal too since it is not prepared to model reciprocal 

changes between interwoven flows in other dimensions than energy. Indeed, 

efficiency on energy use in agroecosystems is a necessary indicator but at the 

same time it is just one among others used in the assessment of farming 

performance (Gliessman 1998; Gomiero et al. 2008; Funes-Monzote et al. 2009).  
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4. Final remarks 

At the beginning of this chapter, we asked ourselves if the decrease in the energy 

efficiency of the system was the only possible pathway followed for the agrarian 

systems studied. By disaggregating between internal and external components of 

energy efficiency, we put forward the importance of the internal recycling of 

biomass that is a component of the production process not considered in 

conventional Agricultural History. The main difficulty to build the energy profile 

of a historical agroecosystem is to find data. Some qualitative data is available, 

such as the opinions of the agronomists mentioned before, while the main 

available quantitative data are population census, manorial inventories, church 

tithes, parish and notary registers and cadastral sources. The graphic shown in 

Figure 3.2 is a way to relate the internal and the external efficiencies with the 

overall efficiency, and provides a basis for comparison of more areas and dates.  

Notwithstanding, to build our model we set aside two big discussions. On one 

hand, there is the relation between the terms of the efficiencies, which is of a 

complex nature. For instance, we do not know to what extent a decrease in the 

Biomass Reused would affect the Final Produce of the External Inputs. The 

implication of our assumption is that our model cannot predict the behaviour of 

the system when changing one of the terms; it is limited to describe the place in 

the graphic whenever all terms are known.  

On the other hand, we packed under the label 'External Inputs' a mixture that 

provoked controversy even among ourselves, as it mixed either non-equivalent 

energy units (Giampietro and Sorman 2012) and renewable and non-renewable 

energy sources, which is at the core of changes throughout the SocioEcological 

transition of agricultural systems (Campos and Naredo 1980; Guzmán and 

González de Molina 2006). This limits our proposal as comparison, as the 

interpretation per se of the ratios obtained is ambiguous. However, we do not see 

a way to link the diminishing energy returns of industrial agriculture throughout 

history with its related landscape dimension without taking this liberty. 

One of our initial aims was to relate the diminishing returns of industrial 

agriculture with loss of landscape heterogeneity and biodiversity loss. As within 

this work we only had space to analyse two cases, we ended with two hypotheses. 

The first hypothesis was that the existence of a significant proportion of biomass 

reused is a hallmark of an integrated land-use management that tends to increase 

the complexity and the number of habitats in an agroecosystem. The second 

hypothesis was that the difference between NPP EROI and Final EROI could 

control whether a change in the energy throughput undermines or not the biomass 
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available for other species. As we saw in section 1.2, it was not only non-cropland 

areas but also some of the low-intensity areas generated by traditional 

agricultures—the same areas that, at least in the Mediterranean, were and are 

being abandoned. While the relation between landscape heterogeneity—always 

with enough patch-size—and the flows of Biomass Reused and Unharvested 

Biomass seems to be clearly positive, what is the relationship with the energy 

efficiency of the agricultural system? 

At this point, it is interesting to recall the idea from Ulanowicz and Ho (2005) that 

all living systems are always organized in nested space-time physical structures 

cycling energy flows. Differing from the concept of Prigogine and Stengers 

(1984), they distinguish between dissipative flows and non-dissipative cyclic 

flows of energy i.e., energy embodied in stored biomass (Ho and Ulanowicz 

2005). Due to coupled activities between all structures, energy transfers occur and 

some structures can present local near-equilibrium states while the entire 

organism is far from thermodynamic equilibrium (in the classical sense). Then, 

for a given energy input, the higher the number of cycles the higher the 

complexity of the system, as wastes from one structure will be resources for the 

other, hence, non-dissipative flows of energy will prevail over dissipative at 

global system's level. The opposite would happen with the almost-linear system of 

industrial agriculture (Ho 2013).  

This idea of different local efficiencies and nested efficiencies related with the 

internal flows in the agroecosystem—Unharvested Biomass and Biomass Reused 

in our case—can be related with landscape analysis across scales. A way to do it 

could be trough the concept of landscape efficiency, which has been defined as 

those forms of economic land-use that meet human needs while enhancing 

ecological complexity and function (Marull et al. 2010). The authors of that study 

used two indexes, the Landscape Metrics Index and the Ecological Connectivity 

Index to study the loss of landscape efficiency in our same area of study and 

found it coinciding with the energy efficiency loss from Cussó, Garrabou and 

Tello(2006b). Our definition of interrelated energy ratios could help to create a 

model mixing the indexes across scales in a land matrix in further studies. 

The development of the work in the last two chapters was strongly influenced by 

the first steps made in (Cussó et al. 2006a; Cussó et al. 2006b), in these studies we 

started by calculating energy efficiencies. As we said before, energy efficiency is 

used as an indicator in the assessment of the performance of farming systems, but 

only among other sets of indicators (Gliessman 1998; Gomiero et al. 2008; Funes-

Monzote et al. 2009). During the Socio-Ecological Transition of agriculture, the 

increasing opportunity costs of human labour and capital at farm system level 
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brought on by economic development pushed for the abandoning of traditional 

farming strategies, thus going against the recycling practices and favouring the 

linearisation of the pattern of flows (Giampietro 1997a).  

Hence, to answer the question of the implications of the social and economic 

feasibility of higher energy efficiency in agricultural systems, there is  need of a 

study of systems in the hierarchy, more scales and the external and internal 

constraints together with a number of inconvenient questions (Sorman and 

Giampietro 2013). In fact, for instance, in a model built by De Aranzabal et al. 

(2008) for Mediterranean areas, more complex combinations of cropland, 

pastureland, forest and scrubland than current ones were correlated with less 

investment in industry and tourism sectors, less higher education, increase of rural 

population and changes in the livestock type compositions by increasing sheep 

and to a lesser extent cows among others
3
. Then, the next step after having more 

case studies could be to relate these factors with energy efficiencies and its 

ensuing correlation within a complex landscape.  

In addition, we have seen that techniques of better fertility management could 

have increased the energy efficiency without involving drastic social changes. 

This brings us to another question: had the Mediterranean past-organic 

agricultures available means to increase fertility? What were the main constraints? 

The aims of the next chapters go towards these questions. 

  

                                                 

3
Whereas this is the only study that we found for SpanishMediterranean areas, we think that these 

factors could be redefined by using an agroecological perspective. Current diverse agricultural 

land immersed in a matrix of forests are related withagroecology-based peasant food systems, 

whose common features are well-known and described elsewhere, for example in Altieri and 

Toledo(2011). 
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 Chapter 4. Fertilising methods and nutrient balance 

at the end of traditional organic agriculture in the 

Mediterranean  bioregion: Catalonia (Spain) in the 

1860s
1
 

1. Introduction 

This work is part of a larger project that seeks to clarify the reasons that led to 

traditional organic management in the Mediterranean agricultures being 

abandoned. Seen from the standpoint of nutrients replenishment into the soil, how 

sustainable had they been? Was there still room to improve on organic procedures 

in a region like Catalonia (Spain)? After having reconstructed the energy balance 

in the same area around 1860 –where a positive energy return on energy 

investment of around 1.41 or 1.67 depending on the boundaries of the area under 

study was found (Cussó et al. 2006a; Tello and Marull 2006; Cussó et al. 2006b; 

Tello et al. 2008b)—, we intend to complete this socio-metabolic approach by 

estimating the nutrient balance and assessing the maintenance of soil fertility. 

2. Agroecological and socioeconomic features of the area under study 

Our case study is the municipality of Sentmenat located in the Catalan Vallès 

county, some 35 km north-east of Barcelona, with a total extension of 2,750 

hectares, of which 59% were cultivated in 1861. 

  

                                                 

1
This chapter is a version of a paper previously published in Human Ecology as Tello, E., 

Garrabou, R., Cussó, X., Olarieta, J.R., Galán, E., 2012. Fertilising Methods and Nutrient Balance 

at the End of Traditional Organic Agriculture in the Mediterranean Bioregion: Catalonia (Spain) in 

the 1860s. Hum. Ecol. 40, 369–383. doi:10.1007/s10745-012-9485-4. It is coauthored with Enric 

Tello, Ramon Garrabou, Xavier Cussó and José Ramón Olarieta. My contribution was the 

correction of the calculations, making of figures and reestructuration of the final writing of the 

paper. 
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Figure 4.1.Location of the study area: the municipality of Sentmenat and 

neighbouring townships in the province of Barcelona and Catalonia (Spain) 

 

In the lower right map dashed lines delimit the municipality of Sentmenat, gray lines delimit the 

municipal boundaries, and black lines the county borders.Source: our own. 

The village was set up during the tenth century AD in a small plain located in a 

tectonic basin between Catalonia‘s littoral and pre-littoral mountain ranges. It has 

an average slope of 9.7% and an annual rainfall of 643 mm. The heliothermic 

Huglin index of 2,168 is good enough for winegrowing—it has a minimum 

requirement of 1,500 and reaches a maximum municipal score of 2,778 in 

Catalonia (Badia-Miró et al. 2010). Rainfall and temperature allow for reasonable 

yields in cereal crops, at least in flatlands with a higher water retention capacity.  

In 1860 there were 354 families and 1,713 people were registered in Sentmenat, 

giving a population density of 59 inhabitants per square km. This meant that 1.7 

hectares of municipal area or 1.4 of cropland were available per inhabitant. 70% 

of the labour capacity was devoted to agriculture and 21% to industrious activities. 

As many as 208 out of the 241 agricultural families were ―peasants‖ or 

―landowners‖, while 21 of them worked as ploughmen tenants and 12 as daily 
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labourers. Moreover, 187 out of the 208 landowners were autonomous peasants 

that toiled their land mainly with the family workforce, only hiring someone from 

the labouring families in peak seasonal times. Many landless labourers had 

kinship ties with peasant owners (Garrabou et al. 2010). Despite being far from 

egalitarian, this rural society enjoyed a high degree of access to the land and can 

be basically seen as a peasant community (Netting 1993; van der Ploeg 2008). 

The inequality Gini coefficient was 0.58 for the distribution of total land ownedin 

1859, or 0.51 if only cropland is taken into account. In 1735 they had been 0.77 

and 0.67, and rose again to 0.76 or 0.70 in 1918following the Phylloxera plague 

that killed all the old vines in the 1880s (Badia-Miró et al. 2010). The reduction in 

landownership inequality between 1735 and 1859 had been driven by vineyard 

specialization (Garrabou et al. 2009). Many landowners and some peasant owners 

leased poor sloping soils previously covered by scrub and pasturelandto an 

increasing number of non-heir relatives or landless immigrants who built terraces 

and planted vineyards (Olarieta et al. 2008). A Catalan sharecropping contract 

called rabassa morta was used, which lasted until the death of the vines planted. 

This explains the lower inequality recorded, which was mainly a reduction in 

land-access and income inequality rather than in landownership distribution as 

such (Tello and Badia-Miró 2011). 

3. Land-uses, livestock densities and manure 

Vineyard specialization was developed during the nineteenth century keeping 

some amount of land, usually the best of it, devoted to grain, legumes and 

vegetables in a poly-cultural landscape. With only 12.4% of the land in 1861, 

natural pastures were extremely scarce and very poor to raise livestock. A great 

deal of cropland consisted of vineyards or olive groves that extracted less N, and 

supplied the by-product of pruning. Thanks to the increase of arboriculture, the 

ratio between uncultivated area and land sown with herbaceous crops could be 

kept up to 2.4 in 1861, and the ratio between permanent land-covers and annually 

sown-land up to 5.1 (Table 4.1). All these features were typical of a 

Mediterranean-type of intensive organic agriculture (Sieferle 2001; Wrigley 2004), 

which plunged into a crisis during the economic globalization experienced at the 

end of the nineteenth century up to the twentieth (Tello and Marull 2006; Marull 

et al. 2008a; Tello et al. 2008b). 
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Table 4.1. Cropland and other land uses in  Sentmenat in 1861 

 ha % of cropland % of 

total area 

Vegetal gardens and irrigated herbaceous 

crops 

     67.8            4.2     2.5 

Rain-fed herbaceous crops    365.5          22.6   13.3 

Vineyards 1,066.1          65.9   38.8 

Olive groves     113.1            7.0     4.1 

Other rain-fed woody crops        5.2            0.3     0.2 

Total cropland 1,617.7 100.0   58.8 

Woodland and scrub    698.4 --   25.4 

Pasture    341.4 --   12.4 

Unproductive or developed      92.5 --     3.4 

TOTAL AREA 2,750 -- 100.0 

ratio between woodland, scrub and pasture/cropland       0.64 

ratio between woodland or scrub/cropland       0.43 

ratio between woodland, scrub and pasture/herbaceous crops and vegetable 

gardens      2.40 

ratio between woodland or scrub/herbaceous crops and vegetable gardens     1.61 

ratio between woodland, scrub, pasture, vineyards ,olive groves, and other 

woody crops/herbaceous crops and vegetable gardens     5.13 

ratio between woodland, scrub, pasture, vineyards, olive groves and other 

woody crops/cropland     1.37 

Source: our own from cadastral records in the Archive of the Crown of Aragon (Barcelona). 

A crucial factor of these pre-industrial organic agricultures was the number of 

cattle fed on uncultivated land and cropping forages, in order to provide enough 

manure to the land sown with cereals (Krausmann 2004). In Sentmenat there were 

only 5 head per square km in 1865, or 7 if donkeys were included (Table 4.2): 
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Table 4.2. Livestock and manure in Sentmenat in 1865 

Manure  

produced 

 

heads 

per head kg  

a day 

total 

kg a year 

total 

available
a
 

Horses 5  22      40,150   40,150 

Mules 103  22    827,090 827,090 

Donkeys 76    8    221,920 221,920 

Cows and oxen 26     34.15    324,060 324,084 

Sheep 225       2.3    188,888  94,444 

Goats 70       2.3       58,765  29,383 

Pigs 310       6.5    735,475 735,475 

Chickens and rabbits
b
 1,735           

0.137 

     86,759 

 86,759 

Transhumant sheep 350         1.15    146,913  73,456 

TOTAL (weight of fresh manure) 2,630,042 2,432,760 

%N-P-K losses from fresh to composted 

manure
c
 

50% N 3% P 20% K 

N-P-K contained in composted manure
d
 8,515 kg N 3,776 kg P 8,563 kg 

K 

Livestock Units of 500 kg (LU500) 199.3 t cropland ha
-1

 1.50 

LU500 square km
-1

 7.25 t sown-land
e
 ha

-1
 5.61 

LU500 cropland ha
-1

 0.12  

LU500 sown-land
e
 ha

-1
 0.46 

a
For sheep and goats maintained in grasslands 50% of manure has been discounted considering 

that it could not be recovered by locking the herd at night in a pen or taking it to stall. 
b
Estimated 

by us from the available feed and assuming the existence of five chickens or rabbits per household. 
c d

See Table 4.7. 
e
 Rain-fed and irrigated herbaceous crops and vegetable gardens.Source: our own 

estimate made from the livestock census of 1865 in the district, the data provided by contemporary 

literature and the assumptions made in the energy balance published by Cussó, Garrabou, Olarieta 

and Tello (2006a). The following references have also been taken into account: Bouldin et al. 

(1984), Loomis et al. (2011), Sørensen et al. (1994), Tisdale and Nelson (1956). 

That meant a live weight density of only 12 LU500 per cropland square km. In 

comparison, Fridolin Krausmann has found in the intensively cropped Austrian 

village of Theyern 24 LU500 per square kmof agricultural areain 1829, while in 

the very extensive land-use of the American Great Plains Geoff Cunfer has 

accounted a range from 4 to 13 LU500 in Finley Township (Kansas) during the 

years 1895 to 1915 (Cunfer and Krausmann 2009). This livestock density was 

clearly inadequate for a highly intensive organic agriculture and could only 

provide 1.5 tonnes of fresh manure per cropland hectare, a figure which coincides 

with the 1.37 tonnes accounted for in the first statistical survey on fertilisers 

carried out in 1919 in the province of Barcelona—while the dose recommended 

by agronomists was 10 tonnes per cropland hectare (Aguilera 1906; Cascón 1918; 

Slicher van Bath 1963). 
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Nevertheless, these average figures also conceal marked differences between 

crops. No manure was used for growing vines, and only very small quantities in 

olive groves. This explains the role played by vineyard specialization in reducing 

the ratio between land sown with cereals and uncultivated land (Table 1.1). If we 

assume that all manure was applied for growing grains, livestock densities would 

raise to 46 LU500 per square km of croplandand average doses to 5.6 tonnes of 

fresh manure per sown-land hectare, which also coincides with the 6 or 7 tonnes 

per hectare attributed by other sources to the rain-fed cultivation of cereals in the 

province of Barcelona during the second half of the 19
th

 century—including doses 

from 22 to 32 tonnes per hectareapplied in irrigated lands. These would have 

doubled the doses applied in the United States, that amounted between 2.5 and 5 

tonnes per hectare at the time (Burke et al. 2002; Cunfer 2004; Cunfer 2005), and 

matched the average figures in England and Wales that ranged from 4 to 5 tonnes 

per hectarefrom the mid-nineteenth century to the WWI (Brassley 2000). 

4. How the nutrients gap was closed 

Assuming that woody crops received no manure there remains a significant gap 

between the available livestock densities and the fertilisation required. Hence we 

have come to the conclusion that either some other organic fertilisers were able to 

fill this gap, or an unsustainable soil mining was at stake until chemicals came 

along. By comparing fertilising practices in Kansas and Austria, Geoff Cunfer and 

Fridolin Krausmann conclude that thanks to their high livestock densities Austrian 

farmers were able to return over 90% of N extracted to cropland, although they 

produced little marketable crop surplus. The farmers who colonized the Great 

Plains produced plenty of exports but used few animals to exploit rich grassland 

soils, thus returning less than half of the N extracted. After depleting soil fertility 

for over six decades, they faced a decline in crop yields from 1880 to 1940 until 

chemical fertilisers arrived (Cunfer and Krausmann 2009). Between these two 

examples, where can the path followed by Western Mediterranean agriculture be 

placed?  

We try to find an answer to this question by reconstructing a complete nutrient 

balance in our case study. Nutrient outputs and inputs in crops and seeds have 

been estimated from its content, taking into account harvest index and the reuse of 

by-products. Table 4.3 shows the amount of N-P-K taken up by different crops, 

without having discounted seeds and distinguishing between main consumed 

products and reused by-products. Some 40 kg N per hectare were annually 

removed in irrigated lands and vegetable gardens, three times more than the 

average and 5.6 times the N taken up by vineyards. Rain-fed intensive rotations of 
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grains sown without fallow extracted 39% of all N in 22.6% of cropland, about 22 

kg N per hectare. Vineyards drew 7 kg N per hectare, including grapes and 

pruning-shoots. In spite of covering two thirds of cropland they only took 38% of 

N, 28% of P and 18% of K. 

Table 4.3. Estimates of nutrients removed by crops in Sentmenat around 

1861-1865 

4.3.1. Main product for human consumption or animal feed 

 net fresh weight kg  kg N a year kg P a year kg K a year 

Irrigated wheat  19,166   353     63       67 

Irrigated corn  17,856   276     49       67 

Hemp  15,561   230     36       72 

Beans  18,323   651     86     315 

Rain-fed wheat   87,496 1,879   337    357 

Rain-fed corn  29,884   541     97    103 

Mixture of rye and other cereals  15,052   241     43      59 

Barley  26,513   459   188    125 

Forages 174,903 1,235   268    752 

Peas     41,155 1,070     96    254 

Olive oil from olive groves  16,104       0       0        0 

Grape juice from vineyards 2,070,079       0    414 2,070 

Vegetables in orchards and gardens 171,618   422    211      492 

Fresh fruits in orchards   27,878      8         5       23 

Nuts in orchards    6,638     11        5      16 

NET TOTAL HARVEST 2,652,609 7,376 1,898 4,772 

4.3.2. Crop by-products and residues 

 
fresh weight kg  kg N a year kg P a 

year 

Kg K a year 

Straw & stubble of irrigated wheat     45,699       243     155    226 

Straw & stubble irrigated corn       9,723         50      37    152 

Residues & stubble of hemp     11,413         55      43    183 

Straw & stubble of beans     13,111     178      51    151 

Straw & stubble of rain-fed wheat   194,029   1,063     658    955 

Straw & stubble of rain-fed corn     57,536        47      30    122 

Id. mixture of rye and other cereals     48,505       158     100    147 

Straw & stubble of barley     91,696       440     174    275 

Straw & stubble of forages      69,621       518    115    323 

Straw & stubble of peas      21,422      257      91    442 

Pruning from olive Groves    309,950    1,937    542  2,015 

Pruning from vineyards
2
 2,733,716    7,574 1,981  4,303 

By-products & residues of gardens       66,289     287      93     264 

TOTAL BY-PRODUCTS  3,672,710 12,807 4,070 9,558 

                                                 

2
This include together leaves «pàmpols», pomaces and wodden parts cut from winter and spring 

prunings. 
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4.3.3. Distribution of nutrients removal between the main agro-ecological flows 

 
kg N a 

year 
% 

kg P a 

year 
% 

kg K a 

year 
% 

Vegetable garden products      654     3.2    286   4.8        686    4.8 

Cereals and legumes for food
ab 

  5,414   26.8 1,621 27.1     2,612 18.2 

Feed and fodder for livestock
b 

  4,529  22.4 1,098 18.4    2,534 17.7 

Vineyards   7,574  37.5 2,395  40.1    6,373 44.5 

Olive groves   2,011  10.0    570    9.5    2,123 14.8 

TOTAL REMOVED BY CROPS 20,182 100.0 5,970 100.0 14,328 100.0 

Losses by natural processes   9,049 --        0 --   2,051 -- 

NUTRIENTS REMOVED  29,231  5,970  16,379  

a 
Hemp included; 

b 
Either rain-fed or irrigated. Source: our own from Cussó, Garrabou, Olarieta, et 

al. (2006a), and taking into account, among others, Angás et al. (2006), Loomis et al. (2011), and 

Tisdale and Nelson (1956). 

Overall, this distribution reveals the rationale behind the priority given to the 

scarce manure: it was first applied to irrigated land, and then to rain-fed cereals 

rotated with N-fixing leguminous crops or green manures. Vineyards were not 

manured except when planting, and only received small amounts of other organic 

fertilisers like leaf litter and branches buried in ditches dug between rows of vines, 

or burning and ploughing into the soil the so-called hormigueros (or formiguers in 

Catalan). These were similar to small charcoal-kilns made up with piles of dried 

vegetation that were burnt under a soil cover, as to generate a slow and 

incomplete combustion. The material obtained was used as fertiliser or soil 

conditioner (Olarieta et al. (2011),and Figure 4.2). 

Figure 4.2. Preparation and composition of a fertilising hormiguero 

 

1: scorched earth; 2: soil heated between 100 ◦C and 200 ◦C, the most fertile obtained in the 

hormiguero; 3: soil barely heated.Source: reproduced from Mestre and Mestres (1949) in Olarieta 

et al. (2011). 
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In the 1,618 hectares ploughed in Sentmenat circa 1860-65 some 20,195 kg of N 

were annually removed, 12.5 kg N per hectare. All animal manure locally 

produced only contained about 12,164 kg N. Considering that at least 50% was 

lost in the dung pile, the N available would be reduced to 6,082 kg, or a maximum 

of 3.8 kg N per hectare a year (Cascón 1918; Tisdale and Nelson 1956; Johnston 

1991). Owing to this deficiency in N supply from manure other sources of 

nutrients and agricultural fertilisation practices were sought in order to fill this gap. 

Five different possibilities are considered: 1) human sewage and garbage; 2) 

symbiotic bacterial fixation through leguminous crops; 3) green manures; 4) 

burying fresh biomass into the soil; and 5) ashes, charcoal and reheated land burnt 

in piles of hormigueros. In order to assess the role played by each of these 

contributions a full nutrient balance is needed. 

One of the most difficult components of any organic nutrient balance is the value 

adopted for atmospheric N fixation made by symbiotic bacteria. Even today, 

scientific literature presents a bewildering variation in the figures of N fixed by 

leguminous plants. This can be largely explained by the circumstantial nature of 

the symbiosis between legumes and Rhizobium bacteria, which entails that the 

presence of high doses of mineral N in the soil suppresses bacterial fixation. 

Moreover, only a part of the N content of a leguminous plant comes from the 

atmosphere. Before the Rhizobium nodulation develops in the roots, the plant 

needs to uptake mineral N from the soil and therefore not all the N absorbed 

before the flowering and maturation of the grain can be attributed to the 

Rhizobium nodules. The lower energy cost of drifting carbon for their own 

growth, rather than to Rhizobium colonies that may remain inactive, explains why 

legumes break symbiotic N fixation when there is enough mineral N in the soil. 

This flexibility has a lot to do with the crucial role legumes played in the 

millennial development of organic agricultures, in which mineral N was 

practically always lacking in the soil (McNeill and Winiwarter 2006). 

Unfortunately, this creates a considerable uncertainty about the actual symbiotic 

fixation in each particular circumstance. Values ranging from 10 to over 300 kg N 

per hectare a yearhave been estimated. There are examples and opinions that 

reduce N symbiotic fixation to very small values, or even assume a net negative 

outcome if the grain is removed and plant residues are not incorporated into the 

soil. The only safe rule is that symbiotic and free fixation would be greater the 

poorer the mineral N content of the soil was. Therefore, the N mobilized by 

leguminous crops from the atmosphere would have been higher in past organic 

agricultural systems, a hypothesis that organic farming may well help to 

corroborate at present (Oberson et al. 2007). Despite these uncertainties, we have 

carried out the preliminary estimates shown in Table 4.4. 
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Table 4.4. Estimates of N added to the soil by leguminous crops in Sentmenat 

towards 1861-1865 

 estimated N average 

fixation kg ha
-1

 year
-1

 

cropland 

sown ha year
-

1
 

 

% 

N incorporated  

kg year
-1

 

     

Beans 34.5   23.5   15.2    810.8 

Alfalfa and other 

forages 

26.2   65.7   42.4 1,720.3 

Peas 20.0   65.7   42.4 1,304.4 

TOTAL Weighted average: 24.8 154.9 100.0 3,835.5 

Source: our own, based on the N-P-K composition per unit weight of the legumes used in our 

balance  (Tisdale and Nelson 1956; LaRue and Patterson 1982; Phillips and DeJong 1984; Wilson 

1988; Peoples and Craswell 1992; Drinkwater et al. 1998; Holland et al. 1999; Domburg et al. 

2000; Berry et al. 2003; Schmidtke et al. 2004; Oberson et al. 2007; Bassanino et al. 2007; 

Castellanos et al. 2009; Loomis et al. 2011) and the other references given in Table 8. 

Green manure provided another important use of leguminous N-fixing properties. 

We have found enough historical sources to believe that green manures were 

already used in the province of Barcelona during the second half of the 19
th

 

century, and were widely supported by agronomists of that period. However, we 

do not have precise data of the average area sown, the species used or the amount 

of atmospheric N fixed. As a very preliminary rough estimate, and assuming that 

3.6% of herbaceous cropland was sown yearly with green manure, about 165,900 

kg of aerial biomass may have been buried into the soil. We assume that the 

atmospheric N fixed was the only net input flow from green manure that must be 

included in the balance sheet, since the rest of the nutrients are simply recycled 

into the soil.  

According to many local contemporary authors and sources, some amounts of 

crop by-products and forest biomass were directly applied to the soils as fertilisers, 

besides using them as compost matter in the manure pile. Two procedures were 

employed: 1) a direct burial of fresh vegetal matter in ditches dug between rows 

of vines; 2) ploughing into the soil ashes, charcoal and topsoil burnt in the so-

called «hormigueros»(Miret 2004).  
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Figure 4.3. Biomass buried in a ditch dug between vines (left) and 

fertilisinghormigueros (right) 

 

 

 

Sources: the photographs were taken during the 1930s in Catalonia (Roca-Fabregat 2008), the 

engraving on the top right was printed in France in 1827 (Miret 2004). 

How many nutrients could be obtained with these fertilising methods? In order to 

estimate the local biomass potential, the proportion between land sown with 

grains, land devoted to arboriculture and the available biomass that could be 

removed from woodland or scrubland was analysed. The amount of nutrients 

which were added to the soil by the fresh burial of biomass is easy to infer from 

its N-P-K content (although only the organic N is taken into account disregarding 

any possible loss by mineralization). The amount of nutrients supplied by each 

hormiguero has been taken from Olarieta et al. (2011). It seems that any net N 

contribution would have been negligible but the hormigueros would have added 

some amounts of P and K, which could also result in a significant yield increase 

of legumes intended to supply N (Johnston 1991). 

Apart from that, there remain some unknowns still about the impact this method 

may have had in the biotic component of soil fertility.According to the 

interpretation given by the agronomist Cristobal Mestre and the chemist Antonio 

Mestres in 1949, the rise in temperature experienced by the topsoil covering the 
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hormiguero caused a variation in the populations of soil micro-organisms that 

may help to explain the harvest increases obtained in experimental fields fertilised 

in this way compared with control plots—for example, by increasing free 

atmospheric N fixation (Mestre and Mestres 1949). Our own preliminary estimate 

is shown in Table 4.5. 

Table 4.5. Estimates of nutrient added to the soil by burying fresh biomass 

and burning piles of hormigueros in Sentmenat towards 1861-1865 

 

Nutrients 

Available 

matter in 

kg 

N 

kg year
-1

 

P 

kg year
-1

 

K 

kg year
-1

 

Biomass from pruning buried    497,590 2,141.6 1,181.2 1,754.2 

Biomass from woodland or scrub 

buried
a
 

   111,522 
   557.6     167.3    669.1 

hormigueros burnt and ploughed
b
 1,472,509        0.0       30.3    606.3 

TOTAL FROM BIOMASS 2,081,621 2,699.2 1,378.8 3,029.6 

a
Mulch, grasses, acorns, branches or bushes that could also be partly used to burn in hormigueros, 

along with pruning and other by-products of crops. We have assumed that only a quarter of the 

available biomass in woodland and scrubland was used in this way. 
b
We have considered the 

maximum potential number of hormigueros according to the available biomass. Source: our own 

from Cussó, Garrabou, Olarietaand Tello(2006A), and results of fieldwork and analysis performed 

by José Ramon Olarieta. 

We assume that the burial of biomass and the hormigueros played a role of filling 

the remaining gaps in the nutrient balance. They appear in our balance sheet as a 

minor component because the number of hormigueros estimated is small, due to 

the considerable uncertainties that still prevail about the size of each hormiguero 

and the amount of biomass burnt in it. Acknowledging that this issue deserves to 

be further studied in future, we have taken as a cautionary option an average 

figure of 13 hormigueros per cropland hectare per year (or 20 if only applied to 

vineyards), a figure adjusted to the forest biomass locally available—while figures 

up to 200 (Roca-Fabregat 2008) or even 700 per hectare per year (Barón de 

Avalat 1780) can be found in some historical sources. Taking into account the 

high intensity of labour demanded by these techniques, it seems reasonable to 

assume that their use would depend on the relative scarcity of other fertilisers and 

the abundance of cheap labour. We came to a similar conclusion considering the 

role played by the task of removing fallen branches and dried biomass from the 

Mediterranean forests and scrubland, which usually become prone to wildfires 

(Pyne 1997; Grove and Rackham 2001). 
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5. An organic nutrient balance close to equilibrium? 

In Table 4.6 the nutrients taken by crops, or lost through other processes, are 

confronted with two different estimates of their replacement by various fertilising 

methods: a) a maximum potential amount of N-P-K which the mass balance tells 

us should be somewhere in the local agro-ecosystem; and b) the fraction we 

believe was actually put into the soil discounting material losses by these 

fertilising methods: manure piles, cesspools, latrines, hormigueros, burial of fresh 

biomass, crop legumes or green manure. This balance is not aimed at assessing 

accurately each nutrient flow moved by livestock, agricultural labour and natural 

processes. Some minor flows have been omitted, like erosion losses which could 

be largely offset by the accumulation of sediments in other nearby lands—

depending on the scale of analysis. Nor have we assigned values to the 

mineralization processes in the soil, or the possible increase obtained in 

atmospheric N fixation by stimulating free bacterial activity through piles of 

hormigueros. But even admitting a margin of error, which can only be reduced 

through future calibration and comparison with other balances, we believe that the 

usefulness of this assessment lies in its heuristic function. 

Table 4.6.Annual output and input flows of nutrients in cropland of 

Sentmenat towards 1861-1865 

4.6.1. Nutrient content of material flows (N, P, K in kg per year) 

 content of N content of P content of K 

1. Natural atmospheric deposition 1,132 0 1,455 

2. N fixation by free bacteria in the soil 7,584 0 0 

3. Seeds 769 140 205 

4. Total manure available 12,164 3,892 10,704 

5. Manure finally applied to the soil 6,082 3,776 8,563 

6. N fixation by leguminous plant grown 3,835 0 0 

7.Nutrients buried by green manure 1,371 116 912 

8. N atmospheric fixation by green manure 973 0 0 

9. Other biomass buried 2,699 1,349 2,423 

10. Available human sewage 7,030 1,268 1,914 

11. Human sewage finally applied 3,515 1,230 1,531 

12. Household and village garbage 664 918 566 

13. Hormigueros burnt and ploughed 0 30 606 

I=1+2+3+5+6+8+11+12+13    

I.INPUTS ACTUALLY DRAWN 27,253 7,443 15,349 

A. Losses by natural processes 9,049 0 2,051 

B. Nutrients extracted by crops 20,195 5,971 14,332 

II. NUTRIENTS REMOVED (A+B) 29,244 5,971 16,383 

Balance with the inputs actually applied (I-II) -1,991 1,472 -1,034 
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4.6.2. Nutrient flows per unit area (kg ha
-1

 year
-1

 of N, P, K or in % of total removed) 

 N ha
-1

 %N Pha
-1

 %P K ha
-1

 %K 

1. Natural atmospheric deposition 0.7 3.9 0.0 0.0 0.9 8.9 

2. N fixation by free bacteria in the soil 4.7 25.9 0.0 0.0 0.0 0.0 

3. Seeds 0.5 2.6 0.1 2.3 0.1 1.3 

4. Total manure available 7.5 41.6 2.4 65.2 6.6 65.3 

5. Manure finally applied to the soil 3.8 20.8 2.3 63.2 5.3 52.3 

6. N fixation by leguminous plant grown 2.4 13.1 0.0 0.0 0.0 0.0 

7.Nutrients buried by green manure 0.8 4.7 0.1 1.9 0.6 5.6 

8. N atmospheric fixation by green manure 0.6 3.3 0.0 0.0 0.0 0.0 

9. Other biomass buried 1.7 9.2 0.8 22.6 1.5 14.8 

10. Available human sewage 4.3 24.0 0.8 21.2 1.2 11.7 

11. Human sewage finally applied 2.2 12.0 0.8 20.6 0.9 9.3 

12. Household and village garbage 0.4 2.3 0.6 15.4 0.4 3.5 

13. Hormigueros burnt and ploughed 0.0 0.0 0.0 0.5 0.4 3.7 

I=1+2+3+5+6+8+11+12+13       

I.INPUTS ACTUALLY DRAWN 16.9 100.0 4.6 100.0 9.5 100.0 

A. Losses by natural processes 5.6 30.9 0.0 0.0 1.3 12.5 

B. Nutrients extracted by crops 12.5 69.1 3.7 100.0 8.9 87.5 

II. NUTRIENTS REMOVED (A+B) 18.1 100.0 3.7 100.0 10.1 100.0 

Balance with the inputs actually applied (I-II) -1.2 -6.8 0.9 24.7 -0.6 -6.3 

Source: our own based on the previous tables. 

We think that this balance sheet helps us to reveal some basic features of the 

societal attempts made to close the flow of nutrients in a highly intensive organic 

agriculture of a Mediterranean-type. Despite the inaccuracies and uncertainties it 

allows us to obtain some results. First, the amount of nutrients available to sustain 

cropland fertility could have been nearly large enough to replace the main macro-

elements taken from the soil by crops and natural processes, provided that the 

processing efficiency of animal manure and human sewage was not lower than 

50% in N, 90% in P and 80% in K. We suppose as well a high labour intensity 

allocated to make hormigueros or bury fresh biomass in order to import 

nutrients –mainly K— from uncultivated areas to cropland.  
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Figure 4.4. Summary of the nutrient balance in the municipality of 

Sentmenat in 1861-1865. 

  

Source: our own based on the previous tables.  

As seen in Figure 4.4, should these assumptions be changed –for example by 

considering a loss higher than 50% of N content in manure management and reuse 

of sewages— the whole amount of nutrients extracted would not have been 

replenished. On the other hand, we know that N losses in manure piles could be 

reduced up to only 30%, if the floor of stall was paved and compost process was 

accurately managed, according to the results obtained by the agronomist José 

Cascón (1918) in a Spanish experimental farm. Anyhow, we are not assuming that 

actual fertilisation always balanced crop extractions in each farm or plot. A very 

important aspect, which is masked in average figures, is to what extent social 

inequality meant a different availability of livestock manure, woodland or 

scrubland cuts, and latrines. In spite of the fact that the maximum potential of 

fertilisers available was probably enough not to undermine soil fertility, we 

believe that poor winegrowing tenants did so to some extent due to the lack of 

access to them. Inequality was the problem, not the capacity of organic 

fertilisation. 
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This first result can be interpreted in the light of what Barry Commoner (1971) 

considered to be a basic principle of an ecosystem's functioning: everything goes 

somewhere. In an organic-based agricultural system, these places where nutrients 

went were not far away. Our balance shows, for example, that a share of K was 

obtained from burying or burning biomass in hormigueros. Thus, any remaining 

K gap could probably have been closed by increasing labour and biomass 

allocated to make them. When looking at figures 4 and 5 there appears another 

important issue that deserves to be stressed. The proportion of cropland devoted to 

grow feed and fodder could be kept relatively low thanks to the role played by 

agricultural reuses and natural pastures in livestock feeding. This material eco-

efficiency required a careful integrated management between cropland, 

uncultivated land and livestock breeding—which was also a key for the 

corresponding energy efficiency (Cussó et al. 2006a; Cussó et al. 2006b). 

6. Discussion 

These results fit with the degree winegrowing specialization reached in Sentmenat 

towards 1860-65. Two-thirds of the cropland acreage devoted to vineyards 

brought about a significant saving of N and P. The import of 1,556 Hl a year of 

wheat, together with some amounts of salted fish and rice, meant an annual gain 

of 2,561 kg N, 433 kg P and 459 kg K which accumulated in sewages. While the 

N content in the wine exported was negligible, the P taken yearly from wine was 

around 414 kg and the K around 2,070 kg. Thanks to that, the nutrient trade 

balance led to a net gain of some 2,561 kg N a year and 433 kg P, together with a 

net loss of 1,611 kg of K a year. Therefore, the apparent sustainability this 

maximum availability of nutrients that existed somewhere in Sentmenat allowed 

would have also relied on that N gain against a slight loss of P and K (Tello et al. 

2006; Tello et al. 2008b; Garrabou et al. 2010; Badia-Miró et al. 2010). 

However, the full potential of nutrients available in the local agro-ecosystem was 

one thing, and the ability to collect and reintroduce them into croplands was 

another. Most of our uncertainties arise when the difference between potential and 

actual nutrient availability becomes apparent. Bearing in mind the 

abovementioned processing losses of animal manure and human sewages, we 

reach a second conclusion: the actual availability of animal manure and human 

wastes would cover only 33% of N, 84% of P and 62% of K required to replace 

the extractions made by crops. Therefore, sustaining cropland fertility would 

depend on whether other forms of organic fertilisation could cover this gap. Two 

of them stand out: the symbiotic N fixation by legume crops, and their use as 

green manure, which could have covered about 16% of extractions; and the K 



 

 

97 

obtained by burying fresh biomass or burning it in hormigueros, which should 

have covered about 14% of the K required in order to balance the local agro-

ecosystem in 1860-65. 

In other words, despite the agronomists‘ cries about the inadequacy of livestock 

densities kept and manure applied being true, other options were available for a 

Mediterranean-type of intensive organic agriculture to recruit some of the nearby 

nutrients. Nevertheless, these alternatives were highly labour-intensive. Hence, we 

reach a third conclusion: the main limiting factor to obtain organic nutrients was 

not biophysical, but technical and economic. Instead of the maximum potential of 

N-P-K available in the agro-ecosystem, what mattered most was the actual 

capacity to recruit them as fertiliser considering the chain of losses experienced in 

dung piles, latrines, cesspools, sewers or hormigueros. A key limiting factor was 

the amount of human labour and animal work needed for that purpose.  

There were, of course, some ultimate agro-ecological limits inherent to any 

organic-based agrarian economy wishing to increase yields without overshooting 

the renewable resources available at a local or regional scale. Before reaching 

these limits some possibilities to increase leguminous crops and use them as green 

manure remained, which in 1860-65 covered just one quarter of cropland. Here 

again the limiting factors appear to be more economic than agro-ecological. The 

Mediterranean water stress had to be overcome somehow, but this could be done 

to some extent increasing the water retention capacity of soils by increasing their 

organic matter content, or with temporary and permanent irrigation. Another 

option was to specialize in arboriculture, a practice that requires less water and 

extracts fewer nutrients from the soil. However, all these alternatives needed land 

improvements and labour investments, and these in turn had opportunity costs 

according to the relative market profitability of their alternative uses. 

Fourth, the scope for increasing agricultural yields through more intensive organic 

fertilisation was very limited unless land-uses were changed in the direction 

pointed out by agronomists, i.e. increasing the land sown with leguminous crops 

and using them as green manure or increasing forages, livestock and manure. 

Anyhow, up to a point these land-use changes clashed either with the rainfall 

limitations of the Mediterranean environment, or with the actual market 

opportunities to reallocate land towards commercial woody crops (González de 

Molina 2002; Guzmán and González de Molina 2009; González de Molina et al. 

2010b; Vanwalleghem et al. 2011). 

Finally, the nutrient balance of Sentmenat in 1860-65 shows a crucial aspect that 

deserves to be emphasised: the maintenance of cropland fertility was only 

possible through a permanent transfer of nutrients from uncultivated areas of 
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woodland, scrub and pasture. This was of course an overriding feature of any past 

organic-based agricultural system. What draws most our attention in this case 

study is the smaller role played by livestock in that transfer, compared to the key 

role played by human labour in cropping legumes and green manure and 

transferring nutrients from woodland or scrub by means of hormigueros burnt and 

biomass buried into cropland. Livestock only moved a small part of it, while 

manpower had to do the rest. This was a key feature of Mediterranean organic 

agricultures, which contrasted with other European bioregions (Figure 4.5). 

Figure 4.5. Annual flows of N in the cropland area of the municipality of 

Sentmenat towards 1861-1865 (kg) 

 

Source: our own based on the previous tables. The flows from market are based on historical 

dietary information (Cussó and Garrabou 2003).  

Therefore, we come to our fifth and last conclusion: organic fertilisers alternative 

to animal manure played a key role –albeit small in absolute terms— in 

transferring nutrients from uncultivated areas into cropland. Besides being highly 

labour-intensive, these transfers imposed a relevant nutrient tribute on woodland 
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or scrubland, mainly in terms of K, which added to the simultaneous extraction of 

timber, firewood or charcoal. The maintenance of cropland fertility was closely 

related to the sustainability of this multiple-use of forests, which up to a point 

might have been overexploited. Photographs taken during the first third of the 

twentieth century show an apparent low forest cover remaining. At that time 

woodlands were reduced to a minimum in Catalonia, and even more in Spain: 

forest land occupied only 15% of the country area in 1915 (Tello and Sudrià 

2011), or about 20% in 1955 (Schwarzlmüller 2009). 

Table 4.7: Summary of the estimations and sources 

Item Source Estimation 

1. Natural annual 

atmospheric deposition 

MOGUNTIA model at 

Holland et al. (1999) 

0.7 kg N/ha 

2. N free annual 

fixation by  bacteria in 

the soil  

Loomis et al. (2011). 

Berry et al. (2003) 

1-5 kg N/ha 

Livestock average live 

weights 

Livestock census of 

1865 and the 

assumptions used in 

Cussó, Garrabou, 

Olarieta, et al. (Cussó et 

al. 2006b) 

Cattle: 371 kg 

Horse and Mule: 326 kg 

Donkey: 172 kg 

Sheep: 30 kg 

Goat:34 kg 

Pig: 77kg  

Poultry: 2 kg 

Daily average manure 

production per head of 

livestock 

Aguilera (1906), Cascón 

(1918) 

Horse and Mule: 22kg 

Donkey: 8 kg 

Cow: 34.2 kg 

Sheep and goat: 2.3 kg 

Pig: 6.5 kg 

Poultry: 0.137 kg 

4. Manure composition 

(fresh weight). 

Cascón (1918), 

Tisdale and Nelson 

(1956) 

0.50%N 

0.16%P 

0.44%K 

4 and 11. Losses 

during biomass 

composting, manure 

and human sewage 

storage manure piles. 

Cascón (1918), Aguilera 

(1906), Urbano-Terrón 

(1989) 

50%  N or 30 % N 

0.3% P 

20% K 

 

Manufactured 

fertilisers. 

Garrabou and Planas 

(1998) 

Small capacity of manufacturers. Tiny 

imports of guano and industrial fertilisers. 

So we consider none. 

6 and 8. N symbiotic 

fixation. 

García-Ruiz et al. 

(2012) 

N content coming from atmosphere: 60% 

N content in grain: 3.5 % 

N content in aerial biomass: 62% 

N content in roots: 33% 

N deposited into the soil by roots: 18% of 

the total N fixed 

10 and 12.Garbage and Mataix (2003)  
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human sewage. Tarr (1975),  Schmid-

Neset (2005), García-

Faria (1893) 

Garbage: 57 Kg/inhabitant 

 

13. Hormigueros Olarieta et al. (2011) - The soil cover of the hormiguero comes 

from the same cultivated area.  

- Each hormiguero is made with an 

average of 68 kg of woody biomass. 

- As a result of the combustion we have 

2.5 kg of char and 2.5 of ashes.  

- The composition of the ashes from the 

hormiguero is the same as if the same 

type of woody biomass were burnt 

elsewhere. 

- They are made in equal parts of pruning 

and woodland or scrub cuts. 

 

A. Average natural 

losses 

Drinkwater et al. (1998), 

Galloway et al. (2004), 

Kosmas et al. (1997), 

Rana and Mastorilli 

(1998),  

Rosswall and Paustian 

(1984),  

Tisdale and Nelson 

(1956), Torrent et al. 

(2007) 

Leaching: 5.5 kg N/ha 

Denitrification: 1.5 kg N/ ha irrigated  

Ammonia volatilisation: 5%  green 

manure N inputs 

 

B.  NPK composition 

of nutrients extracted 

by crops  

Soroa (1953), CESNID 

(2003),  

Mataix (2003). 

Moreiras-Varela et al. 

(1997) 

 

Source: our own based on the previous tables. (Item number corresponds with the numbers in table 

4.6)



 

 

101 

 Chapter 5. Making bread from stones?
1

 Regional 

nutrient balances and socio-ecological transition in 

North-East of Iberian Peninsula (Catalonia c.1920) 

“[...]la cosa es que no entiendo lo qué tengo que decirle, directamente no 

entiendo el potasio, no entiendo por qué no entiendo  que a lo mejor no es 

importante, no entiendo que todo eso solamente me caiga a mí, me haga tanto mal 

a mí aquí sola, aquí con el café que se va a enfriar si no me apuro.” 

(Cortázar 2009) 

1. Introduction 

1.1. The Socio-EcologicalTransition of industrialisation 

Socio-Ecological Transitions are the gradual changes in the society-nature 

interactions that bring together another regime of energy and materials 

consumption (Krausmann et al. 2008; Krausmann and Fischer-Kowalski 2013). 

From the sociometabolic regimes described by Sieferle (2001) industrialisation is 

the only one that decoupled the supply of energy from land related biomass and 

human labour on land (Krausmann et al. 2008). This was accompanied by new 

environmental problems, together with uncertainty on the perdurability of the 

model itself as the use of stocks of fossil fuels involve only a 'temporary 

emancipation from land' (Mayumi 1991).  

The industrialisation of agriculture involved the linearisation of the process by 

increasing the flow of inputs and decreasing the recycling flows. Although by 

doing this, industrial agriculture shortened the separation between labour time and 

productive time—an observation already done by Marx for agricultural 

production—still, natural processes have to occur (Mann and Dickinson 1978), as, 

obviously, not all inputs are human-driven. These natural processes are reinforced 

by traditional agricultural methods used both in past and current non-industrial 

agricultures
2

: diversity of cultivars, maintenance of functional biodiversity, 

recycling of biomass and nutrients, use of organic matter and covering soils 

                                                 

1
We make reference to the saying: "Los catalanes de las piedras hacen panes". 

2
Indeed, nowadays non-industrialagriculture provides livelihood at least to two million people 

worldwide (van der Ploeg 2014). 
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(Altieri 2004). From an agroecological perspective
3
, industrial agriculture is 

unsustainable as long as it undermines the ecosystem structures and processes that 

make possible agriculture itself. 

Focussing only on Agrarian Metabolism, González de Molina (2010) described 

the Socio-Ecological Transition in three waves that affected agroecosystems at 

different scales and elapsed at different rhythms depending on the world region. 

In Europe, the first wave started during the nineteenth century, when the urban-

industrial sector, the increasing population and the liberal reforms all together 

pushed the agricultural production over the capacity to restore fertility by organic 

means. The introduction of synthetic fertilisers at the end of the nineteenth 

century
4
 marked the start of the second wave, which neglected the land cost of 

fertilisation
5
(Guzmán and González de Molina 2009), besides the increasing costs 

of recycling urban waste. Indeed, the treatment of fertility loss and pollution 

concentration in rural and urban areas respectively as two independent problems 

was strongly criticised by some agronomists, hygienists and thinkers of the time—

Liebig and Marx among them—(Marald 2002; Foster 2004).  

Besides the recycling of organic matter of any origin, the three main organic 

means to restore the nutrients extracted through harvest were additions of manure 

from livestock, fixation of atmospheric N through leguminous plants and 

deposition of N—all of them will be detailed below. Livestock needs grain, 

forages and pastures, consequently competing for land with humans. Forage 

plants need to be flowering to enhance its nutritional potential for livestock; this is 

a disadvantage for arid climates because as plants tend to grain before, they can be 

cut less times. Synthetic fertilisers were net entries of nutrients that allowed 

overcoming these constraints. Nevertheless the use of synthetic fertilisers were 

not free from controversy, although yields increase with the introduction of 

synthetic fertilisers, diminishing returns in N applications in cereals have been 

demonstrated recently (Tilman et al. 2002). Therefore to maintain soil fertility, not 

only balanced fertiliser applications are needed, also crop rotations, reduced 

                                                 

3
Other dimensions of unsustainability of agriculture emerge when studying different perspectives, 

see for example Friedmann (2011), Giampietro (1997b) or Schneider and McMichael (2010).  

4
 Ammonia synthesised by the Haber-Bosch process was not among the synthetic fertilisers 

accounted at the beginning of the European Socio-Ecological Transition in agriculture.With the 

temporal exception of  Germany during the World War I, it was not until after the 1950s that the 

expanded worldwide contribution importantly incremented  yields (Smil 2001). 

5
There were other land saving technologies such as concentrated feed, cattle selection and seeds 

breeding that probably followed the same pattern as the spread of synthetic fertilisers, however the 

data is much less complete, see van Zanden (1991). 
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tillage, cover crops, fallow periods and manure (Tilman et al. 2002). This is true 

as long as 'soil health' is the true source of fertility (Doran 2002). Despite 

recognising that balanced fertiliser applications are not the only dimension of 

fertility, the importance of the approach from González de Molina (2010) is that 

there was not enough organic fertilisers in order to maintain or increase the 

agricultural produce without mining the fertility of soils. Indeed, fertility was a 

major concern in agriculture at the end of the nineteenth and the beginning of the 

twentieth centuries, especially in more arid areas, such as the Mediterranean 

(González de Molina 2002).  

During the nineteenth and the beginning of the twentieth centuries in Spain, it was  

common place to say that, in spite of regional differences, there was not enough 

livestock densities to produce the manure needed in fields (Simpson 2003). 

Consequently, we found the idea of complementarity between both organic and 

synthetic sources of fertilisers in the work of a number of Spanish agronomists at 

the beginning of the twentieth century. There were suggestions to reinforce the 

recycling of biomass from a variety of industries: sugar, fisheries, preserves, 

winery, oil, leather or wool; not to mention other practices such as green manures, 

redileo, majadeo or the spread of preparations of human excrements, garbage or 

ashes (Llorente and Galán 1910; Cascón 1918; García-Luzón 1922; Rueda-y-

Marín 1934). Other more imaginative practices included the use of algae and a 

detailed process to capture locusts during a plague using ditches and a treatment 

of the dead bodies consisting in toasting, eliminating fats with benzene and 

compacting them (Soroa 1929). At the same time, all of them recommended 

farmers to calculate the flows of the main nutrients—nitrogen, phosphorus, 

potassium and sometimes calcium and iron—or make an analysis of soil 

composition and add purchased synthetic fertilisers to the available organic 

fertilisers. 

In the preceding chapter (Tello et al. 2012) we calculated a nutrient balance in a 

municipality c.1860, when synthetic fertilisers were not spread. Moreover, we did 

not have enough data to follow the nutrient flows in other (more arid) 

municipalities or smaller scales, but we concluded that, probably, to balance the 

soil nutrients some crop types such as vineyards had to be short of nutrients. We 

aim to lengthen in time and scale that study by doing another case study circa 

1920, to figure out to what extent were organic and synthetic fertilisers important 

for the maintenance of fertility. By that time, the agrarian systems in Catalonia 

would be situated in between the first and the second wave according to González 

de Molina (2010). In addition, we want to use data from other areas with different 

aridity and human settlement patterns to identify regional differences.  
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Following this introduction, in the next subsection 1.2, we describe the region of 

study. After that, this chapter is organised as a working paper detailing 

methodological and data issues. Hence, in section 2 we explore limitations and 

potentialities of the methodology of calculating nutrient balances. In sections 3 

and 0, we calculate the flows of nutrients extracted and applied to cropland. In 

these sections we stress on the details of the calculations that differ from our main 

methodological reference—(Garcia-Ruiz et al. 2012)—, in addition we depict 

criticism of sources and specify the way in which we solved the limited 

availability of data. In section 7, we present the balance and discuss its meaning. 

Finally, in section 8 we situate our conclusions within the framework of the 

Socio-Ecological Transition described in the previous subsection 1.1. This chapter 

is accompanied by a series of Annexes. The first two are recompilations of NPK 

compositions, these are Annexes 2.A and 2.B. Annex 2.C details the value of the 

main nutrients flows for each region. Lastly, Annex 2.D summarises the main 

sources used to quantify each of the flows of extraction and addition. 

1.2. Agro-climatic and socioeconomic features of the three main Catalan 

regions 

As a rule of thumb, Catalonia can be socio-ecologically split into two according to 

its climatic conditions, Wet and Dry whose limit is the annual precipitation of 500 

mm (Garrabou et al. 2001a), which coincides with the aridity index i.e. the 

occurrence of periods when precipitation is lower than the evapotranspiration 

created by high temperatures (Figure 5.1.a). This limit matches with the historical 

settlement pattern (Figure 5.1.b), approximately coinciding with the limits of the 

Islamic Empire until the XII century, when the 'New' Catalonia was conquered by 

Christians fast enough to approach the land concentration that occurred in some 

areas of the South of Spain. Unlike the previous conquest of the lands between the 

Pyrenees and the Llobregat River, which was slow and uncertain, and required 

peasant repopulation. As a result, the agrarian landscape of 'Old' Catalonia was 

configured by masies (Figure 1.b). Coming from the Latin word manere (to 

inhabit), this Catalan type of scattered rural habitat was a pattern of isolated 

farmhouses surrounded by compact units of polycultural land of some five to 

twenty or more hectares. Their occupiers used to be serfs under feudalism, but 

after the peasant revolts of the late Middle Ages (Remensa Wars) they enlarged 

their masies thanks to the Black Death and got control over the forthcoming land-

use intensification thus becoming wealthy landowners in many cases.  

These regions approximately match with the current administrative units, 

therefore the provinces of Barcelona and Girona belong to Old or Wet Catalonia, 

whereas Tarragona and Southern Lleida with New or Dry Catalonia. Admittedly 
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the Northern part of Lleida use to be classified as part of the Old or Wet Catalonia, 

however its proximity to the Pyrenees involves a completely different landscape 

and settlement configuration. As a result, this can be considered a different 

historical and geographic region from the other two. Contrarily to the other two 

regions, the Pyrenees have a sizable area of pastures, which is related to the other 

two regions of Catalonia, through the seasonal migration of livestock 

«trashumancia». At the south of the Pyrenees, the plains of Lleida province, used 

to be dry-farming cereal lands during the nineteenth century. Its low and unstable 

yields, large fallow lands and small livestock densities were similar to the Interior 

region of Spain (Garrabou et al. 1995; Simpson 2003). Conversely, at the end of 

the nineteenth century in Old Catalonia, fallow land was substituted by rotations 

that integrated leguminous forages,  mainly sainfoin (Saguer and Garrabou 1995b). 

Taken as a whole, the cereal yields of Old Catalonia were between two and three 

times those of the plain of Lleida, thus comparable to other advanced agricultures 

of North  Europe (Garrabou et al. 1995). 

Figure 5.1. Images of Catalonia 

 

  

a) aridity index: annual Precipitaion/Potential EvapoTranspiration (P/PET), capture from 

Ministerio de Agricultura Alimentación y Medio Ambiente 
284

; b) Masies of Catalonia in 1860, 

capture from Ferrer i Alòs et al. (2003); c) Approximated delimitation of the main crops in the 

Iberian Peninsula, capture from DGA (1933: 364). 

  

a) b) c) 
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2. Methodological challenges and responses to calculate nutrient 

balances in historical farm systems 

The purpose of accounting for the nutrients flows of a system—a method called 

indistinctively nutrient balance or budget— used to be twofold. To increase the 

efficiency of fertiliser applications and/or to calculate the emission from farmland 

(i.e. cropland and livestock only, as non-cultivated land areas used to be excluded) 

due to fertiliser or slurry over application (Öborn et al. 2003). In addition, some 

authors use nutrient balances to quantify alternative sources of fertiliser, e.g. 

household waste, in those places where farmers cannot purchase them from the 

market (Kanmegne et al. 2006; Hayashi et al. 2012). The main nutrients studied 

are the main nutrients used as synthetic fertilisers i.e. nitrogen, phosphorous and 

potassium (N, P and K), with a special focus on N, due to the effect of some  of its 

chemical forms in the Green House effect and acid rain. In addition, the release of 

N and P to water fosters the eutrophication of waters with the ensuing biodiversity 

loss.  

Both the system boundaries—e.g. soil of cropland, gate of farm, human 

settlements, industry, agro-food system, etc—and the scale—e.g. farm (cropland, 

livestock or both together), regional, national, etc—vary depending on the 

purpose of the analysis. Concerning only agricultural production systems, 

Oenema et al. (2003) made a review of several nutrient budget accountings, and 

grouped them into three types (sic), i.e. according to three main 

conceptualizations of the system (Figure 5.2).  

Farm-gate budgets, measure the nutrients in the products that go in and out of the 

farm i.e. manure and livestock purchased would be inputs but not manure 

produced within the farm; outputs would be exports of harvested products, also 

milk and meat.  

Soil surface budgets, account the nutrients that cross the soil surface. Any product 

harvested would be an output, but not reactions such as ammonia volatilisation, 

which should be adjusted before accounting for the inputs.  

Soil system budgets, add the recycling or the loss of nutrients within the soil 

system to the accounting. 
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Figure 5.2. Conceptual differences in boundaries and nutrients flows 

 

"Conceptual differences in boundaries and nutrient flows of farm-gate budget, soil surface budget 

and soil systems budget. The view from above for the farm-gate budget shows that nutrients enter 

and leave the system via the farm-gate, while the vertical direction of nutrient flows into and out of 

the soil for the soil surface budget is emphasizes via a vertical soil cross-section. Three-

dimensional nutrient flows, including nutrient recycling and changes in nutrient stock characterize 

soil system budgeting." Source: from Oenema et al. (2003: 5). 

The choice of scale and system boundary will define the data acquisition strategy, 

hence the precision of  the input-output ratios of the nutrient balance (Oenema et 

al. 2003). In our case of regional scale, we had to rely mainly on official databases, 

whose expected critical points of data availability were described in Sacco et al. 

(2003) through their proposal for a methodology of regional nutrient balance for 

an  Italian case. Yet, as they used the farm-gate approach, they did not account for 

what Garcia-Ruiz et al. (2012) called «natural inputs» e.g. atmospheric deposition, 

free N fixation, etc, which were a fundamental piece in past organic agricultures. 

This is an additional critical point to those described by Sacco et al. (2003) as due 

to lack of regional data, we had to extrapolate field data or values from literature 

to regional scale, which is controversial. For instance, Burke et al. (2002) tried to 

include these natural inputs at regional scale, but eventually excluded atmospheric 

N deposition and important N exports such as leaching and denitrification due to 

lack of empirical data for the Great Plains. As an integrated solution, Oenema et 

al., (2003) assessed biases and errors and quantified uncertainties, but still we did 

not use them in this study because they were focused on N budgets of current 

agroecosystems in The Netherlands. 

The versatility of the methodology complicates comparisons between different 

balances and the interpretation of the results should always be accompanied by the 

context i.e., surplus or balance of nutrients does not mean environmental damage 

per se. The system could storage or dissipate the excess of nutrients e.g., soils 

with low soil fertility could increase the storage capacity by a continuous surplus 

of nutrients. This was precisely the basis of the model of increase in yields in 

English agriculture, due to long term assimilation of N through convertible 
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farming and rotations of leguminous crops (Allen 2008). Also, although it is not 

usually contemplated, the time elapsed affects the quantity of nutrients balanced 

(Öborn et al. 2003). For instance: adding a fertiliser with N soluble form in rainy 

seasons will lead to high N losses through leaching; manure has less N in soluble 

forms than synthetic fertilisers, so some of the N will be uptaken by the current 

harvest and some will remain for the next harvest.  

Beyond the limitations for comparison, are the implications of taking into account 

the nutrient balance as the only dimension of fertility. Thus, Koning and Smaling 

(2005) reflected the utility and limitations of regional nutrient budgets applied to 

policy making and the inconvenience of neglecting other dimensions, such as the 

dynamics of world markets, or the rehabilitation of agricultural knowledge 

services to the design of policies of soil alleviation in Africa. In addition, (Olarieta 

et al. 2008) warned about the reductionism involved in the identification of the 

accountancy of nutrient flows as if they were the only dynamic of soils affecting 

agrarian productivity—although they were focused in the criticism of monetary 

valuation methods of soil degradation. This can lead us to the fallacy that 

chemical fertilisers can replace soil fertility, without taking into account the role 

of organic matter. Not in the least, soil organic matter is a "complex bio-organo-

mineral system" (Manlay et al. 2007) indispensable for the biological soil 

functioning—and so biogeochemical cycles and mineralisation— and cation-

exchange capacity (Manlay et al. 2007; Feller et al. 2012). Furthermore, there are 

recent studies relating the influence of compost in the prevention and treatment of 

some plant diseases (Litterick et al. 2004). Unfortunately this is far from the scope 

of this study, as to estimate the soil organic matter c.1920, is something that 

cannot be done through a nutrient balance. 

Considering these limitations, how can the numerical values of a nutrient balance 

be interpreted? Up to this point, it is clear that we have to refer to our own 

purpose and context of our case study. Hence, to refine our aim presented in 

section 1.1, we study the loss of soil nutrients as a driving biophysical force, lead 

by economic driving forces and social agencies, in the transition of Mediterranean 

organic agricultures to industrial agriculture. Our time-period—circa 1920—is, in 

between the first and the second wave of the Socio-Ecological Transition 

(González de Molina 2010). Accordingly, lands were forced to yield with non-

existent or very low external entries of nutrients.  

In the previous chapter (Tello et al. 2012), we found that in the village of 

Sentmenat, of Barcelona province circa 1860, the nutrient flows were balanced for 

most of cropland area thanks to the variety and combination of nutrient sources. 

However, from historical sources we know that vines, as well as other wooden 
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crops such as olive groves were not fertilized at all. These typical Mediterranean 

non-irrigated wooden crops allowed annual harvests without fallow or fertiliser 

applications (González de Molina 2002).  

Although, in Catalonia vineyards could not be considered a monoculture 

(Garrabou et al. 2001a), its achearage grew continuously since the XVII century 

until it boomed, peaked and collapsed due to the grape phylloxera plague at the 

end of the nineteenth century. After that, vineyards were only recovered in those 

places where they were grown previous to 1850 (Badia-Miró et al. 2010; Badia-

Miró and Tello 2013). Notwithstanding, the post-phylloxera vines turned into a 

different crop that needed more inputs due to its shorter lifespan and its higher 

vulnerability to diseases such as downey or powdery mildew; hence they  started 

to be fertilized,  in all probability insufficiently. We do not know what happened 

since 1860 or in other areas of Catalonia concerning the fertility of soils, but 

everything points to a trend of soil nutrient deficiency, mainly concentrated in 

cropland such as those where vineyards were cultivated. This gives us a hint to 

interpret the results of the balances: surpluses will not be a concern for an 

environmental load at regional level (as it is currently for the area) and deficiency 

will be interpreted as a constraint to enhance or maintain cropland soil fertility. 

As we said above, scale, boundaries and data to build a nutrient balance depend 

on the purpose of the balance. Consequently, we followed the "Guidelines for 

Constructing Nitrogen, Phosphorus and Potassium Balances in Historical 

Agricultural Systems" (Garcia-Ruiz et al. 2012), as they coincide with our 

purpose and approach. They shown data sources and the difficulties in 

reconstructing nutrient balances for past organic agroecosystems and then applied 

them to a local case in the South of Spain. Notwithstanding, our calculations 

differ on some points. We lacked some of their starting data: the manure applied 

was unknown, so we estimated it through a series of steps shown in section 4.1. In 

addition, we decided to contribute to their proposal by calculating the N losses 

related to the application of fertiliser (denitrification, ammonia volatilisation and 

leaching) as we explain in subsection 3.4, we did this because we lack regional 

data.  

Finally yet significantly, two were the flows that we could not include in our 

accountings: entries by soil formation and nutrient losses by erosion of surface 

soil horizons. Although georeferenced data on bedrock and soils could be found in 

ICGC (Institut Cartogràfic i Geològic de Catalunya)
6
, the reconstruction of a 

                                                 

6
 http://www.igc.cat 
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detailed map to allocate each crop c. 1920 for the entire Catalonia was far from 

the scope of this study. Yet this omission would not affect significantly the 

balance: in Mediterranean regions weathering of the bedrock has low intensity 

(Garcia-Ruiz et al. 2012). Moreover, due to the habit of terracing the vineyards 

erosion values should be lower than those reported for olive groves in the South of 

the Iberian Peninsula (Vanwalleghem et al. 2011; Infante-Amate et al. 2013).  

3. Extractions 

3.1. Cropland area 

The report "Avance estadístico de la producción agrícola en España : resumen 

hecho por la junta Consultiva Agronómica de las memorias de 1922 remitidas por 

los ingenieros del Servicio Agronómico Provincial " (JCA, 1923) gives the most 

complete information of agricultural produce at province scale among all the 

reports  from the beginning of the twentieth century in Spain
7
. Even some of the 

crop types are disaggregated by Partido Judicial, which was the next smaller 

administrative division at that time.  

We grouped the crops described into 12 crop types (Table 5.3) to facilitate the 

analysis. By «Grain» we mean cereal and leguminous crops for grain production, 

we also split Grain between «irrigated» and «rainfed». This last category included 

all the non-irrigated crops, for instance cereal under dry-farming conditions, most 

vineyards, carob and olive trees or maize in the most humid areas. By «Forage» 

we refer to «praderas artificiales» a common term in Spanish statistics to name 

leguminous and non leguminous crops such as clover, alfalfa, rye, oat, sorghum, 

etc.  These are usually irrigated with aerial parts cut at one or more times when 

they bloom, these are used as fodder in its fresh form or as hay. Other crops, 

«Industrial» were strongly linked with local industry, such as hemp for fibres or 

sugar beets. «Rice», «Oranges» and «Hazelnut trees» were already known but 

new in the intensive way they started to be cultivated at the beginning of the 

twentieth century (Calatayud 2006). The rest of the categories coincide with those 

from the report.  

Fallow land was not included as a single category as the source used considered it 

as part of the rotations of rainfed Grain. Table 5.1 shows a high disparity between 

provinces, while fallows were almost half of the cereal land in Lleida, in Girona 

                                                 

7
 David Soto, Universidad Pablo de Olavide, personal communication. 
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they did not even exist. Although these numbers could have some logic, they 

seem rather extreme and we know from GEHR (1991) that Spanish fallow data 

was unreliable before1929. However, not having other data to compare with, we 

used them. Yields did not take into account fallow land; although we included it 

in total cropland area. 

Table 5.1. Fallow land area in each province. 

 Total fallow land «barbecho blanco and erial no permanente
8
» (ha) 

Barcelona 3,500  

Girona 0 

Lleida 149,000 (only 32% of it belongs to irrigated cereal and leguminous 

land, the rest is rainfed) 

Tarragona 340 

Source: JCA (1923) 

Nevertheless, the main challenge was not related to fallow but to the allocation of 

crop types due to the split of the province of Lleida into dry plain and Pyrenees to 

make it match with the regions described above. Some of the produce data 

(tomatoes, capsicums, plums, almonds, olive trees and vines) were disaggregated 

in JCA (1923) into Partido Judicial, a lower administrative unit that allowed us to 

differentiate between Plain and Pyrenees. The first cropland map for Spain was 

not published until 1933 (DGA 1933), it had low resolution and of course was not 

georeferenced (Figure 5.1c). Notwithstanding, it provided valuable information 

when we estimated the share of herbaceous crops (65 and 35% respectively). 

Moreover, with ―Medios que se utilizan para sumministrar el riego a las tierras y 

distribución de los cultivos de la zona regable‖ (JCA 1916), which reports the 

area irrigated by each waterway, we could estimate the location of irrigated land. 

The channels of Urgell, Aragón, Cataluña and Pinyana were the most important 

waterways from the Segre River to the plain of Lleida, together they covered 90% 

of the irrigated land in Lleida province.  

Forages were rotated with other crops, they were more common in the plains and 

mostly consumed within the province excepting alfalfa, which was sold to 

Barcelona or Tarragona to feed livestock used in industries (JCA, 1914). 

Consequently we considered a larger share in the Plain than in the Pyrenees (82% 

and 18% respectively), as always according to the shares of DGA (1933). We 

cross checked the total cropland area calculated in this way with the one we 

                                                 

8
 This was the original in Spanish. 
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calculated using the livestock census of 1917 (JCA, 1920). It reports total 

cropland together with total pastures and forests per Partido Judicial, and both 

sources coincided (see Table 5.3). According to this same source, the 84% of 

meadow, forest and scrub land of Lleida was in the Pyrenees. 

Table 5.2.Partidos Judiciales considered in each region of Lleida province 

Lleida Plain Lleida Pyrenees 

Balaguer 

Borges Blanques 

Cervera 

Lleida 

Seud‘Urgell 

Solsona 

Sort 

Tremp 

Viella 

Table 5.3. Our estimation of the cropland area of the two historical and 

climate differentiated areas of Lleida province 

 

Lleida 

Plain (ha) 

Lleida Pyrenees 

(ha) 
Source 

Irrigated grain 70,527 7,836 

DGA (1933) Rainfed grain 154,916 90,983 

Roots and bulbs 6,059 3,558 

Horticultural land 1,299 132 JCA (1923) 

Industrial 1,378 153 JCA (1916) 

Forages 16,134 10,756 
Adjusted according  all the 

data 

Olive trees 98,057 5,463 

JCA (1923) Vineyard 21,144 7,766 

Fruit trees 2,348 47 

Total 371,862 126,694 
 

Total cropland  using the aggregated 

ration from f JCA (1917) 
361,346 137,210 

 

Sources within the table. 

The land and cropland types of each region are represented in Figure 5.3. The 

total area of the Pyrenees is considerably smaller than the other two, with the 

highest share of forest but the same share of herbaceous crops per total area as 

Wet Catalonia. The near absence of permanent crops contrasts with the other two 

regions, where the area of permanent wooden crops is akin to herbaceous crops. 

Vineyards and olive groves were the main permanent crop; also, fruit trees were 
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important in New Catalonia. Unlike other parts of Catalonia, on the plains of 

Lleida province, 26% and 31% of olive groves and vineyard land were irrigated. 

However as the source did not specify respective yields, we could not make any 

distinction in Figure 5.3, yet we took these irrigated lands into account when 

accounting for nutrients added by irrigation. Other crop types where located in 

specific areas, hence the rice fields in New Catalonia were in the delta of the Ebro 

River. In addition, the horticultural lands in Old Catalonia were mainly 

concentrated in a belt around the cities of Barcelona and Girona.  

Figure 5.3. Total area and cropland distribution per crop type. 

  

 

 

Note: Fallow rotation is considered as Cropland-herbaceous and irrigated/rainfed grain according 

to the source. Source: JCA (1923) and to split the land data from the province of Lleida we used 

those sources specified in Table 5.3. 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Old CataloniaNew Catalonia Pyrenees

C
ro

p
la

n
d

 a
re

a 
(%

)

0

200000

400000

600000

800000

1000000

1200000

Old Catalonia New 
Catalonia

Pyrenees

A
re

a 
(h

a)



114 

 

 

3.2. Agricultural produce 

JCA (1923) registered edible parts of plants grown in horticultural land, legume 

and cereal grains, straws, aerial mass of forage plants, roots and tubers, fruits from 

trees together with wine and oil production
9
. Among the possible by-products, 

only winery and oil pomaces were fully registered. Prunings from vines and olive 

trees were included as well, either in monetary or weight units, but the amounts 

were clearly underestimated. This is due to the large area devoted to vines, overall 

in the province of Barcelona, which represents half of the total cropland (Figure 

5.3) branches could represent a salient export of nutrients from cropland. 

However, the well-documented uses of vine by-products (Daneo 1921; Soroa 

1929; Mestre and Mestres 1949) can be taken as a proof of its importance as feed 

for livestock or fertiliser (burned or buried fresh) in the same way as olive 

plantations (Infante-Amate 2011). We used the same estimations of annual 

pruning production asMarco et al. (forthcoming) see Table 5.4.  

Other important sources of nutrients in past organic agricultures were parts of the 

plants remaining in fields, such as the underground biomass and stubbles, together 

with weeds, particularly if they belonged to the leguminous family (Garcia-Ruiz 

et al. 2012). In this case, the scale was too large to lose ourselves in the details 

that vary from crop type to crop type, especially taking into account that they 

actually do not leave the cropland area. This decision involved underestimating 

the total N losses, as some should be attributed to the decomposition process.  

Table 5.4. Prunings and other woody produce. 

Wooden part Prunings and other woody produce (kg·ha
-1

) 

Fruit trees. Pruning  1,170 
Olive trees. Pruning 1,935.6 
Olive trees. Shoots 554 
Vine trees. Pruning 1,341.6 
Vine trees. Uprooted 360 
Vine trees. Vine shoots. 1,250 

Source: Marco et al. (forthcoming) 

  

                                                 

9
Different units were converted to tonnes. We asked current farmers from the province of 

Barcelona  for weight equivalences of certain orchard products expressed in units such as bunch or 

dozen.  
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3.3. Nutrient content of harvested biomass 

Previous studies dealing with nutrient balances in History for regions within the 

Iberian Peninsula (González de Molina and Guzmán 2006; Lana-Berasain 2010; 

Tello et al. 2012) used nutritional composition of produce types based on 

historical sources, mainly Soroa (1953). Whenever there was a lack of 

information, they used the composition of an equivalent product or completed the 

gap with data from current sources. The use of historical sources of nutritional 

values is problematic because data is often incomplete and/or lacking an 

explanation of the methods to obtain the values. Nevertheless, there are evidences 

showing that nutrient content of pre-industrial crops were higher, mainly due to 

two mechanisms that go together with the increase of yields. First, the so-called 

dilution effect, is due to the modification of environmental conditions such as 

increase of fertiliser, irrigation, etc., which leads to a decrease in the concentration 

of some minerals in dry matter (Jarrell and Beverly 1982). Some studies have 

shown this trend by comparing different historical nutrient databases, however  as 

from one database to another there is a number of uncontrolled variables and 

uncertainties, stronger analysis cannot be performed (Mayer 1997).  

The second one depends on the genetic characteristics of the more yielding new 

varieties, as Davis (2009:19) explains: ―In fruits, vegetables, and grains, usually 

80% to 90% of the dry weight yield is carbohydrate. Thus, when breeders select 

for high yield, they are, in effect, selecting mostly for high carbohydrate […] thus, 

genetic dilution effects seem unsurprising.‖ Hence, when growing low and high-

yielding cultivars for the same crop type with the same environmental conditions, 

the latter would have less concentration of nutrients. This was the case when a 

long straw variety of wheat was compared with a semi-dwarf wheat cultivar bred 

since the sixties in the Broadwalk experiment of Rothamsted (Fan et al. 2008). 

Although these are interesting and useful results, studies confirming genetic 

dilution are limited to the study case—a single crop type and a specific place—so 

a general trend cannot be identified: ―Results from the present study suggest that 

the Green Revolution has unintentionally contributed to decreased mineral density 

in wheat grain, at least following the Broadbalk Experiment.‖ (Fan et al. 2008). 

Coming back to our dilemma about using current or historical nutrient values, we 

resolved to use historical nutritional data from Soroa (1953). This data set has 

limitations since water content and sources are absent. These limitations are those 

from historical quantitative data: the source is unknown and if measurement were 

made, the instruments and techniques could be less accurate than the ones used 

nowadays. On the other hand, nitrogen content in plants is highly sensitive to 

fertilisers applications (Gauer et al. 1992). As in our case, synthetic fertiliser 
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applications were low, we therefore preferred to use this data instead of more 

accurate or new data. In addition, it would make our balance comparable to the 

previous ones cited above. When the nutritional data was not available in Soroa 

(1953), we used values from modern sources (see Annex 2.A). 

3.4. Nutrient losses (denitrification, ammonia volatilisation and leaching) 

Garcia-Ruiz et al. (2012) offered ranges for emissions of nutrients to the 

atmosphere or water bodies calculated or measured from their case studies at 

municipal scale. Nevertheless, as we used a broader scale, we decided to follow 

the methodology described in International Panel for Climate Change (IPCC 2006) 

for the emissions of nitrogen.  

The IPCC is the international body for the assessment of climate change. The 

United Nations Environment Programme (UNEP) and the World Meteorological 

Organization (WMO) established it in 1988. It works as a scientific body joining 

and assessing all the published data related to climate change, and then writing 

reports for commitment in the decision making process of the state members. So, 

the procedures described in the "Guidelines for National Greenhouse Gas 

Inventories"(IPCC 2006) are based on an extended literature review to quantify 

the greenhouse gases emissions from anthropogenic sources.  

Related to agriculture, the management of manure (in dry lots, pits, addition of 

other organic matter, etc.) and the management of agricultural soils (amount of 

manure applied, tillage, soil moisture, pastures, etc.) are the two groups of 

practices that release nitrogen in one form or another
10

. Among all the greenhouse 

gases that IPCC (2006) describes, our interest is in nitrous oxide (N2O). They 

called 'direct emissions' those that produce N-N2O and 'indirect emissions' (see  

Figure 5.4) those that produce gases that eventually raise the levels of 

tropospheric N (N-NH3, N-NOx and N-N2). By skipping the step that turns N-x 

into N2O we could account for total N emissions. 

 

 

 

 

                                                 

10
IPCC considers that emissions from unmanaged land are very low compared to those induced by 

anthropogenic activities. They consider that ―the so-called 'background'emissions estimated by 

Bouwman (1996) (i.e., approx. 1 kg N2O–N·ha
-1

·yr
-1

 under zero fertiliser N addition) are not 

―natural‖emissions but are mostly due to contributions of N from crop residue. These emissions 

are anthropogenic and accounted for in the IPCC methodology‖ IPCC (2006: 11.10). 
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Figure 5.4. Schematic diagram illustrating the sources and pathways of N 

that result in direct and indirect N2O emissions from soils and waters. 

 

Source: from IPCC (2006:11.8). 

Regarding the emissions of other nutrients, we did not take into account the P and 

K leaching losses included by the storage of manure due to the low rain averages 

at provincial level and, as we know from historical sources, farmers rarely 

moisturised manure heaps. P and K leaching would be significant, as some 

authors have reported (Michel et al. 2004)  with water doses higher than the 

rainfall in the regions studied.  

3.4.1. N emissions through storage 

Emissions from manure storage depend on the initial nitrogen and carbon content, 

the duration of the storage and its type of management. Direct N2O emissions 

occur via combined nitrification and posterior denitrification of nitrogen 

contained in manure. Nitrification is the oxidation of ammonia nitrogen to nitrate 
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nitrogen (Figure 5.4) and does not occur under anaerobic conditions. 

Denitrification is an anaerobic process transforming nitrites (NO2
−
) and nitrates 

(NO3
−
) to nitrous oxide (N2O) and dinitrogen (N2) (Figure 5.5). "There is general 

agreement in the scientific literature that the ratio of N2O to N2 increases with 

increasing acidity, nitrate concentration, and reduced moisture. In summary, the 

production and emission of N2O from managed manures requires the presence of 

either nitrites or nitrates in an anaerobic environment preceded by aerobic 

conditions necessary for the formation of these oxidised forms of nitrogen. In 

addition, conditions preventing reduction of N2O to N2, such as a low pH or 

limited moisture, must be present." IPCC (2006 10:52). 

Figure 5.5. Scheme of the oxidation and reduction processes of N 

 

 

"Oxidation–reduction levels of nitrogen in nitrate (NO3
− ) and ammonium (NH4

+
) ions and 

dinitrogen gas (N2) and the transformations between these important levels. Nitrite (NO2
−) lies at 

+3 in most pathways to and from nitrate but has been omitted for simplicity." from Loomis et al. 

(2011). Denitrification follows this sequence: NO3
−→NO2

−→ NO →N2O→N2.  

According to IPCC, indirect emissions of N2O, result from volatile nitrogen losses 

that occur primarily in the forms of ammonia (NH3) and nitrogen oxides (NOx). 

The mineralisation to ammonia nitrogen (N-NH3) of a fraction of the excreted 

organic nitrogen during manure collection and storage depends primarily on 

duration of storage, and to a lesser degree on temperature. However, simple forms 
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of organic nitrogen such as urea (mammals) and uric acid (poultry) are rapidly 

mineralized to ammonia nitrogen (NH3), which is highly volatile and easily 

diffused into the surrounding air from aqueous solutions in the form of 

ammonium (NH4
+
). These nitrogen losses begin at the point of excretion in houses 

and other animal production areas (e.g., milking parlours) and continue through 

the storage systems (IPCC 2006). Nitrogen is also lost through runoff and 

leaching into soils in the form of nitrate (NO3
−
) from the solid storage of manure 

at outdoor areas, in feedlots and grazing lands (IPCC 2006).   

Table 5.5. Management types that can match with the common practices of 

Catalonia in 1922. 

Dry lot A paved or unpaved open confinement area without any significant 

vegetative cover where accumulating manure may be removed 

periodically. Dry lots are most typically found in dry climates but also are 

used in humid climates. 

Deep 

bedding 

As manure accumulates, bedding is continually added to absorb moisture 

over a production cycle and possibly for as long as 6 to 12 months. This 

manure management system also is known as a bedded pack manure 

management system and may be combined with a dry lot or pasture. 

Solid 

storage 

The storage of manure, typically for a period of several months, in 

unconfined piles or stacks. Manure is able to be stacked due to the 

presence of a sufficient amount of bedding material or loss of moisture by 

evaporation. 

Pit storage Collection and storage of manure usually with little or no added water 

typically below a slatted floor in an enclosed animal confinement facility. 

Source: from IPCC (2006: 10.62-64) 

IPCC (2006) allows calculating denitrification, volatilisation and leaching from 

manure storage separately. Nevertheless, lacking specific data, we used the 

default values for all the aggregated nitrogen loss from manure storage (see Table 

5.6), which combines all the forms of nitrogen released as explained above. The 

common management type of manure in our area c.1922 could match with three 

categories of those described in the IPCC report (2006), while the common 

disposal of human faeces in cesspits could match with the fourth one (see Table 

5.5). 
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Table 5.6.Default values for total nitrogen loss from manure management 

 

Source: from IPCC (2006:10.65) 

Spanish agronomists at the time, used to describe the manure management 

systems as abandoned open air lots of manure where almost all nitrogen was lost, 

e.g.: ―Con esto se comprenderá que la mayoría de los estercoleros de la provincia 

son de los más rudimentario y primitivo. En algunos pueblos existen en medio de 

la calle. Por lo general en la mayoría de las fincas sólo aparece un espacio de 

tierra apisonada en donde se reúnen en un informe montón las deyecciones de los 

animales, las basuras y los deshechos de la granja, los orujos cuando su precio es 

bajo y todo cuanto no tiene una utilización directa.‖ (JCA 1920: 395). Therefore, 

we assumed the solid storage type as the most common practice, with an average 

of total nitrogen lost of 50%, ranging from 20% to 70% (Table 5.6). As losses are 

proportional to the N content, we used the average value of losses for all the cases. 

This is consistent with Loomis et al. (2011: 222), which calculated that 
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decomposition in manure heaps lead to an aerobic process resulting in 50% losses 

of the original N. In dry climates, these losses were due to the volatilisation of the 

entire N in the form of ammonia. The next step according to procedure from IPCC 

(2006) is to calculate the losses of N remaining in manure following its 

application on fields, together with those derived from the application of other 

fertilisers and other management practices such as tillage. 

In section 4.1 we obtained enough data to calculate the nutrients potentially 

applied through manure. However, to follow the methodology from IPCC (2006) 

it is necessary to separate between excrement and other materials in manure. The 

available data is for 'fresh' manure and never for excrements solely. This is so 

because to collect excrements and measure them agronomists needed bedding 

materials and some time to do it, thus some decomposition may occur. Not only 

do animal excrements have different compositions to bedding materials, they have 

different rates of nutrient losses, and that is why the methodology of IPCC argues 

to separate them. As we defined manure as livestock excrements plus other 

materials, to approximate the amount of excrements, we subtracted the weight of 

bedding materials and their nutritional composition is calculated in sub-section 

4.4, while the data of fresh manure is show in subsection 4.2. These together with 

night soils and other organic fertilisers are the ones that suffered from storage 

losses (Figure 5.6, 5.7 and Appendix 2.C). 

3.4.2. N emissions through land management 

Managed land releases N through nitrification, denitrification, volatilisation and 

leaching—the same processes that affect manure— whose main pathways are 

illustrated in Figure 5.5. In soils, the reactions of nitrification and denitrification 

produce naturally nitrous oxide (N2O), which ultimately is released to the 

atmosphere. Nitrification is the aerobic microbial oxidation of ammonium (NH4
+
) 

to nitrate (NO3
−
), and denitrification is the anaerobic microbial reduction of nitrate 

to nitrogen gas (N2) (Figure 5.5). The main limiting factor of these reactions is the 

availability of inorganic N in the soil.  

The methodology from IPCC (2006), estimates N2O emissions using human-

induced net N additions to soils (e.g., synthetic or organic fertilisers, deposited 

manure, crop residues, sewage sludge), or mineralisation of N in soil organic 

matter following drainage/management of organic soils, or cultivation/land-use 

change on mineral soils (e.g., Forest Land/Grassland/Settlements converted to 

cropland). In addition, as the processes of volatilisation, leaching and runoff also 

affect the level of N in soils, the IPCC (2006) methodology also accounts for 

these flows IPCC (2006: 11.5-6). Sources of N volatilised are not only from 
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fertilisers and from manures, but also include fossil fuel combustion, biomass 

burning, and processes in the chemical industry. The second pathway is the 

leaching and runoff from land of N from synthetic and organic fertiliser additions, 

crop residues, mineralisation of N associated with loss of soil C in mineral and 

drained/managed organic soils through land-use change or management practices, 

and urine and dung deposition from grazing animals. Where NO3
−
 is present in the 

soil in excess of biological demand, e.g., under cattle urine patches, the excess 

leaches through the soil profile (IPCC 2006: 11.20). 

Losses through land management are those resulting from the changes in soils due 

to anthropogenic interactions. These emissions relate to the application of 

synthetic and organic fertilisers, crop residues that remain in fields
11

, urine and 

dung depositions by grazing animals, mineralisation related with the change of 

land use and drainage of soils. For our study, we considered only the emissions 

related to the application of fertilisers in cropland by following the equation 11.1 

(IPCC: 11.7) for direct N-N2O emissions, i.e. denitrification. These means, like 

above, we followed the simplest methodology (the so-called Tier 1 in the 

guidelines of IPCC). Subsequently we did not consider different land cover, soil 

type, climatic conditions or more detailed management practices beyond that from 

the ones specified. Neither did we take into account any lag time for N direct 

emissions from crop residues, thus allocating these emissions to the year in which 

the residues are returned to the soil. The IPCC did not consider these factors 

because limited data are available to provide appropriate emission factors.  

The value of denitrification depends mainly on the factor EF2 (Table 5.7) that is 

multiplied by cropland area; however, it has a high range of uncertainty (2-24 kg 

N-N2O·ha
-1

). In a different study, Hofstra and Bouwman (2005) reviewed a large 

number of cases and found that denitrification rates were lower on land with 

lower application of N and good drainage, which could be our case. Moreover, 

cropland values, with a mean value of 15 kg N·ha
-1

 and a median of 5 kgN·ha
-1

, 

were different from those of grassland of rice-flooded fields, with medians of 4 

and 21 kgN·ha
-1

respectively. Due to the existence of exceptional cases, they 

reported the median as well as the mean. In addition, they even calculated a 

balanced median to correct unbalanced features of the data. The values were 

respectively: 3, 6 and 8 kg N·ha
-1

 and 17 for grassland, cropland, wetland rice and 

bare soil. So, in this case, following the recommendations from Hofstra and 

Bouwman (2005), we used a EF2 factor of 5. 

                                                 

11
IPCC (2006) does not take into account the biological nitrogen fixation process itself as a direct 

source of N emissions. Thus, the N incorporations of N fixing crops were treated in the same ways 

as crop residues.  
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Table 5.7. Default emission factors to estimate N-N2O emissions from 

managed soils. 

 

Source: from IPCC (2006:11.11). 

As this is the case at the beginning of the twentieth century, we did not take into 

account the indirect emissions produced by cars and industry, which actually were 

very important at the end of the century (Galloway et al. 2004). Therefore, 

indirect emissions in this case are due to volatilised and then re-deposited nitrogen 

together with leaching, only from agricultural sources. As before, the uncertainty 

ranges of the default values (see Table 5.8) given in IPCC (2006: 11.24) are too 

wide, so we corrected them according to the characteristics of our study case, 

which is explained below.  

In subsection 3.4.1 we already considered the maximum N losses by volatilisation 

in manure heaps, consequently we used the minimum value when applied to fields 

(Table 5.8). For dryland regions, where precipitation is lower than 

evapotranspiration throughout most of the year and leaching is unlikely to occur, 

the default FracLEACH (see Table 5.8) is zero. Thus, we should consider 

leaching from the fertiliser applied only in irrigated land. Nevertheless, by doing 
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so we would be exaggerating this value because c.1920 irrigation doses were 

minimal, just to avoid crop failure (see subsection 5.3), the exception being 

horticultural land. Accordingly, we only calculated leaching in horticultural land. 

Unfortunately, we did not know the amount of fertiliser applied per crop type, and 

had to make a preliminary estimation according to JCA (1921). 

The emissions due to land management are shown in Figures 5.6, 5.7 and Annex 

2.C, while the storage and crop management emissions per cropland area are 

summarized in Table 5.9. These values are next to the global broad averages that 

Smil (1999) calculated for denitrification, leaching and volatilisation from 

fertilisers, around 18-29.6 kg N·ha
-1

 all together. The main difference is that he 

gave more importance to leaching losses (10-15 kg N·ha
-1

) than us, which is 

consequent with the aridity of some regions of our case study. 

Table 5.8. Default emission factors to estimate N-N2O emissions from 

managed soils due volatilisation and leaching. 

Source: from IPCC (2006: 11.24) 

  



 

 

125 

Table 5.9. Total N emissions due to manure storage and managed land per 

cropland area in the three Catalan regions 

 

N kg·ha
-1

cropland 

Wet Catalonia 26.4±3.3 

Dry Catalonia 10.8±0.5 

Pyrenees 10.5±2.1 

Source: our own. 

4. Addition 

4.1. Manure 

Some authors have estimated the amount of manure applied to Spanish cropland 

in previous studies. Gallego (1986) made an estimation of manure applied for the 

entire Spain and Simpson (2003) made an approximation by calculating livestock 

densities. However we preferred not to extrapolate these data because live weights 

and manure management varies from one region to another. Moreover, livestock 

type influences the nutrient content of manure. Therefore, we preferred to do our 

own estimation.   

In the report ―Materias fertilizantes empleadas en la agricultura‖ (JCA, 1921), 

provincial engineers of the state quantified the amount of any kind of material 

applied to agricultural soils in 1919. The amount of manure applied to fields is 

quantified by estimating the manure available per province, but the engineers who 

wrote the information did not indicate how they made these estimations. We have 

some reason to doubt its credibility for the provinces of Catalonia (see Table 5.10). 

First, the amount of manure for Barcelona province described in the annex is one 

order of magnitude higher than the one described in the text of the report. Second, 

according to the annex, manure production in Girona province is clearly 

underestimated as it had the highest livestock numbers (Table 5.13). Third, the 

numbers for Tarragona were so low that they were unbelievable.Our own 

estimation is compared with the JCA (1921) and shown in Table 5., the procedure  

for our estimate is described in the next subsections. 
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Table 5.10 Available manure for the four provinces of Catalonia, a 

comparison of data in  JCA ( 1921) with our own estimations . 

 According to the table from the 

annex (t)a 

According to the text 

(t)a 

Own estimation 

(t) 

Barcelo

na 

1,154,350 347,823 1,001,352±150,1

13 Girona 600,000 579,760 1,470,917±245,1

87 Lleida 977,451 -- 1,267,349±186,8

38 Tarrago

na 

4,160 -- 288,418±59,925 

 
The available manure of Barcelona reported in text differs from the value provided in the Annex of 

the same report. The numbers of  Girona and Tarragona of the first column are too low given the 

livestock numbers shown in Table 5.. Source: a JCA (1921) and b our own elaboration explained 

in text. 

4.1.1. Livestock numbers 

Data on livestock numbers (Table 5.12) are from the livestock census closest to 

1922, which is that of 1924 (MF, 1924). However, this census is very simple and 

it does not disaggregate livestock types nor give live weights. To solve this lack of 

data, we used the averaged live weights for the provinces from the next closer 

livestock census of 1917 (JCA, 1920), which had a higher level of detail and is 

even disaggregated by Partidos Judiciales. The averages of live weights per 

livestock type described are in Table 5.11. 

Table 5.11.Live weights (kg·head
-1

) in 1917 without corrections. 

 

donkey horse goat swine mule sheep cow 

Barcelona 170 301 35 97 251 34 500 

Girona 414 361 50 64 288 39 327 

Lleida 245 372 50 73 332 38 369 

Tarragona 300 350 40 150 350 24 550 

Average 288 346 44 96 305 34 437 

Source: JCA (1920) 

Notwithstanding, we have reasons to think that some of the numbers presented in 

the census are not correct due to the exaggerated average weights of donkeys and 

cows. When cross-checking the live weights per Partido Judicial we found some 

unreliable data in the census and we discarded them, e.g. we found gigantic 2.5 t 

donkeys in La Bisbal (Girona). In addition, we found that the data provided by the 

agronomist from Tarragona was not accurate: he used the same weight for every 
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Partido Judicial and for the cases of donkeys, swine and cows values are so high 

that increased the total average. Provably he used the weight averages of adult 

animals to fulfil the survey, but adults are far from composing livestock 

populations only. Therefore, we substituted the values for Tarragona with the 

average of the other three provinces. See the changes in Table 5.12. 

Table 5.12. Average of live weights (kg·head
-1

) in 1917 corrected. 

 

donkey horse goat swine mule sheep cow 

Barcelona 197 301 34 98 252 38 470 

Girona 251 360 50 64 299 39 325 

Lleida 241 387 50 71 335 38 406 

Tarragona 230 350 40 78 350 35 400 

Average 230 350 44 78 309 38 400 

Source: JCA (1920). 

Table 5.13. Livestock numbers (head) for Catalan provinces 

 

donkey horse goat swine mule sheep cow total 

Barcelona 9190 37760 48526 103948 13367 121317 23348 357456 

Girona 4207 24658 35806 131901 15178 257577 64690 534017 

Lleida 31451 11436 46799 68486 38256 278379 44554 519361 

Tarragona 5609 4479 23855 55656 7930 21796 1659 120984 

Source: MF (1924). 

As an overview, we calculated the livestock densities per cropland area (Table 

5.14), where the highest values being in Girona seek an explanation. Besides 

being on average, the rainiest of the provinces, the settlement pattern allowed the 

breeding of livestock, as each masia had typically some area devoted to forest or 

pastures. In addition, in the mountain areas, where there were no masies, the 

existence of larger areas of pasture gave the opportunity to raise cattle at a greater 

scale. Moreover, the first decades of the twentieth century brought an increase in 

crop intensification and in the growth of legumes such as sainfoin and alfalfa to 

produce hay. Even the census of 1917 describes the situation of the livestock 

production in the province of Girona in terms of prosperity: "la industria 

ganadera revista verdadera importancia en la provincia, encontrándose 

actualmente en estado de gran prosperidad bajo el punto de vista industrial, ya 
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que a las favorables condiciones de producción y alimentación con que se cuenta, 

van unidas las económicas por la demanda de sus productos en los diferentes 

mercados" (JCA, 1920: 265).  

This is the opposite described for Tarragona province: "Es tan escasa la 

importancia de la ganadería en esta provincia que puede considerarse figurando 

en uno de los últimos lugares entre las de España, a causa de que sus condiciones 

agrológicas favorecen los cultivos en tal forma que ocupan la mayor parte de las 

tierras cuya superficie es laborable." (JCA, 1920: 217). In other words, Tarragona 

lacked the pastures to maintain big livestock, which were concentrated in the 

Delta of the Ebro River to work on rice fields. Sheep and goats where spread 

around the province, using the leaves of vineyards and cereal shoots as feed.  

The situation of Tarragona was similar to the plains of Lleida, where the low 

livestock numbers were used as draft animals. In the Pyrenees the small ratio 

cropland/pasture allowed more livestock densities. In the centre of the province of 

Barcelona swine, raised for the meat industry, were the dominant livestock. 

Horses and mules were important as a labour force in the areas with more 

industry. The groups of goats sparsed in the surrounding forest areas of the city of 

Barcelona were of some importance as their milk was sold to the city 

"constituyendo pequeña industria rural"(JCA, 1920: 181).  

Table 5.14. Livestock densities for 1917 and 1924 in the four provinces of 

Catalonia 

 

a
Livestock 

densities 1917 

b
Livestock 

densities 1924 

Barcelona 17 40 

Girona 72 85 

Lleida 19 24 

Tarragona 13 9 

Note: densities are in Livestock Units of 500 kg · km
-2

 of cropland. Source:
 a

 JCA (1920) and 
b
 

JCA (1920) for live weights, MF (1924) for livestock numbers and JCA (1923) for cropland area. 

Obviously, the livestock densities were not homogenous within the provinces. The 

census of 1917 which disaggregates by Partidos Judiciales shows the dramatic 

concentration of livestock per cropland area in the one that included the city of 

Barcelona (188 LU500kg·km
-2

 cropland). If it had been taken separately, the rest 

of the province would have had an average livestock density of 14 LU500kg·km
-

2
cropland. The comparison between the two years denotes a dramatic increase of 
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livestock density in the Barcelona province. There, the number of heads of 

livestock increased rapidly, especially draft livestock, i.e. mules and horses, which 

almost doubled. If this was due to the increase within the city of Barcelona or in 

other places of the province is something that we cannot know from the 1924 

census.   

4.2. Manure production 

The next step was to estimate the manure produced by livestock. Probably the best 

way to do it would be through diets and livestock produce (e.g. milk, meat, etc.), 

making a material balance of the livestock subsystem, which would give more 

complexity to the balance. It is not by chance that the integration of livestock 

management with the management of both cropland and uncultivated land is the 

main key point to close the nutrient balance at a local scale. Some examples of 

livestock diets are described  in the census of 1917 (JCA, 1920). More examples 

can be found in the book ―Alimentación de los animales‖ (Rossell i Vilà 1929), 

written by a well-known Catalan veterinarian of the time, Pere Màrtir Rossell i 

Vilà. His book  was based on the ―Scientific feeding of animals‖ (Kellner, 1915 

[1909]) by the German agronomist and livestock nutritionist Oskar Johan Kellner. 

However, these reports show diets that refers to 'good practices', which were not 

necessarily followed `in practice´. To confirm if these recommended diets were 

reliable using the local means we would have to estimate the produce of pastures, 

control for the migrating of livestock and verify the livestock produce. Similar to 

our calculations with straw (subsection 4.2), we could calculate if the produce of 

forage and feed was enough to fed livestock at least at the Catalan level, and then 

estimate or find trade data of feed and hay. However, this would be a titanic task 

for this paper and therefore, we left it for upcoming research. The following steps 

describe the process we followed to calculate the production of manure.  

José Cascón Martínez was a well-known Spanish agronomist at the beginning of 

the twentieth century, who specialised in the cultivation of Castillian rainfed 

cereals. In his book ―El estiércol y la alimentación animal‖ (Cascón 1918) he 

measured the amount of fresh manure as well as the bedding materials for the 

years 1909 to 1915. He studied four livestock types: horses, sheep, bovine and 

swine (Table 5.15); all from the experimental farm (Granja Agrícola de Palencia) 

of which he was director. He did not measure the animal faeces outside of the 

barn i.e. when working on fields or pasturing; so he measured the potential 

available manure that could be collected and applied onto croplands.  

Despite his accuracy, these numbers could not be generalised for the province. He 

warned here and there in his text that, unlike the farms of the area, his livestock 
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was well fed and housed at night all year long. Yet, his data is especially useful 

because he gives the production per live weight, thus allowing us to adapt the 

coefficients to the average sizes of each province. The productions of manure that 

another well-known agronomist, Jose María de Soroa, describes in his 

"Prontuario del agricultor y del ganadero" (Soroa 1953) were based on these 

coefficients from Cascón (1918), so it seems a good starting point.  

Table 5.15.Daily coefficients of manure (beds included) production and 

bedding material 

 Manure (kg·day
-1

·kg live weight
-1

) Bedding material (kg bed·kg manure
-1

) 

horse 17.7 0.18 

cow 18.3 0.22 

sheep 27.7 0.16 

swine 27.0 0.24 

Source: Cascón (1918)
12

. 

These coefficients, applied to the available live weights for Catalonia: 

Table 5.16. Daily manure (beds included) production (kg·day
-1

·head
-1

) of 

every livestock type in Catalonia, based on weights of the four provinces. 

 

 (kg·day
-1

·head
-1

) 

  Cows and oxen 20.1 

  Horses 17.0 

  Mules 15.0 

  Donkeys 11.1 

  Sheep 3.3 

  Goats 2.9 

  Swine 5.7 

  Source: Cascón (1918) and (JCA 1920)
13

. 

                                                 

12
Cascón (1918)presented his results twice in his book, one disaggregated (p. 107-110) and the 

other  aggregated (p. 69-70). Although both are of the same order of magnitude, using the 

disaggregated value we did not get the same value that he presents as aggregated. Therefore, we 

assumed that he made an operation error and hence we used his disaggregated values. 
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As mentioned, manure production depends on diet and livestock type, which were 

far from standardised at the province level. In addition, as one would expect, the 

amounts of bedding materials had great variability too. The numbers that Cascón 

(1918) provided are probably the most accurate Spanish source for the beginning 

of the twentieth century. Moreover, they represent the best practices at the time, 

which were not common. As he stated when referring to other farms of the 

province of Palencia: ―las condiciones son tan diferentes en la casi totalidad de 

las fincas, que habría necesidad de reducir estas cifras lo menos en un 90 por 100‖ 

(Cascón 1918: 68). In Palencia, the lower influence of the sea strengthens the 

continental climate. Moreover, its landscape together with the composition of 

livestock numbers was different from the ones of our studied provinces, except for 

the plain of Lleida. Notwithstanding the common practices of farmers, which vary 

locally. This is why we thought that applying his 90% difference as a rule of 

thumb could be too much for our case studies.  

However, what is manure? Moreover, what is fresh manure? Actually, ―manure‖ 

is an ambiguous product; it is the result of a certain degree of fermentation of 

animal excrements mixed up with certain amount of other materials. The degree 

of fermentation is, when described, imprecise: mature, medium decomposed, re-

decomposed, good manure, fresh, etc. are some of the words that  agronomists 

from who we took the information used to describe manure; and water content is 

not always specified. Those ―other materials‖ could be straw and whatever 

vegetable products coming from cropland or from uncultivated land, but could 

also be waste from industries, e.g. tannery, or even faeces from other species 

(humans included) as well. Everything was allowed in the manure heap, and 

practices varied from farmer to farmer.  

All this was happening at such a disaggregated level that it was impossible to 

cover it within the provincial or regional scope. Manure was the key point of the 

balance so whatever affecting significantly manure would affect significantly the 

balance. At this point, we asked ourselves if it was useful to use only the 

measurements that one author made at his farm, even though he was the best of 

his time. Hence, to capture the potential variability, we averaged the production of 

manure from other authors of the time (see Marco et al. (forthcoming)). The 

values estimated from Cascón (1918) are between those ranges (Table 5.17).  

  

                                                                                                                                      

13
We used the coefficients of horses, for mules and donkeys; and the coefficient of sheep, for goats. 
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Table 5.17. Averages of manure production of each livestock type 

 

Sources: Cascón (1918) and JCA (1920) corrected; references included in Marco et al. 

(forthcoming): Aguilera 1906; JCA 1892; Loomis, Connor, and Cassman 2011; Van Slyke 1932.  

The total amount of manure potentially applied to the cropland of each region is in 

Table 5.18. According to agronomists of the time, the required amount of semi-

decomposed manure applied to soils should be between 5-6 t·ha
-1

; or 6-7.2 t·ha
-1

 

of fresh manure (Llorente and Galán 1910). Only Old Catalonia had been able to 

apply this amount of manure.  

The differences among regions were the consequence of the livestock numbers. 

The disequilibrium between a plain with low livestock numbers together with big 

cropland area and the Pyrenees with higher livestock densities and less cropland 

area than pastures was already known: ―[...]mientras en la zona pirenaica, 

esencialmente  ganadera, el cultivo ocupa poca extensión, en el resto de la 

provincia aumenta éste siendo menor el numero de cabezas de ganado. De esto se 

deduce que la producción de estiércol es insuficiente para las necesidades del 

cultivo, aumentando el deficit las malas prácticas que se emplean en su 

preparación y conservación, y el descuido o completo abandono en que se tiene 

hasta el momento de incorporarle al terreno.‖ (JCA 1921: 380). 

Table 5.18. Estimation of the potential amount of manure (beds+excrements) 

applied to cropland area 

 

Manure 

(t·ha
-1

) 

Old Catalonia 7.04±0.82 

New Catalonia 2.15±0.13 

Pyrenees 5.22±0.84 

. Source: JCA (1923), MF (1924) and explanations in text. 

Livestock type   Manure (kg·day
-1

·head
-1

)  

Cows and oxen 27.4±7.3  

Horses 20.1±4.9  

Mules 17.3±3.7  

Donkeys 8.9±2.4  

Sheep 1.9±1.1  

Goats 1.6±1.1  

Swine 7.0±2.8  
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4.3. Bedding material 

As far as we know, beds were made mostly from straw, although other materials 

could have been used. To estimate whether the coefficients of Cascón (1918) were 

pertinent to our case, we looked for the straw from cereals and leguminous crops 

produced at the province level (JCA 1923). Some of the quantities reported 

produced a straw/grain ratio too low or too high. Therefore, we corrected these 

ratios before calculating the total production of straw showed in Table 5.19.  

Table 5.19. Bedding material required compared to the straws produced 

 

Straws required (kt·y
-1

)
a
 

Straws produced  

(kt·y
-1

)
b
 

Straws required reduced  a 40%  

(kt·y
-1

)
a
 

 

Barcelona 203±32 157 101±16  

Girona 306±52 156 152±26  

Lleida 251±37 278 125±19  

Tarragona 60±14 203 30±7  

Source: 
a
our own calculation from Cascón (1918) and 

b
 JCA (1923). 

The impossibility, except for the case of Tarragona, to follow the coefficients 

proposed by Cascón (1918) drove us to conclude that his numbers were only 

possible at experimental level. Maybe he was not so misguided when he said that 

the amounts of manure that could be collected in the other farms were 90% less. 

He stated in his book that it was common to use insufficient bedding material or 

even not use it at all: ―se observa la falta de camas en todos los locales donde se 

albergan los ganados; la no renovación de las mismas […]la mayor parte de los 

ganados, sobre todo los de renta, duermen en cobertizos, durante el tiempo frío, 

sin más cama que el terrizo desigual de los mismos, por cuyo abandono se 

pierden la mayor parte de las deyecciones líquidas de los animales, con 

perjuicios para los mismos, por las emanaciones continuas, y en cuanto a las 

sólidas, quedan también en condiciones de aprovecharse lo menos posible.‖ 

(Cascón 1918: 52).  

Nevertheless, he pointed out that it was not a matter of straw scarcity but a lack of 

the habit to use it whenever it was available: ―en los años de abundante cosecha, 

la paja sobrante, que no ha encontrado mercado, se abandona en el campo en 

grandes montones para que se pudra a fuerza de tiempo y de la acción de los 

agentes atmosféricos, especialmente del agua, con unas pérdidas en peso que no 

bajarán seguramente de los 2/3 del peso inicial. Esta paja debiera aprovecharse 
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para camas y en el momento en que estuviera empapada por los orines del 

ganado conducirla al estercolero, con lo que se mejoraría el estiércol producido 

y se reducirían al mínimum las pérdidas en peso.‖ (Cascón 1918: 54-55). 

As it was impossible to know straw use data at provincial level, we built an 

approximation by modifying the coefficients from Cascón (1918), which is the 

only reliable source that we have. We allowed for the trade of straw between 

provinces—although we did not have data to reallocate the surplus of straw from 

one province to the other. It is needless to say that straw was not only used for 

animal bedding, but by reducing by 40% the coefficients from Cascón (1918) the 

average consumption of straws by province results in less than100 % ( Table 5.19).  

We obtained the chemical composition of the straws produced in each province 

(see Table 5.20) by using the coefficients of Soroa (1953). 

Table 5.20. Nutrient composition of all straws produced within the provinces 

in 1922 

 

N (%) P (%) K(%) 

Barcelona 0.70 0.11 0.80 

Girona 0.55 0.13 0.82 

Lleida 0.56 0.11 0.75 

Tarragona 0.55 0.11 0.66 

Source: JCA(1923) and Soroa (1953). 

4.4. Nutrient composition of manure 

We found in the literature an extended list of compositions more or less complete 

that could match the livestock type of the time, thus lengthening the one from 

Lana-Berasain (2010) (Annex 2.B). We found historical data of manure 

composition averages for all livestock types mixed, and some information for 

manure composition per livestock type, only a few were specified e.g. calves, 

work oxen, breeding piglets, milk cows, etc. We selected the composition of 

manure per livestock type and discarded the values that were too high or too low, 

and as above, calculated the averages (Table 5.21).  

The highest variability was of cow and oxen, which is not a surprise if we take 

into account the various specialisations (work, milk or meat) which is higher than 

other livestock types. In addition, specialisation involves very different diets, 

which was already occurring in the first decades of the twentieth century in Spain 
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(JCA, 1920: 475). This caused higher standard deviations in the Pyrenees due to 

the high number of cattle in pastures (see Annex 2. C). The average for all 

livestock types together were coherent with the ones that Gotaas (1956) reported 

as average for stable manure at fresh state: 70-80% moisture, 0.3-1.9% N, 0.1-

0.6% P2O5 and 0.3-1.2% of K2O. Also with those adopted by Gallego (1986) 

0.62%N, 0.27% P2O5 and 0.63% of K2O. 

Table 5.21. Average values of nutrient composition of manure 

Average manure type 

N 

(% fresh weight) 

P 

(% fresh weight) 

K 

(% fresh weight) 
Water (%) 

Cows and oxen 0.60±0.25 0.13±0.06 0.53±0.43 72.91±14.00 

Horses and other 

from horse family 
0.60±0.05 0.12±0.01 0.46±0.12 70.25±7.09 

Sheep and goat 0.89±0.18 0.16±0.08 0.46±0.10 64.33±4.04 

Swine 0.52±0.08 0.15±0.05 0.38±0.10 80.17±5.78 

 Source: see Annex 2.B. 

5. Non-manure but organic nutrient sources 

5.1. Rainfall or deposition 

 To analyse this, we followed the guidelines of Garcia-Ruiz et al. (2012) and  

looked for values from an area of lowpollution. Probably, the best known 

sampling site known to ecology scientists for this in Catalonia is La Castanya. La 

Castanya valley (altitude 700 m a.s.l.), central to the Montseny massif, is a 

topographically sheltered position from the polluted air masses from the 

Barcelona conurbation, and removed from local pollution sources.‖(Rodà et al., 

2002: 206). From 1983 to 1999 these authors measured a yearly wet deposition of 

5.67 kg N·ha
-1

 (N-NO3
-
 and N-NH4

- 
of 2.71 and 2.96 respectively), with an 

average yearly precipitation of 929 mm. They considered these values as 

moderate, so although La Castanya is sheltered topographically and relatively far 

from direct influence of cropland or roads, it still receives some anthropogenic 

influence in the form of N deposition. The total deposition was 14.8 kg N·ha
-1

 

after dry deposition was added, which is a value that can have adverse effects in 

Mediterranean type ecosystems (Rodà 2002; Avila et al. 2009). Rodrigo (1998) 

measured wet deposition of  N-NO3
- 
, N-NH4

-
, P-PO4

3-
 and K

+ 
as 27.9 (±2.3), 31.9 

(±3.4), 1.03 (±0.12) and 3.45 (±0.42) µeq/L during the  year (1995-1996); with a 

precipitation of 1275 mm (Rodrigo 1998: 60), the values per ha were the 

following: 
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Table 5.22. Deposition values for La Castanya base 

 N-NO3
-  (kg·ha-1) N-NH4

- (kg·ha-1) P-PO4
3- (kg·ha-1) K+(kg·ha-1) 

La Castanya 4.71 5.34 0.246 1.70 

Source: Rodrigo (1998: 129-132). 

The groundof La Castanya is located in a place with an exceptional high annual 

precipitation compared to the average of the provinces (see Table 5.23). Garcia-

Ruiz et al. (2012) estimated N, P and K depositions of 3.48, 0.61 and 3.0 kg·ha
-1

 

respectively for an area with an annual rainfall average of 640 mm, like Barcelona 

province. Therefore, we corrected the values from La Castanya by the 

precipitation averages of each province see (Table 5.23). Values of N were still 

higher than the ones of Garcia-Ruiz et al. (2012), whereas P and K were lower. 

We found even lower values in Holland et al. (1999), who attribute pre-industrial 

N deposition levels of 0.43 kg·ha
-1

·y
-1

 (0.07-0.60) and 0.67 kg·ha
-1

·y
-1

 (0.19-1.12) 

to Mediterranean scrubland and xenomorphic forest/woodland respectively. These 

latter were the values used in the previous chapter (Tello et al. 2012). However, 

Holland et al. (1999) did not take into account pre-industrial cropland areas but 

potential natural vegetation only, which could explain why their values are so low. 

Lacking other criteria, we used data from Table 5.23. 

Table 5.23. Average wet deposition corrected by precipitation averages 

(1921-2000) 

 

N-NO3
- 
 

(kg·ha
-1

) 

N-NH4
-
 

(kg·ha
-1

) 

P-PO4
3- 

(kg·ha
-1

) 

K
+ 

(kg·ha
-1

) 

Precipitation Average 

(1971-2000) (mm) 

Barcelona 2.36 2.68 0.12 0.86 640 

Girona 2.68 3.03 0.14 0.98 724 

Lleida 1.36 1.54 0.07 0.50 369 

Tarragona 1.86 2.11 0.10 0.68 504 

Huesca(Pyrenees) 1.98 2.24 0.10 0.72 535 

Source: Rodrigo (1998) and Agencia Estatal de Meteorología en España (2014). 

5.2. Free fixation 

Following the Broadbalk experiment in Rothamsted in United Kingdom 

(Rothamsted Research 2006), Goulding (1990) suggested that N free fixation 

could have a range of 5-10 kg·ha
-1

. Berry et al. (2003) used the lowest value of 
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this range to calculate the N, P and K budget values in nine organic farms in 

United Kingdom. However, (Loomis et al. 2011) suggested a lower range of 1-5 

kg·ha
-1 

because bacteria need anaerobial conditions, which in  turn requires wet 

conditions and this is not the case in our area. As a matter of fact, Tello et al. 

(2012) and Garcia-Ruiz et al. (2012) used values between this range: 4 kg·ha
-1

 or 

even less according to tillage intensity for his study case in the South of the 

Iberian Peninsula. 

5.3. Irrigation 

Similarly, Garcia-Ruiz et al. (2012) stated that contributions of nutrients dissolved 

in water for irrigation could be approximated by concentrations in current 

unpolluted streams nearby the case study site. Lacking data of unpolluted streams, 

we collected a 10-year average data set from fountains in unpolluted areas of each 

province from the ACA14 online database (Table 5.24). The values were similar to 

those considered in Garcia-Ruiz et al. (2012) 2.0, 0.05 and 2.0 mg of N, P and K· 

L
-1

. The highest values were for Tarragona, but as it is located at the end of the 

Ebro River basin, and is the second longest river of the Iberian Peninsula, average 

values higher than the other provinces could be acceptable. 

We assumed that intensities of water use by crop type would match on average, 

with those reported in ―Medios que se utilizan para sumministrar el riego a las 

tierras y distribución de los cultivos de la zona regable‖(JCA1916). This report 

quantifies irrigation at province level per hectare of crop type. At that time, 

irrigation, with the exception of horticultural land, was only ―support‖ irrigation. 

Water inputs were the minimum doses just to avoid the failure of the crop, e.g. 

irrigated wheat was watered twice along all the crop´s lifespan (JCA 1916). In 

Figure 5.6,5.7 and Annex 2.C, we applied the irrigation doses to the cropland 

areas described in 1922 (JCA 1923). Barcelona however, had such high values 

due to the large area of horticultural land. 

  

                                                 

14
AgènciaCatalana de l’Aigua, is a public entity considered the hydraulic authority in Catalonia. 
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Table 5.24. Ten year average data from fountains in unpolluted areas of each 

Catalan province 

Province N (mg·L
-1

) P (mg·L
-1

) K (mg·L
-1

) 

Barcelona 2.96 0.04 2.01 

Girona 2.07 0.09 1.05 

Lleida 1.32 0.03 0.83 

Tarragona 4.41 0.03 3.06 

Averages from ACA website. http://aca-web.gencat.cat/sdim/visor.do [last accessed April 2013] 

5.4. Symbiotic fixation 

Atmospheric N is fixed via symbiotic association between leguminous plant roots 

and bacteria from the Rhizobium genus. According to Loomis et al. (2011): 

"There are a range of methods, some ingenious but none entirely satisfactory, for 

determining the amounts of N fixed by legume crops", therefore it is a matter of 

choosing a method, and we used the one provided by Garcia-Ruiz et al. (2012). It 

uses the share of the plant N content which corresponds to N fixed (aerial parts 

and roots); the share of the total plant N content that corresponds to the roots and 

the share of the total plant N fixed that is settled into the soil (rhizodeposition). As 

our case study could be considered mostly belonging to Mediterranean climate we 

used 60, 38 and 18 % respectively (Garcia-Ruiz et al. 2012), which is to multiply 

by 1.14 the N content of the productions of leguminous crops from JCA (1923).  

The results were reasonable, as they ranged between 98.2-163.6 kg·ha
-1

 for the 

four provinces, which are between the most common ranges of symbiotic fixation 

observed (Loomis et al. 2011). This procedure was particularly useful to us, 

because we only had aerial biomass production data (grain plus straws or fresh 

forage depending on the crop). In the balance (Figure 5.6, 5.7 and Annex 2.C)  we 

took into account the flow of total N fixed, and once the aerial parts harvested was 

subtracted, the N fixed that remained in soil were those  of roots and 

rhizodeposition. 

Growing leguminous plants in order to bury them when they are flowering (so 

they do not create grain) has been widely practiced in Mediterranean climates and 

is commonly known as 'green manure'. Although this practice can have an effect 

in the mobilisation of other soil nutrients, we only took into account the net gain 

of nitrogen. Beyond fertilisation, green manure has positive effects on the 

biological activity in soils, as well as the control of weeds and plagues (Guzmán 

and Alonso 2008). Green manure crops are grown between crop rotations or 
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between the rows of trees on plantations. In the Mediterranean they used to be 

planted in fall and harvested in spring (Guzmán and Alonso 2008).  

Although there were leguminous crops planted in 1922, it is not clarified whether 

they were used as green manure. Moreover, it is probable that the area 

corresponding to green manure would have been hidden by summer cereal 

productions, fallow land or simply not reported in JCA (1923). However, the 

engineers of JCA (1921) estimated the area devoted to green manure, which 

differed from one province to the other (see Table 5.25).  

Table 5.25. Estimated area of green manure 

 

Total 

cropland 
a
 

(ha) 

Green 

manure area 
b
 

(ha) 

Green 

manure 

area (% of 

cropland) 

Yield as in 
b
 (t/ha) 

Yield 

corrected 

(t/ha) 

Barcelona 219,038 4,000 
  

1.83 4.00 12.95 

Girona 132,075 10,000 
  

7.57 10.90 10.90 

Lleida 498,556 650 
  

0.13 15.00 15.00 

Tarragona 289,357 540 
  

0.19 0.03 12.95 

Source: a JCA (1923); b JCA (1921). 

As said above, green manure is cut before the plant grains and buried into the soil. 

As it never goes out from the fields, it is very difficult to find averages of the 

production and composition of the aerial part cut and buried. According to 

qualitative descriptions (JCA 1921), any leguminous plant could be used as green 

manure, but we do not know them quantitatively. As shown in Table 5.25, only 

the yields described for Girona and Lleida were between the ranges of other 

leguminous crops harvested as fresh forage. Therefore we used the produce 

average of these two provinces to estimate the yields for the other two provinces. 

According to Soroa (1953) the N content in the fresh aerial part of leguminous 

crops is between 4.3 and 7.8 g·kg
-1

 so we used the average  of  6.1 g·kg
-1

 for all 

provinces. 
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5.5. Humanure
15

 

A number of sources recognise the use of human faeces at some degree of 

composting from human settlements where cesspits were used for disposal of 

human faeces. This was a common situation in Catalan villages, even for cities 

like Barcelona that were waiting for the renewal of their sewage system as 

proposed by García-Faria (1893). When discussing the awareness of farmers in 

replenishing nutrients from the soil, Cascón (1918), from his experimental farm in 

Palencia, praises the Catalan farmers because there were known to use human 

faeces as fertiliser.  JCA (1921) quantifies the night soils used in Catalonia and 

gives details about how cesspits from Barcelona were emptied and then how 

human faeces were treated and transported to be sold to the farmers of the coastal 

horticultural land surrounding Barcelona to cultivate vegetables that were 

eventually sold to Barcelona. This kind of nutrients recirculation from city to 

fields has been also reported by several other cases, also at the beginning of the 

twentieth century (Ellis and Wang 1997; Kimura et al. 2004; Billen et al. 2007a; 

Billen et al. 2007b; Kimura and Hatano 2007). It even was recommended by 

engineers at the beginning of the twentieth century such as King (1911) and the 

Spanish García-Faria (1893).  

Pedro García Faria was an engineer and hygienist of the Spanish state during the 

end of the nineteenth and twentieth century. In 1893 he finished the "Proyecto del 

subsuelo de Barcelona, Alcantarillado-Drenaje-Residuos urbanos" (García-Faria 

1893). Beyond designing a new sewage system and an urban residues collection 

system, he collected data of the dead for a period of ten years, sorting them by 

neighbourhoods and illnesses. With this data he wanted to justify the urgent 

reforms that the sewage system of Barcelona city needed. He resolved the final 

disposal of humanure by dumping it in fields next to the agricultural lands of the 

Llobregat River delta, on the outskirts of the city. His objective was to make a 

controlled compost process and use the organic matter as fertiliser (García-Faria 

1893). Although his project was approved in 1891, the City Council fired him and 

his team in 1895 due to pressures from a large company that wanted to take over 

the project (Miranda 2006). The execution of the project was delayed until 1901, 

thus starting the long and intricate history of the construction of the modern 

sewage system of the city of Barcelona during the twentieth century (Theros 

2012), but García-Faria never worked again on it. Although his project was never 

                                                 

15
We prefer to use this elegant way of  referring to human fecal material and urine and its potential 

as fertiliser(Jenkins 2005) as started to be used in scientific journals e.g. Schneider and McMichael 

(2010) instead of a large and confusing list of euphemisms. 
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executed completely, his report has constituted a well-known source of 

information of the city of Barcelona at the end of the nineteenth century. 

As we do not have exact numbers, we made a proxy based on the way human 

faeces were disposed, which were mainly four: rivers or sea—thus losing all 

potential fertiliser—, cesspits—where mainly the solids were collected—, tanks 

and manure heaps —both allowing the collection of solids and liquids. The first 

two were related to urban areas or villages, tanks to buildings with annexed 

gardens that in urban areas could often be monasteries, hospitals, etc. The last one 

was mostly related to more isolated rural settlements, usually with livestock such 

as the masies. Hence, there is a relation between the disposal system and the type 

of human settlement. In the first half of the twentieth century in Catalonia there 

were broadly three: disseminated rural houses or group of houses (populations 

that inhabit a 10 buildings or less are accounted as 'disseminated' by Nomenclator), 

concentrated rural villages and urban areas (Esteve-Palós 2003).  

Therefore, to estimate the humanure available in agriculture, we associated the 

potential collection of faeces through three disposal systems typical of each 

settlement type. Disseminated rural settlements used manure heaps, concentrated 

rural villagers used cesspits that were emptied from time to time by farmers or 

sealed and urban populations had a mixture of cesspits and insufficient sewage 

systems which released human waste directly to water bodies. We ignored 

equating the tanks as that would have involved too much detail for the scale we 

were considering.  

The report from García-Faria (1893), quantifies Manchester´s waste flows as one 

third going into the river, one third released by the sewage system to fields and 

one third collected, treated and sold. As our biggest urban area is Barcelona city, 

we assumed two thirds were released into the sea and one third stored in cesspits 

and then potentially collected. To differentiate between rural and urban we 

followed the criteria of the Spanish Instituto Nacional de Estadística, which 

considers as urban settlements with a population higher than 2000 inhabitants. We 

did not account for urine due to the difficulties in collecting it and the high losses 

due to ammonia volatilisation. 

Once accepted these assumptions, the difficulties were the same as for animal 

manure. Production of human faeces is between 135-270 g·day
-1

·cap
-1

 fresh 

weight without urine (Gotaas 1956). Authors at the time gave chemical 

compositions of humanure, which as manure, used to be human faeces with 

certain but unknown degree of fermentation while more modern authors give 

average compositions of fresh human faeces, all of them are summarized in 

Appendix B, and the average is in Table 5.27. As animal manure, it contributed 



142 

 

 

the same N losses calculated in section 3.4. However the estimations of quantities 

described for Girona and Lleida in JCA (1921) seemed too high to be credible if 

they were without urine (Table 5.26). A recurrent problem when trying to collect 

statistical information about the application of human faeces is the ambiguity in 

naming them. The agronomists in charge of the statistics used to refer to them 

equally as abonos flamencos, letrinas or fenta, thus omitting the specific forms of 

preparation of (usually commercial) human faeces. For instance, the abonos 

flamencos were a liquid fertiliser resultant from the fermentation of liquid and 

solid human faeces, whereas fenta or poudrette was the result of drying only the 

solid part (Llorente and Galán 1910). We then decided to use our calculations 

instead of those in the JCA (1921). 

Table 5.26. Human faeces (fresh weight without urine) potentially collected 

Province 
Consumption 

of humanure
a
 

(t) 

Average Potentially 

human faeces 

collected 
b
 (t) 

Barcelona ? 37,827±12270 

Girona 90,000 11,330±3114 

Lleida 97,240 10,523±3288 

Tarragona 6,560 11,418±3197 

Source: 
a
 JCA (1921) and 

b
 Gotaas (1956). 

Table 5.27. Chemical composition of humanure found in literature 

 

N (%) P (%) K (%) 
Water 

(%) 

Average 1.02±0.66 0.28±0.26 0.32±0.21 75±8 

 Source: see Annex 2.B. 

5.6. Seeds 

Seeds are a mix of genetic material and reserves to feed the seedlings. So, these 

reserves could be considered as nutrients recycled and were very important in pre-

industrial systems (Chorley 1981). For all cereals, legumes and potatoes sown by 

splitting the tuber, we used the quantities per ha and composition described in 

Soroa (1953). 

5.7. Other 
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Other sources of fertilisers were waste from leather industry, garbage from 

villages and towns, pomaces from oil and wine elaboration, hormigueros and 

buried biomass from forest or scrubland. The report from JCA (1921) gives 

quantitative information for some of the other fertilisers (Table 5.28 ).  

A big share of garbage from towns and villages, «barreduras», used to end up in 

fields directly, as a component of manure heaps or abandoned in piles on the 

outskirts and eventually used as fertiliser. In the report of JCA (1921) garbage 

data for Barcelona and Lleida are lacking. Although (García-Faria 1893) estimates 

that the production of garbage for the city of Barcelona was the same as in Paris 

i.e. 1 L·cap
-1

·day
-1

, the heterogeneity and the uncertainty of the production of 

garbage makes it difficult to make an estimation. Additionally, at the beginning of 

the twentieth century in Barcelona, there were both organised and illegal—

«canbuscaires»—collectors of garbage. They competed for organic garbage in 

order to feed mainly swine and some poultry that were breed in the city for self-

consumption or the selling of meat and manure. Therefore, the organic garbage 

collected remained within the city. This practice was banned in 1960 due to swine 

fever (CLD 2014).  

All these uncertainties, together with the fact that these kind of fertilisers 

correspond to a minor share in comparison with the ones described previously, we 

considered it reasonable to use the source as it is. Our only concern was around 

the use of oil and winery pomaces reported in JCA (1921), as the provinces with 

the highest productions did not seem to use it as fertiliser and Girona apparently 

uses more wine pomaces than it produces as described in JCA (1923). The former 

could be explained because the preferences for pomace uses other than using it as 

a fertiliser: was to feed livestock or to make olive pomace oil and distillates from 

oil and winery pomaces respectively. The excess of Girona is nonsense when 

compared to values reported in literature for similar processes (Daneo 1921; 

Cabrera 1995). Consequently we adjusted the value to the one reported in JCA 

(1923). 

Although in section 3.2 we calculated prunings, we did not followed their path in 

returning to fields by burial either fresh or burnt. Piling pruning from vines or 

other trees, covering them with soil and burning it, was the  fertilising practice 

called «hormiguero». It was traditionally used in clearances for shifting 

agriculture, but it was also used for permanent crops (Miret 2004). This practice 

was documented in some parts of Catalonia at least until 1960 andcould have been 

widespread in the arid areas of Catalonia at the end of the nineteenth century 

(Saguer and Garrabou 1995b).Unfortunately, we do not have quantitative 

information about the areas of application. While in our main reference for 
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fertilising methods, JCA (1921), they are barely mentioned. Merely documented 

as the destiny of the straws of maize in Lleida and through the spread of ashes 

from bushes (gorse (Ulex parviflorus) and mastic (Pistacia lentiscus)), in the 

coastal areas of Tarragona.  

In the opinion of agronomists of the time, they were substituted by synthetic 

fertilisers, as to fertilise with hormiguero required lots of fuel (bushes, vine shoots, 

etc.) and human labour (Mestre and Mestres 1949). However, the practice could 

have been abandoned before. Relating to its fertilising properties, all the N was 

lost by the combustion, but after the fire collapsed there was an increase of P and 

K in soils (Olarieta et al. 2011). Hence, the effect of not accounting for them in 

the balance would be to underestimate the potential returns (when the origin was 

pruning) or additions (when the origin was forest or scrubland) of P and K. 

Table 5.28. Other fertiliser materials 

Province Fertilisertype 

Total 

amount (t) 

Barcelona 

Waste from leather 

industries 1400 

Girona Winery pomace (orujos) 56000 

Girona Proposed winery pomace 9030 

Girona Garbage 15300 

Lleida Sugar industry residues 1600 

Tarragona garbage 1500 

Tarragona Winery pomace (orujos) 900 

Tarragona Oil pomace (alpechín) 20 

Tarragona poultry 7 

Tarragona pigeon 4 

Source: JCA (1921), for the NPK composition, see Annex 2.B. 

6. Synthetic fertilisers 

Regular statistics for synthetic and mineral fertilisers did not start until 1928 

(Gallego 1986), but for 1919 we can use the already mentioned exceptional report 

of  JCA (1921). Gallego (1986) distinguished five different dynamics of the 

Spanish consumption of synthetic fertilisers until the Civil War (1936-39). Our 

period of study coincides with the end of the unavailability of fertilisers due to 
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World War I and the beginning of a consumption trend that recovered and 

surpassed the levels before the war.  

The main kinds of synthetic fertiliser consumed where superphosphates, then 

nitrogenous and potash was not important. The Spanish exploitation of potash did 

not start until 1925, but even then, almost all was exported. This trend was 

followed by Catalonia, where P was the dominant synthetic fertiliser during the 

same  period (Saguer and Garrabou 1995b). The low use of synthetic fertilisers in 

Girona compared to the rest has been explained by Pujol(1998) as being the result 

of the great availability or organic fertilisers. At the same time, the areas of 

highest consumptions were near industrial centres or those provided with 

irrigation facilities. This explains that Barcelona was at the head of the 

consumption in Catalonia.  

Table 5.29. Average of compositions of the main synthetic fertilisers. 

Fertiliser‘s name 
Content of N (%) Content of P2O5 (%) Content of K2O (%) 

Potassium nitrate 13.1±0.7  44.2±1.3 

Calcium nitrate 14.0±1.8   

Sodium nitrate 

(Chile saltpeter) 

15.5±0.4   

Ammonium sulfate 20.4±0.4   

Potassium chloride   51.8±1.8 

Kainite    13.3±2.5 

Potassium sulfate   49.7±0.5 

Superphosphate  18.0±1.6  

Slag of iron ores 

(Escorias Thomas)  

 16.4±5.0  

Source: Aguirre-Andrés(1971) in Gallego (1986); García-Luzón (1922); López-Mateo (1922); 

Soroa (1953). 

Fraud in the composition of synthetic and mineral fertilisers was rather common 

in Spain at the beginning of the twentieth century. To counter it the Spanish 

government started to legislate in 1900, but still it was known that buying 

synthetic fertilisers outside agrarian unions or associations was to be exposed to 

fraud (Sanz 2005). This situation made them fall into disrepute among farmers 

(García-Luzón 1922). In spite of these facts and due to lack of data, we did not 

take into account the differences of richness between adulterate or pure forms of 

synthetic fertilisers. The composition of pure forms can be found in a series of 
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authors (García-Luzón 1922; López-Mateo 1922; Soroa 1953), unsurprisingly 

matching among them and with the composition that Gallego (1986) uses in his 

article, which as its turns out uses data from Aguirre-Andrés(1971) (see Table 

5.29).  

As a matter of clarification, although some of the agronomists distinguish between 

ordinary superphosphates (OSP) (aprox. 20%) and triple superphosphate (TSP) 

(aprox. 50%), the statistical data refers to the broad category of 

Superphosphateonly. As we cannot assign a weight, the average of all chemical 

composition reported for Superphosphate would show a misleading deviation, so 

we adopted the more conservative value and used the values of ordinary 

superphosphates.  

7. Results and discussion 

The data to build the nutrient balance c.1920 were mainly aggregated at province 

level. However, we found it useful to aggregate them according to historical and 

geo-climatic patterns distinguishing three regions—Old, New Catalonia and the 

Pyrenees. Our main concern was to split the province of Lleida into the areas 

mainly influenced by the plains—becoming part of New Catalonia— and the 

areas mainly influenced by the Pyrenees mountains.  

Although classification into the three main regions was a useful interpretation, 

some interesting differences among provinces remained hidden within the 

aggregation (Table 5.30). Pyrenees was the less densely populated area and the 

area with the highest share of forest, scrubland and pastures. Vineyards have an 

important role in Barcelona and Tarragona provinces, increasing the share of land 

occupied by permanent covers, while the plains of Lleida´s annual crops and 

fallow land were more important than elsewhere in Catalonia. Finally, a very 

distinctive feature of Girona was the high livestock densities per cropland area. At 

higher precipitation, the settlement pattern structured in masies and the Eastern 

Pyrenees—the Pyrenees go on through to the North of Girona descending in 

altitude until their end in the Mediterranean Sea—allowed the coincidence of  a 

relatively small area of summer and winter pastures (Vilà-Valentí 1973). 
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Table 5.30. Summary of some characteristics of the provinces studied c.1920 

 Old Catalonia Pyrenees New Catalonia 

 Barcelona Girona Lleida 

Pyrenees 

Lleida 

Plain 

Tarragona 

Rainfall (mm)
a
 640 724 535 369 504 

Population density (inhab/km
2
)

b
 176 56 12 47 55 

Cropland density (ha/inhab)
 cb

 0.16 0.41 1.43 1.57 0.81 

% forest, scrubland and pastures 

over total area
c
 

56.9 68.1 79.9 21.9 44.7 

Ratio forest, scrubland and 

pastures over annual crops
16c

 

3.5 3.2 4.9 0.4 4.1 

Ratio permanent land covers over 

annual crops
c
 

4.9 3.5 5.0 0.9 7.4 

Livestock density per cropland 

area(LU 500 kg/km
2
) 

dc
 

40 85 57 13 9 

Sources: a Agencia Estatal de Meteorología en España (2014); b Instituto Nacional de Estadística 

(1920);c JCA (1923); d JCA (1920) and MF (1924). 

In section 2 we provided some hints to interpret the results of the nutrient balance. 

First, there was probably an accumulated deficit, at least in some areas, so in this 

case a positive balance did not mean pollution challenges. Secondly, we could not 

disaggregate data per crop type, but we knew that there were underfertilised crop 

types, so we cannot conclude strongly that a regional equilibrium means that 

everything was balanced simply that the physical means to do it were available.  

The balance per cropland area of the three regions (Figure 5.6) shows the main 

features described above. Old Catalonia and the Pyrenees compensated for the 

extractions unlike New Catalonia, where the lack of manure increased the relative 

importance of other sources of fertility, such as N deposition through rainfall and 

free fixation. This means that, although it is uncertain if maintaining fallow land 

was effective for this purpose, its existence could have obeyed fertility logic
17

. 

                                                 

16
Although questionable, we refer to herbaceous crops and annual crops indistinctly when we want 

to group all the crops that were not wooden and perennial. 

17
The effectivity of fallow storaging water in arid climates with summer drought requires careful 

analysis of rainfall probabilities and soil water-storage capacity together with the presence of crop 

residues  (Loomis et al. 2011). However,there are other additional reasons that could justify the 

existence of land temporally unsown, thesewere,the accumulation of available N due to natural 

inputs and other nutrients due to mineralisation,the elimination of weeds and plagues andthe 
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This effect was more pronounced in Lleida province, where fallow land was 

approximately 30% of cropland, and less important in Old Catalonia as the fallow 

land there was almost nonexistent (Table 5.1). Note that this affected the 

interpretation in Figure 5.6 as harvest are extractions per total cropland area, but 

not yields, because fallow was included in cropland area.  

As we said in section 5.3, although the largest number of irrigated land was 

situated in New Catalonia, it was only 'support irrigation'. Hence, the highest 

inputs from irrigation are found in Old Catalonia due to its large area of 

horticultural land, which was heavily irrigated.  

While the N storage losses were applied only to manure and humanure and could 

be almost half of their content in N, the management losses included the losses 

due to the application of each fertiliser and tillage of cropland.  

Figure 5.6. Nutrient balances (kg·ha
-1

) per cropland area (sown and fallow) 

in the three regions of Catalonia 

 
  

 

Negative values represent extractions and losses, positive values are additions of nutrients. The N 

losses due to storage and management of soils calculated in section 3.4 are represented as grey 

columns following the harvest-yellow column. Error bars are the accumulation of Standard 

                                                                                                                                      

scarcity of human labour.Whatever it may be, those areas with less rainfall were those with larger 

areas of fallow land at the end of nineteenthcentury (Saguer and Garrabou 1995b). 
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Deviations in each extraction or addition bars and are due to the estimation of manure, humanure 

and the N emissions associated. See Annex 2.C for more details. 

The coexistence of organic and industrial fertilising strategies seems to have been 

successful in Old Catalonia. Nevertheless, two different scenarios occurred in 

each of its provinces. While the synthetic fertilisers were used almost exclusively 

in Barcelona, Girona barely made use of them and had enough manure to balance 

the cropland extractions. Thus we agree with Pujol (1998) that the non use of 

synthetic fertilisers in Girona province was not a matter of concern for soil 

fertility. Interestingly, extractions from horticultural land were important due to 

high yields—as two or three harvests could be obtained per year— in spite of the 

small share of horticultural land (Figure 5.3). The belt of horticultural land 

surrounding the city of Barcelona was already important circa 1920. Actually, all 

sources indicated that they were fertilised with almost everything that farmers 

could get. Comprehensively they were the destination of the night soils from the 

city.  

While in the region of the Pyrenees there was a huge availability of nutrients from 

manure in comparison to what was extracted, most of them would go to pastures 

and not to cropland. However, we have not enough data to specify if croplands in 

the Pyrenees were receiving enough manure or not.In comparison, New Catalonia 

presents a very different picture, as the additions of nutrients barely could balance 

the extractions. This is consistent with Gonzalez de Molina (2002) as sustaining 

the limits necessary to keep or increase fertility by organic means were stricter in 

arid climates.  

The scale of this balance of nutrients is regional, therefore a general equilibrium 

does not necessarily mean that all crop types were balanced. The opposite could 

be true, that the cash crops circa 1920 were carefully fertilised. Such was the case 

of rice, oranges and hazelnuts in the best endowed lands (Calatayud 2006; 

Garrabou 2006), thus creating a soil mining trap in the rest of cropland areas. 

Even if we had took into account the hormigueros, the K deficit had persisted: the 

sum of K content in all pruning is not enough to cover the 30% deficit. We know 

that a maintained deficit undermines the capacity of soils to increase yields and 

thus the capacity of the territory to sustain people. However, one of the limitations 

of this work is that it covers one time slot, so we lackedquantitative information 

about the persistency of negative balances.  

It is known that after a long period of underfertilisation yields used to drop until 

they stagnated. This trend was demonstrated with experiments of the Broadwalk 

plots in Rothamsted station (UK), which stabilised at 900 kg·ha
-1

 after 50 years of 
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unmanured continuous wheat cropping (Shiel 2010). Also with the experiments of 

Sanborn (Missouri), where the wheat yielded 600 kg·ha
-1

 after 30 years of non 

manuring (Shiel 2010). Similarly, after 80 years without fertilisation, a rye field in 

Germany reached an equilibrium near 900 kg·ha
-1

(Loomis et al. 2011). 

Hence, the average of non-irrigated wheat yields in a period of 37 years could be 

useful as a reference trend (Table 5.31). The highest yields were from Old 

Catalonia, and the lowest from Lleida (recall that we cannot split the yields 

between plain and Pyrenees), which is closest to the benchmark. However, some 

difficulties arise in the interpretation of these yields as aridity, not only fertility, 

strongly affected yields. Despite this, we grouped Lleida and Tarragona into the 

unit of New Catalonia, Tarragona had higher proportions of wooden crops. Then, 

the smaller area of cereals were mostly concentrated in the North-East of the 

Conca de Barberà and Alt Camp, an area where the annual rainfall, as a matter of 

exception in the province, is comparable to the cereal areas of Girona, so this 

provided higher yields than in Lleida than were expected.  

Table 5.31. Averages of non-irrigated wheat yields (kg·ha
-1

) of the Catalan 

provinces (1898-1935). 

Barcelona Girona Lleida Tarragona 

1376 1384 1049 1246 

Source: GEHR(1991). 

Recall that in section 2, we said that excess was not a matter of concern c. 1920. 

Nevertheless, surpluses and deficits of nutrients in both figures make us wonder 

about the rationality behind the amount of fertiliser applied. Were farmers 

calculating the nutrient balances of the lands they worked? All the fertility guides 

for farmers written by Spanish agronomists —which we consulted and cited 

above—recommended exact doses of fertiliser (manure, synthetic or whatever 

type) to return nutrients to soils. They gave data to estimate nutrient extractions 

and additions. However, their advice was always accompanied too by complaints 

about the underfertilisation of the Spanish soils. Therefore, it is hard and even 

ridiculous to believe that the common practice was to calculate soil nutrient 

budgets and act accordingly. Most likely, farmers were using what was physically, 

socially and economically available.  
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Figure 5.7. Nutrient balances (t) in the total cropland area (sown and fallow) 

per nutrient 

 

 

 

  

In each figure, the first bar is Old Catalonia, second New Catalonia and third Pyrenees. Negative 

values represent extractions and losses, positive values are additions of nutrients. The N losses due 

to storage and management of soils calculated in section 3.4 are represented as grey columns 

following the  harvest columns. Error bars are the accumulation of Standard Deviations in each 

extraction due to the estimation of manure, humanure and the N emissions associated. Note that 

each area is not necessarily at the same scale. 

The relative importance of each type of fertiliser in the replenishment of the 

nutrients harvested depends on the nutrient (Figure 5.7). Manure was the main 

source to restock the K extracted in all regions. The organic non-manure sources 

were more important for N than for the other nutrients due to deposition and 

leguminous crops. They were even more important than manure in New Catalonia. 

Although in third place, synthetic N (mainly from Chilean nitrates) was also 

needed to close the balance in Barcelona province —as we said above the weight 

of synthetic fertilisers in Girona was almost null—and was important for the rice 

and orange fields of Tarragona. The most important source of P applied in New 

Catalonia and the province of Barcelona were synthetic fertilisers.  
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Hence, the list of social and economic factors influencing the availability of 

fertilisers seems endless. Just to mention some: the settlement type together with 

land property allowed or limited the existence of livestock, the rules of 

landowners allowed, forced or prohibited the cultivation of forages or green 

manure, the proximity to markets, the organization of cooperatives or unions—

which spread the knowledge of using and facilitated buying synthetic fertilisers—, 

or the competition with other uses such as gunpowder and hence the influence of 

wars and conflicts.  

Nevertheless, there was space for trial and error as well due to the immediate 

effects of synthetic fertilisers. For instance, in areas where N could be better 

balanced by organic means than P, a little addition of synthetic P could have been 

very cost-effective in the initial years thus generating the idea that "the more the 

better". However, if it was not well managed, the soluble forms of P fertiliser 

added to the soil can be transformed into insoluble compounds immobilising P in 

soils (Smil 2000) appearing ineffective. Additions of N above the needs of the 

plant creates an increase in their total biomass but not in yields (Loomis et al. 

2011). In addition, crop rotations make some nutrients less scarce in relative terms, 

and vineyards could have had a similar role, as they need less N and P than 

cereals thus giving the apparent image that there is no need for fertilisation.  

8. Conclusion 

The changing human-nature relations in agriculture during the Socio-Ecological 

Transition of industrialisation arise an exchange of nutrient flows in cropland. 

Although limited detailed information is available for Spain at the beginning of 

the twentieth century, our analysis reveals that using regional statistics entails 

comprehensive results. In general, when refering to administrative divisions, we 

include historical human settlements, geography and climate characteristics to 

define regions.  

Since versatility is both the light and the shadow of building a nutrient balance, 

we explicitly followed existing peer reviewed guidelines from García-Ruiz et al. 

(2012). As an adaption to the availability of our data, we calculated the N losses 

though IPCC (2006), which are mainly dependent on the amount of fertilisers 

added, its storage and the management of soils. In fact, some of the suggestions of 

the agronomists of the time (Cascón 1918; De la Cruz-Lazaparán 1924) to 

diminish N deficits of the nutrients balance followed this same logic: to develop 

techniques to minimize N losses and hence enlarging N content of the fertilisers 

applied. Ironically, not pushed by scarcity but by the excess, these techniques are 
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being implemented nowadays in a top-down strategy to avoid N pollution of 

groundwater or emissions to the atmosphere, as leaching of N to groundwater is 

occurring in the area (Penuelas et al. 2009).  

Circa 1920 could be considered a period in between the two waves of the socio-

ecological transition toward an industrial regime (González de Molina 2010). 

However, there were regional differences in the strategies to balance nutrients in 

cropland areas even in the North-East of the Iberian Peninsula. While Old 

Catalonia and the Pyrenees had available means to balance the nutrient flows, 

such was not the case in New Catalonia. This region relied on first wave strategies, 

i.e. playing with the relative scarcity of nutrients to keep harvesting without 

replenishing the nutrients in soils, thus bringing the system to unsustainable limits. 

This was done due to the fact that crops can still yield under relative scarcity of 

nutrients, concentrating fertilisers (synthetic as well) in some selected areas or 

cultivating crops that extracted relatively less nutrients than others such as 

vineyards. Nevertheless, although low yields can be maintained they cannot be 

enhanced. This makes the system more vulnerable to changes in the system such 

as population growth, scarcity of water, price failures.  

About the other two regions, there were differences in the strategies followed to 

close the balances. Pyrenees and Girona province could still rely entirely on 

organic strategies. Some of them did not need human labour, others required from 

them, such as manure, humanure, green manure, seeds and others that still were 

important enough to appear in official statistics. Hence, the availability of these 

organic sources of fertility was not only relying on physical factors such as rain 

but in economic and social factors too. Lastly, perhaps the province of Barcelona 

was a paradigmatic example of the second wave since nutrient flows were 

balanced by combining all these organic strategies with the use of synthetic 

fertilisers. 

If the disequilibrium in the balance of nutrient flows in cropland was an 

influenced on the crisis of organic agricultures, in drier areas as well as in certain 

crops (permanent wooden crops) fertility problems were exacerbated and hence 

the transition from the first wave to the second longer. Other areas could close the 

balance due to the mix of organic and synthetic fertilising methods. This means 

that although the second wave had not fully occurred within the region, and that 

the use of synthetic fertilisers was minimal compared to other countries, the 

coexistence of the two modes of metabolism could stabilise fertility, at least 

temporary. 

Since methodological issues absorbed the most of this paper, we could go no  

further from the physical dimension of the nutrient balances. More than a 
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limitation, we consider this as an invitation to other fields of study to connect 

social and economic factors with fertility. 

True, the Catalans may have turned stones into bread. Not directly, but by 

growing vines in stony and sloping soils where lots of terraces were patiently built, 

and then by buying wheat with the money gained through wine exports. What is 

missed in the old adage is that, to do this, a high level of exploitation of labour 

and land was needed. Some historians have recognized that this viticultural labour 

entailed an exploitation of human beings by others which led to strong social 

unrest. Yet the soil mining through long-lasting land overexploitation still remains 

widely unknown. This chapter has tried to bring this issue to light. 
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 Annex 2.A. Nutrient composition of crops considered 

Table 2.A.1.Nutrient composition of crops according toSoroa(1953) 

Crop name Latin name Product 
type 

N (g/kg 
fresh 
weight) 

P (g/kg 
fresh 
weight) 

K (g/kg 
fresh 
weight) 

Source 

alfalfa Medicago sativa aerial part 
fresh 

7.20 0.70 3.74 Soroa (1953) 

 alfalfa Medicago sativa hay 23.00 2.31 12.12 

algarroba Vicia articulata dry forrage 23.30 3.19 17.76 

algarroba Vicia articulata grain 40.20 4.02 9.63 

alforfón Fagopyrum esculentum hay 21.50 1.75 17.85 

altramuz Lupinus albus aerial part 
fresh 

5.00 0.48 1.25 

altramuz Lupinus albus dry forrage 27.40 2.71 16.35 

altramuz Lupinus albus hay 27.40 2.53 6.64 

alverja Vicia sativa hay 22.80 2.71 17.43 

arveja Vicia sativa dry forrage 22.70 2.71 16.35 

avena Avena sativa aerial part 
fresh 

3.70 0.57 4.65 

centeno Secale cereale aerial part 
fresh 

5.30 1.05 5.23 

esparceta flor 
natural 

Onobrychis viciifolia hay 22.10 2.01 10.79 

esparceta. 
pipirigallo 

Onobrychis viciifolia aerial part 
fresh 

5.10 0.65 4.32 

esparceta. 
pipirigallo 

Onobrychis viciifolia hay 18.80 2.93 11.37 
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esparceta. 
pipirigallo 

Onobrychis viciifolia grain 36.90 4.02 9.13 

lupulina Medicago lupulina aerial part 
fresh 

7.80 0.52 3.32 

lupulina Medicago lupulina hay 24.00 2.01 14.36 

ornitopo o 
serradella 

Ornithopus compressus aerial part 
fresh 

4.80 0.96 6.39 

ornitopo o 
serradella 

Ornithopus compressus dry forrage 21.60 3.97 26.48 

ornitopo o 
serradella 

Ornithopus compressus grain 34.90 3.41 6.81 

pradera 
natural 

unknown mixture hay 14.30 2.01 15.02 

sorgo Sorghum bicolor aerial part 
fresh 

4.00 0.35 3.32 

sulla Hedysarum coronarium dry forrage 10.30 1.22 3.82 

sulla. zulla Hedysarum coronarium aerial part 
fresh 

2.20 0.26 0.75 

trebol blanco 
flor 

Trifolium repens aerial part 
fresh 

5.70 0.87 2.74 

trebol blanco 
flor 

Trifolium repens hay 23.20 3.41 10.87 

trebol 
encarnado 

Trifolium pratense aerial part 
fresh 

4.30 0.35 2.16 

trebol 
encarnado 

Trifolium pratense hay 19.50 1.57 9.71 

trebol 
pratense o 
violeta 

Trifolium pratense aerial part 
fresh 

4.80 0.57 3.65 

trebol 
pratense o 
violeta 

Trifolium pratense grain 30.50 6.33 11.21 



 

 

157 

trebol 
pratense o 
violeta 

Trifolium pratense hay 19.70 2.44 15.44 

vallico o 
raygrass 

Lolium perenne aerial part 
fresh 

5.50 0.96 5.81 

vallico o 
raygrass 

Lolium perenne hay 16.30 2.71 16.77 

algarrobo Ceratonia siliqua fruit 9.30 2.27 6.64 

almond Prunus dulcis branches 
and leaves 

0.60 0.70 0.83 

almond Prunus dulcis fruit 38.20 9.34 11.37 

bellota quercus fruit 4.00 0.65 5.15 

castaña común Castanea sativa fruit 6.90 1.18 5.89 

castaña indias Aesculus hippocastanum fruit 6.50 1.14 5.81 

cerezo Prunus cerasus fruit 1.60 0.31 2.16 

cerezo Prunus cerasus leaves 4.90 0.48 3.82 

cerezo Prunus cerasus wood 2.40 0.22 1.00 

ciruelo Prunus domestica fruit 1.30 0.22 1.58 

ciruelo Prunus domestica leaves 7.20 0.74 7.14 

ciruelo Prunus domestica wood 5.00 0.65 2.32 

manzano Pyrus malus fruit 0.30 0.09 0.75 

manzano Pyrus malus leaves 10.70 0.74 2.74 

manzano Pyrus malus wood 4.50 0.52 1.91 

melocotonero Prunus persica fruit 0.80 0.17 1.49 

melocotonero Prunus persica leaves 9.10 0.57 4.81 

melocotonero Prunus persica wood 4.30 0.44 1.74 

membrillero Cydonia oblonga fruit 1.20 0.22 1.99 

membrillero Cydonia oblonga leaves 8.60 0.79 3.57 
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membrillero Cydonia oblonga wood 4.90 0.70 3.40 

morera Morus alba leaves 14.00 1.05 6.06 

naranjo Citrus sinensis fruit 3.20 1.66 2.66 

naranjo Citrus sinensis leaves 7.00 0.44 2.66 

naranjo Citrus sinensis wood 7.00 1.88 4.81 

peral Pyrus communis fruit 0.40 0.09 0.91 

peral Pyrus communis leaves 7.00 0.52 3.49 

peral Pyrus communis wood 2.90 0.48 2.32 

almorta. 
alverjon. 
muela 

Lathyrus sativus grain 48.40 4.28 10.13 

altramuz Lupinus albus grain 52.20 6.24 8.47 

arroz Oryza sativa grain 13.50 2.01 1.66 

arveja. veza Vicia sativa grain 44.00 4.32 6.64 

avena Avena sativa chaff 6.40 0.57 3.74 

avena Avena sativa grain 17.60 2.97 3.98 

avena Avena sativa straw 5.60 1.22 13.53 

cebada Hordeum vulgare chaff? 4.80 1.05 7.72 

cebada Hordeum vulgare grain 15.50 2.53 2.66 

cebada Hordeum vulgare straw 5.70 0.87 8.72 

centeno Secale cereale chaff 5.80 2.44 4.32 

centeno Secale cereale grain 17.60 3.71 4.81 

centeno Secale cereale straw 5.60 1.22 9.71 

garbanzo Cicer arietinum grain 31.60 4.10 11.12 

guisante Pisum satibum grain 35.40 3.84 8.13 

guisante Pisum satibum stalk and 
leaves 

10.40 1.66 8.88 

haba Vicia faba grain 40.60 5.06 9.96 
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haba Vicia faba straw 16.30 1.79 16.60 

judia Phaseolus vulgaris grain 41.50 4.10 11.62 

judia Phaseolus vulgaris straw 10.40 1.66 8.88 

lenteja Lentils culinaris grain 38.10 2.27 6.39 

lenteja Lentils culinaris straw 10.10 2.10 4.32 

maiz Zea mays cob heart 2.30 0.09 1.91 

maiz Zea mays grain 16.00 2.58 3.07 

maiz Zea mays stalk and 
leaves 

1.90 0.44 3.07 

maiz Zea mays straw 5.20 2.18 12.12 

mijo Panicum miliaceum grain 22.10 2.93 3.24 

sarraceno o 
alforjon 

Fagopyrum esculentum aerial part 
fresh 

3.90 0.35 3.15 

sarraceno o 
alforjon 

Fagopyrum esculentum dry forrage 21.40 1.83 17.76 

sarraceno o 
alforjon 

Fagopyrum esculentum grain 14.40 2.49 2.24 

soja Glycine max grain 57.80 7.60 16.85 

soja Glycine max straw 12.50 2.01 8.05 

sorgo Sorghum bicolor grain  2.40 2.66 

trigo Triticum chaff 7.20 1.75 6.97 

trigo Triticum grain 20.80 3.45 4.32 

trigo Triticum straw 4.80 0.96 5.23 

ajo Allium sativum stalk and 
leaves 

3.10 0.48 2.24 

alcachofa Cynara scolymus flower  1.70 1.99 

apio Apium graveolems stalk and 
leaves 

2.40 0.96 6.31 

calabaza cucurbita fruit 1.10 0.70 0.75 
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cebolla Allium cepa stalk and 
leaves 

2.70 0.57 2.08 

col Brassica oleracea  stalk and 
leaves 

2.40 3.23 5.23 

coliflor Brassica oleracea var. 
botrytis 

stalk and 
leaves 

4.00 0.70 2.99 

esparrago Asparagus acutifolius sprout 2.40 0.35 2.24 

esparrago Asparagus acutifolius stalk 1.70 0.26 1.16 

espinaca Spinacia oleracea leaves 5.20 0.79 2.41 

fresa Fragaria fruit 0.60 0.13 0.75 

lechuga Lactuca sativa stalk and 
leaves 

2.20 0.44 3.24 

lombarda Brassica oleracea var. 
capitata f. rubra 

stalk and 
leaves 

5.30 0.92 3.24 

melon Cucumis melo fruit 1.80 1.09 1.08 

pepino Cucumis sativus fruit 1.60 0.52 1.99 

pimiento Capsicum annuum fruit 2.40 1.09 2.57 

puerro Allium ampeloprasum var. 
porrum 

leaves 5.40 0.83 4.48 

puerro Allium ampeloprasum var. 
porrum 

stalk 4.50 0.61 2.16 

rabano Raphanus sativus root 1.90 0.22 1.33 

sandia Citrullus lanatus fruit 1.20 0.44 1.66 

tomate Solanum lycopersicum fruit 5.10 0.52 1.25 

zanahoria Daucus carota grain  5.15 11.87 

zanahoria Daucus carota leaves 5.10 0.44 2.41 

zanahoria Daucus carota root 2.20 0.44 2.49 

cacahuete Arachis hypogaea fruit 45.00 3.93 12.45 

cañamo Cannavis sativa grain 26.10 7.38 7.80 
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cañamo Cannavis sativa stalk 14.80 1.00 3.82 

colza Brassica napus aerial part 
fresh 

4.60 0.52 2.91 

colza Brassica napus grain 31.00 7.16 7.30 

colza Brassica napus pod 8.50 1.57 4.73 

colza Brassica napus straw 5.00 1.18 8.05 

cotton Gossypium fiber 3.40 1.53 3.82 

cotton Gossypium leaves 32.10 5.20 9.79 

cotton Gossypium stalk 14.60 2.58 11.70 

lino Linum usitatissimum fiber 4.80 1.88 8.30 

lino Linum usitatissimum grain 32.00 5.68 8.63 

tabaco Nicotiana tabacum leaves 25.70 2.14 33.62 

tabaco Nicotiana tabacum stalk 17.20 4.37 23.16 

olivo Olea europaea fruit 4.50 0.48 0.42 

olivo Olea europaea leaves 10.00 1.00 4.65 

olivo Olea europaea wood 7.50 1.27 3.24 

batata o 
moniato 

Ipomoea batatas root 2.40 0.35 3.07 

nabo Brassica napus leaves 4.20 0.48 2.16 

nabo Brassica napus root 1.80 0.35 2.74 

pastinaca. 
chirivia 

Pastinaca sativa root 5.20 0.87 4.48 

pataca. 
topinambour 

Helianthus tuberosus root 3.20 0.61 3.90 

pataca. 
topinambour 

Helianthus tuberosus stalk and 
leaves 

5.30 0.39 2.57 

patata Solanum tuberosum root 3.40 0.70 4.81 

patata Solanum tuberosum stalk and 
leaves 

4.90 0.70 3.57 
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remolacha 
azucarera 

Beta vulgaris L. subsp. 
vulgaris var. altissima 

grain 16.90 3.27 9.21 

remolacha 
azucarera 

Beta vulgaris L. subsp. 
vulgaris var. altissima 

leaves 3.00 0.31 3.32 

remolacha 
azucarera 

Beta vulgaris L. subsp. 
vulgaris var. altissima 

root 1.60 0.35 3.24 

remolacha 
forrajera 

Beta vulgaris grain 16.90 3.32 7.55 

remolacha 
forrajera 

Beta vulgaris leaves 3.00 0.44 3.74 

remolacha 
forrajera 

Beta vulgaris root 1.80 0.26 3.40 

vid Vitis vinifera fruit 1.70 0.65 4.15 

vid Vitis vinifera leaves 8.00 0.70 2.32 

vid Vitis vinifera wine 0.20 0.13 0.83 

vid Vitis vinifera wood 2.00 0.17 2.49 

vid Vitis vinifera winery 
pomace 

10.00 1.31 4.15 Soroa (1953) 

vid Vitis vinifera leaves 8.00 0.70 2.32 

vid Vitis vinifera pruning 2.00 0.17 2.49 

  



 

 

163 

Table 2.A.2. Crops composition according to other modern sources. 

Crop name Latin name Produce type Water (g/100 
g )  

N (g/kg fresh 
weight) 

P (g/kg fresh 
weight) 

K (g/kg fresh 
weight) 

Source 

puerro Allium ampeloprasum var. 
porrum 

stalk 91 2.56 0.35 1.56 CESNID (2003) 

cebolla Allium cepa root 86 1.86 0.33 1.57 Mataix (2003) 

ajo Allium sativum root 67 9.12 1.34 4.46 CESNID (2003) 

apio Apium graveolems leave 94 1.44 0.32 3.05 CESNID (2003) 

esparrago Asparagus officinalis stalk 93 3.52 0.56 2.69 CESNID (2003) 

avena Avena sativa straw 11 5.12 1.07 13.07 INRA et al. (n.d.) 

avena Avena sativa grain 2 27.02 5.23 4.29 Mataix (2003) 

avena Avena sativa aerial part fresh 74 4.56 0.61 7.00 INRA et al. (n.d.) 

remolacha 
forrajera 

Beta vulgaris aerial part fresh 82 4.78 0.66 0.00 INRA et al. (n.d.) 

remolacha 
forrajera 

Beta vulgaris root 84 1.75 0.33 0.00 INRA et al. (n.d.) 

remolacha 
azucarera (root) 

Beta vulgaris L. subsp. vulgaris 
var. altissima 

molasses 24 17.32 0.23 38.76 INRA et al. (n.d.) 

remolacha 
azucarera (root) 

Beta vulgaris L. subsp. vulgaris 
var. altissima 

root 81 2.35 0.43 2.86 INRA et al. (n.d.) 

remolacha 
azucarera (leave) 

Beta vulgaris L. subsp. vulgaris 
var. altissima 

leaves and tops 89 3.26 0.22 0.00 INRA et al. (n.d.) 

acelga Beta vulgaris var. cicla leave. stalk 90 3.20 0.43 3.78 Mataix (2003) 

nabo forrajero Brassica napus      

nabo Brassica napus root 89 1.28 0.34 2.40 Mataix (2003) 

col Brassica oleracea  leave 90 2.24 0.41 2.70 Mataix (2003) 
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repollo Brassica oleracea  leave 90 2.24 0.41 2.70 Mataix (2003) 

brecol Brassica oleracea italica flower 90 4.80 0.67 3.70 Mataix (2003) 

coliflower Brassica oleracea var. botrytis flower 90 3.52 0.48 3.19 Mataix (2003) 

cañamo (fibra) Cannavis sativa      

cañamo  Cannavis sativa grain 9 34.65 4.17 0.00 INRA et al. (n.d.) 

pimiento Capsicum annuum fruit 92 1.44 0.25 2.10 Mataix (2003) 

castaño Castanea sativa fruit 51 3.20 2.56 3.84 Mataix (2003) 

algarrobo Ceratonia siliqua fruit 17 10.38 1.25 0.00 INRA et al. (n.d.) 

algarrobo Ceratonia siliqua aerial part fresh 49 7.78 0.51 0.51 INRA et al. (n.d.) 

garbanzo Cicer arietinum straw 9 8.30 1.46 0.00 INRA et al. (n.d.) 

garbanzo Cicer arietinum grain 2 32.80 3.75 8.00 Mataix (2003) 

garbanzo Cicer arietinum bran 10 22.39 2.69 0.00 INRA et al. (n.d.) 

escarola Cichorum endivia leave 91 4.64 0.40 2.07 Mataix (2003) 

sandia Citrullus lanatus aerial part fresh 86 4.48 0.64 6.02 INRA et al. (n.d.) 

sandia Citrullus lanatus fruit 93 0.80 0.09 1.10 Mataix (2003) 

mandarinero Citrus reticulata y otros fruit 86 1.28 0.17 1.85 Mataix (2003) 

naranjo Citrus sinensis fruit 78 0.96 0.28 2.94 Mataix (2003) 

limonero Citrus x limon fruit 87 1.12 0.16 1.49 Mataix (2003) 

roldon Coriaria myrtifolia      

avellano Corylus avellana fruit 6 22.56 3.00 7.30 Mataix (2003) 

melon Cucumis melo aerial part fresh 86 6.14 0.95 7.95 INRA et al. (n.d.) 

melon Cucumis melo fruit 88 1.41 0.17 3.09 Mataix (2003) 

pepino Cucumis sativus fruit 96 1.12 0.23 1.50 CESNID (2003) 

calabaza Cucurbita crop by-product 86 4.44 0.70 0.00 INRA et al. (n.d.) 

calabaza Cucurbita fruit 89 1.92 0.30 4.50 CESNID (2003) 

calabacin Cucurbita pepo fruit 95 2.88 0.31 2.30 CESNID (2003) 

cardo Cynara  cardunculus  leave. stalk 93 1.28 0.23 4.00 CESNID (2003) 



 

 

165 

alcachofa Cynara scolymus aerial part fresh 86 3.89 0.48 0.00 INRA et al. (n.d.) 

alcachofa Cynara scolymus aerial part ensiled 76 4.80 0.00 0.00 INRA et al. (n.d.) 

alcachofa Cynara scolymus flower 86 5.23 0.90 3.70 Mataix (2003) 

chufa Cyperus esculentus root 5 6.64 2.56 7.10 http://www.tigernuts.es 

zanahoria Daucus carota root 87 1.44 0.16 2.86 Mataix (2003) 

nispero Eriobotrya japonica fruit 86 1.12 0.23 2.49 CESNID (2003) 

higuera Ficus carica leaves fresh 68 7.12 0.58 0.00 INRA et al. (n.d.) 
higuera Ficus carica fruit 86 1.44 0.23 2.32 CESNID (2003) 

fresa freson Fragaria fruit 88 1.12 0.26 1.50 Mataix (2003) 

zulla Hedysarum coronarium aerial part fresh 88 2.85 0.17 0.00 INRA et al. (n.d.) 

zulla Hedysarum coronarium pods 88 2.65 0.00 0.00 INRA et al. (n.d.) 

zulla Hedysarum coronarium hay 12 19.62 0.26 0.00 INRA et al. (n.d.) 

pataca tupinambo Helianthus tuberosus aerial part fresh 68 7.91 1.07 0.00 INRA et al. (n.d.) 

pataca tupinambo Helianthus tuberosus root 78 2.63 0.71 5.04 INRA et al. (n.d.) 

cebada Hordeum vulgare straw 10 5.50 0.72 7.42 INRA et al. (n.d.) 

cebada Hordeum vulgare grain 11 16.96 3.80 5.60 Mataix (2003) 

cebada Hordeum vulgare aerial part fresh 75 4.40 0.43 3.50 INRA et al. (n.d.) 

cisca o cogon Imperata cylindrica aerial part fresh 68 3.32 0.45 3.73 INRA et al. (n.d.) 

moniato Ipomoea batatas root 70 2.64 0.45 3.66 INRA et al. 
(n.d.)node/12681 

moniato Ipomoea batatas aerial part dried 12 18.69 2.74 12.57 INRA et al. 
(n.d.)node/12808 

moniato Ipomoea batatas aerial part fresh 87 3.43 0.38 3.24 INRA et al. (n.d.) 

nogal Juglans regia fruit 6 22.40 3.04 9.03 Mataix (2003) 

lechuga Lactuca sativa leave 93 2.40 0.30 2.40 Mataix (2003) 

almorta Lathyrus sativus aerial part fresh 87 4.22 0.42 0.00 INRA et al. (n.d.) 

almorta Lathyrus sativus hay 10 25.75 1.89 0.00 INRA et al. (n.d.) 

almorta Lathyrus sativus grain 11 34.80 2.69 0.00 INRA et al. (n.d.) 
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lenteja Lens culinaris straw 8 11.96 1.29 10.61 INRA et al. (n.d.) 

lenteja Lens culinaris grain 8 36.80 4.00 11.60 Mataix (2003) 

altramuz Lupinus albus straw 8 8.24 0.00 0.00 Lopez et al. 2005 

altramuz Lupinus albus aerial part fresh 80 6.95 0.53 5.27 INRA et al. 
(n.d.)node/12269 

altramuz Lupinus albus grain 11 53.28 1.78 0.00 INRA et al. (n.d.) 

alfalfa Medicago sátiva silage 69 9.41 0.92 9.89 INRA et al. (n.d.) 

alfalfa Medicago sátiva hay 11 26.03 2.32 21.99 INRA et al. (n.d.) 

alfalfa Medicago sátiva aerial part fresh 80 6.56 0.50 4.46 INRA et al. (n.d.) 

tranquillón mezcla de trigo y centeno 0.00 0.00 0.00  

olivo (aceituna 
verde) 

Olea europaea fruit 78 2.08 0.17 0.91 Mataix (2003) 

olivo (aceituna 
negra) 

Olea europaea fruit 56 3.20 0.24 0.40 Mataix (2003) 

olivo Olea europaea oil cake crude with 
stones 

12 10.94 0.70 4.47 INRA et al. (n.d.) 

olivo Olea europaea oil cake exhausted 
with stones 

12 17.96 0.97 8.04 INRA et al. (n.d.) 

olivo Olea europaea oil cake crude 
without stones 

13 13.30 1.14 9.19 INRA et al. (n.d.) 

olivo Olea europaea oil cake exhausted 
without stones 

17 14.57 1.82 11.92 INRA et al. (n.d.) 

olivo Olea europaea olive oil pulp crude 22 14.56 1.17 0.00 INRA et al. (n.d.) 

olivo Olea europaea olive oil pulp 
exhausted 

11 17.60 1.42 0.00 INRA et al. (n.d.) 

olivo Olea europaea olive kernel 
exhausted 

7 47.62 0.00 0.00 INRA et al. (n.d.) 

olivo Olea europaea olive pits 
exhausted 

11 1.71 0.00 0.00 INRA et al. (n.d.) 

olivo Olea europaea leaves fresh 50 7.86 0.45 0.00 INRA et al. (n.d.) 
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olivo Olea europaea skins 11 18.84 0.00 0.00 INRA et al. (n.d.) 

olivo Olea europaea olive oil vegetation 
water 

49 4.71 0.00 0.00 INRA et al. (n.d.) 

olivo Olea europaea leaves and 
branches dried 

10 11.21 0.99 0.00 INRA et al. (n.d.) 

olivo Olea europaea aceite 0 0.00 0.00 0.00 CESNID (2003) 

olivo Olea europaea ramon 28 10.46 0.00 0.00  SIA (n.d.) 

esparceta Onobrychis viciifolia aerial part fresh 78 6.03 1.03 3.28 INRA et al. (n.d.) 

esparceta Onobrychis viciifolia silage 69 7.26 0.68 0.00 INRA et al. (n.d.) 

pipirigallo Onobrychis viciifolia hay 10 21.82 2.78 0.00 INRA et al. (n.d.) 

arroz Oryza sativa straw dried 7 6.24 0.84 16.70 INRA et al. (n.d.) 

arroz Oryza sativa grain 11 10.88 1.02 0.98 CESNID (2003) 

arroz Oryza sativa aerial part fresh 65 5.70 0.55 5.54 INRA et al. (n.d.) 

mijo Panicum miliaceum aerial part fresh 41 13.18 0.13   SIA (n.d.) 

mijo Panicum miliaceum straw 6 5.59 0.47 0.00 INRA et al. (n.d.) 

perejil Petroselinum crispum aerial part fresh 88 4.75 0.58 5.54 USDA (n.d.) 

judía Phaseolus vulgaris grain and pods 89 3.04 0.38 2.43 Mataix (2003) 

judía Phaseolus vulgaris crop byproduct dry 10 21.72 2.16 0.00 INRA et al. (n.d.) 

judía Phaseolus vulgaris grain 8 34.24 4.00 11.60 Mataix (2003) 

judía Phaseolus vulgaris straw 12 10.00 0.97 20.68 INRA et al. (n.d.) 

piñon Pinus pinea fruit 9 22.40 7.10 6.43 Mataix (2003) 

guisante Pisum satibum straw 11 11.65 0.98 13.94 INRA et al. (n.d.) 

guisante Pisum satibum grain 1 34.56 3.30 9.90 Mataix (2003) 

guisante Pisum satibum aerial part fresh 84 4.42 0.61 0.00 INRA et al. (n.d.) 

albaricoque Prunus armeniaca fruit 86 1.28 0.24 2.90 Mataix (2003) 

cerezo Prunus cerasus fruit 82 1.28 0.21 2.60 Mataix (2003) 

cirolero Prunus domestica fruit 82 1.28 0.29 2.36 CESNID (2003) 

almendro Prunus dulcis fruit 6 32.00 5.10 6.90 Mataix (2003) 
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melocotonero Prunus persica fruit 86 0.96 0.22 1.60 Mataix (2003) 

nectarino Prunus persica fruit 86 1.44 0.18 2.12 CESNID (2003) 

granado Punica granada fruit 78 2.67 0.36 2.36 USDA (n.d.) 

peral Pyrus communis fruit 85 0.80 0.18 2.50 Mataix (2003) 

manzano rojo Pyrus malus fruit 85 0.48 0.09 0.99 Mataix (2003) 

rabano Raphanus sativus root 95 0.96 0.18 2.43 CESNID (2003) 

zumaque Rhus coriaria grain 10 3.74 1.11 7.17 Musa and 
Haciseferogullari 
(2004))  

zarzamora Rubus ulmifolius fruit 85 1.60 0.30 2.00 CESNID (2003) 

mimbre Salix leaves 69 9.76 1.26 0.00 USDA (n.d.) 

centeno Secale cereale aerial part fresh 83 4.06 0.00 0.00 INRA et al. (n.d.) 

centeno Secale cereale straw 8 6.04 1.20 11.22 INRA et al. (n.d.) 

centeno Secale cereale grain 8 14.11 3.74 2.64 Mataix (2003) 

tomate Solanum lycopersicum fruit 92 1.60 0.27 2.50 Mataix (2003) 

berenjena Solanum melongena fruit 93 1.98 0.21 2.62 Mataix (2003) 

patata Solanum tuberosum aerial part fresh 77 4.01 0.00 0.00 INRA et al. (n.d.) 

patata Solanum tuberosum aerial part ensiled 75 5.12 0.00 0.00 INRA et al. (n.d.) 

patata Solanum tuberosum peel fresh 82 3.73 0.46 4.97 INRA et al. (n.d.) 

patata Solanum tuberosum root 77 4.00 0.50 5.70 Mataix (2003) 

sorgo Sorghum bicolor grain 13 15.10 2.88 3.76 INRA et al. (n.d.) 

sorgo Sorghum bicolor hay 10 10.80 1.53 14.04 INRA et al. (n.d.) 

sorgo Sorghum bicolor straw 7 5.51 0.65 12.00 INRA et al. (n.d.) 

sorgo Sorghum bicolor bran and milling 
offal 

10 16.81 4.40 5.03 INRA et al. (n.d.) 

sorgo Sorghum bicolor aerial part sillage 72 3.04 0.85 5.79 INRA et al. (n.d.) 

espinaca Spinacia oleracea leave. stalk 91 4.64 0.52 5.29 (CESNID (2003) 

trébol rojo Trifolium pratense silage 73 8.42 0.64 0.00 INRA et al. (n.d.) 
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trébol rojo Trifolium pratense aerial part fresh 80 6.08 0.68 5.39 INRA et al. (n.d.) 

trébol rojo Trifolium pratense hay 10 26.53 8.11 0.00 INRA et al. (n.d.) 

trébol blanco Trifolium repens aerial part fresh 82 7.05 0.59 0.00 INRA et al. (n.d.) 

trébol blanco Trifolium repens hay 17 30.04 0.00 0.00 INRA et al. (n.d.) 

fenigrec Trigonella foenum-graecum aerial part fresh 69 8.23 0.68 0.00 INRA et al. (n.d.) 

fenigrec Trigonella foenum-graecum hay 18 13.17 0.00 0.00 INRA et al. (n.d.) 

trigo triticum straw 9 6.12 0.64 10.10 INRA et al. (n.d.) 

trigo triticum hay 0 8.64 0.00 0.00 INRA et al. (n.d.) 

trigo triticum grain 17 18.77 3.44 4.21 Mataix (2003) 

enea Typha spp. aerial part fresh 93 1.02 0.24 1.67 USDA (n.d.) 

algarroba Vicia articulata straw 8 15.16 0.00 0.00 López et al. (2005) 

yero Vicia ervilia straw 8 14.13 0.00 0.00 López et al. (2005) 

haba Vicia faba grain 9 41.76 5.90 10.90 Mataix (2003) 

alverjon Vicia narbonensis pods 9 39.43 3.53 10.69 INRA et al. (n.d.) 

alverjon Vicia narbonensis aerial part fresh 85 5.16 0.53 0.00 INRA et al. (n.d.) 

alverjon Vicia narbonensis straw 9 10.53 1.01 15.63 INRA et al. (n.d.) 

veza Vicia sativa aerial part fresh 81 7.10 0.85 0.00 INRA et al. (n.d.) 

veza Vicia sativa hay 10 28.40 2.61 23.52 INRA et al. (n.d.) 

veza Vicia sativa straw 8 10.32 1.20 0.00 INRA et al. (n.d.) 

veza Vicia sativa grain 12 39.94 4.22 0.00 INRA et al. (n.d.) 

uva blanca Vitis vinifera fruit 81 0.96 0.22 2.50 Mataix (2003) 

uva negra Vitis vinifera fruit 81 0.96 0.16 3.20 Mataix (2003) 

uva Vitis vinifera leaves and 
branches fresh 

43 5.10 1.08 1.71 INRA et al. (n.d.) 

uva Vitis vinifera marc dehidrated 8 20.52 2.84 7.42 INRA et al. (n.d.) 

uva Vitis vinifera grape pomace 
including. seeds. 
stalks and skins 

59 7.60 0.00 0.00 INRA et al. (n.d.) 
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fresh 

uva Vitis vinifera pruning 41 5.47 0.14 0.00  SIA (n.d.) 

maiz Zea mays straw dried 7 5.50 0.65 12.63 INRA et al. (n.d.) 

maiz Zea mays grain 17 13.66 2.56 3.30 Mataix (2003) 
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 Annex 2.B. N P  K composition of manures found in 

literature. 

Table 2.B. N P K composition of manures found in literature 

 
N (%) 

P-P2O5  
(%) 

K-K2O (%) 
Water 
(%) 

Source 

Manure 0.4 0.09 0.50 
 

López-Mateo (1922) 

Manure 0.62 0.12 0.52 
 

Domínguez-Vivancos (1978:408) in 
Gallego (1986) 

Manure average 0.5 0.12 0.44 
 

Soroa (1953:116) 

Manure consumed 0.5 0.11 0.44 75 Nagore (1933) in Lana-Berasain (2010) 

Manure fresh 0.39 0.08 0.37 75 Nagore (1933) in Lana-Berasain (2010) 

Manure from farm 0.4 0.10 0.43 
 

Soroa (1929) 

Manure from farm 0.4 0.07 0.36 80 Abela (1880:81) in Lana-Berasain (2010) 

Manure from farm 0.6 0.24 0.58 
 

Uranga (1930) in Lana-Berasain (2010) 

Manure from farm 
fresh 

0.4 0.20 0.44 
 

Soroa (1953:88) 

Manure from farm 
mature 

0.5 0.23 0.46 
 

Soroa (1953:88) 

Manure from farm 
max. 

0.5 0.13 0.42 
 

Navarro-de-Palencia (1921) 

Manure from farm 
min. 

0.4 0.09 0.33 
 

Navarro-de-Palencia (1921) 

Manure from farm 
twicedecomposed 
(repodrido) 

0.6 0.22 0.46 
 

Soroa (1953:88) 

Manure from farm 
with human 
excrements 

0.47 0.17 0.46 60 Cascón (1918:29) 

Manure fully 
decomposed 

1.5 0.38 1.17 53 De la Cruz-Lazaparán (1924) 

Manure good 0.8 0.26 0.66 
 

García de los Salmones (1915) in Lana-
Berasain (2010) 

Manure medium 0.47 0.13 0.43 
 

García de los Salmones (1915) in Lana-
Berasain (2010) 

Manure medium 
decomposed 

0.58 0.13 0.42 
 

Cascón (1918:64) 

Manure medium 
decomposed 

0.62 0.22 0.54 71.7 De la Cruz-Lazaparán (1924) 

Manure medium 
decomposed 

0.5 0.12 0.36 
 

JCA (1920:394) 

Manure poor 0.3 0.09 0.25 
 

García de los Salmones (1915) in Lana-
Berasain (2010) 
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Manure very 
consumed 

0.58 0.13 0.42 79 Nagore (1933) in Lana-Berasain (2010) 

Manure with fern 0.92 0.17 0.61 63 
García de los Salmones (1915) in Lana-
Berasain (2010) 

Manure with 
straw 

0.81 0.18 0.30 54 
García de los Salmones (1915) in Lana-
Berasain (2010) 

Calb 6 months 1 0.24 1.66 54 Nagore (1933) in Lana-Berasain (2010) 

Cows and oxen 0.34 0.06 0.29 
 

Soroa (1953:89) 

Cows and oxen 0.5 0.11 0.42 
 

González de Molina and Guzmán 
(2006:469) 

Cows and oxen 0.4 0.09 0.08 85 
Van Slyke (1932) in Tisdale and Nelson 
(1956:235) 

Cows and oxen 0.34 0.07 0.33 78 Nagore (1933) in Lana-Berasain (2010) 

Cows and oxen 0.55 0.10 0.50 80 
Teuscher and Adler (1965:314) in Lana-
Berasain (2010) 

Cows and oxen 0.7 0.26 0.66 68 
Domínguez Vivancos (1984:184)in Lana-
Berasain (2010) 

Cows and oxen 1 0.222 0.112 80 Gotaas (1956:37) 

Cows and oxen  
for meat mature 
without beds 

1 0.6 1.9 48 Loomis et al. (2011:222) 

Cows and oxen 
fermented 

0.41 0.09 0.42 
 

Cavadini (1906:36) in Lana-Berasain 
(2010) 

Cows and oxen for 
meat 

0.59 0.16 0.36 85 Loomis et al. (2011:222) 

Cows and oxen for 
meat mature with 
beds 

1.1 0.8 2.2 50 Loomis et al. (2011:222) 

Cows and oxen for 
milk fresh 

0.52 0.11 0.34 86 Loomis et al. (2011:222) 

Cows and oxen for 
milk mature 
without beds 

0.5 0.2 0.8 82 Loomis et al. (2011:222) 

Cows and oxen 
fresh 

0.81 0.17 1.20 56 Nagore (1933) in Lana-Berasain (2010) 

Cows and oxen 
fresh 

0.3 0.08 0.33 
 

Cavadini (1906:36) in Lana-Berasain 
(2010) 

Cows and oxen 
housede 

2 0.57 1.66 0 
Domínguez Vivancos (1984:184) in Lana-
Berasain (2010) 

Donkey 0.6 0.13 0.50 
 

González de Molina and Guzmán 
(2006:469) 

Horse 0.58 0.12 0.44 
 

Soroa (1953:88) 

Horse 0.6 0.13 0.50 
 

González de Molina and Guzmán 
(2006:469) 

Horse 0.55 0.13 0.33 75 
Van Slyke (1932) in Tisdale and Nelson 
(1956:235) 
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Horse 0.58 0.12 0.44 71 Nagore (1933) in Lana-Berasain (2010) 

Horse 0.57 0.14 0.29 75 Gotass (1956:37) 

Horse 0.7 0.11 0.62 60 
Teuscher and Adler (1965:314) in Lana-
Berasain (2010) 

Horse dry matter 1.7 0.79 1.49 0 
Domínguez Vivancos (1984:184) in Lana-
Berasain (2010) 

Horse medium 
fermented 

0.6 0.10 0.58 
 

Cavadini (1906:36) in Lana-Berasain 
(2010) 

Mule 0.6 0.13 0.50 
 

Gonzalez de Molina and Guzman 
(2006:469) 

Pigeon 5 0.87 1.25 
 

Soroa (1929) 

Pigeon 4.5 0.92 0.83 
 

Soroa (1953:89) 

Pigeon 2.73 1.20 1.29 52 Gotaas (1956:37) 

Pigeon 1.76 0.78 0.85 
 

Cascón (1918:66) 

Poultry 3 0.87 1.25 
 

Soroa (1929) 

Poultry 1.6 0.68 0.66 
 

Soroa (1953:89) 

Poultry 1 0.35 0.33 55 
Van Slyke (1932) in Tisdale and Nelson 
(1956:235) 

Poultry 1.5 0.44 0.33 10 
Teuscher and Adler (1965:314) in Lana-
Berasain (2010) 

Poultry 2.7588 1.14 1.19 56 Gotaas (1956:37) 

Poultry 1.5 0.70 0.75 72 
Domínguez Vivancos (1984:184) in Lana-
Berasain (2010) 

Poultry broiler 1.29 0.35 0.34 75 Loomis et al. (2011:222) 

Poultry mature 
without beds 

1.6 2.1 2.8 55 Loomis et al. (2011:222) 

Goat 0.83 0.10 0.56 
 

González de Molina and Guzmán 
(2006:469) 

Goat 0.45 0.13 0.75 70 
Teuscher and Adler (1965:314) in Lana-
Berasain (2010) 

Sheep 0.83 0.10 0.56 
 

Soroa (1953:89) 

Sheep 0.83 0.10 0.56 
 

González de Molina and Guzmán 
(2006:469) 

Sheep 0.75 0.22 0.37 60 
Van Slyke (1932) in Tisdale and Nelson 
(1956:235) 

Sheep 0.83 0.10 0.50 65 Nagore (1933) in Lana-Berasain (2010) 

Sheep 1.4 0.22 1.00 65 
Domínguez Vivancos (1984:184) in Lana-
Berasain (2010) 

Sheep 1.2 0.26 0.33 68 Gotaas (1956:37) 

Sheep 1.45 0.22 0.11 65 
Teuscher and Adler (1965:314) in Lana-
Berasain (2010) 

Swine 0.45 0.09 0.50 
 

Soroa (1953:89) 

Swine 0.45 0.17 0.42 
 

González de Molina and Guzmán 
(2006:469) 

Swine 0.55 0.22 0.33 80 
Van Slyke (1932) in Tisdale and Nelson 
(1956:235) 
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Swine 0.7 0.09 0.91 
 

Cavadini (1906:36) 

Swine 0.45 0.08 0.50 72 Nagore (1933) in Lana-Berasain (2010) 

Swine 0.5 0.15 0.33 85 
Teuscher and Adler (1965:314)  in Lana-
Berasain (2010) 

Swine 0.5 0.13 0.42 75 
Domínguez Vivancos (1984:184) in Lana-
Berasain (2010) 

Swine 0.68 0.15 0.19 
 

Gotaas (1956:37) 

Swine 0.62 0.21 0.34 87 Loomis et al. (2011:222) 

Swine slurry 0.1 0.00 0.33 
 

Cavadini (1906: 36)  in Lana-Berasain 
(2010) 

Swine slurry 0.2 0.02 0.25 92 
Domínguez Vivancos (1984: 184)  in Lana-
Berasain (2010) 

Swine slurry 1.5 0.04 4.07 
 

Soroa (1953) 

Swine slurry 
mature 

1.6 0.5 0.8 82 Loomis et al. (2011) 

Dust 0.05 0.04 0.13 
 

Cavadini (1906: 36)  in Lana-Berasain 
(2010) 

Abono flamenco 0.43 0.09 0.20 
 

Soroa (1953) 

Poudrette 0.89 0.30 0.17 
 

JCA (1920) 

Abono flamenco 0.70 0.13 0.25 
 

Cavadini (1906: 36)  in Lana-Berasain 
(2010) 

Human faeces 
MW (min) 

1.00 0.26 0.17 80 Gotaas (1956: 35) 

Human faeces 
MW (max) 

2.31 0.78 0.68 66 Gotaas (1956: 35) 

Human faeces 
MW 

0.82 0.10 0.46 80 Yadav et al. (2010: 52) 

Espumas de 
azucareria 0.3 0.35 0.25 

 
Soroa (1953: 88) 

Espumas de 
azucareria 0.8 0.65 0.25 

 
Soroa (1953: 88) 

Espumas de 
azucarería max 0.44 0.80 0.00 

 
García-Luzón (1922) 

Espumas de 
azucarería avg 0.62 0.73 0.12 

 
García-Luzón (1922) 

Espumas de 
azucarería min 0.23 0.45 0.00 

 
García-Luzón (1922) 

pulpa de 
remolacha 
agotada 0.44 0.07 0.48 

 
Soroa (1953) 

Garbage  
(Barreduras)from 
Castilian Villages 0.45 0.08 0.17 97,2 Cascón (1918) 
Garbage 
(barreduras) 0.2 0.13 0.58 

 
Soroa (1921) 

Garbage 0.65 0.25 0.34 34 García de los Salmones (1915) in Lana-
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(barreduras)  of 
Pamplona 

Berasain (2010) 

Garbage 
(barreduras) urban  0.4 0.18 0.33  Soroa (1953) 
Garbage 
fermented 0.68 0.41 0.48 

 
García Faria (1893) 

Garbage in villages 0.4 0.09 0.66 10 Gotaas (1956) 

Garbage in villages 0.8 0.22 1.25 60 Gotaas (1956) 

Guano muestra 1 0.56 5.64 0.12 
 

García-Luzón (1922) 

Guano muestra 2 3.95 4.78 0.21 
 

García-Luzón (1922) 

Orujo de aceituna 0.8 0.04 0.00 
 

Soroa (1953) 

Orujo de aceituna 1 0.11 0.66 
 

Soroa (1921) 

Orujo de aceituna 1.3 0.11 0.66 
 

López-Mateo (1922) 

Orujo de uva 1 0.11 0.21 
 

Soroa (1921) 
Orujo de 
vinificación 0.7 0.09 0.83 

 
Soroa (1953) 

 

Note: We multiplied P2O5  and K2O by 0.4366 and 0.83 respectively to get P and K. Some of the 

sources did not specificity water content, as was explained in the text. To deal with this uncertainty 

and due to we wanted to use the old sources, we decided to use them as if they were in moisture 

weight. On the contrary, those sources that explicitly gave data in dry weight were transformed 

into moisture weight.  
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 Annex 2.C. N, P, K balances per region 

Table 2.C.1.NPK balance Old Catalonia 

  N (kg/ha) P   (kg/ha ) K   (kg/ha ) 

Manure  43.36±7.24 9.60±1.87 32.79±9.47 
Rainfall(atmospheric deposition) 5.29 0.13 0.91 
Free N fixation 4.00   
Irrigation 4.01 0.07 2.65 
Symbiothic fixation 17.25   
Humanure 1.43±0.62 0.39±0.11 0.45±0.20 
Seeds 1.49 0.23 0.51 
Other fertilisers 1.80 0.35 1.43 
Syntetic fertilizer 4.33±0.11 6.61±0.52 3.66±0.20 

INPUT TOTAL 82.96±7.27 17.38±1,95 42.39±9.48 

Agricultural produce 41.05 8.37 33.12 
N losses due manure storage 17.90±3.25   
N losses due soil management 8.51±0.17   

OUTPUT TOTAL 67.45±3.26 11.79 33.12 

Balance 15.51±7.97 5.59±1,95 9.27±9.48 
    

Cropland area: 351,413 ha 

Table 2.C.2. NPK balance New Catalonia 

  N (kg/ha) P   (kg/ha ) K   (kg/ha ) 

Manure  7.15±0.96 1.60±0.27 5.16±0.90 

Rainfall(atmospheric 
deposition) 

3.37 0.08 0.58 

Free N fixation 4.00   

Symbiothic fixation 6.00   

Irrigation 0.89 0.01 0.58 

Humanure 0.33±0.12 0.09±0.02 0.10±0.04 

Seeds 0.73 0.15 0.24 

Other fertilisers 0.04 0.02 0.02 

Syntetic fertilizer 1.55±0.03 1.96±0.15 0.70±0.02 

INPUT TOTAL 24.04±0.97 3.91±0.27 7.39±0.90 

Agricultural produce 28.59 4.94 17.14 

N losses due 
manure storage 

2.83±0.42   

N losses due soil 
management 

5.52±0.02   
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OUTPUT TOTAL 36.94±0.42 5.38 17.14 

Balance -12.90±1.06 -1.47±0.31 -9.75±0.90 

    

Cropland area: 646,693 ha 

Table 2.C.3. NPK balance Pyrenees 

  N (kg/ha) P   (kg/ha ) K   (kg/ha ) 

Manure  36.57±9.28 7.67±2.24 27.60±12.19 
Rainfall(atmospheric 
deposition) 4.22 0.10 0.72 
Free N fixation 4.00   
Symbiothic fixation 11.37   
Irrigation 0.61 0.01 0.38 
Humanure 0.28±0.16 0.07±0.03 0.09±0.05 
Seeds 1.12 0.18 0.34 
Other fertilisers 0.00 0.00 0.00 
Syntetic fertilizer 0.00 0.00 0.00 

INPUT TOTAL 58.16±9.28 8.04±2.24 29.13±12.19 

Agricultural produce 21.98 3.21 13.02 
N losses due manure storage 15.47±4.83   
N losses due soil 
management 6.19±0.25   

OUTPUT TOTAL 43.64±4.83 3.21 13.02 

Balance 14.52±10.47 4.83±2.24 16.11±12.16 

Cropland area: 141,220 ha 

Note: The high accumulated error in the last column of the balance is the result of a subtraction. It 

just indicates the high sensitivity of the nutrient balance to the production and composition data 

concerning manure. Source: as described in text 
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 Annex 2.D. Summary of sources used in the NPK 

balance for the regions of Catalonia c. 1920 

Table 2.D. Summary of sources used in the NPK balance for the regions of 

Catalonia c. 1920 

Extractions Harvest Produce JCA(1923)  

Pruning (Marco et al.)  

NPK values Soroa (1953)  

N emissions Manure storage IPCC (2006)  

Manure applied IPCC (2006)  

Fertilizers Synthetic 
fertilizers 

Applied JCA(1921)  

NPK values  Average values in: 
Aguirre-
Andrés(1971) in 
Gallego (1986); 
García-Luzón 
(1922); López-
Mateo (1922); 
Soroa (1953) 

 

Organic non-
manure 

Deposition Rodrigo(1998)  

Free-Fixation Loomis, Connor, & 
Cassman (2011) 
and García-Ruiz 
(2012) 

 

Human 
excrements 

Population 
settlements 

Esteve-Palós (2003) 

Production Gotaas (1956) 

Recollection Garcia Faria(1889) 

NPK values Annex 2.B 

Symbiothic N 
fixation 

Legume crops JCA (1923) 

Green manure area JCA (1921) 
corrected, see text. 

Green manure NPK 
values 

Average from Soroa 
(1953) 

Fix. Factors García-Ruiz (2012) 

Seeds Amount Soroa (1953) 

NPK values Soroa (1953) 

Irrigation Irrigated area JCA (1916; 1923) 

Water doses JCA (1916) 

NPK values (ACA 2000) 

Other Applied JCA (1921) 
corrected, see text. 
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NPK values Annex 2.B 

Manure Manure Livestock numbers MF (1924) 

Live weights JCA 
(1920)corrected 

Manure production Average of values in 
Cascón (1918); 
JCA(1920)corrected
, and references 
included in Marco 
et al. (forthcoming): 
Aguilera 1906; JCA 
1892; Loomis, 
Connor, and 
Cassman 2011; Van 
Slyke 1932.  

NPK values Annex 2.B 

Straw Beddings Cascón (1918) 

NPK values Average from 
Annex A of the 
corresponding 
leguminous 
production of JCA 
(1923) 
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 Chapter 6. Rabassaires, formiguers and 

caganers
1
:comparing two nutrient balances c.1860 

and c.1920 in the northeast of the Iberian Peninsula
2
 

1. Introduction 

1.1. Aims and scope 

The dominant socio-economic and socio-technical view on industrialisation as a 

gradual process of continuous growth and technological change can be 

complemented by focusing on changes in society-nature relations (Krausmann et 

al. 2008). Sieferle (2001)interrelated society-nature interactions with material and 

energy use historically. In doing so, hedescribed three socio-ecological regimes 

depending on the mode of appropriation of energy: uncontrolled solar energy use 

(hunter-gatherer societies), controlled solar energy use (agrarian societies) and 

fossil energy use (industrial societies). The periods of change between them are 

usually referred to as revolutions, although thinking of them in terms of Socio-

Ecological Transitions provides more analysis potential (Krausmann et al. 2008; 

González de Molina 2010; Krausmann and Fischer-Kowalski 2013; Infante-

Amate and González de Molina 2013). The transition to an industrial regime 

entails the progressive adoption of a new pattern of society-nature interaction  

along with its material and energy use, that could be understood as "a stepwise 

process of decoupling the supply of energy from land related biomass and from 

human labour on the land." (Krausmann et al. 2008).Indeed, the exploitation of 

finite stocks of fossil energy allowed societies to overcome the growth ceilings of 

agrarian societies,in turn creating new environmental problemsderived from the 

use of fossil energy and excess of synthetic fertilisers.  

Our hypothesis is that, in the context of the late nineteenth-century Iberian 

Peninsula, a number of factors including the liberal reforms of the Spanish State, 

population growth, market integration (which in an extended area of Catalonia 

crystallised in vineyard specialisation) and urbanization,made the soil fertilitya 

critical issue. Moreover, replenishing soil nutrients was further hindered by the 

                                                 

1
 Traditional Catalan figurine appearing in nativity scenes depicted as a peasant defecating. 

2
A versión of this chapter was galardonated with the IX award of the Sociedad Española de 

Historia Agraria (SEHA), and will be published in a forthcoming number of the Journal Historia 

Agraria. It can be found at: http://repositori.uji.es/xmlui/handle/10234/9274 

http://repositori.uji.es/xmlui/handle/10234/9274
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social inequality that already existed in rural societies, which deepened from the 

end of the nineteenth century onwards. Nevertheless, if so, to what extent was the 

growing amount of nutrients extracted by crops  replenished into the soil? The 

aim of this article is to search for historical answers to this general question by 

comparing the two agrarian systems of the last two chapters.  

1.2. The Socio-Ecological Transition 

The transition from controlled solar energy to fossil energy modes of 

appropriation occurred typically in two steps. First, a coal era coexisted with 

agricultural activities that remained organic; and second, an oil and electricity era 

pulled agriculture into the industrial mode. The first coal era
3
started in the United 

Kingdom around 1800, where 900 kg·cap
-1

 were used. A century later, the use of 

coal expanded to other places. However ,while most urban-industrial centres in 

other world regions had already begun the transition, over 70% of coal extracted 

globally was used by only four countries: UK, France, Germany and 

USA.(Krausmann and Fischer-Kowalski 2013).  

Paradoxically, the use of coal did not replace the need for human physical work, 

but increased the demand for non-agricultural production. The same happened 

with the expansion of the railway and the need for draught animals as in 

combination they covered the increasing need for the transportation of goods and 

people. Hence, the number of draught livestock increased at the beginning of the 

twentieth century (Krausmann and Fischer-Kowalski 2013).. Consequently, the 

need for biomass (either as infrastructures, paper or food) increased (Iriarte-Goñi 

and Ayuda 2012), while the cultivable area and yields per areastagnated at the end 

of the nineteenth century in Western Europe. Most of the cultivated land relied 

mainly on organic fertilising methods, e.g. manure, green manure, deposition, etc., 

and the applications of guano, Chilean nitrates or superphosphates at that time 

were barely enough to supply all the required nutrients.  

In the meantime,on the other side of the Atlantic ocean, USA‘s farms managed to 

export to Western Europe four million tonnes of cereal, enough to feed over 20 

million people (Krausmann and Fischer-Kowalski 2013). Unlike European soils, 

the newly ploughed fertile soils of the American prairies produced, during the 

initial decades, high yields per hectare with low rural population densities,hence 

allowingfood exports to densely populated coastal urban centres or to Europe 

(Cronon 1991). This system functioned as long as it was possible to expand the 

                                                 

3
 That of the subterranean forests of Sieferle (2001) or the Coketowns of McNeill (2001). 
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frontier and abandon lands with declining fertility. In some areas of the Great 

Plains the soils lost around 45% of their N content, and by 1870, as the frontier 

was closing, this led to fertility losses and subsequent declining yields in the first 

decades of the twentieth century (Cunfer 2004; Cunfer 2005).  

Nevertheless, this situation changed in the second step of the transition. Since 

1940, the use of cheap oil in the  energy-consuming Haber-Bosch process allowed 

N fertilizer (Smil 2001) to be easily obtainable, the number of tractors started to 

increase, and the  availability of electricity permitted the use ofgroundwater to 

expand the irrigated land (Cunfer 2004; Cunfer 2005). Besides closing the main 

nutrients gap through the industrial production of N, P and K
4

, all these 

techniques and technologies allowed economies of scale in agriculture. These 

technologies were exported to Europe after the end of  World War II, and then to 

the rest of the world. This mode of agriculture was intensive in energy use as it 

was developed when oil prices were cheap. This created a new relationship 

between industrial centres and the global periphery, introducing new ecological 

problems (Krausmann and Fischer-Kowalski 2013). 

To complement this vision, González de Molina(2010) argued that, in Europe, the 

transition towards an industrial agriculture did not start after  World War II but 

before, during the nineteenth century, and suggested that it occurred in a series of 

waves.  

The first wave, entailed increasing the biomass production of the agroecosystems 

bythree means: increasing the extension of cropland for the provision of food, 

increasing yield per land unit (substituting human labour force by draught animals, 

eliminating fallow, introducing rotations, etc.), and specialising the production 

instead of maintaining a heterogeneous landscape
5
. The enforcement of one or 

more of these strategies depended on land availability, climate and soil conditions; 

hence, the role played by humans to maintain or increase fertility was a key point. 

When by 1870s American grains invaded the European markets (O‘Rourke 2009), 

the strategy of importing the biomass that European agroecosystems were unable 

to produce prevailed over the other three (González de Molina 2010).  

This had different effects in different European areas.In Britain, the most well-

known case, the high farming (mainly the second of the above strategies) ended 

and animal breeding using American grains as feed expanded (González de 

                                                 

4
 Ca was restored through liming practices, which had been done in Europe previously. 

5
At the crop scale, this implied the loss of multifunctionality of some crops, as was the case of 

olive groves in Spain (Infante-Amate and González de Molina 2013). 
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Molina 2010; van der Ploeg 2014). In anycase, when humans were not able to 

replace the organic matter and nutrients, the increase in agrarian productivity was 

at the expense of the reserves in the soil.This led to an earlier European lossof soil 

fertility, as wouldlater happen in North America in the first decades of the 

twentieth century. To escape from this situation,it was necessary tofind external 

sources of fertility.Therefore, between the end of the nineteenth century and  

World War II, when coal was replaced by oil and natural gas and manual labour 

was replaced by machines, González de Molina(2010) suggested a second wave 

starting from the initiation of the use of synthetic fertilizers. Albeit not yet by the 

hand of the Haber-Bosch process for N. Although the weight of synthetic 

fertilizers was not as big as after World War II, its use along with guanos meant 

that the lack of nutrients started to be overcome by reducing the land cost of 

fertilization (González de Molina 2010), which was the main constraint in solar-

energy based agriculture.  

From the seminal works of Liebig and his discussions with the British 

agronomists Lawes and Gilbert during the nineteenth century, one can distil the 

following idea: it was not enough to apply a random quantity of manure in fields; 

to preserve or increase their fertility, it was necessary to refill the nutrients 

extracted by crops(Smil 2001). This idea was in the mind of the Spanish 

agronomists at the beginning of the twentieth century, who, in addition to pointing 

out insistently the low livestock densities and the ensuing chronic insufficiency of 

manure, recommended the use of other fertilizers (synthetic and organic) as an 

obligatory complement to manure (Llorente and Galán 1910; Cascón 1918; 

García-Luzón 1922; Rueda-y-Marín 1934). Along with the sellers of P fertilizers 

(Medem 1897), they argued that, although N was the main concern in 

agriculture,it was the main nutrient returned by organic fertilising methods, so 

there was a need to complement  N with fertilisers rich in other nutrients.  

Manure and other commercial fertilisers were expensive and as a result, some 

crops with lower relative nutrient needs such as olive groves or vineyards were 

not fertilised. Even, the belief that these crops did not need fertilisation was 

extended among farmers. Hence, some agronomists tried to refute this and 

provided other complementary sources of nutrients, cheap and available for 

farmers, such as human faeces, dry blood, shearing residues, or even the dead and 

dried bodies of locusts when there was a plague (López-Mateo 1922; Soroa 1929).  

The elimination of fallows was also a matter of concern of the time and the use of 

rotations was highly recommended. Needless to say, the Norfolk rotation could 

not be reproduced everywhere, as clover, which played a more important role as a 

N fixing crop than other leguminous crops (Allen 2008), is more susceptible to 
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aridity (  the climate of Mediterranean Spain) than the more drought-resistant 

forage legumes, such as sainfoin(FAO 2012). Another purpose forleaving lands in 

fallow was to eliminate predators and competitors, i.e. weeds, and so enhance 

fertility. This is why other agronomists recommended the chemical disinfection of 

soils (Casado de la Fuente 1923) when fallows were eliminated. Although the 

reduction of fallowcould be seen as further evidence to an earlier starting point for 

the transition of the agrarian metabolism, for this study we left them aside, as well 

as other technical innovations not concerning  the  direct application of nutrients.  

Beyond agronomists considerations, tenants and sharecroppers had to accomplish 

the contractual obligations of landowners concerning fertility, which started to be 

common in the second half of the nineteenth century.They could be, for example, 

the prohibition to sell the straw and the obligation to use it as bedding material for 

the manure of the farm, or the obligation to burn the pruning from vineyards in 

soil covered piles called «hormigueros» and use them as fertilizer (Saguer and 

Garrabou 1995b). 

1.3. Nutrient flows, history and agricultural systems 

Accounting for the flows of nutrients within a system allows analysing the impact 

of human activities in compartments of ecosystems throughout time.As an 

example,Kimura and Hatano, (2007) and Kimura et al., (2004) assessed the 

increasing N pollution in the agricultural system of the city of Hokkaido (Japan) 

due to the separation of consumption and production food sectors during the 

twentieth century;Lassaletta et al. (2013) analysed the increase of N emissions 

within Spanish river basins due to the change in diet pattern from 1960 to 1990; 

and Billen et al. (2007) explored the changing relationship between the population 

of Paris and the Seine river over 500 years through the quantification of N, P and 

Si flows. When applied to prior periods, the analysis of nutrients flows give 

information about the relation between fertility , mixed farming and convertible 

husbandry in England and Northern Europe until they reached productivity 

ceilings (Chorley 1981; Allen 2008).  

The first wave of the Socio-Ecological Transition, however,  happenedearlier  in 

Mediterranean Europe due to water availability constraints, whose main effects 

were the lower livestock densities that could be maintained and the reduced 

capacity to grow leguminous crops (González de Molina 2002). The increase of 

monogastric animals (mostly mules) for transport and the trend to cultivate more 

cereal land pressured Mediterranean agroecosystemseven more, hence only the 

more productive land types were fertilized (González de Molina 2002). On the 



186 

 

 

other side of the Atlantic, once the frontier was closed, the first wave gave way to 

the second in only in few decades (Cunfer 2004; Cunfer 2005).  

In the South of the Mediterranean Iberian Peninsula it was argued that fertilising 

efforts were concentrated in some rotations such as ruedo and therefore mined the 

soils of others e.g. the extreme case of the olive groves (González de Molina 2002; 

González de Molina and Guzmán 2006). In the Northeast of the Mediterranean 

Iberian Peninsula, Tello et al. (2012) assessed the importance of cultural peasant 

practices when restoring nutrients in the municipality of Sentmenat circa 1860. By 

contrast, due to lack of data, they did not follow the nutrient flows in other (more 

arid) municipalities, crop type or rotation; but they conclude that to balance the 

soil nutrients some crop types like vineyards had to be short of nutrients. In the 

fifth chapter, we identified differences between Catalan regions in their 

capabilities to balance  nutrients flows in cropland c.1920. The aim of this last 

paper is to compare the two balances c.1860 and c.1920. Some concerns about the 

scale and methodological differences are described in the following section. 

2. Material and methods 

2.1. Sources and scale justification 

As said above, the aim of this chapter is to compare two exercises of nutrient flow 

accountings within the framework of  Socio-Ecological Transitions (Krausmann 

et al. 2008; González de Molina 2010; Krausmann and Fischer-Kowalski 2013). 

They represent a fixed picture of the first two waves of the Socio-Ecological 

Transition of agriculture in the North-East of the Iberian Peninsula. Circa 1860 

represents the first wave, with the agro-ecosystem approaching its limits, whereas 

circa 1920 represents a system with one foot in the first wave and the other in the 

second.Before the comparison however, we should specify some differences 

concerning scale and method, which are the result of the historical processes that 

created the available sources. 

During the nineteenth century, the configuration of the Spanish liberal State and a 

centralized tax office gave rise to the consolidation of a new and unified Spanish 

fiscal system. From then, a number of cadastral surveys and statistical information 

of the mid-nineteenth century are available as historical sources. Additionally, as 

areaction to the new taxes on land, some towns and villages all over the Spanish 

State declared land by providing detailed information about land properties, in the 

form of reports, maps, etc. However, contrary to the consolidation of other liberal 

states such as France or the Austro-Hungarian Empire, this process was done in a 
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chaotic way and the information that remains today is far from centralized, 

complete and homogeneous. From 1860s onwards the main source for calculation 

of the State agricultural taxes were the «amillaramientos» surveys about rural 

properties and its monetary value, which is the main source that we use for 

theseyears (Muro et al. 1996).  

Figure 6.1. Location of the study area: the municipality of Sentmenat and 

neighbouring townships in the province of Barcelona and Catalonia (Spain) 

 

Source: from Marull et al. (2008a) 

At first, these «amillaramientos» were conceived as a temporary expedient until 

the Spanish cadastre ended, but as this did not happen in the nineteenth century, 

they remained in a fossilized state.From the beginning of the twentieth century 

and until the end of themonarchal regime with the Second Spanish Republic, they 

became increasingly out of date. As a result, the tax system deteriorated and 

became increasingly conflictive, which also entailed the deterioration of the 

«amillaramientos» as a reliable historical source.  

Hence, the «amillaramientos» have some disadvantages as a statistical source. 

First, as they were a fiscal instrument, some information could have been omitted 

or distorted to avoid the payment of higher taxes. Second, the information is 

rather general, they offer mainly total areas of irrigated and rainfed land classified 

by the main agricultural uses (grains, vines, olive orchards and other arboriculture 

crops, pastureland and woodland) without specifying rotations and fallow land. To 
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turn this basic information on land uses into taxable incomes some converters 

such as, average yields, current prices of products and usual cost of the main 

inputs (labour, draught power, seeds, manure, etc.) were required. This 

informationwas provided by the «cartillas evaluatorias», a crucial document only 

rarely kept in local archives—thus obliging us to resort on the  few that are 

available  which do not always correspond to the particular local conditions of the 

area studied.Third, once the land of a municipal territory had been classified in the 

first «amillaramiento» only the final distribution of the tax burden according to 

the taxable incomes assigned were updated  over time, this doesn´t provide  

enough periodicity to make a real series (GEHR 1991). Last, but not least, the 

information on land uses was only kept at municipal level and no aggregated 

statistics was compiled at district, provincial or national level throughout this 

period.  

In 1879, Ministerio de Fomento established the Servicio Agronómico de España 

to centralize the surveys dealing with the agricultural sector. It was organized by 

the chief agronomist engineers of each province and a higher level of nine 

engineers located in the capital, which were known as the Junta Consultiva 

Agronómica, which published some reports until the reform of 1927, when a 

series of agricultural yearbooks started (GEHR 1991). Notwithstanding, the 

information that they generated in the first decades of its existence was 

incomplete and poorly detailed, and the local surveys that the engineers of each 

province used to compile in the provincial reports during all the lifespan of 

theJunta Consultiva Agronómica have never been found (GEHR 1991). 

Summing up, for the years 1845-1865 we have a number of local sources, but it is 

almost impossible to find and group them to allow the aggregation at provincial 

scale or even other smaller administrative units such as the comarcas (similar to  

English counties). Then, from the 1860s to the 1890s there is an authentic 

statistical blackout, created not only by what has been explained above but due to 

the tumultuous period of the Sexenio Revolucionario (1868-73) and the Third 

Carlista War (1872-76), followed by a lack of interest in the first decades of the 

Restauración Borbónica (1974-1931) to renew the fiscal system. It was only after 

1890, when the idea that the State had to become an active stakeholder in the 

economic improvement of the country, that we start to have a proliferation of 

aggregated statistical sources, by Province and sometimes by Partido Judicial 

(similar to English districts), but not local districts. As a result, from 1845 to 1865 

we can carry out many local case studies but there are no historical series at 

provincial and national level. Ironically, after the statistical blackout from 1860 to 

1890, we can start relying on the series and surveys compiled by the Junta 
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Consultiva Agronómica (JCA) at provincial or national level, but no local 

information is available. 

As a local case study we selected Sentmenat, a municipality located in Vallès 

comarcain the province of Barcelona (Figure 6.1) c.1860 for the analysis. For two 

main reasons, the availability of sources and the long trajectory of research on 

these sources. The aristocrat lineage of the Marquises of Sentmenat had carefully 

preserved their patrimonial documents over the centuries, and they finally donated 

it to the main archive of Catalonia, the Arxiu de la Corona d'Aragó. The richness 

and detail of these records, allowed a number of studies.As the feudal and 

landlord bookkeeping together with copies of probate inventories and wills 

contained a great deal of information about land uses, crop yields, water conflicts, 

rents, tithes, wages, litigations, etc. (Serra 1988; Soto and Batet 1997; Garrabou et 

al. 2001b; Millán et al. 2006; Cussó et al. 2006b; Garrabou et al. 2010; Badia-

Miró and Tello 2014).  

Details of the nutrient balance c.1860 can be found in chapter 4 (Tello et al. 2012), 

and the sources are listed in table 4.7. On the other hand, for the analysis c.1920, 

we used the data at the only available scale, which was mostly at province 

level.Hence for crop production we used JCA (1923), for livestock numbers we 

used data from two livestock census (JCA, 1920; MF,1924), for the main 

fertilising materials we used JCA (1921) and we inferred irrigation doses using 

JCA (1916). The sources are listed in Annex 2.D. Criticisms and corrections of 

these specific sources were detailed in the last two chapters.  

2.2. Methodological aspects 

Both studies were made following the "Guidelines for Constructing Nitrogen, 

Phosphorus, and Potassium Balances in Historical Agricultural Systems" 

(González de Molina et al. 2010a; Garcia-Ruiz et al. 2012). Nevertheless, there 

are some differences in the methodology of calculating some of the nutrient flows 

between both cases.Especially regarding manure and humanure as a result of 

improvements on the methodology and correction of sources.  

We augmented the number of sources of production and composition of manure 

and humanure. Two main concerns motivated this change: the huge potential 

variability of data—as production and composition of manure relies on a number 

of factors such as diet, age, activity— as well as the insufficient availability of dry 

weight data. Moreover, concerning humanure we adopted a new method to 

estimate the potential collection, taking into account the main disposal systems 
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conditioned by the type of human settlements instead of only considering sewage 

systems as we did c.1860.  

Hence we discriminated among scattered rural houses or groups of houses 

(populations that inhabit 10 buildings or less is accounted as diseminadosor 

scattered by Nomenclator), concentrated rural villages and urban areas (Esteve-

Palós 2003). While in our first analysis we omitted the variability, in the second 

analysis we decided to include the Standard Deviations to leave some space for 

variability and thus increasing the robustness of the analysis. The specification for 

these calculations, as well as the compilation from historical sources and the 

values considered,  lengthen the list that appears in Lana-Berasain (2010), these  

are specified in Annex 2.B.  

The next important difference concerned the emission of nutrients to the 

atmosphere or water bodies. We could not find historical sources for the losses of 

N, P and K although for the analysisc. 1860 they were presumably found in 

Cascón (1918).However, he only mentioned some experiments of N losses in 

manure in other countries and did not quantify nutrient losses on his farm, at least 

in the work cited, so we found an alternative way to quantify nutrient losses.  

For the analysis c.1920 we used the "Guidelines of the Intergovernmental Panel 

on Climate Change"(IPCC 2006). They quantify the losses of N following two 

processes: through storage, which involved almost the 50% of the N in manure; 

and through land management, which involved other fertilizers, tillage and 

irrigation. The weak point of our estimation is that we needed to separate dung 

from straw (as the main losses occur in dung) and the production together with the 

composition data that we have is for manure i.e. dung and straw together. 

However, it can be done as long as we estimated the amount of straw used and its 

composition. These considerations apply to humanure as well. 

In any case, we did not explicitly account for manure losses in the balance c.1860, 

although they were subtracted from the potential N inputs of manure. 

Simultaneously, we overestimated the losses from lixiviation, which in this case 

was close to the total of N losses of  on balance. Considering a Mediterranean 

climate, to be compatible with the methodology we should multiply the lixiviation 

factor only by irrigated land and not by all the cropland area, and hence the value 

would drop from 5.5 to 0.23 kg of N·ha
-1

(Figure 6.3). Yet, the overall result for N 

would not have changed that much as it would be compensated by the increase of 

N denitrification of managed land, which according to the IPCC (2006) 

methodology would have rose from 1.5 to 6.5 kg of N·ha
-1

 approximately. 

Something similar would have happened with K losses, however as  given  they 

would be negligible (Garcia-Ruiz et al. 2012), the amount considered c.1860 is so 



 

 

191 

low that they could have been compensated by other minor differences   without 

affecting the overall balance significantly.  

 We reviewed a number of historical sources written by Spanish agronomists at 

the end of the nineteenth century and the beginning of the twentieth for the 

analysis c.1920. Among the recommended manure applications, we only found 

the already mentioned amount of 6-7.2 t·ha
-1

of fresh manure (Llorente and Galán 

1910), but we could not confirm the 10 t·ha
-1

wrongly attributed to Cascón (1918) 

in the analysis c.1860, as he only stated that he used 20 t·ha
-1

 to fertilize his own 

farm (Cascón 1918). In any case, all the agronomists of the time were concerned 

about the low availability of nutrients, and their advice was not limited to a fixed 

amount of manure as they recommended quantifying the extractions of nutrients 

in order to return them to the soil using all possible combinations. 

3. Discussion 

3.1. Socioeconomic features 

Low livestock densities, low share of forest and pasturelands, and vineyard 

specialisation of Sentmenat c.1860 were argued to be typical of a Mediterranean-

type of «intensive organic agriculture» (Tello et al. 2012). Vineyard specialisation 

played a key role by complementing forest produce, such as prunings burnt as fuel 

or as fertilizer in hormigueros, leaves, shoots and  pomaces as animal feed or 

fertilizer (Cussó et al. 2006b), as was done for centuries in the great diversity of 

silvoarable landscapes of Europe (Eichhorn et al. 2006). Indeed, the low forest, 

scrubland and pastures ratio per unit of cropland was a matter of concern at the 

end of the nineteenth and the beginning of the twentieth centuries. As claimed by 

Huguet del Villar  in 1921, when he stated that, in Spain, forest land was only 

between 10 and 15% of total area (Tello and Sudrià 2011). This number is similar 

to that found in the plains of the province of Lleida  in chapter five and was 

probably shared with other cereal regions of the Castilian plains, but is lower 

compared to our case study (Table 6.1). The general trend in comparing 

Sentmenat and the province of Barcelona  was  an increase in the share of forest, 

scrubland and pastures
6
.At the same time, the complementary function of the 

vineyards lost importance, as the multifunctionality of arboricultural crops lost 

                                                 

6
We could not disaggregate between forest, scrubland or pastures as in JCA (1923) forest and 

scrubland are considered adjoined to pastures. 
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importance in other places of the Iberian Peninsula (Infante-Amate and González 

de Molina 2013; Cervera et al. 2014).  

Other indicators are difficult to compare as the province of Barcelona was 

strongly influenced by Barcelona city. However the census of population (INE, 

1920) and livestock (JCA, 1920) allowed to separate the Partido Judicial of 

Barcelona from the rest of the province, showing that while the population density 

in the later increased up to 84 inhab·km
-2

, the increase in livestock density per 

cropland area was not so dramatic (14 LU 500 kg·km
-2

). The high concentration 

of people and manure involved high concentration of organic matter, therefore, 

the cropland areas surrounding the city of Barcelona  took advantage of this 

flowfrom the city, as with other cities such as Paris (Barles 2007; Billen et al. 

2007b). Notwithstanding, lacking other data sources, we could not refine this 

supposition. 

The range of population densities between 16-64 inhab·km
-2 

was considered by 

Boserup (1981) typical of agricultural systems that combined short rainfed fallow 

with domestic animals. At the same time, Badia-Miró et al. (2010) found that the 

optimal population density in vineyard areas in Cataloniaduring the 1860s-1880s 

would have been between 25 and 40 inhab·km
-2

. In contrast with the low 

population densities of Lleida province, which  match those of Castilian grain 

areas. Barcelona province c.1920overcome that threshold, regardless of taking 

into account the city of Barcelona or not, thus indicating that the agri-food system 

had started to change profoundly. Gini index
7
c.1860—not available for c.1920—

showed lower levels of inequality in land distribution compared with the previous 

local situation in the eighteenth centuryor with the latter in the first third of the 

twentieth century.These lower levels of inequality were linked to access to land. 

Which were due to the spread of rabassa morta sharecropper leases,these were 

strongly linked with the vineyard specialisation in Catalonia before the twentieth 

century (Badia-Miró and Tello 2014). 

  

                                                 

7
 The Gini index measures the inequality among values of a distribution. The lower the index the 

lower the inequality.  In this case, Badia-Miró and Tello (2014) apply the Gini index to land 

distribution. 
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Table 6.1. Main characteristics of the case studies 

 c.1860 c.1920 

 Sentmenat Barcelona 

Rainfall (mm) 643 640 

Population density (inhab·km
-2

) 59 176 

% forest, scrubland and pastures over total area 37.8 56.9 

Ratio forest, scrubland and pastures over annual crops
8
 2.4 3.5 

Ratio permanent land covers over annual crops 5.1 4.9 

Livestock density per cropland area (LU 500 kg·km
-2

) 12 40 

Source: last two chapters. 

Vineyards had occupied and occupy important cropland extensions in Catalonia 

and their changes between c.1860 and c.1920 (Figure 6.2) had important effects at 

all levels: "Catalan vineyard specialisation cannot be seen as a simple market-

driven resource reallocation, undertaken only according to a given set of agro-

climatic features. The active development of second-nature factors was very 

important, thus confirming the role played by socio-institutional settings and 

socio-political conflicts related with income inequality. While in the mid-

nineteenth century vineyard spread had led to a less unequal rural society, it was 

also growing faster there than anywhereelse. This explains why the rabassa morta 

sharecroppers fought so fiercely during the second half of nineteenth century and 

up to the Spanish Civil War (1936–39)."(Badia-Miró and Tello 2014). 

  

                                                 

8
Although questionable, we refer to herbaceous crops and annual crops indistinctly when we want 

to group all the crops that are not wooden and perennial. 
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Figure 6.2. Vineyard land in the four provinces of Catalonia, 1860-1935 

 

Note: The y-axis is in ha and 1880-84 data are only available for the provinces of Barcelona and 

Tarragona. Source: from Badia-Miró et al. (2010, 42). 

Before becoming a cash crop, grape vines used to be planted as a temporary crop, 

slashing and burning  forest or scrublands(Miret 2004), it was common to leave 

land between rows of vines to be sown alternatively with grains or left to fallow 

(Badia-Miró and Tello 2014). Unlike other winegrower areas of the Iberian 

Peninsula specialized in luxury wines such as Porto, Malaga or Sherry, the 

Catalan vines produced cheap table wines.Exportation, oriented to an elastic 

demand, started to grow at the end of the seventeenth century.  

The majority of the expansion of the vineyard area was at the expense of 

woodland or scrubland, and under the sharecropping contract called rabassa 

morta, which ended when two-thirds of the vines had died. Since the 

consolidation of the Spanish Liberal State the aristocratic landlords lost the right 

to ask for tithes and some of the wealthiest sharecroppers got access to land. Both 

found in the rabassa morta a way to receive rents and expand cultivated land 

without assuming the labour costs (Valls-Junyent 1997; Colomé 2014). The end 

of these contracts was undefined and it could be sold or even inherited due to 

layering practices,which extended the lifespan of the plantation, not without 

controversy (Congost 2004). This system allowed landless peasants to have a kind 

of long-term access to land up to the second half of the nineteenth century,hence 
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creating the effect of land distribution, as forests used to belong to big 

landowners.Besides wine, vines were an extra source of fuel (pruning) and feed 

for livestock (vine shoots, leaves and grape pomaces) (Garrabou et al. 2010) akin 

to forests. Wine prices were highly fluctuating andthese indefinite contracts based 

on a fixed rent started to create problems when inputs required (such as pesticides) 

increased(Carmona and Simpson 2009). This happened during the nineteenth 

century, when the demand of wines peaked due to the spread of two plagues 

unknown to  European winegrowers but common on the other side of the Atlantic.  

The oïdi, oidium or powdery mildew (Uncinula necator/ Oidium tuckeri) was 

detected for the  first time in 1845 in the United Kingdom and spread through 

France between 1852 and 1861. Thisproduced a dramatic decrease in French wine 

production, which could not supply the American and English markets, nor the 

French itself (Piqueras-Haba 2010). While the plague spread across the Iberian 

Peninsula as well, its virulence was lower in those areas with arid and drier 

climates like the inner comarques of Bages, Conca de Barberà, Garrigues and 

Priorat., There new land was ploughed, taking advantage of the international 

situation of prices, thus increasing massively vineyard acreage. On the contrary, 

on the coastal and humid areas of the provinces of Barcelona and north of 

Girona,the effects of the plague were exacerbated and together with the 

abridgment of fungicide availability (sulphur in this case) and other factors, some 

winegrowers decided to uproot their vines. The recovery of the vineyards from 

these areas started in 1858 (Piqueras-Haba 2010) and so did the relative prices of 

wine/wheat.Which rose again at the end of the 1870s until the beginning of the 

1890s due to the spread of the phylloxera(Carmona and Simpson 2009).   

During the late 1850s,fil·loxera, filoxera or phylloxera (Dactylosphaera vitifolia 

or Phylloxera vastatrix) was introduced accidentally in Europe through the 

imports of American varieties of vines resistant to powdery mildew, and by  mid-

1890s, there was not a corner in France free from the insect (Piqueras-Haba 2005). 

In order to supply the French internal demand, not only did imports from their 

Mediterranean neighbours increase, but also vineyards started to be plantedin 

Algeria. The phylloxera has a complex reproduction cycle and attacks the root 

system of the European varieties until death, whereas the root system of the 

American varieties resists. The only solution was (and still is) to graft the 

European varieties with American rootstocks or use hybrids resulting from 

crossing varieties from the two continents. The spread of the phylloxera across the 

Iberian Peninsula had two main outbreaks, in Porto (1871) and Malaga 

(1878).However, the expected arrival from France was detected for the first time 

in Girona (1879) and took more than 25 years for it  to reach the last vineyards in 

Tarragona and Lleida (Piqueras-Haba 2005). Hence, Catalan winegrowers could 
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still take advantage of the favourable prices, either by replanting the first 

destroyed vines or by planting new ones in the last affected areas. Such was the 

case of Lleida, where during this period the area of vineyards almost doubled. As 

they were using pre-phylloxeric varieties however, at the end all of them were 

destroyed.  

The formerwas the case for Barcelona and Tarragona, where the vineyard area 

increased only 15% during the phylloxera‘s bubble and the winegrowers were 

able to replant the dead vines with other ones resistant to plague, so they 

recovered the vineyard area of the previous years, according to Badia-Miró et al. 

(2010). These authors argue that a key component for the recovery of these two 

provinces was that of path dependence. In other words, as they started their 

vineyard specialisationin the seventeenth century, the culture and social fabric co-

evolved with vines, thus creating a sort of comparative advantage when the vines 

were exterminated and it was time to leave agriculture, move to another crop or 

replant vines.  

After the phylloxera plague, viticulture became something totally different. Many 

investments had to be done for replanting the dead vines: buying them from 

nurseries and grafting them (and learning to do it); protecting them from the 

diseases that accompanied the American rootstocks such as the mildiu or downey 

mildew (Plasmopara viticola) and to fertilize them (recall that the pre-phylloxera 

vines were not fertilized). As a result this new viticulture needed more labour than 

before, up to 94 man-equivalent working days per year per hectare, vis-à-vis the 

25 needed in extensive cultivation of cereals with fallow that was practiced in 

inland Spain and the province of Lleida, were population densities matched those 

in Castile during 1860–1920 (Badia-Miró et al. 2010). Moreover between 1890 

and 1930 wine prices decreased and winegrowers had to face several crises de 

mévente, when prices of wine were lower than production costs, something 

unknown for Catalan winegrowers since 1850 (Planas 2014). The  decrease of 

wine prices in respect to bread prices, and particularly with respect to wage labour, 

created an opportunity cost for sharecroppers with respect to off-vineyard land 

and off-farm activities (Carmona and Simpson 2009). Needless to say, with all the 

vines wiped out and the impossibility of layering or transplanting cuttings, all the 

rabassa morta contracts ended.  

Under these conditions, in the succeeding years of the phylloxera, a bulk of rural 

population migrated towards urban and industrial poles, hence boosting the 

growth of large cities like Barcelona, as was happening in other European 

countries during this fin-de-siècle agrarian crisis (Colomé and Valls 2012). Some 

rural areas began  a process of demographic transition towards the current pattern 
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of low birth rates (Colomé and Valls 2012). This was not the end of the existence 

of the rabassa morta contracts, whichstill were the contracts dominating the 

relationship between sharecroppers and landowners at the beginning of the 

twentieth century, although they were modified. Indeed, the undefined lasting 

terms of the contract were changed during the nineteenth century, as the 

landowners wanted to facilitate the eviction conditions. For example in the 

Penedès comarca, one of the most specialised vineyard areas in the province of 

Barcelona, more than half of the contracts already specified a fixed duration in the 

decade of 1850s and 100% after the phylloxera plague (Colomé 2014). However 

Carmona and Simpson (1999) argued that although the contracts changed its name 

and conditions, the path dependence and social pressure in the areas where vines 

were replanted were so strong that in practice everything remained the same. So, 

while for some authors this was the starting point of the constrictionof the 

conditions imposed by landowners (because sharecroppers were losing the 

property of the vines); for others it is the demonstration of the high transaction 

costs for both sides to change to another alternative such as renting.  

Going in depth into this debate, Badia-Miró and Tello (2014) tried to explain the 

apparent contradiction in  the expansion of vineyard land (and so rabassa morta 

contracts) before the decade of 1850, when the relative prices of wine were 

fluctuating vastly(Badia-Miró and Tello 2014). These authors explain that the 

vineyard specialisation in Catalonia enhanced the capacity of rural areas to sustain 

population. As this expansion was done through the use of rabassa morta 

contracts, which previous to the phylloxera attack allowed access to land for  

small growers with little or no land of their own hence, retaining them from 

migrating to urban environments or the New World. This, as expressed by the 

lower rental-wage ratios of this period, resulted in lower inequality levels for 

those municipalities whose major cropland area were vineyards compared to 

municipalities devoted to grain.  

This trend ended circa 1840, when vineyard areas reached a critical threshold in 

population densities and the rental-wage ratios increased in winegrowing areas 

and decreased in grain areas. Thus, from circa 1840, inequality between 

landowners, tenants and sharecroppers started to rise again whereas it diminished 

in grain-growing areas. This explains the social unrest be found in winegrowing 

areas at the end of the nineteenth century and the beginning of the twentieth 

century (Badia-Miró and Tello 2014).  

Responses to face the conditions after the phylloxera plague were not only centred 

in rents and land contracts. The new situation fostered the creation of wine 

cooperatives in Catalonia, which unlike the French ones, were platforms to buy 
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inputs for agriculture, find credit and have access to affordable wine processing 

facilities. However, by no means the main objective was improving the quality of 

wine(Planas 2013).In addition, the conflict between big landowners and small 

winegrowers was transferred to this institutional ambit, and it was possible to find 

two cooperatives grouping members of each side fighting in the same 

village(Hansen 1969; Simpson 2003; Planas 2013). Again, contrasting the French 

case, the Spanish cooperatives suffered a lack of support from the state(Planas 

2013).  

Still, the local government of Catalonia helped in the creation of cooperatives: in 

1919, the Mancomunitat launched a service to encourage the formation of new 

wine cooperatives and assist them (Servei d’Acció Social Agrària). These services 

were closed down after the Primo de Rivera coup d‘état (1923) and reopened 

again during the Second Republic by the Generalitat in 1931 (Garrabou 2006). In 

1934 only 16% of all the wine produced in Catalonia came from cooperatives, so 

although it was by far the region of Spain with more cooperatives (3/4 of the over 

100 Spanish wine cooperatives were from Catalonia), the success of its spread 

was modest (Planas 2013).  

Winegrowers, being aware of the French opposition to Spanish wines, tried to 

pressure for favour of regulation of the domestic market to use the distillates 

sector as a destination for the overproduction of wine. Nevertheless, they had 

strong internal conflicts and were not such a strong lobby as the producers of 

―artificial‖ wines and the alcohol industry (alcohol from sugar or starch was used 

to strengthen wines to export them during the plague) (Planas 2014). At the same 

time, the main demand from sharecroppers was towards land ownership 

recognition, while landowners were more worried about wine taxes. In fact, the 

main landowners associations, the Institut Agrícola Català de Sant Isidre (IACSI) 

and the Federació Agrícola Catalano-Balear, were even more concentrated in the 

technical aspects of vine cultivation than in establishing measures to control fraud 

or wine quality.Contrary to  what happened in the French Midi with the 

Confederation Générale des Vignerons, which allowed improvement of the 

quality of wines and so the price (Carmona and Simpson 2009; Planas 2014). 

Nevertheless, the weakness of the winegrower groups was not the only factor that 

contributed to the failure of the creation of an institutional framework favourable 

to the Spanish winegrowing sector. Also, their lack or bad relationship with 

political parties and the State‘s inability to respond to their demands, as opposed 

as  to what happened in the French Midi (Planas 2014). 

3.2. The Socio-Ecological Transition c.1860 - c.1920 
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The weakest point of the balance in Sentmenat was N, while K and P were almost 

in equilibrium; conversely, the most unbalanced nutrient c.1920 was K, whereas 

the extraction of the other two nutrients analysed were compensated by the inputs 

(Figure 6.3). Note that the main difference between the two balances in this figure 

is the scale of the flows, i.e. the magnitude of both positive and negative vertical 

bars. Two main reasons explain this difference: the spatial scale and the Socio-

Ecological Transition.  

Regarding the spatial scale, despite more than half of the cropland area being 

vineyards in both cases (66% and 55% c.1860 and c.1920 respectively), the 

province of Barcelona was not as homogeneous as the municipality of Sentmenat. 

Some geographic factors,the  mountains, sea, etc., or the existence of urban 

centresas the city of Barcelona and its port, would have structured local 

possibilities and demands for some crops. To serve as an example, adjacent areas 

to the city would have benefited from the marketed humanure (JCA, 1921) and 

manure dumped by the high livestock densities c.1920, but not more distant 

areas.In addition, the cereals yields in the Vallès area could have been lower than 

in other places of the province of Barcelona such as Osona (Garrabou et al. 1995). 

These effects however cannot be discriminated in the provincial balance, as we 

cannot decrease the scale of yields.  

As for the latter, to what extent the different moments of the Socio-Ecological 

Transition explain lower fertilizer flows and lower yields? Although the balance 

of Sentmenat c.1860 is not in equilibrium, the negative trend is not as strong as 

the one found in the more arid regions of Catalonia c.1920. Thus, we could say 

that, from this point of view, the system was not so close to its limits mainly 

because the extractionskept up with the availability of fertilizers. Considering that 

a global abundance of fertilizer would mask local scarcity of fertilizer, there was 

more manure available c.1920 than c.1860 (4.57±0.68 vis-à-vis 1.4 t·ha
-1

 

respectively). Theoretically, two main reasonscould explain the lower extractions 

c.1860: lower intensity in the use of nutrients and lower yields. Unfortunately, we 

cannot specify nutrient variations in the composition of ancient crop types and 

cultivars due to lack of reliable information (we had to use the same sources in 

both years for nutrient content). Concerning yields,although presumably these 

were lower c.1860, we considered that it was not worth  comparing quantitatively 

two moments of time because the annual variability could lead us towards 

uncertain conclusions—cartillas evaluatorias used to be five-year compilations 

and the report from Junta Consultiva Agronómica only related to one year.  

Still, as in both cases more than half of cropland area were vineyards, we can 

make an important observation.Recall that they were not the same type of vines 
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due to the phylloxera plague at the end of nineteenth century. On one hand, the 

extractions were of a different kind, as pre-phylloxeric vines produced much less 

fruit (Marco et al., forthcoming.). On the other hand, vineyards allowed 

cultivating poor land without great fertilising efforts, due to the lower relative 

needs of N and P compared to other crops. Hence, this first wave strategy to 

increase marketable agrarian produce—but also access to land and availability of 

forest-like produce—concentrated high levels of soil mining c.1860, as vines were 

not fertilized at all.    

Figure 6.3. Nutrient balance of the cropland area of Sentmenat c.1860 and 

the province of Barcelona c.1920 

 
 

 

The nutrient balance of the cropland area of Sentmenat c.1860 has been adapted to the legend of 

c.1920 in the Barcelona province, but note that they are not at the same scale. Negative values 

represent extractions and losses, positive values are additions of nutrients. Error bars are the 

accumulation of Standard Deviations and are due to the estimation of manure, humanure and the N 

emissions associated. Source: Tello et al. (2012) and our own as described in text. 

The origin of fertilizers strongly differed in both cases. The non-manure organic 

fertilizers had more weight c.1860 than c.1920 in the replenishment of all 
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nutrients. Among them, free fixation is the main source of N c.1860,while c.1920 

has nearly the same amount, it has not the same relative importance. Rainfall 

deposition of N is not the same due to calculation differences. N fixed by 

leguminous crops is higher c.1920 because a greater area of cropland was devoted 

to them. The use of humanure is higher c.1860 despite lower population densities 

as less was lost due to the disposal system type, opposite of what happened in the 

city of Barcelona, where the proximity of the sea and  bad conditions of the 

sewage systems (García-Faria 1893)allowed less recovering of humanure. The 

rest of fertilizers that we grouped as «other» (homigueros, ashes and other 

materials buried) were higher c.1860 than c.1920. The reason is that we could not 

quantify them c.1920 as in contrast to neighbouring provinces, they were 

neglected by the agronomist in charge of Barcelona (JCA 1921). These other 

fertilizers could respond to practices relevant at local level but were diluted at a 

more aggregated scale.This could explainwhy the engineers of theJunta 

Consultiva Agronómicadid not consider them—although it is rather likely that the 

significant rise in agricultural wages experienced between the two dates 

(Garrabou and Tello 2002), together with the peak of deforestation attained during 

the First World War (Cervera et al. 2014), would have reduced these fertilising 

practices (hormigueros). Two new fertilizer applications appear c.1920: one due 

to nutrients carried by irrigation water, applied mainly in horticultural land, and 

the other due to synthetic fertilizers.  

The flows of nutrients out from cropland area in the province of Barcelona could 

be balanced due to the incorporation of synthetic fertilizers to the mix of 

fertilising methods (Figure 6.3). Nevertheless, were there other alternatives to 

increase nutrient flows towards croplands? In past organic agricultures, there were 

mainly three ways to do it. First, increasing the recycling of nutrients: seeds 

contain nutrients that the plant needs to grow, so the lower the yield of the seed 

the higher the nutrients recycled (Chorley 1981); the use of by-products from 

crops as fertilizer being buried, as a component of manure heaps or as feed for the 

animals, and the use of humanure. Second, transferring nutrients from nearby 

uncultivated lands as biomass to be buried and as feed for livestock—yet, to what 

extent could biomass be extracted from Mediterranean forest or scrubland 

(whenever it was allowed by the owner) without damaging the capability of 

providing ecosystem services or its regenerative structures? Third, the availability 

of stocks from the atmosphere and soils could be increased (through atmospheric 

N fixation or mineralization from soil). Leguminous crops in Sentmenat c.1860 

were 9.6% of cropland but 35.7% of annual crops, whereas in Barcelona province 

c.1920 they represented 10.8% of total cropland area and 25.1% of annual crops. 

Could it have been possible to increase even further the area of leguminous crops? 

Also, not all leguminous crops behave in the same way: wheat yields more if  
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planted after clover than after beans (Allen 2008). Was it possible to 

increasefurther the area sownwith clover or other leguminous forages more 

drought resistant as sainfoin?I deem that, from all the fertilising methods 

described so far for the system c.1860, the only way to increase the nutrient flows 

escaping from the zero sum game of land dependence was the reduction of 

nutrients losses throughout the fertilising processes. 

Then there were all the socio-economic factors, e.g. human labour, market 

profitability, inequality. The well-known case of the English high farming system 

prior to the 1870s becomes a useful reference. In spite of the contemporary 

observations of Liebig and Marx (Foster 2004), other authors recently argue that it 

was more ecologically sustainable than it could have seemed,as with convertible 

husbandry and rotations with leguminous plants, they were increasing production 

by enhancing internal ecological processes. What was unsustainable were 

inequality and exploitative social conditions by landowners and capitalist tenants 

(Schneider and McMichael 2010). "Yet High Farming succumbed not to social 

inequality or popular resistance (the Luddist uprising) but to exposure to world 

commerce"(Friedmann 2000)—that is, by the 'grain invasion' (O‘Rourke 2009) 

from the American Great Plains which still did not have fertility concerns.  

4. Final remarks 

Recalling our main hypothesis, the repositioning of nutrients—that was strongly 

related with other physical factors such as water availability as we saw in last 

chapter—was a weak point of the past organic agricultures stressed by market 

forces, increasing inequality, urbanization and a growing population. Hence, we 

end with a big open question: which were the social and economic factors 

affecting soil fertility? I guess answering this question requires a complex 

combination of geographic, demographic, socioeconomic or political and cultural 

factors. Examples of these could be population densities and livestock densities, 

settlement patterns, social inequality in land ownership and income distribution, 

the advance of a market-oriented agricultural specialisation of a former crop 

diversification with multiplicity of land uses, or the ways of transmitting a peasant 

traditional knowledge versus the new technologies provided by scientifically 

based agronomics. Further research is needed before trying to construct such an 

ambitious historical synthesis that would require combining different approaches 

taken from cultural, political, socioeconomic and demographic history, as well as 

from environmental history. This becomes an unattainable aim for this historical 

study based on the Material Flow Analysis methods applied from an 

environmental history viewpoint, which is more focused on contributing to the 
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pending historical narrative of Socio-Ecological Transitions in Mediterranean 

agriculture.  

The comparison with the adjacent regions was interesting due to the strong 

differences among them. In the province of Girona medium-sized farms (masies) 

with a rather complex and equilibrated policultural endowment of arable land, 

woodland, pastures and livestock were common. In addition to being located in 

the more rainy area of Catalonia, this agrarian class structure was arranged in a 

habitat of scattered farms, which mainly explains how they could still enjoy 

enough manure to replenish the soil nutrients without having to resort to chemical 

fertilizers c.1920 (Pujol 1998). This was also probably true in the mainly forestry 

and livestock breeding rural communities located along the Pyrenees. Both were 

unequal rural societies, where a stratum of peasant families lacking enough land 

of their own had to work for the wealthier owners as sharecroppers, farmhands or 

daily workers (Congost 1989; Congost and To 1999). These regions, however, 

neither generated a great surplus of landless people lacking a contractual link with 

the well-established families, nor forced them to emigrate to other Catalan places 

(like the ones who migrated over centuries from the mountains towards the 

lowlands in the provinces of Barcelona and Tarragona). 

Conversely, the littoral and pre-littoral fringes of the Barcelona and Tarragona 

provinces experienced an increase of population densities because of the growing 

number of landless people seeking an opportunity to make a living. For a while, 

the owners of the land saw them as a trickle of foreign tramps who could become 

potential thieves of their own wellbeing. They were becoming a new frightening 

class of people without a place in traditional Catalan rural society (Tello et al. 

2008a; Garrabou et al. 2010). A response to this challenge was the opening of the 

vine-planting frontier (Badia-Miró and Tello, 2014) in former scrubs and 

woodland areas that we described above which together with the spread of 

industrious activities and the increase in  industrial activities near the network of 

cities and towns with close access to seaports (Espuche 1998; Marfany 2012). The 

advance of this vineyard frontier turned viticulture into a cash crop exported to the 

emerging Atlantic economy, and entailed a cropland expansion as well as a land-

use intensification that put additional pressure on the replenishment of nutrients 

extracted from soil.  

We have seen that c.1920, the increasingly polarized and evolving agrarian world 

in Barcelonaprovince could no longer equilibrate their nutrient balances without 

resorting to chemical fertilizers. We deem that before the arrival of these 

industrial fertilizers a soil mining process had been in place, mainly in vineyards 

and perhaps other perennial crops like olive, almond and nut orchards. A pending 
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issue that needs further research is to what extent this imbalance existed simply 

because there were too many people demanding too many crops being grown on 

the land, or rather most of this soil mining process had been driven by social 

inequality in a rural society increasingly polarized. From the data collected c.1860 

in Sentmenat, it was concluded that vineyards were under-fertilized not because 

there were insufficient organic fertilizers but mainly due to the lack of access of 

many small winegrowers to livestock, pastureland and woodland (Tello et al. 

2012), as it can be understood by considering land distribution (Figure 6.4).It is 

likely that inequality also played a role in the lack of manure as well as chemical 

fertilizers to fill de nutrients gap we found in the arid inland planes of the Lleida 

province.A rural world highly polarized between irrigated and rainfed poor lands 

and where a myriad of small peasant families had to fought hard to succeed under 

a dense web of debts owed to a minority of wealthy landowners who grabbed the 

best land and water resources (Vicedo 1991; Tello 1995).  

  



 

 

205 

 

Figure 6.4. Allocation of land according to the range of land owned in 

Sentmenat (Vallès comarca, Catalonia, c.1860) 

Source: from Garrabou et al.(2010). 

Therefore, I have to conclude by raising a big question that deserves to be 

addressed in the future by joining Environmental History and Socio-economic 

History standpoints: would it have been possible to increase the capacity of 

agriculture to produce more in a sustainable way or was the only possible way  

industrial agriculture? 
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 Final remarks 

In this work, we examined the Socio-Ecological Transition of agriculture in the 

Northeast of the Iberian Peninsula. As we quoted at the beginning of this 

dissertation, this framework embeds the old question about agriculture that other 

Prometean views of History abandoned after the spread of industrial agriculture 

(Barca 2011). Industrial agriculture is not only vulnerable to the depletion of finite 

stocks of fossil fuels, but it has also harmful effects on soil fertility, biodiversity 

and local knowledge, regardless of the agroecosystem it relies on. 

We adopted as our framework the narrative of Socio-Ecological Transitions 

(Krausmann et al. 2008; González de Molina 2010) to integrate the bio-physical 

analysis in Agricultural History. It has been useful to integrate the society–nature 

interaction within the field of Environmental History to study the transition from 

one agrarian society to an industrial society. This is so because the knottiest issue 

of comparing systems during the transition is that they do not rely on the same 

sources, logics and systems of value. Relying only on a modern function of 

production factors involves the misunderstanding of logics that were dominant in 

past systems (Naredo 2004b). For instance, the strategies relying on decreasing 

labour productivity (Boserup 1965) or the paradoxical observation that petty 

commodity producers were behaving in a more capitalistic fashion than big 

landowners hiring wage labour (Garrabou et al. 2001b). The Socio-Ecological 

Transition narrative (Krausmann et al. 2008) and the proposal of its arrival 

through twofirst waves depending on the management of fertility(González de 

Molina 2010) combines two interesting logics: the capabilities of agrarian systems 

to improve yields but also to keep doing it in the long run. Our aim here is to 

interpret and reflectour results under the umbrella of the Socio-Ecological 

Transition.  

Although the entire agricultural sector wasin crisis during the late nineteenth 

century, it ensued in contrasting paths across the Spanish regions. We chose 

Catalonia because of the paradigmatic differences in its rich historiography, 

between winegrowing and cereal areas and also between interior and coastal areas. 

During the nineteenth century and the early twentieth, the winegrowing areas in 

Catalonia followed a particular path. First by the expansion through the rabassa 

morta sharecropping contract and later contracted because of the phylloxera crisis, 

whose way out was strongly marked by social conflicts. The interior dry-farming 

areas such as the plains of Lleida, struggled with low and fluctuating cereal yields 

during the nineteenth  century, whereas during the twentieth century the cereal 

mix focused towards wheat, and yields stabilised (Garrabou et al. 1992a; 
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Garrabou et al. 1992b; Garrabou et al. 1995). In the non-interior cereal areas, 

yields used to be higher because other settlement and climatic conditions allowed 

higher livestock densities (Garrabou et al. 1995). 

1. Bloc 1. Energy flows of five villages in the Vallès county (Barcelona) 

c.1860 and 1999 

In the first bloc, we analysed the energy flows of five villages in the Vallès county 

c.1860 and 1999. Their comparison showed the paradigmatic trend that followed 

the agricultural systems once they ended the Socio-Ecological Transition of  an 

industrial regime or mode of appropriation. Starting from the concept of Energy 

Return On Investment (EROI)(Hall et al. 1986) we defined three ratios— Final 

EROI, Internal Final EROI and External Final EROI—to capture three aspects of 

the energy profile. 

The energy efficiency, either considering onlyexternal inputs or total inputs 

consumed, decreased. Opposed to this, the efficiency of the use of crop residues 

increased as the harvest increased together with the diminution of the harvested 

biomass reinvested in the system—due to e.g. lower straw/grain ratio, less 

cropland area devoted to feed, etc. Hypothetically, the margin to improve the 

overall efficiency c.1860 would be to decrease losses of nutrients as qualitative 

observations of the agronomists at that time suggest. 

In addition, we defined the NPP EROI as the return of energy available to sustain 

humans as well as the rest of heterotrophic species. To understand the idea behind 

the fourth ratio, it is essential to understand the concept of agroecosystem as 

hybrid human-natural systems in whose arena interacts the correspondent ruling 

and driving forces. We deem that just as some human activities harm biodiversity, 

others can stimulate it. Hence, although agriculture is always a disturbance, 

depending on its characteristics, it can have a synergic relation with biodiversity 

as some agroecologists have observed. As we largely developed in chapter 3, at 

landscape scale this means to recover the old idea of a mosaic of land uses 

(Margalef 1968). To adapt this idea to our schema we ended with two hypotheses.  

The first hypothesis was that the existence of a significant proportion of biomass 

reused is a hallmark of an integrated land-use management that tend to increase 

the complexity and the number of habitats in agroecosystems. The second 

hypothesis was that the difference between NPP EROI and Final EROI could 

control whether a change in the energy throughput undermines or not the biomass 

available for other species. As we saw in section 1.2, it was not only non-cropland 
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areas but also some of the low-intensity areas generated by traditional 

agricultures—the same areas that, at least in the Mediterranean, were and are 

being abandoned.  

In our study cases, the difference between NPPEROI and Final EROI, decreased 

significantly in 1999 despite the proportion of the area being covered by forest, 

scrubland and pastures increasing. More specifically, the area of forest increased 

while the area known as erial, i.e. pastures and scrubland altogether, decreased. 

By disaggregating between internal and external components of energy efficiency, 

we put forward the importance of the internal recycling of biomass, which is a 

component of the production process not considered in conventional Agricultural 

History. By doing so, we faced the main difficulty to build the energy profile of a 

historical agroecosystem, which is to find data. Some qualitative data is available, 

such as the opinions of the agronomists mentioned before or guidelines of 

management wrote by landowners (Garrabou et al. 2001a). However, the main 

available quantitative data are population census, manorial inventories, church 

tithes, parish and notary registers and cadastral sources. 

2. Bloc 2. Nutrients flows in cropland area in the municipality of 

Sentmenat (Barcelona) c. 1860 and in the regions of Catalonia c.1920 

In the second bloc, we dealt with the methodology and the interpretation of a 

balance of nutrients. We are aware that deficiencies in a nutrients balance, does 

not mean that the producing capacity of agricultural soils is depleted.This is 

because there are incorporations that are difficult to take into account, such as the 

mineralisation of soil nutrients stocks or deposition from the atmosphere. This 

was discussed some decades ago by Loomis (1978) for an agrarian system in the 

Middle Ages. Moreover it has been demonstrated by the few long run experiments 

of unfertilised plots, that yields drop to a minimum but can still can be harvested 

(Shiel 2010; Loomis et al. 2011). On the other hand, there are historical studies of 

increasing agricultural yields due to the increasing incorporations of convertible 

husbandry and leguminous rotations in England and North of Europe (Chorley 

1981; Allen 2008). Like the reverse of a coin,  in  the American Great 

Plainscontinuous farming without the return of nutrients to the soil led to the loss 

of N stocks in soils (Cunfer 2004).  

Nevertheless, we can take the replenishment of nutrients extracted in cropland 

areas as a proxy to the capability of the systems to increase fertility through their 

organic means. This is of outmost importance in areas with Mediterranean 
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climates, because the summer drought reduces the flowering season of 

leguminous plants, thus shortening its cycle and limiting the densities of livestock 

that can be maintained. Some strategies were the concentration of nutrient 

replenishment in the more fertile lands,whereas other lands were almost non-

fertilised. These lands still received nutrients through natural processes such as 

deposition and were sown by crops that could still produce with relative scarcity 

of nutrients. This ensued an overall disequilibrium in the balance of nutrients for 

the entire cropland area. This was the case of ruedo and the olive groves observed 

in the South of Spain (González de Molina 2002).  

Something similar was concluded from the data collected c.1860 in Sentmenat 

(chapter 4).Vineyards were under-fertilised not because there were insufficient 

organic fertilisers but mainly due to the lack of access of many small winegrowers 

to livestock, pastureland and woodland. Still, the variety of fertilising methods 

was important for the overall balance (Tello et al. 2012).The advance of the 

vineyard frontier before the late nineteenth century turned viticulture into a cash 

crop exported to the emerging Atlantic economy. This entailed the expansion of 

cropland as well as a land-use intensification that put additional pressure on the 

replenishment of nutrients extracted from soil. The increasingly polarised and 

evolving agrarian world in Barcelona province c.1920 could no longer equilibrate 

their nutrient balances without resorting to chemical fertilisers. We deem that 

before the arrival of these industrial fertilisers a soil mining process had been in 

place, mainly in vineyards and perhaps other perennial crops like olives, almonds 

and nuts orchards.  

From our case study c.1920 (chapter 5), we observed that wherever the 

environmental conditions and settlement patterns allowed pastures and cultivation 

of forages, the nutrients could be balanced, as was the case of the Pyrenees and 

Old Catalonia. When we disaggregated the Old Catalonia region, we found 

differences between the provinces of Barcelona and Girona. It was well known 

that Girona had significantly higher livestock densities than the other provinces 

(Pujol 1998). However, whereas the province of Girona had still a margin to 

increase yields by organic means, such was not the case of the province of 

Barcelona. From our balance c.1920, we know that the nutrients extracted could 

be returned by the combination of synthetic fertilisers to the organic ways already 

found for the province c.1860. Contrary to this situation, we found the case of 

New Catalonia, where the overall balance did not close even in combination with 

synthetic fertilisers. Although due to the scale of our sources, we cannot go into 

the details, from qualitative sources, we know that there was, again, an analogous 

situation to ruedo in the south of Spain. Most of synthetic fertilisers were used in 

high-investment crops such as rice and oranges (Calatayud 2006). But also, as 
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long as the purchases of synthetic fertilisers were generalised, they increased in 

this area more than elsewhere (Garrabou et al. 1995). The area sown with forages 

grew in the province of Lleida in the first decades of the twentieth century 

together with the irrigated lands (GEHR 1991).  

Although limited detailed information is available for Spain at the beginning of 

the twentieth century, our analysis reveals that using regional statistics entails 

comprehensive results, when administrative divisions include historical human 

settlements, geography and climate characteristics to define regions.   

3. Combining nutrient and Energy balances c 1860. What can we learn? 

What questions can be made?  The next step forward: can we 

combine the cases? 

We have already discussed the problem of decoupling of scales due to the 

unavailability of data that we explained in chapter 6. Unfortunately, to integrate 

the two blocs of this thesis we would have needed a case study of energy flows 

c.1920 and a case study of nutrients flows in the croplands of an arid area c.1860. 

In addition, we framed the analysis of both energy and nutrients flows mainly to 

cropland areas, thus consciously placing outside of our boundaries other important 

components of the agri-food system.  For instance, it is possible to measure the 

flow of N that is released to water bodies due to the changes in the agri-food 

system, both from the sides of production and consumption (Lassaletta et al. 2009; 

Lassaletta et al. 2013b; Lassaletta et al. 2013a). This is especially relevant in 

Catalonia, as due to current imbalances in cropland, areas have increased the N 

pollution of groundwater (Penuelas et al. 2009; Hernández-Espriú et al. 2013). 

This affects the drinking water and it is of outmost importance in Mediterranean 

areas as water is a scarce resource (Lassaletta et al. 2013b). In addition, the 

inclusion of other compartments opens the door to solutions—to avoid leaching 

and pollution problems—beyond more effective applications of fertilisers in 

croplands that involve other actors and scales. In this case, lowering the 

consumption of animal protein would reduce the system's release of N while 

reducing external energy consumption (Smil 2001; Smil 2013; Lassaletta et al. 

2013b).  

At the beginning of the dissertation, we explained that according to the research 

project embedding in this dissertation, we distinguished between driving and 

ruling forces in agrarian change of territory. By driving forces, we meant those 
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that were related with the socio-ecological domain, such as the energy or material 

flows and technical settings that operate these agrarian changes. By ruling forces, 

we mean those related with the socio-economic factors. These were mainly two, 

the institutional frame set up in each historical context, with their entitlement rules, 

that gave access to the different social groups to use natural resources or not. 

Second, the decision making processes which were in the hands of ruling classes, 

except for the counterbalance exerted by the powerless social groups either by 

their everyday resistance or by social revolts.  

We centred the analysis on the driving forces and selected measuring the flows of 

energy and nutrients. We described some of the main ruling forces affecting the 

agrarian transition in Catalonia and we related them partially with these driving 

forces. As we stated at the end of chapter six, we do not know if the unbalances of 

nutrients found in the province of Barcelona and the New Catalonia regions 

c.1920 were due to population or to the inequality levels of the rural society. 

Relating the driving forces with the ruling forces of the agrarian transition in 

Catalonia is a stimulating task for future. 

Something similar happens with ploughs, sewing machines and labour. Although 

they were included in the analysis of the energy flows, we included them just as 

another input in our model. The low productivity of labour of Spanish agriculture 

has been of major concern for Agrarian Historians (O‘Brien and Prados de la 

Escosura 1992; Sudrià and Pascual 2002; Simpson 2003). Unluckily, in the study 

of  the bio-physical driving forces, we did not integrate the productivity of 

labour,although some factors are embedded in our analysis. For instance, 

traditional fertilising practices used to be highly labour intensive, so not only 

machinery but also synthetic fertiliser, specialisation and use of less productive 

areasincreased labour productivity. 

In addition, I think that considering labour would be an important step forward 

because it would shift our study from agricultural change to rural change. Indeed, 

non-agrarian labour in the form of a proto-industry embedded in the rural 

economy had strong weight in the development of Catalonia before the nineteenth 

century(Marfany 2010). Moreover, to include off-farm activities, formal and 

informal, was and still is important for the gendered structure of rural households 

in Catalonia (Narotzky 1990) and so for the configuration of rural metabolism. In 

addition, through mechanisation women were relegated to the least 

technologically sectors on the farm (Garcia-Ramon and Canoves 1988). We think 

that to integrate accurately the labour productivity in our analysis, both paid and 

unpaid, would be the next necessary step to integrate the ruling forces to the 

Socio-Ecological Transition in the northeast of the Iberia Peninsula. This 
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stimulating proposal would be to include humans as funds releasing flows of 

different labour types just as has been done by studies of metabolism in rural 

systems (see for example Ariza-Montobbio et al., 2014; Scheidel et al., 2014). 

Undoubtedly, the combination of the driving forces with the ruling forces 

deserves more attention. 

Finally, I would like to end by exploring the parting question of last chapter in 

order to link it with the historiographical debate about Spanish agriculture that we 

presented in the introduction. If yields were higher in more humid regions due to 

practices that allowed higher livestock densities, then, what was the non-industrial 

chance for arid areas such as the Lleida plains?  

The low livestock densities per cropland area in dry-farming in the nineteenth 

century allowed it to say that the  livestock and arable land were not integrated 

(Simpson 2003). As we mentioned elsewhere, the most important expert in 

Spanish dry-farming during the early twentieth century was the engineer José 

Cascón.He wrote about the importance of organic matter and described accurately 

the ploughing techniques to enhance water conservation within soils. He 

described as a pending issue the integration of rotations with leguminous crops in 

dry-farming conditions (Cascón 1913).  

Cascón allowed the keeping of high livestock densities and high yields at this 

experimental farm. Nevertheless, Huguet del Villar explained in "El valor 

geográfico de España" at 1921 (Tello and Sudrià 2011) why it was not possible to 

reproduce the conditions of the farm of Cascón. The farm had some exceptional 

endowments such as groundwater that allowedit to irrigate one fifth of the 

cropland area. In addition, the proximity to railway and to the capital of the 

province allowed the sale of the products and the purchasing of fertilisers, 

machines and other inputs.Moreover, unlike most of the farms in the area, the 

lands of the farm were not scattered, but concentrated. Also, the high intellectual 

value and enthusiastic character of Cascón himself was unique. Finally, as an 

experimental farm, he had enough capital to invest in innovations and took risks. 

Cascón himself agreed that for a normal farmer the maintaining of enough 

livestock densities was impossible because it was too costly. Still he thought that 

it was possible to increase the livestock numbers and he proposed two ways to 

cheapen the maintaining of livestock, to create temporary meadows and to plant 

trees (to have shadow pastures). With this, he was making an explicit criticism to 

the owners of the land. First, coinciding with the main thesis of the work of 

Huguet del Villar in 1921 (Tello and Sudrià 2011), about the excessive area sown 

with wheat, which went in detriment of forest and scrubland. Second, he accused 

the wealthiest Castillian landowners with enough means to maintain adequate 
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livestock densities of neglecting this issue because they preferred to live off-farm. 

By doing so, he argued, theysecured their production only through the 

governmental tariffon wheat (Cascón 1914).  

Both authors, Cascón and Huguet del Villar, defended barbecho as a way to store 

water in soils in order to reduce the risk of crop failure in dry years. Even 

considering the fluctuations of its results, it is still a widely used method to store 

water in soils used in dry-farming areas (Loomis et al. 2011). 

Although his observations are qualitative, we can group them in three criticisms. 

The first one is the well known lack of integration of livestock and arable land in 

the interior of arid areas of Spain, already noticed by a number of historians 

(González de Molina 2002; Simpson 2003). Second, the lack of integration of 

humans and the arable land. He was concerned, as Liebig and Marx were in the 

nineteenth century, about the bottleneck of nutrient flows from human settlements. 

Like other agronomists at that time, he travelled to learn other practices. We know 

for sure that he visited the Estación Enológica de Vilafranca del Penedès in a 

winegrowing area of the province of Barcelona, and he was very impressed about 

how they managed the organic matter. He presented this praise to the Catalan 

farmers: "Hay un depósito permanente, de gran importancia, escaso y muy mal 

aprovechado en general a excepción de Cataluña, que es la basura de todas 

clases de los centros de población, que siendo en general la más rica en 

elementos nitrogenados, va a perderse por el alcantarillado, con gran perjuicio 

de las poblaciones ribereñas, en los ríos próximos a las mismas" (Cascón 1918).  

However, we do not know if this quote was referring to Catalonia as a whole, 

including the arid plains of the province of Lleida,or only the farms that he visited. 

Third, the homogenisation of the landscape in favour of large, uninterrupted 

wheat cropland areas.  

Are these three criticisms far from what agroecologists recommend today? I deem 

that by studying the main ruling forces that blocked the integrated management of 

these past arid agroecosystems we can have valuable information for the present. 

In addition, to what extent was the narrative of modernity imposed over other 

possibilities? We know that this happened with the prevalence of the discourse 

about the expansion of irrigation together with the building of big dams 

(Swyngedouw 1999). Could the same have happened over the integrated 

management of organic matter and landscape management? 

If so, the results of this PhD Thesis open a wide research agenda to identify the 

factors that might have blocked a better integration between humans, land and 

livestock in Iberia. A question that will undoubtedly come up again in our near 

future in a post-oil era. 
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