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129
I is considered to be a very hazardous radionuclide due to its long half-life, 

the low interaction that it presents with most geological materials and its 

biological relevance. The nuclear activity has generated around 5068 kg of 

129
I, present very diluted in liquid wastes from nuclear power plants. Mg-Al 

layered double hydroxides (LDHs) with different ratios and interlayer anion 

have been studied as iodide adsorbent materials. Adsorption capacity was 

strongly affected by material textural properties, and the carbonate LDH-

derived mixed oxides with Mg/Al ratio of 3/1 showed the largest adsorption 

capacity, increased by applying ultrasound. LDH of different compositions 

were studied as potential candidates for the immobilization of iodine (as 

iodate or iodide) using different incorporation methods: coprecipitation, 

anionic exchange and reconstruction. The reconstruction gave the highest 

iodate incorporation, ca. 54 % vs. ca. 40 % reached by coprecipitation. The 

thermal stability of the materials and the anionic release in contact with a 

solution was also studied. The iodine loss by heating at 453 K was very 

significant as well as and the release of iodine in contact with MilliQ water 

and brine solution. At the present stage of the research we may conclude that 

LDHs can be considered as iodine scavengers for a short-term storage, but 

they are not suitable for a long-term disposal of radioactive iodine. 
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El radioisótopo 
129

I está considerado un radionucleido peligroso debido a su 

largo tiempo de vida media, la baja interacción que presenta con la mayoría de 

los materiales geológicos y su relevancia biológica. La actividad nuclear ha 

generado alrededor de 5068 kg de 
129

I, apareciendo muy diluido en las 

desechos acuosos de las centrales nucleares. Los hidróxidos dobles laminares 

(HDLs) de Mg-Al con diferentes ratios y diferentes aniones interlaminares 

han sido estudiados como materiales adsorbentes de yoduro. La capacidad de 

adsorción se vio fuertemente afectada por las propiedades texturales del 

material, y los óxidos mixtos derivados de las HDLs de carbonato con 

relación Mg/Al 3/1 tienen la mayor capacidad de adsorción, la cual se 

incrementa con la aplicación de ultrasonidos. HDLs de diferentes 

composiciones se estudiaron también como posibles candidatos para la 

inmovilización de yodo (como yodato o como yoduro) usando diferentes 

métodos de incorporación: coprecipitación, intercambio aniónico y 

reconstrucción. La reconstrucción da la mayor incorporación de yodato, 

aproximadamente 54% frente al 40% aprox. que alcanzó por coprecipitación. 

También se estudió la estabilidad térmica de los materiales y la pérdida de 

yodato en contacto con una solución. La pérdida del al calentar a 453 K fue 

muy relevante y también lo fue la pérdida de yodato en contacto con agua 

MilliQ o salmuera. En la etapa actual de la investigación se pueden considerar 

a los HDLs como aptos para adsorber yoduro de una solución pero no son 

adecuados para un almacenamiento a largo plazo de yodo radiactivo. 
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El 
129

I està considerat un radionúclid perillós a causa del seu llarg temps de 

vida mitjana, la baixa interacció que presenta amb la majoria dels materials 

geològics i la seva rellevància biològica. L'activitat nuclear ha generat al 

voltant de 5068 kg de 
129

I, apareixent molt diluït en les deixalles aquoses de 

les centrals nuclears. Els hidròxids dobles laminars (HDLs) de Mg/Al han 

estat estudiats com materials adsorbents de iodur, fent proves amb diferents 

ràtios i diferents anions interlaminars. La capacitat d'adsorció es veu 

seriosament afectada per les propietats texturals del material, i els òxids 

mixtes derivats de les HDLs de carbonat amb ràtio Mg/Al 3/1 tenen la major 

capacitat d'adsorció, la qual s'incrementa amb l'aplicació d'ultrasons. HDLs de 

diferents composicions es van estudiar també com a possibles candidats per a 

la immobilització de iode (com iodat o com iodur) utilitzant diferents mètodes 

d'incorporació: coprecipitació, intercanvi aniònic i reconstrucció. La 

reconstrucció dóna la major incorporació de iodat, aproximadament el 54% 

enfront del 40% aprox. que va aconseguir per coprecipitació. També es va 

estudiar l'estabilitat tèrmica dels materials i la pèrdua de iodat en contacte 

amb una solució. La pèrdua en escalfar a 453 K les mostres va ser molt 

significativa i també ho va ser la pèrdua de iodat en contacte amb aigua 

MilliQ o salmorra. En l'etapa actual de la investigació es poden considerar els 

HDLs com a aptes per adsorbir iodur d'una solució però no són adequats per a 

un dipòsit a llarg termini de iode radioactiu. 
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He donned his suit of armour, 

mounted Rocinante with his 

patched-up helmet on, braced his 

buckler, took his lance, and by 

the back door of the yard sallied 

forth upon the plain in the 

highest contentment and 

satisfaction at seeing with what 

ease he had made a beginning 

with his grand purpose. 

 

The Ingenious Gentleman 

Don Quixote of La Mancha 

Se armó de todas sus armas, subió 

sobre Rocinante, puesta su mal 

compuesta celada, embrazó su 

adarga, tomó su lanza, y, por la 

puerta falsa de un corral, salió al 

campo con grandísimo contento y 

alborozo de ver con cuánta facilidad 

había dado principio a su buen 

deseo. 

 

 

El Ingenioso Hidalgo 

Don Quijote de la Mancha 

 

Miguel de Cervantes
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1.1. Radioactivity 

1.1.1. Nuclear power reactors and nuclear wastes 

Power generation is the main source of nuclear waste worldwide. There are 

two forms of power generation based on nuclear reactions: nuclear fission, 

where a fissionable nucleus is induced to division for a neutron and gets 

divided and splits into smaller parts (lighter nuclei and often free neutrons and 

photons)
1
; and nuclear fusion, a process that generates heavier atomic nuclei 

from two or more lighter atoms; but only the former has been deployed 

commercially
2
. A nuclear fission reactor harnesses a nuclear chain reaction, 

normally using as uranium enriched in 
235

U as fuel, a fissile uranium isotope 

that can be induced to fission with low-energy thermal neutrons.  

Actually, they are 434 nuclear power reactors in operation in 30 countries 

(and 69 under construction) and there are a variety of different fission reactors 

in use
3
, the map shown their distribution in Figure 1-1. Approximately, a 81% 

are light water moderated and cooled reactors; 11% are heavy water 

moderated and cooled reactors, 3.5% are light water cooled, graphite 

moderated reactors, 3.5% are gas cooled reactors and two reactors are liquid 

metal cooled fast reactors
3
. All the major reactor manufacturers have 

developed third-generation reactors that are designed to be safer than those 

operating today. The construction of new nuclear power plants get slowed 

after Fukushima accident but the expansion continues nowadays, especially in 

China. 

However, nuclear energy remains a controversial source of electric power 

because of the potential danger in case of accidental release of radioactive 

material. There is, moreover, no generally accepted means of disposing of 

nuclear waste and this is a growing problem across the world
4
 
5
. 
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Figure 1-1 –Nuclear Power Reactors distribution in the world3. 
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1.1.2. Radioactivity and radioactive contamination 

Radioactivity (or radioactivity decay) is the physic process where unstable or 

excited atomic nuclei lose energy by emitting particles spontaneously. 

Quantum mechanics does not allow predicting when such a radioactive decay 

will take place, but only the probability of it would happen in a given time. 

The standard unit of activity of a radioactive substance is the Becquerel (Bq) 

and it corresponds to one decay per second. All radioactive decays are then 

characterized by a time known as the mean life, which is the average lifetime 

of a nucleus before it decays
6
. Another used unit is the Sievert (Sv), which is a 

derived unit of ionizing radiation dose, a measure of the health effect of low 

levels of ionizing radiation on the human body. 

1.1.2.1. α-decay  

In 1897-1898, Marie and Pierre Curie found a form of charged particle 

radiation (α radiation) which is now known to consist of ionized helium 

(He
2+

)
7
. The helium nucleus is a very stable structure and, when it is ejected 

from a heavy nucleus, a great deal of energy is released. Since nuclear 

systems are always seeking to be in the lowest energy state possible, one way 

of achieving this for an excited or very heavy nucleus may be by ejecting two 

protons and two neutrons in the form of a helium nucleus, the energy released 

in forming the helium nucleus being used to enable it to escape from the 

‘parent’ nucleus. In this escape the α-particle has to penetrate a potential 

barrier. To conserve energy, the α-particle and the ‘daughter’ nucleus in such 

decay carry away a definite amount of kinetic energy between them equal to 

the difference in mass-energy between the parent nucleus and the daughter 

nucleus plus the helium nucleus. Alpha particles as well as other types of 

charged particles dissipate their energy during collisions mainly by two 

mechanisms: ionization and electron excitation. The high mass and charge of 

an alpha particle, relative to other forms of nuclear radiation, gives it greater 

ionization power by coulombic interaction or even direct collision of the alpha 

particle with atomic electrons; but it gives a poorer ability to penetrate matter. 
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1.1.2.2. β-decay  

In 1896 Becquerel discovered that uranium compounds emitted a form of 

radiation (β
−
 radiation) which could be deflected by a magnetic field. This 

implied that the radiation consisted of a stream of charged particles and these 

were subsequently identified to be electrons. Afterwards, positron emission 

(β
+
) was also observed. 

This similarly involves the emission of a charged particle-an electron (e
−
) or a 

positron (e
+
). This happens when there are respectively too many neutrons or 

protons in a nucleus for it to be stable. Pauli suggested in 1930 that in β-decay 

two particles were emitted so that the definite energy released was shared 

between them. Since all the electric charge released in β-decay is carried away 

by the electron or positron it follows that the new particle is electrically 

neutral, the neutrino
6
. β particles can penetrate much deeper than α radiation

8
. 

1.1.2.3. γ-decay  

In 1900 Villard identified a third form of highly penetrating radiation (γ 

radiation) which was not deflected by a magnetic field and turned out to be 

akin to x-rays but of much shorter wavelength, so much more energetic.  

The nucleus has a series of energy levels and if the nucleus is excited to a 

higher one, for example in a nuclear reaction or following radioactive decay, 

it will be produced a series of jumps down to lower energy levels finally 

ending up in the ‘ground’ state. Each jump involves the release of energy and 

in form of a photon, it means, γ-radiation. Since nuclear energies are on a 

much larger scale than atomic energies (millions of electron volts rather than 

electron volts), the corresponding frequencies of the emitted photons (energy 

hν) are some millions of times larger than those of visible radiation and the 

wavelength of the radiation some millions of times smaller (even smaller than 

for x-rays) as observed
7
. γ-radiation has a higher penetration power, can 

penetrate several centimeters in concrete or lead
8
, penetration capacity is 

represented in Figure 1−2. 
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Figure 1-2 – Penetration power of alpha, beta and gamma radiation8. 

1.2. Radioactivity effects on human health 

Even through the effects of ionizing radiations are known from the discovery 

of X-rays by Röntgen (who suffered burns that have been reported by 

Stevens
9
 and Gilchrist

10
) the danger of radioactive elements as radium was not 

well reported during the early nuclear age and some commercial products 

included small amounts of radium, such as table games, watches or devices 

that were used by medical practitioners in wide variety of uses (Figure 1−3).  

Figure 1-3 – Advertisements of products with radioactive compounds11,12.  

Nevertheless, at the end of 20’s, radioactivity began to be considered 

dangerous
13

 and, since this moment, hundreds of studies were developed 

α 

β 

γ 
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about it
14

, especially reporting the radioactivity effects on population after the 

nuclear explosions in Hiroshima and Nagasaki (Japan) during the II World 

War
15,16

. 

Radioactivity effects on human health depend of several factors such as 

radioactivity intensity, exposition time, affected tissue and its capability to 

absorb radioactivity. In addition, some radioisotopes have associated other 

added effects, such as the chemical toxicity (e.g., the case of plutonium
17

).  

Effects on humans are divided in two main groups:  

- deterministic effects, the ones caused by intense exposures to a high 

radioactivity dose in a short period of time, and 

- stochastic effects (mostly cancer), caused by much lower exposures 

prolonged during long times
18

. 

1.2.1. Deterministic effects 

Deterministic effects are caused by direct energy damage to tissues and cells. 

This is usually caused by an intense dose of more than 0.5 Sv delivered over a 

short time (seconds or minutes). Acute doses greater than 10 Sv often are 

lethal effects. A graphical resume is shown in Figure 1−4. 

Figure 1-4 – Health effects of instantaneous exposure to large doses of radiation. Units: 

millisieverts19.  
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The effects are much less, or negligible, if the exposure is at a much lower 

dose rate but extended over a longer period (years). This is because sub-lethal 

damage is reparable at the cellular level, the body can repair itself and new 

cell proliferation will replace lethally damaged cells.  

Some of the severe effects include suppression of bone marrow function, 

damage to the gastrointestinal tract, skin burns, cataracts, and reduced 

lymphocytes. Symptoms include nausea, pain, vomiting, and reddening of the 

skin. In some cases, peripheral blood stem-cell transplants have been 

successful at improving recovery following exposure. 

Data on deterministic effects are taken from side effects of radiotherapy, 

exposure of the early radiobiologists without conscience about radioactivity 

damage, atomic bomb injured in Japan (1945) and a from severe nuclear 

accidents as Chernobyl (1986, former Soviet Union).  

1.2.2. Stochastic effects 

Stochastic effects include cancer and genetic damage (mutation). Cancer 

results when cells multiply out of control, and certain types of cancer are 

linked to exposure to ionizing radiation at high sublethal doses.  

Data for stochastic effects are most of times based in epidemiological studies 

on the survivors of the atomic bombs in Japan, on patients exposed to medical 

treatments, and on industrial exposures to workers. Animal studies are also 

used to evaluate human effects.  

It is important to remark that cancer might not be expressed until decades 

after receive the exposure. The data from a study of the Japanese bombs 

survivors, which includes a study group of about 80 000 individuals, indicate 

a statistical increase in malignancies at doses above 0.2 Sv delivered at high 

dose rates. 
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There is a large uncertainty about incidence of cancer caused by low dose 

rates in the range of background exposures. For example, no increase in the 

frequency of cancer has been documented in populations residing in areas 

with a high natural background radioactivity. A linear, non-threshold 

hypothesis is used to estimate stochastic effects from radiation exposure. This 

hypothesis assumes as correct a linear extrapolation of data collected at high 

doses to zero exposure, so that all doses are assumed to cause an effect that is 

linearly related to the amount of dose.  

The International Commission of Radiological Protection (ICRP) estimates 

fatal cancer risk at a rate of 0.04 per Sv for adult workers and 0.05 per Sv for 

the general population
20

. Greater risk for the general population is caused 

because it includes the risk for younger people. This means that a dose of the 

order of 20 μSv (i.e., 1% of the natural background exposure) is assumed to 

cause a risk of about one in one million that an individual member of the 

general public will receive a fatal cancer. An additional risk of nonfatal cancer 

is also estimated. 

1.3. Radioactive contamination 

Around 88% of the total radiation dose arrives from natural sources, but the 

level of exposure of population to radiation depends on climatic factors, 

fertilizing, local geology, drainage patterns and nutrition, which are different 

at each region in the world
21,22

. A scheme is shown in Figure 1−5. 

Radioactivity exists in various geological formations such as soils, rocks and 

sediments, also in vegetation, water and air, while 12% is of anthropogenic 

origin
23

. Rocks and soils contribute considerably to indoor and outdoor 

exposure to the environmental radioactivity by γ and β radiation emitting 

mainly from 
40

K, 
226

Ra, 
232

Th, 
238

U.  

The 17% of incoming radiation comes from foods and drinks, in the time 

between two heart beats, decay in our body 10000 atomic nuclei; in one hour 
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30000 atoms decay in human lungs, 15 millions of 
40

K and 7000 of uranium 

from the ingested food decay in the stomach and intestines
24

. In Spain, 26.2% 

of bottled water have an α-activity higher than 100 mBq/L, and a β-activity no 

higher than 1000 mBq/L
25

.  

 

Figure 1-5 – Average daily radiation dose per person and its source distribution23. 

1.3.1. Diffusion on environment 

Industrial activity affects also to radioactivity levels measured, in Ebro river 

the presence of a factory using sedimentary phosphate rocks as a raw material 
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U, that influenced in higher radioactivity levels
26

. 
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There is no a detailed knowledge about biological effects of radionuclides in 

plants. Biermans et al. tried it working with 
90

Sr, at the physiological level in 

seedlings of Arabidopsis thalina. The obtained results show that, in some 

circumstances, the plants increased their leaf area and the weight of roots, 

suggesting significant repair of radiation-induced damage
27

. 

Trying to predict the soil/sediment-to-plant transfer of radionuclides, Willey 

studied the transfer and fate of radionuclides, investigating many confounding 

factors which could potentially influence such transfer at different levels of 

biological organisation
28

. The article assesses the utility of a meta-analysis of 

phylogenetic effects on alkali earth metals. Due to the great importance of 

studying how radioisotopes are introduced into food chains and its inherent 

limitations, there would be necessary more work to investigate if phylogeny 

may indeed explain differences in radionuclide transfer. 

Significant escape of gaseous radio-iodine, 
129

I, has been reported during the 

reprocessing of used nuclear fuel. Miller and Wang proposed an original 

method prevent iodine escapes to the environment it with an innovation that 

involves the fluoridation of the surfaces of nano-porous clay minerals to 

capture the radio-iodine, showing results of an increase in 
129

I capture of 10–

100 times per unit surface area, although the amount of fluoride appeared not 

to influence the quantity of radio-iodine sequestered
29

. 

99
Tc arrives to the Irish Sea from the Sellafield nuclear fuel reprocessing plant 

(Cumbria, United Kingdom) discharges in the period from 1994 to 2004. The 

distribution and behaviour of the radioisotope in the subtidal sediments was 

studied and a significant quantity appears to have accumulated in the 

sediments. Jenkinson et al. reports their results from the analysis of two deep 

sediment cores showed that the activity concentrations were variable and the 

highest values were largely associated with the fine-grained particles. The 

98% of 
99

Tc discharged has been dispersed
30

. 
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During the Fukushima accident they occurred inputs of radionuclides into the 

atmosphere and in adjacent catchment, groundwater and coastal waters, in 

terms of radiation scape, which has been higher than that produced in 

Chernobyl and, because Fukushima power plant is close to the coast, 

radioisotopes have widely spread in the Pacific, with unexpected 

consequences
31

. A subsequent investigation concerning the radiation doses 

received by the Japanese population was realized, monitoring their hormonal 

and radioactive levels
31

, the conclusions was that those living in the 

Fukushima prefecture had effective doses (considering both internal and 

external exposure) under 10 mSv, which are acceptable according to current 

criteria. However, some subjects (especially children) have had higher 

effective doses in the range 10–50 mSv, outside the accepted limit and will 

have to be monitored and medicated forever.  

1.3.2. Nuclear wastes 

The radiotoxicity of a waste can be defined as the sum of the radiotoxicity of 

each individual radio-nuclide. Radiotoxicity is time-dependent because of 

decay and buildup of the radio-nuclides. Nuclear wastes in Spain are mainly 

classified in function of their activity: 

- Low and Intermediate Level Waste (L&ILW, or ILW). They can be 

managed, conditioned and stored definitely in the near-surface repository 

of “El Cabril” (see section 1.4.1.1.), including in this category a 

subdivision of Very Low Level Waste (VLLW). They do not produce 

heat.  

- High Level Waste (HAW), composed mainly by spent nuclear fuel. They 

may be included in this category those ILW which due to their 

characteristics cannot be managed by storing them in the repository at 

“El Cabril”. 

Besides the activity, conditioning depends of the state of the wastes.  
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- Liquid wastes are separated in aqueous and organic wastes and then they 

are treated using several physical and chemical methods to reduce the 

contamination and the volume as filtration or evaporation. For their 

transport and storage they must be solidified. 

- Solid wastes are separated in function of their activity and their 

physicochemical properties with the main purpose of reducing their 

volume, with different procedures of decontamination, chopping, 

crushing and compacting. Organic residues are incinerated to solidify 

them. Finally they are immobilized making a concrete block.  

The main source of radioactive waste is related to the power generation using 

nuclear reactors and their dismantling. The nuclear reactor is placed in a pool 

and the spent fuel coming from nuclear power plants are continuously stored 

after being exhausted in the reactor (in terms of energetic economy). Storing 

is made, initially in reactor pools, in waiting for either reprocessing or other 

treatment. 

Spent fuel contains almost all the radioactivity produced inside the reactor by 

fission, neutron capture and radioactive decay. When it is loaded in the 

reactor, nuclear fuel contains fresh uranium enriched in 
235

U at around 3.5%. 

When is discharged, the fuel composition changes. In this exhausted fuel 

uranium represents a 96% in weight, but is now less enriched (approximately 

0.8% in 
235

U). The fuel contains now a 3% of highly radioactive fission 

products and minor actinides (
237

Np, 
241/243

Am, 
242/244

Cm) as well as around 

1% of several isotopes of plutonium. Its chemical composition is displayed in 

Table 1-1. 

Most of these radioisotopes have short lifetimes (with few exceptions such as 

99
Tc, 

135
Cs or 

129
I). Their radiotoxicity (essentially due to 

137
Cs and 

90
Sr) 

remains during few centuries. However, most of the transuranians 

(neptunium, plutonium, americium and curium) produced inside the reactor, 

as well as their decay products are α-emitters with lifetimes that can extend to 
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millions of years and their radiotoxicity is much higher than those of fission 

products. The long lifetimes and the potential risk that these nuclei entail 

force to plan a long-term management.  

Table 1-1 - Half-life, activity and weight of the major transuranians and of the fission 

products inside one metric ton of spent fuel, discharged from a light-water reactor; the 

initial fuel enrichment in 235U is 3.25% and the burn-up is 33000 MWd per ton32.  

Isotope Emission Half-life Activity Weight 

  (years) (Ci/ton) (g/ton) 

90
Sr β 25.15 7.34·10

3
 520 

99
Tc β, γ 2.14·10

5
 130 772 

129
I β, γ 1.57·10

7
 0.03 185 

135
Cs β, γ 2.95·10

6
 0.19 218 

137
Cs β, γ 30.15 1.06·10

5
 1223 

234
U α 2.45·10

5
 0.95 153 

235
U α 7.04·10

8
 0.02 7861 

236
U α 2.34·10

7
 0.29 4451 

237
Np α 2.14·10

6
 0.34 482 

238
Pu α 87.7 3.01·10

3
 176 

239
Pu α 2.41·10

4
 358 5768 

240
Pu α 6.55·10

3
 507 2226 

241
Pu β 14.4 1.38·10

5
 1335 

242
Pu α 3.76·10

5
 2.10 533 

241
Am α 432.6 112 33 

243
Am α 7.38·10

3
 17.90 90 

242
Cm α, n 0.45 4.04·10

4
 12 

244
Cm α, n 18.11 1.69·10

3
 21 

UNIVERSITAT ROVIRA I VIRGILI 
ON THE USE OF LAYERED DOUBLE HYDROXIDES IN THE MANAGEMENT OF 129I FROM LIQUID NUCLEAR WASTES 
Luis Iglesias Pérez 
Dipòsit Legal: T 893-2015 



1. Introduction 
 

16 
 

1.4. Nuclear waste in Spain 

In Spain, the first nuclear reactor, a fast breeder reactor named Coral-1, was 

installed in 1967 in the former Nuclear Energy Committee facilities (in 

Spanish, Junta de Energía Nuclear), actually named CIEMAT, and in 1969 

the first nuclear power plant started the power production.  

Through the Real Decreto 1522/1984 of July 4
th

, 1984, was stablished the 

public company ‘Empresa Nacional de Residuos Radioactivos S.A.’, 

(succeeded by the actually named ENRESA after the 24/2005 Law
33

) to 

manage the spent fuel and other nuclear waste generated in Spain, control the 

dismantling process of nuclear facilities and store them definitely
34

, according 

to the General Plan for Radioactive Waste approved by the Spanish 

government
23

. The Real Decreto 5/2005 establish the state ownership of the 

nuclear waste after their definitive storage, lately reapproved in the article 38 

bis of the 25/1964 Law about nuclear energy
35

 (introduced as 9
th

 final disposal 

in the 11/2009 Law about regulation of Real Estate Investment Trust
36

).  

The spent fuel in the nuclear power plants, after being recovered from the 

reactor, is stored into the named Spent Fuel Pools (SFP) located inside the 

power plants. In a future, spent fuel is planned to be stored for a few decades 

in a Centralized Temporally Repository (nowadays still not available) to then, 

being managed to be disposed in a final repository. A diagram of the whole 

process is showed in the Figure 1-6, where L&ILW means Low and 

Intermediate Level Waste; ILW is Intermediate Level Waste; HLW is High 

Level Waste; ITR is Individual Temporary Repository; L&ILWCR is Low 

and Intermediate Level Waste Centralized Repository; SF is Spent Fuel and 

TR is Temporal Repository. In yellow there are represented the infrastructures 

that are not yet operational, blue arrows indicate the actual processes and the 

orange ones the designed processes to be implemented in the future. 
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Figure 1 6 – Scheme of the management process for nuclear wastes in Spain. Adapted from 

Sexto Plan General de residuos radiactivos23. 
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Waters of the SFP present several risks. Radioisotopes are present in these 

hundreds of cubic meters of water. Radioactivity in pool waters come from 

activation and fission products. The sources of the activation products are 

crud deposits and corrosion films on the fuel bundle surfaces. The fission 

products arise from bundles with rods which failed in-reactor or from intact 

bundles which adsorbed circulating fission products. Cesium, tritium, cerium, 

strontium and iodine are the principal fission products in reactor pools.  

To prevent the formation of iodine volatile compounds, hydrazine is added to 

some pools to convert it into water-soluble species, thereby reducing the 

concentration of air-borne iodine
37

. Boric acid is also added as a reactivity 

control agent.  

The water pools are considered I&LLW during the time that the spent fuel is 

stored there and VLLW after their displacement. Cooling systems using heat 

exchangers are used to cool them and provides shielding from radiation. 

Liquids waste treatment aims to decontaminate sufficiently, so that the 

decontaminated water bulk volume could be either released to the 

environment or recycled. 

Attending to the general considerations in R+D and the planned actions of the 

strategic guidelines defined in the Sixth general plan of radioactive waste, it 

was supported a project for the design, synthesis and characterization of new 

selective adsorbent materials. The objective of this study, at laboratory scale, 

deals with investigating on the adsorption capacities of different materials of 

radioactive elements which are present in very low concentration in aqueous 

effluents, in order to concentrate them and facilitate the subsequent 

quantification by a suitable method. (R+D Plan 2009-2013 designed by 

ENRESA, area of ‘technology and processes of treatment and conditioning, 

dismantling section).  
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1.4.1. Managing of nuclear waste 

Theoretically, there are three main options for long term management of 

nuclear waste: storage in a safe emplacement, transmutation to non-

radioactive isotopes and separation of actinides and fission products from 

other components of the waste. 

1.4.1.1. Disposal 

The long timescales over which some of the radioisotopes remain active led to 

the idea of deep geological disposals: hundreds of meters under surface in 

repositories to isolate and contain radioactive waste. This isolation would be 

endowed by a combination of engineered and natural barriers (rock, salt, clay) 

and no obligation to actively maintain the facility is passed on to future 

generations. A repository is comprised of mined caverns or tunnels where the 

packaged waste would be placed indefinitely into
38

. Deep geological disposal 

is the preferred option for waste management of long-lived radioactive waste 

in several countries, included Spain
23

.  

Near-surface repository is an adequate installation for low and intermediate 

activity waste. This is enough to ensure the protection of both people and 

environment against ionizing radiation and it allows the facility’s reuse after a 

period of 300 years. An example of near-surface disposal facility is “El 

Cabril“, located in Spain. El Cabril is in operation since 1992, and it is 

estimated that the 91% of the volume of generated waste will be managed 

there
39

, preferably in solid state. The rest of the nuclear waste’s volume 

cannot be disposed into this kind of repository due the presence of long half-

life time radioisotopes as 
94

Nb or 
99

Tc make impossible the disposal of an 

important part of the waste into this kind of repository. 

Liquid radioactive waste injection consists in the direct injection of liquid 

radioactive waste into an underground layer of rock several hundred meters 

deep. The place is chosen considering the natural ability to trap the waste, i.e. 

rocks with adequate porosity and surrounded by impermeable layers that must 
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act as a natural seal
40

. This technique has been developed and implemented in 

Russia, where it is carried out since 1960 to nowadays. Some optimistic data 

are already reported on the success of the already existing systems of deep 

injection
41,42

. 

Cask storage facilities has been proposed as an alternative system for 

accumulating spent fuel after cooling treatment in the nuclear power plants 

pools for several years. In the case of Spain, several nuclear power plants 

have developed Individual Temporal Repositories using concrete cask 

storage, as Zorita or Trillo. In the future, the spent fuels stored in these 

facilities will required to be moved to another repository. Hence, cask storage 

is considered just an interim storage for the nuclear waste management and 

this is no considered as a definitive option in any nuclear management plan. 

Deep boreholes have been proposed as a potential solution for nuclear waste 

storage. This alternative is supported by the advances in drilling technologies 

and a better understanding of extremely long fluid residence times in deep 

bedrock. Deep boreholes may have programmatic and economic advantages 

but more studies and experience will be required
43

. 

Throwing the wastes to the sea has been a routine between 1949 and 1982 at 

sites in the North East Atlantic
44

. In 1972 the London Convention banned the 

dumping of high activity nuclear wastes to the sea. The medium and low 

radioactivity wastes were included in 1983. Finally, in 1993 the managing of 

wastes was ruled
45

, totally prohibiting the dumping of any nuclear waste to the 

sea. Unfortunately, it continued happening
46

. 

Another option studied was to place the nuclear wastes into shallow drillholes 

in the ice at South Pole. In this case, the nuclear waste tanks can be either 

anchored with cables to the surface or let to sink downward to the bedrock by 

melting the ice
47

. This option is currently forbidden by the Antarctic Treaty
48

. 
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Disposal to outer space was also proposed as an alternative to waste storage, 

but discarded due to the high costs and the potential risks of an accident 

during launching
47

. 

1.4.1.2. Transmutation 

Transmutation is a technique proposed to transform long live radioisotopes in 

short half-life ones or another stable isotopes
49

. Currently, it is being 

discussed the viability of transmutation processes using either reactors or 

high-energy particle accelerators. Because of its relatively long half-life 

combined with a high mobility in the environment, 
129

I is a particularly 

important nuclide in the study of transmutation of fission products. The 

proposed mechanism is neutron capture, producing 
130

I, with a much shorter 

half-life of 12.36 h and decay to stable 
130

Xe
50

. 

1.4.1.3. Separation 

In the spent nuclear fuel and other radioactive waste there are potentially 

useful components with several latent applications. Among such applications 

we can found radioactive waste that could be used again as nuclear fuel or in 

industrial, military or medical applications. Another part of this waste belongs 

to the category of high, medium or low activity waste and it will require 

different treatments or storages. Separating them would make easier am 

efficient management, i.e., Pu is separated using the PUREX process
51

.  

Having a smaller volume of the high activity fraction would also permit a 

cheaper management. In addition, chemical separation and recovering of 

elements allows improving the management of the spent fuel
52

.  

Inorganic ion exchangers have the advantages to be applied in ion exchange 

and adsorption processes of radioactive waste. They have good radiation and 

chemical stability and high capacity for some radioactive components in 

nuclear wastes. Zeolites, titanium phosphate and clays are among these 

materials. They have also potential as final waste form for geological 

storage
51

. 
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Electrochemical separation, also known as electrorefining, has been adapted 

to the purification of Pu and U for both weapons and the breeder reactor fuels 

programs. The spent fuel recovered from the Experimental Breeder Reactor 

was successfully processed by the electrometallurgical process developed by 

Argonne National Laboratory
51

. 

Molten salt separation has been considered an interesting process due to the 

high resistance of these materials to nuclear damage. Salt Transport Process is 

a pyrochemical method for recovering U and Pu from residues of fast reactor 

fuels
51

. 

1.4.1.4. General considerations 

Concerning the long term management, there is a general consensus on the 

deep geological repositories, but there are still only a few number of 

experiences about this kind of repositories, as they are the management of the 

actually closed Asse II and Morsleben in Germany as nuclear repositories
53

 

and the Waste Isolation Pilot Plant in New Mexico, USA
54

. Shared solutions 

with regional or international repositories are currently capturing more 

attention, but it is necessary to get a consensus.  

Separation and transmutation of long live radioisotopes to reduce volume and 

toxicity of the wastes are not sufficiently technologically developed and they 

would require storing a significant volume of waste. Nonetheless, support the 

investment in research to increase the knowledge about these alternatives is 

considered in the strategic plan of Spanish government about radioactive 

wastes, including participation in international research programs. 

The combined option of separation and transmutation (S+T), in its different 

versions, makes mandatory the international collaboration due to the needs of 

the research programs in this area. We can highlight the European 

Commission programs and the Nuclear Energy Agency projects. 
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1.5. Radionuclide 
129

I 

129
I decays by emitting β

−
 particles with a maximum energy of 154.4 keV and 

γ-rays of 39.6 keV as well as X-rays (29–30 keV)
55

 in 
129

Xe. The natural 

abundance of this radioisotope has been altered drastically by human actions 

since 1945.  

In nature, 
129

I is produced in three different ways, by cosmic rays interactions 

with Xe in the atmosphere, as a spontaneous fission product of 
238

U and 
235

U 

in the lithosphere
56

 and, to a minor extend, by neutron-induced reactions on 

128
Te and 

130
Te

55
.  

The natural abundance of 
129

I has been estimated to be around 230 kg
57

. From 

these, natural earthy abundance is estimated to be approximately 80 kg and 

pre-anthropogenic 
129

I in oceans is estimated to be approximately 130 kg, 

while 
129

I in non-marine water represents approximately 11 kg
58

. 

Anthropogenic sources of this radionuclide in the environment comprise 

fallouts from nuclear explosions and accidents as well as liquid and gaseous 

releases from the spent nuclear fuel reprocessing facilities. 
129

I is produced as 

a fission product in nuclear reactors and gets accumulated in the reactor fuel 

proportionally to its fission
59

. Also, iodine radioisotopes are volatile fission 

products presents in the reactor waters or in cooling system. In case of nuclear 

accident, it supposes an environmental and biological risk
60

. 

Since the first test (Trinity nuclear test in July 16
th

 1945) more than 2400 

nuclear devices has been detonated for 8 countries; currently, they are 434 

nuclear power reactors working in 30 countries
3,61

 and, although major 

nuclear disasters are low-frequency events, after Chernobyl and Fukushima 

accidents it has been reported major levels of 
129

I around the damaged power 

plants and in their fallout region
62-64

. 

Anthropogenic 
129

I is estimated in more than 5068 kg. Among them, 50-150 

kg came from nuclear weapons testing, 6 kg from Chernobyl nuclear disaster, 
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1.2 kg from Fukushima
64

 and the rest from nuclear reprocessing facilities. 

With a half-life of 15.7 million years, 
129

I is the longest lived major fission 

product present in irradiated nuclear fuel. 

In environment, 
129

I is mainly located in upper and deep ocean (in both of 

them their concentration is increasing from last decades) and in soils, with the 

lowest concentration in stratosphere (near 0 at the end of the last century)
65

. 

1.6. General context 

Throughout this chapter it has been introduced some of the aspects involving 

nuclear waste management. Radionuclides present in nuclear waste of 

particular importance to the environment and risk assessment are 
99

Tc, 
129

I, 

and 
237

Np, because of their long half-lives and presumably high mobility. 

These nuclides are present in high abundance in underground nuclear test, fuel 

reprocessing, and in spent reactor fuel.  

Focusing on iodine, its radiological impact on the biosphere has been largely 

discussed. According to Oscarson et al.
66

, 
129

I is the “greatest hazard to man 

and environment of the different radionuclides generated throughout the 

storage of HAW”. Therefore, several HAW studies are focused on iodide 

adsorption and immobilizing as well as on the identification of possible 

materials and admixtures for trapping this radionuclide. Such materials would 

require, in addition, a high selectivity towards iodide since “radioisotopes are 

generally a trace species in a soup of far more abundant, common 

groundwater anions”
67

. Additionally, stability towards temperatures of 

approximately 373 K and radiation stability are required features.  

129
I has a complex chemistry in the environment. The fate and transport of 

129
I 

is dictated by its chemical speciation. Aqueous iodine usually occurs as the 

highly mobile iodide anion (Iˉ). Under more oxidizing conditions, iodine may 

be present as the iodate anion (IO3ˉ), which is more reactive than iodide and 
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could be adsorbed onto positively charged sites existing locally in clays and 

organic matter.  

During the last decades, different materials have been tested for selective 
129

I 

adsorption from nuclear effluents. Organoclays OCB and OCM, activated 

carbon GAC 830 can adsorb iodide but such adsorption is not selective. They 

showed also adsorption capacities for TcO4
-
 and Cs

+
 
68

.  

Argentite (AgS), a natural sulfide mineral, has been reported as iodide 

adsorption material
68,69

 but detailed studies would be necessary to know if it is 

a suitable material. It has been proposed that oxidation, reduction, and mineral 

replacement affect iodide adsorption on sulfides
70

. Obviously, iodide 

adsorption by sulfides is complex and still not fully understood. 

Some authors
71

 compared the iodide adsorption capacity of different oxides, 

hydroxides, sulfides, silicates, and lignite coal. Interestingly, the adsorption 

capacity of lignite coal decreased with time. Moreover, they found that active 

carbon selectively adsorbs I2 rather than Iˉ. The I2 is produced by oxidation of 

Iˉ with the dissolved oxygen in the waste water; so that, active carbon, 

presumably, would be ineffective under anaerobic conditions as expectedly 

present in a HAW repository.  

Silicates are not supposed to significantly influence iodide adsorption at near 

neutral pH, and iodide adsorption on silicates is attributed to the variable 

surface charge and hence strongly dependent on pH
72

. In the same manner, 

specific cement phases have shown to possess a high iodide adsorption 

capacity (particularly calcium monosulfate aluminate hydrate) which, again, 

strongly depends on pH
71

. 

Cu-, Bi-, Fe phases and hydrotalcite have been also investigated as additives 

for geotechnical barriers but discarded due to low iodide adsorption 

capacity
66

.  
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A fairly large number of publications exist up to now regarding iodide 

adsorption by organoclays
73,74

. In them, it is concluded that organoclays 

(particularly bentonites which were treated by hexadecylpyridinium) are 

effective for iodide retention in the geotechnical barrier of HLRW repositories 

and they proved long term structural stability under elevated temperature. In 

contrast to structural stability it was found a decrease of iodide adsorption 

capacity of organoclays after exposure to 413 K for 70 days
74

.  

Therefore, as has been stated in this section, they are a big concern on iodine 

sequestering and they are a large list of comparable results of iodide 

adsorption capacity obtained by the investigation of a set of different 

materials. This is only a summary of some of the different studies published. 

However, it is difficult to establish comparisons among the different materials 

since the results of the adsorption experiments are very susceptible of the 

conditions used in the different experimental setups (e.g., pH, Eh, 

concentration, time, precursor material, solid liquid ratio…).  

Due to the anionic form that iodine has in waste waters, in this work we 

wanted to take profit of this fact and to study the interactions (adsorption-

immobilization-desorption processes) of these anions on different solids with 

very well know anionic exchange and scavenger properties, such as layered 

double hydroxides.

1.7. Objectives 

As remarked along this chapter, iodine adsorption in the major concern of this 

dissertation. From a general point of view, this work has been focused on two 

studies:  

i) Iodide adsorption capacity and behavior of the selected prepared 

materials. 
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ii) Iodide and iodate adsorption capacity of selected prepared 

materials and study of their suitability to be used as “getters” in 

repositories. 

More specifically the objectives of this thesis work were: 

- To synthesize and characterize suitable adsorbent materials for selective 

iodide adsorption. 

- To study the iodide adsorption capacity of the material and the 

possibilities of improving, using common reagents (no actives). 

- To study the retention capacity of iodide of the different materials. 

- To determine if they are suitable materials for iodide adsorption in waste 

waters from nuclear power plants. 
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My present design, then, is not to teach the method which each ought to 

follow for the right conduct of his reason, but solely to describe the way in 

which I have endeavored to conduct my own. 

 

Discourse on the method of rightly conducting the reason, and seeking truth 

in the sciences 

René Descartes
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2.1. Structural Analysis 

2.1.1. X-ray diffraction 

X-Ray Diffraction (and more specifically Powder X-Ray Diffraction, PXRD) 

is a non-destructive technique for materials characterization that provides 

information about the samples such as phase identification, crystal structure 

and defects, strain, crystallite size, phase quantification, determination of 

amorphous phase, and determination of unit cell parameters of new 

materials
75

. 

The diffraction method utilizes the interference of the radiation scattered by 

atoms in an ordered structure and is therefore limited to studies of crystalline 

materials, being amorphous excluded
76

.  

The incoming X-ray beam can be characterized as a plane wave of radiation 

interacting with the electrons of the material under study. The interaction 

between the beam and the material is composed of both absorption and 

scattering. The scattering can be thought of as spheres of radiation emerging 

from the scattering atoms
76

. If the atoms have long-range order, the separate 

‘spheres’ interfere constructively and destructively producing distinct spots, 

i.e. Bragg reflections, in certain directions. The information provided by 

specific scattering angles, θhkl, is about the long-range ordering dimensions, 

the intensity gives information on the location of the electrons within that 

order. The basis for material science studies using X-ray diffraction is Bragg’s 

law (Equation 2-1):  

λ = 2dhklsin(θhkl)     (eq. 2-1) 

where λ is the wavelength of the incoming radiation, dhkl is the spacing of the 

(hkl) atomic plane and θ is the angle of the diffracting plane where 

constructive interference occurs (Figure 2-1.b). 
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Figure 2-1 – a) Examples of the Miller indices of planes in the unit cell of a crystalline 

structure. b) Diffraction scheme. λ: wavelength of the incoming radiation; d: spacing of 

the (hkl) atomic plane; θ: angle of the diffracting plane where constructive interference 

occurs.  
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The PXRD analysis of the solid samples prepared during the implementation 

of this thesis work were recorded by a Siemens D5000 diffractometer with 

Bragg–Brentano geometry (See Figure 2-2) using nickel-filtered Cu Kα 

radiation (λ = 0.1541 nm) and a Bruker D8 Discover. The diffractograms were 

collected in the 2θ range of 5–70° with an angular step of 0.05° at 3 seconds 

per step, which resulted in a scan rate of 1º/min. The identification of phases 

was performed by means of the Committee for Powder Diffraction Sources 

(JCPDS) data base. 

 

Figure 2-2 – Scheme of a diffractometer with Bragg-Brentano geometry such as that of 

S iemens D5000. 
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2.1.2. EXAFS (XAFS) 

Extended X-Ray Absorption Fine Structure (EXAFS) is a X-ray materials 

analysis technique performed in synchrotron, designed specifically to produce 

very intense photon beams that provides information about the chemical 

composition and local structure of the sample
77

.  

Whilst XRD depend on the constructive interference of radiation that is 

scattered by relatively large parts of the sample, on the other hand EXAFS is 

due to creation of photoelectrons which are either excited to holes in the 

valence levels, or to unbound states and scattered by nearby atoms in a 

lattice
77-79

, as shows Figure 2-3. Considering how is the X-ray absorption of a 

free atom, where an electron with a binding energy Eb is irradiated with an 

energy hν (being hν ≥ Eb), the electron leaves the atom with a kinetic energy 

represented in equation 2-2. The spectrum shows edges corresponding to the 

binding energy of electron core levels in the atom, but contains no further 

structure. When this happens in an atom bound in a lattice, the local nucleus 

in the environment of the excited electron modulates the absorption and fine 

structure arises in the spectrum containing information about surrounding 

atoms.  

Ek=hν-Eb     (eq. 2-2)  

In a XAFS spectrum, there are three important regions to be considered: pre-

edge, XANES region (X-ray absorption near edge spectroscopy) and EXAFS 

region (extended X-ray absorption fine structure). The pre-edge is the zone of 

the spectrum after producing the electron excitation (i.e., after the absorption 

edge). XANES region provides information on the valence state of the exited 

atom and its bonding geometry, whereas EXAFS deals with the interference 

effects visible in the absorption spectrum beyond the edge, and provides 

detailed information on the distance, number, and type of neighbours of the 

absorbing atom (after mathematical treatment and Fourier transformed).  
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Figure 2-3 – Absorption of X-rays as a function of photon energy, E=hν by a free atom 

and by atoms in a lattice. 

EXAFS measurements of samples and references were performed at the I K 

X-ray absorption edge at 33169 eV. The data were collected at the Rossendorf 

Beamline (RoBL) 20 at the European Synchrotron Radiation Facility (ESRF), 

located in Grenoble (France) which operated at 6.0 GeV and a maximum 

current of 185.43 mA. RoBL is important because it has been the first 

experimental station dedicated to XAFS spectroscopy on radioactive elements 

using synchrotron light source in Europe. In addition to the advantages 

offered by a third-generation synchrotron light source it also gives the 

possibility of sample manipulation in a specially designed glove box before or 

during the measurement
80

. 

The EXAFS station was equipped with a Si (111) double crystal 

monochromator. The EXAFS data were collected in cryostat filled with He, 
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the reference samples were diluted with boron nitride (BN). The samples were 

also measured without dilution in the plastic sample holder covered with 

Kapton film. The powder was filled into the sample holder. Higher order 

harmonics were suppressed by the use of two mirrors. The standard beam size 

at the sample is 20×3mm
2
 (hν). The size of the focused beam is ≤ 

0.5×0.5mm
2
. The calculated integrated flux for the focused beam is 6×10

11
 

photons/s at an energy of 20 keV and 200 mA electron-beam current
80

. 

Internal energy calibration was made against potassium iodide. All 

measurements were performed in transmission mode. The EXAFSPAK 

program package was used for the data treatment. For each sample a 

minimum of 2 scans were merged after energy calibration by means of the 

EXAFSPAK.  

2.2. Textural analysis 

2.2.1. N2 Physisorption 

N2 physisorption is a common technique to determine the textural parameters 

of a solid. In catalysts or adsorbents materials, both specific surface area and 

pores size and distribution are important parameters to determine because the 

capacity of catalyze a reaction or adsorb may be related with the surface or 

porosity of the material
81-83

.  

The used method is that of Brunauer, Emmet, Teller (BET)
84

, that is an 

extension of the Langmuir theory which takes their suppositions and 

introduces the concept of multilayer adsorption following three additional 

hypothesis: 

- Gas molecules are going to be physically adsorbed into a solid surface 

in layers tending to infinite. 

- There are no interactions between layers. 

- This theory is applied to all the layers. 
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And, similar to Langmuir theory, BET method requires supposing some 

idealized mechanisms derived from previous hypothesis: 

- The adsorption of a gas molecule into the surface of the solid is 

related with only one defined adsorption energy. 

- The only considered interaction between molecules is that a molecule 

can act as a single adsorption site for a molecule of the upper layer. 

- The uppermost molecule layer is in equilibrium with the gas phase, 

having similar adsorption and desorption rates. 

- The desorption is a process limited kinetically, adsorption heat is 

needed and: 

o this phenomenon is homogeneous in the same layer, 

o the adsorption heat is E1 for the first layer, 

o the other layers are assumed to be similar and they can be 

represented as condensed species (liquid phase). Hence, the heat 

of adsorption is EL (heat of liquefaction). 

- If the pressure is the saturation pressure, the molecule layer number 

tends to infinity. 

 The following equation 2-3 is the adsorption isotherm equation of the 

Brunauer, Emmet, Teller method: 

1

[𝑉𝑎 (
𝑃0
𝑃
−1)]

=
𝐶−1

𝑉𝑚𝐶
×
𝑃

𝑃0
+

1

𝑉𝑚𝐶
   (eq. 2-3) 

Where P is the partial vapor pressure of adsorbate gas in equilibrium with the 

surface at 77.4 K (b.p. of liquid nitrogen), in pascals; P0 the saturated pressure 

of adsorbate gas, in pascals; Va is the volume of gas adsorbed at standard 

temperature and pressure (STP) (273.15 K and atmospheric pressure 

(1.013·10
5
 Pa)), in milliliters; Vm the volume of gas adsorbed at STP to 

produce an apparent monolayer on the sample surface, in milliliters and C the 

dimensionless constant that is related to the enthalpy of adsorption of the 

adsorbate gas on the powder sample.  
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The textural properties of the synthesized samples reported in this work were 

measured by N2-physisorption at 77 K using a Quadrasorb SI surface 

analyzer. All the samples were degassed in vacuum at 393 K for 15 h prior to 

analysis. The BET specific surface area was calculated from the range P/P 0= 

0.05–0.35 in the adsorption branch, while BJH pore size distribution was 

calculated from the desorption branch. 

2.3. Electron microscopy 

The electron microscopy is a group of popular techniques in the field of 

inorganic materials. It comprehends several techniques as SEM, TEM, AFM, 

EDX among others, to routinely take pictures using an electron beam to form 

the images. This allows to obtain great magnifications, thereby revealing 

details of the texture and shape of a given material with a resolution of 0.1 

nm
77,85

. During the development of this thesis work, three different electron 

microscopy techniques have been used: environmental scanning electron 

microscopy (ESEM); transmission electron microscopy (TEM) and energy 

dispersion X-ray analysis (EDX).  

2.3.1. Environmental Scanning Electronic Microscopy 

Environmental Scanning Electronic Microscopy (ESEM) is a type of electron 

microscope that produces images of a sample by scanning it with a focused 

beam of electrons. ESEM pictures are produced by detection of either 

secondary and backscattered electrons and contrast is produced by the 

orientation that the surface of the materials has with respect to the detector. 

ESEM micrographies reveal details of the material's shape, particle size and 

particles organization. One of the main differences between SEM and ESEM 

lies in the capacity of ESEM to work with wet samples and in low vacuum or 

gas, because it is possible to maintain a gaseous pressure in the specimen 

chamber, as well as allows to work with non-conductive samples without 

coating them; however, SEM cannot be used in these conditions because 
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requires high vacuum to work
86

. A scheme of an ESEM is reproduced in 

Figure 2-4. 

Compared with TEM, because the SEM and ESEM images relies on surface 

processes rather than transmission, it is able to image bulk samples up to 

many centimeters in size and can have a great depth of field, and so can 

produce images that represents the three-dimensional shape of the sample. 

 

Figure 2-4 – Scheme of an environmental scanning electron microscope 87. 

Here, environmental scanning electron microscopy (ESEM) was carried out 

on the samples using a FEI Quanta 600microscopewith INCA microanalysis 

from Oxford Instruments operating at high vacuum, using a carbon or gold 

sputtering; and at low vacuum without sputtering with an accelerating voltage 

of 20 kV and a working distance of 6.6 mm.  
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2.3.2. Transmission Electron Microscopy 

Transmission Electronic Microscopy (TEM) is a useful tool for investigating 

the atomic structure and morphology of nano- and micro-objects, being 

necessary use very thin samples to be transparent for the electron beam
88

.  

A TEM has several components as showed in Figure 2-5, which include a 

vacuum system where the electrons move, an electron emission source for 

generation of the electron stream, a series of electromagnetic lenses, as well as 

electrostatic plates. The latter two allow the operator to guide and manipulate 

the beam as required. It is also required a device to allow the insertion into, 

motion within, and removal of specimens from the beam path. Imaging 

devices are subsequently used to create an image from the electrons leaving 

the system. Generally, the image resolution of a TEM is at least an order of 

magnitude higher than that of a SEM.  

 

Figure 2-5 – Scheme of a Transmission Electron Microscope 89. 

TEM analysis was performed in a JEOL 1011 apparatus using 100 kV 

accelerating voltage. The samples were dispersed in ethanol and then 

deposited on a standard 3 mm holey carbon-coated copper grid. 
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2.3.3. Energy Dispersive X-ray Spectroscopy 

Energy Dispersive X-ray Spectroscopy (EDX) is a semi-quantitative X-ray 

micro analytical technique that provides information about the chemical 

composition of a sample for elements with Z > 3 as long as the sample has not 

been modified by coating. Frequently, samples need to be coated with a thin 

film of gold or carbon to improve their conductivity and diminish the charging 

suffered under the electron beam in SEM. 

Its characterization capabilities are due in large part to the fundamental 

principle that each element has a unique atomic structure allowing unique set 

of peaks on its X-ray emission spectrum
90

. The energy of the electron beam is 

determined by the accelerating voltage of the microscope, and therefore this 

energy defines which X-rays are excited during the interaction with the 

material. SEMs typically work with high accelerating voltages, ∼20 kV 

approximately, in order to excite the well-known K lines in the atomic spectra 

(even L lines are also produced at these energies they have the problem that 

the information in the low-energy part of the atomic spectra is frequently 

neglected). Energies of at least 12 kV are necessary to excite the K lines while 

simultaneously minimizing of the interaction volume
91

. 

As X-rays are among the “by-products” of electron microscopy, we can use it 

to determine the chemical composition of materials on a submicron scale and, 

with spatial resolution. 

2.4. Chemical analysis 

2.4.1. Ionic selective electrodes 

Potentiometric sensors offer an inexpensive and convenient method for fast 

analysis with high sensitivity and selectivity compared with other analytical 

methods to determine low concentration levels of anions. In view of such 

advantages, efforts have been made to make selective sensors for different 

anions
92

.  
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An ionic selective electrode is a sensor that converts the activity of a specific 

ion dissolved in a solution, in the present cases chloride or iodide, into an 

electrical potential. The voltage is dependent on the logarithm of the ionic 

activity, according to the Nernst equation (eq. 2-4)
93

. The sensing part of the 

electrode is usually made as an ion-specific membrane, along with a reference 

electrode, as shown Figure 2-6. 

E = E
0
 + (2.303RT/ nF) x Log(a)   (eq. 2-4) 

Where E is the total potential (in mV) developed between the sensing and 

reference electrodes; E
0
 is a constant which is characteristic of the particular 

ISE/reference pair (i.e., the sum of all the liquid junction potentials in the 

electrochemical cell); 2.303 corresponds to the conversion factor from natural 

to base10 logarithm; R is the Gas Constant (8.314 joules/degree/mole); T is 

the Absolute Temperature; n is the charge on the ion (with sign); F is the 

Faraday Constant (96.500 coulombs per mole); and Log(a) is the logarithm of 

the activity of the measured ion. 

Liquid phases were analyzed using a pH & Ion-meter GLP 22
+
. Crison 

selective chloride and iodide electrodes, 96 52 in case of chloride and 96 56 in 

case of iodide, both with a sensitive membrane composed by a mixture of 

salts, with Ag/AgCl reference system in case of 96 56 electrode; and a 50 44 

Crison reference electrode with lithium acetate 0.1 M as intermediate 

electrolite. The solid state membrane electrodes as used are constructed using 

a robust body, with a membrane in contact with the solution. The main 

advantage of them is that there is no solution to evaporate or leak away
94

. A 

diagram of the system is represented in Figure 2-6.  
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Figure 2-6 – Diagram of a measuring system using ion selective electrode and a reference 

electrode93 94. 

 

Some limitations, such as interferences of other anions and the detection limit 

must be considered during the use of selective electrodes. For instance, 

analyzing iodide, absence of Br
−
, CN

−
, Ag

+
 y S

2−
 is required because they 

interfere in the I
−
 response. In other cases, irreversible damage of the 

membrane can be caused by other ions (for instance, iodine in the chloride 

electrode). Working with any type of electrode requires an ionic strength 

adjuster (NaNO3 5M solution) added to both the standard solutions and 

samples in a proportion of 2:100.  

The calibration standards were prepared by dissolving NaCl (Fluka, 99.50%), 

dried during 2 hours at 393K, in MilliQ water, in the case of chloride, and NaI 

(Sigma Aldrich, 99.999%) treated in the same conditions as NaCl in case of 

iodide. Standards and samples were measured in the same conditions of ionic 

strength, temperature and stirring avoiding bubbles, colloids or suspended 

solids in the solution. 
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2.4.2. Ion chromatography 

Ion chromatography (IC) is a useful method to separate and determine 

simultaneously and with precision very low concentrations (in the level of 

ppb) of several ions (in this case, iodide and iodate) in a single run
95

. It is 

needed to take into consideration the interference with other anions such as 

nitrate (e.g. from digestion of solids) or chloride (from brine solution).  

Ion-chromatography, IC, was performed using a Dionex ICS-2000 apparatus 

with gradient eluent concentration of potassium hydroxide to determine iodate 

and iodide concentration in both the filtered solutions (after adsorption tests) 

and the solutions after digestion of the solid samples with concentrated HNO3 

using conductivity detection. 

2.4.3. ICP-OES and atomic absorption 

Inductively coupled plasma - optical emission spectrometry (ICP-OES, 

showed in Figure 2-7) and atomic absorption it is possible to determine 

qualitatively and quantitatively the chemical composition of both digested 

materials and waters.  

ICP-OES is considered a powerful analytical tool for the determination of 

elements in concentrations in order of ppb or higher. It is simple and fast due 

to its high sensitivity and versatility, and it can be used to analyze multiple 

elements simultaneously. 

A peristaltic pump carries the sample (aqueous or organic) into the nebulizer 

and is changed into aerosol in the spray chamber where is mixed with argon 

and introduced inside the torch. The sample is divided into their respective 

atoms which then lose electrons and recombine in the plasma, giving off 

radiation at the characteristic wavelengths of the elements involved
96

. 
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Figure 2-7 – ICP-OES scheme97. 

The concentration of the elements contained in the samples should be in a 

range higher than 0.001 ppm, to assure precise measurements and 

reproducibility. 

Inductively coupled plasma optical emission spectrometry, ICP-OES, Thermo 

Scientific iCAP 6000 Series, was used to measure iodine concentration in the 

digested in HNO3 solid LDH samples. 45 mL of aqueous samples were used 

in each measurement. The used standards were the Al standard 1000 mg/L ± 5 

mg/L from certiPUR; Mg standard 1000 mg/L from certiPUR; Ca standard 

1000 mg/L from certiPUR; Fe standard 1000 mg/L from certiPUR; iodate 

standard KIO3
−
 solution 1/60 M from Fluka; iodide standard of I

−
 1000 mg/L 

± 15,3 mg/L from Fluka. ICP spectrometer Spectro Arcos FHS16 was also 

used to simultaneous determination of several elements in digested samples 

with a 1% of HNO3 in total volume, using Multi element Standard Ultra 

Scientific ICM-103 1000 µg/ml to identify Fe, Cu, Ni, Mn, Cr, Zn, Ca, K, 

Mg, Na, Al, Ag, among others. 
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ICP-OES has a wide number of applications that has increased significantly in 

the past decade. The types of biological samples analyzed by ICP-OES 

include whole blood
98

, internal organs
99,100

, bones
101

, hair
102

 and more; it is 

used in environmental analysis of waters
103

 and digests of sewage sludge
104

 

and soils sediments
105

. 

2.5. Ultrasonication 

Ultrasound are the acoustic waves transmitted through any physical medium 

with frequencies over the human perception (approximately, 20000 Hz). The 

waves compress and stretch the molecular spacing of the medium through 

which it passes, as the ultrasound cross the medium the average distance 

between the molecules will vary as they oscillate about their mean position. 

When the negative pressure provoked for an ultrasonic wave crossing a liquid 

is large enough, the distance between the molecules of the liquid exceeds the 

minimum molecular distance required to hold the liquid intact, and then the 

liquid breaks down and voids are created. Those voids are the named 

cavitation bubbles
106,107

. 

The behaviour of cavitation bubbles is represented in Figure 2-8, it can be 

stable cavitation, when bubbles formed at fairly low ultrasonic intensities (1-

3W·cm
−2

) oscillate about some equilibrium size for many acoustic cycles; or 

transient cavitation when bubbles are formed using sound intensities in excess 

of 10 W·cm
−2

. The transient bubbles expand through a few acoustic cycles to 

a radius of at least twice their initial size before collapsing violently on 

compression, being considered for that the main source of the chemical and 

mechanical effects of ultrasonic energy, depending of the parameters 

frequency, intensity, temperature, the solvent and how the ultrasounds are 

applied. Each collapsing bubble can be considered as a micro-reactor where 

are created instantaneously pressures higher than one thousand atmospheres 

and temperatures of several thousand degrees
108

. If this transient cavitation 

effects are being applied to a solid, the particle size of the sample is 
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diminished by solid disruption, increasing the total solid surface in contact 

with the solvent, as no other method of treatment of samples can 

reproduce
106,109,110

. For that, ultrasound have applications speeding up 

enzymatic reactions, accelerating liquid-liquid extraction techniques, 

enhancing the performance in solid-phase extraction and microextraction and 

others. 

The used ultrasonic bath is a JP Selecta Ultrasons without heating that works 

at one frequency (50 Hz) and power (150W). 

 

Figure 2-8 – Creation of stable cavitation bubbles and creation and collapse of transient 

and stable cavitation bubbles. (a) Displacement, (x) graph; (b) transient cavitation; (c) 

stable cavitation; (d) pressure (P) graph107. 
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I am among those who think that science has great beauty. A scientist in his 

laboratory is not only a technician: he is also a child placed before natural 

phenomena which impress him like a fairy tale. 

 

Pronounced during ‘The future of culture’ debate in Madrid, 1933  

Marie Curie
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3.1. Introduction 

Layered double hydroxides (from now on, LDHs) are a family of clay 

minerals that has been widely studied, partly because they are materials with 

reasonable crystallinity that can be easily prepared (for example by 

coprecipitation methods
111

). They present an extended list of applications, 

with special relevance as anion-exchangeable matrices in material 

chemistry
112

, adsorption
113

, catalysts
114-116

, pharmaceuticals
117,118

 and others
119-

121
.  

In the present chapter, several LDH are used as adsorbent materials for iodide 

retention from aqueous solutions as well as host materials to accumulate 

iodate or iodide in a stable and safely manner. 

3.1.1. LDH structure 

LDHs materials are represented by the general formula [M
2+

xM
3+

(OH)2(x + 1)]
+
 

[A
n−

(1/n) · mH2O]
n–

, where M
2+

 and M
3+

 are divalent and trivalent metal ions, 

respectively; A
n-

 is the charge-balancing anion of valence n; x = (5 ≤ x ≤ 2). 

The M(II)/ M(III) LDH category (M(II): Mg
2+

, Fe
2+

, Co
2+

, Ni
2+

, Zn
2+

, etc.; 

M(III): Al
3+

, Fe
3+

, Cr
3+

, etc.).  

LDH have positively charged brucite-type layers. This mineral, with formula 

Mg(OH)2, is composed by divalent magnesium cations octahedrally 

surrounded by hydroxide anions
122

. These octahedral units are linked by edge-

sharing, forming layers as shown in Figure 3-1, with hydroxide groups sitting 

perpendicular to the plane of the layers that are stack on top of one another to 

form the three-dimensional structure. 
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Figure 3-1 – Brucite layer structure. Taken from reference123.  

The basic structure of LDH may be derived by partial substitution of divalent 

cations by trivalent ones, with a possibility of varying the identity and relative 

proportions of di– and trivalent cations, being possible to use Mg
2+

, Ca
2+

, 

Mn
2+

, Fe
2+

, Co
2+

, Ni
2+

, Zn
2+

, Cd
2+

, etc. as divalent cations
124

 and Al
3+

, Cr
3+

, 

Co
3+

 or Fe
3+

 as the trivalent ones
125

. LDHs incorporating Li
+
 monovalent 

cation have also been reported by Besserguenev et al.
126

 but LDH synthesis 

incorporating tetravalent cations in its structure has not been successful so 

far
127,128

. 

Cavani et al. have reported, in their ample review article of 1991, that pure 

LDH phases can only be formed for M(II)/M(III) ratios in the range of 2–4
129

. 

For x > 0.33, x=M(III)/(M(II)+M(III)), the presence of M(III)–O–M(III) 

linkages is unavoidable and this is energetically unfavorable due to the strong 

repulsion between the adjacent trivalent cations
130

. Thus, x>0.33 may lead to 

the formation of Al(OH)3 (usually not detected by PXRD) due to the 

increment of neighboring M(III) octahedra. Similarly, x<0.2 may lead to a 
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high density of Mg octahedra in the brucite-like sheet, acting as nuclei for the 

formation of Mg(OH). 

Some authors have faced the cation ordering in LDH layers by means of 

either theoretical models
131

 or experimental studies
132,133

. For instance, the 

structure suggested by Xiao et al. and showed in Figure 3-2 is the result of 

computational calculations on a two-dimensional discrete Coulomb alloy with 

formula A1-xBx, in which A and B have different charges and are free to move 

on the sites of a triangular lattice in order to achieve the lowest energy 

configuration
134

. 

 

Figure 3-2 – S imulation of a regular triangular superlattice of a Coulomb alloy with x = 

1/3. Taken from reference134. 
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The interlayer galleries of the LDH structure contain both interlayer anions 

and water molecules. In consequence, there is a complex network of hydrogen 

bonds between layer OH
−
 groups, interlayer anions and water molecules, 

provoking a disorder space where hydrogen bonds are in a continuous state of 

flux causing a very complex structure
135

. The interlayer anion is neutralizing 

the excess of positive charges from the layers
136

 and it has been suggested that 

charge compensation in LDHs has many of the characteristics of resonance 

effects
132

. 

The affinity for the interlayer space of LDH was determined to be OH
−
 > F

−
 > 

Cl
−
 > Br

−
 > NO3

−
 > I

−
 for monovalent anions, while that for divalent anions is 

in the sequence CO3
2−

 > NYS
2−

 > SO4
2−

 being affected the affinity by the 

charge and the diameter of the anion
137

. 

As claimed by Britto et al.
138

, they are three different approaches to explain 

the thermodynamic stability of LDHs.  

- As the LDHs are obtained by alkali precipitation from a mixed metal 

(M(II) + M(III)) salt solution, it has been measured the solubility 

products of LDHs and related it to their thermodynamic stability; the 

lower the solubility product, greater being the thermodynamic stability. 

- the calorimetric measurement of the enthalpy of formation. 

- An electronic structure approach can be envisaged taking into 

consideration such factors as the octahedral crystal field stabilization 

energies of the metal ions and the mode of coordination of the anions. 

3.1.2. Synthesis of LDHs 

LDH have been discovered in Sweden in 1842
129

, but the majority of LDHs 

actually used are obtained by synthesis. It exists a wide variety of procedures 

for LDH synthesis. The selected method will depend on the purpose for which 

the LDH is to be used.  
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3.1.2.1. Coprecipitation 

Coprecipitation is the most widely used method to prepare LDHs, a versatile 

procedure to prepare materials containing a variety of layer cations and 

interlayer anions
139

 and is also adequate to produce large quantities of 

material. Coprecipitation methods are generally faster and less laborious than 

others
140

 and offer some dynamic control of synthesis conditions
141

. Salt 

solutions of the corresponding divalent and trivalent cations in a determinate 

ratio and the desired interlayer anion are used in this procedure. 

The mechanism of coprecipitation relies upon the condensation of hexa-aquo 

complexes in solution in order to build brucite-like layers having a uniform 

distribution of both metallic cations and solvated interlamellar anions. 

A thermal treatment process is often performed in order to increase the yields 

and/or the crystallinity of amorphous or poorly crystallized materials. These 

procedures can be classified according to reached temperature: a conventional 

process consists of heating the reactor containing the aqueous suspension of 

LDH at a temperature between 273-373 K over a few hours or days. The other 

procedure is known as hydrothermal treatment, which involves higher 

temperatures and pressures, ranging from 10 to 150 MPa, generally in 

stainless steel autoclave
142

. 

3.1.2.1.1. Precipitation at Low Supersaturation 

It is performed by slow addition of mixed solutions of the corresponding salts 

of divalent and trivalent cations into a reactor containing an aqueous solution 

of the desired interlayer anion. Simultaneously, an alkali solution is added to 

keep the pH at the selected value, thus provoking the coprecipitation of the 

LDH
143

. 

3.1.2.1.2. Precipitation at High Supersaturation 

In this procedure, a mixed salt solution of di- and trivalent cations is added to 

an alkaline solution containing the desired interlayer anion. This method 

generally gives rise to less crystalline LDHs, because of the wide number of 

UNIVERSITAT ROVIRA I VIRGILI 
ON THE USE OF LAYERED DOUBLE HYDROXIDES IN THE MANAGEMENT OF 129I FROM LIQUID NUCLEAR WASTES 
Luis Iglesias Pérez 
Dipòsit Legal: T 893-2015 



3. Layered Double Hydroxides 
 

56 
 

crystallization nuclei. Thermal treatment performed following coprecipitation 

may help to increase the crystallinity
144-146

. 

3.1.2.1.3. Incorporating separate Nucleation and Aging Steps 

The formation of LDH crystallites involves two different stages: nucleation 

and aging. The processes that take place while a crystal is undergoing aging in 

its mother liquor are fairly complex. It may involve crystal growth, 

agglomeration, breakage as well as other phenomena as Ostwald 

ripening
129,139,147-149

. 

3.1.2.1.4. Urea Hydrolysis Method 

Urea, COO(NH2) 2, has several properties that make it useful as precipitant 

agent and has been largely used to precipitate metal ions as well as hydroxides 

and insoluble salts
150,151

. Urea is a weak Brønsted base, highly soluble in 

water and with a hydrolysis rate which can be easily controlled by setting the 

temperature. Its hydrolysis proceeds in two steps: first ammonium cyanate is 

formed, being the rate determining step; then takes place a fast hydrolysis of 

the cyanate to ammonium carbonate as follows: 

CO(NH2) 2  NH4CNO  NH3CNO + 2H2O  2NH4
+
 + CO3

2-
 

The hydrolysis of ammonium ions to produce ammonia and carbonate to yield 

hydrogen carbonate results in a pH around 9, conditioned by temperature, 

which is a suitable pH to precipitate a large number of metal hydroxides
140,152

. 

This method has also applications in gravimetric analysis
153

. 

3.1.2.2. Ion-exchange method 

This method results appropriate when coprecipitation is inapplicable such as 

when, for example, the divalent or trivalent metal cations or the anions 

involved are unstable in alkaline solution, when there is another competitive 

reaction or there are anions with higher affinity to the interlayer space present 

in the solution, as previously described. 
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In ion-exchange method, anions in solution are exchanged with the anions 

presented in the interlayer regions of LDHs to produce specific anion pillared 

LDHs. Thermodynamically, ion exchange in LDHs depends mainly on the 

electrostatic interactions between the positively-charged host sheets and the 

exchanging anions and, to a lesser extent, on the free energy involved in the 

changes of hydration
154,155

. 

Affinity for incoming anion
156

, exchange medium
157

, pH value
158

 or chemical 

composition of the layers
159

 are factors determining the extent of ionic-

exchange in any given case. 

3.1.2.3. Rehydration using structural “memory effect” 

When a LDH is calcined at temperatures around 773 K
160

 the interlayer water, 

interlayer anions and the layer hydroxyl groups are removed, resulting in the 

formation of a mixed metal oxide
161

. The mixed oxide materials are able to 

regenerate the original layered structure when they are exposed to liquid water 

or a water saturated atmosphere
129,160,162-164

. The hydroxyl layers are reformed 

by absorbed water. In addition, water molecules and anions are incorporated 

into the interlayer galleries in a process named as reconstruction, regeneration 

or “memory effect”.  

The incorporated anions are not necessarily the anions existing in the former 

LDH, being this a useful method to efficiently incorporate anions to the LDH 

structure, as well as to obtain pillared structures
114,165,166

. 

3.1.2.4. Other synthesis methods 

Hydrothermal synthesis methods are adequate to intercalate organic guest 

species with low affinity for LDH
129,143,167,168

. To avoid competing anions with 

higher affinity for interlayer space insoluble hydroxides of the metals are used 

as cations sources.  

Salt-oxide (or hydroxide) method was first proposed by Boehm et al.
169

, using 

salts and oxides as metal sources to synthetize ZnCr-Cl LDH, being a useful 
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way to obtain other LDH such as CuCr-Cl LDH which are difficult to obtain 

by coprecipitation
170

.  

In the non-equilibrium aging method, the salt and alkali solutions are rapidly 

mixed and nucleated in a colloid mill previously to the aging step. After the 

aging period, another portion of salt and alkali solutions is added 

simultaneously to the mixture to ensure that metal ions are supersaturated in 

every moment. In this conditions, increasing the concentration of ions as well 

as decreasing the temperature favor the nucleation over crystal growth
171

. 

Other methods have been reported to prepare LDH, such as the use 

microwaves, that has been found as a rapid and convenient tool for material 

synthesis
172,173

; or ultrasound, that can improve the crystalline properties 

compared LDHs prepared without ultrasonic treatment
174,175

. 

LDH synthesis on different supports allows the materials to get better 

mechanical performance, thermal stability and degree of dispersion. 

Supported LDHs syntheses have been reported using, for example, α-

Al2O3
176,177

, γ-Al2O3
178-180

, carbon nanofibers
181-183

 and mesoporous silica
184,185

 

as supports. 

3.1.3. Properties and applications of LDH 

The great versatility of LDHs, which has been stated in the different sections 

of this chapter, makes these materials as one of the most studied and 

technologically interesting. LDHs are a cheap, versatile, relatively easily 

synthesizable, and a potentially reusable source of a variety of catalyst 

supports, catalyst precursors or actual catalysts. In particular, mixed oxides 

obtained by calcination of LDHs present relatively large specific surface areas 

(100-300 m
2
/g) with a homogeneous and thermally stable dispersion of the 

metal ion components. They present marked acid-base properties, and 

characteristic synergistic effects between the elements with the possibility of 
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reconstruction of the structure under mild conditions
168

. Some examples of the 

applications of LDHs are resumed below:  

- As catalysts support:  

LDH materials can be used as support for organic compounds (what is known 

as heterogeneization of homogeneous catalysts). For instance, L-Leucine has 

been immobilized in LDH by intercalation or by replacing of hydroxyl ions at 

the edge sites of the LDH layers. The individual components, i.e., L-leucine 

and the LDH, showed very poor activity and lack of enantioselectivity in the 

epoxidation reaction of α,β-unsaturated ketones such as chalcone. 

Nevertheless, the hybrid catalysts presented high activity and even 

enantioselectivity towards the trans-(R,S)-epoxide depending on the L-leu 

location on the nanohybrid catalyst
118

. 

MgAl LDHs has been studied by Choudary et al.
186

 as support for metals, e.g. 

nanopalladium (0). These catalysts were prepared by ion-exchange with 

PdCl4
2-

 followed by reduction. Choudary et al. found that using this material 

in ionic liquids the catalysts has higher activity and selectivity than the 

homogeneous PdCl2 system in the Heck olefination of electron-poor and 

electron-rich chloroarenes. In addition, these catalysts showed higher activity 

in the C-C coupling reactions of chloroarenes than other heterogeneous 

catalysts with nanopalladium (0) on supports as alumina or silica
186

. 

Additionally, LDH supported rhodium(0) catalyst was effectively used in the 

Heck, Suzuki and Stille cross-coupling of haloarenes. Catalyst could be easily 

removed and reused in several cycles
187

. 

-Hybrid LDHs: 

It is possible to improve LDHs features such as mechanical performance, 

thermal stability and degree of dispersion by using either inorganic or organic 

supports during the LDH synthesis. As an example, it has been reported the 
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use of α-Al2O3
176,177

 to produce a material adequate to be used in flow 

reactors.  

LDHs supported on γ-Al2O3
178-180

 allow obtaining a homogeneous distribution 

of the cations, being impregnation a convenient method to prepare alumina 

supported hydrotalcite-type mixed hydroxides.  

LDHs supported on carbon nanofibers
181,182

 have been obtained by a 

coprecipitation method using either a regular maturation stage or a colloid 

mill process. The solid obtained resulted to be a valuable base catalyst for the 

synthesis of glycerol carbonate and dicarbonate as well as for the self-

condensation of acetone exhibiting highly improved catalytic performance in 

both reactions. For instance, one of the CNF supported LDH catalyst 

presented 300 times higher activity compared to bulk activated hydrotalcites 

in the case of glycerol transesterification with diethyl carbonate.  

Other LDH hybrid inorganic materials were prepared with zeolites
185

, 

obtaining microcrystals tightly attached onto the LDH monolayer and where 

the zeolite monolayer has a preferred orientation.  

With polymers
188

 it was possible to obtain homogeneous poly-methyl 

methacrylate (PMMA)-LDH nanocomposites with a structure consisting of 

PMMA nanobeads uniformly embedded into the LDH nanocrystals. This 

material is interesting for the development of well-defined nanocomposites, 

possessing the specific requirements for a given application, combined with 

the advantage of LDHs, such as a large variety of compositions, tunable layer 

charge density and high compatibility with biomaterials. 

- As catalysts and catalyst precursors:  

LDHs have been reported as efficient catalyst precursors for the synthesis of 

carbon nanotubes by chemical vapor deposition of acetylene
189

.  
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Numerous works have reported the use of both calcined and rehydrated LDHs 

in a large number of organic reactions performed in liquid phase, including 

epoxidation of styrene using MgAl LDH
190

, Knovenagel condensation and 

aldolysations using MgAl or NiAl LDHs
191

, or LDHs containing fluoride as 

efficient, selective and environmentally attractive catalysts for C-C bond 

formation
192

, hydroxylation of phenol over CoNiAl LDHs
193

 and liquid-phase 

carbonylation of methanol to methyl acetate catalyzed over tin-promoted NiAl 

LDH avoiding the formation of acetic acid in appreciable levels
194

. 

Many reports have studied the use of LDHs as precursors of mixed oxide 

catalysts formed by thermal decomposition. Such metal oxides are known to 

promote a wide variety of industrially important base-catalyzed reactions
195

. 

MgAl LDH have been reported as catalyst in reactions such as Claisen-

Schmidt condensation
196

, Meerwein-Ponndorf-Verley reduction
197

, Henry 

reaction of aldehydes
198

, isomerizations
199

 and diasteroselective synthesis, 

MgAl LDH has been found to catalyze the reaction between aldehydes and 

nitroalkanes very efficiently affording threo nitroalkanols in a highly 

diastereoselective manner
198

. 

During last decades, several types of LDHs as suitable precursors for 

transition metal-containing heterogeneous catalysts have been reported
200-205

. 

Mixed oxides from calcined CuMgAl LDHs have been studied as potential 

catalysts for hydrogenation of cinnamaldehyde
206

. It was reported that Cu
2+

 

ions embedded in the MgAl oxide matrix are the key redox site for this 

reaction. Rives et al. reported the use of V(III)-substituted LDH as precursors 

of MgV mixed oxides as catalysts for the oxidative dehydrogenation of 

propane and n-butane
207

. Their results indicated that the performance of the 

catalysts is determined by the relative amounts of Mg3VO4 and MgO, which 

depends on the content of V(III) of the starting LDHs. 

LDHs have been investigated for their potential as materials for the reduction 

of SOx and NOx emissions in the Fluid Catalytic Cracking Units in oil 
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refineries 
208,209

. Mixed oxides obtained from Cu/Mg/Al LDH precursor were 

the most effective at catalyzing both the oxidation of SO2 to SO4
2-

 and the 

reduction of sulfates to H2S
209

. 

- Catalysis in natural gas conversion:  

A part of the future of electric power generation is expected to give 

importance to hydrogen as fuel
210

. Therefore, applications of Ni/Al, Ni/Mg/Al 

or Ni/Ca/Al catalysts obtained from LDH precursors in the preparation of 

syngas by catalytic partial oxidation of methane have been widely 

investigated, with promising results
211-215

. 

- Pillared LDHs as catalysts:  

The intercalation of anionic species into LDHs is a potential alternative for the 

immobilization of catalytic complexes. LDHs containing bulky and stable 

anions are rather interesting, since they can give rise to a wide range of 

microporous materials
216

. Also, it has been proposed the use of LDHs as 

layered host systems for intergallery immobilization of anionic 

photocatalysts
217

.  

- Medical applications:  

The first medical applications of LDHs were associated with their use as 

antacids and antipepsin agents
218,219

. Several studies are focused on the 

intercalation and controlled release of pharmaceutically active compounds 

from LDH materials, taking advantage of their biocompatibility, variable 

chemical composition, alkaline character
220

 and their ability to intercalate 

anionic drugs. Nevertheless, because of the LDHs basic character, they are 

unsuitable as an oral drug delivery system without any modification because 

they will be destroyed in the stomach where the pH is 1.2. Hence, Duan et 

al.
221

 prepared a core-shell material as a drug delivery system.  
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Currently, the incorporation of biologically essential molecules in the LDH 

interlayer space has become a topic of interest and LDH has been shown to 

stabilize materials such as DNA
222

, ATP
223

, aminoacids
224

, enzymes
225

 and 

vitamins
226

. 

- Applications in nuclear industry:  

L. Aimoz et al.
227

 analyzed the applicability of MgAl-I, ZnAl-I and ZnAl-IO3 

as potential matrices to store 
129

I. Theiss et al.
228

 studied the iodine and iodide 

adsorption capacity of previously calcined ZnAl LDH and its thermal 

decomposition and suggested that iodine species may form non-removable 

anions by thermal decomposition of the LDH structure when these anions are 

intercalated into the LDH structure. Bastianini et al.
229

 studied the ZnAl-I and 

ZnAl-I3 LDHs obtained via intercalation of molecular iodine from non-

aqueous solution and described a mechanism of iodine diffusion into the 

interlayer space to combine with iodide.  

One of the factors that can significantly affect the iodine retention capacity of 

LDHs is the presence of carbonate in the interlayer space, an anion with 

higher affinity than iodide or iodate
137

. Therefore, several studies
230,231

 

investigate diverse intercalation methods involving dissolution and re-

coprecipitation procedures to obtain MgAl LDHs avoiding any presence of 

carbonate in the material. Prasanna et al. showed that iodide-containing 

MgZnAl LDHs lost the intercalated iodide by leaching even at neutral pH, 

since hydroxide ion (coming from the aqueous medium) can displace the 

former
232

. 

MgAl LDH has been used by Kulyukhin et al.
233

 as adsorbent materials for 

137
Cs and 

90
Sr with poor results; however, a material based on MgNd LDH 

may be used for 
90

Sr recovering. 

LDHs applications in adsorption and ion exchange processes are also 

important; there is a considerable interest in the use of LDHs to remove 
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negatively charged species. LDHs can take up anion species from solution by 

three different mechanisms: surface adsorption, interlayer anion-exchange and 

reconstruction of a calcined LDH precursor by the memory effect
234

. Both 

uncalcined and calcined LDHs have also been used as sorbents for 

decontamination of radioactive wastewater, Toraishi et al.
235

 reported the 

adsorption behavior of IO3
–
 anions from radioactive wastewater by LDHs, 

concluding that IO3
−
 is weakly adsorbed on the external surface of 

carbonate−LDH, whereas IO3
−
 is exchanged for interlayer NO3

−
 in 

nitrate−LDH.  

- Other applications: 

The interlayer region of LDHs can provide a novel environment for 

photochemical reactions of guest molecules
236-239

. Also, inorganic materials 

such as clays or microporous solids are attractive as replacements in modified 

electrodes since they have much better stability, tolerance to high 

temperatures and oxidizing conditions and chemical inertness than organic 

polymers. Due to the capability of clays to exchange intercalated ions, clay 

modified electrodes have been extensively studied
240-247

. 

LDHs have also potential as additives in polymeric materials with several 

functions such as PVC stabilizing
114,248-250

 or flame retardants as well, leading 

to reduced quantities of smoke during polymer combustion
251

. 

Furthermore, calcination of LDHs leads to highly dispersed metal oxides with 

interesting colorimetric parameters to be used as ceramic pigments when they 

have a very specific composition using transition metals
121,252

.  

3.2. LDH as adsorbent materials 

In this section, it is presented the adsorption of iodide on Mg/Al calcined 

LDHs with different Mg/Al molar ratios (2/1 and 3/1) and two different 

interlayer anions (carbonate and nitrate). It is known that the interlayer anion 

of the parent hydrotalcites influences the textural properties of their 
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corresponding mixed oxides
253

, which may have an effect on the uptake 

capacity of the adsorbent material. Our purpose was, once deeply studied the 

existent literature on the topic, to study the influence of the LDH composition 

(i.e. the M(II)/M(III) molar ratio ant the interlayer anion) the adsorption 

behavior, as well as the influence of the ultrasound (US) application against 

conventional stirring as a method to improve the adsorption processes. 

3.2.1. Experimental 

3.2.1.1. Reagents 

All reagents used were analytical grade. MilliQ water was obtained using a Q-

Gard 1 Purification Pack. Degasified water was prepared by heating water up 

to 363 K and flowing argon during 30 minutes. 

3.2.1.2. LDH synthesis 

Nitrated and carbonated LDHs with Mg/Al molar ratios of 2 and 3 were 

synthesized using the co-precipitation method as follows: an aqueous solution 

(100mL) containing the appropriate amount of magnesium nitrate (20–30 

mmol) and aluminum nitrate (10 mmol) (Sigma Aldrich 98% and Fluka 98% 

respectively) was added dropwise into a beaker containing 100 mL of 

deionized and decarbonated water with vigorous stirring at room temperature. 

The pH of the solution was kept constant at pH = 10.0 ± 0.2 by adding either a 

2 M NaOH (Sigma Aldrich 98%) solution (for nitrated HT) or a 2 M NaOH 

and Na2CO3 (Sigma Aldrich 99%) 0.05 M solution (for carbonated HT). The 

resulting mixture was aged under stirring overnight, then filtered and 

thoroughly washed with deionized water and dried at 373 K for 12 h. The 

preparation and aging of the nitrated HT were performed under Argon flow. 

The obtained solids were denoted as 21C-as and 31C-as (for carbonated HT) 

or 21N-as and 31N-as (for nitrated HT). 
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3.2.1.3. Calcination 

Calcination of LDH was performed as a standard calcination method as 

follows: LDH materials were placed in crucibles and calcined by heating at 10 

K/min up to 723 K during 5 hours in an oven to obtain the corresponding 

mixed oxides. Samples were stored in argon atmosphere until their use.  

3.2.1.4. Adsorption process  

The adsorption tests were performed with the mixed oxides from calcined 

LDHs. Batch experiments were carried out in 40 mL polypropylene tubes 

using 35 mL of KI (Sigma Aldrich, 99%) solutions with a range of 

concentrations from 100 to 3000 ppm and 0.160 g of calcined LDH. The 

mixture was magnetically stirred (1000 rpm) at controlled temperature (298 

K) for 25 h. Previous experiments had shown that this is time enough to reach 

the equilibrium. After 25 h the adsorbent was separated from the solution by 

centrifugation. The liquid phase was filtered and analyzed using a selective 

iodide electrode connected to a reference one. All measurements were carried 

out in triplicate and the results shown correspond to the mean values. The 

resultant adsorption data were fitted to Langmuir and Freundlich equations to 

check the degree of fitting to these both models. 

Iodide adsorption was also performed with 21N-c and 31N-c samples while 

applying ultrasound treatment. The batch experiments were carried out in an 

ultrasonic bath at a frequency of 50 kHz. The mixture was submitted to 

ultrasonication for 1 h and then magnetically stirred (1000 rpm) at a 

controlled temperature (298 K) to complete 25 h. The procedure was applied 

in accordance with results obtained in previous experiments. 

3.2.1.5. Recycling studies 

Recycling tests were also conducted with the 31C-c sample. After every 

adsorption run, the resulting material was recovered from the solution by 

centrifugation, washed with water and dried overnight at 353 K. The solid was 
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then calcined at 723 K for 5 h in static air and submitted to a new adsorption 

experiment. The sample was used in three consecutive runs. 

3.2.1.6. Leaching experiments 

After the adsorption process, the recovered solids were used in releasing tests, 

performed on sample 31C-I at a neutral and acidic pH, which are the types of 

pH generally found for these kinds of wastewaters. The pH of the solutions 

was adjusted with HNO3 to 7, 5 and 3.  

3.2.1.7. Brucite synthesis  

Brucite was obtained following the synthesis procedure described by Moreira 

et al.
254

. Typically, 1M sodium hydroxide solution was added to dropwise to a 

0.5M magnesium nitrate solution and stirred vigorously during the entire 

procedure. Once a precipitate was formed, the stirring was continued for 1 h 

to age the sample in the mother liquid.  

After this, the solid was filtered, washed with MilliQ water (1L by 10 grams 

of brucite), dried at 343 K and stored. A part of the synthetized brucite was 

calcined during 5 hours at 723 K. 

Batch experiments were carried out in 40 mL polypropylene tubes using 35 

mL of KI (Sigma Aldrich, 99%) solutions with concentrations of 3000 ppm I
−
, 

and 0.160 g of either as prepared or calcined brucite, respectively. The 

mixture was magnetically stirred (1000 rpm) at controlled temperature (298 

K) for 25 h. 

3.2.2. Study of adsorption capacity 

3.2.2.1. I
−
 adsorption equilibrium 

Preliminary experiments were conducted for different periods of time to 

determine the equilibrium time. The sample 21N-c was the representative 

sample used in the tests of adsorption. The obtained results are shown in 

Table 3-1, revealing that 25 h are enough to reach the equilibrium. The 
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amount of I
−
 adsorbed was determined by difference between the initial and 

the final iodide concentration. 

Table 3-1 – Variation of adsorption capacity of 21N-c with time. 

Time Qe Adsorbed I
−
  Theoretical adsorbed I

−a
 

h mg I
ˉ
/gHTc % % 

5 85 28 9 

10 111 36 11 

20 126 42 13 

25 156 51 16 

30 155 51 16 

35 154 51 17 

a Iˉ adsorbed respect to the theoretical maximum uptake capacity  

3.2.2.2. Brucite adsorption capacity 

Iodide adsorption was performed with brucite materials as a blank test. The 

adsorption results of brucite samples showed no differences in iodide 

concentration before and after the contact with the material. The I
−
 uptake 

found was 1% for brucite while calcined brucite (723 K) did not presented I
−
 

adsorption at all. XRD analysis of synthetized brucite, brucite after iodide 

uptake and previously calcined brucite after iodide are showed in Figure 3-3. 

The three samples correspond to brucite (JCPDS 44-1482). Any structural 

change was observed after keeping the materials in contact with the iodide 

solution. In addition, there was no presence of crystalline iodine-containing 

structures. 
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Figure 3-3 – PXRD patterns for the brucite, brucite after iodide uptake  (Brucite_I) and 

calcined brucite after iodide uptake (Brucite_c_I). Brucite (JCPDS 44-1482) mark: ο. 

3.2.2.3. Effect of molar ratio and interlayer anion of parent 

hydrotalcite  

The effect of the Mg/Al molar ratio as well as the effect of the interlayer 

anion of the parent LDH was investigated on the removal of the iodide anions. 

A clear influence of the Mg/Al molar ratio on the uptake capacity of the 

adsorbent (Table 3-2) was observed. Thus, those materials with Mg/Al molar 

ratio equal to 3 (31C-c and 31N-c) presented the highest iodide adsorption 

(392 and 266 mg I
−
/g respectively). The higher adsorption capacity of these 

samples is due to their lower layer charge density and is in agreement with 

previous studies on adsorption with LDHs
230,255

. In addition, mixed oxides 

with a Mg/Al molar ratio of 3 undergo the fastest reconstruction process due 

to the structural ordering of their cations
256

, which may help the adsorption 

process. However, it is important to note that carbonate derived mixed oxides 

presented higher adsorption capacities in comparison to the nitrate derived 

ones. This may be related to the textural properties of the adsorbent materials. 

In this case, the calcined carbonate LDHs presented a larger surface area, pore 
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size and pore volume than the corresponding calcined nitrate materials, as 

shown in Table 3-2. Nitrates thermally stabilize the hydrotalcite-type 

structure
257

 compared to other anions such as CO3
2−

, allowing the formation of 

more crystalline structures and thus reducing their specific surface area. This 

makes it more difficult for the iodide species to access the calcined LDH and 

consequently the adsorption capacity of these samples decreases.  

Table 3-2 – Maximum adsorption capacities and theoretical adsorption capacity 

estimation for the different adsorbents 

Sample Max. uptake Adsorbed I
−
 Theoretical ads. I

−a
 Ratio 

 mg/g meq Iˉ/g % Al/(Mg+Al) 
21C-c 139 1.09 27 0.34 
31C-c 392 3.09 57 0.23 
21N-c 113 0.89 23 0.34 
31N-c 266 1.94 66 0.26 

21N-cUS 232 1.79 24 0.34 
31N-cUS 439 3.46 60 0.26 
a Iˉ adsorbed respect to the theoretical maximum uptake capacity 

A porosity study of the parent MgAl–NO3 and MgAl–CO3 as well as the final 

materials (after iodide adsorption) confirms the absence of microporosity (t-

plot method). Their surface areas were between 50 and 90 m
2
/g. There is a 

noticeable decrease in the specific surface area of samples after iodide 

adsorption compared to the parent materials and the calcined ones (Table 3-3). 

For instance, the specific surface area of sample 21N-c after iodide adsorption 

dropped from 51 m
2
/g (for 21N-as) to 18 m

2
/g (for 21N-I) and its pore volume 

was reduced drastically from 0.26 cm
3
/g to 0.04 cm

3
/g. All the iodide-

containing samples presented comparable surface areas with values about 15 

m
2
/g. This surface area is created by the outside surface of the different stacks 

(assembly of the layers), which are packed in an irregular way.  

The pore size distribution (PSD) curves (Figure 3-4) point out modifications 

in the pore size range of the samples. For instance, sample 21N-as presented a 

broad peak with a maximum around 3 nm. This shows that small mesopores 

establish the porosity characteristics of this material. Slightly larger 
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mesopores were produced in the sample after the iodide adsorption. The PSD 

curve of 21N-I presented a sharp and high peak which is also shifted to a 

larger size with a maximum at about 4.5 nm. Compared with the 

corresponding resultant material after adsorption with ultrasonication (21N-

IUS), an interesting change in the pore size distribution can be observed. A 

broad peak with a maximum at around 11 nm is observed, while the peak at 

4.5 previously found in sample 21N-I seems to decrease in this case. In 

addition, the SBET of sample 21N-IUS is 36 m
2
/g, whereas the surface area for 

the 21N-I material is 18 m
2
/g. This is an interesting result, which can be 

explained by the fact that the physical shear forces generated during acoustic 

cavitation may break down the larger aggregates to smaller ones leading to an 

increase in surface area
258

.  

 

Figure 3-4 – Pore distribution in as-synthesized LDHs (black) and LDHs after iodide 
adsorption without ultrasonication (red) and with ultrasonication (blue) of samples 21−N 

(a); 31−N (b); 21−C (c); and 31−C (d). 
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Compared to 2/1 MgAl-NO3 LDHs, those with a molar ratio of 3 show similar 

behavior; however, they present peaks shifted towards larger sizes. As in the 

previous case, the application of ultrasonication during the adsorption process 

results in the formation of larger pores. On the other hand, both 2/1 and 3/1 

carbonated LDHs show very similar PSD curves presenting two different pore 

sizes: one sharp peak at about 4 nm and one broad peak at higher values with 

their maximum in the 11–15 nm range. In any sample, neither micropores nor 

macropores are detected, revealing that the uniformity of the porous structure 

is accentuated. 

Taking into account only the molar ratio and the interlayer anion of the parent 

LDHs, the results for the adsorption capacity of the materials were as follows 

(Table 3-2): 21N-c < 21C-c < 31N-c < 31C-c. The effect of the ultrasound 

treatment will be discussed later.  

The iodide adsorbed by these materials represents only a fraction of the 

theoretical adsorption capacity estimated, taking into account the adsorption 

sites available (see Scheme 3-1) and considering that all the Al
3+

 will be 

forming the structure of the iodide-reconstructed HT. Table 3-2 gives the I
−
 

adsorption capacity of these materials according to their theoretical adsorption 

values. As mentioned earlier, the adsorption process is more efficient in those 

samples with lower Al/(Mg+Al) ratios. Furthermore, the I
−
 adsorption found 

was in a range from about 1 to 3 meq I
−
/g, comparable to that shown by anion 

exchange resins 
129

. 

[𝑀1−𝑥
2+ 𝑀𝑥

3+(𝑂𝐻)2](𝐴
𝑚−)𝑥/𝑚 · 𝑛𝐻2𝑂

∆
→𝑀𝑔𝑂− 𝐴𝑙2𝑂3 (𝑀𝑔1−3𝑥/2𝐴𝑙𝑥𝑂) + 𝐴(𝑂/𝐻) +𝐻2𝑂 

(Hydrotalcite)   (Mixed Oxide) 

𝑀𝑔𝑂 · 𝐴𝑙2𝑂3(𝑀𝑔1−3𝑥/2𝐴𝑙𝑥𝑂)
𝐼𝑎𝑞.
−

→ [𝑀1−𝑥
2+ 𝑀𝑥

3+(𝑂𝐻)2](𝐼
−)𝑥/𝑚 · 𝑛𝐻2𝑂 

Scheme 3-1 – Process of calcination and reconstruction of hydrotalcite-like compounds.  
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The XRD patterns of the parent LDHs along with the mixed oxides and 

reconstructed LDHs are shown in Figure 3-5. The XRD pattern of the parent 

LDHs (31N-as, 31C-as, 21N-as and 21C-as) shows reflection lines typical of 

a layered structure. The peaks disappear after calcination at 723 K, indicating 

the collapse of the layered structure of the LDH, and new peaks typical of 

MgO (periclase, JCPDS 45-0946) were observed. After the adsorption 

experiment the four samples seem to recover their original layered structure. 

However, all the reflection peaks become broader than in the parent material, 

indicating a poorer degree of crystallinity. In addition, the disappearance of 

the (012) plane (around 2θ = 35°) in all diffractograms, except in 21C-I, 

demonstrates that the stacking of the structure changes after iodide adsorption 

and the materials obtained present high structural disorder. This effect is 

attributed to the fact that iodide is unable to form H-bonds between the metal 

hydroxide layer and the interlayer, and hence the (hkl) reflections practically 

disappear
232,259

. This effect was observed in all the materials after iodide 

adsorption. Since I
−
 presents higher size (0.432 nm) than the other species co-

existing in the interlayer space (such as H2O, OH
−
, and CO3

2−
), one could 

expect that the materials PXRD analyses after iodide uptake will differ mostly 

in the (003) and (006) reflections. PXRD analysis of these materials revealed 

a shift of the (003) and (006) peaks at lower 2θ values positions (Table 3-4) 

which are in agreement with the presence of intercalated iodide species as 

compensating anions
260

. 

The existence of various layered phases can be concluded for some of these 

iodide-rehydrated samples, since the PXRD patterns showed (00l) harmonics 

at approximately 7.9 and 3.9 Å, corresponding to diffraction by planes (003) 

and (006) respectively. As the adsorption experiments were conducted in an 

inert atmosphere, these distances should correspond to the intercalation of 

hydroxyl species in the interlayer that compete with iodide species during the 

adsorption. 
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The scanning electron microscopy (SEM) of samples after iodide adsorption 

(Figure 3-6) shows the typical morphology of LDHs with a random 

distribution of platelets, which demonstrates the existence of the reconstructed 

LDH as previously shown by PXRD. The ESEM image of those samples 

reconstructed after ultrasound-assisted iodide adsorption (Figure 3-6 c) 

presents nearly uniformly plate-like structures, which are clearly much less 

agglomerated than those presented by the as-synthesized sample (Figure 3-6 

a) and the sample after adsorption with mechanical stirring (Figure 3-6 b). At 

a first glance, these samples (21N-as and 21N-I) consist in highly 

interconnected plate-like particles forming irregular agglomerations. This fact 

makes it difficult to obtain an accurate size value from the SEM micrographs. 

The lateral sizes of these LDHs are in a large range from, approximately, 100 

to 300 nm. In contrast, the samples submitted to adsorption with ultrasound 

displayed dispersed plate-like crystals in the range between 150 and 250 nm, 

with an average size of 190 nm. The low degree of agglomeration presented 

by these samples is attributed to the effect of ultrasound, which results in the 

separation of the crystallites. Even though the platelet size is rather similar in 

all the samples (ultrasonicated and non-ultrasonicated), it has been seen that 

those submitted to adsorption with ultrasound presented higher specific 

surface areas. This fact is consistent with the higher degree of dispersion 

displayed by these samples. 
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Figure 3-5 – PXRD patterns for the nitrate (A) and carbonate (B) 31 MgAl LDHs and 

nitrate (C) and carbonate (D) 21 MgAl LDHs. As-synthesized sample as X-as; calcined 
samples as X-c; samples after the iodide uptake as X-I and X-IUS the samples after the 

iodide uptake applying ultrasounds. S imbols: , periclase; , hydrotalcite. 
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Figure 3-6 – Scanning electron microscopy of hydrotalcites MgAl–NO3: a) as-synthesized 
(21N-as); b) after the iodide adsorption (21N-I); c) after the iodide adsorption with 

ultrasounds (21N-IUS); and d) EDX analysis for 31N-IUS.  

On the other hand, the Mg/Al molar ratio was maintained after the adsorption 

experiment, as confirmed by EDX analysis (Figure 3-6 d). The presence of 

iodide species was also ascertained by this technique. 

Figure 3-7 shows the effect of varying the initial concentration of iodide 

species on the uptake capacity of the calcined HT samples. As expected, it can 

be seen that iodide adsorption increased with the increasing initial iodide 

concentration. These data were fitted to the Langmuir and Freundlich 

equilibrium models (Table 3-4), expressed as Eqs. (3-1) and (3-2) 

respectively: 

 

UNIVERSITAT ROVIRA I VIRGILI 
ON THE USE OF LAYERED DOUBLE HYDROXIDES IN THE MANAGEMENT OF 129I FROM LIQUID NUCLEAR WASTES 
Luis Iglesias Pérez 
Dipòsit Legal: T 893-2015 



3. Layered Double Hydroxides 

79 
 

𝐶𝑒
𝑄 𝑒
=

1

𝑄𝑚𝐾𝐿
+
𝐶𝑚
𝑄𝑚

 
(Eq. 3-1) 

ln(𝑄𝑒) = 𝑙𝑛(𝐾𝐹) +
1

𝑛
𝑙𝑛(𝐶𝑒) 

(Eq. 3-2) 

 

Qe represents the amount of iodide adsorbed per gram of adsorbent (mg I
−
/g 

HTc) at equilibrium, Ce is the equilibrium solution concentration (mg I
−
/L) 

and Qm is the maximum adsorption capacity of the material expressed in terms 

of mg I
−
/g HTc. KL is the adsorption equilibrium constant from Langmuir 

equation (3-1). KF (mg/g) and 1/n are Freundlich constants (3-2). The 

parameter n is related to the distribution of bonded ions on the adsorbent. 

Values of n in a range between 1 and 10 indicate a favorable adsorption.  

 

Figure 3-7 – Adsorption capacity (Qe) of iodide adsorbed at equilibrium vs. equilibrium 

concentration (Ce). Inset: linearization of experimental data. 
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Table 3-4 – Langmuir and Freundlich isotherm parameters for adsorption of iodide on 

calcined MgAl hydrotalcites. 

Adsorbent 

Langmuir Freundlich 

Qm 
mg I

−
/g HTc 

KL 
L/g 

R
2 

 
ΔG

0 

 
KF 

mg/g 
n 
 

R
2 

 

21C-c 139 0.0049 0.998 -0.63 7.92 2.56 0.940 
31C-c 392 0.0071 0.994 -2.24 34.12 2.78 0.907 
21N-c 113 0.0065 0.999 -1.35 4.53 2.42 0.937 
31N-c 266 0.0047 0.993 -1.21 5.93 1.92 0.931 

21N-cUS 232 0.0069 0.994 -1.50 12.18 2.56 0.972 
31N-cUS 439 0.0105 0.999 -3.23 64.71 3.56 0.959 

 

As can be seen in Table 3-4, the experimental data were satisfactorily fitted 

with the Langmuir equation with R
2
 values of 0.99 for all cases. The higher 

KL value obtained indicates its better affinity for the adsorbate. This is 

observed particularly for the samples containing a higher Mg/Al molar ratio 

due to their low charge density. Moreover, the free Gibbs energy calculated 

(Table 3-4) indicates that the adsorption process takes place spontaneously 

under the experimental conditions, and the increment in the negative direction 

also indicates higher affinity between the iodide and the adsorbent. 

The essential characteristics of a Langmuir isotherm can be expressed in 

terms of a dimensionless constant (equilibrium parameter), RL
261

. This 

parameter is expressed as Eq. (3-3): 

R𝐿 =
1

1 +𝐾𝐿𝐶0
 

(Eq. 3-3) 

Calculations of the RL parameter give information about whether an 

adsorption system is favorable or unfavorable. RL values equal to 0 indicate 

irreversible adsorption and RL values between 0 and 1 indicate favorable 

adsorption. When RL > 1 the adsorption is unfavorable. All the experimental 

RL values obtained for the iodide adsorption were within the 0-1 range, which 

indicates a favorable adsorption. Table 3-4 reveals that higher the initial 
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iodide concentrations lower the RL parameter, indicating a more favorable 

adsorption at lower concentrations. This might be related with the larger ionic 

strength generated at higher iodide concentrations, which may hinder the 

motion of the iodide species to the surface of the adsorbent. 

Table 3-5 – Values of equilibrium parameter RL with different initial iodide concentration 

C0 

mg/L 

RL 

31C-c 21C-c 31N-c 21N-c 21N-cUS 31N-cUS 

3000 0.0426 0.0637 0.0662 0.0488 0.0461 0.0308 
2500 0.0507 0.0755 0.0784 0.0579 0.0548 0.0366 
2000 0.0627 0.0926 0.0962 0.0714 0.0676 0.0455 
1500 0.0818 0.1198 0.1242 0.0930 0.0881 0.0597 
800 0.1433 0.2033 0.2101 0.1613 0.1534 0.1064 
100 0.5706 0.6711 0.6803 0.6061 0.5917 0.4878 

 

3.2.2.4. Effect of ultrasound application 

Several studies are focused on how ultrasonication alters the crystallinity and 

texture of hydrotalcite-like materials; however, fewer studies are published 

focused on the effect of ultrasound on adsorption capacities of this calcined 

material.  

Figure 3-8 shows the iodide uptake of nitrate derived mixed oxides while 

applying ultrasonication. A representation of the uptake capacity for the same 

samples without ultrasonication treatment was also displayed for comparative 

purposes. As can be seen in Figure 3-8, iodide adsorption increased when 

ultrasonication was used. The uptake capacity shown by these two samples 

was around 232 mg/g and 439 mg/g (21N-IUS and 31N-IUS respectively), a 

factor about 2 times higher than that presented by their non-sonicated 

counterparts. These samples also presented higher adsorption values than 

those derived from carbonated LDHs, which showed the greatest adsorption 

capacity in the previous stage studied. These sonicated samples and sample 

31C-c showed the highest KL values (Table 3-4), indicating greater interaction 

with the absorbate. 
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Figure 3-8 – Adsorption capacity (Qe) of iodide adsorbed at equilibrium vs. equilibrium 

concentration (Ce) with ultrasonication (21N-cUS and 31N-cUS) and without 

ultrasonication (21N-c and 31N-c). 

The better adsorption of iodide species can be explained by different effects. 

First, ultrasonication produces a rapid movement of the liquid which 

accelerates mass transfer throughout the adsorbent, favoring both the 

reconstruction of the material and the adsorption of the anions. However, the 

micro-streaming produced by vibrational energy encourages the incorporation 

of the iodide species into the interlayer of the LDH during reconstruction. 

Differences in surface area were also found after adsorption for the 

ultrasonicated samples (Table 3-3), which present a surface area significantly 

larger than that shown by the adsorbents after iodide adsorption under 

mechanical conditions. For example, the sample 21N-IUS presented a surface 

area of 36 m
2
/g against 18 m

2
/g displayed by sample 21N-I. Likewise, the 

sample 31N-IUS presented a surface area of 50 m
2
/g against 14 m

2
/g found by 

sample 31N-I. In addition, ultrasonication produced the formation of greater 

pores, as previously seen in the PSD curves. The application of ultrasound 
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also affected the crystal material structure after adsorption, diminishing the 

degree of agglomeration of the LDHs formed, and, despite the crystal size 

being rather similar in both series of samples; this effect may be responsible 

for the increase in surface area. 

TEM analyses were also performed in order to find some differences in the 

morphology of the adsorbents. As previously found by ESEM, the samples 

presented a high degree of agglomeration which made it difficult to observe 

significant differences in their morphology. In Figure 3-9 are displayed the 

TEM micrographs of samples 21N-I (Figure 3-9 a) and 21N-IUS (Figure 3-9 

b & 3-9 c). At a first glance we can observe that sample 21N-I (non-

ultrasonicated) presents higher disorder orientation of crystallites than 21N-

IUS (ultrasonicated). The crystal size is coherent with that found by ESEM. In 

contrast, sample 21N-IUS seems to have certain preferential orientation and 

crystals are rather aligned parallel with the surface of the copper grid. 

Moreover, it is possible to distinguish some hexagonal platelets (Figure 3-9 c) 

which present lateral sizes around 100 nm. On the other hand, the thickness of 

the layers (marked with arrows in Figure 3-9 c) resembles to be lower in the 

case of ultrasonicated sample (21N-IUS) than the non-ultrasonicated one 

(21N-I). 
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Figure 3-9 – TEM micrographs of samples after iodide adsorption: a) 21N-I (without 

ultrasound); b and c) 21N-IUS (with ultrasound). 

In a liquid–solid system, the uptake of the solute in a particle varies according 

to the D0t
0.5

/r
2
. Hence, there is a linear relationship between the uptake and t0.5 

for most of the adsorption processes
262

. 

The diffusion rate of I
−
 in a particle can be calculated following the equation 

(3-4): 

qe = kit
0.5

       (Eq. 3-4) 

where ki is the intraparticle diffusion rate expressed in mg g
-1

 min
0.5

 and qe 

represents the adsorption capacity of Iˉ (mg/g) at equilibrium time. 

Table 3-6 presents the diffusion rates calculated for those experiments carried 

out in the presence of ultrasound and also their non-ultrasonicated analogs. 

The highest diffusion rates were found for those adsorbents where iodide 

adsorption was assisted by ultrasound. The phenomena produced during 

ultrasonication (cavitation, microagitation, microstreaming…) enhance the 
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transport of the adsorbent to the surface of the adsorbate particles. The mass 

transfer rate is increased by reducing the diffusion resistance
263

. In addition, 

ultrasonication brings about the partial exfoliation of the adsorbent (i.e. LDH), 

reducing the internal diffusion of the iodide species through the particles of 

the adsorbent. Therefore equilibrium was more easily achieved and higher 

iodide adsorption capacity can be attained. This is clearly observed for sample 

31N-cUS, which presents a higher iodide adsorption capacity (Table 3-2) than 

its non-ultrasonicated analog, and the corresponding reconstructed material 

(31N-IUS) showed a larger surface area and pore volume (Table 3-3). 

Table 3-6 –Interparticle rate diffusion constant parameters 

 Adsorbent 

21N-c 31N-c 21N-cUS 31N-cUS 

Diffusion rate (ki) 

(mg g
-1

 min
0.5

) 
3.75 3.53 4.32 10.33 

 

3.2.2.5. Study of reversibility of the process. Desorption and 

recycling 

After the adsorption process, releasing tests were performed with sample 31C-

I under neutral and acidic conditions, which are the pH generally found for 

this kind of waste waters. The pH of the solutions was adjusted with HNO3 to 

7, 5 and 3. In all the cases, leaching of iodide was observed as showed in 

Figure 3-10.  
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Figure 3-10 – Iodide leaching from 31C-I adsorbent at different pH values. Q e is the 

iodide adsorbed by the adsorbent 31C-c and Ce is the I− equilibrium concentration after 

30 h of leaching tests. 

The amount of iodide released was fairly similar in the various cases; even the 

experiment carried out with the most acidic conditions (pH = 3) presented 

only slightly higher releasing values than those found at pH = 7, despite the 

disaggregation that the HTs may undergo in these conditions. The 

experiments conducted at pH = 7 showed a release of about 35% of iodide 

from the adsorbent, while those carried out at lower pH values presented an 

iodide release of about 40%. Furthermore, the amount of iodide released in 

the experiments conducted at lower pH values does not seem to be closely 

related to the amount of iodide adsorbed in the LDH. The iodide released in 

this case is always close to 2.5 ppm independent of the initial content of 

iodide in the adsorbent (31C-I). 

Recycling studies were also conducted with the material showing the highest 

uptake capacity, i.e. 31C-c. After every adsorption run, the resulting material 
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was recovered from the solution by centrifugation, washed with water and 

dried overnight at 353 K. The solid was then calcined at 723 K for 5 h in static 

air and submitted to a new adsorption experiment. The mixed oxide 31C-c 

was able to be regenerated 3 times, indicating a certain reversibility of both 

the adsorption and the calcination–reconstruction processes. However, a loss 

of adsorption capacity was found in the third cycle compared to the fresh 

material (Table 3-7), dropping from approximately 392 mg I
−
/g in the first run 

to ~ 213 mg I
−
/g in the third. One plausible explanation for this behavior may 

be found in the subsequent calcination steps, which can affect the LDH 

reconstruction process. Every consecutive calcination/reconstruction step may 

lead to the formation of undesirable oxides which cannot reincorporate into 

the LDH structure
264

. The formation of Mg2Al3O4 spinel may also occur after 

the first calcination cycle
232

, affecting the reconstruction process and therefore 

the anion sorption capacity. An additional X-ray analysis performed in this 

sample after three cycles of adsorption revealed a very poor crystalline 

material (Figure 3-11). The background of the diffractogram also indicates a 

great amount of amorphous species. The diffractogram shows the typical lines 

corresponding to a layered material and, as previously found, the existence of 

various layered phases is observed, since the PXRD patterns show splitted 

peaks in the (00l) harmonics. These should correspond to the intercalation of 

hydroxyl species in the interlayer that compete with iodide species during the 

adsorption, and even to carbonate species from possible CO2 contamination 

produced during the subsequent treatments and manipulation of the sample. 

Since the crystallinity of this sample is very poor, it is difficult to determine 

every possible extra-phase in the sample; however, reflection lines different to 

LDH have been identified noticing structural changes in the material. These 

lines could be attributed to an oxyhydroxy aluminum phase and an MgAl 

oxide poorly crystallized. This change in the structural composition of the 

sample may be responsible for the loss in the adsorption capacity of the 

adsorbent. 
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Table 3-7 – Removal capacity of 31C-c after different adsorption-regeneration cycles 

Cycle Uptake capacity Adsorbed I
−
 

 mg I
−
/g HTc % 

1 392.2 57 
2 383.1 52 
3 213.3 30 

T = 303 K; [Iˉ] = 3000 ppm; [31C-c] = 4.5 g/L 

 

 

Figure 3-11 – PXRD of sample 31C-I after three cycles of adsorption. (●) represents 

reflections by a MgAl oxide phase and (♦) represents reflections by a AlO(OH) phase. 
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3.3.  LDHs as storage materials 

As abovementioned, there are some few examples in the literature on the use 

of LDHs as storage materials for wastes from nuclear industry. In this section 

it is presented the synthesis and deep characterization of several iodine 

containing LDHs with the following compositions: Mg3Al-IO3, Ca1.5Mg1.5Al-

IO3, Ca3Fe-IO3, Ca1.5Mg1.5Fe-IO3, Mg3Fe-IO3, Mg3Al-I, and Ca1.5Mg1.5Al-I.  

Our objective was to study the applicability of different LDHs as matrices for 

the long-term storage of radioactive iodine and identify the different factors 

influencing on the viability of its applicability in nuclear repositories. For that, 

different synthesis methods, such as coprecipitation, anionic exchange and 

reconstruction were applied to study the differences in the iodine 

incorporation mechanisms (if any) and to exam the method that leads to the 

highest incorporation of either iodide or iodate into the LDH. The local 

structure environment of incorporated iodine was studied using the I K X-ray 

absorption edge by EXAFS spectroscopy. Both, the thermal stability and 

resistance to leaching with MilliQ water and brine were studied as important 

parameters affecting the applicability and feasibility of proposed LDH 

matrices for the long-term storage of radioactive iodine.  

In addition, the simultaneous adsorption of Cs and I was also studied using 

two calcined Mg3Al-CO3 LDH. 
137

Cs and 
129

I are volatile fission products
265

. 

Iodine radioisotopes (
131

I and 
129

I, principally) are volatile at elevated 

temperatures, and in an accident situation in which the fuel overheats and the 

cladding fails, the iodine may be released to air as happened in 

Chernobyl
266,267

 and Fukushima
268,269

 nuclear accidents and subsequently be 

breathed in or deposited on vegetation; Cs is also volatile at elevated 

temperatures (temperatures higher than those at which iodine is volatile), and 

the radioisotope 
137

Cs may get released under accident situations like in 

Chernobyl
266,267

 or Fukushima
268,269

. In the work presented in this section, 
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LDHs are studied as a possible matrix to retain both ions from a solution 

using a single adsorbent material. 

3.3.1. Synthesis of LDHs 

3.3.1.1. Materials 

MilliQ water (18 MΩ·cm) was used for preparation of all solutions. 

Magnesium nitrate hexahydrate (Mg(NO3)2•6H2O, Merck, 99.99%), calcium 

nitrate tetrahydrate (Ca(NO3)2•4H2O, Merck, ACS), aluminum nitrate 

nonahydrate (Al(NO3)3•9H2O, Merck, 98.5% and Sigma Aldrich, 98%), iron 

nitrate nonahydrate (Fe(NO3)3•9H2O, Merck, ACS), sodium hydroxide 

(NaOH, Merck, 99%), sodium carbonate (Na2CO3, Fluka, 99.5%), potassium 

iodate (KIO3, Sigma Aldrich, 98%), potassium iodide (KI, Aldrich, 99%), 

sodium sulphate decahydrate (Na2SO4•10H2O, Fluka, 99%), magnesium 

chloride hexahydrate (MgCl2•6H2O, Merck, 99%), and nitric acid (HNO3, 

Merck, 99.0%) were used for the synthesis of the LDHs, Table 3-8. 

3.3.1.2. Synthesis by coprecipitation 

MgAl LDHs were synthesized by adopting the method described 

elsewhere
270

. An aqueous solution containing Mg(NO3)2•6H2O and 

Al(NO3)3•9H2O was dropwise added into a solution of either KIO3 or KI 

under vigorous stirring. The pH was maintained at around 12 by the addition 

of a 5 M NaOH solution. The amounts of iodate or iodide were two times 

stoichiometrically in excess in order to increase iodine incorporation. Solution 

was stirred overnight. The synthesized LDH powders were separated from the 

reaction solution by filtration and washed five times with ca. 200 mL of 

MilliQ water. All synthesized LDHs were dried in the oven at 333 K 

overnight. Samples were labeled according to their composition 

(M(II)nM(III)m-X), tables 3-8 and 3-9. 
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3.3.1.3. Synthesis by anionic exchange  

Ca1.5Mg1.5Al–C6H5COO LDH (16) was synthesized under nitrogen gas flow 

as described above. For iodine incorporation via anionic exchange, 5.0 g of 16 

were placed in contact with 0.12 M KIO3 or 0.12 M KI solutions, respectively 

during 10 days under stirring. The iodine/benzoate ratio was two to favor 

iodine incorporation. The amount of incorporated I
–
 or IO3

–
 was determined 

by ionic chromatography (IC), table 3-10.  

3.3.1.4. Synthesis by reconstruction 

To study the iodine incorporation by reconstruction, Mg3Al-CO3 LDH (15) 

was synthetized as described above. An alkaline solution of 0.38 M Na2CO3 

was used to reach the maximum carbonate quantity in the interlayer space. 

This material was calcined at 723 K during five hours, and after that stored in 

inert atmosphere. To find the maximum of iodide or iodate incorporation by 

reconstruction, 0.1 g of obtained LDH 15 were placed in contact with a series 

of iodide or iodate solutions from 50 to 3000 ppm during ca. one week, Table 

3-11, Figures 3-13 and 3-14.  

3.3.1.5. Heating experiment 

Thermal stability of the synthesized iodide and iodate containing samples (1 – 

6) was analyzed by heating materials at 453 K during 17 hours. The amount 

of iodine in LDHs after thermal treatment was determined by digesting 

samples in the concentrated HNO3 and measuring with IC, while structural 

changes were studied by PXRD, Table 3-14.  

3.3.1.6. Leaching experiment 

Leaching experiments were carried out with two samples, Mg3Al-IO3 (1) and 

Ca3Fe-IO3 (5), in MilliQ water and brine (0.1 M Na2SO4 and 1 M MgCl2) at 

different contact time, Figure 3-16. Modified Q-brine composition was chosen 

as an example of possible ions present in the Asse salt mine (Lower Saxony, 

Germany), which is used as a test site for a deep underground radioactive 

waste repository
271

. For that purpose 0.5 g of samples 1 and 5 were placed in 
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contact with MilliQ water or brine solution under stirring in closed glass 

bottles. After the corresponding contact time, an aliquot of the solution was 

measured by IC for iodine content. 

3.3.1.7. Simultaneous adsorption of cesium and iodide  

Cs
+
 and I

−
 adsorption experiments were carried out with two previously 

calcined samples as precursors. Mg3Al-CO3 samples (15 and 17), differenced 

by the use of Na2CO3 during the synthesis of LDH 15, previously described, 

and the lack of it during the obtaining of LDH 17. The precursors were 

calcined at 723 K during five hours, and after that stored in inert atmosphere. 

Typically, 10.00 g of each sample was in contact with 0.1 L of a 7.5·10
-2

 M 

CsI solution for 1 hour. After this, a part of the samples was calcined at 723 K 

f 5 hours in static air. The solid samples were dissolved in HNO3 and 

analyzed by ICP-OES to determine iodine and cesium incorporation. 

3.3.2. Results and discussion 

3.3.2.1. Adsorption by coprecipitation 

Samples 1 – 9, 16a, 16b and 17 (Table 3-8) were prepared by coprecipitation, 

incorporating iodine directly during synthesis. The corresponding reference 

materials with nitrate in the interlayer space (Samples 9 – 14, 16) were also 

synthesized. The ICP-OES analyses of samples 1 and 3 showed that the 

Mg/Al molar ratios presented in the solid are similar to those of the starting 

parent solutions, i.e. 3/1, and that both iodate and iodide were incorporated 

into these materials in the amounts showed in Table 3-9. In table, it can be 

seen that ternary materials prepared with Ca and Mg as divalent cations 

present a Mg/M(III) molar ratio slightly higher than expected. In these cases, 

the trivalent cation could not be fully incorporated into the materials’ 

structure(s) during the coprecipitation, which will explain the higher 

Mg/M(III) molar ratios found in solid samples regarding to the initial molar 

ratios in the parent solutions. Samples 5 and 6 showed lower M(II)/M(III) 

ratios due to a low Ca
2+

 incorporation, as also occur in reference nitrate 
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materials (samples 10-14). Comparing the reference samples, the calcium 

amount is especially low in sample 11. The low calcium amounts found in all 

the calcium-containing samples may be related, first, with the higher size of 

Ca
2+

 (with an ionic radius equal to 0.98 Å) which is rather large for octahedral 

coordination in the holes of brucite-like layers, compared to Mg
2+

 (with an 

ionic radius equal to 0.65 Å). Second, with the solubility of Ca(OH)2 

(Ksp=5.02·10
-6

 mol/L), higher than the solubility of the corresponding 

hydroxides of Mg, Fe or Al, and due to the washing of the materials the 

calcium was eliminated from the solids
272

. 

Table 3-8 – Synthesis conditions of LDH prepared by coprecipitation from alkaline 

aqueous solution at 23°C and pH ≈ 10 – 12. 

N Sample name M(II) M(III) M(II)/M(III) Guest 

1 Mg3Al-IO3 Mg 

Al 

3/1 
IO3

–
 

2 Ca1.5Mg1.5Al-IO3 Ca, Mg 1.5/1.5/1 

3 Mg3Al-I Mg 3/1 
I

–
 

4 Ca1.5Mg1.5Al-I Ca, Mg 1.5/1.5/1 

5 Ca3Fe-IO3 Ca 

Fe 

3/1 

IO3
–
 6 Ca1.5Mg1.5Fe-IO3 Ca, Mg 1.5/1.5/1 

7 Mg3Fe-IO3 Mg 3/1 

8 Ca3Fe-I Ca 
Fe 

3/1 
I

–
 

9 Ca1.5Mg1.5Fe-I Ca, Mg 1.5/1.5/1 

10 Mg3Al-NO3 Mg 
Al 

3/1 

NO3
– 

11 Ca1.5Mg1.5Al-NO3 Ca, Mg 1.5/1.5/1 

12 Ca3Fe-NO3 Ca 

Fe 

3/1 

13 Ca1.5Mg1.5Fe-NO3 Ca, Mg 1.5/1.5/1 

14 Mg3Fe-NO3 Mg 3/1 

15 Mg3Al-CO3 Mg Al 3/1 CO3
2–

 

15a Mg3Al-IO3 Mg Al 3/1 IO3
–
 

15b Mg3Al-I Mg Al 3/1 I
–
 

16 Ca1.5Mg1.5Al- C6H5COO Ca, Mg Al 1.5/1.5/1 C6H5COO
–
 

16a Ca1.5Mg1.5Al-IO3 Ca, Mg Al 1.5/1.5/1 IO3
–
 

16b Ca1.5Mg1.5Al-I Ca, Mg Al 1.5/1.5/1 I
–
 

15c Mg3Al-I Mg Al 3/1 I
–
, Cs

+
 

17 Mg3Al-CO3 Mg Al 3/1 CO3
2–

 

17a Mg3Al-CO3 Mg Al 3/1 I
–
, Cs

+
 

 

UNIVERSITAT ROVIRA I VIRGILI 
ON THE USE OF LAYERED DOUBLE HYDROXIDES IN THE MANAGEMENT OF 129I FROM LIQUID NUCLEAR WASTES 
Luis Iglesias Pérez 
Dipòsit Legal: T 893-2015 



3. Layered Double Hydroxides 
 

94 
 

Table 3-9 – Stoichiometries of LDH determined by ICP-OES 

N ratio I in sample
1
 Empirical formula I in the sample 

 M(II)/M(III) g/g  % in mass 

1 2.91 0.1610 [Mg2.90Al(OH)n/a](IO3)0.50 16.1 

2 2.21 0.2000 [Ca0.47Mg1.75Al(OH)n/a](IO3)0.83 20.0 

3 2.95 0.0280 [Mg2.95Al(OH)n/a]I0.08 2.8 

4 1.51 0.0096 [Ca0.01Mg1.51Al(OH)n/a]I0.02 1.0 

5 0.81 0.2118 [Ca0.81Fe(OH)n/a](IO3)0.82 21.2 

6 2.44 0.1704 [Ca0.65Mg1.79Fe(OH)n/a](IO3)0.88 17.0 

7 2.26 0.2283 [Mg2.26Fe(OH)n/a](IO3)0.61 22.8 

8 n/a n/a n/a n/a 

9 1.76 0.0140 [Ca0.06Mg1.70Fe(OH)n/a]I0.04 1.4 

10 2.94 0 [Mg2.94Al(OH)n/a](NO3)n/a 0 

11 1.55 0 [Ca0.02Mg1.53Al(OH)n/a](NO3)n/a 0 

12 n/a n/a n/a n/a 

13 2.55 0 [Ca1.04Mg1.52Fe(OH)n/a](NO3)n/a 0 

14 2.40 0 [Mg2.40Fe(OH)n/a](NO3)n/a 0 

1 in the form of either iodide or iodate 

 

All samples showed higher iodate uptake when compared to iodide 

adsorption. For instance, we have found an uptake of 0.2283 g of IO3
−
 per 

gram of material (sample 7) in the case of iodate vs. 0.028 g I
−
 g

−1 
material in 

the case of iodide (sample 3), Table 3-10.  

Comparing the I/M(III) ratios in analogous samples (i.e. Mg3Al-IO3 (1) and 

Mg3Al-I (3)) it was found that sample 1 incorporated about 6 times more 

iodine than 3, confirming that incorporation of iodate was higher than 

incorporation of iodide, as previously found by other authors
273

. Ca/Mg/Al 

ratios in Ca1.5Mg1.5Al-IO3 (2) and Ca1.5Mg1.5Al-I (4) showed marked 

deviations from their theoretical ratios, Table 3-9.  
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PXRD analysis of sample 4 showed absence of phases with calcium and the 

typical reflections of hydrotalcite and gibbsite (represented in Figure 3-12, 

summary of phases presented in Table 3-10). In case of Ca3Fe-IO3 (5) and 

Ca1.5Mg1.5Fe-IO3 (6) samples, high iodine incorporation was reached and their 

PXRD diffractograms of 5 and 6 showed no insights of (003) and (006) 

reflections, which would be indicative of the formation of the LDH structure. 

However, bruggenite Ca(IO3)2·(H2O) was identified in both samples and, 

additionally, calcium iodate hydrate was identified in sample 6. X-ray 

diffractograms of samples 1, 3, 4 and 9 showed that these samples presented a 

LDH structure with a poor crystallinity, specially samples 1 and 9 (Figure 3-

12). Sample 4 showed also reflections that corresponds to gibbsite, Al(OH)3. 

The presence of bruggenite, in samples 2, 5 and 6, suggest that, in the typical 

used synthesis conditions, the LDH formation was hindered through 

precipitation of the iodate phase. Hence, LDH precipitation is not produced 

when iodate and calcium are present in the parent solution simultaneously. 

This also occurs in the case of Ca3Fe-I (8), where PXRD analysis revealed a 

very amorphous material with some small reflections corresponding to iron 

and calcium phases (goethite and calcite, respectively) and iodide oxide. 

Table 3-10 – Diffractogram analysis of samples from coprecipitation. 

Sample JCPDS Phase Name of the phase Symbol 

1 89-0460 Hydrotalcite (displaced)  

2 
76-2134 Bruggenite, syn  
88-1356 Calcium iodate hydrate + 

3 89-0460 Hydrotalcite (displaced)  

4 
89-0460 Hydrotalcite (displaced)  
07-0324 Gibbsite ∆ 

5 76-2134 Bruggenite, syn  

6 
76-2134 Bruggenite, syn  
88-1356 Calcium iodate hydrate + 

7 89-0460 Hydrotalcite (displaced)  

8 

72-1937 Calcite  
81-0464 Goethite, syn  
52-0319 Iodine oxide || 

9 89-0460 Hydrotalcite (displaced)  
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Figure 3-12 – XRD diffractograms of the synthesized samples.  
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3.3.2.2. Adsorption by anionic exchange  

Anionic exchange implies that a less strongly bounded bulky anion is 

exchanged for another anion, having higher selectivity to LDH. Benzoate was 

chosen as exchangeable anion due to its large size and relatively weak 

interaction within LDH interlayer space. The evolution of the basal spacing 

with chosen intercalated anions is increasing from ~7.6 Å for hydroxide to 

~15 Å for benzoate, following the sequence OH
−
 < I

−
 < IO3

−
 < C6H5COO

− 143
. 

It is accepted that X-ray diffractograms show no more regular long-range 

ordering of the layers when basal spacing is higher than 11 Å
143

. The results 

of exchanging benzoate by iodide or iodate anions are showed in Table 3-11. 

Higher incorporation of iodate vs. iodide, was obtained (0.322 g for IO3
− 

and 

0.202 g for I
−
 per gram of sample, respectively). A favoring exchange towards 

iodate is most probably due to the difference in size and charge density of the 

anions (iodate has pyramidal structure
274

 with an anionic radius of 181 pm; 

iodide diameter is 412 pm
275,276

), as well as the ability of iodate to form 

hydrogen bonds with hydroxide groups and water molecules in the interlayer 

space of LDH. According to Miyata, the ion selectivity of monovalent anions 

is in the order OH
−
 > F

−
 > Cl

−
 > Br

−
 > NO3

−
 > I

−
, and supports low iodide 

selectivity
137

.  

Table 3-11 – Results of anionic exchange of 5 g of sample 16 with IO3
– and I– after 10 days 

Anion Initial anion mass Mass incorporated in sample Weight in sample 

 g g % 

IO3
–
 5.0689 1.2322 20 

I
–
 3.6779 0.6554 12 

3.3.2.3. Adsorption by reconstruction 

A series of solutions with different concentrations of iodate and iodide were 

prepared to study the maximum uptake of iodate or iodide by sample 15 

through reconstruction of calcined Mg3Al-CO3 LDH, Table 3-12. In both 

cases iodate/iodide uptake depends on the initial concentration of the anion in 
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solution. Iodate adsorption increased steadily in the studied concentration 

range reaching a maximum value of 1.165 g of iodate per 1 g of initial LDH, 

whereas iodide adsorption was 0.439 g per 1 g of LDH at the same conditions 

(Table 3-12). These results were analyzed with the help of Langmuir and 

Freundlich isotherm models to obtain the best fitting isotherm. These two 

models are the most common isotherms to describe the solid-liquid adsorption 

system. Below it is displayed the adsorption isotherms of both iodide and 

iodate on sample 15 (Figure 3-13). 

 

Figure 3-13 – Adsorption isotherms of iodate and iodide anions adsorbed onto LDH. 
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A) 

 

B) 

 

Figure 3-14 – a) Langmuir linear regression, eq. (3), where the slope = 1/Qm and the 

intercept = 1/(KL•Qm); b) Freundlich linear regression, eq. (6), where slope is 1/n and 

intercept is lnKF. 
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Table 3-12 – The results of adsorption experiments of IO3
– or I– onto sample 15. Results 

from IC waters analysis. 

Entry Initial X
−
 Final IO3

–
 I in mass for IO3

–
 Final I

–
 I in mass for I

–
 

 g/L g/L g/g g/L g/g 

1 3.000 1.826 1.165 2.559 0.439 

2 2.000 1.102 0.895 n/a n/a 

3 1.500 0.763 0.733 1.076 0.423 

4 1.000 0.424 0.574 0.596 0.402 

5 0.750 0.259 0.489 0.392 0.357 

6 0.500 0.126 0.372 0.192 0.307 

7 0.250 0.049 0.199 0.034 0.214 

8 0.050 0.008 0.042 0.001 0.049 

 

The experimental results were fitted into the Langmuir equation with a 

confidence limit of 99.89% in the case of iodide and 95.10% in the case of 

iodate (Figure 3-14 and Table 3-13). The Langmuir equilibrium constants 

were found to be 383.13 L/g and 58.65 L/g for iodate and iodide, respectively.  

Despite Langmuir isotherm model has extensively been used to describe the 

solid-liquid adsorption system, it has been observed that Langmuir equation 

does not provide the best fitting isotherm for the case of iodate adsorption, 

obtaining a correlation coefficient of 0.95. In addition, the shape of the 

isotherm (Figure 3-13) seems to suggest that the adsorption is not produced as 

a single monolayer over the adsorbate, since the adsorption limit (plateau) is 

not achieved. Such a shape rather looks like a Freundlich system, where the 

isotherm does not present a clear limit of adsorption, i.e., the plateau is not 

reached. Calculus showed that this system was better fitted to a Freundlich 

adsorption model with a correlation coefficient of 0.97 (Table 3-13). 

The free Gibbs energy (△G
0
) was calculated using equation 3-5. The higher 

KL and lower △G
0
 values obtained for iodate indicate its higher affinity for 

the LDH. 

△G
0
= –RTln(KL)     (Eq. 3-5) 
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where R is the universal gas constant, T is the temperature (K) and KL is the 

Langmuir equilibrium constant. The calculated free Gibbs energy values are 

△G
0
 = –147.79 kJ/mol and △G

0
 = –101.16 kJ/mol for iodate and iodide, 

respectively. The negative values of the calculated free Gibbs energy indicate 

that the adsorption process takes place spontaneously under the experimental 

conditions.  

Table 3-13 – Langmuir and Freundlich isotherm parameters for adsorption of iodated or 

iodide on calcined MgAl hydrotalcites. 

Adsorbent, 
anion 

Langmuir Freundlich 

Qm 
g I

−
/g HTc 

KL 
 

R
2 

 
ΔG

0 

kJ/mol 
KF 

 
n 
 

R
2 

 
Mg3Al, IO3 1.165 383.13 0.951 -147.79 16.55 1.71 0.965 

Mg3Al, I 0.439 58.65 0.999 -101.16 57.97 3.41 0.938 

 

3.3.2.4. Heating experiment 

The results of thermal stability experiments with samples 1 – 7 are showed in 

Table 3-14. ICP-OES was used to measure the iodine released from the 

digested samples after the calcination treatment. The iodine loss found (i.e. 

either iodide or iodate) was between the 64 – 90% range after heating the 

samples at 453 K for 17 h.  

Ca3Fe-IO3 (5) showed the lowest iodine release (iodate) with a total mass loss 

of about 17%. In spite of that, only a 36% of the initially incorporated iodate 

remained in the sample after heating.  

In general, the experiments showed that incorporated iodate and iodide are 

easily removed from the adsorbent when they are submitted to a soft thermal 

treatment. This indicates that both iodate and iodide are rather poorly bounded 

in the interlayer space through hydrogen bonds and van der Waals’ 

interactions and both are released to a high extent at relatively low 

temperature. 
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Table 3-14 – The results of heating experiments at 453 K for 17h in static. 

Sample Mass 
loss 

IO3/I initial IO3/I remaining 
in sample 

I that remains after 
heating 

 % % in mass % in mass % 

1 10 16.13 3.95 23 

2 15 21.00 5.84 28 

3 13 2.94 0.64 20 

4 13 1.04 n/a n/a 

5 17 21.18 7.54 36 

6 16 17.38 5.06 29 

7 13 22.85 5.51 24 

 

Table 3-15 – Diffractogram analysis of samples from heating experiments at 453 K for 

17h in static air. 

Sample JCPDS Phase Name of the phase 

1-H453 - - 

2-H453 
076-2134 Bruggenite, syn 

28-0221 Lautarite, syn 

3-H453 89-0460 Hydrotalcite (displaced) 

4-H453 89-0460 Hydrotalcite (displaced) 

5-H453 76-2134 Bruggenite, syn 

6-H453 76-2134 Bruggenite, syn 

7-H453 89-0460 Hydrotalcite (displaced) 
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Figure 3-15 – Diffractograms of samples after heating at 453K. S imbols: , hydrotalcite; 

, bruggenite; , lautarite. 
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3.3.2.5. Leaching experiment 

Leaching tests with sample 1 were performed in two aqueous media: milliQ 

water and brine (0.1 M Na2SO4 and 1 M MgCl2). The results of leaching 

experiments showed that the iodate release is significantly faster in brine than 

in MilliQ water, which could be explained by the substitution of iodate with 

chloride ions present in the brine solution. After ca. 14 days in MilliQ water, 

about 60% of iodate was resealed to the aqueous medium, meanwhile in brine 

solution the leaching ups to 94% after one day. After 31 days in MilliQ, only 

10% of iodate was still incorporated in the sample, Figure 3-16. 

 

Figure 3-16 – Leaching experiments of sample 1 with MilliQ water. Circle: initial 

concentration; square: results in brine solution; diamonds: results in milliQ water.  

3.3.2.6. Simultaneous adsorption of Cs and I 

Results of ICP-OES analysis of the samples are shown in Table 3-16. Both 

samples presented iodide incorporation, being this higher for sample 17 

(synthetized without sodium carbonate). On the contrary, cesium had a very 

low incorporation in both samples, demonstrating that the incorporation 

capacity of cations to the LDH is very low, as expected, with a significant 

difference respect to the amount of adsorbed iodide, meaning this that these 

ions are adsorbed separately. Major iodide adsorption in sample 17a 

compared with 16c adsorption capacity seems to be influenced by the sodium 

carbonate used during coprecipitation of the later. Cross et al.
277
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that residual sodium (from Na2CO3 in this case) in LDHs is difficult to 

remove and make the basicity of the LDH stronger, affecting to the iodide 

adsorption, a weak base.  

Due to these results, calcined LDH does not seem to be suitable materials for 

simultaneous adsorption of I
–
 and Cs

+
. 

Table 3-16 - ICP-OES results of CsI adsorption. 

Sample I Cs 

 g/g g/g 

16c 6.86·10
−3

 9.00·10
−6

 

16c_c 7.65·10
−3

 9.00·10
−6

 

17a 1.38·10
−1

 1.00·10
−5

 

17c_c 3.22·10
−2

 9.00·10
−6

 

 

3.3.2.7. EXAFS at the iodine K-edge 

In order to investigate local structure environment around the incorporated 

iodide and iodate into LDH, EXAFS measurements were performed using the 

iodine K X-ray absorption edge. These studies will help to the understanding 

of the iodide/iodate uptake and release mechanisms of the adsorbent 

materials.  

The data treatment is done using EXAFSPAK program. First was performed a 

polynomial pre-edge subtraction that consists in the removal of the 

background signal to isolate an X-ray absorption spectrum for the absorbing 

atom alone (iodine). 

The next step is a spline subtraction – a stiff but flexible curve of several 

polynomials mathematically knotted together – to fit EXAFS region of the 

raw data. 
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Normalization is used to put the EXAFS on a proper amplitude scale. The 

difference between this extrapolation and the background-corrected spectrum 

at the edge is the step height or edge step. This step is proportional to the total 

amount of the absorbing element in the sample. The data are then divided by 

the size of the edge step, to normalize the EXAFS to a unit edge, which 

compensates for uncertainties in the concentration and sample thickness. 

Extraction and the k3-weighting of the EXAFS function was made to change 

from energy scale in eV to wave number scale in Å
-1

. 

Fourier transform (FT) resulting in a pseudo-radial distribution function 

which changes scale from the wavenumber to distance between the atoms but 

not corrected for a phase shift, which is usually 0.5 Å. 

FT provides the peaks corresponding to the distances between the absorbing 

atoms (iodine) to the near neighbors. Using the KIO3 crystallographic 

structure provided by the crystal structure database (ICSD) as the reference, 

the distances are fitted. 

The EXAFS spectra of all iodate-LDH samples and the reference potassium 

iodate showed the presence of white line, whereas all iodide-LDH samples 

and the reference potassium iodide did not, as can be seen in Figure 3-17. This 

indicates that there were no oxidation state changes during EXAFS data 

collection; therefore, iodate -or iodide-LDH samples could be distinguished. 

The Fourier transform, FT, of the iodate containing samples (1, 5 and 15a) 

showed only single I–O scattering path, whereas potassium iodate reference 

has more complex structure with several scattering paths (Figure 3-18).  

The Debye-Waller factor shows how well defined the distance is, i.e. the 

smaller it is the less is bond distance distribution, meaning that a good fitting 

has been obtained and, hence we have a well-define bond for the studied 

systems. The I – O distance of ca. 1.8 Å with fairly low Debye-Waller factor 

was found for all the measured LDH samples, as well as KIO3 reference, 
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indicating low bond distance distribution, Table 3-17. In addition, long range 

interactions of ~3.7 Å were also found in samples 1 and 15a, most probably 

indicating an I•••O distance to hydroxide groups or water molecules present in 

the interlayer space. This agrees with findings of Aimoz et al.
227

, who found a 

I–O distance of ~3.6 Å to interlayer water molecules and hydroxide groups in 

iodide containing MgAl and ZnAl LDHs. However, the easy removal of both 

iodate and iodide species from the samples at fairly low temperatures, mostly 

suggests an interaction with the interlayer water molecules rather than with 

the hydroxyl groups of the layers, since crystalline water it is removed in the 

373-373 K range, whereas OHˉ groups are removed at higher temperatures. 

Sample 1 was synthesized by coprecipitation, while sample 15a was obtained 

by reconstruction of the calcined carbonate sample 15. However, the 

oscillations of EXAFS function and the peak positions in Fourier transforms 

for these samples are very similar, indicating that the mechanism of iodate 

incorporation into interlayer space of LDH does not depend on the synthesis 

method. 

Table 3-17 – Mean bond distances, d Å–1, number of distances, N, and Debye-Waller, σ2, 

factors in the EXAFS studies of iodate containing LDH  

Sample Interaction N d, Å
–1

 σ
2 

KIO3 ref 

I – O 4 1.821±0.024 0.00056 

I – O2 2 2.193±0.139 0.01932 

I···O 6 4.345±0.062 0.0038 

I···I 6 3.926±0.085 0.00724 

1 I – O 3 1.812±0.028 0.00078 

 I···O 1 3.719±0.053 0.00285 

5 I – O 3 1.822±0.028 0.00076 

15a I – O 3 1.823±0.031 0.00096 

 I···O 1 3.773±0.062 0.00384 
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Figure 3-17 – EXAFS spectra of potassium iodide and iodate references 
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Figure 3-18 – Fourier transforms of iodate (IO3
–, fig 5a) and iodide (I–, fig 5b) containing 

LDHs and potassium iodate reference. Red line – model, black line – experimental. The 

IO3
– FT data are offset by +2. 
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4.1. LDH as adsorbent materials 

Mg–Al mixed oxides derived from LDHs were used as adsorbents for 

removing and sequestering iodide anions in water solutions. The experiments 

were conducted in two different ways. On the one hand, the adsorption of I
−
 

was done by reconstructing the mixed oxide with the aqueous iodide under 

mechanical stirring, while on the other; the use of ultrasound was applied 

during the first stage of the adsorption to enhance the uptake capacities of the 

adsorbents. 

The uptake capacity of the different samples was dependent on their Mg/Al 

molar ratio, and thus samples with an Mg/Al molar ratio of around 3 

presented larger adsorption capacities. Magnesium hydroxide (brucite) has not 

shown adsorption capacity; thus, indicating that iodine was removed from 

solution by incorporation into the LDHs interlayer space and any other 

interaction between iodine anions and the adsorbent LDH solid can be 

discarded. A dependence on the guest anion forming the parent LDH was also 

observed, and the mixed oxides derived from carbonated LDH presented 

higher adsorption capacities than those derived from nitrated LDH. This was 

attributed to the higher surface area of the former, which allows an easier 

incorporation of the anions to reconstruct the layered structure. 

The use of ultrasound resulted in an increase in the adsorption capacity of the 

samples by a factor of 2 compared to the non-ultrasonicated samples, showing 

that both the diffusion of the iodide anions and mass transfer were boosted 

more strongly by this technique, leading to a more efficient process for water 

remediation. 

We have demonstrated that these materials present an acceptable stability in 

neutral and acidic conditions, and a minimum release of iodide was observed 

in the used conditions. 
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4.2.  LDH as storage materials 

LDH materials, synthesized by coprecipitation, anionic exchange or 

reconstruction, of different composition were tested for immobilization of 

iodate and iodide. The reconstruction protocol gave the highest iodate 

incorporation, ca. 54% vs. ca. 23% reached by coprecipitation. It was found 

that even if the fraction of iodate incorporated into the host structure was 

relatively high, the stability of synthesized iodate-LDH was very low. Heating 

at 453 K leads to nearly 70% of iodine loss. In the same line more than 90% 

of incorporated iodate was released after one day in brine solution. The iodide 

was incorporated at lower extent in comparison to iodate, probably due to 

differences in charge density, size and conformation of IO3
−
 and I

−
 ions.  

As expected, the simultaneous adsorption tests of Cs and I showed that Cs
+
 

did not adsorb on the sample due to the lack of interaction with the LDH.  

From all the data obtained, we may conclude that LDHs can be considered as 

iodine scavengers for a short-term storage, but they are not suitable for a long-

term storage of radioactive iodine (in form of I
−
 or IO3

−
), due to their low 

thermal stability and ease iodine release in contact with aqueous media (here 

studied: MilliQ water and brine). 
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On preferential use of blue color: 

 

 

Urania, muse of Exact Sciences and Astronomy in Greek Mythology, 

usually represented dressed in blue. 

 

 

 

Cherenkov radiation occurs when charged particles are moving faster 

than the speed of light through a dielectric medium. The characteristic 

blue glow of an underwater nuclear reactor, where 129I is generated, is 

due to Cherenkov radiation.
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