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Abstract

The present work is a compilation of the research produced in the field of wave propagation
modeling. It contains in-depth analysis of stability, convergence, dispersion and dissipation
of spatial, temporal and spatial-temporal discretization schemes. Space discretization is
done using stabilized finite element methods denoted with the acronyms ASGS and OSS.
Time discretization is done using finite difference methods including backward Euler (BE),
2nd order backward differentiation formula (BDF2) and Crank-Nicolson (CN).

Firstly, we propose two stabilized finite element methods for different functional frame-
works of the wave equation in mixed form. These stabilized finite element methods are
stable for any pair of interpolation spaces of the unknowns. The variational forms cor-
responding to different functional settings are treated in a unified manner through the
introduction of length scales related to the unknowns. Stability and convergence analysis
is performed together with numerical experiments. It is shown that modifying the length
scales allows one to mimic at the discrete level the different functional settings of the
continuous problem and influence the stability and accuracy of the resulting methods.

Then, we develop numerical approximations of the wave equation in mixed form supple-
mented with non-reflecting boundary conditions (NRBCs) of Sommerfeld-type on artificial
boundaries for truncated domains. Stability and convergence analyses of these stabilized
formulations including the NRBC are presented. Additionally, numerical convergence tests
are evaluated for various polynomial interpolations, stabilization methods and variational
forms. Finally, several benchmark problems are solved to determine the accuracy of these
methods in 2D and 3D.

Afterwards, we analyze time marching schemes for the wave equation in mixed form.
The problem is discretized in space using stabilized finite elements. On the one hand,
stability and convergence analyses of the fully discrete numerical schemes are presented.
On the other hand, we use Fourier techniques (also known as von Neumann analysis) in
order to analyze stability, dispersion and dissipation. Additionally, numerical convergence
tests are presented for various time integration schemes, polynomial interpolations (for the
spatial discretization), stabilization methods and variational forms. Finally, a 1D example
is solved to analyze the behavior of the different schemes considered.

Later, we present various application examples and compare the numerical results of the
different algorithms i.e. ASGS or OSS stabilization and BE, BDF2 or CN time marching
schemes. Additionally, comparison with experiments is performed in some cases.

Finally, conclusions are drawn including the research achievements and future work.
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Resumen

El presente trabajo es una compilación de la investigación producida en el campo de
modelado de propagación de ondas. Contiene análisis de estabilidad, convergencia, dis-
persión y disipación de discretizaciones espaciales, temporales y espacio-temporales. La
discretización espacial se hace usando elementos finitos estabilizados denotados por los
acrónimos ASGS y OSS. La discretización temporal se hace usando métodos de diferencias
finitas incluyendo backward Euler (BE), backward differentiation formula de 2do orden
(BDF2) y Crank-Nicolson (CN).

En primer lugar, proponemos dos métodos de elementos finitos estabilizados para
diferentes marcos funcionales de la ecuación de ondas en forma mixta. Estos métodos de
elementos finitos estabilizados son estables para cualquier par de espacios de interpolación
de las incógnitas. Las formas variacionales que corresponden a los diferentes marcos
funcionales son tratadas de manera unificada a través de la introducción de longitudes de
escalado relacionadas con las incógnitas. Estabilidad y convergencia son analizadas junto
con experimentos numéricos. Se muestra como modificando las longitudes de escalado se
puede reproducir a nivel discreto los diferentes marcos funcionales del problema continuo
y como influencian la estabilidad y precisión de los métodos resultantes.

Luego, desarrollamos aproximaciones numéricas de la ecuación de ondas en forma mixta
complementadas con condiciones de frontera de no-reflexión (NRBCs) de tipo Sommerfeld
sobre fronteras artificiales para dominios truncados. Análisis de estabilidad y convergencia
de estas formulaciones estabilizadas incluyendo la NRBC son presentados. Adicionalmente,
pruebas de convergencia son llevadas a cabo para varias interpolaciones polinomiales, méto-
dos de estabilización y formas variacionales. Finalmente, varios problemas de referencia
son resueltos para determinar la precisión de estos métodos en 2D y 3D.

Después, analizamos esquemas de discretización temporal para la ecuación de ondas en
forma mixta. El problema es discretizado en el espacio utilizando elementos finitos esta-
bilizados. Por un lado, análisis de convergencia y estabilidad de los esquemas numéricos
totalmente discretos son presentados. Por otro lado, usamos técnicas de Fourier (también
conocidas como análisis de von Neumann) con el fin de analizar estabilidad, dispersión y
disipación. Adicionalmente, pruebas numéricas de convergencia son presentadas para var-
ios esquemas de integración temporal, interpolaciones polinomiales (para la discretización
espacial), métodos de estabilización y formas variacionales. Finalmente, un ejemplo 1D es
resuelto para analizar el comportamiento de los diferentes esquemas numéricos considera-
dos.

Más tarde, presentamos varios ejemplos de aplicación y comparamos los resultados
numéricos de los diferentes algoritmos. Por ejemplo estabilización ASGS/OSS y esque-
mas de integración temporal BD/BDF2/CN. Adicionalmente, se compara los resultados
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numéricos con resultados experimentales en algunos casos.
Por último, las conclusiones son presentadas incluyendo los logros obtenidos en esta

investigación y el trabajo futuro.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, aeroacoustics is a research topic of considerable interest with many practical
applications. One application is in transport such as aeronautics and automotive design. In
aeronautics there is trailing edge, landing gear and high lift systems sound. In automotive
applications there are car/motorcycle body and helmet sound. Another application is voice
simulation in which the vocal folds and vocal tract are taken into account in order to model
the human voice.

Stringent regulation imposes the reduction of the perceived sound of automobiles and
aircraft. For instance, the Advisory Council for Aeronautics Research in Europe includes
a 50% cut in CO2 emission per passenger-kilometer, an 80% cut in NOx emissions, and a
halving of perceived aircraft noise [1]. Additionally, NASA’s Environmentally Responsible
Aviation Project (ERA) has set goals for noise and emissions reduction and fuel perfor-
mance improvements. This includes the N+1, N+2 and N+3 goals for the years 2015, 2020
and 2025 which set sound reduction levels of -32 dB, -42 dB and -71 dB with respect to
the sound emitted by a Boeing 737-800 [2].

The advent of quieter jet engines has made noticeable the sound generated aerody-
namically from landing gear and high lift systems. In new electric or efficient internal
combustion engines for automotive applications it will probably happen something similar
and other sources of sound will gain importance such as aerodynamic generated sound,
contact sound (tyre-road contact) and frame/bodywork vibration sound.

Voice simulation can have medical applications to understand how voice problems
arise and how they can be treated. Additionally, understanding the human phonation
process can contribute to vocal training and development of new speech compression and
synthesis algorithms and prosthetic larynges [3]. A research project directly related to
voice simulation is the project Extensive Unified-Domain Simulation of the Human Voice
(EUNISON) [4] in which we are currently participating.

Some publications where the reader is referred for voice simulation also known as human
phonation simulation are [3, 5–7].

The sound produced in the applications described is broadband. It means it includes
many frequencies. In some cases, one frequency or some frequencies can be dominant.
Simulation methods include frequency domain and time domain methods. Time domain

1
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methods are intrinsically broadband while frequency domain methods are single-band.
Aeroacoustics can be modeled using direct or indirect/hybrid computation. Hybrid

computation involves an acoustic analogy, a flow solver and a wave propagation solver.
Direct computation does not introduce any approximation but can be more computation-
ally expensive. Wave propagation is modeled in time domain either with the irreducible
wave equation or the mixed wave equation. The mixed wave equation becomes a natural
option in problems involving moving domains because the equation can be set in an arbi-
trary Lagrangian-Eulerian frame of reference [5]. The present research focuses on the wave
propagation part of hybrid aeroacoustic computation using the wave equation in mixed
form. Spatial and temporal discretization is analyzed extensively and several application
examples are shown.

1.2 Overview

Several methods have been used for the study of aeroacoustics and wave propagation. These
methods vary from purely analytical to numerical methods. Among numerical methods,
finite element methods (FEM), finite volume methods (FV), finite difference methods (FD)
and boundary element methods (BEM) have been used for the study of wave propagation.

With respect to finite element methods, inf-sup stable elements and stabilized finite
elements have been used in aeroacoustics and wave propagation.

The mathematical models used in aeroacoustics and wave propagation are diverse,
among them we have: the classical scalar wave equation, the scalar Helmholtz equation,
the linearized Euler equations, the wave equation in mixed form, the incompressible Navier-
Stokes equations and the full Navier-Stokes equations.

In wave propagation non-reflecting boundaries (NRB) are needed. Several non-reflecting
boundary conditions (NRBC) and non-reflecting boundary layers (NRBL) have been de-
vised. Among NRBC, the Sommerfeld radiation condition is a classical example. Among
NRBL, the Perfectly Matched Layer (PML) is very popular.

1.3 Wave Equations

1.3.1 Introduction

A wave equation is a PDE (Partial Differential Equation) that describes waves. Waves
are commonly found in many physical phenomena such as: acoustics, fluid dynamics,
elastodynamics and electromagnetics. We will focus on waves propagating in fluids.

A wave propagating in air is historically known as sound because, for a certain frequency
range, human beings are able to hear it when the wave reaches our auditory system. Some
authors refer to noise propagation but we prefer to call it sound propagation for generality.

Waves can be described in time domain or frequency domain. Time is denoted as
t ∈ (0, T ) and angular frequency is denoted as ω. Both time and frequency domain
analysis involve a spatial domain Ω ⊂ Rd, where d is the dimension of the spatial domain
(d = 1, 2, 3). Let x ∈ Ω be any point of the spatial domain Ω and let Γ be the boundary
of the spatial domain Ω. From hereafter, we will refer to vectors in Rd simply as vectors.
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Mixed time

Mixed frequency

Irreducible time

Irreducible frequency

Fourier Transform

Elimination of u/p

(Helmholtz Eq.)

Figure 1.1: Wave equations in time/frequency domain

Given that complex numbers will appear at some point, we will refer to complex numbers
or real numbers explicitly, but whenever we omit the complex or real specification real
values have to be assumed.

Named after Leonhard Euler, Euler’s Formula establishes a relationship between trigono-
metric functions and the complex exponential function. For any x ∈ R it holds:

eix = cosx+ i sinx, (1.1)

where e is the base of the natural logarithm, i is the imaginary unit, cos(·) and sin(·) are
the trigonometric functions cosine and sine respectively and x is given in radians. The
formula is still valid if x is a complex number but across this document we will restrict x
to real numbers.

1.3.2 Wave Equations in time domain and frequency domain

Fig. 1.1 shows a sketch of the relationship of the wave equations in time and frequency
domain.

Time domain analysis uses the scalar wave equation in its irreducible form (1.2):

1

c2
∂ttp

′ −∆p′ = f ′, (1.2)

where p′(x, t) is the unknown (real valued scalar function), f ′ is a forcing term and c is the
wave speed.

Additionally, time domain analysis can involve the vector wave equation in irreducible
form (1.3):

1

c2
∂ttu

′ −∆u′ = f ′, (1.3)

where u′(x, t) is the unknown (real valued vector function) and f ′ is a forcing term.
Notice that the vector wave equation in irreducible form (1.3) has no practical interest

since the regularity requirement for the vector unknown u′ is the same as the regularity
requirement for the scalar unknown p′ in the scalar wave equation in irreducible form (1.2)
but the number of unknowns is d times bigger in the vector wave equation with respect to
the scalar wave equation.
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Furthermore, time domain analysis can involve the wave equation in mixed form (1.4)-
(1.5):

µp∂tp
′ +∇·u′ = fp, (1.4)

µu∂tu
′ +∇p′ = fu, (1.5)

where p′(x, t) and u′(x, t) are the unknowns, with p′ real valued scalar function and u′ real
valued vector function, µp > 0 and µu > 0 are the parameters of the equation and [fp,fu]
are forcing terms.

Notice that the number of unknowns in the wave equation in mixed form is d+ 1 times
the number of unknowns in the scalar wave equation in irreducible form, but the regularity
requirements in space and time are less stringent for both p′ and u′.

On the contrary, frequency domain analysis involves using the Scalar Helmholtz Equa-
tion (1.6):

∆p̂+ k2p̂ = f̂k, (1.6)

where p̂(x) is the unknown (complex valued scalar function), k is the wavenumber corre-
sponding to a certain angular frequency ω and f̂k is a forcing term.

Additionally, frequency domain analysis can involve the Vector Helmholtz Equation
(1.7):

∆û+ k2û = f̂k, (1.7)

where û(x) is the unknown (complex valued vector function), k is the wavenumber corre-
sponding to a certain angular frequency ω and f̂k is a forcing term.

Notice that the Vector Helmholtz equation (1.7) has no practical interest since the
regularity required for the vector unknown û is the same as the regularity required for the
scalar unknown p̂ in the Scalar Helmholtz equation (1.6) but the number of unknowns is d
times bigger.

Additionally, frequency domain analysis can involve the Helmholtz Equation in mixed
form (1.8) - (1.9):

−iµpωp̂+∇·û = f̂p, (1.8)

−iµuωû+∇p̂ = f̂u, (1.9)

where p̂(x) and û(x) are the unknowns, ω is the angular frequency, µp > 0 and µu > 0 are
parameters of the equation and f̂p and f̂u are forcing terms.

Notice that the number of unknowns in the Mixed Helmholtz equation is d+1 times the
number of unknowns in the Scalar Helmholtz Equation, but the regularity requirements
(in space) are less stringent for both p̂ and û.

Until now, we have expressed wave equations in terms of either p′ or u′ or both.
Additionally we have used their complex counterparts p̂ or û. There is one more approach
which uses the Velocity Potential ψ. The velocity potential wave equation is written as:

1

c2
∂ttψ −∆ψ = fψ, (1.10)



1.3. WAVE EQUATIONS 5

from which we can extract p′ or u′ as follows:

p′ = −µu∂tψ + fψ,p, (1.11)
u′ = ∇ψ, (1.12)

where ∇fψ,p = fu.
Notice that the wave equation in mixed form is in agreement with the velocity potential

wave equation taking fψ = µp∂tfψ,p − fp.
Now let us consider the complex counterpart ψ̂ and let us write the Helmholtz Equation

in terms of the complex velocity potential:

∆ψ̂ + k2ψ̂ = f̂ψ, (1.13)

from which we can extract p̂ or û as follows:

p̂ = iµuωψ̂ + f̂ψ,p, (1.14)

û = ∇ψ̂, (1.15)

where ∇f̂ψ,p = f̂u.
Wave equations in time domain or frequency domain are related to each other. Un-

knowns, coefficients and forcing terms of the equations are related. In the next paragraphs
we show these relationships for the unknowns and coefficients only. The relationship be-
tween forcing terms is trivial.

The coefficients µp and µu that characterize the mixed wave equation (1.4) - (1.5) are
related to the wave speed c appearing in irreducible form of the scalar wave equation (1.2)
or vector wave equation (1.3) as follows:

c2 = (µpµu)
−1 . (1.16)

The wavenumber k characterizes the Scalar Helmholtz equation (1.6) and the Vector
Helmholtz Equation (1.7) and is related to the wave speed c appearing in irreducible form
of the wave equation (1.2) as follows:

ω = kc = 2πf , (1.17)

where ω is the angular frequency and f is the frequency.
Assuming harmonic behavior of p′ with angular frequency ω and phase angle φ, we can

write:

p′ (x, t) = <
(
p̂ (x) e−iωt

)
= < (p̂) cos (ωt) + = (p̂) sin (ωt) = |p̂| cos (ωt− φ) , (1.18)

where <() and =() stand for real part and imaginary part respectively, |p̂| is the magnitude
of p̂ defined as |p̂| :=

√
(<(p̂))2 + (=(p̂))2 and φ := arctan

(
=(p̂)
<(p̂)

)
is the argument of p̂.

Similarly, we can write:

u′ (x, t) = <
(
û (x) e−iωt

)
= < (û) cos (ωt) + = (û) sin (ωt) . (1.19)
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t

f

t

f

Figure 1.2: Nyquist frequency

The wave equation (scalar irreducible (1.2) , vector irreducible (1.3) or in mixed form
(1.4) - (1.5)) is solved in a spatial domain Ω and in a time interval (0, T ) with appropriate
initial and boundary conditions.

The Helmholtz Equation in scalar, vector or mixed form ((1.6), (1.7) or (1.8) - (1.9)) is
solved in a domain Ω and for a given wavenumber k with appropriate boundary conditions.

Notice that frequency domain analysis solves the wave problem for one angular fre-
quency ω whereas time domain analysis solves the wave problem for the full range of fre-
quencies involved. The only limit for the frequencies captured in the time domain analysis
(at time-discrete level) is the time step used for time discretization.

1.3.3 Nyquist Frequency

Named after Harry Nyquist, the Nyquist frequency is one half of the sampling rate of
a discrete signal processing system. The Nyquist frequency is used in time domain and
spatial domain. The time domain sampling of a function is measured in samples per unit
time. The spatial domain sampling of a function will be samples per unit distance.

The Nyquist frequency represents the maximum frequency that can be accurately
reproduced by a discrete signal processing system. We can say the same but the other
way around: given a signal with a certain frequency, we will need a sampling rate twice as
big to accurately capture the signal.

In Fig. 1.2 we have a function f with frequency f sampled with with 2f samples per
unit time. The second figure is the same function f sampled with 4f samples per unit time.

The Nyquist frequency can be translated to numerical methods to find the time step
size ∆t and the mesh size h. Let us assume acoustic waves in air of frequency f = 20000
Hz (extreme case). The wave speed is c = 340 m/s. For the given frequency and wave
speed, the wavelength is λ = c

f
= 0.017 m The time step required will be ∆t = 1

40000
s or

smaller and the mesh size required will be h = 0.0085 m or smaller.
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1.3.4 Acoustic Waves in Fluids

Wave propagation in fluids is known as Acoustics. The wave speed is a property of the
fluid media. It can be computed as:

c2 =
∂p

∂ρ

∣∣∣∣
s

, (1.20)

where p is the thermodynamical pressure (absolute pressure) and ρ is the mass density.
The s indicates a process with constant entropy.

An ideal gas has a simple equation of state defined as:

p = ρRsT, (1.21)

where Rs is the specific ideal gas constant and T is the absolute temperature. The specific
ideal gas constant is related to the universal ideal gas constant Ru through:

Rs =
Ru

M
, (1.22)

where M is the molar mass of the gas and Ru = 8.3144 m3 Pa K−1 mol−1.
Then, for an ideal gas the equation defining the speed of sound is:

c2 = γ
p

ρ
= γRsT, (1.23)

where γ is the specific heat ratio (1.4 for air).
In air, the sound speed can be considered constant for any wave frequency. That brings

us to the concept of dispersive and non-dispersive media. In dispersive media the wave
speed is dependent of the frequency of the wave. On the other hand, in non-dispersive
media the wave speed is independent of the frequency.

In a fluid the parameters of the wave equation in mixed form are taken as:

µp =
1

ρ0c2
, µu = ρ0, (1.24)

where ρ0 is the mass density and c is the speed of sound, with both ρ0 and c in the reference
state.

1.3.5 Wave Energy

The wave equation in mixed form has an internal structure of energy conservation.
Let us define e as the energy density (energy per unit volume) in a point of a domain

as:

e =
1

2

(
µpp

′2 + µu|u′|2
)
, (1.25)

where ep = 1
2
µpp

′2 is the potential energy density and ek = 1
2
µu|u′|2 is the kinetic energy

density. For a plane wave the kinetic and potential energy are the same.
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Let E be the total energy of the domain in consideration:

E =

∫
Ω

e dΩ, (1.26)

let i be the wave intensity in a given point of the domain:

i = p′u′, (1.27)

let Ib be the total power going from the domain to the outside through the boundary Γ:

Ib =

∫
Γ

n · i dΓ, (1.28)

let if be the energy per unit time per unit volume added by the forcing terms:

if = p′fp + u′ · fu, (1.29)

and, finally, let If be the total power added to the domain by the forcing terms:

If =

∫
Ω

if dΩ. (1.30)

Then, the energy conservation statement can be written as:

dE

dt
+ Ib = If . (1.31)

Additionally, it holds:

∂te+∇ · i = if . (1.32)

1.4 Non-Reflecting Boundaries (NRB)

1.4.1 Introduction

Partial Differential Equations (PDE) involve a domain where the unknowns have to be
determined. The domain can be space (Ωf ⊆ Rd), time (0, T ) or space-time (Ωf × (0, T )).

Let us concentrate in the spatial part of the domain and let us consider a numerical
approximation method to solve the PDE. We are interested in Finite Elements, but the
numerical method can be Finite Differences or Finite Volumes. Recall that we have used
⊆ to define Ωf , this means that some PDEs might need infinite or semi-infinite spatial
domains in order to be solved. That brings a problem since we cannot discretize all Rd

with a finite number of elements of finite size h. So, instead of solving the PDE in Ωf , we
solve it in Ω ⊂ Ωf such that meas(Ω) is finite. Obviously, the boundary Γ of Ω is designed
smooth enough and with a convenient shape. Then, another question arises: we know the
boundary condition to impose on the boundary Γf of Ωf but we do not know what to
impose on Γ.

In some problems the unknowns or their gradients decay fast enough in space, so that
imposing the same boundary condition of Γf on Γ and choosing Ω sufficiently large is
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Ωf

Ω

Ωf

Ω

Figure 1.3: NRB families: NRBC and NRBL

good enough. But, some other problems such as wave propagation problems in which the
unknown decays with distance r as r−

(d−1)
2 can require prohibitively big spatial domains in

order that the imposition of the same boundary condition of Γf on Γ is good enough.
Furthermore, energy will bounce back when it reflects on Γ and it will remain inside

Ω perturbing the solution thereafter. The boundary solution is obvious but not trivial:
not imposing the same condition of Γf on Γ. The ideal non reflecting boundary condition
should be such that the solution in Ωf restricted to Ω is the same as the solution obtained
in Ω.

This leads to the introduction of Non-Reflecting Boundary Conditions (NRBC) and
Non-Reflecting Boundary Layers (NRBL). We will refer to NRBC and NRBL simply as
Non-Reflecting Boundaries (NRB).

Throughout this document, we denote as NRBC to boundary conditions applied on Γ
and as NRBL to an added layer of material after Γ (see Fig. 1.3).

NRBC are also known as Absorbing Boundary Conditions (ABC), Artificial Boundary
Conditions (ABC) or Open Boundary Conditions (OBC).

Acoustic wave propagation problems often involve the calculation of acoustic intensity
at a given point due to a given set of acoustic sources. Using a perfect NRB we obtain an
intensity if at each spatial point. Using an approximate NRB we obtain an intensity i. A
good NRB will lead to an intensity i close to if .

In what follows, we will describe the Sommerfeld boundary condition (a type of NRBC),
some other NRBCs and finally the Perfectly Matched Layer (PML) which is a type of
NRBL. But first let us start with some basic concepts of impedance, reflection and refrac-
tion.

1.4.2 Impedance

Let us consider an harmonic force (perfect sine or cosine variation in time). The ratio of
the complex amplitude of the force to the complex amplitude of the velocity at a given
point on a surface is called mechanical impedance at the point:

Z =
p̂

ûn
, (1.33)

where Z is the mechanical impedance and ûn is the normal component of û in the direction
towards the surface (pointing outside of the fluid). Obviously, Z is a complex number
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Figure 1.4: Plane Wave Reflection

since p̂ and û are complex. The real part of Z is called Resistance and its imaginary part
Reactance. The inverse 1/Z is known as Admittance.

In acoustics the definition of characteristic impedance is:

Zchar =

(
µu
µp

) 1
2

. (1.34)

The characteristic impedance is inherent to the propagation media. Let us assume we
divide a domain with an artificial boundary of impedance Z. Now we require that the
artificial boundary has no effect on the wave field on both sides of the boundary. Then,
the impedance needed for this artificial boundary is the characteristic impedance.

The power per unit surface through a surface of impedance Z is:

iZ = <(Z)|n · û|2, (1.35)

where n is the unit outward normal to the surface. Notice that when <(Z) > 0 the surface
is passive and absorbs energy, but when <(Z) < 0 the surface is active and produces energy.

1.4.3 Reflection and Refraction

Before describing NRB, let us first describe the reflection and refraction phenomena.

Wave Reflection

Let us consider a plane wave in the x− y plane incident in the y − z plane (see Fig. 1.4).
Assuming a perfect reflection (zero absorption), the reflected wave will have identical
wavenumber and angle α as the incident wave [8].

Now, let us consider the surface has a finite impedance Z and that the incident wave
has the following form:

p̂in = Âei(kxx+kyy), (1.36)
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Figure 1.5: Plane Wave Refraction

where kx and ky are the wavenumber components in the x and y direction respectively and
Â is the complex amplitude of the incident wave.

The reflected wave will have the following form:

p̂re = RÂei(−kxx+kyy), (1.37)

where R is the reflection coefficient that can be computed as:

R =
ξ cos(α)− 1

ξ cos(α) + 1
, (1.38)

with

ξ =
Z

Zchar

. (1.39)

In the wave equation in mixed form, the condition of perfect reflection on a segment Γu
of the boundary Γ can be modeled imposing n · u′ = 0. On the other hand, the boundary
condition p′ = 0 on a segment Γp of the boundary Γ represents a pressure released surface.
This is an idealization of the interface water-air when considering wave propagation in the
water [9].

Wave Refraction

Now, let us consider a wave impacting at the interface between two fluids with wave
velocities c1 and c2 (see Fig. 1.5). The compatibility condition required in this case is that
the trace velocity at the interface of both mediums match. This is known as the trace
velocity matching [10]. The trace velocity is the tangent component of the velocity at the
interface.

There are two cases: the trace velocity is higher than c2 or lower than c2. Let us
consider the first case (trace velocity higher than c2):

c2 <
c1

sinα1

. (1.40)
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There is a transmitted wave in medium 2 with the form:

p̂tr = T Âei(kxx+k2y cosα2), (1.41)

where k2 is the wavenumber in the second medium and α2 is the refraction or transmission
angle.

The requirement that the pressure is continuous at the interface yields:

1 +R = T , (1.42)

and the trace velocity matching yields:

cosα1

Zchar,1

(1−R) =
cosα2

Zchar,2

T . (1.43)

In the second case, when the wave speed at the second medium c2 is greater than the
trace velocity at the interface, the transmission depends on the incidence angle. Obviously,
it can only occur when c2 > c1. Let us define the critical angle as:

αcr = arcsin
c1

c2

. (1.44)

If the incidence angle α1 is greater than the critical angle αcr, all the energy is reflected in
the interface. If the incidence angle α1 is less than the critical angle αcr, there is a wave
transmitted and a wave reflected [8].

1.4.4 Sommerfeld Boundary Condition

The Sommerfeld boundary condition is a type of NRBC and gets its name from Arnold
Sommerfeld who was a German theoretical physicist. Sommerfeld mentions it in [11] as:

“The sources must be sources, not sinks, of energy. The energy which is
radiated from the sources must scatter to infinity; no energy may be radiated
from infinity into the prescribed singularities of the field”.

The Sommerfeld radiation condition is applicable when the sources are concentrated
in a region of space and the exterior boundary is a sphere surrounding it and centered at
the source region. Additionally, the spherical surface has to be sufficiently far away to the
sources in order that the impinging waves only have radial component.

In spherical coordinates and for the Helmholtz equation in 3D, the Sommerfeld radiation
condition can be expressed as:

lim
r→∞

(r (∂rp̂− ikp̂)) = 0, (1.45)

where r is radial component in the spherical coordinate system. Some authors write the
Sommerfeld radiation condition with a + sign, but that depends on the time variation
assumption. Throughout this document we have assumed a time variation e−iωt which
gives the minus sign.
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In 2D or 3D (d = 2, 3) the Sommerfeld radiation condition can be expressed as:

lim
r→∞

(
r
d−1

2 (∂rp̂− ikp̂)
)

= 0. (1.46)

In time domain and for the scalar wave equation in 3D the Sommerfeld radiation
condition can be written as:

lim
r→∞

(
r

(
∂rp
′ +

1

c
∂tp
′
))

= 0. (1.47)

1.4.5 Other NRBC

NRBCs impose a boundary condition that mimics a non-reflecting boundary without
needing to add an absorbing boundary layer. From the computational cost point of view
NRBC do not add extra degrees of freedom to the problem being solved and that is a very
appealing feature.

Before, we described the Sommerfeld Radiation condition, which is a well known NRBC,
but there are many other NRBC. Some authors have proposed Dirichlet-to Neumann
mappings [12, 13] from domain decomposition methods, others proposed High Order
Boundary Conditions [14–17] while others proposed simpler approaches [18–20].

NRBC formulations have been formulated for the irreducible form of the wave equation
in [14–16, 21–28], for the scalar Helmholtz equation in [12, 13, 29, 30], for the wave equation
in mixed form in [17–20] and for flow problems in [31–33].

1.4.6 Perfectly Matched Layer

The concept of perfectly matched layer (PML) was first developed by Berenger in 1994
for electromagnetic waves [34]. It consists in an artificial absorbing boundary layer placed
next to the wave propagating media with the property of absorbing waves incident to it.
A graphical representation of the absorbing layer can be seen in Fig. 1.6. PML has been
used since its appearance in many problems such as the scalar wave equation in irreducible
form [35–37], scalar Helmholtz equation [38–40], mixed form of the wave equation [41–44]
and electromagnetic waves [34, 45–47].

Theoretically, PML absorbs waves at any angle of incidence but since we are not solving
the exact problem (continuous) its absorptivity properties are not perfect. Therefore, in
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practical terms, PML has the ability to absorb incident waves in a wide range of angles
of incidence. Another feature is that absorbing properties are good for a wide range of
frequencies. When comparing PML with the Sommerfeld Radiation condition, the main
advantage of PML is the absorptivity in a wide range of angles of incidence because the
Sommerfeld radiation condition assumes (or requires) a normal angle of incidence in order
to be accurate.

The original Berenger’s formulation of PML is called split field PML because he split
the solution into two artificial fields whose sum is the physical field. Nowadays, it is more
popular the Uniaxial PML formulation (UPML) in which the wave equation is expressed
as the combination of artificial anisotropic absorbing materials. Anyway, both PML and
UPML are equivalent and can be derived from complex coordinate stretching.

Let us now refer to Fig. 1.6. The wave equation (in time or frequency domain) is solved
in the Physical media and the PML equations are solved in the PML absorbing layer.

Now, let us describe the formulation of PML applied to the wave equation in mixed form.
For simplicity we will consider the 2D case, but the extension to 3D is straightforward.
The formulation we describe here appears in [42] and was implemented and tested using
the finite difference method.

Let us split p such that:

p = pa + pb, (1.48)

then, the governing equations in the PML layer are:

∂tu1 + q1u1 + ∂1 (pa + pb) = 0, (1.49)
∂tu2 + q2u2 + ∂2 (pa + pb) = 0, (1.50)
∂tpa + q1pa + ∂1u1 = 0, (1.51)
∂tpb + q2pb + ∂2u2 = 0, (1.52)

with the following boundary condition on the boundary Γ of the PML layer:

p = 0 on Γ. (1.53)

The attenuation parameters qi can be taken as constant or variable. Linear and quadratic
profiles have been tested, for instance:

qi = qδ

(
rPML

δPML

)nPML

, (1.54)

where δPML is the thickness of the PML layer, qδ is the attenuation factor and rPML is a
normal coordinate with value zero on the boundary of the physical media and value δPML

at the end of the PML layer. The exponent nPML can be taken as 1 or 2 to obtain a linear
or quadratic attenuation parameter.

Notice that the PML formulation presented increases the number of unknowns of the
problem. The cost increase is not so big since it is only an extra scalar unknown. For
the scalar wave equation in irreducible form the relative cost increase is higher for obvious
reasons.
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Later, in 2001, Hu presented a stable and well-posed PML formulation in unsplit
physical variables [48]. The avoidance of splitting facilitates the implementation. But
still there is an auxiliary variable and thus the number of unknowns in the PML region is
increased.

PML features exponential decay of waves propagating inside the absorbing layer. Com-
monly, a hard wall condition is applied on the exterior boundary of the PML layer, that
means energy can still reflect on that boundary and go back to the physical domain. In
the way back, the PML layer still absorbs energy of the wave, so the effective attenuation
of the PML layer is 2δPML. The exponential decay inside the PML layer is governed by the
attenuation parameters qi. Higher attenuation parameters mean faster decay.

The design of a PML layer for a given problem involves setting the thickness δPML

and the parameters qi. We might be tempted to choose the attenuation parameters as
high as possible and a small PML thickness but it is not that simple. An abrupt change
of properties from physical media to PML media might induce reflection on the PML
media/physical media interface. So we cannot choose the attenuation parameters so high.
Additionally, a good practice is to choose the attenuation parameters as zero in the interior
of the PML layer and maximum in the exterior of the PML layer so that the change of
properties from physical media to PML media is smooth. A common practice is to choose
δPML as a fraction of the wavelength. Cohen [49] recommends choosing δPML as one third
of the wavelength for acoustic problems, meanwhile the study of Oskooi [50] in photonics
suggests choosing it as one half of the wavelength. This half-wavelength thickness criteria
for acoustic waves in air means thicknesses ranging from 8 to 0.01 m for the range of audible
frequencies 20 - 20000 Hz.

1.4.7 Other NRBL

PML is a very popular NRBL but there are other NRBL. Richards et al proposes in [51]
a NRBL based on damping the solution in time with a factor σ to a desired target value.
In that publication they claim better performance than PML.

1.4.8 NRB performance evaluation

Many benchmark problems have been devised in order to evaluate the performance of
NRBC and NRBL.

Some procedures compare an analytical solution with the numerical solution in the
truncated domain using the NRB. For example Problems 1 and 2 in Category 3 of [52].
Another example are the Parts 1, 2 and 3 of Problem 3 in Category 1 of [53].

Other procedures involve solving the problem in a truncated domain and in a bigger
domain and comparing the solution of the big domain restricted to the truncated domain
with the solution obtained in the truncated domain with the NRB [54, 55].

Let us describe in more detail the problem 1 in category 3 proposed in [52]. The 2D
(d = 2) spatial domain is taken as Ω = (−100, 100)× (−100, 100). In all the boundary Γ of
the domain NRB are imposed. The problem is solved with a Mach number (M, 0) (mean
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flow in the x direction). The initial condition is:

p = exp

[
−(ln 2)

(
x2 + y2

9

)]
, (1.55)

u1 = 0.04y exp

[
−(ln 2)

(
(x− 67)2 + y2

25

)]
, (1.56)

u2 = −0.04(x− 67) exp

[
−(ln 2)

(
(x− 67)2 + y2

25

)]
. (1.57)

The problem consists in finding the unknowns at t = 30, 40, 50, 60, 70, 80, 100, 100 and
600.

The analytical solution to that problem is the following. Let α1 = ln 2
9
, α2 = ln 2

25
and

η =
√

(x−Mt)2 + y2. The exact solution is:

p =
1

2α1

∫ ∞
0

e
−ξ2
4α1 cos(ξt)J0(ξη)ξ dξ, (1.58)

u1 =
x−Mt

2α1η

∫ ∞
0

e
−ξ2
4α1 sin(ξt)J1(ξη)ξ dξ + 0.04ye−α2[(x−67−Mt)2+y2], (1.59)

u2 =
y

2α1η

∫ ∞
0

e
−ξ2
4α1 sin(ξt)J1(ξη)ξ dξ − 0.04(x− 67−Mt)e−α2[(x−67−Mt)2+y2], (1.60)

where Jα are the Bessel functions of order α.
One problem with this benchmark is that it does not specify the mesh to use. Another

problem are the benchmark results in the original document, as they are quite old, the
document is not clear to read.

The benchmark problem 3 in category 1 of [53] is more specific and specifies the mesh
to use. It involves periodic boundary conditions and the results can be easily compared
through the error at each time step. The unsuitability of this benchmark is that the error
results are not purely due to the non-reflective properties of the NRB used, but include
propagation error ( due to temporal and spatial discretization).

In my opinion, the best NRB benchmark should only include the non-reflective prop-
erties of the NRB. So, the big domain/small domain seems the most appropriate method
in the time domain. I have no idea what would be the equivalent in the frequency domain.
The big domain benchmark is sketched in Fig. 1.7. The red zone represents the initial wave
pulse. The time interval used in the big and small domain is the same. The time interval
is chosen such that the initial pulse has touched all the surrounding NRB. The big domain
is chosen such that along the previously selected time interval, the initial pulse does not
reach the big boundary.

The comparison criteria in the Big Domain Benchmark is multiple and it has two
components. The first component is the time domain norm and the second component is
the spatial domain norm.

For the time domain norm we have many options An instant of time tc ∈ (0, T ) can be
chosen for comparison. Other option can be comparing in the whole time interval (0, T )
with an L∞(0, T ) norm or with an L2(0, T ) norm.

The spatial domain norm has many options too. A point xc ∈ Ω or the whole domain Ω
can be chosen for computing the norm. Additionally, the quantity of interest together with
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Figure 1.7: Big Domain Benchmark

its norm has multiple options. Among the options we have the energy ||e||L2 , the potential
energy ||ep||L2 , the kinetic energy ||ek||L2 , the H1(Ω) norm of the pressure fluctuation
||p′||H1(Ω), the H(div,Ω) norm of the velocity fluctuation ||u′||H(div,Ω) and a composite norm
combining some or all the norms of the above in space and time |||·|||. Obviously, the choice
of a point xc does not make any sense in variational formulations.

The comparison criteria (see Chapter 2 or Chapter 3) can be taken as:

|||[p′,u′]|||2A := µp||p′||2L∞(Υ,L2(Ω)) + µu||u′||2L∞(Υ,L2(Ω)), (1.61)

or

|||[p′,u′]|||2B := |||[p′,u′]|||2A + τp||∇p′||2L2(Υ,L2(Ω)) + τu||∇·u′||2L2(Υ,L2(Ω)), (1.62)

where τp and τu are the stabilization parameters containing length scales of the wave
problem.

A typical plot of the total energy in Ω versus time for the Big Domain Benchmark
should look like 1.8. In that plot the big domain solution is plotted in black and the small
domain solution is plotted in blue. The imperfection of the NRB is seen because the curves
do not match exactly.
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Figure 1.8: Big Domain Benchmark Energy Evolution

1.5 Aeroacoustics

1.5.1 Overview

Acoustic waves can be produced from the unsteady motion of a solid boundary in contact
with a fluid (See Fig. 1.9). This field is known as simply Acoustics and it is not the main
concern of Aeroacoustics. Aeroacoustics is the study of sound generation by turbulent flow
or aerodynamic forces interacting with surfaces and the subsequent propagation of sound
through the fluid (See Fig. 1.10). Aerodynamic forces interacting with surfaces can be
regarded as Aeroelasticity. Computational Aeroacoustics is the use of numerical methods
to solve aeroacoustics problems [7].

Aeroacoustics problems can be approached in two forms: direct computation and
indirect or hybrid approach. The first approach consist in solving the flow problem at
the same time as the acoustic problem. The advantage of the direct approach is the
avoidance approximations in the model. The disadvantage is its high computational cost
because a fine enough mesh and time step has to be used [56].

On the other hand, the hybrid approach solves first the flow problem, then uses the
information from the flow in order to predict the sound sources (using acoustic analogies)
and finally solves the acoustic problem. The main assumption of the hybrid approach is
that the flow produces sound and the sound propagating does not affect in any way the

Figure 1.9: Speaker generating sound
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Figure 1.10: Acoustic Waves Generation

flow (there is not two way coupling). This assumption is valid because the propagation of
sound involves small pressure fluctuations while fluid flow involves big pressure fluctuations.
Additionally, at low Mach numbers, the fluid can be considered incompressible for the flow
calculation and the acoustic sources will be accurate enough for the acoustic calculation.

For the hybrid approach the type of fluid dynamics simulation used can be Reynolds-
Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) or Direct Numerical Sim-
ulation (DNS). When RANS is used, the approach is known as stochastic. The stochastic
approach uses RANS, which is not computationally expensive, and from that information
constructs the sound sources.

Aeroacoustics is very challenging from the computational point of view because it re-
quires solving a unsteady flow problem with a fine enough spatial and temporal discretiza-
tion in order to capture all the flow details responsible of generating sound which is very
costly.

Additionally, there is an enormous disparity between the flow velocity/pressure and the
acoustic velocity/pressure because for low Mach numbers the energy generated as sound
waves is of order Ma4 [57]. In the case of sound generated by a turbulent jet, the ratio
between the power of the waves generated and the power of the jet is of order Ma5. This
disparity makes the direct approach very challenging because the simulation has to be able
to detect the small perturbations with enough accuracy. For the hybrid approach, the
disparity is less important because the acoustic problem is solved separately.

1.5.2 Concepts

The time-average value p̄ of a given property p is defined as [58]:

p̄(x) =
1

T

∫ T

0

p(x, t) dt, (1.63)

and its fluctuation p′ is defined as:

p(x, t) = p̄(x) + p′(x, t). (1.64)
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The root mean square value RMS is defined as:

prms(x) =

(
1

T

∫ T

0

(p′(x, t))2dt

) 1
2

. (1.65)

For a cosinusoidal wave of amplitude A described as A cos(ωt− φ) the RMS value can be
calculated as:

prms =
A√
2
. (1.66)

In acoustics in general and in aeroacoustics in particular we need a way of measuring
the loudness of sound in a given point. Thus, the Sound Pressure level SPL is introduced.
Sound pressure level is a measure of the deviation of the pressure around the ambient
pressure. It is commonly measured in decibels (dB). A dB is a tenth of a Bel. A Bel
is a rarely used unit named after Alexander G. Bell. The sound pressure level in dB is
calculated as:

SPL = 10 log10

p2
rms

p2
ref

, (1.67)

where pref is the reference pressure and is taken as pref = 20 × 10−6 Pa for air and
pref = 1× 10−6 Pa for water.

The pressure fluctuations prms contain all the frequency spectrum. Sometimes it can be
advantageous to split the spectrum and consider the contribution of a given frequency to
the total. Assuming the frequency spectrum is discrete and has N frequency contributions
(the idea readily extends to continuum frequency spectrum), the pressure fluctuations can
be split as:

p′(x, t) =
N∑
n=1

p′n(x, t), (1.68)

where p′n is the pressure component with angular frequency ωn. Its complex amplitude p̂n
is defined as:

p′n(x, t) = <
(
p̂n(x)e−iωnt

)
, (1.69)

and the pressure level at the angular frequency ωn is defined as:

SPLn = 10 log10

1
2
|p̂n|2

p2
ref

. (1.70)

1.5.3 Navier-Stokes Equations

The Navier-Stokes equations describe the movement of a fluid and are named after Claude-
Louis Navier and George Gabriel Stokes. The equations are:

∂tρ+∇ · (ρu) = 0, (1.71)
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ρ (∂tu+ (u · ∇)u)−∇ · σ = fmom, (1.72)

where ρ is the fluid density, u is the fluid velocity, σ is the stress tensor and fmom is the
body force per unit volume. Obviously, we need to add to the Navier-Stokes equations the
constitutive equation of the fluid, the state equation and the energy equation in order to
be able to solve the problem.

The equations are solved in a spatial domain Ω ∈ Rd (d = 1, 2, 3) with boundary Γ and
in a time interval (0, T ) with appropriate boundary and initial conditions.

Equation (1.71) is known as mass conservation equation or continuity equation. Equa-
tion (1.72) is known as the momentum equation because it is a momentum conservation
statement.

The range of applicability of the equations presented includes: compressible or incom-
pressible flows, laminar or turbulent flows and viscous or inviscid flows.

Newtonian fluids are fluids that behave according to the following equation:

σij = −p δij + τij, (1.73)

τij = µ (∂jui + ∂iuj) +

(
λ− 2

3
µ

)
δij∂kuk, (1.74)

where p is the pressure (thermodynamic pressure), δ is the Kronecker delta, τij is the
deviatoric part of the stress tensor, µ is the dynamic viscosity of the fluid and λ is the
bulk viscosity (also known as volume viscosity or second viscosity expansion viscosity).
Thermodynamics second-law arguments show that λ must be positive. The effect of the
term involving ∇·u is very small even in compressible flows and it is usual to assume λ = 0
or λ− 2

3
µ = 0.

Recall that:

(∇ · σ)i = ∂jσji = ∂jσij, (1.75)

as σ is symmetric.
Navier-Stokes equations can be written in conservative form as:

∂tρ+∇ · (ρu) = 0, (1.76)
∂t(ρu) +∇ · (ρuu)−∇ · σ = fmom. (1.77)

1.5.4 Acoustic Analogy

In the hybrid approach to aeroacoustics, an acoustic analogy is needed in order to translate
the flow results into acoustic sources. The first to develop this concept was Lighthill in
1952 [59, 60], then Curle considered solid walls in 1955 [61], afterwards Phillips in 1960
studied sound generated at high Mach numbers [62]. In 1969 Williams and Hawkings [63]
proposed a new acoustic analogy in order to consider solid surfaces moving arbitrarily.
Recently, in 2003 Goldstein proposed a generalized acoustic analogy [64].

Lighthill Acoustic Analogy

It was proposed by Michael James Lighthill who was a British applied mathematician. He
published his results in two famous papers in 1952 and 1954 [59, 60]. The sound generated
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is represented by quadrupole volume sources. It assumes the medium is stationary and
it does not consider solid walls. The reference density is taken as ρ0 and the density
fluctuation is defined as:

ρ′ = ρ− ρ0 (1.78)

The Lighthill acoustic analogy can be obtained from the Navier-Stokes equations in
conservative form with fmom = 0 differentiating with respect to time the mass conservation
equation and subtracting the divergence of the momentum conservation equation:

∂ttρ+ ∂t(∇·(ρu))−∇·(∂t(ρu))−∇·(∇·(ρuu− σ)) = 0, (1.79)

then subtracting c2∆ρ′ to both sides we get:

∂ttρ− c2∆ρ′ = ∇·(∇·(ρuu− σ))− c2∆ρ′, (1.80)

finally, as time derivatives only see ρ′:

∂ttρ
′ − c2∆ρ′ = ∂i∂jTij, (1.81)

where ∂i∂jTij is the acoustic source. Tij is known as the Lighthill stress tensor and is
defined as:

Tij = ρuiuj + δij
[
(p− p0)− c2 (ρ− ρ0)

]
− τij, (1.82)

where δij is the Kronecker delta, p0 is the reference pressure, ρ0 is the reference density, c
is the speed of sound at the reference density and pressure and τij is the deviatoric part of
the stress tensor.

The Lighthill tensor can be neglected in the far field region, because the sound is
generated in the near field region. In the near field region, the Lighthill tensor can be
approximated by neglecting τij because viscosity is known to cause a small damping due
to the conversion of acoustic energy into heat.

Another approximation can be made to the Lighthill tensor for isentropic flows and the
term (p− p0)− c2 (ρ− ρ0) can be neglected, thus:

T ≈ ρu⊗ u. (1.83)

The Lighthill stress tensor can be calculated from a computational fluid dynamics
simulation and then serve as input for the wave equation in the propagation stage.

Before we have written the density fluctuation scalar wave equation in irreducible form.
We can write an equivalent equation in terms of pressure as:

1

c2
∂ttp

′ −∆p′ = ∂i∂jTij. (1.84)

In the case of the wave equation in mixed form (1.4)-(1.5), we can take the forcing
terms from the Lighthill acoustic analogy as:

fp = 0 , (1.85)
fu = −∇ · T = −∂jTji = −∂jTij. (1.86)
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Curle Acoustic Analogy

It was developed by Curle in 1955 [61]. It is an extension to the Lighthill analogy taking into
account solid boundaries. It considers sound sources in the form of dipoles and quadrupoles.
The influence of solid boundaries has to be considered because of reflection, diffraction and
the resultant dipole field at the solid boundaries (as the limit of Lighthill quadrupole
distribution).

According to Curle, the dipoles are more efficient sound sources than quadrupoles for
small enough Mach numbers and must be considered. Additionally, it is shown that the
frequency of the dipole sources is half of the frequency of the quadrupole sources.

Phillips Acoustic Analogy

It was developed by Phillips in 1960 [62]. The main advance respect to Lighthill analogy is
to consider the movement of the mean flow. This analogy focuses in high Mach numbers.

Phillips mentions that for large Mach numbers the fluctuation of the pressure squared
(p′2)is of order Ma3/2 for Ma � 1 contrasting with the Lighthill’s prediction of Ma8 for
Ma� 1. The acoustic efficiency thus varies as Ma−3/2 for Ma� 1, and as Ma5 for Ma� 1,
indicating a maximum acoustic efficiency for Mach numbers near 1.

Ffowcs Williams-Hawkings Acoustic Analogy (FWH)

It was developed by J.E. Ffowcs Williams and D.L. Hawkings in 1969 [63]. It extends the
Lighthill and Curle analogies considering solid surfaces in arbitrary motion. The sound
generated is represented by quadrupole, dipole and and monopole sources. The monopole
and dipole sources are surface sources associated with the motion of the solid surface and
the quadrupole sources are volume sources associated with the fluid flow.

Each type of source term can be given a physical explanation [65]. The monopole source
term is the thickness noise and is determined completely by the thickness and kinematics
of the body. The dipole source term is the loading noise and is generated by the force that
acts on the fluid as a result of the presence of the body. Finally, the quadrupole source
term is the non-linear noise source and takes into account shocks, vorticity and turbulence
in the flow field.

In certain applications it is possible to neglect some source terms. For example, for
rotating blades with low speed flow the quadrupole source term may be neglected [65].Some
methods, like boundary integral methods, try to avoid the volume source (quadrupole)
approximating it by a surface source.

Some formulations of the FWH embed the exterior flow problem in unbounded space
using generalized functions. For Finite Element Formulations we will probably not need
to perform that embedding unless we want to use fixed mesh methods.

Now let us describe the derivation of the FWH analogy taken from [66]. Let Ω be
the fluid spatial domain with boundary ∂Ω. Let us define the surface defining the solid
boundaries as Γs(x, t) = 0. Thus Γs ⊆ ∂Ω. Additionally, let us define Γs > 0 inside the
fluid and Γs < 0 inside the solid in such a way that the outward pointing normal to the
boundary is:

n = −∇Γs. (1.87)
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The time dependence means that solid boundaries can move arbitrarily (rigid or flexible
body motion). The mass and momentum equations can be written as:

∂tρ+ ∂i(ρui) = ρ0uiδ(Γs)∂iΓs, (1.88)
∂t(ρui) + ∂j(ρuiuj + τij) = τijδ(Γs)∂jΓs, (1.89)

where δ(·) is the Dirac delta function. For a static surface the source term in the mass
conservation equation vanishes.

Then, the wave equation in irreducible form is:

∂ttρ
′ − c2∇ρ′ = ∂ijTij − ∂i (τijδ(Γs)∂jΓs) + ∂t (ρouiδ(Γs)∂iΓs) , (1.90)

where Tij is the Lighthill stress tensor. The first term of the right hand side of the equation
represents a quadrupole volume source. The second term represents a dipole surface source.
Finally, the third term represents a monopole surface source.

Goldstein Acoustic Analogy

It was developed by Goldstein in 2003 [64]. His contribution was to rewrite Navier-Stokes
equations (in conservative form) as inhomogeneous linearized Euler equations. The sound
source terms are a result of shear stress and energy flux perturbations.

1.6 Structure
The document is organized as follows: in Chapter 2 the wave equation is discretized in
space using stabilized finite element methods. Additionally, stability and convergence of
the semi-discrete schemes is analyzed. In Chapter 3 a non-reflecting boundary condition
is added to the stabilized finite element formulation of the wave equation in mixed form.
Stability and convergence is analyzed as well as the non-reflective properties of the non-
reflective boundary condition. In Chapter 4 time marching schemes for the mixed wave
equation are analyzed, with emphasis in stability, convergence, dissipation and dispersion.
In Chapter 5 various wave propagation problems are solved and some of them are compared
with experimental results. Finally, in Chapter 6 conclusions are drawn and future research
lines are mentioned.

1.7 Research diffusion
The research work contained in this thesis has been disseminated in the format of articles
in peer-reviewed scientific journals and in the form of oral presentations in scientific
conferences and congresses.

1.7.1 Publications

Some chapters of this thesis are based on or include the following publications:
Chapter 2:
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Chapter 2

Stability, Convergence and Accuracy of
Stabilized Finite Element Methods for
the Wave Equation in Mixed Form

This chapter is based on the material in:
Santiago Badia, Ramon Codina, and Hector Espinoza. “Stability, Convergence, and Ac-
curacy of Stabilized Finite Element Methods for the Wave Equation in Mixed Form”. In:
SIAM Journal on Numerical Analysis 52.4 (May 2014), pp. 1729–1752. doi: 10.1137/13
0918708
with the notation modified to make it fit with the other chapters.

In this chapter we propose two stabilized finite element methods for different functional
frameworks of the wave equation in mixed form. These stabilized finite element methods
are stable for any pair of interpolation spaces of the unknowns. The variational forms
corresponding to different functional settings are treated in an unified manner through the
introduction of length scales related to the unknowns. Stability and convergence analysis
is performed together with numerical experiments. It is shown that modifying the length
scales allows one to mimic at the discrete level the different functional settings of the
continuous problem and influence the stability and accuracy of the resulting methods.

2.1 Introduction

When applied to approximate differential equations with several unknowns, and partic-
ularly saddle point problems, standard Galerkin mixed finite element (FE) formulations
often require the use of inf-sup stable interpolations for the unknowns in order to be stable
[78]. Inf-sup stable FE formulations have been formulated for several mixed problems,
e.g. [79] for the Stokes problem, [80] for the Darcy problem, [81] for the Maxwell prob-
lem, [82, 83] for the Stokes-Darcy problem, [84] for the wave equation and [85, 86] for
elastodynamics.

On the contrary, stabilized FE methods [87] allow one to avoid inf-sup compatibility
constraints. As a result, we can deal with different saddle-point problems by using the same
equal interpolation for all the unknowns; see e.g. the unified framework for Stokes, Darcy
and Maxwell problems in [88]. This way, we can certainly ease implementation issues,
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specially for multiphysics simulations. Stabilized FE methods can nicely be motivated in
the Variational Multi-Scale (VMS) framework, as shown in [89].

This work is a follow-up of [90] for the wave equation in mixed form. The mixed
wave equation is approximated in [90] using the Orthogonal Sub-scale Stabilization (OSS)
method. In the present work, the OSS method is extended and the Algebraic Sub-Grid
Scale Method (ASGS) is also considered. Additionally, length scales associated to the
unknowns are introduced, allowing one to treat different functional settings in a unified
manner. A similar approach for the stationary Stokes-Darcy problem can be found in [91].

We focus on three variational forms of the mixed wave equation and the functional
setting for each case. We obtain the different functional settings by transferring regularity
from the scalar to the vector unknowns or vice-versa. More about functional settings for
wave propagation problems of first and second order can be found in [92].

A priori error estimates for the mixed wave equation can be found in the literature.
Some only bound L2 norms of the error of the unknowns [93, 94], whereas others, such as
[84], take into account the divergence of the vector unknown too. In this work we bound
both the the gradient of the scalar unknown and the divergence of the vector unknown
using stabilized FEs.

Several stability and convergence analysis have been done so far for the irreducible
form of the wave equation (second order space and time derivatives) [95, 96] but not much
attention has been paid to the first order in time and space wave equation. As far as the
authors are aware, the present work is the first to analyze the convergence properties of
stabilized FEs applied to the mixed form of the wave equation.

The organization of the chapter is as follows. In Section 2.2 we describe the continuous
problem and its variational forms. In Section 2.3 we describe the stabilized discrete problem
using the ASGS and the OSS methods. In Section 2.4 we state and prove the stability of
the discrete formulations. In Section 2.5 we state and prove the convergence of the discrete
formulations, including numerical tests. Finally, in Section 2.6 the conclusions of the work
are presented.

2.2 Problem Statement

2.2.1 Initial and Boundary Value Problem

The problem we consider is an initial and boundary value problem posed in a time interval
(0, T ) and in a spatial domain Ω ⊂ Rd, (d = 1, 2 or 3). The long term behavior T → ∞
will not be considered in this work.

Let Γ be the boundary of the domain Ω. We split this boundary into two disjoint sets
denoted as Γp and Γu, where the boundary conditions corresponding to the unknowns p
and u will be respectively enforced.

The problem consists in finding p : Ω × (0, T ) −→ R and u : Ω × (0, T ) −→ Rd such
that:

µp∂tp+∇·u = fp , (2.1)
µu∂tu+∇p = fu , (2.2)
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with the following initial conditions:

p (x, 0) = 0, u (x, 0) = 0, x ∈ Ω, (2.3)

and with the following boundary conditions:

p = 0 on Γp, n · u = 0 on Γu, t ∈ (0, T ), (2.4)

where µp > 0 and µu > 0 are coefficients such that c2 = (µpµu)
−1, c is the wave speed, fp

and fu are forcing terms and n is the unit outward normal to the boundary of the domain.
Notice that any general problem with non-homogeneous initial and boundary conditions
can be cast in the form (2.1)-(2.4) properly modifying the forcing terms.

In the previous equations and in what follows, we use the following convention: bold
face italic letters represent vectors in Rd, (d = 1, 2 or 3), bold face regular upper-case letters
represent matrices, and non-bold letters represent scalars.

Let L2(Ω) be the space of square integrable functions defined on the domain Ω, L2(Ω)
d

the space of vector valued functions with components in L2(Ω), H1(Ω) the space of
functions in L2(Ω) with derivatives in L2(Ω), H1(Ω)

d the space of vector valued functions
with components in H1(Ω), and H(div,Ω) the space of vector functions with components
and divergence in L2(Ω). Any of the spaces defined previously will be denoted generically
as X. Additionally, given X, a space of (scalar or vector) functions defined over Ω, its
spatial norm will be denoted as ‖ · ‖X and the space of functions whose X-norm is Ck

continuous in the time interval [0, T ] will be denoted by Ck ([0, T ];X). We will only be
interested in the cases k = 0, k = 1 and k = 2. In the case of L2(Ω) or L2(Ω)

d the L2-norm
will be simply denoted as ||·||. Functions whose X-norm is Lp in [0, T ] will be denoted by
Lp(0, T ;X); when X = L2(Ω) or X = L2(Ω)

d, the simplification Lp(L2) will be sometimes
used.

Furthermore, let Vp, Vu be spaces associated with p and u respectively. These spaces
will be defined afterwards because they depend on the functional setting. Additionally, let
us define V := Vp × Vu and L := L2(Ω)× L2(Ω)

d.
Problem (2.1)-(2.2) will be well posed for

p ∈ C1
(

[0, T ] ;L2(Ω)
)
∩ C0

(
[0, T ] ;Vp

)
, (2.5)

u ∈ C1
(

[0, T ] ;L2(Ω)
d) ∩ C0

(
[0, T ] ;Vu

)
, (2.6)

with fp and fu in regular enough spaces.

2.2.2 Variational Problem

The variational form of problem (2.1)-(2.4) can be expressed in three different ways. Each
one requires a certain regularity on the unknowns p and u, which is equivalent to say that
p and u should belong to a particular space of functions.

The problem reads: find [p,u] ∈ C1 ([0, T ];L) ∩ C0 ([0, T ];V ) such that

B ([p,u] , [q,v]) = L ([q,v]) , (2.7)

for all test functions [q,v] ∈ C0 ([0, T ];V ) and the respective initial conditions. Here,
we require that p(x, 0) = q(x, 0) = 0 and u(x, 0) = v(x, 0) = 0. The bilinear form B,
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the linear form L and the space V are defined in three different ways depending on the
variational form into consideration.

Let us denote as ( · , · ) the L2(Ω) inner product. For simplicity, we will assume that the
forcing terms fp and fu are square integrable, although we could relax the this regularity
requirement and assume they belong to the dual space of Vp and Vu, respectively.

The variational formulation of problem (2.1)-(2.4) can be posed in three different forms,
essentially differing in the way integration by parts from the strong form of the problem
is performed and in the regularity required for the unknowns. In the problem statement
given below, variational form I (2.8)-(2.11) is obtained not integrating by parts any term.
Variational form II (2.12)-(2.15) is obtained integrating by parts the term (∇p,v). Finally,
variational form III (2.16)-(2.19) is obtained integrating by parts the term (∇·u, q). Notice
that integration by parts leads to a boundary term. The treatment of the boundary term
is explained in each case.

Variational Form I

Vp =
{
q ∈ H1(Ω)| q = 0 on Γp

}
, Vu = {v ∈ H(div,Ω)| n · v = 0 on Γu}

B ([p,u] , [q,v]) = µp (∂tp, q) + (∇·u, q) + µu (∂tu,v) + (∇p,v) (2.8)
L ([q,v]) = (fp, q) + (fu,v) (2.9)

p = 0 on Γp, Strongly imposed (2.10)
n · u = 0 on Γu, Strongly imposed (2.11)

Variational Form II

Vp = L2(Ω), Vu = {v ∈ H(div,Ω)| n · v = 0 on Γu}

B ([p,u] , [q,v]) = µp (∂tp, q) + (∇·u, q) + µu (∂tu,v)− (p,∇·v) (2.12)
L ([q,v]) = (fp, q) + (fu,v) (2.13)

p = 0 on Γp, Weakly imposed (2.14)
n · u = 0 on Γu, Strongly imposed (2.15)

Notice that the boundary integral that appears after integration by parts of (∇p,v)
vanishes due to (2.14)-(2.15).

Variational Form III

Vp =
{
q ∈ H1(Ω)| q = 0 on Γp

}
, Vu = L2(Ω)

d

B ([p,u] , [q,v]) = µp (∂tp, q)− (u,∇q) + µu (∂tu,v) + (∇p,v) (2.16)
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L ([q,v]) = (fp, q) + (fu,v) (2.17)

p = 0 on Γp, Strongly imposed (2.18)
n · u = 0 on Γu, Weakly imposed (2.19)

Notice that the boundary integral that appears after integration by parts of (∇·u, q)
vanishes due to (2.18)-(2.19).

2.3 Stabilized Finite Element Methods

In this section, we present two stabilized FE methods, which we will denote by the acronyms
ASGS and OSS, aimed to overcome the instability problems of the standard Galerkin
method. In general, stabilized FE methods can be used with any type of interpolation
for p and u. In particular, we focus on equal and continuous interpolations for p and u
and therefore conforming FE spaces. For conciseness we will consider quasi-uniform FE
partitions of size h. For stabilized formulations in general non-uniform non-degenerate
cases, see [97].

Let Vp,h and Vu,h be the FE spaces to approximate p and u, respectively, with Vp,h ⊂ Vp
and Vu,h ⊂ Vu. Additionally, let us define Vh = Vp,h × Vu,h. For any of these spaces we
will make frequent use of the classical inverse inequality ‖∇vh‖ ≤ Cinvh

−1‖vh‖, with Cinv

a constant independent of the FE function vh and the mesh size h.

2.3.1 The Variational Multiscale Framework

It is not our purpose here to describe in detail the heuristic design of the stabilized finite
element methods we will consider, for which [90] can be consulted. We shall only sketch
the idea of how the method can be motivated.

Let us write the wave equation as

M∂tU + AU = F, (2.20)

where M is a diagonal matrix with entries µp, µu, U = [p,u] is the unknown, A is the
differential operator of the problem and F groups the forcing terms. The weak form of the
problem can now be written as

〈AU, V 〉 = B(U, V ) = (F, V ), (2.21)

where 〈·, ·〉 is an appropriate duality depending on the functional setting being chosen.
The idea of the Variational Multiscale (VMS) framework to approximate problem (2.21)

is as follows [89]. Let X be the space where U belongs, and consider X = Xh ⊕ X̃, where
Xh is a finite element approximation space and X̃ a complement to be specified. It can
be thought as the space where the components of U which cannot be reproduced by the
finite element mesh live. Functions Ũ ∈ X̃ will be called sub-grid scales or sub-scales. As
a first approximation, we assume that all terms involving Ũ evaluated on inter element
boundaries vanish.
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Using the splitting U = Uh + Ũ in (2.21), taking first the test function as Vh ∈ Xh and
then considering the test function in X̃ yields:

B(Uh, Vh) + 〈Ũ , A∗Vh〉 = (F, Vh), (2.22)

P̃ (M∂tŨ + AŨ) = P̃ (F −M∂tUh − AUh), (2.23)

where A∗ is the adjoint operator of A and P̃ stands for the L2 projection onto X̃. We shall
introduce now two approximations. The first is that P̃ (M∂tŨ) ≈ 0. This is not crucial,
and in fact it can be relaxed, yielding what we call dynamic sub-scales [98]. The second
approximation is to replace P̃A by a diagonal algebraic operator τ−1, with entries τ−1

p ,
τ−1
u . Using these approximations in (2.23) yields

Ũ = τ P̃ (F −M∂tUh − AUh).

When introduced in (2.22) we obtain the stabilized finite element method we were seeking.
When applied to our problem, this method will be of the form: Find a pair [ph,uh] ∈
C1([0, T ];Vh) satisfying the initial conditions ph(x, 0) = 0, uh(x, 0) = 0 and such that

Bs ([ph,uh] , [qh,vh]) = Ls ([qh,vh]) , (2.24)

for all test functions [qh,vh] ∈ C0 ([0, T ];Vh) such that qh(x, 0) = 0, vh(x, 0) = 0, where it
can be readily checked that the bilinear form Bs and the linear form Ls are given by

Bs ([ph,uh] , [qh,vh]) = B ([ph,uh] , [qh,vh]) + (P̃ (µp∂tph +∇·uh), τp∇·vh)
+ (P̃ (µu∂tuh +∇ph), τu∇qh),

Ls ([qh,vh]) = L ([qh,vh]) + (P̃ (fp), τp∇·vh) + (P̃ (fu), τu∇qh). (2.25)

Depending on the choice of X̃ or, equivalently, on the projection P̃ , different stabilized
methods arise. The two analyzed in this chapter are described in the following.

2.3.2 Algebraic Sub-Grid Scale Method (ASGS)

In this case we take X̃ as the space of finite element residuals, so that P̃ is the identity
when acting on those residuals. Thus, the problem consists in solving (2.24) with

Bs ([ph,uh] , [qh,vh]) = B ([ph,uh] , [qh,vh]) + (µp∂tph +∇·uh, τp∇·vh)
+ (µu∂tuh +∇ph, τu∇qh) , (2.26)

Ls ([qh,vh]) = L ([qh,vh]) + (fp, τp∇·vh) + (fu, τu∇qh) . (2.27)

2.3.3 Orthogonal Sub-scale Stabilization Method (OSS)

This method is an extension to the wave equation in mixed form of the method proposed
in [98, 99]. Space X̃ is taking as the orthogonal in the L2 sense to Xh. Thus, the problem
consists in solving problem (2.24) and taking the bilinear form Bs and the linear form Ls
as:

Bs ([ph,uh] , [qh,vh]) = B ([ph,uh] , [qh,vh]) +
(
P⊥p (∇·uh) , τp∇·vh

)
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+
(
P⊥u (∇ph) , τu∇qh

)
, (2.28)

Ls ([qh,vh]) = L ([qh,vh]) +
(
P⊥p (fp) , τp∇·vh

)
+
(
P⊥u (fu) , τu∇qh

)
, (2.29)

where P⊥p (·) = I(·) − Pp(·) and P⊥u (·) = I(·) − Pu(·), Pp(·) being the L2(Ω) projection on
Vp,h and Pu(·) the L2(Ω) projection on Vu,h. This in particular implies that Pp(·) = 0 on
Γp for variational forms I and III and that n · Pu(·) = 0 on Γu for variational forms I and
II.

From the implementation point of view, the terms P⊥p (∇·uh) and P⊥u (∇ph) obviously
imply an augmented stencil in the matrix of the final algebraic system of equations to be
solved. However, using iterative methods it is possible to deal with this without increasing
the memory storage and at a very low computation cost, as shown in [97]. In the time
discrete problem, it is also possible to approximate P⊥p (∇·unh) ≈ ∇·unh − Pp

(
∇·un−1

h

)
(and likewise for P⊥u (∇pnh)), where the superscript denotes the time step counter. Other
possibilities are discussed in [100], and a modified projection with lower sparsity is proposed
in [101]. In any case, the increase in computational effort because of the projections can
be made very low.

2.3.4 The Stabilization Parameters

An important component of stabilized formulations are the stabilization parameters. Fol-
lowing the motivation presented in Subsection 3.1, they appear when trying to approximate
P̃AŨ ≈ τ−1Ũ in a certain sense, which in our case is [∇·ũ,∇p̃] ≈ [τ−1

p p̃, τ−1
u ũ]. Again, the

details of the arguments for this approximation can be found in [90, 102], and here we will
only describe the essential ideas.

Consider equation (2.20). In general, the dimensions of the components of F are
heterogeneous. Let S be a positive-definite scaling matrix such that the product F tSF =:
|F |2S is dimensionally well defined. Within each element K of the finite element partition,
we assume that the Fourier transform of Ũ is dominated by wave numbers of the form
h−1k̃, with h the diameter of K and k̃ dimensionless and of order one. We may then
take the Fourier transform F of P̃AŨ and get F(P̃AŨ) = h−1S(k̃)F(Ũ), where S(k̃) is a
complex matrix.

Let ‖F‖K,S be the L2(K)-norm of |F |S. The way we propose to approximate P̃AŨ ≈
τ−1Ũ is to choose τ−1 such that ‖h−1S(k̃)F(Ũ)‖K,S = ‖τ−1Ũ‖K,S. This in particular can
be accomplished by imposing that the spectrum of h−1S(k̃)F(Ũ) and of τ−1Ũ with respect
to the scaling matrix S coincide. Choosing S as diagonal, with entries

Sp = µu`p, Su = µp`u,

with `p, `u length scales corresponding to p and u, respectively, it can be shown that

τp = Cτ

√
µu
µp
h

√
`p
`u
, τu = Cτ

√
µp
µu
h

√
`u
`p
, (2.30)

where Cτ is a dimensionless algorithmic constant that corresponds to the norm of S(k̃)
evaluated at a certain wave number k̃. See [90, 102] for the details of the derivation.



34 CHAPTER 2. STABILIZED FEM FOR THE MIXED WAVE EQUATION

Table 2.1: Stabilization Parameters Order and Length Scales Definition

Variational Form I II III
τp O(h) O(1) O(h2)
τu O(h) O(h2) O(1)
`p `p = `u L2

0/h h
`u `p = `u h L2

0/h

As it will be shown in the analysis to be presented, in order to mimic at the discrete
level the proper functional setting of the continuous problem the length scales `p and `u
should be taken as shown in Table 2.1, where L0 is a fixed length scale of the problem that
can be fixed a priori. The motivation for designing the stabilization parameters can be
found in [90, 91].

2.4 Stability Analysis

In this section, we state and prove stability for the ASGS and the OSS methods. Firstly,
we use the concept of Λ-Coercivity, which will aid us in the proof of stability and later in
the convergence analysis.

2.4.1 Λ-Coercivity

In this section, we state and prove Λ-coercivity in the same sense as in [103] for the ASGS
method and with some modifications for the OSS method. The results obtained apply to
any of the variational forms defined in (2.8)-(2.19). We only prove Λ-coercivity for the
variational form I (2.8)-(2.11) because variational forms II and III only differ in two of the
Galerkin terms, namely (∇ph,vh) and (∇·uh, qh). That difference makes the proof just
slightly different among the three variational forms. Therefore we only include the proof
for the variational form I.

In what follows, C denotes a positive constant, independent of µp, µu, `p and `u, but
which might depend on the computational domain Ω. In the discrete formulation C will be
independent of the mesh size h. The value of C may be different at different occurrences.
Additionally, we will use the notation A & B and A . B to indicate that A ≥ CB and
A ≤ CB respectively, where A and B are two quantities that might depend on the solution
or mesh size.

The previous methods are not coercive in the norms of interest. The well-posedness
is proved via an inf-sup condition. Let V be a normed space with norm | · |V and ζ :
V ×V −→ R a bilinear form. The inf-sup condition implies that ∀u ∈ V ∃ v ∈ V such that
ζ(u, v) & |u|V |v|V with |v|V . |u|V .

For the subsequent analysis we want to prove a more descriptive property than the
inf-sup condition. We will define an operator Λ : V −→ V such that ζ(u,Λ(u)) &
|u|V |Λ(u)|V ∀u ∈ V , with |Λ(u)|V . |u|V . This property has been defined as Λ-Coercivity
in [103]. It implies the inf-sup condition for a particular definition of norms but it also
provides additional information on how to choose a v such that the inf-sup condition holds.
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Definition 2.4.1. Let us define the following norm in C1([0, T ];Vh):

||| [qh,vh] |||2W,h := µp‖qh‖2
L∞(Υ,L2(Ω)) + µu‖vh‖2

L∞(Υ,L2(Ω))

+ τp‖µp∂tqh +∇·vh‖2
L2(Υ,L2(Ω)) + τu‖µu∂tvh +∇qh‖2

L2(Υ,L2(Ω)). (2.31)

The way the norm ||| · |||W,h is written and the spaces to which [ph,uh] belong allow us
to determine the expression of the length scales `p and `u. In particular, the terms that
contain ∇ph and ∇·uh are the ones that allow us to define the length scales. For instance,
in the case of Variational Form II, as ph ∈ L2(Ω), the term containing the ∇ph should
include a factor h2, that means we choose τu = O(h2). Following the same reasoning, for
∇·uh ∈ L2(Ω) we arrive to τp = O(1). In Table 2.1 we have summarized this reasoning
and extended it to the remaining variational forms.

Note that some of the results to be presented hold even in the case τp = 0, τu =
0. However, in this case the norm in (2.31) only contains L∞(Υ, L2(Ω)) norms, and
this is not enough to avoid point-to-point oscillations. This stability would be found in
most first-order-in-time problems using the standard Galerkin method, even if the spatial
approximation is completely unstable.

ASGS Method

Here we state and prove Λ-Coercivity for the ASGS method.

Lemma 2.4.1. (Weak Λ-Coercivity, ASGS) The bilinear form (2.26) satisfies

||| [qh,vh] |||2W,h .
∫ T

0

Bs ([qh,vh] ,Λ ([qh,vh])) dt ∀ [qh,vh] , (2.32)

where the norm ||| · |||W,h is defined in (2.31) and

Λ ([qh,vh]) := [qh + τpµp∂tqh,vh + τuµu∂tvh] . (2.33)

Proof. Let us test (2.26) with (2.33):

Bs ([qh,vh] ,Λ ([qh,vh]))

= (µp∂tqh +∇·vh, qh) + (µp∂tqh +∇·vh, τpµp∂tqh + τp∇·vh)
+ (µu∂tvh +∇qh,vh) + (µu∂tvh +∇qh, τuµu∂tvh + τu∇qh) (2.34)
+ (µp∂tqh +∇·vh, τp∇·(τuµu∂tvh)) + (µu∂tvh +∇qh, τu∇ (τpµp∂tqh)) ,

using the divergence theorem, recalling that qh(n ·vh) = 0 and ∂tqh∂t(n ·vh) = 0 on Γ due
to (2.4), we get:

Bs ([qh,vh] ,Λ ([qh,vh])) =
1

2
µp

d

dt
‖qh‖2 +

1

2
µu

d

dt
‖vh‖2 +

1

2
µpτpτu

d

dt
‖∇qh‖2

+
1

2
µuτpτu

d

dt
‖∇·vh‖2 + τp‖µp∂tqh +∇·vh‖2 + τu‖µu∂tvh +∇qh‖2, (2.35)

and integrating (2.35) from t = 0 up to any t = t∗ ≤ T we get:∫ t∗

0

Bs ([qh,vh] ,Λ ([qh,vh])) dt
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=
1

2
µp‖qh(t∗)‖2 +

1

2
µu‖vh(t∗)‖2 +

1

2
τpτuµp‖∇qh(t∗)‖2 +

1

2
τpτuµu‖∇·vh(t∗)‖2

+ τp

∫ t∗

0

‖µp∂tqh(t) +∇·vh(t)‖2 dt+ τu

∫ t∗

0

‖µu∂tvh(t) +∇qh(t)‖2 dt,

from where L∞(Υ, L2(Ω)) stability follows. Choosing t∗ = T we complete the proof.

OSS Method

Here we state and prove Λ-Coercivity for the OSS method. In this case we express Λ-
Coercivity in two norms: a weak norm defined in (2.31) and a stronger norm defined in
(2.42) below. The norm in (2.42) is stronger, since it provides full control over ∇ph and
∇·uh.

Lemma 2.4.2. (Weak Λ-Coercivity, OSS) The bilinear form (2.28) satisfies:

||| [qh,vh] |||2W,h .
∫ T

0

Bs ([qh,vh] ,Λ ([qh,vh])) dt ∀ [qh,vh] , (2.36)

where the norm ||| · |||W,h is defined in (2.31) and

Λ ([qh,vh]) = [qh,vh] +β [τp(µp∂tqh + Pp(∇·vh)), τu(µu∂tvh + Pu(∇qh))] , (2.37)

with a small enough β > 0.

Proof. Let us test (2.28) against Λa([qh,vh]) = [qh,vh]. Using the divergence theorem, the
boundary condition qh(n ·vh) = 0 and integrating from t = 0 to t = T , we can readily get:∫ T

0

Bs ([qh,vh] ,Λa ([qh,vh])) dt ≥ 1

2
µp‖qh‖2

L∞(L2) +
1

2
µu‖vh‖2

L∞(L2)

+ τp‖P⊥p (∇·vh) ‖2
L2(L2) + τu‖P⊥u (∇qh) ‖2

L2(L2). (2.38)

Now, let Λb([qh,vh]) =
[
τp(µp∂tqh + Pp (∇·vh)), τu(µu∂tvh +Pu (∇qh))

]
and let us test

(2.28) against Λb([qh,vh]):

Bs ([qh,vh] ,Λb ([qh,vh])) = (µp∂tqh +∇·vh, τp(µp∂tqh + Pp (∇·vh)))
+ (µu∂tvh +∇qh, τu(µu∂tvh + Pu (∇qh)))
+
(
P⊥p (∇·vh), τp∇·(τu(µu∂tvh + Pu (∇qh)))

)
+
(
P⊥u (∇qh), τu∇ (τp(µp∂tqh + Pp (∇·vh)))

)
. (2.39)

Using the Cauchy-Schwarz inequality, the inverse inequality, the fact that τpτu = C2
τh

2 and
Young’s inequality, we get:

Bs ([qh,vh] ,Λb ([qh,vh]))

≥ τp‖µp∂tqh + Pp (∇·vh) ‖2 + τu‖µu∂tvh + Pu (∇qh) ‖2

− 1

2α1

τp‖µp∂tqh + Pp (∇·vh) ‖2 − α1

2
C2
τC

2
invτu‖P⊥u (∇qh)‖2
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− 1

2α2

τu‖µu∂tvh + Pu (∇qh) ‖2 − α2

2
C2
τC

2
invτp‖P⊥p (∇·vh)‖2, (2.40)

for any α1, α2 > 0. Next, we integrate (2.40) in time from 0 to T and multiply it by a
positive constant β. The resulting inequality is added to (2.38). Taking β small enough
and αi large enough, we prove the lemma.

As was explained before, now we introduce a norm stronger than (2.31). Using this
norm we establish a new Λ-coercivity result.

Lemma 2.4.3. (Strong Λ-Coercivity, OSS) The bilinear form (2.28) satisfies:

||| [qh,vh] |||2S,h .
∫ T

0

Bs ([qh,vh] ,Λ1 ([qh,vh])) dt

+

∫ T

0

Bs ([∂tqh, ∂tvh] ,Λ2 ([qh,vh])) dt (2.41)

+ Bs ([qh,vh] ,Λ2 ([qh,vh]))
∣∣
t=0

,

∀ [qh,vh], where

||| [qh,vh] |||2S,h :=µp‖qh‖2
L∞(Υ,L2(Ω)) + µu‖vh‖2

L∞(Υ,L2(Ω))

+ τp‖∇·vh‖2
L2(Υ,L2(Ω)) + τu‖∇qh‖2

L2(Υ,L2(Ω)), (2.42)

and

Λ1 ([qh,vh]) = [qh + β1τpPp(∇·vh),vh + β1τuPu(∇qh)] , (2.43)
Λ2 ([qh,vh]) = β2 [∂tqh, ∂tvh] , (2.44)

with β1 > 0 small enough,

β2 = µpγp + µuγu, γp =
α

2
T

(
τp + τu

µu
µp

)
, γu =

α

2
T

(
τu + τp

µp
µu

)
, (2.45)

and α > 0 large enough.

Proof. Let us test (2.28) with (2.43):

Bs ([qh,vh] ,Λ1 ([qh,vh]))

= (µp∂tqh +∇·vh, qh + β1τpPp(∇·vh)) + (µu∂tvh +∇qh,vh + β1τuPu(∇qh))
+
(
P⊥p (∇·vh), τp∇·(vh + β1τuPu(∇qh))

)
+
(
P⊥u (∇qh), τu∇(qh + β1τpPp(∇·vh))

)
. (2.46)

Using the divergence theorem, the fact that qh(n · vh) = 0 on the boundary, the Cauchy-
Schwarz inequality, Young’s inequality and integrating in time from 0 to T , we readily
get: ∫ T

0

Bs ([qh,vh] ,Λ1 ([qh,vh])) dt ≥ 1

2
µp‖qh‖2

L∞(L2) +
1

2
µu‖vh‖2

L∞(L2)



38 CHAPTER 2. STABILIZED FEM FOR THE MIXED WAVE EQUATION

+ β3τp‖∇·vh‖2
L2(L2) −

α1

2
τp‖µp∂tqh‖2

L2(L2)

+ β3τu‖∇qh‖2
L2(L2) −

α1

2
τu‖µu∂tvh‖2

L2(L2), (2.47)

with

β3 = min

{
β1

(
1− β1

2α1

− β1C
2
τC

2
inv

2

)
,
1

2

}
. (2.48)

and β1 small enough, so that β3 is positive.
Now, let us take Λ2 as defined in (2.44). Using the fact that ∂tqh∂t(n · vh) = 0 on the

boundary and integrating in time, we get:∫ T

0

Bs ([∂tqh, ∂tvh] ,Λ2 ([qh,vh])) dt ≥ γp

(
‖µp∂tqh‖2

L∞(L2) − ‖µp∂tqh(0)‖2
)

+ γu

(
‖µu∂tvh‖2

L∞(L2) − ‖µu∂tvh(0)‖2
)
. (2.49)

Additionally, we take α large enough so that γp and γu are large enough and the combina-
tion of (2.47) and (2.49) results in a positive factor multiplying both ‖µp∂tqh‖L∞(L2) and
‖µu∂tuh‖L∞(L2).

Now, let us test (2.28) with (2.44) and evaluate it at t = 0:

Bs ([qh,vh] ,Λ2 ([qh,vh]))
∣∣
t=0

= (µp∂tqh(0) +∇·vh(0), β2∂tqh(0)) + (µu∂tvh(0) +∇qh(0), β2∂tvh(0))

+
(
P⊥p (∇·vh(0)), τp∇·(β2∂tvh(0))

)
+
(
P⊥u (∇qh(0)), τu∇(β2∂tqh(0))

)
. (2.50)

Noticing that ∇qh(0) = 0 and ∇·vh(0) = 0, we get:

Bs ([qh,vh] ,Λ2 ([qh,vh]))
∣∣
t=0
≥ 2γp‖µp∂tqh(0)‖2 + 2γu‖µu∂tvh(0)‖2. (2.51)

Combining (2.47), (2.49) and (2.51) the proof is complete.

2.4.2 Stability

Here, using the previous Λ-coercivity lemmata, we state and prove stability for the ASGS
and the OSS methods, i.e. we prove that the solution is bounded by the initial conditions
and forcing terms. The results obtained apply to any of the variational forms defined in
(2.8)-(2.19).

ASGS Method

In this section we define the external forces norm and prove stability for the ASGS method.

Theorem 2.4.1. (ASGS Stability) The solution [ph,uh] of (2.24) obtained with the ASGS
method (2.26) - (2.27) satisfies

||| [ph,uh] |||2W,h . ‖ [fp,fu] ‖2
W,h, (2.52)
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with the norm ||| · |||W,h defined in (2.31) and with

‖ [fp,fu] ‖2
W,h :=

1

µp
‖fp‖2

L1(Υ,L2(Ω)) +
1

µu
‖fu‖2

L1(Υ,L2(Ω))

+ τp‖fp‖2
L2(Υ,L2(Ω)) + τu‖fu‖2

L2(Υ,L2(Ω))

+ τpτuµu‖∂tfp‖2
L1(Υ,L2(Ω)) + τpτuµp‖∂tfu‖2

L1(Υ,L2(Ω))

+ τpτuµu‖fp‖2
L∞(Υ,L2(Ω)) + τpτuµp‖fu‖2

L∞(Υ,L2(Ω)). (2.53)

Proof. Using weak Λ-Coercivity for the ASGS method (2.32) and the definition of the
operator Λ in (2.33) we arrive to:

||| [ph,uh] |||2W,h .
∫ T

0

[
(fp, ph + τpµp∂tph) + τp (fp,∇·(uh + τuµu∂tuh))

+ (fu,uh + τuµu∂tuh) + τu (fu,∇ (ph + τpµp∂tph))
]

dt. (2.54)

Combining some terms and using Cauchy-Schwarz inequality, we get

||| [ph,uh] |||2W,h .
∫ T

0

[
‖fp‖‖ph‖+ τp‖fp‖‖µp∂tph +∇·uh‖

+ (fp, τpτuµu∇·∂tuh) + (fu, τpτuµp∇∂tph)

+ ‖fu‖‖uh‖+ τu‖fu‖‖µu∂tuh +∇ph‖
]

dt. (2.55)

Most of the terms of (2.55) are easy to bound, the only ones that require special treatment
are the ones containing ∇·∂tuh and ∇∂tph. Those terms can be bounded as:

(fp, τpτuµu∇·∂tuh) + (fu, τpτuµp∇∂tph)

= −
∫ T

0

(∂tfp, τpτuµu∇·uh) dt+ (fp (T ) , τpτuµu∇·uh (T ))

−
∫ T

0

(∂tfu, τpτuµp∇ph) dt+ (fu (T ) , τpτuµp∇ph (T ))

≤ α1

2
τpτuµu‖∂tfp‖2

L1(L2) +
1

2α1

τpτuµu‖∇·uh‖2
L∞(L2)

+
α2

2
τpτuµu‖fp‖2

L∞(L2) +
1

2α2

τpτuµu‖∇·uh‖2
L∞(L2)

+
α3

2
τpτuµp‖∂tfu‖2

L1(L2) +
1

2α3

τpτuµp‖∇ph‖2
L∞(L2)

+
α4

2
τpτuµp‖fu‖2

L∞(L2) +
1

2α4

τpτuµp‖∇ph‖2
L∞(L2). (2.56)

Finally, taking αi sufficiently large in (2.56) and replacing it in (2.55), it is easy to arrive
to (2.52), which is what we wanted to prove.

OSS Method

In this section we define the external forces norm and prove stability for the OSS method.
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Theorem 2.4.2. (Weak OSS Stability) The solution [ph,uh] of (2.24) obtained with the
OSS method (2.28)-(2.29) satisfies

||| [ph,uh] |||2W,h . ‖ [fp,fu] ‖2
W,h, (2.57)

with the norm ||| · |||W,h defined in (2.31) and with

‖ [fp,fu] ‖2
W,h :=

1

µp
‖fp‖2

L1(Υ,L2(Ω)) +
1

µu
‖fu‖2

L2(Υ,L2(Ω))

+ τp‖fp‖2
L2(Υ,L2(Ω)) + τu‖fu‖2

L2(Υ,L2(Ω)). (2.58)

Proof. Using the weak Λ-Coercivity for the OSS method (2.36) with Λ as in (2.37) we
arrive to:

||| [ph,uh] |||2W,h .
∫ T

0

[
(fp, ph + βτp (µp∂tph + Pp(∇·uh)))

+ (fu,uh + βτu (µu∂tuh + Pu(∇ph)))
+
(
P⊥p (fp), τp∇·(uh + βτu (µu∂tuh + Pu(∇ph)))

)
+
(
P⊥u (fu), τu∇ (ph + βτp (µp∂tph + Pp(∇·uh)))

) ]
dt

.
α1

2

1

µp
‖fp‖2

L1(L2) +
1

2α1

µp‖ph‖2
L∞(L2)

+
α2

2
τp‖fp‖2

L2(L2) +
β2

2α2

τp‖µp∂tph +∇·uh‖2
L2(L2)

+
α3

2

1

µu
‖fu‖2

L1(L2) +
1

2α3

µu‖uh‖2
L∞(L2)

+
α4

2
τu‖fu‖2

L2(L2) +
β2

2α4

τu‖µu∂tuh +∇ph‖2
L2(L2)

+
α5

2
τp‖P⊥p (fp)‖2

L2(L2) +
β2

2α5

τp‖P⊥p (∇·uh)‖2
L2(L2)

+
α6

2
τp‖P⊥p (fp)‖2

L2(L2) +
β2C2

τC
2
inv

2α6

τu‖µu∂tuh + Pu(∇ph)‖2
L2(L2)

+
α7

2
τu‖P⊥u (fu)‖2

L2(L2) +
β2

2α7

τu‖P⊥u (∇ph)‖2
L2(L2)

+
α8

2
τu‖P⊥u (fu)‖2

L2(L2) +
β2C2

τC
2
inv

2α8

τp‖µp∂tph + Pp(∇·uh)‖2
L2(L2).

We complete the proof choosing αi large enough.

Theorem 2.4.3. (Strong OSS Stability) The solution [ph,uh] of (2.24) obtained with the
OSS method (2.28)-(2.29) satisfies

||| [ph,uh] |||2S,h . ‖ [fp,fu] ‖2
S,h, (2.59)

with the norm ||| · |||S,h defined in (2.42) and with

‖ [fp,fu] ‖2
S :=

1

µp
‖fp‖2

L1(Υ,L2(Ω)) +
1

µu
‖fu‖2

L1(Υ,L2(Ω))
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+ τp‖fp‖2
L2(Υ,L2(Ω)) + τu‖fu‖2

L2(Υ,L2(Ω))

+ γp

(
‖∂tfp‖2

L1(Υ,L2(Ω)) + ‖fp(0)‖2
)

+ γu

(
‖∂tfu‖2

L1(Υ,L2(Ω)) + ‖fu(0)‖2
)

+
γu
µu
τp‖∂tfp‖2

L2(Υ,L2(Ω)) +
γp
µp
τu‖∂tfu‖2

L2(Υ,L2(Ω))

+ γuτp‖fp(0)‖+ γpτu‖fu(0)‖, (2.60)

and the parameters γp and γu are given in (2.45).

Proof. Using the strong Λ-Coercivity for the OSS method (2.41) and the definitions of Λi

from (2.43)-(2.44), we arrive to:

||| [ph,uh] |||2S,h .
∫ T

0

Ls (Λ1 ([ph,uh])) dt+

∫ T

0

Lt (Λ2 ([ph,uh])) dt

+ Ls (Λ2 ([ph,uh]))
∣∣
t=0
, (2.61)

where Lt is Ls with the time derivative of the forces. The first term of (2.61) can be written
and bounded as follows:∫ T

0

Ls (Λ1 ([ph,uh])) dt

=

∫ T

0

[
(fp, ph+β1τpPp(∇·uh)) + (fu,uh+β1τuPu(∇ph))

]
dt

+

∫ T

0

(
P⊥p (fp), τp∇·(uh + β1τuPu(∇ph))

)
dt

+

∫ T

0

(
P⊥u (fu), τu∇ (ph + β1τpPp(∇·uh))

)
dt

≤ α1

2

1

µp
‖fp‖2

L1(L2) +
( β2

1

2α2

+
1

2α5

+
β2

1C
2
τC

2
inv

2α8

)
τp‖∇·uh‖2

L2(L2)

+
α2 + α5 + α6

2
τp‖fp‖2

L2(L2) +
1

2α1

µp‖ph‖2
L∞(L2)

+
α3

2

1

µu
‖fu‖2

L1(L2) +
( β2

1

2α4

+
1

2α7

+
β2

1C
2
τC

2
inv

2α6

)
τu‖∇ph‖2

L2(L2)

+
α4 + α7 + α8

2
τu‖fu‖2

L2(L2) +
1

2α3

µu‖uh‖2
L∞(L2). (2.62)

The second term of (2.61) can be written and bounded as follows:∫ T

0

Lt (Λ2 ([ph,uh])) dt

=

∫ T

0

[
(∂tfp, β2∂tph) +

(
P⊥p (∂tfp), τp∇·(β2∂tuh)

) ]
dt

+

∫ T

0

[
(∂tfu, β2∂tuh) +

(
P⊥u (∂tfu), τu∇ (β2∂tph)

) ]
dt
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≤ α9γp‖∂tfp‖2
L1(L2) +

γp
α9

‖µp∂tph‖2
L∞(L2)

+
α10γu
µu

τp‖∂tfp‖2
L2(L2) +

γu
α10µu

τp‖P⊥p (∇·µu∂tuh)‖2
L2(L2)

+ α11γu‖∂tfu‖2
L1(L2) +

γu
α11

‖µu∂tuh‖2
L∞(L2)

+
α12γp
µp

τu‖∂tfu‖2
L2(L2) +

γp
α12µp

τu‖P⊥u (∇µp∂tph)‖2
L2(L2). (2.63)

The third term of (2.61) can be written and bounded as follows:

Ls (Λ2 ([ph,uh]))
∣∣
t=0

= (fp(0), β2∂tph(0)) + (fu(0), β2∂tuh(0))

+
(
P⊥p (fp(0)), τp∇·β2∂tuh(0)

)
+
(
P⊥u (fu(0)), τu∇β2∂tph(0)

)
≤ α13γp‖fp(0)‖2 +

γp
α13

‖µp∂tph(0)‖2 + α15γuτp‖fp(0)‖2

+ α14γu‖fu(0)‖2 +
γu
α14

‖µu∂tuh(0)‖2 + α16γpτu‖fu(0)‖2

+
γu
α15

τp‖P⊥p (∇·µu∂tuh)(0)‖2 +
γp
α16

τu‖P⊥u (∇µp∂tph)(0)‖2. (2.64)

Finally, combining (2.62), (2.63) and (2.64) and taking αi large enough, the proof is
complete.

Remark 2.4.1. From Theorems 4.5, 4.6 and 4.7, two conclusions can be drawn. First,
in the case of the weaker norm (2.31) both the ASGS and the OSS methods are stable, but
the latter requires less regularity on the forcing terms than the former. But, secondly, the
OSS method allows one to obtain convergence in the stronger norm (2.42) (at the expense
of more regularity on the forcing terms), and thus to control all the gradient of ph and all
the divergence of uh, not in combination with temporal derivatives.

2.5 Convergence Analysis
In this section we state and prove convergence of the stabilized finite element methods
proposed: ASGS and OSS. The results obtained apply to any of the variational forms
defined in (2.8)-(2.19). We only prove convergence for the variational form I because
variational forms II and III only differ in two of the Galerkin terms (∇ph,vh) and (∇·uh, qh)
with respect to the variational form I.

Let us define pI as the Pp projection of the exact solution p on Vp,h and uI as the Pu
projection of the exact solution u on Vu,h.

Lemma 2.5.1. (Optimality of Pp and Pu) Let Pp : Vp −→ Vp,h and Pu : Vu −→ Vu,h be two
projections defined as:

(Pp(q), χh) = (q, χh) ∀χh ∈ Vp,h, (2.65)
Pp(q) = 0 on Γp, (2.66)

(Pu(v),wh) = (v,wh) ∀wh ∈ Vu,h, (2.67)
n · Pu(v) = 0 on Γu. (2.68)
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Let k and l be the polynomial interpolation order for Vp,h and Vu,h respectively. Then, Pp
and Pu are optimal in L2(Ω) and H1(Ω). That is:

‖q − Pp(q)‖0 . hk+1|q|k+1, ‖q − Pp(q)‖1 . hk|q|k+1, (2.69)
‖v − Pu(v)‖0 . hl+1|v|l+1, ‖v − Pu(v)‖1 . hl|v|l+1. (2.70)

for smooth enough q ∈ Vp and v ∈ Vu.

Proof. Let Zp,h and Zu,h be the Scott-Zhang projection operators that satisfy the boundary
conditions of Vp and Vu, respectively [104]. By the definition of Pp in (2.65) we have:

(q − Pp(q), q − Pp(q)) = (q − Pp(q), q − Zp,h(q)) , (2.71)
‖q − Pp(q)‖ ≤ ‖q − Zp,h(q)‖ . hk+1|q|k+1. (2.72)

Now, let us consider the approximation error in the H1 norm:

‖q − Pp(q)‖1 ≤ ‖q − Zp,h(q)‖1 + ‖Zp,h(q)− Pp(q)‖1 (2.73)
≤ ‖q − Zp,h(q)‖1 + Cinvh

−1‖Zp,h(q)− Pp(q)‖0 (2.74)
≤ ‖q − Zp,h(q)‖1 + Cinvh

−1 (‖Zp,h(q)− q‖0 + ‖q − Pp(q)‖0) (2.75)
. hk|q|k+1, (2.76)

where we have used the inverse inequality. The proof for Pu is similar to the proof for Pp
and we omit it.

Let us define two types of error. The error of the approximate solution (obtained using
ASGS or OSS) with respect to the projected exact solution is defined as:

ep := ph − pI , eu := uh − uI , (2.77)

and the error of the exact solution with respect to the projected exact solution is defined
as:

εp := p− pI , εu := u− uI . (2.78)

Notice that [ep, eu] belongs to the FE space and [εp, εu] is orthogonal to the FE space
with respect to the L2(Ω) inner product. We shall make frequent use of this orthogonality
property.

Additionally, let us define the projection error in the H i (Ω) norm:

εi(p) = ||εp||Hi(Ω), εi(u) = ||εu||Hi(Ω), i = 0, 1. (2.79)

2.5.1 ASGS Method

Let us consider problem (2.24) with Bs and Ls defined in (2.26) and (2.27), respectively.
The approximate solution to that problem converges as stated in the following result:
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Theorem 2.5.1. (ASGS Convergence) Let [p,u] be the solution of the continuous problem
(2.7) and let [ph,uh] be the solution of the stabilized discrete problem (2.24) using the ASGS
method. Then

||| [p− ph,u− uh] |||W,h . EW (h) , (2.80)

with the norm ||| · |||W,h defined in (2.31) and

E2
W (h) :=µp‖εp‖2

L∞(Υ,L2(Ω)) + µu‖εu‖2
L∞(Υ,L2(Ω))

+ τp‖µp∂tεp‖2
L2(Υ,L2(Ω)) + τu‖µu∂tεu‖2

L2(Υ,L2(Ω))

+ µuτpτu‖µp∂tεp‖2
L∞(Υ,L2(Ω)) + µpτpτu‖µu∂tεu‖2

L∞(Υ,L2(Ω))

+ µuτpτu‖µp∂ttεp‖2
L1(Υ,L2(Ω)) + µpτpτu‖µu∂ttεu‖2

L1(Υ,L2(Ω))

+
1

τp
‖εp‖2

L2(Υ,L2(Ω)) +
1

τu
‖εu‖2

L2(Υ,L2(Ω))

+ τu‖∇εp‖2
L2(Υ,L2(Ω)) + τp‖∇·εu‖2

L2(Υ,L2(Ω))

+ µpτpτu‖∇εp‖2
L∞(Υ,L2(Ω)) + µuτpτu‖∇·εu‖2

L∞(Υ,L2(Ω))

+ µpτpτu‖∇∂tεp‖2
L1(Υ,L2(Ω)) + µuτpτu‖∇·∂tεu‖2

L1(Υ,L2(Ω)). (2.81)

Proof. Since the ASGS method is consistent (in the sense that the exact solution is solution
of the discrete problem) and using (2.32) with Λ given in (2.33) we have:

||| [ep, eu] |||2W,h .
∫ T

0

Bs ([ep, eu] ,Λ ([ep, eu])) dt =

∫ T

0

Bs ([εp, εu] ,Λ ([ep, eu])) dt

.
∫ T

0

(µp∂tεp, ep + τp (µp∂tep +∇·eu) + µuτpτu∇·∂teu) dt

+

∫ T

0

(µu∂tεu, eu + τu (µu∂teu +∇ep) + µpτpτu∇∂tep) dt

+

∫ T

0

(∇·εu, ep + τp (µp∂tep +∇·eu) + µuτpτu∇·∂teu) dt

+

∫ T

0

(∇εp, eu + τu (µu∂teu +∇ep) + µpτpτu∇∂tep) dt. (2.82)

Now we can bound ||| [ep, eu] |||W,h in terms of the projection error [εp, εu]. We will show
parts of the right hand side of (2.82) and how they are bounded. The first term of this
expression can be bounded as:∫ T

0

(µp∂tεp, ep + τp (µp∂tep +∇·eu) + µuτpτu∇·∂teu) dt

≤α1

2
τp‖µp∂tεp‖2

L2(L2) +
1

2α1

τp‖µp∂tep +∇·eu‖2
L2(L2)

+
α2

2
µuτpτu‖µp∂tεp‖2

L∞(L2) +
1

2α2

µuτpτu‖∇·eu‖2
L∞(L2)

+
α3

2
µuτpτu‖µp∂ttεp‖2

L1(L2) +
1

2α3

µuτpτu‖∇·eu‖2
L∞(L2). (2.83)
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The third term of (2.82) can be bounded as:∫ T

0

(∇·εu, ep + τp (µp∂tep +∇·eu) + µuτpτu∇·∂teu) dt

≤α4

2
τ−1
u ‖εu‖2

L2(L2) +
1

2α4

τu‖µu∂teu +∇ep‖2
L2(L2)

+
α5

2
τp‖∇·εu‖2

L2(L2) +
1

2α5

τp‖µp∂tep +∇·eu‖2
L2(L2)

+
α6

2
µuτpτu‖∇·εu‖2

L∞(L2) +
1

2α6

µuτpτu‖∇·eu‖2
L∞(L2)

+
α7

2
µuτpτu‖∇·∂tεu‖2

L1(L2) +
1

2α7

µuτpτu‖∇·eu‖2
L∞(L2). (2.84)

The second and fourth terms of (2.82) can be bounded similarly as the first and third
terms as shown in (2.83)-(2.84). Taking αi big enough, it follows that ||| [ep, eu] |||2W,h .
E2
W (h). Additionally, ||| [p− ph,u− uh] |||2W,h . ||| [ep, eu] |||2W,h + ||| [εp, εu] |||2W,h. Furthermore,

by definition ||| [εp, εu] |||2W,h . E2
W (h), which completes the proof.

The inequality ||| [εp, εu] |||2W,h . E2
W (h) is precisely the way of determining E2

W (h).

2.5.2 OSS Method

As we have defined two norms for the OSS method, one weaker than the other, we will
prove convergence in both, starting with the weaker one.

Theorem 2.5.2. (OSS Convergence in the weak norm) Let [p,u] be the solution of the
continuous problem (2.7) and let [ph,uh] be the solution of the stabilized discrete problem
(2.24) using the OSS method. Then

||| [p− ph,u− uh] |||W,h . EW (h) , (2.85)

with the norm ||| · |||W,h defined in (2.31) and

E2
W (h) :=µp‖εp‖2

L∞(Υ,L2(Ω)) + µu‖εu‖2
L∞(Υ,L2(Ω))

+ τp‖µp∂tεp‖2
L2(Υ,L2(Ω)) + τu‖µu∂tεu‖2

L2(Υ,L2(Ω))

+
1

τp
‖εp‖2

L2(Υ,L2(Ω)) +
1

τu
‖εu‖2

L2(Υ,L2(Ω))

+ τu‖∇εp‖2
L2(Υ,L2(Ω)) + τp‖∇·εu‖2

L2(Υ,L2(Ω)). (2.86)

Proof. Since the OSS method is consistent (in the sense that the exact solution is solution
of the discrete problem) because the OSS method uses the projections Pp and Pu, we can
use the weak Λ-coercivity of the OSS method (2.36) with Λ given in (2.37) and we get:

||| [ep, eu] |||2W,h .
∫ T

0

(µp∂tεp +∇·εu, ep + βτp (µp∂tep + Pp (∇·eu))) dt

+

∫ T

0

(µu∂tεu +∇εp, eu + βτu (µu∂teu + Pu (∇ep))) dt
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+

∫ T

0

(
τpP

⊥
p (∇·εu),∇·(eu + βτu (µu∂teu + Pu (∇ep)))

)
dt

+

∫ T

0

(
τuP

⊥
u (∇εp),∇ (ep + βτp (µp∂tep + Pp (∇·eu)))

)
dt. (2.87)

Now we can bound ||| [ep, eu] |||W,h in terms of the projection error [εp, εu]. We will show
parts of the right hand side of (2.87) and how they are bounded. The first term of this
expression can be bounded as:∫ T

0

(µp∂tεp +∇·εu, ep + βτp (µp∂tep + Pp (∇·eu))) dt

≤ α1

2
τp‖µp∂tεp + Pp(∇·εu)‖2

L2(L2) +
α2

2
τ−1
u ‖εu‖2

L2(L2) (2.88)

+
β2

2α1

τp‖µp∂tep + Pp(∇·eu)‖2
L2(L2) +

τu
2α2

‖µu∂teu + Pu(∇ep)‖2
L2(L2).

The third term of (2.87) can be bounded as:∫ T

0

(
τpP

⊥
p (∇·εu),∇·(eu + βτu (µu∂teu + Pu (∇ep)))

)
dt

≤ α3

2
τp‖P⊥p (∇·εu)‖2

L2(L2) +
1

2α3

τp‖P⊥p (∇·eu)‖2
L2(L2)

+
β2

2α3

τuC
2
τC

2
inv‖µu∂teu + Pu(∇ep)‖2

L2(L2). (2.89)

The second and fourth terms of (2.87) can be bounded similarly as we did for the first and
third terms in (2.88)-(2.89). Taking αi big enough, it follows that ||| [ep, eu] |||2W,h . E2

W (h).
Using the same reasoning as for the ASGS method, we complete the proof for the OSS
method.

Let us examine each term of E2
W,h from (2.86) with respect to ‖p−ph‖2

L∞(Υ,L2(Ω)) (or the
equivalent norm for u). The first and second terms are optimal for any of the variational
forms I, II and III (2.8)-(2.17). The third and fourth terms are at least optimal for I, II
or III. The fifth and seventh terms are quasi-optimal for I, optimal for II and sub-optimal
for III. The sixth and eighth terms are quasi-optimal for I, sub-optimal for II and optimal
for III. A similar analysis can be carried out for the error of ∇ph and ∇·uh. Results are
summarized in Table 2.2.

Now, let us examine the convergence of the OSS method in the strong norm (2.42).

Theorem 2.5.3. (OSS Convergence in the strong norm) Let [p,u] be the solution of the
continuous problem (2.7) and let [ph,uh] be the solution of the stabilized discrete problem
(2.24) using the OSS method. Then

||| [p− ph,u− uh] |||S,h . ES (h) , (2.90)

with the norm ||| · |||S,h defined in (2.42) and

E2
S(h) :=µp‖εp‖2

L∞(Υ,L2(Ω)) + µu‖εu‖2
L∞(Υ,L2(Ω))
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+ τu‖∇εp‖L2(Υ,L2(Ω)) + τp‖∇·εu‖L2(Υ,L2(Ω))

+ τp‖µp∂tεp‖2
L2(Υ,L2(Ω)) + τu‖µu∂tεu‖2

L2(Υ,L2(Ω))

+
1

τp
‖εp‖2

L2(Υ,L2(Ω)) +
1

τu
‖εu‖2

L2(Υ,L2(Ω))

+ γp‖µp∂ttεp +∇·∂tεu‖2
L1(Υ,L2(Ω)) + γu‖µu∂ttεu +∇∂tεp‖2

L1(Υ,L2(Ω))

+ β2τp‖∇·∂tεu‖2
L2(Υ,L2(Ω)) + β2τu‖∇∂tεp‖2

L2(Υ,L2(Ω))

+ γp‖µp∂tεp(0)‖2 + γu‖µu∂tεu(0)‖2. (2.91)

Proof. Since the OSS method is consistent (in the sense that the exact solution is solution
of the discrete problem) , using the strong Λ-coercivity (2.41) with Λi given in (2.43)-(2.44),
i = 1, 2, we get:

||| [ep, eu] |||2W,h .
∫ T

0

Bs ([εp, εu] ,Λ1 ([ep, eu])) dt

+

∫ T

0

Bs ([∂tεp, ∂tεu] ,Λ2 ([ep, eu])) dt

+ Bs ([εp, εu] ,Λ2 ([ep, eu]))
∣∣
t=0
. (2.92)

Now we can bound each term of (2.92) in terms of the interpolation error [εp, εu]. The first
term of (2.92) can be written as:∫ T

0

Bs ([εp, εu] ,Λ1 ([ep, eu])) dt =

∫ T

0

(µp∂tεp +∇·εu, ep + β1τpPp(∇·eu)) dt

+

∫ T

0

(µu∂tεu +∇εp, eu +β1τuPu(∇ep)) dt

+

∫ T

0

(
P⊥p (∇·εu), τp∇·(eu + β1τuPu(∇ep))

)
dt

+

∫ T

0

(
P⊥u (∇εp), τu∇(ep + β1τpPp(∇·eu))

)
dt. (2.93)

The first term (and similarly the second term) of (2.93) can be bounded as:∫ T

0

(µp∂tεp +∇·εu, ep + β1τpPp(∇·eu)) dt

≤α1

2
τ−1
u ‖εu‖2

L2(L2) +
1

2α1

τu‖∇ep‖2
L2(L2)

+
α2

2
τp‖µp∂tεp +∇·εu‖2

L2(L2) +
β2

1

2α2

τp‖∇·eu‖2
L2(L2). (2.94)

The third term (and similarly the fourth term) of (2.93) can be bounded as:∫ T

0

(
P⊥p (∇·εu), τp∇·(eu + β1τuPu(∇ep))

)
dt
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≤ α3

2
τp‖∇·εu‖2

L2(L2) +
1

2α3

τp‖∇·eu‖2
L2(L2) +

β2
1

2α3

C2
τC

2
invτu‖∇ep‖2

L2(L2). (2.95)

The second term of (2.92) can be written and bounded as:∫ T

0

Bs ([∂tεp, ∂tεu] ,Λ2 ([ep, eu])) dt

=

∫ T

0

[
(µp∂ttεp +∇·∂tεu, β2∂tep) + (µu∂ttεu +∇∂tεp, β2∂teu)

]
dt

+

∫ T

0

[ (
P⊥p (∇·∂tεu), τp∇·(β2∂teu)

)
+
(
P⊥u (∇∂tεp), τu∇(β2∂tep)

) ]
dt

≤α4

(
γp‖µp∂ttεp +∇·∂tεu‖2

L1(L2) + γu‖µu∂ttεu +∇∂tεp‖2
L1(L2)

)
+

1

α4

(
γp‖µp∂tep‖2

L∞(L2) + γu‖µu∂teu‖2
L∞(L2)

)
+
α5

2

(
β2τp‖∇·∂tεu‖2

L2(L2) + β2τu‖∇∂tεp‖2
L2(L2)

)
+

1

2α5

(
β2τp‖P⊥p (∇·∂teu)‖2

L2(L2) + β2τu‖P⊥u (∇∂tep)‖2
L2(L2)

)
. (2.96)

The third term of (2.92) can be written and bounded as:

Bs ([εp, εu] ,Λ2 ([ep, eu]))
∣∣
t=0

= (µp∂tεp(0) +∇·εu(0), β2∂tep(0)) + (µu∂tεu(0) +∇εp(0), β2∂teu(0))

+
(
P⊥p (∇·εu(0)), τp∇·(β2∂teu(0))

)
+
(
P⊥u (∇εp(0)), τu∇(β2∂tep(0))

)
≤ α6

2

(
γp‖µp∂tεp(0)‖2 + γu‖µu∂tεu(0)‖2

)
+

1

2α6

(
γp‖µp∂tep(0)‖2 + γu‖µu∂teu(0)‖2

)
. (2.97)

Combining all bounds (2.94) - (2.97) and taking αi big enough, it follows that ||| [ep, eu] |||2h
. E2

S(h). Using the same reasoning as for the ASGS method, we complete the proof for
the OSS method.

2.5.3 Accuracy of ASGS and OSS Methods

Let us define as k the order of p-interpolation and as l the order of u-interpolation.
Analyzing the a priori error estimates for the ASGS and the OSS methods from (2.80)
and (2.85) and assuming regular enough solutions we can summarize the convergence rates
of the formulations as shown in Table 2.2. When the convergence rate is the same as that
of the interpolation error we call it optimal, when the gap is 1/2 quasi-optimal and when
the gap is 1 suboptimal.

Now, let us just consider the OSS method and the error estimate in the strong norm
from (2.90). The convergence rates of each of the variational forms in the strong norm can
be summarized as shown in Table 2.3
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Table 2.2: Convergence rates according to the variational forms for the ASGS and OSS
methods in the weak norm

Variational Form I II III
||p− ph||L∞(Υ,L2(Ω)) hk+1/2 + hl+1/2 hk+1 + hl hk + hl+1

Quasi-optimal Suboptimal Suboptimal
||u− uh||L∞(Υ,L2(Ω)) hk+1/2 + hl+1/2 hk+1 + hl hk + hl+1

Quasi-optimal Suboptimal Suboptimal
||µu∂t(u− uh) +∇(p− ph)||L2(Υ,L2(Ω)) hk + hl hk + hl−1 hk + hl+1

Optimal Suboptimal Optimal
||µp∂t(p− ph) +∇·(u− uh)||L2(Υ,L2(Ω)) hk + hl hk+1 + hl hk−1 + hl

Optimal Optimal Suboptimal
k, l Optimal k = l k + 1 = l k = l + 1

Table 2.3: Convergence rates according to the variational forms for the OSS method in the
strong norm

Variational Form I II III
||∇(p− ph)||L2(Υ,L2(Ω)) hk + hl hk−1 + hl−1 hk + hl

Optimal Suboptimal Optimal
||∇·(u− uh)||L2(Υ,L2(Ω)) hk + hl hk + hl hk−1 + hl−1

Optimal Optimal Suboptimal
k, l Optimal k = l k = l k = l

2.5.4 Numerical Tests

Let us consider a two dimensional transient problem with analytical solution to investigate
the convergence properties of the stabilized FE formulations proposed. We take Ω as the
unit square (0, 1)× (0, 1), the time interval is taken as [0, 0.01], the physical properties are
taken as µp = 10.0 and µu = 10.0, and the forcing terms fp and fu are taken such that the
exact solution is:

p = sin(3πx) sin(3πy) sin(2πt), u = [p, p] . (2.98)

This exact solution is zero on the boundary Γ, so the boundary conditions of the problem
are satisfied. We denote as BC1 the imposition (weak or strong) of p = 0 on Γ. Additionally,
we denote as BC2 the imposition of n · u = 0 on Γ.

For the spatial discretization, we have used four uniform FE meshes with h = 0.010,
h = 0.005, h = 0.002 and h = 0.001. The elements used are P1 (three-node triangular
elements) and P2 (six-node triangular elements).

Fig. 2.1 shows the mesh for h = 0.10. The other meshes are isotropic refinements of
that one. Anisotropic meshes are not encompassed in the analysis presented. This would
require the use of the analysis techniques introduced in [97].

The stabilization parameters are computed with the algorithmic constant Cτ = 0.01
for P1 and with Cτ = 0.4 for P2. The characteristic domain length was taken as
L0 = d

√
meas(Ω) = 1. The time integration scheme is Crank-Nicolson with a time step
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Figure 2.1: Mesh Sample

Table 2.4: Experimental convergence rates for the ASGS method using P1/P1 interpola-
tion.

Variational Form I II III
Boundary Cond. BC1 BC2 min BC1 BC2 min BC1 BC2 min
||p− ph||L∞(Υ,L2(Ω)) 2.15 2.38 1.5 1.99 1.79 1 2.13 2.20 1
||u− uh||L∞(Υ,L2(Ω)) 2.19 2.09 1.5 1.43 1.59 1 1.84 1.79 1
||∇(p− ph)||L2(Υ,L2(Ω)) 1.03 1.18 1 0.99 0.84 0 1.04 1.07 1
||∇·(u− uh)||L2(Υ,L2(Ω)) 1.48 1.10 1 1.10 1.13 1 0.81 0.71 0

size of 10−5. We have used a very small time step to avoid any interference of the time
marching algorithm into the spatial error since we are only interested in this spatial error.
With that time step size the difference between the error of the scalar unknown in the
norm ||·||L∞(Υ,L2(Ω)) and the error in the same norm with a time step size twice as big
was less than 1% in the finest mesh. This of course depends on the time interval chosen
(T = 0.01), which has been taken small enough to avoid long term effects which would
require a carefully designed time integration scheme, but large enough to obtain significant
spatial errors.

In Tables 2.4 to 2.7 the experimental convergence rates for the ASGS and the OSS
methods are shown. BC1 and BC2 are the results obtained using BC1 and BC2 as
boundary conditions and min stands for the minimum expected convergence rate based on
theoretical analysis. All these numerical results match with the convergence rates predicted
theoretically, in the sense that the convergence rate is always at least as fast as the worst
predicted by the analysis. It would be perhaps possible to improve the convergence rates
obtained using some sort of duality arguments, although we have not pursued this in this
work (see [91]). It is noteworthy that the convergence rates for both the ASGS and the
OSS method are surprisingly similar, although the absolute errors are not. For example,
for BC1 and the Variational Form III using linear elements, the slope of the convergence
curve of ph in L∞(Υ, L2(Ω)) is 2.13 for both the ASGS and the OSS methods, but the
absolute errors are different. For h = 0.1, 0.05 and 0.025 the errors for the ASGS method
are 2.92 × 10−2, 6.60 × 10−3 and 1.38 × 10−3, respectively, whereas for the OSS method
these are 2.61× 10−2, 6.15× 10−3 and 1.36× 10−3.
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Table 2.5: Experimental convergence rates for the OSS method using P1/P1 interpolation.

Variational Form I II III
Boundary Cond. BC1 BC2 min BC1 BC2 min BC1 BC2 min
||p− ph||L∞(Υ,L2(Ω)) 2.16 2.43 1.5 1.99 1.79 1 2.13 2.20 1
||u− uh||L∞(Υ,L2(Ω)) 2.18 2.18 1.5 1.41 1.59 1 1.84 1.79 1
||∇(p− ph)||L2(Υ,L2(Ω)) 1.04 1.18 1 0.99 0.84 0 1.04 1.07 1
||∇·(u− uh)||L2(Υ,L2(Ω)) 1.48 1.10 1 1.10 1.13 1 0.81 0.71 0

Table 2.6: Experimental convergence rates for the ASGS method using P2/P2 interpola-
tion.

Variational Form I II III
Boundary Cond. BC1 BC2 min BC1 BC2 min BC1 BC2 min
||p− ph||L∞(Υ,L2(Ω)) 3.03 3.03 2.5 2.67 2.67 2 3.41 3.40 2
||u− uh||L∞(Υ,L2(Ω)) 3.01 3.01 2.5 2.50 2.54 2 2.76 2.76 2
||∇(p− ph)||L2(Υ,L2(Ω)) 2.06 2.07 2 1.79 1.79 1 2.54 2.54 2
||∇·(u− uh)||L2(Υ,L2(Ω)) 2.07 2.06 2 2.55 2.55 2 1.79 1.79 1

Table 2.7: Experimental convergence rates for the OSS method using P2/P2 interpolation.

Variational Form I II III
Boundary Cond. BC1 BC2 min BC1 BC2 min BC1 BC2 min
||p− ph||L∞(Υ,L2(Ω)) 3.03 3.02 2.5 2.66 2.66 2 3.30 3.29 2
||u− uh||L∞(Υ,L2(Ω)) 2.99 3.00 2.5 2.48 2.52 2 2.76 2.76 2
||∇(p− ph)||L2(Υ,L2(Ω)) 2.06 2.06 2 1.79 1.79 1 2.53 2.53 2
||∇·(u− uh)||L2(Υ,L2(Ω)) 2.06 2.06 2 2.55 2.54 2 1.79 1.79 1
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2.6 Conclusions
In the present work, we have presented two stabilized FE methods (ASGS and OSS) for the
wave equation in mixed form. Additionally, these stabilized methods have been applied to
three variational forms of the problem. We normally use the stabilized FE formulations for
equal interpolation of the unknowns, but the analysis is not restricted to that and allows
any continuous interpolation pair. Extension to discontinuous approximations would be
easy to analyze, but this would require the introduction of terms evaluated on the inter
element boundaries.

Length scales related to the unknowns were introduced in order to treat all variational
forms in a unified manner. The way length scales are computed is determined by the norm
|||·||| in order to have control over the gradient of the scalar unknown or the divergence of
the vector unknown if it is the case. Furthermore, length scales obviously influence the
stability and accuracy of the methods.

Stability was proven for both the ASGS and the OSS methods applied to the wave
equation in mixed form. According to those results, we have control over the L2-norm
of these unknowns. Moreover, depending on the variational form into consideration,
additional control over the gradient of the scalar unknown and/or over the divergence
of the vector unknown is attained, and therefore we can guarantee that no numerical
point-to-point oscillations will occur.

Theoretical convergence rates were found for both the ASGS and the OSS methods, and
for all the variational forms analyzed. Both stabilization methods exhibit at least the same
convergence properties based on theoretical analysis. Additionally, there is no numerical
evidence that the ASGS method has convergence superiority over the OSS method or vice-
versa. One interesting feature of the convergence analysis applied to the three variational
forms of the wave equation in mixed form is the guideline given to which variational form
to use. That said, for a balanced accuracy for both unknowns and equal interpolation,
variational form I is the best choice.



Chapter 3

A Sommerfeld non-reflecting boundary
condition for the wave equation in
mixed form

This chapter is based on the material in:
Hector Espinoza, Ramon Codina, and Santiago Badia. “A Sommerfeld non-reflecting
boundary condition for the wave equation in mixed form”. In: Computer Methods in
Applied Mechanics and Engineering 276 (July 2014), pp. 122–148. issn: 0045-7825. doi:
10.1016/j.cma.2014.03.015. url: http://www.sciencedirect.com/science/
article/pii/S0045782514001017
with the notation modified to make it fit with the other chapters. Some content is repeated
from Chapter 1 and Chapter 2 so it is self-contained.

In this chapter we develop numerical approximations of the wave equation in mixed
form supplemented with non-reflecting boundary conditions (NRBCs) of Sommerfeld-type
on artificial boundaries for truncated domains. We consider three different variational
forms for this problem, depending on the functional space for the solution, in particular,
in what refers to the regularity required on artificial boundaries. Then, stabilized finite el-
ement methods that can mimic these three functional settings are described. Stability and
convergence analyses of these stabilized formulations including the NRBC are presented.
Additionally, numerical convergence tests are evaluated for various polynomial interpola-
tions, stabilization methods and variational forms. Finally, several benchmark problems
are solved to determine the accuracy of these methods in 2D and 3D.

3.1 Introduction

Many engineering problems dealing with waves involve infinite domains. Usually, the
infinite domain is truncated for computational purposes and the wave problem is solved
in a finite domain [105, 106]. Non-reflecting boundaries (NRBs) have to be considered,
which must allow the waves to leave the truncated domain avoiding spurious reflections
that may pollute the solution in the interior of the computational domain of interest. There
are many types of NRBs, which can be classified into two groups, namely, Non-Reflecting
Boundary Conditions (NRBCs) and Non-Reflecting Boundary Layers (NRBLs). NRBCs
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are boundary conditions on the artificial boundary that absorb impinging waves. On the
other hand, NRBLs have the property of absorbing waves that are traveling inside the
layer.

NRBL techniques have been applied to the time-domain wave equation in irreducible
[35, 36, 107] and mixed form [42, 43, 51], and to the linearized Euler equations [108–
110]. Perhaps the most popular among the NRBL techniques is the Perfectly Matched
Layer (PML). The PML concept was developed by Berenger in 1994 for electromagnetic
scattering [34]. The idea is to add an absorbing layer to the domain designed to have zero
reflection for any plane wave and to make the solution decay exponentially inside the layer
[111].

A classical example of NRBC is the so-called Sommerfeld boundary (or radiation)
condition [11]. It relates the temporal derivative and the normal derivative of the unknown
in the case of boundaries far away from sources and normal to the propagating wave.
Thus, it is inexact for non-perpendicular wave incidence and boundaries close to sources,
and therefore it has to be understood as an approximate boundary condition to avoid
wave reflection in these cases. NRBCs have also been applied to the time-domain wave
equation in irreducible [16, 112–114] and mixed form [20], as well as for the linearized Euler
equations in [17, 20].

The error E introduced by a NRBC is the difference between the exact solution in the
unbounded domain and the solution in the truncated domain with the artificial boundary.
Let J be the order of the NRBC, R the distance of the artificial boundary to the wave
source, kt the tangential wave number and ω the wave angular frequency. The error E
introduced by a NRBC of order J [106] behaves as

E = O
(
k2
t

ω2

)J
= O

(
1

R2

)J
. (3.1)

For a fixed location of the artificial boundary, increasing the order J reduces the error
introduced by the NRBC. If the error approaches zero as J increases the NRBC is exact,
whereas if the error does not approach zero the NRBC is asymptotic [105].

Many NRBCs have been developed and can be classified as classical, exact non-local
and local high-order. Among classical NRBCs we have those proposed by Engquist-Majda
[14], Bayliss-Turkel [115] and Higdon [116]. Classical NRBCs appeared as an improvement
of Sommerfeld NRBC and can be high-order in theory, but in practice only low-order
versions are used because of the presence of high-order derivatives which are difficult to
handle numerically [111]. Among exact non-local NRBCs we have Dirichlet-to-Neumann
formulations [117] and the Difference Potential Method [118]. Exact non-local NRBCs
involve a boundary integral operator which couples all the points on the boundary [111].
Among local high-order NRBCs we have those due to Collino [119], Grote-Keller [23],
Rowley-Colonius [120], Guddati-Tassoulas [121], Givoli-Neta [16] and Hagstrom-Warburton
[122]. Local high-order NRBCs are high-order in theory and can be implemented up to
any desired order in practice, which can be achieved introducing auxiliary variables [111].

The wave equations can be posed in irreducible form, leading to a second-order (in space
and time) scalar partial differential equation. Many applications require the vector-valued
unknown of the problem, which can be computed by the solution of the irreducible form
plus a post-processing step, but leads to a poor approximation of it. In order to improve
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the convergence rate for the vector field, we can consider the problem as a first-order (in
space and time) hyperbolic system, that involves both the scalar and vector unknowns. The
wave equation in mixed form is in fact mandatory for some applications in solid mechanics
or in nonlinear waves in shallow waters.

The finite element (FE) approximation in space of this hyperbolic problem is not
straightforward, since its well-posedness relies on an inf-sup condition. Thus, Galerkin FE
schemes require mixed interpolations that satisfy a discrete version of this compatibility
condition [78]. Inf-sup stable FE formulations have been developed for several mixed
problems, e.g., [79] for the Stokes problem, [80] for the Darcy problem, [81] for the Maxwell
problem, [82, 83] for the Stokes-Darcy problem, [84] for the wave equation, and [85, 86] for
elastodynamics. As an alternative to inf-sup stable formulations, we can consider stabilized
FE formulations [90]. Stabilized FEs add new terms to the Galerkin formulation, which
provide the required stability for well-posedness (without the need to rely on a discrete
inf-sup condition) keeping optimal convergence properties. This way, we are able to use
equal interpolation for the scalar and vector unknowns of the wave equation in mixed form.

In this work, we develop novel stabilized FE formulations for wave scattering problems
on unbounded domains truncated via Sommerfeld-type boundary conditions as the simplest
example of NRBC. Our starting point is the formulation recently presented and analyzed
in [67]. It is a stabilized FE method with the important feature of allowing for different
functional settings. This is accomplished by transferring regularity from the scalar to the
vector unknowns or vice-versa [67] through an appropriate integration by parts and design
of the stabilization parameters. Summarizing, the main contributions are:

• Statement of the mixed form of the wave equation with Sommerfeld artificial bound-
ary conditions in three different functional settings. It is an extension of the work in
[67], in which the functional setting has to be properly modified in order to give sense
to the Sommerfeld terms; extra regularity is required on the artificial boundary for
the vector unknown. One of the resulting formulations has already been proposed
in [20], whereas the other two problem settings are new. We observe that the new
functional spaces are in fact complete.

• Extension of the stabilized FE formulations in [67] to deal with Sommerfeld boundary
conditions. We design stabilized FE formulations that can mimic the three functional
settings proposed at the continuous level. Stability and convergence results are
presented, and their proof is sketched. A set of numerical experiments is performed
to check the convergence of the formulations, as well as the error introduced by the
Sommerfeld boundary condition.

The organization of the chapter is as follows. In Section 3.2, we present the wave
equation in irreducible and mixed form and in time and frequency domain. Additionally,
we describe the Sommerfeld boundary condition applied to the wave equation. We also
propose three different functional settings for the time-domain wave problem in mixed form
truncated with Sommerfeld boundary conditions. In Section 3.3, we describe the spatial
discretization we propose, which is a stabilized FE method (in two different versions),
and show how to mimic the three functional settings by properly integrating by parts
and choosing the stabilization parameters. Section 3.4 is devoted to the stability and
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convergence analysis of these formulations, respectively. In all these sections, time is left
continuous, concentrating the exposition only in the spatial approximation. In Section 3.5
we carry out convergence tests and evaluate the performance of the NRBC through various
benchmark problems in 2D and 3D. Finally, we draw some conclusions in Section 3.6.

3.2 Problem statement
In this section, we state the wave equation in mixed form in time and frequency domain.
Further, we state the Sommerfeld artificial boundary conditions in both cases. The use
of Sommerfeld-type boundary conditions for the mixed form of the wave equation has
been used in [20] (without using this terminology). Waves are commonly found in many
physical phenomena such as acoustic and electromagnetic scattering, fluid dynamics, and
elastodynamics. To fix ideas, we will use the terminology of waves propagating in fluids,
although our approach is obviously general.

3.2.1 Wave equation in time and frequency domain

Waves can be described in time domain or frequency domain. In both cases, the problem
involves a spatial domain Ω ⊂ Rd, where d is the space dimension (d = 1, 2, 3). Let Γ
be its boundary and x ∈ Ω any spatial point. From hereafter, we will refer to vectors
in Rd simply as vectors. Further, we use the following convention: lower-case bold italic
letters represent vectors in Rd, and non-bold letters represent scalars. Both complex and
real numbers are used in this section. We implicitly assume real numbers unless otherwise
specified.

In the time domain, the problem is posed in Ξ := Ω×Υ, where t ∈ Υ := (0, T ) denotes
a time value. The long term behavior, i.e. T → ∞, will not be considered in this work.
The time-domain wave equation in its irreducible form reads as:

1

c2
∂ttp

′ −∆p′ = f ′, (3.2)

where p′(x, t) is the unknown (real-valued scalar function), f ′ is a forcing term and c is the
wave speed. Alternatively, we can consider the wave equation in mixed form:

µp∂tp
′ +∇·u′ = fp, (3.3)

µu∂tu
′ +∇p′ = fu, (3.4)

where the unknowns p′(x, t) and u′(x, t) are real-valued scalar and vector functions, re-
spectively, µp > 0 and µu > 0 are the physical parameters of the equation and [fp,fu]
are forcing terms. The coefficients µp and µu that characterize the mixed wave equation
(3.3)-(3.4) are related to the wave speed c appearing in irreducible form of the scalar wave
equation (3.2) as follows:

c2 = (µpµu)
−1 .

Time domain analysis solves the wave problem for the full range of frequencies involved.
The only limit for the frequencies captured at time-discrete level is the size of the time
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step used for the time discretization. Frequency domain analysis results from a Fourier
transform in time of the time-domain problem and solves the wave problem for one angular
frequency ω. In the irreducible case, it leads to the scalar Helmholtz equation:

∆p̂+ k2p̂ = f̂k, (3.5)

where p̂(x) is now the unknown (complex-valued scalar function), and k = ω/c is the
wavenumber corresponding to a certain angular frequency ω. As in the time domain case,
we can also make use of the Helmholtz equation in mixed form:

−iµpωp̂+∇·û = f̂p, (3.6)

−iµuωû+∇p̂ = f̂u, (3.7)

where p̂(x) and û(x) are complex unknowns, ω is the angular frequency, f̂p and f̂u are
forcing terms and i =

√
−1.

Notice that the number of unknowns in the wave equation in mixed form (both in the
time and frequency domain) is d+ 1 times the ones in irreducible form, but the regularity
requirements in space and time can be made less stringent for p′. In all cases, the wave
equation has to be supplemented with appropriate initial and boundary conditions. In the
case of the mixed form, boundary conditions also depend on the functional setting of the
problem.

3.2.2 Sommerfeld Boundary Condition

The Sommerfeld boundary condition is a type of NRBC, that takes its name from the
German theoretical physicist Arnold Sommerfeld, applicable when the sources are concen-
trated in a region of the space and the exterior boundary is a sphere surrounding it and
centered at the source region. Additionally, the spherical surface has to be far away from
the source, so that one can assume that the impinging waves only have radial compo-
nent when they reach the artificial boundary. In spherical coordinates and for the scalar
Helmholtz equation in 3D (frequency domain), the Sommerfeld radiation condition can be
expressed as:

lim
r→∞

(r (∂rp̂− ikp̂)) = 0,

where r is radial component in the spherical coordinate system and ∂r is the derivative
in the radial direction.1 In spherical coordinates and for the scalar wave equation in
irreducible form in 3D (time domain) the Sommerfeld radiation condition can be written
as:

lim
r→∞

(
r

(
∂rp
′ +

1

c
∂tp
′
))

= 0.

1Some authors write the Sommerfeld radiation condition with a + sign, but that depends on the time
variation assumption. In this work, we have assumed a harmonic time variation with harmonics of the
form e−iωt, which gives the minus sign.
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On the other hand, when considering the mixed form of these equations, the Sommerfeld
radiation condition can be written in two different ways:

lim
r→∞

(
r
(√

µp ∂rp
′ −√µu ∇·u′

))
= 0,

lim
r→∞

(
r
(√

µp ∂tp
′ −√µu ∂tu′r

))
= 0. (3.8)

In the frequency domain, these Sommerfeld boundary conditions lead to:

lim
r→∞

(
r
(√

µp ∂rp̂−
√
µu ∇·û

))
= 0,

lim
r→∞

(
r
(√

µp p̂−
√
µu ûr

))
= 0.

Condition (3.8) can be simplified taking out the temporal derivative, which yields

lim
r→∞

(
r
(√

µp p
′ −√µu u′r + C(x)

))
= 0.

C(x) is a time-independent function defined on Γ, which can be determined from initial
conditions. Assuming that√µp p′(x, 0)−√µu u′r(x, 0) = 0 holds on the artificial boundary,
we get C(x) = 0. It leads to the final expression

lim
r→∞

(
r
(√

µp p
′ −√µu u′r

))
= 0.

This Sommerfeld radiation condition is a limit for r →∞, and establishes a fast decay of√
µp p

′−√µu u′r. If R <∞, the approximation that we may consider is√µp p′−
√
µu u

′
r = 0

at r = R. Moreover, if the boundary is not a sphere, we may replace u′r by n ·u′, n being
the unit normal exterior to the boundary. Thus, we may consider the approximation

√
µp p

′ −√µu n · u′ = 0. (3.9)

Because of its simplicity, this is the boundary condition we propose to enforce on the
artificial boundary for the mixed wave equation in time domain. In the following sections,
we show that this boundary condition has good non-reflecting properties and is stable, in
spite of having been superseded in accuracy by high order NRBCs. The analysis of its
performance in combination with the FE method we propose is the subject of this chapter.

3.2.3 Initial and Boundary Value Problem

Let us split Γ into three disjoint sets denoted as Γp, Γu and Γo. The scalar unknown p is
enforced on Γp, the normal trace of the vector unknown γnu on Γu (γn denotes the normal
trace operator), and the NRBC we wish to analyze on Γo (the artificial boundary). The
problem consists in finding p : Ξ −→ R and u : Ξ −→ Rd such that:

µp∂tp+∇·u = fp , (3.10)
µu∂tu+∇p = fu , (3.11)

with the initial conditions

p(x, 0) = 0, u (x, 0) = 0, (3.12)
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and with the boundary conditions

p = 0 on Γp, γnu := n · u = 0 on Γu, µ
1
2
p p = µ

1
2
uγnu on Γo. (3.13)

Let us define two auxiliary variables denoted as κp and κu defined as:

κp :=

(
µp
µu

) 1
2

, κu :=

(
µu
µp

) 1
2

.

Let Ψ be a generic spatial domain, i.e., Ω or Γ or part of them. Let L2(Ψ) be the
space of square integrable functions defined on Ψ, and L2(Ψ)

d the space of vector functions
with components in L2(Ψ). H1(Ψ) is the space of functions in L2(Ψ) with derivatives in
L2(Ψ), H(div,Ψ) the space of vector functions with components and divergence in L2(Ψ).
Any of the spaces defined previously will be denoted generically as X. Additionally, for
an arbitrary functional space X, its norm will be denoted as ||·||X. In the case of L2(Ω)

or L2(Ω)
d, the L2-norm will simply be denoted as ||·|| and the L2-inner-product as (· , ·).

Furthermore, the space of functions whose X-norm is Cr continuous in the time interval Υ
will be denoted by Cr(Υ; X). (We will only be interested in the cases r = 0 and r = 1.)
Functions whose X-norm is Lp in Υ will be denoted by Lp(Υ; X).

Furthermore, let Vp, Vu be the functional spaces associated with p and u, respectively.
These spaces will be defined afterwards because they depend on the functional setting.
Additionally, let us define V := Vp × Vu and L := L2(Ω)× L2(Ω)

d.
Problem (3.10)-(3.11) with appropriate initial and boundary conditions will be stated

for

p ∈ C1
(
Υ;L2(Ω)

)
∩ C0

(
Υ;Vp

)
,

u ∈ C1
(
Υ;L2(Ω)

d) ∩ C0
(
Υ;Vu

)
,

with fp and fu in regular enough spaces.

3.2.4 Internal energy and power flux

Let us multiply (3.10) against p, (3.11) against u, add the resulting equations and integrate
over Ω. Applying the divergence theorem, we get the energy balance equation:

1

2
µp

d

dt
||p||2 +

1

2
µu

d

dt
||u||2 = −

∫
Γ

n · pu dΓ + (fp, p) + (fu,u) .

The total internal energy E is defined as:

E :=
1

2

(
µp||p||2 + µu||u||2

)
,

which contains the potential energy 1
2
µp||p||2 and the kinetic energy 1

2
µu||u||2. The energy

per unit time, i.e. the power added through the boundary, is defined as:

Pb := −
∫

Γ

n · pu dΓ,
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whereas the power of the external forces is defined as:

Pf := (fp, p) + (fu,u) .

The power flux (energy per unit time per unit surface) at any given point of the boundary
is n · pu. The Sommerfeld boundary condition prescribed on Γo is the one that ensures
that energy always flows out of the boundary because n ·pu ≥ 0 everywhere at any instant
of time, i.e., Pb ≤ 0. It makes the problem well-posed, since the solution is bounded by
the data. With these definitions we can write the energy balance equation as:

dE

dt
= Pb + Pf . (3.14)

Our interest in equation (3.14) relies in the fact that it represents the power balance of the
system and it reveals the interaction of the forces and boundaries with the domain.

3.2.5 Variational Problem

The variational form of problem (3.10)-(3.13) can be expressed in three different ways.
Each one requires a certain regularity on the unknowns p and u, which amounts to say
that p and u should belong to a particular space of functions. In all cases the problem
reads: find [p,u] ∈ C1 (Υ;L) ∩ C0 (Υ;V ) such that

B ([p,u] , [q,v]) = L ([q,v]) , (3.15)

for all test functions [q,v] ∈ V and the respective initial conditions. The bilinear form B,
the linear form L and the space V are defined in three different ways depending on the
variational form into consideration. For simplicity, we will assume that the forcing terms
fp and fu are square integrable, although we could relax this regularity requirement and
assume they belong to the dual space of Vp and Vu, respectively.

The three different variational formulations of problem (3.10)-(3.13) essentially differ in
the way integration-by-parts from the strong form of the problem is performed and in the
regularity required for the unknowns. In the problem statement given below, variational
form I (3.16)-(3.20) is obtained without integrating by parts any term. Thus, boundary
conditions on both scalar and vector quantities have to be imposed strongly. Pressures
in H1(Ω) have well-defined traces in L2(Γ), and the pressure boundary condition on Γp
has sense. The velocity space H(div,Ω) does not have a continuous γn operator onto
L2(Γ). Thus, in order for the Sommerfeld condition p = κuγnu to have sense in L2(Ω)
(which is required for p ∈ H1(Ω)), we consider a more regular velocity space, viz., the
space of H(div,Ω) with normal traces in L2(Ω). We can easily check that the resulting
bilinear/linear forms in (3.16)-(3.17) are continuous in this functional setting.

The introduction of the NRBC motivated a slight modification of the functional frame-
work and working norms with respect to Chapter 2. The modifications are reflected below.

Variational Form I

Vp =
{
q ∈ H1(Ω)| q = 0 on Γp

}
,
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Vu =
{
v ∈ H(div,Ω)| γnv = 0 on Γu and γnv ∈ L2(Γo)

}
,

B ([p,u] , [q,v]) = µp (∂tp, q) + (∇·u, q) + µu (∂tu,v) + (∇p,v) , (3.16)
L ([q,v]) = (fp, q) + (fu,v) , (3.17)

p = 0 on Γp, strongly imposed, (3.18)
γnu = 0 on Γu, strongly imposed, (3.19)

µ
1
2
p p = µ

1
2
uγnu on Γo, strongly imposed. (3.20)

The variational form II (3.21)-(3.25) is obtained integrating by parts the term (∇p,v),
and using the Sommerfeld condition (3.9) on Γo:

(∇p,v) = −(p,∇·v) +

∫
Γo

γnvp = −(p,∇·v) + κu

∫
Γo

γnuγnv.

The boundary integral on Γp∪Γu vanishes due to (3.23)-(3.24) below; the pressure condition
on Γp is weakly enforced and the velocity condition on Γu is strongly enforced. In this case,
pressures only need to be in L2(Ω), whereas velocities should belong to the same space as
in the previous variational form. We observe that the normal trace γn of velocity functions
have to be in L2(Γo) in order to give sense to the Sommerfeld term on Γo. In this functional
setting, the bilinear/linear forms (3.21)-(3.22) are continuous. 2

Variational Form II

Vp = L2(Ω),

Vu =
{
v ∈ H(div,Ω)| γnv = 0 on Γu and γnv ∈ L2(Γo)

}
,

B ([p,u] , [q,v]) = µp (∂tp, q) + (∇·u, q) + µu (∂tu,v)− (p,∇·v) + κu

∫
Γo

γnvγnu dΓ,

(3.21)
L ([q,v]) = (fp, q) + (fu,v) , (3.22)

p = 0 on Γp, weakly imposed, (3.23)
γnu = 0 on Γu, strongly imposed, (3.24)

µ
1
2
p p = µ

1
2
uγnu on Γo, weakly imposed. (3.25)

Finally, the variational form III (3.26)-(3.30) is obtained integrating by parts the term
(∇·u, q) and proceeding analogously on the boundary:

(∇·u, q) = −(u,∇q) +

∫
Γo

γnuq = −(u,∇q) + κp

∫
Γo

pq.

2This formulation has already been proposed in [20], but the functional setting was incorrect; only
H(div,Ω) regularity was assumed for the vector unknowns and the Sommerfeld terms were ill-posed. In
any case, the authors explicitly say that this is not the goal of their paper.
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In this case, the velocity condition on Γu is weakly enforced, whereas the pressure condition
on Γp is strongly enforced. The functional setting in this third case is standard.

Variational Form III

Vp =
{
q ∈ H1(Ω)| q = 0 on Γp

}
, Vu = L2(Ω)

d
,

B ([p,u] , [q,v]) = µp (∂tp, q)− (u,∇q) + µu (∂tu,v) + (∇p,v) + κp

∫
Γo

pq dΓ, (3.26)

L ([q,v]) = (fp, q) + (fu,v) , (3.27)

p = 0 on Γp, strongly imposed, (3.28)
γnu = 0 on Γu, weakly imposed, (3.29)

µ
1
2
p p = µ

1
2
uγnu on Γo, weakly imposed. (3.30)

Let us note that the Sommerfeld condition on Γo is strongly enforced for the first
variational form, whereas it is weakly enforced in the other two cases. On the other hand,
the introduction of the Sommerfeld boundary conditions requires a more regular functional
setting (see [67] for comparison).

Notice the way we have defined Vu for variational forms I and II. When we move from
the continuous level to the discrete level we have to ensure the spaces we are working with
are complete. The completeness of Vu is proved in the following lemma. A similar result
with a similar proof but involving u ∈ H(curl,Ω) and u×n ∈ L2(Γ) can be found in [123,
p. 69, p. 84].

Lemma 3.2.1. (Completeness of Vu) The space Vu for the variational forms I and II is
complete when it is endowed with the following norm:

|||u|||2Vu :=
1

L2
0

||u||2 + ||∇·u||2 +
1

L0

||γnu||2L2(Γo). (3.31)

Proof. Let {un} be a Cauchy sequence in Vu. Since H(div,Ω) is complete, un −→ w in
H(div,Ω). Additionally, γnun −→ v in L2(Γo) since L2(Γo) is complete. Furthermore,
γnun −→ γnw in H−1/2(Γ) since the normal trace operator γn goes from H(div,Ω) to
H−1/2(Γ). Since the limits must be the same, we conclude that γnw = v in L2(Γo) and
therefore Vu is complete.

3.3 Stabilized Finite Element Methods
In this section, we present two stabilized FE methods, which we will denote by the acronyms
ASGS and OSS, aimed to overcome the instability problems of the standard Galerkin
method. In general, the stabilized FE methods we propose can be used with any type of
continuous interpolation for p and u. In particular, we focus on equal order continuous
interpolations. For conciseness, we consider quasi-uniform FE partitions of size h. For
stabilized formulations in general non-uniform non-degenerate cases, see [97].
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Let Vp,h and Vu,h be the FE spaces to approximate p and u, respectively, with Vp,h ⊂ Vp
and Vu,h ⊂ Vu. Additionally, let us define Vh = Vp,h × Vu,h. For any of these spaces we
will make frequent use of the classical inverse inequality ‖∇vh‖ ≤ Cinvh

−1‖vh‖, with Cinv

a constant independent of the FE function vh and the mesh size h.
Stabilized FE methods deal with the following problem: Find a pair [ph,uh] ∈ C1(Υ;Vh)

satisfying the initial conditions ph(x, 0) = 0, uh(x, 0) = 0 and such that

Bs ([ph,uh] , [qh,vh]) = Ls ([qh,vh]) , (3.32)

for all test functions [qh,vh] ∈ Vh, where the bilinear form Bs and the linear form Ls include
the Galerkin terms and additional stabilization terms. Depending on how the stabilization
part is designed, a different stabilization method arises. Below, we propose two different
types of methods, namely ASGS and OSS. The stabilization terms depend on the choice
of the so-called stabilization parameters τp and τu.

3.3.1 Algebraic Sub-Grid Scale (ASGS) method

The ASGS-type stabilization was originally proposed in [87, 89]. The ASGS stabilization
terms have the same expression for the three variational forms introduced above. For the
wave equation in mixed form, the ASGS stabilized problem (3.32) is obtained by taking
Bs and Ls as:

Bs ([ph,uh] , [qh,vh]) = B ([ph,uh] , [qh,vh])

+ (µp∂tph +∇·uh, τp∇·vh) + (µu∂tuh +∇ph, τu∇qh) , (3.33)
Ls ([qh,vh]) = L ([qh,vh]) + (fp, τp∇·vh) + (fu, τu∇qh) . (3.34)

It consists in subtracting to the Galerkin terms the integral of the residual of the equation
times the adjoint of the spatial differential operator and a stabilization parameter. (τu, τp)
are the stabilization parameters, which will be different for every variational formulation.
The additional terms provide stability without harming consistency and a priori error
estimates.

3.3.2 Orthogonal Sub-scale Stabilization (OSS) method

The OSS stabilization technique was designed in [98, 99]. Instead of considering the whole
residual (as in ASGS), it only includes quantities that provide stabilization. However, since
it would spoil accuracy, the FE projection of these quantities is subtracted, recovering
optimal convergence. It consists in solving problem (3.32) taking Bs and Ls as:

Bs ([ph,uh] , [qh,vh]) = B ([ph,uh] , [qh,vh])

+
(
P⊥p (∇·uh) , τp∇·vh

)
+
(
P⊥u (∇ph) , τu∇qh

)
, (3.35)

Ls ([qh,vh]) = L ([qh,vh]) +
(
P⊥p (fp) , τp∇·vh

)
+
(
P⊥u (fu) , τu∇qh

)
, (3.36)

where P⊥p (·) = I(·) − Pp(·) and P⊥u (·) = I(·) − Pu(·), Pp(·) being the L2(Ω) projection on
Vp,h and Pu(·) the L2(Ω) projection on Vu,h. This in particular implies that Pp(·) = 0 on
Γp for variational forms I and III and that n · Pu(·) = 0 on Γu for variational forms I and
II.
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Table 3.1: Stabilization Parameters Order and Length Scales Definition

Variational Form I II III
τp O(h) O(1) O(h2)
τu O(h) O(h2) O(1)
`p `p = `u L2

0/h h
`u `p = `u h L2

0/h

3.3.3 The stabilization parameters

An important component of stabilized formulations are the stabilization parameters. In
our case, we compute them in all formulations as:

τp = Cτ

√
µu
µp
h

√
`p
`u
, τu = Cτ

√
µp
µu
h

√
`u
`p
, (3.37)

where Cτ is a dimensionless algorithmic constant and `p, `u are length scales corresponding
to p and u respectively. As it was shown in the analysis presented in [67], in order to mimic
at the discrete level the proper functional setting of the continuous problem, the length
scales `p and `u should be taken as shown in Table 3.1, where L0 is a fixed length scale
of the problem that can be fixed a priori. The motivation for designing the stabilization
parameters can be found in [90, 91].

3.4 Numerical analysis

3.4.1 Stability analysis

In this section, we present stability results for the ASGS and the OSS methods. We use
the concept of Λ-coercivity, originally introduced in [103], which aids us in the proof of
stability and convergence analyses. The proofs of the stability lemmata and theorems are
very similar to the proofs shown in [67], the only difference being the new terms on Γo, due
to the Sommerfeld artificial boundary condition. Since these terms have required a more
regular functional setting than the one in [67], the working norms now contain the new
terms κp||qh||2L2(Υ,L2(Γo)) and κu||γnvh||

2
L2(Υ,L2(Γo)). These working norms are defined next:

Definition 3.4.1 (Working norms). Let

|||[qh,vh]|||20,h := µp||qh||2L∞(Υ;L2(Ω)) + µu||vh||2L∞(Υ;L2(Ω))

+ (1 + σ)κp||qh||2L2(Υ,L2(Γo)) + (1− σ)κu||γnvh||2L2(Υ,L2(Γo)),

with σ = 0,−1, 1 for variational forms I, II and III, respectively. We define:
i) Weak norm:

|||[qh,vh]|||2W,h := |||[qh,vh]|||20,h + τp||µp∂tqh +∇·vh||2L2(Υ;L2(Ω))

+ τu||µu∂tvh +∇qh||2L2(Υ;L2(Ω)). (3.38)
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ii) Strong norm:

|||[qh,vh]|||2S,h := |||[qh,vh]|||20,h + τp||∇·vh||2L2(Υ,L2(Ω)) + τu||∇qh||2L2(Υ,L2(Ω)). (3.39)

We state a first stability result in the form of Λ-coercivity. This concept is used here
in the same sense as in [67, 103] for the ASGS and OSS methods. The results obtained
apply to any of the variational forms, defined in (3.16), (3.21), and (3.26).

In what follows, C denotes a positive constant, independent of µp, µu, `p and `u. In
the discrete formulation C will be independent of the mesh size h. The value of C may be
different at different occurrences. Additionally, we will use the notation A & B and A . B
to indicate that A ≥ CB and A ≤ CB respectively, where A and B are two quantities that
might depend on the solution or mesh size.

The ASGS and OSS methods are not coercive in the norms of interest and therefore their
well-posedness needs to be proved via an inf-sup condition. For the subsequent analysis
we use a more descriptive property than the inf-sup condition. This property has been
defined as Λ-coercivity in [103].

Definition 3.4.2 (Λ-coercivity). Let V be a normed space and ζ : V × V −→ R a
bilinear form. ζ is Λ-coercive if we can define a continuous operator Λ : V −→ V, i.e.,
‖Λ(u)‖V . ‖u‖V ∀u ∈ V, such that

ζ(u,Λ(u)) & ‖u‖V‖Λ(u)‖V ∀u ∈ V .

Let us recall that the inf-sup condition for ζ implies that ∀u ∈ V ∃ v ∈ V such that
ζ(u, v) & ‖u‖V‖v‖V with ‖v‖V . ‖u‖V . Thus, Λ-coercivity implies the inf-sup condition
for a particular definition of norms but it is stronger, since it also provides a continuous
operator Λ that for every function u in V gives a function v = Λ(u) such that the inf-sup
condition holds.

In the case of the OSS method we can state Λ-coercivity in two norms: the weak norm
defined in (3.38) and the strong norm defined in (3.39); ASGS stability can only be proved
with the weak norm. The norm in (3.39) is stronger, since it provides full control over
∇ph and ∇·uh. The proof is just a slight modification of the one in [67] to account for
the boundary terms and we omit it. We detail the expressions of Λ that allow us to prove
Λ-coercivity because they in fact provide information about the stabilization mechanism
of every method.

Lemma 3.4.1 (Λ-coercivity). Both the ASGS and the OSS methods are Λ-coercive in the
norm defined in (3.38), i.e., their associated bilinear form satisfies

|||[qh,vh]|||2W,h .
∫

Υ

Bs ([qh,vh] ,Λ ([qh,vh])) dt ∀ [qh,vh] ,

whit the following choices of Λ(·):

i) ASGS method:
Λ ([qh,vh]) := [qh + τpµp∂tqh,vh + τuµu∂tvh] ,

ii) OSS method:

Λ ([qh,vh]) := [qh,vh] + β
[
τp(µp∂tqh + Pp(∇·vh)), τu(µu∂tvh + Pu(∇qh))

]
,



66 CHAPTER 3. NRBC FOR THE MIXED WAVE EQUATION

with a small enough β > 0. Moreover, the OSS method is also Λ-coercive in the norm
defined in (3.39), i.e., its bilinear form satisfies

|||[qh,vh]|||2S,h .
∫

Υ

Bs ([qh,vh] ,Λ1 ([qh,vh])) dt+

∫
Υ

Bs ([∂tqh, ∂tvh] ,Λ2 ([qh,vh])) dt

+ Bs ([qh,vh] ,Λ2 ([qh,vh]))
∣∣
t=0

,

for all [qh,vh], where

Λ1 ([qh,vh]) = [qh + β1τpPp(∇·vh),vh + β1τuPu(∇qh)] ,
Λ2 ([qh,vh]) = β2 [∂tqh, ∂tvh] ,

with β1 > 0 small enough, β2 = µpγp + µuγu,

γp =
α

2
T

(
τp + τu

µu
µp

)
, γu =

α

2
T

(
τu + τp

µp
µu

)
, (3.40)

and α > 0 large enough.

Now, we state stability of the ASGS and the OSS methods. The results obtained apply
to any of the variational forms defined in (3.16)-(3.30). We start defining the norms in
which the external forces need to be bounded in order to obtain stability. Again, it provides
information about the behavior of the two formulations considered and, obviously, the
regularity requirements on the data in order to have well-posedness.

Definition 3.4.3 (External Forces Norms). Let us consider the following norms of the
data:

i) External forces weak norm for the OSS method:

||[fp,fu]||2W-OSS,h :=
1

µp
||fp||2L1(Υ,L2(Ω)) +

1

µu
||fu||2L1(Υ,L2(Ω))

+ τp||fp||2L2(Υ,L2(Ω)) + τu||fu||2L2(Υ,L2(Ω)). (3.41)

ii) External forces weak norm for the ASGS method:

||[fp,fu]||2W-ASGS,h :=||[fp,fu]||2W-OSS,h

+ τpτuµu||∂tfp||2L1(Υ,L2(Ω)) + τpτuµp||∂tfu||2L1(Υ,L2(Ω))

+ τpτuµu||fp||2L∞(Υ,L2(Ω)) + τpτuµp||fu||2L∞(Υ,L2(Ω)). (3.42)

iii) External forces strong norm for the OSS method:

||[fp,fu]||2S-OSS,h :=||[fp,fu]||2W-OSS,h + γp

(
||∂tfp||2L1(Υ,L2(Ω)) + ||fp(0)||2

)
+ γu

(
||∂tfu||2L1(Υ,L2(Ω)) + ||fu(0)||2

)
+ β2τp||∂tfp||2L2(Υ,L2(Ω)) + β2τu||∂tfu||2L2(Υ,L2(Ω)), (3.43)

with γp and γu given in (3.40).
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Next, we state the stability properties of the different methods. Their proof is very
similar to the ones in [67], the only modification being the boundary terms arising from
the Sommerfeld boundary condition.

Theorem 3.4.1 (Stability). The solution [ph,uh] of the ASGS-stabilized FE formulation
(3.32) with (3.33)-(3.34) satisfies

|||[ph,uh]|||2W,h . ||[fp,fu]||
2
W-ASGS,h, (3.44)

with the norms defined in (3.38) and (3.42). On the other hand, the solution of the OSS-
stabilized FE formulation (3.32) with (3.35)-(3.36) satisfies

|||[ph,uh]|||2W,h . ||[fp,fu]||
2
W-OSS,h, (3.45)

with the (weak) norms defined in (3.38) and (3.41), as well as

|||[ph,uh]|||2S,h . ||[fp,fu]||
2
S-OSS,h, (3.46)

with the (strong) norms defined in (3.39) and (3.43).

3.4.2 Convergence Analysis

In this section we present convergence results for the stabilized FE methods proposed.
The results obtained apply to any of the variational forms defined in (3.16)-(3.30). Once
again, the proof is omitted because it is very similar to the proofs presented in [67], the
only difference being the treatment of the boundary terms arising from the Sommerfeld
condition. The way to deal with them is shown in the following lemma.

Let us define pI as the Pp projection of the exact solution p on Vp,h and uI as the Pu
projection of the exact solution u on Vu,h. This projection, which, contrary to the classical
L2 projection, incorporates boundary conditions, turns out to be optimal:

Lemma 3.4.2 (Optimality of Pp and Pu,h). Let Pp : Vp −→ Vp,h and Pu : Vu −→ Vu,h be
two projections defined as:

(Pp(q), χh) = (q, χh) ∀χh ∈ Vp,h, Pp(q) = 0 on Γp,

(Pu(v),wh) = (v,wh) ∀wh ∈ Vu,h, n · Pu(v) = 0 on Γu.

Let k and l be the polynomial interpolation order for Vp,h and Vu,h respectively. Then, Pp
and Pu are optimal in L2(Ω), H1(Ω) and L2(Γ), that is to say:

||q − Pp(q)||L2(Ω) . hk+1|q|Hk+1(Ω), ||v − Pu(v)||L2(Ω) . hl+1|v|Hl+1(Ω),

||q − Pp(q)||H1(Ω) . hk|q|Hk+1(Ω), ||v − Pu(v)||H1(Ω) . hl|v|Hl+1(Ω),

||q − Pp(q)||L2(Γ) . hk+ 1
2 |q|

Hk+ 1
2 (Γ)

, ||γnv − γnPu(v)||L2(Γ) . hl+
1
2 |v|

Hl+ 1
2 (Γ)

,

for smooth enough q ∈ Vp and v ∈ Vu.

Proof. The proof follows the one in [67]. The additional ingredient is the error estimate
for the boundary terms, whose proof is a straightforward consequence of the classical
interpolation estimates for traces of functions on boundaries. Note that Pp(q) = q on Γp
and γnPu(v) = γnv on Γu.
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Let us define two types of error functions. The error of the approximate solution
(obtained using the ASGS or the OSS methods) with respect to the projected exact solution
is defined as:

ep := ph − pI , eu := uh − uI ,

whereas the error of the exact solution with respect to the projected exact solution is
defined as:

εp := p− pI , εu := u− uI .

Notice that [ep, eu] belongs to the FE space and [εp, εu] is orthogonal to the FE space with
respect to the L2(Ω) inner product.

Definition 3.4.4 (Error Functions). Let us define the following error functions:

i) OSS weak error function:

E2
W-OSS(h) :=µp||εp||2L∞(Υ,L2(Ω)) + µu||εu||2L∞(Υ,L2(Ω))

+ τu||∇εp||2L2(Υ,L2(Ω)) + τp||∇·εu||2L2(Υ,L2(Ω))

+ τp||µp∂tεp||2L2(Υ,L2(Ω)) + τu||µu∂tεu||2L2(Υ,L2(Ω))

+
1

τp
||εp||2L2(Υ,L2(Ω)) +

1

τu
||εu||2L2(Υ,L2(Ω))

+ (1 + σ)κp||εp||2L2(Υ,L2(Γo)) + (1− σ)κu||γnεu||2L2(Υ,L2(Γo)). (3.47)

ii) ASGS error function:

E2
W-ASGS(h) :=E2

W-OSS(h)

+ µuτpτu||µp∂tεp||2L∞(Υ,L2(Ω)) + µpτpτu||µu∂tεu||2L∞(Υ,L2(Ω))

+ µuτpτu||µp∂ttεp||2L1(Υ,L2(Ω)) + µpτpτu||µu∂ttεu||2L1(Υ,L2(Ω))

+ µpτpτu||∇εp||2L∞(Υ,L2(Ω)) + µuτpτu||∇·εu||2L∞(Υ,L2(Ω))

+ µpτpτu||∇∂tεp||2L1(Υ,L2(Ω)) + µuτpτu||∇·∂tεu||2L1(Υ,L2(Ω)). (3.48)

iii) OSS strong error function:

E2
S-OSS(h) :=E2

W-OSS(h)

+ γp||µp∂ttεp +∇·∂tεu||2L1(Υ,L2(Ω)) + γu||µu∂ttεu +∇∂tεp||2L1(Υ,L2(Ω))

+ β2τp||∇·∂tεu||2L2(Υ,L2(Ω)) + β2τu||∇∂tεp||2L2(Υ,L2(Ω))

+ γp||µp∂tεp(0)||2 + γu||µu∂tεu(0)||2. (3.49)

The following theorem shows that the previous error functions are in fact the upper
bounds for the error of the methods we consider. The proof follows the same lines as in
[67].
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Table 3.2: Convergence rates according to the variational forms for the ASGS and OSS
methods in the weak norm

Variational Form I II III
||p− ph||L∞(Υ,L2(Ω)) hk+1/2 + hl+1/2 hk+1/2 + hl hk + hl+1/2

Quasi-optimal Suboptimal Suboptimal
||u− uh||L∞(Υ,L2(Ω)) hk+1/2 + hl+1/2 hk+1/2 + hl hk + hl+1/2

Quasi-optimal Suboptimal Suboptimal
||µu∂t(u− uh) +∇(p− ph)||L2(Υ,L2(Ω)) hk + hl hk−1/2 + hl−1 hk + hl+1/2

Optimal Suboptimal Optimal
||µp∂t(p− ph) +∇·(u− uh)||L2(Υ,L2(Ω)) hk + hl hk+1/2 + hl hk−1 + hl−1/2

Optimal Optimal Suboptimal
k, l Optimal k = l k + 1/2 = l k = l + 1/2

Theorem 3.4.2 (Convergence). Let [p,u] be the solution of the continuous problem (3.15)
and let [ph,uh] be the solution of the stabilized discrete problem (3.32). For the ASGS
formulation (3.33)-(3.34), the discrete solution satisfies the following error estimate:

|||[p− ph,u− uh]|||W,h . EW-ASGS (h) , (3.50)

with the norm defined in (3.38) and the error function (3.48). On the other hand, the OSS
formulation (3.35)-(3.36) satisfies

|||[p− ph,u− uh]|||W,h . EW-OSS (h) , (3.51)

with the norm defined in (3.38) and the error function (3.47), as well as

|||[p− ph,u− uh]|||S,h . ES-OSS (h) , (3.52)

with the norm (3.39) and the error function (3.49).

3.4.3 Accuracy of ASGS and OSS Methods

Let k be the order of p-interpolation and l the order of u-interpolation. Analyzing the
a priori error estimates for the ASGS and the OSS methods from (3.50) and (3.51)
and assuming regular enough solutions, we can summarize the convergence rates of the
formulations as shown in Table 3.2. Further, the OSS method also satisfies the error
estimate in the strong norm (3.52), summarized in Table 3.3. We stress the fact that the
convergence rates do depend on the choice of the stabilization parameters, and different
convergence orders are obtained for the three discrete variational formulations above. We
note that the introduction of Sommerfeld artificial boundary conditions does not spoil the
convergence rates in [67].
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Table 3.3: Convergence rates according to the variational forms for the OSS method in the
strong norm

Variational Form I II III
||∇(p− ph)||L2(Υ,L2(Ω)) hk + hl hk−1 + hl−1 hk + hl

Optimal Suboptimal Optimal
||∇·(u− uh)||L2(Υ,L2(Ω)) hk + hl hk + hl hk−1 + hl−1

Optimal Optimal Suboptimal
k, l Optimal k = l k = l k = l

3.5 Numerical experiments
In this section we perform numerical experiments with the finite element formulations
presented. First, in Section 3.5.1, we test convergence in h. To achieve that, we choose an
analytical solution that satisfies the boundary conditions. This experiment shows the
convergence of the discrete solution to the analytical solution. The intention of this
experiment is just to check the convergence in h of the stabilization methods for all
variational forms. Additionally, the intention is not to evaluate the accuracy of the NRBC
because that is done later on in Section 3.5.2.

Then, in Section 3.5.2, we evaluate the accuracy of the NRBC. The main objective is
to evaluate how good is the NRBC compared to the solution obtained in an unbounded
domain. As the NRBC is not exact, we show that the error of the discrete solution using the
NRBC with respect to the solution in the unbounded domain does not approach zero as we
refine the mesh. This is the error introduced by the NRBC. Additionally, in Section 3.5.2,
we evaluate the error as a function of the NRBC location.

3.5.1 Convergence tests

Let us consider a two-dimensional transient problem with analytical solution to investigate
the convergence properties of the stabilized FE formulations proposed. We take Ω =
(0, 1)× (0, 1), the time interval [0, 0.01], physical properties µp = 10.0 and µu = 10.0, and
the forcing terms fp and fu such that the exact solution is:

p = sin
(3

2
πx
)

sin(3πy) sin(2πt), u = [p, p] .

We impose p = 0 on x = 0, y = 0 and y = 1. The NRBC is imposed on x = 1.
For the spatial discretization, we have used four uniform FE meshes with h = 0.010,

h = 0.005, h = 0.002 and h = 0.001. The elements used are P1 (three-node triangular
elements) and P2 (six-node triangular elements). Fig. 3.1 shows the mesh for h = 0.10.
The other meshes are isotropic refinements of that one.

The stabilization parameters are computed with the algorithmic constant Cτ = 0.01
for P1 elements and with Cτ = 0.4 for P2 elements. The characteristic domain length was
taken as L0 = d

√
meas(Ω) = 1. The time integration scheme is Crank-Nicolson with a time

step size of 10−5. We have used a very small time step to avoid any interference of the
time marching algorithm into the spatial error since we are only interested in the spatial
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Figure 3.1: Mesh Sample

Table 3.4: Experimental convergence rates for the ASGS method using P1/P1 interpola-
tion.

Variational Form I II III
Boundary Cond. Num Min Num Min Num Min
||p− ph||L∞(Υ,L2(Ω)) 2.01 1.5 1.97 1 1.98 1
||u− uh||L∞(Υ,L2(Ω)) 2.01 1.5 1.99 1 2.01 1
||∇(p− ph)||L2(Υ,L2(Ω)) 1.00 1 1.00 0 1.00 1
||∇·(u− uh)||L2(Υ,L2(Ω)) 1.00 1 1.00 1 1.00 0

error. With that time step size, the difference between the error of the scalar unknown in
the norm ||·||L∞(Υ,L2(Ω)) and the error in the same norm with a time step size twice as big
was less than 1% in the finest mesh.

In Tables 3.4 to 3.7 the experimental convergence rates for the ASGS and the OSS
methods are shown. In the tables, the word Num stands for the numerical result and
the word Min stands for the minimum expected convergence rate based on theoretical
analysis. All these numerical results match or are better than the convergence rates
predicted theoretically.

3.5.2 NRB Performance Evaluation

Many benchmark problems have been devised in order to evaluate the performance of
NRBC and NRBL formulations. Some procedures compare an analytical solution with
the numerical solution in the truncated domain using the NRB, e.g., Problems 1 and 2 in

Table 3.5: Experimental convergence rates for the OSS method using P1/P1 interpolation.

Variational Form I II III
Boundary Cond. Num Min Num Min Num Min
||p− ph||L∞(Υ,L2(Ω)) 2.01 1.5 1.97 1 1.98 1
||u− uh||L∞(Υ,L2(Ω)) 2.01 1.5 1.99 1 2.01 1
||∇(p− ph)||L2(Υ,L2(Ω)) 1.00 1 1.00 0 1.00 1
||∇·(u− uh)||L2(Υ,L2(Ω)) 1.00 1 1.00 1 1.00 0
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Table 3.6: Experimental convergence rates for the ASGS method using P2/P2 interpola-
tion.

Variational Form I II III
Boundary Cond. Num Min Num Min Num Min
||p− ph||L∞(Υ,L2(Ω)) 3.04 2.5 2.67 2 3.41 2
||u− uh||L∞(Υ,L2(Ω)) 3.01 2.5 2.62 2 2.77 2
||∇(p− ph)||L2(Υ,L2(Ω)) 2.07 2 1.78 1 2.56 2
||∇·(u− uh)||L2(Υ,L2(Ω)) 2.08 2 2.57 2 1.78 1

Table 3.7: Experimental convergence rates for the OSS method using P2/P2 interpolation.

Variational Form I II III
Boundary Cond. Num Min Num Min Num Min
||p− ph||L∞(Υ,L2(Ω)) 3.00 2.5 2.64 2 3.17 2
||u− uh||L∞(Υ,L2(Ω)) 3.00 2.5 2.48 2 2.75 2
||∇(p− ph)||L2(Υ,L2(Ω)) 2.06 2 1.78 1 2.54 2
||∇·(u− uh)||L2(Υ,L2(Ω)) 2.06 2 2.53 2 1.78 1

Category 3 of [52]. Other examples are the Parts 1, 2 and 3 of Problem 3 in Category 1 of
[53]. Other procedures involve solving the problem in a truncated domain and in a bigger
domain, and compare the solution of the big domain restricted to the truncated domain
with the solution obtained in the truncated domain with the NRB [17, 42].

Benchmark problem with analytical solution

Let us consider Problem 1-Category 3 proposed in [52]. This problem has also appeared
in [110]. The 2D (d = 2) spatial domain is taken as Ω = (−100, 100) × (−100, 100) The
physical parameters are taken as µu = 1, µp = 1. In all the boundary Γ of the domain
NRBCs are imposed. In the references mentioned, the problem is solved with a Mach
number (M, 0) (mean flow in the x direction). In this work we have considered the non-
convected wave equation and therefore we take M = 0 (zero mean flow). The simulation
time is T = 150. The time step is taken as 1.0 and the time integration scheme used is
BDF2. The initial condition is:

p = exp

[
−(ln 2)

(
x2 + y2

δ2
a

)]
, u1 = 0, u2 = 0,

where δa = 20 is the radius of the acoustic pulse. The problem consists in finding the
unknowns at various instants of time.

Let α1 = ln 2
δ2
a

and η =
√
x2 + y2. The exact solution is:

p =
1

2α1

∫ ∞
0

e
−ξ2
4α1 cos(ξt)J0(ξη)ξ dξ,
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Figure 3.2: Contours of ph for the benchmark problem with analytical solution (ASGS
method, VF I, h = 5)

-0.15
-0.05
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95
1.05

Figure 3.3: Contours of the exact p for the benchmark problem with analytical solution

u1 =
x

2α1η

∫ ∞
0

e
−ξ2
4α1 sin(ξt)J1(ξη)ξ dξ,

u2 =
y

2α1η

∫ ∞
0

e
−ξ2
4α1 sin(ξt)J1(ξη)ξ dξ,

where Jα are the Bessel functions of first kind of order α.
The mesh used to solve the problem was a structured mesh of various element sizes,

ranging from h = 20 (10 elements per direction) to h = 2 (100 elements per direction).
Fig. 3.2 shows the contours of the discrete solution ph at t = 0, t = 50 and t = 150,
computed using variational form I (VF I) and the ASGS method on the mesh with h = 5.
Fig. 3.3 shows the contours of the exact solution p at t = 0, 50 and 150. These figures
are only intended to illustrate the type of solution of this problem and how the numerical
solution behaves. Approximate solutions obtained with other variational forms or with the
OSS method are qualitatively very similar.

Fig. 3.4 shows a cut along y = 0 from x = 0 to x = 100 of ph, and compares it with the
analytical solution at t = 50, 100 and 150. Fig. 3.5 shows a cut along x = y from (x, y) = 0
to (x, y) = (100, 100) of ph and compares it with the analytical solution at the same time
instants. Once again, the discrete solution corresponds to the ASGS method, VF I and
h = 5.

In Table 3.8 the results obtained are shown for various mesh sizes, polynomial in-
terpolations, stabilization methods and variational forms. The error is computed as the
L∞(Υ, L2(Ω))-norm of the numerical solution respect to the exact solution and it is normal-
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Figure 3.4: Cut at y = 0 of p for the benchmark problem with analytical solution (ASGS
method, VF I, h = 5, Q1 elements, Cτ = 0.05). Results shown at t = 50, 100 and 150.
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Figure 3.5: Cut at x = y of p for the benchmark problem with analytical solution (ASGS
method, VF I, h = 5, Q1 elements, Cτ = 0.05). Results shown at t = 50, 100 and 150.

ized by the L∞(Υ, L2(Ω))-norm of the exact solution. For VF II and III, the characteristic
length is taken as L0 = 100. The algorithmic constant is taken as Cτ = 0.05 for linear
elements and Cτ = 0.1 for quadratic elements in 2D and Cτ = 0.1 for linear elements in
3D. We have found experimentally that these values yield good results, and are the values
used in all the examples. Note that in all cases the error behaves as expected. When the
error does not decrease as the mesh is refined or the polynomial order is increased, it is
because of the error introduced by the NRBC.

Table 3.8: Error of the NRBC for the benchmark problem with analytical solution

h Element Method VF Error in p Error in u
20 Q1 ASGS I 0.2166 0.2571
20 Q2 ASGS I 0.1120 0.1398
5 Q1 ASGS I 0.0385 0.0894
5 Q2 ASGS I 0.0379 0.0903
2 Q1 ASGS I 0.0383 0.0912
2 Q2 ASGS I 0.0384 0.0916
5 Q1 ASGS II 0.0439 0.0934
5 Q1 ASGS III 0.0443 0.0935
5 Q1 OSS I 0.0386 0.0897
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Figure 3.6: Contours of ph in the small domain for the big/small domain benchmark
problem in 2D. From the left to the right: t = 8, t = 16 and t = 24.

Big/small domain benchmark problem in 2D

A very interesting NRB performance test appeared in [17]. Using SI units throughout, the
problem proposed is defined on a square domain of side 10 000 centered at the origin of
coordinates and divided into 100× 100 Q1 elements, with the NRB condition on the four
sides. The reference state properties are density ρ0 = 1.2, pressure p0 = 1.01 × 105 and
heat capacity ratio γ = 1.4. We take µp = 1

γp0
, µu = ρ0 and the initial condition is

p(x, 0) =

{
0.01 p0 cos

(
πr
2R

)
if r < R,

0 otherwise,

with R = 1 000 and r =
√
x2 + y2. The simulation time is T = 24.

For comparison, a reference solution is obtained in a bigger domain, namely, a square
of side 30 000 with the region of interest in its center. The boundary condition used in the
big domain is p = 0 everywhere. The big domain is discretized with a mesh of 300 × 300
Q1 elements.

Let us denote as [ph,uh] the solution in the small domain and as [pR,h,uR,h] the solution
in the big domain. The error is computed as:

ep =

max
t

√√√√ N∑
n=1

(pR,h(xn, t)− ph(xn, t))2

max
t

√√√√ N∑
n=1

(pR,h(xn, t))
2

−1

, (3.53)

where N is the number of nodes of the problem in the small domain, with coordinates xn,
n = 1, ..., N . The error for the x-component and y-component of u (eu and ev, respectively)
is computed similarly.

To get an qualitative impression of the type of solution we are looking for and how the
NRBC behaves, Fig. 3.6 shows the contours of ph in the small domain at t = 0, 8 and
16, whereas Fig. 3.7 shows the contours of pR,h in the same region and at the same time
instants. As in the previous example, these solutions have been computed using VF I and
the ASGS method.

Fig. 3.8 shows a cut at y = 0 for 0 ≤ x ≤ 5000 of ph and compares it with the solution
pR,h obtained in the big domain at t = 8, 16 and 24. Fig. 3.9 shows a similar cut and at
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Figure 3.7: Contours of pR,h in the big domain for the big/small domain benchmark problem
in 2D. From the left to the right: t = 8, t = 16 and t = 24.
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Figure 3.8: Cut at y = 0 of ph and pR,h for the big/small domain benchmark problem in
2D. From the left to the right: t = 8, t = 16 and t = 24.

the same time instants, but along x = y from (x, y) = (0, 0) to (x, y) = (5000, 5000). It is
observed that the solutions in the big and small domains only differ significantly at t = 24,
where a certain reflection is observed in spite of using the Sommerfeld boundary condition.
However, these reflections are very small. To see this, Fig. 3.10 shows the evolution in
time of the energy E in the region of interest. It can be seen that the solution in the small
domain with the NRBC behaves as the big domain solution.

The results obtained with the NRBC are presented in Table 3.9 for various mesh sizes
(100 and 50), polynomial order (P1 and P2), stabilization methods (ASGS and OSS),
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Figure 3.9: Cut at x = y of ph and pR,h for the big/small domain benchmark problem in
2D. From the left to the right: t = 8, t = 16 and t = 24.
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Figure 3.10: Evolution of total energy E for the big/small domain benchmark problem in
2D.

Table 3.9: Error of the NRBC for the big/small domain benchmark problem in 2D

h Element Method VF L0 tsche δt ep eu ev
100 P1 ASGS I - CN 0.16 0.057 0.081 0.081
100 P1 ASGS I - BDF2 0.16 0.058 0.081 0.081
100 P2 ASGS I - BDF2 0.16 0.058 0.081 0.081
100 P1 OSS I - BDF2 0.16 0.058 0.081 0.081
100 P1 ASGS I - BDF2 0.08 0.057 0.081 0.081
50 P1 ASGS I - BDF2 0.08 0.056 0.081 0.081
100 P1 ASGS II 100 BDF2 0.16 0.058 0.082 0.082
100 P1 ASGS II 1000 BDF2 0.16 0.058 0.082 0.082
100 P1 ASGS II 10 BDF2 0.16 0.058 0.082 0.082
100 P1 ASGS III 100 BDF2 0.16 0.058 0.082 0.082

variational forms (I, II and III), domain length scales (10, 100 and 1000), time marching
schemes (Crank Nicolson and 2nd order BDF) and time step sizes (δt = 0.16 and 0.08).
It can be seen that the error for p is around 5.8% and the error for u is around 8.2% for
all cases, independently of the numerical strategy. It can therefore be concluded that this
error comes exclusively from the truncation of the domain with the NRBC. In [17] the
errors reported are ep = 2.9% and eu = ev = 6.2% for a NRBC of order J = 10, slightly
smaller than those we have found. Additionally, the errors obtained with our formulation
are similar to the ones obtained with J = 7. A second order finite difference formulation
with a node spacing of 100 per direction and a second order explicit time integration scheme
is used in this reference, with a time step size equal to the critical time step needed for
stability multiplied by 0.9.

Big/small domain benchmark problem in 3D

To test the NRBC in 3D, we solve a similar problem to the one in [17] extended to 3D. We
choose the small domain as a cube of side 10 000 centered at the origin. The small domain
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Figure 3.11: Contours of ph in the small domain for the big/small domain benchmark
problem in 3D. From the left to the right: t = 0, 8 and 16 (ASGS method, VF I, h = 200,
Q1 elements).
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Figure 3.12: Contours of pR,h in the big domain for the big/small domain benchmark
problem in 3D. From the left to the right: t = 0, 8 and 16 (ASGS method, VF I, h = 200,
Q1 elements).

is divided in 50 × 50 × 50 Q1 elements (h = 200) with the NRBC applied on the whole
boundary. The simulation time is T = 24, the time step size is taken as 0.16 and the time
scheme used is BDF2. The equation coefficients µp and µu, as well as the initial condition,
are chosen to be the same as before, in the 2D case. The only change is that the initial
condition is in a sphere of radius R, so now r is computed as r =

√
x2 + y2 + z2.

For comparison, a reference solution pR,h is obtained in a bigger domain, namely, a
cube of side 20 000 with the region of interest in its center. The big domain is divided
in 100 × 100 × 100 Q1 elements and the boundary condition pR,h = 0 is imposed. The
error is computed as in the 2D version of the case with equation (3.53). Fig. 3.11 shows
the contours of p in the plane z = 0 for the small domain at t = 0, t = 8 and t = 16,
whereas Fig. 3.12 shows the contours of p in the plane z = 0 for the big domain at the
same instants. A good qualitative agreement is observed.

Fig. 3.13 shows a cut at y = z = 0 for 0 ≤ x ≤ 5000 of ph and pR,h at t = 8, 16 and 24.
Significant discrepancies are only observed at t = 24. However, they have small energy, as
shown below.

The results obtained with our NRBC are presented in Table 3.10 for various mesh
sizes (500, 250 and 200), polynomial order (Q1 and Q2), stabilization methods (ASGS and
OSS), variational forms (I, II and III) and domain length scales (25, 250 and 2500). It can
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Figure 3.13: Cut at y = 0 of p for the big/small domain benchmark problem in 3D (ASGS
method, VF I, h = 200, Q1 elements). From the left to the right: t = 8, 16 and 24.

Table 3.10: Error of the NRBC for the big/small domain benchmark problem in 3D

h Element Method VF L0 ep eu
500 Q1 ASGS I - 0.077 0.084
250 Q1 ASGS I - 0.078 0.085
200 Q1 ASGS I - 0.077 0.085
250 Q2 ASGS I - 0.081 0.090
250 Q1 OSS I - 0.078 0.086
250 Q1 ASGS II 100 0.081 0.090
250 Q1 ASGS III 100 0.081 0.090
250 Q1 ASGS II 25 0.081 0.090
250 Q1 ASGS II 2500 0.081 0.090

be seen that the error for p is around 7.9% and the error for u is around 8.6% for all cases.
Fig. 3.14 shows the evolution in time of the energy E in the region of interest for the

case with mesh size 250 m, the ASGS method, Q1 elements and VF I. It can be seen that
the solution obtained with the NRBC behaves as the big domain solution.
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Figure 3.14: Evolution of total energy E for the big/small domain benchmark problem in
3D
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Figure 3.15: Contours of |uh| in the small domain for the showcase problem with NRBC.
From the left to the right: t = 0, t = 0.3 and t = 0.6.

Showcase problem with NRBC in 2D

An illustrative NRBC showcase appeared in [20] by Glowinski et al. Although it is not a
benchmark of the NRBC, a plot of the evolution in time of the total energy of the system
illustrates that the energy goes out of the region of interest and never enters again because
the total energy decreases monotonically. The problem is defined in a square domain
Ω = (−0.5, 0.5)× (−0.5, 0.5), with µp = 1 and µu = 1. The simulation time is T = 1. The
initial solution is p(x, 0) = 0 and

u(x, 0) =

−
4π
r

sin(2πr) cos(2πr)

[
x

y

]
r ≤ R,

0 otherwise,

with r =
√
x2 + y2, R = 0.25. In all the boundary the NRBC is applied. The problem

is solved with a mesh size h = 0.01, a time step of δt = 0.002 and the time integration
scheme is BDF2.

Additionally, we have defined a big domain to compare the results of the NRBC in
the small domain. The big domain is taken as Ω = (−1.5, 1.5) × (−1.5, 1.5). Fig. 3.15
shows the contours of |uh| computed in the small domain at t = 0, t = 0.3 and t = 0.6.
Fig. 3.16 shows the contours of |uR,h|, the solution computed in the big domain, at the
same instants. It is observed that there is a certain distortion of the wave at t = 0.6 close
to the boundary in the small domain case, which is not observed in the solution computed
in the big domain.

The evolution of total energy inside the domain of interest is shown in Fig. 3.17. The
agreement between the energy computed in both the big and the small domains is very
good, indicating that the wave distortion close to the boundary of the solution computed
in the small domain has low energy.

The error of the small domain with respect to the big domain in L∞(Υ, L2(Ω)) norm
for VF I, the ASGS method and P1 elements was 6.8% for p and 5.3% for u.
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Figure 3.16: Contours of |uR,h| in the big domain for the showcase problem with NRBC.
From the left to the right: t = 0, t = 0.3 and t = 0.6.
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Figure 3.17: Evolution of total energy E for the showcase problem with NRBC

Showcase problem with NRBL in 2D

A NRBL example appeared in [42] by Qi et al. It uses PML as NRBL. We solve the same
example using our NRBC and compare the results. The domain is a hollow cylinder that
extends from r = 1 to r = 1 + H, with H = 1. The mesh size is h = 0.01 in the radial
direction and has 720 divisions in the circumferential direction. The coefficients of the
equation are taken as µp = 1 and µu = 1. The simulation time is T = 4, the time step
size is δt = 0.005 and the time integration algorithm is BDF2. The initial condition is zero
for both p and u. The boundary condition at r = 1 changes from a prescription in p to a
prescription in γnu, and is given by:

p = cos(2πt) 0 < t ≤ 1, r = 1,

γnu = 0 1 < t < 4, r = 1.

At r = 1 + H the NRB is prescribed. In the case of [42], as a PML strategy is used, the
domains extends from r = 1 +H to r = 1 +H + δ to include the absorbing PML. The case
with δ = 2 from [42] was chosen as it is the one that provides less reflection according to
their results. In Fig. 3.18 it is shown the evolution of p at r = 1 with our method and the
comparison with the results obtained using PML by [42].
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Figure 3.18: Evolution of ph at r = 1 for the showcase problem with NRBL.
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Figure 3.19: Contours of ph in the small domain for the the showcase problem with NRBL.
From the left to the right: t = 0, t = 0.5 and t = 1.0.

In addition to the results presented in [42], we followed the big/small domain approach
as in the previous examples, taking 1 < r < 2(1 + H) as the big domain. Fig. 3.19 shows
the contours of ph in the small domain at t = 0, 0.5 and 1.0, whereas Fig. 3.20 shows the
contours of the solution computed in the big domain, pR,h, at the same time instants.

Fig. 3.21 shows the energy evolution inside the domain of interest. As in the previous
examples, the differences between the solutions in the small and the big domains have low
energy.

The error of the small domain with NRBC respect to the big domain in L∞(Υ, L2(Ω))
norm for VF I, the ASGS method and Q1 elements was 5.3% for p and 3.8% for u.

In addition to the Big/Small domain analysis, we performed a Big/Medium/Small
domain analysis. The idea is to compare the solutions in the medium and small domains
with respect to the solution in the big domain. The medium domain was taken with H =
1.83 and the error in the medium domain with respect to the big domain in L∞(Υ, L2(Ω))
norm for VF I, the ASGS method and Q1 elements was 3.4% for p and 2.3% for u. The
small domain corresponds to a location of the NRBC of R = 2, whereas the medium
domain has R = 2.83. With the errors obtained we can infer that the error is proportional
to (1/R2)J with J ≈ 0.66.
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Figure 3.20: Contours of pR,h in the big domain for the the showcase problem with NRBL.
From the left to the right: t = 0, t = 0.5 and t = 1.0.
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Figure 3.21: Evolution of total energy E for the showcase problem with NRBL.

3.6 Conclusions

In this work, we have described a NRBC for the wave equation in mixed form in time
domain. In particular, we have considered Sommerfeld-type artificial boundary conditions.
The resulting system of equations has been stated in three different functional settings,
based on the regularity required for the scalar and vector unknowns. The introduction of
the NRBC terms require to increase the regularity of the functional setting for problems in
bounded domains [67]. The extra regularity required is somehow small because the set of
functions in H(div,Ω) with normal trace in L2(Γo) is close to H(div,Ω), considering that
H

1
2

+ε(Ω) has trace in L2(Γ) for any ε > 0 and that H1(Ω) has trace in H
1
2 (Γ).

We have presented two stabilized FE methods (ASGS and OSS) including the NRBC.
Additionally, the stabilized methods can mimic the three variational forms of the problem,
which require different regularity of the unknowns, via a proper design of the stabilization
parameters. Stability and convergence results have been presented for these stabilized FE
formulations. The NRBC does not affect previous results proved in [67] for Dirichlet-type
boundary conditions, although it requires extra regularity on the boundary for the vector
unknown in variational forms I and II. We normally use the stabilized FE formulations for
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equal interpolation of the unknowns, but the analysis is not restricted to that and allows
any continuous interpolation pair.

Numerical experiments have been carried out to check the accuracy of the methods and
the results obtained are in agreement with the accuracy predicted theoretically. Benchmark
problems have been solved using the NRBCs proposed and good results have been obtained
when compared with other NRBCs or NRBLs. The main practical advantage of the NRBC
described over other NRBCs is its simplicity and the fact that no nonlinear or iterative
methods are required. Further, for NRBC schemes, the truncated domain does not need
to be extended with an absorbing layer. Additionally, when compared to PML techniques,
it avoids extra degrees of freedom per node and avoids the solution of other governing
equations in the absorbing layer.



Chapter 4

On some time marching schemes for the
stabilized finite element approximation
of the mixed wave equation

This chapter is based on the material in:
Hector Espinoza, Ramon Codina, and Santiago Badia. “On some time marching schemes
for the stabilized finite element approximation of the mixed wave equation”. In: Computer
Methods in Applied Mechanics and Engineering (Dec. 2014). Submitted
Some content is repeated from Chapter 1 and Chapter 3 so it is self-contained.

In this chapter we analyze time marching schemes for the wave equation in mixed form.
The problem is discretized in space using stabilized finite elements. On the one hand,
stability and convergence analyses of the fully discrete numerical schemes are presented.
On the other hand, we use Fourier techniques (also known as von Neumann analysis) in
order to analyze stability, dispersion and dissipation. Additionally, numerical convergence
tests are presented for various time integration schemes, polynomial interpolations (for the
spatial discretization), stabilization methods, and variational forms. Finally, a 1D example
is solved to analyze the behavior of the different schemes considered.

4.1 Introduction

Finite difference time marching schemes are mostly used for the time integration of evo-
lution problems because of their efficiency and ease of implementation. In the case of
partial differential equations (PDEs) in space and time, even if a given finite difference
scheme has some general properties regarding stability and accuracy, the precise behavior
of the scheme needs to be analyzed together with the spatial discretization employed. In
this chapter we aim at analyzing classical first and second order schemes for the hyperbolic
wave equation, with the particularity that we write it in mixed form and discretize in space
using stabilized finite element (FE) methods.

For the analysis of time discretization schemes for wave propagation problems it is
customary to split the total discretization error into two parts: dispersion error and dissi-
pation error. Dispersion is the dependency of the phase velocity on the frequency and the
dispersion error is the deviation of the phase velocity with respect to the expected one for

85
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a given frequency. On the other hand, dissipation error is the decrease in amplitude with
respect to the expected one. In general, dispersion and dissipation errors are higher for
poorly resolved frequencies, which occurs mainly for small frequencies. The wave equation
we aim to analyze is non-dispersive and non-dissipative. Therefore, it would be desirable
to have non-dispersive and non-dissipative discretization schemes. This sometimes cannot
be achieved, thus one just aims to have low-dispersion low-dissipation schemes [124, 125].
Dispersion and/or dissipation of numerical schemes can be evaluated using Fourier tech-
niques (see [126, 127]), energy methods (see [128]), or modified equation analysis (see [127,
129]). Fourier analysis can be carried out for semi-discretizations or full discretizations.
Dispersion/dissipation analysis methods have been used to optimize numerical schemes
[126, 129]. Other properties of the continuous wave equation, such as the preservation of
symplecticity, some invariants or some symmetries are even more difficult to inherit for
discrete schemes. This is the motivation of the so-called geometric numerical integrators,
which we will not consider in this chapter (see [130], for example).

Contrary to the irreducible hyperbolic wave equation, which is of second order in
space and time, the mixed wave equation is of first order in space and time. We will
consider the case of a single scalar unknown, which in the mixed format unfolds into two
unknowns, namely, this scalar field and a vector unknown. With regard to the space
approximation, the Galerkin FE discretization of this mixed wave equation requires to
satisfy a compatibility condition between the spaces of the two unknowns (scalar and
vector), i.e., to use so-called inf-sup compatible interpolations. Alternatively, we can
consider stabilized FE methods, which provide much more flexibility when choosing the
interpolation spaces [67, 68, 90]. In particular, we can consider equal interpolation for
the unknowns. Stability and convergence of the stabilized FE spatial semi-discretization
of the mixed wave equation has been presented in [67, 68]. Stability and convergence of
fully discrete schemes has also been analyzed for the convection-diffusion equation and the
Stokes equations in [103, 131, 132] using spatial and temporal approximations related to
those used in the present work.

In this work, we analyze the stability and convergence properties for the mixed wave
equation, after time semi-discretization, space semi-discretization, and full discretization,
and perform their Fourier analyses. For the time discretization, we consider backward
Euler (BE), Crank-Nicolson1 (CN) and the second order backward differentiation formula
(BDF2). We will see how a symplectic time integrator (CN) compares to non-symplectic
time integrators (BE and BDF2). Dispersion and dissipation of discretization methods
will be evaluated through numerical experiments. This consists in solving a given problem
and evaluating the solution obtained [126, 134, 135]. We will solve a 1D wave propaga-
tion problem to show qualitatively dispersion and dissipation of the proposed numerical
schemes.

The organization of the chapter is as follows. In Section 4.2 we present the problem
statement and its space-time discretization. In Section 4.3 we present stability and con-

1The original CN discretization scheme was devised to solve numerically PDEs of heat-conduction type;
it is a space-time discretization based on finite differences. Sometimes CN is used to refer to the implicit
midpoint method or the (implicit) trapezoidal rule and there is no agreement in the literature [133]. We
have to mention that for linear operators (which is the the case of the mixed wave equation) the trapezoidal
rule and the implicit midpoint method are equivalent.
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vergence results of the fully discrete problem obtained using variational techniques. We
provide results for all the methods considered, even though we only present one sample of
the proofs of these results. In Section 4.4 we present a complete Fourier analysis for the
1D wave equation in mixed form, from which precise information on the behavior of the
different schemes can be drawn. Numerical results are presented in Section 4.5 and, finally,
in Section 4.6 the conclusions of the work are summarized. This chapter is a continuation
of our work on the approximation of the mixed form of the wave equation presented in [67,
68] which correspond to Chapter 2 and Chapter 3 respectively. Frequent reference is made
to these two papers/chapters, to which the reader is addressed for details.

4.2 Problem statement and numerical approximation

4.2.1 Initial and boundary value problem

The problem we consider is an initial and boundary value problem posed in a time interval
Υ := (0, T ) and in a spatial domain Ω ⊂ Rd, (d = 1, 2 or 3). Let t ∈ Υ be a given time
instant in the temporal domain and x ∈ Ω a given point in the spatial domain. We define
the space-time domain as Ξ := Ω×Υ. Let Γ be the boundary of the domain Ω. We split Γ
into three disjoint sets denoted as Γp, Γu and Γo. The scalar unknown p is enforced on Γp,
the normal trace of the vector unknown γnu on Γu, and a simple non reflecting boundary
condition (NRBC) on Γo. Although the boundary conditions are irrelevant for the von
Neumann analysis, we just mention them for completeness.

The problem consists in finding p : Ξ −→ R and u : Ξ −→ Rd such that

µp∂tp+∇·u = fp , (4.1)
µu∂tu+∇p = fu , (4.2)

with the following initial conditions

p(x, 0) = 0, u (x, 0) = 0, (4.3)

and with the following boundary conditions

p = 0 on Γp, γnu := n · u = 0 on Γu, µ
1
2
p p = µ

1
2
uγnu on Γo, (4.4)

where µp > 0 and µu > 0 are physical coefficients such that c2 = (µpµu)
−1, c is the wave

speed, fp and fu are forcing terms, n is the unit outward normal to the boundary of
the domain and γn is the normal trace operator. In the previous equations and in what
follows, we use the following convention: lower-case bold italic letters represent vectors in
Rd, lower-case non-bold italic letters represent scalars, whereas upper-case non-bold italic
letters may be arrays or matrices.

Let Ψ be a generic spatial domain, i.e. Ω or Γ or part of them. Whenever they are
well defined, we denote by L2(Ψ) the space of square integrable functions defined on Ψ,
by H1(Ψ) the space of functions in L2(Ψ) with derivatives in L2(Ψ), by H(div,Ψ) the
space of vector functions with components and divergence in L2(Ψ), and by L2(Ψ)

d the
space of vector functions with components in L2(Ψ). Additionally, for an arbitrary normed
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functional space X, its norm will be denoted as ||·||X. In the case of L2(Ω) or L2(Ω)
d the

L2-norm will simply be denoted as ||·|| and the L2-inner-product as (· , ·) Furthermore, the
space of functions whose X-norm is Cr continuous in the time interval Υ will be denoted
by Cr(Υ; X). We will only be interested in the cases r = 0 and r = 1. Functions whose
X-norm is Lp in Υ will be denoted by Lp(Υ; X); when X = L2(Ω) or X = L2(Ω)

d, the compact
notation Lp(L2) will sometimes be used. Furthermore, let Vp, Vu be spaces associated with
p and u respectively. These spaces will be defined afterwards because they depend on the
functional setting. Additionally, let us define V := Vp × Vu and L := L2(Ω)× L2(Ω)

d.
Problem (4.1)-(4.2) with appropriate initial and boundary conditions will be well-posed

for:

p ∈ C1
(
Υ;L2(Ω)

)
∩ C0

(
Υ; Vp

)
, u ∈ C1

(
Υ;L2(Ω)

d) ∩ C0
(
Υ; Vu

)
,

with fp and fu regular enough.

4.2.2 Variational problem

The variational form of problem (4.1)-(4.4) can be expressed in three different ways. Each
one requires a certain regularity on the unknowns p and u. The problem reads: find
[p,u] ∈ C1 (Υ; L) ∩ C0 (Υ; V) such that

B ([p,u] , [q,v]) = L ([q,v]) ,

for all test functions [q,v] ∈ V, and satisfying the initial conditions. The bilinear form B,
the linear form L and the space V are defined in three different ways depending on the
variational form into consideration. For simplicity, we will assume that the forcing terms
fp and fu are square integrable, although we could relax this regularity requirement and
assume they belong to the dual space of Vp and Vu, respectively. Let us also define two
auxiliary variables denoted as κp and κu:

κp :=

(
µp
µu

) 1
2

, κu :=

(
µu
µp

) 1
2

.

The possible variational formulations of the problem are the following [67, 68]:

Variational Form I

Vp =
{
q ∈ H1(Ω)| q = 0 on Γp

}
,

Vu =
{
v ∈ H(div,Ω)| γnv = 0 on Γu and γnv ∈ L2(Γo)

}
B ([p,u] , [q,v]) = µp (∂tp, q) + (∇·u, q) + µu (∂tu,v) + (∇p,v) (4.5)
L ([q,v]) = (fp, q) + (fu,v) (4.6)
p = 0 on Γp, Strongly imposed (4.7)
γnu = 0 on Γu, Strongly imposed (4.8)

µ
1
2
p p = µ

1
2
uγnu on Γo, Strongly imposed (4.9)
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Variational Form II

Vp = L2(Ω), Vu =
{
v ∈ H(div,Ω)| γnv = 0 on Γu and γnv ∈ L2(Γo)

}
B ([p,u] , [q,v]) = µp (∂tp, q) + (∇·u, q) + µu (∂tu,v)− (p,∇·v) + κu

∫
Γo

(γnv)(γnu) dΓ

(4.10)
L ([q,v]) = (fp, q) + (fu,v) (4.11)
p = 0 on Γp, Weakly imposed (4.12)
γnu = 0 on Γu, Strongly imposed (4.13)

µ
1
2
p p = µ

1
2
uγnu on Γo, Weakly imposed (4.14)

Variational Form III

Vp =
{
q ∈ H1(Ω)| q = 0 on Γp

}
, Vu = L2(Ω)

d

B ([p,u] , [q,v]) = µp (∂tp, q)− (u,∇q) + µu (∂tu,v) + (∇p,v) + κp

∫
Γo

pq dΓ (4.15)

L ([q,v]) = (fp, q) + (fu,v) (4.16)
p = 0 on Γp, Strongly imposed (4.17)
γnu = 0 on Γu, Weakly imposed (4.18)

µ
1
2
p p = µ

1
2
uγnu on Γo, Weakly imposed (4.19)

4.2.3 Stabilized finite element formulations

Here we present two stabilized FE methods, which we will denote by the acronyms ASGS
(Algebraic Sub-Grid Scales) and OSS (Orthogonal Sub-grid Scales), aimed to overcome
the instability problems of the standard Galerkin method found when the interpolating
spaces do not satisfy an appropriate inf-sup condition. We focus on equal and continuous
interpolations for p and u and therefore, conforming FE spaces. For conciseness, we will
consider quasi-uniform FE partitions {K} of size h. For stabilized formulations in general
non-uniform non-degenerate cases, see [97].

Let Vp,h and Vu,h be the FE spaces constructed from the FE partition {K} to approx-
imate p and u, respectively, with Vp,h ⊂ Vp and Vu,h ⊂ Vu. Additionally, let us define
Vh = Vp,h × Vu,h. Stabilized FE methods deal with the following problem: find a pair
[ph,uh] ∈ C1(Υ; Vh) with initial conditions ph(x, 0) = 0, uh(x, 0) = 0 such that

Bs ([ph,uh] , [qh,vh]) = Ls ([qh,vh]) , (4.20)

for all test functions [qh,vh] ∈ Vh, where the bilinear form Bs and the linear form Ls include
the Galerkin terms and additional stabilization terms. Depending on how the stabilization
part is designed, a different stabilization method arises. Below, we present two methods,
namely ASGS and OSS. The stabilization terms depend on the choice of the so-called
stabilization parameters τp and τu.
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Table 4.1: Stabilization Parameters Order and Length Scales Definition

Variational Form I II III
`p `p = `u L2

0/h h
`u `p = `u h L2

0/h
τp O(h) O(1) O(h2)
τu O(h) O(h2) O(1)

The ASGS method is an extension to the mixed form of the wave equation of the
method proposed in [87, 89]. It consists in solving problem (4.20) and taking the bilinear
form Bs and the linear form Ls as:

Bs ([ph,uh] , [qh,vh]) = B ([ph,uh] , [qh,vh]) + (µp∂tph +∇·uh, τp∇·vh)
+ (µu∂tuh +∇ph, τu∇qh) , (4.21)

Ls ([qh,vh]) = L ([qh,vh]) + (fp, τp∇·vh) + (fu, τu∇qh) . (4.22)

The OSS method is an extension to the wave equation in mixed form of the method
proposed in [98, 99]. It consists in solving problem (4.20) and taking the bilinear form Bs
and the linear form Ls as:

Bs ([ph,uh] , [qh,vh]) = B ([ph,uh] , [qh,vh]) +
(
P⊥p (∇·uh) , τp∇·vh

)
+
(
P⊥u (∇ph) , τu∇qh

)
, (4.23)

Ls ([qh,vh]) = L ([qh,vh]) +
(
P⊥p (fp) , τp∇·vh

)
+
(
P⊥u (fu) , τu∇qh

)
, (4.24)

where P⊥p (·) = I(·) − Pp(·) and P⊥u (·) = I(·) − Pu(·), Pp(·) being the L2(Ω) projection
on Vp,h and Pu(·) the L2(Ω) projection on Vu,h. This in particular implies that Pp(·) = 0
on Γp for variational forms I and III and that n · Pu(·) = 0 on Γu for variational forms I
and II. Let us remark that for the sake of conciseness we will not consider in this chapter
the so-called dynamic subscales introduced in [98], even if we favor them and their use is
crucial in the case of very small time steps (see also [136, 137]).

An important ingredient of stabilized formulations are the stabilization parameters. In
our case, we compute them in all formulations as:

τp = Cτh

√
µu
µp

√
`p
`u
, τu = Cτh

√
µp
µu

√
`u
`p
, (4.25)

where Cτ is a dimensionless algorithmic constant and `p, `u are length scales corresponding
to p and u, respectively. As it was shown in the analysis presented in [67], in order
to mimic at the discrete level the proper functional setting of the continuous problem
the length scales `p and `u should be taken as shown in Table 4.1, where L0 is a fixed
length scale of the problem that can be fixed a priori. The motivation for designing the
stabilization parameters can be found in [90, 91].

4.2.4 Full discretization

To discretize in time we will use standard finite difference schemes of first and second order,
namely, the BE, the CN and the BDF2 schemes. Let 0 = t0 < . . . < tn < . . . tN = T be a
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finite difference partition of Υ of size δt, , that we take constant for the sake of simplicity.
Let U be the sequence of exact solutions U := {Un}Nn=0 := {[p(x, tn),u(x, tn)]}Nn=0. We
will often abbreviate pn := p(x, tn) and un := u(x, tn); the same symbol will be used for a
time approximation to these unknowns. Let Uh be the sequence of approximate solutions
of the fully discrete problem, that is Uh := {Un

h }
N
n=0 := {[pnh,unh]}Nn=0. This fully discrete

problem reads: find the sequence Uh such that

Bh (Uh, Vh) = Lh (Vh) , (4.26)

for all Vh. The definitions of Bh and Lh depend on the combination of space and time
discretization and will be given in the next section, where the stability and convergence
properties of the fully discrete methods are presented.

To simplify notation we will use the backward (Dr
B,q,s) central (Dr

C,q,s) and forward
(Dr

F,q,s) difference operators for the r-th derivative, of order q and in a time interval of size
sδt. For instance, the BE and BDF2 approximations of the time derivative for the scalar
unknown will be

D1
B,1,1p

n =
pn − pn−1

δt
, D1

B,2,1p
n =

3pn − 4pn−1 + pn−2

2δt
.

4.3 Stability and convergence results

4.3.1 Preliminaries

We present here the results of stability and convergence of the fully discrete methods
arising from the combination of time marching schemes (BE, CN and BDF2) and spatial
stabilized FE methods (ASGS and OSS). We provide stability and convergence results
for each fully discrete method. In order to do that, we use the concept of Λ-coercivity,
used for the first time in [103], which aids us in the proof of stability and later in the
convergence analysis. The proofs are similar to the ones shown in [67, 68], but considering
now the time-discretization also. Only one of such proofs will be developed here, the others
following very similar strategies.

As usual, we use C for a generic constant independent of the mesh size h and time step
δt. The value of C may be different at different occurrences. Additionally, we will use the
notation A & B and A . B to indicate that A ≥ CB and A ≤ CB for any A and B
depending on the solution and the data. All our results are presented in such a way that
C is independent of the dimensional system, i.e., C is dimensionless.

Let UI be the sequence of projected solutions UI := {[pnI ,unI ]}Nn=0, where p
n
I := Πn

p (pn)
and unI := Πn

u (un), where Πn
p (·) and Πn

u (·) are adequate interpolants onto the FE spaces,
taken to be projections. Notice that this notation allows us to take different interpolants
at different time steps.

Let us define some auxiliary norms to ease notation in the following:

|||V n|||20 := µp||qn||2 + µu||vn||2, (4.27)

|||V |||2B := (1 + σ)κp||q||2`2(Υ,L2(Γo)) + (1− σ)κu||γnv||2`2(Υ,L2(Γo)), (4.28)
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|||F |||2F :=
1

µp
||fp||2`1(Υ,L2(Ω)) +

1

µu
||fu||2`1(Υ,L2(Ω)) + τp||fp||2`2(Υ,L2(Ω)) + τu||fu||2`2(Υ,L2(Ω)),

(4.29)

with σ = −1, 0, 1 for variational forms I, II and III respectively, and ‖ · ‖`p(Υ,X) stands for
the `p-norm of a sequence of X-norms associated to the time discretization of Υ. When
X = Lq(Ω), we will use the abbreviation `p(Υ, Lq(Ω)) ≡ `p(Lq).

For the convergence analysis we need to define three types of errors: the projection error,
the discretization error, and the total error. The projection error is the error between
the exact solution and the projected exact solution and is defined as ε := {εn}Nn=0 :={

[εnp , ε
n
u]
}N
n=0

:= U−UI . The discretization error is the error between the discrete solution
and the projected exact solution and is defined as e := {en}Nn=0 :=

{
[enp , e

n
u]
}N
n=0

:= Uh−UI .
Finally, the total error is the error between the exact solution and the discrete solution
and is defined as ξ := {ξn}Nn=0 :=

{
[ξnp , ξ

n
u ]
}N
n=0

:= U − Uh.

4.3.2 Analysis strategy

As mentioned above, all the methods considered have the form (4.26). We have proved
that all of them (ASGS and OSS for the spatial discretization, considering the three
possible variational formulations, and BE, CN and BDF2 for the time integration) are
stable and optimally convergent, with the convergence order in space and time that should
be expected. However, including all the proofs would be extremely long and tedious.
Rather than this, we explain in what follows the analysis strategy that we have employed,
give the details of the terms involved for each method in the following subsection and
present then the proof of the simplest case.

For all methods we have proved Λ-coercivity, stability and convergence in an appropriate
norm |||·||| that depends on the method. More precisely, we have shown that

1. Λ-coercivity. If V is a sequence of functions, either continuous or discrete in space,
there exist a map Λ(V ) such that

Bh(V,Λ(V )) & |||V |||2, |||Λ(V )||| . |||V |||, (4.30)

for all V . From this property one easily gets stability in the form of an inf-sup
condition (see [103]).

2. Stability. The discrete solution Uh satisfies

|||Uh||| . |||F |||∗, (4.31)

for an appropriate norm |||F |||∗ of the data (the forcing terms).

3. Convergence. Of course, the final objective is to provide an estimate for the total
error ξ in some norm. We can show that if U is the sequence of continuous solutions
and Uh the sequence of discrete solutions, then

|||U − Uh||| . E(h, δt), (4.32)
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for a certain error function E(h, δt). At this point, let us remark that convergence is
not a more or less straightforward consequence of stability, since the discrete problem
is not consistent in the variational sense. To prove convergence we need to deal with
the consistency error

C(U, Vh) := Lh(Vh)− Bh(U, Vh). (4.33)

From this definition it is easy to arrive to

Bh(e, Vh) = Bh(ε, Vh) + C(U, Vh). (4.34)

4.3.3 Forms, norms and error functions

Recalling that we have taken as zero the initial conditions, all methods are solely defined by
the bilinear form Bh and the linear form Lh. These are given for all methods in Table 4.2.
The only comment that needs to be made is that in practice BDF2 can be started either
with BE or CN. Numerical experiments show no difference in the convergence rate, even
if theoretical error estimates are not optimal for convergence in terms of δt when BDF2 is
started with BE for variational forms II and III.

The stability analysis of the different methods relies on the expression of map Λ(V )
satisfying (4.30), the norm of the unknown |||V ||| and the norm of the forcing terms |||F |||∗.
These are all given in Table 4.3. Note that in this table use is made of abbreviations (4.27)-
(4.29). The expressions of |||F |||∗ determine the regularity required for the data in each case.

Finally, Tables 4.4 and 4.5 provide the error functions of the error estimates (4.32) for
the ASGS and the OSS methods, respectively. There are many terms in these expressions
with the same convergence order. However, including all of them gives an indication of the
possible sources of error, as well as of the required regularity of the continuous solution to
obtain optimal convergence rates.

4.3.4 A sample of the proofs: ASGS-BE method

As an example of how to prove (4.30), (4.31) and (4.32), we present now the proof of
these results for the simplest of the six methods considered, namely, ASGS for the space
discretization and BE for the time integration. The proof of the rest of methods is more
or less involved, but follows the same ideas.

Proof of Λ-coercivity (4.30)

From the definition of Bh in Table 4.2 and of Λ(V ) in Table 4.3 for the ASGS-BE method
we get

Bh (V,Λ (V )) =
N∑
n=1

δt
(
µpD

1
B,1,1q

n, qn
)

+
N∑
n=1

δt
(
µuD

1
B,1,1v

n,vn
)

+ τpτuµu

N∑
n=1

δt
(
∇·vn,∇·

(
D1

B,1,1v
n
))

+ τpτuµp

N∑
n=1

δt
(
∇qn,∇

(
D1

B,1,1q
n
))
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Table 4.2: Forms that define the methods

Method Bh and Lh

ASGS-BE
Bh (Uh, Vh) =

∑N
n=1 δt

[(
µpD1

B,1,1p
n
h +∇·unh , q

n
h + τp∇·vnh

)
+
(
µuD1

B,1,1u
n
h +∇pnh ,v

n
h + τu∇qnh

)]
Lh (Vh) =

∑N
n=1 δt

(
fp
n, qnh + τp∇·vnh

)
+
∑N
n=1 δt

(
fu
n,vnh + τu∇qnh

)

ASGS-CN

Bh (Uh, Vh) =
∑N
n=1 δt

[(
µpD1

B,1,1p
n
h +∇·un−

1
2

h , qnh + τp∇·vnh
)

+
(
µuD1

B,1,1u
n
h +∇pn−

1
2

h ,vnh + τu∇qnh
)]

Lh (Vh) =
∑N
n=1 δt

(
fp
n− 1

2 , qnh + τp∇·vnh
)

+
∑N
n=1 δt

(
fu
n− 1

2 ,vnh + τu∇qnh
)

ASGS-BDF2

Bh (Uh, Vh) = δt

[(
µpD1

B,1,1p
1
h +∇·u1− 1

2
h , q1

h + τp∇·v1
h

)
+
(
µuD1

B,1,1u
1
h +∇p1− 1

2
h ,v1

h + τu∇q1
h

)]
+
∑N
n=2 δt

[(
µpD1

B,2,1p
n
h +∇·unh , q

n
h + τp∇·vnh

)
+
(
µuD1

B,2,1u
n
h +∇pnh ,v

n
h + τu∇qnh

)]
Lh (Vh) = δt

(
fp

1− 1
2 , q1

h + τp∇·v1
h

)
+
∑N
n=2 δt

(
fp
n, qnh + τp∇·vnh

)
+δt

(
fu

1− 1
2 ,v1

h + τu∇q1
h

)
+
∑N
n=2 δt

(
fu
n,vnh + τu∇qnh

)
OSS-BE

Bh (Uh, Vh) =
∑N
n=1 δt

[(
µpD1

B,1,1p
n
h +∇·unh , q

n
h

)
+ τp

(
P⊥p

(
∇·unh

)
,∇·vnh

)]
+
∑N
n=1 δt

[(
µuD1

B,1,1u
n
h +∇pnh ,v

n
h

)
+ τu

(
P⊥u

(
∇pnh

)
,∇qnh

)]
Lh (Vh) =

∑N
n=1 δt

[(
fp
n, qnh

)
+ τp

(
P⊥p (fp

n) ,∇·vnh
)]

+
∑N
n=1 δt

[(
fu
n,vnh

)
+ τu

(
P⊥u (fu

n) ,∇qnh
)]

OSS-CN

Bh (Uh, Vh) =
∑N
n=1 δt

[(
µpD1

B,1,1p
n
h +∇·un−

1
2

h , qnh

)
+ τp

(
P⊥p

(
∇·un−

1
2

h

)
,∇·vnh

)]
+
∑N
n=1 δt

[(
µuD1

B,1,1u
n
h +∇pn−

1
2

h ,vnh

)
+ τu

(
P⊥u

(
∇pn−

1
2

h

)
,∇qnh

)]
Lh (Vh) =

∑N
n=1 δt

[(
fp
n− 1

2 , qnh

)
+ τp

(
P⊥p

(
fp
n− 1

2

)
,∇·vnh

)]
+
∑N
n=1 δt

[(
fu
n− 1

2 ,vnh

)
+ τu

(
P⊥u

(
fu
n− 1

2

)
,∇qnh

)]

OSS-BDF2

Bh (Uh, Vh) = δt

[(
µpD1

B,1,1p
1
h +∇·u

1
2
h , q

1
h + τp∇·v1

h

)
+
(
P⊥p

(
∇·u

1
2
h

)
, τp∇·v1

h

)]
+
∑N
n=2 δt

[(
µpD1

B,2,1p
n
h +∇·unh , q

n
h

)
+ τp

(
P⊥p

(
∇·unh

)
,∇·vnh

)]
+δt

[(
µuD1

B,1,1u
1
h +∇p

1
2
h ,v

1
h

)
+
(
P⊥u

(
∇p

1
2
h

)
, τu∇q1

h

)]
+
∑N
n=2 δt

[(
µuD1

B,2,1u
n
h +∇pnh ,v

n
h

)
+ τu

(
P⊥u

(
∇pnh

)
,∇qnh

)]
Lh (Vh) = δt

[(
fp

1
2 , q1

h

)
+ τp

(
P⊥p

(
fp

1
2

)
,∇·v1

h

)]
+ δt

[(
fu

1
2 ,v1

h

)
+ τu

(
P⊥u

(
fu

1
2

)
,∇q1

h

)]
+
∑N
n=2 δt

[(
fp
n, qnh

)
+ τp

(
P⊥p (fp

n) ,∇·vnh
)]

+
∑N
n=2 δt

[(
fu
n,vnh

)
+ τu

(
P⊥u (fu

n) ,∇qnh
)]

+
N∑
n=1

δt [(∇·vn, qn) + (∇qn,vn)]

+
N∑
n=1

δtτp
∣∣∣∣µpD1

B,1,1q
n +∇·vn

∣∣∣∣2 +
N∑
n=1

δtτu
∣∣∣∣µuD1

B,1,1v
n +∇qn

∣∣∣∣2
+ τpτuµpµu

N∑
n=1

δt
[(
D1

B,1,1q
n,∇·

(
D1

B,1,1v
n
))

+
(
D1

B,1,1v
n,∇

(
D1

B,1,1q
n
))]

.

(4.35)

Now we show how each term is bounded. The first four terms of (4.35) can be bounded as
N∑
n=1

δt
(
µpD

1
B,1,1q

n, qn
)

+
N∑
n=1

δt
(
µuD

1
B,1,1v

n,vn
)

+ τpτuµu

N∑
n=1

δt
(
∇·vn,∇·

(
D1

B,1,1v
n
))

+ τpτuµp

N∑
n=1

δt
(
∇qn,∇

(
D1

B,1,1q
n
))
&
∣∣∣∣∣∣V N

∣∣∣∣∣∣2
0
. (4.36)
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Table 4.3: Functions to obtain Λ-coercivity and norms

Method Λ(V ), |||V ||| and |||F |||∗

ASGS-BE

Λ (V ) := V +

{
[0,0] ,

{[
τpµpD1

B,1,1q
n, τuµuD1

B,1,1v
n
]}N
n=1

}
|||V |||2 :=

∣∣∣∣∣∣V N ∣∣∣∣∣∣2
0

+ |||V |||2B + τp

∣∣∣∣∣∣µpD1
B,1,1q

n +∇·vn
∣∣∣∣∣∣2
`2(Υ,L2(Ω))

+ τu

∣∣∣∣∣∣µuD1
B,1,1v

n +∇qn
∣∣∣∣∣∣2
`2(Υ,L2(Ω))

|||F |||∗
2 := |||F |||2F + τpτuµu

∣∣∣∣∣∣D1
B,1,1fp

∣∣∣∣∣∣2
`1(Υ,L2(Ω))

+ τpτuµp

∣∣∣∣∣∣D1
B,1,1fu

∣∣∣∣∣∣2
`1(Υ,L2(Ω))

+τpτuµu||fp||2`∞(Υ,L2(Ω)) + τpτuµp||fu||2`∞(Υ,L2(Ω))

ASGS-CN

Λ (V ) :=

{[
p0,u0

]
,
{[
pn−

1
2 ,un−

1
2

]}N
n=1

}
+

{
[0,0] ,

{[
τpµpD1

B,1,1q
n, τuµuD1

B,1,1v
n
]}N
n=1

}
|||V |||2 :=

∣∣∣∣∣∣V N ∣∣∣∣∣∣2
0

+ |||V |||2B + τp

∣∣∣∣∣∣µpD1
B,1,1q

n +∇·vn−
1
2

∣∣∣∣∣∣2
`2(Υ,L2(Ω))

+τu

∣∣∣∣∣∣µuD1
B,1,1v

n +∇qn−
1
2

∣∣∣∣∣∣2
`2(Υ,L2(Ω))

|||F |||∗
2 := |||F |||2F + τpτuµu

∣∣∣∣∣∣D1
B,1,1fp

∣∣∣∣∣∣2
`1(Υ,L2(Ω))

+ τpτuµp

∣∣∣∣∣∣D1
B,1,1fu

∣∣∣∣∣∣2
`1(Υ,L2(Ω))

+τpτuµu||fp||2`∞(Υ,L2(Ω)) + τpτuµp||fu||2`∞(Υ,L2(Ω))

ASGS-BDF2

Λ (V ) :=
{
V 0, V

1
2 , {V n}Nn=2

}
+

{
[0,0] ,

[
τpµpD1

B,1,1q
1, τuµuD1

B,1,1v
1
]
,
{[
τpµpD1

B,2,1q
n, τuµuD1

B,2,1v
n
]}N
n=2

}
|||V |||2 :=

∣∣∣∣∣∣V N ∣∣∣∣∣∣2
0

+ |||V |||2B + τp

∣∣∣∣∣∣µpD1
B,1,1q

1 +∇·v
1
2

∣∣∣∣∣∣2δt+ τu

∣∣∣∣∣∣µuD1
B,1,1v

1 +∇q
1
2

∣∣∣∣∣∣2δt
+τp

∣∣∣∣∣∣µpD1
B,2,1q

n +∇·vn
∣∣∣∣∣∣2
`2(Υ,L2(Ω))

+ τu

∣∣∣∣∣∣µuD1
B,2,1v

n +∇qn
∣∣∣∣∣∣2
`2(Υ,L2(Ω))

|||F |||∗
2 := |||F |||2F + τpτuµu

∣∣∣∣∣∣D1
B,1,1fp

1
∣∣∣∣∣∣2δt2 + τpτuµu

∣∣∣∣∣∣D1
B,2,1fp

∣∣∣∣∣∣2
`1(Υ,L2(Ω))

+ τpτuµu||fp||2`∞(Υ,L2(Ω))

+τpτuµp

∣∣∣∣∣∣D1
B,1,1fu

1
∣∣∣∣∣∣2δt2 + τpτuµp

∣∣∣∣∣∣D1
B,2,1fu

∣∣∣∣∣∣2
`1(Υ,L2(Ω))

+ τpτuµp||fu||2`∞(Υ,L2(Ω))

OSS-BE

Λ (V ) := V + βΛb (V ) (β small enough)

Λb (V ) :=
{

[0,0] ,
{[
τp
(
µpD1

B,1,1q
n + Pp (∇·vn)

)
, τu

(
µuD1

B,1,1v
n + Pu (∇qn)

)]}N
n=1

}
|||V |||2 :=

∣∣∣∣∣∣V N ∣∣∣∣∣∣2
0

+ |||V |||2B + τp

∣∣∣∣∣∣µpD1
B,1,1q

n +∇·vn
∣∣∣∣∣∣2
`2(Υ,L2(Ω))

+ τu

∣∣∣∣∣∣µuD1
B,1,1v

n +∇qn
∣∣∣∣∣∣2
`2(Υ,L2(Ω))

|||F |||∗
2 := |||F |||2F

OSS-CN

Λ (V ) := Λa (V ) + βΛb (V ) (β small enough)

Λa (V ) :=

{[
p0,u0

]
,
{[
pn−

1
2 ,un−

1
2

]}N
n=1

}
Λb (V ) :=

{
[0,0] ,

{[
τp
(
µpD1

B,1,1q
n + Pp

(
∇·vn−

1
2

))
, τu

(
µuD1

B,1,1v
n + Pu

(
∇qn−

1
2

))]}N
n=1

}
|||V |||2 :=

∣∣∣∣∣∣V N ∣∣∣∣∣∣2
0

+ |||V |||2B + τp

∣∣∣∣∣∣µpD1
B,1,1q

n +∇·vn−
1
2

∣∣∣∣∣∣2
`2(Υ,L2(Ω))

+τu

∣∣∣∣∣∣µuD1
B,1,1v

n +∇qn−
1
2

∣∣∣∣∣∣2
`2(Υ,L2(Ω))

|||F |||∗
2 := |||F |||2F

OSS-BDF2

Λ (V ) := Λa (V ) + βΛb (V ) (β > 0 small enough)

Λa (V ) :=
{
V 0, V

1
2 , {V n}Nn=2

}
Λb (V ) :=

{
[0,0] ,

[
τp
(
µpD1

B,1,1q
1 + Pp

(
∇·v

1
2

))
, τu

(
µuD1

B,1,1v
1 + Pu

(
∇q

1
2

))]
{[
τp
(
µpD1

B,2,1q
n + Pp (∇·vn)

)
, τu

(
µuD1

B,2,1v
n + Pu (∇qn)

)]}N
n=2

}
|||V |||2 :=

∣∣∣∣∣∣V N ∣∣∣∣∣∣2
0

+ |||V |||2B + τp

∣∣∣∣∣∣µpD1
B,1,1q

1 +∇·v
1
2

∣∣∣∣∣∣2δt+ τu

∣∣∣∣∣∣µuD1
B,1,1v

1 +∇q
1
2

∣∣∣∣∣∣2δt
+τp

∣∣∣∣∣∣µpD1
B,2,1q

n +∇·vn
∣∣∣∣∣∣2
`2(Υ,L2(Ω))

+ τu

∣∣∣∣∣∣µuD1
B,2,1v

n +∇qn
∣∣∣∣∣∣2
`2(Υ,L2(Ω))

|||F |||∗
2 := |||F |||2F
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Table 4.4: Error functions I: ASGS formulation

Method E(h, δt)

BE

E2(h, δt) := µp||εp||2`∞(L2) + µu||εu||2`∞(L2) + τpτuµu||∇·εu||2`∞(L2) + τpτuµp||∇εp||2`∞(L2)

+ 1
τu
||εu||2`2(L2) + τp

∣∣∣∣µpD1
B,1,1εp

∣∣∣∣2
`2(L2)

+ τp||∇·εu||2`2(L2) + (1 + σ)κp||εp||2`2(Υ,L2(Γo))

+ 1
τp
||εp||2`2(L2) + τu

∣∣∣∣µuD1
B,1,1εu

∣∣∣∣2
`2(L2)

+ τu||∇εp||2`2(L2) + (1− σ)κu||εu||2`2(Υ,L2(Γo))

+τpτuµu
∣∣∣∣µpD1

B,1,1εp
∣∣∣∣2
`∞(L2)

+ τpτuµu
∣∣∣∣µpD2

C,2,1εp
∣∣∣∣2
`1(L2)

+ τpτuµu
∣∣∣∣∇·D1

B,1,1εu
∣∣∣∣2
`1(L2)

+τpτuµp
∣∣∣∣µuD1

B,1,1εu
∣∣∣∣2
`∞(L2)

+ τpτuµp
∣∣∣∣µuD2

C,2,1εu
∣∣∣∣2
`1(L2)

+ τpτuµp
∣∣∣∣∇D1

B,1,1εp
∣∣∣∣2
`1(L2)

+ δt2

µp
||µp∂ttp||2`1(L2) + δt2τp||µp∂ttp||2`2(L2) + τpτuµuδt

2
(
||µp∂ttp||2`∞(L2) + ||µp∂tttp||2`1(L2)

)
+ δt2

µu
||µu∂ttu||2`1(L2) + δt2τu||µu∂ttu||2`2(L2) + τpτuµpδt

2
(
||µu∂ttu||2`∞(L2) + ||µu∂tttu||2`1(L2)

)

CN

E2(h, δt) := µp||εp||2`∞(Υ,L2(Ω)) + µu||εu||2`∞(Υ,L2(Ω))

+(1 + σ)κp||εp||2`2(Υ,L2(Γo)) + (1− σ)κu||εu||2`2(Υ,L2(Γo))

+ 1
τu
||εu||2`2(L2) + τp

∣∣∣∣µpD1
B,1,1εp

∣∣∣∣2
`2(L2)

+ τp||∇·εu||2`2(L2) + τpτuµu
∣∣∣∣∇·D1

B,1,1εu
∣∣∣∣2
`1(L2)

+ 1
τp
||εp||2`2(L2) + τu

∣∣∣∣µuD1
B,1,1εu

∣∣∣∣2
`2(L2)

+ τu||∇εp||2`2(L2) + τpτuµp
∣∣∣∣∇D1

B,1,1εp
∣∣∣∣2
`1(L2)

+τpτuµu
∣∣∣∣µpD1

B,1,1εp
∣∣∣∣2
`∞(L2)

+ τpτuµu
∣∣∣∣µpD2

C,2,1εp
∣∣∣∣2
`1(L2)

+τpτuµp
∣∣∣∣µuD1

B,1,1εu
∣∣∣∣2
`∞(L2)

+ τpτuµp
∣∣∣∣µuD2

C,2,1εu
∣∣∣∣2
`1(L2)

+ δt4

µp
||µp∂tttp||2`1(L2) + δt4τp||µp∂tttp||2`2(L2) + τpτuµuδt

4
[
||µp∂tttp||2`∞(L2) + ||µp∂ttttp||2`1(L2)

]
+ δt4

µu
||µu∂tttu||2`1(L2) + δt4τu||µu∂tttu||2`2(L2) + τpτuµpδt

4
[
||µu∂tttu||2`∞(L2) + ||µu∂ttttu||2`1(L2)

]

BDF2

E2(h, δt) := µp||εp||2`∞(L2) + µu||εu||2`∞(L2)

+(1 + σ)κp||εp||2`2(Υ,L2(Γo)) + (1− σ)κu||εu||2`2(Υ,L2(Γo))

+ 1
τu
||εu||2`2(Υ,L2(Ω)) + τp

∣∣∣∣µpD1
B,1,1ε

1
p

∣∣∣∣2δt+ τp
∣∣∣∣µpD1

B,2,1εp
∣∣∣∣2
`2(L2)

+ τp||∇·εu||2`2(L2)

+ 1
τp
||εp||2`2(L2) + τu

∣∣∣∣µuD1
B,1,1ε

1
u

∣∣∣∣2δt+ τu
∣∣∣∣µuD1

B,2,1εu
∣∣∣∣2
`2(L2)

+ τu||∇εp||2`2(Υ,L2(Ω))

+τpτuµu

∣∣∣∣∣∣µpD2
C,2, 12

ε
1
2
p

∣∣∣∣∣∣2δt2 + τpτuµp

∣∣∣∣∣∣µuD2
C,2, 12

ε
1
2
u

∣∣∣∣∣∣2δt2
+τpτuµu

(∣∣∣∣µpD1
B,2,1ε

2
p

∣∣∣∣2 +
∣∣∣∣µp (D1

B,2,1ε
3
p − 4D1

B,2,1ε
2
p

)∣∣∣∣2)
+τpτuµp

(∣∣∣∣µuD1
B,2,1ε

2
u

∣∣∣∣2 +
∣∣∣∣µu (D1

B,2,1ε
3
u − 4D1

B,2,1ε
2
u

)∣∣∣∣2)
+τpτuµu

∣∣∣∣µp(3D2
C,4,1 − 2D2

C,2,2)εnp
∣∣∣∣2
`1(L2)

+ τpτuµp
∣∣∣∣µu(3D2

C,4,1 − 2D2
C,2,2)εnu

∣∣∣∣2
`1(L2)

+τpτuµu

(∣∣∣∣µpD1
B,2,1ε

N
p

∣∣∣∣2 +
∣∣∣∣µp (3D1

B,2,1ε
N−1
p − 4D1

B,2,1ε
N
p

)∣∣∣∣2)
+τpτuµp

(∣∣∣∣µuD1
B,2,1ε

N
u

∣∣∣∣2 +
∣∣∣∣µu (3D1

B,2,1ε
N−1
u − 4D1

B,2,1ε
N
u

)∣∣∣∣2)
+τpτuµu

(∣∣∣∣∇·D1
B,1,1ε

1
u

∣∣∣∣2δt2 +
∣∣∣∣∇·D1

F,2,1εu
∣∣∣∣2
`1(L2)

)
+τpτuµp

(∣∣∣∣∇D1
B,1,1ε

1
p

∣∣∣∣2δt2 +
∣∣∣∣∇D1

F,2,1εp
∣∣∣∣2
`1(L2)

)
+ δt4

µp

∣∣∣∣∣∣µp∂tttp 1
2

∣∣∣∣∣∣2δt2 + δt4

µp
||µp∂tttpn||2`1(L2) + δt4

µu

∣∣∣∣∣∣µu∂tttu 1
2

∣∣∣∣∣∣2δt2 + δt4

µu
||µu∂tttun||2`1(L2)

+δt4τp

∣∣∣∣∣∣µp∂tttp 1
2

∣∣∣∣∣∣2δt+ δt4τp||µp∂tttpn||2`2(L2) + δt4τu

∣∣∣∣∣∣µu∂tttu 1
2

∣∣∣∣∣∣2δt+ δt4τu||µu∂tttun||2`2(L2)

+δt4τpτuµu

(∣∣∣∣∣∣µp∂tttp 1
2

∣∣∣∣∣∣2 + ||µp∂ttttp||2`1(L2) + ||µp∂tttp||2L∞(L2)

)
+δt4τpτuµp

(∣∣∣∣∣∣µu∂tttu 1
2

∣∣∣∣∣∣2 + ||µu∂ttttu||2`1(L2) + ||µu∂tttu||2L∞(L2)

)
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Table 4.5: Error functions II: OSS formulation

Method E(h, δt)

BE

E2(h, δt) := µp||εp||2`∞(L2) + 1
τu
||εu||2`2(Υ,L2(Ω)) + τp

∣∣∣∣µpD1
B,1,1εp

∣∣∣∣2
`2(L2)

+ τp||∇·εu||2`2(L2)

+µu||εu||2`∞(L2) + 1
τp
||εp||2`2(L2) + τu

∣∣∣∣µuD1
B,1,1εu

∣∣∣∣2
`2(L2)

+ τu||∇εp||2`2(L2)

+(1 + σ)κp||εp||2`2(Υ,L2(Γo)) + (1− σ)κu||εu||2`2(Υ,L2(Γo))

+ δt2

µp
||µp∂ttp||2`1(L2) + δt2

µu
||µu∂ttu||2`1(L2) + δt2τp||µp∂ttp||2`2(L2) + δt2τu||µu∂ttu||2`2(L2)

CN

E2(h, δt) := µp||εp||2`∞(L2) + µu||εu||2`∞(L2)

+(1 + σ)κp||εp||2`2(Υ,L2(Γo)) + (1− σ)κu||εu||2`2(Υ,L2(Γo))

+ 1
τu
||εu||2`2(L2) + τp

∣∣∣∣µpD1
B,1,1εp

∣∣∣∣2
`2(L2)

+ τp||∇·εu||2`2(L2)

+ 1
τp
||εp||2`2(L2) + τu

∣∣∣∣µuD1
B,1,1εu

∣∣∣∣2
`2(L2)

+ τu||∇εp||2`2(L2)

+ δt4

µp
||µp∂tttp||2`1(L2) + δt4τp||µp∂tttp||2`2(L2) + δt4

µu
||µu∂tttu||2`1(L2) + δt4τu||µu∂tttu||2`2(L2)

BDF2

E2(h, δt) := µp||εp||2`∞(L2) + µu||εu||2`∞(L2) + 1
τu

∣∣∣∣∣∣ε 1
2
u

∣∣∣∣∣∣2δt+ 1
τp

∣∣∣∣∣∣ε 1
2
p

∣∣∣∣∣∣2δt
+ 1
τu
||εu||2`2(L2) + 1

τp
||εp||2`2(L2)

+(1 + σ)κp||εp||2`2(Υ,L2(Γo)) + (1− σ)κu||εu||2`2(Υ,L2(Γo))

+τp
∣∣∣∣µpD1

B,1,1ε
1
p

∣∣∣∣2δt+ τp

∣∣∣∣∣∣∇·ε 1
2
u

∣∣∣∣∣∣2δt+ τp
∣∣∣∣µpD1

B,2,1ε
n
p

∣∣∣∣2
`2(L2)

+ τp||∇·εu||2`2(L2)

+τu
∣∣∣∣µuD1

B,1,1ε
1
u

∣∣∣∣2δt+ τu

∣∣∣∣∣∣∇ε 1
2
p

∣∣∣∣∣∣2δt+ τu
∣∣∣∣µuD1

B,2,1ε
n
u

∣∣∣∣2
`2(L2)

+ τu||∇εp||2`2(L2)

+ δt4

µp

∣∣∣∣∣∣µp∂tttp 1
2

∣∣∣∣∣∣2δt2 + δt4

µp
||µp∂tttpn||2`1(L2) + δt4

µu

∣∣∣∣∣∣µp∂tttu 1
2

∣∣∣∣∣∣2δt2 + δt4

µu
||µu∂tttun||2`1(L2)

+δt4
(
τp

∣∣∣∣∣∣µp∂tttp 1
2

∣∣∣∣∣∣2δt+ τp||µp∂tttpn||2`2(L2) + τu

∣∣∣∣∣∣µu∂tttu 1
2

∣∣∣∣∣∣2δt+ τu||µu∂tttun||2`2(L2)

)

The 5th term is bounded as

N∑
n=1

δt [(∇·vn, qn) + (∇qn,vn)] ≥ |||V |||2B. (4.37)

The 6th and 7th terms are already what we need. The 8th and 9th terms are greater than
zero by boundary conditions. Combining (4.35)-(4.37) the proof is completed.

Proof of stability (4.31)

Recalling the Λ-coercivity result we can write

|||Uh|||2 . Bh(Uh,Λ(Uh)) = Lh(Λ(Uh), (4.38)

and using the definition of Lh we can write

|||Uh|||2 .
N∑
n=1

δt
(
fp
n, pnh + τp

(
µpD

1
B,1,1p

n
h +∇·unh

))
+

N∑
n=1

δt
(
fp
n, τp∇·τuµuD1

B,1,1u
n
h

)
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+
N∑
n=1

δt
(
fu

n,unh + τu
(
µuD

1
B,1,1u

n
h +∇pnh

))
+

N∑
n=1

δt
(
fu

n, τu∇τpµpD1
B,1,1p

n
h

)
.

(4.39)

The 1st and 3rd terms can be bounded as
N∑
n=1

δt
(
fp
n, pnh + τp

(
µpD

1
B,1,1p

n
h +∇·unh

))
+

N∑
n=1

δt
(
fu

n,unh + τu
(
µuD

1
B,1,1u

n
h +∇pnh

))
. α1|||F |||2F +

1

α1

|||Uh|||2, (4.40)

where here and in what follows αi > 0 are reals appearing from Young’s inequality. The
2nd and 4th terms are bounded in a similar manner and we just show how we bound the
2nd term:

N∑
n=1

δt
(
fp
n, τp∇·τuµuD1

B,1,1u
n
h

)
=−

N∑
n=1

δt
(
D1

B,1,1fp
n, τpτuµu∇·un−1

h

)
+
(
fp
N , τpτuµu∇·uNh

)
.α2τpτuµu

∣∣∣∣D1
B,1,1fp

∣∣∣∣2
`1(Υ,L2(Ω))

+ α3τpτuµu||fp||2`∞(Υ,L2(Ω))

+
1

α2

τpτuµu||∇·uh||2`∞(Υ,L2(Ω)) +
1

α3

τpτuµu||∇·uh||2`∞(Υ,L2(Ω)). (4.41)

Combining (4.38)-(4.41) and taking αi large enough the proof is complete.

Proof of convergence (4.32)

Combining Λ-coercivity with V = e and (4.34) we can arrive to

|||e|||2 . Bh(e,Λ(e)) = Bh(ε,Λ(e)) + C(U,Λ(e)).

The aim is to bound e in terms of ε and U . We first analyze the term containing Bh and
then the term associated to the consistency error (4.33):

Bh(ε,Λ(e)) =
N∑
n=1

δt
(
µpD

1
B,1,1ε

n
p +∇·εnu, enp + τp

(
µpD

1
B,1,1e

n
p +∇·enu

)
+ τpτuµu∇·D1

B,1,1e
n
u

)
+

N∑
n=1

δt
(
µuD

1
B,1,1ε

n
u +∇εnp , enu + τu

(
µuD

1
B,1,1e

n
u +∇enp

)
+ τpτuµp∇D1

B,1,1e
n
p

)
≤

N∑
n=1

δt

[
α1

2τp

∣∣∣∣εnp ∣∣∣∣2 +
τp

2α1

∣∣∣∣µpD1
B,1,1e

n
p +∇·enu

∣∣∣∣2]

+
N∑
n=1

δt

[
α2

2τu
||εnu||

2 +
τu

2α2

∣∣∣∣µuD1
B,1,1e

n
u +∇enp

∣∣∣∣2]
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+
N∑
n=1

δtτp

[
α3

2

∣∣∣∣µpD1
B,1,1ε

n
p +∇·εnu

∣∣∣∣2 +
1

2α3

∣∣∣∣µpD1
B,1,1e

n
p +∇·enu

∣∣∣∣2]

+
N∑
n=1

δtτu

[
α4

2

∣∣∣∣µuD1
B,1,1ε

n
u +∇εnp

∣∣∣∣2 +
1

2α4

∣∣∣∣µuD1
B,1,1e

n
u +∇enp

∣∣∣∣2]

+
N∑
n=1

δt
(
µpD

1
B,1,1ε

n
p +∇·εnu, τpτuµu∇·D1

B,1,1e
n
u

)
+

N∑
n=1

δt
(
µuD

1
B,1,1ε

n
u +∇εn+1

p , τpτuµp∇D1
B,1,1e

n
p

)
.

The only terms missing to bound are the last two ones. Both are bound similarly and we
will only show how the first one is bounded. The first part is bounded as

N∑
n=1

δt
(
µpD

1
B,1,1ε

n
p , τpτuµu∇·D1

B,1,1e
n
u

)
=τpτuµu

[(
µpD

1
B,1,1ε

N
p ,∇·eNu

)
−
(
µpD

1
B,1,1ε

1
p,∇·e0

u

)]
−

N−1∑
n=1

δtτpτuµu
(
µpD

2
C,2,1ε

n
p ,∇·enu

)
≤τpτuµu

[
α5

2

∣∣∣∣µpD1
B,1,1ε

N
p

∣∣∣∣2 +
1

2α5

∣∣∣∣∇·eNu ∣∣∣∣2]
+ τpτuµu

[
α6

2

∣∣∣∣µpD2
C,2,1εp

∣∣∣∣2
`1(L2)

+
1

2α6

||∇·eu||2`∞(L2)

]
,

and the second part is bounded as

N∑
n=1

δt
(
∇·εnu, τpτuµu∇·D1

B,1,1e
n
u

)
=τpτuµu

[(
∇·εNu ,∇·eNu

)
−
(
∇·ε0

u,∇·e0
u

)]
−

N∑
n=1

δt
(
∇·D1

B,1,1ε
n
u, τpτuµu∇·enu

)
≤τpτuµu

[
α7

2

∣∣∣∣∇·εNu ∣∣∣∣2 +
1

2α7

∣∣∣∣∇·eNu ∣∣∣∣2 +
α8

2

∣∣∣∣∇·D1
B,1,1εu

∣∣∣∣2
`1(L2)

+
1

2α8

||∇·eu||2`∞(L2)

]
.

This completes the bounding of Bh. Now let us bound the consistency error (4.33):

C(U,Λ(e)) = Lh(Λ(e))− Bh(U,Λ(e))

=−
N∑
n=1

δt
(
µpD

1
B,1,1p

n +∇·un, enp + τp
(
µpD

1
B,1,1e

n
p +∇·enu

)
+ τpτuµu∇·D1

B,1,1e
n
u

)
−

N∑
n=1

δt
(
µuD

1
B,1,1u

n +∇pn, enu + τu
(
µuD

1
B,1,1e

n
u +∇enp

)
,+τpτuµp∇D1

B,1,1e
n
p

)
.
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Both terms are bounded similarly and we only show how it is bounded the first one. Let
us start with its first part

−
N∑
n=1

δt
(
µpD

1
B,1,1p

n +∇·un, enp
)
≤α9

2

δt2

µp

[
N∑
n=1

∣∣∣∣µpD1
B,1,1p

n +∇·un
∣∣∣∣]2

+
1

2α9

µp||ep||2`∞(L2)

≤α9

2

δt2

µp

[
N∑
n=1

∣∣∣∣µpD1
B,1,1p

n − µp∂tpn
∣∣∣∣]2

+
1

2α9

µp||ep||2`∞(L2)

≤α9

2

δt2

µp
||µp∂ttpn||2`1(L2) +

1

2α9

µp||ep||2`∞(L2).

The second part can be bounded as

−
N∑
n=1

δt
(
µpD

1
B,1,1p

n +∇·un, τp
(
µpD

1
B,1,1e

n
p +∇·enu

))
≤α10

2

N∑
n=1

δtτp
∣∣∣∣µpD1

B,1,1p
n − µp∂tpn

∣∣∣∣2 +
1

2α10

N∑
n=1

δtτp
∣∣∣∣µpD1

B,1,1e
n
p +∇·enu

∣∣∣∣2
≤α10

2
δt2τp||µp∂ttpn||2`2(Υ,L2(Ω)) +

1

2α10

τp
∣∣∣∣µpD1

B,1,1e
n
p +∇·enu

∣∣∣∣2
`2(Υ,L2(Ω))

.

The third part can be bounded as

−
N∑
n=1

δt
(
µpD

1
B,1,1p

n +∇·un, τpτuµu∇·D1
B,1,1e

n
u

)
=τpτuµu

[(
µpD

1
B,1,1p

N +∇·uN ,∇·eNu
)
−
(
µpD

1
B,1,1p

1 +∇·u0,∇·e0
u

)]
− τpτuµu

[
N−1∑
n=1

δt
(
µpD

2
C,2,1p

n +∇·D1
B,1,1u

n,∇·enu
)

+ δt
(
∇·D1

B,1,1u
1,∇·e0

u

)]

≤τpτuµu
[
α11

2

∣∣∣∣µpD1
B,1,1p

N +∇·uN
∣∣∣∣2 +

1

2α11

∣∣∣∣∇·eNu ∣∣∣∣2]
+ τpτuµu

α12

2

[
N−1∑
n=1

δt
∣∣∣∣µpD2

C,2,1p
n +∇·D1

B,1,1u
n
∣∣∣∣]2

+ τpτuµu
1

2α12

||∇·eu||2

≤τpτuµu
[
α11

2
δt2
∣∣∣∣µp∂ttpN ∣∣∣∣2 +

1

2α11

∣∣∣∣∇·eNu ∣∣∣∣2]
+ τpτuµu

[
α12

2
δt2||µp∂tttp||2`1(Υ,L2(Ω)) +

1

2α12

||∇·eu||2`∞(Υ,L2(Ω))

]
.

Combining all bounds the proof is complete.

4.3.5 Accuracy of the fully discrete methods

Let k be the order of p-interpolation and l the order of u-interpolation. Analyzing the
a priori error estimates (4.32) for the fully discrete methods with the error functions
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Table 4.6: Convergence rates for ASGS-BE and OSS-BE according to variational form

Variational Form I II III∣∣∣∣ξnp ∣∣∣∣`∞(L2)
, ||ξnu ||`∞(L2) hk+ 1

2 + hl+
1
2 + δt+ h

1
2 δt hk+ 1

2 + hl + δt hk + hl+
1
2 + δt∣∣∣∣µuD1

B,1,1ξ
n
u +∇ξnp

∣∣∣∣
`2(L2)

hk + hl + h−
1
2 δt+ δt hk−

1
2 + hl−1 + h−1δt hk + hl+

1
2 + δt∣∣∣∣µpD1

B,1,1ξ
n
p +∇·ξnu

∣∣∣∣
`2(L2)

hk + hl + h−
1
2 δt+ δt hk+ 1

2 + hl + δt hk−1 + hl−
1
2 + h−1δt

Best k, l, h-δt k = l, δt ∼ hk+ 1
2 k + 1

2 = l, δt ∼ hl k = l + 1
2 , δt ∼ h

k

k = l, δt ∼ hl k = l, δt ∼ hk

k + 1 = l, δt ∼ hl− 1
2 k = l + 1, δt ∼ hk− 1

2

Table 4.7: Convergence rates for ASGS-CN and OSS-CN according to variational form

Variational Form I II III∣∣∣∣ξnp ∣∣∣∣`∞(L2)
, ||ξnu ||`∞(L2) hk+ 1

2 + hl+
1
2 + δt2 + h

1
2 δt2 hk+ 1

2 + hl + δt2 hk + hl+
1
2 + δt2∣∣∣∣∣∣∣∣µuD1

B,1,1ξ
n
u +∇ξn−

1
2

p

∣∣∣∣∣∣∣∣
`2(L2)

hk + hl + h−
1
2 δt2 + δt2 hk−

1
2 + hl−1 + h−1δt2 hk + hl+

1
2 + δt2∣∣∣∣∣∣∣∣µpD1

B,1,1ξ
n
p +∇·ξn−

1
2

u

∣∣∣∣∣∣∣∣
`2(L2)

hk + hl + h−
1
2 δt2 + δt2 hk+ 1

2 + hl + δt2 hk−1 + hl−
1
2 + h−1δt2

Best k, l, h-δt k = l, δt2 ∼ hk+ 1
2 k + 1

2
= l, δt2 ∼ hl k = l + 1

2
, δt2 ∼ hk

k = l, δt2 ∼ hl k = l, δt2 ∼ hk

k + 1 = l, δt2 ∼ hl−
1
2 k = l + 1, δt2 ∼ hk−

1
2

given in Tables 4.4 and 4.5 and assuming regular enough solutions, we can summarize
the convergence rates as shown in Tables 4.6-4.8. We stress the fact that the convergence
rates do depend on the choice of the stabilization parameters, and different convergence
orders are obtained for the three discrete variational formulations above. Let us note that
the time discretization schemes do not spoil the spatial convergence rates obtained in [67,
68] for the time-continuous case.

Table 4.8: Convergence rates for ASGS-BDF2 and OSS-BDF2 according to variational
form

Variational Form I II III∣∣∣∣ξnp ∣∣∣∣`∞(L2)
, ||ξnu ||`∞(L2) hk+ 1

2 + hl+
1
2 + δt2 hk+ 1

2 + hl + δt2 hk + hl+
1
2 + δt2∣∣∣∣µuD1

B,2,1ξ
n
u +∇ξnp

∣∣∣∣
`2(L2)

hk + hl + h−
1
2 δt2 hk−

1
2 + hl−1 + h−1δt2 hk + hl+

1
2 + δt2∣∣∣∣µpD1

B,2,1ξ
n
p +∇·ξnu

∣∣∣∣
`2(L2)

hk + hl + h−
1
2 δt2 hk+ 1

2 + hl + δt2 hk−1 + hl−
1
2 + h−1δt2

Best k, l, h-δt k = l, δt2 ∼ hk+ 1
2 k + 1

2 = l, δt2 ∼ hl k = l + 1
2 , δt

2 ∼ hk

k = l, δt2 ∼ hl k = l, δt2 ∼ hk

k + 1 = l, δt2 ∼ hl− 1
2 k = l + 1, δt2 ∼ hk− 1

2
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4.4 Fourier analysis
We show now the results of a Fourier analysis (or von Neumann analysis) in 1D using linear
(P1) elements, which serves to study dispersion, dissipation, and stability of the numerical
schemes. The analysis is done in an unbounded domain with no forcing terms, but with
non-zero initial conditions. The mesh is taken uniform, of size h, and the time step is δt.
We focus on variational form I because it has the best convergence properties, as shown in
the previous analysis.

Let us consider a solution of the form p = Cpe
i(kx−ωt) and u = Cpµ

1/2
p µ

−1/2
u ei(kx−ωt),

where Cp is an arbitrary constant such that [p] = [Cp], [·] standing for dimensional group, ω
is the angular frequency (temporal frequency) and k is the (angular) wavenumber (spatial
frequency). It can be checked that this plane wave is solution of the wave equation in
mixed form. The angular frequency and wavenumber are related through the wave speed
as ω = kc.

For 1D P1 elements of size diamK = h we will need the following element matrices:∫
K

NiNj

∣∣∣
i,j=1,2

=
h

6

(
2 1
1 2

)
,

∫
K

Ni∂xNj

∣∣∣
i,j=1,2

=
1

2

(
−1 1
−1 1

)
,∫

K

∂xNiNj

∣∣∣
i,j=1,2

=
1

2

(
−1 −1
1 1

)
,

∫
K

∂xNi∂xNj

∣∣∣
i,j=1,2

=
1

h

(
1 −1
−1 1

)
,

where Ni is the shape function of node i (in element K). When assembled for just two
elements sharing a generic node they give, respectively,

Mp = Mu =
h

6

2 1 0
1 4 1
0 2 1

 , Kp = Ku =
1

2

−1 1 0
−1 0 1
0 −1 1

 ,

MS,p = MS,u =
1

2

−1 −1 0
1 0 −1
0 1 1

 , KS,p = KS,u =
1

h

 1 −1 0
−1 2 −1
0 −1 1

 .

Additionally, we define the lumped mass matrices

M̃p = M̃u =
h

2

1 0 0
0 2 0
0 0 1

 .

First we will analyze the time semi-discretization, then the space semi-discretization
and finally the full discretization. The time discretizations to be considered are the θ and
BDF2 methods, whereas the space discretizations to be analyzed are stabilized FE methods
(ASGS and OSS). We will often take tn = nδt and xj = jh, where n is the time step and
j is the mesh point.

4.4.1 Time semi-discretization

Let us start considering the effect of the time discretization only, without discretizing in
space. Let us take ωδt = kδtcδt and kδt = k, where the subscript δt denotes temporal
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semi-discretization. We take a solution (mode) of the form

[P n(x), Un(x)] = φke
i(kx−ωδttn)

[
1, µ1/2

p µ−1/2
u

]
, (4.42)

where φk is a constant that describes the amplitude at tn = 0.
The semi-discrete problem using the θ method is as follows:

µp
δt

(P n+1 − P n) + θ
d

dx
Un+1 + (1− θ) d

dx
Un = 0,

µu
δt

(Un+1 − Un) + θ
d

dx
P n+1 + (1− θ) d

dx
P n = 0,

where 0 ≤ θ ≤ 1 is a parameter. The backward Euler method corresponds to θ = 1, the
forward Euler method to θ = 0 and the trapezoidal rule to θ = 0.5. Replacing [P n, Un]
from (4.42) we have:

µp
δt

(
e−iωδtδt − 1

)
+ µ1/2

p µ−1/2
u

(
ikθe−iωδtδt + ik(1− θ)

)
= 0,

µu
δt
µ1/2
p µ−1/2

u

(
e−iωδtδt − 1

)
+ ikθe−iωδtδt + ik(1− θ) = 0.

Both equations are equivalent, so we just analyze one of them. We have that

ωδtδt =
−1

i
log

(
1− (1− θ)iωδt

1 + iωδtθ

)
.

The numerical angular frequency, ωδt, is not always real, it is complex for θ 6= 0.5. It can
be shown that the angular frequency error is 2nd order in ωδt for θ = 0.5 and only 1st order
in ωδt for θ 6= 0.5. Fig. 4.1 shows the angular frequency ratio ωδt/ω for 0 ≤ ωδt/π ≤ 1. It
can be seen that the θ-method is unconditionally stable for θ ≥ 0.5.

On the other hand, the semi-discrete problem using BDF2 is:

µp
2δt

(3P n+1 − 4P n + P n−1) +
d

dx
Un+1 = 0,

µu
2δt

(3Un+1 − 4Un + Un−1) +
d

dx
P n+1 = 0.

Following a similar procedure as for the θ method we arrive to

ωδtδt =
1

i
log(2±

√
1− 2iωδt).

The numerical angular frequency is complex. The root corresponding to +
√ is spurious,

hence we just plot the root corresponding to −√. It can be shown that the angular
frequency error is 2nd order in ωδt. Fig. 4.2 shows the angular frequency ratio ωδt/ω for
0 ≤ ωδt/π ≤ 1. It can be seen that the BDF2 method is unconditionally stable.

Now, let us compare the θ-method with θ = 1/2 and BDF2. Fig. 4.3 compares both
methods. It can be seen that the θ-method with θ = 1/2 outperforms BDF2 for the wave
equation in mixed form both in terms of dispersion and dissipation.
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Figure 4.7: OSS space semi-discretization: imaginary part of the wavenumber ratio (the
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4.4.2 Space semi-discretization

We analyze now the wave equation in mixed form when the spatial discretization is done
using the ASGS and the OSS methods. We take ωh = khch and ωh = ω, where the subscript
h denotes spatial semi-discretization. We take now

[Pj(t), Uj(t)] = φωei(khxj−ωt)
[
1, µ1/2

p µ−1/2
u

]
, (4.43)

where φω is a constant that describes the amplitude at t = 0.
For the ASGS method, the semi-discrete problem has the matrix structure:

µpMp
dP

dt
+KuU + τuµuMS,u

dU

dt
+ τuKS,pP = 0,

µuMu
dU

dt
+KpP + τpµpMS,p

dP

dt
+ τpKS,uU = 0,

where a subscript S has been introduced in the matrices with contributions from the
stabilization terms. In these equations, P and U do not denote the sequence of solutions
in time, but the array of nodal unknowns with time-continuous components. The meaning
of P and U in what follows will be determined by the context. We just analyze one of
the previous equations because they are equivalent. The j-th row of the first system of
equations is

µp
h

6

(
d

dt
Pj−1 + 4

d

dt
Pj +

d

dt
Pj+1

)
+

1

2
(−Uj−1 + Uj+1)

+ τuµu
1

2

(
d

dt
Uj−1 −

d

dt
Uj+1

)
+ τu

1

h
(−Pj−1 + 2Pj − Pj+1) = 0.

Replacing [Pj, Uj] from (4.43) we have:

−iωµp
h

6

(
e−ikhh + 4 + eikhh

)
+

1

2
µ1/2
p µ−1/2

u

(
−e−ikhh + eikhh

)
− 1

2
iωτuµ

1/2
p µ1/2

u

(
e−ikhh − eikhh

)
+

1

h
τu
(
−e−ikhh + 2− eikhh

)
= 0,
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kh
k

= − i

kh
log

(
−(4kh+ 12iCτ )±

√
36(kh)2C2

τ + 72ikhCτ + 12(kh)2 − 36

2(kh+ 3i− 3khCτ − 6iCτ )

)
.

The Maclaurin series for the real and imaginary parts are:

<(kh)

k
= 1− 15C2

τ − 1

180
(kh)4 +

126C4
τ − 63C2

τ + 1

1512
(kh)6 + ... ,

=(kh)

k
=
Cτ
12

(kh)3 − 6C3
τ − Cτ
72

(kh)5 + ... .

It can be shown that kh is complex and that <(kh) is of order (kh)4 for any Cτ and of order
(kh)6 for Cτ = 1/

√
15 ≈ 0.2582. Additionally, =(kh) is of order (kh)3 for any Cτ > 0.

Fig. 4.4 and Fig. 4.5 show the real and imaginary parts of the wavenumber ratio as a
function of kh/π. It can be seen that the Galerkin method (Cτ = 0) is unstable whereas
the ASGS method is always stable.

Next, we analyze an OSS method in which a lumped mass matrix (diagonal) is used
to project the residual. Additionally, as the projection with a lumped mass matrix is
not exactly an L2 projection, we keep the time derivatives in the residual. Non-lumped
(consistent) mass matrices are used for time derivatives. Better than lumped mass matrix
approximations to the L2 projection can be used, but the results obtained are very similar.
For instance we could use the family of banded approximate mass matrices from [138].

The matrix form of the semi-discrete problem is:

µpMp
dP

dt
+KuU + τuµuMS,u

dU

dt
+ τuKS,pP − τuMS,uRu = 0,

MuRu = µuMu
d

dt
U +KpP,

µuMu
dU

dt
+KpP + τpµpMS,p

dP

dt
+ τpKS,uU − τpMS,pRp = 0,

MpRp = µpMp
d

dt
P +KuU.

As we use a lumped projection, the semi-discrete problem reduces to:

µpMp
dP

dt
+KuU + τuµuMS,u

dU

dt
+ τuKS,pP − τuMS,uM̃

−1
u

(
µuMu

d

dt
U +KpP

)
= 0,

µuMu
dU

dt
+KpP + τpµpMS,p

dP

dt
+ τpKS,uU − τpMS,pM̃

−1
p

(
µpMp

d

dt
P +KuU

)
= 0.

Following similar steps as for the ASGS method, we arrive to the expression which relates
khh with kh:

2kh
(
eikhh + 4e2ikhh + e3ikhh

)
+ khCτ

(
−1 + 2eikhh − 2e3ikhh + e4ikhh

)
+ 6i

(
−eikhh + e3ikhh

)
+ 3iCτ

(
1− 4eikhh + 6e2ikhh − 4e3ikhh + e4ikhh

)
= 0.

Fig. 4.6 and Fig. 4.7 show the real and imaginary parts of the wavenumber ratio as a
function of kh/π. As before, the Galerkin method (Cτ = 0) is unstable whereas the OSS
method is always stable.
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Figure 4.8: ASGS + θ for r = 1 and Cτ = 0.2
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Figure 4.10: ASGS + θ for Cτ = 0.2 and θ = 0.5
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Figure 4.11: ASGS + BDF2 for r = 1
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Figure 4.12: ASGS + BDF2 for Cτ = 0.2

4.4.3 Space-time discretization

Finally, we analyze the fully discrete problems arising from the combination of time
discretizations (θ and BDF2) and space discretizations (ASGS and OSS). Thus, in total
we will analyze four fully discrete problems. We take ω∗ = k∗c∗ and k∗ = k. The subscript
∗ denotes full discretization. We take a mode of the form[

P n
j , U

n
j

]
= φke

i(kxj−ω∗tn)
[
1, µ1/2

p µ−1/2
u

]
, (4.44)

where φk describes the amplitude at tn = 0.
Let us define r as the Courant or CFL number as

r := cδt/h. (4.45)

First, we consider the ASGS formulation for the space discretization. With regard to
the time integration, we first consider the θ-method. The fully discrete problem is:

µp
δt
Mp

(
P n+1 − P n

)
+τu

µu
δt
MS,u

(
Un+1 − Un

)
+ θ

(
KuU

n+1 + τuKS,pP
n+1
)

+ (1− θ) (KuU
n + τuKS,pP

n) = 0,
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µu
δt
Mu

(
Un+1 − Un

)
+τp

µp
δt
MS,p

(
P n+1 − P n

)
+ θ

(
KpP

n+1 + τpKS,uU
n+1
)

+(1− θ) (KpP
n + τpKS,uU

n) = 0.

We concentrate in one of the equations because both will be equivalent for the current
analysis. The j-th row of the system of equations is

µph

6δt

(
P n+1
j−1 + 4P n+1

j + P n+1
j+1 − P n

j−1 − 4P n
j − P n

j+1

)
+
τuµu
2δt

(
Un+1
j−1 − Un+1

j+1 − Un
j−1 + Un

j+1

)
+ θ

(
1

2

(
−Un+1

j−1 + Un+1
j+1

)
+ τu

1

h

(
−P n+1

j−1 + 2P n+1
j − P n+1

j+1

))
+ (1− θ)

(
1

2

(
−Un

j−1 + Un
j+1

)
+ τu

1

h

(
−P n

j−1 + 2P n
j − P n

j+1

))
= 0,

and replacing
[
P n
j , U

n
j

]
from (4.44) we get

µp
h

6δt

(
ei(−kh−ω∗δt) + 4ei(−ω∗δt) + ei(kh−ω∗δt) − ei(−kh) − 4− ei(kh)

)
+

1

2δt
τuµ

1
2
p µ

1
2
u

(
ei(−kh−ω∗δt) − ei(kh−ω∗δt) − ei(−kh) + ei(kh)

)
+ θ

(
1

2
µ

1
2
p µ
− 1

2
u

(
−ei(−kh−ω∗δt) + ei(kh−ω∗δt)

)
+

1

h
τu
(
−ei(−kh−ω∗δt) + 2ei(−ω∗δt) − ei(kh−ω∗δt)

))
+ (1− θ)

(
1

2
µ

1
2
p µ
− 1

2
u

(
−ei(−kh) + ei(kh)

)
+

1

h
τu
(
−ei(−kh) + 2− ei(kh)

))
= 0.

Using the definition of r from (4.45) we arrive to:

ω∗
ω

=
−1

irkh
log

(
2 + cos(kh)− 3iCτ sin(kh)− (1− θ)(3ir sin(kh) + 6rCτ (1− cos(kh)))

2− 3iCτ sin(kh) + cos(kh) + 3irθ sin(kh) + 6rθCτ (1− cos(kh))

)
.

Fig. 4.8, Fig. 4.9, and Fig. 4.10 show the real and imaginary parts of the angular
frequency ratio keeping two parameters fixed. It can be seen that θ = 0 (forward Euler or
explicit Euler scheme) is unconditionally unstable. This is similar to what happens with
forward in time-centered in space finite differences (FTCS) applied to the pure advection
equation in 1D.

Next, we consider the ASGS with the BDF2 time integration. The fully discrete problem
is:

µp
2δt

Mp

(
3P n+2 − 4P n+1 + P n

)
+τu

µu
2δt

MS,u

(
3Un+2 − 4Un+1 + Un

)
+KuU

n+2 + τuKS,pP
n+2 = 0,

µu
2δt

Mu

(
3Un+2 − 4Un+1 + Un

)
+τp

µp
2δt

MS,p

(
3P n+2 − 4P n+1 + P n

)
+KpP

n+2 + τpKS,uU
n+2 = 0.

Following a similar procedure as before, we arrive to(
3e−2iω∗δt − 4e−iω∗δt + 1

)
((2 + cos(kh))− 3iCτ (sin(kh)))
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Figure 4.13: Fully discrete ASGS with Cτ = 0.2 and r = 1

+e−2iω∗δt (6ir (sin(kh)) + 12rCτ (1− cos(kh))) = 0.

Fig. 4.11 and Fig. 4.12 show the angular frequency ratio for the fully discrete problem. It
can be seen that this combination of spatial and temporal discretization is stable.

Fig. 4.13 compares the fully discrete ASGS method with the two time integration
schemes shown previously. It can be seen that the θ method performs better than BDF2
for small enough kh.

Next, we aim to analyze the properties of the OSS stabilized formulation. When using
the θ-method for the time integration, the fully discrete problem is:

µp
δt
Mp

(
P n+1 − P n

)
+ τu

µu
δt
MS,u

(
Un+1 − Un

)
− τuMS,uM̃

−1
u

µu
δt
Mu

(
Un+1 − Un

)
+ θ

(
KuU

n+1 + τuKS,pP
n+1 − τuMS,uM̃

−1
u KpP

n+1
)

+ (1− θ)
(
KuU

n + τuKS,pP
n − τuMS,uM̃

−1
u KpP

n
)

= 0,

µu
δt
Mu

(
Un+1 − Un

)
+ τp

µp
δt
MS,p

(
P n+1 − P n

)
− τpMS,pM̃

−1
p

µp
δt
Mp

(
P n+1 − P n

)
+ θ

(
KpP

n+1 + τpKS,uU
n+1 − τpMS,pM̃

−1
p KuU

n+1
)

+ (1− θ)
(
KpP

n + τpKS,uU
n − τpMS,pM̃

−1
p KuU

n
)

= 0.

Following a similar procedure as before we arrive to(
e−iω∗δt − 1

)
(2 (2 + cos(kh)) + iCτ (−2 sin(kh) + sin(2kh)))

+
(
θe−iω∗δt + 1− θ

)
(6ir (sin(kh)) + 3rCτ (3− 4 cos(kh) + cos(2kh))) = 0.

Fig. 4.14, Fig. 4.15, and Fig. 4.16 show the angular frequency ratio for this fully discretized
problem.

Next, we consider the OSS-BDF2 fully discrete problem:
µp
2δt

Mp

(
3P n+2 − 4P n+1 + P n

)
+ τu

µu
2δt

MS,u

(
3Un+2 − 4Un+1 + Un

)
+KuU

n+2

+ τuKS,pP
n+2 − τuMS,uM̃

−1
u

( µu
2δt

Mu

(
3Un+2 − 4Un+1 + Un

)
+KpP

n+2
)

= 0,
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Figure 4.14: OSS + θ for r = 1 and Cτ = 0.2
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Figure 4.15: OSS + θ for r = 1 and θ = 0.5
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Figure 4.16: OSS + θ for Cτ = 0.2 and θ = 0.5
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Figure 4.17: OSS + BDF2 for r = 1
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Figure 4.18: OSS + BDF2 for Cτ = 0.2

µu
2δt

Mu

(
3Un+2 − 4Un+1 + Un

)
+ τp

µp
2δt

MS,p

(
3P n+2 − 4P n+1 + P n

)
+KpP

n+2

+ τpKS,uU
n+2 − τpMS,pM̃

−1
p

( µp
2δt

Mp

(
3P n+2 − 4P n+1 + P n

)
+KuU

n+2
)

= 0.

Following a similar procedure as before we get(
3e−2iω∗δt − 4e−iω∗δt + 1

)
(2 (2 + cos(kh)) + iCτ (−2 sin(kh) + sin(2kh)))

+ e−2iω∗δt (12ir (sin(kh)) + 6rCτ (3− 4 cos(kh) + cos(2kh))) = 0.

Fig. 4.17 and Fig. 4.18 show the real and imaginary parts of the angular frequency ratio.
The plots comparing time marching schemes for the OSS method are very similar to

the ones for ASGS and are not shown for succinctness. The fully discrete ASGS and OSS
methods perform similarly according to this analysis, so we do not show a side by side
comparison of both methods.

4.5 Numerical results
In this section we present two sets of numerical results. First, convergence tests are
presented and compared with the predicted convergence rates obtained from convergence
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Table 4.9: Experimental δt convergence rates for ASGS-BE method using Q1/Q1 spatial
interpolation

Variational Form I II III I
δt vs. h δt ∼ 0.5h δt ∼ 4.5h1.5

Num Min Num Min Num Min Num Min
||pn − pnh||`∞(L2) 1.00 1 1.00 1 1.01 1 1.00 1
||un − unh||`∞(L2) 1.02 1 1.02 1 1.02 1 1.01 1
||∇(pn − pnh)||`2(L2) 1.00 0.5 1.00 0 1.00 1 0.66 2/3
||∇·(un − unh)||`2(L2) 1.00 0.5 1.00 1 1.00 0 0.66 2/3

analysis. Then, numerical solutions of a wave propagation problem are compared in order
to see the differences of the fully discrete methods.

4.5.1 Convergence tests

Let us consider a two dimensional transient problem with analytical solution to investigate
the convergence properties of the stabilized FE formulations proposed. The spatial domain
is the unit square (0, 1)×(0, 1) and the temporal domain is (0, 1). The forcing terms [fp,fu]
are chosen such that the exact solution is p = sin(πx) sin(πy) cos

(
π
3
t
)
and u = [p, p] with

µp = µu = 1. On the boundary we prescribe p = 0 (Γ = Γp). The initial condition is taken
as the exact solution at t = 0. Various mesh sizes and time step sizes have been used to
generate the results. We have used isotropic bilinear (Q1) and biquadratic (Q2) meshes of
sizes h = 0.05, 0.025, 0.01, 0.005 and 0.002. The stabilization algorithmic constant Cτ has
been taken as 0.05 for Q1 elements and 0.4 for Q2 elements. The the length scale of the
problem has been taken as L0 = d

√
meas(Ω) = 1.

In Tables 4.9-4.20 we show the convergence rates with respect to the time step size
δt for various stabilization methods (ASGS and OSS), time integrators (BE/CN/BDF2)
and spatial interpolations (Q1 and Q2). The numerical experiments have been carried
out modifying the time step size and the mesh size at the same time. The relationship
(δt, h) is shown in each table for each variational form with the respective proportionality
constant and power, δt ∼ Csh

s. The power constant s has been chosen as s = 1 for all the
variational forms and, additionally, it has been chosen such that the best convergence is
achieved for equal interpolation of the unknowns (k = l). It is observed than in all cases
the numerical rate of convergence obtained (Num) is greater than or equal to the minimum
one predicted by the convergence analysis (Min).

4.5.2 Numerical comparison

In Section 4.4 we analyzed dispersion and dissipation analytically through Fourier tech-
niques. We present now a simple test to verify experimentally the predictions of the Fourier
analysis. Let us consider a 1D problem in Ω = (0, L) = (0, 1) and Υ = (0, 0.8), and let us
solve the mixed wave equation with µp = 1, µu = 1, zero initial conditions and boundary
conditions p(0, t) = sin (ωt) and p(L, t) = 0. We compare the solutions obtained with the
fully discrete methods at t = 0.6.
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Table 4.10: Experimental δt convergence rates for OSS-BE method using Q1/Q1 spatial
interpolation

Variational Form I II III I
δt vs. h δt ∼ 0.5h δt ∼ 4.5h1.5

Num Min Num Min Num Min Num Min
||pn − pnh||`∞(L2) 1.00 1 1.00 1 1.01 1 1.00 1
||un − unh||`∞(L2) 1.02 1 1.02 1 1.02 1 1.01 1
||∇(pn − pnh)||`2(L2) 1.00 0.5 1.00 0 1.00 1 0.66 2/3
||∇·(un − unh)||`2(L2) 1.00 0.5 1.00 1 1.00 0 0.66 2/3

Table 4.11: Experimental δt convergence rates for ASGS-BE method using Q2/Q2 spatial
interpolation

Variational Form I II III I II III
δt vs. h δt ∼ 0.5h δt ∼ 894h2.5 δt ∼ 40h2 δt ∼ 40h2

Num Min Num Min Num Min Num Min Num Min Num Min∣∣∣∣pn − pnh∣∣∣∣`∞(L2)
0.98 1 0.98 1 0.98 1 0.99 1 0.99 1 0.99 1∣∣∣∣un − unh∣∣∣∣`∞(L2)
0.99 1 0.99 1 0.99 1 1.00 1 1.00 1 1.00 1∣∣∣∣∇(pn − pnh)

∣∣∣∣
`2(L2)

0.99 0.5 0.99 0 0.99 1 0.98 4/5 0.50 0.5 1.00 1∣∣∣∣∇·(un − unh)
∣∣∣∣
`2(L2)

0.99 0.5 0.99 1 0.99 0 0.99 4/5 1.00 1 0.50 0.5

Table 4.12: Experimental δt convergence rates for OSS-BE method using Q2/Q2 spatial
interpolation

Variational Form I II III I II III
δt vs. h δt ∼ 0.5h δt ∼ 894h2.5 δt ∼ 40h2 δt ∼ 40h2

Num Min Num Min Num Min Num Min Num Min Num Min∣∣∣∣pn − pnh∣∣∣∣`∞(L2)
0.98 1 0.98 1 0.98 1 0.99 1 0.99 1 0.99 1∣∣∣∣un − unh∣∣∣∣`∞(L2)
0.99 1 0.99 1 0.99 1 1.00 1 1.00 1 1.00 1∣∣∣∣∇(pn − pnh)

∣∣∣∣
`2(L2)

0.99 0.5 1.02 0 0.99 1 0.98 4/5 0.51 0.5 1.00 1∣∣∣∣∇·(un − unh)
∣∣∣∣
`2(L2)

0.99 0.5 0.99 1 1.03 0 0.99 4/5 0.99 1 0.52 0.5

Table 4.13: Experimental δt convergence rates for ASGS-CN method using Q1/Q1 spatial
interpolation

Variational Form I II III I II III
δt vs. h δt ∼ 0.5h δt ∼ 0.2h0.75 δt ∼ 0.1h0.5 δt ∼ 0.1h0.5

Num Min Num Min Num Min Num Min Num Min Num Min∣∣∣∣pn − pnh∣∣∣∣`∞(L2)
2.00 1.5 2.00 1 2.00 1 2.60 2 3.38 2 3.39 2∣∣∣∣un − unh∣∣∣∣`∞(L2)
2.00 1.5 2.00 1 2.00 1 2.64 2 3.72 2 3.72 2∣∣∣∣∇(pn − pnh)

∣∣∣∣
`2(L2)

1.00 1 1.00 0 1.00 1 1.33 4/3 1.99 0 1.99 2∣∣∣∣∇·(un − unh)
∣∣∣∣
`2(L2)

1.00 1 1.00 1 1.00 0 1.33 4/3 1.99 2 1.99 0
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Table 4.14: Experimental δt convergence rates for OSS-CN method using Q1/Q1 spatial
interpolation

Variational Form I II III I II III
δt vs. h δt ∼ 0.5h δt ∼ 0.2h0.75 δt ∼ 0.1h0.5 δt ∼ 0.1h0.5

Num Min Num Min Num Min Num Min Num Min Num Min∣∣∣∣pn − pnh∣∣∣∣`∞(L2)
2.00 1.5 2.00 1 2.00 1 2.60 2 3.38 2 3.39 2∣∣∣∣un − unh∣∣∣∣`∞(L2)
2.00 1.5 2.00 1 2.00 1 2.64 2 3.72 2 3.72 2∣∣∣∣∇(pn − pnh)

∣∣∣∣
`2(L2)

1.00 1 1.00 0 1.00 1 1.33 4/3 1.99 0 1.99 2∣∣∣∣∇·(un − unh)
∣∣∣∣
`2(L2)

1.00 1 1.00 1 1.00 0 1.33 4/3 1.99 2 1.99 0

Table 4.15: Experimental δt convergence rates for ASGS-CN method using Q2/Q2 spatial
interpolation

Variational Form I II III I
δt vs. h δt ∼ 0.5h δt ∼ 2h1.25

Num Min Num Min Num Min Num Min
||pn − pnh||`∞(L2) 2.01 2 2.00 2 2.00 2 2.00 2
||un − unh||`∞(L2) 2.26 2 2.00 2 2.00 2 2.13 2
||∇(pn − pnh)||`2(L2) 1.99 1.5 1.00 1 2.00 2 1.60 1.6
||∇·(un − unh)||`2(L2) 1.99 1.5 2.00 2 1.00 1 1.60 1.6

Table 4.16: Experimental δt convergence rates for OSS-CN method using Q2/Q2 spatial
interpolation

Variational Form I II III I
δt vs. h δt ∼ 0.5h δt ∼ 2h1.25

Num Min Num Min Num Min Num Min
||pn − pnh||`∞(L2) 2.01 2 1.99 2 2.00 2 2.00 2
||un − unh||`∞(L2) 2.04 2 1.99 2 2.03 2 2.00 2
||∇(pn − pnh)||`2(L2) 2.00 1.5 1.00 1 2.00 2 1.60 1.6
||∇·(un − unh)||`2(L2) 2.02 1.5 1.98 2 1.02 1 1.62 1.6

Table 4.17: Experimental δt convergence rates for ASGS-BDF2 method using Q1/Q1
spatial interpolation

Variational Form I II III I II III
δt vs. h δt ∼ 0.5h δt ∼ 0.2h0.75 δt ∼ 0.1h0.5 δt ∼ 0.1h0.5

Num Min Num Min Num Min Num Min Num Min Num Min∣∣∣∣pn − pnh∣∣∣∣`∞(L2)
2.00 1.5 2.00 1 2.00 1 2.66 2 3.93 2 3.93 2∣∣∣∣un − unh∣∣∣∣`∞(L2)
2.00 1.5 2.00 1 2.00 1 2.67 2 4.04 2 4.04 2∣∣∣∣∇(pn − pnh)

∣∣∣∣
`2(L2)

1.00 1 1.00 0 1.00 1 1.32 4/3 1.99 0 1.99 2∣∣∣∣∇·(un − unh)
∣∣∣∣
`2(L2)

1.00 1 1.00 1 1.00 0 1.32 4/3 1.99 2 1.99 0
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Table 4.18: Experimental δt convergence rates for OSS-BDF2 method using Q1/Q1 spatial
interpolation

Variational Form I II III I II III
δt vs. h δt ∼ 0.5h δt ∼ 0.2h0.75 δt ∼ 0.1h0.5 δt ∼ 0.1h0.5

Num Min Num Min Num Min Num Min Num Min Num Min∣∣∣∣pn − pnh∣∣∣∣`∞(L2)
2.00 1.5 2.00 1 2.00 1 2.66 2 3.93 2 3.93 2∣∣∣∣un − unh∣∣∣∣`∞(L2)
2.00 1.5 2.00 1 2.00 1 2.67 2 4.04 2 4.04 2∣∣∣∣∇(pn − pnh)

∣∣∣∣
`2(L2)

1.00 1 1.00 0 1.00 1 1.32 4/3 1.99 0 1.99 2∣∣∣∣∇·(un − unh)
∣∣∣∣
`2(L2)

1.00 1 1.00 1 1.00 0 1.32 4/3 1.99 2 1.99 0

Table 4.19: Experimental δt convergence rates for ASGS-BDF2 method using Q2/Q2
spatial interpolation

Variational Form I II III I
δt vs. h δt ∼ 0.5h δt ∼ 2h1.25

Num Min Num Min Num Min Num Min
||pn − pnh||`∞(L2) 2.17 2 2.00 2 2.13 2 2.41 2
||un − unh||`∞(L2) 2.19 2 2.00 2 2.00 2 2.34 2
||∇(pn − pnh)||`2(L2) 1.99 1.5 1.00 1 2.00 2 1.59 1.6
||∇·(un − unh)||`2(L2) 1.99 1.5 2.00 2 1.00 1 1.59 1.6

For ω = 10π a quite coarse pair of mesh and time step sizes is (h, δt) = (0.05, 0.05).
This allows us to see dispersion and dissipation in the numerical solution when compared
with the exact solution sin(ωt−kx)(1−H(x−ct)), where H is the Heaviside step function.
The algorithmic constant is taken as Cτ = 0.1 and the elements used are P1.

Fig. 4.19 shows the numerical solutions obtained with ASGS and three time marching
schemes. CN is the least dissipative while BE is the most dissipative and BDF2 is
somewhere in the middle. These numerical results are in agreement with the previous
Fourier analysis. OSS behaves similarly and we do not show those results. Figs. 4.20-4.22
compare the ASGS method with the OSS method for the same time integration scheme,
showing a very similar numerical behavior.

Table 4.20: Experimental δt convergence rates for OSS-BDF2 method using Q2/Q2 spatial
interpolation

Variational Form I II III I
δt vs. h δt ∼ 0.5h δt ∼ 2h1.25

Num Min Num Min Num Min Num Min
||pn − pnh||`∞(L2) 2.18 2 2.02 2 2.14 2 2.42 2
||un − unh||`∞(L2) 2.03 2 2.00 2 2.03 2 2.24 2
||∇(pn − pnh)||`2(L2) 2.00 1.5 1.01 1 2.00 2 1.60 1.6
||∇·(un − unh)||`2(L2) 2.02 1.5 2.00 2 1.03 1 1.64 1.6
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Figure 4.19: Numerical solution using the ASGS formulation and different time marching
schemes
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Figure 4.20: Comparison of ASGS and OSS using BE as time integration
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Figure 4.21: Comparison of ASGS and OSS using BDF2 as time integration
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Figure 4.22: Comparison of ASGS and OSS using CN as time integration
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4.6 Conclusions
In this work we have presented fully discrete methods arising from the combination of
spatial discretization methods, namely stabilized FE methods, and temporal discretization
methods (backward Euler, Crank-Nicolson and 2nd order backward differentiation for-
mula) for the mixed wave equation in three different variational forms. The stabilization
parameters have been designed such that they mimic the continuous setting.

Stability and convergence has been proved for all combinations of space discretization
and time discretization. Stability, dispersion and dissipation of the fully discrete methods in
1D for equal interpolation of [p,u] has been analyzed using Fourier techniques. According
to this analysis, CN performs better than BE and BDF2. Additionally, ASGS and OSS
perform similarly.

Numerical convergence tests have been performed and the results obtained in the
numerical experiments are in agreement with the theoretical predictions. Additionally,
the fully discrete methods have been compared qualitatively. This comparison shows the
differences in dispersion and dissipation of the methods and is in agreement with the Fourier
analysis.



Chapter 5

Applications

This chapter includes material in:
Oriol Guasch, Marc Arnela, Ramon Codina, and Hector Espinoza. “A stabilized finite
element method for the mixed wave equation in an ALE framework with application to
diphthong production”. In: Journal of Computational Physics (Oct. 2014). Submitted
as well as additional unpublished numerical application examples.

Here we present various wave propagation examples. The examples include a concentric
tube wave propagation problem, an eccentric tube problem, vowel generation and diph-
thong generation. Some of the results are compared with experiments [139]. All examples
involve acoustic wave propagation where the propagation media is air with properties µp =
7.083E-6 m s2/Kg and µu = 1.20 Kg/m3 which correspond to a sound speed c = 343 m/s
and a density ρ0 = 1.20 Kg/m3.

The algorithmic constant for the stabilization parameters was taken as Cτ = 0.1 in all
cases. The element size h is based on the volume of the element h = d

√
Ve.

5.1 Concentric Tubes

This is a 3D example of wave propagation inside of two concentric tubes of different diam-
eter. In the context of voice simulation, this geometry corresponds to a very rudimentary
approximation of the vocal tract in vowel /a/ position. A pressure pulse at the small
diameter tube is the input signal and the end of the big diameter tube is the output to
free space. Two reference points denoted as 1 and 2 will be used for comparison with
experimental results using the concept of transfer function [139].

5.1.1 Space and time domains

The time interval for the simulation is 25 ms. The spatial domain consists of two concentric
tubes: one 85 mm long with a diameter of 14 mm and another tube of the same length and
a diameter of 29.5 mm as shown in Fig. 5.1. The smaller diameter tube is the sound inlet
through a 2 mm diameter hole. Acoustic pressure and velocity are measured at points 1
and 2 for comparison with experimental results.

121
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1 2
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29.5 mm
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tube endplate

Figure 5.1: Concentric tubes spatial domain

5.1.2 Boundary and Initial conditions

Initial conditions are zero pressure and zero velocity. Boundary conditions consist of three
parts. The first part, denoted as Γp, corresponds to the 2 mm diameter hole in the small
tube. There, a Gaussian pressure pulse is imposed as follows

p = e[(t−Tgp)0.29Tgp]2 , (5.1)

with Tgp = 0.646/f0 and f0 = 10000 Hz.
The second part of the boundary, denoted as Γu, corresponds to the wall of the tubes

and the endplate. There, a hard wall boundary condition is applied γnu = 0.
Finally, the third part of the boundary, denoted as Γo, corresponds to a non-reflecting

boundary condition. It is applied on a semi-sphere of radius 150 mm surrounding the tube
exit.

The boundary conditions can be seen in Fig. 5.2.

5.1.3 Experimental setup

Fig. 5.3 shows the concentric tubes experimental model and Fig. 5.4 shows the experimental
setup.

5.1.4 Spatial and temporal discretization

Space was discretized using tetrahedral elements of size 0.0005 m for the input hole, 0.002
m for the tubes volume and 0.008 m for the surrounding volume. The mesh size for the
input hole is based in geometrical considerations (2 mm diameter input hole). The mesh
size inside the tubes is based on resolution considerations in order to have around 16 points
per wavelength at 10 kHz. The surrounding volume is not important for this simulation,
so a big mesh size can be taken. The mesh obtained is around 260K elements and 50K
nodes. A cut on the plane z = 0 of the mesh used can be seen in Fig. 5.5.

For time discretization a time step 5 ·10−6 s was used based on a resolution of 16 points
per wave period. Several time integration schemes were used to compute the results.
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Figure 5.2: Concentric tubes boundary conditions

Figure 5.3: Concentric tubes experiment model
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Figure 5.4: Experiment setup

x
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z

Figure 5.5: Cut on the plane z = 0 showing the tetrahedral mesh used
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5.1.5 Results

We present the results using ASGS and OSS for spatial discretization and BE, BDF2
and CN for time discretization. Numerical results are compared with experimental results
kindly provided by GIPSA-lab through EUNISON project [4]. The comparison is done in
the frequency domain using the concept of transfer functions.

Let H12(f) be the pressure-pressure transfer function of point 2 with respect to point
1 at frequency f , let p1(t) be the pressure at point 1, let p2(t) be the pressure at point 2
and let p̂1(f) and p̂2(f) be the Fourier transforms of p1(t) and p2(t) respectively.

Let a signal p(t) be sampled every δt time units with a total of N samples. Its Fourier
transform is computed as

p̂(f) =
2

N

N∑
n=1

pne−2πf inδt, (5.2)

and the pressure-pressure transfer function is computed as

H12(f) =
p̂2(f)

p̂1(f)
. (5.3)

To avoid dealing with complex numbers in the computations, we store the real and
imaginary parts of the Fourier transform separately, hence we compute

p̂R = <(p̂(f)) =
2

N

N∑
n=1

pn cos(−2πfnδt), (5.4)

p̂I = =(p̂(f)) =
2

N

N∑
n=1

pn sin(−2πfnδt), (5.5)

p̂M = |p̂| =
√
p̂2
R + p̂2

I , (5.6)

p̂φ = Arg (p̂) = arctan

(
p̂I
p̂R

)
. (5.7)

Fig. 5.6, 5.7, 5.8 and 5.9 show contour fills of the pressure, velocity magnitude and
velocity components on a cut of the domain at t = 0.003. These results were obtained
using ASGS-CN. The other methods provide similar visual results.

Fig. 5.10, 5.11 and 5.12 show the frequency results obtained with the ASGS-BE, ASGS-
BDF2 and ASGS-CN methods respectively compared with experimental results. Fig. 5.13
shows a comparison of BE, BDF2 and CN combined with ASGS spatial discretization.
The results obtained with OSS are very similar to the ones obtained with ASGS and are
not shown separately. Instead, we show the comparison of ASGS and OSS methods using
BDF2 in Fig. 5.14 and using CN in Fig. 5.15.

As can be seen in the results, CN and BDF2 time discretizations provide the best results
reproducing the experimental results. Additionally, ASGS and OSS spatial discretizations
perform equally.
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Figure 5.6: Contour fill of the acoustic pressure at t = 0.003

Figure 5.7: Contour fill of the acoustic velocity magnitude at t = 0.003
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Figure 5.8: Contour fill of the x-component of the acoustic velocity at t = 0.003

Figure 5.9: Contour fill of the y-component of the acoustic velocity at t = 0.003
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Figure 5.10: Transfer function H12 using ASGS-BE
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Figure 5.11: Transfer function H12 using ASGS-BDF2
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Figure 5.12: Transfer function H12 using ASGS-CN
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Figure 5.13: Transfer function H12 using ASGS
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Figure 5.14: Transfer function H12 using BDF2
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Figure 5.15: Transfer function H12 using CN
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5.2 Eccentric Tubes
This case is very similar to the concentric tubes case. In the context of voice simulation,
this geometry corresponds to a rudimentary approximation of the vocal tract in vowel /a/
position and it is regarded as a better approximation than the concentric tubes because
the eccentricity mimics the distribution of cross-sections along the vocal tract. As in the
case of the concentric tubes, a pressure pulse at the small diameter tube is the input signal
and the end of the big diameter tube is the output to free space.

5.2.1 Space and time domains

The time interval for the simulation is 25 ms. The spatial domain consists of two eccentric
tubes: one 85 mm long with a diameter of 14 mm and another tube of the same length and
a diameter 29.5 mm as shown in Fig. 5.16. The smaller diameter tube is the sound inlet
through a 2 mm diameter hole. Acoustic pressure and velocity are measured at points 1
and 2 for comparison with experimental results [139].

5.2.2 Boundary and Initial conditions

The boundary and initial conditions for this case are the same used in the concentric tubes
case. The boundary conditions can be seen in Fig. 5.17.

5.2.3 Experimental setup

Fig. 5.18 shows the eccentric tubes experimental model. The experimental setup is the
same as in the concentric tubes case and can be seen in Fig. 5.4.

5.2.4 Spatial and temporal discretization

Space was discretized using tetrahedral elements of size 0.0005 m for the input hole, 0.002
m for the tubes volume and 0.008 m for the surrounding volume. The mesh size for the
input hole is based in geometrical considerations (2 mm diameter input hole). The mesh

1 2

0 30 85 180170
x (mm)

14 mm
29.5 mm

2 mm
input signal

tube endplate

Figure 5.16: Eccentric tubes spatial domain
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Figure 5.17: Eccentric tubes boundary conditions

Figure 5.18: Eccentric tubes experiment model
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Figure 5.19: Cut on the plane z = 0 showing the tetrahedral mesh used

size inside the tubes is based on resolution considerations in order to have around 16 points
per wavelength at 10 kHz. The surrounding volume is not important for this simulation,
so a big mesh size can be taken. The mesh obtained is around 260K elements and 50K
nodes. A cut on the plane z = 0 of the mesh used can be seen in Fig. 5.19.

For time discretization a time step 5 ·10−6 s was used based on a resolution of 16 points
per wave period. Several time integration schemes were used to compute the results.

5.2.5 Results

We present the results using ASGS and OSS for spatial discretization and BE, BDF2
and CN for time discretization. Numerical results are compared with experimental results
kindly provided by GIPSA-lab through EUNISON project [4]. The comparison is done in
the frequency domain using the concept of transfer functions explained before.

Fig. 5.20, 5.21, 5.22 and 5.23 show contour fills of the pressure, velocity magnitude and
velocity components on a cut of the domain at t = 0.003. These results were obtained
using ASGS-CN. The other methods provide similar visual results.

Fig. 5.24, 5.25 and 5.26 show the frequency results obtained with the ASGS-BE, ASGS-
BDF2 and ASGS-CN methods respectively compared with experimental results. Fig. 5.27
shows a comparison of BE, BDF2 and CN combined with ASGS spatial discretization.
The results obtained with OSS are very similar to the ones obtained with ASGS and are
not shown separately. Instead, we show the comparison of ASGS and OSS methods using
BDF2 in Fig. 5.28 and using CN in Fig. 5.29.
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Figure 5.20: Contour fill of the acoustic pressure at t = 0.003

Figure 5.21: Contour fill of the acoustic velocity magnitude at t = 0.003
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Figure 5.22: Contour fill of the x-component of the acoustic velocity at t = 0.003

Figure 5.23: Contour fill of the y-component of the acoustic velocity at t = 0.003
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Figure 5.24: Transfer function H12 using ASGS-BE
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Figure 5.25: Transfer function H12 using ASGS-BDF2
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Figure 5.26: Transfer function H12 using ASGS-CN
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Figure 5.27: Transfer function H12 using ASGS
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Figure 5.28: Transfer function H12 using BDF2
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Figure 5.29: Transfer function H12 using CN
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As can be seen in the results and as happened before in the concentric tubes case, CN
and BDF2 provide the best results. Additionally, ASGS and OSS perform equally.

5.3 Vowel generation in 3D

This example consists in the wave propagation inside a realistic vocal tract in /a/ position.
The geometry starts at the glottis, extends to the lips and goes onwards to free space. A
realistic shape head (without hair) is included in the simulation. The 3D geometry appears
in [140] and was kindly provided by the authors.

An input signal is imposed at the glottis (vocal tract inlet). This signal consists in a
glottal pulse model of Rosenberg type [5].

Sound is captured in front of the lips and transformed to an audio file that can be heard
and compared to the real sounding vowel /a/.

5.3.1 Space and time domains

The time interval for the simulation is 1 s. This time domain was chosen in order to obtain
a long enough time series to generate an audio file.

The spatial domain is composed of the vocal tract, the head with all details (lips, nose,
eyes, ears) and the open space. Fig. 5.30-5.33 show the various parts of the spatial domain.
The open space is modeled by an sphere of radius 0.3 m centered at the mouth.

5.3.2 Boundary and Initial conditions

The initial conditions are zero for both pressure and velocity. The boundary conditions are
applied on three different regions of the spatial domain. The first region is the vocal tract
inlet where a Rosenberg glottal pulse is imposed in the normal velocity component. The

Figure 5.30: Vocal tract in 3D
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Figure 5.31: Head and vocal tract in 3D

Figure 5.32: Head in 3D
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Figure 5.33: Head in 3D embedded into a sphere
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Γu (Wall boundary)
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Figure 5.34: Vowel generation in 3D: boundary conditions

second region is the rest of the vocal tract surface and the exterior head surface where a
rigid wall boundary condition is imposed. The third and final region is the sphere surface
where a non-reflecting boundary condition is imposed. Fig. 5.34 shows a sketch of the
boundary conditions.
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Figure 5.35: Rosenberg glottal pulse model

The Rosenberg glottal pulse model is a train of pulses. Each pulse is defined as follows

f(t) =


A
2

(
1− cos(π t

Tp
)
)
, 0 ≤ t < Tp

A cos
(
π t−Tp

2Tn

)
, Tp ≤ t < Tn

0, Tn ≤ t < T0

, (5.8)

where A is the amplitude, T0 is the period of the signal, Tp is the time where the signal
stops increasing and Tn is the time where the signal reaches zero again.

We will use A = 1, T0 = 0.01s, Tp = 0.4T0 and Tn = 0.56T0. A plot of the Rosenberg
glottal pulse can be seen in Fig. 5.35. Jitter and shimmer can be added to the input signal
to make it sound more natural.

5.3.3 Spatial and temporal discretization

Space was discretized using tetrahedral elements of size 0.001 m for the vocal tract and
lips, 0.005 m for the head surface and 0.02 m for the surrounding volume. The mesh size
inside the vocal tract is governed by geometric details of the vocal tract, which measure
less than 3 mm. The surrounding volume is not important for this simulation, so a big
mesh size can be taken. Of course there is a slow transition from small size to big size.
The mesh obtained is around 1M elements and 170K nodes. A cut on the plane y = 0 of
the mesh used can be seen in Fig. 5.36.

For time discretization a BDF2 scheme with time step 2.5 · 10−5 s was used.

5.3.4 Results

Figures 5.37, 5.38, 5.39 and 5.40 show contour fills of the pressure, velocity magnitude
and velocity components on a cut at y = 0 of the domain. The y-velocity component is
not shown because it is zero as the plane y = 0 is a symmetry plane. These results were
obtained using ASGS-BDF2. OSS-BDF2 provides similar visual results.
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Figure 5.36: Cut on the plane y = 0 showing the tetrahedral mesh used

Figure 5.37: Vowel generation in 3D: contour fill of the acoustic pressure
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Figure 5.38: Vowel generation in 3D: acoustic velocity magnitude

Figure 5.39: Vowel generation in 3D: x-component of the acoustic velocity
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Figure 5.40: Vowel generation in 3D: z-component of the acoustic velocity

From the pressure field obtained, it is possible to extract the sound at each point. One
point of interest is in front of the mouth, where an audio file can be generated and the
vowel /a/ can be heard.

Additionally, we can compare the spectrum of a human-generated vowel /a/ with the
one obtained from our FEM model. Fig. 5.41 shows the comparison. Notice that we have
not used any filter for any of the signals. In the next section, specifically in Fig. 5.45 you
can see the effects of signal processing techniques.
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Figure 5.41: Vowel generation in 3D: spectrum comparison

5.4 Diphthong generation in 3D
This example consists in the generation of a diphthong in a 3D domain. The diphthong to
be generated is /ai/. The formulation is set in an Arbitrary Lagrangian-Eulerian framework
[5]. The mesh is deformed from vowel /a/ position to vowel /i/ position using linear
interpolation in time. For an extended version of this example the reader is referred to [5].
There is some signal processing terminology that is not defined anywhere in the thesis but
that goes beyond scope.

An input signal is imposed at the glottis (vocal tract inlet). This signal consists in a
glottal pulse model of Rosenberg type. Sound is captured near the vocal tract output and
compared to the real sounding diphthong /ai/.

5.4.1 Problem statement

The most natural option to deal with wave propagation in moving domains is the mixed
wave equation with ALE. The mixed wave equation can be expressed in ALE formulation
as:

µp∂tp− µpuD ·∇p+∇·u = fp, (5.9)
µu∂tu− µuuD ·∇u+∇p = fu, (5.10)

where uD is the domain velocity. In the discrete setting uD will be the mesh velocity. The
problem is supplemented with the initial conditions

p(x, 0) = 0, u(x, 0) = 0, (5.11)

and with the boundary conditions

p = 0 on Γp, γnu = 0 on Γu. (5.12)
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The variational problem can be formulated as finding p ∈ C1(Υ, L2(Ω))∩C0(Υ, Vp) and
u ∈ C1(Υ, L2(Ω)) ∩ C0(Υ, Vu) such that

B([p,u] , [q,v]) = L([q,v]), (5.13)

for all [q,v] ∈ [Vp, Vu] with Vp = {q ∈ H1(Ω)|q = 0 on Γp}, Vu = {v ∈ H(div,Ω)|γnv =

0 on Γu}, uD ·∇u ∈ L2(Ω)
d and

B([p,u] , [q,v]) = (µp∂tp− µpuD ·∇p+∇·u, q) + (µu∂tu− µuuD ·∇u+∇p,v) , (5.14)
L([q,v]) = (fp, q) + (fu,v) . (5.15)

Using stabilized finite elements the space-discrete problem reads: find [ph,uh] such that

Bs([ph,uh] , [qh,vh]) = Ls([qh,vh]), (5.16)

for all test functions [qh,vh] ∈ [Vp,h, Vu,h] where

Bs([ph,uh] , [qh,vh]) = B([ph,uh] , [qh,vh]) + (P ′ (µp∂tph − µpuD ·∇ph +∇·uh) , τu∇·uh)
+ (P ′ (µu∂tuh − µuuD ·∇uh +∇ph) , τp∇ph) , (5.17)

Ls([qh,vh]) = L([qh,vh]) + (P ′(fp), τu∇·vh) + (P ′(fu), τp∇qh) , (5.18)

with the stabilization parameters τp and τu defined as

τp =
h

C1(µpµu)2|uD|+ C2

√
µu
µp
, τu =

h

C1(µpµu)2|uD|+ C2

√
µp
µu
. (5.19)

The projection operator P ′(·) can be chosen as either the identity to obtain the ASGS
method or the L2(Ω)-orthogonal projection to obtain the OSS method.

The time discretization is straightforward and BE, CN and BDF2 methods can be
applied.

With regard to the motion of the computational mesh, it will be prescribed by the
known displacement at the domain boundaries. The motion of the boundary nodes becomes
smoothly transmitted to the inner mesh nodes through diffusion, i.e. using the standard
strategy of solving the Laplacian equation for the node displacements w(x, t). Therefore,
at each time step n+1 we will solve the additional equation

∇2wn+1 = 0 in Ω (5.20)

with boundary conditions

wn+1 = xm
n+1 − xm

n on Γm, γnw
n+1 = 0 on Γf , (5.21)

and the mesh node positions being updated according to

xD
n+1 = xD

n +wn+1. (5.22)

Γm represents the boundary of Ω evolving with prescribed displacement xm(x, t), whereas
Γf denotes a fixed boundary of Ω. From the displacements w(x, t) one can compute the
mesh velocity using an appropriate time integration scheme (e.g. BE).
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Figure 5.42: Simplified vocal tract in 3D: /a/ position and /i/ position

5.4.2 Space and time domains

The time interval for the simulation is 0.2 s. The spatial domain is is a simplified 3D model
of the vocal tract consisting in circular concentric cross-sections as shown in Fig. 5.42.

5.4.3 Boundary and Initial conditions

The initial conditions are zero for both pressure and velocity. The initial mesh condition is
an average between the two extreme positions in order to avoid excessive mesh distortion.
The boundary conditions are applied on three different regions of the spatial domain. The
first region is the vocal tract inlet where a Rosenberg glottal pulse is imposed. The second
region is the rest of the vocal tract surface where a rigid wall boundary condition is imposed.
The third and final region is the vocal tract output where p = 0 is imposed.

To increase the naturalness of the diphthong, the glottal pulses have been enhanced
introducing a pitch curve for the fundamental frequency, adding some shimmer to the signal
amplitude and applying a fade in/out to the global signal.

5.4.4 Spatial and temporal discretization

Space was discretized using tetrahedral elements of size 0.002 m for the whole vocal tract.
The mesh can be seen in Fig. 5.42. The stabilization parameters were taken as C1 = 0.01
and C2 = 10. For time discretization a BDF2 scheme with time step 1.25 ·10−5 s was used.

5.4.5 Results

Fig. 5.43 shows a contour fill of the pressure at different time steps together with the mesh
movement. These results were obtained using ASGS-BDF2.

From the pressure field obtained, it is possible to extract the sound at each point. One
point of interest is near the vocal tract outlet, where an audio file can be generated and
the diphthong /ai/ can be heard.
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Figure 5.43: Diphthong generation in 3D: contour fill of the acoustic pressure

Fig. 5.44 shows the pressure evolution at the vocal tract outlet.
Fig. 5.45 shows the spectrogram corresponding to the acoustic pressure in Fig. 5.44.

This has been computed using a Hamming window with a frame width of 20 ms and an
overlap of 1 ms. As usually done in speech processing, a pre-emphasis FIR filter with
coefficients [1 -0.97] has been applied to enhance the visualization of the high frequency
range. In the first curve of the spectrogram, corresponding to vowel /a/, we can clearly
identify the two formants of vowel /a/. Similarly, the last curve of the spectrogram
corresponds to vowel /i/ and its two formants an also be clearly recognized. The trajectories
of the two formants F1 and F2, which separate apart from /a/ to /i/, have been highlighted
to appreciate clearly their evolution.
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Figure 5.44: Diphthong generation in 3D: pressure evolution at the vocal tract outlet

Figure 5.45: Diphthong generation in 3D: pressure spectrogram for diphthong /ai/



Chapter 6

Conclusions

6.1 Achievements
One achievement of this work is the formulation and analysis of two stabilized finite element
methods for solving the wave equation in mixed form. The variational problem can be
cast in three different variational forms, each one requiring a certain regularity on the
unknowns. The formulation includes ASGS and OSS methods taylored to work in three
different functional frameworks in which the regularity requirements of the scalar space are
transferred to the vector one or vice-versa. The analysis includes stability and convergence
for both stabilization methods and for all variational forms. Additionally, numerical tests
were performed to compare numerical results with theoretical predictions.

Another achievement is the formulation and analysis of a non-reflecting boundary
condition (NRBC) that fits into the stabilization methods and functional settings. The
introduction of the NRBC motivated a slight modification of the functional framework
and working norms in which we were able to prove stability and convergence of the
formulations. Numerical convergence tests were performed to compare with theoretical
convergence predictions. Finally, many numerical examples were solved in 2D and 3D to
show the capabilities of the NRBC.

Moreover, time marching schemes applied to the mixed wave equation were imple-
mented and analyzed. One part of the analysis includes stability and convergence of the
fully discrete schemes. The other part involves stability, dispersion and dissipation analysis
with the aid of Fourier techniques. A 1D example was solved to compare numerical results
with Fourier predictions which yielded good agreement between both.

Furthermore, various wave propagation problems were solved and some of them com-
pared simulation results with experimental results. These problems are mainly 3D and
include realistic geometries. One of the main results is voice simulation inside the vocal
tract and open space in order to reproduce a vowel /a/ starting from a glottal signal as
input. Another main result is diphthong simulation using an ALE formulation.

6.2 Concluding Remarks
The implementation of the mixed wave equation with the discretization methods described
in this thesis is not difficult. The only implementation difficulty for time-dependent-
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only problems as this one is that space/time discretization is always coupled. In other
words, when implementing a (full) discretization method from zero and it does not work as
expected, the implementation error can be anywhere. Finding the error cannot be tackled
by first solving a steady-state version of the problem, then making it work and finally
solving the time-dependent version.

The implementation of the non-reflecting boundary condition described in this thesis is
straightforward. It only involves terms on the boundary. There is no need of an additional
layer of absorbing material which introduces extra degrees of freedom. Anyway, I have
not worked with absorbing layers to give a more informed comparison of both. In the
application examples the NRBC has worked very well when using a smooth NRBC-surface.
This is reflected in the close agreement between numerical simulations and experiments.
In the benchmark cases, despite using square geometries in 2D or cubes in 3D, the NRBC
has given good results in the sense of monotonous energy dissipation.

Let us consider the stability of the spatial discretization methods (ASGS and OSS).
Both methods are stable with respect to their respective working norm(s)/external forces
norm(s) pairs. I have to mention that the regularity requirements of the external forces for
stability differs for ASGS and OSS. Nevertheless, for the same value of the stabilization
algorithmic constant, both ASGS and OSS exhibit the same stability in practice. That is,
there are no node-to-node oscillations and the results look visually similar.

Let us consider the accuracy of the spatial discretization methods with respect to the
error in the unknowns in their respective norm(s). The spatial discretization methods
presented, namely ASGS and OSS, can exhibit up to optimal convergence rates depending
on the variational form. However, the convergence proofs presented are not sharp enough
leaving the theoretical convergence rates as quasi-optimal at best.

6.3 Future Work
The wave equation in mixed form was solved using stabilized finite element methods
allowing us to use equal interpolation spaces for both the scalar and vector unknowns
and avoiding inf-sup stable elements. Additional stabilization sophistications still need to
be formulated, implemented and analyzed such as dynamic sub-scales. Furthermore, a
fractional step scheme for the formulation needs to be developed in order to solve bigger
problems more efficiently.

More accurate non-reflective boundary conditions applied to the mixed wave equation
need to be researched. It is said that the Sommerfeld boundary condition is zero-order
accurate (J = 0), although we found it is order J = 0.66 in 2D.

In this work we analyzed and implemented up to 2nd order time marching schemes
(BE, BDF2 and CN). Higher order schemes should be explored such as Runge-Kutta and
symplectic Runge-Kutta. Additional energy-preserving or momentum-preserving schemes
should be considered and analyzed as well.

The wave equation in mixed form has proven useful for dealing with moving domains
in ALE formulation since it is not possible to express the irreducible wave equation in
a moving domain. Stability and convergence of the ALE formulation has yet to be
analyzed. Additionally, aeroacoustics in moving domains has to be developed through
the computation of source terms from the incompressible flow solver.
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