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Abstract

Collective variables (CVs) are low-dimensional representations of the
state of a complex system, which help us rationalize molecular
conformations and sample free energy landscapes with molecular
dynamics simulations. However, identifying a representative set of CVs
for a given system is far from obvious, and most often relies on physical
intuition or partial knowledge about the systems. An inappropriate
choice of CVs is misleading and can lead to inefficient sampling. Thus,

there is a need for systematic approaches to effectively identify CVs.

In recent years, machine learning techniques, especially nonlinear
dimensionality reduction (NLDR), have shown their ability to
automatically identify the most important collective behavior of
molecular systems. These methods have been widely used to visualize
molecular trajectories. However, in general they do not provide a
differentiable mapping from high-dimensional configuration space to
their low-dimensional representation, as required in enhanced sampling
methods, and they cannot deal with systems with inherently nontrivial
conformational manifolds.

In the fist part of this dissertation, we introduce a methodology that,
starting from an ensemble representative of molecular flexibility, builds

smooth and nonlinear data-driven collective variables (SandCV) from



vi

the output of nonlinear manifold learning algorithms. We demonstrate
the method with a standard benchmark molecule and show how it can be
non-intrusively combined with off-the-shelf enhanced sampling methods,
here the adaptive biasing force method. SandCV identifies the system’s
conformational manifold, handles out-of-manifold conformations by a
closest point projection, and exactly computes the Jacobian of the
resulting CVs. We also illustrate how enhanced sampling simulations
with SandCV can explore regions that were poorly sampled in the
original molecular ensemble.

We then demonstrate that NLDR methods face serious obstacles
when the underlying CVs present periodicities, e.g. arising from proper
dihedral angles. As a result, NLDR methods collapse very distant
configurations, thus leading to misinterpretations and inefficiencies in
enhanced sampling. Here, we identify this largely overlooked problem,
and discuss possible approaches to overcome it. Additionally, we
characterize flexibility of alanine dipeptide molecule and show that it
evolves around a flat torus in four-dimensional space.

In the final part of this thesis, we propose a novel method,
atlas of collective variables, that systematically overcomes topological
obstacles, ameliorates the geometrical distortions and thus allows
NLDR techniques to perform optimally in molecular simulations. This
method automatically partitions the configuration space and treats
each partition separately. Then, it connects these partitions from the

statistical mechanics standpoint.
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Chapter

Introduction

The functionality of biomolecules such as proteins has been shown to
be essentially ruled by their structure and their ability to change it
(Osadchy and Kolodny, 2011). Thus characterizing the relationship
between structure and function has become an active path of research
in many areas of science. Despite recent developments in experimental
methods such as x-ray crystallography and nuclear magnetic resonance
(NMR) spectroscopy (Esteban-Martin et al., 2010), experiments provide
information about conformational changes at an atomic scale to a
limited extent. Computational methods such as molecular dynamics
(MD) provide complementary information on the molecular mechanisms
(Sotomayor and Schulten, 2007) and have become a substantial tool to
guide and interpret experiments.

Molecular dynamics (Alder and Wainwright, 1957, 1959) follows the
time evolution of a system, modeled at the atomic level, by solving
numerically the Newton’s equations of motion with certain initial and
boundary conditions. For a system with N atoms, the state of each
atom is specified by the set of position and momentum vectors {r, p},
which leads to a 6N-dimensional phase space. However, a system

does not explore all the phase space: its trajectory is given by the
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system’s Hamiltonian H (7, p). A Hamiltonian is said to be separable
when the energetic contributions of the momentum and position can be
independently added, which is the case for the most molecular systems

of interest. In this case, the Hamiltonian is written as
H(r,p) =V(r)+ K(p), (1.1)

where V' is the potential energy and K is the kinetic energy. In general,
K is a quadratic form involving the particle masses. In contrast, the
potential energy is not straightforward to calculate and accounts for
all the particle interactions. In practice, it is often approximated by
empirical potentials (or force fields) based on experiments and quantum

mechanical calculations.

Statistical mechanics, on the other hand, relates the
thermodynamical properties of molecules to microscopic states
through probability theory. This theory thus provides a connection
between MD simulations and observable properties. In biophysical
systems, the number of particles (N), the volume (V) and temperature
(T) can be often considered to be fixed, and thus the microscopic states
are distributed according to the canonical ensemble, also called NV'T
ensemble (Frenkel and Smit, 2002). The canonical probability measure

is written as
G*BH(T’p)drdp

Z Y

m

pnvr(drdp) = (1.2)

where = 1/kgT is the inverse temperature (kg is Boltzmann constant
and T is the temperature) and Z, is the normalization constant, called

partition function (Lelievre et al., 2010),
— _ﬁH(Tvp)
Z, = /D><R3N e drdp. (1.3)

where D is the configuration space and D x R3" is the phase space. For



separable Hamiltonian, the partition function can be written as

o 3N/2 N

Zy= 7,2, Z, :/ e VWdr, 7, = () [Im?  (14)
D 8] i=1

A core concept in thermodynamics and in modern studies of

biomolecular systems is free energy, which is defined as the natural

logarithm of the partition function,
A=——InZ,. (1.5)

In many applications the interesting quantity is the free energy difference
between macroscopic states of the system, which allows us to quantify
the relative likelihood of different states. This relative free energy does
not depend on the momentum contribution in the partition function

and only relies on the configurational sampling,

1
A= 3 ln/ e V") dpr 4 constant. (1.6)
D

However, MD simulations encounter a phenomenal challenge to
sufficiently sample configuration space to accurately calculate the
macroscopic quantities. This challenge arises since the time step for
numerical stability needs to be in the order of a few femtoseconds, and
on the other hand many phenomena of interest, such as conformational
transitions, occur at the millisecond and up time scales. This time-scale
disparity in systems with metastability makes it very difficult to
obtain accurate sampling, and consequently hinders the connection
between simulations and experiments. To overcome this issue, a
number of enhanced sampling methods have been proposed, such as
umbrella sampling (Torrie and Valleau, 1977), non-equilibrium work
methods (Jarzynski, 1997), metadynamics (Laio and Parrinello, 2002)
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and adaptive biasing force (ABF) (Darve et al., 2008) (see Chipot and
Pohorille (2007) for a comprehensive review). Some of these methods
use an estimated relative free energy to guide the system in such a
way that it avoids oversampled states and instead visits poorly sampled
states. A macroscopic state is defined as the collection of all possible
configurations 7 satisfying the constraint C(r) = &, where C is a
differentiable mapping from high-dimensional configuration space to a

low-dimensional space. The free energy of these states reads as

A€) = — 11 [ e oscer) - ear. (1.7)
8 Jp

C(r) is called a collective variables (CV), reaction coordinate, order
parameter, or slow variable depending on the context, and & is
the low-dimensional representation of a state. For example, r can
represent the 22 atoms in alanine dipeptide, and & two dihedral
angles as illustrated in Figure 1.1(a). Figure 1.1(b,c) graphically
depicts how a CV foliates the high-dimensional space of molecular
configurations, by representing with color surfaces the manifolds defined
by C(r) =constant. Physically, all molecular configurations within
such a surface are represented by the same &, and therefore should
correspond to similar states of the system. Ideally, the system should
not exhibit transverse metastability, which refers to metastability within
the C(r) =constant manifolds, and all the complexity should be along
the CV.

The choice of CVs, typically guided by experience or intuition, is very
important and should satisfy several requirements. First, CVs should
capture as much as possible the metastability of the system, leaving
a simple landscape in the remaining transversal coordinates (Sutto
et al., 2012). Otherwise, enhanced sampling methods become ineffective,
exhibit hysteresis, and may not converge. Second, CVs should be as few

as possible to be meaningful and efficient. This last requirement is



not only convenient, but also agrees with the actual behavior of large
biomolecules, in which all-atom descriptions of conformations exhibit a

large degree of redundancy (Brown et al., 2008; Hegger et al., 2007).

Hypersurfaces (C) Hyperplanes

C(r)=cst

Fig. 1.1 Alanine dipeptide molecule described by collective variables
given by two backbone dihedral angles (a). Level sets of collective
variables, C(r) =cst, in general (b) are nonlinear hypersurfaces foliating
the configuration space; however, in SandCV they are hyperplanes
perpendicular to the intrinsic manifold (c).

Identifying appropriate CVs for complex systems is an open question
and urges for a systematic approach. To this end machine learning
methods are emerging as a means to identify in an unsupervised way
CVs from molecular ensembles representative of molecular flexibility.
Among such methods, linear dimensionality reduction techniques, such
as principal component analysis (PCA) (Pearson, 1901), have become
a standard tool to analyze MD trajectories and also to enhance
conformational sampling as in essential dynamics (Amadei et al., 1993;
Daidone and Amadei, 2012), by building linear data-driven CVs. In
these methods, the molecular systems are assumed to essentially lie
on a linear manifold defined by linear combinations of the principal
components.

More recently, it has been argued that, because of steric constraints,

rigid bonds, and molecular rotations, this linear manifold paradigm may
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not be appropriate, shifting the focus towards nonlinear data-driven CVs
(Das et al., 2006). According to this view, molecules would essentially
evolve close to nonlinear manifolds of reduced dimensionality, sometimes
called intrinsic manifold, which can be identified with nonlinear
dimensionality reduction (NLDR) methods (Lee and Verleysen, 2007).
This approach has been applied to postprocess molecular trajectories
(Brown et al., 2008; Ceriotti et al., 2011; Ferguson et al., 2011b; Plaku
et al., 2007; Stamati et al., 2010), finding nonlinearly correlations and
compact nonlinear representations of high-dimensional configurations,

which retain the essential variability in the original data.

A fundamental limitation of NLDR techniques, unlike PCA, is that
they do not provide an explicit and differentiable mapping between
atomic position and CVs. Such a mapping is required to evaluate
the atomic forces resulting from a bias in the space of CVs, as
done in many enhanced sampling methods. NLDR techniques merely
find a low-dimensional embedding of the molecular conformations.
Some recent works partially address this deficiency of NLDR methods.
Ferguson et al. (2011a) adapts diffusion maps to bias simulations with
umbrella sampling, and Tribello et al. (2012) introduces a field-overlap
procedure to combine sketch-map with metadynamics and accelerate
conformational exploration. Spiwok and Kralova (2011) defines such
mapping by utilizing a generalized path collective variables (Branduardi

et al., 2007) to enhance sampling with metadynamics.

In Chapter 2 of this dissertation, we introduce a general and flexible
method to define smooth and nonlinear data-driven collective variables
(SandCV). By combining NLDR, a smooth parametrization of the
intrinsic manifold, and geometric operations, we obtain a robust and
efficient method that produces differentiable CVs. The method can
handle highly curved intrinsic manifolds, non-uniform sampling, and

even bridge over poorly sampled regions. SandCV is non-intrusive with



regards to the enhance sampling method, and can be easily integrated
in standard MD codes (Phillips et al., 2005; Van Der Spoel et al., 2005)
in conjunction with free energy calculation libraries (Bonomi et al.,
2009). We show its effectiveness with a benchmark system, alanine
dipeptide, and combine it with ABF for enhanced sampling and free
energy calculation.

In Chapter 3, we provide details about the algorithms involved
in SandCV along with the implementation of adaptive biasing force
method, which requires only first derivatives of CVs for enhanced
sampling.

In Chapter 4, we show that NLDR methods face serious obstacles
when the underlying collective variables present periodicities, e.g. arising
from proper dihedral angles. As a result, NLDR methods collapse
very distant configurations, thus leading to misinterpretations and
inefficiencies in enhanced sampling. We identify this largely overlooked
problem and discuss possible approaches to overcome it. We also
characterize the geometry and topology of conformational changes of
alanine dipeptide, a benchmark system for testing new methods to
identify collective variables.

To overcome these obstacles to a single-chart description of molecular
flexibility, in Chapter 5 we propose a framework to describe statistical
mechanics of molecular systems in terms of an atlas of partially
overlapping CVs. We then present a data-driven method based on
nonlinear dimensionality reduction to systematically build atlas of CVs
from ensembles representative of molecular flexibility. We demonstrate
the effectiveness of this method with two model systems: alanine

dipeptide and (-D-Glucopyranose.
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Each of these chapters constitutes studies partially or fully based on

the following publications:

o Behrooz Hashemian, Daniel Millan, and Marino Arroyo. Modeling

and enhanced sampling of molecular systems with smooth and

nonlinear data-driven collective variables. The Journal of
Chemical Physics, 139(21):214101, 2013
[Chapter 2]

e Behrooz Hashemian, Daniel Millin, and Marino Arroyo.
SandCV++: a toolbox for data-driven collective variables. In
preparation, 2015a
[Chapter 3]

e Behrooz Hashemian and Marino Arroyo. Topological obstructions
in the way of data-driven collective variables. The Journal of
Chemical Physics, 142(4):044102, 2015
[Chapter 4]

o Behrooz Hashemian, Daniel Millan, and Marino Arroyo. Charting
molecular free-energy landscapes with an atlas of collective
variables. In preparation, 2015b
[Chapter 5]



Chapter 2

Smooth and nonlinear data-driven

collective variables

2.1 Introduction

Molecular dynamics (MD) simulations provide atomic resolution
of important processes involving biomolecules, which complement
experimental observations (Sotomayor and Schulten, 2007) and can help
understand the relation between conformational changes and function
(Osadchy and Kolodny, 2011). MD can in principle establish a link
between atomic motions and thermodynamic observables. Yet, in
practice this goal is not easily realized. Leaving aside the accuracy
of current force fields, the predictive ability of MD is mainly limited
by sampling. Indeed, while femtosecond time steps are required
for accurate and stable time integration, important phenomena such
as molecular conformational changes involve a hierarchy of time
scales spanning milliseconds and up (Henzler-Wildman et al., 2007).
This huge disparity, caused generically by metastability, makes the

accurate sampling of the equilibrium distribution, and hence the
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evaluation of thermodynamics observables, extremely challenging even
in highly specialized supercomputing platforms (Dror et al., 2010).
An additional issue in molecular simulations of complex systems is
processing and extracting meaningful information out of large amounts
of data contained in the numerical trajectories. To deal with these
difficulties, we adopt a nonlinear intrinsic manifold model for molecular
systems (Brown et al., 2008; Das et al., 2006; Ferguson et al.,
2010), develop techniques complementary to nonlinear dimensionality
reduction methods (Lee and Verleysen, 2007) to define smooth collective
variables based on molecular ensembles, and enhance sampling with

these variables.

Collective variables (CVs), also called reaction coordinates, order
parameters, or slow variables depending on the context, are
low-dimensional representations of the state of a molecular system.
CVs often capture the concerted nature of molecular conformational
changes. They organize our understanding of the system, e.g. through a
low-dimensional free energy surface, and are at the core of a myriad
of enhanced sampling methods, including metadynamics (Laio and
Parrinello, 2002), non-equilibrium work methods (Jarzynski, 1997), or
the adaptive biasing force (ABF) method (Darve et al., 2008), which we
implement here (see Chipot and Pohorille (2007) for a comprehensive

review).

For simple systems, experience or intuition can guide the selection of
CVs, which can take the form of distances between molecular groups or
dihedral angles. However, for most systems of interest, this choice is far
from obvious, which has motivated many attempts to systematize the
selection of CVs. When a specific transition between two metastable
states is considered, a number of methods have been proposed to
identify transition paths (E et al., 2002; Jénsson et al., 1998; Olender
and Elber, 1996; Passerone et al., 2003; Ren et al., 2005). Path
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collective variables provide two CVs, along and perpendicular to a
given transition path (Branduardi et al., 2007). To examine broader or
higher-dimensional regions of conformational space, CVs based on linear
combinations of modes have been proposed. These include CVs based
on the normal modes of the linearized potential energy, or on statistical
learning methods applied to a training set of molecular conformations,
as in essential dynamics relying on principal component analysis (PCA)
(Amadei et al., 1993; Daidone and Amadei, 2012). Besides being
routinely used to post-process molecular simulations, PCA has been
used to drive enhanced sampling in combination with metadynamics
(Spiwok et al., 2007, 2008).

In recent years, it has been noted that molecular motion often
occurs to a good approximation on nonlinear low-dimensional manifolds
of dimension d < 3N where N is the number of particles (Brown
et al., 2008; Das et al., 2006), sometimes referred to as slow or
intrinsic manifold (Ferguson et al., 2010), Although in general it
is far from obvious that one should expect such a manifold to be
an inherent feature of complex molecular systems, modeling these
in terms of nonlinear manifolds has shown to be fruitful in many
instances. Such nonlinearity may arise from steric interactions amongst
different protein domains, or upon relative rotations of subunits about
molecular hinges (Noji et al., 1997). This field has been fueled by the
emergence of nonlinear dimensionality reduction (NLDR) techniques
in the field of statistical learning (Lee and Verleysen, 2007), which
automatically identify nonlinear correlations hidden in high-dimensional
data. Locally linear embedding (LLE) (Roweis and Saul, 2000) and
Isomap (Tenenbaum et al., 2000) are amongst the oldest and most
successful methods, which have been applied in a wide variety of
problems in science and engineering. In essence, these methods represent

a set of high-dimensional data points in low-dimensions by trying to
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preserve some notion of similarity between the high-dimensional points.

Isomap has been shown to distill functionally meaningful nonlinear
coordinates, and has been used to post-process an equilibrated
trajectory of a coarse-grained protein (Das et al., 2006). Brown
et al. (2008) presents a comprehensive comparison of NLDR methods
applied to cyclo-octane conformations, and shows that low-dimensional
embeddings may be non-manifold objects. Rather than geometric
similarity, other authors focus on diffusion distances (Coifman et al.,
2008), which account for the underlying Fokker-Planck operator.
Ferguson et al. (2010) obtains nonlinear CVs of n-alkane chains through
diffusion maps, and the approach is subsequently refined in Rohrdanz
et al. (2011). Diffusion maps provide a deep understanding of the
physics, but their accurate estimation requires a good sampling of the
equilibrium distribution, which may limit their applicability. Ceriotti
et al. (2011) recognizes that often MD trajectories densely sample
basins around conformers connected by sparsely sampled paths, and
proposes a new iterative NLDR method adapted to such ensembles
called sketch-map, in the spirit of earlier variants of multidimensional

scaling (Sammon, 1969). See Rohrdanz et al. (2013) for a recent review.

A fundamental limitation of NLDR techniques in the present context
is that they merely provide a low-dimensional representation of the
molecular conformations present in the training molecular ensemble.
Unlike PCA, most NLDR methods employed for studying molecular
conformations are discrete in nature (der Maaten et al., 2009), and do
not provide a differentiable mapping between arbitrary atomic positions
and CVs, required in enhanced sampling methods to evaluate the atomic
forces resulting from a bias in the space of CVs. In order to provide a
method that can be generally applied to discrete reduced-dimensionality
embeddings, and make NLDR techniques easily applicable to modeling

molecular systems with nonlinear manifolds, the goal of the present work
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is to develop techniques complementary to NLDR that take their output
and automatically generate differentiable CVs. Some recent works point
in the same direction, but the topic is far from being settled. Brown
et al. (2008) construct mappings between low and high dimensions
following the ideas of LLE, but it is not clear that such mappings are
differentiable or can be evaluated at conformations outside the convex
hull of the training molecular ensemble. This reference also implements
neural networks autoencoder, which provides forward and backward
mappings and is not geometric in nature. Ferguson et al. (2011a) adapts
diffusion maps to bias simulations with umbrella sampling, and Tribello
et al. (2012) introduces a field-overlap procedure to combine sketch-map
with metadynamics and accelerate conformational exploration. Spiwok
and Kralova (2011) generalizes path collective variables (Branduardi
et al., 2007) to higher dimensions, defines smooth CVs from the
output of Isomap for cyclo-octane (Brown et al., 2008), and reports
on promising but not converged enhanced sampling simulations. Our
work is similar in scope to this reference, by taking the output of
[somap to define smooth CVs and perform enhanced sampling. In
different contexts, we have previously proposed techniques to smoothly
represent intrinsic manifolds identified by NLDR, including the reduced
modeling of mechanical systems (Millan and Arroyo, 2013), point-set
surface parametrization (Milldn et al., 2013), or stereotyped cell motility
(Arroyo et al., 2012).

Here, we introduce a general and flexible method to define smooth
and nonlinear data-driven collective variables (SandCV). The input of
this method is a molecular ensemble representative of the system’s
geometric variability, which does not need to be thermodynamically
meaningful. Such an ensemble can be obtained from a variety of
conformation exploration methods in MD (Earl and Deem, 2005;

Tribello et al., 2010), or even from experiments (Fenwick et al., 2011).
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By combining existing NLDR methods, a smooth parametrization of
the intrinsic manifold, and geometric operations, we obtain a robust
and general method that produces differentiable CVs, presented in
Section 2.2. SandCV is non-intrusive with regards to the enhanced
sampling method, imposes a negligible computational overhead, and
can be easily integrated in standard MD codes (Phillips et al., 2005;
Van Der Spoel et al., 2005) in conjunction with free energy calculation
libraries (Bonomi et al., 2009). In Section 2.3, we show its effectiveness
with a benchmark system, alanine dipeptide, and combine it with ABF
for enhanced sampling and free energy calculation. The conclusions are

collected in Section 2.4.

2.2 Methods

2.2.1 Problem statement

The methods presented here address the following problem. Given
prior knowledge of a molecular system in terms of ensemble of M
conformations given by the Cartesian coordinates of N atoms, R =
{ri,ro, ..., 7a, ..., Par} C R3N the goal is to define a smooth function,
referred to as collective variables, C : R?*N — R? mapping any
out-of-sample molecular conformation » € R*" into a low-dimensional
representation € = C(r) € RY These collective variables should
quantitatively represent the state of the system. They should also be
amenable to enhanced sampling MD techniques, i.e. explicit expressions
of its derivatives should be available, and their evaluation should be
robust and computationally efficient.

Our strategy for defining the CVs is data-driven, and hinges on
the intrinsic manifold model for molecular systems and on statistical
learning methods. We proceed in several steps detailed in subsequent

sections.  We first identify the intrinsic manifold underlying the
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Fig. 2.1 Illustration of the main stages to identify the nonlinear
intrinsic manifold, both in abstract terms (left) and also for a specific
example involving alanine dipeptide (right). In the left plots, the points
Ta, T4, and &, are different representations of a given configuration.
A molecular ensemble representing the geometric variability of the
molecule (A) is first represented in a way that eliminates irrelevant
atoms, translations, and rotations, which obscure the comparison of
conformations, resulting in (B). We refer to this step as filtering and
alignment, although it may involve resorting to internal coordinates. In
(B), the features of the underlying intrinsic manifold may be already
identified. =~ The aligned configurations are then embedded in low
dimensions by an NLDR method, here Isomap, preserving as much as
possible the geodesic distance between high-dimensional configurations,
thus revealing the structure of the intrinsic manifold (C). For reference,
we compare the embedding coordinates {1, &} to the dihedral angles
commonly used as CVs for this molecule. The rainbow coloring is the
sum of the two dihedral angles in both embeddings.

J
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molecular ensemble with nonlinear dimensionality reduction methods
in Section 2.2.2. These methods operate at the discrete level, and for
this reason we then build a smooth representation of this manifold
in in Section 2.2.3. Finally, we map any out-of-sample conformation
to low-dimensions by projecting it onto the intrinsic manifold, as
elaborated in Section 2.2.4. We present these steps in an abstract
way, but with concrete reference to the system studied here, alanine
dipeptide. This small molecule, shown in Figure 2.1(a), has been
extensively studied and is a benchmark for free energy calculation
methods (Branduardi et al., 2007; Darve et al., 2008; Ren et al., 2005;
Rohrdanz et al., 2011; Spiwok et al., 2008). It is particularly well suited
for our purposes because its exhibits metastability, good CVs are known

(the dihedral angles ® and V), and these are highly nonlinear.

2.2.2 Identifying the intrinsic manifold

Dimensionality reduction techniques try to identify the correlations
hidden in a high-dimensional data set, the training set, in order to
represent the data with less redundancy in low dimensions. Figure 2.1(a)
provides an instance of molecular ensemble for alanine dipeptide,
together with a schematic representation of the configurations in R3V.
The low-dimensional representation provides a better understanding of
the system, and can be more easily visualized. Most dimensionality
reduction methods try to preserve the similarity between the points
in high dimension. Before applying these techniques to molecular
conformations described by the Cartesian coordinates of the atomic
positions 7, € R3*V. one should note that such vectors cannot be
directly compared to assess conformational similarity since a translation
or rotation of the atomic positions leaves the conformation unchanged.
Furthermore, some light atoms such as hydrogens present a very large

variability and do not help in representing conformations.
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Alignment is a standard procedure to remove rigid body
transformations and correctly assess shape similarity between molecular
configurations. Some alignment methods optimally superimpose each
configuration in the ensemble to a reference configuration. Here, we use
Procrustes superimposition without scaling and reflection (Kroonenberg
et al., 2003), applied on a filtered conformation consisting only of
the backbone atoms of the molecule. Different subsets of atoms or
groups of them may be more appropriate for other systems. Other
alignment procedures are possible, such as transforming the Cartesian
coordinates r, € R*" to a smooth contact map (Bonomi et al., 2008), or
resorting to internal coordinates (Brown et al., 2008). Since MD codes
typically apply forces in Cartesian coordinates, alignment maps to be
used in conjunction with enhanced sampling MD techniques need to be
differentiated with respect to the Cartesian coordinates, as elaborated
later. Figure 2.1(b) illustrates the filtering and alignment procedure,
which we symbolically denote as an operator A : R3V — RP. For
Procrustes analysis on the Ng backbone atoms, D = 3Ng. The figure
also suggests that alignment may reveal the intrinsic manifold of the
molecule. After alignment, the molecular ensemble R is transformed to

the set of points X = {x1,®s,...,Tq,..., Ty} C RP.

Adopting the intrinsic manifold paradigm to model the molecular
system (Amadei et al., 1993; Das et al., 2006; Garcia, 1992; Hegger
et al., 2007), we seek to identify this nonlinear and low-dimensional
structure underlying X with NLDR methods. We resort to Isomap
(Tenenbaum et al., 2000), although the procedure presented here is not
specific to this method. Isomap builds on multi-dimensional scaling
(MDS), which given a matrix of pairwise distances distp(x,, xp) in high
dimension, finds an optimal low dimensional embedding of the points
in X, denoted by Z = {&,&,...,&,, ..., &€} C RY such that the

matrix of pairwise distances in low dimension, given by disty(&,, &), is as
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close as possible to the high-dimensional counterpart. Algorithmically,
finding this embedding involves linear algebra operations on the distance
matrix. The key idea behind Isomap is replacing the Euclidean distance
by the geodesic distance, that is the length of the shortest path within
the manifold connecting two points, when computing pairwise distances
in high dimensions. To make this feasible, Isomap approximates the
geodesic distance on a graph. The first step in Isomap is to build
a weighted graph G whose vertices are the points X, and whose
edges are the connections between K nearest neighbors, weighted
by the length of these connections. In a second step, the geodesic
distance between any pair of points distp (., xp) is approximated
by the length of the shortest path connecting them in the graph.
With this distance matrix capturing the low-dimensional geometry of
the manifold, the embedding is obtained through the classical MDS
procedure. Figure 2.1(c) illustrates how Isomap provides a discrete
mapping between the input point set X C RP and the output point
set = C RZ Interestingly, the colormap in Figure 2.1(c) highlights
the similarity between the Isomap embedding for alanine dipeptide and
the embedding based on dihedral angles, although there is a nonlinear
transformation between them. Note also that the Isomap embedding
uses more collective information since it involves 10 atoms, instead of
the 5 involved in the two dihedrals.

The estimation of the intrinsic dimensionality d, an input in NLDR
algorithms, is not obvious for most systems, and is scale dependent
in general (Grassberger and Procaccia, 1983). The low-dimension d
is selected by the user on the basis of previous knowledge about the
system, of intrinsic dimension detection methods, or of computational
convenience (Lee and Verleysen, 2007). Note that although the
configurations lying on a d dimensional nonlinear manifold can also be

represented as a linear superposition of modes, the number of linear
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dimensions (dimension of the affine hull of X) is necessarily larger than
d.

2.2.3 Parametrizing the intrinsic manifold

From the output of NLDR, Z, we introduce now a smooth
parametrization of the intrinsic manifold, as illustrated in Figure 2.2. In
this figure, the aligned configurations are represented in high dimensions
by light blue points, which essentially lie on a nonlinear manifold, and
their embedding in low-dimensions is represented by darker blue points
lying on a segment. To represent mathematically and numerically this
manifold (purple line), we define a parametrization M : Q C R? — RP

of the form
L

M(&) = pi(&)yi, (2.1)

i=1
where p;(€) are smooth basis functions associated to a set of landmarks
1;, see Figure 2.2. We denote by Q a region in R¢ delimited by the
points in =. We select the coefficients of the linear combination y; by

fitting M to the data in a least-squares sense, i.e. by minimizing

M

>l — M(E (2.2)
which involves solving a L x L linear system of equations. Here and
elsewhere, | - | denotes the Euclidean norm.

The support of the basis functions p;(€) should be wide enough
to filter the out-of-manifold variability, but not too wide to blunt
the features of the intrinsic manifold. The support of these basis
functions should also observe sampling, to avoid ill-conditioning of
the least-squares fit associated to narrow functions in poorly sampled
regions. While systematic procedures are desirable, this support is

chosen here heuristically, and then verified by visually inspecting the
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Fig. 2.2 The intrinsic manifold underlying the set of M aligned
configurations  (light-blue  points) is parametrized from the
low-dimensional embedding with a linear combination of L (< M)
basis functions p;(€), resulting in the purple line. The coefficients y;
are obtained thought a least-squares fit. An out-of-sample point x is
labeled in low-dimensional space by first obtaining its closest-point
projection on the manifold, &, and then finding its pre-image through

M.
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image of M together with the original ensemble.

Here, we use local maximum-entropy basis functions given by

e*ﬁi‘&*m|2+)\'(£*m)

pi(€) = Y, e—Bile—m;P+X-(§—m;)’ (2.3)

where the parameter (; sets the width of the basis functions locally,
and A is a Lagrange multiplier that enforces that the basis functions
reproduce exactly affine functions, which can be found by minimizing
the denominator in the equation above (Arroyo and Ortiz, 2006; Rosolen
et al.,, 2010). Denoting by h the typical spacing between landmark
points, if 3;h? is very large, then the basis functions become narrow
and faceted, converging to the barycentric coordinates of the underlying
Delaunay simplicial complex. If instead f(;h? is small, then the basis
functions become very wide and smooth. If A = 0, then the basis
functions result in the Shepard approximants (Wendland, 2005) used
in path collective variables (Branduardi et al., 2007). The local
maximum-entropy basis functions are smooth, can accurately represent
point-set manifolds (Millan et al., 2013), and can deal with non-uniform
sets of landmarks in any dimension d. However, many other choices are

possible for parametrizing M.

2.2.4 SandCV: putting it all together

Although the dynamics of the molecule closely follows the intrinsic
manifold, represented numerically by the set M(2), configurations are
not constrained on it in general. A CV must be able to assign a
label &, representative of the state of the system, to any out-of-sample
aligned configuration x. The closest-point projection onto the intrinsic
manifold, denoted by P(x), is a very natural geometric concept that
accomplishes this. The closest-point projection onto a smooth manifold

is itself smooth in a neighborhood of the manifold and away from
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the boundaries (Ruuth and Merriman, 2008). In practical terms, the
fluctuations around the intrinsic manifold should remain small compared
to its local curvature for P to remain differentiable. Thus, we define the

SandCV as the composition of three maps
C(r)=M"1oPoAr), (2.4)

as depicted graphically in Figure 2.2.  Thus, by definition, the
sub-manifolds of constant C(r) in configuration space are perpendicular
to the intrinsic manifold. Although this expression is conceptually

illuminating, in practice the SandCV is evaluated by minimizing
(M(E) = A(r)[*, (2.5)

with respect to £&. Numerically, we resort to Newton’s method, possibly
with a few quasi-Newton iterations with line-search (Nocedal and

Wright, 2006), to solve this d-dimensional optimization problem.

Equation (2.4) is also useful to derive the Jacobian of the SandCV.
Applying the chain rule, and denoting by D the matrix of partial
derivatives of a mapping, the Jacobian of the proposed CV can be

computed as the product of three matrices

DC(r) =DM '(z) DP(z) DA(r), (2.6)
—— —_——— —— —(—
dx(3N) dxD DxD Dx(3N)

where we have highlighted the dimensions of the Jacobian matrices and
for conciseness we introduce = A(r) and & = P(x). The Jacobian
of alignment is method-dependent. For Procrustes superimposition we

refer to Section 3.2.1. In Section 3.5.1, we derive an exact expression
for the d x D matrix DM~ (2)DP(x) in Eq. (2.6), given by
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Mt oP(x)

biasing collective force

Fig. 2.3 Illustration of how bias forces in SandCV space are applied
to the molecule in an enhanced sampling MD simulation. In each
time-step, the all-atom configuration r is aligned to a common frame,
and then mapped to the low-dimensional embedding, &, through the
closest-point projection on the intrinsic manifold. The bias force Fg
is then evaluated in low-dimension, e.g. as an approximation of the
derivative of the free energy, and mapped to the atoms with the Jacobian
of SandCV.
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DW1%wDP@%{DMW@DM@) (2.7)

—DM«@@—@ﬁlnMU@.

It is clear that if either the intrinsic manifold is flat (D2M = 0)
or x is on the manifold, the derivative of the closest point projection
is the identity and this expression simplifies to the pseudo-inverse of
DM, as indicated by the inverse function theorem. In practice, we
find that correctly accounting for DP is essential to accurately compute
DC(r), and that the computational overhead of this procedure in every
time-step of the MD simulation is negligible.

To illustrate how DC(r) is needed in enhanced sampling methods,
consider we want to bias the MD simulation with a potential defined in
CV space, U(&). This is the case in umbrella sampling or metadynamics.
The bias can be seen as a potential in terms of all-atom configurations
by composing it with the CVs, U o C(r). The force on the CVs is then
F; = —0U/0€. By the chain rule, we can map these forces to the atoms
of the molecule, F,.(r) = DC(r)F¢(£), as illustrated in Figure 2.3. In
the ABF method used here (Darve et al., 2008), the force Fy is an

estimation of the thermodynamic force on the CVs.

2.2.5 Dealing with general manifolds

[somap and other NLDR algorithms can only succeed in identifying
d—manifolds of simple topology, which admit an embedding in R
Some molecules evolve on manifolds with complex topology, due for
instance to the cyclic nature of rotations about bonds. In fact, alanine
dipeptide is an instance of such a system, and as shown later, its

intrinsic manifold has the topology of a two-dimensional torus. A
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consequence pointed out in Brown et al. (2008) is that low-dimensional
embeddings may become non-manifold even if the system evolves on
a well-defined manifold embedded in high-dimensions. In encountering
topological obstructions, NLDR methods collapse configurations that
are distinct in high-dimensions. Even for manifolds of simple topology
but with significant intrinsic curvature, NLDR methods such as Isomap
may provide highly distorted embeddings of poor quality. All these
difficulties are potentially serious, and arise when one attempts to
describe globally (with a single chart) the intrinsic manifold.

These difficulties will be discusses in Chapter 4, and a general
remedy to overcome such obstacles in molecular systems, called atlas of
collective variables, is proposed in Chapter 5, where we employ recursive
partitioning of the ensemble X with specialized algorithms (Karypis
and Kumar, 1998) to ensure that each partition has simple topology
and admits an embedding in its intrinsic dimension without excessive
distortion. By applying NLDR and a smooth parametrization to each
of these partitions, the manifold can be described by an atlas of charts,
which can then be glued using a partition of unity. However, in the
current chapter, we have adopted an ad hoc approach to deal with the
topology of the intrinsic manifold of alanine dipeptide, presented in the

next section.

2.3 Results and discussions

We exercise the proposed method studying alanine dipeptide
(N-acetyl-N"-methyl-L-alanylamide), also known as dialanine, both
in vacuum and in explicit water. As mentioned earlier, this small
peptide has become a testbed for free energy calculations. The backbone
dihedral angles ® and ¥ have been shown to be effective collective

variables, although the significance of other dihedral angles has been
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examined (Bolhuis et al., 2000; Ferguson et al., 2011a).

We show first describe the implementation of Isomap to alanine
dipeptide, which requires addressing the topology of its intrinsic
manifold. We then build the SandCV from the resulting low-dimensional
embedding, and preform enhanced sampling simulations using the ABF
method. We show the effectiveness of SandCV as a smooth CV by
showing the convergence of the enhanced sampling method. These
simulations provide free energy surfaces (FES), which are then compared
with those computed along the dihedral angles. To show the possibilities
of SandCV in more realistic situations with non-ideal sampling of the
intrinsic manifold, we apply the methodology starting from a training set
obtained by a crude exploration method, which does not visit significant
regions of configuration space. We show that SandCV, combined with
the ABF method, can bridge over these gaps and explore these regions.
Finally, we examine the transferability of SandCV obtained under simple
simulation conditions (vacuum) to more complex conditions (explicit
water).

All simulations were performed with version 2.8 of the NAMD
(Phillips et al., 2005) molecular dynamics code with the CHARM22
force field (MacKerell et al., 1998) and a Langevin thermostat. For
the simulations in explicit water, we use the particle mesh Ewald
method (Essmann et al., 1995) for long-range electrostatic forces
and periodic boundary conditions. @ We implement SandCV in a
stand-alone C++4 code, which is interfaced with another C++ code
that implements the vectorial version of the ABF method (Darve et al.,
2008) and communicates with NAMD through a TCL interface to obtain

configurations and return forces on the atoms.

2.3.1 Isomap low-dimensional embedding

We initially consider an ideal sampling of the intrinsic manifold,
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Fig. 2.4 Low-dimensional embedding of alanine dipeptide in vacuum
with Isomap. (A) The three-dimensional embedding of alanine dipeptide
shows it has the topology of a torus, and allows us to identify tearing
curves to simplify the topology. (B) Two-dimensional embedding after
tearing. The landmark points used in the parametrization are marked
as black dots. (C) Smooth parametrization of the intrinsic manifold
(gray surface) visualized on the three-dimensional Isomap embedding
after tearing. The color map represents the dihedral angle ®.
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obtained by running two 100 ns simulations of alanine dipeptide in
water and vacuum at 300 K, and sampling configurations every 10 ps,
resulting in 10,000 configurations. In these simulations, sampling was
enhanced with the ABF method along the two dihedral angles, resulting

in a nearly uniform sampling in dihedral space.

As discussed in Section 2.2.5, the nontrivial topology of the manifold
underlying some datasets is a generic obstacle for dimensionality
reduction. For alanine dipeptide, due to the periodicity of the dihedral
angles, the intrinsic manifold has the topology of the two-dimensional
torus. Consequently, dimensionality reduction techniques will collapse
distant parts of the manifold, thereby failing to identify it properly,
unless d > 3. Figure 2.4(a) shows the three-dimensional Isomap
embedding for the ideally sampled ensemble of alanine dipeptide in
vacuum. The results in explicit water are similar. Such representation
is not dimensionally optimal, as the intrinsic dimension is 2, and does
not fill a region in the low-dimensional embedding. Yet, it is very
useful because it allows us to visually identify tearing curves on the
manifold. We use this information to eliminate edges in the Isomap
graph G connecting vertices separated by the tearing curves. This ad
hoc method is effective in the present system, but may be insufficient
in others. In Section 2.2.5, we have suggested a general method to deal

with general manifolds, which is beyond the scope of the present thesis.

The procedure we adopt here results in a two-dimensional embedding
that respects the local geometric structure of the intrinsic manifold,
yet introduces artificial boundaries, see Figure 2.4(b). Figure 2.4(c)
illustrates the smooth parametrization of the intrinsic manifold as a

surface in the three-dimensional torn Isomap embedding.
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Fig. 2.5 Convergence of ABF simulations for alanine dipeptide in
vacuum. (A) Convergence of the thermodynamic forces along the CVs
for a simulation biased along dihedral angles (red triangles) and along
SandCV (blue circles). We plot the error in the forces (e) relative to
the equilibrium forces F,, obtained with a reference long simulation
(here 200 ns long), and normalized with the error at ¢ = 100 ns. (B)
Snapshots of the normalized deviation from uniform sampling of the
histograms in the SandCV simulation, that is (¢;; — ¢)/¢ where ¢;; is
the number of samples in bin (i, j), ¢ = 3, ; ¢;j/nBins, and nBins is
the number of bins. This shows how the ABF algorithm biases the MD
trajectory and results in nearly uniform sampling.

2.3.2 Enhanced sampling with SandCV

We illustrate next how SandCV is successfully coupled with an enhanced
sampling algorithm, here ABF, to compute free energies. The success
of enhanced sampling strategies can be established by the uniformity
of sampling along the CVs as the simulation proceeds (Darve et al.,
2008). Furthermore, equilibrium properties such as the thermodynamic
force on the CVs should converge with simulation time. Figure 2.5
provides numerical evidence of the convergence of two ABF simulations:
one based on dihedral angles, and another one based on SandCV.
We present the results for alanine dipeptide in vacuum, but those
in water are similar. Figure 2.5(a) shows the convergence of the
thermodynamic force as a function of simulation time. It can be
seen that ABF simulations based on either dihedrals or SandCV

exhibit similar convergence, and the semi-logarithmic scale highlights
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the exponential convergence, as theoretically predicted (Lelievre et al.,
2010). The different panels in Figure 2.5(b) show how the histograms
of conformations in SandCV space converge to a uniform distribution,
as expected. These results show that SandCV, based on statistical
learning, captures the metastability of the system, since it is known
that enhanced sampling methods become ineffective if the remaining
transversal coordinates exhibit metastability (Sutto et al., 2012). This
fact is not surprising, since we have already noted that the Isomap
embedding closely mimics an embedding based on dihedral angles. This
simulation also shows that all the on-line operations behind SandCV
executed in every time-step of the simulation (parametrization of the
intrinsic manifold, closest-point projection, and Jacobian of the CV)

can be robustly implemented in a standard MD code.

2.3.3 Free energy comparisons

Table 2.1 Free Energy differences at the points marked in Figure 2.6.
The units are in kcal/mol. (1kgT = 0.596 kcal/mol) and the point
number 1 is taken as the reference with 0.0 value.

collective variable 2 3 4 5
Vacuum Dihedral Angles 12.644 17.532 8.364 2.340
SandCV with dihedral angles 12.438 17.547 8.351 2.216
SandCV with NLDR 12.420 17.534 8.438 2.309
Water Dihedral Angles 13.908 12.997 -0.084 3.913
SandCV with dihedral angles 13.648 12.998 -0.151 3.854
SandCV with NLDR 13.718 13.064 -0.305 3.971

Free energy surfaces (FES) are subjective in that they fundamentally
depend on the CVs along which they vary, and are not insensitive to
reparametrizations of CV space (E et al., 2005). Although this fact
does not have consequences on physical observables such as rates of

conformational changes (Frenkel, 2013), it complicates a meaningful
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Fig. 2.6 Comparison of the free energy surface of alanine dipeptide
in vacuum (v) and water (w) along three different sets of CVs. (A)
Backbone dihedral angles (¢ and V), (B) SandCV based on the
two-dimensional embedding given by the dihedral angles, and (C)
SandCV based on a two-dimensional Isomap embedding.
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comparison between FES along different CVs. However, since we have
found that SandCVs based on NLDR closely correlate with dihedral

angles, we attempt this comparison next.

We consider three types of CVs: (1) the usual dihedral angles, (2) the
SandCV based on the two-dimensional embedding given by the dihedral
angles, and (3) the SandCV based on the two-dimensional Isomap
embedding, as described above. In (2), we can easily retain periodicity
of the CV. In (3), we tear the manifold to simplify its topology and place
a corral potential around the boundary of the embedding to confine the
trajectory within the region of interest. The corral potential is not
biased by the enhanced sampling method. It should be high enough so
that trajectories do not escape the region of interest, and narrow enough
not to shrink excessively this region. The iso-contours near the boundary
of the free-energy landscapes in Figure 2.6(c) give an idea of the width
of this corral potential in our simulations. By analyzing the system in
vacuum and in water, we end up with six different sets of CVs. The
corresponding FES are computed with 100 ns ABF simulations, which
we have shown to converge in Figure 2.5. We parametrize the intrinsic
manifold with about 11x11 landmark points, and choose 3 = 1/h? for
the basis functions in Eq. (2.3), where h is the typical spacing between

landmark points.

Dihedral CVs and the SandCV based on the dihedral embedding
are not necessarily in direct correspondence. For instance, the former
only involves 5 atoms of the molecule, while the latter involves the 10
backbone atoms of the alignment. Yet, Figure 2.6(a) and 2.6(b) show
that the resulting FES are very similar, both in vacuum and in water.
The FES obtained with the SandCV based on Isomap exhibits the same

features, but nonlinearly mapped from dihedral space.

Table 2.1 provides a quantitative comparison of free energy

discrepancies between the main features of the FES, including free
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energy basins, hills, and saddle points. All FES were shifted so that
the free energy of Point 1 vanishes. The agreement of the free energy
differences is remarkable, with a maximum deviation smaller than 0.3
kcal /mol, that is about 0.5 kgT. These results further emphasize the
close similarity between dihedral angles and the data-driven CVs based
on NLDR, which lead to nearly identical free energy differences between
the main features of the FES.

2.3.4 SandCV on a realistic ensemble with poorly

sampled regions

In practice, MD trajectories do not sample well regions of high free
energy, even with configuration space exploration techniques. This is a
fundamental hurdle in statistical learning approaches to identify CVs.
We consider next a realistic application of SandCV in combination
with Isomap, in which a training set of configurations resulting from
a simple exploration methodology does not sample large regions in
dihedral space. We first run a set of short simulations of alanine
dipeptide in water with different starting points randomly selected
from a high-temperature simulation and quenched to 310K. From 1400
starting configurations, we run short 100 ps simulations sampled every
20 fs. We end up with 1400 trajectories with 5000 configurations, and
a total of 7 -10° configurations. Since these are too many points for
a standard Isomap implementation and since that many points do not
bring additional value to the geometrical description of the manifold, we
decimate the data in two steps on the basis of geometric similarity. First,
we select 1000 quasi-uniformly distributed configurations out of each
trajectory, chosen in such a way that the Euclidean distance between any
pair of aligned configurations within a trajectory is larger than a cut-off.
Second, the resulting 1.4 - 10° configurations are joined and decimated

with another cut-off criterion, ending up with 9163 configurations. This
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number of high-dimensional points is easily manageable by Isomap,
which is memory intensive for large training sets, and contains all the
relevant information present in the original data. We resort to the

procedure described in Section 2.3.1 to tear the manifold.

A kcal/mol B counts

Fig. 2.7 SandCV on a training set with unexplored regions. The
low-dimensional embedding of the training set exhibits large holes (A),
which correspond to regions of high free energy. An ABF simulation
based on SandCV can bridge over these regions and end up with nearly
uniform sampling in the space of CVs, as shown by the distribution of
configurations in CV space (B).

Figure 2.7(a) shows the two-dimensional embedding of these
configurations as translucent points. The large unexplored regions
(‘holes’) are apparent. By placing 93 uniformly spaced landmark points
n; and taking 8 = 1/h? in Eq. (2.3), the smooth representation of the
intrinsic manifold in Eq. (2.1) bridges over the holes, and therefore the
SandCV bridges over the corresponding regions in configuration space.
By performing an ABF simulation based on this SandCV, we populate
the holes and end up with a nearly uniform sampling, illustrative
of the convergence of the free energy calculation, see Figure 2.7(b).
The resulting FES is represented in Figure 2.7(a), and highlights the

correspondence between the holes and the regions of high free energy.
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This experiment suggests that SandCV can be used for configuration
space exploration, by bridging free energy basins separated by high
barriers. Since it is likely that the description of the intrinsic manifold is
poor over the holes, it is possible to proceed in two steps, by first filling
these as demonstrated here, and then recomputing the SandCV with the
enhanced training set. This procedure assumes that the energy barriers
responsible for the holes are much smaller than those giving rise to the
nonlinear manifold character of the conformation ensemble, e.g. rigid

bonds, bending angles, or steric constraints.

2.3.5 Transferability of SandCV

The previous example illustrates that producing an adequate training
set can be challenging, particularly for large molecules in explicit water.
A natural remedy would be to build the SandCV from a simpler model,
such as a coarse-grained protein model, and then use it to enhance
sampling in the full model. We explore here this idea by building
a SandCV with a training set of alanine dipeptide in vacuum, as in
Figure 2.6(c) top, and then biasing with it a simulation of the molecule
in explicit water. The latter system is much more difficult to simulate
due to the larger number of particles and the long-range electrostatic
forces.

Figure 2.8(a) shows a reference FES in water computed with the
dihedral angles, while Figure 2.8(b) shows the FES of the molecule
in water but along the vacuum SandCV. Despite the CV is defined
for a different and simpler system, we find that the ABF simulation
converges as in previous examples. Furthermore, the similarity of the
landscape is remarkable, suggesting SandCV are transferable for this
system. Broadly speaking, this suggests that even if the underlying
intrinsic manifold of a simplified system is noticeably different from

that of a complex system, a simulation such as that presented here can
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produce a good training set of configurations of the complex system,
which can then be the basis of a better SandCV.
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Fig. 2.8 Exploring the transferability of SandCV. The free energy of
alanine dipeptide in water, shown in (A) in terms of dihedral angles,
is computed along SandCV based on an ensemble in vacuum (B). For
comparison, the FES in (B) should be rotated by 180°, and the support
of (B) has been highlighted in (A).

2.4 Conclusion

We have introduced a general method to model molecular systems with
smooth and nonlinear data-driven collective variables (SandCV). These
CVs can be non-intrusively combined with standard enhanced sampling
molecular dynamics methods. The input of the method is an ensemble
representative of the flexibility of the molecule, which does not need to
be thermodynamically meaningful. The geometric structure hidden in
this ensemble is revealed by existing nonlinear dimensionality reduction
methods (here Isomap), and then further processed to define collective
variables C(r) and its derivatives.

We exercise SandCV with alanine dipeptide both in vacuum and in

explicit water. This system is a benchmark for free energy calculations
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and has well-known and highly nonlinear collective variables, two of its
backbone dihedral angles ® and ¥. We demonstrate the effectiveness
of the method by providing numerical evidence of the convergence of
enhanced sampling simulations based on SandCV. These simulations
also show that the method can be integrated in standard MD codes and
combined with an off-the-shelf enhanced sampling method. We then
compare the free energy surfaces obtained with the ABF method in
combination with dihedral angles, and several flavors of SandCV. This
comparison shows that a systematic machine learning method such as
SandCV provides a description of the system that closely mimics one

based on the conventional dihedral angles.

In practice, data-driven collective variables are limited by the
difficulty of producing training sets of configurations that sample the
intrinsic manifold with sufficient density (Ceriotti et al., 2013). We
explore this issue in two ways. First, we consider a realistic ensemble
after a simple configuration exploration step, which fails to visit large
regions. We show that SandCV can bridge over these regions, and then
populate them in a subsequent enhanced sampling simulation. Second,
we show that the initial training set can be obtained with a simplified
system, for instance alanine dipeptide in vacuum, and then the resulting
SandCV transferred to a complex system, much more expensive to

simulate, here alanine dipeptide in water.

SandCV provides a flexible framework composed of distinct
conceptual and algorithmic blocks. The first block is the alignment of
the molecule, which here is performed with Procrustes superimposition.
The second block is the identification of the intrinsic manifold
through nonlinear dimensionality reduction methods. Here we use
Isomap. The third block is the smooth parametrization of the intrinsic
manifold, performed with maximum entropy approximants. The last

block is the closest-point projection of out-of-sample configurations
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onto the intrinsic manifold, to label arbitrary configurations by the
low-dimensional embedding coordinates. The first three of these
ingredients can be replaced by alternative algorithms, adapted to
specific systems or computer codes, without affecting the general
methodology. For instance, we have explored alignment of proteins
through smooth contact maps, and dimensionality reduction with
iterative methods that minimize a nonlinear cost function. The
embedding in low dimensions can also combine physical insight and
statistical learning techniques. Complex systems may exhibits nontrivial
topologies that cannot be treated with nonlinear dimensionality
reduction, as we discuss in Chapter 4, and will require a systematic
approach to describe the intrinsic manifold and the CVs through
multiple charts, which is proposed in Chapter 5.



Chapter

SandCV++: a toolbox for

data-driven collective variables

3.1 Introduction

The proposed method in the Chapter 2 for constructing smooth
and data-driven collective variables (SandCV) requires a toolbox
of algorithms, from machine learning to optimization to enhanced
sampling. I have implemented all these methods and algorithms in a
stand-alone C++ library, called SandCV++. The input of this library
is a training set of ensemble of molecular conformations, which is
fully or partially representative of the molecule’s flexibility. Using
this training set, it first computes a low-dimensional embedding,
characterizing the most important behavior of the molecular system.
Then, using local-maximum entropy approximants, it constructs a slow
manifold in high-dimensional space, which is the best representation
of original dataset in the least-square sense. This slow manifold
is smoothly parametrized in the low-dimensional space, and finally

produces a functional set of collective variables (CVs) that can be
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use in enhanced sampling simulations. SandCV++ communicates with
molecular dynamics code through a TCL interface, although it can also
be interfaced with Python. It can also be patched to the MD code in
the same way as some popular free energy methods such as Plumed
(Tribello et al., 2014). SandCV++ comes with a built-in enhanced
sampling method, which is a particular implementation of the vectorial
adaptive biasing force method (Darve et al., 2008).

SandCV++ consists of four main modules (molecular alignment,
dimensionality reduction, slow manifold parametrization, and closest
point projection), some auxiliary modules and a vectorial adaptive
biasing force. The algorithm behind each module is explained in the

following sections.

3.2 Molecular alignment

In molecular simulations, the rigid-body motion of the molecule is often
not constrained and thus similar configurations occupy distant positions
in the Cartesian coordinates. This is problematic for methods that
rely on distances between Cartesian representations of conformations
to find the similarities between structures. To resolve this problem,
we implement Procrustes superimposition that removes the rigid-body
motion by optimally aligning the configurations to a reference one. We
also discuss alignment using a smooth contact map. The alignment

procedure needs to be differentiable to be useful in SandCV.

3.2.1 Procrustes superimposition

We represent any given configuration r, € R3V as a N, x 3 matrix X,
where a subset of N, atoms out of the N atoms of the full molecule
have been selected. We find the optimal rotation matrix R € R3*3 and
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translation vector t € R'3 by minimizing the cost function
cost(R,t) = [(XR + rep[t]) — X,es|*,

where X, is a reference configuration and rep : R3 — RN-x3 g
a function that produces a matrix with N, copies of its argument.
This optimization problem can be solved resorting to the singular value

decomposition (SVD). First, we define the matrix

M = (Xref - rep[ll'ref])T (X —rep[u]) (3.1)

where p € RV and p,; € RY™ are respectively the vectors
of the average atom position of the given configuration and the
reference one. Invoking the SVD, M = USV7T where U and V are
orthonormal matrices whose columns are eigenvectors of MM’ and
M”M respectively, and S is a diagonal matrix of singular values. The

optimal rotation and translation matrices are then

R=VU", t=p.; —uR. (3.2)

Since the SVD is not unique, it has to be chosen appropriately so
that R is a proper rotation, i.e. det R = 1.

Derivatives of the singular value decomposition

We first obtain the derivatives of M with respect to Xj., the r-th

component of ¢-th atom, in terms of the SVD

oM OU . . 0S ovT
v~ ax SV FU VI US o
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By pre- and post-multiplying this equation by U? and V respectively,

and recalling that they are orthonormal, we have

T
aMV:UT 6US+ 08 +SaV V.

T
v 0X;, 0X; 0X; 0X;

We then subtract this equation from its transpose, and take into account

that S is symmetric to find

oM™ oM

V7 oy U~ UTaXirV = (3.3)
Vo~V S aw V-, Y
By defining v ouT
QX)) = VT(?X" + 8XirU’

: Jors T 9V ou”T ;
and considering that V X, and BT”U are skew-symmetric

(Papadopoulo and Lourakis, 2000), we rewrite Eq. (3.3) as

T
oM U - U’ oM \Y% (3.4)

. N7
QXi)8 +SQUX,,) = VI G vV

This gives us a set of equations that can be solved if the singular values

are non-degenerate. The solution can be written in indicial notation,

for p # q,

1 OM,,.m, OM,,
qu (Xir) [

= Vo Uy — UV | 3.5
S+ S, | ™ oX, "M T OX,, Q] (8:5)

without summation over p and ¢, where

OMn,

X, (Xf«Z} - /%T»nef) O
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Derivatives of the Procrustes superimposition

The derivatives of the Procrustes superimposition follow from the
derivatives of the rotation matrix and translation vector with respect to
X. Since t depends only on R, see Eq. (3.2), we only need to calculate
the derivatives of R, which follow from

OR OV __, ouT
ax, ~ox. 0 tVax,
oV ouT
_ T Y Y T T
=V (V aX”) U'+v <8X”U> U
ov  ouTr
_ T T
= VQ(X,,)U".

3.2.2 Smooth contact map

Contact maps (Holm et al., 1993; Vendruscolo et al., 2000) have been
extensively used as a simplified representations of protein conformations,
capturing its important structural features. Contact maps are matrices
such that m;; is 1 if residues ¢ and j are closer than a given threshold and
0 otherwise. Because they are defined from distances between atoms of
the molecule, contact map representations are invariant with respect to
rigid body transformations. In addition to the common binary contact
map, one can also consider a smoother variation of the entries m;; as a
function of the distance between the corresponding residues. Shibberu
et al. (2010) introduced contact maps with CY continuity and used them
for protein structure alignment (Shibberu and Holder, 2011). However,
this contact map is not smooth enough for our purposes. We have
used within SandCV the smooth contact map introduced in Bonomi
et al. (2008), along with C'*° alternatives using sigmoid and log-sum-exp

functions. In this approach, the derivative of the alignment map is
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trivial, see Appendix B for more details. A smooth contact map is
illustrated in Figure 3.1.

10 20 30 40 c 50 60 70 80 10 20 30 40 c 50 60 70 80

o o

Fig. 3.1 Usual contact map (b) verse smooth contact map (c) description
of Titin 121 domain (a), considering alpha carbons (C,,) and using cut-off
value of 8.5A.

3.3 Dimensionality reduction

An important part of SandCV is determine the important features
in the molecular system through machine learning methods such
as dimensionality reduction. This task can be done by employing
any suitable dimensionality reduction technique, such as Isomap
(Tenenbaum et al., 2000), LLE (Roweis and Saul, 2000), and diffusion
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map (Coifman and Lafon, 2006), from any available implementation
such as scikit-learn in Python (Pedregosa et al., 2011), RDRToolbox in
R, and dimensionality reduction toolbox in MATLAB (der Maaten et al.,
2009). However, to have a self-contained toolbox, we have implemented
an efficient version of Isomap that has been proven to work well in
molecular systems (Brown et al., 2008; Das et al., 2006; Hashemian
et al., 2013; Spiwok and Kralové, 2011). This implementation consists

of following steps.

1. Constructing neighborhood graph:
We define the weighted graph G over the high-dimensional data
points by connecting points ¢ and j if j is one of the K
nearest neighbors of i, and setting the edge weight to D(i,j),
the distance between aligned representations of the molecule.
We have a lot of freedom to select this distance based on our
understanding about the system. Examples include the Cartesian
distance between configurations aligned with Procrustes analysis,

or distances between smooth contact maps, see Section 3.2.

2. Computing shortest paths:
We resort to Dijkstra algorithm (Dijkstra, 1959), which is
asymptotically the fastest known single-source shortest-path
algorithm for arbitrary directed graphs with unbounded
non-negative weights, to evaluate the approximate shortest path
between each node, and thus construct the graph-based geodesic

distance matrix Dg(4, 7).

3. Evaluating low-dimensional embedding:
Using classical multidimensional scaling, we evaluate the
eigenvectors and eigenvalues of HDZ H /2, where H is the centering
matrix H;; = d§;; — 1/N, using LAPACK (Anderson et al., 1999)

routines. Considering A, be the p-th eigenvalue (in the decreasing
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order) and v; be the i-th component of the p-th eigenvector, then

the p-th component of the low-dimensional vector y; is \/Apv;.

3.4 Slow manifold parametrization

As described in Section 2.2.3, we parametrize the high-dimensional

slow-manifold as .

M(&) =D _pi(&)ys, (3.6)

i=1
where p;(€) are smooth basis functions and y; are coefficients that are

calculated by fitting M to the data in a least-squares sense,

Z @0 — M(&)[*, (3.7)

which involves solving a L x L linear system of equations. In SandCV++,
this equation is solved by utilizing Cholesky factorization implemented
in LAPACK routines (dpotrf and dpotrs).

For smooth basis functions, we took advantage of local
maximum-entropy(Arroyo and Ortiz, 2006) given by

e~ Bil&—nil*+X-(§—n;)
Pilé) = > e~ Bil€=m; [P+ (§—n;)’

(3.8)

where 7); is a set of landmarks, arbitrarily distributed in the CV
space with a typical distance of h. The 3; defines the width of the
basis functions and in practice for molecular systems can be set to
1/h?. X is a Lagrange multiplier to impose exact reproducibility of
affine functions, which can be obtained by minimizing the denominator
using Newton-Raphson method with possibly line search. The defined
slow-manifold can be tuned to filter the out-of-manifold noise while

not smearing out the important features of the intrinsic manifold by
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adjusting the §; parameters and the distribution of landmarks.

3.5 Closest point projection

In Section 2.2.4, we discussed how to find the CV value for a new
configuration by projecting it on the slow manifold. This results in
a nonlinear optimization problem with d unknowns. To solve this
nonlinear minimization, we used the Newton-Raphson method with
a line search algorithm and also implemented as an alternative a
trust-region algorithm from Intel Math Kernel Library (MKL).

3.5.1 Jacobian of the closest-point projection

As argued in Section 2.2.4, the Jacobian of SandCV follows from
DC(r) = DM (z) DP(x) DA(r),

where DA(7) can be computed as indicated in Section 3.2.1. On
the other hand, from the inverse function theorem DM™!(z) is the

pseudo-inverse of the matrix DM:
DM (@) = [DM"(©DM(E)] DM'(€),  (39)

where € = M~!(z). Thus, we only need the Jacobian of the closest point
projection DP(x). Since this matrix always appears in the formulation
of SandCV multiplied by DM™!(z), we directly compute the product
DM~ '(z) DP(x).

In the vicinity of a smooth manifold, the closest-point projection can
be written as

z=P(x)=x—dx)n(zx),

where n(x) is a normal vector to the manifold at & and d(x) is the
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distance to the manifold. Taking the derivative of this equation, we find

DP(x) =1Ip — d(x)Dn(x) — n(x) ® Dd(x). (3.10)

Multiplying Eq. (3.10) by DM™(z), recalling Eq. (3.9), noting that
the rows of DM are tangent to the manifold, and introducing a

normal unit vector field A as a function of the embedding coordinates,

ie. n(x) =N oM™ oP(x), we have
DM~'DP = [DM'DM|  DM" {1, - d(z)DANDM'DP}.

Noting that DM™'DP appears in both sides of this equation and

solving for it, we obtain
DM™'DP = {Id +d [DMTDM]’1 DMTDN}_IDMl, (3.11)
and by further using of Eq. (3.9) and simplifying, we find
DM™'DP = {DM"DM + d DM'DN}  DM”, (3.12)

where we still need to compute the Jacobian of the unit normal vector
DN. Noting that the rows of DMT are perpendicular to A, we take

the derivative of their inner product,
D (DM"N) = D’M'N + DM"DN =0,

and therefore DMTDN = —D?MTN. Plugging this expression into
Eq. (3.12), we finally obtain

DM (&) DP(z) {DMT(g)DM(ﬁ)—DQM(g)(az—i:)}_lDMT(:I:).
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3.6 Adaptive biasing forces

The free energy of a system can be estimated by thermodynamic
integration of the average forces along collective variables & = Cy(7)
(Darve and Pohorille, 2001),

DAy(§) = — (" (1),  €gcby

0 oC
sys [,k 1
F(H) = o <M58t>

where by, is the k-th bin in CV’s space, t¥ is the time when i-th sample
resides in k-th bin, and ME_I = DC,M'DC! where M is the mass

matrix. However, if the energy barriers along & are significant, this

with
(3.13)

)
k
ti

method of calculating free energy will face the inefficient sampling.
To overcome this problem, the adaptive biasing force (ABF) algorithm
(Darve et al., 2008) adds a properly chosen, position-dependent biasing

force to the system that allows for a self-diffusion in the CV space.

This low-dimensional biasing force, ngms’ is calculated at each time
step by running average of the force acting along & in the k-th bin
assuming that N (N, k) is the number of samples collected in bin k after

N steps in a simulation,

N (N,k)
ngias(N7 1{7) _ _‘W ; 1_;?3/5@?)7 (314)

where R (N(N,k)) = min(1, N(N, k)/Ny) is a ramp function to avoid
the crude estimation of the biasing force in poorly sampled bins.

Afterwards we should subtract the applied biasing force from the
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modified system force to recover the original system force,

— FY(N — 1,k).

0
- (u5)

In this method, the free energy of system can be estimated at each
bin by
DAy (€) = — (F") = — (Fy! — Ff*). (3.15)

It can be shown from Eq. (3.14) and Eq. (3.15) that after a brief
equilibration the biasing force converges to the — <F§S ys> and thus the
average of modified system force acting along &, Fg”"d becomes zero.
This allows for a self-diffusion motion along the CV in the modified

system and
DA (&) ~ FI™. (3.16)

Some implementation of ABF require second derivative of CVs,
which is cumbersome and costly. Here, we implement a vectorial ABF
that requires only first derivative of CVs and ask only for the position
vectors of atoms from MD code. Algorithm 3.1 shows the pseudocode

to compute the biasing force with the ABF method.
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Algorithm 3.1 A second-derivative-free and vectorial implementation
of adaptive biasing force (ABF) method.

Require: Retrieve the atomic mass matrix M and the atomic position
vector r from the molecular dynamics code.

Require: Calculate the projection onto the collective variables space
& = C(r) and its Jacobean J; = DC(r)
function ABF::CALCULATEFORCE(r,M £, J¢)

v (r— 1) /Al > calculate the atomic velocities
Told < T > update the old atomic positions
ve + Jev > project the velocity into the CV
space
5 Mg« (JM'J)T! > calculate the reduced mass matrix
pe — Mo, > calculate the momenta in CV
space

Fol « (pe — pgd) At > projection of the total forces
exerted on the system
p"ld —p > update the old momentum
k < bin corresponding to &
10:  if N(k) =0 then
Fé’ms(k’) + 0.0
else
FYos(k) <= —R(N(k))/N (k) F{*s'(k) > evaluate the biasing
force in CV space

end if
15:  FYs(k) < FYos(k)Je > convert  the  low-dimensional
biasing force to the force on
individual atoms
N (k) + N(k)+1 > update number of samples in the

4 k-th bin
F (k)  Flotol — Fgldvias 1 Correcting the system to exclude

' 4 the previous biasing force
Flo' (k) < FPs! (k) + F' — FZ%e > add the system force

' ' into the histogram
Foldvios ngms(k) > update old biasing force
20: return Ftis
end function







Chapter

Topological obstructions in the way

of data-driven collective variables

4.1 Introduction

Thanks to enhanced sampling techniques, it is possible to connect
molecular conformations separated by high energy barriers, and
accurately compute free energies in systems exhibiting metastability.
The success of these techniques relies on a good set of collective
variables (CVs), capturing the metastability of the system with a few
degrees of freedom. CVs are commonly chosen out of experience or
physical intuition. As increasingly complex systems become accessible
computationally (Borhani and Shaw, 2012), the task of selecting
appropriate CVs becomes highly nontrivial (Pietrucci and Laio, 2009).
This situation has motivated in recent years intense research aimed at
systematic and data-driven approaches to select CVs, often relying on
statistical learning methods. In particular, dimensionality reduction
techniques automatically identify a reduced set of coordinates capturing

the essential behavior of a complex system, starting from a pre-existing
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ensemble of molecular configurations, called training set.

The most widespread dimensionality reduction method is principal
component analysis (PCA) (Pearson, 1901). PCA is a linear method,
which selects mutually orthogonal directions such that, by projecting
the data onto a few of them, the variance of the projected data is
maximized. PCA has been widely applied to characterize the essential
dynamics (Amadei et al., 1993; David and Jacobs, 2014; de Groot et al.,
2001; Lange and Grubmiiller, 2006; Maisuradze et al., 2009), understand
molecular flexibility (Teodoro et al., 2003) and enhance sampling in
molecular dynamics (Michielssens et al., 2012; Spiwok et al., 2007). PCA
and in general linear dimensionality reduction methods are very popular
because of their simplicity. However, they fail to identify nonlinear
correlations in the data, which are often present in molecular systems,
e.g. as a result of bond rotations or steric interactions (Garcia, 1992;
Hegger et al., 2007; Noji et al., 1997).

Advances in the field of statistical learning, notably in
nonlinear dimensionality reduction (NLDR) techniques (Hinton and
Salakhutdinov, 2006; Roweis and Saul, 2000; Tenenbaum et al., 2000),
were quickly embraced by the molecular simulation community to
visualize trajectories, realizing that conformations often evolve close
to a nonlinear manifold often called intrinsic manifold (Brown et al.,
2008; Ceriotti et al., 2011; Das et al., 2006; Ferguson et al., 2010;
Stamati et al., 2010), although some systems evolve on non-manifold
sets (Ceriotti et al., 2013). Different NLDR techniques have been
applied to molecular systems, including Isomap (Tenenbaum et al.,
2000), locally linear embedding (Roweis and Saul, 2000), autoencoder
networks (Hinton and Salakhutdinov, 2006), diffusion map (Coifman
and Lafon, 2006) or LSDMap (Rohrdanz et al., 2011). Building on these
techniques, a number of methods have been developed to systematically

define differentiable and nonlinear CVs, to be used in enhanced sampling
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simulations (Ferguson et al., 2011a; Hashemian et al., 2013; Spiwok and
Krélova, 2011; Tribello et al., 2012).

Given an ensemble of molecular conformations, it is straightforward
to obtain a low-dimensional representation through linear or
nonlinear dimensionality reduction techniques. However, such an
embedding will only be useful if the low-dimensional representation
captures the essential features of the original dataset. If the
low-dimensional representation collapses conformations that are distant
in high-dimensions, these algorithms may induce misinterpretations or
non-convergence in enhanced sampling simulations. Similar problems
arise if the low-dimensional representation is not low-dimensional
enough, i.e. matching the intrinsic dimension (Lee and Verleysen, 2007).

In this case, the conformations sparsely populate the reduced space.

Here, we point out a major obstacle when applying dimensionality
reduction techniques to molecular simulations: topological obstructions
of the intrinsic manifold. This issue has not been acknowledged in
the literature, but is affecting the performance of NLDR methods in
a number of recent studies (Duan et al., 2014; Ferguson et al., 2011a;
Rohrdanz et al., 2011; Stamati et al., 2010; Xue et al., 2013). We
conceptually identify this problem, and illustrate its impact using a
training set for alanine dipeptide, a benchmark in the field. We also take
a close look at the geometry of the intrinsic manifold of this molecule.
This understanding may contribute to orient the future research on
systematic data-driven CVs. Finally, we suggest possible directions to

overcome topological obstructions in defining adequate data-driven CVs.
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4.2 Dimensionality reduction and

topological obstructions

A manifold of dimension d is an object that locally looks like Euclidean
space R?. Two manifolds are said to have the same topology if one can
be transformed into the other with a continuous deformation such as
bending and stretching, but not tearing or gluing. The properties that
are preserved under such deformations are called topological properties,

and include connectedness, continuity and boundary.

Dimensionality reduction techniques try to find a reduced space
representation in such a way that topological properties of objects in
high-dimensional space preserved (Lee and Verleysen, 2007). However,
depending on the topology of the high-dimensional manifold, it may not
be possible to embed it in RY. For instance, consider a circle (d = 1),
which can be trivially described by a single parameter, the polar angle.
Dimensionality reduction techniques will try to represent the circle as an
open set in the real line, thus collapsing distant points and destroying
the underlying structure, see Figure 4.1(a). This example illustrates
Whitney’s embedding theorem (Whitney, 1936), which states that the
embedding (without self-intersection) of a d-dimensional manifold may
require up to 2d 4+ 1 dimensions. This theory guarantees that any
one-dimensional manifold can be embedded in R?, but the minimal
dimension where the manifold can be embedded will depend on the
topology of the manifold. A circle requires two dimensions, while a
knot requires three dimensions.

Thus, topology is an obstacle to embed a manifold into a space of its
intrinsic dimension. However, if we change the topology of the circle by
cutting it at one point, then the resulting curved segment can be easily

unbent and embedded into the real line, as illustrated in Figure 4.1(b).

Figure 4.2(a,b) shows a torus and a sphere, which are
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Fig. 4.1 Due to their different topology, it is impossible to embed a
circle into a line (a); however, by tearing the circle at one point, this
topological obstacle can be circumvented (b).

two-dimensional nonlinear manifolds that cannot be embedded in less
than three dimensions. As a result, NLDR methods in general will
destroy their structure if they attempt to represent these surfaces in
two-dimensions. In fact, NLDR methods can only embed d—dimensional

manifolds in R? if they have the topology of open sets in R? thus

necessarily with boundary, such as that shown in Figure 4.2(c).

(c)

(a) (b)

Fig. 4.2 Surfaces (d = 2) of different topology. Conformational changes
of molecules with two significant dihedral angles evolve around a torus
(a), while six-membered rings carbohydrates, like [5-D-Glucopyranose
(Biarnés et al., 2007), have a sphere-like intrinsic manifold (b).

Similar topological obstructions are encountered when examining
molecular systems with dimensionality reduction methods. A notable
example is alanine dipeptide. This small molecule is known to be
well-described by two dihedral angles. As a result of their periodicity,

the underlying intrinsic manifold has the topology of a torus, which has
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been exploited to visualize its free-energy landscape (Jékli et al., 2012).
The consequences of this fact have not been fully acknowledged. As
a result, low dimensional embeddings appear highly distorted, present
loops, and partially collapse information (Rohrdanz et al., 2011; Stamati
et al., 2010; Xue et al., 2013). Furthermore, because of this topological
obstruction, NLDR techniques suggest an excessive number of CVs

relative to the intrinsic dimension (Ferguson et al., 2011a).

To illustrate this fact, we analyze a configurational ensemble of
alanine dipeptide obtained from multiple short-run simulations, and
shown in dihedral space in Figure 4.3(a). The color represents one
of the dihedral angles. Because, the intrinsic dimension is 2, we try to
embed the full ensemble in two dimensions using different dimensionality
reduction methods, see Figure 4.3(c-f), top. As expected, PCA and a
variety of NLDR methods fail to embed the ensemble without collapsing
distant conformations. We have chosen in this comparison a non-metric
NLDR method (Locally linear embedding (Roweis and Saul, 2000)), and
two distance-preserving methods that use different notions of distance
(Diffusion map (Coifman and Lafon, 2006) and Isomap (Tenenbaum
et al., 2000)). Thus, in the presence of topological obstructions, the
ability of NLDR methods in general to unfold nonlinear manifolds is not
exploited, and there is no clear advantage relative to PCA (Duan et al.,
2014). A straightforward way to remove the topological obstructions
is to consider a trimmed ensemble of conformations, which lies within
the dashed rectangle in Figure 4.3(a), at the expense of throwing away
a significant number of conformations. As shown in Figure 4.3(d-f),
bottom, all nonlinear methods correctly embed the data in 2D, without
data collapse (color mixing). The different metric criteria underlying
Diffusion map and Isomap are evident in this figure. In contrast,
PCA fails to recover the 2D manifold structure, even for the trimmed

ensemble, Figure 4.3(c) bottom. As in the example of the circle, it is
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possible to elegantly tear the manifold by disconnecting the connectivity
structure underlying NLDR algorithms, rather than by shrinking the
conformational ensemble, see Figure 4.3(b) for Isomap. Thus, by
appropriately removing topological obstructions, the benefits of NLDR
as compared to PCA become available. We further discuss systematic

methods to overcome topological obstructions later in the chapter.

4.3 A close look at alanine dipeptide

conformational flexibility

We closely examine next the geometry of the intrinsic manifold
underlying the conformational changes of alanine dipeptide. Because
our goal here is to examine closely metric information about the intrinsic
manifold, we focus now on Isomap, which tries to preserve isometry
in the embeddings. We start from a well-sampled trajectory resulting
from enhanced sampling (Hashemian et al., 2013). After removing
hydrogen atoms and alignment, we embed the molecular ensemble
in three-dimensions, see Figure 4.4(a). This embedding strikingly
resembles a torus. PCA produces very similar three-dimensional
embeddings. By coloring the points representing conformations with the
backbone dihedrals ® and W, the correlation between this embedding
and dihedral space becomes clear, see Figure 4.4(a,b). However, a closer
inspection reveals self-intersection of the embedded surface, with the
associated collapse of conformations. To examine this, we consider
two adjacent strip regions in dihedral space, and color-code them in
green and red, see Figure 4.4(c). Figure 4.4(d) clearly shows that these
strips cross each other in two regions, confirming the self-intersection of
reduced representation.

This finding is surprising because there should not be a topological

obstruction when embedding a torus in three dimensions, suggesting
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Alanine dipeptide (a) Dihedral angles (b) Isomap with tearing
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Fig. 4.3 Dimensionality reduction of an ensemble of molecular
configurations of alanine dipeptide, obtained from multiple short-run
simulations and visualized in dihedral space, ® and ¥ (a). A trimmed
ensemble delimited by the dashed rectangle is also considered to avoid
topological obstructions. Dimensionality reduction methods such as
PCA (c), locally linear embedding (with k& = 10 nearest-neighbors)
(d), diffusion map (with ¢2 = 0.5 as the bandwidth of the kernel
and k = 10 nearest-neighbors) (e), and Isomap (with & = 10
nearest-neighbors) (f), failed to provide a two-dimensional embedding
of the full ensemble without self-intersection (mixing colors representing
the backbone dihedral ¥). In contrast, the NLDR methods successfully
embedded the trimmed ensemble, (d-f) bottom. Manual tearing of the
full ensemble modifying the connectivity graph of Isomap also lead to a
successful embedding in two-dimensions (b).
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that the issue is not topological but rather geometrical. Indeed,
dimensionality reduction methods such as PCA or Isomap try to
preserve high-dimensional distances in the low-dimensional embedding.
Because manifolds cannot be isometrically embedded in general, the
resulting embeddings can be distorted. If this geometric distortion is
large, it could lead to (topologically avoidable) collapse of information.

We further scrutinize this idea next.

Fig. 4.4 Topology and geometry of molecular flexibility of alanine
dipeptide. A well-sampled molecular ensemble is processed by Isomap
to obtain a three-dimensional representation of the conformational
changes, where the colormap is the value of the backbone dihedral
angles, ® (a) and ¥ (b). Two adjacent strips of ® values (c) show the self
intersection of this 3D embedding (d), while in the 3D representation
of a torus, there is not any self intersection(e). A three-dimensional
projection of a flat torus (f) suggests the conformational changes of
alanine dipeptide is geometrically similar to a flat torus.

If dihedral space was an accurate representation of the molecule’s



62 Topological obstructions in data-driven collective variables

flexibility, not only in terms of topology, but also in terms of geometry,
then the intrinsic manifold would be a flat torus. A flat torus is a
topological torus with the metric induced by the Euclidean distance
in dihedral space extended by periodicity. It is known that the flat
torus can only be embedded isometrically (preserving distances) in four
dimensions or more (McCleary, 2012). A consequence of this fact is that
any three-dimensional embedding will distort the metric, as illustrated
by the grid in Figure 4.4(e). Interestingly, the three-dimensional
projection of the four-dimensional isometric embedding of the flat torus
shown in Figure 4.4(f) is very similar to the embedding provided by
Isomap, see Figure 4.4(d). As shown by the grid, this self-intersecting
representation of the surface induces a much smaller distortion of the
metric. Taken together, these observations strongly suggest that self
intersections in low-dimensional embeddings can not only be the result of
topological obstructions, but also the result of geometrical requirements
implicit in NLDR methods.

4.4 Summary and discussion

We have shown that topological obstructions of the intrinsic manifold
underlying molecular flexibility can be a serious obstacle in the
systematic determination of collective variables using data-driven
statistical learning approaches. Focusing on the benchmark molecule
alanine dipeptide, we have shown that these obstructions make it
impossible to find global low-dimensional representations with minimal
dimension (2 for this system) devoid of data collapse. If the embedding
dimension is increased to avoid data collapse, then the reduced
description becomes dimensionally inefficient and sparsely populated.
We have further shown that the intrinsic manifold of alanine dipeptide

metrically resembles a flat torus. When dimensionality reduction



4.4 Summary and discussion 63

methods that try to preserve distances, such as Isomap, embed this
manifold in 3D, we also observe data collapse, which this time does not

have a topological origin.

The most straightforward remedy to topological obstructions is to
change the topology of the intrinsic manifold by tearing, as we have
illustrated in Figures 4.1 and 4.3. Tearing can be easily implemented
in NLDR methods that rely on connectivity graphs by disconnecting
appropriate vertices in this graph. Such an approach may be guided
by data visualization (Hashemian et al., 2013), if the systems is
low-dimensional enough, or by more systematic algorithms that find
essential loops and disconnect them (Lee and Verleysen, 2005). This
latter method does not work if the intrinsic manifold has the topology
of the sphere. It should be noted that tearing the manifold may
introduce artificial boundaries in CV space, which need to be dealt with
computationally. Corral potentials may be used to prevent trajectories
from hitting this boundary (Hashemian et al., 2013), and modifications
of metadynamics to avoid artifacts at boundaries in CV space have been
developed (Crespo et al., 2010).

A different possibility is using NLDR methods that can be fed
with a predefined topology for the low-dimensional representation,
such as Self Organizing Maps (Kohonen, 1982; Malsburg, 1973) or
Generative Topographic Mapping (Bishop et al., 1998). However, for
complex systems, the topology may not be known a priori. Finally, a
more general approach is to split systematically the high-dimensional
manifold into different patches with the topology of an open set in
R¢, and then apply dimensionality reduction on each patch separately.
This method, which is discussed in detail in Chapter 5, also reduces
the metric-induced distortions of the low-dimensional embeddings.
Furthermore, systematic partitioning may enable the analysis of systems
exhibiting non-manifold behavior (Martin et al., 2010). In fact, this
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reference shows how, by partitioning the intrinsic manifold, one can use
the systematic tools of algebraic topology to characterize the structure of
a molecule’s conformational space. A prerequisite of algebraic topology
analysis, though, is a low-dimensional embedding devoid data collapse.

An important question concerns the applicability of data-driven
CVs to complex molecules such as proteins. Interestingly, it has
been suggested that increasing the size of peptides makes the effective
dimensionality of the molecule smaller (Hegger et al., 2007). Thus, one
can expect that statistical learning methods applied to proteins may
help understand these complex systems with a few collective variables
(Piana and Laio, 2008). Once freed from topological obstructions and
geometrical distortion, data-driven strategies to define CVs may deliver

their full potential.



Chapter 5

Charting molecular free-energy

landscapes with an atlas of

collective variables

5.1 Introduction

Collective variables (CVs) provide a coarse-grained, low-dimensional
description of molecular conformations, and thus help us rationalize
complex molecular mechanisms. If CVs are able to separate the
metastable states of the system, then they can be used to enhance
sampling in molecular simulations and efficiently compute free energy
surfaces (Chipot and Pohorille, 2007). Furthermore, since CVs often
represent the slowly relaxing degrees of freedom of the system, they
may be the basis of reduced models for conformational dynamics (Lu
and Vanden-Eijnden, 2014; Salvalaglio et al., 2014). A poor selection
of the CVs, however, mixes metastable states and results in hysteresis
and lack of convergence of enhanced sampling algorithms (Rosta et al.,
2009; Sutto et al., 2012).
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Machine learning methods, in particular nonlinear dimensionality
reduction, are emerging as a promising approach to identify
systematically reliable CVs from ensembles representative of molecular
flexibility (Brown et al., 2008; Das et al., 2006; Ferguson et al.,
2011a; Hashemian et al., 2013; Spiwok and Kralova, 2011; Spiwok
et al., 2015; Tribello et al., 2012). We have recently realized,
however, that such methods face fundamental obstacles when trying
to represent conformational manifolds with general topologies, resulting
for instance from cyclic motions around a dihedral angle. In such cases,
manifold learning methods fail by collapsing distant conformations
in their low-dimensional embedding (Hashemian and Arroyo, 2015).
Furthermore, the curvature of the conformational manifold may severely
distort, and even collapse, the low-dimensional representation of
collective motions. In cartography, similar issues are dealt with by
mapping the globe using a collection (atlas) of charts, each describing
with appropriate detail a region of limited extent. Here, we examine
whether this idea to describe geographical landscapes can be transposed
to conformational landscapes. After all, it is natural to expect that a
complex biomolecule may be best described by different CVs (a different
chart) in different regions of its conformational space. However, free
energy formalisms and enhanced sampling methods have only been
developed considering a single chart description, or multiple isolated
locally valid CVs (Tribello et al., 2010).

Here, we present a statistical mechanics framework that allows us
to describe a molecular system using an atlas of partially overlapping
CVs. We show that such a multiple-chart description is not an obstacle
to seamlessly compute thermodynamical observables or to enhance
sampling in molecular dynamics (MD) simulations. We further propose
a simple but powerful data-driven algorithm based on the intrinsic

manifold model to construct atlas of CVs and combine it with enhanced
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sampling methods. We apply the proposed methods to two model
systems with nontrivial conformational topology: alanine dipeptide and

[-D-Glucopyranose.

5.2 Theory

Consider a N-atom system with separable Hamiltonian and potential
energy V(7). Suppose that we are given a CV, i.e. a smooth surjective
mapping from conformation space D = R3" to a low-dimensional space,
which is only defined in a region D; C D and denoted by C; : D; — R¢,
where d < 3N. The free energy along this CV, up to additive constant,

is
A& =~ [ P05 r) - &), (5.1)

B b
where §(-) is the Dirac delta distribution (Chipot and Pohorille, 2007;
Lelievre et al., 2010), and 1/8 = kT is the Boltzmann constant times
temperature. Applying co-area formula (Hartmann et al., 2011), the
free energy can be written as an integral over the level set £1(£) (the

points r € D; such that Cy(r) = &, see Figure 5.1),
A(€) = —~In / e~ PVyol(DC,) ! do, (5.2)
L1(8)

where DC; is the Jacobian matrix of the CV, do¢ is the volume element
of £1(£) and vol(DCy) = /|DC;DCT|. | - | stands for the determinant.
Analogously, we consider a different CV, nn = Cy(r), defined in

another region of configuration space Dy C D, which partially overlaps
with Dy, i.e. D1 N Dy # (. Examining Eq. (5.2), it is clear that the
free energies along these two CVs can only be related in the overlapping
region if their respective level sets can be mapped to each other. For

this to be the case, there must exist a bijective transition mapping
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Fig. 5.1 Graphical illustration of high-dimensional configuration space
D, described in the left by collective variable Cy, in the right by C,,
and in the central overlapping region by both. The surfaces illustrate
the level sets. The level set in the middle can be described either as

Ci(r) = & or as Ca(r) = p(&).

¢ : R — R? such that

Ca(r) = p o Ci(r) (5.3)

for » € D1 N Dy. This mapping provides a connection between different
CVs and a means to build a meaningful global statistical mechanics
description of the system. Indeed, assuming that such a transition
mapping 1 = ¢(&) exists, using the chain rule on Eq. (5.3), and noting
that vol(DpDC;) = |Dy| vol(DC;) (Ben-Israel, 1992), we can write
Eq. (5.2) for the second CV as

) = —5in [ D] vol(DC)] do,
1 . D
- 5111/&@@ vol(DCy) dore + - In[Dep(€)|
— A(€) + = In[Dp(©)]. (5.4)

B
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where we have used the facts that L£o(n) = £,(€) and that Dy only

depends on & and hence can be factored outside of the integral.

Equation (5.4) provides a connection between the free energies
relative to each of the two CVs in the overlapping region, and
highlights the fact that the free energy is not invariant with respect
to reparametrizations of CV space (Frenkel, 2013; Lelievre et al., 2010).
The last term in Eq. (5.4) is reminiscent of a Fixman potential (Fixman,
1974; Hartmann et al., 2011). Recalling that both A; and A, are
computed up to an additive constant, Eq. (5.4) provides a compatibility

relation between these two constants.

Let us compute now thermodynamic observables, such as relative
probabilities of states, in a multiple CV framework. Consider two
conformations characterized by regions A and B belonging to D; and
D, respectively. Consider also an auxiliary state C' C Dy N Dy. The
relative probabilities between states A and C, and between C and B

can be computed as

p(A) _ Je e POdE p(C)  Jeyeye MM dn
p(C) fcl(C) e~ A dg’ p(B) fCQ(B) e—BAx()dn’

Consequently, the relative probability between A C D; and B C D,

takes the form

p(A) fcl(A) e—ﬂx‘h(ﬁ)d& ng(C) e—BA2(77)d,,7
P(B)  foym e P2Mdn o, oy e PMEOdE

=1

(5.5)

Invoking Eq. (5.4) and using the change of variable formula, the second
term is one and this relative probability can be computed without
reference to state C', showing that the statistical mechanics of the system
can be seamlessly formulated across multiple CVs. The arguments

drawn here extend directly to an atlas of partially overlapping CVs,
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provided that transition mappings exist.

We examine next the impact of having multiple CVs on accelerated
free energy calculations. In many enhanced sampling methods, such
as metadynamics (Laio and Parrinello, 2002) or the adaptive biasing
force method (ABF) (Darve et al., 2008), an approximation to the
thermodynamic force at & = C(r) along the CV, FCV (&) ~ —DA(£), is
mapped onto a force on the atoms that biases the dynamics

Fhes(r) = [F% oC(r)] DC(r). (5.6)

In the ideal situation, F¢V = —DA(£), the enhanced sampling
trajectory undergoes free diffusion along the CVs irrespective of free
energy barriers. Consider now a two-CV atlas and » € D; N Ds.
As a result of Eq.(5.4), even in the ideal situation, the biasing forces

corresponding to each CV are essentially different. Indeed,
, 1
FPes = _DADC, = — |DADy — BD(ln|D<p|) DC,
. 1
= FPos ED (In |Dgl|) DGy, (5.7)

where the last term is non-zero in general. Thus, during an enhanced
sampling simulation and for 7 in the overlapping region, the algorithm
must make a choice for F*@(), which cannot simultaneously represent
the thermodynamic force along C; and Cy. As a result, an adaptive
enhanced sampling algorithm cannot converge in the sense of free
diffusion simultaneously in all overlapping CVs. However, as we show
later, this fact is irrelevant in practice and computed free energies do

converge.
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Fig. 5.2 Data-driven algorithm to create an atlas of collective variables
for alanine dipeptide (a). Starting from an ensemble of molecular
configurations (b), which can be represented in three dimensional space
using the dihedral angles (¢ and W) as a torus (c), we systematically
partition the configurations into four slightly overlapping partitions
(d,f). Then, by applying dimensionality reduction techniques, we embed
the conformations in each partition (devoid of topological obstructions)
in low-dimensions (e).
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5.3 Method

Thus, we have shown that it is possible to build a sound statistical
mechanics description of a molecule in terms of an atlas of CVs, provided
that transition mappings exist as in Eq. (5.3). However, how to
practically define such an atlas of CVs? We first address the issue of
transition mappings by resorting to the intrinsic manifold model for
molecular systems. In this model, it is assumed that the dynamics
of the molecule take place close to a manifold (in general nonlinear)
of dimension d embedded in the D—dimensional conformational space
(Brown et al., 2008; Das et al., 2006; Ferguson et al., 2010; Hashemian
et al., 2013; Spiwok et al., 2015). Although it may seem a rather
strong assumption, this notion has been shown to be useful in a number
systems.

Suppose that we have identified the intrinsic manifold and
parametrized it as r = M(€). In (Hashemian et al., 2013), we proposed
a systematic and robust method to build a CV from M. Starting from
a conformation in high-dimensions = (in general off the manifold), we
first compute its closest-point projection onto the intrinsic manifold
P(r) and then find the pre-image through the mapping M, i.e. & =
C(r) = M~ oP(r). In practice, the evaluation of C requires solving a
straightforward nonlinear minimization problem with d unknowns, and
DC can be computed explicitly (Hashemian et al., 2013). Importantly,
this framework provides ab initio compatible collective variables, along
with the transition mappings. Indeed, consider for instance that the
intrinsic manifold is described by two overlapping parametrizations M
and Ms. Because of the closest-point construction, the level sets £
and Lo (see Figure 5.1) are hyper-planes perpendicular to the intrinsic
manifold in its vicinity, and therefore depend on geometry but not on
the specific choice of parametrization. The transition mapping is simply
0 = M3 o My, see Figure 5.3.
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Building on this conceptual framework, we describe next a
data-driven algorithm that automatically constructs an atlas of CVs
for systems with general intrinsic manifold topology, without prior
knowledge about the system other than an ensemble of conformations
representative of molecular flexibility. We illustrate this method with
alanine dipeptide, a standard benchmark with a good known CV in
terms of two dihedral angles Figure 5.2(a). Our algorithm relies on
nonlinear dimensionality reduction (Brown et al., 2008; Das et al., 2006;
Ferguson et al., 2010; Hashemian et al., 2013; Lee and Verleysen, 2007)
to identify the nonlinear intrinsic manifold from the molecular ensemble
shown in Figure 5.2(b). Because of the periodic nature of dihedral
angles, the intrinsic manifold underlying this system has the topology
of a torus, Figure 5.2(c), posing an obstacle to a single data-driven CV
identified by dimensionality reduction (Hashemian and Arroyo, 2015).
To describe this manifold with multiple parametrizations, we first split
the ensemble into a few disjoint pieces as visualized in Figure 5.2(f) on
the torus representation of the system. This partitioning, however, is
performed in high dimensions, by first building a connectivity graph of
the ensemble based on the K-nearest neighbors to each conformation,
and then using systematic graph partitioning algorithms (Karypis and
Kumar, 1998). This partitioning is performed recursively until each
piece is flat enough and devoid of topological obstructions to be tractable
by nonlinear dimensionality methods (Millan et al., 2013). Figure 5.2(d)
shows the conformations in each of the four partitions identified by the
algorithm, slightly enlarged to provide sufficient overlap. From this
point on, the smooth and nonlinear data-driven collective variables
(SandCV) method (Hashemian et al., 2013) is directly applicable to
each partition. In this method, high-dimensional conformations are
embedded in low-dimensions (here 2) with Isomap (Tenenbaum et al.,

2000), a nonlinear dimensionality reduction method, see Figure 5.2(e).
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From each of these embeddings, a smooth parametrization of a portion
of the intrinsic manifold, M,, is constructed, and the corresponding
CVs are defined as C, = M_' o P,. One last ingredient is required to
locate the active CV as the system navigates through the conformational
landscape. For this, we build in high-dimensions a partition of unity,
i.e. a collection of non-negative functions v, (r) that are 1 in the interior
of each partition D,, smoothly decay to zero at its boundary, and
Yaa(r) = 1 everywhere as illustrated in Figure 5.3. We assign
conformation r to a chart following the criterion max, 1, (r), and
apply FY%*(r) in enhanced sampling simulations accordingly. See

Supplemental Material A for a detailed description of the algorithm.

¢ e R
o Yo =Myt oMy
n € R? N >
Fig. 5.3 Schematic view of atlas of collective variables. The

configurations in R” space are denoted by black dots. The configuration
space is divided into partially overlapping regions. In each region, the
intrinsic manifold is parametrized separately. In overlapping regions, a
transition map is naturally defined between adjacent regions.
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5.4 Results

We demonstrate next that the concept of atlas of SandCVs can be
practically implemented into a standard MD code to perform enhanced
sampling simulations and free-energy calculations. MD simulations
were performed in version 2.8 of NAMD (Phillips et al., 2005) with
Langevin thermostat at 300K . The atlas of SandCVs and the adaptive
biasing force algorithm (Darve et al., 2008) for enhanced sampling are
implemented in C++ and communicate with NAMD through a TCL
interface to obtain configurations and return forces on the atoms.

(a)1 3 (b)

3 kcal/molf 120

Fig. 5.4 (a) Free energy surfaces for each of the four CVs resulting from
the systematic partitioning in Figure 5.2. (b) Coherent juxtaposition of
these free energy profiles. (c¢) Sampling of two states, Cre, and Crqy, of
the molecule. (d) Projection of these states on dihedral space.

We focus first on alanine dipeptide. Figure 5.4(a) shows the
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free energy surfaces (FES) along each of the four CVs systematically
identified by the algorithm, see Figure 5.2. The enhanced sampling
MD trajectory seamlessly transitioned between charts and resulted in
converged FES. Using Eq. (5.4) in the overlapping regions, we fix
compatible additive constants to the free energy in each of the partitions.
We discuss next the role of the Fixman correction, Eq. (5.4), in this
example. Since the statistical error in the evaluation of the free
energy is in the order of kT, Eq. (5.4) shows that a significant Fixman
contribution would require that |D¢| > e, which for d = 2 would require
for instance a stretching of adjacent CV spaces by a factor of 1.6 along
each coordinate. Interestingly, because of the nature of Isomap, the
partitioning of the data-set, and the fact that the underlying intrinsic
manifold is essentially flat (a flat torus) (Hashemian and Arroyo,
2015), the four embeddings for this molecule are nearly isometric:
distances between low-dimensional points in Figure 5.2(e) are similar
to distances of the corresponding conformations in high-dimensions, see
Figure 5.2(d), and therefore close to the low-dimensional distances in an
adjacent patch. As a result, |Dy| ~ 1 and in this example the Fixman
correction is negligible. Furthermore, recalling Eq. (5.7), the biasing
forces of adjacent charts nearly coincide, and we can graphically “glue”
the different patches to visualize a globally coherent FES, as illustrated
in Figure 5.4(b).

We note however that such joint representation is not possible in
general, nor necessary to compute thermodynamic observables. To show
this, we consider two states A and B, computationally described by two
ensembles obtained by restrained MD simulations around conformations
Ceq and Cry, of the molecule, see Figure 5.4(c). For reference, these
two states are graphically represented in dihedral space where we also
compute the FES, Figure 5.4(d). When represented in the atlas of CVs,

Figure 5.4(a), we note that Cr., spreads over each of the four charts.
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Using Eq. (5.5) sampled at 1 million configurations for each state, we
find using the atlas of CVs that the probability of C7., relative to Cv,,
is Puyas = 56.406. The excellent agreement with the same quantity
computed in dihedral space, Pyn.q = 56.415, illustrates that the atlas of
CVs provides a seamless statistical mechanics framework over multiple
CVs.

-1 0

Fig. 5.5 Atlas of collective variables for #-D-Glucopyranose, a
six-membered ring carbohydrates. Systematic partitioning of this
molecule requires six patches to overcome topological obstructions and
alleviate geometrical distortions (a), which result in six free-energy
profiles (b).

We apply the proposed methodology to a different benchmark
molecule, B-D-Glucopyranose (Branduardi and Faraldo-Goémez, 2013;
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Spiwok et al., 2010), known to have the topology of the sphere (Biarnés
et al., 2007). For this six-membered ring, the Cremer-Pople puckering
coordinates (Cremer and Pople, 1975) reduce to polar coordinates
(@Q,0,¢), and adequately describe its molecular flexibility with small
fluctuations about the “radius” ). The systematic partitioning of a
well-sampled ensemble A leads here to six different charts, as shown in
Figure 5.5(a) in (0, ¢) and (Q, 0, ¢) spaces. Applying enhanced sampling
along this atlas of CVs, we find the FES shown in Figure 5.5(b).

5.5 Summary

We have shown that molecular conformations and free energy landscapes
can be described by an atlas of collective variables, in the same way that
geographical landscapes are described by atlas of charts. Furthermore,
this concept can be practically implemented in combination with the
intrinsic manifold model of molecular flexibility by simply partitioning
the intrinsic manifold. We have proposed a data-driven algorithm
based on nonlinear dimensionality reduction methods to systematically
build atlas of CVs for systems exhibiting conformational manifolds
of nontrivial topologies, which preclude single-chart data-driven CVs.
More generally, the proposed framework may significantly expand
the applicability of systematic methods to identify CVs and that
of enhanced-sampling methods, by providing a globally meaningful
thermodynamic description and enhanced trajectory from locally

appropriate CVs.



Chapter

Conclusion

In this dissertation, I introduced a general method to model molecular
systems with smooth and nonlinear data-driven collective variables
(SandCV). These CVs can be non-intrusively combined with off-the-shelf
enhanced sampling molecular dynamics methods. I exemplified SandCV
with alanine dipeptide, a benchmark for free energy calculations. 1
demonstrated the effectiveness of the method by providing numerical
evidence of the convergence of enhanced sampling simulations. SandCV
is implemented in a standalone C++ toolbox composed of distinct
algorithmic blocks: alignment of the molecule, intrinsic manifold
identification through nonlinear dimensionality reduction methods,
smooth parametrization of the intrinsic manifold, and the closest-point
projection of out-of-sample configurations onto the intrinsic manifold.

I also addressed a fundamental obstacle to construct data-driven
CVs, due to the inability of dimensionality reduction methods to deal
with complex topologies. These topological obstruction has been largely
overlooked in the field and has misled interpretations.

Finally, I proposed a general remedy to overcome topological
obstructions and alleviate geometrical distortion. This methods, called

atlas of collective variables, provides a statistical mechanics framework
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and a concrete algorithmic implementation to describe molecular

systems with a collection of partially overlapping collective variables.

Future work

e The results of Chapter 2 showing that SandCV can bridge over
poorly sampled regions, together with the notion of atlas of CVs,
suggest that it may be possible to build increasingly detailed
descriptions of complex conformational landscapes starting from
locally-valid CVs. Along this line of thought, it may be adequate to
resort to non-manifold descriptions of conformational space, with
higher dimensional resolution in some regions and dimensionally
narrow paths in others. These extensions should be motivated by
specific studies on more complex proteins and their conformational
flexibility.

o We are currently investigating unfolding pathways of 121 domain of
Titin, a protein responsible for muscle flexibility, with data-driven
approaches. In addition to identifying its collective behavior,
we are utilizing SandCV to collectively unfold and refold it to
its native states. Moreover, we can consider enhanced sampling
simulations in the SandCV space along an unfolding pathway. By
monitoring the distance to the manifold, which accounts for all
other missing transversal variables, we expect to characterize free

energy funnel of Titin folding.

e Describing long time-scale dynamical processes is another
challenging topic in molecular simulations in which interesting
dynamics take place as the system moves from one free energy
basin to another through infrequent rare events in the time scales
of often exceeding the milliseconds. To this end, SandCV can

be employed in tandem with variety of methods from Transition
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State Theory (TST) reliant approaches, like conformation flooding
(Grubmiiller, 1995) and Hyperdynamics (Voter, 1997), to methods
that go beyond the limitation of TST, like Transition Path
Sampling (Chandler, 1978) and Transition Interface Sampling
(van Erp et al., 2003), to efficiently calculate the dynamics from

affordable simulations.

PLUMED is an open source library for free energy calculations
in molecular systems, including many different state-of-the-art
enhanced sampling methods and analytical and computational
collective variables. It works together with many of the most
popular molecular dynamics engines and is gaining ground in the
field. Integrating SandCV in PLUMED will enable the researchers
to easily use SandCV using the same familiar user interface to
exploit the capabilities of this data-driven approach in a wide

range of molecular systems.






Appendix A

More details on atlas of collective

variables

A.1 Partitioning configuration space

The atlas of collective variables approach relies on a systematic
partitioning of the slow-manifold into pieces that are tractable with
dimensionality reduction techniques (open sets). Consider a smooth
d-manifold M embedded in RP and sampled by a set of points R =
{ry,rq,...,7x} C RP. Following Milldn et al. (2013), the goal is to
numerically represent M from the data in R through a collection of
overlapping parametrizations, “patches”, and make computations on it.

The partitioning process can be described as

1. Partition the set of scattered points (viewed as geometric markers)
into L groups, on the basis of proximity by using METIS domain
decomposition with a k-nearest neighbor graph (Karypis and
Kumar, 1998). METIS tries to partition a graph in equals size

subdomains with minimal shared boundary lengths.

These L groups of points can be represented with index sets
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T,k = 1,...,L with Ut_,Z, = {1,2,..., N} and Z, NZ, = 0
when k # ¢. As it will become clear below, there is a one-to-one
correspondence between these groups of geometric markers and

the local parametrizations of the manifold.

. For each partition we create an enlarged index set J,. by combining

the indices in Z, and the indices from their nearest neighbors
defined by a cutoff distance d.,, such that

Je={ae{l,... N} | |ra — 7| < dew Vb EL}.

Here and elsewhere, |- | denotes the Euclidean norm. The enlarged
index set obeys UL_, 7. = {1,2,..., N}, but now J,NJ, # 0. The
intersection of these index sets defines the overlapping amongst

patches.

. A dimensionality reduction technique is applied to each one of the

enlarged sets P, = {r,}scz. C R to find their low-dimensional
embedding =, = {€,}ucs. C R In our simulations we have used
Isomap, which is a NLDR method designed to find an isometric
low-dimensional representation by approximately preserving the

geodesic distance on the manifold.

. The quality of the resulting embedding is measured through a

reconstruction error computed as

|ra - Zbelca Wap /r'b|
|7

€q = YVa=1,...,N,
where K, is the index set with the first k-nearest neighbors of
the a-th configuration in the low-dimensional space, and w,;, are

the weights that best linearly reconstruct &, from its k-nearest
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neighbors (Roweis and Saul, 2000), obtained by

subject to Z Wep = 1.
bek,

Sa - Z wabsb

bekq

min
Wab

We perform the neighbor search in low-dimensional space because
(1) it is more efficient, and more importantly, because (2) this
allows us to detect data collapse in the nonlinear dimensionality

process.
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Fig. A.1 Average and maximum relative reconstruction error in the
partitioning of alanine dipeptide. It is clear from this plot that the
maximum norm best discriminates the number of required partitions
given by the algorithm, four in this case.

5. We monitor in each partition the reconstruction error. We
require that max{e, }.c7. < Tol. for a partition to be acceptable,
where Tol, is a numerical tolerance typically below 0.1. If

the reconstruction error exceeds the tolerance, the partition is
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recursively subdivided until the reconstruction requirement is met.
Figure A.1 shows the reconstruction error for different number of

partitions of an ensemble of alanine dipeptide.

-10

Fig. A.2 Partitioning a molecular ensemble of alanine dipeptide. The
partitioning procedure recursively proceeds until all the partitions are
tractable with nonlinear dimensionality reduction (NLDR) methods,
which leads to four partitions in configuration space. Although the
partitions have overlap, using partition of unity we can divide the
configuration space into non-overlapping regions (a). These partitions
also depicted over a torus of dihedral angles to highlight the topology of
the intrinsic manifold (b). The low-dimensional embedding of each of
the original four partitions, calculated separately with NLDR methods
is shown in (¢). The non-overlapping regions are outlined with darker
colors.

6. After the partitioning process is finished and the low-dimensional
embedding for each partition is available, we build a smooth

parametrization for each patch using smooth basis functions p,(§)
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associated to nodes from a uniform grid of landmarks n; € R?,

M, : Q. c R — R
E— > palé) Yo

G/EJN

(A.1)

The high-dimensional control points y, € R” are chosen such
that the reconstruction error is minimized in a least-squares sense.
Full details are presented in Chapter 2. Thus, we end up with a
collection of partially overlapping parametrizations of the intrinsic

manifold, Figure A.2.

We consider here the local maximum-entropy (LME) basis
functions. See (Arroyo and Ortiz, 2006; Millain et al., 2011;
Rosolen et al., 2010) for the LME formulation, properties, and

the evaluation of the basis functions and their derivatives.

We consider a Shepard partition of unity associated with the
geometric markers. Given a set of non-negative reals {f,}s=12.. N, We
define the Shepard partition of unity with Gaussian weight associated
to the set () as

 exp(—falr —ral?) \
welT) = S (=Bl — o) (4-2)

To obtain a coarser partition of unity representative of a partition, we

aggregate the partition of unity functions as

Un(r) = D wa(r). (A.3)

a€ly

These non-negative functions form a partition of unity in R?. For
very large (,, these functions tend to the characteristic functions of the
Voronoi cells in high-dimension associated to the group of points given

by Z.. They can thus be viewed as a smooth regularization of these
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characteristic functions (Millan et al., 2013). Figure A.3 illustrates the
four partition of unity functions in the torus representation of alanine
dipeptide. Employing these partition of unity functions, we can also
divide the whole configuration space into non-overlapping regions by

associating each configuration r to the patch £ which maximizes (7).

1 : om\\mmv \HHH\HH

|
[
0.5

Fig. A.3 Partition of unity for alanine dipeptide.  Partition of
unity functions are represented on the torus defined by dihedral
angles. It is worth emphasizing that these functions are evaluated in
high-dimensional configuration space and the torus representation is for
visualization purposes only.

A.2 Adaptive biasing force for atlas of

collective variables

For enhanced sampling molecular dynamics simulation with atlas of
CVs, we need to know for any given configuration r along the trajectory
which charts are “active” (there could be multiple because of overlap).
For these active charts, we need to evaluate the CVs and choose one of
the charts to compute the biasing force to be applied on the system.

We identify active charts by evaluating the partition of unity functions
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and checking if they are larger than a small threshold. We select the
distinguished chart as that with maximum partition of unity function
at r.

A.2.1 Adaptive biasing force in a single chart

The free energy of a system can be estimated by thermodynamic
integration of the average forces along collective variables & = Ci(r)
(Darve and Pohorille, 2001),

DA (&) = — (f(15),  &eby

0 0Cy
SUS (¢h M,
)= 5 < Sot )
where by, is the k-th bin in CV space, t¥ is the time when i-th sample

resides in k-th bin, and M;' = DC;MDC{ where M is the mass

matrix. However, if the energy barriers along & are significant, this

with
(A.4)

method of calculating free energy will face the inefficient sampling.
To overcome this problem, the adaptive biasing force (ABF) algorithm
(Darve et al., 2008) adds a properly chosen, position-dependent biasing
force to the system that allows for a self-diffusion in the CV space.
This low-dimensional biasing force, FCV, is calculated at each time
step as the running average of the force acting along £ in the k-th bin
assuming that N (N, k) is the number of samples collected in bin & after

N steps in a simulation,

FEV(N k) = —R/(\j/\((Nk Z fsys 5, (A.5)

where R (N(N,k)) = min(1, N(N, k)/Np) is a ramp function to avoid

the crude estimation of the biasing force in poorly sampled bins.
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Afterwards we should subtract the applied biasing force from the

modified system force to recover the original system force,

) o€
sys 4k __
1 (tz) - ot <M§ 825)

In this method, the free energy derivatives can be estimated in each
bin by

— FFV(N —1,k).

k
ti

DALE) = — (fi") = = (#7 — FEY). (A.6)

It can be shown from Eq. (A.5) and Eq. (A.6) that after a brief
equilibration the biasing force converges to the — (fi¥*) and thus the
average of the modified system force acting along &, £7°¢ becomes zero.
This allows for a self-diffusion motion along the CV in the modified

system,
DA, (¢) ~ FFV. (A7)

A.2.2 Adaptive biasing forces in multiple charts

We exploit the fact that in the ABF method, the biasing force is in
fact arbitrary, and thus the choice resulting in self-diffusion along CV
is just a convenient one (allowing us to check convergence) but by no
means a strict requirement for free-energy calculations. Relying on the
partition of unity (PU) functions, we modify ABF as follows. If one of
the PU functions is equal to one at the current configuration, then all
other partition of unity functions are zero and there is a single active
chart. Thus, there is no overlap and usual vectorial ABF can be used.
However, if several PU functions are nonzero, we are in an overlapping
region with multiple active charts. In this case, we first tag the chart
with the largest PU function as the master chart and the rest of charts

with nonzero PU function as slave charts. Then, we calculate the biasing
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force from the master chart, say Cq, as

FFV(&) = —DA(g),
F'(r) = FV(&DCy(r).

Finally, we let the slave charts know about the exerted biasing force, by
projecting it into all the slave CVs. Denoting Cy as a slave chart, we

have

FyV(n) = F/'"(r)DC;'(r)
= F{V(§)DCi(r)DCy (r).

This projected biasing force, F{"(n), is stored to estimate the free
energy gradient in slave charts. In SandCV, this transition of biasing
forces between charts can be readily performed by using the transition
map, De(n),

FyV(n) = FCV(€)De™ (). (A.8)

We note that regions where a chart is a master span all the
configuration space, but regions with a single active chart (where the
method is plain ABF) do not. Active but slave charts do not have any
influence on the running simulation and only gather statistics about the

bias force given by the master to evaluate the free energy.

A.3 Molecular simulation details of

six-membered ring

We obtain a well sampled trajectory of [-D-Glucopyranose by
performing a 10 ns metadynamics simulation with ¢ and 6 as collective
variables with Guassian height of 0.1 and sigma of 0.1, starting from

chair conformation (*C}), and using Glycam force field (Kirschner et al.,
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2008) at 300K using Langevin thermostat. We set time step to 0.2fs
and we sample at each 500 steps (50fs), obtaining 100K configurations.
We then use this trajectory as the training set to build an atlas of
SandCVs. Systematic partitioning of this trajectory provides us with 6
different partitions and we build for each partition a set of SandCVs.
Afterwards, we run a 100ns adaptive biasing force simulation using the
constructed atlas of SandCVs with time step of 0.5 fs and 32 bins in each
individual CV although the simulation does not need to fill all the bins
since the embedding is not square. Then by post-processing the force
histogram from this simulation, we calculate the free energy surfaces of

conformational changes of 5-D-Glucopyranose.
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Smooth contact maps

Here, we introduce the definition and derivatives of two smooth contact

map using sigmoid and log-sum-exp functions.

Sigmoid function

The sigmoid function takes the form

1

fw) = 1=

(B.1)

By changing the parameters as following, we can define a differentiable

version of the widely-used contact map

(Clx, )y = 5 {1 = tanh [5 (s = 73]l =

} (B.2)

This Sigmoid function measures the proximity of residues i and j. The
parameter s is, roughly, the maximum distance at which two residues
can influence each other, and e estimates the certainty of the cut-off
distance (k).

If € = Kk, we can make [C(k, G)L‘j arbitrarily small for ¢ # j as s

decreases to zero. Hence, we can assume C'(k, €) is diagonally dominant,
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which implies C(k, €) is positive definite.

lim, 0 [C(5, €)];; =0 for i#j
lim, 0 [C(k,€)];; = 3 {1+ tanh(1)} for i=j

)

1ﬁ
0.8r
0.6r

0.4r

0.2r

\

0 20 40 60 80 100
distance(A)

Fig. B.1 Smooth contact map with Sigmoid function

Derivatives: We define u;; as follow

wy == (i =15l = )
1 3 ) :
== (;(Tiﬁ_rjﬁ) ) K (B.3)
and thus
Cls, )], = = (1 — tanh (uy))

1+ e%)_l. (B.4)

/N DN
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Because u is only function of r, by applying chain rule we have

86’2 . (9013 8upq
Oreg  Opg Orip

The derivative of contact map with respect to u is then

ZSZ - aij (; (1 — tanh (u”)))
— —; (1 — tanh2 (UZ]))
— _; (1 — tanh (u;;)) (1 + tanh (u;5))

and derivative of u with respect to r is

BB k=i k£
5 €llre — 7l
Uij T'ep — Tip
el I AT Y
Ores | elfrs — 1| / k7
0 otherwise

Plugging Eq. (B.6) and Eq. (B.7) into Eq. (B.5) we have

QQﬂQﬁ—UQ@:ﬁQ if k=ikj

eljrr — 4
0 _ 2C(C; _1)w if k=j.k#i
L e 7

0 otherwise

(B.5)
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distance(A)

Fig. B.2 Smooth contact map with log-sum-exp function

Log-sum-exp Function

Considering general definition of log-sum-exp function

f(u) =log (i efa<“>> (B.9)

a=1

we define two functions as follows,

i =0,
o= —=ri—mll —x).

After plugging these function into Eq. (B.9) and normalizing them, we

have

€ 1
C(k,e)].. = —11 1 —zllri=rjll—~x) B.10
(Cr. )y = {log (1 +e )} (B.10)
where the parameter k is again a rough cut-off distance of two residues

influence, and the value of € tunes the certainty of this cut-off distance.
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Derivatives: Using the same definition of u;; as Eq. (B.3), we have

[C(k,€)];; = % {log (1 + e’“”)} : (B.11)

and its derivatives with respect to u are

ac, 0 .
S~ Ouy (Z {log (1+¢ >})

_ €e . —€

o oe(ltem) k(L em)
€ 1 € K

o 1) = S (e %G 1) B.12
H(HM ) (e ) (B.12)

Finally by using Eq. (B.12) and recalling Eq. (B.7) and Eq. (B.5),
the derivative of log-sum-exp contact map with respect to r takes the

following form,

(e_gckj _1)W if k=i,k+#j

. ke — 1y
kA —E0n (reg —1ip) . ke i ki (B.13)
aTkﬁ (6 K ||TZ . Tk” Zf Js 7£ ?

0 otherwise
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