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ABSTRACT 
 

The work presented in this thesis has the main aim to contribute in the field of clinical 

microbiology to understand the biofilms and the possible of development through the 

use of methods with multidisciplinary approach. Biofilms are defined as communities of 

microorganisms that grow embedded in a matrix of exopolysaccharides and adhering 

to an inert surface or living tissue. The formation of bacterial biofilms has an interest in 

clinical microbiology with the development of infections that usually arise from either 

direct contact or the colonization of implanted medical devices and prostheses. 

Currently they are considered the cause of over 60% of bacterial infections. The 

problem of bacterial biofilms at clinical level is showing great resistance to antibiotics, 

so that the biofilm bacteria are 500 to 5000 times more resistant to antimicrobial agents 

that the same bacteria grown in planktonic cultures (bacteria in suspension). There 

have been attempts to adapt methods to clinical laboratories where they reproduce the 

conditions of biofilms, but have not yet adopted an optimal standard protocol for this 

purpose to follow-up the formation and toxicity in real-time. There has been a growing 

interest in design, development and utilization of microfluidic devices that can emulate 

biological phenomena that occur in different geometries, fluid dynamics and mass 

transport restrictions in physiological microenvironments. 

The research described in this thesis deals with different label-free methods based on 

variation of acoustic and electric properties for biofilm monitoring. The work presented 

in this monograph describe a custom-made device for using electrochemical 

impedance spectroscopy (EIS) as useful tool to obtain information of adherence and 

formation of biofilms. The addition of nanoparticles as toxicity biomarker allows the 

correlation of biofilm formation with its toxicity in real-time for detention of the optimal 

point for biofilm treatment. Finally the design of this technology is used for testing the 

biofilm response to antibiotic as in vitro model of biofilm-related infection. 
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RESUMEN 
 

El trabajo presentado en esta tesis doctoral tiene como principal objetivo la 

contribución en el campo de la microbiología para entender los biofilms y el posible 

control de desarrollo mediante el uso de métodos y enfoque multidisciplinar. Los 

biofilms están definidos como comunidades de microorganismos que crecen 

embebidos en una matriz exopolisacárida y se adhieren a una superficie inerte o tejido 

vivo. La formación de los biofilms bacterianos tiene un gran interés en microbiología 

clínica debido al desarrollo de infecciones que son causadas por contacto directo o por 

colonización de dispositivos médicos implantados y prótesis. Actualmente se 

consideran la causa de más del 60 % de las infecciones bacterianas. El problema de 

los biofilms bacterianos a nivel clínico es que muestran mejor resistencia a antibióticos 

llegando incluso a ser de 500 a 5000 veces más resistentes a agentes antimicrobianos 

comparado a la misma bacteria planctónica (bacteria en suspensión). Ha habido 

muchas tentativas de adaptar métodos a laboratorios clínicos donde se reproducen las 

condiciones para el desarrollo de biofilms, pero aún no se ha llegado a obtener 

óptimos protocolos estándar para este propósito de monitorizar la formación y 

toxicidad en tiempo real. Ha crecido el interés en diseño, desarrollo y utilización de 

dispositivos de microfluídica que puedan emular los fenómenos biológicos que ocurren 

con diferentes geometrías, dinámica de fluidos y restricciones de transporte de 

biomasa en microambientes fisiológicos. 

La investigación descrita en esta tesis se lleva a cabo con diferentes métodos “label-

free” basados en variación acústica y/o propiedades eléctricas para la monitorización 

de biofilms. El trabajo presentado en esta monografía describe un dispositivo “custom-

made” para la utilización de Espectroscopia de impedancia electroquímica como 

herramienta útil para obtener información de adherencia y formación de biofilms. El 

hecho de añadir nanopartículas como segundo biosensor permite la correlación de 

biofilm con su toxicidad en tiempo real para la detección del punto óptimo del 

tratamiento de biofilms. Finalmente el diseño de esta tecnología es usada para el 

ensayo de la respuesta de biofilms a antibióticos como modelo in vitro de infecciones 

causadas por biofilms.        
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RESUM 
 

El treball presentat en aquesta tesi doctoral te com objectiu principal la contribució en 

el camp de la microbiologia per entendre el biofilms i el possible control de 

desenvolupament mitjançant l’ús de mètodes i enfoc multidisciplinari. Els biofilms estan 

definits com comunitats de microorganismes que creixen envoltats en una matriu 

exopolisacárida i s’adhereixen a una superfície inert o teixit viu. La formació dels 

biofilms bacterians tenen un gran interès en microbiologia clínica degut al 

desenvolupament d’infeccions que son causades pel contacte directe o per 

colonització de dispositius mèdics implantats i pròtesis. Actualment es consideren 

causa de més del 60 % de les infeccions bacterianes. El problema dels biofilms 

bacterians a nivell clínic es que mostren millor resistència a antibiòtics arribant inclús a 

ser de 500 a 5000 cops més resistents a agents antimicrobians comparant amb la 

mateixa bactèria planctònica (bactèria en suspensió). Hi ha hagut moltes temptatives 

d’adaptar mètodes a laboratoris clínics on es reprodueixen les condicions pel 

desenvolupament de biofilms, però encara no s’ha arribat a obtenir òptims protocols 

estàndard per a aquest propòsit de monitoritzar la formació i toxicitat a temps real. Ha 

crescut l’interès en disseny, desenvolupament i utilització de dispositius de 

microfluídica que poden emular els fenòmens biològics que ocorren amb diferents 

geometries, dinàmica de fluids i restriccions de transport de biomassa en 

microambients fisiològics. 

La recerca descrita en aquesta tesis s’ha dut a terme amb diferents mètodes “label-

free” basats en la variació acústica y/o propietats elèctriques per a la monitorització de 

biofilms. El treball presentat en la monografia descriu un dispositiu “custom-made” per 

a la utilització d’Espectroscòpia de impedància electroquímica com a eina útil per a 

l’obtenció d’informació d’adherència i formació de biofilms. El fet d’afegir 

nanopartícules com a segon biosensor permet la correlació de biofilm amb la seva 

toxicitat a temps real per a la detecció del punt òptim de tractament de biofilms. 

Finalment el disseny d’aquesta tecnologia s’utilitza per l’assaig de la resposta de 

biofilms a antibiòtics com a model in vitro d’infeccions causades per biofilms.       
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1.1 Bacterial Biofilms and its impact 

1.1.1 Background of biofilms 

During the millions of years when only existed bacteria as a form of life on Earth, the 

prevailing aquatic environment was extremely oligotrophic. The niches allowed for life 

were limited by extreme environmental factors like UV radiation, heat and acidity1. At 

that time the purpose of the planktonic, free-living mode of bacterial growth enabled 

them to move from one habitat to another until an optimal location for growth was 

found. These first sessile organism began to form more complex structures named 

biofilms that allowed them to remain in place, and to trap and utilize the organic 

compounds of the environment. The next episode of the bacterial evolution was the 

development of co-operation among bacterial groups, permitting the use of more 

complex or more refractory nutrients. This complex behaviour also changed the 

environment of the colonized surface and made it more suitable for the bacteria 

growing there.  

Although the existence of biofilms began a long time ago, the early observation of this 

structure took place at 1674, when Antonie van Leuwenhoek used a primitive 

microscope to describe aggregates of ‘‘animalcules” that he scraped from human tooth 

surfaces2. Since then, many advances in technology allowed more accurate 

descriptions of biofilms, although even today there is still ambiguity. 

Biofilm formation has therefore been a mean of survival for bacteria, and it is the main 

reason why bacterial biofilms are the characteristic life form that can be found in 

extreme environments like stone surfaces in hot springs or even cold stones of 

mountain streams. Nowadays this survival strategy is successfully used by bacteria in 

industrial systems causing equipment damage, product contamination and energy 

loss3,4. This damaging impact can be found in various industrial applications such as 

drinking water distribution networks being a health risk. Despite the frequent problems 

caused by biofilms, there are industrial systems where biofilm growth is a beneficial 

phenomenon. The usefulness of biofilms is well known, especially in the field of 

bioremediation functioning as anaerobic digesters to remove contaminants, e.g. metals 

and radio nuclides5, oil spills6 and for the purification of industrial waste water, which 

have been studied lately by several researches7,8. Indeed, the adhesive characteristics 

of natural human flora was considered as a tool for preventing the adhesion of 

pathogenic bacteria to avert infection9.  

However, major problems due to the inappropriate formation of biofilms exist and these 

problems have a high economic impact in medicine10. Healthcare-associated infections 
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(HAIs) continue to be a tremendous issue today. It is estimated 1.7 million HAIs occur 

per year, and it cost the healthcare system up to $45 billion annually. Surgical site 

infections (SSIs) alone account for 290,000 of total HAIs and approximately 8,000 

deaths11. This infections associated with surgical implants are generally more difficult to 

manage because they require a longer period of antibiotic therapy and repeated 

surgical procedures, which increase a lot the final cost of the treatment. In this thesis a 

development of new approaches that were required to understand undesirable biofilms 

are going to be addressed solve the actual diagnostic challenges. Furthermore this 

approaches permits the study of novel medical treatments against biofilms. 

 

1.1.2 Understanding the mechanism of bacterial adhesion and 

development   

As already mentioned biofilm is governed by a number of physical, chemical and 

biological processes. Attachment of bacteria to a substrate, also known as adhesion, is 

followed by cell-to-cell attachment, which is also known as cohesion. If the 

mechanisms behind these forms of attachment are optimal, a biofilm formation will 

exhibit with success. This biofilm formation has been described in the literature as a 

three-step process: first starting with an initial adsorption, or the accumulation of an 

organism in the substrate. Secondly the attachment of the bacteria to the material 

surface becomes stronger by the action of physical forces involving the formation of 

polymer bridges between the organism and the surface. Once the early biofilm has 

consolidated onto the surface, the third step leads to the formation and maturation of a 

strong bacterial layer by secreting extracellular polymeric substances (EPS)12 that 

provides to the biofilm a high resistance to antibiotics13,14. Although this stepwise is 

very useful as snap shot of biofilm growth, and for running laboratory experiments with 

biofilms, the profile is very limited when considering chemical processes and genetic 

changes governing the biofilm communication with environment and itself.  In order to 

understand the whole process with more accurate conditions, other different works 

described the molecular mechanisms and implications with more complexity.  

A more complex biofilm cycle formation on biomaterials and the signal factors 

intervening in their control is well described by Arciola and coworkers15 and shown in 

Figure 1.1. Hence the final process of biofilm development begins with a rapid 

accumulation of organic molecules and inorganic ions to form a layer called 

conditioning film16. Therefore planktonic bacteria adheres to the surface film that may 
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have different chemical properties than the non-living surface17. The initial attachment 

of this bacteria frequently involves a portion of the cell, a flagellum or EPS, while the 

bacterial cell continues to revolve. During so-called reversible attachment, the bacteria 

use its motility to sustain contact with the surface while searching for a suitable location 

there18. Such a search is also called chemo-sensoring if the bacteria prefer specific 

substrates present on the surface or produced by other bacteria19. After that the initially 

reversible attachment may transform into an irreversible one supported by the idea that 

physical appendages20 (i.e. flagella, fimbriae or pili) make contact with the bulk lattice 

of the conditioning film stimulating chemical reactions such as oxidation and hydration21 

and consolidating the bacteria-surface bond. Some evidence has shown that microbial 

adhesion strongly depends also on the hydrophobic-hydrophilic properties of 

interacting surfaces22. The final step consists in the detachment of cells from the biofilm 

into a planktonic state to initiate a new cycle of biofilm formation elsewhere.  

The illustration of biofilm cycle describes the early events involving expression of 

adhesins, exopolysaccharide and proteins implicated in cell aggregation and biofilm 

formation, which are orchestrated by the couple σB and SarA. Once biofilm reaches its 

final phase of maturation, the excess of autoinducing peptide (AIP) triggers the onset of 

the dispersal phase, characterized by the increase of expression of RNAIII with 

consequent production of extracellular proteases and phenol-soluble modulins. This 

molecules leads the toxin activation of the biofilms favouring the pathogenesis of them. 

 

Figure 1.1. Schematic cycle of biofilm summarizing some features generally involved in biofilm formation 

and its dispersal15. 
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1.2 Interactions of biofilms that influences development and 

pathogenesis 

This section is going to analyse the biofilm virulence that triggers the toxicity and its 

clinical relevancies. The complex mechanisms required to form functional, mature 

biofilms are still under investigation. Only after the chemistry and the genetics of the 

slimy substance produced by microorganism were established, an association between 

the exopolysaccharide production and virulence began to be investigated. Following 

the summarized cycle of biofilm described in the previous section, many theoretical 

models tried to explain bacterial adhesion with the degree of hydrophobicity of the cell 

and the biomaterial surface23. Despite these models, specific proteins have been 

identified that mediate the binding to abiotic surfaces.  

In the extensive amount of works related to orthopaedics, periprosthetic infections have 

been observed to occur with a frequency of 1.5-2.5% in primary hip and knee 

arthroplasties and with a frequency of 3.2-5.6% in the revision surgery24. Among the 

staphylococcal species that appear in the list of the leading etiologic agents, 

Staphylococcus aureus and Staphylococcus epidermidis are respectively at the first 

and the second positions. For this reason this thesis is focused on the proteins and 

molecules of this bacterial family. Figure 1.2 depicted many surface attached proteins 

produced during Staphylococcus aureus exponential growth. Alongside that proteins 

other host-damaging proteins like α-toxin can be secreted during its stationary phase of 

bacteria growth25. 

The synthesis of many of these proteins is dependent on the growth phase, as shown 

in Figure 1.2, and more importantly is controlled by Quorum-Sensing (QS) systems 

where regulatory genes play an important role such as AGR system. Thereupon QS 

system means cell-to-cell signalling, and it is an important phenomenon of microbial 

communities. 
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Figure 1.2. Structure of S. aureus membrane. (A) Shows the surface and secreted proteins.(B) and (C) 

show cross sections of the cell envelope. Many of the surface proteins have a structural organization 

similar to that of clumping factor, including repeated segments of amino acids25. 

 

The discovery of intercellular communication or “QS” among bacteria led to the 

realization that bacterial populations are capable of high-level coordinated behaviour 

that was once believed to be restricted to multicellular organisms. The capacity to 

behave collectively as a group (or population) endows bacteria with capabilities that 

cannot be achieved in solitude. Therefore cells located in the centre of a biofilm cluster, 

do not divide at all, or divide only slowly. However, they remain viable and cultivable 

once freed from the polymer encasement of the biofilm cluster. Bacterial products are 

constantly diffusing from one cell to another cell being responsible for intercellular 

communication. The reason why this metabolic communication (QS) is not efficient in 

the case of planktonic bacteria, is that the diffusing molecules will be diluted in the 

aqueous phase and only a small amount may reach the neighbouring bacteria. 

The most intensely studied QS system was interestingly not related to pathogenic 

behaviour allowing the bioluminescent marine bacterium, Vibrio fischeri, to 

harmoniously live in symbiotic association with a number of eukaryotic hosts26.  
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Although as mentioned before QS relationships are usually taking place on the 

adversarial role, nevertheless Raut et al in 2013 developed a method to detect QS 

molecules present in physiological samples for an early diagnosis of pathogenesis27, by 

using Vibrio harveyi, which is a non-pathogenic bacteria. This bacteria emits 

bioluminescence in the presence of Autoinducer-2 (AI-2) molecules, which are present 

on a variety of disorders caused by pathogenic biofilms. The pathogenic molecules 

produced overwhelm the host defences, launching a successful infection to form an 

antibiotic-resistant biofilm, leading to disease28,29, regulated by gene expression in 

response to fluctuations in cell-population density 30. In the past decade, QS circuits 

have been identified in many bacterial species. The Regulatory circuit of 

Staphylococcus aureus depends mainly on two genetic locus very well explained by 

Arya and Princy 31 and depicted in Figure 1.3.  

 

Figure 1.3. Network of factors that controls the virulence gene expression in Staphylococcus aureus.The 

expression of SarA leads to enhanced biofilm formation by triggering the cell wall-associated proteins 

during the exponential phase. σB plays a vital role to activate the sarA expression during stress conditions 

by binding to the P3 promoter. The expression of SarA is downregulated by binding to its own promoter 

through a feedback mechanism, which initiates the expression of the agr operon and, hence, the synthesis 

of extracellular proteins such as d-toxin and proteases. SarU acts as a positive regulator of agr and 

activation of agr locus would lead to repression of SarA homologs. AIP: Autoinducing peptide; RIP: RNAIII-

inhibiting peptide; TRAP: Target of RNAIII-activating protein. 
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1.3 Bacterial growth detection and laboratory models for 

biofilm infection 

Most of the current methods of bacterial detection employ conventional techniques 

such as fluorescence-activated cell sorting, counting colony forming units on petri-

plates, optical density measurements, and fluorescence measurements of culture 

samples and colonies. Whereas these approaches yield useful and reliable information, 

they tend to be invasive, generally expensive, arduous, time consuming, and may 

require large amounts of sacrificial culture. Nowadays, the development of platforms for 

monitoring the biofilm growth is an important concern to understand the real behaviour 

of bacterial adhesion and to improve the efficacy of antibacterial treatments. Methods 

of continuous label-free monitoring techniques such as surface plasmon resonance32,33 

and quartz crystal microbalance 34 have gained attention, the latter able to calculate the 

amount of biomass attached on the surface. Also, the optical microscopy is a cheap 

and simple alternative method for characterizing biofilms but, at the same time, it is an 

end-point assay that involves labelling and destruction of bacteria. Combination of 

visualization techniques is deeply studied by Alhede et al in 2012 showing which 

techniques are more suitable for each application35, and for adapting to predict the true 

architecture of biofilms.  

Therefore, it is pertinent to develop tools that allow non-disruptive, continuous and 

label-free monitoring of the dynamic processes and mechanisms of biofilm formation 

under real conditions36. At this point the introduction of “microfluidics” is very 

appropriate to overcome the drawbacks described above. "Microfluidics" is the science 

and technology of systems that transport volumes of fluids that vary from microliters to 

femtoliters using micro-channels embossed in the surface of polymers or glass. The 

origins of microfluidics can be found in microanalytical methods such as high-pressure 

liquid chromatography (HPLC), gas-phase chromatography (GPC) and capillary 

electrophoresis. Due to the success of these technologies more compact and versatile 

formats were developed to enlarge the application sector37–39. Low requirement of 

sample volumes and reagents, low production of waste, short analysis times, cheap 

technology and reduced dimensions compared to commercial analysis systems40 have 

attracted scientists in the fields of biology, chemistry, engineering and medicine from 

the last decade. These characteristics make microfluidics and microchip technology 

particularly useful for studying biomedicine and biology41. 

Although today many analytical methods for detecting DNA, pathogens, proteins and 

small organic molecules are conventionally available, miniaturization and integration 

into single microfabricated devices, i.e. microfluidic total analysis systems (μTAS), 
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provides higher detection sensitivity and signal-to-noise ratios. However, the resulting 

devices find essential application in the field of clinical diagnostics, proper analysis of 

pathogenic biofilms are still fundamental challenges. Numerous studies in the clinical 

diagnostic field are being achieved by the inclusion of integrated sensors that allows 

label-free detection of various biomolecules and reducing drastically the reagent 

volumes required for an experiment. Many of these studies used alternative methods 

for microorganism growth detection based on electrical impedance spectroscopy 

measurements42. There are many advantages using electrical signals to perform 

biological and chemical detection in microfluidic systems. The fabrication is inherently 

less complicated since these sensors typically only require patterned electrodes to 

operate. In addition, electrical signals can be directly interfaced with most 

measurement equipment while other signal modalities may require a transducer to 

convert the signal. Electrical sensors commonly measure changes in impedance43,44, 

capacitance 45, or the redox activity of enzymes 46. Some published examples of 

electrical sensing can be found in the literature based on the relative impedance 

changes induced after cell adhesion onto the electrodes 47,48, some of them using 

commercial interdigitated microelectrodes (IDuE) 49,50. Despite offering a large sensitive 

area in a limited space, most of commercial IDuE do not offer the possibility to study 

cell growth under flow conditions, a variable already described, that affects biofilm 

structure and behaviour 51. Moreover, the growth rate changes over time because of an 

ever-changing environment: as the organism grows it depletes the nutrients and 

dissolved oxygen while polluting its environment with waste products. These factors 

conspire to ultimately suppress the ability of the organism to divide. 

The continuous flow experiments however, establishes an indefinitely long steady-state 

period of active growth, which enables long-term experimentation on microbes under 

essentially invariant conditions. Therefore, microfluidic devices have become an 

indispensable tool in the study of microbial metabolism, regulatory processes, 

adaptations and mutations. It provides constant environmental conditions for microbial 

growth and product formation41 and facilitates characterization of microbial response to 

specific changes in the growth environment, one factor at a time. From such studies, it 

is possible to reconstruct the general behaviour of microorganisms in their native 

settings52, allowing to understand biofilms during its formation. To address this issue 

label-free technologies and optimization of them were used along this monograph.  
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1.4 Objectives and organization of the work 

As pointed out in the previous sections Biofilm lifeform is better than planktonic to 

understand the bacterial infections. To obtain this structure in a realistic model it has to 

be developed under flow conditions. The ability to continuously monitor bacterial 

biofilms using contactless impedance sensors promises to present new and innovative 

applications in healthcare. Consequently, the work of this thesis is chiefly the 

optimization of a custom-made device capable to detect biofilm formation into a 

controlled environment to accomplish the following objectives: 

1. Design construction and validation of multi-parametric microfluidic device: 

a. Conception, design and manufacturing of the array of electrodes. The 

matrix of electrodes is the basic element for achieving Electrochemical 

Impedance Spectroscopy (EIS) data. 

b. Design and development of electronic instrumentation. The 

Instrumentation to develop will be responsible for generating the 

excitation signals, control and routing EIS data and control the 

multiplexation of the different devices working simultaneously. 

c. Integration of the platform 

2. Data processing. Information obtained by EIS technology can give a lot of data 

that has to be processed to give the useful information to represent the more 

realistic data that is able to fit with equivalent circuits. 

3. Inclusion of a second biosensor to monitor simultaneously toxicity. The 

increment of biomass monitored with label-free technologies has to be followed 

by toxin release studies in biofilm and planktonic modes of existence. 

4. Setting up of surface modification techniques for bacterial treatment. The 

modification of the sensors can attract or inhibit the adherence of 

microorganisms on the surface modifying the signal of the bacteria growing 

inside. 

 

The objectives detailed have been brought to a close along this thesis in the same 

order as they have been listed. Before going into the work a brief organization and 

description of the chapters is going to be carried out to summarize the 

accomplishments.  
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The core purpose of Chapter 2 is to provide a concise description of the material and 

the equipment used along the following chapters. It is described the canonical 

microbiological assays and the preparation of all the experiments related with bacteria. 

Then introduction of methods for characterization and visualization of the microbial 

growth was applied. Next, it was presented a brief description of the basis on 

Electrochemical Impedance Spectroscopy (EIS) methods for all the quantitative 

arguments made within this thesis. Furthermore, the methods used for surface 

modification to anchor antibacterial compounds, which are utilized in chapter 7 are 

described. Finally the synthesis of lipid vesicles that contain a biosensor for toxicity is 

described. This additional biosensor has been prepared at the Chemistry department of 

the University of Bath, in collaboration with Professor Toby Jenkins and his group.   

 

Chapter 3 is a comprehensive description of the microfluidics by using an equipment 

available in our laboratory. This equipment is the Quartz Crystal Microbalance with 

Dissipation (QCM-D). This method is a high sensitive method able to detect protein 

attaching to the sensor surface. By using the equipment commercially available 

continuous flow conditions can be tested for growing bacterial biofilms. Furthermore, 

parameters like flow rate and temperature are tested with different bacterial strains. I 

describe the operation of the entire label-free equipment within the context of 

microfluidics, including data processing and data analysis. In addition Differential 

Interference Contrast (DIC) images are taken during the experiments. In summary, this 

chapter is the first contact to operate with micro-sized reactor volume to avoid the 

substrate-limited mode of operation. Finally, it was explored possible future directions 

and applications of the continuous flow approach developed in this thesis. 

 

 
Chapter 4 firstly it was highlighted some of the recent published research involving 

microfluidic devices with integrated optical, mechanical and electrical sensors for the 

detection of biomolecules. The reason to analyse previous studies is to address some 

of the technological limitations faced by the conventional electrodes and current 

devices for bacterial biofilm growth, primarily based on cultivation within multi well 

platforms. In this direction we have designed and fabricated our own multi-parametric 

sensor and low-cost microfluidic platform. The roadmap for this part of the work is 

depicted in Figure 1.4 and applied for the two main parts of the platform, the device 

and the EIS sensor. This part of the work was coordinated and developed by Institut 

Químic de Sarrià (IQS) and the National Centre of Microelectronics (NCM), for the 

device and the sensor respectively. The design in both cases is followed by 
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computational modelling for quick test of the platform before its fabrication. Once the 

computational prototype becomes real, a functional test was finally ran for further 

redesign or fabrication until the final version of platform is ready. The final version of 

the device is dimensionally bounded to place a chip with interdigitated microelectrodes 

(IDuE) optimized for bacterial cultures and for working with two and four-electrode 

configuration. Besides the space of the sensing area depends on the space necessary 

to place a microscope objective to follow the bacterial growth in real-time as well. 

Finally the sterilization for reusability of the chip and the device is taken into account.     

 

Figure 1.4. Schematic process for engineering the desired platform to accomplish the main goals of this 

monograph. 

 

Chapter 5 describes how EIS data is applied to a microfluidic device to sense and 

detect bacterial growth. The detection mechanism due to biofilm development is 

explained along with the specific steady-state conditions already tested in chapter 3 

with QCM-D methodology. The quantification of the bacterial growth on the IDuE 

geometry optimized in chapter 4 with a finite element model (FEM) is studied for 

confirming the increased resolution in detection while large electrode area was 

maintained. The designed platform designed allows the simultaneous and continuous 

monitoring of biofilm proliferation using optical microscopy and multiple read-outs, 

especially the comparison of two and four-electrode configuration impedance 

measurements that can be performed indistinctly on the same device, only performed 

before on eukaryotic cells53. In addition, relevant equations and models governing 

microbial growth in the device are studied for a comprehension of physiological 

behaviour of the biofilms. 
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Along the same lines as the fifth chapter, chapter 6 describes how the quorum-sensing 

systems triggers during the bacterial biofilm formation. The gene expression and 

regulatory circuits explained in section 1.2 is confirmed with the inclusion of the toxicity 

biosensor optimized by the group of Toby Jenkins (University of Bath, UK). The 

modified continuous flow experiment is described in this chapter to make multiple 

fluorescence readings. Previously many researchers predicted that biofilm becomes 

toxic when reaches the stationary phase as depicted in Figure 1.2. But no one 

developed a method to follow biofilm growth and detect the moment of the toxin 

secretion with certain accuracy by relating this release to its bacterial growth curve 

produced by EIS data. This achievement is carried out in Chapter 6 revealing results 

that confirm the relation of biofilm development with the virulence gene expression in 

Staphylococcus aureus by analysing toxin release studies. 

 

The final Chapter 7 of the thesis explores the biofilm response to an antibiotic peptide 

called bacitracin that is well known by the efficient affection to the bacterial membrane. 

Moreover in the last 2 years new mechanism of action is being studied by Ciesio et al 

54, and also patented for the affection to nucleic acids as well. The treatment is studied 

in static conditions and flow conditions by using both steady-state methods utilized 

before, in Chapter 3 and Chapter 5, with QCM-D and EIS technology respectively. The 

effect of the antibiotic peptide is analysed with the compound pumped into the devices 

and the antibiotic anchored onto the sensors with surface modification techniques.    
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2.1 Materials 

TritonX-100 (#T8787), 10,12-Tricosadiynoic acid, TCDA (#91445), Cholesterol 

(#C8667), Ethylenediaminetetraacetic acid, EDTA (#EDS),  sodium chloride, NaCl 

(#S7653), 5(6)-Carboxyfluorescein (#21877), were obtained from Sigma-Aldrich (UK). 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (#850355), 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine (#850705) were obtained from Avanti Polar Lipids (USA). 

Sephadex™ G25 columns were obtained from GE Healthcare (UK).  FLUOstar Omega 

plate reader was purchased from BMG Labtech. UVP CL 1000 Crosslinker and the 96 

well costar plates were purchased from Fischer Scientific (UK). Peristaltic pump and 

tubing were obtained from IsmaTec. 

 

2.2 Microbiological assays  

The experiments with the presence of living bacterial cells were carried out in aseptic 

conditions using a class II biosafety cabinet, sterilized with 70% ethanol and UV light 

for 15 minutes. These experiments with biological samples used bacterial medium 

obtained from Sigma-Aldrich. The bacteria strain manipulated for this work were four 

Gram-positive bacteria, S.aureus V329, S. epidermidis CH845, 448 and 617. This 

library of strains were cultured for the biofilm studies and/or toxin release studies.   

 

2.2.1 Biosafety levels 

A microbiological safety cabinet with class II biosafety level was utilised for the 

microbiological work (Figure 2.1) guaranteeing a sterile environment during the 

bacterial seeding growth and manipulation. The biosafety levels are widely used as the 

primary line of containment in laboratories that deal with dangerous pathogens with the 

purpose of protecting the safety of personnel by securing the materials safely in 

laboratories, and also in order to safeguard the environment against contamination1. In 

this work the performed platform for biofilm studies (refer to Chapter 4) was used in the 

incubator placed inside the cabinet. Also material as pipette tips, media bottles, tubing 

and connectors were decontaminated before using by autoclaving for 15 minutes at 

121 ºC and 15 psi due the contact with microbes during the experiments.  
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Figure 2.1. Class II Microbiological safety cabinet that recirculates the 70 % of the air. 

 

2.2.2 Bacterial preparation 

The bacteria used in the biofilm and planktonic experiments were prepared from 

glycerol stock cultures stored at -80 °C and streaked onto tryptic soy agar (TSA) plates, 

in the case of Gram positive organism, and Luria Broth (LB), in the case of Gram 

negative organisms. The agar plates were placed into an incubator at 37 °C for 16 

hours for colonies development. Following growth comes from picking an individual 

colony and transfers it from the plate to a falcon with 10 mL of TSB for 16 hours of 

agitation at 37 °C (Figure 2.2). After bacterial growth, the suspension have reached the 

stationary phase of the growth cycle (Figure 2.3), however log phase growth is required 

prior to dilution to have a final absorbance of 0.084 measured at a wavelength of 

600nm. This dilution feeds the device and the static cultures in the wells. 

 

 

 

 

 

Clean air 

Contaminated 
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Figure 2.2. Preparation of an individual bacterial strain prior to dilution and seeding to the surface, sample 

or device of interest. 

 

Figure 2.3. Typical growth curve of a bacterial population2. 

 

2.2.3 Bacterial growth in agar media 

The Luria Agar (LA) and Tryptic Soy Agar (TSA), used for Gram-negative and Gram-

positive bacterial growth respectively, were made at the concentration given on the 

container. The chemical was priory weighed with a HR120 A&D analytical balance and 

dissolved in ultra-pure deionised water obtained from Thermo scientific Barnstead easy 

pure II purification system. The mixture was autoclaved and poured the warm liquid into 

petri dishes. The presence of colonies prior to microbial seeding indicated 

contamination.   
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2.2.4 Bacterial growth in broth media 

The Bacteria growth used in the experiments with living bacterial cells was a solution 

carried out with Luria Broth (LB) and Tryptic Soy Broth (TSB) for Gram-negative and 

Gram-positive bacteria, respectively. The dehydrated form of the media culture was 

weighed using a HR120 A&D analytical balance accordingly to the compositions given 

on the containers, and dissolved in ultra-pure deionised water from Thermo scientific 

Barnsted easy pure II purification system, autoclaved, and stored. The presence of 

precipitation cloudy compounds indicated contamination.    

 

2.2.5 Bacterial supernatant preparation 

Bacterial supernatant was used for toxicity analysis of the bacteria in biofilm and 

planktonic structure. The supernatant is the separable solution obtained from a bacteria 

culture by centrifugation process to discard the solution of the pellet where the whole 

bacterial cells are present. The overnight culture was centrifuged at 10.000 rpm for 10 

minutes to form a pellet, and the solution was filtered by pressurisation through a 0.22 

µm filter. The supernatant sample was tested against lipid vesicles in a 1:1 ratio and 

fluorescence was monitored for time periods of less than two hours.    

 

2.3 Methods of characterization 

2.3.1 Differential interference contrast microscopy (DIC) 

This methodology was used for viewing bacterial attachment on surfaces, prior to more 

quantitative assessments. Differential interference contrast microscopy permits the 

visualization of bacteria by using visible light illuminating the sample. This image could 

be magnified up to 100 times by the objective lenses. The conventional bright field 

microscopy technique was firstly enhanced converting phase shift in the light passing 

through the sample, into brightness changes in the image, which means better 

contrast. A modification of this phase contrast microscopy was applied, with the 

differential interference contrast technique generating a pseudo 3D relief (Figure 2.4d) 

of the image separating a polarized light source into two orthogonally polarized 

mutually coherent parts which are spatially displaced at the sample plane, and 

recombined before observation. 
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Figure 2.4. Schematic view of Differential Interference Contrast (DIC) technology: optical pathways and 

components.  

Figure 2.4 illustrates the differential interference contrast beam path that is similar to 

that of polarized transmitted light. In DIC (as compared to polarized light), the two 

birefringent prisms (Figure 2.4b) are inserted into the optical train, one in the condenser 

and the second near the objective pupil. The condenser prism performs a vectorial 

decomposition of the previously linearly polarized light (Figure 2.4c) into two vibration 

directions that are perpendicularly polarized to each other, and laterally shifts these 

partial beams in such a way that a small lateral displacement of the wavefronts occurs 

where regions of thickness or refractive index vary. 

 

2.3.2 Confocal Microscopy and bacteria staining 

Confocal microscopy allows the use of a viability kit by staining the bacteria attached 

over the surfaces, and assess the impact of the surface modification treatment. The 

Figure 2.5 showed the light passing through an objective lens and directed onto the 

sample, emitted light than passes to the detector finally.  
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Figure 2.5. Schematic view of the Confocal Laser Scanning microscope (CLSM). 

 

The bacterial culture was stained at the end of the experiment with Live/Dead Baclight 

TM (Kit L13152) from Invitrogen detection technologies. An appropriate mixture of the 

SYTO 9 and propidium iodide stains to detect intact cell membranes with green 

fluorescence and bacteria with damaged membranes with red fluorescence, 

respectively. The confocal laser scanning microscopy (CLSM) LSM510 META from 

Zeiss was controlled by AIM software (version 3.2, Carl Zeiss MicroImaging GmbH, 

Jena, Germany) and equipped with lasers providing excitation wavelengths of 480nm 

(Syto 9) and 490nm (propidium iodide) that are employed. The staining was carried out 

for 15 minutes and the sample was washed 7 times before it was placed on a coverslip 

of 60 x 24 mm upside down to image the sample from the bottom. Biofilm image was 

acquired 15min after the end of the biofilm development.   

2.3.3 Scanning Electron Microscopy 

This methodology was used to visualize the biofilm formed in the sensor, placed into 

the impedance device, which is opened when all data is acquired and the experiment 

was finished. The sample was prepared for Scanning Electron Microscopy (SEM) as 

described previously by Sule and coworkers3. Briefly, the air-dried biofilms were fixed 

with 2 ml of 2.5% glutaraldehyde in 0.1 mol/L sodium phosphate buffer, rinsed once in 

the same buffer and then in deionized water followed by an overnight drying. The 

biosensor was attached to aluminium mounts and coated with gold using a Polaron 

Emitech SC7640 sputter coater (New haven, UK). Images were obtained with a JEOL 

JSM-5310 scanning electron microscope (JEOL Ltd., Tokyo, Japan) up to 80000X 

magnification. 
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Figure 2.6. Schematic view of a scanning electron microscope (SEM). McGraw-Hill Companies, Inc.  

 

2.3.4 Contact Angle 

Contact angle measurement were used in the study of surface energy, wettability and 

adhesion of the modified surfaces. This technique was developed to provide a good 

understanding of the surface properties using relatively a very simple approach to 

probe different aspects of the physic and chemistry of the surfaces.  

The contact angle measurements are based on the Young’s equation that relates the 

contact angle θ, liquid surface tension γlv, solid surface energy γsv, solid-liquid surface 

tension γsl as represented in Figure 2.74. The illustration shows that a small contact 

angle is observed when the liquid spreads on the surface, while a large contact angle is 

observed when the liquid beads on the surface, indicating hydrophilic and hydrophobic 

surfaces respectively.  

 

Figure 2.7. Illustration of contact angles formed by sessile liquid drops on a smooth homogeneous solid 

surface4. 
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2.3.5 Fluorescence/Absorbance plate reader 

The plate reader was used in the toxicity study of biofilms. The equipment allows a 

simultaneous measurement of optical density and fluorescence intensity at a wide 

range of wavelengths. The fluorescence excitation and emission filters of 485 ± 12 nm 

and 520 nm were used, with a gain of 650 to measure toxicity of the bacterial culture 

and/or bacterial supernatant. Optical density was measured at 600nm (OD600) for 

monitoring bacterial growth of the experiments carried out using costar 96 well plates 

or the fluidic device. The continual or the endpoint measurements were obtained 

reading a triplicate of each time or condition, respectively. The equipment utilised was 

a FLUOstar Omega plate reader (Figure 2.8).  

 

Figure 2.8. FLUOstar Omega Plate reader. 

2.3.6 Nanoparticle tracking analysis 

The vesicle used in section 6.2.2 were sized and visualized with nanoparticle tracking 

analysis (NTA). The technique is based on a particle-by-particle visualization in a liquid 

at real time with a minimal sample preparation. NTA provides size and concentration 

measurements of the particles undergoing Brownian motion. The technology comprises 

a laser light source, generated by focused 635 nm laser beam passing through a 

prism-edged optical flat, of which the refractive index is such that the beam refracts at 

the interface between the optical flat and the liquid sample layer placed above it. Due 

to the refraction, the beam compresses to a low profile, intense illumination region 

(Figure 2.9) that can be easily visualised by the microscope objective placed over the 

sample. The instrument tracks individual particles analysed by the software, which 

establishes mean square displacement and diffusion coefficient (Dt), then from Stokes 

Einstein equation the particle diameter (dh) can be obtained. The nanoscale particles 

analysed by NTA are from approximately 10 nm to 1000 nm. Particle concentration and 

size measurements were obtained using a Nanosight LM14 (Malvern Instruments). 

Measurements were taken of a 1/100 diluted sample and multiple readings were taken 

to an average of these values. 
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Figure 2.9. Schematic diagram of a Nanoparticle tracking analysis instrument. 

 

2.3.7 Dynamic Light Scattering 

The vesicles were also characterized with Dynamic light scattering (DLS), which is a 

technique that allows accurate measurement of the size of nanoparticles in solution. 

Scattering of a monochromatic light source by a particle, known as Rayleigh scattering 

if the particle size is smaller than the wavelength, allows detection and measurement. 

The detected particles are undergoing Brownian motion; the movement of particles 

resulting from bombardment of the solvent molecules around them, the smaller the 

particle size the faster the movement. Vesicle diameter was obtained using a Zetasizer 

Nanoscale Dynamic Light Scatterer, manufactured by Malvern instruments. 

Measurements were taken of multiple samples each with multiple readings and through 

the average of these values. 5-10 µl of sample was dispersed into 1 ml of buffer 

solution prior to measurement. 

 

2.3.8 Quartz Crystal Microbalance with Dissipation (QCM-D) 

QCM-D Technology was used to optimize the flow rate and the temperature for biofilm 

developing during 24 hours, with stainless steel and gold sensors. In order to obtain 

real time images of biofilm adhesion and subsequent formation we used the QCM-D 

window module (Figure 2.10). Thus, it was acquired a correspondence data between 

the QCM-D and optical microscope images, which will give us visual insight into the 

microscopic phenomena taking place during the measurement. 
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Figure 2.10. Schematic picture of Quartz Crystal Microbalance with Dissipation (QCM-D). (A) Window 

module that allows microscopic imaging. (B) Measurement of the bacterial attachment performed 

simultaneously with QCM-D data.  

 

This technology monitors the frequency and energy dissipation response of a freely 

oscillating sensor, giving a faster and accurate information of the films attached and 

developed onto the sensors. The QCM-D methodology is based on quartz’s inherent 

property of piezoelectricity5. This technique uses the changes in resonance frequency 

of the crystal to measure the mass attached on the surface, according to the Sauerbrey 

relation (Equation 2.1), where the resonance frequency shift (Δf) is highly dependent 

on any mass change (Δm) of the crystal. The constant C represents the mass 

sensitivity (17.7 ng/cm·Hz for a 5 MHz sensor) and n (1, 3, 5…) the overtone number.  

 

∆𝒎 = −
𝑪

𝒏
∆𝒇  

According to the Sauerbrey relation a decrease in frequency implies an increase of 

adsorbed mass over the sensor. The QCM-D technique is also able to monitor the 

dissipation parameter defined as the ratio between the energy dissipated and the 

energy stored by the oscillating sensor, and is given by the following equation: 

 

𝑫 =
𝑬𝑫𝒊𝒔𝒔𝒊𝒑𝒂𝒕𝒆𝒅

𝟐𝝅𝑬𝑺𝒕𝒐𝒓𝒆𝒅
  

QCM-D technique monitors changes in frequency (f) and dissipation (D) of an 

oscillating sensors. As mass adsorbs onto the sensor a frequency shift can be 

appreciated, besides the dissipation parameter gives information about the viscoelastic 

properties of the adsorbed layer. Softer coatings lead to an increase of the oscillation 

damping, which is traduced as an increase of dissipation. Figure 2.11 is an example 

that illustrates the behavioural differences between a rigid and a soft layer.  

(Equation 2.1) 

(Equation 2.2) 



Chapter 2: Experimental methodology 

31 
 

 

Figure 2.11. Differences in behaviour between soft and rigid adsorbed layers. (A) Frequency change due 

to an increase of the adsorbed mass by the addition of a molecular layer. This example shows the addition 

of an antibody (green) to a protein layer (red). (B) Difference in the dissipation signal generated by a rigid 

(red) and a soft (green) adsorbed layer. 

Simultaneous measurement of multiple overtones is required to extract film thickness 

information. The different overtones give information about the homogeneity of the 

applied layers, as the detection range out from the crystal surface decreases with 

increasing overtone number (Figure 2.12). Thus, differences in frequency behaviour of 

the different overtones suggests vertical variations in film properties.  

 

Figure 2.12. Viscous penetration depth as function of overtone (Q-Sense reported data). 

 

2.4 Impedance Measurements methods 

This section briefly introduces the electrochemical impedance methods applied in this 

work for biofilm detection, the two and four-electrode method. In the framework of this 

thesis work, both methods will be compared and optimized for biofilms. Here is also 

taken into account the injected current level for the measurement that had to be 

performed to use large currents to enlarge the voltage drop and, consequently, to 
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maximize the signal-to-noise ratio. However, two facts limit the allowable current 

intensity:  

 Nonlinear behaviour of the living tissues. As most physical phenomena, 

electrical impedance reaches the nonlinear regime if the stimuli surpasses a 

certain value. 

 Safety. The injected electrical energy can cause different sorts of damage to the 

living tissues. 

In living tissues, the voltage/current relation is linear while the applied electrical fields 

do not reach the nonlinear threshold usually assigned to cell membranes and its 

polarization6. If an electric field is superimposed, the protein structures on the cellular 

membrane that are responsible for the transport of specific ions can change their 

conformation and alter the conductivity of the membrane.  

The nonlinear impedance response of living tissues must not be confused with the 

nonlinear impedance response of the electrode-tissue interface, or electrode-electrolyte 

interface. This phenomenon has been studied experimentally7 and theoretically8. 

In general, it seems that the criterion to select the current amplitude has been to use a 

current below 7 microA since the maximum allowable leakage current by the safety 

standards in the low-frequency range has a value of 10 microA9.  

 

2.4.1 Two-electrode method 

The most evident way to perform electrical impedance measurements by using 

electrodes is to apply the two-electrode method, also referred as the bipolar method. 

That is, to inject a known current into the Biological Sample (BS) through two electrical 

contacts and to measure the resulting voltage drop between these two contacts (see 

Figure 2.13). This method only works properly if the impedance of the electrical 

contacts (ZC+ and ZC-) is much lower than the impedance of the Biological Sample (ZBS) 

since the measured impedance (Z’) is the sum of ZBS, ZC+ and ZC- . As it has been seen 

here above, the electrode-electrolyte interface impedances can be higher than the 

impedance of the biological sample, especially at low frequencies, and are too instable 

and unpredictable to think of a mathematical correction of the measurement. Therefore, 

the repeatability and the reproducibility of the measurements will be seriously 

compromised. 
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Figure 2.13. Schematic representation of the two-electrode method. 

 

2.4.2 Four-electrode method 

The four-electrode method, also referred as tetrapolar or Kelvin method, has been 

used in material science to measure the resistivity of materials since the late 1800’s 10. 

It uses a pair of electrodes to inject the current into the sample and another pair of 

electrodes to measure the resulting voltage drop (Figure 2.14). In principle, because no 

current flows through the voltage meter (V), the injected current completely flows 

through the biological sample and the voltage drop at this sample is the same that the 

meter ‘sees’. Thus, in principle, the electrode-electrolyte interface impedance has no 

influence on the measurement, and the contact and wire impedance will be minimal on 

the meter.  

 

Figure 2.14. Schematic representation of the four-electrode method. The AC current is employed into the 

sample through current source (I) and the resulting potential is differentially measured across the inner 

electrodes with the Voltmeter (V). 

This type of experimental setup is not very common in electrochemistry and usually it is 

used for measurements of junction potentials between two non-miscible phases or 

across a membrane, giving the possibility to calculate the resistance of the interface or 

the membrane conductivity. In this case the biofilms are considered a membrane or a 

tissue. In order to demonstrate the feasibility of the proposed methods for biofilm 

detection a multi-parametric platform was performed to carry on parallel measurements 

during the biofilm development. The results will be shown and analysed in chapter 5.  
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2.5 Lipid vesicle preparation method 

The vesicles preparation was carried out and optimized for testing the toxicity of the 

biofilms (section 6.2.4.3), the planktonic and biofilm comparison structures of 

Staphylococcus aureus V329 (section 6.2.5). 

2.5.1 Buffer preparation 

The aqueous buffer solutions were made according to the compositions given below. 

The chemicals were weighed using a HR120 A&D analytical balance able to resolve to 

0.1mg and dissolved in MiliQ water obtained from Thermo scientific Barnstead easy 

pure II purification system, sonicated as required, stored at 4°C and used for cleaning 

of equipment and in the purification step of vesicles. Self-quenched carboxyfluorescein 

solution was used as the signalling dye encapsulated inside the vesicles. The table 

below shows the components of the dye solution (Table 2.1). 

Eluent HEPES buffer – pH 7.4 

Chemical Mass Concentration 

Deionised water 750 ml  

NaCl 4.680 g 112.55 mM 

NaOH 0.168 g 6.58 mM 

HEPES 1.7895 g 10 mM 

EDTA 0.219 g 1mM 

 

Table 2.1. The composition of the HEPES buffer solution for storage and purification of the vesicles. 

 

50 mM 5(6)-carboxyfluorescein (5(6)-CF) solution 

Chemical Mass Concentration 

Deionised water 100 ml  

NaCl 0.0585 g 10 mM 

NaOH 0.5405 g 160 mM 

HEPES 0.2387 g 10 mM 

EDTA 0.0285 g 10 mM 

5(6)-CF 1.8789 g 50 mM 

 

Table 2.2. The composition of the 5(6)-CF dye for encapsulation within the nanocapsules. 
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2.5.2 Stock Solution Preparation 

Two different types of lipid stock solutions were prepared. Stock 1 solution 

consisted of each of the lipid components dissolved in 1mL of Chloroform at a 

concentration of 0.01mM. The lipid stock 2 solutions were then made using different 

percentage concentrations of each lipid stock 1 solutions. 

Component Mass (mg) 

TCDA 35 

DPPC 73 

DPPE 69 

CHO 39 

 

Table 2.3. Stock 1 solution, in which each component was dissolved in 1mL of chloroform having a final 

concentration of 0.01 mM for all the components. 

 

Component Mole Percentage (%) Mass (mg) 
Amount taken from stock solution 1 

for 100 µL of stock solution 2 (µL) 

TCDA 25 8.75 25 

DPPC 53 38.7 53 

DPPE 2 1.38 2 

CHO 20 7.80 20 

 

Table 2.4. The components were all dissolved in 1mL of Chloroform. 

 

2.5.3 Synthesis and Crosslinking of Lipid Vesicles 

Vesicles were composed primarily of phosphocholine (PC) lipids, 

phosphoethanolamine (PE) lipids, and cholesterol. The vesicle components were 

stored at -20 °C, and dissolved individually in chloroform to a concentration of 0.1 

moldm-3, as explained above, and followed by combination together to enable 

synthesis. The vesicles were synthesized in a similar procedure to that carried out by 

Nayar, Hope and Cullis reported in 1993. The mixture of 100 µl of each stock 1 solution 

was added to 200µl of chloroform, followed by drying with nitrogen gas to remove the 

chloroform. After the mixture was dried the first step of the synthesis was the 

rehydration of the mixture with 5ml of 50mM [5,6]-carboxyfluorescein, that was heated 
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to 75 °C, cooled, and freeze-thawed three times. Next step was the extrusion that 

consisted in the pressurization of the vesicle preparation five times through two 100 nm 

polycarbonate membranes in the LiposoFast LF 50 extruder, at approximately 60 °C. 

After the vesicles were sized a purification step was carried on to separate 

unencapsulated dye vesicles using Sephadex NAP 25 column. The purified vesicles 

solution was then kept at 4 °C overnight, and crosslinked as last step the next morning 

using a commercial flood exposure UV source from HamamatsuTM, for cross linking of 

polymerisable components during 12 seconds at 254nm leading the chemical reaction 

shown in Figure 2.16. The steps of the synthesis process are depicted in Figure 2.15.  

 

Figure 2.15. Lipid vesicle synthesis stepwise after mixing the components present in Table 2.4. 

  

 

 

 

 

Figure 2.16. Cross linking of TCDA suggested by radical initiated mechanistic reaction. (A) TCDA cross-

linking and (B) the cross-linked product found in the vesicle membrane. 
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2.6 Plasma polymerization 

Surface modifications were performed using a cold plasma reactor at low pressure. 

The reactor is composed of a stainless steel cylindrical vertical chamber (Diameter of 

25,5 cm and a height of 41,6 cm). Inside the chamber, there is an aluminium plate 

which serves as support for placing the chamber. A difference of potential is created 

inside the reactor chamber, which ionizes the gas and allows for plasma generation. 

The reactor chamber acts as ground electrode, while the aluminium plate acts as 

radiofrequency (RF) electrode. The latter is connected to a generator of radiofrequency 

pulses of 13,56 MHz with an integrated potentiometer. The system is in permanent 

vacuum (around 6·10-4 mbar) except when the sample is introduced at the reaction 

chamber. The monomer is introduced inside the reactor at nearly constant pressure 

around 0,02-0,04 mbar.  

Gases and monomers are introduced into the reaction chamber from its top, through 

stainless steel pipes. The flow can be regulated by a needle valve. The system’s 

pressure can be monitored by a vacuum gauge controller (PDR900, MKS), which is 

connected to a Cold Cathode/MicroPirani™ vacuum transducer, which is placed inside 

the reactor.  

As a safety measure, in order to avoid that the unreacted monomer reaches the 

vacuum pump (Trivac D 16BCS/PFPE Leybold, Germany), the reactor has an active 

carbon chemical trap and a liquid nitrogen or CO2(S)/acetone cold trap. 
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2.7 Statistical analysis 

The data was processed and analysed using GraphPad Prism 6. The statistical 

analysis was performed using a Student t-Test by comparing the means of each 

independent group (sample type) assuming that the variances of each group are equal. 

A p value of less than 0.05 (95 % confidence limit) was considered to be of significant 

difference, Equation; 

 SE =  
σ (VT)

√(Vc)
 (Equation 2.3) 

 

Where SE is the statistical error, σ is the standard deviation, VT is the cumulative sum of 

the values, and Vc is the sum of the count of the values. The propagation of combined 

errors was achieved using, Equation; 

 PE = (√((
FE

F
)2) + √((

IE

I
)2) N) (Equation 2.4) 

Where PE is the propagative error, FE is the final value error, F is the final value, IE is 

the initial value error, I is the initial value and N is the new value calculated. 
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3.1 Introduction 

In the last years, there has been growing interest in the quartz crystal microbalance 

(QCM) technique, which has played a key role in elucidating various aspects of 

biological materials and their interactions. As mentioned in the introductory chapter 1, 

QCM technology is a nano-sensitive technique that utilizes acoustic waves generated 

by the oscillation of a piezoelectric single crystal quartz plate to measure mass. By 

applying alternating electric fields to quartz an alternating expansion and contraction of 

the crystal lattice is induced. QCMs became widely used as mass balances only when 

experiments were able to relate the frequency change of the oscillating crystal to the 

mass adsorbed on the surface. This relationship was demonstrated by Sauerbrey in 

1959 1, and explained in chapter 2 (section 2.3.9). There are three requirements that 

must be fulfilled for the Sauerbrey relationship to hold. First, the adsorbed mass must 

be small relative to the mass of the quartz crystal; second, the mass adsorbed is rigidly 

adsorbed; and third, the mass adsorbed is evenly distributed over the active area of the 

crystal 2. This frequency/ mass relationship was, in the early days of QCM, almost 

exclusively used in vacuum or gas phase monitoring of metal plating in vacuum 

deposition systems. The widespread use of QCMs began when they were shown to be 

applicable in liquid environments around 19803. Liquid application of QCM technology 

expanded the number of potential applications dramatically including biotechnology 

applications and in particular biosensor applications4 (Figure 3.1A). The drawback of 

applying the QCM to many liquid applications was that the liquid phase often 

incorporated viscous and elastic contributions to the frequency change and thus 

violated the assumption of the Sauerbrey relation stating that the mass adsorbed must 

be rigidly adsorbed. This is a prompted new approach for characterizing mass deposits 

with frictional dissipative losses due to their viscoelastic character. Thereupon, the 

theory for interpreting this new data suffered a modification in the method including 

dissipation in the equation. Then, QCM with dissipation monitoring (QCM-D) fits the 

voltage of oscillatory decay after a driving power is switched off in such a way as to 

ensure that the quartz decays close to the series resonant mode5,6 (Figure 3.1B). The 

amplitude decays over time depending on the properties of the oscillator and the 

contact medium.  
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Figure 3.1. Quartz Crystal Microbalance (QCM) Scheme. (A) QCM time line where the evolution of the 

method conclude with introduction of dissipation and its patent for the commercial equipment from qsense. 

(B) Representation of the decay curve after the power is switched off, when monitoring dissipation over the 

sensor. Image acknowledgements to qsense. 

 

The main feature and advantage of QCM-D, compared with the conventional QCM, is 

the fact that a part from measuring changes in resonant frequency (∆f), a simultaneous 

parameter related to the energy loss or dissipation (∆D) of the system is also 

measured. ∆f essentially measures changes in the mass attached to the sensor 

surface, while ∆D measures properties related to the viscoelastic properties of the layer 

added onto the sensor surface.  

The QCM-D data (∆f and ∆D) allows for probing values at multiple harmonics also 

known as overtones (n = 3, 5, 7, 9, 11, 13) of a resonant frequency in succession on 

the millisecond time scale. The multiple harmonic data permits modelling the 

experimental data with theory to extract meaningful parameters such as mass, 

thickness, density, viscosity, or storage modulus7–10. All of this parameters analyse 

different depth that decreases when overtone number increases.  

Viscoelastic data allows broader characterization of systems that fall outside of the 

scope of the linear Sauerbrey relationship between ∆f and ∆m and makes QCM-D 

more than a simple mass balance. Therefore, monitoring cell adsorption requires using 

the dissipation parameter to fully characterize the adsorption of a viscoelastic cellular 

structure. 
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The theoretical background can be related to a few studies that used QCM to study 

bacterial adhesion by using the shifts in the resonance frequency (Δf) reporting data for 

exponentially growing bacteria11. Moreover, differences in resonance frequency shifts 

(Δf) have been observed between bacteria with and without surface appendages12 as 

well as differences due to substratum hydrophobicity13. However, in cases that exist 

positive frequency shifts it has been suggested that, dissipation is a better parameter 

for quantifying bacterial adhesion14. This complicates interpretation since positive 

frequency shifts indicate desorption according to the Sauerbrey equation. The difficult 

interpretation of QCM-D data on bacterial adhesion to a sensor surface is more 

confident with additional information on the exact number of bacteria adhering to the 

sensor surface. For this reason, in this chapter a combination of QCM-D with real-time 

image analysis of bacterial adhering on the sensor surface has been performed. 

After analysing the previous studies that reported QCM-D data it could be established 

that the typical Frequency and Dissipation responses for protein, vesicle, or cell 

adsorption are on the order of tens to hundreds of Hz and single to tens (× 10–6) of 

dissipation units. For viscoelastic films greater than 100-nm thick, these responses are 

typically an order of magnitude higher. 

The final issue that is really an advantage of the QCM-D technique over other methods 

commercially available for label-free bacterial detection, is the use of continuous flow 

cultivation of microbial populations in a steady state of constant active growth. By 

continually substituting a fraction of a bacterial culture with sterile nutrients, the 

continuous culture device, presents a near-constant environment ideal for controlled 

studies of microbes and microbial communities. It eliminates the artificial lag and 

stationary growth phase phenomena characteristic for static culture systems. As 

mentioned in chapter 1, the continuous flow devices serve as a model of a simple 

container where biofilms grow using the available nutrients constantly pumped in. The 

microfluidic devices ascertain the reproducibility of data and offer a possibility of 

studying one or a few environmental factors at a time with the aim of reconstructing 

more complex naturally occurring systems from known elements, being used as a 

laboratory model of the bacterial biofilm infection.  

In summary this chapter presents a theoretical description of a commercial microfluidic 

device to prove the label-free detection of bacterial biofilm under flow conditions. For 

this reason different parameters are tested to find the optimal conditions of continuous 

flow experiments.  



Chapter 3: Quartz Crystal Microbalance with Dissipation (QCM-D) as label-free 
technology for real time bacterial monitoring 
 

46 
 

3.2 Results 

As mentioned before, the optimization of the conditions applied to QCM-D technique 

are subjected to work in a steady state in a microfluidic device (see Figure 3.2) that 

only monitor biological changes caused by the bacterial activity. The attachment and 

development of biofilms on uncoated gold QCM-D sensors was tested at different flow 

rate, temperature, bacterial strain and glucose concentration on the Tryptic Soy Broth 

(TSB) medium. These parameters might also affect the relation between EPS 

development and the viscoelastic properties8. The viscoelasticity of the Extracellular 

polymeric substances (EPS) generated by the biofilm is caused by changes in porosity, 

density, water content, adsorption properties, charge, hydrophobicity, and mechanical 

stability15.  

 

Figure 3.2. Flow module of the QCM-D. (A) The assembly of the flow chamber. (B) Cross section of flow 

module where the sensor is placed under the inlet and outlet channels.  

 

To evaluate the influence of this parameters we have established a basic protocol 

depicted in Figure 3.3. First, a baseline is acquired by flowing through the chamber 

MiliQ water (A). Once both the frequency and dissipation remain constant the bacterial 

solution, with an optical density of 0.084, is introduced into the flow chamber provoking 

a decrease in frequency. This can be appreciated as the bacteria starts to interact with 

the sensor surface (B). As it can be seen, the interaction also leads to an increase of 

dissipation, as the biofilm layer being developed is softer than the sensor surface. After 

the process of biofilm formation was monitored for 22 hours, a wash with MiliQ water 

was achieved in order to eliminate the remaining unbound bacteria (C). This last step 

was expected to cause the detachment of bacteria not properly attached to the 

substrate, reflected by an increase in frequency and a decrease in dissipation signal. 
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Figure 3.3. Frequency and dissipation profiles observed for the standard protocol used in this study16. 

Initial baseline of MiliQ water (A), followed by bacterial seeding and fresh TSB medium (B) for 2 and 20 

hours, respectively (B), Finally MiliQ water was pumped in again to detach the non-adhering bacteria (C). 

The experimental work carried out to evaluate the influence of temperature, flow rate, 

bacterial strain and glucose was applied in the order depicted in Figure 3.4. First a 

positive biofilm bacterial strain of Staphylococcus aureus was utilized to evaluate three 

different temperatures (20, 27 and 37 ºC). Then 27 ºC was the first temperature 

showing a substantial decrease in frequency shift and then a three flow rate test (50, 

100, 200 µL/min) was carried out. After that, from the higher and physiological 

temperature (37 ºC) a third parameter was taken into account to evaluate a possible 

different profile between two different bacterial strains. This comparison studied two 

strains of Staphylococcus aureus, one of them was a non-infective (CETC 239) and the 

other one was the mentioned infective strain (V329), which provokes mastitis bovine17 

being associated to a biofilm formation. As long as S. aureus V329 is the bacterial 

strain that is going to be used in future chapters, also the final evaluation of glucose 

concentration (0, 0.25, 0.5 %) dissolved in TSB medium was performed with this strain 

at a flow rate of 50 µL/min and 37 ºC. 

 

Figure 3.4. Routing slip scheme of the parameters tested with the QCMD equipment. The order of the 

different experimental conditions tested is shown from top to the bottom following the number next to the 

arrows.  
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The initial test with the QCM-D equipment was based on the protocol proposed by 

Schofield et al in 200718 for growing biofilm in the QCMD flow module. The conditions 

reported in that study were at 20 ºC and a flow rate of 50 µL/min.  

 

Figure 3.5. Time course of the Frequency and Dissipations shifts (mean±std, n=3) performed with QCM-D 

for detecting Staphylococcus aureus V329 biofilm development at 20ºC onto gold sensor. 

 

The initial temperature proposed of 20 ºC was tested showing 50 Hz of Frequency shift 

and a very low increase of dissipation, except the third overtone, which is the lowest 

and represent the closest layer sensed on the sensor. It could be caused by a very thin 

layer of bacteria attached on the sensor but a poor growth of bacteria was observed 

subsequently. In parallel to the bacterial growth being monitored with QCM-D a 

continuous image of the attachment was captured with the microscopy technique 

described in section 2.3.1 and depicted in Figure 3.6. 

 

Figure 3.6. Optical microscope images showing bacterial growth on the surface of the QCM-D sensor. 

Continuous flow experiment at 20 ºC with Staphylococcus aureus V329. Images were taken at 2, 5, 10 15 

hours during the bacterial growth in the flow module. Scale bar: 200 µm. 
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When the initial experiment was analysed, a subsequent experiment at 27 ºC was 

performed with the initial flow rate performed of 50 µL/min. With the temperature (27 

ºC) fixed, the flow rate was the condition modified from 50 to 100 and 200 µL/min. This 

increment of flow rate with Staphylococcus aureus V329 was performed with these 

values because presumably they created a very similar laminar flow and no differences 

were going to be expected.  

 

Figure 3.7. QCM-D measurement detecting Staphylococcus aureus V329 biofilm development at 27ºC. 

Three different flow rates were tested with values of 50 (A), 100 (B), 200 (C) µL/min. 

A 

B 

C 
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As it can be observed in Figure 3.7 the increase of flow rate applied to independent 

continuous flow experiments, monitored in the flow module of the QCM-D (Figure 3.2), 

showed a shift in frequency with very similar values in all the overtones measured by 

the QCM-D equipment. This indicates an increase of mass over the sensor surface 

which is higher than the previous experiments which, can be associated with higher 

degree of bacterial attachment and development. The dissipation shifts observed in 50 

and 100 µL/min were very similar with an almost equal profile, especially in the lowest 

overtone (number 3) that showed a higher increase. Although the profile of the 50 and 

100 µL/min was very similar, the trend in the third flow rate only presented similarities 

only in the frequency shifts but no with dissipation. For this reason microscopic 

observations of all flow rates tested was necessary. The optical comparison between 

them was depicted in Figure 3.8 where almost no differences could be observed. The 

final MiliQ water wash altered slightly the frequency shift indicating that the amount of 

adsorbed bacteria almost remained intact, but not 100% attached. This fact reflected 

the existence of specific interactions between the bacterial monolayer with the 

substrate, the gold sensor in this case.  

 

Figure 3.8. Optical microscope images showing bacterial growth on the surface of the QCM-D sensor 

during the continuous flow experiment at 27 ºC with Staphylococcus aureus V329. Three different flow 

rates were tested with values of 50 (A), 100 (B), 200 (C) µL/min. The times acquired during the real-time 

experiments for each different flow rate applied were 2, 5, 10, 15 hours. Scale bar: 200 µm. 
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The third evaluation with the QCM-D technology was the comparison of two different 

strains of Staphylococcus aureus in order to form biofilms. This evaluation compared a 

non-infective bacterial strain with an infective one to determine if the technique is 

sensitive to changes in their growth at the same conditions. This experiment was 

performed at physiological temperature (37 ºC), and the flow rate for this case was the 

lowest of the previous test (50 µL/min), chosen to minimize the amount of necessary 

TSB medium. The QCM-D data was acquired and shown in Figure 3.9.  

 

Figure 3.9. QCM-D measurement detecting Staphylococcus aureus V329 (A) and CETC239 (B). The 

biofilm development was monitored at 37ºC with a flow rate of 50 µL/min. 

 

Interestingly, a similar tendencies was observed in both strains tested in this particular 

case. Furthermore slope and values of Frequency and Dissipations shifts for all the 

overtones analysed presented similar profile as well. In parallel microscopic 

observation was needed to point out some differences in the experiments.  

A 

B 
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Figure 3.10. Optical microscope images showing bacterial growth on the surface of the QCM-D sensor. 

Continuous flow experiment at 37 ºC with Staphylococcus aureus V329 (A) and CETC239 (B). The times 

acquired during the real-time experiments were 2, 5, 10, 15 hours. Scale bar: 200 µm. 

 

In accordance with further microscopic observations, the results indicated that bacterial 

biofilm formed over the QCM-D sensor was very similar for both bacterial strains, but 

slightly more attached for Staphylococcus aureus V329 that presented a more 

organized structure after 10 hours of constant feeding of TSB medium. Comparing 

Figure 3.10A (S. aureus V329) with the previous bacterial structures grown at 20 and 

27 ºC it can be clearly appreciated how the variation in temperature induced changes 

in bacterial attachment, especially in later stages. Then, the variation in temperature 

changed not only the structure observed by microscopy but also both measured 

signals, frequency and dissipation.  

The final parameter tested in this part of the thesis was the glucose concentration fixing 

the conditions already chosen up to this point (Staphylococcus aureus V329, 37 ºC and 

50µL/min). In general, the presence of glucose represses the agr system, already 

described in the introductory chapter, through the generation of low pH19. However, 

biofilm development occurs in physiologic glucose-supplemented medium (1g/L), 

corresponding to normal blood glucose levels20. Glucose is a component that must be 

studied because biofilm formation often occurs on medical devices, like catheters and 

heart valves, which are in direct contact with normal (floating) blood. The QCM-D data 

and microscopy evaluation of the three glucose concentrations were shown in Figure 

3.11 and Figure 3.12 respectively.  
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Figure 3.11. QCM-D measurement detecting Staphylococcus aureus V329 biofilm development at 37ºC. 

Three different glucose concentration were tested with values of 0 % (Red), 0.25 % (Blue), 0.5 % (Green). 

 

 

Figure 3.12. Optical microscope images showing bacterial growth on the surface of the QCM-D 

sensor. Continuous flow experiment at 37 ºC with Staphylococcus aureus V329. Three different glucose 

concentrations were tested with values of 0 (A), 0.25 (B), 0.5 (C) %. The times acquired during the real-

time experiments for each different glucose concentration applied were 2, 5, 10, 15 hours. Scale bar: 200 

µm. 
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The simultaneous measurements of the change in frequency (Δf) and dissipation (ΔD) 

were in this particular case of glucose concentration almost identical in the three cases. 

The biofilm development over the gold sensor described the decrease in frequency and 

increase in dissipation energy. The frequency shift values were very similar in these 

cases as the presented before in the bacterial strain comparison were no glucose was 

included. Moreover, the microscopy images showed a bacterial attachment and biofilm 

development along the vast majority of the surface imaged at late stages of the flow 

experiment (15h). Although the QCM-D data was very similar in all the cases, the 

microscopy showed an early attachment and structuration of the biofilm as long as 

glucose concentration was decreased, which made sense with the fact already 

mentioned of agr system repression in presence of glucose19.  

After analysing the QCM-D data in concordance with microscopy images, the change 

in viscoelastic properties of the adsorbed layer that takes place over the sensor must 

be also evaluated for each parameter studied in this chapter. A method to evaluate this 

viscoelastic properties of an attached bacterial layer consists in plotting the variation of 

the dissipation versus the frequency shift. The influence bacterial attachment on the 

viscoelastic damping of the crystals resonance can be appreciated, allowing to infer 

viscoelastic properties of the adsorbed layer21. In previous reported studies only 

frequency and dissipation was taken into account, and time was eliminated because it 

was considered an explicit parameter, therefore a direct comparison between the 

energy dissipation (ΔD) per unit mass attached to the surface (Δf) was represented22. 

Although, this ΔD over ΔF shows the induced energy dissipation per coupled unit 

mass, making it possible to analyse the effects of the extracellular polymeric substance 

(EPS) synthesis, and therefore the characterization of cell adhesion independently of 

position on the crystal surface23, Fatisson et all in 201124 showed a more complex 

representation displaying Dissipation, Frequency and time, also known as Df-t plot. 

This representation of three parameter in a 3D plot is able to provide relevant insight 

regarding the specific signature of every condition analysed. The specific signature can 

be overlapped to a compared condition and assess the viscoelasticity. The results 

analysed with Df-t plot were organized according the evaluations carried out up to this 

point. Then, four Df-t plots represented the four conditions analysed (temperature, flow 

rate, strain and glucose concentration) and displayed in Table 3.1. This table showed 

the conditions fixed and the condition under evaluation organized in four columns, 

which represent the four Df-t plots depicted in Figure 3.13.   



Chapter 3: Quartz Crystal Microbalance with Dissipation (QCM-D) as label-free 
technology for real time bacterial monitoring 

55 
 

 

Table 3.1. Parameters analysed in frequency and dissipation shifts, with fixed conditions to evaluate the 

influence of the variable condition. The viscoelastic evaluation of the variable condition was carried out by 

representing Df-t plots for each parameter in Figure 3.13. 

  

 

 

Figure 3.13. Plot of the seventh overtone dissipation, as a function of corresponding frequency and time, 

measured for bacterial layer developed on the QCM-D sensor. The parameters under evaluation were: 

Temperature (A), Flow rate (B), Glucose concentration (C) and Bacterial strain (D).  
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Before analysing Figure 3.13 was important to point out that in the previous QCM-D 

results analysed in this chapter all the overtones were showed to provide information 

about the homogeneity of the surface layer, as the detection range from the crystal 

surface decreases with increasing overtone number. Thus, differences in frequency 

behaviour of the different overtones suggest vertical variations in bacterial layer 

properties. However, in order to avoid excessive fluctuations due to environmental 

factors or the crystal sensor itself all the calculations shown with Df-t plots were 

performed using the seventh overtone, which correspond the one located in the middle 

of the overtone set. 

As said before, the relation between the dissipation and the frequency signal can be 

used to analyse the viscoelastic properties of an adsorbed layer. Moreover, the 

representation of ΔD over Δf and time (Df-t plot) reflects qualitatively the amount of 

water trapped within the biofilm, which is an indicator of film viscoelasticity. This feature 

could be also attributed to cell spreading, caused by the formation of the EPS leading a 

progressive increase of viscoelastic mass (owing to high hydration state of cells) on the 

sensor surface.  

The results obtained by this methodology involved plotting the variation of dissipation 

factor along with frequency as a function of time, showed reliable information about 

glucose concentration and bacterial strain, with no viscoelastic difference (Figure 3.13C 

and D). The Df–t plots obtained for different flow rates applied (Figure 3.13B) were 

performed to confirm that working in a streamline flow also known laminar flow, did not 

affect the bacterial attachment and subsequent biofilm development, however the 

highest value (200 µL/min) showed a different profile respect to lower flow rates. This 

different profile observed between 50 and 100 µL/min (ellipse Figure 3.13B) respect to 

200 µL/min, interestingly showed no difference in frequency shift (biomass through 

Sauerbrey relationship) either microscopy images (Figure 3.8), that were similar in the 

three cases. Therefore the difference in this particular case could be owed to the effect 

of flow itself when the damping process begins, avoiding and optimal detection of 

dissipation shift when the flow is increased.  

Finally, the method was shown to be applicable for sensing different temperatures that 

showed a displacement on the profile observed in Figure 3.13A. This suggests that the 

working temperature must be unaltered when ‘specific interactions’ with the surface are 

involved.  
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3.3 Discussion 

Quartz crystal microbalance with dissipation (QCM-D) is an acoustic technique which 

measures both the amount and the viscoelastic properties of an adhering mass on an 

oscillating quartz-crystal sensor surface, in terms of shifts in the resonance frequency 

(Δf) and in dissipation (ΔD). The measurements analysed during this chapter showed 

an increase in dissipation along with a decrease in frequency indicating an 

enhancement of viscoelastic mass at the sensor interface. The increase in viscoelastic 

behaviour of the surface can be correlated with the interaction of bacteria with the 

surface of sensor as a result of surface protein interaction (see Figure 1.2). More 

specifically the EPS that are the components that play the major role in the cohesion of 

the biofilm layers developing on the QCMD sensors. Furthermore EPS are also in 

charge of biofilms viscoelastic properties which in turn, can strongly affect the microbial 

clusters and external biofilm layer that increase resistance to shear (refer to Chapter1). 

In this study, it was observed and monitored how biofilm formation is strongly 

influenced by EPS cohesion and viscoelastic properties. The change of this properties 

produced differences of the EPS that could be also observed in the QCMD window 

module (Figure 2.10). Different EPS originated from biofilms at different flow rates with 

at constant temperature of 27 ºC showed similar adherence and viscoelastic properties 

that were correlated to the EPS composition and to adherence rate of the biofilm, also 

observed by real-time microscopy monitoring. After that it was intriguing to see if the 

platform could be sensitive to see if EPS adherence and viscoelasticity changed in 

correlation to different bacterial strains, promoting differences in biofilm development. 

As it was observed in the results no substantial differences were found. Temperature 

was also tested to detect changes of biofilms grown under constant flow conditions. 

This parameter exhibited some difference in the QCM-D data, showing a higher 

decrease of frequency shifts indicating more biopolymer layers created on the surface. 

Finally the addition of glucose was tested at 27 ºC in the presence of Staphylococcus 

aureus V329, the strain tested with the platform designed and optimized in the 

following chapters, did not show a significant difference in the biofilm development 

profile.  

As mentioned before, an important issue of this technology applied to biological 

applications is that dissipation can extract viscoelastic parameters that are critical, to 

avoid underestimated calculations of adsorbed mass of cells. The shear wave of the 

oscillating quartz is dampened out before even reaching the middle of the cell in the 

simple QCM frequency2. Furthermore, the spatial distribution of cells on the quartz 
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sensor surface might affect the reproducibility between measurements22. However, the 

lateral sensitivity of Δf and ΔD is the same5, for this reason plotting the Df-t plots 

represented at the end of the chapter were useful for giving a qualitatively independent 

information of the cell spatial distribution, therefore the effect of irreproducibility 

between each measurement was attenuated. The 3D plots representing frequency, 

dissipation and time, showed the similarities (ellipses of Figure 3.13) and differences of 

the parameters studied estimating the viscoelasticity, and these differences could be 

attributed to an increase EPS production of the bacterial culture.  

 

3.4 Final Remarks 

The technology has reached a point where commercially available instruments exist as 

well as associated theoretical models required for interpreting data in terms of 

meaningful physical parameters such as mass, thickness, density, viscosity, or storage 

modulus.  

These achievements, plus the various publications using QCM-D, of which only a small 

number are described in the chapter, help to lay the groundwork for the QCM-D 

technology transitioning into a standardized approach for addressing questions about 

biological materials and their interactions, which are going to be more studied in 

chapter 7. 

Since it would be hard to point out how a combination of the parameters tested may 

influence the properties of the attachment and accumulation of biofilm on the surface, 

the analysis of viscoelasticity represented in the Df-t plots helped to relate between 

EPS properties and biofilm development. 

In summary in this chapter it is demonstrated the ability of QCM-D technique to monitor 

the bacterial growth onto gold surface, aiming to gain a little insight about label-free 

technique combined with microfluidics. Furthermore the working conditions stablished 

in this chapter are going to be useful to apply on the custom-made platform designed 

and tested in the following chapters. These conditions were 50 µL/min of flow rate, 37 

ºC, no glucose concentration on Staphylococcus aureus V329.   
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4.1 Introduction 

In the previous chapter it was described the validation of flow conditions for biofilm 

formation and development. Once the flow was validated with the QCMD, as described 

in chapter 3, we propose a device with Electrical Impedance Spectroscopy (EIS) as 

different label-free technology, with continuous flow of culture media during the biofilm 

development. The design of this platform is described in this chapter to carry out the 

desired dimensions, and for an optimal fabrication of the EIS device. For this reason a 

brief explanation of microfluidics devices is necessary before design and fabrication of 

the real platform utilized.  

In the last two decades there has been a growing interest in design, development and 

utilization of microfluidic devices for many applications1,2 (Table 4.1). These devices can 

emulate biological phenomena that occur in different geometries, fluid dynamics and 

temperatures closed to physiological microenvironments. While most research efforts in 

microfluidics to date have focused on eukaryotic cells, they are expected to play an 

important role in advanced microbiology, due to local control of microenvironments 

around the microbial cultures and for providing reproducible and identical conditions for 

biofilms3,4 found in vivo. The creation of these tailor-made microfluidic devices for 

research applications have been a reality since in 1998 a set of manufacturing 

techniques were developed to allow the creation of micro-structures in a simple and 

highly reproducible manner1,2. Moreover, there has been even more potential with the 

introduction of Computer-Aided Design (CAD) software to feed manufacturing 

techniques such as soft lithography. The conjunction of both methods permits not only 

possibility to create a micro-reactor for specific applications, but also design iterations, 

that can be easily done to achieve, in a not very expensive way, systems that are 

perfectly suited to the needs of research1,5–7. The final design of the device is based in 

different considerations like the size of the channel that will have a constant fluid flow of 

fresh Tryptic Soy Broth (TSB) during the biofilm formation. The width of the channel is an 

important dimension of the device because it should be dimensionally similar to a 

standard implant infection as the hip joint8. The free zone region of the hip joint can 

exhibit bacterial infection after the surgery like the study reported by WN. Ueng, CH. 

Shih9, in 1995 that showed an early and late infection by Mycobacterium tuberculosis 

biofilm after hip arthroplasties. Approximately 50% of nosocomial infections per year in 

the US are associated with IMDs10 so the understanding of bacterial infections should be 

done with similar dimensions of its cause and more importantly with a laboratory model 

priory to practice novel treatments in human to prevent and/or avoid biofilm 

development.  
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Table 4.1. Potential applications for microfluidics devices Cooper & Whitesides et al 2. 

 

4.2 Platform design 

The design of the platform is based on previous work with fluidic devices optimized for 

biofilm growth with continuous flow11 and commercial impedance data analysis named 

Real Time Cell Analyzer (RTCA) which was invented by ACEA Biosciences and co-

developed by Roche12–14 (Figure 4.1). This commercial system is also known as 

xCELLigence and is a labelling-free cell based assay system integrating microelectronics 

and cell biology, suitable for uninterrupted monitoring of living cells. This system relies 

on a micro-electronic biosensor built to measure the electrical impedance of the cell 

population in every single well (Figure 4.1D). Although the data provided by RTCA is 

very valuable, the implementation of continuous flow for biofilm formation is necessary 

parameter for understanding the biofilm detachment15. For this reason the design of the 

platform consist in a flow channel to incorporate gold electrodes with different 

configurations and compare their sensitivity to monitor the attachment of the biofilm and 

the subsequent development over these electrodes. 

AREA APPLICATION 

Miniaturized analytical systems  

Genomic and proteomics Rapid, high density sequencing, DNA fingerprinting, combinatorial analysis, 

 forensics, gene expression assays,  integration of fluidics with DNA arrays 

Chemical/biological warfare defense Early detection and identification of pathogens and toxins; early diagnosis; 

 Triage 

Clinical analysis Rapid analysis of blood and body fluids, point of care diagnostics based on 

 immunological or enzymatic assays, electrochemical detection, and cell counting 

High throughput screening Combinatorial synthesis and assaying for drugs. Toxicological assays 

Environmental testing In situ analysis of environmental contamination 

Biomedical devices  

Implantable devices Devices for in vivo drug delivery, in vivo monitoring for disease and conditions 

Tools for chemistry and biochemistry  

Small-scale organic synthesis Combinatorial synthesis 

Sample preparation Purification of biological samples for further analysis 

Amplification of nucleic acids/sequences PCR, RT-PCR 

Systems for fundamental research  

Systems with which to study the flow of fluids Studies of EOF and laminar flow in small channels, studies of diffusion 

Studies of chemical reactions Enzyme-substrate 

Biomimetic systems Development of machines that mimic biological functions 

Systems to study small amounts of sample Detection of single molecules 
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Figure 4.1. Conceptual platform: Electrochemical impedance spectroscopy. (A) Drip Flow Biofilm Reactor 

designed by Goeres et al 11. (B) Commercial platform for Impedance analyses known as Real-Time Cell 

Analysis (RTCA) from Roche Instruments. (C) 96well plate with impedance electrode at the bottom of the 

each well. (D) Zoom of the interdigitated microelectrode (IDuE) of an individual well of the commercial 

platform. 

 

4.2.1 Sensor design and Finite Element Modelling (FEM) analysis 

The sensor is designed to limit the size of the entire platform. This sensor have punctual 

electrodes (WE) to measure dissolved oxygen (DO) 16, K+, Na+ and pH. Above an 

interdigitated microelectrode 1 (IDuE 1) was placed to perform indistinctly two and four-

electrode configuration impedance measurements on the same device. Also a two-

electrode configuration system (IDuE 2) is present to emulate the disposition in the 

space and the electrode dimensions used in the commercial XCelligence® equipment of 

Roche.  

 

Figure 4.2. Impedance gold sensor. (A) Zoom of the rectangular IDuE fabricated on pyrex substrate. (B) 

Chip module containing the different sensors. The chip contains two IDuE, rectangular (IDuE 1) and circular 

(IDuE 2). The electrodes for the measurement of dissolved oxygen are the reference electrode (RE), the 

working electrode (WE) and the counter electrode (CE). The punctual electrodes (PE) for the potentiometric 
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measures are prepared to be selective for Na+ and K+. For the pH measurement, an additional iridium oxide 

layer is electrodeposited on the electrode selected. For robustness purposes, the PE are replicated. The 

reference electrode for potentiometric measures of Na+, K+ and pH is the silver/silver chloride electrode 

(Ag/AgCl RE). 

This section details the overall design of the multi-parametric sensor, focusing in this 

section only on the performance of the impedance characteristics. To optimize the 

physical dimensions and geometry of the IDuE (Figure 4.4A), we simulated with 

COMSOL Multiphysics® 4.4 (Burlington, MA, USA) a 2D cross-section FEM model of 

the electrode geometry with a mesh of 20,000 elements (Figure 4.4B). The impedance 

sensitivity, which depends on the electrode dimensions, was calculated according to 

Grimnes and Martinsen17 

𝑆 =
𝐽1𝐽2

𝐼2 ,   (Equation 4.1) 

 

where S is the sensitivity to the conductivity changes as a function of the position, J1 is 

the current density vector when the current is injected between I+ and I- electrodes, and 

J2 is the current density vector when the same current is injected between the voltage 

sensing electrodes V+ and V-. The results in Figure 4.4B reveal that the area where the 

IDuE sensitivity is higher corresponds to gap area between the IDuE groups denoted in 

the figure as WINT. The FEM results (Figure 4.3) reveal that the optimal geometry is a 

trade-off between minimizing WINT while also keeping minimal WD and nD, and maximal 

LD. In all, the dimensions of the IDuE are WINT = 21 µm the interdigitated group space, 

WD = 21 µm the digit width, nD = 32 the number of digit pairs and LD = 7.11 mm the digit 

length (detail shown in Figure 4.2A). The chip dimensions are 23 mm x 18 mm. 

 

Figure 4.3. Internal parameters of the IDuE dimensions. (A) Relative increase in the impedance magnitude 

according to the height of biofilm Hb for different separations WINT. The percentage of impedance variation 

decreases accordingly to the decrease of WINT when considering small thickness biofilm Hb. (B) Relative 

decrease in the magnitude of the impedance as a function of the separation WINT considering a given Hb. 
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The chip also incorporates additional sensors (Figure 4.2B) described elsewhere16,18 for 

measuring different biofilm parameters of interest. The punctual electrodes allow to 

make electrochemical measurements of DO, K+, Na+ and pH. The amperometric 

measurement of DO is achieved using a working electrode (WE), a reference electrode 

(RE) and a counter electrode (CE)16. The measurement of Na+ and K+ ions is performed 

with a potentiometric ion-selective technique using the WE for each ion measurement 

and the RE. Finally, the pH sensor consists of a punctual electrode with an iridium oxide 

layer using the WE and the RE 18.  

 

Figure 4.4. Dimensions of the electrodes and its sensitivity. (A) Schematic design of the interdigitated 

microelectrode (IDuE) optimized. The IDuE fingers are connected to the outer and inner current and voltage 

electrodes denoted in the Figure as I+ and I- and V+ and V- respectively. (B) Sensitivity map obtained from a 

2D cross-section finite element model (FEM) considering the height of the biofilm and the flow channel, Hb 

and Hm respectively. Abbreviations: WINT, interdigitated group space; WD, digit width; nD, number of digit 

pairs; LD, digit length. 

 

In Table 4.2 are summarized the main parameters of the developed FEM model, which 

is schematically depicted in Figure 4.4. It consists of two domains, one to model the 

culture medium (Hm) and another one to model the biofilm structure (Hb). From an 

electrical point of view, both domains are considered as a saline solution, and the 

electrical conductivity of the biofilm structure is modelled with a lower value than the 

culture medium conductivity in order to model the decrease in ion mobility due to the 

presence of EPS19. Moreover, the model also implements a four-electrode measurement 

setup. Thus, to simulate impedance measurements, a constant AC current has been 

injected through the outer electrodes (I+ and I-) and the inner electrodes (V+ and V-) 

used to sense the voltage drop (Figure 4.4). Then, the impedance has been calculated 

using Ohm’s law, Z=V/I.  
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 Symbol Value Units 

Culture medium    

Electrical conductivity σm 1.5 S/m 

Dielectric permittivity εm 80  

Height Hm 10 mm 

Biofilm    

Electrical conductivity σb 1.3 S/m 

Dielectric permittivity εb 80  

Height Hb 0 ─ 1 mm 

Electrodes    

Digit length LD 7.11 mm 

Digit width WD 20 µm 

Number of digit pairs nD 32  

IDEs separation WINT 20 µm 

 

Table 4.2. Electrical and geometrical properties of FEM model. 

 

 

4.2.2 Device design and Computational Fluid Dynamics (CFD) analysis 

The different designs of the platform were performed with Catia V5R19 and the internal 

volume of them were computationally modeled with finite elements to simulate the flow 

range to work. The computational fluid dynamic (CFD) was projected through this 

internal channel of the microfluidic device and exported to IGES extension file (Initial 

Graphics Exchange Specification) shown in Figure 4.5. This file allows the simulation to 

run with the initial conditions required as input of the software (Table 4.3). With this 

conditions a Reynolds number was calculated to confirm the laminar flow along the 

channel supposing a parabolic profile of the flow following Poiseuille model. This model 

generates a distribution of the inlet speeds of the system used as input conditions.   
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Figure 4.5. Suitable computational fluid dynamic simulation requires an internal volume of the flow chamber 

represented in 3D with final high density mesh engineered only appreciable in ZOOM 2. 

This simulation was performed once the internal dimensions of the chamber were 

determined and the software used is Progis®, developed by the international center of 

numerical method on engineering (CIMNE). The 3D volume of the flow chamber was 

meshed (Figure 4.5) with a number of nodes of 183.543 with a maximum distance 

between them of 0.15 mm defining a correct geometry of the system for an optimal 

resolution. Simulations of the internal volume of the platform were based on previous 

work with microbalance experiments growing microbial cultures over the QCMD 

sensors20–22 and carried out in chapter 3. These experiments strongly demonstrated that 

the range of flow conditions were optimal for biofilm development in relative short time 

(24 hour experiment). The flow chosen for the experiment is defined at 50 µL/min 

because is the lowest value for a correct behaviour of the peristaltic pump and also is 

low enough to avoid the use of high amounts of TSB medium for each experiment, 

leading a cost reduction.   

Geometry data   

Inlet diameter / mm 2,5 

Physical properties [water at 25oC]   

 / kg·m-3 996 

 / kg·m-1·s-1 0,86 

Input conditions   

Inlet flow/ nL·min-1 50000,00 

Inlet mean speed/ mm·s-1 0,1698 

Inlet max speed/ mm·s-1 0,3395 

Outlet pressure / Pa 0,00 

Calculation   

Reynolds 0,0004915 

 

Table 4.3. Initial conditions of the Computational Fluid Dynamics (CFD) of the flow system. 
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Finally, the calculations were carried using the fluid dynamic model of Navier-Stokes with 

an increment of the time of 0.1 seconds, and a maximum number of iterations of 3 

delimiting number of steps at 68.000 to obtain a convergent calculation of the internal 

flow of the system in steady state, taking into account that the physical properties of the 

liquid were ideally water at 25 ºC.   

 

Figure 4.6. Simulation of the internal volume of the platform (A) and confirmed when biofilm was grown and 

developed in the experiments of chapter 5. The confirmation showed low bacterial attachment near the inlet 

where the shear-force was higher than the rest of the channel (B and C). 

 

Once a convergent calculation of the internal flow channel was generated, the results 

were depicted performing serial longitudinal cuts shown in Figure 4.6. At the flow rate 

simulated here for the designed microfluidic device it was observed a laminar flow over 

the electrode that remained constant being representative from the beginning of the 

sensing area to the outlet. The higher shear stress at the inlet compared with the rest of 

the internal channel was confirmed when the device was open after biofilm growth 

(experiments from chapter 5) exhibiting no attachment of bacteria during its seeding and 

a consequent absence of biofilm in this location. 

 

  

A B C 
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4.3 Platform fabrication and assembly 

4.3.1 Sensor fabrication 

This work shows an easy way to design an online monitoring biofilm with EIS electrodes 

coupled in a flow channel dimensioned to place a window for microscopy. The 

continuous observation of the bacterial growth over the electrodes with different 

electrode configurations is suitable to compare them and get the best signal to 

understand biofilms. The sensor was optimized before its fabrication modelling the EIS 

signal, dimension of the sensing area and size of the IDE (refer to section 4.2.1). The 

biofilm thickness modelled over the electrode will be confirmed by a real biofilm cultured 

over the IDE and imaged by Scanning Electron Microscopy (SEM) in the next chapter. 

The sensor is an independent part of the device that can be sonicated, autoclaved and 

treated with plasma to reuse the device many times reducing the final cost of the 

experimentation. In addition this property permits the introduction of the sensor i.e. inside 

a plasma reactor for further modification of the surface which performs homogeneous 

thin films of different active molecules23,24, making the system appropriate for real 

attachment studies with EIS and observational monitoring. 

This sensor was fabricated in the clean room facilities at the Barcelona Microelectronics 

Institute, Spain, through standard photolithography techniques 25–27. Three metal layers 

were deposited by sputtering over a 500 µm thick pyrex wafer. First, a 15 nm titanium 

layer was deposited to improve the adhesion of subsequent metals. Then, a second 15 

nm nickel layer was deposited on top to provide a diffusional barrier and to prevent the 

formation of intermetallic titanium-gold compounds. Finally, a 150 nm gold layer was 

deposited. Thereupon, the electrodes and the metal tracks were patterned using 

selective wet etching baths following a standard lithographic process. To define the 

electrode active area and the connection pads, the final photolitographic step was the 

deposition of the passivation layer, which consisted of a double layer of 400 nm of silicon 

oxide and 400 nm of silicon nitrite, using plasma enhanced chemical vapour deposition. 

After the clean room process, a disk saw was used to dice the wafer into individual chips 

(8 per wafer). Finally, each chip was characterized by a cyclic voltammetry using saline 

solution (0.9% sodium chloride) to verify there was no shortcut between the IDuE 

fingers. 
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4.3.2 Device fabrication 

Once the size of the platform is limited by the sensor three different system of additive 

manufacturing were tested to evaluate which is the best way to work with static and 

dynamic culture. Two technologies are based on fotocuring agents from important 

companies as Objet and EnvisionTEC, and the third one is based on extrusion 

technology (Fused Deposition Modelling, FDM) of polycarbonate and is available in our 

facility (IQS) with Fortus 400mc 3D printer. The different evolution of the platform 

designs and the material tested is shown in Annex IV.  

Polycarbonate is a versatile, tough plastic used for a variety of applications, from 

bulletproof windows to compact disks (CDs). The main advantage of polycarbonate over 

other types of plastic is unbeatable strength combined with light weight. While acrylic is 

17% stronger than glass, polycarbonate is nearly unbreakable. For this reason 

polycarbonate was used for iterative experiments with microorganism due to sterilization 

property that is a crucial factor to guarantee experiments with pure microbiological 

cultures. The sterilization of this material could be done using all major methods: 

ethylene oxide (EtO), irradiation (both gamma and electron-beam), and steam 

autoclaving. Polycarbonate could also be disinfected with common clinical disinfectants, 

such as isopropyl alcohol. This range of techniques offers the device designer broad 

flexibility in determining a cost-effective method to develop the needed platform.  

 

Figure 4.7. Fortus 400mc 3D printer uses Fused Deposition Modelling (FMD) technology to print the 

principal lids of the EIS device. The parts printed in the 3D printer machine have material support with 

different mechanical properties to separate easily (see below). 
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The fabrication process of the device required an additional material for placing the EIS 

sensor and fit this correctly with the flow channel and the spring-loads, which are 

necessary to connect the sensor to the electronics (see Assembly section 4.3.3). This 

additional material was Polydimethylsiloxane (PDMS) used for the channel and the 

support of the EIS sensor and components shown in Figure 4.9. This PDMS channel 

with the connectors and the base was patterned via replica moulding technique applying 

different master structures that act as negative piece (Figure 4.8). The master structures 

were also printed in 3D with FDM technology that can be appreciated in Figure 4.8 A, D 

and F that are the points where PDMS is applied for its reticulation for 5 hours at 60 ºC. 

 

Figure 4.8. Stepwise fabrication process of the device to place Electrochemical Impedance Spectroscopy 

(EIS) gold sensors. (A) Top lid and master support. (B) Top lid with master support and connector to 

introduce PDMS in the window and around the connectors. (C) Top lid with cured PDMS fixing the 

connectors. (D) Top lid upside down with the second master allowing the formation of PDMS O-ring. (E) Top 

lid finished for its use. (F) Master moulding for PDMS support formation. (G) PDMS cured in the master with 

sensor space formed with the reference (red arrow). (H) Top and Bottom lids with sensors plastic screws, 

PDMS window and support.    
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4.3.3 Platform assembly 

When the fabrication process of the device and sensor finished the platform was 

assembled to accomplish two main objectives: the impedance and the microscope 

monitoring at the same time. In terms of material, we know that biofilm attaches to 

biological or non-biological surfaces28 so as described above, the device was 

fabricated with two non-biological materials with biocompatibility. The first one is 

Polycarbonate (PC) used for the construction of the two main lids of the device (Figure 

4.9A) that mainly had the function of holding the channel, connectors, screws and 

sensor all together and close the device in a single piece. The technology used to 

fabricate the parts previously designed in the computer is a 3D printing technique 

known as Fused Deposition Modelling (FDM) which is very cheap and quick for device 

fabrication29. The second material is Polydimethylsiloxane (PDMS) which is well known 

for its biocompatibility30, gas permeability, mechanical flexibility and optical 

transparency31. This material is used to generate the channel and the sensor support 

(Figure 4.11) having in contact only PDMS and the biosensor with the bacterial culture 

once the device is closed (Figure 4.9B). The mentioned properties are very important 

for the setup because the culture needs biocompatibility to grow the biofilm correctly, 

gas permeability to supplement oxygen constantly in the device while the nutrients are 

pumped through the channel, mechanical flexibility for the base of the sensor that 

avoids the sensor fracture when the two parts are closed, and finally the optical 

transparency for the microscope window over the sensing area.  

 

Figure 4.9. Prototyped device with Catia V5R19. (A) Computed aided design and components of 

microfluidic device designed. (B) Cross-section of the device under the microscope. 
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The perfect assembly of the device and closing process by using four screws in the 

corners of it, guarantees no fluid scape in the microfluidic device (see lasts version of 

Table 4.5) and as seen in Figure 4.9. This device used spring-load for the EIS 

connections instead of Printed Circuit Board (PCB) connected to the sensor and 

protected with black epoxy resin (Figure 4.10A) which is used very often in electronics. 

This feature complicates the use of flow channels with sensors connected to EIS 

equipment due to the poor homogeneity of the thickness. Thanks to the spring-load the 

sensor is connected to the cables only during the assembly having the sensor as a 

single part when the device is open (Figure 4.9). This setup avoids soldered parts for 

connections allowing a proper sterilization by autoclaving before the experiment giving 

to the user the capacity to reuse the sensor. Besides, the biofilm formed can be imaged 

easily with confocal microscope because the sensor, as independent part, is 

completely flat and fits perfectly with cover slip to perform end-point assays.     

 

Figure 4.10. Printed Circuit Board commonly used in electronics (A). Spring-load in low stroke force (B) 

and maximum stroke Force (C). 

 

As mentioned above, the electronics of the system performed in the device were 

designed to hold the spring-load that has a stoke range over the pad contact zone of 

the sensor. This design has to guarantee a perfect spring pin application to operate in 

the Mid-Stroke range when the platform is assembled. Operating at the Minimum 

Stroke Force range may produce a short-circuit for the lack of contact (Figure 4.10B) 

and operating at the Maximum Stroke Force may over-compress and damage the 

spring pin or even break the electrode when this press the lower zone of the sensor 

(Figure 4.10C). 
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The final design allows a proof of concept with the different components of the platform 

and its validation to compare in the laboratory of microbiology the computational design 

with the real prototype (Figure 4.11). The flow channel is suitable for flow experiments 

feeding the biofilms with Tryptic Soy Broth (TSB) and this flow channel fitted onto the 

electrodes of interest has a PDMS window allow a microscopy monitorization.    

 

Figure 4.11. Open view of the microfluidic platform. (A) Designed with Catia V5R19 and (B) Zenithal view 

of the platform fabricated with rapid prototyping technique. 
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4.4 Final Remarks 

It was observed that there is no fluid loss during the process and the final version is 

consistent enough to carry out the biofilm studies with reusability by autoclaving the 

sensors and platform before each experiment. Also, the geometry simulation of the 

interdigitated microelectrode (IDuE) with a finite element model allowed the 

optimization of the sensitivity of our sensor for the detection of Staphylococcus aureus 

biofilm proliferation. The suitability of the microfluidic platform design is going to be 

validated in the next chapter to perform a selective label-free monitoring of S. aureus 

under constant flow conditions combining simultaneously microscopy and impedance 

measurements with two- and four-electrode methods.  

Contrary to other state-of-the-art approaches based on commercial multi-well plates 

used today for biofilm assays, our multi-parametric microfluidic platform could be 

integrated in multiple environments and offers the advantage to account for the effect 

of shear stress on the formation of bacterial biofilm, a variable that affects biofilm 

structure and behaviour32. Furthermore, the system presented also offers the possibility 

to measure multiple read-outs configurations to detect other analytes of interest such 

as dissolved oxygen, K+, Na+ and pH.  

In summary it can be said that up to this moment there was no other platforms 

optimized to: grow a biofilm under flow conditions with a microfluidic device designed to 

use IDuE integrated, and electrodes performed for an optimal sensitivity. From this 

point the real applications of this platform will be developed in the next chapters.  
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5.1 Introduction 

The previous chapter was focused in the optimization of the multi-parametric 

microfluidic platform with computational tools and fabrication with additive 

manufacturing techniques of both principal components: the device and the sensor. 

Once the assembly of all the components was tested to evaluate possible fluid scape, 

the biofilm detection method (EIS technology) is going to be deeply studied along this 

chapter.      

As explained in the introductory chapter, the bacterial attachment and the development 

of microbial communities commonly known as biofilms have a relevant impact in 

medicine being prominent source of infection1, mainly indwelling medical devices, such 

as the catheters and heart stents that often requires a complete removal of the device 

from the patient2. For this reason, the bacterial infection needs to be studied at 

laboratories as biofilm instead of planktonic.  

Briefly, the biofilm formation has been described in the literature as a three-step 

process, first starting with an initial attachment of the bacteria to the material surface 

followed by the formation of a strong bacterial layer and finally the maturation/activation 

of the biofilm by secreting extracellular polymeric substances (EPS)3 that provides to 

the bacterial community a high resistance to antibiotics4,5 and mechanical stress.   

As commented before it was pertinent to develop tools that allow non-disruptive, 

continuous and label-free monitoring for studying the dynamic process of biofilm 

formation6. The method utilised in this chapter for microorganism growth detection is 

based on electrical impedance spectroscopy (EIS) measurements7 used under flow 

conditions, a parameter that highly affects biofilm structure and behaviour8.  

Monitoring biofilm formation combining label-free biosensors and impedance 

spectroscopy measurements on the surface of electrodes is an alternative approach 

that has gained increasing interest, previously described using IDuEs9–14 which 

combine both impedimetric and amperometric measurements15. In particular, much of 

the existing studies are based on two- or three-electrode measurements16–20 because it 

is simplicity and ability to detect and track the biofilm formation by the changes 

occurring at the surface electrode. These features are of great interest by themselves 

but introduce a source of indetermination if the interest is to obtain a quantitative 

measurement of the biofilm growing in the layers above the electrode surface. On top 

of that, the fact that the two-electrode configuration includes the impedance and 

polarization of the counter and the working electrodes can jeopardize the data analysis 
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if the contribution of each electrode is not the same. Furthermore, when the electrode 

surface is fully covered by bacteria or EPS, the inherent sensibility of this technique is 

significantly reduced as compared to the four-electrode configuration technique 21. With 

the four-electrode method 22, the effect of the electrode-electrolyte is excluded from the 

impedance measurement offering an increased sensitivity to monitor cell concentration 

and the possibility to extract morphological and structural information from the 

impedance (refer to Section 5.2.3). Despite the aforementioned advantages, we are not 

aware of any previous work where four-electrode electrode measurements were 

performed in a microfluidic device to monitor biofilm, so this technology will be further 

studied and refined in this chapter to confirm the optimization of the sensor carried out 

in chapter 4. 

The culture area of the proposed platform was fabricated using transparent material 

over the electrodes to enable the comparison with microscopy evaluation techniques. 

In this work real-time monitoring of a Gram positive pathogen, Staphylococcus aureus 

V329, was carried out. This strain is a very pathogenic bacteria and good biofilm 

former23,24 that provokes mastitis bovine affecting the alimentary field, nevertheless it 

requires lower biosafety level thanks to be an animal infective strain that forms biofilm 

only in the cow udder. However as described before all the experiments were prepared 

in a class II safety cabinet (Figure 5.1A and B) and took place inside an incubator 

(Thermo scientific) at 37 ºC (Figure 5.1C). 

 

Figure 5.1. Continuous flow experiment preparation. (A) Connection of all the components inside a 

biosafety cabinet. (B) Assembly of the platform, bottles and peristaltic pump on the incubator tray. (C) 

Perform the software to connect by Bluetooth the impedance analyser with the laptop and record the data 

wireless.  
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5.2 Results 

5.2.1 Continuous flow experiment for biofilm formation 

In order to prepare the continuous flow experiment the bacteria were prepared as 

explained in section 2.2.2 from glycerol stock cultures stored at -80 °C and streaked 

onto tryptic soy agar (TSA) plates24. The agar plate was placed into an incubator at 37 

°C for 16 hours to grow the colonies and for picking up a single colony to a falcon tube 

containing 10 mL of tryptic soy broth (TSB) medium agitated for 16 hours at 37 °C. 

Following, the culture was diluted to have a final absorbance of 0.084 at 600 nm 

wavelength. This dilution was used to feed the measurement device in the Phase 2 

(Seeding) of the flow experiment to generate the biofilm (Figure 5.2). 

 

Figure 5.2. Flow diagram of the measurement setup. The system is divided in: (A) reference device and 

(B) measurement device. The experiment is divided in three phases. The Phase 1 (conditioning) is 

pumping TSB to the reference and the measurement devices for 2 hours. The Phase 2 (seeding) pumps 

bacteria into the measurement device for 2 hours. The Phase 3 (biofilm growth) pumps TSB medium for 16 

hours. During the phase 2 and 3 the reference device is pumped with TSB medium.  
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During the course of the experiments, the two independent channels of the peristaltic 

pump (Reglo ICC, Ismatec, Glattbrugg, Switzerland) were working simultaneously. 

Both channels were connected with PharMed® Ismaprene tubes (0.89 mm internal 

diameter) to the microfluidic platform. A third channel was used to introduce fresh TSB 

medium into a second microfluidic platform to have negative control of biofilm 

formation. Both devices were connected to the impedance analyser multiplexed front 

end and the impedance measurements were repeated every 10 minutes. The 

experiment consisted of three phases (Figure 5.2): 

1. Conditioning phase. Constant feeding of TSB medium to stabilize the system 

forming the conditioning layer over the electrode and to prevent the formation 

of bubbles. Duration 2 hours, flow rate 50 µL/min. 

2. Seeding phase. Introduction of the bacteria into the system. Duration 2 

hours, flow rate 50 µL/min. 

3. Biofilm growth phase. Constant feeding of sterile TSB media to establish the 

biofilm over the biosensor. Duration 22 hours, flow rate 50 µL/min. 

 

5.2.2 Electrical Impedance Spectroscopy (EIS) for online Biofilm 

monitoring 

The first result using the designed device and performing the experiment described 

above was carried out to compare the two and four electrode configuration systems 

with only the custom IDuE 1 with the measuring device and the reference device 

(Figure 5.2). Impedance evolution is showed in Figure 5.3 A and B for two-electrode 

configuration in a Bode representation for different times of the biofilm formation (5, 11, 

17 and 23 hours), and Figure 5.3 D and E for four-electrode configuration. As 

commented, the two-electrode measurements behaviour is controlled by the electrode 

EDL for frequencies below 7 kHz, and at higher frequencies it is controlled by the 

solution resistance. Likewise, in the case of four-electrode measurements, the solution 

resistance only controls the measurement. Therefore, a resistive behaviour (flat 

modulus and 0º in phase shift) is expected, at least during the initial measurements. 

However, this behaviour is only observed at frequencies below 19 kHz. This deviation 

from the expected behaviour can be associated with capacitive couplings and current 

leakages due to the instrumentation and wires, for this reason in both cases to better 

analyse the obtained results and evaluate the ability of the proposed design to monitor 

the biofilm growth, the time evolution has been represented using a single frequency 
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with a value of 12 kHz. The Bode plot represented showed a higher difference in 

between the different times plotted (5, 11, 17, 23 hours) for four-electrode 

measurement (Figure 5.3D) compared with two-electrode measurement (Figure 5.3A) 

which means a higher sensitivity assuming a bigger detection window. Interestingly the 

relative change of impedance along the time for a single frequency showed the real 

difference of both configurations. An obvious artefact effect was observed especially 

during the Phase 2 (seeding) of the setup that corresponds to the green square of the 

Figures 5.3 C and F where the bacteria dilution was pumped into the measurement 

device. The increment of the signal during this stage is caused by the lower 

temperature of the TSB used for the bacterial dilution which was not pre-warmed at 

37ºC. These results confirmed a high influence of the temperature in both electrode 

configuration measurements, especially during the Phase 2 of the experiment. 

Furthermore the surface covered area was more influenced in the two-electrode 

measurement compared with the four-electrode measurement, because this last suffer 

a recovery in short time (less than 1 hour) allowing the impedance signal to detect an 

increment caused by the biofilm formation. 

 

Figure 5.3. Comparison between two and four-electrode measurements of the measurement device. Bode 

plot of impedance module versus frequency at different times of two-electrode configuration (A) and four-

electrode configuration (D). Bode plot of phase angle versus frequency at different times of two-electrode 

configuration (B) and four-electrode configuration (E). Relative change normalized of the magnitude of the 

electrical impedance versus time of two-electrode configuration (C) and four-electrode configuration (F) at 

a frequency of 12 kHz.  
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Comparing the reference device with the measurement device (both depicted in Figure 

5.4A and B) the presence of bacteria and the biofilm development during the 

experiment is confirmed due to the signal increment of impedance for a single 

frequency, in the measurement device (Figure 5.4A) while the reference device (Figure 

5.4B) remains almost flat during 17 hour, where presumably a contamination of the 

inlet bottle with TSB medium was present. Since the fresh TSB medium feeding both 

devices was independent a contamination of the reference device did not affect the 

measurement device. Only by visualising the bottles connected to channel 1 and 

channel 2 and represented in Figure 5.2 a contamination could be detected after the 24 

hour experiment, discarding in this case a contamination in the measurement device, 

because there was no turbidity in the TSB medium feeding bottle connected to this 

device.      

 

Figure 5.4. Four electrode Impedance Spectroscopy data. Relative change of the normalized electrical 

impedance versus time of the measurement device (A) and the reference device (B). Representation in the 

complex plane of the impedance measured with four-electrode configuration of the measurement device 

(C) and the reference device (D). 
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The representation in the complex plane, decomposing in real (resistance) and 

imaginary (reactance) data, of the impedance for both devices showed that the arc in 

the biofilm moved on the horizontal axis during the experiment due to the proliferation 

increasing the resistance, whereas the reference channel only increased at the last arc 

represented attributed to contamination detected after 17 hours. Once the platform was 

preliminary tested, the biofilm formation during 24-hour experiment was initiate to 

compare real-time data using the optimized IDuE with the circular IDuE electrode 

similar to that from Roche Applied Science (Basel, Switzerland) (see section 4.2). The 

EIS results were repeated n=3 and confirmed by scanning electrode microscopy and 

fluorescence microscopy after live/dead cell staining of the biofilm measured.  

 

Figure 5.5. Time course of the normalized impedance magnitude (mean±std, n=3) detected with the 

rectangular and circular interdigitated microelectrodes (IDuEs), IDuE 1 and IDuE 2 respectively, in the 

measurement channel.  

 

The results were shown in the time course of the impedance magnitude at 12 kHz 

where it is more sensitive to biofilm formation25. Impedance is normalized to its 

maximum value for comparison purposes (Figure 5.5). The unexpected increase at 2 

hours is attributed to the transient phase before stabilization of the TSB containing 

bacteria that cooled down during its preparation. Similar to the results shown by 

Paredes et al in 201313, the ideal point to detect impedance changes due to biofilm 

growth is about 5 hours. In the initial phase where the concentration of biofilm is low, it 

can be seen that sensibility of the two-electrode technique to detect biofilm proliferation 

is decreased. Figure 5.5 shows also that the two-electrode circular IDuE has lower 

dynamic range to detect cell growth than the rectangular IDuE, and after 10 hours 

saturates to its maximum value. The ability to detect growth changes can be further 
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improved with the four-electrode method. The detected change is 15%, approximately 

5% higher than two-electrode method measuring under the same experimental 

conditions. The level of impedance changes detected is similar to that 10% change 

detected for the same range of frequencies at 12 hours obtained by Zikmund et al 26 

where the growth of Echerechia coli was monitored. 

Despite the differences in the dimensions and geometry between pathogens, E. coli is 

a rod-shaped bacterium and measures approximately 0.5 μm in width by 2 μm in length 

while Staphylococcus aureus has a spherical shape and size of 0.5-1 μm, it was 

detected the same relative change at 10 hours after infection (2 hours after starting the 

experiment). Compared to the 5% impedance change detected by Paredes et al 13, we 

think this difference may be due to the electrode optimization through FEM simulations.  

 

5.2.3 Impedance models for structural and morphological biofilm 

changes  

Impedance data measured with the four-electrode configuration method was fitted to 

the empirical complex nonlinear model described by Cole approximation27, to perform 

an approximation of biological changes occurring during the biofilm formation.  

.  (Equation 5.1) 

The acquired data was plotted in Matlab (Natick, MA, USA) using Marquardt-

Levenberg iterative weighted complex nonlinear least square algorithm28. The 

maximum iterations and the fitting tolerance were set to 1e6 and 1e-12 respectively. 

From the optimal curve-fit parameters, the Jacobian was calculated numerically. The 

covariance matrix was estimated from the Jacobian using a diagonal matrix containing 

as weights the impedance data std. The asymptotic standard error for the optimal 

model parameters was finally obtained from the square root of the diagonal elements of 

the covariance matrix. The central relaxation frequency  corresponds to the 

frequency with the highest absolute value of the impedance imaginary part. The  

parameter explains the dispersion in the cellular membrane capacitances measured 

thus is related to the dispersion of the shape and size distribution. The case when =1 

the ideal case when cells are perfectly homogenous with a spherical shape as 

proposed by Fricke and Morse 29. The resistances  and  are the resistances when 
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Figure 5.6. Equivalent circuit of the Biofilm Impedance spectroscopy. (A) Representation in the complex 

plane of the impedance measured with four-electrode method. The solid lines correspond to the Cole 

fitting. Time course of the impedance model parameters (mean±std);  and  represent the 

impedance resistances when  and  (B), fc is the center frequency of the impedance 

relaxation (C) and α (dimensionless) the empirical parameter (D). 

 

Figure 5.6A shows the fitting four-electrode impedance data to the Cole model for 

different time points. It is noted that as the experiment proceeds, the impedance arc 

moves on the horizontal axis due to an increased resistance caused by cell 

proliferation. The details of the time evolution of the parameters  and  are 

illustrated in Figure 5.6B. The increase in  and  at 2 hours is due to the same 

reasons mentioned in the previous section (cooling down of the bacterial preparation). 

Immediately after, both parameters  and  started to increase during the first 15 

hours. Thereafter, while  continued to increase slightly over time,  experienced a 

slight decrease starting at 20 hours. We hypothesis that this decrease might be caused 

by the metabolic activity of the biofilm, which changes the intracellular ionic 

concentration of the medium affecting the high frequencies as reported Varshney and 

Li in 20089. 
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As for the value of the center frequency shown in Figure 5.6C, the high value at the 

beginning of the experiment (approximately 150 kHz) and the monotonously 

decreasing evolution from 5 hours reveal structural changes occurring during formation 

of the biofilm. The high value of the center frequency in the early hours reflects a lower 

cell dimension corresponding to a few scattered cells on top of the electrode surface. 

The increase in dimension when cells are clustered forming colonies leads to a 

reduction in the center frequency (about 130 kHz). Of note, the frequency range in 

which morphological changes can be detected is in the range of 100 kHz to 200 kHz, 

where the electrode impedance contribution measured with the two-electrode method 

might hinder the detection of such changes (Figure 5.7).  

The observation in the change in biofilm structure is also supported analyzing the time 

dependence of the parameter in Figure 5.6D. At the beginning of the experiment, the 

value of is closer to one due to the homogeneity of the cells present on the electrode. 

The few sparse cells present on the electrode surface still maintain their spherical 

shape intact. The lower value explains when cells group together to create colonies 8. 

At first, clusters of cells and colonies are of a variety of sizes and therefore more 

heterogeneous than the initial phase. As the dimensions of the colonies are more 

homogenous, the alpha value increases towards 1. 

 

Figure 5.7. Impedance magnitude spectrum (mean±std, n=3) using the rectangular interdigitated 

microelectrode (IDuE 1) switching between two-electrode (A) and four-electrode (B) methods.  
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In order to prevent the interpretation of the four-electrode impedance measurements 

could be influenced by ion concentration changes due to the biofilm metabolic activity 9 

or temperature variation effects, it is proposed the use of a ratiometric biofilm estimator 

E following the same reasoning as Soley et al in 2005 and Sarró et al in 201221,31. The 

estimator allows obtaining a quantitative measurement of biofilm considering cells 

above the electrode surface. The estimator is based on the relative variation of the 

Cole resistances  and  and it is proportional to the biofilm volume fraction. We use 

the full expression for the calculation of the propagation of uncertainty  based on the 

parameters covariance matrix calculated in the fitting procedure, herein 

. (Equation 5.2) 

Figure 5.8 shows the E biofilm density estimator time course. It can be seen that during 

the first 5 hours, the estimated biofilm density decreased 5% until 7-10 hours, after 

which it increased progressively during the consecutive 15 hours. The fact that the 

estimator is far from being saturated at 24 hours value suggests that it is possible to 

quantify biofilm with four-electrode method performing an experiment that lasts more 

than 24 hours. 

 

Figure 5.8. Time course of the Cole-based biofilm estimator E (mean ± std). Impedance has been shown 

previously in Figure 6 of impedance data. 
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5.3 Visualization of Biofilm 

5.3.1 Real-time visualization with Differential Interference Microscopy 

In order to evaluate the feasibility of the microfluidic platform to monitor biofilm 

formation on the IDuE, it was performed real-time image recording and impedance 

measurements simultaneously. Figure 5.9 shows a time-lapse microscopy images 

indicating the two main steps of biofilm conditioning and formation 3. In the initial 

absorption phase (Figure 5.9B-C), the IDuE surface is initially covered by the 

conditioning film 32,33, a mixture of small molecules (water and salt ions) followed by a 

single layer of small organic molecules or proteins that are present in the medium. 

Then, the second stage (Figure 5.9C-D), is characterized by the initially reversible 

adsorption of microorganisms to the conditioning film, which arrives by Brownian 

motion, gravitation, diffusion or intrinsic motility 3. At the same time, bacteria also 

adhere to each other forming microbial aggregates before adsorbing the conditioning 

film (Figure 5.9E). Since the bacteria adhere to the conditioning film and not to the 

IDuE surface, the strength of the initial biofilm will depend on the structure of the 

conditioning film and/or the flow conditions of the system. The beginning of the third 

stage starts when the initial biofilm has the enough strength to support the constant 

flow of fresh TSB media for a long period of time (Figure 5.9G-H). At a certain point 

during the third stage, the initial reversible adsorption becomes irreversible, mainly 

through the secretion of EPS by the adsorbed bacteria in the second stage. 

 

Figure 5.9. Time-lapse of the biofilm. (A) Time-lapse optical microscope (Leica DM2500) at the initial 

timing just before the bacterial infection; (B), 0 hours; (C), 3 hours; (D), 5 hours; (E), 8 hours; (F), 13 hours; 

(G), 16 hours; and (H), 21 hours. The time-lapse recording was performed with 1 min interval for 24 hours 

for editing a video at 25 fps (data available in Annex I). Scale bar: 200 µm. 
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5.3.2 End-point Scanning Electron microscopy  

Biofilms were prepared for scanning electron microscopy (SEM) as described 

previously34. Briefly, the air-dried biofilms were fixed with 2 ml of 2.5% glutaraldehyde 

in 0.1 mol/L sodium phosphate buffer, rinsed once in the same buffer and then in 

deionized water followed by an overnight drying. The biosensor was attached to 

aluminum mounts and coated with gold using a Polaron Emitech SC7640 sputter 

coater (New haven, UK). Images were obtained with a JEOL JSM-5310 scanning 

electron microscope (JEOL Ltd., Tokyo, Japan) at 3000X magnification. The final result 

is the biofilm structure (Figure 5.10), a community of cells which together are medically 

important as they are highly resistant to both the cells of the immune system and 

antibiotics and provide a reservoir for future infection4. The thickness of the dehydrated 

biofilm was estimated to be around 100 µm approximately using SEM.  

 

Figure 5.10. No staining microscopy of the biofilm. (A) Presence of biofilm in the flow chamber after the 

end of a 24 hours experiment. (B) Scanning electron microscopy images showing the biofilm growth on top 

of the interdigitated microelectrode. (C) Detail of Staphylococcal bacteria attached on IDuE surface. Scale 

bars: (B), 700 µm; (C), 10 µm. 

5.3.3 Confocal Laser Scanning microscopy (CLSM) 

The end-point assay was performed immediately after the completion of a 24 hours 

experiment opening the microfluidic device and staining the IDuE with fluorescence. 

We used a confocal laser scanning microscope (LSM510 META, Zeiss), controlled with 

AIM software (version 3.2, Carl Zeiss MicroImaging GmbH, Jena, Germany). The 

microscope is equipped with two lasers (480 nm syto9 and 490 nm propidium iodide 

wavelengths) that are used to determine the presence of biofilm alive with Live/Dead 

BaclightTM Bacterial Viability Kit L13152 from Invitrogen. The staining was carried out 

for 15 minutes inmediatly after the 24 hour experiment finished and the sensor was 

washed seven times before it was placed on a coverslip of 60 mm x 24 mm upside 

down to image the sample. 
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Figure 5.11. Live/dead cell staining in the completion of a 24-hour experiment. Representation of the 

sensing area of the EIS sensor (A). The non-electrode surface stained (B). In grey, the fingers of the IDuE 

1 showing a zoom of the merge (C) and a separated non-zoomed image (D). Punctual rounded electrode 

in a maximum intensity projection (E) and separation of the two channels (F). Scale bars: (B, D, E, F), 20 

µm; (C), 10 µm. 
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Although most of the bacteria were still alive after 24 hours (Figure 5.11), the number 

of cells on the electrode was less than expected considering the thickness shown in 

Figure 5.10B. Even it could be quantified the number of cells by means of colony-

forming unit or spectrophotometry, we preferred no to do so to prevent altering the 

course of the experiment. The disagreement in the estimated biofilm thickness between 

the SEM experiment and the live and dead experiment was caused by the dry cleaning 

cycles performed on the stained sample. On the other hand, this result serves to prove 

the point that biofilm is capable of withstanding high shear forces due to the washing 

process as compared to the low shear stress of media flowing and SEM preparation. 

 

5.4 Discussion  

As it was described above there was a lack of studies performing simultaneous 

measurements with two and four-electrode configuration, performed in parallel in the 

same device, for bacterial biofilm studies under flow conditions of culture media. In 

addition, the impedance coupled to microscopy images conveyed the same results and 

were in good agreement with the timings and relative changes published in the 

literature 15. The novel four-electrode based measurements confirmed an improvement 

in detecting biofilm formation compared to two-electrode technique as shown by the 

5% increased sensitivity, in part because the effect of the electrode-electrolyte was 

excluded from the measurement and the IDuE was optimized. Perhaps more 

importantly, we could detect and track biofilm morphological and structural changes by 

fitting impedance to the Cole model. Unlike the two-electrode method approach based 

on equivalent electrical circuits, the four-electrode technique along with the Cole-based 

fitting approach allowed to obtain a quantitative estimate of biofilm estimator free of 

temperature variations and changes in ionic concentrations. The detected changes by 

the estimator confirm that it is possible to detect biofilm growth performing experiments 

that lasts more than 24 hours.  

From an application perspective, this method could be employed as a monitoring 

sensor to health and clinical equipment integrated in a waterline in medical devices or a 

water purifier. Despite this equipment is in general under clean conditions, every 

system has possibility to experience a contamination by bacteria and subsequent 

development of biofilm. Therefore, periodic monitoring by EIS could provide useful 

information when to react against contamination. 
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5.5 Final Remarks 

The previous studies with EIS for bacterial detection were usually carried out with two-

electrode measurements only35,36. This chapter have demonstrated that only using this 

method in its simplest method (two-electrode system) has significant drawbacks, such 

as low sensitivity of bacterial thickness once the surface is covered, and the masking 

effects such as temperature changes. This results exhibit the real differences between 

both configurations measuring a bacterial biofilm formed in the most realistic way, with 

continuous feeding of nutrients. Also this complex method (four-electrode) allows to 

interpret the morphological impedance spectrum and structural information regarding 

the biofilm (Figure 5.8).  

In summary this chapter described how the biofilm development has to be monitored to 

obtain the typical bacterial growth curve (refer to section 2.2.2), however to understand 

correctly biofilms we need to take into an account that this typical bacterial growth 

profile has the same shape on any bacterial mode of existence (Planktonic or Biofilm) 

but the necessary time to complete all the phases of the growth profile suffer changes 

subjected to a different genetic activation. As long as we need to know what provokes 

the differences in time to become active compared with planktonic structure, a deeper 

study has to be performed to understand the biofilm toxicity, which is the real concern 

about biofilm infections. This study is going to be described in the next chapter with 

real-time comparison between planktonic and biofilm. 
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6.1 Introduction 

Once the Electrochemical Impedance Spectroscopy (EIS) platform for on-line 

monitoring of biofilm has been optimized, there is an additional issue that involves the 

study of the activation of this biofilm while it is forming. This chapter will study in real 

time the moment of this activation by introducing a toxicity biosensor as an additional 

and complementary method to EIS technology described in chapter 5. In order to 

achieve the additional measurement of the biofilm activation in real-time a toxicity 

biomarker was required. This biosensor was developed by the group of A. Toby 

Jenkins from the chemistry department of the University of Bath, and was added to the 

platform designed thanks to the continuous flow inlet into the EIS device.   

As it was described in the general introduction (Chapter 1) the bacterial biofilms are the 

most common representation of prevalent microbial mode of existence in nature, with 

estimates suggesting that more than 90% of bacteria exist within biofilms1. This mode 

of existence affords bacteria many advantages over a planktonic existence, including 

improved adaptation to nutrient deficiency and increased resistance to predation and 

antimicrobial agents, characteristics that provide biofilms with an extremely difficult 

control in medical, industrial, and agricultural settings2. Biofilm-associated 

microorganisms have been shown to colonize a wide variety of medical devices, and 

have been implicated in over 80% of chronic inflammatory and infectious diseases of 

soft tissues and chronic infections of humans with underlying predispositions3.  

Bacterial biofilm formation proceeds in three main steps described in the introductory 

chapter: initial adhesion, proliferation, and detachment. A briefly summarize of the 

stages begins with the adhesion that occur onto any biotic or abiotic surface. 

Staphylococci bacteria, in this case has an extraordinary capacity to attach to 

indwelling medical devices through direct interaction with the device surface or by 

establishing connections to human matrix proteins after those proteins have covered 

the device. Then, proliferation proceeds through the production of an Extracellular 

matrix (ECM) that contributes to intercellular aggregation. The creation of a viable 

biofilm requires channels through which nutrients can penetrate into deeper biofilm 

layers and also can precede the disruption of cell-cell interactions leading the last step, 

the detachment of cells and cell clusters from the biofilm. Biofilm detachment plays a 

critical role during biofilm-associated infection, because it enables cells to spread 

through the blood and other body fluids to new infection sites4. The most important 

infections are caused by the Gram positive bacteria Staphylococcus aureus having an 

extreme clinical significance based on both their frequency and severity5. 
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The structural and developmental complexity of biofilms, and its significance in natural 

and human-made environments, has been increasingly appreciated over the few years 

owing to the concomitant development of sophisticated imaging and molecular 

techniques that have identified the mechanisms that are involved in biofilm 

development. In situ observations of biofilm structure using confocal laser microscopy 

showed mushroom-like bacteria developed in heterogeneous matrix-enclosed 

microcolonies interspersed with open water channels6. This complex architecture was 

one of the first indications that biofilm development was not simple and uniform, but 

rather more complex and differentiated7, suggesting that secreted molecules can 

module this architecture. With only one technique is not possible to understand the real 

behaviour of biofilms itself, nevertheless the conceptualization of dual sensor platform 

could be the best way to detect the activation of biofilm while development is being 

monitored.   

It has been published that Staphylococcus aureus biofilm detachment is controlled by 

the quorum-sensing system Agr8. The enzymes that degrade essential biofilm polymers 

and contribute to biofilm detachment are surfactant-like molecules, which include 

Bacillus subtilis surfactin, Pseudomonas aeruginosa rhamnolipid, and the phenol-

soluble modulin (PSM) in Staphylococcus aureus. PSMs are staphylococcal peptides 

with an α-helical, amphipathic structure, which gives them surfactant-like 

characteristics. S. aureus produces four PSMα peptides, which are encoded in the 

psmα operon, two PSMβ peptides encoded in the psmβ operon, and the RNAIII-

encoded δ-toxin9,10 (Figure 6.1). All of this molecules are also known as bacterial 

toxins. 
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Figure 6.1. Expression of psm and agr promoters in static and dynamic S. aureus biofilms and more 

specifically Agr quorum-sensing control circuit and regulation of target genes. The quorum-sensing circuit 

is shown at the top. AgrB modifies and exports the AgrD Agr autoinducing peptide precursor, which 

activates the histidine kinase AgrC. Activated (phosphorylated) AgrA binds to the P2, P3, psmα, and psmβ 

promoters. The P2 promoter controls expression of RNAII, comprising the agrB, agrD, agrC, and agrA 

transcripts, which form the basis of the Agr quorum sensing autofeedback mechanism. Most Agr targets 

other than the psm genes are regulated by the P3-controlled RNAIII, which also encodes the PSM δ-toxin 

(hld gene).9 

All the toxins mentioned have recently attracted much attention because they have 

been found to have a key impact on the pathogenesis of S. aureus infections11. The 

multiple roles in staphylococcal pathogenesis, as the lysis of red and white blood 

cells12, and the capacity to kill human neutrophils after phagocytosis might explain 

failures in the development of anti-staphylococcal vaccines13. There are many diseases 

caused by the toxicity in general of Staphylococus aureus like bacteraemia, 

endocarditis, metastatic infections, sepsis or toxic shock syndrome14, moreover there 

are also detailed studies focusing only in one type of molecule like δ-toxin, also known 

as δ-hemolysin, showing the critical role in dermatitis caused by activation of mast 

cells, which induces allergic skin disease15. The export system of the δ-toxin and the 

other PSM is deeply explained by Chatterjee and coworkers16, and the pore formation 

on the lipid membranes was studied by Huyet and coworkers17 showing the action 

mechanism of cytotoxicity through molecular modelling, validated with electron 

micrographs of liposomes affected by δ-toxin. Verdon and coworkers18 also proposed a 

putative model that explains deeper the interaction of δ-toxin with membranes (Figure 

6.2).  
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Figure 6.2. Putative model proposed for δ-hemolysin membrane activity describing the sequence of 

events in function of peptide concentration. The α-helices are shown as cross sections, the lighter parts 

representing the polar faces and the darker parts the hydrophobic faces. (A) At low concentrations δ-

hemolysin adsorbs on the surface of the membrane in a parallel manner, perturbing the bilayer (circles). 

(B) Membrane-bounded peptides (monomers and dimers) may induce a local curvature strain of the 

membrane (top). Some peptides self-associate in transient structures across the membrane. They likely 

form aggregates of peptides that disturb the membrane inducing cytoplasmic efflux. (C) In higher peptide 

concentration above a threshold results in a detergent-like solubilisation of the membrane. Three 

populations of lipid particles are shown, representing the gradual membrane disintegration: lamellar 

structure, disk-shaped structure and micelle structure18. 

The toxicity of the biofilm explained can be detected with Matrix Assisted Laser 

Desorption Ionization - Time-of-Flight (MALDI-TOF) mass spectrometry (MS)19, but it is 

an expensive technique, which is not allowing either the real-time detection. 

Alternatively detection with lipid vesicles sensitive to δ-toxin was proposed as cheaper 

methodology previously reported in an elegant work done by Marshall and coworkers20. 

Lipid nanoparticles (LPN) are very useful for carrying molecules internally21 like 

carboxyfluorescein, which has a fluorescence property detectable when the lipid 

membrane of the vesicle is lysed as mentioned before. The synthesis of the vesicles as 

toxicity biomarker and the stability were carried out based on previous optimization 

works carried out by Szleifer and Marshall and coworkers, respectively20,22. This toxicity 

takes place during the bacterial growth either planktonic or biofilm structure that should 

be monitored with a robust and convenient biosensing platform to provide a tool for 

rapid detection of the pathogenic infection. The technology for this issue could be done 

with Fibre optical device, however this is not appropriate for thick biofilm23, but the 

platform optimized in chapter 5 is able to monitor by Electrochemical Impedance 

Spectroscopy (EIS) technology thicker biofilms. As described before the platform uses 

tetrapolar impedance system, instead of bipolar impedance system used more often for 
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bacterial monitoring in planktonic structure or biofilm with less than 200 µm 24,25. The 

platform proposed demonstrates for the first time a fast, highly sensitive, and non-

invasive assay for the detection of Staphylococcus aureus in a portable, customizable, 

and reusable biotechnological device. The studies with EIS for bacteria mostly were 

carried out in static conditions or shaking conditions without media renewal in the 

bacterial culture, believing that the introduction of flow conditions are fundamental for 

more detailed understanding of biofilm, which also permits the introduction of sensitive 

toxicity biomarkers, mentioned above, in the media culture pumped into the designed 

device (refer chapter 4). In this study the strain Staphylococcus aureus V329 isolated 

from bovine mastitis 26 was used as a model, knowing that it has a common toxicity 

with human infections differing in some virulence genes among cow, goat, and human 

isolates27.  

In summary the aim of this chapter was the real-time measurement of biofilm toxicity 

and compare this toxicity with planktonic structure of the same bacterial isolate. The 

parameter for measuring the amount of cytolitic virulence factors released by the 

biofilm is fluorescence intensity which is increased when the vesicles, with 

carboxyfluorescein inside, are lysed (Figure 6.3). Furthermore the differential activity of 

both structures was confirmed studying the supernatant activity after 24 hours growth 

of the same initial concentration of bacteria for planktonic and biofilm development.  

 

Figure 6.3. Mode of action of the vesicles. (A) Early Biofilm developed in the flow channel feeding TSB 

with lipid vesicles in solution. (B) Late Biofilm developed in the flow channel feeding TSB with lipid vesicles 

in solution lysed by the toxin released from the bacterial biofilm, once it occurs inside the flow channel the 

fluorescence can be observed under UV light and/or detected with florescence plate reader. 

The bacterial toxin release studies carried out in the literature required a real-time 

signal to be observed during its growth. This is an important parameter within the 

scope of investigation, however detachment and real-time growth development was not 

ever monitored in parallel. The difficulties associated with obtaining the multiple signal 

monitored will be also discussed further in this chapter. 
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6.2 Results 

6.2.1 Modification of the buffer solution for bacterial growth 

The buffer where the vesicles were dissolved had stablished composition defined by 

Marshall and co-workers 20 at University of Bath. The composition was optimized for 

using the bacterial supernatant after certain period of time as described in section 

2.2.5. However, in this work further study and refinement of the buffer solution 

composition was required due to the use of living cells instead of only supernatant, 

which is used only as end-point assay. After the analysis of the components used for 

vesicle preparation it was found that Ethylenediaminetetraacetic acid (EDTA) was the 

only in the literature with certain bacterial adherence inhibition in Gram positive 

bacteria as Staphylococcus aureus V329, and more specifically of Listeria 

monocytogenes28, evidencing that EDTA affected the bacterial biofilm growth and 

suggesting that the buffer solution (refer to 2.6) used in this work, required an 

optimization. For this reason an initial test was carried out using Hepes with and 

without EDTA, leading a change in buffer composition for living cells studies.           

 

Figure 6.4. Initial test of bacterial biofilm development in static conditions in a 96well. Test at 25% of TSB 

or PBS or Hepes with and without EDTA. As negative control only TSB was seeded.  

 

6.2.2 Characterization of the lipid vesicles 

The vesicle characterization was carried out using two techniques described in chapter 

2, Dynamic Light Scattering (DLS)29 and nanosight tracking analysis (NTA) for size 

distribution and concentration. The size distribution of 90-120nm was measured by 

both methods resulting in a very consistent size around 100nm (Figure 6.5A and E).  
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The concentration was 4,52x1012 particles/μl measured by NTA that analyse the 

Brownian motion of the particle suspension in a certain volume cell, generating the 

approximation of nanoparticle concentration. A single capture of the nanoparticle 

suspension was shown in Figure 6.5B. Phospholipids and CHO ordered from Avanti 

Polar Lipids, TCDA and 5(6)-carboxyfluorescein ordered from sigma were the 

components that form the cross-linked vesicles in the percentage shown in Figure 

6.5C, which is the chosen to satisfy the two biophysical parameters of stability and 

sensitivity. When the lipid vesicles are stable in aqueous media they are self-quenched 

whereas a toxin activity that lyses them show a higher fluorescence excitation (Figure 

6.5D). 

 

Figure 6.5. Characterization of lipid vesicles. (A) Nanosight sizing of the vesicles gave a mean radius of 

114 nm. (B) Video frame of the vesicles in suspension during the Nanosight measurement and the 

structure of the cross-linked vesicle. (C) Vesicle composition of phosphatidylcholine (PC) lipids, 

phosphatidylethanolamine (PE) lipids, 10,12-tricosadiynoic acid (TCDA), and cholesterol. (D) Vesicle 

solution of the self-quenched preparation when is Cross-linked (left) and vesicles are lysed with Triton x-

100 detergent (right). (E) Size distribution by intensity measured by Dynamic Light Scattering (DLS).   
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Another parameter to take into account was the time left before the cross-linking step, 

which is the last vesicle synthesis step (refer to section 2.6.3). Briefly, when the lipid 

vesicle with TCDA within the membrane was almost finished, except for the 

crosslinking step, the vesicles were stored at 4 ºC for certain period of time. The 

variation of this time could be critical for fluorescence sensitivity and for this reason 

different storage times were tested with Staphylococcus aureus V329 (Figure 6.6A) 

and Staphylococcus epidermidis Ch845 (Figure 6.6B), and compared to the lytic 

response with the positive control: the surfactant triton x-100, and the non-lytic negative 

response with HEPES buffer. This incubation was carried out with bacteria 

supernatant; the separated solution obtained from a bacteria culture following 

centrifugation and discarding of the pellet (whole bacterial cells). Interestingly in both 

cases an early crosslinking after 10 hours of storage was the best option to finish the 

lipid vesicle synthesis and obtain an optimal fluorescence sensitivity. The lipid vesicle 

test was quantified with the plate reader measurements but the excitation with UV lamp 

was enough to visualize a better signal with less storage time (Figure 6.6D). Despite all 

different storage times had higher signal than the negative control.  

 

Figure 6.6. Different storage times tested before final crosslinking step in the lipid vesicle synthesis. 

Different times of 10, 15, 20 and 25 hours were tested with supernatant debris of an overnight growth of 

planktonic bacterial culture of Staphylococcus aureus V329 (A), and Staphylococcus epidermidis Ch845 

(B). All the conditions were plated and incubated during 3 hours in a 96 well plate (C) and excited with UV 

lamp to visualize the difference between the different storage times (D). 
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6.2.3 Optimization of vesicle concentration for toxin analysis 

The concentration of the lipid vesicles was a parameter to consider when they are used 

as continuous biomarker during bacterial growth. Three different concentrations were 

prepared and tested during a 24h with a bacterial biofilm developed in static conditions. 

The 24 hour plots of fluorescence intensity along the time were represented for 25, 12 

and 6% of vesicle preparation as final volume (Figure 6.7). The bacterial growth was 

seeded with the vesicle preparation in the 96 well plate and the optical density (OD) 

and fluorescence were recorded for every well, but only the fluorescence signal was 

represented because the optical density of the three lipid vesicle concentration was no 

different (data not shown), evidencing that the previous optimization of the buffer 

solution (refer 6.2.1) was consistent enough to obtain a correct bacterial biofilm 

development.  

Figure 6.7D showed the comparison of the different final concentration of lipid vesicles 

in the bacterial culture exhibiting the same signal saturation in 25 and 12%, but 

fluorescence dramatically decreased at a final concentration of 6%. Comparing only the 

higher concentrations we could determine that 25% provided an adequate signal 

window for toxin release studies with living bacteria.    

 

Figure 6.7. Activity for 24 hours of lipid vesicles at different concentrations: (A) 25% as final concentration, 

(B) 12 % as final concentration, (C) 6 % as final concentration. (D) The three lipid vesicle concentration are 

represented in a single plot without the controls. 
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Figure 6.8 showed the 96 well distribution of the different lipid vesicle concentrations, 

tested with three different microorganisms (quantitative representation only for S. 

aureus V329), with UV excitation to discern qualitatively the difference between 

fluorescence signals. The growth of bacteria in vesicles with Tryptic Soy Broth (TSB) 

and Triton X-100 was included to ensure that contamination of controls was not 

occurring. 

 

Figure 6.8. The photograph shows the three different vesicle concentrations tested with three different 

strains taken under visible light (left) and UV light (right).  

 

6.2.4 Online monitoring of Bacterial Biofilm 

A schematic diagram of the biofilm growth process is depicted in Figure 6.9 before the 

analysis of the data provided by the multi-parametric platform. This scheme shows the 

platform assembled during the biofilm formation, which is monitored by the impedance 

analyser and the plate reader loaded with samples downstream every hour. The 

sample loaded in the plate reader was collected for 10 minutes at the outlet of the 

channel every hour during the experiment (bypassing the bottle WASTE 2 with the 

sterile Eppendorf). The internal volume of the device is 500 μL hence collecting 10 

minutes at a flow rate of 50 μL/min allowed the analysis of the whole internal volume of 

the channel to monitor the fluorescence and optical density (as described above). 

During the process of biofilm development the impedance analyser is also multiplexing 

the reference and the measurement device (Figure 6.9A and B respectively) by 

switching the measures between devices. The EIS analysis was recorded every 15 

minutes and it took 2 minutes to run and overwrite a new file immediately after every 

measurement. The toxin release study coupled to EIS technology already optimized for 

biofilms was carried on exactly in the same way of the previous chapter experiments 

(refer to section 5.2.1) except for the presence of vesicles diluted in the TSB medium.  
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Figure 6.9. Flow diagram of the measurement setup. The system is divided in: (A) reference device and 

(B) measurement device. The experiment is divided in three stages. The phase 1 (conditioning) is pumping 

TSB to the reference and the measurement devices with the channel 1 and 2 respectively for 2 hours. The 

phase 2 (seeding) stops the channel 2 for the measurement device and starts channel 3 for bacteria 

pumping for 2 hours. The phase 3 (biofilm growth) stops the channel 3 to starts the channel 2 for 16 hours. 

During the phases two and three the channel 1 is pumping fresh TSB to the reference device during all the 

experiment.  

 

6.2.4.1 Growth 

The initial measurement analysed from the multi-parametric platform was the 

impedance spectroscopy to visualize the whole process of biofilm formation and 

development. The impedance analyser multiplex measured the signal at two and four 

electrode configuration but only the four electrode configuration, of the 2 devices 

connected in parallel, was depicted (Figure 6.10). The impedance magnitude was 

obtained from a sweeping of frequencies in a range between 100 Hz to 1 MHz (Figure 

6.10C). The attachment of bacterial cells and biofilm development on the IDuE was 

measured, with the single frequency 10 kHz response found to be most sensitive to the 

biofilm formation (Figure 6.10A). The representative response of the single frequency 

of the measurement device showed the beginning of the bacterial exponential phase at 

around 5 hours, and a levelling off of the signal after 18 hours suggesting that the 

biofilm has formed and large changes on the electrode dielectric are no longer taking 

place. 
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The actual assignment of the various components of the biofilm to different changes in 

the electrode / film dielectric was deeply analysed in chapter 5 ceasing to be the core 

purpose of this study. Therefore a pragmatic approach was used, whereby a 

measureable change in the dielectric that was sensitive to the biofilm formation was 

taken accepting that many different changes in the electrode – film dielectric will 

contribute to this value, without (in this study) actually deconvolution the signal to work 

out what these actually were. Finally the negative control represented (Figure 6.10B) 

from the four electrode signal at 10 kHz of the reference device, showed a flat profile 

ensuring that no contamination in the fresh TSB container occurred.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Tetrapolar impedance measurement of the devices connected in parallel. (A) Electrical 

impedance of the measurement device versus time at 10 kHz. (B) Electrical impedance of the reference 

device (negative control) versus time at 10 kHz. (C) Bode plot of the impedance magnitude at different 

times of the biofilm monitored. (D) Representation in the complex plane with quadratic fitting of the 

impedance at different times of the biofilm monitored. 
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After the biofilm development in the device the biosensor was imaged by Differential 

Interference Contrast (DIC) zooming into the area selected with a square (Figure 6.11). 

The biofilm formed on the surface of the electrode was well distinguished in the 

microscopic image where EPS and Staphylococcus aureus were visualized over the 

IDuE surface, which was the sensing area for EIS measurement. 

 

Figure 6.11. Presence of biofilm developed in the flow chamber at the end of the experiment. The image 

shows the bacterial structure over the interdigitated microelectrode (IDuE) in a detailed pseudo-3D image 

carried out with Differential Interference Contrast (DIC). Magnifications: (A) 5X; (B) 20X; (C) 100X. 

6.2.4.2 Detachment 

The optical density (OD) profile was carried out measuring the same sample collected 

in the outlet channel, in parallel. Figure 6.12 showed an initial increase after 3 hours 

that quickly reached its maximum level around 5 hours when the signal remained 

stable. The stability of the signal means that some clumps are detached constantly 

from the surface to colonize new surfaces, because what is pumped into the device is 

fresh media without bacteria. The negative control is TSB media measured over the 

time in parallel with the outlet sample collected from the device.  

 

Figure 6.12. Optical Density (OD) measurement of the outlet sample collected during the constant flow 

experiment from the measurement device compared with negative control.  
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6.2.4.3 Toxicity 

The toxicity of the bacterial biofilm has been monitored by fluorescence using lipid 

vesicles, which have an internal fluorescent dye only released when the vesicles are 

lysed by the delta toxin and phenol soluble modulins secreted, as described before. 

Positive and negative controls of vesicles were measured with Triton X-100 at 0.1% in 

Hepes and Hepes buffer, respectively, but only the negative control was represented 

because the values were too high and interpretation the fluorescence detected 

downstream was easier.   

Figure 6.13 showed the fluorescence measured during the biofilm development by 

collecting the media from the outlet channel and compared with a negative of TSB with 

vesicles. An increase in fluorescence begins approximately after 6 hours of the 

experiment, which means that the bacterial culture becomes toxic 2 hours after the 

fresh media was pumped constantly into the device. The sample collected for 12min 

every hour was representative of the internal volume of the device because the time of 

residence of the media culture pumped is about 10 min. The fluorescence becomes 

stable at 8 hours, indicating that the bacterial culture had a constant expression, 

synthesis and secretion of toxin molecules to the media.  

 

Figure 6.13. Fluorescence measurement of the outlet sample collected during the constant flow 

experiment from the measurement device compared with negative control.  
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In parallel with the biofilm toxin release study a different monitoring was setup to follow 

the vesicle lysis during bacterial growth in planktonic conditions. The analysis of this 

structure allowed the comparison of real-time monitoring toxicity in planktonic and 

biofilm structure using living cells instead of supernatant, which is used only for an end-

point toxin analysis20.  

The vesicle lysis was monitored by optical density and fluorescence evidencing that 

vesicle lysis occurs at early stationary phase at OD > 1.0 (Figure 6.14). Downstream 

from biofilm in the device, the fluorescence was switched on at OD = 0.4 concluding 

the toxins of the biofilm were the responsible for switching on fluorescence in vesicles 

not the planktonic bacteria measured at OD 0.5 at the outlet i.e. it is not the detached 

cells lysing the vesicles, it is the biofilm toxins. 

 

Figure 6.14. Bacteria were grown for 18 h with lipid vesicles monitoring optical density and fluorescence 

showing a vesicle an evident lysis at early stationary phase.  

 

6.2.5 Comparison of planktonic and biofilm toxin activity 

6.2.5.1 Planktonic vs Biofilm in Static conditions 

Initially an overnight culture of six different bacterial strains were grown in parallel. 

Afterwards the bacterial growth of all the strains was optical density monitored in a 96 

well plate. The Static Biofilm was grown in a falcon without shaking until the stationary 

phase (refer section 2.2.2). In parallel another falcon with constant shaking was also 

grown, which corresponded to Planktonic structure. Both bacterial structures were 

transferred to an Eppendorf to centrifuge for collecting and filtering the supernatant as 



Chapter 6: Real-time monitoring of bacterial toxicity using lipid nano-vesicles as 
biomarker 
 

120 
 

described in section 2.2.5. The toxicity of different strains comparing the two modes of 

existence (Planktonic and Biofilm) are plotted for 2 hours showing no difference in the 

fluorescence profiles (Figure 6.15A and B). The toxin activity in vesicles of Hepes and 

Triton X-100 was included as negative and positive controls, respectively. The 

difference of the toxin activity could also be visualized qualitatively by looking at the 96 

well plate under UV lamp (Figure 6.15D), once the activity of the toxins secreted by 

each strain reached its maximum level.  

 

Figure 6.15. Bacterial activity for 2 hours of the supernatant after an overnight culture of six different 

strains. Vesicles are lysed by the supernatant collected from Planktonic (A) and Static Biofilm (B) cultures. 

The photos in (C) and (D) are the 96well plate taken under UV light after activity monitoring for 2 hours, 

and allow for observed differences in fluorescence monitoring planktonic, static biofilm and the controls 

activity that were placed in the left column.  

 

6.2.5.2 Planktonic vs Biofilm in Flow conditions 

The supernatant toxicity assay performed to compare the toxin activity of planktonic 

and biofilm bacteria grown in flow conditions was carried out running two experiments 

in parallel for 24 hours to obtain both morphologies supernatant of Staphylococcus 

aureus V329. Planktonic structure was grown in 21 ml of TSB (initial optical density of 

0.084) with constant shaking for 24 h then 1 ml of this culture, spun for 10 min at 

10,000 rpm using a bench top centrifuge and the supernatant removed and filtered 

through 0.2 µm filter membranes to ensure all cells were removed. The lytic effect of 

the supernatant: a mixture of secretion virulence factors and enzymes from the bacteria 
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on the carboxyfluorescein loaded lipid vesicles was measured on the plate reading 

fluorimeter (vide supra). The biofilm structure was grown inside the fluidic device with 

bacterial suspension pumped inside the fluidic device during the second stage 

(seeding) with an initial absorbance of 0.084. Following biofilm formation (after 24 h) 

the device was disassembled and the biofilm detached using sonication 30 with the 

bacteria being resuspended in the same volume of TSB as in the planktonic study. 1 ml 

of the bacteria culture was spun down and the supernatant removed and tested using 

the carboxyfluorescein assay to assess relative lytic effect of the bacteria primarily 

resident in the biofilm compared with the planktonic bacteria.  

 

Figure 6.16. Toxicity assay of the supernatant extracted from 24 hour growth of Staphylococcus aureus 

V329 in planktonic compared with biofilm conditions. Both are compared with negative control. Statistical 

values were reported as means ± SD of triplicates. Differences between toxicity activity were calculated by 

unpaired t-test with values of **p= 0.0014 between morphologies and ****p<0.0001 comparing the toxicity 

of both morphologies with the negative control.  

 

Figure 6.16 showed a higher activity in the biofilm morphology when it is well stablished 

than the planktonic bacteria. The amount of bacteria at of end the cultures was 

calculated indicating that Colony Forming Units (CFU) were 2.94 x 108 and 5.3 x 109, 

for planktonic and biofilm respectively. This last parameter revealed that the biofilm 

also grew 10 times more than planktonic bacteria. The statistical significance of the 

toxicity was achieved comparing both morphologies by using the Student t test with 

95% confidence intervals, and 99% to compare both with the negative controls 

exhibiting p-values with statistical significance.  
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6.3 Discussion  

In this chapter it has been demonstrated a two-pronged approach in order to monitor 

the biofilm formation and the toxicity activity of Staphylococcus aureus V329 during the 

adhesion, proliferation and detachment of the biofilm. First, the EIS sensor placed in 

the fluidic device (refer to chapter 4) detect the presence of a bacterial film on the 

electrode surface by measuring the surface impedance with tetrapolar configuration 

(refer to chapter 5). Second, the lipid vesicles suspended in the culture media, 

introduced in the inlet channel is used to monitor the toxicity activity of the biofilm when 

the fluorescence dye is detected due to the lysis activity of the toxin released by the 

biofilm (Figure 6.3). Both datasets were recorded during the biofilm formation by a 

custom-made impedance analyser, and a plate reader with sample collected from the 

outlet channel of the device. Furthermore the optical density of the outlet can also be 

monitored with the plate reader allowing relating the signal to a continuous detachment 

of the biofilm. Combining the three signals not only the overall of the biofilm process 

can be studied, but also its toxicity and detachment. To the best of our knowledge, this 

is the first work reporting such a combined approach targeting detailed and 

comprehensive characterization of biofilm formation.  

 

Figure 6.17. Scheme of toxicity tested with different structures. The coincident colours depict the toxicity 

comparison between Planktonic and Biofilm structure in similar conditions. The comparison test is 

described in the sections mentioned in the squares below.  

 

 

 



Chapter 6: Real-time monitoring of bacterial toxicity using lipid nano-vesicles as 
biomarker 
 

123 
 

Another important issue carried out on in this chapter was the comparison of toxicity 

between biofilm and planktonic structures. Both are complementary mode of existence 

and they were compared in similar conditions by studying the supernatant, living cells 

and the introduction of flow for developing a more realistic biofilm. The conditions 

compared are illustrated in Figure 6.17, where the coincident colours show the 

experiments carried on in parallel.  

Analysing compared toxicity between planktonic and biofilm structures there is no 

difference if the biofilm is grown in static conditions (6.2.5.1), but interestingly we find 

significant difference when planktonic and biofilm structures were compared if this last 

is grown in flow conditions. It was found a difference in the compared supernatant 

activity (6.2.5.2), but comparing the signal of the living cells activity there was no 

significant difference (6.2.4.3), suggesting that this difference was caused by the 

methodology carried out for supernatant analysis. The supernatant analysis to compare 

both morphologies was performed to analyse the toxicity of the biofilm by disrupting the 

biofilm formed to resuspend it, whereas the living cell comparison never touched the 

biofilm suggesting that some toxic molecules remained embedded in the biofilm 

structure. However no different fluorescence values were found in the living cell 

comparison (6.2.4.3) but the moment when toxin activity begins is different being an 

important issue that gives the biofilm an advantage over the planktonic form because 

the Figure 6.14 (Planktonic) showed a toxin release when the bacteria is in the 

stationary phase, whereas an overlapping of Figure 6.10A and Figure 6.13 showed a 

toxin release as the biofilm forms, not when the biofilm is formed (around 6 hours in 

both data plots). As this is a real-time monitoring, in both cases the detection of the 

moment that provokes the toxin release was possible to be compared in both modes of 

bacterial existence, suggesting that biofilms are a reservoir of toxicity.   

Comparing also the fluorescence signal between planktonic supernatant activity of 

sections 6.2.5.1 and 6.2.5.2 there was a significant difference in the signal when this 

should be apparently the same preparation of toxin extraction. However the preparation 

was slightly different due to the time of bacterial growth. The planktonic supernatant 

extracted to compare with the static biofilm (section 6.2.5.1) was limited only until the 

end of the exponential phase, whereas the extraction to compare against biofilm in flow 

conditions (section 6.2.5.2) was a long-term growth. This difference in the supernatant 

preparation suggest potentially that the higher toxin release activity is taking place at 

the postexponential phase, supporting the work published by Arya and Princy12. This 

work was precisely fuelling the idea that post-exponential phase was initiating the 

expression of agr operon and, hence the synthesis of extracellular proteins as δ-toxin 
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and proteases. The way this quorum sensing system, named accessory gene regulator 

(Agr), works and leads the regulation of toxin production primarily within S.aureus 

bacteria31,32 is depicted in Figure 6.18. The complexity of the quorum sensing system, 

and its role in down-regulation of surface proteins and up-regulation of secreted 

proteins during in-vitro growth33 is encoded in the Agr locus with a two component 

divergently transcribed signal systems; the P2 operon – which contains the AgrB, 

AgrD, AgrC and AgrA genes, and the P3 operon – which consists of the regulatory 

effector molecule: RNA III and the gene encoding δ-hemolysin (hld).  

As future work the relevance and importance of this quorum sensing system could be 

demonstrated by incubating in the EIS device vesicles tested with S.aureus RN6390B, 

as Agr positive (Agr+) strain i.e. it contains the up-regulatory system gene, and with 

S.aureus RN6911, an Agr negative (Agr-) strain i.e. the gene that codes for the AGR 

system have been removed. The important point of these possible experiments would 

be finding an increase of toxicity in the case of Agr+ compared to Agr-, and thanks to 

the impedance monitoring we could also confirm if there is a reduction of adhesin 

production (Figure 6.18) resulting in a lower impedance increment during the biofilm 

development.  

Finally, the variation of crosslinking time need further study and chemical analysis to 

confirm if the storage time before the final step of vesicle preparation (crosslinking) 

influences the TCDA activity in the membranes which affects the stability of the lipid 

vesicles.  

 

Figure 6.18. Representation of the up-regulated Agr system. Within the P2 operon, AgrA activity results in 

the secretion of the autoinduing pheromone, AgrD, which consequentially binds and activates the histidine 

kinase receptor, AgrC, which then subsequently activates the response regulator AgrA.33 Image 

acknowledgements to A. T. A. Jenkins. 
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6.4 Final Remarks 

The pathogenic bacteria strain used for investigating the sensitivity of vesicles to toxins 

released by a biofilm grown under flow conditions have proven effective at lysing the 

membranes, ensuring effective release of the carboxyfluorescein. The signalling aspect 

of this system is of large importance in the online monitoring bacterial toxicity, hence it 

is important with regard to vesicle response coupled to EIS monitoring measurements 

and optical density analysis, suggesting that biofilms act as reservoir of toxicity 

production having serious implications for understanding wound and medical device 

colonization and infection because the in vivo process can only be properly understood 

in terms of biofilm formation. 

Furthermore, this methodology of bacterial growth monitoring and toxicity studies 

coupling could be a good point to use the device in the future as laboratory model for 

antibiofilm treatment studies. This conceptual studies could be carried out by 

measuring in real-time with EIS the attempt of bacterial growth onto the surface of the 

sensor modified with peptide antibiotics or anchored antimicrobial compounds. The 

methodology typically used for this application is plasma polymerization34–36 that will be 

deeply studied in the next chapter for new conceptual methodologies for bioactive 

surfaces in the antimicrobial field.  
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7.1 Introduction to biofilm treatment 

The previous chapters have shown an approach to monitor the growth, development 

and toxicity of bacterial biofilms in real-time. The techniques harnessed for the label-

free bacterial detection were QCM-D (chapter 3) and EIS (chapter 5) technologies. 

Both methods have demonstrated a potential sensitivity for this issue working under 

continuous flow of sterile TSB medium. The versatility of the methods open up the 

possibility of using them as a tool for testing the bacterial response to antimicrobial 

treatments.  

In recent years, a variety of new technologies have been proposed that allow more 

rapid microbiological analyses. The new microbiological testing technologies provide 

many benefits in comparison with conventional methods, in terms of precision, 

sensitivity, objectivity and quickness of response. In the previous chapter the 

optimization of a platform was performed to offer also real-time results. In the field of 

implant infections, these new technologies offer valuable support and promise real 

advancements toward possible solutions, in particular infection diagnosis.  

As described in chapter 1 Staphylococcus aureus is the main agent in implant infection 

acting as opportunistic pathogen1, for this reason is fundamental the development of 

new targeted strategies of treatment. With regard to the treatment of implant infections, 

biofilm infections give rise to major concerns about their ability to resist medical 

therapies and surgical explorations. Therefore, the search for strategies for controlling 

biofilm infections arouses lively interest in the microbiology field, together with full 

attention toward finding new means to eradicate them2.  

Given the resistance of biofilms to conventional antimicrobial compounds, most 

implant-associated infections have a chronic course. Frequently, surgical removal of 

the prosthesis, debridement of the site, and re-implantation of the prosthesis are the 

only recourse3. 

Alternatively, biofilm-detaching agents may represent a potentially useful clinical 

strategy for eradicating implant infections related to biofilm. Among many agents taken 

into consideration for staphylococcal biofilm disruption, enzymes able to attack biofilm 

components appear the most rational and promising. Besides the proposal of 

innovative enzymatic treatments promoting biofilm destruction, the use of antibiotics 

efficacious against bacterial biofilm is also under investigation4.  
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Even though innovative treatments against implant infections are emerging, the total 

number of implant infections is destined to increase further, due to the increase of 

patients, surgeries and new antibiotic-resistant bacterial strains. Therefore control 

strategies must rely on prevention instead of post-infection treatment. There are many 

studies addressed to the development of infection-resistant biomaterials, such as 

material doped with effective antimicrobial drugs or resurfaced to repel bacterial 

adhesion5. However, there is a lack of studies for testing the effectivity of the 

antimicrobial compounds working under flow regime, which is more similar to in vivo 

condition in spite of working in vitro. As mentioned above, the design for screening 

biofilm response to some antibiotic agents have demonstrated a great potential tool for 

prediction of in vitro models of biofilm-related infections6–8. In consequence, this 

chapter is going to describe different approaches for testing bacterial response to 

different modified surfaces.  

In a previous work Humblot et al in 20099 performed a study reporting the antimicrobial 

activity over thin gold surfaces (similar to QCM-D and EIS sensors) exposing grafted 

magainin I, a 23 amino acid-long linear peptide produced by an amphibian; magainin I 

interacts with lipids of bacteria and fungi cell membranes10. The modified surfaces 

showed to display an antimicrobial activity via a putative bacteriostatic mode of 

action11. Although magainin showed an effective interaction with the pathogen 

membrane, a different antibiotic peptide named Bacitracin was selected for this 

chapter.  

The mode of action of this antibiotic provokes a bacterial inhibition by acting on three 

different points. The first one affects the biosynthesis of peptidoglycan, present in the 

bacterial wall. This synthesis involves the transfer of a sugar peptide unit from uridine 

nucleotide precursors of the cell wall to the C55 isoprenyl pyrophosphate, which 

facilitates the transfer of the cell wall building units across the cytoplasmic membrane. 

The lipid C55 isoprenyl pyrophosphate acts as a carrier through the dephosphorylation 

into a monophosphate form, which is required for the reaction with the UDP sugars.  

Bacitracin is a cyclic peptide antibiotic that inhibits the dephosphorylation of the lipid 

carrier by forming a complex lipid-antibiotic, which is very strong and specific to this 

phospholipid. Due to the complex the lipid carrier cannot recycle in the cell wall 

biosynthesis, inhibiting this process ceasing the bacterial growth.  

A part from the bacterial wall biosynthesis, Bacitracin in second term affects the 

permeability of the plasma membrane because this lipid is also an integral component 

of the membrane, and this binding provokes modifications in permeability 12,13.  
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The third point of bacterial inhibition has been recently described14 and involves the 

degradation of nucleic acids. Such an ability of bacitracin was a surprising observation 

because no other antibiotic available showed similar capabilities. This ability to degrade 

nucleic acids is especially active against RNA molecules, but also has the capability of 

degrading single-stranded DNA, however it requires higher antibiotic concentrations. 

Furthermore, this antibiotic can affect the formation of biofilm when the treatment is at 

early or late stages, differentially to other antibacterial compound like mupirocin that 

only affects early stages15. For these reasons bacitracin is able to affect gram positive 

and gram negative bacteria either, being one of the polypeptide antibiotics with more 

potential for antimicrobial therapy16, especially in Staphylococcus aureus.  

The use of this antibiotic in both microfluidic devices (QCM-D and EIS platforms) is 

going to be studied along this chapter for guiding the development of novel anti-biofilm 

strategies in vitro that better address future anti-bacterial implants. To perform bacterial 

susceptibility the working conditions are going to be equal to chapter 5, keeping the 

flow rate and temperature fixed as long as the bacterial strain (Staphylococcus aureus 

V329), so the changes are associated to the antibacterial treatment applied. 

The surface modification of the sensors was the key factor in this chapter to build an 

antimicrobial coating with the antibiotic described (bacitracin), with low thickness to 

increase the stability of the thin layer. To address this issue two different approaches of 

immobilization were described subsequently. 

The first approach was performed to attach the antibiotic covalently onto the surface by 

using a method developed in our group17,18. Summarizing, this method begins with a 

Pentafluorophenyl methacrylate (PFM) coating, which contains a high number of 

reactive ester groups. These reactive groups could be used to bind biomolecules 

promoting active coatings for different biomaterials (Figure 7.1). In the present work, it 

was intended to take advantage of the high reactivity of PFM esters to attach the 

peptide antibiotic via covalent bonding onto both QCM-D sensors. As a preliminary 

study, it has been analysed the effect of a plasma polymerized PFM coating onto a 

QCM-D gold sensor with subsequent bacitracin adsorption. As the coating contains 

reactive groups towards the amino groups present in bacitracin (red circles – Figure 

7.1), an adsorption on the modified surface was expected. Moreover, thanks to the 

PFM coating the vast majority of Bacitracin molecules are going to be attached on the 

substrate via covalent bonding instead of electrostatic interactions, therefore a lower 

antibiotic detachment was expected. 



Chapter 7: Surface Modification 
 

134 
 

 

Figure 7.1. General description of biomolecules interacting with Pentafluorophenyl methacrylate (PFM)19 

coated previously with plasma polymerization (Top). The biomolecule utilized to interact with the modified 

surface through the amino groups highlighted with circles (Bottom).  

The second methodology for antibiotic immobilization was performed by coating 

hydroxyethylene methacrylate (HEMA) onto the sensors20,21. The process performed 

for the pHEMA coating was plasma polymerization and allowed the deposition of 

geometries not limited to planar surfaces. Although the modification was performed 

over sensor and presumably one could think about possible interference in the signal, a 

previous study demonstrated the stability of the impedance signal using two electrode22 

and four electrode23 impedance systems. These results showed identical impedance 

response signals for both coated and uncoated sensors. Therefore, the plasma 

polymerization process does not seem to damage the sensor functionality.  

The polymer network was well described by Mary-Buyé et al in 2009 24. Then, taking 

advantage of the polymer conformation the antibiotic was trapped inside the pHEMA 

coating afterwards by placing a drop of bacitracin dissolved in milliQ water until 

evaporation. After that a second pHEMA thin layer was polymerized to immobilize the 

non-trapped antibiotic increasing even more the stability of the antimicrobial coating to 

constant flow. In order to check the potential of such techniques both QCM-D and EIS 

sensor were tested. The characterization of the double layer deposited with 

approximately 100 nm of pHEMA was carried out with SEM microscopy. It could be 

observed that the coating is continuous and the double polymerization was efficient 

indicating the two-step with arrows heads in Figure 7.2. 
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Figure 7.2. Characterization of double layer pHEMA polymerization. Cross-section imaged with Scanning 

Electron Microscopy (SEM) of the double layer polymer coating. Images taken from left to right at 80x, 

200x and 80.000x magnification, with scale bars (black southwest corner): 1mm, 200 µm and 500 nm. 

7.2 Biofilm response in static conditions 

The first result analysed in this chapter was the evaluation of the bacitracin in static 

conditions with the bacterial Staphylococcus aureus V329. This evaluation was 

performed in real time for 5 hours, time enough to determine if the antibiotic was active 

or not in terms of antimicrobial activity. Different concentrations of bacitracin were 

dissolved in the TSB medium from absence of antibiotic to 5 mM as the highest 

concentration. The test took place in the plate reader by monitoring the optical density 

of the bacterial dilution seeded in a 96 well plate with triplicates to detect possible 

contamination. This experiment confirmed that all the different bacitracin concentration 

were active in suspension without peptide antibiotic attachment on the surface.  

 

Figure 7.3. Effect of the peptide antibiotic tested with different concentrations for 5 hours. 
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When the antibiotic was tested in the 96 well exhibited an increase of the optical 

density at 600 nm (OD600) only in the case of total absence of bacitracin (Figure 7.3 

triangles). The next step to be analysed was the activity of the compound when it was 

linked to the reactive groups previously polymerized in the plasma reactor (Figure 7.1). 

This test was carried out by introducing an 8-well chamber slide in the plasma reactor. 

The 8-well chamber system is commercially available (nuncTM) and consist in a regular 

glass slide with a silicon glued on the surface to fit the plastic wells to have a final piece 

depicted in Figure 7.4. The wells can be detached from the glass surface facilitating the 

plasma polymerization compared to the 96well that cannot be dissembled. When 6 of 8 

wells were modified with PFM the chamber was mounted again to anchor the antibiotic, 

washed the non-attached molecules of bacitracin and cultured the bacteria for 

susceptibility analysis.   

 

Figure 7.4. 8-well chamber slide with bacteria suspended in TSB medium for testing different 

concentrations of bacitracin attached on the modified surface. 

As mentioned before, 2 wells of the chamber slide were covered with Teflon tape while 

the PFM was polymerized on the other 6 wells. After mounting back the 8 wells, 

different concentrations of bacitracin were introduced into the chamber including the 2 

non-modified wells. The bacterial growth evaluation took place into the wells placing 

200 μL of TSB medium during 16 hours at 37°C. After that the medium was aspirated 

from the corner of each chamber and 200 μL of PBS were dispensed along the wall of 

each chamber to wash the non-attached bacteria and avoid shear forces that could 

disrupt the biofilm. Then a live/dead bacterial staining was performed on the surfaces 

under study, to ensure the bacterial adhesion and survival. The staining and the 

observational procedure followed the protocol described in section 2.3.2. 

The analysed superficial treatment with bacitracin could be observed in Figure 7.5 and 

Figure 7.6 that showed the non-modified and modified surface respectively. As it could 

be observed the modified surface lead to notably inhibition of the bacterial growth 

showing a vast majority of non-living bacterial cells (red), while the non-modified 

showed a high viability bacterial cells represented in green. 
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Figure 7.5. Live/dead cell staining of the non-modified surface for a bacterial growth during 24 hours. In 

grey, the phase contrast microscopy. Red and green images belongs to the independent excitation 

channels, which means negative and positive viability, respectively. Merge image of both channels placed 

in bottom-right. Scale bar: 10 µm. 

 

 

Figure 7.6. Live/dead cell staining of the modified surface for a bacterial growth during 24 hours. In grey, 

the phase contrast microscopy. Red and green images belongs to the independent excitation channels, 

which means negative and positive viability, respectively. Merge image of both channels placed in bottom-

right. Scale bar: 10 µm. 
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7.3 Biofilm response in flow conditions 

7.3.1 QCM-D monitoring 

The biofilm response to bacitracin was monitored firstly under flow conditions by 

modifying the surface of the QCM-D gold sensors. This technique not only allows the 

measure of both mass and viscoelastic properties of the films formed with plasma 

polymerization is possible, but also the subsequent antibiotic adsorption of bacitracin 

can be additionally measured. This is one of the major advantages of QCM-D as an 

analytical technique. Essentially any material that can be evaporated or deposited 

within a sufficiently thin regime (~ nm to µm range) is capable of being coated on the 

QCM-D sensor surface. This means that specialized surfaces were modified and the 

stepwise monitored during antimicrobial layer preparation. These surfaces were used 

then as for studying further biomolecular interactions, and this provides a potential 

platform for biological-based studies. A non-treated gold sensor has been taken as 

reference (Figure 7.7) to evaluate the peptide antibiotic effect against biofilm formation. 

This reference experiment belongs to chapter 3 and it is shown at this point to compare 

the profile with the data of the following experiments performed with same conditions 

with presence of bacitracin as the only difference. The presence of bacitracin was 

tested with the antibiotic dissolved in the TSB medium and anchored onto sensor. 

 

Figure 7.7. QCM-D measurement evolution profile bacterial growth at 37ºC onto gold QCM-D sensor. 

Data Acquired in Chapter 3. 
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7.3.1.1 Antibiotic in suspension 

The antibiotic was dissolved in the TSB medium at 300 µM which is 10-times lower 

than the concentration that is going to be used in the next bacitracin anchoring 

experiment. The decrease of the concentration used for this experiment was caused by 

the high volume necessary to run the 24 hour experiment.  

As it could be seen in Figure 7.8, in either case of frequency and dissipation did not 

show a characteristic profile of biofilm formation (Figure 7.7) indicating a poor bacterial 

adhesion and subsequent no biofilm development. Furthermore, as it was expected, 

the final H2O wash lead to the detachment of the little amount of bacteria attached 

initially due to the absence of bacitracin during this initial seeding step.  

 

Figure 7.8. QCM-D measurement evolution profile bacterial growth at 37ºC onto gold QCM-D sensor. In 

presence of bacitracin dissolved with the TSB medium. 

7.3.1.2 Antibiotic anchored 

The evaluation of the antibiotic peptide adsorption and its subsequent effect against 

biofilm formation, were performed in a set of experiment with the flow fixed at 50 

µL/min. The number of experiments to study the interaction between the PFM and the 

antibiotic, were six that consisted in two groups of three (Table 7.1). Each individual 

group contained an initial test (A and D) to confirm if the molecules present in TSB 

medium were more absorbed compared to phosphate buffered saline (PBS).  Then 

bacitracin adsorption was tested in both solutions PBS and TSB.  
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Surface condition 
# 

Experiment 
Baseline  Adsorption process Cleaning process 

No Treatment 

A PBS TSB PBS 

B PBS PBS + Bacitracin PBS 

C TSB TSB + Bacitracin TSB 

Treatment 

D PBS TSB PBS 

E PBS PBS + Bacitracin PBS 

F TSB TSB + Bacitracin TSB 

 

Table 7.1. Biomolecules attachment onto PFM. 

 

The first group of three were performed with no treatment of the sensor surface with 

PFM, while the second presented a PFM modification of the sensors. The time of the 

experiments was limited to its stabilization of the signal believing that bacitracin 

molecules saturate the active surface to link with. In addition the antibiotic 

concentration in this case was 2 mM for the four the cases that bacitracin was pumped 

into the QCM-D flow chamber (B, C, E, F). This preliminary experiments were plotted 

and depicted in Figure 7.9 that included lines in each profile that belonged to the three 

different steps: baseline, adsorption process and cleaning process that changed 

according to the experiment performed (see Table 7.1).  

Analysing the adsorption experiments no interaction between bacitracin and the 

surface was observed in the experiments A, B, C and D. These results were expected 

due to the absence of PFM onto the surface for the A, B and C experiments, while the 

fourth one (D) did not have bacitracin inoculation, therefore no possible interaction 

could occur. When bacitracin was introduced into the flow chamber either dissolved in 

PSB or TSB a decrease in frequency shift was detected if the sensor surface was 

previously modified with PFM (E and F).  
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Figure 7.9. QCM-D measurements evolution profile bacterial growth at 37ºC onto gold QCM-D sensor. 

The conditions of surface and adsorption process specified in Table 7.1. 
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Figure 7.10. QCM-D measurements evolution profile bacterial growth at 37ºC onto gold QCM-D sensor. 

 

Once Bacitracin adsorption was finished a bacterial growth test was performed into the 

flow QCM-D module. To relate the experiments with the susceptibility test it was 

necessary to take into account that experiment D was followed by the final test with 

bacteria shown in Figure 7.10 (blue) while experiment F was followed by the final test 

with bacteria shown in Figure 7.10 (red). Observing the comparison between the 

bacterial growths over the PFM-treated surfaces with presence and absence of 

bacitracin, a bacterial growth and biofilm development was present in both cases. 

Nevertheless the treated surface was more resistant for approximately 15 hours, where 

a frequency shift drop occurred indicating a possible wash or depletion of the antibiotic 

present in the QCM-D sensor surface.    
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Figure 7.11. QCM-D measurements evolution profile bacterial growth at 37ºC onto gold QCM-D sensor. 

 

Finally, the double layer of pHEMA described above and shown in Figure 7.2 was used 

to adsorb and trap the antimicrobial compound and test in real-time the anti-biofilm 

effect with QCM-D flow module. As for the previous methodology a comparison 

between presence and absence of bacitracin over the modified surfaces was carried 

out. In this case the modified surface almost stayed in the baseline values. It must be 

noticed that when TSB medium was flown through the chamber it might be releasing 

bacitracin from the network so a slow cleaning process could take place. The 

frequency shift of the treatment experiment was very low compared to the positive 

control meaning that bacitracin influenced the bacterial growth. The control with the 

treated surface in absence of bacitracin showed a higher decrease in frequency 

confirming that the double layer itself did not affect the biofilm development. 

As the anchoring process of bacitracin within pHEMA network was not a covalent 

mechanism, the adsorption was performed without flow by depositing on the sensor a 

drop of the same Bacitracin concentration used with PFM (2 mM). For this reason the 

anchoring process was not able to be monitored with this method.  
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7.3.2 Impedance monitoring 

The method applied in this section has been described in chapters 5 and 6. This final 

part of the work described the biofilm detection to evaluate bacitracin treatment in 

suspension and attached onto the sensor surface, as the previous section 7.3.1 where 

QCM-D was used. Although the custom device designed was used for this issue only 

pHEMA double layer modification was performed due to the results obtained with 

QCM-D equipment that exhibited a higher antibiofilm activity, together with this method 

does not require an a covalent bonding of the molecules.  

   

7.3.2.1 Antibiotic in suspension 

The effect of the antibiotic suspended in the TSB medium was depicted in Figure 7.12 

that showed the normalized impedance at 10 kHz over the time using two and four 

electrode configuration. S. aureus bacteria was targeted with bacitracin confirming the 

inhibition of the complex lipid carrier in the cell wall biosynthesis ceasing bacterial 

growth. As described above bacitracin influences biofilm at any stage of the process, 

so the inhibition process was expected to be successful, although the bacteria was 

initially seeded without bacitracin. The bacterial proliferation in presence of dissolved 

bacitracin presented relative changes in impedance the first 10 hours which were not 

significant as they were in the same order of the standard deviation. The fact that there 

is no significant change from baseline to the end of the experiment indicated the 

inhibition effect of bacitracin effect onto the biofilm formation.  

 

Figure 7.12. Time course of the normalized impedance magnitude (mean±std, n=3) detected with the 

rectangular IDuE 1 with bacitracin dissolved in the TSB medium using two and four electrode 

configuration. 
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This section studied not only the activity of the antimicrobial compound anchored over 

the impedance sensor presented and tested in chapter 5, but also its stability to 

continuous flow. The pHEMA coating is known that increase the hydrophilicity of the 

surface and several studies show how a higher hydrophilic surface enhances the 

interaction between the implant and the biologic surrounding25. Thus, surface 

wettability is a parameter that must be taken into account to evaluate this interaction 

with surfaces. Therefore, we measured the contact angle of non-treated and treated 

sensor with pHEMA double layer, in order to assess the influence of surface 

hydrophilicity. Figure 7.13 showed how the superficial modification decrease the 

contact angle when the surface was treated compared with non-treated sensor used as 

a control.  

 

Figure 7.13. Contact angle measurements of non-modified and modified surface with pHEMA for antibiotic 

entrapment. Non-modified surface act as positive control. Data was represented as means ± SD of 

triplicates. The contact angle of the samples was compared using unpaired t-test with value of p > 0.0001. 

 

As detailed before, it has been proved that pHEMA coating increased the cell 

attachment and proliferation onto the substrate according to the data obtained in 

previous studies, so one might think that an increase of cell attachment could lead a 

biofilm formation even containing bacitracin embedded. However, the result presented 

in Figure 7.14 showed a very opposite result where the lack of bacitracin in the double 

pHEMA layer exhibited a biofilm formation whereas the treated surface had a very 

similar profile to the antibiotic dissolved in TSB. Only four electrode configuration was 

used to represent the compared EIS data between treated and non-treated surfaces.       
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Figure 7.14. Time course of the normalized impedance magnitude (mean±std, n=3) detected with the 

rectangular IDuE 1 with bacitracin anchored on the surface using four electrode configuration systems. 

 

7.4 Discussion 

In implant infections, biofilm is still the major problem for bacterial persistence to 

antibiotic therapy. Among antimicrobial agents, bacitracin promises to be one of the 

greatest therapeutic possibilities, due to effect at different cellular points and biofilm 

stages. The continuous progress in the field could approach the creation of infection-

resistant biomaterials able to inhibit biofilm development. Understanding the structure 

of the antimicrobial compounds and its adsorption onto modified polymer surfaces the 

influence to cellular adhesion can be measured by label-free technologies resulting in a 

powerful susceptibility diagnostic tool.   

The improvements in diagnosis, together with the validation and adoption of more 

specific clinical control strategies able to be a disaggregating biofilm agent, could 

revolutionize the treatment of implant infections. Implant materials have garnered much 

attention recently and label-free technologies could help to test the biomaterial’s 

response to certain continuous flow for longer periods of time.  

The susceptibility to the antimicrobial peptide bacitracin has been investigated in this 

chapter, by using active immobilization of the antibiotic and the entrapment into 

polymer network, monitoring the bacterial response with QCM-D and EIS technologies 

as label-free methods.  
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The first method of antibiotic immobilization studied in this chapter was the coating of 

the surface with PFM that have been demonstrated to be a suitable linking interface 

method to link bacitracin. PFM coatings contain a highly reactive ester group, which 

could be used to bind biomolecules (Figure 7.1) considered as active coatings for 

different biomaterials26. This method was proved to be an effective antibacterial coating 

when there is total absence of flow, nevertheless the introduction of flow showed 

contrary results. The adsorption process of bacitracin was analysed with flow using 

QCM-D and the whole process (baseline, adsorption and cleaning) showed a lower 

recovery frequency shift signal in case of using TSB, which indicated that the cleaning 

process was less affected. However when the biofilm growth was monitored, the 

bacteria manage to survive, indicating that this method was not stable enough. This 

poor stability could be caused by a possible wash of bacitracin molecules plus a 

reduction of non-active molecules due to the linking process itself, which is not present 

in the case of pHEMA double layer methodology. This immobilization method did not 

require a specific targeted molecule to link, therefore it covers a wider range of 

antimicrobial compounds to immobilize. Furthermore pHEMA double layer results 

indicated that the antibiotic diffusion is not affected by the presence of the hydrogel thin 

film in either both cases the commercial QCM-D and the custom-made EIS platform. 

 

7.5 Final Remarks 

As mentioned before, the aims of this chapter were to study the bacterial viability and 

the growth monitoring by using different coated surfaces treated with plasma 

polymerization. The polymerized films had homogeneous spatial distribution of PFM 

groups within the polymer film. The incorporation of a functional molecule with amino 

groups like bacitracin facilitated the activation of the entire surface of the film. From this 

point of view, it seems a better option to keep the PFM on the surface to ensure its 

complete reaction. However, the possible blockage of the active site and the possibility 

to include a multi-component therapy demanded an entrapment method seems more 

useful than covalent attachment. Therefore, pHEMA deposited enhanced the surface 

resistance to non-specific protein adhesion, which is especially useful for in vivo 

applications of sensors. The mesh size of the resulting films, based on swelling 

properties, is small enough to allow small molecules like bacitracin to diffuse to the 

underlying substrate. The promising results achieved in this chapter so far encourage 

the further exploration of plasma polymerization as a potential technique to engineer 

multi-layer structures on different materials to obtain functional antibacterial implants. 
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- It has been demonstrated that Quartz Crystal Microbalance with Dissipation (QCM-D) 

and Electrochemical Impedance Spectroscopy (EIS) are label-free techniques that 

have the ability to monitor biofilms onto gold sensors, aiming to gain a little insight 

about real-time detection combined with microfluidics. 

- QCM-D results can be associated to theoretical models for interpreting meaningful 

physical parameters such as mass, thickness, density or viscoelasticity, therefore is 

an optimal approach for addressing questions about biological materials and their 

interactions to study the formation of antimicrobial coating. 

- The promising results of antibacterial coatings so far encourage the further 

exploration of plasma polymerization as a potential technique to engineer multi-layer 

structures on different materials to obtain functional antimicrobial implants. 

- The working conditions stablished by the commercially available equipment (QCM-D) 

are useful to apply on the custom-made platform to use Electrochemistry Impedance 

Spectroscopy (EIS). 

- The geometry of the device designed using Computational Fluid Dynamics (CFD) and 

Finite Element Models (FEM) simulation was optimized for the detection of 

Staphylococcus aureus biofilm proliferation with interdigitated microelectrodes 

(IDuEs) that permits two- and four-electrode methods analysis.  

- The compared results of two- and four-electrode configurations exhibited real 

differences of bacterial detection confirming that the common method used (two-

electrode) presented significant drawbacks, such as low sensitivity of bacterial 

thickness once the surface is covered, and the masking effects i.e. temperature 

changes.  

- The method with four-electrode allows to interpret morphological impedance 

spectrum and structural information regarding the biofilm by fitting to Cole model 

equivalent circuit.  

- The system presented also offers the possibility to measure multiple read-outs to 

detect other analytes of interest such as dissolved oxygen, K+, Na+ and pH.  

- The investigation of vesicles sensitivity to toxins released by a biofilm grown under 

flow conditions, have proven effective at lysing the membranes, ensuring effective 

release of the embedded carboxyfluorescein.  

- The multi-parametric measurement of toxin activity coupled to EIS conclude that toxin 

activity occurs as the biofilm forms, not when the biofilm is formed contrary to 

planktonic behaviour that becomes toxic in the stationary phase.  
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- As the moment that toxin activity begins is different, comparing real-time 

measurements of both modes of existence (biofilm and planktonic), it can be 

conclude that biofilm has an advantage over the planktonic suggesting that biofilm act 

as reservoir of toxicity.   

- The entire process of toxicity and bacterial biofilm treatment can only be properly 

understood in terms of biofilm formation therefore both label-free techniques (QCM-D 

and EIS technology) permits the monitorization of biofilm responses. 

- Contrary to other state-of-the-art approaches based on commercial multi-well plates 

used today for biofilm assays (Real Time Cell Analyzer), our multi-parametric 

microfluidic platform could be integrated in multiple environments offering the 

advantage to account the effect of shear stress on the formation of bacterial biofilm, a 

variable that affects biofilm structure and behaviour. 
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- Se ha demostrado que la microbalanza de cuarzo con disipación (QCM-D) y la 

Espectroscopia de impedancia electroquímica son técnicas “label-free” que tienen la 

habilidad de monitorizar biofilms sobre sensores de oro, incrementando un poco más 

de percepción sobre la detección a tiempo real combinada con microfluidica. 

- Los resultados de QCM-D pueden asociarse a modelos teóricos para la 

interpretación de parámetros físicos significativos tales como masa, grosor, densidad 

y viscoelasticidad, por tanto es un enfoque óptimo para abordar cuestiones sobre 

materiales biológicos y sus posibles interacciones para estudiar la fabricación de 

recubrimientos antimicrobianos.   

- Los prometedores resultados de los recubrimientos antibacterianos animan a la 

futura exploración de la polimerización por plasma como técnica potencial para 

desarrollar multicapas estructuradas sobre diferentes materiales para obtener 

implantes antimicrobianos funcionales. 

- Las condiciones de trabajo establecidas por el equipo comercial disponible (QCM-D) 

son útiles para aplicar en la plataforma fabricada para la utilización de 

Espectroscopia electroquímica de impedancia. 

- La geometría del dispositivo diseñado por Fluido-dinámica computacional y 

Modelado por elementos finitos ha sido optimizada para la detección la proliferación 

de biofilms de Staphylococcus aureus con microelectrodos interdigitados que 

permiten el análisis usando las configuraciones de dos- y cuatro-electrodos.  

- Los resultados comparativos de las configuraciones de dos- y cuatro-electrodos 

exhiben diferencias reales con la detección confirmando que el método usualmente 

utilizado (dos-electrodos) presenta inconvenientes significantes, tales como la baja 

sensibilidad del grosor de bacterias una vez la superficie es cubierta, y los efectos de 

enmascaramiento como los cambios de temperatura. 

- El método con cuatro-electrodos permite la interpretación morfológica del espectro de 

impedancia e información estructural respecto al biofilm mediante el ajuste al modelo 

de Cole. 

- El sistema presentado también ofrece la posibilidad de medir múltiples lecturas para 

detectar otros analitos de interés como oxígeno disuelto, K+, Na+ y pH.  

- La investigación de la sensibilidad de vesículas a la liberación de toxinas por parte de 

un biofilm crecido bajo condiciones de flujo, ha resultado efectivo en la lisis de 

membranas, asegurando una liberación efectiva de carboxifluoresceina encapsulada 

en las vesículas. 
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- La medición multiparamétrica de la actividad de toxinas acoplada a lecturas de 

impedancia concluyen que la actividad tóxica ocurre cuando el biofilm se forma, no 

cuando el biofilm está formado, en contraposición del comportamiento de bacteria en 

forma planctónica que se vuelve tóxico en la fase estacionaria. 

- Como el momento en que empieza la actividad tóxica es diferente comparando las 

medidas a tiempo real de ambos modos de existencia (biofilm y planctónico), se 

puede concluir que los biofilms tienen ventaja sobre la forma planctónica sugiriendo 

que el biofilm actúa como reservorio de toxicidad. 

- Todo el proceso de toxicidad y tratamiento de biofilm bacteriano solamente puede ser 

entendido de manera apropiada en términos de formación de biofilm, por tanto 

ambas técnicas label-free (microbalanza de cuarzo y espectroscopia de impedancia) 

permiten la monitorización de la respuesta de biofilm a cualquier tratamiento. 

- Contrariamente a otros enfoques de última generación basados en placas 

comerciales de múltiples pocillos utilizadas hoy en día para ensayos con biofilms, 

nuestra plataforma de microfluídica puede estar integrada en múltiples ambientes 

ofreciendo la ventaja de tener en cuenta el efecto del estrés mecánico en la 

formación de biofilm bacteriano, que es una variable que afecta la estructura del 

biofilm y su comportamiento.   
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Annex I 

Supplementary Video: Time-lapse of the biofilm captured in the EIS device. 

Bacterial biofilm formation was recorded using the PDMS window of the designed 

device to capture static images every minute during the 24 hour experiment of biofilm 

development.  
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Annex II 

Matlab script used for Electrochemical Impedance Spectroscopy (EIS) analysis: 

%close all 

clc 

clear all 

%% 

[fileNameImpedance,pathfile]   = uigetfile('*.*','Select CNM 

measurement file:'); 

if isequal(fileNameImpedance,0) || isequal(pathfile,0) 

   break; 

end  

matfile           = strcat(fileNameImpedance,'.mat'); 

fileNameImpedance = strcat(pathfile,fileNameImpedance); 

%% 

fid = fopen(fileNameImpedance); 

tline = fgetl(fid); 

ii=0; 

while ischar(tline) 

%     disp(tline); 

    tline = fgetl(fid); 

    ii=ii+1; 

    if ii==2 

        parts = textscan(tline, '%s', 'Delimiter', '\t'); 

        f=parts{1,1}; 

        for jj=2:length(f) 

         fv(jj-1)=str2num(f{jj,1}); 

        end 

    end 

    if ii>=5 && ischar(tline) 

        parts = textscan(tline, '%s', 'Delimiter', '\t'); 

        dat=parts{1,1}; 

        for jj=2:length(f) 
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         M(ii-4,jj-1)=str2num(dat{2+(jj-2)*4,1}); 

         P(ii-4,jj-1)=str2num(dat{3+(jj-2)*4,1}); 

         R(ii-4,jj-1)=str2num(dat{4+(jj-2)*4,1}); 

         X(ii-4,jj-1)=str2num(dat{5+(jj-2)*4,1}); 

        end 

    end 

end 

fclose(fid); 

figure(1); 

subplot(221);semilogx(fv,M); 

hXLabel=xlabel('frequency (Hz)'); 

hYLabel=ylabel('Impedance (Ohms)'); 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

subplot(222);semilogx(fv,P); 

hXLabel=xlabel('frequency (Hz)'); 

hYLabel=ylabel('Phase (degrees)'); 
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set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

subplot(223);loglog(fv,R); 

hXLabel=xlabel('frequency (Hz)'); 

hYLabel=ylabel('Resistance (Ohms)'); 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 
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  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

subplot(224);loglog(fv,X); 

hXLabel=xlabel('frequency (Hz)'); 

hYLabel=ylabel('-Reactance (Ohms)'); 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

averages=4; 

if averages==4 

    for jj=1:floor(ii/4)-4 

        MM(jj,:)   = 0.25*(M(jj*4-3,:)+M(jj*4-2,:)+M(jj*4-

1,:)+M(jj*4,:)); 

        PP(jj,:)   = 0.25*(P(jj*4-3,:)+P(jj*4-2,:)+P(jj*4-

1,:)+P(jj*4,:)); 
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        stdM(jj,:) = std([M(jj*4-3,:);M(jj*4-2,:);M(jj*4-

1,:);M(jj*4,:)]); 

    end 

elseif averages==3 

    for jj=1:floor(ii/3)-3 

        MM(jj,:)   = 0.33*(M(jj*3-2,:)+M(jj*3-1,:)+M(jj*3,:)); 

        PP(jj,:)   = 0.33*(P(jj*3-2,:)+P(jj*3-1,:)+P(jj*3,:)); 

        stdM(jj,:) = std([M(jj*3-2,:);M(jj*3-1,:);M(jj*3,:)]); 

    end 

else 

    disp('not implemented yet'); 

end 

 

[numofmeas numoffreq]=size(MM); 

tmeas = 10; %time between meas 10 min 

t     = (0:1:numofmeas-1)*tmeas; 

thour = t/60; 

flow  = 16; 

 

%% 

figure(89) 

semilogx(fv,(MM(floor(length(t)*1/4),:)),'ro-

','MarkerFace','r','MarkerSize',4);hold on 

semilogx(fv,(MM(floor(length(t)*2/4),:)),'go-

','MarkerFace','g','MarkerSize',4) 

semilogx(fv,(MM(floor(length(t)*3/4),:)),'ko-

','MarkerFace','k','MarkerSize',4) 

semilogx(fv,(MM(floor(length(t)*4/4),:)),'co-

','MarkerFace','c','MarkerSize',4) 

 

name2=strcat('t = ',num2str(floor((thour(end)*1/4))),'h'); 

name3=strcat('t = ',num2str(floor((thour(end)*2/4))),'h'); 

name4=strcat('t = ',num2str(floor((thour(end)*3/4))),'h'); 

name5=strcat('t = ',num2str(round(thour(end))),'h'); 

yLims=ylim; 
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ylim([60 yLims(2)]) 

 

hLegend=legend(name2,name3,name4,name5,'Location','Northeast'); 

hYLabel=ylabel('Magnitude (\Omega)'); 

hXLabel=xlabel('Frequency (Hz)'); 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

set([hLegend, gca]             , ... 

    'FontSize'   , 8           ); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

%% 

figure(90) 

semilogx(fv,(PP(floor(length(t)*1/4),:)),'ro-

','MarkerFace','r','MarkerSize',4);hold on 

semilogx(fv,(PP(floor(length(t)*2/4),:)),'go-

','MarkerFace','g','MarkerSize',4) 

semilogx(fv,(PP(floor(length(t)*3/4),:)),'ko-

','MarkerFace','k','MarkerSize',4) 

semilogx(fv,(PP(floor(length(t)*4/4),:)),'co-

','MarkerFace','c','MarkerSize',4) 
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name2=strcat('t = ',num2str(floor((thour(end)*1/4))),'h'); 

name3=strcat('t = ',num2str(floor((thour(end)*2/4))),'h'); 

name4=strcat('t = ',num2str(floor((thour(end)*3/4))),'h'); 

name5=strcat('t = ',num2str(round(thour(end))),'h'); 

yLims=ylim; 

%ylim([-90 yLims(2)]) 

 

hLegend=legend(name2,name3,name4,name5,'Location','Northeast'); 

hYLabel=ylabel('Phase (Deg)'); 

hXLabel=xlabel('Frequency (Hz)'); 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

set([hLegend, gca]             , ... 

    'FontSize'   , 8           ); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

%% 

figure(2); 

plot(thour,MM(:,flow));hold on; 

hYLabel=ylabel('(\Omega)'); 
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hXLabel=xlabel('time (h)'); 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

% set([hLegend, gca]             , ... 

%     'FontSize'   , 8           ); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

%% 

norm=MM(:,flow)/max(MM(:,flow)); 

 

figure(3); 

plot(thour,norm,'o','MarkerSize',4);hold on; 

plot(thour,filtfilt(ones(5,1)/5,1,norm),'LineWidth',1.5); 

hYLabel=ylabel('Normalized Impedance'); 

hXLabel=xlabel('Time (h)'); 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 
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% set([hLegend, gca]             , ... 

%     'FontSize'   , 8           ); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

figure(4) 

E2=(MM(:,flow)-MM(:,end))./MM(:,flow)*100; 

plot(thour,E2,'r');hold on; 

% hLegend=legend('E_2','Location','NorthWest'); 

hYLabel=ylabel('E_2(%)'); 

hXLabel=xlabel('time (h)'); 

 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

% set([hLegend, gca]             , ... 

%     'FontSize'   , 8           ); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 
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  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

[R,X]=pol2cart(PP.*ones(size(PP))*pi/180,MM); 

% figure; 

% plot(R',-X') 

 

figure(5) 

% plot(R(1,:),-X(1,:),'bo-','MarkerFace','b');hold on; 

plot(R(floor(length(t)*1/4),:),-X(floor(length(t)*1/4),:),'ro-

','MarkerFace','r');hold on 

plot(R(floor(length(t)*2/4),:),-X(floor(length(t)*2/4),:),'go-

','MarkerFace','g'); 

plot(R(floor(length(t)*3/4),:),-X(floor(length(t)*3/4),:),'ko-

','MarkerFace','k'); 

plot(R(length(t),:),-X(length(t),:),'co-','MarkerFace','c'); 

name1=strcat('t = ',num2str(t(1)),'h'); 

name2=strcat('t = ',num2str(floor((thour(end)*1/4))),'h'); 

name3=strcat('t = ',num2str(floor((thour(end)*2/4))),'h'); 

name4=strcat('t = ',num2str(floor((thour(end)*3/4))),'h'); 

name5=strcat('t = ',num2str(round(thour(end))),'h'); 

yLims=ylim; 

ylim([0 yLims(2)]) 

 

hLegend=legend(name2,name3,name4,name5,'Location','NorthWest'); 

hYLabel=ylabel('-Reactance (\Omega)'); 

hXLabel=xlabel('Resistance (\Omega)'); 



ANNEXES 
 

173 
 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

set([hLegend, gca]             , ... 

    'FontSize'   , 8           ); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

figure(6); 

plot(thour,PP(:,flow)); 

hYLabel=ylabel('(\Omega)'); 

hXLabel=xlabel('time (h)'); 

set( gca                       , ... 

    'FontName'   , 'Helvetica' ); 

set([hXLabel, hYLabel], ... 

    'FontName'   , 'AvantGarde'); 

% set([hLegend, gca]             , ... 

%     'FontSize'   , 8           ); 

set([hXLabel, hYLabel]  , ... 

    'FontSize'   , 10          ); 

set(gca, ... 
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  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 1         ); 

set(gcf, 'PaperPositionMode', 'auto'); 

 

reZcal = R; 

imZcal = X; 

time   = t; 

save(strcat(pathfile,matfile),'f','reZcal','imZcal','stdM','time'); 

 

addpath C:\Users\oscar\Dropbox\matlab 

z24Deis(fv,MM,PP,thour(end)) 
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Annex III 

Matlab script used for Quartz Crystal Microbalance with Dissipation (QCM-D) 

viscoelastic analysis: 

%----------- Leer archivo Excel ------------------  

a= xlsread('C:\Users\oscar\Dropbox\phD\CHAPTERS 

phD\3_Chapter\Figures\DF-t plots\A_Temperature\temperature.xlsx');  

plot3(a(:,1), a(:,2), a(:,3),'bo-', 'LineWidth',1.5);hold on; 

plot3(a(:,4), a(:,5), a(:,6),'ro-', 'LineWidth',1.5); 

plot3(a(:,7), a(:,8), a(:,9),'go-', 'LineWidth',1.5); 

name1=strcat('20 ºC'); 

name2=strcat('27 ºC'); 

name3=strcat('37 ºC'); 

hLegend=legend(name1,name2,name3,'Location','NorthWest'); 

hXLabel=xlabel('Frequency shift (Hz)'); 

hYLabel=ylabel('Time (h)'); 

hZLabel=zlabel('Dissipation shift (x10^-6)'); 

set( gca                       , ... 

    'FontName'   , 'Arial' ); 

set([hXLabel, hYLabel, hZLabel], ... 

    'FontName'   , 'Arial'); 

set([hXLabel, hYLabel, hZLabel]  , ... 

    'FontSize'   , 11          ); 

a=get(gca, 'xlabel'); 

set(a,'rotation',17.5) 

a=get(gca, 'ylabel'); 

set(a,'rotation',-23.5) 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'YMinorTick'  , 'off'      , ... 

  'YGrid'       , 'on'      , ... 
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  'XColor'      , 'k', ... 

  'YColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 2         ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'YMinorTick'  , 'on'      , ... 

  'ZMinorTick'  , 'off'      , ... 

  'XGrid'       , 'on'      , ... 

  'YColor'      , 'k', ... 

  'ZColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 2         ); 

set(gca, ... 

  'Box'         , 'off'     , ... 

  'TickDir'     , 'out'     , ... 

  'TickLength'  , [.02 .02] , ... 

  'XMinorTick'  , 'on'      , ... 

  'ZMinorTick'  , 'off'      , ... 

  'ZGrid'       , 'on'      , ... 

  'XColor'      , 'k', ... 

  'ZColor'      , 'k', ... %'YTick'       , 80:110, ... 

  'LineWidth'   , 2         ); 

set(gcf, 'PaperPositionMode', 'auto'); 
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Annex IV 

Different versions of the platform. 

Version Experiment type Technology Equipment Material Task Results 

1 Dynamic 
PolyJet™ 

Technology 
Objet Eden™ line RGD525 

Evaluate the spring-load location Fail 

Evaluate the hinge tolerance Correct 

Evaluate the fluid escape of the inlet-outlet connectors Correct 

Evaluate how the magnets close the 2part platform Correct 

Evaluate the tolerance of the space sensor of 0,5mm of thickness Fail 

Test PDMS as the O-ring seal for 1mm of space Fail 

1 Dynamic 

DLP® Technology 

(Digital Light 

Processing) 

EnvisionTEC 
e-Shell 300 

crystal clear 

Evaluate the transparency of the high resolution technology Not enough 

2 Dynamic 
PolyJet™ 

Technology 
Objet Eden™ line veroclear 

Test Epidor 1mm O-ring seal for 0,8mm of space Not enough 

Evaluate the tolerance of the space sensor of 1mm of thickness Fail 

2 Static 
PolyJet™ 

Technology 
Objet Eden™ line veroclear 

Evaluate the correct design for the spring-load Design complication 

Compare the transparency of the last technology Not enough 

3 Static 
Fused deposition 

modeling (FDM) 
Fortus 400mc PC 

Evaluate the tolerance of the space sensor of 1mm of thickness Correct 

Evaluate the space tolerance of the outer glass Correct 

Test Epidor 1mm O-ring seal for 0,7mm of space Not enough 

Evaluate the fluid escape of the entire platform Fail 

4 Static 
Fused deposition 

modeling (FDM) 
Fortus 400mc PC 

Evaluate the correct design for the double spring-load and alignment Correct 

Evaluate the fluid escape of the entire platform Fail 

Test Epidor 1mm O-ring seal for 0,5mm of space Correct 
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Version Experiment type Technology Equipment Material Task Results 

5 Static Fused deposition modeling (FDM) Fortus 400mc PC 

Evaluate the tolerance of the space sensor of 0.5mm of thickness Correct 

Evaluate O-ring size reduction to contact the sensor Correct 

Test Epidor 1mm O-ring seal for 0,6mm of space Correct 

Evaluate the fluid escape of the entire platform Fail 

6 Static Fused deposition modeling (FDM) Fortus 400mc PC 

Evaluate bigger magnets to close the 2part platform Correct 

Evaluate the space tolerance of the outer glass Correct 

Evaluate the increment of the internal volume of the platform Correct 

7 Dynamic Fused deposition modeling (FDM) Fortus 400mc PC 

Evaluate flow passing only over the electrodes Correct 

Evaluate the reduction of low volume in the platform Correct 

Evaluation of an autoclave test of the magnets without corrosion Fail 

8 Static Fused deposition modeling (FDM) Fortus 400mc PC 

The substitution of the magnets for double hinge Correct 

Evaluate the fluid escape of the entire platform Fail 

Evaluation of a mechanization of the surface contact Not enough 

9 Dynamic Fused deposition modeling (FDM) Fortus 400mc PC 
Evaluate a high flow passing over the sensor Correct 

Evaluate the fluid escape of the entire platform at with low flow Fail 

10 Static Fused deposition modeling (FDM) Fortus 400mc PC Evaluate the substitution of double hinge for 4 screw closure Correct 

11 Dynamic Fused deposition modeling (FDM) Fortus 400mc PC Evaluate the flow with new closure and PDMS window Not enough 

12 Dynamic Fused deposition modeling (FDM) Fortus 400mc PC Evaluate the flow from the bottom and new connectors Fail 

13 Dynamic Fused deposition modeling (FDM) Fortus 400mc PC Evaluate the fluid scape with connectors surrounded with PDMS Not enough 

14 Dynamic Fused deposition modeling (FDM) Fortus 400mc PC Evaluate the fluid scape with a PDMS for base sensor and O-ring Correct 

15 Dynamic Fused deposition modeling (FDM) Fortus 400mc PC Evaluate the reduction of material for cost reduction Correct 
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Annex V 

Top Part designed for rapid prototyping fabrication: 
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Bottom Part designed for rapid prototyping fabrication: 
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Annex VI 

The data presented in this Thesis has been published or is under process of 

publication. The state of publication is the following: 

 

Chapter 4 and Chapter 5: 

O. Estrada-Leypón, a. Moya, a. Guimerà, G. Gabriel, M. Agut, B. Sánchez, S. Borrós. 

Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric 

microfluidic platform using microscopy and impedance spectroscopy, 

Bioelectrochemistry. 105 (2015) 56–64. doi:10.1016/j.bioelechem.2015.05.006. 

 

Chapter 6: 

O. Estrada-Leypón, M. Laabei, W. D. Jamieson, A. Moya, R. Villa, A. T. A. Jenkins, S. 

Borrós. Correlation between biofilm evolution and secreted virulence factors of 

Staphylococcus aureus using a customized microfluidic platform. 

 

Chapter 3 and Chapter 7: 

O. Estrada-Leypón, A. Mas, J. Gilbert, A. Moya, A. Guimerà, G. Gabriel, M. Agut, S. 

Borrós. Microfluidic devices for real-time studies of bacterial biofilms quantified with 

label-free technologies tuned with antibacterial coatings. 
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Wedescribe the design, construction, and characterization of a scalablemicrofluidic platform that allows contin-
uous monitoring of biofilm proliferation under shear stress conditions. Compared to other previous end-point
assay studies, our platform offers the advantages of integration into multiple environments allowing simulta-
neous optical microscopy and impedance spectroscopy measurements. In this work we report a multi-
parametric sensor that can monitor the growth and activity of a biofilm. This was possible by combining two in-
terdigitated microelectrodes (IDuEs), and punctual electrodes to measure dissolved oxygen, K+, Na+ and pH.
The IDuE has been optimized to permit sensitive and reliable impedance monitoring of Staphylococcus aureus
V329 growth with two- and four-electrode measurements. We distinguished structural and morphological
changes on intact cellular specimens using four-electrode data modeling. We also detected antibiotic mediated
effects using impedance. Resultswere confirmed by scanning electrodemicroscopy and fluorescencemicroscopy
after live/dead cell staining. The bacitracin mediated effects detected with impedance prove that the approach
described can be used for guiding the development of novel anti-biofilm agents to better address bacterial
infection.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Bacterial attachment and the development of microbial communi-
ties commonly known as biofilms cause equipment damage and prod-
uct contamination and are prominent sources of infection [1]. For
example, in the clinical setting, the infection on implants and/or in-
dwelling medical devices such as catheters or heart stents requires a
complete removal of the device from the patient very often [2]. In this
regard, the attention towards the development of novel lab on a chip
platforms to address bacterial infection has increased in the past years
[3–5]. These platforms are very attractive because they allow the contin-
uous flow of nutrients. Such conditions are more realistic regarding
pathogenesis. Moreover, lab on a chip platforms offer the possibility to
study biofilm formation under controlled conditions. Biofilm formation
has been described in the literature as a three-step process [6]. It starts
with an initial attachment of the bacteria to the material surface by the
action of physical forces followed by the formation and maturation of a
celona, Spain.
).
strong bacterial layer by secreting extracellular polymeric substances
(EPS) that provides the biofilm a high resistance to antibiotics [7,8].

To study this biofilm formation methods of continuous label-free
monitoring techniques such as surface plasmon resonance [9,10] and
quartz crystal microbalance [11] have been developed in the lasts
years also gaining a lot of attention in microbiology. The quartz crystal
microbalance is able to calculate the amount of biomass attached on
the surface applying mathematical approximations. Although both
techniques have shown promising results, they are not designed for
in-field analysis as they require skilled personnel and the use of equip-
ment that is expensive, non-portable, and cumbersome to assemble.
Opticalmicroscopy is a cheap and simple alternativemethod for charac-
terizing biofilms but, at the same time, it is an end-point assay that in-
volves labeling and destruction of bacteria. Therefore, it is pertinent to
develop tools that allow non-disruptive, continuous and label-free
monitoring of the dynamic processes andmechanisms of biofilm forma-
tion under real conditions [12].

A widely used alternative method for microorganism growth detec-
tion is based on electrical impedance spectroscopy measurements [13].
Numerous in vitro studies can be found in the literature based on the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bioelechem.2015.05.006&domain=pdf
http://dx.doi.org/10.1016/j.bioelechem.2015.05.006
salvador.borros@iqs.url.edu
http://dx.doi.org/10.1016/j.bioelechem.2015.05.006
http://www.sciencedirect.com/science/journal/15675394
www.elsevier.com/locate/bioelechem
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relative impedance changes induced after cell adhesion onto the elec-
trodes [14,15], some of them using commercial interdigitated micro-
electrodes (IDuE) [16,17]. Despite offering a large sensitive area in a
limited space, most of commercial IDuE do not offer the possibility of
studying cell growth under flow conditions, a variable that is known
to affect biofilm structure and behavior [18], or to measure additional
cell culture parameters to control other cell cultures analytes of interest
[19]. Furthermore, not many studies have been published on biofilm
growth monitoring in a microfluidic channel using IDuEs [20–23], a
technology that deserves further study and refinement.

To address some of the technological limitations faced by the con-
ventional electrodes and current devices for bacterial biofilm growth
primarily based on cultivationwithinmulti-well platforms, we have de-
signed and fabricated our own multi-parametric sensor and low-cost
microfluidic platform. The system is designed to be used inmultiple en-
vironments and to allow simultaneous and continuous monitoring
of biofilm proliferation under shear stress using optical microscopy
and multiple read-outs. The chip used in this study contains two IDuEs
(rectangular and circular) and punctual electrodes tomeasure dissolved
oxygen (DO) [24], K+, Na+ and pH. Two- and four-electrode configu-
ration impedance measurements can be performed indistinctly on the
same IDuE. In this work we optimize the rectangular IDuE geometry
with a finite element model (FEM) to reduce the measurement spatial
resolution while maintaining a large electrode area. The culture area
of the proposed platform is fabricated using transparent material in-
cluding the electrode substrate to enable the comparison with micros-
copy evaluation techniques. Real-time monitoring of the important
pathogen, Staphylococcus aureus, biofilm formation during 24-h experi-
ments using the optimized IDuE was compared to a circular IDuE elec-
trode similar to that from Roche Applied Science (Basel, Switzerland).
Susceptibility to the antimicrobial peptide bacitracin was also investi-
gated. The results were confirmed by scanning electrode microscopy
and fluorescence microscopy after live/dead cell staining of the bacteria
in the measured biofilm.

2. Materials and methods

2.1. Multi-parametric sensor

This section details the overall design of the multi-parametric sen-
sor. In this work, we have focused only on the performance of the im-
pedance characteristics. To optimize the physical dimensions and
geometry of the IDuE (Fig. 1A), we simulated a 2D cross-section FEM
model of the electrode geometry with a mesh of 20,000 elements
(Fig. 1B) with COMSOL Multiphysics® 4.4 (Burlington, MA, USA). The
impedance sensitivity, which depends on the electrode dimensions,
was calculated according to [25]

S ¼ J
!

1 J
!

2

I2
; ð1Þ

where S is the sensitivity to the conductivity changes as a function of the
position, J1 is the current density vector when the current is injected be-
tween I+ and I− electrodes, and J2 is the current density vector when
the same current is injected between the voltage sensing electrodes
V+ and V−.

The results in Fig. 1B reveal that the area where the IDuE sensitivity
is higher corresponds to gap area between the IDuE groups denoted in
the figure as WINT. The FEM results (Supplementary Fig. 1) reveal that
the optimal geometry is a trade-off between minimizing WINT while
also keepingminimalWD and nD, andmaximal LD. In all, the dimensions
of the IDuE are WINT = 21 μm the interdigitated group space, WD =
21 μm the digit width, nD = 32 the number of digit pairs and LD =
7.11mm the digit length (detail shown in Fig. 1C). The chip dimensions
are 23 mm × 18 mm.
The chip also incorporates additional sensors (Fig. 1D) described
elsewhere [24,26] for measuring different biofilm parameters of inter-
est. The punctual electrodes allow to make electrochemical measure-
ments of DO, K+, Na+ and pH. The amperometric measurement of
DO is achieved using a working electrode (WE), a reference electrode
(RE) and a counter electrode (CE) [24]. The measurement of Na+ and
K+ ions is performed with a potentiometric ion-selective technique
using the WE for each ion measurement and the RE [27]. Finally, the
pH sensor consists of a punctual electrode with an iridium oxide layer
using the WE and the RE [26].

The chip was fabricated in the clean room facilities at the Barcelona
Microelectronics Institute, Spain, through standard photolithography
techniques [28–30]. Three different metal layers (titanium, nickel and
gold) were deposited by sputtering over a 500 μm thick Pyrex wafer.
First, a 15 nm titanium layer was placed just to improve the adhesion
of subsequent metals. Then, a 15 nm nickel layer was deposited on
top to the Ti layer to provide a diffusional barrier and to prevent the for-
mation of intermetallic titanium–gold compounds. Finally, the active
metal layer was obtained by depositing 150 nm of gold. Thereupon,
the electrodes and the metal tracks were patterned using selective
wet etching baths, according to a standard lithographic process. At the
end, a double layer of 400 nm of silicon oxide and 400 nm of silicon ni-
tride (Si3N4)was deposited by plasma enhanced vapor deposition. This
double layer was used for passivation and defining the electrode active
area and the connection pads. After the clean room process, a disk saw
was used to dice the wafer into individual chips (8 per wafer). Finally,
each chipwas characterized by cyclic voltammetry using saline solution
(0.9% sodium chloride) to verify that therewas no shortcut between the
IDuE fingers.
2.2. Microfluidic device design and fabrication

Initially, the design of the flow chamber was based on the general
microfluidic description reported in [31]. Although the general trend in
the field is to reduce both the channel and the chamber size [32], in our
approach, the minimal dimensions were constrained by the requirement
to allow visual inspection and time-lapse recording of the experiment
with a microscope. The final size of the platform is 60 mm × 43 mm
(Fig. 2), sufficient to accommodate the microscope objective. Since it
has been reported that the biofilm attaches to (non-)biological biocom-
patible surfaces [33], the device is made of a combination of polycarbon-
ate and polydimethylsiloxane (PDMS).

Polycarbonate is used for the construction of the upper and lower
lids (Fig. 2A). The top lid holds the connectors, the screws, and the
spring-loads for the electrical connections to the sensor. The bottom
part is a solid support containing the PDMS support for the sensor and
the threaded holes to close the device in a single piece (Fig. 2B). The
platform was designed using Catia V5R19 and built with 3D printing
technology with fused deposition modeling (FDM) technology. The
microfluidic channel and the sensor support were made of PDMS be-
cause of its characteristics: biocompatibility [34], gas permeability to
supplement oxygen while the nutrients were pumped through the
channel, mechanical flexibility to avoid chip fracture and, finally, optical
transparency [35] to allow microscopy imaging over the sensing area.
The parts fabricated with PDMS (Fig. 2C)were patterned using a replica
molding technique applying a master structure made of the negative
piece printed in 3D with FDM technology as well. Once the device is
closed, the bacterial culture is only in contact with PDMS and the bio-
sensor (Fig. 2D).

Theuse of the spring-load connectors provided a good electrical con-
tact with the pads and simplified the process of replacing the chipwhen
necessary. It also made possible to reuse the sensor by autoclaving. Be-
sides, the biofilm formed could be imaged easily with a confocal micro-
scope because the sensor, as an independent part, fitted perfectly with
the cover slip to perform an end-point assay.



Fig. 1. (A) Schematic design of the optimized interdigitated microelectrode (IDuE). The IDuE fingers are connected to the outer and inner current and voltage electrodes denoted in the
figure as I+ and I− and V+ and V− respectively. (B) Sensitivity map obtained from a 2D cross-section finite element model (FEM) considering the height of the biofilm and the flow
channel, Hb and Hm respectively. Abbreviations: WINT, interdigitated group space; WD, digit width; nD, number of digit pairs and LD, digit length. (C) Zoom of the rectangular IDuE fabri-
cated on a Pyrex substrate. (D) Chipmodule containing the different sensors. The chip contains two IDuEs, rectangular (IDuE 1) and circular (IDuE 2). The electrodes for themeasurement
of dissolved oxygen are the reference electrode (RE), theworking electrode (WE) and the counter electrode (CE). The punctual electrodes (PE) for the potentiometricmeasures were pre-
pared to be selective of Na+ and K+. For the pHmeasurement, an additional iridium oxide layer is electrodeposited on the electrode selected. For robustness purposes, the PE are rep-
licated. The reference electrode for potentiometric measures of Na+, K+ and pH is the silver/silver chloride electrode (Ag/AgCl RE).
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2.3. Biofilm culture

The bacteria were prepared from glycerol stock cultures stored at
−80 °C and streaked onto tryptic soy agar (TSA) plates [36] because
the strain S. aureusV329 is Grampositive [37]. The agar platewas placed
in an incubator at 37 °C for 16 h to grow the colonies. A single colony
was then transferred from the plate to a falcon tube containing 10 mL
of tryptic soy broth (TSB) media agitated for 16 h at 37 °C. Following,
the suspension was diluted to have a final absorbance of 0.084 at
600 nmwavelength. This dilution was used to feed themicrofluidic de-
vice in the stage 2 of the flow experiment to generate the biofilm (refer
to Section 2.6).
2.4. Impedance system

A commercialized stepped-sine impedance analyzer 4192A from
Hewlett-Packard was used to perform impedance spectroscopy
measurements. The impedance meter was connected to a custom
multiplexed front end. The system was controlled by customized
LabVIEW (National Instruments, Austin, TX, USA) based software
using a 82357B USB/GPIB interface, allowing to switch between two-
and four-electrode impedance configuration measurements automati-
cally. The impedance (magnitude and phase) was acquired performing
a frequency sweep between100Hz and 1MHz (10 frequency points per
decade). Each measurement included an average of 3 sweeps and re-
quired a total acquisition time of about 1 min. The technical details re-
garding the performance of the front-end can be found elsewhere
[38]. Impedancemeasurements were calibrated using baseline solution
measurement to compensate the frequency response of cable and
electronics.
2.5. Optical microscopy

The bacterial biofilm was observed non-invasively during the 24 h
course of the experiments with reflected light microscopy (Leica
2500DM) using a differential interference contrast technique. Images
were taken everyminute to obtain a time-lapse evolution of the biofilm
adhesion and proliferation (data available in the Supplementary
material).
2.6. Experiment design

During the course of the experiments, the two independent
channels of the peristaltic pump (Reglo ICC, Ismatec, Glattbrugg,
Switzerland) were working simultaneously. Both channels were con-
nected with PharMed® Ismaprene tubes (0.89 mm internal diameter)
to the microfluidic platform. A third channel was used to introduce
fresh TSB medium into a second microfluidic platform to have negative
control of biofilm formation. Both devices were connected to the im-
pedance analyzer multiplexed front end and the impedance measure-
ments were repeated every 10 min. The experiment consisted of three
stages:

1. Conditioning. Constant feeding of TSB medium to stabilize the
system forming the conditioning layer over the electrode and
to prevent the formation of bubbles. Duration 2 h, flow rate
50 μL/min.

2. Seeding. Introduction of the bacteria into the system. Duration
2 h, flow rate 50 μL/min.

3. Biofilm growth. Constant feeding of sterile TSB media to establish
the biofilm over the biosensor. Duration 22 h, flow rate 50 μL/min.



Fig. 2. (A) Computed aided design and components of the designed microfluidic device. (B) Cross-section of the device under themicroscope. (C) Open view of themicrofluidic platform.
(D) Zenithal view of the platform fabricated with a rapid prototyping technique.
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2.7. Equivalent electrical circuit and fitting

Impedance data measured with the four-electrode configuration
method was fitted to the empirical complex nonlinear model described
by the Cole in [39],

Z fð Þ ¼ R∞ þ R0−R∞

1þ j f
f c

� �α : ð2Þ

in Matlab (Natick, MA, USA) using the Marquardt–Levenberg iterative
weighted complex nonlinear least square algorithm [40]. Themaximum
iterations and the fitting tolerance were set to 1e6 and 1e−12 respec-
tively. From the optimal curve-fit parameters, the Jacobian was calcu-
lated numerically. The covariance matrix was estimated from the
Jacobian using a diagonal matrix containing as weights the impedance
data std. The asymptotic standard error for the optimal model parame-
ters was finally obtained from the square root of the diagonal elements
of the covariance matrix.

The central relaxation frequency fc corresponds to the frequency
with the highest absolute value of the impedance imaginary part. The
α parameter explains the dispersion in the cellular membrane capaci-
tances measured and is thus related to the dispersion of the shape and
size distribution. The casewhen α=1 the ideal casewhen cells are per-
fectly homogenous with a spherical shape as proposed by Fricke and
Morse [41]. The resistances R0 and R∞ are the resistances when f → 0
and f → ∞ respectively [42].

2.8. Live/dead viability assay

The end-point assay was realized immediately after the completion
of the 24 h experiment opening themicrofluidic device and staining the
IDuE with fluorescence. We used a confocal laser scanning microscope
(LSM510 META, Zeiss) controlled by AIM software (version 3.2, Carl
ZeissMicroImagingGmbH, Jena, Germany). Themicroscope is equipped
with two lasers (480 nm syto9 and 490 nm propidium iodide wave-
lengths) that are used to determine the presence of biofilm alive with
Live/Dead Baclight™ Bacterial Viability Kit L13152 from Invitrogen.
The staining was carried out for 15 min and the sensor was washed
seven times before it was placed on a coverslip of 60 mm× 24mm up-
side down to image the sample from the bottom. Biofilm image was ac-
quired 15 min after the end of the 24 h experiment.

2.9. Scanning electron microscopy as end-point assay

Biofilms were prepared for scanning electron microscopy (SEM) as
described previously [43]. Briefly, the air-dried biofilms were fixed
with 2mL of 2.5% glutaraldehyde in 0.1 mol/L sodium phosphate buffer,
rinsed once in the same buffer and then in deionized water followed by
overnight drying. The biosensorwas attached to aluminummounts and
coated with gold using a Polaron Emitech SC7640 sputter coater (New
Haven, UK). Images were obtainedwith a JEOL JSM-5310 scanning elec-
tron microscope (JEOL Ltd., Tokyo, Japan) at 3000× magnification.

3. Experimental results and discussion

3.1. Microscope characterization images

To evaluate the feasibility of the microfluidic platform to monitor
biofilm formation on the IDuE, we performed real-time image recording
and impedance measurements simultaneously. Fig. 3 shows time-lapse
microscopy images indicating the two main steps of biofilm condition-
ing and formation [44]. In the initial absorption phase (Fig. 3B–C), the
IDuE surface is initially covered by the conditioning film [45,46], a



60 O. Estrada-Leypon et al. / Bioelectrochemistry 105 (2015) 56–64
mixture of small molecules (water and salt ions) followed by a single
layer of small organic molecules or proteins that are present in the me-
dium. Then, the second stage (Fig. 3C–D), is characterized by the initially
reversible adsorption ofmicroorganisms to the conditioning film,which
arrives by Brownian motion, gravitation, diffusion or intrinsic motility
[44]. At the same time, bacteria also adhere to each other forming mi-
crobial aggregates before adsorbing the conditioning film (Fig. 3E).
Since the bacteria adhere to the conditioning film and not to the IDuE
surface, the strength of the initial biofilm will depend on the structure
of the conditioning film and/or the flow conditions of the system. The
beginning of the third stage starts when the initial biofilm has enough
strength to support the constant flow of fresh TSB media for a long pe-
riod of time (Fig. 3G–H). At a certain point during the third stage, the ini-
tial reversible adsorption becomes irreversible, mainly through the
secretion of EPS by the adsorbed bacteria in the second stage. The final
result is the biofilm structure (Fig. 4), a community of cells which to-
gether are medically important as they are highly resistant to both the
cells of the immune system and antibiotics and provide a reservoir for
future infection [7]. The thickness of the dehydrated biofilm was esti-
mated at 100 μm approximately using SEM.

3.2. Live/dead cell staining

Althoughmost of the bacteria were still alive after 24 h (Supplemen-
tary Fig. 2), the number of cells on the electrode was less than expected
considering the thickness shown in Fig. 4B. Even if we could have quan-
tified the number of cells by means of colony-forming unit or spectro-
photometry, we preferred no to do so to prevent altering the course of
the experiment. The disagreement in the estimated biofilm thickness
between the SEM experiment and the live and dead experiment was
caused by the dry cleaning cycles performed on the stained sample.
On the other hand, this result serves to prove thepoint that biofilm is ca-
pable of withstanding high shear forces due to the washing process as
compared to the low shear stress of media flow and SEM preparation.

3.3. Impedance monitoring of bacterial biofilm in growth media

Monitoring biofilm formation combining label-free biosensors and
impedance spectroscopy measurements on the surface of electrodes is
an alternative approach that has gained increasing interest, previously
described using IDuEs [47,48] which combine both impedimetric and
amperometric measurements [49]. In particular, much of the existing
studies are based on two- or three-electrode measurements [50,51,
52–54] because of their simplicity and ability to detect and track thebio-
film formation by the changes occurring at the surface electrode. These
Fig. 3. (A) Time-lapse optical microscope (Leica DM2500) at the initial timing just before the ba
time-lapse recording was performed with a 1 min interval for 24 h for editing a video at 25 fp
features are of great interest by themselves but introduce a source of in-
determination if the interest is to obtain a quantitative measurement of
the biofilm growing in the layers above the electrode surface. On top of
that, the fact that the two-electrode configuration includes the imped-
ance and polarization of the counter and the working electrodes can
jeopardize the data analysis if the contribution of each electrode is not
the same. Furthermore, when the electrode surface is fully covered by
bacteria or EPS, the inherent sensibility of this technique is significantly
reduced as compared to the four-electrode configuration technique
[38]. With the four-electrode method [55], the effect of the electrode–
electrolyte is excluded from the impedance measurement offering an
increased sensitivity to monitor cell concentration and the possibility
to extract morphological and structural information from the imped-
ance (refer to Section 3.5). Despite the aforementioned advantages,
we are not aware of any previous work where four-electrode measure-
ments were performed in a microfluidic device to monitor biofilm.

Fig. 5A shows the time course of the impedancemagnitude at 10 kHz
where it is more sensitive to biofilm formation [56]. Impedance is nor-
malized to its maximum value for comparison purposes (Supplemen-
tary Fig. 3). The unexpected increase at 2 h is attributed to the
transient phase before stabilization and the fact that the medium con-
taining the bacterial suspension was not pre-warmed. Similar to the re-
sults shown in [47], the time to be detected by impedance changes due
to biofilm growth is about 5 h. In the initial phase where the concentra-
tion of biofilm is low, we can see the sensibility of the two-electrode
technique to detect that biofilm proliferation is decreased. Fig. 5A also
shows that the two-electrode circular IDuE has lower dynamic range
to detect cell growth than the rectangular IDuE, and saturates to its
maximum value after 10 h. The ability to detect growth changes can
be further improved with the four-electrode method. The detected
change is 15%, approximately 5% higher than that of the two-electrode
method measuring under the same experimental conditions. The level
of impedance changes detected is similar to that of the 10% change de-
tected for the same range of frequencies at 12 h obtained by Zikmund
et al. [57] where the growth of Escherichia coli was monitored. Despite
the differences in the dimensions and geometry between pathogens,
E. coli is a rod-shaped bacterium and measures approximately 0.5 μm
in width by 2 μm in length while S. aureus has a spherical shape and a
size of 0.5–1 μm, we detected the same relative change at 10 h after in-
fection (2 h after starting the experiment). Compared to the 5% imped-
ance change detected in [47], we think this differencemay be due to the
electrode optimization through FEMsimulations. On the other hand, the
four-electrode method allows the morphological impedance spectrum
and structural information regarding the biofilm to be interpreted
(Fig. 7).
cterial infection; (B), 0 h; (C), 3 h; (D), 5 h; (E), 8 h; (F), 13 h; (G), 16 h; and (H), 21 h. The
s (data available in the Supplementary material). Scale bar: 200 μm.
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3.4. Bacitracin mediated effects on impedance

In Fig. 5Bwe targeted S. aureus bacteria with bacitracin, an antibiotic
frequently used for antimicrobial therapy [58]. Bacitracin is a polypep-
tide antibiotic that inhibits the dephosphorylation of the lipid carrier
bactoprenol, an important lipid molecule which transports peptidogly-
can precursors across the cell membrane and is therefore essential in
the synthesis of growing peptidoglycan, by forming a complex lipid–an-
tibiotic, which is very strong and specific to this phospholipid. The inhi-
bition of the complex lipid carrier in the cell wall biosynthesis ceases
bacterial growth. Apart from disrupting bacterial wall biosynthesis, bac-
itracin provokes modifications in the permeability of the plasma
Fig. 4. (A) Presence of biofilm in the flow chamber after the end of the 24 h experiment.
(B) Scanning electron microscopy images showing the biofilm growth on top of the inter-
digitated microelectrode. (C) Detail of Staphylococcal bacteria attached on the IDuE sur-
face. Scale bars: (B), 700 μm; (C), 10 μm.
membrane as the lipid is an integral component of the membrane [59,
60]. Unlike other antibacterial compounds that only affect earlier phases
in the biofilm formation such as mupirocin [61], bacitracin influences
biofilm at any stage of the process. The effects that bacitracin has on
biofilms are illustrated in Fig. 5B using the multi-parametric platform
presented in this paper. During normal proliferation conditions the im-
pedance changes are detected until 15 h of inoculation (Fig. 5A), with
bacitracin the relative changes in impedance observed during the first
10 h are not significant as they are in the same order of the standard de-
viation. The fact that there is no significant change from baseline to the
end of the experiment indicated the inhibition effect of bacitracin effect
on biofilm formation.

3.5. Structural and morphological biofilm changes

Fig. 6A shows the fitting four-electrode impedance data to the Cole
model for different time instants. It is noted that as the experiment pro-
ceeds, the impedance arc moves on the horizontal axis due to an in-
creased resistance caused by cell proliferation consistent with [62].
The details of the time evolution of the parameters R0 and R∞ are
Fig. 5.Time course of the normalized impedancemagnitude (mean±std.,n=3)detected
with the rectangular and circular interdigitated microelectrodes (IDuEs), IDuE 1 and IDuE
2 respectively. (A) Normal conditions using IDuE 1 performing 2 electrode configuration
(circles) and 4 electrode configuration (squares). Data acquired with IDuE 2 performing
2 electrode configuration (triangles). (B) Presence of bacitracin using IDuE 1 performing
2 electrode configuration (squares) and 4 electrode configuration (circles).



Fig. 6.Representation of the complex plane of the impedancemeasuredwith the four-electrodemethod. (A) The solid lines correspond to the Cole fitting at different times of 5 h (circles),
11 h (squares), 17 h (triangles), and 23 h (diamonds). (B) Time course of the impedance model parameters (mean ± std.); R0 (circles) and R∞ (squares) represent the impedance resis-
tances when f → 0 and f → ∞, (C) fc is the center frequency of the impedance relaxation and (D) α the empirical parameter.
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illustrated in Fig. 6B. The increase in R0 and R∞ at 2 h is due to the same
reasons mentioned in Section 3.3. Immediately after, both parameters
R0 and R∞ started to increase during the first 15 h. Thereafter, while R0
continued to increase slightly over time, R∞ experienced a slight de-
crease starting at 20 h. We believe that this decrease in R∞ might due
to the metabolic activity of the biofilm, which changes the intracellular
ionic concentration of the medium affecting the high frequencies as re-
ported in [20].

As for the value of the center frequency shown in Fig. 6C, the high
value at the beginning of the experiment (approximately 150 kHz)
and the monotonously decreasing evolution from 5 h indicates possible
structural changes occurring during formation of the biofilm. The initial
high value of the center frequency in the early hours correlates with a
lower cell dimension corresponding to a few scattered cells on top of
the electrode surface. We think that the increase in dimension when
cells are clustered forming colonies leads to a reduction in the center
frequency (about 130 kHz) at 20 h. Of note, the frequency range in
which morphological changes can be detected is in the range of
100 kHz to 200 kHz, where the electrode impedance contribution mea-
sured with the two-electrode method might hinder the detection of
such changes (Supplementary Fig. 3) [63–65].

Our previous observation in the change in biofilm structure is also
supported analyzing the time dependence of the α parameter in
Fig. 6D. At the beginning of the experiment, the value of α is closer to
one due to the homogeneity of the cells present on the electrode. The
few sparse cells present on the electrode surface still maintain their
spherical shape intact. The lower α value could explain why cells
group together to create colonies [18]. At first, clusters of cells and colo-
nies were of a variety of sizes and therefore more heterogeneous than
the initial phase. As the dimensions of the colonies are more homoge-
nous, the alpha value increases towards 1. In all, our limited results in-
dicate that it is possible to use the Cole model parameters as surrogate
measures of biofilm activity, however, further work in this direction is
needed.

3.6. Biofilm estimator E

To prevent the interpretation of the four-electrode impedancemea-
surements from being influenced by ion concentration changes due to
the biofilm metabolic activity [20] or temperature variation effects, we
propose the use of a ratiometric biofilm estimator E following the
same reasoning as in [38,66]. The estimator allows for obtaining a quan-
titative measurement of biofilm considering cells above the electrode
surface. The estimator is based on the relative variation of the Cole resis-
tances R0 and R∞ and it is proportional to the biofilm volume fraction.
We use the full expression for the calculation of the propagation of un-
certainty σE based on the parameters covariance matrix calculated in
the fitting procedure, wherein

E %ð Þ ¼ 100 � 1−R∞
R0
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Fig. 7 shows the E biofilm density estimator time course. It can be
seen that during the first 5 h, the estimated biofilm density decreased
5% until 7–10 h, after which it increased progressively during the con-
secutive 15 h. The fact that the estimator is far from being saturated at
24 h value suggests that it is possible to quantify biofilm with the
four-electrode method performing an experiment that lasts more than
24 h.



Fig. 7. Time course of the Cole-based biofilm estimator E (mean ± std.). Impedance data
are shown in Fig. 6.
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4. Conclusions

By simulating the geometry of the interdigitated microelectrode
(IDuE) with a finite element model, we have been able to optimize
the sensitivity of our sensor for the detection of S. aureus biofilm prolif-
eration. The suitability of themicrofluidic platformdesignwas validated
performing selective label-free monitoring of S. aureus under constant
flow conditions simultaneously combining microscopy and impedance
measurements with the two- and four-electrode methods. Contrary to
other state-of-the-art approaches based on commercial multi-well
plates used today for biofilm assays, our multi-parametric microfluidic
platform can be integrated in multiple environments and offers the ad-
vantage of accounting for the effect of shear stress on the formation of
bacterial biofilm, a variable that affects biofilm structure and behavior
[18]. Furthermore, the system presented also offers the possibility of
measuring multiple read-out configurations to detect other analytes of
interest such as dissolved oxygen, K+, Na+ and pH.

Both impedance and microscopy images conveyed the same results
andwere in good agreementwith the timings and relative changes pub-
lished in the literature [49]. The novel four-electrode based measure-
ments confirmed an improvement in detecting biofilm formation
compared to the two-electrode technique as shown by the 5% increased
sensitivity, in part because the effect of the electrode–electrolyte was
excluded from the measurement and the IDuE was optimized. Perhaps
more importantly, we could detect and track biofilm morphological
and structural changes by fitting impedance to the Cole model. Unlike
the two-electrode method approach based on equivalent electrical cir-
cuits, the four-electrode technique alongwith the Cole-based fitting ap-
proach allowed to obtain a quantitative estimate of biofilm estimator
free of temperature variations and changes in ionic concentrations.
The detected changes by the estimator confirm that it is possible to de-
tect biofilm growth by performing experiments that lasts more than
24 h.

Finally, the susceptibility of biofilm to bacitracin was corroborated
by a flat impedance response from baseline during the course of the ex-
periment. The bacitracin mediated effects on impedance prove that the
approach described in this work can contribute in guiding the develop-
ment of new anti-biofilm agents to better address bacterial infection, for
example, when antibiotics are attached on the surface of the electrodes
using plasma treatment, a technology which is on the verge of
development.
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