
Chapter 3

Methods for vessel reconstruction

and modeling

In this chapter, the focus is directed towards the methods used in the model building

process. First, a snake formulation for curves and surfaces with B-splines is explained.

Deformable models of one and two dimensions are separately described. Deformable

models are used in this thesis to detect, track the vessels in coronary image sequences

and perform 3D reconstruction. The problem to assign the external forces to the

control points and the sensitivity to low level feature detector is introduced. Then,

a survey of the statistical techniques used in this thesis is discussed. Statistical

learning, dimensional reduction and distance measurement shall be used later to

build the coronary model. The chapter �nishes with a review of current tracking

schemes in computer vision.

3.1 Physic based deformable models. Snakes

Using the well known principles of the newton mechanics, the general idea of de-

formable models in computer vision consist on the construction of a potential �eld

from the image feature of interest where the model adapts itself to the feature min-

imizing its energy. In order to organize image features in semantic units, a global

segmentation technique based on snakes [50] has important advantages.

� The method allows for incorporating high-level knowledge constraining the do-

main of solutions when doing image segmentation. The high-level knowledge

introduced into the image processing is in terms of general constraints such as

smoothness, continuity [50], closeness and guide by an approximate model [82].

These constraint regularize the problem of image feature organization and guide

the process of �nding a unique solution as a function of initial conditions.

� It is based on physical models theory. Snakes [50, 17, 82, 106] have the advantage

of being dynamic and elastic curves with a physical interpretation. Snakes
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40 METHODS FOR VESSEL RECONSTRUCTION AND MODELING

represent physics-based models de�ned from the theory of elasticity and Newton

Mechanics.

� Any solution using deformable models in computer vision is formulated using

the concept of forces and equilibrium. Energy principles are used to deform

the elastic curve under external forces attracting the curve towards the image

features of interest; while internal forces take charge of imposing the constraint

on the shape of the snake. Therefore, shape changes are driven by known

dynamic laws. Elastic properties of physical nature as tension and sti�ness are

attributed to the deformable models to control its deformation. Additionally,

mass and dissipation can be included to determine the dynamics of the models.

The snake deforms as a physical body where the deformation is smooth and

without discontinuities.

Recently, active contour models (snakes) have become not only a standard segmen-

tation technique to organize image features but to deal with many other problems in

computer vision. Some of these problems are:

� Segmentation of subjective contours [50], ultrasound cardiac images [91], satel-

lite images [83], coronary arteries segmentation [54, 106], etc.. In [72] a statisti-

cal approach is incorporated into snakes for segmentation and tracking purposes.

Other application of deformable contour models, to segment structures in 2D

images can be found in [11, 12, 23].

� 3D object's boundary reconstruction of objects - of anatomical 3D object's

boundary [84, 25, 24].

� Temporal tracking: indoor scenes[16, 9], facial features [56, 36], cardiac SPECT

images [4, 5].

� Elastic matching of brain atlases in MR images [29, 31].

� Non-rigid motion reconstruction of anatomical organs (e.g. left ventricle) in

SPECT images [5].

From the items above it is clear that deformable models have an increasing use in

medical image analysis. Using snakes, one can interpolate image data representing

objects in images as long as a good snake initialization is given.

Given the Computer Vision problems of segmenting and tracking objects in images,

snakes begin to deform from an initial position trying to adjust to image features

(e.g. edge points) under smooth and continuous deformations. It is deformed as a

result of the in
uence of local forces derived from some feature of interest, while this

deformation remains smooth due to the e�ect of internal forces.

These forces are represented as elastic curves with associated energy. External

energy is de�ned as a function of the curve distance to the image features of interest.

Internal energy depends on the smoothness and continuity of the model shape. The

segmentation by snakes is de�ned as an energy-minimization problem. The snake

deforms as close as possible to the image features of interest minimizing its external

energy, while keeping its shape as smooth as possible minimizing its internal energy.
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Representing parametrically the position of the snake as Q(u) = (x(u); y(u)), the

energy functional of the snake is written as follows:

Esnake =

Z
[Eint(Q(u)) +Eext(Q(u))]du (3.1)

where Eint(Q(u)) is the internal energy and Eext(Q(u)) is the external energy.

Snake energy (3.1) is minimised by Euler-Lagrange equation yielding:

� d

du
(�(u)Q

0

(u)) +
d2

du2
(�(u)Q

00

(u)) +rEext(Q(u)) = 0 (3.2)

where �(u) and �(u) are weight functions controlling the relative importance of the

internal deformations. The external forces forming Eext makes the snake to approach

and lock on image features (minimizing the external energy). To de�ne the external

energy, a detector of image features is applied to build a potential map as a func-

tion of the distance to the extracted image features [82, 50]. Usually, feature map is

generated as an edge/crest/valley image map [50, 83, 43] and the snake deforms on a

potential �eld constructed as a distance map to the extracted image features. Tem-

poral tracking is also achieved using the minimized snake in one frame as the initial

one for minimizing in the next frame. Snakes can be generalized to n-dimensions.

3.2 Deformable models implementation. B-Snakes.

3.2.1 Numerical representation

Many di�erent implementations can be used for the snakes. Kass et al. [50] proposes

a point-based implementation and Menet et al. [64] a B-spline based snake. For

the vessel structures, a B-spline [6, 17] based representation o�ers many interesting

advantages.

1. Low degree curves: high processing eÆciency and numerical stability. The

lower the polynomial degree, the lower the complexity of the related algorithms

in space and time.

2. The polynomial degree, once de�ned, is constant and independent of the number

of points to interpolate.

3. Continuity: a k-degree spline has continuity up to order k � 1.

In our case we have chosen to represent the snake model by polynomial of cubic

degree. Using polynomial functions of cubic degree is enough to represent any vessel

shape. Piecewise polynomials curves and a set of few control points are very important

from the point of view of computational eÆciency. However, it is necessary the use

of some criteria to translate the external forces along the spline to the control points

[60]. A review of the B-spline properties follows.
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3.2.2 B-spline representation of deformable models

Let u be an internal parameter of a model in Rn Q(u) = (x1(u); x2(u); : : : ; xn(u));

(usually 2 � n � 3).

A B-spline curve representation has the form:

Q(u) =

mX
i=0

viBi;p(u) (3.3)

Where vi are m + 1 control points and Bi;p(u); i = 0; : : : ;m are piecewise poly-

nomial functions forming a basis for the vector space of all piecewise polynomial

functions, these functions are of a desired degree (p) and continuity (for a �xed

breakpoint sequence) [81]. The continuity of the model is determined by the basis

functions. Hence the control points can be modi�ed without altering the model con-

tinuity. Bi;p(u); i = 0; : : : ;m are called standard B-spline blending functions. The

curve representation obtained using B-splines inherits all the properties of such basis.

Eq. (3.3) can also, be expressed in matrix notation as a matrix product between a

vector of B-spline functions and a vector of weights (control points). For example,

each control point i (weight) can be written as a vector vi = vx; vy for a curve laying

in a plane. The blending functions are recursively de�ned. Let U = fu0; : : : ; umg be
a non-decreasing sequence of real numbers, i.e. ui � ui+1; i = 0; : : : ;m � 1. The ui
are called knots and U represent the knot vector. The jth B-spline basis function of

k degree Bj;k(u) is de�ned as follows:

Bj;0(u) =

�
1 if uj � u < uj+1;

0 otherwise:

Bj;k(u) =
u� uj

uj+k � uj
Bj;k�1(u) +

uj+k+1 � u

uj+k+1 � uj+1
Bj+1;k�1(u)

Properties of the B-spline curves (see also �gures 3.1 and 3.2):

1. Local support property: Bj;k(u) = 0 if u is outside the interval [uj ; uj+k+1):

Local changes of snake curve do not a�ect the rest of the curve.

2. In any given knot span [uj ; uj+1) at most k+1 of the Bj;k are non zero, namely

the functions Bj�k;k ; : : : ; Bj;k

3. Bj;k(u) � 0 for all j; k; u

4. For an arbitrary knot span [uj ; uj+1);
Pj

i=j�k Bj;k(u) = 1

5. Controlled continuity: all derivatives up to order k of Bj;k(u) exist in the interior

of a knot span. At a knot, Bj;k(u) is k times continuously di�erentiable.

6. B-splines can be either open or closed.

Note that one dimensional splines (curves) can have two or three dimensional

control points depending on whether they lie in a plane or in a three dimensional

space.
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Figure 3.1: B-spline basis functions.
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Figure 3.2: Change of a control point.
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3.2.3 B-spline surfaces

The curve Q(u) is a vector valued function of one parameter. It is a mapping of a

straight line segment into Euclidean two or three-dimensional space.

A surface is a vector-valued function of two parameters, u and v; and represent a

mapping of a region < � R
2 ; of the uv plane into Euclidean three-dimensional space.

Thus it has the form S(u; v) = (x(u; v); y(u; v); z(u; v)); (u; v) 2 <:
There are many schemes for representing surfaces [49, 74, 73] They di�er in the

coordinate system and in the type of region <: Probably, the simplest method and

the one most widely used in geometric modeling applications is the tensor product

scheme.

It uses basis functions and geometric coeÆcients. The basis functions are bivariate

functions of u and v, which are constructed as products of univariate basis functions.

The geometric coeÆcients are arranged in a (topologically) bidirectional, n �m

net. Thus a tensor product surface has the form:

S(u; v) = (x(u; v); y(u; v); z(u; v)) =

nX
i=0

mX
j=0

Bi(u)Bj(v)pij (3.4)

where pij = (xij ; yij ; zij); 0 � u; v � 1:

Note that the (u; v) domain of this mapping is a square (a rectangle in general).

B-spline surfaces inherit the properties of univariate B-splines. While surfaces shall

be considered as two dimensional spline it has to be clear that this is regarding the

number of spline internal parameter and such dimension should not necessarily be the

same as the control points dimensions.

3.2.4 Matrix representation for deformable models

Regarding a computer implementation it is interesting to give a uni�ed matrix nota-

tion for B-splines curves and surfaces [17]. Using a matrix approach, usually one can

compute constant blending matrices only once increasing the global performance of

the related algorithms. Any parametric curve (like B-spline) can be noted in a matrix

form. Knowing that a B-spline is a weighted sum of polynomials, the curve can be

expressed as a product between a vector of polynomials and a vector of weights as

follows:

Let P be a vector of 2D points

P =

0
B@

p0
...

pm

1
CA

Noting P = (Px;Py) where

Px =

0
B@

x0
...

xm

1
CA
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and

Py =

0
B@

y0
...

ym

1
CA

One can write

Q(u) = (x(u); y(u)) =

�
x(u) = FTPx;

y(u) = FTPy

and more compact:

Q(u) = FTP

where

F(u) = (F0(u); F1(u); : : : ; Fm(u))
T

When the elements Fi(u) are the B-spline blending functions we have a B-spline

curve.

For one-dimensional B-splines, Blake [17] uses a matrix notation well suited for

snake computation. The recursive rules for generating the B-splines basis function

can be converted into an algorithm by expressing each basis function as a sequence of

polynomials pn(u) de�ned over the intervals [u; un+1). Since a B-spline basis Bn;d is

zero out of the interval [un; un+d), any B-spline function of order d can be expressed

using just d polynomials BS

n;d
, one for each of the d spans where the basis function

is not zero. The inductive form can be applied over each interval to obtain each

BS

n;d
. The span is de�ned as any non-empty inter-knot interval to cope with the

multiple knot case (considered as an empty inter-knot interval). If we consider that

all the spans are unit length then the basis functions making up a spline are uniquely

determined by the knot multiplicities m0; : : : ;mL at the breakpoints.

A B-spline curve Q(u) of order d (d = 4 for cubic splines) and m control points, is

de�ned for 0 < u � N , where m = N for closed curves and m = N + d for open ones

(with appropriate variations where multiple knots are used to vary curve continuity):

Over the span S� any spline function is a linear combination of the basis functions

Bb�;d : : : Bb�+d�1;d where b� = (
P

�

i=0mi)� d.

Then:

Q(u)[�;�+1) = Q(u)� =
P

b�+d�1
i=b�

piBi;d(u)

For each span we can compute a d� d span matrix BS
�
such that

Q�(u+ �) = (1; u; : : : ; ud�1)BS
�

0
B@

pb�
...

pb�+d�1

1
CA

Finally, one can compute the curve using the previously computed span matrices,

and write the curve as follows:

Q(u) = BT (u)P = BT (u+ �)P = uBS

�G�P (3.5)

where 0 < u � 1;P is a m�1 vector containing the control points, BS
� is a d�d stan-

dard B-spline matrix where the ith column corresponds to the polinomial coeÆcients
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of the basis function Bb�+i�1;d over the interval of span �, G� is a d�m matrix that

simply selects d consecutive control points.

(G�)ij =

�
1 if i� b� = j

0 otherwise

and u = (1; u; : : : ; ud�1)

For example, G0 and G2 for a cubic B-spline with nine control points should be

as follow:

G0 =

0
BB@
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

1
CCA

G2 =

0
BB@
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

1
CCA

Given that:

u
0

=(0; 1; : : : ; (d� 1)ud�2) and

u
00

=(0; 0; 2; : : : ; (d� 2)(d� 1)ud�3)

the derivatives of the function can be computed as

Q
0

(u+ �) = u
0

BS

�G�P = B
0

P (3.6)

Q
00

(u+ �) = u
00

BS

�G�P = B
00

P (3.7)

When considering a B-spline curve in a plane we get:�
x

y

�
= (uu)

�
BS
�G� 0

0 BS
�
G�

��
Px

Py

�
= BP

where Px;Py are the control points components in x and y respectively and (uu)=

(1; u; : : : ; ud�11; u; : : : ; ud�1)

The �rst and second derivatives can be expressed as follows:�
x
0

y
0

�
= (u

0

u
0

)

�
BS
�
G� 0

0 BS
�
G�

��
Px

Py

�
�

x
00

y
00

�
= (u

00

u
00

)

�
BS
�
G� 0

0 BS
�G�

��
Px

Py

�

The normal to the B-spline curve is given by:�
nx
ny

�
=

�
�y0

x
0

�
= (u

0

u
0

)

�
BS
�G� 0

0 BS
�G�

��
�Py

Px

�

Note also that a surface S(u; v) can be described in a matrix form:
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S(u; v) = [Bi(u)]
T [Pij ][Bj(v)]; where [Bi(u)]

T is a (1) � (n + 1) row vector of

functions, [Bj(v)] is a (m+ 1)� (1) column vector of functions and [Pij ] is a (n +

1)� (m+1) matrix of control points forming the grid which de�ne the surface. When

Bi(u) and Bj(v) are univariate B-spline basis functions associated to two knot vectors

U and V respectively, we obtain a B-spline surface.

3.2.5 Internal Energy

From mechanics one can consider the deformation energy of any elastic material and

associate it to the snake curve. A suitable classi�cation for such energy is in two

kinds; stretching and bending. For any curve the stretching energy is proportional

to the square of the �rst derivative and the bending is proportional to the square

of the second derivative. Estretching / Q2
u
(s) Ebending / Q2

uu
(s). Therefore, the

total internal energy for the snakes can be written in terms of a sum of membrane

energy, expressing the snake stretching, and of thin-plate energy, expressing the snake

bending:

Eint(Q(u)) = K1�(u)j
dQ(u)

du
j2 +K2�(u)j

d2Q(u)

du2
j2 (3.8)

The parameters of elasticity �(u) and �(u) control the smoothness of the snake

curve.

The concept can be extended to the two dimensional case as follows:

Eint(Q) / �1j@Q(u;v)
@u

j2 + �2j@Q(u;v)
@v

j2 + �11j@
2Q(u;v)
@u2

j2+
�12j@

2Q(u;v)
@u@v

j2 + �22j@
2Q(u;v)
@v2

j2
(3.9)

where Q is the two dimensional spline (surface) with internal parameters u and v.

Internal energy can be expressed in a convenient matrix form known as sti�ness

matrix. Using the �rst and second derivatives of the splines formulated above the

sti�ness term is:

Eint(Q) =

Z L

0

[�(u)Qu(u)
2 + �(u)Quu(u)

2]du (3.10)

Considering �(u) and�(u) as constants:

Eint(Q) = �

Z
L

0

Qu(u)
2du+ �

Z
L

0

Quu(u)
2du (3.11)
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Using (3.6) and (3.7) we get:

Eint(Q) = �
R
L

0
PTB

0
T (u)B

0

(u)Pdu+ �
R
L

0
PTB

00
T (u)B

00

(u)Pdu

= �PT 1
L

P
L�1
�=0 G

T
�B

ST
�

R 1
0
u
0Tu

0

du G�B
S
�P+

�PT 1
L

PL�1
�=0 G

T
�B

ST
�

R 1
0
u
00Tu

00

du G�B
S
�P

= �PT 1
L

P
L�1
�=0 G

T
�B

ST
� �

0

G�B
S
�P+

�PT 1
L

P
L�1
�=0 G

T
�
BST
�
�
00

G�B
S
�
P

= PT 1
L

P
L�1
�=0 G

T
�
BST
�

(��
0

+ ��
0

)P

(3.12)

being �
0

=
R 1
0
u
0Tu

0

du and �
00

=
R 1
0
u
00Tu

00

du:

For a B-spline of order 4, �
0

and �
00

take the form:

�
0

=
R 1
0

0
BB@

0

1

2u

3u2

1
CCA (0 1 2u 3u2)du =

R 1
0

0
BB@
0 0 0 0

0 1 2u 3u2

0 2u 4u2 6u3

0 3u2 6u3 9u4

1
CCA du

�
00

=
R 1
0

0
BB@

0

0

2

6u

1
CCA (0 0 2 6u)du =

R 1
0

0
BB@
0 0 0 0

0 0 0 0

0 0 4 12u

0 0 12u 36u2

1
CCA du

�
0

=

0
BB@
0 0 0 0

0 1 1 1

0 1 4
3

3
2

0 1 3
2

9
5

1
CCA �

00

=

0
BB@
0 0 0 0

0 0 0 0

0 0 4 6

0 0 6 12

1
CCA

In general, the matrices �
0

and �
00

can be expressed with the following forms:

�
0

i;j
=

(
0 if i = 1 or j = 1;

(i�1)(j�1)
i+j�3

otherwise:

�
00

i;j
=

(
0 if i < 3 or j < 3;

(2�3i+i2)(2�3j�j2)
i+j�5 otherwise:

3.2.6 External Energy of a snake

The external energy comes from the image itself trying to attract the curve toward a

selected image feature. Usually, it is formulated as a potential energy. Other forces
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can be considered additionally to provide a prede�ned behavior somewhere along the

curve.

Potential energy of a snake

Let us consider a surface as a potential �eld and assign a high value to the �eld far

from the features of interest of the image and lower values toward the feature. The

work of external forces along the curve have to push the snake towards the image

features of interest. These forces are associated to a potential Pot(x; y) which, in

general, is de�ned in terms of gradient module of the image I(x; y) convolved by a

Gaussian function G(x; y), [50]:

Eext = Pot(x; y) = �jr(G(x; y) � I(x; y))j

or as a distance map of the edge points [25]:

Eext = Pot(x; y) = d(x); P ot(x) = �e�d(x)
2

(3.13)

where d(x) denotes the distance between the pixel x and its closest edge point. The

snake is moved by forces conforming the potential and tries to fall in a valley as if

it was under the e�ect of gravity. In �gure 3.3 a frame of a coronary angiography

sequence is used as an example showing the image valleys and the potential energy

build as a distance map to the detected feature, �gure 3.4 shows a 3D view of the

potential energy showed in 3.3(c). Note that image features can be of di�erent type.

In [43] a crease detection and a minimum distance map to the creases is used as a

potential map combined with edge potential �eld.

Energy minimization algorithm

Given a B-spline representation for the snakes, the expression for the total energy is

[64]:

Etotal =
1
2

R
�Q

02(u)) + �Q
002(u) +Fext(Q(u)))du

=
Pp

j=0f 12�[(
Pm

i=0XiB
0

i
(uj)

2) + (
Pm

i=0 YiB
0

i
(uj)

2)]

+ 1
2
�[(
Pm

i=0XiB
00

i
(uj)

2) + (
Pm

i=0 YiB
00

i
(uj)

2)] +Fext(Q(uj))g

(3.14)

where the
P

p

j=0 is the numerical integration.

The solution shall be a set of control points (Xi; Yi); i = 0; : : : ;m that minimize

the total energy, that is:

8l 2 f0; : : : ;mg
�

dE

dXl

= 0
dE

dYl
= 0
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(a)

(b) (c)

Figure 3.3: Left coronary artery angiography (a), Vessel cen ter detection (b), Po-

tential �eld as a distance map (c).

Decoupling (3.14) with the equations above for each coordinate, X and Y:

Pp

j=0[�B
0

l
(uj)

Pm

i=0XiB
0

i
(uj) + �B

00

l
(uj)

Pm

i=0XiB
00

i
(uj)+

Bl(uj)
d

dx
F (
Pm

i=0XiBi(uj) +
Pm

i=0 YiBi(uj))] = 0

P
p

j=0[�B
0

l
(uj)

P
m

i=0 YiB
0

i
(uj) + �B

00

l
(uj)

P
m

i=0 YiB
00

i
(uj)+

Bl(uj)
d

dy
F (
P

m

i=0XiBi(uj) +
P

m

i=0 YiBi(uj))] = 0

(3.15)
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Figure 3.4: T opographic map of the potential image in �g. 3.3(c).

Changing the summation order we get:P
m

i=0Xi[
P

p

j=0 �B
0

l
(uj)B

0

i
(uj) +

P
p

j=0 �B
00

l
(uj)B

00

i
(uj)+

P
p

j=0 Bl(uj)
d

dx
F (
P

m

i=0XiBi(uj) +
P

m

i=0 YiBi(uj))] = 0

P
m

i=0 Yi[
P

p

j=0 �B
0

l
(uj)B

0

i
(uj) +

P
p

j=0 �B
00

l
(uj)B

00

i
(uj)+

P
p

j=0 Bl(uj)
d

dy
F (
P

m

i=0XiBi(uj) +
P

m

i=0 YiBi(uj))] = 0;

l 2 f0; : : : ;mg

(3.16)

Writing (3.16) in a matrix form regarding the unknown coordinates (X;Y) of m+ 1

control points w e get:

�
AbX+Hx(x; y) = 0

AbY +Hy(x; y) = 0
(3.17)

Where Ab is the sti�ness matrix (banded) for the B-snake.

Ab =

0
BBBBBBBB@

c0 d0 e0 0 0 a0 b0
b1 c1 d1 e1 0 0 a1
a2 b2 c2 d2 e2 0 0

::: ::: ::: ::: ::: ::: :::

::: ::: ::: ::: ::: ::: :::

em�1 0 0 am�1 bm�1 cm�1 dm�1
dm em 0 0 am bm cm

1
CCCCCCCCA

(3.18)

The matrix elements are:
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ai =
P

p

j=0 �B
0

i�2(uj)B
0

i
(uj) + �B

00

i�2(uj)B
00

i
(uj)

bi =
P

p

j=0 �B
0

i�1(uj)B
0

i
(uj) + �B

00

i�1(uj)B
00

i
(uj)

ci =
Pp

j=0 �B
02
i
(uj) + �B

002
i
(uj)

di =
Pp

j=0 �B
0

i+1(uj)B
0

i
(uj) + �B

00

i+1(uj)B
00

i
(uj)

ei =
Pp

j=0 �B
0

i+2(uj)B
0

i
(uj) + �B

00

i+2(uj)B
00

i
(uj)

(3.19)

and the ith elements of Hx and Hy are:

[Hx]i =
Pp

j=0 Bi(uj)
d

dx
F (Q(uj))

[Hy]i =
Pp

j=0 Bi(uj)
d

dy
F (Q(uj))

i = 0; : : : ;m

The equations in (3.17) can be solved in an iterative way:

�
(xt � xt�1) = Abxt +
d

dx
Eext(xt�1 � yt�1)

�
(yt � yt�1) = Abyt +
d

dy
Eext(xt�1 � yt�1))

Pt = (Ab + 
I)�1(
Pt�1 +rEext(Q(u)t�1)) (3.20)

In (3.20) the damping parameter 
 (also called Euler step size ) determines the rate

of convergence of the minimization process. Matrix Ab is the sti�ness matrix, P is

the curve (control points) and Eext is the external energy. In [81] Radeva generalizes

the method for two dimensional snakes (deformable surfaces).

Pt = (Au + 
I)�1(
Pt�1 +rEext(Q(u; v)t�1))(Av + 
I)�1 (3.21)

where Au is the sti�ness matrix for the u basis functions and Av is the sti�ness

matrix for the v basis functions.

3.2.7 Critical issues in B-snakes: image feature detectors, ex-

ternal forces and control points

� The snake framework has a critical step when using the energy minimizing

scheme applied to the segmentation problem in computer vision: the potential

map is based on the output of a low level feature detection over the original

image, and therefore, the whole method, being theoretically sound and correct,

is highly dependent on the quality of the image feature detector used to build

the potential �eld.
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� Another question comes from the distribution of the forces along the curve.

When using a B-spline, one need a way to map the forces to the control points

to deform the curve. We decided to use the active basis function as weights for

the external forces for the control points involved in each span.

� Finally, there are the inherent errors always present in the discrete formulation

the snake energy minimizing scheme.

The snake is highly a�ected by the quality of a speci�c image feature detector.

Given the problem of detection of vessel structures, we found that one of the best

performing detectors on our application is represented by the level set based crease

detector [59]. It o�ers a very good image feature response (see �g.3.3) although still

could be a�ected by the cleaning steps on short segments in the feature map. Cleaning

the the short and isolated detector responses yields additional discontinuities along

the linear structure, as a result one can loose precision in detecting signi�cant parts

of the object of interest. The immediate consequence is a possible distraction of the

snake to near, false image fatures, due to image noise or close objects. To avoid these

problems we propose a statistical vessel learning for an optimal feature detection. A

survey on the statistical basis used to this approach follows.

3.3 Introducing statistical elements into the snake

framework

The introduction of a probabilistic approach in this framework is aimed to:

1. obtain an optimal representation of image features using feature learning and

statistical descriptors

2. reduce the dimension of the space for the image feature representation

3.3.1 Low-rank modeling in signal processing

A key problem in statistical signal processing is that of feature selection, which refers

to a process whereby a data space is transformed in a feature space that, in theory,

has exactly the same dimension as the original data space in order to optimize the

selection. However, it would be desirable to design the transformation in such a way

that the data can be represented by a reduced number of e�ective features and yet

retain most of the intrinsic information content of the input data. As the volume of

data involved in image processing is usually high, this dimensional reduction keeping

as much information as possible o�ers advantages; from the increment of the process-

ing speed up to the reduction/elimination of noise. In image signals, where there are

a lot of conditioning variables for computer analysis, the statistical approach allows

the needed 
exibility.

Suppose a vector of a data sequence x coming from a wide sense stationary process

with zero mean and correlation matrix R. Let 
1; 
2; : : : ; 
p be the eigenvectors

associated with the p eigenvalues of the matrix R. The vector x may be expanded as

a linear combination of these eigenvectors as follows:
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x =

pX
i=1

ci
i (3.22)

The coeÆcients of the expansion are zero-mean, uncorrelated random variables de�ned

by the inner product:

ci = 

T

i
xi i = 1; 2; : : : ; p (3.23)

The data representation of (3.23) is exact in the sense that it involves no loss

of information. But, usually there are some eigenvalues with a very small value.

Such eigenvalues can be considered as explaining noise and hence can be discarded.

Retaining the information in the �rst, say k < p eigenvalues, we may de�ne an

approximate reconstruction of the original data keeping a prede�ned percentage of

the data variance, see property (3.31). A dimensional reduction is carried out as

follows:

x̂ =

kX
i=1

ci
i k < p (3.24)

A reconstruction of the approximation of x̂ can be achieved using a set of p coeÆcients

ci; i = f1; : : : ; pg de�ned in terms of the data vector x, see (3.23). The rank of x̂

is p < k being k the rank of x, so the data model de�ned in (3.23) is referred as a

low-rank model. The coeÆcients ci can be viewed as a representation of the original

data in a dimensional reduced space. The incurred error in the reconstruction of x

due to the fact that x̂ is of lower rank is de�ned as:

e(n) = x� x̂ (3.25)

hence, using (3.22) and (3.24) we get:

e(n) =

kX
i=p+1

ci
i (3.26)

The mean square error is therefore as follows:

� = E[ke(n)k2] = E[e(n)Te(n)]

= E[
Pk

i=p+1

Pk

j=p+1 c
T

i
cj


T

i

j ]

=
Pk

i=p+1

Pk

j+1 E[c
T

i
cj ]


T

i

j =

Pk

i=p+1 �i

(3.27)

which con�rms that the data reconstruction de�ned by (3.24) is a good one, provided

that the eigenvalues �p+1; : : : ; �k are very small.

3.3.2 Dimensional reduction in computer vision

The �rst steps in statistical computer vision and pattern recognition using Principal

Component Analysis (PCA) [61] are found in [109]. They use PCA technique to

extract relevant information and learn faces from images. The underlying idea is to
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�nd a new base for a set of correlated random variables where they can be represented

as not correlated. Such a base is known as Principal Components. In other words, the

principal components are the standardized linear combination of the original variables

with maximal variance. The use of PCA in this work is mainly for searching for

a few optimal linear combinations to reduce the dimensionality of the space. The

optimization is in the sense of keeping the set of variables explaining almost all the

variance of the data and discarding the less important ones. This technique is widely

used in one dimensional signal processing [46], where the variables explaining a low

percentage of the variance are regarded as noise and, hence, discarded.

3.3.3 Principal component analysis

De�nition: A linear combination 1Tx is called Standardized Linear Combination

(SLC) if
P

i
l2
i
= 1 [61].

The �rst objective of principal component analysis is to seek the SLC of a set of

random variables which has maximal variance. More generally, principal component

analysis looks for a few linear combinations which can be used to summarize the data,

loosing in the process as little information as possible.

De�nition: If x is a random n-dimensional vector with mean � and covariance

�, then the principal component transformation is the transformation

x! y = �T (x��) (3.28)

where � is an orthogonal matrix, �T�� = � is a diagonal matrix with diagonal

elements �1 � �2 � : : : � �p � 0. The eigenvalues of � are positive because � is

positive de�nite. The ith principal component of x may be de�ned as the ith element

of the vector y, namely as:

yi = 

T

i
(x��) (3.29)

where 

T

i
is the ith column of �. The function yp may be called the last principal

component of x. Figure 3.6 gives a pictorial representation in two dimensions of the

principal components for � = 0.

Theorem: No standard linear combination of x has a variance larger than �1,

the variance of the �rst principal component [61].

3.3.4 Variance of the intermediate components

Theorem: If � = aTx is a standard linear combination of x which is uncorrelated

with the �rst k principal components of x, then the variance of � is maximized when

� is the (k + 1)th principal component of x.

3.3.5 Sample principal components

Let X = (x1; : : : ;xn)
T be a sample data matrix and a is a standardized vector. Then

Xa gives n observations on a new variable de�ned as a weighted sum of the columns of

X. The sample variance of this new variable is aTSa where S is the sample covariance
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Figure 3.5: Dimensional Reduction (k < p).

�
�

��

T

T

x1

x2

Figure 3.6: Ellipsoid xTA�1x = 1:

Lines de�ned by y1and y2 are the �rst and second principal axes,

kak =
p
�1; kbk =

p
�2:
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matrix of X. The �rst principal component is the standardized linear combination

with largest variance and by direct analogy with (3.29), we get:

y(1) = (X � 1�xT )g(1) (3.30)

where g is the standardized eigenvector corresponding to the largest eigenvalue of

S. Similarly, the ith sample principal component is de�ned as y(i) = (X � 1�x)g(i).

Putting the principal components together: Y = (X� 1�x
T
)G, (X� 1�x

T
) = YGT

since G is orthogonal.

Properties of principal components:

� The sum of the �rst k eigenvalues divided by the sum of all the eigenvalues

(�1 + : : :+ �k)=(�1 + : : :+ �p) (3.31)

represents the "proportion of total variation" explained by the �rst k principal

components. The proportion of the total variation de�ned, gives a quantitative

measure of the amount of information retained in the reduction from p to k

dimensions.

� The principal components of a random vector are not scale invariant. If p =

2, considering � =

�
�21 ��1�2

��1�2 �22

�
, where � > 0, the larger eigenvalue is

�1 =
1
2
(�21 + �22) +

1
2
�; where � = f(�21 � �22)

2 + 4�21�
2
2�

2g 1

2 ; with eigenvector

proportional to

(a1; a2) = (�21 � �22 +�; 2��1�2): (3.32)

When �1

�2
= 1, the ratio a1

a2
given by (3.32) is unity. If �1 = �2 and the �rst

variable is multiplied by a factor k, then for scale invariance we would like the

new ratio a1

a2
to be k. However, changing �1 to k�1 in (3.32) shows that this is

not the case.

� If the covariance matrix of x has rank r < p then the total variation of x can be

entirely explained by the �rst r principal components. If � has rank r, then the

last p � r eigenvalues of � are identically zero. Hence the result follows from

the �rst property above.

� The vector subspace spanned by the �rst k principal components 1 � k < p

has smaller mean square deviation from the population (or sample) variables

than any other k-dimensional subspace. If x � (0;�) and a subspace H � Rp

is spanned by orthonormal vectors h(1); : : : ;h(k); then by projecting x onto

this subspace we see that the squared distance d2 from x to H has expectation

E(d2) = E(xTx)�
P

k

j=1 E(h
T
(j)x):

Let f(j) = �Th(j); j = 1; : : : ; k; we have

E(d2) = tr��
kX

j=1

E(f(j)
Ty) = tr��

pX
i=1

kX
j=1

f2(ij)�i (3.33)
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since the f(j) are also orthonormal. It is minimized when fij = 0; i = k+1; : : : ; p

for each j = 1; : : : ; k; that is, when f(j) span the subspace of the �rst k principal

components.

� As a special case of the last property for k = p � 1; the plane perpendicular

to the last principal component has a smaller mean square deviation from the

population (or sample) variables than any other plane.

3.3.6 Distances and similarities

De�nition: Let P and Q be two points where these may represent measurements x

and y on two objects. A real-valued function d(P;Q) is a distance function if it has

the following properties:

(I) symmetry, d(P;Q) = d(Q;P)

(II) non-negativity, d(P;Q) � 0

(III) identi�cation mark, d(P;P) = 0

For many distance function the following properties also hold:

(IV) de�niteness, d(P;Q) = 0 if and only if P = Q

(V) triangle inequality, d(P;Q) � d(P;R) + d(R;Q)

If (I) � (V) hold, d is called a metric. For some purposes, it is suÆcient to

consider distance functions satisfying (I) � (III); but we only consider distances for

which (I)� (V) are satis�ed unless otherwise mentioned. One would expect d(P;Q)

to increase as dissimilarity or divergence between P and Q increases. Thus d(P;Q) is

also described as a coeÆcient of dissimilarity even when it does not satisfy the metric

properties (IV) and (V):

Frequently used distances:

Euclidean distance Let X be an (n� p) data matrix with rows xT1 ; : : : ;x
T
n : Then

the Euclidean distance between the points xi and xj is dij ; where

d2
ij
=

pX
k=1

(xik � xjk)
2 = kxi � xjk2 (3.34)

This distance function satis�es properties (I) � (V). It also satis�es the following

properties:

1. Positive semi-de�nite property: Let A = � 1
2d

2
ij
: Then HAH is p.s.d., where

H = I � n�111T is the centering matrix. This property is important when

examining similarity coeÆcients.

2. dij is invariant under orthogonal transformations of the xs:

3. The cosine law:

d2ij = bii + bjj � 2bij (3.35)

where bij = (xi � �x)T (xj � �x) is the centered inner product between xi and xj .

Another useful identity for calculation purposes is given by

nX
i=1

nX
j=1

d2
ij
= 2n

nX
i=1

bii (3.36)
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Karl Pearson distance

When the variables are not commensurable, it is desirable to standardize (3.34);

that is, we can use

d2
ij
=

pX
k=1

(xik � xjk)
2

s2
k

(3.37)

where sk is the variance of the kth variable. We shall call such standardized distance

the "Karl Pearson" distance and denote it K2: The distance is then invariant under

changes of scale. Another way to scale is to replace sk by the range

Rk = maxij jxik � xjk j (3.38)

For cluster analysis one usually uses (3.37) except when the di�erence in scale between

two variables is intrinsic, when one uses Euclidean distance.

Mahalanobis distance

The squared Mahalanobis distance between points xi and xj is de�ned as:

D2
ij
= (xi � xj)

T �̂�1(xi � xj) (3.39)

The Mahalanobis distance underlies Hotelling's T2 test and the theory of discrim-

inant analysis.

Properties:

1. Let x � (�1;�) and let y � (�2;�): Then D(�1;�2) is a Mahalanobis distance

between the parameters. It is invariant under transformations of the form:

x ! Ax + b; y ! Ay + b; � ! A�AT ; where A is a non-singular

matrix.

2. Let x � (�;�): The Mahalanobis distance between x and �; D(x;�); is here a

random variable.

3. Let x � (�1;�); y � (�2;�): The Mahalanobis distance between x and y is

D(x;y):

3.3.7 Factor Analysis

Factor analysis is a mathematical model which attempts to explain the correlation

between a large set of variables in terms of a small number of underlying factors. A

major assumption of factor analysis is that it is not possibly to observe these factors

directly; the variables depend upon the factors but are also subject to random errors.

The Factor Model

De�nition: Let x(p�1) be a random vector with mean � and covariance matrix �.

Then we say that the k-factor model holds for x if x can be written in the form

x = �f + n+ � (3.40)



60 METHODS FOR VESSEL RECONSTRUCTION AND MODELING

where �(p�k) is a matrix of constants and f(k�1) and n(k�1) are random vectors.

The elements of f are called common factors and the elements of n speci�c or unique

factors. We suppose that:

E(f) = 0; V (f) = I; (3.41)

E(n) = 0; C(ni; nj) = 0; i 6= j; (3.42)

and

C(f ;n) = 0: (3.43)

Denote the covariance matrix of n by V (n) = 	 = diag(	11; : : : ;	pp). Thus, all of

the factors are uncorrelated with one another and further the common factors are each

standardized to have variance 1. Note that xi =
P

k

j=1 �ijfj+ni+�i; i = 1; : : : ; p; so

that �ij =
Pk

j=1 �
2
ij
+	ii. Thus, the variance of x can be split into two parts. First,

h2
i
=
Pk

j=1 �
2
ij
is called the communality and represents the variance of xi which is

shared with the other variables via the common factors. In particular �2
ij
= C(xi; fj)

represents the extent to which xi depends on the jth common factor. On the other

hand 	ii is called the speci�c or unique variance and is due to the unique factor ni.

It explains the variability in xi not shared with the other variables.

3.4 Summary

The theoretical fundamentals used for the computer vision related elements were pre-

sented. Each topic developed is an introduction to chapter 5 where the main results of

this thesis regarding computer vision are presented. The deformable models (snakes)

and the statistical elements introduced here will be enhanced and used in innova-

tive ways to obtain the coronary model. The processes where deformable models

are applied are the vessel detection and tracking from image sequences and 3D re-

construction of the coronary arteries from biplane image projections. The statistical

components are incorporated to the deformable models for the vessel segmentation

and tracking tasks.


